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General Introduction

Biological information, though still in its infancy as a field of study, is widely 
thought to be well understood in its broad outlines. The conventional, or “old,” 
perspective on biological information is this: biological information, in the first 
instance, originates through purely chemical processes. These processes produce 
the first replicators. Once replication is in place, the Darwinian process of  natural 
selection acting on random variation kicks in, continually increasing the informa-
tion content of these replicators. Eventually, the information generating power of 
chemical and Darwinian processes results in organisms as complex and sophisti-
cated as human beings. The origin, structure, and dynamics of biological informa-
tion is thus thought to reduce to a combination of stochastic chemistry and 
undirected evolutionary forces.

This perspective on biological information is the majority position in the scien-
tific community. Often it fails to be fully articulated because research on  chemical 
evolution (the chemical processes responsible for first life and thus for the first 
biological information) and biological evolution (the evolutionary mechanisms 
responsible for the subsequent history of life and thus for the increase of existing 
biological information) tend to be conducted by different sets of scientists with 
different areas of expertise. Nonetheless, one occasionally finds this perspective 
articulated not in pieces but fully. Nobel laureate and origin-of-life researcher 
Christian de Duve is a case in point. In his book Vital Dust, he lays out various 
“ages” in the history of life: The Age of Chemistry, The Age of Information, The 
Age of the Protocell, The Age of the Single Cell, etc. Note that chemistry starts 
the ball rolling and precedes information. De Duve elaborates:

History is a continuous process that we divide, in retrospect, into ages — the 

Stone Age, the Bronze Age, the Iron Age — each characterized by a major 

 innovation added to previous accomplishments. This is true also of the history of 

life. . . . First, there is the Age of Chemistry. It covers the formation of a number 

of major constituents of life, up to the first nucleic acids, and is ruled entirely by 

the universal principles that govern the behavior of atoms and molecules. Then 

comes the Age of Information, thanks to the development of special information-

bearing molecules that inaugurated the new processes of Darwinian evolution and 

natural selection particular to the living world. [1]

The conventional perspective on biological information tends more often to be 
articulated in pieces. Thus Harvard chemist George Whitesides, focusing on his 
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expertise in chemistry and setting aside the subsequent history of life, speaks to the 
 origin of life and thus to the origin of the first biological information: “This prob-
lem [of life’s origin] is one of the big ones in science. It begins to place life, and 
us, in the universe. Most chemists believe, as do I, that life emerged spontaneously 
from mixtures of molecules in the prebiotic Earth. How? I have no idea.” Though 
short on details, Whitesides is nonetheless confident that his perspective is correct: 
“I believe that understanding the cell is ultimately a question of chemistry and that 
chemists are, in principle, best qualified to solve it. The cell is a bag — a bag con-
taining smaller bags and helpfully organizing spaghetti — filled with a Jell-O of 
reacting chemicals and somehow able to replicate itself.” [2]

Once life has originated and biological information is on hand, the subsequent 
history of life displays massive increases in information content. To explain 
these increases, the conventional perspective on biological information takes a 
thoroughly Darwinian line, elevating  natural selection as the primary engine for 
information generation over the course of biological evolution. Richard Dawkins 
articulates this view as follows:

In every generation, natural selection removes the less successful genes from the 

gene pool, so the remaining gene pool is a narrower subset. The narrowing is 

nonrandom, in the direction of improvement, where improvement is defined, in 

the Darwinian way, as improvement in fitness to survive and reproduce. Of course 

the total range of variation is topped up again in every generation by new muta-

tion and other kinds of variation. But it still remains true that natural selection is 

a narrowing down from an initially wider field of possibilities, including mostly 

unsuccessful ones, to a narrower field of successful ones. This is analogous to the 

definition of information with which we began: information is what enables the 

narrowing down from prior uncertainty (the initial range of possibilities) to later 

certainty (the “successful” choice among the prior probabilities). According to 

this analogy, natural selection is by definition a process whereby information is 

fed into the gene pool of the next generation. [3]

This is the conventional, or old, perspective on the origin and evolution of bio-
logical information. All the contributors to this volume question this perspective. 
In its place, they propose various new perspectives — plural. Some take a clearly 
teleological approach, advocating intelligent agent causation as the ultimate 
source of biological information. Others view information as sui generis, as a 
fundamental entity not reducible to purely material factors such as chemical 
attraction and natural selection. And others still, while accepting a big chunk of 
the old perspective, think that it needs to be supplemented with self-organizational 
processes whose information generating powers transcend those of the old 

b1567_FM.indd   xivb1567_FM.indd   xiv 5/8/2013   2:25:57 PM5/8/2013   2:25:57 PM

 B
io

lo
gi

ca
l I

nf
or

m
at

io
n 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
2.

4.
17

.1
40

 o
n 

08
/1

1/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



 General Introduction xv

b1567  Biological Information — New Perspectives b1567_FM 8 May 2013 2:34 PM

perspective. The contributors, rather than presenting a united front, attempt to 
explore new ground and ask insightful new questions.

But if the old perspective is so well established, why question it? Is it not a sign 
of recalcitrance to contradict well settled verities of the scientific community? 
Certainly, this can be a danger. But it is a danger only when those raising the ques-
tions are ill-informed and unqualified in the relevant sciences, and have as their 
main motive to derail rather than foster genuine scientific inquiry. That is the not 
the case with any of the contributors to this volume. Science progresses not by 
acceding to consensus but by breaking with it. Moreover, even with well settled 
scientific theories, it is healthy for science periodically to question whether those 
theories really hold up.

In any case, there are good reasons, readily accessible to non-experts, for think-
ing that the old perspective on biological information bears closer scrutiny and 
may well be false. Take the origin of life, where all biological information begins. 
Origin-of-life researchers readily admit that they don’t know how life began. True, 
they entertain speculative ideas about life’s origin, with  RNA-worlds currently 
heading the pack. But no one in the field claims to have a precisely formulated 
theory with solid evidential support that explains life’s origin.

Thus, Stuart Kauffman, a contributor to this volume, writes, “Anyone who tells 
you that he or she knows how life started on the earth some 3.45 billion years ago 
is a fool or a knave. Nobody knows.” [4] Origin-of-life researcher Leslie Orgel 
similarly held that “anyone who thinks they know the solution to this problem is 
deluded.” [5] Or consider science writer Paul Davies: “We are a very long way 
from comprehending the how [of life’s origin]. This gulf in understanding is not 
merely ignorance about certain technical details, it is a major conceptual lacuna… 
My personal belief, for what it is worth, is that a fully satisfactory theory of the 
 origin of life demands some radically new ideas.” [6]

The origin of life is the most vexing problem facing contemporary science. It 
has fiercely resisted reductionist approaches to its resolution. All attempts to get 
life started solely through life’s underlying chemistry have come up short. Could 
it be that although chemistry provides the medium for biological information, the 
information itself constitutes a message capable of riding free from the underlying 
medium? Could such information be a real entity — as real as the chemical con-
stituents that embody it, and yet not reducible to them — and, dare we say, have 
an intelligent cause? Granted, this is itself a speculative possibility, but in a field 
so rife with speculation, why allow only one set of speculations (those that adhere 
to the old perspective) and disallow others (those that open up new possibilities)? 
The contributors to this volume are not offering final answers. Rather, they are 
raising penetrating questions precisely where the old perspective has failed to offer 
a promising starting point for understanding the origin of biological information.
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Even so, once biological information comes on the scene at the origin of first 
life, don’t we have a well supported theory for the increase of biological informa-
tion via the Darwinian mechanism of natural selection acting on random varia-
tion? In fact, even here the old perspective on biological information comes up 
short. The problem, as University of Chicago molecular biologist James Shapiro 
notes in Evolution: A View from the 21st Century, is that Darwinism constitutes an 
oversimplification: “Molecular evidence about  genome sequence changes tell us 
that the simplifying assumptions made in the 19th and early 20th Centuries are 
plainly wrong. They fail to account for the variety of cellular and genomic events 
we now know to have occurred.” [7] Shapiro continues:

Living cells and organisms are cognitive (sentient) entities that act and interact 

purposefully to ensure survival, growth, and proliferation. They possess corre-

sponding sensory, communication, information-processing, and decision-making 

capabilities. Cells are built to evolve; they have the ability to alter their hereditary 

characteristics rapidly through well-described natural genetic engineering and 

epigenetic processes as well as cell mergers. [8]

The picture of life and  evolution that Shapiro presents is radically at odds with 
the old perspective on biological information. Shapiro is not alone. Many biolo-
gists are now questioning whether conventional evolutionary theory needs to be 
rethought from the ground up, notably the “Altenberg 16,” who started out as 
mainstream biologists wedded to the old perspective, but now have jumped ship 
because the old perspective is no longer working, at least not for them. [9]

So too, notable outsiders are beginning to question whether the old perspective 
is disintegrating before their very eyes. Thus Robert Laughlin, a Nobel laureate 
physicist who studies the properties of matter that make life possible, remarks:

 Evolution by  natural selection, for instance, which Charles Darwin originally 

conceived as a great theory, has lately come to function more as an antitheory, 

called upon to cover up embarrassing experimental shortcomings and legitimize 

findings that are at best questionable and at worst not even wrong. Your protein 

defies the laws of mass action? Evolution did it! Your complicated mess of chemi-

cal reactions turns into a chicken? Evolution! The human brain works on logical 

principles no computer can emulate? Evolution is the cause! [10]

Note that Laughlin himself does not disavow evolution. His beef is with 
 ill-considered conceptions of evolution and the facile use of “evolution” as a 
magic word to conjure away hard scientific problems, when doing so in fact 
merely cloaks ignorance.
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Even Francisco Ayala, an otherwise staunch Neo-Darwinist (himself a protégé 
of Theodosius Dobzhansky, one of the key architects of the neo-Darwinian syn-
thesis), now questions whether evolutionary theory requires fundamentally new 
insights: “Unfortunately, there is a lot, lot, lot to be discovered still. To reconstruct 
evolutionary history, we have to know how the mechanisms operate in detail, and 
we have only the vaguest idea of how they operate at the genetic level, how genetic 
change relates to development and to function. I am implying that what would be 
discovered would be not only details, but some major principles.” [11]

In the spring of 2011 a diverse group of scientists gathered at Cornell University 
with an eye on the major new principles that might be required to unravel the 
problem of biological information. These scientists included experts in  informa-
tion theory, computer science,  numerical simulation,  thermodynamics, evolution-
ary theory, whole organism biology, developmental biology, molecular biology, 
genetics, physics, biophysics, mathematics, and linguistics. Original scientific 
research was presented and discussed at this symposium, which was then written 
up, and constitute most of the twenty-four peer-edited papers in this volume. 
These papers are presented in four sections: Information Theory and Biology, 
Biological Information and Genetic Theory, Theoretical Molecular Biology, and 
Self-Organizational Complexity Theory. Each of these sections begins with an 
introductory chapter laying out the themes and problems to be discussed there as 
well providing brief summaries of the papers appearing in that section.

Many of the papers in this volume speak of biological information in the limited 
context of the multi-dimensional array of information encoded within a cell’s 
 genome. Nevertheless, if we define information more broadly as “all that which is 
communicated,” the information within a living cell is much greater than its DNA 
sequence. All the components of the cell, including all the RNA and protein mol-
ecules, are continuously communicating with each other. It is recognized that there 
are hundreds of thousands of different types of interactions within the cell’s “ inter-
actome,” and most of these interactions in one way or another involve communica-
tion. In this sense, the amazing communication network within a cell can very 
reasonably be compared to the Internet.

If we extend the computer science analogy further, we can consider the genome 
as stored information (the “hard drive” of the cell), while the RNA, protein, and 
other structures can be considered the “active information” (the RAM of the cell). 
While many of the papers given at this symposium deal with the information 
within the genome, it is very important we do not forget that most biological infor-
mation in the cell is above and beyond the genome. On a level entirely above and 
beyond all this communicated information within the cell, information is also 
being communicated between cells, and between organisms. On a still higher level, 
we have the little-understood biological information that underlies the human 
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mind, our own intelligence, and human  consciousness. All of this is biological 
information! There exists an unknown number of symbolic languages (the genetic 
code being just one of many biological codes) underlying this astounding com-
munication labyrinth integrating all levels of biological information.

All this talk about information as a real object of study within the field of biol-
ogy, however, raises the question, What exactly is information in the first place? 
Is it a precisely defined measurable entity? Can the study of biological information 
be turned into an exact science? Does biological information connect meaning-
fully with  information theory as understood in the mathematical and engineering 
sciences? As University of Texas philosopher of biology Sahotra Sarkar rightly 
notes, “It is incumbent upon those who think that informational concepts have 
theoretical value in biology (that is, they explain things rather than being merely 
metaphors) to produce an appropriate technical concept of information for bio-
logical contexts.” [12] The first section of this volume is devoted to precisely this 
concern. Keying off of research on evolutionary search, No Free Lunch theorems, 
and Conservation of Information, this section attempts to provide the theoretical 
underpinnings for a full-fledged theory of biological information.

In the last decades, it has become clear that biological information is crucial to 
our understanding of life. On completion of the  Human Genome Project, former 
Caltech president and Nobel Prize-winning biologist David Baltimore remarked, 
“Modern biology is a science of information. The sequencing of the genome is a 
landmark of progress in specifying the information, decoding it into its many 
coded meanings and learning how it goes wrong in disease. While it is a moment 
worthy of the attention of every human, we should not mistake progress for a solu-
tion. There is yet much hard work to be done…” [13] The contributors to this 
volume agree and desire that their efforts here will inspire much hard work on the 
greater project of providing a full-fledged theory of biological information, one 
that is free of ideological bias and gets at the truth of the matter.

— The Editors
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Section One — Information Theory & Biology: 
Introductory Comments

Robert J. Marks II — Section Chairman

All agree there is information in biological structure and function. Although the 
term information is commonly used in science, its precise definition and nature 
can be illusive, as illustrated by the following questions:

• When a paper document is shredded, is information being destroyed? Does it 
matter whether the shredded document is a copy of an un-shredded document 
and can be replaced?

• Likewise, when a digital picture is taken, is digital information being created 
or merely captured?

• The information on a DVD can be measured in bits. Does the amount of infor-
mation differ if the DVD contains the movie Braveheart or a collection of 
randomly generated digital noise?

• When a human dies, is experiential information lost? If so, can birth and expe-
rience create information?

• If you are shown a document written in Japanese, does the document contain 
information whether or not you know Japanese? What if instead, the docu-
ment is written in an alien language unknowable to man?

The answers to these questions vary in accordance to the information model used. 
However, there are properties of information common to all models. As noted by 
Norbert Weiner [1, 2], the father of cybernetics:

“Information is information, neither matter nor energy.”

Information can be written on energy. Examples include wireless electromag-
netic waves and audio waves that carry the content of conversations. As is the case 
with books and DVD’s, information can also be etched onto matter. But energy 
and matter serve only as transcription media for information. Information can also 
reside in structure or phenomena. Varying degrees of information are available in 
nature. A bacterium obviously contains more information than a grain of sand. 
Information can be extracted from inspection of information-rich sources. The 
idea for Velcro came from close examination of burrs stuck to the clothes of a 
Swiss engineer after a hunting trip [3]. The function of the human eyelid was the 
inspiration for invention of the intermittent windshield wiper [4]. The IEEE 
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Computational Intelligence Society [5], a professional electrical and computer 
engineering organization,1 has as its motto, “Nature inspired problem solving.” 
The implication is that structure in nature, when examined, can be a rich source of 
information applied to engineering. Unlike mass and energy in physics, a single 
model or definition of information does not exist. Claude Shannon recognized his 
theory was not the last word in the mathematical modeling of information [6]:

“It seems to me that we all define ‘information’ as we choose; and, depending 

upon what field we are working in, we will choose different definitions. My own 

model of  information theory... was framed precisely to work with the problem of 

communication.”

Shannon Information

Because of its widespread application and depth of mathematical rigor, the most 
celebrated information model is  Shannon information theory. In an astonishing 
1948 paper [7], Claude Shannon single-handedly founded a discipline still cele-
brated today by professional organizations such as the IEEE Information Theory 
Society who has published The IEEE TRANSACTIONS ON INFORMATION THEORY since 
the mid-1950’s. Shannon’s original paper is remarkable. The word bit, a contrac-
tion of binary digit, was first used in this paper.2 To show that continuous time 
signals could be represented by discrete time samples, Shannon discussed the 
sampling theorem3 that is today a universal staple of undergraduate electrical engi-
neering curricula [9], and dictates how many discrete samples must be captured on 
DVD’s and digital images to faithfully reconstruct continuous time audio signals 
and images [8, 9]. A relationship between average information and thermody-
namic  entropy was established by Shannon. In one of the most important applied 
mathematical results of the twentieth century, Shannon also showed that errorless 
communication was possible over a noisy channel. Forty five years later, turbo 
codes for the first time came very close to achieving the errorless communication 
bounds predicted by Shannon [10].

A fundamental contribution of Shannon’s paper is a mathematical definition of 
information. Two axioms are foundational to Shannon information.

1 IEEE, the Institute of Electrical and Electronic Engineers, is the world’s largest professional 
 society. In 2010, there were 382,400 members. 
2 Shannon credited John W. Tukey, a fellow Bell Labs researcher, with coining the word. 
3 I wrote an entire book dedicated to this topic [8], only one of the amazing contributions 
of Shannon’s paper. 
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1. As the probability of an event increases, the amount of information decreases. 
There is little or no information in the statement that the sun will rise tomor-
row morning. The probability of the event is nearly one. On the other hand, 
the event of the sun going supernova tomorrow has a miniscule almost zero 
probability. Being told the sun is going supernova tomorrow conveys much 
information.

2. Information of two disjoint events should be additive. That is, if the word 
“stuttering” conveys information I1 and “professor” conveys information I2, 
then “stuttering professor” should convey information I1 + I2.

If p denotes the probability of an event, the definition that satisfies both of these 
axioms is4

I = − log2 p.

As required by the first axiom, information increases as probability decreases. 
If two disjoint (statistically independent) events have probabilities p1 and p2, then 
the probability of both events is p1p2 with information I = − log2 p1p2 = I1 + I2 
where I1 = − log2 p1 and I2 = − log2 p2. The additivity axiom is thus satisfied.

The base of the log in the definition of  Shannon information is arbitrary and 
determines the units of information. If base 2 is used, then the unit of information 
is a bit. If a fair coin is flipped 6 times, we can say there are six bits of information 
generated since the probability of generating a specific sequence, say HTTHH, is

6
1

2 .
2

Ip -Ê ˆ= =Á ˜Ë ¯

The bit can be viewed as probability measured in coin flips. Ten bits, for example, 
corresponds to successfully forecasting the results of ten coin flips. Pioneering 
application of Shannon information theory to biology includes the work of 
Thaxton, Bradley & Olsen [12] and Yockey [13, 14]. There are limitations to 
Shannon information. Isolated from context, Shannon information measure is 
divorced from meaning. A Braveheart DVD can contain as many bits as a DVD 
filled with random noise. When applying Shannon information, care must be taken 
to recognize this property and, if meaning is applicable, to make clear the 
connection.

4 Use of the log to measure information dates to 1928 when Ralph Hartley noted that “...our practical 
measure of information [is] the logarithm of the number of possible symbol sequences.” [11] This is 
equivalent to Shannon information when all symbol sequences are equally probable.
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Solomonov-Kolmogorov-Chaitin Information

Shannon information is motivated by communication.  Algorithmic information 
theory, also called Solomonov-Kolmogorov-Chaitin information after the three 
men who independently founded the field5 [15–22], is a topic in the field of com-
puter science. Whereas Shannon information deals with probability of future or 
unknown events, algorithmic information deals largely with the complexity of 
existing structure. To what degree can a thick book, say the KJV Bible, be com-
pressed? The length of the shortest computer program to generate KJV Bible is 
dubbed the Chaitin-Kolmogorov complexity of the book.6 A repeated sequence 
010101010... for a billion bits has low complexity. The computer program is 
“Repeat 01 a half billion times.” A billion bits generated by repeated flips of a fair 
coin, on the other hand, is almost certainly incompressible. The shortest program 
to print the sequence must then contain the sequence, “Print ‘0110100010....’.”

An implication of the word information, when used conversationally, is the 
communication of meaning. Algorithmic information theory’s measure of com-
plexity suffers from the same problem as Shannon’s model—it does not inherently 
capture the meaning in the information measured [23]. A digital image of a 
Caribbean sunset can have the same  Chaitin-Kolmogorov complexity as an unfo-
cused image of correlated noise.

The Meaning of Informati on

Meaning in information is captured by the concept of  specified complexity popular-
ized by Dembski [24, 25]. The idea can be illustrated using the English alphabet [12]. 
The phrase

OVER AND OVER AND OVER AND OVER AND OVER AND 

OVER AND OVER AND OVER AND OVER AND OVER AND

has specific meaning but has a low Chaitin-Kolmogorov complexity. A program 
can read “Repeat ‘OVER AND’ ten times.” The phrase

HSUEX SHDF OSJ HDFN SJABXMJ SHBU SZJLK QPRQZ HASKS 

FPSCSJSJAA PJKAO DFAJ AJDFHFQWSALA DAFL V AZQEF

5 Chaitin, born in 1947, was still a teenager when his first groundbreaking work was published 
in 1966.
6 The minimum program depends on the computer program used, but the measure from computer to 
computer varies only by an additive constant.
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is complex. The program for this phrase would be “Print HSUEX SHD... ZQEF”. 
This is about the same size of the phrase itself. The phrase however, has no speci-
fied meaning. Next, consider the Bob Dylan lyrics7

I ASKED FOR SOMETHING TO EAT IM HUNGRY AS HOG SO I 

GET BROWN RICE SEAWEED AND A DIRTY HOT DOG.

This sequence of letters, display both a specified meaning and high complexity.
Leslie Orgle notes, regarding the requirement of specified complexity in life:

“Living organisms are distinguished by their specified complexity. Crystals such 

as granite fail to qualify as living because they lack complexity; mixtures of ran-

dom polymers fail to qualify because they lack specificity.” [26]

Orgle’s statement was independently observed by Yockey and Wickens [12]. Other 
models of information include  universal information [1], functional information 
[23, 27, 28],  pragmatic information [29] and evolutionary informatics [30–32]. 
Except for functional information, all of these models are addressed in this section.

Papers

The papers in this section on Information and Biology fall into three distinct 
categories.

1. Informati on Theory Models

How can information be modeled to reflect the information residing in biological 
systems? Gitt, Compton and Fernandez [1] define  universal information as; “A 
symbolically encoded, abstractly represented message conveying the expected 
action and the intended purpose.” They then show how universal information is 
resident in biological systems. Dembski et al. [43] build on the theory of evolu-
tionary informatics [30–32] by developing a generalized search methodology. 
Using conservation of information ideas popularized by the No Free Lunch theo-
rem [25], evolutionary search is shown to produce no active information. The 
difficulty of the search at hand, measured by endogenous information, can be 
simplified only by access to some source of information. Oller’s pragmatic 

7 “On the Road Again” by Bob Dylan.

b1567_Sec1.indd   5b1567_Sec1.indd   5 5/8/2013   2:26:18 PM5/8/2013   2:26:18 PM

 B
io

lo
gi

ca
l I

nf
or

m
at

io
n 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
2.

4.
17

.1
40

 o
n 

08
/1

1/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



6 R. J. Marks II 

b1567  Biological Information — New Perspectives b1567_Sec1 8 May 2013 2:35 PM

information [29] refers to the content of valid signs — the key that unlocks lan-
guage acquisition by babies and ultimately leads to human communication 
through language. Oller shows this same measure is required for “codes” in 
genetics, embryology, and immunology to work.

2. Limitati ons of Evoluti onary Models

A colleague of mine visiting my office noticed my computer buzzing away. When 
he asked what I was doing, I replied “running a self-organizing evolutionary pro-
gram.” In mocked astonishment, he queried “That’s exciting! When will it be able 
to talk?” The truth in this quip is that evolutionary systems often hit a point after 
which no further improvement is observed. Behe [37], who coined the phrase edge 
of evolution, documents that biological  evolution can also develop to a point where 
no other improvement is observed. In such case, specified complex information is 
bounded. Basener [38] proves such a ceiling of performance exists in many evo-
lutionary processes. Specifically he finds; “In an evolutionary system driven by 
increasing fitness, the system will reach a point after which there is no observable 
increase in fitness.” Schneider’s ev [39] and  Avida [40] computer programs that 
purport to demonstrate biological evolution obey the criteria necessary for 
Basener’s result to apply. No matter how long they run, neither program will ever 
learn to talk. Ewert et al. [41] demonstrate that  TIERRA, Thomas Ray’s attempt 
to simulate a Cambrian explosion on the computer, also hits Basener’s ceiling. 
Although TIERRA demonstrates fascinating and unexpected behavior, interesting 
innovations consistently arise only from loss of function. This same phenomenon 
in biology is reported by Behe [37]. Montañez et al. [42] assess the probability of 
information being increased via random mutations within a  genome. They show 
that the probability of improvement drastically diminishes as the number of  over-
lapping codes increases and to the extent that the DNA sequence is already near 
its optimum.

3. Thermodynamics, Entropy and Informati on

Both  information theory and  thermodynamics share the concept of  entropy refer-
ring to maximum disorder and uncertainty. Recognizing that life does not conform 
to thermodynamics’ demand for ever increasing disorder, Erwin Schrödinger 
coined the term negentropy (negative entropy) to apply to life. What is the source 
of negentropy?
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Sewell [35] shows that the decrease of entropy within a non-isolated system is 
limited not by “compensating” entropy increasing outside the system, but by the 
type and amount of entropy exported through the boundary. Thus, in open sys-
tems, information increases are limited by the information entering through the 
boundary. In other words, it is not true that anything can happen in an open 
 system [36]. McIntosh [33] carefully argues that the laws of thermodynamics do 
not permit the rise of functional devices (‘machines’) just by the flow of energy 
into a non-isolated system. Free energy devices available to do useful work are a 
product of intelligence. If one then considers information itself, one then finds that 
rather than matter and energy defining the information sitting on the polymers of 
life (a view held by many today), McIntosh posits that the reverse is in fact the 
case. Information has its definition outside the matter and energy on which it sits, 
and furthermore constrains matter/energy to operate in a highly non-equilibrium 
thermodynamic environment. He then outlines principles of information interac-
tion with energy and matter in biological systems [34].

A Final Thought

Much work remains on development of a concise mathematical model of informa-
tion applicable to biological systems. Some physicists have argued that all of the 
information required for the observable universe, including physical laws and the 
prescription for life, was created through the  Big Bang. The authors of this section 
appear to unanimously disagree with such an assertion.
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Abstract

Scientific discoveries, especially over the last six decades, have left no doubt that ‘information’ plays 
a central role in biology. Specialists have thus sought to study the information in biological systems 
using the same definitions of information as have been traditionally used in engineering,  computer 
science, mathematics and in other disciplines. Unfortunately, all of these traditional definitions lack 
aspects that even non-specialists recognize as being essential attributes of information — qualities 
such as meaning and purpose. To remedy that deficiency, we define another type of information — 
 Universal Information — that more accurately embodies the full measure of information. We then 
examine the DNA/RNA protein synthesizing system with this definition of Universal Information 
and conclude that Universal Information is indeed present and that it is essential for all biological 
life. Furthermore, other types of information, such as Mental Imaging Information, also play a key 
role in life. It thus seems inevitable that the biological sciences (and science in general) must con-
sider other-than-the-traditional definitions of information if we are to answer some of the fundamen-
tal questions about life.

Key words: information, codes, Universal Information, biological information, scientific laws, laws 
of nature, transmitter, receiver

Introduction

The title of this symposium is “Biological Information: New Perspectives”. But 
what do we mean by the term “biological information”? We suggest that, at pre-
sent, it cannot be unambiguously defined. Yet, an unambiguous definition would 
be extremely helpful because multiple levels of communication systems are being 
researched: from the DNA-coded information in the genome, to the intra-cellular 
communication networks involving RNA and proteins, to inter-cellular signaling 
via entities such as hormones, all the way up to and including the nervous system 
and the brain. Clearly, identifying all of these communication systems and defin-
ing the information that is being transferred will be a challenge. It is clear that 
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there are many subsets (or categories) of biological information, and that many 
more will be discovered [1]. At some point, perhaps after further research, we will 
be in a position to more precisely define “biological information”. For the interim, 
we will offer a description of it as a placeholder until we have enough knowledge 
to define it with scientific rigor.

We propose that biological information includes all manifestations of informa-
tion in living organisms. This description has the potential to include all categories 
of information. From recent scientific studies in genetics it is clear that there are 
many subsets of biological information (codes), and many more wait to be uncov-
ered within the DNA/RNA systems alone [1]. It is reasonable to believe that pro-
gress on biological information will be accelerated if each information subset is 
unambiguously defined. Towards this goal we should begin by defining a defini-
tion: a description or explanation of a word or thing by its attributes, properties 
or relations that distinguishes it from all other entities [2]. Even applying this defi-
nition carefully is important, because scientifically rigorous results cannot be 
achieved when using ambiguous terms. A common example of this is the claim 
that, “Evolution is a fact.” The validity of such a claim is certainly going to depend 
on the precise meaning of the term ‘ evolution’.

Defining Subsets of Information

This leads us to ask the more general question: What precisely is information? 
Anyone who has studied this field is aware of three working definitions of 
information:

• Classical Information Theory:  Shannon (statistical)  information [3]; 
dealing solely with the technical/engineering aspects of communication. 
This involves analyses including obtaining statistics on the material sym-
bols for data transmission, storage and processing.

•  Algorithmic Information Theory: Solomonoff/Kolmogorov/Chaitin 
[4–6]; dealing with the ‘complexity’ (as this term is defined in the the-
ory) of material symbols in data structures and of objects in general.

• Complex Specified Information (CSI) Theory: Dembski [7]; roughly 
the same as Classical Information Theory but adding the important con-
cept of a ‘specification’.

These theories, like modern genetics, focus primarily on the material carriers of 
the information. On the other hand, American mathematician and National Medal 

b1567_Sec1.1.1.indd   12b1567_Sec1.1.1.indd   12 5/8/2013   2:26:38 PM5/8/2013   2:26:38 PM

 B
io

lo
gi

ca
l I

nf
or

m
at

io
n 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
2.

4.
17

.1
40

 o
n 

08
/1

1/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



 Biological Information — What is It? 13

b1567  Biological Information — New Perspectives b1567_Sec1.1.1 8 May 2013 2:35 PM

of Science recipient Norbert Wiener in 1968, made his often quoted statement 
“Information is information, neither matter nor energy.”[8]

Wiener’s statement prompted one of us (W. Gitt) to ask; if information is not 
matter (mass and energy) then what is it? Gitt therefore started a long quest to 
define information — at least the information that was most familiar to scientists 
of that day. As an information scientist, Gitt not only examined the information 
conveyed within human natural languages, but also the information conveyed 
within abstract and artificial languages such as machine languages. In his studies 
he identified five attributes, four of which qualified as distinguishing attributes of 
‘information’. Before we examine these, let us make it clear that these natural and 
artificial language systems were first studied because at that time they had already 
been extensively characterized. We used these human information systems as 
‘known systems’, which would most likely be amenable to precise definition.

Distinguishing Attributes of Information

Code plus syntax

At the basic level of information in these languages we find a set of abstract sym-
bols formally known as an alphabet — this set constitutes the code. By abstract 
we mean that each of these symbols has no resemblance and no inherent physical 
relationship to the entity that they represent. These symbols have a characteristic 
two-dimensional configuration that distinguishes them from each other. One way 
in which this is manifested in the material domain is by inscribing these symbols 
onto a wide variety of material media and formats.

Examples of this are abundant. For instance, the first five words of Lincoln’s 
Gettysburg Address — “Fourscore and seven years ago” — may be inscribed on 
paper with ink, or chiseled onto a block of granite, or on a blackboard with chalk, 
or in the air with smoke signals or with the vibrations of speech, or on a transmis-
sion line with electrical dots and dashes as in Morse code, or on a computer’s hard 
drive by properly setting magnetic ‘bits’, or in many other ways.

With this we see that the actual information is completely independent of the 
material medium that serves only to ‘carry’ it. Any one of a multitude of material 
media and formats may be used to carry exactly the same information. While 
there is indeed a correlation between the material media and format that carries 
the information, the dictum “correlation does not imply causation” certainly 
applies here. The material carrier cannot be and is not the cause of the 
information.
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Further examination reveals that there is also a set of rules governing what is 
permissible regarding the arrangements of the symbols — this set of rules consti-
tutes the  syntax.

With the combination of abstract code and syntax we are able to generate more 
complex language structures such as words and sentences. However, at this (formal 
language) stage meaning plays no role. It was at this level only that Shannon devel-
oped his Theory of Communication [3] into the highly useful statistical analyses of 
the material symbols, solely for the technical purposes of data transmission, storage 
and processing. Code plus syntax is a necessary distinguishing attribute of all human 
languages. Let us pause for a moment and reflect on how this all comes about.

In order to develop, learn, or use a code plus syntax system, it requires a high 
degree of mental effort and intelligence. No one at any time has ever observed this 
basic attribute of information (i.e., code plus syntax) being established through 
unguided, purely physicochemical processes. However, we have observed young 
children learning the alphabet and learning to read, write, and speak words. Also 
many of us as adults have developed and/or learned machine languages. We may 
say that people acquired these abilities from their parents and so on down through 
history. However, this does not in any way explain how the first human acquired 
this ability. If we assume this happened without intelligent guidance, there are 
only two alternatives: 1) it is an inherent property of matter or, 2) it is possible for 
these abilities to ‘evolve’ over time. A person may choose to believe in either of 
these alternatives but that person would have to also accept that this is a belief with 
no hard science to support it.

Meaning

The next level of the distinguishing attributes of information in human languages is 
meaning. At this level, words that were formed by short sequences of symbols are 
assigned to represent ‘something’ (where that ‘something’ may be any particular 
entity or object, event, thought or concept). Additionally, that ‘something’ must be 
defined and that definition is also represented by words.1 Higher levels of meaning 
and information content are constructed using phrases, sentences and paragraphs 

1 For example, consider the word ‘cat’. ‘Cat’ is an abstract representation of the actual creature. If we 
then define this creature as ‘a four-legged mammal that purrs and meows’, we then have other words 
that are being used to represent both the word ‘cat’ and the creature. We note that the words being 
used also be defined with other words — this goes on level after level. For instance, the above 
definition for ‘cat’ included the word ‘mammal’. That word ‘mammal’ must be defined (with other 
words, of course) and then those other words will in turn need to be defined. Thus, a measure of 
circularity is ultimately unavoidable.
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when the meaning from one word is insufficient. In our example of a ‘cat’ 
(footnote 1), its definition is a sentence that represents a creature and the word ‘cat’.

Meaning is an absolutely essential attribute of information that is conveyed in 
language and communication. Words, both written and spoken, can be used to 
represent entities, events and/or concepts — literally anything. The entities need 
not be present but words, serving as their placeholders, represent and thereby com-
municate their reality as if they were present. Unguided, purely physicochemical 
processes have never been observed creating this ‘substitutionary’ process [10]. 
We are referring here to natural, unguided, purely physicochemical processes that 
have no external guiding (control) systems found in information-rich systems. 
These seem to eliminate all biological information systems as being examples of 
unguided, purely physicochemical processes.

Expected Acti on

The examination of sentences or paragraphs in a message reveals an implied 
request or a command for the receiver of the message to perform some action. 
These actions start with the receiver reading and understanding the message (this 
in itself involves very complex actions). From understanding the message, the 
receiver must decide whether or not he/she will comply fully, partially or not at all 
with the sender’s expected action. If the decision is to fully comply then the 
receiver performs whatever action was indicated (purposed!) by the sender’s mes-
sage. Here we must distinguish between two types of receivers: 1) an intelligent 
being that possesses the capability of making free choices and is able to determine 
the meaning of the message, and 2) a machine that does not have these capabili-
ties. In the former, the intelligent being can respond to the request or command in 
highly variable ways. With the machine the meaning has been programmed into 
command signals that ‘start’ or initiates the action level — the systems control 
program guides the machine to automatically perform the action. It must be 
pointed out that in both cases machines are essential for performing the expected 
actions [10]. In the case of the intelligent being, the machinery of his body may 
be sufficient or he may need to utilize external machinery (which may be mechani-
cal/electrical machines, animals, other humans, etc.).

Intended Purpose

Prior to issuing an original written or verbal message there must be an internal 
thought process that motivates the sender to formulate a message. This thought 
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process is necessarily complex and involves need, motivation or intent for some-
thing to be achieved. If it is not to be performed by the sender, then the thought 
process must include selecting a particular receiver and determining whether or 
not that receiver is capable of performing the expected action. If the whole process 
is completed successfully, then the sender’s original purpose is achieved. Thus we 
see that information’s attribute of intended purpose is essential at the very 
 beginning of a message. The achievement of that purpose is the result of the 
receiver’s performance of the desired action. From this we see that the most 
important attribute of information is the intended purpose and that it is at both 
ends of a successfully completed message. Purpose may thus be thought of as the 
‘bookends attribute’.

The Definition of Universal Information

All four attributes described above are necessary to unambiguously distinguish 
this subset (category) of information. Due to this, the formal definition of 
 Universal Information (UI) stated below incorporates all four of these distinguish-
ing attributes.

A symbolically encoded, abstractly represented message conveying the expected 
action and the intended purpose.

Now we can appraise the three previously discussed working definitions of infor-
mation in light of the attributes of Universal Information.

Shannon’s classical information theory concerns itself only with statistical rela-
tionships of material symbols found within the code of Universal Information. 
This was because nothing more was necessary in order to address the technical 
issues of information transmission and storage. While Shannon stated this point 
clearly in his landmark paper [9], most modern day evolutionary theorists cham-
pion his definition primarily because it allows for the creation of ‘information’ by 
randomly assembling symbols. This makes creation of biological information 
trivial, and separates biological information from biological functionality. The 
attempt to define biological information in this way is clearly ideologically driven 
and is obviously not sufficient, since no thinking person would exclude meaning 
and purpose from biological (functional) information.

 Algorithmic Information is a measure of the information content of material 
systems in terms of the degree of ‘complexity’ (as algorithmic ‘complexity’ is 
defined) of the system. Those material systems displaying greater complexity 
(more aperiodicity) have higher information content than those material systems 
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displaying less complexity (more periodicity). The four distinguishing attributes 
of Universal Information are not required for algorithmic information.

Complex Specified Information (CSI) exists in all material systems that exhibit 
a ‘specification’ and this specification is expressed in terms of functionality or 
purpose. As a result, CSI requires only UI’s distinguishing attribute of purpose. By 
definition this means that any system exhibiting CSI implies design. Even though 
all of the distinguishing attributes of UI were necessary during the design and 
construction phase, these attributes need not be present in the observed complex 
specified system.

The Nature of Universal Information

Having clearly distinguished  Universal Information from other types/definitions 
of ‘information’, we now proceed to answer (at least for UI) the question [8]: if 
‘information’ is not mass and energy, what is it? In the following discussion we 
will use the term ‘matter’ to include both mass and energy and the term ‘nonmate-
rial entity’ to refer to all entities outside the material domain.

There are many significant criteria for distinguishing material entities from 
nonmaterial entities. Perhaps the most simple, direct and scientific criterion is the 
fact that all material entities can be measured and thereby ‘quantified’ using one 
or a combination of the seven units of measurement established by the System 
International. These are the meter, kilogram, ampere, kelvin, mole, candela and 
second. Any entity within the universe that cannot be measured and described with 
one or a combination of these units is, by definition, a nonmaterial entity. Another 
criterion is that a nonmaterial entity does not and cannot originate from unguided, 
purely physicochemical processes [10, 12]. Finally, a nonmaterial entity does not 
have any direct physicochemical interaction with matter [10].

Universal Information satisfies all of the above criteria for a nonmaterial entity. 
A material medium is essential for the storage, transmission and processing of UI 
but, as described earlier, the quantity and type of matter that is used is highly vari-
able and not correlated at all to the value of the Universal Information; i.e., the UI 
is completely independent of the material medium.

Additionally, the symbols (code level) that are utilized and physically mani-
fested in the material domain display a vast degree of variation. To illustrate this, 
Figure 1 depicts the words from ten different languages that have the same mean-
ing even though the individual symbols/letters differ markedly from one another. 
However, regardless of the symbols used the ‘content’ of the meaning remains 
essentially the same. Content as used here includes the attributes of meaning, 
action and purpose.

b1567_Sec1.1.1.indd   17b1567_Sec1.1.1.indd   17 5/8/2013   2:26:38 PM5/8/2013   2:26:38 PM

 B
io

lo
gi

ca
l I

nf
or

m
at

io
n 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
2.

4.
17

.1
40

 o
n 

08
/1

1/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



18 W. Gitt, R. Compton and J. Fernandez 

b1567  Biological Information — New Perspectives b1567_Sec1.1.1 8 May 2013 2:35 PM

Does Biological Life Contain Universal Information?

There have been monumental advancements in both  information science/theory, and 
genetics and molecular biology in the last six decades. The processes involved in cel-
lular synthesis of proteins have been explained in great detail. We will examine this 
DNA/RNA protein synthesizing system to determine if it stores and conveys 
 Universal Information. In order to systematically make this determination we will 
look for each distinguishing attribute of UI in the cells’ protein synthesizing system.

Code plus Syntax

Within DNA/RNA we have a four-letter alphabet — adenine, thymine, cytosine 
and guanine (A, T, C and G) — in RNA the thymine is replaced by uracil (U). 
These four letters are arranged into ‘words’ that are always composed of three let-
ters. These three-letter words are called ‘codons’. So we have a Code (a four-letter 
alphabet) and  Syntax (three-letter words). Thus, the first distinguishing attribute 
of UI is present: code plus syntax.

Abstract Meaning

There are 43 = 64 different three-letter ‘words’ that may be composed out of the 
four letters in the Code. Apart from three stop codons, each of the remaining 

Fig. 1.  Different codes expressing the same meaning. The word “rejoice” is represented by means 
of a selection of different coding systems — from the top down, Georgian, Arabic, Russian, 
Lithuanian, Hungarian, Czech, German, Braille, Morse code, Shorthand and English.
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sixty-one three-letter words, or codons, means/represents/denotes one of the 
twenty amino acids utilized in polypeptide/protein synthesis. The codon for 
methionine also denotes or represents a start command. Additionally, the specific 
sequence of codons in messenger RNA (mRNA) represents the specific sequence 
of amino acids in the polypeptide precursor to the protein. Despite intensive 
research, no physicochemical bonding relationship has been found between the 
codons and the amino acids they represent [10, 12]. Hence, the second distinguish-
ing attribute of UI is present: abstract meaning.

The Expected Acti on

The messenger RNA (mRNA) is transported out of the cell nucleus into the 
cytosol to a very complex RNA/protein machine — the ribosome. At the ribo-
some, beginning with a start codon on the mRNA, this specific mRNA codon 
is joined with an anticodon at one end of the small transfer RNA (tRNA) mol-
ecule. At the other end of tRNA is the amino acid specified by the mRNA 
codon, in this case methionine. The mRNA is then advanced one codon step and 
another tRNA anticodon is joined to the mRNA codon. At this stage two amino 
acids have been brought together and the ribosome, utilizing energy, joins the 
two amino acids together by forming a peptide bond. This process repeats itself 
until a stop codon is reached on the mRNA. The polypeptide thus formed is 
then folded by other protein machines into a functional protein with a highly 
specific three dimensional configuration. This precise synthesis of a unique 
functional protein by the ribosome (machine) fulfills the third distinguishing 
attribute of UI: expected action. However, this is only the first level of 
action — the proteins themselves have higher-level functions, e.g., the ribo-
some, which is primarily protein. At a macroscopic level the activity of proteins 
in muscles of higher animals perform useful work. Figure 2 demonstrates that 
DNA replication during cellular reproduction requires protein nanomachines 
such as DNA polymerase and usable energy. Next, transcription to mRNA 
requires a DNA template, several nanomachines (such as RNA polymerase and 
spliceosome) and usable energy. Finally, synthesis of all protein nanomachines 
and protein structural elements require mRNA, tRNA and nanomachines such 
as ribosomes and chaperonins, and usable energy. This essential closed-loop 
conundrum has stymied researchers for decades as they have attempted to 
account for the origin of the first living cell through unguided purely physico-
chemical processes. Their attempt at ‘protein first’, ‘DNA first’ or ‘RNA first’ 
models have all failed [10, 12]. As demonstrated in Figure 2, all three must be 
‘first’ simultaneously.
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The Intended Purpose

The UI instructions for protein synthesis are stored within the nuclear DNA. 
The initial purposes of these UI instructions are achieved as the processes of 
transcription and translation are successfully accomplished. The ultimate 
physical purpose for the DNA/RNA protein synthesizing system is for the ini-
tial creation of organisms, and for their operations, maintenance and reproduc-
tion. Undoubtedly the earth’s biosphere would not exist if all of the protein 
components were absent. At the intracellular level, while not identical, the 
protein requirements are similar in many areas for both plant and animal life. 
However, in multicellular animals the use of extracellular protein is far more 
extensive than in multicellular plants. Therefore, the greater diversity of protein 
in animals than in plants will require more complex amounts of UI stored in the 
DNA and transcribed into RNA. Further research into this difference as well as 
comparing the DNA coding for protein with the DNA coding for cellulose syn-
thesis in plants may reveal important features of DNA coding. The multiple 
purposes achieved by the DNA/RNA protein synthesizing system attests to the 
fact that the fourth distinguishing attribute of UI (intended purpose) is indeed 
present.

Fig. 2.  A simplified representation of a UI-controlled cyclical process in living cells. The transla-
tion mechanism (protein synthesis) corresponds to the lowest level of expected action. However, the 
action of a protein nanomachine (DNA polymerase) is required in the next step of the cycle in DNA 
replication. The intricate process of mRNA synthesis (transcription) requires the DNA template and 
nanomachines (RNA polymerase II and spliceosome). Each of these three steps must be present 
simultaneously.
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UI Senders, Transmitters and Receivers

Problems associated with determining the origin and utilization of UI can be 
somewhat mitigated if we use specific terms to differentiate between the 
following:

1. An original sender is an intelligent agent that creates the original UI mes-
sage. As demonstrated by Gitt et al. [10] this intelligent agent must have 
a nonmaterial component beyond the embedded UI. This is because even 
UI-guided purely physicochemical processes wholly constrained by natu-
ral laws have never been observed to create de novo UI despite all scien-
tific efforts to date [10, 12]. Since humans do create de novo UI they 
qualify as original senders. This is strong evidence that humans have a 
nonmaterial component beyond their embedded UI [10].

2. Intermediate transmitters receive a UI message and simply copy, 
transmit, display or broadcast the message. Ideally, an intermediate 
transmitter will not distort the meaning of the original message in any 
way [10]. Intermediate transmitters can be intelligent agents or 
machines that are specifically designed to perform the transmitting 
processes.

3. Machine receivers obtain and process the messages and perform the 
commanded action thereby achieving the purpose intended by the origi-
nal sender. Machine receivers (either mechanical or biological) do not 
have the capability to freely interpret the messages. They must be ‘pre-
programmed’ with the capability to receive, then process and then exe-
cute the commanded actions without requiring that the meaning of the 
messages be determined. In other words, the programmer must convert 
the meaning of the messages into a series of preprogrammed executable 
steps that are initiated by start commands so that the proper actions are 
performed [10, 11].

4. Intelligent receivers possess the capability of determining the meaning of 
the message and also possess the capability of making free choices. This 
latter capability allows the intelligent receiver to decide whether to per-
form the expected action fully, partially or not at all.

When the UI in the DNA/RNA protein synthesizing system is expressed in bio-
logical life, it guides the transcription/translation processes to produce a specifi-
cally controlled amount of a specified protein. This protein will then perform 
specific functions within the cell or within the organism. This is an example of 
number 3 above whereby machines are guided by instructions (namely UI) that 
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was stored in the nuclear DNA of the cell by the original sender of that UI. 
Figure 3 displays a comprehensive diagram of  Universal Information being origi-
nated (de novo) by an intelligent sender and being received by an intelligent 
receiver. More complex diagrams that include transmitters and machine receivers 
can be found in [10].

The Existence, Validity and Significance of Universal Information

While identifying and studying the distinguishing attributes of Universal 
Information (UI), we discovered and formulated 32 Empirical Statements involv-
ing the origin and nature of UI [10]. We have repeatedly verified these Empirical 
Statements over a 30-year period. Not one of these Empirical Statements has ever 
been refuted despite wide dissemination of this information and they remain an 
open challenge to this day.

We then turned our attention to the code discovered in the DNA and the vol-
umes of research describing it. It was easily determined that Universal Information 
is definitely stored, transmitted and utilized within the DNA/RNA Protein 
Synthesizing System of all living organisms. In other words, UI is not merely an 
interesting theoretical concept; UI truly exists. UI is not only a foundational com-
ponent of human languages and communication, it is also a vital control system 
found in all biological life on earth.

 Fig. 3.  A comprehensive diagram of the five levels of Universal Information. All five levels are 
relevant for both the intelligent sender and the intelligent receiver.
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Undoubtedly the most important activity in science is to utilize factual data and 
observations to construct reliable and valid conclusions. This goal is achieved via 
sound, logical arguments that lead to those conclusions. According to Kreeft [13], 
there are three things that must be in place in order to develop logically sound 
arguments.

• The significant terms must be unambiguous.
• The premises must be true.
• The conclusion must logically follow from the premises (logically valid).

In order to satisfy these three requirements, we carefully defined all significant 
terms so that there would be clear, unambiguous formulations of the questions, 
arguments and conclusions [10]. In addition, the Empirical Statements were con-
tinually evaluated by a number of independent individuals in order to ensure clar-
ity of meaning and validity of the statements. With this foundation we then 
proposed specific Empirical Statements as Scientific Laws and used them, along 
with verified scientific facts, as premises in our deductions [10]. Therefore, our 
premises are extracted from the two categories of science — verified facts and 
scientific laws — that have the highest degree of scientific certainty. Finally, we 
constructed ten logically-sound deductions that led to ten strong conclusions [10]. 
By rigorously following this procedure we have minimized investigator bias or 
interference from our conclusions. This is important for any conclusion in science, 
but especially so in this case because of the broad significance of these ten conclu-
sions. Also, by minimizing investigator interference these results retain objective 
validity to the extent that this is possible.

Conclusion

Coming full circle, we return to our original question regarding Biological 
Information — What is it? We have identified an important subset of Biological 
Information that we call  Universal Information that is present in every cell of 
every living organism.

We the authors of this paper used Universal Information in order to communi-
cate these things to you. This Universal Information was processed through our 
brains that in turn, controlled our body parts to write the words on this page. These 
words reach receptors in your visual system that will then send impulses (i.e., mes-
sages) to your brain. You then determine the meaning of the words of our message 
and consider their significance. This too is Universal Information and is also part 
of Biological Information.
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Between our intracellular DNA/RNA systems and our capacity to express 
thoughts through words there are many levels of highly integrated, organized bio-
logical systems which themselves necessarily operate under the control of some 
type of biological information. At each of these levels there are many structural 
components and biological machines that perform the required actions. Essentially 
all of these structures and machines are composed of proteins synthesized by the 
DNA/RNA protein synthesizing system.

Will we find Biological Information in forms other than  Universal Information? 
We believe that we will. For instance, we are already aware of Mental Image 
Information (MII). MII is information in which there is meaning, action and purpose 
but no abstract code, syntax or abstract meaning. Recall that two of the distinguish-
ing attributes of Universal Information is an abstract code with syntax and abstract 
meaning such as that which is manifested in the DNA/RNA protein synthesizing 
system. We know that MII plays a role in living organisms yet MII does not have an 
abstract code, syntax or meaning. For example, a ‘spoon and fork’ on a highway 
sign directly (i.e., not abstractly) represents ‘food’ or ‘eating place’ since it resem-
bles the entity that it represents. Another example is the pheromones emitted by 
certain insects for, say, mating purposes. These pheromones have an inherent phys-
icochemical relationship with the entity they represent. When received, these phero-
mones convey meaning, expected action and purpose directly (i.e., not abstractly) 
instead of through some intermediate substitute possessing ‘abstract meaning’ 
expressed via an abstract code with an associated  syntax. In other words, the phero-
mone molecule is not an abstract substitute for the entity, it is the entity itself.

Just as was the case for Complex Specified Information in Intelligent Design 
Theory, Universal Information and related topics represent a revolutionary depar-
ture from the materialistic approach to information. Since UI and its requisite 
machines have great explanatory power in biology, a search for machines, even 
without explicit (embedded) UI, operating at various ranges of scale in the inani-
mate world may also yield results with great explanatory power [10].
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Abstract 

This paper provides a general framework for understanding targeted search. It begins by defining the 
 search matrix, which makes explicit the sources of information that can affect search progress. The 
search matrix enables a search to be represented as a probability measure on the original search 
space. This representation facilitates tracking the information cost incurred by successful search (suc-
cess being defined as finding the target). To categorize such costs, various information and efficiency 
measures are defined, notably,  active information.  Conservation of information characterizes these 
costs and is precisely formulated via two theorems, one restricted (proved in previous work of ours), 
the other general (proved for the first time here). The restricted version assumes a uniform probability 
search baseline, the general, an arbitrary probability search baseline. When a search with probability 
q of success displaces a baseline search with probability p of success where q > p, conservation of 
information states that raising the probability of successful search by a factor of q/p(>1) incurs an 
information cost of at least log(q/p). Conservation of information shows that information, like money, 
obeys strict accounting principles.

Key words: Search matrix, targeted search, active information, probabilistic hierarchy, uniform 
probability, conservation of information

1. The Search Matrix

All but the most trivial searches are needle-in-the-haystack problems. Yet many 
searches successfully locate needles in haystacks. How is this possible? A success-
ful search locates a target in a manageable number of steps. According to conserva-
tion of information, nontrivial searches can be successful only by drawing on 
existing external information, outputting no more information than was inputted [1]. 
In previous work, we made assumptions that limited the generality of conservation 
of information, such as assuming that the baseline against which search perfor-
mance is evaluated must be a uniform probability distribution or that any query of 
the search space yields full knowledge of whether the candidate queried is inside 
or outside the target. In this paper, we remove such constraints and show that 
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conservation of information holds quite generally. We continue to assume that tar-
gets are fixed. Search for fuzzy and moveable targets will be the topic of future 
research by the Evolutionary Informatics Lab.

In generalizing conservation of information, we first generalize what we mean 
by targeted search. The first three sections of this paper therefore develop a general 
approach to targeted search. The upshot of this approach is that any search may be 
represented as a probability distribution on the space being searched. Readers who 
are prepared to accept that searches may be represented in this way can skip to 
section 4 and regard the first three sections as stage-setting. Nonetheless, we sug-
gest that readers study these first three sections, if only to appreciate the full gen-
erality of the approach to search we are proposing and also to understand why 
attempts to circumvent conservation of information via certain types of searches 
fail. Indeed, as we shall see, such attempts to bypass conservation of information 
look to searches that fall under the general approach outlined here; moreover, 
conservation of information, as formalized here, applies to all these cases.

In first generalizing targeted search before generalizing conservation of infor-
mation, we introduce the  search matrix. The elements that constitute the search 
matrix may be illustrated as follows. Imagine a gigantic table that is miles in both 
length and width. Covering the table are upside-down dixie cups that are tightly 
packed, such as the following hexagonal packing:

Under each dixie cup resides a single pea. The cups are opaque, so the peas are not 
visible unless the cup is lifted. The peas come in two varieties, high-yield and low-
yield (the difference being that high-yield peas, if planted, produce lots of peas 
whereas low-yield peas produce only few). The low-yield peas far outnumber the 
high-yield peas. Our task is to locate a high-yield pea. The high-yield peas there-
fore form the target. Because the table is so large and the cups are tightly packed, 
for a human to try to walk around the table and turn over cups is infeasible. 
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We therefore imagine a remote-controlled toy helicopter flying over the table, 
hovering over individual cups, and lifting a given cup to examine the pea under it. 
Each act of lifting a cup to examine the pea under it constitutes a single query.

Because the table is so large and the high-yield peas are so few, this search 
constitutes a needle-in-a-haystack problem. As with all such problems, the number 
of queries (i.e., attempts to locate the needle, or, in this case, to locate a high-yield 
pea) is strictly limited. Moreover, because the needle is so small in relation to the 
haystack, unless the queries are chosen judiciously, the needle will in all likeli-
hood elude us. Our search therefore is limited to at most m queries, which we call 
the sample size. This, in the case at hand, is the maximal number of dixie cups the 
search can turn over. We therefore imagine that the remote controlled toy helicop-
ter flies over the gigantic table of dixie cups, hovers over a given cup, turns it over 
to examine the pea under it, replaces the cup, and then moves on, repeating this 
action at most m times.

Within the constraints of this scenario, how do we find the target? The helicop-
ter has m queries in which to locate the target (i.e., to find a high-yield pea). At 
each query, the helicopter does three things:

(1) It identifies a given pea by removing and replacing the dixie cup over it.
(2) It extracts information that bears on the pea’s probability of belonging to the 

target.
(3) It receives information for deciding where to fly next to examine the next pea. 

The helicopter’s search for the target may therefore be characterized as the follow-
ing 3 × m matrix, which we call the  search matrix:

È ˘
Í ˙
Í ˙
Í ˙Î ˚

…
…
…

1 2 3

1 2 3

1 2 3

m

m

m

x x x x

α α α α
β β β β

Here the first row lists the actual peas sampled, the second row lists the information 
extracted about the peas that bears on their probability of belonging to the target, 
and the third row lists the information for deciding where the helicopter is to fly 
next. Moreover, each column represents a single query, with the columns listed in 
the order of search. A successful search is then one that on the basis of the search 
matrix explicitly identifies some xi in the first row that belongs to the target.

Note that in this general search scenario, given columns may query the same 
element more than once. Thus, for separate columns that record xi, xj, xk, etc., these 
first-row elements of the search matrix might all be identical. Such repetitions 
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could occur if each time the helicopter lifts a dixie cup and queries a pea, it can 
extract only partial information about it, and so the search may need to query the 
pea again to obtain still more information about it. We could have distinguished 
between queries that lift a dixie cup to access a pea and queries that subsequently 
extract further information about a pea once the dixie cup is lifted. But since one 
may not want to query a pea immediately after having already queried it but rather 
wait until other peas have been queried (information about other peas might help 
to elucidate information about the given pea), in the interest of generality it is best 
to allow for only one type of query, namely, a combined query that lifts a dixie cup 
and then extracts information about the underlying pea.

The search matrix is not identical with the search. Rather, the search matrix 
records key information about the progress of the search. Specifically, it records 
the elements sampled from the search space, including any repetitions (this infor-
mation appears in the first row); it records information bearing on the probability 
that an element sampled belongs to the target (this information appears in the 
second row); and it records information for deciding where to sample next (this 
information appears in the third row). All this information contained in the search 
matrix comes to light through the activity of a search algorithm. Success of the 
search therefore depends on how effectively the algorithm uses as well as fills in 
the information contained in the search matrix. Does the search algorithm, in sam-
pling xi, have complete memory of the prior information sampled? Or is it a 
Markov process with access only to the latest information sampled? Does the 
algorithm contain additional information about the target so that regardless of the 
information in rows two and three, the algorithm will, with high probability, out-
put an xi that is in the target? Or is the target-information available to the algorithm 
restricted entirely to the search matrix in the sense that its probability of success-
fully locating the target depends entirely on the information contained in those two 
rows [2]? The options here are wide and varied.

We consider next several examples of how the search matrix might work in 
practice.

Example 1.1: Uniform random sampling with perfect knowledge

In this case, each xi is selected according to a uniform distribution across the dixie 
cups, each αi records whether xi belongs to the target (1 for yes, 0 for no), and each 
βi directs the helicopter to take a uniform random sample in locating the next point 
in the search space (that being xi+1). The reference to “perfect knowledge” here 
signifies that for each query we know exactly whether the pea sampled (each xi) 
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belongs to the target (in which case αi = 1) or not (in which case αi = 0). If any αi 
equals 1, we can stop the search right there and produce xi as an instance of a suc-
cessful search. Alternatively, we can fill out the  search matrix rather than leave it 
incomplete, and then produce the first xi for which αi equals 1 (producing simply 
x1 if none of the αis equals 1). Given that the proportion of high-yield peas (i.e., the 
target) has probability p, the probability that this search is successful is 1 – (1 – p)m.

Example 1.2: Uniform random sampling with zero knowledge

In this case, as before, each xi is selected according to a uniform distribution 
across the dixie cups; moreover, each βi directs the helicopter to take a uniform 
random sample in locating the next point in the search space (that being xi + 1). 
This time, however, examining the peas reveals nothing about whether they 
belong to the target. This might happen, for instance, if high-yield and low-yield 
peas are visually indistinguishable and we have no way of otherwise discriminat-
ing them (as we might through genetic analysis or actually planting them). The 
reference to “zero knowledge” therefore signifies that for each query we know 
nothing about whether the pea sampled (xi) belongs to the target. In this case, each 
of the αis may be treated as equal to 0. Given that the proportion of high-yield peas 
(i.e., the target) has probability p, the probability that this search successfully 
identifies a particular xi in the target is simply p. Accordingly, a sample size of m 
greater than 1 does nothing here to improve on the probability of locating the 
target if we have no means of obtaining knowledge about the peas we are 
sampling.

Note that the probability that some element in the first row of the search 
matrix belongs to the target is 1 – (1 – p)m. This is the probability of successful 
search as calculated in the previous example, which presupposed perfect 
knowledge. Nevertheless, for a search to be successful in the present example, 
it is not enough for the search matrix merely to have a target element appear in 
the first row. In addition, it must be possible to explicitly identify one element 
in the first row taken to be the best candidate for belonging to the target. 
Moreover, because this is a needle-in-the-haystack problem, successful search 
requires that the candidate selected must belong to the target with probability 
considerably larger than p. With zero knowledge about whether elements in the 
first row of the search matrix belong to the target, however, no candidate 
selected from that row stands a better chance of belonging to the target than any 
other. In that case, each such candidate has the very small probability p of 
belonging to the target.
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Example 1.3: Uniform random sampling with parti al knowledge

In this example, as in the previous two, each xi, when first selected, follows a uni-
form distribution across the dixie cups. Yet, to determine whether a given xi actually 
does belong to the target, two agricultural tests may need to be performed on it. The 
tests work as follows: if both yield a positive result (denoted by a 1), then the can-
didate xi belongs to the target; if one or both yield a negative result (denoted by 0), 
then it does not belong to the target. Moreover, the performance of each of these 
tests requires a single query. Thus, to determine whether an xi that is in the target 
actually does belong to it, the dixie cup over it will have to be removed and replaced 
twice, meaning that xi itself will appear twice in the top row of the  search matrix, 
implying that under those appearances the corresponding αis will both be 1.

On the other hand, if on either of the tests, the first query performed yields a 0, 
then there’s no point in performing the other test, and xi need appear only once in 
the top row. Given a query that for the first appearance of xi yields an αi equal to 
1, xi will need to be queried again to determine whether it indeed belongs to the 
target. Once a given xi’s inclusion in or exclusion from the target is determined, 
the next query is uniformly random across the dixie cups. In this case, the proba-
bility p′ of hitting the target over m queries will be strictly between the probabili-
ties determined in the last two examples, i.e., p < p′ < 1 – (1 – p)m, where p is the 
zero-knowledge lower bound and 1 – (1 – p)m is the perfect-knowledge upper 
bound. The exact value of p′ will depend on Bayesian considerations relating to 
how negative results on the two agricultural tests are distributed (in terms of prior 
probabilities) among the non-target elements.

Example 1.4: Smooth gradient fi tness with single peak

In this case, we begin by turning over a randomly chosen dixie cup, examining the 
pea under it (x1), and recording its fitness (α1). We assume that the fitness function 
over the peas has a smooth gradient (in other words, fitness does not zigzag up and 
down as we move in a given direction over the large table, which is our search 
space) and that it has a single peak (in other words, any local maximum is also the 
[unique] global maximum). In this case, a hill-climbing strategy is appropriate, so 
each βi directs the helicopter to search in the neighborhood of the xi that, so far in 
the search, has attained the highest value of fitness αi, looking to increase the fit-
ness still further. There’s no reason in this case to repeatedly query a given pea 
since we assume that fitness can be precisely determined in a given query and that 
fitness does not vary from one query to another (in other words, the fitness func-
tion here is “time independent”). Once m queries in this search have been carried 
out, we consult the search matrix and choose, as our best candidate for landing in 
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the target, the xi that attains the highest value of fitness αi. The probability that 
such a search is successful will depend on the sample size m, the initialization (i.e., 
the procedure for deciding where the search begins), the precise characteristics of 
the fitness function, and how efficiently the search samples points in the neighbor-
hood of an already sampled point to improve fitness (i.e., to “climb the hill”).

2. General Targeted Search

A precise mathematical characterization of the general search scenario described in 
the last section now looks as follows. Let Ω = {ω1, ω2, ..., ωK, ωK+1, ..., ωN} be the 
search space, which we assume to be finite (this assumption can be relaxed and we 
have done so in other work, but doing so entails no substantive gain in generality). 
Let T = {ω1, ω2, ..., ωK} be the target and define the probability p = K/N. A search of 
Ω for T then consists of the following 6-tuple: (ι, τ, Oα, Oβ, A, ∆). The items in this 
6-tuple denote respectively the initiator, the terminator, the inspector, the naviga-
tor, the nominator, and the discriminator. Here is what these six items mean:

Initiator. The initiator ι, denoted by the Greek iota, starts the ball rolling. It is 
the procedure by which the search determines where to begin. The initiator ι is 
responsible for x1, and possibly additional members of the search space x2 through 
xk, that appear as the first entries in the first row of the  search matrix. In many 
searches the initiator does nothing more than choose a single search space element 
(i.e., x1) at random according to some probability distribution.

Terminator. The terminator τ, denoted by the Greek tau, provides a stop cri-
terion for ending the search. Because all searches are limited to a maximum num-
ber of queries m (i.e., the sample size), the terminator can always simply be 
identified with the policy to cut off the search after m queries. In practice, how-
ever, terminators often end a search before the maximal number of queries have 
been made because the search is deemed to have achieved success before this 
maximal number. In that case, the search matrix may be incomplete, with missing 
entries in the columns to the right of the last column for which a point in the 
search space was queried. Without loss of generality, we can then fill up the col-
umns that are missing entries by repeating the last complete column. Alternatively, 
we can just leave the columns empty.

Inspector. The inspector Oα is an oracle that, in querying a search-space entry, 
extracts information bearing on its probability of belonging to the target T. We 
assume that Oα is a function mapping into some range of values capable of providing 
information about the degree to which members of the search space Ω give evidence 
of belonging to the target T. Quite often, the domain of Oα is merely Ω, and Oα maps 
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into {0,1}, returning a 1 if an element of Ω is in the target, 0 otherwise. Alternatively, 
Oα may map into the singleton {0}, returning the same element regardless of the 
element of Ω in question, thus providing zero information about target elements. 
Oα may even assume misleading values, suggesting that search-space entries are in 
the target when they are not and vice versa. Besides taking on discrete values, 
Oα may also take on more continuous values, signaling the degree to which a search-
space entry is likely to be included in a target, as with a fitness function. The pos-
sible forms that Oα can take are wide and varied. Without loss of generality, however, 
we assume that the range of values that the inspector can take is finite.

As the inspector, Oα’s task is to fill the second row of the  search matrix and thus 
provide evidence about the degree to which corresponding elements in the first row 
may belong to the target. Accordingly, all the αis in the second row take values in 
Oα’s range. Nevertheless, given that a single query may not provide all the informa-
tion that the inspector is capable of providing about a given element from the search 
space, the inspector may perform multiple queries on a given search-space element 
and may even use information gained from different previously queried elements in 
answering the present query. Thus, given an element xi in the search space that’s just 
been selected, its value as assigned by Oα can depend on the entire partial matrix

1 1

1 1

1 1

.
i i

i

i

x x x…
…
…

-

-

-

**È ˘
Í ˙* **Í ˙
Í ˙* **Î ˚

α α
β β

Here ellipses denote elements of the search matrix that have been filled in, single 
asterisks denote individual missing entries, and double asterisks denote possibly 
multiple missing entries. In the case at hand, Oα uses the partial search matrix 
given here to determine αi. If it ignores all entries of the partial search matrix prior 
to column i – 1, then we say that Oα is Markov. If it determines αi solely on the 
basis of xi, we say that Oα operates without memory (otherwise, with memory).

Navigator. Like the inspector Oα, the navigator Oβ is an oracle. Given that we 
are at 

-

-

-

**È ˘
Í ˙**Í ˙
Í ˙* **Î ˚

…
…
…

1 1

1 1

1 1

i i

i i

i

x x x

α α α
β β

in the search process, the navigator takes this partial search matrix and returns the 
value βi, which directs (navigates) the search as it attempts to locate the next entry 
in the search space (i.e., xi+1). Oβ maps into a fixed range of values, which in the 
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search matrix we denote by βs. As with the inspector, if Oβ ignores all entries of 
the partial search matrix prior to column i – 1, then we say that Oβ is Markov. If it 
determines βi solely on the basis of xi and αi, we say that Oβ operates without 
memory (otherwise, with memory).

The type of information that Oβ delivers can be quite varied. It can provide dis-
tance of search-space elements from the target. It can provide information about the 
smoothness of fitness. It can provide information about how likely neighbors of a 
given search-space element are to be in the target. Moreover, it can combine these 
types of information. Whereas the inspector Oα confines itself to extracting informa-
tion that bears on the probability of search-space elements residing in the target, the 
navigator Oβ focuses on information that helps guide the search to the target. As with 
the inspector, we assume that the range of values the navigator may take is finite. 
For (mathematically) smooth fitness functions, this will entail discretizing the values 
that the fitness function may assume. Yet, because the degree to which searches can 
discriminate such information is always strictly limited (in practice, distinct meas-
urements when sufficiently close become empirically indistinguishable), assuming 
a finite range of values for the navigator entails no loss of generality.

Nominator. The nominator A is the update rule that, given a search matrix 
filled through to the ith column and thus incorporating the most current information 
from the inspector and navigator, explicitly identifies (and thereby “nominates”) 
the next element to be queried, namely xi+1. Thus A takes us from the  search matrix 

* **È ˘
Í ˙* **Í ˙
Í ˙* **Î ˚

…
…
…

1

1

1

i

i

i

x x

α α
β β

to the updated search matrix

1 1

1

1

i i

i

i

x x x…
…
…

+ **È ˘
Í ˙* **Í ˙
Í ˙* **Î ˚

α α
β β

We denote the nominator by A (for “algorithm”) because, in consulting the 
inspector and navigator to determine the next search-space element to be queried, 
it acts as the basic underlying algorithm of the search, running through all the 
target candidates that the search will consider. We say that the nominator is 
Markov if its selection of xi+1 depends solely on the ith column of the search matrix. 
We say that it operates without memory if its selection of xi+1 is independent of 
prior columns of the search matrix.
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To say that the nominator nominates an element xi+1 based on the partial search 
matrix

* **È ˘
Í ˙* **Í ˙
Í ˙* **Î ˚

…
…
…

1

1

1

i

i

i

x x

α α
β β

may seem to entail a loss of generality since in many searches (e.g., genetic algo-
rithms and particle swarms), multiple candidates from the search space tend to be 
generated in batches. Thus with genetic algorithms, for instance, all candidates of 
a given reproduction cycle appear at the same time. Accordingly, if, say, 100 off-
spring are generated at each reproduction cycle, the new partial  search matrix is not

+ **È ˘
Í ˙* **Í ˙
Í ˙* **Î ˚

…
…
…

1 1

1

1

i i

i

i

x x x

α α
β β

but rather

1 1 100

1

1

.
i i i

i

i

x x x x… …
…
…

+ + **È ˘
Í ˙* ** * **Í ˙
Í ˙* ** * **Î ˚

α α
β β

Given this last matrix, we can then let the inspector and navigator fill in the 
columns below xi+1 to xi+100 one column at a time proceeding left to right. 
Alternatively, we can simply require the nominator to proceed one column at a time 
(thus taking a given batch of candidates one by one in sequence), letting the inspec-
tor and navigator fill in that column before proceeding to the next. Both cases are 
mathematically equivalent. For some searches, it makes better intuitive sense for 
the nominator to nominate a whole batch of search-space elements at a time. But 
this can always be made equivalent to nominating one element of the batch at a 
time until the entire batch is exhausted. For simplicity, we tend to adopt this latter 
approach. Another possibility is to change the search space so that each element 
consists of multiple elements from the original search space (see example 3.5).

Discriminator. Once a search matrix

È ˘
Í ˙
Í ˙
Í ˙Î ˚

…
…
…

1 2 3

1 2 3

1 2 3

m

m

m

x x x x

α α α α
β β β β
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that’s compatible with A has been formed, it’s time to decide which xi that 
appears in the first row is most likely to belong to the target T. With a complete 
 search matrix in hand, it’s not enough to suspect that some entry somewhere in 
the first row belongs to T. For the search to be successful, we need to know 
which of these entries in fact belongs to T or, if definite knowledge of inclusion 
in T is not possible, then which of these entries is more likely than the rest to 
belong to T. Choosing from the first row of the search matrix the most likely 
candidate that belongs to T is the job of the discriminator ∆. As such, the dis-
criminator is a function into the search space Ω from possible search matrices 
(i.e., from 3 × m matrices whose first row consists of elements from Ω, whose 
second row consists of elements from the range of the inspector, and whose third 
row consists of elements from the range of the navigator). For each such search 
matrix, the discriminator outputs the element xi in the first row that it regards as 
most likely to belong to T.

Discriminators can vary in quality. Self-defeating discriminators that, when-
ever possible, select first-row entries belonging outside the target are an option. 
For a given search matrix, such discriminators minimize the probability of suc-
cessfully locating the target. Also an option are independent-knowledge discrimi-
nators that can identify whether a first-row entry belongs to the target with greater 
certainty than is possible simply on the basis of the information delivered by the 
inspector and navigator (information found in the second and third rows of the 
search matrix). Thus, the discriminator might have access to a source of informa-
tion about target inclusion that is less ambiguous than what is available to the 
inspector and navigator. Such discriminators would thereby introduce information 
external to the search matrix to locate those elements in the first row most likely 
to belong to the target. By contrast, no-independent-knowledge discriminators 
would select xi from the first row based solely on information contained in the 
second and third rows of the search matrix. Such variations among discriminators 
are easily multiplied and formalized. We leave doing so as an exercise to 
the reader.

Although the discriminator ∆ as here described is a function from complete 
search matrices to the search space Ω, in fact we allow ∆ also to be a function from 
partial search matrices to Ω, in keeping with the terminator’s ability to stop a 
search when success in fewer than m queries has likely been achieved. Recall that 
partial search matrices can always be filled up with redundant columns and thus 
turned into complete search matrices. Hence, allowing partial search matrices 
entails no gain in generality, nor does restricting ourselves to complete search 
matrices entail a loss of generality.

Each of the six components of a search S = (ι, τ, Oα, Oβ, A, ∆) can be stochastic. 
Thus, the initiator might choose x1 according to some probability distribution. 
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Likewise, the terminator may end the search depending on chance factors relevant 
to success being achieved. The inspector and navigator, at any given stage in form-
ing the search matrix, may draw on a stochastic source to randomize its outputs. 
So too, the nominator and discriminator may choose their candidates in part ran-
domly. It follows that a search S can be represented as a random  search matrix 
consisting of three discrete stochastic processes X, Y, and Z:

Ê ˆ
Á ˜= Á ˜Á ˜Ë ¯

…
…
…

1 2

1 2

1 2

.
m

m

m

X X X

S Y Y Y

Z Z Z

Here X represents the search-space elements delivered by the nominator (or the 
initiator for X1), Y the corresponding outputs of the inspector, and Z the corre-
sponding outputs of the navigator. X therefore takes values in Ω, Y in the range of 
Oα, and Z in the range of Oβ.

Alternatively, S can be conceived as a vector-valued stochastic process W
�

 
where each

Ê ˆ
Á ˜= Á ˜Á ˜Ë ¯

�
,

i

i i

i

X

W Y

Z

in which case 

( )=
� � �

�1 2 .mS W W W

Applying the discriminator ∆ to this random search matrix thus yields an 
Ω-valued random variable ∆(S), which we denote by XS. As an Ω-valued random 
variable, XS therefore induces a probability distribution µs on Ω that entirely char-
acterizes the probability of S successfully locating the target T. In this way, an 
arbitrary search S can be represented as a single probability distribution or meas-
ure µs on the original search space Ω. This representation will be essential through-
out the sequel.

As noted at the start of this paper, this representation of searches as probability 
measures is central to our formalization of  conservation of information. If it were 
obvious that searches could in general be represented this way, we might just as 
well have omitted these first three sections. But given that a general characteriza-
tion of targeted search is itself a point at issue in determining the scope and 
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validity of conservation of information, these preliminary sections were in fact 
necessary. Logically speaking, however, these sections come up only tangen-
tially in the sequel by guaranteeing that searches can indeed be represented as 
probability measures.

3. Search Examples

In this section, we consider several further examples of targeted search, expanding 
on the examples given at the end of section 1.

Example 3.1: Uniform random sampling with perfect knowledge 
and without replacement

In the last section, we considered a search of m queries in which, at each query, 
the entire search space was sampled uniformly. This led to independent and 
identically distributed uniform random variates in the first row of the  search 
matrix, 0s and 1s in the second row depending on whether the corresponding 
entry in the first row was respectively outside or inside the target, and in the third 
row a directive simply to continue uniform random sampling. The discriminator 
in this case simply looked for a first-row entry with a 1 directly below it in the 
second row. Accordingly, with uniform probability p = K  /N of the target T in the 
search space Ω, we calculated the probability of successful search at 1 – (1 – p)m. 
This probability, however, assumes that the first row of the search matrix was 
sampled with replacement and thus may repeat elements of the search space.

We can, on the other hand, have the navigator direct the search to avoid ele-
ments in the search space previously queried (this implies a memory of previously 
queried elements). If all other aspects of the search are kept the same, the search 
space is then sampled without replacement so that each query is uniform with 
respect to elements of the search space yet to be queried. This sampling procedure 
yields a hypergeometric distribution. Thus for Ω = {ω1, ω2, ..., ωK, ωK+1, ..., ωN}, 
T = {ω1, ω2, ..., ωK}, p = K /N, and m not exceeding N – K, the probability that this 
search locates the target is then

-Ê ˆ
Á ˜Ë ¯

-
Ê ˆ
Á ˜Ë ¯

1 .

N K
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Moreover, if N is much larger than m, this probability approximately equals the 
“with replacement probability” 1 – (1 – p)m, underscoring the well-known fact that 
sampling without replacement only negligibly improves the efficiency of search 
compared to sampling with replacement unless the sample size m is large [3].

Example 3.2: Easter egg hunt

Imagine a very large two-dimensional grid with Easter eggs hidden under various 
squares of the grid. You are able to move around the grid by going from one square 
to an adjacent square. Thus you can move one square vertically, horizontally, or 
diagonally, like a king in chess:

You start out on a randomly chosen square, which is determined by the initiator. 
The terminator gives you at most m squares to examine. When you are on a given 
square, the inspector tells you whether you are over an Easter egg (by saying 
“yes”) or not (by saying “no”). If “yes,” uncover the square on which you are 
standing, locate the egg underneath, and end the search.

Given that you have moved from one square to another with neither being 
over an Easter egg, the navigator tells you whether the square you are 
 currently  on is closer to, the same distance from, or further from the nearest 
Easter egg (by saying “warmer,” “same,” or “colder”; distance between 
squares A and B is calculated as minimum number of steps needed to reach B 
from A). Notice that the navigator cannot provide such information until the 
initiator has designated the first square and the nominator has designated the 
second. Thus, for the very first square chosen by the initiator, the navigator 
simply puts down “same.”
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If for your current square the navigator says “warmer,” the nominator says to 
choose that square from your immediate neighborhood that takes you in the same 
direction as your last move. If for your current square the navigator says “same,” 
the nominator says to choose at random a square that you have not yet visited in 
the immediate neighborhood of the current square. If for your current square the 
navigator says “colder,” the nominator says to return to the previous square and 
randomly choose a square in its immediate neighborhood that you have not yet 
visited. Proviso: the nominator ignores any column with “colder,” in subsequent 
search treating it as though it were not part of the  search matrix except for not 
revisiting its square when sampling nearest neighbors. This proviso prevents the 
search from getting stuck. Finally, the discriminator returns the first square under 
which an Easter egg was found if an egg is indeed found; otherwise, it returns the 
square chosen by the initiator.

The Easter egg hunt so described falls within our general framework for targeted 
search.

Example 3.3: Competi ti ve search

In competitive search, elements of the search space Ω are conceived as 
 “players” whose skill can be evaluated and ranked according to certain “per-
formance criteria.” Evolutionary computing typically employs a single perfor-
mance criterion given by a fitness function. Fitness thus provides a 
single-objective measure of optimality — one and only one thing needs to be 
optimized, and when it is optimized we have the undisputed best player. In 
many circumstances, however, optimality is multi-objective, that is, there are 
several competing things we are trying to optimize simultaneously, where a 
rise in one leads to a drop in another. Optimization with multiple performance 
criteria thus requires a balancing or compromise among rival objectives. How 
these criteria are balanced determines what we regard as the “best players,” 
that is to say, the target.

Just what constitutes the right balance of performance criteria is not written in 
stone but constitutes a judgment call [4]. Consider a search space consisting of all 
college men’s basketball players in a given year. Professional NBA teams are 
seeking the best basketball players in this search space  —  the very best presum-
ably being the player picked first in the first round of the NBA draft. But what 
determines the best players? Many performance criteria come to mind: speed, 
height, field-goal percentage, three-point percentage, average number of rebounds 
per game, average number of blocked shots per game, average number of assists 
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per game, etc. etc. All these performance criteria need to be suitably combined to 
determine who are the best players and thus what constitutes the target of the 
search. Some years, this balancing of performance criteria is straightforward, so 
that one player stands out head and shoulders above the rest. At other times, dif-
ferent teams may have different needs, leading them to emphasize certain perfor-
mance criteria over others, so that no player is completely dominant and no target 
is universally agreed upon.

How we combine and balance performance criteria depends on our needs 
and interests. Suppose, to change examples, you are a college admissions 
officer. Your search space is all graduating high school students and you are 
trying to find those who will thrive at your institution. This is your search, that 
is, to find the “right” students. Prospective students need to take the Scholastic 
Aptitude Test (SAT). The test provides two main scores, a verbal and a math 
score (each varying between 200, which is worst, and 800, which is best) [5]. 
Each of these scores corresponds to a performance criterion and requires a 
search query. With these two queries performed on each high school student, 
how do you now select the best students for your school (leaving aside other 
performance criteria such as GPA and recommendations)? Do you add the 
scores together, as is commonly done? Or do you weight one more than the 
other and, if so, how?

If your school focuses mainly on liberal arts, you will want to weight the 
verbal portion more strongly than the math portion. Thus, even though you may 
want to see a combined score of 1200 or better, you will favor students who get 
a 750 verbal/450 math over students who get a 450 verbal/750 math. If, on the 
other hand, yours is an engineering school, then you will prefer the latter over 
the former. Some schools don’t discriminate the two scores but simply add them 
to give a combined performance measure for the test. Besides adding scores or 
weighting them, one can introduce arbitrary cut-offs. Thus, one might require 
that no student be admitted who performs less than 500 on either test, thereby 
ensuring that both verbal and math scores exceed a certain threshold. This sug-
gests a maxi-min approach to combining performance measures: take the mini-
mum of the two SAT scores and try to recruit those students whose minima are 
maximal. The precise formulation of such combined performance measures is 
straightforward. The trick is to find the right combination that suits one’s 
purposes.

In such examples of competitive search, evaluating how a search space element 
fares with respect to the various performance criteria is the job of the inspector. 
To evaluate a search space element’s competitiveness, the inspector may need to 
query it several times. Sometimes, however, a single query is enough. 
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In basketball, for instance, a player whose free throw percentage is less than 
10 percent can be eliminated from consideration for the NBA draft without need-
ing to consult any other performance criteria. Alternatively, a player who scores 
over 100 points a game on average (a performance achieved just once in the entire 
history of the NBA, as it is, by Wilt Chamberlain) will rise to the very top of the 
player pool even if we don’t know any of his other stats. Knowing which queries 
to make conditional on which queries have already been made is essential to con-
structing an effective competitive search.

Example 3.4: Tournament play

Tournament play is a special case of competitive search in which the players dis-
play their competitive abilities by playing against each other. In tournament play, 
there are as many performance criteria as there are players, each player’s competi-
tiveness being gauged by how well one performs in relation to the others. 
Basketball is an example of tournament play, though in this case the unit of search 
is not the individual player (as it was in the last example) but the team. In chess, 
on the other hand, the unit of search tends to be the individual player (though team 
play is also known, as when local chess clubs play each other).

Tournament play is typically represented by a square anti-symmetric matrix 
with blanks down the diagonal (players don’t play themselves) and opposite out-
comes mirrored on either side of the diagonal. For instance, in the St. Petersburg 
Chess Congress of 1909, the tournament matrix was as follows [6]:

St. Petersburg 1909

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 
1   Rubinstein       * 1 1 1 ½ ½ ½ 1 1 1 ½ 1 0 1 ½ 1 1 1 1  14½  875 Rubles 
2   Lasker           0 * ½ 1 ½ 1 1 1 ½ 1 1 1 0 1 1 1 1 1 1  14½  875 Rubles 
3   Spielmann        0 ½ * 1 0 1 1 ½ 1 ½ ½ ½ 1 0 ½ 1 ½ ½ 1  11   475 Rubles 
4   Duras            0 0 0 * 0 1 ½ 0 ½ 1 0 1 1 1 1 1 1 1 1  11   475 Rubles 
5   Bernstein        ½ ½ 1 1 * 0 1 0 1 1 1 1 ½ 0 0 0 ½ ½ 1  10½  190 Rubles 
6   Teichmann        ½ 0 0 0 1 * 0 ½ ½ ½ ½ 1 1 ½ 1 ½ 1 1 ½  10   120 Rubles 
7   Perlis           ½ 0 0 ½ 0 1 * ½ ½ 1 ½ 1 1 ½ 1 ½ 0 0 1   9½   80 Rubles 
8   Cohn             0 0 ½ 1 1 ½ ½ * 0 0 1 ½ ½ 0 ½ ½ ½ 1 1   9    40 Rubles 
9   Schlechter       0 ½ 0 ½ 0 ½ ½ 1 * 1 0 0 1 1 ½ 0 1 ½ 1   9    40 Rubles 
10  Salwe            0 0 ½ 0 0 ½ 0 1 0 * ½ 1 1 1 ½ 0 1 1 1   9    40 Rubles
11  Tartakower       ½ 0 ½ 1 0 ½ ½ 0 1 ½ * 0 0 0 ½ 1 1 1 ½   8½ 
12  Mieses           0 0 ½ 0 0 0 0 ½ 1 0 1 * ½ 1 1 1 0 1 1   8½ 
13  Dus Chotimirsky  1 1 0 0 ½ 0 0 ½ 0 0 1 ½ * ½ ½ ½ 1 0 1   8 
14  Forgács          0 0 1 0 1 ½ ½ 1 0 0 1 0 ½ * ½ ½ ½ 0 ½   7½ 
15  Burn             ½ 0 ½ 0 1 0 0 ½ ½ ½ ½ 0 ½ ½ * 1 ½ ½ 0   7 
16  Vidmar           0 0 0 0 1 ½ ½ ½ 1 1 0 0 ½ ½ 0 * ½ 1 0   7 
17  Speyer           0 0 ½ 0 ½ 0 1 ½ 0 0 0 1 0 ½ ½ ½ * ½ ½   6 
18  Von Freyman      0 0 ½ 0 ½ 0 1 0 ½ 0 0 0 1 1 ½ 0 ½ * 0   5½ 
19  Znosko Borovsky  0 0 0 0 0 ½ 0 0 0 0 ½ 0 0 ½ 1 1 ½ 1 *   5 
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Emanuel Lasker, who tied with Akiba Rubinstein for first place, was at the time 
the world champion. Even so, Rubinstein, though he never played Lasker in a title 
match (back then challengers had to raise sufficient funds before they could 
arrange such a match with the world champion), was in the five years preceding 
World War I regarded as the strongest player in the world (in 1912 he won five 
international tournaments in a row, a feat unparalleled). Yet both Rubinstein and 
Lasker were defeated by Dus Chotmirsky, a chess player who would be lost to 
history except for this feat.

In chess tournaments, winners are decided by summing performance across all 
games (assigning 1 to a win, ½ to a draw, and 0 to a loss) and then selecting the 
player(s) with the highest total. This is standard practice, but one can imagine vari-
ations of it. We might want simply to focus on victories and count them. In that 
case, Lasker would have won the tournament outright (with 13 victories), Rubinstein 
would have come in second (with 12 victories), and Duras would have come in third 
(with 10 victories). On the other hand, we might want to choose the victor based on 
fewest losses. In that case Rubinstein would have been the outright victor (with a 
single loss), Lasker would have taken second (with 2 losses), and Spielmann would 
have taken third (with 3 losses). Other options for balancing performance criteria in 
tournament play are possible as well. For instance, Chotmirsky, for having defeated 
the two top performing players as determined by conventional tournament stand-
ards, might have been rewarded extra points for doing so.

In tournament play, exhaustive search means each player playing all the other 
players and recording the outcomes. Most chess tournaments, however, have so 
many players that an exhaustive search is not possible. The St. Petersburg tourna-
ment was a select invitational meet. Most tournaments are open to the chess com-
munity. In such tournaments, players are initially matched in line with their 
official chess ratings (1600 for amateur, 2000 for expert, 2200 for master, 2500 for 
grandmaster), with weaker players initially playing stronger players so that the 
best players don’t cancel each other out early. Then, as the rounds proceed (typi-
cally between six to eight rounds total), players with the same tournament record, 
or as close a record as available, are matched. Note that weaker players, as gauged 
by their rating coming into the tournament, tend at each round to be matched with 
stronger players. At the end of the tournament, one’s wins and draws are summed 
(1 for a win, ½ for a draw). The tournament winner(s) are then decided in terms 
of this raw total as well as an algorithm that, in the case of ties, takes into account 
the strength, as determined by chess rating, of one’s opponents.

In terms of the  search matrix, especially when the pool of tournament players 
is quite large, each player can play only a few other players (each game played 
constituting a single query, the outcomes of these games being noted by the 
inspector). Given that one wants to discover the strongest players (for some 

 B
io

lo
gi

ca
l I

nf
or

m
at

io
n 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
2.

4.
17

.1
40

 o
n 

08
/1

1/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



44 W. A. Dembski, W. Ewert and R. J. Marks II 

b1567  Biological Information — New Perspectives b1567_Sec1.1.2 8 May 2013 2:35 PM

specified method of balancing performance criteria, these players, taken jointly, 
constitute the target), the search needs to be judicious in the choice of players it 
uses to query individual players. Is it more effective, given at most m queries, to 
query as many players as possible by playing them against only one or a few 
other players? Or is it better to hone in on a few players and put them through 
their paces by having them play a wide cross-section of other players? It all 
depends. It depends on whether player strength tends to function transitively (if 
A is able to defeat B and B is able to defeat C, is A able to defeat C?). It depends 
on whether, in the case of a single player testing other players, this player is 
strong or weak.

The discriminating power of strong players is important in tournament play. 
A strong player, by definition, loses only to a few players (i.e., to other strong 
players), and thus will clearly discriminate strong from weak players. In contrast, 
a weak player, by losing to most players, will fail to discriminate all but the weak-
est players. To change the game from chess to baseball, if the test of a team is 
whether it performs well against the New York Yankees, any team that does rea-
sonably well against them could rightly be considered excellent. But if the “test 
team” is drawn from the local little league, then it would not provide a useful way 
of determining teams of national excellence. But notice, using the New York 
Yankees as a test team may not be very useful either — a team that beats or keeps 
it close with the Yankees is surely top notch, but if all the teams tested fail miser-
ably against the Yankees, we may learn nothing about their relative strength. 
Players that are overly strong or overly weak are poor discriminators of play 
excellence.

In sum, tournament play is a special case of competitive search that fits within 
our general search framework but in which performance is assessed by the players 
(i.e., the search space elements) playing each other directly and then by noting the 
winner and, if applicable, the margin of victory [7].

Example 3.5: Populati on search

For some searches, the concern is not simply with individuals exhibiting certain 
characteristics but with whole populations exhibiting those characteristics. 
Thus, in population genetics, the emergence of a trait in a lone individual is not 
enough. Traits can come and go within a population. The point of interest is 
when a trait gets fixed among enough members of a population to take hold and 
perpetuate.

To represent such a scenario, we might imagine all the members of a population 
as drawn from a set of individuals Ω ′. Moreover, Ω ′ may contain a target T ′ 
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consisting of all members exhibiting the trait(s) in question. Yet the actual search 
is not for T ′ in Ω ′ but for sets, whether ordered or unordered, of members from 
Ω ′; what’s more, the target will consist of such sets that have a sufficient propor-
tion of members from T ′. Thus, in a standard evolutionary computing scenario, the 
actual search space Ω might consist of all 100-tuples of elements drawn from Ω ′ 
(each element of the first row of the search matrix would belong to this Ω). 
Moreover, the actual target T might, in this case, consist of 100-tuples drawn from 
Ω ′ for which 75 or more of their elements belong to T ′. In this case, successful 
search would require 75 percent of the population to have acquired the given 
trait(s).

Many ways of transitioning from Ω ′ to Ω and T ′ to T are possible here depend-
ing on the population size (is it fixed or variable?), on whether the order of ele-
ments in the population is important, and on the threshold that determines whether 
individually determined characteristics are widespread enough for the population 
to have properly acquired them. Even though the natural search space may seem 
to be one we have called Ω ′, representing the search within the general framework 
outlined in this paper may require identifying another space, which we called Ω. 
The actual target we are trying to locate would thus belong not to Ω ′ but to Ω. 
Note that such an Ω will invariably have more structure than Ω ′, even supplying 
a metric of comparison in terms of how many members of Ω ′ the members of Ω 
share.

4. Information and Efficiency Measures

In a general theory of search that avoids arbitrary assumptions about underlying 
probability distributions, uniform probabilities nonetheless play a salient role. 
Consider our general set-up, a search space Ω = {ω1, ω2, ..., ωK, ωK+1, ..., ωN} with tar-
get T = {ω1, ω2, ..., ωK}, where the target has uniform probability U(T) = p = K / N = 
|T | / | Ω |, where |*| is the cardinality of *. In any such scenario, we can always do at 
least as good as take a single uniform random sample and thereby attain a target 
element with probability p. We might conduct our search to improve this probabil-
ity or we might conduct it to diminish this probability. The natural probability 
distribution attaching to Ω, given the idiosyncrasies of this search space, may be 
very different from uniform. But it is always, in principle, possible to enumerate the 
elements of a finite space Ω and choose one of them randomly so that no element 
is privileged over any other. Uniformity, even if destined to miss the target in any 
nontrivial search, is always an option.

To take a single uniform random variate from the search space Ω will be 
called the null search. This search becomes the baseline against which we 
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compare all other searches. Any search different from the null search will be 
called an alternative search [8]. The null search induces the uniform probability 
distribution U on Ω (see section 2). This is the probability measure we get by 
setting our sample size at m = 1 and letting the discriminator act on the corre-
sponding 3 × 1  search matrix whose first row element is simply a uniformly 
chosen element of the search space. In practice, p is so small that a null search 
over Ω for T is extremely unlikely to succeed. Success therefore demands that in 
place of the null search, an alternative search S be implemented that succeeds 
with a probability q that is considerably larger than p. The search S thus induces, 
in the notation of section 2, a probability distribution µs on Ω that entirely char-
acterizes the probability of S successfully locating the target T. For simplicity, 
we denote µs simply by µ. In this way, an alternative search S reduces to a single 
probability distribution µ on the original search space Ω where the probability of 
the target is µ (T ) = q.

In comparing null and alternative searches, it is convenient to convert proba-
bilities to information measures (note that all logarithms in the sequel are to the 
base 2). We therefore define the endogenous information IΩ as –log(p), which 
measures the inherent difficulty of a blind or null search in exploring the underly-
ing search space Ω to locate the target T. We then define the exogenous informa-
tion IS as –log(q), which measures the difficulty of the alternative search S in 
locating the target T. And finally, we define the  active information I+ as the dif-
ference between the endogenous and exogenous information: I+ = IΩ – IS = 
log(q/p). Active information therefore measures the information that must be 
added (hence the plus sign in I+) on top of a null search to raise an alternative 
search’s probability of success by a factor of q/p.

In the null search, the sample size is fixed at 1 (a single uniform random variate 
is taken) whereas in the alternative search the sample size is m (m queries are 
made). If we make m explicit, then we can define qm as the probability that the 
alternative search locates the target in m queries, and write m

sI  = –log(qm) and 

+
mI  = IΩ – m

sI . The behavior of +
mI  as a function of m now provides a measure of 

the efficiency of search. Suppose, for instance, that S conducts its search by taking 
independent and identically distributed random variates. In that case, assuming 
m to be much less than 1/p, qm = 1 – (1 – p)m is approximately equal to mp, and 

+
mI  is approximately log(m). If, instead, S conducts its search by, at each query, 

cutting in half the search space (“interval halving”), then the probability of finding 
the target increases by a factor of 2 for every query, and +

mI  is approximately 
m (i.e., the active information is linear rather than logarithmic in m). Interval halv-
ing is therefore a much more efficient search strategy (if it can be implemented) 
than uniform random sampling. +

mI , as a function of m, therefore measures the 
efficiency of the search.
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By comparing the performance of a search S against the endogenous informa-
tion baseline IΩ, +

mI  provides an absolute measure of efficiency of the search. 
Indeed, in specifying S, we define + +=( ) ,m mI S I  conceived as a function of m, as 
the absolute efficiency of S. Given two searches, S and S ′, we define 

+ + += -( ( ( ) ( ),m m mI S' S I S I S'  again conceived as a function of m, as the relative 
efficiency of S ′ given S. Thus, if S represents uniform random sampling and 
S ′ represents interval halving, the relative efficiency of S ′ given S, + ( )mI S' S  is 
m − log(m). In general, for a given m, if S ′ induces a probability of rm on T and if 
S induces a probability of qm on T, then + ( )mI S' S  = log(rm/qm). Absolute and rela-
tive efficiency can also be negative: for a given m, S does worse in locating the 
target than a single uniform random sample if and only if + <( ) 0;mI S  likewise, for 
a given m, S ′ does worse in locating the target than S if and only if + ( 0mI S' | S) < .  
Note that if S represents a single uniform random sample, so that the  search matrix 
has only a single column and is incomplete for all remaining m – 1 columns (the 
first entry in the first row is therefore a uniform random variate), then 

+ +=( ) ( ).m mI S' S I S'

5. Liftings and Lowerings

 Conservation of information tracks the information that goes into constructing a 
search, showing that the amount of information exhibited by the search in locating 
a target can never exceed the amount of information inputted in its construction. 
Accordingly, conservation of information addresses not just the search for a given 
target in the original search space, but also a search for the information that goes 
into rendering such a search successful. Conservation of information therefore is 
not about search per se but about the search for a search. In other words, it is about 
a higher-level search for the information required to render a lower-level search 
successful. We abbreviate “the search for a search” by S4S.

In section 2 we represented an arbitrary search (i.e., S  ) as a probability measure 
on a search space (i.e., µs). Given that the search for a search (S4S) is itself a 
search, it must likewise be representable as a probability measure. Such an S4S 
probability measure assigns probabilities to a higher order search space consisting 
of probability measures on the original search space. Formulating conservation of 
information requires the ability to project probability measures up and down a 
probabilistic hierarchy of search spaces. We show how this is done in this section. 
This section thus provides the formal background for the conservation of informa-
tion theorems proved in the next section.

We consider again our general set-up, a search space Ω = {ω1, ω2, ..., ωK, ωK+1, ..., 
ωN} with target T = {ω1, ω2, ..., ωK}, where the target has uniform probability U(T ) = 
p = K/N = |T | / | Ω |. We assume that 1 ≤ K < N. Define M(*) as the set of all Borel 
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probability measures on * where * is any compact metric space. Ω, as a finite set, 
is compact in the discrete topology, which is given by any metric on it. Any prob-
ability measure m on Ω therefore has the form

=
Â

1

,
i

N

i x
i

a δ

where each ai is a nonnegative real number, the ais together sum to 1, and each δ is 
a point mass (assigning probability 1 to the corresponding xi). It follows that M(Ω) 
is the set of all these convex linear combinations of point masses. Note that when 
each ai equals 1/N, this sum of point masses is the uniform probability U in M(Ω).

We can think of the point masses δxi
 (for 1 ≤ i ≤ N) as N independent vectors in 

an N-dimensional vector space. Because these vectors are all added as convex 
linear combinations to form M(Ω), M(Ω) in fact sits in an (N – 1)-dimensional 
subspace, forming an N-simplex with Euclidean metric. Moreover, as a closed, 
bounded subset of Euclidean space, M(Ω) is compact. It follows that the uniform 
probability on M(Ω) is ordinary Lebesgue measure (suitably normalized). We 
denote this uniform probability over M(Ω) as U. U resides in M(M(Ω)). For 
convenience, we therefore define M0(Ω) = def Ω, M1(Ω) = def M(Ω), M2(Ω) = def 
M(M(Ω)), and in general M j+1(Ω) = def M(Mj(Ω)). 

Thus, to recap, the uniform probability U over Ω resides in M(Ω) and is 
defined as

1

1
;

i

N

x
iN =

= ÂU δ

moreover, the uniform probability U over M(Ω) resides in M2(Ω) and is 
isomorphic to normalized Lebesgue measure on the N-simplex 

£ £≥ S =…1 1{( , , ) 0, 1}.N
N i i N ia a a a∈R  We call the various Mj(Ω), taken together, 

the probabilistic hierarchy over the search space Ω. Note that we give each of 
these spaces in the probabilistic hierarchy the weak topology. It then follows by 
Prohorov’s theorem that each of these spaces is compact (indeed, they form com-
pact metric spaces in the Kantorovich-Wasserstein metric, which induces the weak 
topology on these spaces) [9]i.

The probabilistic hierarchy allows for considerable interaction among its meas-
ure spaces, so that structures associated with Mj(Ω) have corresponding structures 
both up and down the hierarchy at Mj+1(Ω) and Mj–1(Ω). We speak of a structure 
at Mj(Ω) projected up to Mj+1(Ω) as a lifting and a structure at Mj+1(Ω) projected 
down to Mj(Ω) as a lowering. To see how this works, we take the higher-order 
space M(Ω) and the lower-order space Ω and examine how structures associated 
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with these spaces can be projected to the other. Our discussion here will focus on 
the base of the probabilistic hierarchy (i.e., Ω and M(Ω)), but our observations 
readily generalize up the probabilistic hierarchy. Accordingly, structures associ-
ated with Ω may be lifted to structures associated with M(Ω) and structures associ-
ated with M(Ω) may correspondingly be lowered to structures associated with Ω.

To start, consider a real-valued function f on Ω (note that because Ω is finite 
and has a discrete topology, f is bounded, measurable, and even topologically 
continuous). The function f now lifts to a real-valued (continuous) function f  on 
M(Ω) that takes any probability measure θ in M(Ω) and assigns its integral with f, 
i.e., f   is the mapping from M(Ω) to R such that

W
Ú� ( ) ( ).f x d xθ θ

Note that for θ = δx (i.e., the point mass at x), = =( ) ( ) ( ).xf f f xθ δ  Call f   the 
lifting of f from Ω to M(Ω). Likewise, for F a real-valued function on M(Ω), 
define F�  on Ω as � ( ).xx F δ  Call F�  the lowering of F from M(Ω) to Ω. It then 
follows that ,f f=�  but it need not be the case that F F=�  (lowerings can lose 
information whereas liftings do not). In general, under the weak topology, liftings 
and lowerings of functions preserve measurability and continuity. 

Next, consider a probability measure µ on Ω (µ is therefore in M(Ω)). Because 
Ω is finite, all probability measures in M(Ω) are absolutely continuous with 
respect to the uniform probability U. Absolute continuity of µ with respect to U 
means that every set of nonzero probability under µ also has nonzero probability 
under U. By the Radon-Nikodym theorem, it follows that µ can be rewritten as the 
product of a density, denoted by d

d
µ
U

, times the measure U. This means that for 
f = d

d
µ
U

, µ can be written as f · d  U. In other words, for a set A contained in Ω,

= Ú( ) ( ) ( )
A

A f x d xµ U

In particular, if 
=

= = = ◊Â
1

, ( ) ( ) .
i

N

i x i i i
i

d
a f x x a N

d

µµ δ
U

 

It follows that by lifting f from a function on Ω to a function f  on M(Ω), we 
can now lift µ from a probability measure in M(Ω) to a probability measure µ  in 
M2(Ω). Specifically, for B a measurable subset of M(Ω), we define

= Ú( ) ( ) ( )
B

B f dµ θ θU
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where 

W

= Ú( ) ( ) ( ).f f x d xθ θ

To see that µ  is indeed a probability measure over M(Ω), we need the following 
result.

Propositi on 5.1 (Consistency of Uniformity)

W

= Ú
( )

( ).d
M

U Uθ θ

REMARKS. The integral on the right side of this equation is vector-valued [10]. 
Such integrals exist provided that in applying continuous linear functionals to 
them (which, in this case, amounts to integrating with respect to all bounded con-
tinuous real-valued functions on Ω), one gets the same result as integrating over 
the continuous linear functions applied inside the integral. Linear functionals 
thereby reduce vector-valued integration to ordinary integration. Thus, the equality 
in the statement of this theorem means that for all continuous real-valued h on Ω,

W W W

È ˘
= Í ˙

Î ˚
Ú Ú Ú

M( )

( ) ( ) ( ) ( ) ( ).h x d x h x d x dU Uθ θ

Because Ω is finite, all real-valued functions on Ω are continuous, so this equal-
ity needs to hold for all real-valued h. As we move up the probabilistic hierarchy, 
subsequent M  j(Ω) are compact metric spaces, so continuity actually does place a 
restriction on the continuous linear functionals used in calculating vector-valued 
integrals. Because these are all compact metric spaces, existence and uniqueness 
of such vector-valued integrals is not a problem [11]. For equality to hold in 

W= Ú ( ) ( )dMU Uθ θ  means that averaging all probability measures on M(Ω) with 
respect to the uniform probability U  is just the uniform probability U on Ω. This 
establishes measure-theoretic consistency in lifting the uniform probability U on 
Ω to the uniform probability U  on M(Ω).

PROOF. This result follows from exchangeability — U is the only probability 
measure invariant under permutation of the elements of Ω. The vector-valued 
integral in question can immediately be seen to have this same property — its 
value does not depend on any point in Ω to which it is applied. A detailed proof is 
available elsewhere [12].

 B
io

lo
gi

ca
l I

nf
or

m
at

io
n 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
2.

4.
17

.1
40

 o
n 

08
/1

1/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



 A General Theory of Information Cost … 51

b1567  Biological Information — New Perspectives b1567_Sec1.1.2 8 May 2013 2:35 PM

Suppose now that µ is a probability measure on Ω that is absolutely continuous 
with respect to U (in fact, because Ω is finite, this assumption holds for all prob-
ability measures on Ω). Let d

d
µ
U

 denote the Radon-Nikodym derivative of µ with 
respect to U and let d

d
µ
U

 denote its lifting. If we now define the lifting of µ as 
,d

d
dµµ =

U
U  then µ  is a probability measure on M(Ω). Moreover, since U is abso-

lutely continuous with itself such that d
d
U
U

 is identically equal to 1 on Ω, it follows 
that the lifting of d

d
U
U

, i.e., d
d
U
U

, is identically equal to 1 on M(Ω), and thus the 
lifting of U, as so defined, is in fact the uniform probability on M(Ω). Thus, 
whether we interpret U  as the uniform probability on M(Ω) as ordinary Lebesgue 
measure (suitably normalized) on an N-simplex (which is isomorphic to M(Ω)), 
or as the lifting of the uniform probability U on Ω, both signify the same probabil-
ity measure on M(Ω).

To see that all the claims in the previous paragraph hold, it is enough to see that 
µ  is indeed a probability measure on M(Ω), and for this it is enough to see that

W W W

WW

W

W

È ˘= Í ˙Î ˚

È ˘= Î ˚

=

=

=

Ú Ú Ú

Ú Ú

Ú
Ú

( ) ( )

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) [by Cons. o f Unif.]

1.

d d
d x d x d

d d

d
x d d x

d
d

x d x
d

d

M M

M

U U
U U

U
U

U
U

µ µθ θ θ θ

µ θ θ

µ

µ

Lastly, we need to be able to lift targets from Ω to M(Ω). Thus, given the target 
T in Ω, we define a corresponding higher-order target 

qT  in M(Ω), indexed by q 
in the unit interval (0 ≤ q ≤ 1), namely,

{ }= W ≥( ) ( ) .qT T qθ ∈ θM |

qT  equals M(Ω) when q is 0 and grows smaller as q increases. Elsewhere [13] we 
have shown that for the search space Ω = {ω1, ω2, ..., ωK, ωK+1, ..., ωN} with target 
T = {ω1, ω2, ..., ωK}, where the target has uniform probability U(T) = p = K / N = 
|T |/ |Ω|, the (higher-order) uniform probability of 

qT  is given by

-
- - -G= -

G - G Ú
1

(1 ) 1 1

0

( )
( ) (1 ) .

( (1 )) ( )

q

N p Np
q

N
T t t dt

N p Np
U
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Note that this last expression describes a cumulative beta distribution with first 
parameter r = N(1 – p) and second parameter s = Np [14].

6. Conservation of Information — The Uniform Case

We are now in a position to prove two  conservation of information theorems: the 
special case for uniform probabilities, which we have proved elsewhere and recap 
here in this section; and the general case for arbitrary probabilities, which we 
prove for the first time in the next section [15]. We begin with the special case.

Theorem 6.1 (Conservati on of Informati on — Uniform Case)

Let T be a target in Ω. Assume Ω is finite and T is nonempty. Let U denote the 
uniform probability distribution on Ω and let p = |T|/|Ω| = U(T) (which we take to 
be extremely small). Next, let µ be a probability distribution on Ω such that q = 
µ(T) (which we take to be considerably larger than p). Suppose that µ characterizes 
the probabilistic behavior of an alternative search S, so that the endogenous infor-
mation is IΩ = –log(p) and the exogenous information is IS = –log(q). Then the 
(higher-order) uniform probability of qT  in M(Ω), denoted by ( ),qTU is less than 
or equal to p/q. Equivalently, the (higher-order) endogenous information associ-
ated with finding the (higher-order) target qT  in M(Ω), i.e., –log ( ( )),qTU is 
bounded below by the (lower-order)  active information I+ = –log(U(T )) + log(µ(T)) = 
log(q/p).

PROOF. Let Ω = {x1, x2, ..., xK, xK+1, ..., xN} and T = {x1, x2, ..., xK} so that p = K/N. As 
we saw in the last section, it then follows that 

-
- - -G= -

G - G Ú
1

(1 ) 1 1

0

( )
( ) (1 ) ,

( (1 )) ( )

q

N p Np
q

N
T t t dt

N p Np
U

which is a cumulative beta distribution with first parameter r = N(1 – p) and second 
parameter s = Np. 

Integration by substitution shows that this expression can be rewritten as

- - -G -
G G - Ú

1
1 (1 ) 1( )
(1 ) ,

( ) ( (1 ))
Np N p

q

N
t t dt

Np N p
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which describes a cumulative beta distribution with first parameter r = Np and 
second parameter s = N(1 – p). It is well known that the mean for this distribution 
is r/(r + s) [16]. In consequence,

- - - - - -

- - -

- - -

=

= ◊

£ ◊

= ◊

=

G G- ◊ -
G G - G G -

G ◊ -
G G -

G ◊ -
G G -

+ -

Ú Ú

Ú

Ú

1 1
1 (1 ) 1 1 (1 ) 1

1
1 (1 ) 1

1
1 (1 ) 1

0

1

1

1

( ) ( )
(1 ) (1 )

( ) ( (1 )) ( ) ( (1 ))

( ) (1 )
( ) ( (1 ))

( ) (1 )
( ) ( (1 ))

(1 )

.

qNp N p Np N p
q

q q

Np N p

q

Np N p

t dt t dt

t dt
q

t dt
q

q
p

q

N N
t t

Np N p Np N p

N q t
Np N p

N t t
Np N p

Np

Np N p

It follows that –log ( ( )),qTU  is bounded below by the  active information I+ = 
log(q/p). This proves the theorem. 

This theorem characterizes the probability costs incurred by a search for a 
search. Given a vast search space Ω and a tiny target T, the probability of finding 
the target via the null search is effectively nil (p = |T |/|Ω|). To find the target, we 
thus need an alternative search S that is able to find it with a probability q that is 
much larger than p. But where did S come from? Because the complexities and 
idiosyncrasies associated with the construction of searches in general, the first 
three sections of this paper focused on simplifying our representation of searches, 
first by representing them as search matrices and then by representing them as 
probability measures µ on the original search space Ω such that µ (T ) = q. 

So the question now is, Where did µ come from? In statistics, whenever con-
fronted with a given outcome, the statistician attempts to situate it among a collec-
tion of possible outcomes that are at least as extreme as the one in question and 
then inquires into the improbability of that collection. For instance, given a thou-
sand coin tosses and six-hundred heads, the statistician’s first impulse will be to 
ask how likely it is that a fair coin (the null hypothesis) could have led to six-
hundred or more heads. In this case, the statistician wants the probability of the 
tail of a binomial distribution. Leaving aside Bayesian considerations, which can 
always be incorporated later, if the probability of this tail is extremely small, the 
statistician will be inclined to question whether the coin responsible for six-
hundred heads was fair, thereby implicating an alternative hypothesis. As it is, six-
hundred or more heads in a thousand coin tosses represents a departure from 
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expectation by more than six standard deviations. Such a result with a fair coin 
would be very improbable indeed.

Returning now to our search space Ω and target T, the outcome that confronts 
us is not a sequence of coin tosses but a search S represented by the probability 
measure µ. If we set aside that the search is the product of intelligent design, then 
µ presumably results from some statistical process. Moreover, the collection of 
outcomes as extreme as µ is then

{ }= W ≥( ) ( ) .qT T qθ ∈ θM |

In our analogy with statistical practice, qT  may then be conceived as the “tail” 
associated with the “outcome” µ. It would follow that the improbability of this 
tail is crucial to deciding whether µ is the outcome of a (higher-level) null 
search.

The parallel here between coin tossing and the search for a search, though far 
from exact, is suggestive and illuminating. Each coin toss, under the null hypoth-
esis, is a Bernoulli trial, with probability of ½ for heads and ½ for tails. These 
trials are probabilistically independent, and thus in one-thousand trials should 
conform to a null hypothesis characterized by a binomial distribution with param-
eters N = 1,000 and p = ½. The lower-order Bernoulli trials, as it were, “lift” to a 
higher-order binomial distribution. Similarly, the null search of Ω for T, character-
ized by the uniform probability U on Ω, lifts to a null search of M(Ω) for ,qT
characterized by the (higher-order) uniform probability U.  Conservation of infor-
mation then shows that the uniform probability of this higher-order target is 
bounded above by p/q. 

Conservation of information is essentially an accounting rule for probabilities 
associated with search. Here is how it works: finding the original target T within 
Ω had the very low probability of p under the null search. Fortunately, an alterna-
tive search S was available to raise this probability to q. But the probability cost 
of locating this alternative search, represented by µ, was less than or equal to p/q. 
Thus, when the cost of locating the alternative search is factored in, nothing is 
gained over the original null search. The original search, as it were, purchased 
the target at the “high” probability cost p. The alternative search, correspond-
ingly, purchased the target at the “cheaper” probability cost q, but then itself 
incurred a probability cost of at least p/q in a higher-order search space since the 
alternative search itself had to be accounted for. Thus, when the full probability 
costs incurred by the alternative search are factored in, the total cost is the same 
as or even worse than the probability cost associated with the original null 
search. 
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In fact, the cost tends to be much worse. Conservation of information in the 
uniform case states that ( )qTU  ≤ p/q. Nevertheless, we have shown elsewhere [17] 
that for Ω = {x1, x2, ..., xK, xK+1, ..., xN} and T = {x1, x2, ..., xK}, provided that p = K/N 
and N ≥ (2q – 1)/(q – p),

È ˘< ◊ ◊ - -Î ˚
2( ) 1 ( ) .

N

q

p
T N q pqU

This (strict) inequality shows that the (higher-order) uniform probability of the 
lifted target qT  decreases exponentially with the absolute size N of the search 
space Ω. As an upper bound on ( ),qTU  p/q is therefore very conservative.

To see how the probability costs associated with null and alternative searches 
relate, it is instructive to consider the following two quasi-Bayesian ways of reck-
oning these costs: 

P(locating T via null search) =  P(null search locates T & null search is available)
 =  P(null search locates T | null search is avail.) 

× P(null search is avail.)
 =  U(T) × 1 [because the availability of null search is 

taken for granted]
 = p.

P(locating T via alt. search)  = P(alt. search locates T & alt. search is available)
 =  P(alt. search locates T | alt. search is avail.) 

× P(alt. search is avail.)
 = ¥( ) ( )qT Tµ U

 ≤ q × p/q
 = p.

It follows that U(T) ≥ µ (T) × T )qU( and therefore, by taking negative loga-
rithms, that W £ - log( ( )),S qI I TU  or equivalently that –log ( ( ))qTU ≥ I+ = log(q/p), 
inasmuch as I+ = IΩ – IS, IΩ = –log (U(T)) = –log (p), and IS = –log(µ (T )) = –log(q). 
According to  conservation of information, the higher-order endogenous informa-
tion –log ( ( ))qTU , required to find a search qua probability measure that has prob-
ability q or better of locating T, is always at least that of the lower-order  active 
information I+. To say that information is conserved is thus really to say that in the 
search for a search, information leading to success of the original search is at best 
conserved when moving to a higher-order search space and may in fact grow con-
siderably higher (in some circumstances, exponentially higher). This rise in the 
information/probability cost associated with higher-level search should not be 
surprising given that spaces comprising searches tend to be bigger and structurally 
richer than the spaces they are searching [18].
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7. Conservation of Information — The General Case

We turn now to a generalization of the previous conservation of information 
 theorem. The previous theorem was formulated in terms of a uniform probability 
baseline. We now lift this restriction. Processes that exhibit stochastic behavior 
arise from what may be called a natural probability. The natural probability char-
acterizes the ordinary stochastic behavior of the process in question. Often the 
natural probability is the uniform probability. Thus, for a perfect cube with distin-
guishable sides composed of a rigid homogenous material (i.e., an ordinary die), 
the probability of any one of its six sides landing on a given toss is 1/6. Yet, for a 
loaded die, those probabilities will be skewed, with one side consuming the lion’s 
share of probability. For the loaded die, the natural probability is not uniform. 
Now, if the natural probability for all search spaces Ω were the uniform probabil-
ity U, we’d be done — the conservation of information theorem proved in the last 
section would suffice. Yet despite Bernoulli’s principle of insufficient reason, 
which we have argued elsewhere rightly makes the uniform probability the default 
in many searches [19], the natural probability associated with some searches need 
not be uniform. 

Given structural and external factors influencing search, the natural probability 
need not be U but some probability measure µ that assigns probability q to the 
target T. It’s thus convenient to extend the notion of a null search to include not 
just uniform or blind searches but any searches that accord with such a natural 
probability. Accordingly, we may then say that µ characterizes the null search of 
Ω for T. Moreover, the alternative search will then be characterized by a probabil-
ity measure ν that assigns probability r to T. As the natural probability on Ω, µ is 
not confined simply to Ω but lifts to M(Ω), so that its lifting, namely µ , becomes 
the natural probability on M(Ω) (this parallels how the uniform probability U, 
when it is the natural probability on Ω, lifts to the uniform probability U  on 
M(Ω), which then becomes the natural probability for this higher-order search 
space). When µ is the natural probability associated with a search space, treating 
it as the null search and ν as the alternative search now leads to a general conserva-
tion of information theorem, one that point for point parallels the previous formu-
lation for uniform probabilities. 

Theorem 7.1 (Conservati on of Informati on — General Case)

Let T be a target in Ω. Assume Ω is finite and T is nonempty. Let U denote the 
uniform probability distribution on Ω and let p = |T |/|Ω| = U(T ) (which we take to 
be extremely small). Next, let µ and ν be probability measures on Ω such that q = 
µ (T ) and r = ν (T ). We assume that p ≤ q < r (the rationale for assuming that q is 
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no less than p is discussed at the end of this section). Suppose that µ characterizes 
the probabilistic behavior of a search S and that ν characterizes the probabilistic 
behavior of a search S ′. We treat µ as the null search and ν as the alternative search, 
thus making µ the natural probability associated with Ω. Accordingly, IS = –log(q) 
becomes the endogenous information and IS′ = –log(r) the exogenous information. 
It then follows that the (higher-order) natural probability of rT  in M(Ω), i.e., 

( ),rTµ  is less than or equal to q/r. Equivalently, the (higher-order) endogenous 
information associated with finding the (higher-order) target rT  in M(Ω), 
i.e., - log( ( )),rTµ  is bounded below by the (lower-order)  active information 
I+ = –log( µ (T )) + log(ν (T )) = log(r/q). 

REMARK 1. The probabilities r and q in this theorem correspond respectively to q 
and p in Theorem 6.1. We changed notation because it seemed best to let p con-
tinue to denote the uniform probability of the target. Outside the notation of this 
theorem, however, we shall typically refer to a null search as setting a baseline 
probability p and an alternative search as giving an improved probability of suc-
cess q. Thus, outside the notation of this theorem, we shall generally refer to the 
 active information cost of search in terms of log(q/p) rather than log(r/q). 

REMARK 2. Regressing up the probabilistic hierarchy (i.e., Ω, M(Ω), M2(Ω), 
M3(Ω), etc.) does nothing to mitigate the information cost of successful search. In 
fact, it intensifies the cost. Searching for a target T in the original search space Ω 
against a baseline natural probability µ in M(Ω), we find that the difficulty of the 
search is only exacerbated by searching for the higher-order target rT  with respect 
to the higher-order natural probability µ  in M2(Ω). The proof below can now be 
applied again up the probabilistic hierarchy, showing that the search for a still 
higher-order target aimed at resolving the original search requires the still higher-
order natural probability µ  in M3(Ω), and that this move again only intensifies the 
difficulty of the search. And so on, up the probabilistic hierarchy. 

From the vantage of  conservation of information, searches are no less real than 
the objects being searched. Just as the existence and structure of objects require 
explanation, so too the existence and structure of the searches that locate those 
objects require explanation. It follows that searches, by residing in a space of 
searches, are themselves objects to be searched. This implies a hierarchy of 
searches: the original search, the search for that search, the search for the search 
for that search, etc. Conservation of information entails that as we regress up this 
search hierarchy, the search problem never becomes easier and may in fact become 
more difficult. 

PROOF. Let Ω = {x1,   x2,   ...,   xK,   xK+1,   ...,   xN} and T = {x1,   x2,   ...,   xK} so that p = K/N. 
Since Ω is finite, the probability measures µ and ν are absolutely continuous with 
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respect to U, and so there exist non-negative real-valued functions f and g such that 
µ = f · d U and ν = g · dU. As we saw in section 5, the lifting of µ is now defined as 

,f dµ = ◊ U  where U  is the uniform probability on M(Ω). Thus, for B a measurable 
subset of M(Ω), 

= Ú( ) ( ) ( ),
B

B f dµ θ θU

where for θ in M(Ω),

W

= Ú( ) ( ) ( ).f f x d xθ θ

In section 5 we showed that µ  is indeed a probability measure over M(Ω). 
Because µ is the natural probability on Ω, µ  is the natural probability on M(Ω). 

Next, for the lifted target = Œ W ≥{ ( ) | ( ) }rT T rθ θM  define the following meas-
ure on Ω resulting from vector-valued integration:

= Ú ( )
r

r

T

def dV Uθ θ

This definition holds for any r in the unit interval. Note that when r = 0 (an 
equality that does not in fact holds since we assume that r is no smaller 
than p), then rT  is all of M(Ω); on the other hand, when r > 0, then rT  is a 
proper subset of M(Ω). It follows that rV  is a probability measure on Ω only 
if r = 0 and is a sub-probability measure otherwise (i.e., it assigns measure less 
than 1 to Ω if r > 0). 

What value less than 1 does rV  assign to all of Ω? The answer can be seen from 
the following equation:

È ˘
W = W = W = ◊ =Í ˙

Í ˙Î ˚
Ú Ú Ú( ) ( ) ( ) ( ) ( ) 1 ( ) ( ),

r r r

r r

T T T

d d d TV U U U Uθ θ θ θ θ

which, by  conservation of information in the uniform case (Theorem 6.1), we 
know to be bounded above by p/r. 

By consistency of uniformity (Proposition 5.1), we know that 0V  is just the 
uniform probability U. For r > 0, it is easily seen that rV  is exchangeable on T and 
on its complement T c. In other words, rV  is invariant under permutations of T and 
of T c. Since the only such exchangeable measures are those proportional to uni-
form probabilities, this means that there exist positive constants ar and br such that

= ◊ + ◊( ) ( )c
r r ra T b TV U U
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Here U(. | T) is the uniform probability on T and U(. | T c ) is the uniform proba-
bility on T c . Note that because 0V  is the uniform probability on Ω, a0 = p and 
b0 = 1 – p.

Now, because µ = f · dU with µ(T) = q and µ(T c) = 1 – q, integrating f with 
respect to rV

 , which is proportional to a uniform probability measure on T and on 
T c, is the same as integrating the function 

-
-+ 1

11 1 C

q q
Tp p T  with respect to rV , where 

1T and 1
T c  are the indicator functions for T and T c respectively. This is because 

integrating a real-valued function with respect to a uniform probability measure is 
the same as integrating its average value with respect to a uniform probability 
measure (the average of f on T being q

p
 and the average of f on T c  being 1

1
q
p

-
-

).
It follows that

W

W

W

W

=

È ˘
= Í ˙

Î ˚
È ˘

= Í ˙
Í ˙Î ˚

=

È ˘-= +Í ˙-Î ˚

Ú

Ú Ú

Ú Ú

Ú

Ú

( ) ( ) ( ) [unpacking definitions]

( ) ( ) ( ) [unpacking definitions]

( ) ( ) ( ) [by vector-valued integration]

( ) ( ) [by definition]

1
1 1 ( )

1

r

r

r

r

T

T

T

r

T T r

T f d

f x d x d

f x d d x

f x d x

q q
c d x

p p

µ θ θ

θ θ

θ θ

U

U

U

V

V

W

£ ◊ ≥

= ◊ W =

£ ◊

=

Ú

[asnotedabove]

( ) [because ]

( ) [because ( ) ( )]

[by cons. of info.,unif. case]

.

r

r r r

q
d x q p

p

q
T T

p

q p
p r

q
r

V

U V U

This proves the theorem. 
The theorem just proved assumes that the null search assigns a probability q to 

T that is at least as large as the uniform probability p. But what if the “natural” 
probability on the search space entails a null search that is worse at locating the 
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target than uniform random sampling, so that q is strictly less than p? We put 
“natural” in scare quotes here because, we submit, natural probabilities need never 
do worse than uniformity. To see this, consider a deck of cards and imagine we are 
searching for the ace of hearts. Presented with a deck, face down, we are told to 
draw the first card on top. What is the probability that it will be the ace of hearts? 
If we knew that the deck had just been thoroughly shuffled, then we would be 
justified in assigning the uniform probability of 1/52 to the top card being the ace 
of hearts. But if we knew absolutely nothing about how the deck came to assume 
its order, the uniformity assumption becomes questionable, requiring for its justi-
fication Bernoulli’s disputed principle of indifference [20]. 

Now imagine we learn that that the deck gets thoroughly shuffled, but that 
whenever the ace of hearts appears on top, a coin is flipped so that heads leaves it 
there but tails moves it to the bottom of the deck. Given this way of randomly 
arranging the deck, the probability of the top card being the ace of hearts is not 
1/52 but 1/52 × 1/2 = 1/104. In this case, the probability of drawing the ace of 
hearts is strictly less than its uniform probability. Considerations such as this sug-
gest that the uniformity assumption, though appropriate in many circumstances, 
doesn’t hold universally for search. But this example additionally suggests that we 
don’t need to stay with a sub-uniform probability when conducting a search. 
Precisely because we are searching for the ace of hearts, we don’t have to sample 
the first card at the top of the deck. Search implies we have freedom to move about 
the search space and thus, in the present example, to sample any card in the deck. 
Hence, by suitably randomizing the selection, we can ensure that the card picked 
had the uniform probability 1/52 of being the ace of hearts. In general, then, when 
conducting a search, we are in our rights to assume that we can always do at least 
as well as uniformity. Doing worse, at least for search, is unnatural. Thus, in the 
context of search, any natural probability that replaces the uniform probability 
may be taken to assign a higher probability of success in locating the target than 
the uniform probability.

8. Regulating the Information Industry

 Conservation of information supplies the information industry with a balance 
sheet, ensuring that the information output on one side of the ledger does not 
exceed the information input on the other. Specifically, conservation of informa-
tion guarantees that any search that proportionately raises the probability of find-
ing a target by q/p requires, in its construction, an amount of information not less 
than the  active information I+ = log(q/p). Simply put, raise the probability of suc-
cessful search by a factor of q/p, incur an information cost of log(q/p).
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At the time of this writing, the United States government is much exercised 
about regulating the financial industry. Essential to any such regulation is accurate 
accounting of money — where it originates, how it flows, and where it ends up. 
Conservation of information shows that  active information, like money, obeys 
strict accounting principles. Just as banks need money to power their financial 
instruments, so searches need active information to power their success in locating 
targets. Moreover, just as banks must balance their books, so searches, in success-
fully locating targets, must balance their books — they cannot output more infor-
mation than was inputted.

Regulation of the financial industry is necessary because it is too easy to mask 
liabilities as assets and thereby attempt to escape one’s obligations. Likewise, 
regulation of the information industry is necessary because it is too easy to focus 
on the success of a search and forget the information that paid for that success. The 
temptation is to inflate the creative power of search programs by conveniently 
forgetting the creative power of the programmers who impart the information that 
makes those programs successful. In short, the temptation is to ignore conserva-
tion of information in the hopes of a free lunch. 

Conservation of information keeps the search practitioner honest.
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Abstract

The goal of this paper is to define  pragmatic information with a view toward measuring it. Here, 
pragmatic information means the content of valid signs — the key that unlocks language acquisition 
by babies and to human communication through language — also the content that enables biological 
“codes” in genetics, embryology, and immunology to work. In such systems, the inter-related layers 
appear to be ranked as in a hierarchy. Sounds are outranked by syllables, in turn outranked by words, 
and so on. In DNA, nucleotide pairs are outranked by codons, which are outranked by genes, and so 
on. As signs of lower rank combine to form signs of any higher rank, combinatorial “explosions” 
occur. With each increase in rank, the number of possible combinations grows exponentially, but the 
constraints on valid strings and, thus, their pragmatic value, sharpens their focus. As a result with 
each explosive increase in the number of possible combinations the relative proportion of meaning-
ful ones diminishes. Consequently, random processes of forming strings or changing them must tend 
increasingly toward meaninglessness (invalid and nonviable) strings. The consequent outcome of 
random mutations is mortality of individuals and in deep time an increasing number of disorders, 
diseases, and the eventual extinction of populations.

Key words: communication disorders, combinatorial explosion, pragmatic information, child 
 language acquisition, biomolecular cryptology, pragmatic mapping, true narrative representations

Introduction

To show that sign systems are ranked and layered, consider that this is obviously 
true of the highest cortical functions of human beings. Layering and ranking can 
be demonstrated easily for our brains and are also found in biological systems. 
Combinatorial explosions occur as signs of lower rank are combined to form signs 
and strings of the next higher level up. As the complexity and number of possible 
strings increases along with the constraints on valid sequences at each higher 
level, the likelihood of generating them by random processes diminishes toward a 
vanishing point. As a result, random mutations (or injuries) in sign systems tend 
to produce disorders, genetic diseases, death, and, eventually, the extinction of 
populations. In this paper, I limit myself to explaining what  pragmatic information 
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is and how it increases with each combinatorial explosion in child language devel-
opment and in genetic systems. The larger goal is to work toward an empirical 
measure of pragmatic information in the future.

Ranking in Sign Systems

At the Cornell symposium, since my starting time was an hour after lunch, to get 
the blood flowing and to give folks a chance to make it to our next coffee break, 
I asked the audience please to stand. I asked them to perform a few simple move-
ments: a right handed thumbs up; then, a left; then, with both hands. I demon-
strated and the audience followed along. Next, we wrote our names in bold strokes 
in the air with the dominant hand. I demonstrated writing “John” with my right 
hand. Then, we tried it with both hands. First, we allowed the subordinate hand, 
the left for most of us, to write the mirror image; then, using both hands in parallel, 
we wrote our respective names simultaneously with both hands. The reader may 
easily repeat the experiment and show that it is possible to do something with the 
subordinate hand that hardly anyone, apart from this sort of experiment, can do 
with the subordinate hand. For instance, I cannot fluently write the mirror image 
of my name with my left hand. However, when the subordinate hemisphere of the 
brain is slaved to the dominant linguistic hemisphere, the subordinate hand can 
easily do something it has never practiced — fluently writing the mirror image of 
a sequence of letters. How is this possible?

The actions just described provide a pragmatic (active and dynamic, real) dem-
onstration of the ranking and layering of biocontrol systems at the highest cortical 
level in human beings. The ranking is shown in the exercises just described in 
three ways: For one, each compliant member of the audience subordinated himself 
or herself, to the whole group as led by the speaker. They subordinated their 
actions to my words. For another evidence of ranking, the speaker, in turn, subor-
dinated himself to the organizers of the conference. The object of all this subordi-
nation was to make the ranking of biocontrol systems, combinatory explosions, 
and their consequences for pragmatic information, as intelligible, relevant, and 
memorable as possible to the participants at the symposium. For yet another, the 
slaving of the subordinate hand and the subordinate “mute” hemisphere of the 
brain to the dominant “talking” hemisphere of the brain — in the parallel and 
mirror-image writing by the subordinate hemisphere — also shows that linguistic 
signs at the highest cortical level are dominant.

Every person who performed the requested actions demonstrated the ranking 
summed up in Figure 1. In that diagram, let S represent the conventional signs (the 
words) of any natural language; let π represent acts of mapping those signs onto 

b1567_Sec1.1.3.indd   65b1567_Sec1.1.3.indd   65 5/8/2013   2:25:39 PM5/8/2013   2:25:39 PM

 B
io

lo
gi

ca
l I

nf
or

m
at

io
n 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
2.

4.
17

.1
40

 o
n 

08
/1

1/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



66 J. W. Oller, Jr. 

b1567  Biological Information — New Perspectives b1567_Sec1.1.3 8 May 2013 2:34 PM

whatever they are about; and let O represent the logical object(s) referred to. The 
O may consist of an event or sequence — say, writing the mirror image of a name, 
or, attending the Cornell symposium, or the exchanges and acts leading to this 
paper, or the book in which it appears, or the whole network of connections 
through its cited references.

Keeping in mind that the motor and sensory functions of each side of the body 
are mapped to the opposite hemisphere in the brain, the physical acts of the exer-
cises, show that the symbolic (word producing and arranging) hemisphere is domi-
nant. It can take nearly complete control of the subordinate hemisphere. The 
dominant system can “slave” the subordinate one. In between the hemispheres is 
the corpus callosum (190 million fibers connecting them) — not shown in 
Figure 1, but implied in the arrows between the hemispheres. Interestingly, ran-
dom mutations (by disease or accident) or selective ones (by surgery) of the brain 
often result in disorders. If they impact the dominant hemisphere they commonly 
produce disorders of language, aphasias; damage to the subordinate hemisphere 
generally results in disorders of recognition, holistic knowledge, and feelings 
about things, persons, and events, agnosias; and damage to the corpus callosum 
disrupts knowledge and control of action sequences which yields apraxias.

The simplest of the valid representations produced when all of our faculties are 
working well and when we merely report faithfully on actual experience are true 
narrative representations (TNRs). For instance, if I say truthfully, “I had lunch 
with Berkley Gryder, Robert Carter, and John K. Park on the second day of the 
Cornell symposium,” I illustrate the sort of valid pragmatic mapping that is 
required in order to explain  pragmatic information. A simpler instance of such a 
valid mapping can be found in a proper name applied correctly to the person who 
goes by that name. Analogous to the macro-cortical level seen in Figure 1, in 
Figure 2 — at a much more focused level — the name can be construed as a 

Fig. 1.  Pragmatic mapping in the brain.
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symbol, S; the person named as its logical object, O; and the mapping of the name 
to the person named as an action, π. If the name is applied to the person who actu-
ally goes by that name, this sort of mapping captures the essence of all TNRs. It 
expresses their common form in a simplest instance. The action in validly refer-
ring to some logical object as shown in Figure 2, sums up the sort of things we do 
in giving any valid report. Consider my statement mentioning the persons with 
whom I had lunch on the second day of the symposium. Biological examples of 
such valid acts of reference would include complex mappings such as the recogni-
tion (or production) of the major histocompatibility complex (MHC) on the sur-
face of a bodily cell enabling the body’s own immune systems to identify the 
marked cell as one of its own — that is, as “self” as contrasted with a “non-self” 
cell or some foreign entity to be attacked, killed, and dismantled, or merely to be 
transported to a detention center for interrogation and further identification before 
it is taken apart piece by piece [1]. The SπO relation of Figure 2 would also 
include something as simple as the correct rendering of a UUU codon in a gene 
into the amino acid phenylalanine in a corresponding protein sequence. These and 
countless other examples, are special instances of the general SπO relation.

In natural human languages (as suggested by Figure 2), the mapping from S to 
O shows linguistic comprehension while mapping from O to S, shows linguistic 
production. What may not be so obvious, but must be taken into account, is that 
the name, or any referring sequence of symbols, S, is inherently abstract and gen-
eral with respect to its generalized semantic meaning, but it is both arbitrary and 
conventional with respect to its surface form (its sounds, syllables, and syntax — 
that is the spatio-temporal arrangement of its components). By contrast the logical 
object O of the S in an ordinary naming relation, for instance, is concrete, particu-
lar, and actual. We may say that the pragmatic meaning of the S is materially 
instantiated in its particular logical object, O. In the case of ordinary proper names, 
we may say that the O involves a unique identity — as it also evidently does in the 
case of any MHC in the cells of a given individual. Abstracting from all of this, by 
the term pragmatic information I mean the useful content of TNRs, that is, reports 
or narrative-like representations that involve valid SπO relations.

Fig. 2.  Naming as a pragmatic mapping of S through π onto O.
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The pragmatic mapping process, illustrated in naming, is considerably more 
complex than it might seem on the surface, and, as argued in a series of papers and 
books elsewhere [2–6], it forms the foundation for valid referring relations — 
which are invariably embedded in true narrative representations (TNRs). Valid 
referring relations, SπO, and all TNRs are true in the ordinary sense of “truth” 
because they conform to the normal conventional applications of their signs, S; they 
are narratives in all cases because it is impossible to refer to any particular material 
entity whatsoever apart from some context of experience that involves events 
unfolding over time; and they are representations because the S in each case invari-
ably stands for something other than itself. It has been argued that TNRs are crucial 
to the discovery of  pragmatic information in sign systems in general [7–9]. Because 
our world is so pervaded by valid SπO representations from the highest cortical 
processes downward, their very familiarity makes the pragmatic mapping of a name 
onto a certain person seem much simpler than it is. Also, many philosophers have 
been lured into the false notion that names (or referring terms) are non-essential 
elements on account of the ubiquitous fact that not all signs are names; added to the 
fact that fictional, erroneous, and deliberately deceptive uses along with nonsensical 
ones are also possible. A few lines from Shakespeare serve to remind us of the 
tendency to regard some exceedingly complex relations as simple:

But man, proud man,

Drest in a little brief authority,

Most ignorant of what he’s most assured,

His glassy essence, like an angry ape,

Plays such fantastic tricks before high heaven

As make the angels weep [10].

Tampering with the Sign Architecture

Among the “tricks” done on human beings that have certainly made some humans 
weep are “split-brain” surgeries where the corpus callosum — the bundle of about 
190 million fibers [11] enabling the left hemisphere to communicate with the right 
and vice versa — was cut on the theory that doing so would prevent the spreading 
of an epileptic event between the hemispheres. The justification has been the 
claim that in a substantial majority of surviving patients the surgery would prevent 
full blown life-threatening seizures. Such surgeries and other sources of disease 
and injury to the brain demonstrate the foundational division of labor, and the 
ranking of major classes of signs, in the highest cortical functions of human 
beings as summed up in Figure 1 above. In fact, at Glenn Fulcher’s web site on 
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language testing, I have explained the pragmatic mapping process and there I 
illustrate it with video clips some of which were also presented at the Cornell 
symposium [12].

At the language testing site, thanks to Fulcher and the BBC in sharing materials 
from the educational series entitled “The Brain: A Secret History” [12], it is pos-
sible to see an extreme instance of what is known as alien hand syndrome in which 
the normal controlling role of the dominant hemisphere is disrupted by severing 
of the corpus callosum. The alien hand result offers straightforward evidence both 
of the normal ranking of sign systems in the human brain (as described above in 
Figures 1 and 2) and also of the fact that things can go very wrong when the nor-
mal ranking is disrupted by surgery, disease, or mutation.

After her surgery, Karen Burns discovered to everyone’s dismay that her left 
hand (under the control of her subordinate, right hemisphere) suddenly had a mind 
of its own, producing a strange conflict with her right hand (under the control of 
her dominant, left hemisphere). After the surgery, her left hand would disconnect 
the phone by depressing the “clicker” just after she answered a call with her right 
hand. Her left hand would put out the cigarette she had just lit with her right hand. 
Her left hand would unbutton her blouse while her right was trying to button it 
again. After her surgery, when Karen began to regain consciousness, the attending 
personnel in recovery, immediately called for the doctor. The neurosurgeon 
arrived minutes later and found Karen’s left hand beating her face black and blue. 
He asked her to give him a thumbs up. She did so with her right hand but her left 
hand was unresponsive to the linguistic request. Karen’s difficulty was focused 
specifically in the inability of the dominant hemisphere to take charge of the sub-
ordinate hemisphere through the corpus callosum. Karen would have been unable 
to slave her subordinate hemisphere to perform the mirror writing that the audi-
ence at Cornell was able to do easily as described earlier in this paper.

At the symposium, I also gave an example of aphasia owing to damage to the 
left hemisphere of trilingual Julia Sedera. The relevant video clip can also be 
found in my feature presentation on the Fulcher site [12]. Julia’s injury was owed 
to a stroke leaving her with a surprising inability to name an object, such as a 
“pineapple,” for instance, though she knew well what the object was (via her rela-
tively intact right hemisphere). Even when the neurologist modeled the first syl-
lable of the word “pineapple” Julia was still unable to say the word.

Looking to the subordinate hemisphere that specializes in handling whole 
scenes, entities, faces, and in generating the feelings that are ordinarily associated 
with a sequence of events — the famed psychiatrist and author, Oliver Sacks, 
describes his special agnosia. He has prosopagnosia — difficulty recognizing 
faces and places — even his own face or the house where he lives. In the video 
clip of Sacks [12], he describes how he is apt to mistake an image of himself in a 
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mirror or plate glass window for someone else. Or, when seeing a large bearded 
man on the opposite side of a window, the reverse has also occurred, where he 
finds himself preening what he takes for his own reflection only to discover that 
the bearded man on the other side of the glass is not preening his beard, but is 
looking rather strangely at Dr. Sacks.

In studies of split-brain patients that won him a Nobel Prize in 1981, neurolo-
gist Roger Sperry wrote: “The [dominant] speaking hemisphere in these patients 
could tell us directly in its own words that it knew nothing of the inner experience 
involved in test performances correctly carried out by the [subordinate] mute part-
ner hemisphere” [13]. Again, there is video footage from Sperry’s studies of such 
split-brain patients [12]. The relevant video clip reveals that split-brain patients 
can produce and comprehend language with the dominant hemisphere but are 
unable to do so with the subordinate hemisphere. Similarly, the subordinate hemi-
sphere can reconstruct a pattern with blocks while the dominant hemisphere 
makes a hash of the same task.

Not only does the subordinate hemisphere excel at handling holistic scenes, 
patterns, and images, but it is also evidently in charge of producing feelings about 
whole patterns and sequences of events. In the BBC footage, a man named Dave, 
who lost a significant portion of the frontal lobe of his right hemisphere when a 
tumor was removed, also lost the ability to generate feelings toward the persons 
and events of his own experience. His wife commented that after the surgery he 
was not the same. Beforehand he used to do “nice things” to make her feel more 
comfortable, but afterward, he was no longer able to have normal feelings. They 
were divorced but she still takes him to his neurological appointments. Dave him-
self describes how he can remember feelings but no longer generates them. At the 
end of his post-surgery narrative he says in a near monotone, “The longer I go 
basing what I should feel on memory, I’m kinda nervous that eventually the 
memory will fade and then trying to remember what the actual emotion felt like 
will be more mysterious. At least now I have the memory so I can at least go 
through life with that understanding. . . if I didn’t have that memory, I . . . I guess 
it would be a lonely . . . lonely existence” [12].

In another segment, Dr. Michael Mosely, who narrates the BBC series [14], 
talks through his own experience in confronting his fear of being closed in. He 
does so by going down into a very dark and small cave. Before starting out he is 
equipped with gloves to stop him from “ripping his fingernails off” if and when he 
gets stuck and panics. On seeing the entrance to the cave he sighs, “Gosh, well, 
that’s small, isn’t it. I was imagining something large,” and then he sighs loudly, 
“Haaaahhhh!” Later, in the video clip [12], he gets stuck in a passageway with one 
arm pinned beneath him in a prone position. He is barely able to move enough to 
breathe and the fear momentarily takes over.
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Undoubtedly, it is Mosely’s right hemisphere (and that of anyone who empa-
thizes with him) that generates the feeling associated with the whole sequence of 
events leading up to and including Mosely’s predicament in the cave. The feeling 
remains intense for him (and for me as a viewer) even after he is extricated by 
somehow wriggling out or being helped out of the tight spot by the BBC camera 
crew. The video does not show how he gets out, only him gasping head in hands 
afterward, still in the cave saying, “That was bloody awful.” Presumably, he would 
scarcely have put himself in such a situation if it were not for a linguistically 
guided decision — a dominant hemisphere commitment — to enter the cave 
despite his fear. Clearly the dominant hemisphere can over-rule the protesting 
subordinate hemisphere. Would he experience the same sort of fear if he had the 
sort of brain injury that Dave experienced to his subordinate hemisphere? Probably 
not. Could Mosely have the same fear if he were anesthetized and then placed in 
exactly the same posture in the narrow passageway? Again, probably not, as the 
 pragmatic information about the sequence of events would be unavailable to him. 
But the point is, in ordinary conscious experience, there is a division of labor 
involving a ranking of the highest sign systems of human cortical functions. Even 
something as overwhelming as near complete terror (a subordinate hemisphere 
function) can be dominated by the rational power of the linguistic, speaking 
hemisphere.

Next, it is useful to note that the ranking of distinct layers of sign systems just 
demonstrated for the highest cortical functions can also be found in biocontrol 
systems right down to the molecular levels of DNA, RNA, and proteins. Figure 3 

Fig. 3.  Crick’s dogma and the ranking of biological signs.
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shows how Francis Crick’s famous dogma [15,16] — though we now know it 
needs modification to take account of epigenetic interactions between RNAs and 
DNA (and no doubt other interactions beyond these) — reflected the same sort of 
ranking of genetic sign systems as we have seen in the highest human cortical 
functions (Figure 1) and in the linguistic process of pragmatic mapping as summed 
up in the naming relation (Figure 2). Although Crick’s dogma is still defended as 
standard doctrine in many current biology texts, the interactions between the 
named systems are more complex, more constrained, and more deeply layered 
than the dogma suggested. Nevertheless, the point here is merely that the valid 
ranking proposed in Crick’s dogma is consistent with that in the human neuro-
architecture and in pragmatic mapping in general.

Pragmatic Mapping

Weinberger (2002) defined  pragmatic information as the likelihood that a given 
message will change another person’s conduct [17]. While the measure proposed 
by Weinberger may be relevant and suggestive, I am aiming for a more general 
definition of pragmatic information on which all meaningful sign systems depend 
for their representational power as displayed in the process known as pragmatic 
mapping [2]. Such an approach suggests the question of how pragmatic informa-
tion enriches the capacity for representation in general — that is, in any represen-
tational system. I want to characterize the sort of pragmatic information that seems 
to be crucial not only to language acquisition, ordinary linguistic communication, 
and valid reasoning, but also to the biocontrol systems involved in genetics, 
metabolism, embryological development, immune defenses, and so on. A more 
recent paper (Gatherer, 2007) reported on the ongoing search for an algorithm to 
discover what he and others believe will turn out to be the discrete words and 
phrases, the meaningful/functional strings, in protein texts [18].

Gatherer points out that molecular biologists have commonly compared “ genomes 
. . . to libraries of genetic information, with each chromosome as a book, genes as 
chapters, and DNA bases as the letters in which the text is written” 
(p. 101). With this linguistic metaphor in mind, Gatherer and others have suggested 
that discovering meaningful sequences in biological texts is like cryptology —  with 
geneticists working as “biomolecular cryptologists” [19, 20] — like Jean-François 
Champollion seeking out the sounds, words, and meanings of Egyptian hieroglyphics 
[21]. In biology the units would be “nucleotides, codons, motifs, domains, exons, 
genes,  genomes, etc... up to cells and organisms” (John Sanford, personal communi-
cation). The purpose of genetic cryptology, according to Gatherer’s approach, is to 
devise an algorithmic discovery procedure to find the meaningful strings embedded, 

b1567_Sec1.1.3.indd   72b1567_Sec1.1.3.indd   72 5/8/2013   2:25:40 PM5/8/2013   2:25:40 PM

 B
io

lo
gi

ca
l I

nf
or

m
at

io
n 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
2.

4.
17

.1
40

 o
n 

08
/1

1/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



 Pragmatic Information 73

b1567  Biological Information — New Perspectives b1567_Sec1.1.3 8 May 2013 2:34 PM

presumably, in the protein languages of various organisms. To test several options 
and combinations of rules, Gatherer tried them out not only on the deciphered 
proteins — the “proteomes” of various organisms — but also on various linguistic 
texts of which the shortest was Alice in Wonderland. In that text, his system found 
85% of the 2,593 distinct words in the 26,587 word text.

With the cryptology metaphor in mind — as well as Shakespeare’s lines about 
“proud man” and our “glassy essence” — a different metaphor for the difficult 
problem of deciphering biological language systems can be suggested. Perhaps 
molecular biologists could learn from normal babies acquiring any one, two, or 
even three at a time [22] of the 6,909 languages of the world [23]. Babies can solve 
them all, and as is becoming increasingly evident, biologists also, evidently, have 
a lot of distinct layers of language systems to decipher. In addition to the DNA 
codons corresponding to the amino acids of proteins, there are, of course, the RNA 
intermediaries and there is the protein language itself. In addition there are the 
partially understood “12 Trifonov codes” [24] and the codes for nucleosome build-
ing sites, cohesin protein binding, RNA transcription, splicing, RNA binding/
folding, pyknons, isochores, and three dimensional nuclear architecture. According 
to remarks by Sanford on the paper by Montañez et al. (this volume [25]) there 
may also be codes involving triplex and quadruplex strands of DNA as well as 
electromagnetic coding, tandem repeat codes, and perhaps even vibrational codes 
as discussed by Dent (this volume [26]). Also relevant here is the paper by 
Dembski et al. (this volume [27]).

Building on the cryptology metaphor, I would like to propose that the manner 
in which babies solve natural language systems of the world may be relevant. If 
normal human babies can solve for the meanings of any unknown natural lan-
guage, perhaps intelligent adults can figure out how they do it so that linguists, 
geneticists, and “biomolecular cryptologists” can learn why some discovery pro-
cedures for deciphering unknown languages can work where others will not. A 
clue concerning what advances in child language studies are teaching us about 
how infants decipher an unknown language can be found in Gatherer’s results in 
trying to identify algorithmically all the meaningful words in Alice in Wonderland. 
Keeping in mind the deceptively simple SπO relation — one exemplified in every 
valid use of a name or referring term — the clue I have in mind is suggested in 
these questions: (1) What is the most important entity referred to in the Alice in 
Wonderland text? (2) What referring terms (meaningful words) in the text refer 
specifically to that entity? (3) Of the 2,953 different words in the 26,587 word text, 
what consistent referring term occurs most frequently? What term is critical to 
making the story hang together? What gives the fiction its sense of continuity? Or, 
to connect back to the cryptology problem of Champollion, what word was crucial 
to his solving of the hieroglyphics in the Rosetta stone? Similarly, bearing in mind 
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the known and suspected “codes” remaining to be deciphered in molecular biol-
ogy, when Watson and Crick were solving the “genetic code” — or, at least, the 
part which is perhaps best understood even today — what codon of DNA were 
they first able to solve?

The answers to all of the questions just posed involve at their foundation the 
simplest sort of SπO relation. The key to unlock the door to the amazing realms 
within each distinct language system is to find a referring term that connects regu-
larly and consistently to the same logical object — the same already known entity. 
At the symposium I asked participants, “What is the most important entity in this 
auditorium?” My answer was to point to them and say, “You, and you, and you.” 
The human participants known mainly by their names, were and remain, the most 
important entities at that symposium, hands down. For the normal human infant, 
as for the molecular biologist, the most important known entities are the named 
bodily objects — for the infant, the persons, organisms, places, things and so forth; 
and for the biologist, the differentiated cells, tissues, organs, and bodies — that 
populate the world of experience. As Augustine pointed out in about 401 AD, 
children discover the meaningful words, phrases, etc., of a language by attending 
to entities pointed out to them by adults [28]. They seem to assign priority to enti-
ties that talk and prefer talk directed at infants over adults [29].

For Alice in Wonderland, unsurprisingly the main character, and the most 
important entity, is Alice. Was the fictional Alice a creation based on the real per-
son named Alice Liddell, or, was she a fictional composite of young girls Charles 
Lutwidge Dodgson alias Lewis Carroll photographed, sketched, and so forth? That 
unsettling question aside, Gatherer’s exhaustive count of words in the text shows 
that the most frequent referring terms are “she” (occurring 541 times), “I” 
(410 times), and “Alice” (386). Taking into account that the pronominals “she” 
and “I” commonly also refer to Alice, it is clear that the most common SπO rela-
tion in the whole text involves Alice as referred to by the pronouns “she” or “I” or 
by the name “Alice.”

Similarly, the decipherment of the Egyptian hieroglyphics by Champollion 
hinged on the discovery of the name “Cleopatra” from which he was able to 
discover by further analysis that the pictographic symbols were functionally 
alphabetic — letters representing sounds rather than pictures representing things. 
In deciphering the “genetic code” a critical SπO relation, as noted above, was 
found in the mapping of the DNA uracil triplet onto phenylalanine. Likewise, the 
“first words” produced by almost any normal child, by about the age of 12 months, 
are referring terms again of the familiar shape, SπO. The discovery of the meaning 
of the S — which is at first an unknown conventional sign — hinges on the child’s 
noticing the π-mapping of the S onto a familiar logical object, O. For instance, the 
normal child is apt to discover very early on that the word “mama” maps to the 
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child’s own mother. Thus, the normal child’s “first words” often consist of 
“mama” or “dada” or the name of a person or pet, a salient experience — such as 
“hot” associated with getting burned or “no” with a slap on the hand — or even a 
complex sequence of events such as the marking of frequent leave-takings by 
someone valued by the child marked with “bye-bye” and waving of the hand.

The Vanishing Ratio of Meaningful to Random Strings

A fundamental fact easily overlooked is that valid referring expressions, all of 
which take the form SπO, provide the basis for what child language specialists 
refer to as the “vocabulary explosion” which necessarily occurs after the child’s 
first word is uttered and which usually begins before the second birthday [30]. 
After the vocabulary “explosion” of distinct one-word representations, at about the 
age of two years, the normal child smoothly transitions to a series of advances 
resulting in a corresponding series of additional “combinatory explosions.” Derek 
Gatherer [18] points to such an “explosion” in going from the “the 4-letter code in 
DNA” as contrasted with the “20-letter code in proteins” (p. 102).

Gatherer’s point is that the number of possible strings increases with the number 
of elements that can be combined. Both linguistic and biological combinatory 
explosions can be described roughly in terms of an iterative series of steps in which 
the number, N, of possible strings at each step having a given length, l, is equal to 
the size of the vocabulary, v — the number of elements to be combined — raised 
to the lth power, or N = vl. This equation, if taken as a snapshot of any step in the 
series, oversimplifies and underestimates the actual number of strings that are pos-
sible for several reasons: (1) no fixed upper limit on length can be set on higher 
strings, say, of words, phrases, sentences, and so on; (2) as soon as we reach the 
level of words, and higher levels, the vocabularies are also subject to indefinite 
expansion; (3) additionally, the equation underestimates the total number of pos-
sible strings because it does not count strings shorter than l nor strings longer 
than l — both of which would have to be taken into account in a complete theory. 
However, we can safely set these complexities aside because incorporating them 
into a definition of  pragmatic information would only strengthen the outcomes for 
natural languages and biological codes to be noted in what follows.

But, there is an additional linguistic complexity that drastically changes the 
dynamic of the problem faced by theoreticians trying to figure out how to generate 
meaningful linguistic or biological strings. The difficulty is that at the same time 
as the number of strings that are possible at any given level of a language (or any 
of the partially understood biological codes) are exploding to a growing multitude 
of increasingly greater multitudes, and as the length of allowable strings is 
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increasing from word to phrase to sentence to paragraph, chapter, book, series, and 
so on, the constraints restricting the range of valid constructions (or meaningful 
continuations) in a given string are converging toward a theoretical limit of unity. 
Practically speaking, it is the sort of unity exemplified when folks at the Cornell 
symposium, for example, understood and followed the directions in the opening 
exercises.

To illustrate combinatorial explosions we may apply the simplified equation, 
N = vl, to the sounds of English estimated at approximately 35 for General 
American English (24 distinct consonants and 11 vowels), and setting a limit of 
syllable length at that of the monosyllabic word “strengths” consisting of the 
8 segments transcribed in the International Phonetic Alphabet as [st εŋkθs] gives 
a possible number of 358 or approximately 2.25 trillion combinations (2.25 × 1012 
or 2,251,875,390,625 to be exact). Of those strings, only a few thousand (estimated 
at about 3,000 to 4,000) are syllables actually allowed by English phonology. As a 
result, even if we suppose 10,000 of the possible combinations are valid syllables 
in English, this would mean that fewer than 1 string per 107of the possible strings 
would be a valid syllable in English. Jumping over the levels of words and phrases 
and advancing to sentences, given that the Oxford English Dictionary lists approxi-
mately 600,000 words, even if we restrict the number of words in a sentence to 12, 
the number of strings of that length would be 600,00012 or 2.177 × 1069. However, 
only a relatively small proportion of that number would form meaningful sen-
tences of 12 words in length. Because of grammatical constraints only a tiny frac-
tion of the strings in such a vast list would be meaningful, and if we restricted the 
list to just TNRs, the ratio would become vanishingly small.

George A. Miller estimated on the basis of empirical studies of English texts 
that about 10 words on the average can form an appropriate continuation at any 
given point in any meaningful English text [31]. Using his estimate, the number of 
meaningful 12 word sentences, would be about on the order of 1012 enabling us to 
estimate that the ratio of meaningful 12 word sentences in English to all the strings 
that could be formed from all the words in the OED: it comes out to be about 
4.59x10−58. Finding the few meaningful strings by chance in a heap of such non-
sense would be a little like trying to find some very tiny needles in a really huge 
haystack (a serious problem as pointed out by Dembski et al. this volume [27]). 
Consider next that if we move the combinatorial explosions up several notches to 
the length of a short novel, say, 30,000 words (rounding up from the length of 
Alice in Wonderland), the number of possible strings explodes to 600,00030,000 as 
contrasted with — again, using Miller’s method of estimating the number of 
meaningful texts of that length — about 1030,000. At the level of a short novel, the 
ratio of meaningful strings to possible ones has diminished to a complete vanish-
ing point for all practical purposes. Not only is there no random process that could 
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generate one of the desired strings, neither is there any possible way to list them, 
much less to search through the list. The difficulty is that if each possible text 
could be written on something as small as an electron, the writer would run out of 
places to write before a measurable fraction of the task could be completed.

The Logical Sequence for Discovering Meaning

So, the question remains, how do all normal human infants routinely solve prob-
lems of such great magnitude? Normal child language development follows a 
strict sequence of logical steps [32]. From birth forward babies are solving for the 
O of SπO relations. Perhaps the most primitive solution of that type is the new-
born’s mapping of mom’s familiar voice to her moving face as she talks. From 
prior experience in the womb mom’s voice is a familiar vocal sign, S, and the O 
that moves when mom talks to the baby is marked by just that particular voice 
which is π-mapped onto the moving face, O. In fact, the auditory movements in 
the normal baby’s ear are quite perfectly coordinated with the modulation of 
mom’s voice just as movements right down to the molecular level in the baby’s 
eyes are coordinated with movements in mom’s face. These near perfect correla-
tions converge in the understanding that the voice is coming from mom [33].

The normal baby, while paying special attention to entities that talk, also works 
diligently in finding the boundaries of many objects of experience. By about three 
months, the baby will be seen to extend the index finger as if having already 
understood that such a gesture is used to single out things for attention [34]. After 
solving a substantial repertoire of Os, the baby begins to solve π-mappings that 
involve significant bodily movements that accompany speech. By about 4.5 
months the baby typically demonstrates interest in an often repeated S which is 
distinct from others — such as the baby’s own name, for instance — by looking 
toward the adult who says it [30]. A month or two later, the baby typically begins 
to produce repetitive babbling, /bababa/ or /mamama/ and so on, followed by dif-
ferentiated syllables, /aǰadaǰaba/ and the like [35]. By about month 6 or 7, the baby 
will typically display comprehension of distinct SπO mappings by looking toward 
or handing over an object asked for by an adult. However, it will usually take 5 or 
6 more months for the child to achieve sufficient motor control of the articulators 
to be able to produce his or her own “first word.”

If the child is learning English, for instance, adults who already know the lan-
guage will be able to understand that “first word” according to the conventions of 
the language in use. For instance, if the child’s first word is the name of the house-
hold pet (as it was for my son Stephen D. Oller), say a dog that answers to the 
name of “Chester,” consider the constraints that must be met in order for adults to 
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share a common understanding with the child. If the phonological target is 
“Chester” — phonemically /čεst / — the utterance of it must be close enough to 
be recognized as that word and no other. The standard of comprehension is a con-
vergence to the limit of unity — approximating the extreme limit of “absolute 
certainty” suggested by Weinberger [17]. That is, all the parties concerned think 
they understand and know what the child is talking about. They are so sure of this 
that they would consider it odd to question their belief. But the convergence and 
the agreement achieved is remarkable.

Considering how large the possible set of strings of that length must be — 
estimated at 355 — the target in question occupies a tiny position in a large field. 
It is a particular string among 52,521,875 possible strings of the 35 phonemes of 
English. Assisting the adult interpreter(s) in correctly understanding the S and its 
O is, in many instances, the bodily dog that answers to the name “Chester,” the 
logical object itself. That is, the syntactic tree (in the shape of Figure 2 above) that 
π-maps the name, S, to the entity, O, assists interlocutors to achieve common 
understanding. They look where the child is looking, pointing, and so on. 
Nevertheless, considering the number of potential objects, O, that might be 
referred to on any given occasion, or the number of babbled strings that might be 
uttered naming nothing in particular, the discovery of an intended referent, a dead 
center hit, is much more difficult to explain than a miss.

But the correct result will subsequently be confirmed again and again as the 
same unity is attained repeatedly not only with the word “Chester” but as the 
vocabulary explosion kicks in, it will be confirmed thousands of times over with 
a growing repertoire of more than 50 meaningful one-word utterances. After that 
a series of much greater combinatorial explosions will occur as the child — now 
about 2 years old — progresses through the two-word stage and beyond. The key 
to the combinatorial progress as one of my former PhD students, Ibrahim 
Al-Fallay, referred to it obliquely, is the child’ ability to “climb the syntactic tree.” 
He explained why another student dropped out, “Because,” Ibrahim said in his 
Arabic accent, “He couldn’t climb the syntactic tree.” So, how is it that normal 
2 year olds are able to do it? The answer reveals a severe (absolute) pragmatic 
constraint on the syntax of abstract predicates. There must be a syntactic tree to 
climb. Valid signs require objects.

Plainly a name, number, or referring term, that might apply to everything, any-
thing, or nothing at all, has no power to inform us of anything other than itself. It 
may be a babbled sequence of sounds or syllables, or a random cipher pulled out 
of the air — an S without any determinate mapping to any O. Even less informa-
tive would be something without any consistently noticeable surface form at all. It 
cannot qualify as an S, or any particular form of nonsense, because it has no for-
mal resemblance to any S. If we cannot recognize the sign itself as distinct from 
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other signs and as a particular form on different occasions, how will we be able to 
associate it with any language, much less with any content? Although some phi-
losophers have claimed that predicates grounded in referring terms cannot possi-
bly account for abstractions such as love, justice, prime numbers, matrix algebra, 
etc., all such arguments fail when we see how infants easily climb the syntactic 
tree to solve abstractions. Invariably they start with referential entities that are 
well-grounded in valid SπO relations.

Consider the fact that discovering the meaning of a verb such as “bark” in the 
sentence, “Chester is barking,” is materially assisted by the barking of the dog. 
The action contrasts with the state of affairs when the dog is not barking, or is 
jumping, running, chasing his tail, or the cat, crossing the road, dreaming about 
chasing the cat, etc. In his “Logic of relatives” — actually the “logic of relations” 
generalizing the Boolean algebra from binary to all possible relations — C. S. 
Peirce claimed as one of his first results that there cannot be any predicates so 
abstract that they cannot be grounded in relations between material entities in the 
world of experience [7]. Peirce’s proofs in that treatise and many others have stood 
scrutiny for more than a century. The gist of the argument is suggested by noting 
how difficult it would be to discover the meaning of a verb such as “dance” with-
out a dancer, or a relation such as “greater than” or “equal to” if it were impossible 
to find any instantiations to illustrate their meanings. It follows that there are no 
pragmatically unconstrained predicates no matter how abstract they might be. 
With pragmatic constraints come syntactic ones and semantic ones: “Pilot the bit 
dog the,” is syntactically disallowed, while “The pilot bit the dog” is okay syntacti-
cally (in its spatio-temporal arrangement) and semantically also in terms of its 
abstract meaning. However, because our pragmatic experience makes it unlikely 
that a pilot would bite a dog, we might infer that an error has been made, and that 
“The dog bit the pilot” is what was intended. Children will often correct an odd 
form, e.g., “Can the blindfolded dolly be seen by you?” and will answer a more 
sensible one, “No,” the child is apt to say, “the dolly can’t see me.” The researcher 
asking the question may suppose the child has answered incorrectly, not under-
standing the passive voice, when, in fact, the child adjusted the question to one that 
makes sense. The child thinks something like: It’s the dolly that is blindfolded, not 
me. She must mean, “Can the dolly see you?” And so forth [36].

So, again, how do normal children progress to such knowledge and what are the 
implications for molecular cryptologists in trying to generate viable strings in 
biological systems? To show how and sum up the sequence, followed by normal 
children, we require some additional markings on the basic SπO relation. Let SπO 
represent the generalized form of a hypothetical, fiction, or fantasy. At the sympo-
sium I suggested that participants imagine an elephant standing next to me on the 
stage. To do so, they would have to conjure the elephant, because there was none 
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on the stage — hence, the underlined O to suggest π-mapping the conjured ele-
phant into the blank space. Babies typically solve valid SπO mappings by about 
12 months of age but require another year to distinguish a true report from a fic-
tion, by about age 2. Just to understand the example fiction, for instance, the 
person doing the imagining of an elephant not present must know the meaning of 
the word “elephant.” Thus, an SπO mapping showing what the S means must 
come first. Errors are more complex. Suppose someone says, “Good morning, 
Mimi,” when Ruthie is present, not Mimi. To correct the error, my grandson not 
yet 3 years old, had to take the SπO form and replace it with an SπO. The fiction-
alized and mistaken O which is supposed to be Mimi (his grandmother), but which 
is in fact Ruthie (his adult aunt), must be replaced with Ruthie, and the fictional-
ized and erroneous name S must be changed from “Mimi” to “Ruthie.” Children 
typically can correct an error, in this way, by about age 3. Distinguishing a deliber-
ate lie, SπO, from an unintentional error, SπO, takes 2 or 3 more years of develop-
ment [37]. Normal children are able to do so by about age 6. In a lie all three of 
the underlying elements of the SπO relation are erroneous, fictionalized, and 
intended to cause the lie to be mistaken for a true representation. For instance, if 
a certain former U.S. President (notably Bill Clinton) said he didn’t “have sex with 
that woman,” but it turns out that he was lying, all the elements must be changed 
to truly represent the relevant facts.

Next, consider how much more degenerate the italicized string i io mN”o 
“Dgmon mrgi is than a fiction, error, or even a lie. It has the same letters, punctua-
tion marks and spaces, as one of the degenerate representations in the preceding 
paragraph. Is it easy to see which one? It is a nonsensical variant, a jumble, that 
started as an SπO (to narrow the field if the reader aims to solve the puzzle), but 
it is less coherent than any ordinary fiction, error, or lie. The fact is that in lan-
guages — and it seems in biological systems as well — fictions, errors, and out-
right lies are more coherent than scrambled versions of any of even these 
degenerate forms tend to be. In biology, I suppose a suppressed gene would be an 
example of a fictional representation; a genetic flaw resulting in, say, sickle cell 
anemia, or a viable cell mistaken for an invading foreign disease agent by the 
immune system would be examples of errors; and polyoma viruses, bacteria, or 
cancer cells impersonating the body’s own RNA, DNA, or self cells, respectively, 
would be examples of biological lies. The fragments of a foreign peptide, or of a 
cell undergoing apoptosis, would probably qualify as some grade of biological 
nonsense, say, in the protein language of a given organism.

Typically, evolutionary biologists have sought to imagine ways to generate 
strings of meaningful signs from the bottom up. Theoreticians have often noted, 
as Gatherer does, that from letters to words, to phrases, to sentences, and so on 
(relying on the linguistic metaphor) the number of possible strings repeatedly 
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explodes with a growing vocabulary of signs and an increasing string length at 
each higher rank. However, if we think from the top downward, we find that the 
constraints on coherence are greatest (all else being equal) at the highest rank. 
For instance, if we take historical biographies as an approximation to true narra-
tives rich in  pragmatic information, setting them as a kind of “gold” standard 
(flawed though it may be), it is possible to degenerate one or many such texts by 
degrees. Holding constant, say, the vocabulary of elements used to create the 
coherent string and the length of the string, the whole of it or some part can be 
chopped and scrambled stepwise at distinct ranks. Opposite the level of prag-
matic information exemplified in the whole of a true biography, or in several 
volumes aiming to tell the history of the same person, a zero order of coherence 
can be found empirically at the place where the entire text is obliterated by reduc-
ing all its elements to blank spaces or mere random pixels. Between those limits 
it should be possible, even easy, with current technologies, to systematically 
sample and measure empirically the changes in coherence at distinct ranks. 
Empirical studies of discourse processing in natural languages show that scram-
bling at any rank or length of string reduces coherence and conversely that access 
to longer segments of a coherent text enhances comprehensibility, recall, and 
ability to replace missing elements (letters, words, phrases, and so on). All else 
being held equal, longer intact strings are increasingly constrained and therefore 
easier to process (comprehend, recall, and so forth) than the same elements in a 
cut and scrambled order [38].

Conclusions

Because of the series of combinatorial explosions that occur in progressing up the 
ranks in any layered hierarchy of representational systems, to find or generate any 
string that will qualify as a valid representation of any actual sequence of events 
in ordinary experience, or as a viable representation of any organism or any actual 
part of one, diminishes rapidly toward a vanishing point. Meanwhile, as the num-
ber of strings that are possible are exploding, the ratio of meaningful to meaning-
less strings at every level diminishes with each increase in the rank of signs and/
or the length of allowable strings. As a consequence, the problem of finding 
(or generating) any valid (viable) biological strings by random processes is like the 
needle in a haystack problem magnified many times over. As Dembski, Ewert, and 
Marks [27] showed (this volume), the search for a needle presupposes a searcher. 
But the problem of randomly generating the searcher is vastly more difficult than 
any of the seemingly impossible searches we might hope for that person? robot? 
algorithm? to conduct.
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But the difficulty does not end there. Linguistic analysis of natural language 
systems shows another profound problem, as was illustrated by Montañez, Marks, 
Fernandez and Sanford (this volume [25]). As valid (meaningful and viable) 
strings increase, the difficulty of generating them by stochastic processes rapidly 
increases. Also, as I have argued here, with each combinatorial explosion as we 
progress upward through sign ranks to their highest level, the ratio of valid strings 
to all that are possible diminishes toward a vanishing point with a numerator of 
unity and a divisor representing an uncountable multitude of multitudes.

In 1948, Claude Shannon proposed to measure information as the improbability 
of any particular message “selected from a set of possible [equally likely] mes-
sages” [39]. He noted that “the messages” frequently “refer to or are correlated 
according to some system with certain physical or conceptual entities” which he 
referred to as “semantic [sic] aspects of communication” (p. 379) and which he set 
aside. In doing so, he conflated the abstract and general sort of meaning properly 
termed “semantic” (associated with generalized conventional Ss) and also the 
particular and concrete “pragmatic” content (associated with particular concrete 
Os — the actual persons, places, events, and the “syntactic” relations between 
them in space and time (the π-mappings). I suppose that the crucial meaning that 
Shannon set aside is precisely the kind connecting intelligible signs to the facts of 
ordinary experience —  pragmatic information. I agree with what I understood 
Baumgardner to say in one of the early discussion sessions at the Cornell sympo-
sium: When talking about information we need to work with the sort of meaning 
that is distinctly “linguistic in nature” (also see Baumgardner 2009 [40]). I believe 
that we need to consider the dynamic character of pragmatic information as I have 
described it here. It seems to be as essential in biology as it is in linguistics.

One of the reasons, I think, that we tend to over-estimate our understanding of 
“our glassy essence” — and to underestimate the richness of the simplest signs — is 
that we tend to look right through the π-mapping of any valid S to its O. As the sign 
systems of a child come to maturity, the generality of the S reaches out very easily 
to signify all possible instances of the O greatly exceeding the relatively few actual 
instances that have been or will ever be encountered in a life-time of experience. The 
agreement attained between the valid π-mapping of any S to its O in a TNR thus 
achieves what Peirce referred to as the “unity of coherence” [41] — like a glove 
perfectly fitting a hand, or the bite when the upper and lower teeth fit together. The 
completed, well-formed-system, is a unified triad of the SπO kind. It enables 
the closest we can reasonably get, I suppose, to anything like “complete certainty” 
in the material world. Thus every TNR, though triadic in its internal elements, as a 
signifying unity singles out a stream of particular facts that are both distinct from all 
the rest and yet, by virtue of being a part of the whole material world, are connected 
with the rest of it and with all the other TNRs. As a consequence, they enable, as 
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shown in the earlier analysis of child language development, valid generalizations 
beyond what is experienced.

I agree with Edward T. Weinberger’s comment [17] that “a theory [Shannon’s] 
that totally ignored semantics was, in some sense, incomplete” (p. 105). 
Weinberger went on to urge a definition of “ pragmatic information” in terms of 
“usefulness in making an informed decision” (p. 106). I would only want to 
generalize his approach to account for all intelligent judgments of any kind 
about the facts of experience. To me Weinberger’s most intriguing claim is that 
“the maximal amount of pragmatic information accrues to messages that engen-
der complete certainty” (p. 109). In my linguistic approach to pragmatic infor-
mation, a maximally informative representation would be the sort found in a 
name mapped onto a particular identity appearing throughout a faithfully 
reported true narrative. With a view toward measuring pragmatic information, 
we can say that it varies from a limit of meaninglessness at one extreme, near 0, 
to a limit of what seems to be the gold standard where the unity of coherence, 
near 1, is commonly achieved. Simple SπO mappings, at the foundation of valid 
representations such as we find in ordinary TNRs and in viable biological codes, 
exemplify the sorts that can be used to calibrate the high end of a scale of prag-
matic information, and as I suggested, we can step down from there toward the 
lower end by degrees.

Addendum

Due to a delay in publication of these proceedings, I wish to add the following 
publications which have appeared in the interim. Pertinent to the strict sequence 
of steps followed by infant language learning per reference [32], see Oller, J.W., 
Oller, S.D., Oller, S.N.: Milestones: Normal speech and language development 
across the life span. 2nd edition. Plural Publishing, Inc., San Diego (2014); and 
in addition to references [25, 26] suggesting various biocontrol systems yet to be 
discovered, the following entries should be added: Davidson, R.M., Seneff, S.: The 
initial common pathway of inflammation, disease, and sudden death. Entropy 
14(8), 1399–1442 (2012); Dietert, R., Dietert, J.: The Completed self: an immu-
nological view of the human-microbiome superorganism and risk of chronic dis-
eases. Entropy 14(11), 2036–2065 (2012); Seneff, S., Davidson, R.M., Liu, J.J.: Is 
cholesterol sulfate deficiency a common factor in preeclampsia, autism, and perni-
cious anemia? Entropy 2012, 14(11), 2265–2290; and Gryder, B.E., Nelson, C.W., 
Shepard, S.S.: Biosemiotic entropy of the genome: Mutations and epigenetic 
imbalances resulting in cancer. Entropy 15, (2013).
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Abstract

There are a number of standard models for the evolutionary process of mutation and selection as a 
mathematical dynamical system on a fitness space. We apply basic topology and dynamical systems 
results to prove that every such evolutionary dynamical system with a finite spatial domain is asymp-
totic to a recurrent orbit; to an observer the system will appear to repeat a known state infinitely 
often. In a mathematical evolutionary dynamical system driven by increasing fitness, the system will 
reach a point after which there is not observable increase in fitness.

Key words: population dynamics, evolutionary dynamics, evolutionary network, evolutionary equi-
librium, fitness space, fitness network

1. Introduction

1.1 Goals and Perspecti ve.

The goal of this paper is to apply standard mathematical theorems from topology 
and dynamical systems to mathematical models of  evolution. Mathematical topol-
ogy is the logical study of the shape of objects without using specific measure-
ments such as angles and curvature — for example an oval, a square and a circle 
are all topological the same — and mathematical dynamical systems involves the 
application of topology to processes that change over time, often without precise 
formulation of the process.

Like most cross-disciplinary research, this paper requires the difficult task of 
attempting to speak across the language and style of two disparate technical fields. 
To those trained in one field or another, exposition in their own field will appear 
trivial and work presented from the other takes time to digest. The author is an 
applied mathematician and the tools of this paper are mathematical, and so despite 
the author’s best efforts the style will inevitably tend toward that field, especially 
when dealing with theorems and proofs.
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Historically, when the apparent chasm between fields is breeched results can be 
profound. Mathematics offers tools — rigorous ways to understand things that can 
be rigorously described — and science offers objects and processes to be under-
stood. Over the past century, applications of topology have been central to pro-
gress in several scientific fields, and to understand the work in this paper it will be 
helpful to review how topology has been applied in the past.

We should make an important distinction regarding terminology. A dynamical 
system most generally is anything that changes over time governed by a set of 
rules. A mathematical dynamical system is one that is defined in mathematical 
logic — it consists of a state space X and a function which, for a given initial state, 
will determine the state of the system at future times. (This definition will be made 
in more detail and more broadly involving the possibility of randomness later in 
this paper.) A biological dynamical system consists of organisms that reproduce 
and grow. We will use the terms mathematical dynamical systems and biological 
dynamical system to distinguish between the two when not clear from the context. 
We will also use the term model to refer to a mathematical dynamical system that 
is designed to model a biological one.

Accordingly, we can prove theorems about mathematical dynamical systems 
and these theorems would only be applicable to biological dynamical systems to 
the extent to which the mathematics accurately models the biology. In physics, 
where dynamical systems originated, the distinction is not usually made because 
the process involved are the result of physical laws such as Newtonian or 
Relativistic mechanics; conclusions proven about mathematical systems are taken 
as automatically pertinent to physical ones. Biological organisms are not subject 
to the same types of laws; individuals are assumed to have probabilities regarding 
specific behavior and the ability to model the behavior of system as a whole results 
from averaging the probabilities across a large number of organisms, for example 
as with the quasispecies equation (See [1]). This is analogous to statistical 
mechanics and  thermodynamics, where the predictability of the collective whole 
is assumed by averaging out over many individual components.

It is broadly accepted that the process of  evolution can be effectively modeled 
using mathematics. The study of mathematical dynamical systems modeling evo-
lution is called evolutionary dynamics and the interested reader is referred to 
Novak’s excellent introduction Evolutionary Dynamics, Exploring the Equations 
of Life [1]. Mathematical dynamical systems modeling evolution are the topic of 
study in this paper and using the proper tools we prove restrictive behavior about 
very broad classes of such models. Determining which models are accurate or 
appropriate for evolution is beyond the scope of this paper.

Mathematical models are developed by formulating some assumed governing 
scientific principles into mathematics and the resulting behavior of the model is 
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taken to be the logical consequence of the assumed principles. Models can be used 
in a predictive manner (ie what will happen to a certain species if the harvesting 
rate is increased) or in an explanatory manner (ie why did the codfish population 
decrease) and we are concerned with the latter in this paper.

Using mathematical models to explore underlying causes requires a proper 
understanding of what the models can and cannot tell. In models where the gov-
erning principles are derived from laws (ie physics and chemistry), the behavior 
of the model is taken as the behavior of the physical system in the ideal case. In 
models where the governing principles are not derived directly from scientific 
laws (ie economics and ecology), the behavior of the system is only understood to 
match the behavior of the physical system if the assumed governing principles 
where the most important factors in the process. Thus, it is impossible to prove 
that certain principles result (or resulted) in observed behavior, but it is possible to 
prove that certain behavior is impossible as a consequence of certain governing 
principles. In short, mathematical models cannot demonstrate what is true about a 
physical system, but they can demonstrate what is false by way of a hypothesis 
test; if the behavior in a mathematical model does not match observed phenomena, 
then original assumed principles cannot be the cause of the observation.

The main results of this paper are for a mathematical dynamical system mod-
eling evolution: 1) If the state space is compact (ie the physical system exists in a 
finite area) and the genotype has a bounded finite length then the change in phe-
notype with either stop or appear to repeat some state and the amount of increase 
in fitness is bounded, stated formally in Theorem 3; and 2) If the system is chaotic 
(and the fitness is a continuous function that is nondecreasing on orbits) then there 
is no increase in fitness, stated formally in Theorem 4. The first might not be sur-
prising, although by way of this result we suggest a focus on the bounds of evolu-
tion in mathematical models, for example using  information theory to quantify the 
bounds. The second result seems contrary to the prevailing understanding of evo-
lutionary dynamics.

1.2 History and Applicati on of Topology and Dynamical Systems

To bridge the gap between mathematical definitions and theorems of topology and 
their role of in science, we discuss the history of  applied topology over the past 
century. Topology began as a theory in the late 1800s out of attempts to answer 
two seemingly separate questions — one abstract mathematical question and one 
applied scientific.

In the late 1800s, German mathematician Gregor Cantor was attempting to 
define dimension as part of his quest to develop a rigorous theory of points and 
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sets, things that had been taken for granted since the investigations of Greek math-
ematicians (See [2]). A by-product of this re-development of the foundations of 
mathematics was the discovery that some sets have a dimension greater than a line 
but less than a plane — that is some sets have a fractional dimension — the most 
famous of these sets being the Cantor Set. These sets are what we now call  fractals 
(a term coined by Benoît Mandelbrot in 1975). The tools required to study them 
is not the lines, angles and curves of geometry and calculus, but a more general 
class of definitions and theorems that make up topology.

Also in the late 1800s, French mathematician Henri Poincaré was studying plan-
etary motion using calculus and differential equations. In his attempt to solve the 
equations of motion for multiple heavenly bodies, Poincaré wrote his Les méthods 
nouvelles de la mécanique Célest; New Methods in Celestial Mechanics (See [3]). 
The first printed version of this manuscript contained an error, and in correcting the 
error Poincaré discovered that equations for planetary motion have solutions that 
are too complex to be explicitly written in the usual formulas from calculus. 
Having shown that the solutions are too complex to be solved via calculus, Poincaré 
developed a new set of tools which we now call topology. Having discovered that 
the solution to some problems lies not in the formulas but in the general shape and 
behavior, Poincaré developed a new approach to understanding motion without 
reference to exact formula, which we now call dynamical systems. The type of 
behavior that Poincaré encountered in his solutions is what we now call chaos, a 
term coined by Jim York in 1975 [4]. The tools of topology have been applied to 
dynamical systems continually since the time of Poincaré. (See Strogatz [5] for an 
excellent applied introduction.)

The utility of  applied topology comes from the ability to prove mathematical 
properties of very general classes of objects and phenomena. Since Poincaré’s 
pioneering work, this has been exploited in a number of disparate fields.

In 1950-51, John Nash used topology (in particular the Brower Fixed Point 
Theorem) to demonstrate the existence of Nash Equilibrium in a very broad class 
of non-cooperative games. (See [6] and [7, Chapter 4.7]). This result revolution-
ized game theory with applications in economics, politics and biology. Topology 
enables the proof of existence of Nash Equilibria in mathematical games even 
when the exact formulation of the player’s strategies are not known, and has appli-
cation to human conflicts where no precisely defined game or strategy exists. 
Because of the applicability of topology to a very broad class of games, this result 
is assumed to apply even to real games where the strategies are not mathematical 
but are derived from the psychology of the players.

In condensed matter physics, states of matter other than solids liquids and gases 
can occur as the result of collective behavior of interactions between molecules. 
Symmetries of forces result in behavior more structured then that of a liquid but 
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less rigid than a crystal or solid. A familiar example is the liquid crystals in a 
computer display. Pressing on the display creates outward swirls of rotation result-
ing from the local pressure. The patterns are studied with topology; the twists and 
singularities, or defects, exist to maintain a consistent global topology even when 
the exact local positions are not known. This has proven important for understand-
ing states and collective behavior of matter such as superconductors. (See [7-10]).

One of the grand questions in cosmology has been the shape of the universe. 
Since Aristotle conjectured that the universe is a great sphere, cosmologists have 
been attempting to infer the structure from observations. Inferring this topological 
and geometric structure has been one of the main purposes of the NASA WMAP 
(Wilkenson Microwave Anisotropy Probe) — patterns in the anisotropic cosmic 
microwave background radiation could be used to determine the topology of the 
universe. The role of topology is beyond the scope of this paper, but the interested 
reader is referred to Weeks [11] for an excellent exposition or to Basener [7].

The goal of this paper is to apply some basic theory from the mathematical field 
of dynamical systems to mathematical models of  evolution. The reason we employ 
the mathematical theory from topology is twofold. First, as with the examples 
cited in this section, we are then able to prove theorems for broad classes of mod-
els; the machinery of topology and dynamical systems allows us to prove theorems 
about mathematical models of evolution without an exact formulation of the mod-
els. Second, in addressing chaotic dynamical systems we are required to use topol-
ogy (or some equivalent machinery, for example geometry if we assume a suitable 
state space) as even the definition of chaos requires some level of topology.

The mathematics is basic topology and the theorems we prove are quite simple; 
they could be basic homework exercises in an upper level undergraduate course in 
dynamical systems. However, the insights resulting from the application do not 
seem to be generally known or understood in the study of evolutionary dynamics, 
either in theory or application. The remainder of this paper consists of a series of 
expository examples of evolutionary dynamics with application of dynamical sys-
tems theory, building up to the main results in Theorems 3 and 4.

1.3 General Questi ons in Evoluti onary Models

Every living organism has a genotype, its genetic sequence, and phenotype, the 
phenomenological manifestation of the genotype. The standard model of evolution 
is that the genotype determines the phenotype, and combined with other factors 
this determines the fitness level of the organism in its environment, and this fitness 
level determines the probability of survival of the organism in competition with 
other organisms. Reproduction and random mutations create organisms with new 
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genotypes, and the fitness of the new genotypes determines their subsequent sur-
vival rates. Consequently, the genotypes of organisms dynamically migrate to 
those with generally higher fitness levels.

A sort of  evolution can be observed experimentally [12] using a series of test 
tubes each of which contains the four nucleotides ATP, GTP, UTP, and CTP as 
well as the enzyme Qβ replicase. An RNA template is added to the first test tube, 
left for 30 minutes, then a fraction of the solution from the first is added to the 
second, and the process is repeated. The Qβ replicase creates almost prefect copies 
of the RNA molecules in each test tube, and after a series of transfers the RNA 
will consist of a modified variant that is replicated more quickly than the original. 
While this biological process is not actual evolution of living organisms, the 
‘genotype’ in this experiment corresponds to the RNA sequence and the ‘pheno-
type’ is the resulting replicating performance. The resulting rate of replication by 
Qβ replicase determines the ‘fitness’ of the RNA molecules. The type of RNA 
sequence in the final equilibrium state is determined by the environment of the 
solution.

Observe that the dynamic behavior of the Qβ RNA system is very simple; the 
RNA ‘genotype’ goes to an equilibrium which is determined by the parameters of 
the system. This is the typical behavior of evolutionary dynamical systems based 
on evolutionary genetics. This raises the question of whether the genetic processes 
are sufficient to account for macroevolution; quoting John Maynard Smith 
[12, p.273]: “This book has been concerned with processes that can be studied in 
contemporary populations over short periods of time. Our picture of  evolution on 
a larger scale — macroevolution — comes from comparative anatomy and embry-
ology, from taxonomy and geographical distribution. The question naturally arises 
whether the processes of population genetics are sufficient to account for macro-
evolution. Very different views can be held on this...”

The goal of this paper is to apply basic structure theorems from topological 
dynamics to answer, at least in part, Maynard’s question. We investigate conditions 
on evolutionary models that guarantee behavior observed in the Qβ RNA  system — 
evolution progressing for period of time and then ceasing. We show in a very 
general class of evolutionary models, which includes the standard continuous (dif-
ferential equations), discrete (iterations of maps), deterministic, stochastic, and 
spatial evolutionary genetics — based models, this is the only possible behavior.

This is really not surprising. In evolutionary progression that can be studied in 
contemporary populations over short periods of time, we observe a process that 
does a finite amount of increase in fitness and then ceases; we do not directly 
observe evolutionary progress of a species through continually higher, more com-
plex, more fit, genotypes-phenotypes. It is also the behavior observed in standard 
dynamic models for evolution.
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Perhaps the only potentially surprising result is that no evolution takes place 
within chaotic dynamics, Theorem 4. Chaotic behavior is sometimes offered as an 
explanation of how complex systems might come from simple governing laws. For 
example, Novak [1, p.6] writes “Chapter 9 gives an account of evolutionary 
dynamics on spatial grids. ... We will observe evolutionary kaleidoscopes, dynamic 
fractals, and spatial chaos. There is all the complexity one could wish for — mak-
ing it unnecessary for God to play dice.” The suggestion seems to be that complex 
features of nature, implicitly complex organisms resulting from evolution, can 
result from chaotic dynamics. Theorem 4 shows that, to the contrary, no sustained 
increase in complexity or fitness is possible within a chaotic dynamical system. 
Specifically, to within any small amount of observational error, a chaotic system 
repeats each given state infinitely often. Subsequently, an  evolution trajectory that 
is asymptotic to a chaotic set receives no more increase in fitness than one that is 
asymptotic to an equilibrium.

Our conclusion stresses again the question of whether the population genetic 
process of mutation — selection is by itself sufficient to account for macroevolu-
tion. As before, this seems not so surprising, as even speciation, the divergence of 
a single species into different species, seems to require external environmental 
factors. Again, quoting Smith [12, p.275], “It is widely agreed that the differences 
between species usually originate during geographical isolation.” The isolation 
can be physical geographic isolation or any factor that inhibits reproduction 
between two groups of organisms. In terms of evolutionary genetics dynamics 
models, creating of a new species (let alone new anatomy) seems to require an 
external dialing of the fitness parameters by a changing external environment. We 
discuss additional conclusions in Section 4.

2. Evolutionary Models and Dynamical Systems

The primary laws governing the interactions between genotype, phenotype, fitness, 
and the resulting variation over time can be described by mathematical dynamical 
systems [1]. A mathematical dynamical system is any system that changes over 
time with governing rules for change that depend on previous states of the system, 
possibly including external factors that may be deterministic or stochastic.

The two primary classes of mathematical models for evolutionary dynamics are 
discrete systems (iterated maps) and continuous systems (differential equations). 
In either case we have a state space, X, which is the space of all possible states of 
the system. In evolutionary dynamics, the state space usually incorporates the 
number of organisms of each genotype. That is, if we are considering a system 
with n different possible genotypes then X is n-dimensional Euclidean space, 
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points (or states) 0 1( , , , )nx x x x=� …  are vectors of length n with xi being the num-
ber (or proportion) of organisms with genotype i and n being the number of geno-
types being considered. We use x

�
 when we want to emphasize the vector nature 

of this variable or just x otherwise.
For discrete systems we have a function (or map) f such that if x is the state of 

the system at a given time then f(x) is the state one unit of time later. Thus, in 
discrete systems time passes in discrete steps — that is in jumps. If our units of 
time are say years, then state of the system two years later will be f ( f (x)) = f 2(x), 
and n years later it will be f ( f (… f (x) …)) = f n(x).

Continuous dynamical systems typically arise as solutions to differential equa-
tions. The state space X still constitutes the space of all possible states. For a 
state x, the state that will occur t time units later will be written as either ϕ(t, x) or 
x(t). If the system is governed by a differential equation, we begin an equation x' 
= f (x) and then ϕ(t, x) is the solution with initial condition x (that is, d ( , ) ( )

d
t x f x

t

j =  
and ϕ(0, x) = x.)

There is an efficient mathematical framework for simultaneously treating con-
tinuous and discrete dynamical systems. A mathematical dynamical system is a 
state space X together with a time space T (T is either the real numbers or integers) 
and a continuous group action (or semi-group action) ϕ: T × X → X. For a dif-
ferential equation, ϕ (t, x) is the solution with initial condition x. For a discrete 
dynamical systems defined by iteration of a map f: X → X the group action is ϕ 
(n, x) = f n (x). In either case, the system inputs a state (given by x) and a time 
(given by either t or n in T) and outputs that state after the allotted time has passed. 
Treating dynamical systems in such general terms enables us to focus on the topo-
logical and geometric phenomena that are true in general instead of what is only 
true for a given formulation.

The class of dynamical systems described above includes all deterministic 
dynamical systems (ie differential equations and iterated maps), those systems 
where the future is determined by the current state and time. Non-deterministic 
systems will be treated separately, although these often ‘average out’ to determinis-
tic ones when many organisms are involved as with the quasi-species equation. (See 
Basener [7] for a treatment of topology in general; see Strogatz [5], Devaney [13] 
and Robinson [14] for dynamical systems; and see Novak [1] for dynamical sys-
tems as models of  evolution). Like all mathematical models, the system can be 
simple or complex, depending on the number of simplifying assumptions.

2.1. Simple Populati on Models

Some simple models incorporate only the competition between populations, and 
thus focus on the competition-selection portion of evolution. Such models include 
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the Malthusian logistic single species y' = ay(1 – y) and competing species model 
x' = r1x(1 – bc – cy), y' = r2y(1 – fx – gy) which can lead to survival of one or both 
species. Nonlinear systems model more complex interactions, and can result in 
finite time extinction of one or more of the species.

The theory of mathematical dynamical systems can be applied to general for-
mulations of these types of equations. In 1936 A. N. Kolmogorov gave conditions 
under which equations of the form

x' = xF(x, y)
y' = yG(x, y)

has either a stable limit cycle or equilibrium. This has broad implications for bio-
logical systems — see May [15]. (A limit cycle is either a periodic orbit or a 
sequence of equilibria, p1,p2,…, pn with heteroclinic trajectories connecting pi to 
(pi+1 mod n·) More generally, the Poincare-Bendixson Theorem says that any 
bounded solution to a 2-dimensional system of differential equations is asymptotic 
to either an equilibrium or a limit cycle [16]. These examples illustrate the power 
of the dynamical systems approach; geometric or topological theorems restrict the 
potential behavior of a system even if the governing laws/equations are only par-
tially known.

Discrete systems in any dimension and continuous systems in more than 2- 
dimensions can exhibit more complex behavior. For example, an orbit in the dis-
crete 2-dimensional system for a simple ecosystem with two organisms

Pn+1 = Pn + aPn(1 – Pn/Rn)
Rn+1 = Rn + cRn(1 – Rn/M) – hPn

is shown in Figure 1 for three sets of parameters. This system was used in Basener 
et al. [17] to model the rise and fall of the civilization on Rapa Nui (Easter Island). 
The mathematics of chaotic and recurrent behavior is discussed in Section 3.

2.2. Simple Mutati on-Selecti on Models

Simple models may also focus solely on the genetic aspect of  evolution. The 
METHINKSITISAWEASEL system, created by Dawkins in 1989, is commonly 
used to illustrate evolution by mutation and  natural selection as in Smith [12]. The 
state space X is the space of all strings of 19 letters. Topologically, X is a discrete 
space with 2619 ≈ 7.66 × 1026 points. Iteration of the system involves making ten 
copies of a parent state x in which each letter of the copy has a 0.99 probability of 
being the same as the corresponding letter in the parent. The fitness of a state is 
equal to the hamming distance from the sequence METHINKSITISAWEASEL; 
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that is, the number of letters in the correct location with this goal sequence. The 
child with the highest fitness level is chosen as the new parent in the next genera-
tion. Although the system is not deterministic, for any initial condition the prob-
ability that the resulting sequence of iterations will reach the goal sequence is 
equal to 1.

This system is not an accurate model of evolution (see [12]), but it is useful to 
illustrate the simple description of evolution with mutation and  natural selection. 
It also has typical evolutionary behavior; the ‘genotype’ undergoes modification 
over generations and then stabilizes at an equilibrium. This is the same behavior 

Fig. 1.  Three chaotic attractors for discrete dynamical system modeling a simple two species 
ecosystem.
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as with the RNA molecules in the Qβ replicase. It is worth considering more gen-
eral systems of this variety. In Theorem 1 we show that if the state space is finite 
with a simple model of evolution, then evolution will run its process and then 
cease. Once maximal fitness is achieved, all subsequent mutations are irrelevant 
for fitness.

To describe a general situation of an evolutionary process, we will use X to 
denote a state space which could in general be any topological space. We assume 
that there are some laws governing the process of evolution on X, although they 
may in general be continuous differential equations, a discrete map, stochastic, or 
nondeterministic. If the system is discrete, the process of evolution will result in a 
sequence of points

x0 = x, x1 = f (x), x2 = f ( f (x)) = f 2(x), …, xn = f n(x)

according to the governing laws. If it is continuous, the process of evolution will 
result in a path x(t) in X. In the first case, we call x0, x1, … a (discrete) evolutionary 
trajectory and in the second we call x(t) a (continuous) evolutionary trajectory. By 
a fitness function on X we mean a continuous function F: X → R (the domain is 
X and the range is R, the real numbers) that is nondecreasing on evolutionary 
trajectories. (Either F (xi) ≤ F (xj) for i < j in the first case, or F(x(s)) ≤ F(x(t)) for 
s < t in the second.). Our first theorem, Theorem 1, shows that the behavior of the 
METHINKSITISAWEASEL system is the only possible behavior for a system 
with only finitely many states.

THEOREM 1. Let X be any finite state space with a fitness function F: X → R. 
Suppose x0, x1, … is a discrete evolutionary trajectory. Then there exists an N such 
that F(xn) = F(xN) for all n > N.

The proof is very simple; the set F({x0, x1, …}) is finite, being a subset of the 
finite space X, and therefore attains a maximum at some xN. Since this is the maxi-
mum on the sequence F(xn) ≤ F(xN) for all (xn) and F is nondecreasing F(xN) ≤ F(xn) 
for (N < n), we have F(xn) = F(xN) for all n > N.

It is clear from Theorem 1 that this type of a system — either a deterministic or 
nondeterministic progression of increasing fitness of a genotype in a sequence 
space — by itself does not result in an ongoing increase in fitness of organisms.

Related models can be constructed incorporating multiple organisms as well as 
spatial distributions. As long as the state space is compact (such as any a closed 
and bounded subset of Euclidean space, as is the case for any system with a finite 
area in which the organisms live), a similar theorem holds for systems with a fit-
ness function that does not decrease over time. To work with continuous and 
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discrete dynamical systems, with stochastic and deterministic ones, and with 
cases where the system is chaotic, we make some general terminology. If X is a 
state space, F is a fitness function on X and x0, x1, … is a sequence of points in X 
resulting from a model of evolution on X for which F is nondecreasing, we will 
refer to x0, x1, … as a discrete evolutionary trajectory in X. Similarly, a path x(t) 
in X on which F is nondecreasing will be called an continuous evolutionary trajec-
tory in X.

THEOREM 2. Let X be any compact state space with a fitness function F: X → R. 
If x0, x1, … is a discrete evolutionary trajectory, then there exists an F* such that 
F(xn) → F∗ as n → ∞. If x(t) is a continuous evolutionary trajectory, then there 
exists an F* such that F(x(t)) → F∗ as t → ∞.

Proof. Since X is compact, F is bounded on X. In the first case, F({x0, x1, …}) is 
a bounded subset of R, and thus has a supremum F*. Since F(xn) is nondecreasing, 
it goes monotonically to F*. In the second case, F({x(t) | t ε R}) is a bounded sub-
set of R, and thus has a supremum F*. As before, F(x(t)) is nondecreasing, and so 
it goes monotonically to F*.

The sequence x0, x1, … in Theorem 2 can be the solution to either a stochastic 
or deterministic discrete system on X, and the path x(t) can be the solution to either 
a stochastic or deterministic continuous system on X. Observe that this theorem 
states that evolution will run its course until some point after which increase in 
fitness is inconsequential. (Specifically, for any small positive number ε there is a 
time after which the increase in fitness is less than ε.)

It may seem counterintuitive that Theorem 2 would apply to systems with 
chaos; for chaos has often been suggested as a mechanism for producing very 
complex structures. We address chaotic dynamics in Section 3, where it is proven 
that fitness never increases on chaotic sets.

2.3. Populati on Models with Mutati on-Selecti on

To construct a more accurate model of  evolution, we need to consider more 
aspects of genetics, mutations, populations and ecology. In this section we con-
sider quasispecies, which is are ensemble of similar genomic sequences generated 
by a mutation-selection process, a notion developed by Manfred Eigen and Paul 
Schuster [18].

As before, we take our genotype information in a sequence space, say 
X = {A,T,C,G}N which is the set of all sequences in the letters A, T, C and G of 
length N. There are 4N different organisms that can have their genotype in this 
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space. Imagine a large population of such organisms. We denote the fraction of the 
total population consisting of genotype i by xi, for i = 1, …, N. So each xi is in [0, 1] 
and Σi xi = 1. Our state space X is the set of all 0 1( , , , )Nx x x x=� …  satisfying Σixi = 
1, which is the unit simplex in RN+1. Observe that the state space X is compact.

Let fi > 0 be the fitness of species i. For now, assume that the fitness corresponds 
to the growth rate. (It is common practice to equate fitness with growth rate. This 
seems sufficient in the short-term. However, organisms with a high fitness, result-
ing in a high reproduction rate, can overpopulate their ecosystem, destroying their 
food source and subsequently themselves as a population. This behavior is the 
main topic in the study of the collapse of ancient human civilizations in Basener 
and Ross [19] and Basener et al. [20].) The state space X together with the fitness 
function 0 1( , , , )Nf f f f=

�
…  is called a fitness landscape.

Let Q be the matrix such that qij is the probability of mutation from genotype i 
to genotype j. (The rows of the square matrix sum to 1.) The quasispecies equation 
is then the differential equation

0

N

j j i ij
j

x x f q xf
=

= -¢ Â�

where φ = Σi fi xi is the average fitness. The first term provides for reproduction and 
mutation, while the second term maintains Σi xi = 1. If we let ,W fQ=

��
 then the 

equation becomes

 x Wx xf= -� � �
 

which has a (generically stable) equilibrium at the solution to the eigenvector 
equation Wx xf=� �

.
For quasispecies, the fitness function determines the fitness of each genomic 

sequence, not the fitness of the quasispecies. Because individuals with more fit 
genomic sequences continually produce mutations with lower fitness, the qua-
sispecies equation does not maximize an overall fitness. For modest mutation 
rates, quasispecies will appear as a peak centered on the genomic sequence with 
the greatest fitness. For this reason, we cannot apply Theorem 2 directly using the 
given fitness function. However, generically the conclusion still holds — evolution 
runs its course to the equilibrium.

Stochastic systems — systems in which mutations occur from each genotype to 
other genotypes at prescribed mutations rates and with some approximately deter-
ministic rules governing population change over time for various genotypes — can 
all be modeled as a dynamical system on the same state space as the quasispecies 
equation. The following theorem says that even though fitness is not strictly 
increasing in these systems, regardless of the rules governing the population 
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change the net effect of  evolution over time is not much different than in previous 
theorems. Instead of going to an equilibrium, the system has a point which it will 
get close to, then may move away and will come back to again even closer, and 
then repeat the process of closer and closer approaches, infinitely often. To an 
observer, the system will continue to repeat (or return to) some state infinitely 
often.

THEOREM 3. Let X be any compact state space. Then for any trajectory of a 
(discrete or continuous) dynamical system on X, there is a state x* such that the 
orbit comes repeatedly close to x* as time goes to ∞, as follows. If x0, x1, … is a 
discrete evolutionary trajectory, then there exists a state x* ε X and a subsequence 
xi(1), xi(2), … such that xi(k) → x* as k → ∞ . If ϕ(t, x) is a continuous evolutionary 
trajectory, then there exists an x* and a sequence of times t1, t2, … such that ϕ 
(tk, x) → x* as k → ∞.

Proof. If x0, x1, … is a sequence of points, since X is compact the collection of sets  

1 2 3{ } { } { }i i i i i ix x x• • •
= = =     … is a nested sequence of compact sets. Thus the intersec-

tion 1{ }n i i nx• •
= =∩  is nonempty. Then let x* be any point in 1{ }n i i nx• •

= =∩  and x* is the 
desired point.

If ϕ (t, x) is a path in X, since X is compact the collection of sets { ( , )}tt x aj >  is a 
nested sequence of compact sets. Thus the intersection { ( , )}R tt xa ajŒ >∩  is non-
empty. Then let x* be any point in { ( , )}R tt xa ajŒ >∩  and x* is the desired point.

3. Chaos and Recurrent Behavior

A dynamical system ϕ:T × X → X is said to be chaotic on an infinite subset 
A XÕ  if

 (i) Periodic orbits are dense in A.
 (ii) There exists one orbit in A which is dense.
 (iii)  If X is a metric space then the system has sensitive dependence of initial 

conditions: There exists an ε > 0 such that for any point xεA and any 
neighborhood N of x, there exists a yεN and a t > 0 such that d(ϕ (t, x), ϕ 
(t, x)) > ε.

(See Basener [7] for mathematical terms, Robinson [14] for details on the dynami-
cal systems in this section and Strogatz [5] for applications). Note that chaotic 
subsets are necessarily compact and in variant. It has been shown that the first two 
conditions are sufficient to imply the third (See Banks et al. [21] and Basener [7]), 
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although in practice sensitive dependence is often taken alone as a definition of 
chaos because it is easy to compute experimentally.

For real-life systems, the periodic orbits in chaotic sets are less observable that 
the tendency to wander around the set; the small perturbations that occur in any 
real system will prevent it from actually being periodic. However, the behavior 
both in theory and practice has periodic-like aspects. Specifically, for any point 
xεA, there is a sequence of times t0,t1,… with ti → ∞ such that ϕ (ti, x) → x as 
i → ∞. To an observer, the system appears to repeatedly return to its initial state 
forever. Hence, whether there is a fitness function that is nondecreasing on trajec-
tories as with mutation-selection models, or if there is a fitness function that is 
defined on species but is not optimized in general as with the quasispecies model, 
on a chaotic set the system will continue to repeat a given state, and thus a given 
level of fitness, repeatedly.

More can be said if we assume that the fitness is nondecreasing with time; in 
this case, the fitness level is constant on a chaotic set.

THEOREM 4. Let ϕ:T × X → X be any dynamical system with a fitness function 
F: X → R such that F (ϕ (s, x)) < F(ϕ(t, x)) for any s < t. If A is a subset of X upon 
which ϕ is chaotic then F is constant on A. That is, there is no increase in fitness 
for orbits in A.

Proof. Since ϕ is chaotic on A, there is a sequence of times t0, t1,… with ti → ∞ 
such that ϕ (ti, x) → x. Then, since F is continuous, F(ϕ (ti,x)) → F(x). Since F is 
nondecreasing on orbits, F is constant.

4. Conclusions

Our first conclusion is that chaos and nonlinear dynamical systems contribute 
nothing to the ongoing increase in complexity or evolutionary fitness of biological 
systems. Statements such as that quoted earlier from Novak [1, p.9], suggesting 
that complexity of life results from nonlinear chaotic systems, are contrary to 
mathematics.

Second, the evolutionary process driven by mutation-selection, in both mathe-
matical models and directly observed behavior, is that of a system going to an 
equilibrium and staying there. It seems the discussion of evolution in biology is 
that of an ongoing process but the study of mathematical models of evolution is 
that of equilibrium dynamics. There is nothing inherent in the fitness-driven math-
ematical system that leads to ongoing progress; to the contrary, mathematical 
systems, both those which are specific models such as the quasispecies equation 
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and very general classes of models, have limits on the amount of increase in fitness 
that occurs. This is really well-known, as speciation is believed to occur only when 
driven by geographical isolation [12, p.275].

We have determined certain means of evolutionary progress to be impossible, 
and some of these means, for example the idea that chaos can lead to extreme 
evolutionary progress, have in the past been used as hypothetical possibilities for 
evolutionary dynamics. This leads us to ask what is left?

The space of all possible genotypes, while a compact space (assuming we disal-
low genotypes of unbounded length), is still enormous. The potential fitness, while 
bounded, is still extremely high. We can imagine this space as an enormous 
dimensional space, and imagine every viable species as a point in this space. We 
can image a line segment connecting every pair of viable genotypes if there is a 
reasonable probability that mutation from one to the other, as suggested in 
Figure 2. The result is an enormous network amenable to analysis by mathematical 

Fig. 2.  A large network with sparsely connected groups. The question we pose is whether the geno-
type network is connected like this, or if there are many disconnected islands. This image shows a 
partial map of the internet based on the January 15, 2005 data found on opte.org. Each line is drawn 
between two nodes, representing two IP addresses. The length of each line are indicates the delay 
between its endpoint nodes. See [22].
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network theory. The quasispecies equation provides the local equilibrium dynam-
ics in this space, and there is no mathematical reason to expect generally other 
than the equilibrium state naturally from the system; stability is what we observe 
experimentally and from well-supported equations.

In the genotype network described above, each quasispecies lives within a group 
of highly interconnected points, called a community or clique in social network 
theory. If environmental conditions change, the quasispecies shifts within this 
group. In most cases, if the environment shifts to far (or at least too quickly) then 
the quasispecies is pushed to the edge of its local group, to points with low fitness, 
and then goes extinct. This decrease in fitness near the boundary of a local group 
can be observed in selective breeding; if too many desired properties in an animal 
or vegetation are attempted to be optimized through selective breeding, the simul-
taneous optimization becomes difficult and the species becomes less fit as a whole.

A question for  evolution is to determine the structure of this genotype network. 
Are there bridges between groups of interconnected genotypes? How can we tell? 
What is the density of the network? How populated must a group be in order to 
support a quasispecies? Can the dimension of a local group be inferred, for exam-
ple as the number of properties of a species that can be simultaneously optimized 
through selective breeding?
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Abstract

 Tierra is a digital simulation of  evolution for which the stated goal was the development of open-
ended complexity and a digital “ Cambrian Explosion.” However, Tierra failed to produce such a 
result. A closer inspection of Tierran evolution’s adaptations show very few instances of adaptation 
through the production of new information. Instead, most changes result from removing or rearrang-
ing the existing pieces within a Tierra program. The open-ended development of complexity depends 
on the ability to generate new information, but this is precisely what Tierra struggles to do. The 
character of Tierran adaptation does not allow for open-ended complexity but is similar to the char-
acter of adaptations found in the biological world.

Key words: Adaptive loss, artificial life, complexity, novelty, open-ended evolution, simulation, 
Tierra

1. Introduction

Tierra, a digital evolution simulation, was originally developed by Thomas 
Ray in 1989 [1]. Some such simulations attempt to accomplish a specific task 
or to solve a particular problem. Examples include finding a phrase [2], logic 
function synthesis [3], and designing an antenna [4,5]. While such simulations 
take inspiration from the concepts of  natural selection and random mutation, 
they differ from Darwinian processes in a significant way. Such examples of 
evolutionary computation have a predetermined goal, while biological evolu-
tion, as commonly understood, does not.  Tierra does not define such a prede-
termined goal; instead, the intent is simply to observe the outcome of the 
evolutionary process. As Ray states: “The creatures invent their own fitness 
functions” [6].

This is not to say that research using Tierra has no goal. In fact, Tierra’s goal is 
much more ambitious. Ray’s intent with Tierra was nothing less than to simulate 
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the genesis of complexity and open-ended evolution, analogous to the  Cambrian 
explosion:

While the  origin of life is generally recognized as an event of the first order, there 

is another event in the history of life that is less well known but of comparable 

significance: the origin of biological diversity and macroscopic multicellular life 

during the Cambrian explosion 600 million years ago [6].

The Cambrian explosion is an event recorded in the  fossil record during which 
there was a relatively sudden shift in the  evolution of life on earth. Prior to this point, 
biological life was almost entirely composed of single-celled organisms. However, 
in a brief period of geological time, there was an “explosion” of biological forms in 
which most of the phyla now in existence appeared suddenly in the fossil record. 
The causes behind this geological event are debated within biological circles [7].

Why is the goal to produce a Cambrian explosion in artificial life? The underly-
ing intent is to produce countless forms through an evolutionary process similar to 
what is found in biology. The potential of this process in biology appears to have 
been unleashed during the Cambrian explosion. If artificial evolution could be 
unleashed in the same way, we might also be able to produce a plethora of fasci-
nating forms analogous to those found in biology. Essentially, once evolution 
(whether biological or artificial) has produced a Cambrian explosion, the rest of 
evolution should proceed easily.

Ray’s view was that the complexity needed to reach a critical mass. Once past this 
point, evolution’s creativity would be unleashed. In the case of biological life, this 
happened during the Cambrian explosion. Tierra was Ray’s attempt to give evolution 
the critical mass it needed. In fact, there were three different versions of Tierra each 
starting with more complexity in an attempt to kick start the evolutionary process.

Tierra produced a variety of interesting phenomena, including parasites, hyper-
parasites, social behavior, cheating, and loop unrolling. However, twenty years 
after the introduction of Tierra, the conclusion is that Tierra did not produce a 
Cambrian explosion or open-ended evolution. Though Ray described Tierran evo-
lution as generating “rapidly diversifying communities of self-replicating organ-
isms exhibiting open-ended evolution by  natural selection” [6], others disagree:

Artificial life systems such as  Tierra and  Avida produced a rich diversity of organ-

isms initially, yet ultimately peter out. By contrast, the Earth’s biosphere appears 

to have continuously generated new and varied forms throughout the 4 × 109 years 

of the history of life [8].

These strong increasing trends imply a directionality in biological evolution 

that is missing in the artificial evolutionary systems [9].
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Ray has recently stated that he regards  Tierra as having failed to reach its goal. 
He describes the evolution seen within Tierra as transitory. He no longer considers 
himself part of the artificial life community, and is now studying biological ques-
tions rather than those of artificial  evolution [10].

The absence of a  Cambrian explosion in artificial life demands an explanation. 
If biological evolution produced a Cambrian explosion, why does artificial evolu-
tion not do the same? Our inability to mimic evolution in this regard suggests a 
deficiency in our understanding of it. In the words of Feynman: “What I cannot 
create, I do not understand” [11].

Tierran evolution can be characterized as an initial period of high activity pro-
ducing a number of novel adaptations followed by barren stasis. It would appear 
that Tierra easily produced the novel information required for a variety of adapta-
tions. Why did it cease? If Tierra could produce novel information, it should con-
tinue to do so as long as it was run. However, if Tierra was incapable of producing 
such information, it should not have been able to produce the adaptations that it did.

A closer look at Tierran evolution reveals an important characteristic of the 
adaptations. Tierra started with a designed ancestor to seed the population. In other 
words, it presupposed something like an  origin of life and was concerned with the 
development of complexity after that point. The ancestor provides initial informa-
tion to Tierra. Adaptations primarily consist of rearranging or removing that infor-
mation. Open-ended evolution requires adaptations which increase information. 
However, such adaptations are rare in Tierra. Tierra’s informational trajectory is 
reversed from what evolution requires. It is dominated by loss and rearrangement 
with only minimal new information instead of being dominated by the production 
of new information with minimal cases of removal or rearrangement of informa-
tion. Long term evolutionary progress is dependent on the generation of new 
information.

If Tierra is capable of generating new information even in small amounts, does 
this not provide evidence that Darwinism can account for new information? Many 
small gains will eventually accumulate into a large amount of information. 
However, if this were true, we would see evidence of it within Tierra. There ought 
to be a steady stream of information gaining adaptations, rather than stasis actually 
observed.

The purpose of this paper is to review the published results of Tierran evolution. 
By investigating these results, we elucidate the characteristics of adaptations 
found within this system. In particular, we demonstrate that Tierran programs 
adapt primarily through loss and rearrangement. Tierra initially appeared to hold 
great promise as a model of biological evolution displaying open-ended evolution. 
However, we see that the character of Tierran developments was never that which 
could produce open-ended evolution.
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2. Description of Tierra

2.1 Programs

 Tierra seeks to create artificial life within a computer. In some cases similar evo-
lutionary simulations are meant to model biology [12,13]. As a result, the rules of 
the system are derived from a simplification of biological reality. Other cases seek 
to use the evolutionary process to solve a particular problem [3–5]. The rules of 
the system are derived from the nature of the problem being solved. In contrast, 
Tierra seeks to use the underlying rules of computer systems, trusting the evolu-
tionary process to make use of whatever medium it finds itself in.

However, in developing Tierra, Ray did not maintain perfect fidelity to the 
design of computer hardware. Instead, the design of Tierra was also influenced by 
the design of biological systems. He was concerned, based partially on the results 
of previous similar experiments, that computer code would be too “brittle,” 
prompting him make design decisions to make code more evolvable [10]. He real-
ized that random modifications to the computer code would too easily break exist-
ing functionality and make it difficult to evolve new behaviors.

Tierran programs can be considered similar to proteins. A Tierra program is a 
sequence of instructions in much the same way that a protein is a sequence of 
amino acids. Both of these can be compared to English sentences. The function of 
a sentence, Tierran program, or protein is determined in some way by the sequence 
which makes it up. The meaning of a sentence is determined by the letters which 
make up the sentence. If different letters are substituted into the sentence or the 
letters are rearranged, a different sentence with a completely different meaning 
will likely result. In a similar way, the structure and function of a protein is deter-
mined by the sequence of amino acids that make up the protein. The behavior of 
a Tierra program is also determined by the sequence of instructions that make up 
the program.

Programs need to refer to locations inside themselves. This is especially true for 
Tierra as the program must copy itself. In actual computer systems, this is typi-
cally done through the use of numerical offsets, e.g. a reference to position 5 in 
the program. The problem with such a technique is that adding or removing 
instructions will tend to change all of the position numbers in the program. This 
will leave all the position numbers incorrect, thereby breaking the program. This 
is a primary cause of the brittleness that Ray was trying to avoid.

When biological proteins need to interact with other biological entities, they 
make use of binding sites. A binding site is a particular region on a protein to 
which other molecules bind. Which molecules will bind depends on the exact 
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binding site properties. As a result, changing the binding site will change how the 
protein interacts with other molecules and thus possibly its function.

 Tierra borrows this idea by having some of the instructions function as labels. 
A label consists of a sequence of nop0 and nop1 instructions, which are consid-
ered complementary to one another. Each label “binds” to another label with the 
complementary instructions. That is, a label nop1, nop1, nop0 will bind to the 
label nop0, nop0, nop1. Figure 1 shows the use of labels within the ancestor pro-
gram. This solves the problem of referencing different parts of the program with 
specific position numbers, because the program can refer to the label itself, a ref-
erencing technique that will still work if the label is relocated.

English sentences do not have a precise analog to biological binding sites. The 
sites can, however, be considered roughly similar to punctuation. A binding site or 
label is useless by itself, as it has no actual function except to bind other things 
together. As such, binding sites modify the rest of system in useful ways, while 
lacking intrinsic functionality. Punctuation acts much the same way in English 
sentences. Consider the difference between, “No price too high,” and “No, price 
too high.” None of the words in the phrase have been modified; nevertheless, the 
meaning has been changed significantly.

 Tierra programs contain instructions. The exact sequence of instructions speci-
fies the operation of the program. Some of the instructions form labels which are 
like binding sites. Binding sites perform no tasks in isolation, but manipulate the 
functions of other instructions in the program.

Fig. 1.  A depiction of the use of labels in the Tierran ancestor.
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2.2 Ancestor

 Tierra runs by simulating many different programs running inside a computer. As 
time goes on, older programs are killed off. As the programs run, they make copies 
of themselves to produce new programs. Some of these programs have mutations 
and are thus slightly different from their predecessors. These mutations randomly 
replace, insert, or remove instructions like similar mutations in a DNA sequence. 
There is a selective force present, as those programs which are able to replicate 
more times before they die will leave more offspring and thus dominate the popu-
lation through a process like  natural selection.

This is similar to the idea of a soup of self-replicating proteins. In terms of 
sentences, it is as if the computer simulating Tierra is reading sentences and fol-
lowing their instructions. In this case, the sentence reads something like, “make a 
copy of this sentence.” Thus as long as the simulation is kept running, more and 
more copies are made. If some sentences provide better instructions for making 
copies, they will tend to dominate the population.

In all of these situations, an ancestor is needed, i.e., the initial self-replicating 
program, protein, or sentence. Tierra starts with a program that is capable of rep-
licating itself. This is equivalent to a self-replicating protein or the sentence, “copy 
this sentence.”

A depiction of the structure of the original program can be found in Figure 1. 
The ancestor is important in the case of Tierra because the adaptations mostly 
derive from rearranging the information contained in that ancestor.

2.3 Parallel Tierra

Further development on the Tierra program produced a version which made use of 
parallelism [14–16]. Modern computers have the ability to run different code at 
the same time, that is, in parallel. By taking a large task and dividing it into smaller 
tasks which can be run at the same time, it is possible to perform the whole task 
more quickly. An analogy is drawn between these parallel “threads” of execution 
and cells in a biological organism [15]. The developers were able to produce “sig-
nificant increases in parallelism” [15] in this version of Tierra.

2.4 Network Tierra

A later version of  Tierra was developed known as Network Tierra [17,18]. Results 
using this version have been published, but much of the data produced remains 
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unanalyzed. The papers published about the result of Network Tierra did suggest 
interesting results [19]. A particular portion of the code in the Tierra program was 
duplicated and, “While the two copies are initially identical, gradually, the two 
copies diverge in their structure and function” [19]. However, no actual code was 
presented and details as to what exactly is meant by divergence of structure and 
function were lacking. The lack of presented code prevents an analysis, and thus 
further discussion about Network Tierra will not take place here.

3. Looking for complexity

Tierra produced a number of adaptations. However, in order to produce a  Cambrian 
explosion, adaptation alone is insufficient. It is necessary that new information is 
produced. Adaptations can lose or rearrange existing information and thus provide 
benefit without new information.

There is a parallel to this idea in biology. Fish found in dark environments can 
lack functioning eyes. Since the eyes do not work in the dark, they are useless if 
not deleterious in that environment. As a result, the process of  natural selection 
works to eliminate the eyes. Thus we have a clear example of a biological adapta-
tion being brought about through changes in the environment. However, this 
change has been produced by removing something rather than adding it, and there-
fore constitutes an example of reductive  evolution. Could humans have evolved 
from a bacteria-like organism by successively disabling features? Clearly not.

Biological experiments have been performed in which insects have undergone 
changes due to mutations that produce extra sets of wings or eyes [20]. This does 
not appear to have been a beneficial change for the insect; however, it does show 
the ability to produce novel features due to relatively minor mutations. In this 
case, we are only observing the repeated expression of what the insect was 
already capable of producing. Clearly, the insect already contained instructions 
(genes) needed to construct the eyes and the wings. Mutations have simply caused 
those instructions to be repeated. Such duplications, modified expressions, or 
rearrangements of the genetic information can produce significant results. But 
many repetitions of this will not explain the origin of eyes or wings in the first 
place.

A similar idea can be seen in English sentences. Consider the sentence, “the 
quick brown fox jumps over the lazy dog.” We can easily obtain a new valid sen-
tence by omitting the word “quick” and obtaining “the brown fox jumps over the 
lazy dog.” In this case, we have eliminated something. On the other hand, suppose 
that we add the word “blind,” and obtain “the quick brown fox jumps over the lazy 
blind dog.” There is a completely new word in place. It is much easier to remove 
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a word than it is to add a new word. The letters in the new word must be selected 
at random, which is a relatively difficult task. While removing words is easier, it 
is clearly a very limited approach, as there are only so many words that can be 
removed.

For a biologist to determine if new information is produced in an adaptation can 
be difficult. Because we have a limited understanding of biological systems, the 
nature of a biological adaptation can be difficult to determine. In an artificial sys-
tem such as Tierra this is not the case. We have a complete understanding of Tierra 
and thus can determine how any adaptation functions.

 Tierra produced a number of adaptations. But did Tierra produce new informa-
tion? What would new information look like inside of Tierra? It would be in the 
form of new functional code within Tierra programs. Of course, it is easy to pro-
duce new code by inserting extra instruction into a Tierra program. However, it is 
difficult to produce functional code. In order to be considered information, the 
code must be beneficial — not neutral or detrimental.

In some cases parts of Tierra programs are duplicated or moved. It does not 
make sense to count these as new information because the evolutionary process 
did not produce the code in question. The code was already given in the ancestral 
program; it has merely been relocated. However, by duplicating and moving indi-
vidual instructions it is possible to construct any program. It only makes sense to 
appeal to a duplication or movement event when explaining a sequence of instruc-
tions. In terms of the English sentences, it only makes sense to consider words 
being moved and duplicated, not individual letters. As such, a word formed by 
rearranging the letters of another word is a completely new word not a rearrange-
ment of the old one.

Tierra contains labels that are analogous to binding sites. These control the 
“expression” of the program. They changed within the time frame of Tierran evo-
lution, and these changes caused many of the adaptations observed. However, 
since the labels are inert in and of themselves, they are not solely responsible for 
the behaviors they produce. Rather like the extra wings or eyes on an insect, they 
are manipulating the expression of other information. Clearly, change that can be 
produced by manipulating expression is limited. As such, we should not consider 
such changes as new information.

In some cases, a mutation will be neutral. The program with the mutation per-
forms exactly the same as a program without the mutation. This is not new infor-
mation because it has no adaptive benefit. In other cases, a given instruction may 
perform no useful task. It can be replaced by almost another instruction and the 
program will execute in the same way. Due to the lack of specificity such instruc-
tions do not carry informational content.
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The importance of new information is due to its being both necessary and dif-
ficult. Without new information,  evolution is restricted to rearrangements of exist-
ing information. But there is only a limited number of ways to rearrange existing 
information. In order to avoid stasis, evolution must produce new information. 
Obtaining new information is difficult because it depends on improbable random 
events. In the case of Tierra, the improbability derives from having to select par-
ticular sequences of instructions with functionality. However, this difficulty 
depends on the length of the sequence. It should be expected that short sequences 
of new instructions can arise. The difficulty of selecting the correct instructions 
grows exponentially as the number of instructions is increased.

What we find in  Tierra is that most of the changes do not produce new informa-
tion. In various ways, they rearrange the code already present in the ancestor. 
There are cases were new information, that is functional code, is produced. Such 
cases consist of only small pieces of code. That is, we see a few scattered instruc-
tions not blocks of new code.

But if these small changes can be combined, is it not possible to gain a large 
amount of information? Darwinism depends on precisely this point to explain all 
information found within biological life. Nevertheless, Tierra does not support the 
Darwinist contention. Despite the substantial amount of time spent running Tierra 
simulations, this predicted repeated information gain did not occur. It never gained 
more than a small amount of information. On the other hand, we do observe sig-
nificant adaptations making use of deletion or rearrangement. Tierra does show 
new information; however, it fails to vindicate Darwinian theory’s expectations of 
that information.

Ray sought to produce a digital  Cambrian explosion. It initially seemed to work 
but ultimately stalled. A closer inspection shows that even during that initial period, 
the process could not be characterized by an increase in information. The trajectory 
of Tierra was never correct for open-ended  evolution or unbounded complexity.

4. Examples

This section will look at the individual programs produced by Tierra to show what 
kinds of changes were necessary to bring them into existence. Most of the actual 
code is taken from the Tierra distribution available from the Tierra website and 
discussed in the Tierra manual [21]. In some cases, code that is considered is taken 
from other papers published about Tierra. This section deals with a high-level 
overview of the adaptations observed in these programs. A look at the precise code 
involved can be found in Appendix 6.
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4.1 Parasite

Tierra’s first interesting adaptation was parasitism. These programs were called 
parasites because they were unable to make copies of themselves on their own. 
However, they could replicate inside the  Tierra simulation because they made use 
of the code in nearby ancestors. The parasite was shorter than the ancestor because 
it did not contain all of the code necessary to self-replicate. This allowed the para-
site to replicate more quickly and more often, giving it a competitive advantage 
against the ancestors. Such parasites came to dominate Tierra; however, they 
required the presence of an ancestor in order to replicate, and thus never com-
pletely replaced the ancestors.

The ability to make use of the code belonging to another program would, at first 
glance, appear to be a fairly complex task. However, this was not the case within 
Tierra. As Figure 3 shows, the original ancestor was written divided into two parts. 
The first was the main loop and controlled the operation of the program. The sec-
ond was a copy loop procedure; it was responsible for actually copying one block 
of memory to another. It was used to copy the parent’s code in memory to the 
location of the child. This is analogous to the procedure used for DNA replication 
in biology. The sole difference between the parasite and the ancestor was that the 
parasite did not contain a copy procedure. However, because the copy procedure 
is located using the label addressing technique, Tierra looked for the copy proce-
dure in nearby code. Typically, it found one in a nearby ancestor and thus executed 
that code, thereby allow the parasite to self-replicate even without a copy loop 
procedure.

Figure 2 shows the label references as they differ between the parasite and 
the ancestor. The parasite is simply a truncated version of the original ancestor. The 
jump into the copying code is still present, but does not point anywhere within the 
program. Instead it points into a nearby program which it will use to make copies.

A complete comparison of the code in the ancestor and the parasite can be 
found in Section 6.1. The only changes found are the removed block of code and 
a change to a label, which was the original cause behind the removal of that block 
of code. Neither of these changes qualifies as new information.

4.2 Immunity

Some Tierra research indicates that the ancestors develop immunity to parasites [16]. 
Neither the papers nor the official Tierra distribution appear to provide the actual 
code of a program which exhibits such immunity. Nevertheless, the method of 
immunity is described as follows: “Immune hosts cause their parasites to loose[sic] 
their sense of self by failing to retain the information on size and location” [16]. Such 
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behavior can be caused by having a subset of the adaptations of the hyper-parasite. 
See Section 6.2 for further discussion. See Section 4.3 for details on the changes 
producing the hyper-parasite.

4.3 Hyper-parasites

The evolutionary response to the parasites was hyper-parasites. They were termed 
hyper-parasites because they acted as a parasite on a parasite. While the original 
parasites used the code of other programs to replicate, the hyper-parasites tricked 
parasites into copying the code of the hyper-parasite. This technique worked 
because the parasite was executing code inside the hyper-parasite allowing the 
hyper-parasite to take control of it.

Fig. 2.  Labels compared between the ancestor and the parasite.

Fig. 3.  The structure of the original  Tierra ancestor compared with that of the parasite. The image 
on the left is a regular ancestor. On the right a parasite is depicted using the copy loop of a nearby 
ancestor.
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As Figure 4 shows, the original ancestor returns back to the calling code once 
the copying is done. This behavior is used by the parasite in order to use another 
program’s copying code. However, the hyper-parasite has mutated so that it no 
longer gives control back to the calling code, instead maintaining control itself. 
This alone was not actually enough; that change alone would still have continued 
to produce parasites because the internal state of the program would still be that 
which was configured by the parasite. The hyper-parasite managed to avoid this 
by always resetting the state of the program after a copy has been made.

Figure 5 compares the use of labels between the ancestor and the hyper-parasite. 
Some of the actual labels have changed, but those changes are not important. 

Fig. 4.  The operation of a parasite and a hyper-parasite. The left side shows the typical parasitical 
interaction, but the right side shows how the hyper-parasite traps the parasite’s CPU.

Fig. 5.  Labels compared between the ancestor and the hyper-parasite.
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For the most part, the same activity can be seen in the ancestor and the parasite. 
There are two significant changes, shown by arrows now pointing to different 
locations. The changed arrow in the lower half of the figure shows the change 
necessary to keep control of the CPU instead of returning it to the parasite. The 
other changed arrow corresponds to the change necessary to reset the state of the 
process so that it copies the hyper-parasite instead of the parasite.

See Section 6.3 for details on the exact code changes involved. By the time 
hyper-parasites arise in the simulation, there have been a large number of changes 
to Tierran genomes. However, most of these have no actual effect and none of 
them consist of new functional code.

4.4 Social behavior

The Tierran programs eventually developed social behavior. A program was 
deemed to be social if it cannot replicate without being surrounded by similar 
creatures. Once a program has finished replicating it must return to the beginning 
of the program in order to make a second replication. In the case of social pro-
grams, the program jumped into the end of a previous program and then fell off 
into the start of the current program. This is depicted in Figure 6. Figure 7 shows 
the underlying labels being used here. The only significant change is that the jump 
that had previously gone to the first part of the program now jumps into memory 
behind it.

Social behavior was an interesting development but with one major caveat. The 
program exhibiting the social behavior does not appear to gain any benefit for 
doing so. A program is deemed social by the fact that it cannot reproduce except 

Fig. 6.  Comparison of the mechanics of the ancestor and a social creature. On the left we see a 
typical ancestor which jumps back to the beginning of its main loop when a copy is finished. On the 
right a social creature jumps into the end of the creature before it and trails into the copy loop.
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in aggregate groups. It has lost the ability to replicate alone. In fact replication will 
be slightly slower because it must execute some code belonging to a neighbor 
before actually reaching its own code.

Ray gives his reasoning for the  evolution of sociality:

It appears that the selection pressure for the evolution of sociality is that it facili-

tates size reduction. The social species are 24% smaller than the ancestor. They 

have achieved this size reduction in part by shrinking their templates from four 

instructions to three instructions. This means that there are only eight templates 

available to them, and catching each others[sic] jumps allows them to deal with 

some of the consequences of this limitation as well as to make dual use of some 

templates [6].

It is true that the social species were considerably smaller than the ancestor. 
However, they were not considerably, or at all, smaller than similar creatures 
which did not exhibit “social” behavior. The social programs did not have a size 
advantage over the non-social creatures that dominated at the time of their arrival. 
Ray’s explanation of selection pressure for sociality does not work

We propose another explanation. These social programs were produced by 
nearly neutral deleterious mutations which became fixed in the population. Once 
Tierra’s population filled the available space, Tierra programs very rarely pro-
duced more than one child. It took a long time to make a copy of a program in 
memory. A program would typically die while in the process of making its second 

Fig. 7.  Labels compared between the hyper-parasite and the social program.
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child. The result of this is that there was very little selective pressure on the code 
responsible for performing the transition for a second replication. Social behavior 
was a degradation of performance in this area, but it was not large enough to be 
selected against.

Section 6.4 demonstrates the code differences between the hyper-parasite and 
the social program. The interesting changes are to the labels; everything else 
involves removal of code or changes with no effect on behavior.

4.5 Cheater

Eventually a cheater arose which took advantage of the programs exhibiting the 
social behavior. As Figure 8 shows, a truncated program was created which sits 
between two social programs. When the social program attempted to jump into its 
predecessor’s end, it ends up running into the cheater’s code instead of its own. 
The cheater then uses the captured CPU to make additional copies of itself.

As with the parasite this ability derives from having deleted a large portion of 
the genome. Figure 9 depicts the resulting program structure. See Section 6.5 for 
an actual look at the code. The only change which is not a deletion is neutral.

4.6 Shorter program

The shortest self-replicating program reported to evolve was 22 instructions in 
length. Interestingly, this was shorter than either of the parasitic designs. It was a 

Fig. 8.  Comparison of the mechanics of the social program and the cheater. The left hand side 
shows the typical behavior of a social creature, whereas the right shows a cheater taking advantage 
of this.
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very substantial reduction from the 80 instructions of the original ancestor. However, 
as Figure 10 shows, the structure was a subset of the original. As one might guess, 
the construction of this short program was largely done through the removal of 
instructions. However, as discussed in Section 6.6, there was an exception. The short 
program was generated mostly by code elimination, but two of the instructions of 
new code were inserted which helped replace longer code. i.e. The new instructions 
perform the same task as the original but with less instructions required.

Fig. 9.  Labels compared between the social program and the cheater.

Fig. 10.  Labels compared between the ancestor and the short program.
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4.7 Loop unrolling

An optimization known as loop unrolling also evolved in Tierra. This arose in a 
version of Tierra operating on slightly different rules. In this case, longer programs 
were rewarded for their length in order to discourage the development of shorter 
and shorter programs. Normally a shorter program had an advantage in terms of 
the time it takes to make a copy, simply due to being shorter. Rewarding longer 
programs removed that advantage. As a result, this scheme is known as size neu-
trality. Under these rules, Tierra removes the incentive to shrink genomes and 
instead promotes the development of techniques to copy existing instructions 
faster. The evolutionary process managed to implement an optimization known as 
unrolling a loop.

Ray presented this an example of an intricate adaptation:

The astonishing improbability of these complex orderings of instructions is 

testimony to the ability of  evolution through  natural selection to build complex-

ity [22].

However, Ray’s perspective does not hold up to scrutiny. In fact this adaption 
results from a duplication of the code inside the program. Loop unrolling is an 
optimization which works through duplicating code in a loop. To repeat an action, 
such as copying an instruction, a program must jump backwards in the code so as 
to re-execute the instructions. This jump takes time and thus constitutes overhead 
cost. By repeating the contents of the loop, it is possible jump half as often thereby 
reducing this extra cost, leading to more efficient replication.

Ray stated that “unrolling did not occur through an actual replication of the 
complete sequence.” This claim was derived from the idea that the copies of the 
loop in the unrolled version differ in instruction order. However, as Section 6.7 
discusses, most of the instructions were in a consistent order. In fact, they remained 
in the same order as in the original loop. Since the instructions can be reordered 
in several ways without affecting the operation of the program, this consistency 
strongly implies that the new loop was generated through a duplication event.

New functional code did show up; however, it was not directly related to the 
unrolled loop. Instead, the program “lied” about its length, causing it to receive a 
larger bonus. Ordinarily, this bonus would have been counteracted by the need to 
execute a longer program. However, this program neither executed nor copied the 
instructions in the second half. This means that it managed to gain the benefits of 
doubling the program length without any of the drawbacks. Doing so required 
introducing four new instructions.

Contrary to the claims of Ray, this is not an example of an astonishingly 
improbable sequence of instructions. The program results mostly from duplication 
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of code that was in the ancestral program. Six new instructions were inserted, but 
the primary changes are due to the duplication not those insertions.

4.8 Parallel code

Another version of  Tierra introduced parallelism. This is a technique used in soft-
ware development whereby multiple instructions can be executed at the same time. 
This requires more hardware and is somewhat tricky to make use of in software. 
However, Ray designed a new ancestor which made use of the ability to execute 
two instructions at once. From this ancestor,  evolution managed to produce a ver-
sion which executed 16 instructions at once.

As Section 6.8 shows, all that is necessary to accomplish this is to duplicate the 
code responsible for dividing the task. The tricky part in parallel development is 
taking the task at hand and dividing it into smaller tasks that can be handled in 
parallel. Fortunately, there is an obvious way to divide the task of copying code: 
the entire sequence of instructions can be broken up into different sections and 
each section can be copied in parallel. By simply repeating this division step, the 
number of instructions executed at once is doubled. As a result, a duplication event 
was all that was necessary to increase the parallelism.

However, the obvious way of performing this task suffers from rounding errors. 
There is a division performed in the algorithm and the default behavior is round 
down which eventually results in part of the program not being copied. This is 
solved by the introduction of a novel instruction which effectively causes the pro-
cess to round up thereby working correctly. This new instruction is new informa-
tion because it did not derive from existing code.

4.9 Recap

We have investigated a number of examples of evolution in Tierra. Table 1 shows 
a summary of the results. In a majority of the cases we see that evolution pro-
ceeded by deleting instructions. There are some new instructions inserted, but 
these are much smaller than the changes in other areas. As a result, we can clearly 
see that Tierran evolution is dominated by information-reducing mutations.

Furthermore, we can categorize novel instructions by the variation of Tierra in 
which they arose. The probability column in Table 2 shows the probability of 
picking the instructions in a single random event. This gives relatively high prob-
abilities of arriving at any of these changes with the exception of those required 
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for the size neutral changes. For the purpose of comparison, the run from which 
the original version of Tierra programs was taken was for 1 billion instructions 
executed [21].

 Tierra demonstrated the capability of producing new code. What prevented 
Tierra from building onto that code and thus producing open-ended complexity? 
There were seven unique cases of instructions inserted into program code. Of 
those, two mimicked the behavior of the original program and five manipulated 
the program’s record of its own length thereby affecting the replication process. 
Of the five manipulating the length, three consist of repeating an action already 
performed in the ancestral program. In both cases, the instructions were tweaking 
the existing processes rather than producing new processes.

The interesting behaviors produced by Tierra are created mostly by rearranging 
the information seeded into the simulation by its designer. New functional instruc-
tions were generated but these are dwarfed by the size of other changes. They also 
consist of the tweaking of existing systems rather than the development of new 
systems. They fail to provide a long term model for information gain in Darwinian 
processes.

TABLE 1:  Summary of Changes

Example
Removed Code 
(instructions)

Label Changes 
(labels)

Moved Code 
(instructions)

Duplications 
(instructions)

New Code 
(instructions)

Parasite 35 1 0 0 0

Hyper-parasite 10 3 0 0 0

Social Behavior 19 4 0 0 0

Cheater 53 6 0 0 0

Shorter Program 58 4 0 0 2

Unrolled Loop 44 4 0 12 6

Parallelism 20 2 2 22 1

TABLE 2:  Summary of Changes by Version

Version Total Novel Instructions Probability

Original 2 1/1024

Size Neutral 6 10–9

Parallel 1 1/32

b1567_Sec1.2.2.indd   123b1567_Sec1.2.2.indd   123 5/8/2013   2:33:45 PM5/8/2013   2:33:45 PM

 B
io

lo
gi

ca
l I

nf
or

m
at

io
n 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
2.

4.
17

.1
40

 o
n 

08
/1

1/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



124 W. Ewert, W. A. Dembski and R. J. Marks II 

b1567  Biological Information — New Perspectives b1567_Sec1.2.2 8 May 2013 2:36 PM

5. Summary

The author of Tierra sought to create a digital  Cambrian explosion whereby the 
power of the evolutionary process was unleashed. It is agreed that Tierra did not 
succeed in accomplishing this feat. Rather, the evolutionary activity within Tierra 
dies after only a transitory period. No Cambrian explosion occurs.

Furthermore, the evolutionary activity that occurred was not of the sort that can 
be used as the basis for the ongoing  evolution of novel information. Most change 
in  Tierra was created by rearranging the existing code in the system, not by pro-
ducing new code. Some cases did produce new code; however, the amount of 
change produced in this fashion is very small compared to change produced in 
other ways. What information gain existed only manages to tweak the existing 
system. The trajectory of Tierra was wrong, it is dominated by the wrong category 
of adaptation.

The observation that evolution consists largely of adaptations that remove or 
manipulate existing information, rather than adaptations producing new informa-
tion, is not restricted to Tierra. Many observed adaptations in biology are in fact 
derived from changes which break existing systems [23]. Studies of biological 
adaptations have shown that they proceed via the elimination of unnecessary and 
costly functions [24,25]. A survey of lab experiments showed that the adaptations 
found in such scenarios fit the same picture [26]. Further discussion of adaptation 
by loss in biological scenarios can be found within these proceedings [27].

Unlike many artificial life simulations, Tierra followed Darwinism by not 
imposing an external artificial fitness. Tierran programs were not rewarded for 
performing calculations or solving problems. Rather in Tierra there was only sur-
vival and replication. As a result Tierra paralleled biology more closely on this 
point. As discussed, the pattern of observed adaptation is similar between Tierra 
and biology. Rather than being a system which fails to imitate biology closely 
enough to produce a Cambrian explosion, Tierra is a system which manages to 
imitate the character of directly observed biological adaptations.

Some other evolutionary systems do show an increase in complexity and the 
production of new functional code.  Avida is one such example, in which a sequence 
of instructions is generated which computes the bitwise EQU (XNOR) operation 
[28]. However, Avida’s ability to generate such sequences of instructions is derived 
from its use of stair step active information [29]. Avida rewards the development of 
partial implementations of its target, thereby helping the programs to evolve [3]. 
Essentially, action was taken in Avida to make it easier for evolution to find new 
valid code sequences, enabling it to succeed. Whereas Tierra’s primary source of 
information is the ancestral program, Avida’s primary source of information is in 
the design of the “environment” in which Avida programs are run.
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 Tierra also derives some information from the environment in which it runs. Ray 
was concerned about the brittleness of machine code [10], and accordingly made 
specific design decisions. Additionally, the original instruction set was created by 
choosing exactly the instructions which were used in the ancestor [14]. This results 
in the Tierra instruction set being specifically tuned to the problem it faces. This 
work has not attempted to investigate the implications of these decisions, but is our 
opinion that the Tierran evolution is substantially assisted through them.

Almost any design-based view of biological origins allows the existence of 
some variation occurring by Darwinian mechanisms while remaining skeptical that 
such mechanisms can explain all of biology. Defenders of Darwinism claim that the 
distinction is artificial and that minor variation will necessarily eventually add up 
to large scale variation. Tierra provides evidence for the design position. Tierra 
demonstrates adaptation, but also demonstrates that the adaptation fails to add up to 
open-ended complexity. It shows that minor variation does imply major variation.

Tierra did not succeed in producing open-ended evolution and a Cambrian-like 
explosion as was hoped. Changes were dominated by loss or rearrangement rather 
than the production of new functional code. The character of Tierran  evolution never 
held promise for long term evolutionary growth. However, it did manage to replicate 
something of the character of actual biological change. Biological adaptations also 
often make use of loss or rearrangement of existing information. As such, the 
models of evolution like Tierra may well provide insights into biological change. 
However, it fails to demonstrate evolution of the sort that could explain the innova-
tions of the Cambrian explosion or the development of the biological world.
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6. Appendix: Tierra program comparisons

Prior to this point, we have attempted to explain the content in a generally acces-
sible manner. This appendix seeks to provide detailed backup for the claims made 
in the rest of the paper. It is necessarily technical. The reader is assumed to have 
good grasp on the mechanics of computer machine code. As such, technical com-
puter terminology will be used without explanation in this appendix.

b1567_Sec1.2.2.indd   125b1567_Sec1.2.2.indd   125 5/8/2013   2:33:45 PM5/8/2013   2:33:45 PM

 B
io

lo
gi

ca
l I

nf
or

m
at

io
n 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
2.

4.
17

.1
40

 o
n 

08
/1

1/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



126 W. Ewert, W. A. Dembski and R. J. Marks II 

b1567  Biological Information — New Perspectives b1567_Sec1.2.2 8 May 2013 2:36 PM

6.1 Ancestor and parasite

Table 3 shows the difference in code between the ancestor and the parasite. The 
most significant change is that a substantial portion of the code has been removed. 
The only other change is on instruction 43, where a label is changed. That change 
actually causes the loss of the code because it makes that part of the program look 

Ancestor Parasite

 1 nop1 nop1

 2 nop1 nop1

 3 nop1 nop1

 4 nop1 nop1

 5 zero zero

 6 not0 not0

 7 shl shl

 8 shl shl

 9 movDC movDC

10 adrb adrb

11 nop0 nop0

12 nop0 nop0

13 nop0 nop0

14 nop0 nop0

15 subAAC subAAC

16 movBA movBA

17 adrf adrf

18 nop0 nop0

19 nop0 nop0

20 nop0 nop0

21 nop1 nop1

22 incA incA

23 subCAB subCAB

24 nop1 nop1

25 nop1 nop1

26 nop0 nop0

27 Nop1 nop1

28 Mal mal

29 call call

30 nop0 nop0

31 nop0 nop0

32 nop1 nop1

33 nop1 nop1

34 divide divide

35 jmpo jmpo

36 nop0 nop0

37 nop0 nop0

38 nop1 nop1

39 nop0 nop0

40 ifz ifz

41 nop1 nop1

42 nop1 nop1

43 nop0 nop1

44 nop0 nop0

45 pushA pushA

46 pushB

47 pushC

48 nop1

49 nop0

50 nop1

51 nop0

52 movii

53 decC

54 ifz

55 jmpo

56 nop0

57 nop1

58 nop0

59 nop0

60 incA

61 incB

62 jmpo

63 nop0

64 nop1

65 nop0

66 nop1

67 ifz

68 nop1

69 nop0

70 nop1

71 nop1

72 popC

73 popB

74 popA

75 ret

76 nop1

77 nop1

78 nop1

79 nop0

80 ifz

TABLE 3:  Comparison of the code of the ancestor and the parasite. (Bold indicate s changes in 
the program code)
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the same as the end. This confuses the copying code, resulting in a partial copy, 
thus the truncated code.

6.2 Immunity

The functionality of at least one form of immunity to parasites is described as 
“failing to retain the information on size and location.” The original ancestor 
stores its size in the CX register and its location in the BX register. When running 
in the copy loop, these registers are used for other purposes. The original values 
are saved by pushing them onto the stack before running the copying code and 
popping them back off the stack afterwards. The only reason that the program 
needs to maintain those values is in order to make additional copies of the pro-
gram. However, by jumping to the beginning of the program rather than its origi-
nally specified location, the main program can recalculate the values each time. At 
this point it can remove or break the pushing and popping code without ill effects. 
However, the parasite assumes that the pushing and popping code is still active and 
thus becomes confused.

The hyper-parasite does this same thing with an additional twist. The hyper-
parasite jumps back into its main loop rather than returning back into the parasite. 
This means that the hyper-parasite maintains control of the parasite’s CPU and 
thus uses it to make new hyper-parasites.

6.3 Ancestor and hyper-parasite

Table 4 shows the differences between a hyper-parasite and the ancestor. A sub-
stantial number of changes are made. As discussed, changes to labels and the 
removal of code do not constitute new code. The following discusses each case 
that might otherwise be considered new code:

• 21 This jump instruction does nothing as there is no label after it.
• 22 This sets the CX register to 0, but the CX register is reset by the next 

instruction, leaving it with no effect.
• 35 The two jump instructions, jmpo and jmpb, will both have the same 

effect here.
• 39–40 These two instructions will never be executed because the jump 

instruction at position 35 will have already taken effect.
• 64 The two jump instructions, jmpo and jmpb, will both have the same 

effect here.
• 69–77 This code is dead and is no longer being executed.
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Thus all new instructions introduced have no actual affect on the execution of 
the program. The only interesting changes are to the labels which produced the 
hyperparasitism effect.

Ancestor
Hyper-
parasite

 1 nop1 nop1

 2 nop1 nop1

 3 nop1 nop0

 4 nop1

 5 zero

 6 not0

 7 shl

 8 shl

 9 movDC

10 adrb adrb

11 nop0 nop0

12 nop0 nop0

13 nop0 nop1

14 nop0

15 subAAC subAAC

16 movBA movBA

17 adrf adrf

18 nop0 nop0

19 nop0 nop0

20 nop0 nop0

21 nop1 jmpb

22 incA zero

23 subCAB subCAB

24 nop1

25 nop1

26 nop0

27 nop1

28 mal mal

29 call call

30 nop0 nop0

31 nop0 nop0

32 nop1 nop1

33 nop1 nop1

34 divide divide

35 jmpo jmpb

36 nop0 nop0

37 nop0 nop0

38 nop1 nop1

39 jmpo

40 nop1

41 nop0 nop0

42 ifz ifz

43 nop1 nop1

44 nop1 nop1

45 nop0 nop0

46 nop0 nop0

47 pushA pushA

48 pushB pushB

49 pushC pushC

50 nop1 nop1

51 nop0 nop0

52 nop1 nop1

53 nop0 nop0

54 movii movii

55 decC decC

56 ifz ifz

57 jmpo jmpo

58 nop0 nop1

59 nop1 nop1

60 nop0 nop0

61 nop0 nop0

62 incA incA

63 incB incB

64 jmpo jmpb

65 nop0 nop0

66 nop1 nop1

67 nop0 nop0

68 nop1 nop1

69 ifz jmpb

70 nop1 nop1

71 nop0 nop0

72 nop1 popB

73 nop1 nop1

74 popC popC

75 popB popB

76 popA popB

77 ret ret

78 nop0

79 nop1 nop1

80 nop1 nop1

81 nop1 nop1

82 nop0

83 ifz  

TABLE 4:  Comparison of the code of the ancestor and a hyper-parasite
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6.4 Hyper-parasite and social program

Table 5 presents the difference between a hyper-parasite and a social program. The 
actual change making the program social is to instruction 27. None of the other 
changes produce interesting effects. Most of those changes relate to code which 
no longer serves a purpose.

• 14 Sets the CX register to zero, which is repeated by the next instruction.
• 30 This code is never executed.
• 37 The values pushed on the stack are no longer being used, so this has no 

effect on the program.
• 58 Code is not executed due to the hyper-parasite change.

Hyper-
parasite Social

 1 nop1 nop1

 2 nop1 nop1

 3 nop0 nop0

 4 adrb adrb

 5 nop0 nop0

 6 nop0 nop0

 7 nop1 nop1

 8 subAAC subAAC

 9 movBA movBA

10 adrf adrf

11 nop0 nop0

12 nop0 nop0

13 nop0 nop0

14 jmpb zero

15 zero zero

16 subCAB subCAB

17 mal mal

18 call call

19 nop0 nop0

20 nop0 nop0

21 nop1 nop1

22 nop1 nop1

23 divide divide

24 jmpb jmpb

25 nop0 nop0

26 nop0 nop0

27 nop1 nop0

28 jmpo jmpo

29 nop1 nop1

30 nop0 subCAB

31 ifz ifz

32 nop1 nop1

33 nop1 nop1

34 nop0 nop0

35 nop0 nop0

36 pushA pushA

37 pushB pushC

38 pushC pushC

39 nop1 nop1

40 nop0 nop0

41 nop1 nop1

42 nop0 nop0

43 movii movii

44 decC decC

45 ifz ifz

46 jmpo jmpb

47 nop1

48 nop1 nop1

49 nop0 nop0

50 nop0 nop0

51 incA incA

52 incB incB

53 jmpb jmpb

54 nop0 nop0

55 nop1 nop1

56 nop0 nop0

57 nop1 nop1

58 jmpb ifz

59 nop1

60 nop0

61 popB popB

62 nop1

63 popC

64 popB

65 popB

66 ret

67 nop0

68 nop1 nop1

69 nop1 nop1

70 nop1 nop1

TABLE 5:  Comparison of the code of a hyper-parasite and a social program.
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6.5 Social program and cheater

Table 6 compares the code of the first hyper-parasite with that of the cheater. As 
can be seen, a large section of code has been removed. The only other change is 
at position 15 which repeats the action of the previous instruction and as a result 
makes no lasting change on the state of the program.

6.6 Ancestor and short code

Table 7 shows the changes between the ancestor and a short self-replicator.

• 12 The divide instruction is used, a new functional instruction
• 55 The ret instruction is used, a new functional instruction

Social Cheater

 1 nop1 nop1

 2 nop1 nop1

 3 nop0 nop0

 4 adrb adrb

 5 nop0 nop0

 6 nop0 nop0

 7 nop1 nop1

 8 subAAC subAAC

 9 movBA movBA

10 adrf adrf

11 nop0 nop0

12 nop0 nop0

13 nop0 nop0

14 zero zero

15 zero subCAB

16 subCAB subCAB

17 mal mal

18 call call

19 nop0 nop0

20 nop0 nop0

21 nop1 nop1

22 nop1 nop1

23 divide divide

24 jmpb

25 nop0

26 nop0

27 nop0

28 jmpo jmpo

29 nop1

30 subCAB

31 ifz

32 nop1

33 nop1

34 nop0

35 nop0

36 pushA

37 pushC

38 pushC

39 nop1

40 nop0

41 nop1

42 nop0

43 movii

44 decC

45 ifz

46 jmpb

47 nop1

48 nop0

49 nop0

50 incA

51 incB

52 jmpb

53 nop0

54 nop1

55 nop0

56 nop1

57 ifz

58 popB

59 nop1 nop1

60 nop1 nop1

61 nop1 nop1

TABLE 6:  Comparison of the code of a social program and a cheater.
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• 62 There is no difference between jmpb and jmpo in this case.
• 65 This code is never executed.

We see that the divide and ret instructions are new. As such, both of these 
instructions do indicate a degree of novelty in the system. Both instructions were 
in the original ancestor, and one might be inclined to argue that they are not new 
code as they have merely been moved. However, since both are only single 
instructions rather than sequences appealing to a code movement event is not 
justified.

TABLE 7:  Comparision of the code of the ancestor and a short self-replicator.

Ancestor Short

 1 nop1 nop0

 2 nop1

 3 nop1

 4 nop1

 5 Zero

 6 not0

 7 shl

 8 shl

 9 movDC

10 adrb adrb

11 nop0 nop1

12 nop0 divide

13 nop0

14 nop0

15 subAAC subAAC

16 movBA movBA

17 adrf adrf

18 nop0 nop0

19 nop0

20 nop0

21 nop1

22 incA incA

23 subCAB subCAB

24 nop1

25 nop1

26 nop0

27 nop1

28 mal mal

29 call

30 nop0

31 nop0

32 nop1

33 nop1

34 divide

35 jmpo

36 nop0

37 nop0

38 nop1

39 nop0

40 ifz

41 nop1

42 nop1

43 nop0

44 nop0

45 pushA

46 pushB pushB

47 pushC

48 nop1

49 nop0

50 nop1

51 nop0 nop0

52 movii movii

53 decC decC

54 ifz ifz

55 jmpo ret

56 nop0

57 nop1

58 nop0

59 nop0

60 incA incA

61 incB incB

62 jmpo jmpb

63 nop0

64 nop1 nop1

65 nop0 movii

66 nop1

67 ifz

68 nop1

69 nop0

70 nop1

71 nop1

72 popC

73 popB

74 popA

75 ret

76 nop1

77 nop1

78 nop1

79 nop0

80 ifz
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6.7 Loop unrolling

Table 8 shows the changes between the ancestor and the optimized program.

• 12 This divide instruction is new.
• 23 There is no label; this piece of code has no affect.

Ancestor Unrolled

 1 nop1 nop1

 2 nop1

 3 nop1

 4 nop1

 5 zero

 6 not0

 7 shl

 8 shl

 9 movDC

10 adrb adrb

11 nop0 nop0

12 nop0 divide

13 nop0

14 nop0

15 subAAC subAAC

16 movBA movBA

17 adrf adrf

18 nop0 nop0

19 nop0

20 nop0

21 nop1

22 incA incA

23 call

24 subCAB subCAB

25 nop1 pushB

26 nop1 shl

27 nop0

28 nop1

29 mal mal

30 call

31 nop0

32 nop0

33 nop1

34 nop1

35 divide

36 jmpo

37 nop0

38 nop0

39 nop1

40 nop0

41 ifz

42 nop1

43 nop1

44 nop0

45 nop0

46 pushA

47 pushB

48 pushC

49 nop1

50 nop0

51 nop1

52 nop0 nop0

53 movii movii

54 decC decC

55 ifz decC

56 jmpo jmpb

57 nop0 decC

58 nop1

59 nop0

60 nop0

61 incA incA

62 incB incB

63 jmpo movii

64 nop0 decC

65 nop1 incA

66 nop0 incB

67 movii

68 decC

69 not0

70 ifz

71 ret

72 incA

73 incB

74 jmpb

75 nop1 nop1

76 ifz ifz

77 nop1

78 nop0

79 nop1

80 nop1

81 popC

82 popB

83 popA

84 ret

85 nop1

86 nop1

87 nop1

88 nop0

89 ifz

TABLE 8:  Comparison of the code of the ancestor and a unrolled loop.
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• 25, 29 These two instructions were both in the ancestor. The order has 
been switched, but this has no effect on the program.

• 26 This shl instruction is new.
• 49–75 This section is result of a loop unrolling.

Instructions 49–75 derive from a three-fold duplication of the original version 
of that code. Table 9 compares a repeated version of the ancestor loop with the 
optimized version.

• 7 A decrement CX instruction.
• 8 No label; has no function.
• 9 A decrement CX instruction.
• 28 Has the effect of decrementing CX.
• 30 New instruction.
• 37 Neutral change.

It is obvious that the code was produced by a straightforward duplication of the 
original loop. There are three features which have been added.

1. The same changes to ret/divide from the very short program.
2. The program requests twice as much space as it needs, and counts down 

twice as fast to make up for it.
3. The loop has been unrolled.

TABLE 9:  Comparison of a repeated ancestor copy loop and the unrolled loop.

Ancestor Unrolled

 1 nop1

 2 nop0

 3 nop1

 4 nop0 nop0

 5 movii movii

 6 decC decC

 7 ifz decC

 8 jmpo jmpb

 9 nop0 decC

10 nop1

11 nop0

12 nop0

13 incA incA

14 incB incB

15 jmpo

16 movii movii

17 decC decC

18 ifz

19 jmpo

20 nop0

21 nop1

22 nop0

23 nop0

24 incA incA

25 incB incB

26 movii movii

27 decC decC

28 not0

29 ifz ifz

30 jmpo ret

31 nop0

32 nop1

33 nop0

34 nop0

35 incA incA

36 incB incB

37 jmpo jmpb

38 nop0

39 nop1 nop1

40 nop0

41 nop1
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This change was discussed in Section 6.6. The second change introduces the shl 
instruction as well as the inserted instructions in the copy loop aside from the ret. 
This change consisted of four instructions. Three of the four instructions do the 
same thing, i.e., decrement CX.

6.8 Parallel

Table 10 shows the differences between the threaded ancestor and the optimized 
version.

• 19–20 Since CX is never zero here, these instructions have no effect.
• 40 This instruction lacks a label and has no effect.
• 50–74 These instructions are part of a duplicated section.
• 90–91 These instructions have been moved from earlier in the program.

TABLE 10:  Comparison of a parallel ancestor with the increased parallelism program.

Ancestor Developed

  1 nop1 nop0

  2 nop1

  3 nop1

  4 nop1

  5 Adrb adrb

  6 nop0 nop1

  7 nop0

  8 nop0

  9 nop0

 10 subAAC subAAC

 11 MovBA movBA

 12 Adrf adrf

 13 nop0 nop0

 14 nop0 nop0

 15 nop0

 16 nop1

 17 incA

 18 subCAB subCAB

 19 nop1 ifz

 20 nop1 ifz

 21 nop0

 22 nop1

 23 mal mal

 24 zeroD

 25 zeroD

 26 split split

 27 call

 28 nop0

 29 nop0

 30 nop1

 31 nop1

 32 join

 33 divide

 34 jmpo

 35 nop0

 36 nop0

 37 nop1

 38 nop0

 39 ifz ifz

 40 nop1 adrb

 41 nop1

 42 nop0

 43 nop0

 44 pushA

 45 pushB

 46 pushC

 47 shr shr

 48 offAACD offAACD

 49 offBBCD offBBCD

 50 nop1 zeroD

 51 nop0 ifz

 52 adro

 53 ifz

b1567_Sec1.2.2.indd   134b1567_Sec1.2.2.indd   134 5/8/2013   2:33:45 PM5/8/2013   2:33:45 PM

 B
io

lo
gi

ca
l I

nf
or

m
at

io
n 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
2.

4.
17

.1
40

 o
n 

08
/1

1/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



 Tierra: The Character of Adaptation 135

b1567  Biological Information — New Perspectives b1567_Sec1.2.2 8 May 2013 2:36 PM

We can gain a better idea of the changes in the duplicate section by comparing 
a duplicated version of the ancestor’s code as in Table 11. The original section that 
was duplicated includes a large section which was removed either before or after 
the duplication. This section has not been included in the comparison.

• 4–5 adrb has no label, so these instructions have no effect.
• 11 adro has no label, it has no effect.
• 12–13 CX is not zero, so these instructions have no effect.
• 17 This instruction was preserved since the ancestor. It is the lone surviv-

ing instruction from the section removed from the comparison.
• 22 This copies an instruction which is simply recopied later; it is thus 

useless.
• 26 This instruction is actually novel and useful
• 29 manipulates CX, but effect is lost by rounding
• 30–31 Since CX is not zero these instructions have no function.

 54 split

 55 split

 56 shr

 57 offAACD

 58 pushB

 59 offBBCD

 60 zeroD

 61 split

 62 movii

 63 shr

 64 offAACD

 65 offBBCD

 66 incC

 67 zeroD

 68 split

 69 not0

 70 ifz

 71 ifz

 72 shr

 73 offAACD

 74 offBBCD

 75 nop1 nop1

 76 nop0 nop0

 77 movii movii

 78 decC decC

 79 ifz ifz

 80 jmpo jmpo

 81 nop0 nop0

 82 nop1

 83 nop0

 84 nop0

 85 incA incA

 86 incB incB

 87 jmpb jmpb

 88 nop0 nop0

 89 nop1 nop1

 90 nop0 join

 91 nop1 divide

 92 ifz

 93 nop1

 94 nop0

 95 nop1

 96 nop1

 97 popC

 98 popB

 99 popA

100 ret ret

101 nop1 nop1

102 nop1 nop1

103 nop1

104 nop0

105 ifz
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10 zeroD ifz

11 adro
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Abstract

There is growing evidence that much of the DNA in higher  genomes is  poly-functional, with the 
same nucleotide contributing to more than one type of code. Such poly-functional DNA should 
 logically be multiply-constrained in terms of the probability of sequence improvement via random 
mutation. We describe a model of this relationship, which relates the degree of poly-functionality 
and the degree of constraint on mutational improvement. We show that: a) the probability of 
 beneficial mutation is inversely related to the degree that a sequence is already optimized for a given 
code; b) the probability of beneficial mutation drastically diminishes as the number of overlapping 
codes increases. The growing evidence for a high degree of optimization in biological systems, and 
the growing evidence for multiple levels of poly-functionality within DNA, both suggest that muta-
tions that are unambiguously beneficial must be especially rare. The theoretical scarcity of beneficial 
mutations is compounded by the fact that most of the beneficial mutations that do arise should confer 
extremely small increments of improvement in terms of total biological function. This makes such 
mutations invisible to natural selection. Beneficial mutations that are below a population’s selection 
threshold are effectively neutral in terms of selection, and so should be entirely unproductive from 
an evolutionary perspective. We conclude that beneficial mutations that are unambiguous (not delete-
rious at any level), and useful (subject to natural selection), should be extremely rare.

Key words: beneficial mutation, probability, multiple codes, overlapping codes, ENCODE, poly-
functional DNA, selection threshold

1. Introduction

It is almost universally acknowledged that beneficial mutations are rare compared 
to deleterious mutations [1–10]. However, there is controversy regarding just how 
rare beneficial mutations actually are. It appears that beneficial mutations may be 
too rare to actually allow the accurate measurement of how rare they are [11]. For 
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decades it has been widely thought that beneficial mutations might be as rare as 
one in a million [12, 13]. However, more recently some have argued that beneficial 
mutations might be much more common [14, 15].

The actual rate of beneficial mutation is a crucial question, because if deter-
mines both the speed and the direction of genetic change. If beneficial mutations 
are extremely rare, this profoundly limits the rate and range of all forward genetic 
change. Furthermore, to the extent that beneficial mutations may be extremely 
rare, the question arises — “how can there be any net gain in total biological 
f itness?” This question arises because it is widely recognized that in large genomes 
most mutations should have very small effects, and so large numbers of  low-impact 
deleterious mutations should not be subject to  purifying selection [16-33]. This 
means that over time large numbers of such deleterious mutations should accumu-
late continuously, leading to ever-increasing genetic load [29-33]. In order to halt 
such genetic deterioration, one must invoke the continuous amplification of a large 
number of beneficial mutations to fully compensate for all the accumulating 
 deleterious mutations [34–36].

Fisher addressed the problem of the rarity of beneficial mutations as long ago 
as 1930 [37]. He argued that beneficial mutations might be quite common. He 
used the illustration of focusing a microscope. A random change in focal length 
has a nearly equal chance of either improving or diminishing the focus, assuming 
three things: a) the microscope is significantly out of focus, b) the change in focus 
is very small, and c) focus is just a one dimensional trait (a single knob — turned 
either up or down). We now know that Fisher’s three necessary conditions do not 
apply to the real biological world. Biological systems are highly optimized (the 
microscope is not substantially out of focus), a beneficial mutation must be subject 
to selection, so its biological effect must not be too small (so very tiny changes in 
focus are not feasible), and fitness is extremely multi-dimensional (there is much 
more to biological functionality than optimizing a single parameter such as focal 
length).

Fisher acknowledged that focusing a microscope just involves optimization in 
a single dimension, and conceded that to the extent that fitness is not a simple one-
dimensional trait, his analogy would break down. He went on to show that as the 
number of “dimensions” of fitness increased, the probability of beneficial muta-
tion should rapidly decrease. This insight was profound, yet in his day he could 
not have realized how extremely multi-dimensional biological fitness really is. 
Fisher lived before the revolution in biology — he knew nothing of cell biology, 
molecular biology, or molecular genetics. We now know that total biological 
 fitness is multi-dimensional in the extreme. In a sense, every functional nucleotide 
within a  genome adds another dimension to the fitness equation. So in a sense 
Fisher’s allegorical “microscope” has millions of knobs that must be focused 
simultaneously and interactively.
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In the last decade, we have discovered still another aspect of the  multi- dimensional 
 genome. We now know that DNA sequences are typically “ poly-functional” [38]. 
Trifanov previously had described at least 12 genetic codes that any given nucleo-
tide can contribute to [39,40], and showed that a given base-pair can contribute to 
multiple overlapping codes simultaneously. The first evidence of overlapping pro-
tein-coding sequences in viruses caused quite a stir, but since then it has become 
recognized as typical. According to Kapronov et al., “it is not unusual that a single 
base-pair can be part of an intricate network of multiple isoforms of  overlapping 
sense and antisense transcripts, the majority of which are unannotated” [41]. The 
ENCODE project [42] has confirmed that this phenomenon is ubiquitous in higher 
genomes, wherein a given DNA sequence routinely encodes multiple overlapping 
messages, meaning that a single nucleotide can contribute to two or more genetic 
codes. Most recently, Itzkovitz et al. analyzed protein  coding regions of 700 species, 
and showed that virtually all forms of life have extensive overlapping information 
in their genomes [43]. So not only are there many “knobs” in Fisher’s microscope 
analogy, each one can affect multiple traits simultaneously and interactively.

In light of these new developments, it is timely to reexamine the question of the 
probability of beneficial mutation, the utility of Fisher’s model,  Fisher’s Theorem, 
and Fisher’s insight about multiple fitness dimensions. This paper examines the 
probability of a selectable beneficial mutation arising within a DNA sequence that 
is functional (hence must be significantly optimized), and contains multiple 
  overlapping codes.

2. Method and Results

2.1 The Model

For illustration, in Figure 1 we show a hypothetical 100 base pair sequence, which 
participates in 12 partially overlapping codes.

Starting Assumptions:

1. We only consider here a “functional sequence”. We assume this sequence is 
not primarily “ junk DNA”, but that for the most part it encodes information, 
yet we allow for rare nucleotide sites within the functional sequence that are 
perfectly neutral.

2. Each nucleotide within the functional genome is classified by level (L1–L12), 
depending on how many codes it contributes to. A nucleotide that does not con-
tribute to a given code is considered neutral relative to that code. A  nucleotide 
which does not contribute to any of the codes is considered perfectly neutral and 
will be designated L0.
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Fig. 1.  A model nucleotide sequence of 100 bases that encodes 12 partially overlapping codes. 
Each sub-section represents the positions of the Genome Section that participate in that  particular 
code. For example, only the first 10 positions of the Genome Section participate in Code 1 whereas 
all except the last 5 positions of the Genome Section participate in Code 12. Nucleotide positions 
of the Genome Section that do not fall into any code are considered entirely neutral with respect to 
those codes, since they play no part in what the function of those codes may be. In that regard, these 
neutral positions are not part of the functional genome (at least with respect to those specific 
codes).

3. Consistent with commonly used evolution models [41, 44–46], we assume the 
optimization of a composite organism is determined by a single fitness  function. 
The contribution of each code to fitness is assumed to arise by  aggregation of 
constraint commonly found in multi-objective optimization [47-50].

4. We assume a high degree of optimization within each code, although this 
assumption can be relaxed, and is a tunable parameter within the model. For 
the analysis and discussion we assume 99.9% of the nucleotide positions 
defining a code are already an optimal nucleotide.
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5. For those nucleotides that are part of a given code but are not yet the optimal 
nucleotide for that code, we assume that only one of the three alternative 
nucleotides will be an improvement relative to the existing sub-optimal nucle-
otide. Mutations at such sites will therefore have one-third chance of being 
beneficial, but will still have a two-thirds probability of being deleterious. 
Another way to say this is that for a given site, relative to a given code, there 
is a hierarchy of most desirable nucleotide (ranked first) to least desirable 
nucleotide (ranked fourth), and as a rule the non-optimal nucleotide is ranked 
second, rather than third or fourth. This reflects the idea that even if 
 non-optimal, the existing nucleotide is not truly random.

6. We assume independence in the designation of different optimal codes, such 
that the nucleotide deemed optimal for a given code (at a position) is chosen 
independently of the other nucleotides that are optimal for codes that may 
overlap at that position. In other words, for position 1, the first code may view 
G as the optimal nucleotide, whereas the second code may consider T the 
optimal nucleotide, or both may consider C optimal, etc. Although the nucleo-
tide at a position may be shared by several codes (in the case of overlap), we 
assume that a nucleotide for an optimal code sequence is chosen only with 
respect to other nucleotides within that same code, and not with respect to 
other codes which may or may not overlap with it on the genome section 
 currently or in the future. Modeling these optimal code sequence decisions as 
independent gives rise to the Bernoulli model presented here.

7. Lastly, we make the simplifying assumption that beneficial and deleterious 
mutations have “unit magnitude” effects, such that if one of each is present, 
their combined effects effectively cancel out (See Discussion).

2.2 Analyses

We analyzed how  overlapping codes affect the probability of beneficial mutation 
in three ways. The first analysis involved a very simple calculation of how multiple 
overlapping codes affect the theoretical probability of an “unambiguously benefi-
cial mutation”. We define an unambiguously beneficial mutation as a mutation that 
causes a benefit in at least one code, without causing any deleterious effect in any 
other code. The second analysis is more involved, and examines the probability of 
a “net-effect beneficial mutation”. A net-effect beneficial mutation is a mutation 
that improves more codes than it disrupts. The last analysis involves an empirical 
analysis of how overlapping English words (i.e. as in a crossword puzzle), affect 
the probability of creating a new valid word.
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2.2.1 First Level of Analysis:

When we consider  poly-functional nucleotide sites, it is relatively simple to cal-
culate the probability of mutations which are “unambiguously beneficial” (i.e., 
beneficial in one code, and not deleterious in any other code). For example, let us 
assume all codes are 99.9% optimized, (such that 99.9% of all mutations will be 
deleterious for any given code). Even for that one-in-a-thousand site which is 
 sub-optimal, on average only about half of the nucleotide substitutions at such a 
site will be an improvement (which in this simple analysis we can ignore). For L1 
nucleotides, the rate of unambiguously beneficial mutations will be at best one in 
103, for L2 nucleotides this rate will be at best one in 106, and for L3 nucleotides 
this rate will be at best one in 109. Generalized, for a Ln nucleotide, the rate will 
be at best one in 103n.  Overlapping codes, by their very nature, make unambigu-
ous mutations vanishingly rare. This means that within all poly-functional nucle-
otide sites, essentially all “beneficial mutations” will at best be ambiguously 
beneficial, being beneficial at just one level, but simultaneously being deleterious 
at one or more levels. Therefore at any poly-functional nucleotide site, a “benefi-
cial”  mutation will almost always still consistently have deleterious effects, sys-
tematically eroding the total amount of information in the entire information 
system.

2.2.2 Second Level of Analysis:

We can calculate the probability of a net-effect beneficial mutation for each 
nucleotide level (L1–L12) as described below.

Within a given code, assume that sequences are highly optimized. We use 
p(optimal) = 99.9% = 0.999 of all nucleotides being optimal in our recurring 
example. In the case of optimal nucleotide bases, any change is deleterious, 
assuming no neutral changes. Therefore, only r = 1 — p(optimal) = 0.1% = 0.001 
are subject to beneficial mutation. There are no absolutely neutral positions in any 
given code, because by definition such a position is not part of that code. The 
conditions for net beneficial or net deleterious changes, therefore, are as follows:

To be a net-beneficial mutation:

• The current nucleotide in that position must be non-optimal AND
• The change must be to a beneficial nucleotide, which occurs with a 1/3 prob-

ability, denoted as

p (benefi cial | non-optimal)
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To be a net-deleterious mutation:

• The current nucleotide in that position can be optimal OR
• The change must be to a deleterious nucleotide, which occurs with a 2/3 prob-

ability, denoted as

(1 — p(benefi cial | non-optimal))

Given these assumptions, we calculate the probability that for a single code a 
mutation at a uniformly random chosen position is beneficial as follows, according 
to the law of total probability:

p ( B )  = 

p(non-optimal) × p(benefical | non-optimal) + p(optima1) × p(benefical | optimal)

= p(non-optimal) × p(benefical | non-optimal) + 0
= (1–p(optimal)) × p(benefical | non-optimal)

= r × p(benefical | non-optimal)

Given the stated assumptions, for any single code, a mutation at a position 
chosen at random that mutates has a probability of being a beneficial (B) muta-
tion equal to p(B) = (1/3)r = 0.00033. This, in turn, means that a random 
 position that mutates has a probability of being a deleterious (D) mutation 
equal to 1 — p(B) = 0.99967.

A mutation occurring to a single nucleotide may be beneficial or deleterious for 
any given code (as per previous discussion, neutral cases are excluded). Let’s con-
sider a few specific cases before generalizing:

(1) If the nucleotide is a L1 nucleotide then there is only one possibility: a mutation 
will be either beneficial (B) or deleterious (D) with p(B) = 0.00033 and 1 — 
p(B) = 0.99967.

(2) If the nucleotide is a L2 nucleotide then there will be four possibilities: 1) a 
mutation may be beneficial for both codes (B,B); 2) a mutation may be benefi-
cial to the first code and deleterious to the second code (B,D); 3) a mutation 
may be deleterious to the first code and beneficial to the second code (D,B) 
or, 4) a mutation may be deleterious to both codes (D,D). For such nucleotide 
positions, there is a value for each code, each of which is either beneficial or 
deleterious. We will make the simplifying assumption that where there is a 
beneficial effect in one code and a deleterious effect in another code, these 
effects will essentially cancel, leaving a neutral effect. Therefore (B,B) will be 
beneficial, (D,D) will be deleterious, while (D,B) and (B,D) will be neutral. In 
this case,
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p(beneficial) = p(B,B) = p(B)2 = 1.11 × 10−7

p(neutral) = p(B,D) + p(D,B) = 2 × p(B) × (1−p(B)) = 6.66 × 10−4

p(deleterious) = p(D,D) = (1−p(B))2 = 0.99933

(3) In all other cases, where more than two codes are involved, there can be more 
than two factors to consider. For example, for L3 positions, there are three 
levels of mutational effect.

(4). If the nucleotide is a LN nucleotide, there will be 2N possibilities. To 
generalize:

Let Li be the level of a particular nucleotide. Combining all of the above, and 
 formulating the binomial within our model parameters, if there are N codes and an 
L-level nucleotide, then the probability of a beneficial mutation for this L-level 
nucleotide, p(B)L, is obtained with the binomial distribution [42]

 
1

2

( ) ( ) (1 ( ))
L

k L k
L

L
k

L
p B p B p B

k
-

+È ˘=Í ˙Í ˙

Ê ˆ
= -Á ˜Ë ¯Â  (1)

where L is the number of codes, 1
2

L+È ˘Í ˙  is the minimum number of codes that 
 constitute a majority (with the brackets denoting the ceiling function), and

p(B) = (1−p(optimal)) × p(benefi cial | non-optimal)

with p(optimal) denoting the probability that a nucleotide is already optimal.

In similar fashion, the probability of a deleterious mutation for this L-level 
 nucleotide, p(D)L, is obtained with:
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p D p B p B
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In general, the probability of a neutral mutation is

 
2

2

( ) 1 ( ( ) ( ) )

( ( )(1 ( )) ( is even)
L

L L L

L

p neutral p B p D

L
p B p B Ld

= - +

Ê ˆ
= - ¥Á ˜Ë ¯

 (3)

where δ (L is even) is one when L is even and is zero otherwise. When L is even, 
p(B)L = 1−p(D)L . For p(B) << 1 (in other words, when p(B) is near zero), this 
becomes approximately true for large odd L.

The value of p(B)L (the probability of a beneficial mutation) in equation (1) 
rapidly goes to zero for increasing L when p(B) << 1. Because differentiating 
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between of probabilities like 10−11 and 10−22 is intuitively challenging, we propose 
use of the information measure [51, 52, 53]

I [L+] = –log2(p(B)L)

I[L+] measures the probability in terms of flips of a fair coin. If I[L+] = 3 bits, 
for example, the corresponding probability is the same as forecasting the result of 
three flips of a fair coin, i.e. p = (½)3 = 0.125. I[L+] = N bits corresponds to a prob-
ability of p = (½)N. To place this measure in perspective, there are 1015 square 
millimeters in an area of 1000 square kilometers. The probability of two people 
choosing the same square millimeter is thus 10−15. Since –log2(10−15) = 50 bits, the 
success probability is the same as the probability of predicting 50 sequential 
 outcomes of the flipping of a fair coin.

A plot of I[L+] is shown in Figure 2 as a function of L for various values of r, where 
r = 1−p(optimal). The plots rapidly approach improbable values. For r = 0.001, a 
value of L = 12, p(B)L = 4.15 × 10−22 or I[L+] = 71 bits. The chance of choosing the 
same millimeter twice in a distance of 100 light years (10−21) is more probable.

Fig. 2.  Plot of I[L+] (information, in bits) versus L for various values of r = 1 — p(optimal). Even 
numbered codes are omitted for clarity. Since the probability of a beneficial mutation, p(B)L, 
decreases exponentially with increasing L, the logarithmic information measure I[L+] increases 
 linearly with increasing L. The right-hand scale indicates the probability of net beneficial mutation, 
using standard scientific notation. The three lines represent the cases where the overlapping codes 
are weakly optimized (10% of nucleotides are sub-optimal), moderately optimized (1% of nucleo-
tides are sub-optimal), and highly optimized (0.1% of nucleotides are sub-optimal).
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Our analysis suggests that increasing either the number of  overlapping codes or 
the degree of optimization has negative effects on the probability of producing a 
beneficial mutation. A high degree of optimization makes beneficial mutations 
unlikely — even when considering just one code. As more codes are considered, 
the probability of beneficial mutation diminishes rapidly, as is shown in Figures 3, 
4 and 5. The ratio of beneficial to deleterious mutations decreases so rapidly that 
for L3 nucleotides in highly optimized sequences, the number of deleterious muta-
tions expected before the first beneficial arose would be greater than the genome 
size of a typical bacterium. For L5 nucleotides, the number of deleterious muta-
tions expected before the first beneficial arose would be greater than the genome 
size of a typical mammal. While relaxing the optimization assumption reduces the 
severity of the problem (as can be seen in Figure 4), increasing the number of 
overlapping codes diminishes the likelihood of attaining a net beneficial mutation 
even for weakly optimized systems. If we allow, within a functional sequence, for 
overall optimization values as low as 50%, deleterious mutations remain roughly 
a thousand times more likely than beneficial mutations in the presence of twelve 
overlapping codes. As the organism becomes more optimized, the probability of 
receiving an overall beneficial mutation falls rapidly.

Fig. 3.  Number of Codes (L) and p(optimal), plotted against p(B)L, for one to one-hundred codes, 
showing the general behavior of the model as L increases. The probability of an overall beneficial 
mutation, p(B)L , decreases exponentially with increasing L.

(Note: The spikes on the surface of the plot, visible near the rear plane of the figure, result from 
the difference between the majority of an even number of codes and the majority of an odd number 
of codes. For example, six is the majority for ten codes (60% of total); whereas six is also the major-
ity for eleven codes (only 54% of total). The disparity declines with increasing L.)
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We are forced to conclude that the poly-functionality of DNA profoundly 
affects the expected rate of beneficial mutations. The growing evidence for  poly-
functional DNA therefore suggests that unambiguously beneficial mutations 
should be vanishingly rare.

2.2.3 Third Level of Analysis:

To further test the effect of multiple constraints on the appearance of beneficial 
mutations, we constructed a simple  poly-constrained artificial system based on 
English crossword puzzles. Crossword puzzles, for our purpose, are simply coll-
ections of words with overlapping, shared letters among some of the words. 
Figure 6 contains an illustration of such puzzles. We are most familiar with 
 two- dimensional crossword puzzles, where up to two words may share a single 
letter, but crossword puzzles can be extended to many dimensions. An L-dimensional 
 crossword puzzle is here defined as a collection of words, such that up to L words 
may share a single, overlapping letter, for one or more letters in the puzzle. Each 

Fig. 4.  p(B)L for different p(optimal) using a fixed p(beneficial | non-optimal) value of 0.34. Even 
numbered codes are omitted for clarity. If more than 80% of nucleotides are optimized, the 
 probability of a beneficial mutation is near zero for L ≥ 5.
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Fig. 5.  Exponential decay of p(B)L as the number of codes (L) increases. Even numbered codes are 
omitted for clarity. The line for p(optimal) = 0.999 is indistinguishable from the horizontal axis.

Fig. 6.  Crossword puzzles are familiar poly-constrained systems. Intersecting words create 
 constraints on overlapping letters, such as the E of FILE in the first puzzle. Although a viable, 
functional mutation may change FILE to FILL, this would simultaneously change INTOLERANT 
to the non-functional INTOLLRANT, a non-word. As we increase the number of dimensions, the 
number of overlapping words can increase as well, further preventing beneficial changes.

overlap forms a constraint on our puzzle, which limits the possible letters that are 
allowed in a given position. Increasing the number of words that share a single 
letter increases the number of constraints on that particular letter, and limits 
the number of values that letter position may take.
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It is known that English words can be transformed into other English words via 
substitutions of single letters, such as changing the T in RAT to a P, forming RAP. 
When a letter is constrained within a puzzle, however, changes can affect more 
than one word simultaneously. A change to a letter may result in a new English 
word at one level, but render a second word that shares the letter non-functional 
(non-English). For example, if we have both DOG and GRATEFUL overlapping 
in a puzzle and sharing a common G, then changing DOG to DOT would change 
GRATEFUL to the non-English TRATEFUL, which is a deleterious change. 
However, in some cases we can make an overall beneficial substitution, such as 
when DOG and GO overlap on the G, and we change GO to the word TO. If our 
model is correct, then increasing the number of words that overlap should nega-
tively affect the probability of overall beneficial mutations occurring. Therefore, 
using our simple artificial system, we examine the degree to which overlapping 
constraints prevent net beneficial mutations from occurring in L-dimensional 
crossword puzzles. In this section, we define a beneficial mutation as any change 
in a word that results in another English word, for a non-optimal position. Mutated 
words were checked against a text file containing 113,809 official Scrabble® words 
to confirm whether or not they were functional English words, and if they were 
found in the file, the change was counted as beneficial for that word, as long as the 
word was not already optimal. If multiple words were changed by a single mutation, 
we compared how many of the changes were beneficial to how many were deleteri-
ous. When the majority of the changes were beneficial, the mutation was counted 
as beneficial.

We tested groups of 1, 3, 5, 7, 9 and 11 words that contained an overlapping, 
shared letter. To construct the groups of words, we randomly selected a single 
 letter from the alphabet with uniform probability, and randomly selected a sam-
ple of L words containing the letter uniformly from our list of possible words. We 
assumed the overlap occurred at the first instance of the chosen letter within each 
word. This resulted in an L-dimensional puzzle, with the shared letter being the 
single point of overlap among all words.

Next, we selected a new letter at random from the alphabet (excluding the cur-
rent letter) with uniform probability, and changed the letter in each of the words. 
If the change resulted in other English words for the majority of the words in our 
group, we counted the mutation as beneficial overall. We also introduced a notion 
of optimization, so that the overlapping letter had a probability, p(optimal), of 
already being the ‘optimal’ letter at that position, meaning that for all the possible 
words that could occur by varying that letter, the current one was already the best. 
If a word was already optimal, then any mutation at the shared letter counted as 
deleterious, regardless of whether or not it resulted in another English word.

Figure 7 shows the results of our tests, based on ten-million empirical trials. 
We found that the estimated probability that a uniform random letter change to a 
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 randomly selected English word would result in another word was roughly 1.65% 
(using a p(optimal) value of 0.0). As we increase either the level of optimization or 
the number of overlapping words (L), this probability drops as expected. If more than 
five overlapping words are present, then the probability of making a change that is 
beneficial for the majority of words on the shared letter is empirically less than one 
in 107. For eleven overlapping words (similar to eleven  overlapping codes in our 
biological model), we were unable to find a single example of an overall beneficial 
change during our tests. Therefore, we find the same dearth of unambiguously benefi-
cial mutations in simple  poly-constrained systems such as crossword puzzles, due to 
constraints imposed by the presence of interlocking, mutually dependent systems.

2.2.4 Summary of Results:

Having overlapping genetic codes profoundly reduces the probability of beneficial 
mutation. This is most dramatically seen when we consider unambiguous 

Fig. 7.  Empirical results from ten-million trials, plotting the probability of achieving an overall 
beneficial mutation, p(B)L, when mutating a shared letter among L words. Beneficial mutations were 
defined as changing a non-optimal word (with probability determined by p(optimal)) to another 
English word. Graph contains data points for odd numbered L only. The line for p(optimal) = 0.999 
is indistinguishable from the horizontal axis.
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beneficial mutations — which are not deleterious for any one of the overlapping 
codes. For example, for those nucleotides that contribute to just three different 
overlapping codes, assuming each code is 99.9% optimized, less than one in a 
 billion mutations will be unambiguously beneficial. For net-effect beneficial 
mutations, having three overlapping codes still reduces the probability of benefi-
cial mutation down to less than one per 106. When we experimentally test our 
basic model using a real information system (overlapping English words in the 
context of a crossword puzzle), we see empirical confirmation of our genetic 
analysis (even though our only requirement is that a letter substitution creates a 
new valid English word). Assuming no optimization (namely p(optimal) = 0.0), 
the  probability of having a productive letter substitution within a single word is 
1.65%, but when a letter substitution occurs where just three words overlap and 
p(optimal) ≥ 0.75, the probability drops to 7.64 × 10−5. For nine overlapping words 
and p(optimal) ≥ 0.75 it drops to less than 10−7. Our results clearly show that over-
lapping codes reduce the potential for beneficial mutation in a most profound way, 
even for moderately optimized systems.

3. Discussion

Beneficial mutations in nature appear to be so rare that after decades of research 
we still cannot empirically determine just how rare they are [11]. This suggests 
they are very rare indeed. There are many reasons to believe that beneficial muta-
tions must be very rare. A mutation is a component of an organism’s genetic speci-
fications. Specifications are, by definition, specific. For life to be life requires an 
exquisite degree of specification — optimization that is hard for us to understand, 
involving global integration of thousands of systems which have hundreds of 
 thousands of interactions [54]. What is being specified are all the instructions for 
the establishment, maintenance, and operation of a network of countless biological 
functions. These functions are integrated into a single elaborate system that is 
more complex than anything man has ever designed. Each biological specification 
is encoded by strings of characters (nucleotides or amino acids) that are very 
 specific (and hence very unlikely), with each character having meaning only in the 
context of many other characters — like letters in a book or like the binary bits 
comprising a computer code. Any random change in such a set of specifications 
causes some loss of useful information — with a very high degree of probability. 
The more that each character is contextually interactive with other characters, the 
less feasible it becomes to improve a set of specifications via random character 
changes, because each character is multiply constrained by its many contextual 
relationships.
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It has often been argued that life’s specifications must be very unconstrained, 
citing “ junk DNA”, synonymous sites in protein coding regions, and the general 
concept of “bad design”. However since the  ENCODE project the term “junk 
DNA” has been largely abandoned [42,55]. “Synonymous mutations” have been 
shown to be biologically very important [56]. Arguments of bad design have 
assumed we understand every possible design constraint for a given biological 
component — which seems unreasonable in light of evidence for poly- functionality 
of most biological components.

It is now clear that biological systems are very robust and can tolerate much 
genetic damage. While many in the past have argued that this is due to a general 
lack of specificity (many sequences will do), this no longer seems reasonable. 
It now seems more likely that biological systems are robust because of many levels 
of auto-regulation, self-correction, and countless back-up systems. The new field 
of systems biology informs us of near-optimality in biological systems, and this 
appears to be ubiquitous. Such ubiquitous optimality is only conceivable given 
extremely specific (hence extremely constrained) genetic specifications. Such 
nearly-optimal genetic specifications should inherently be very difficult to 
improve, especially when limited to changes which only arise as rare, random, and 
isolated events.

The discovery of ubiquitous  poly-functional DNA is profound, and forces us to 
reassess our understanding of the degree of genetic specificity and the probability 
of beneficial mutation. Trifanov pioneered the concept that genomes have a mul-
tiplicity of codes and such codes can overlap [40,41]. He showed that a given 
nucleotide site can participate in multiple genetic codes (with the standard protein 
code being just being one such code). This is the basic meaning of “poly- functional 
DNA” [38]. Regrettably, Trifanov’s profound discovery generated limited interest. 
However the ENCODE project has validated the importance of his ideas, and has 
shown that poly-functional DNA appears to be ubiquitous in higher  genomes.

To illustrate how a single nucleotide pair can participate in many different 
codes, let us consider some of the multiple functions a given nucleotide can 
 participate in (each of these modes of functionality has its own code). A given 
nucleotide could be: 1) part of an isochore structure; 2) part of a nucleosome 
 binding site; 3) part of a cohesion binding site; 4) part of a transcriptional  promoter 
or enhancer; 5) part of numerous forward-strand RNA transcripts, each with its 
own transcriptional start and stop points; 6) part of numerous reverse-strand RNA 
transcripts, each within its own transcriptional start and stop points; 7) part of an 
mRNA splice site; 8) part of an antisense RNA; 9) part of a nucleo-protein 
 complex; 10) part of several alternately-spliced proteins within the source genic 
region; 11) part of several alternately-spliced proteins between different genic 
regions; 12) part of the genome which regulates alternative splicing of  proteins; 13) 
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part of the 3-dimensional organization of the chromosome; 14) part of the 
3-dimensional organization of the entire genome; 15) part of the machinery which 
transports genic regions to active regions of transcription within the nucleus; 16) 
part of a site for attachment to the nuclear membrane; and 17) part of other 
 undiscovered coding structures.

Given that a single nucleotide pair can potentially participate in so many dif-
ferent codes simultaneously, it should be obvious that this allows data amplifica-
tion without increasing genome size, and so reflects a very sophisticated form 
of data compression. One interesting requirement of  overlapping codes is that 
each code must be partially “degenerate” (imperfect) to create the “flexibility” 
required to allow other overlapping codes. Such degeneracy might appear to the 
casual observer as an example of bad design, but would actually reflect extreme 
optimization.

Poly-functional DNA has several implications. Firstly, it is difficult to under-
stand how poly-functional DNA could arise through random isolated mutations. In 
illustration, when we write, it is difficult to compose a good paragraph (although 
with training our minds accomplish this with apparent ease). It involves a great 
deal of optimization because the letters interact, the words interact, the sentences 
interact, and the ideas interact. But imagine if it was required that such a paragraph 
had to also have several other messages, using different languages, embedded 
within it (i.e., using every-other-letter codes, or by reading parts of the message 
backwards). It would obviously be vastly more difficult to compose a coherent 
paragraph. The chance of random letter changes creating these types of overlap-
ping messages (in multiple languages) seems incredible, and the chance that 
  natural selection could sort out all the possible interactions also seems 
incredible.

Given an existing  poly-functional DNA sequence, it would seem inordinately 
difficult to improve it via random mutation. This is at the heart of this paper’s 
analysis. Poly-functional DNA by its very nature is ultra-specific, highly- optimized, 
and hence highly-constrained. This paper shows that when a nucleotide participates 
in more than one code, a mutation at that site is going to almost  certainly be 
 deleterious relative to the first code, and even when a mutation is beneficial in the 
first code, it will still almost certainly be deleterious in one or more of the other 
codes. Hence a mutation at a poly-functional site will at best be only “ambiguously 
beneficial” — still being deleterious at one or more other  levels. The exact degree 
to which nucleotides participate in two or more codes is still unknown, but if it is 
at all common, it should profoundly reduce the  probability of mutations which are 
unambiguously beneficial.

Mutations that affect more than one code are pleiotropic, in that they have 
 multiple biological effects. This is consistent with what geneticists have known for 
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many decades — most known mutations are pleiotropic at some level — affecting 
more than one biological trait. In the case of most human genetic pathologies, the 
multiple effects of a mutation are usually all negative. In the rare case of an 
ambiguously beneficial mutation, a certain beneficial effect will be combined with 
one or more deleterious effects (for example, carriers of the mutation for sickle 
cell anemia are more resistant to malaria — but suffer from impaired hemoglobin 
function and reduced red blood cell counts).

In our analysis we have for simplicity assumed that if a mutation has a single 
beneficial effect and a single deleterious effect, it is counted as neutral. However 
this is not realistic because we can logically expect most such ambiguous muta-
tions to have a net deleterious effect. This is because, not only is it more likely for 
a random change to damage an optimized system than improve it, the nature of 
that damage will tend to be more pronounced than any potential improvement. 
Within a highly optimized genetic system, mutational damage can range from very 
slight to lethal — but improvements will consistently be only very slight. For 
example, certain spelling errors in a plane’s assembly manual could cause the 
plane to fly twice as slow, but no spelling error can be expected to cause the plane 
to fly twice as fast. Therefore selection for the ambiguous beneficial mutation is 
especially problematic — the positive and negative effects will tend to cancel out, 
but the deleterious effect will tend to overshadow the beneficial effect.

The analysis in this paper provides strong evidence that the discovery of multi-
ple  overlapping codes requires us to re-adjust downward our estimates of the rate 
of beneficial mutation. At the same time, the newly emerging field of systems 
biology strongly points to a very high degree of optimization in all biological 
systems, and this also requires us to adjust downward our estimate of the rate of 
beneficial mutation. Lastly, there is clearly a selection threshold [57], wherein 
below a certain limit, all low impact beneficial mutations must become invisible 
to  natural selection. Using realistic biological conditions, it appears that in a large 
 genome, at least 99% of all beneficial mutations should be so subtle as to 
be  un-selectable [57]. So the rate of useful beneficial mutations should be at least 
two orders of magnitude less that the rate of actual beneficial mutations. Taking 
this into consideration, this suggests we should reduce the probabilities reported 
in this analysis by another two orders of magnitude. Although we do not quantita-
tively analyze the problem of drift in this paper, it is important to note that the vast 
majority of beneficial mutations that do arise, and are above the selection thresh-
old of the population, are still lost due to  genetic drift.

Logic and mathematical analysis persuade us that unambiguous beneficial muta-
tions should be extremely rare. This is consistent with the apparent absence of docu-
mented mutations that are unambiguously beneficial (i.e., beneficial at one or more 
levels, while not deleterious on any level). To our knowledge there is no case of a 
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mutation which is unambiguously beneficial and which has been shown to distinctly 
improve the inner workings or an organism. Certainly there are numerous docu-
mented cases of simple adaptations to an external environment factor, but these 
special cases have little bearing on how most of the information within a genome 
arose — because most of a genome’s information specifies life’s internal workings.

The long-term E. coli experiments of Lenski et al. [58] have been widely 
acclaimed as “proof of evolution before our very eyes”. Such evolution would 
suggest that numerous beneficial mutations were arising. It is useful to examine 
these claims more carefully. The E. coli in these long-term experiments (which 
involved vast numbers of cells over vast numbers of generations), did not appear 
to evolve any new functions. The only changes that were observed involved adap-
tations to the specific artificial growth medium. This type of adaptive change to an 
external factor is only a superficial improvement — it does not explain how the 
E. coli  genome arose, nor how the information specifying the bacteria’s internal 
workings arose. Moreover, those studies failed to show any specific mutation 
which was unambiguously beneficial. In fact, it is clear that most of the adaptive 
mutations involved loss of function mutations — including deletions of genetic 
material [59]. It should be obvious that genetic material not essential for a given 
environment, if inactivated or deleted, can decrease metabolic load, and so can 
allow more total growth in that given medium. But all such broken genes and 
 deletions clearly involve a net loss of information, and there is no question that the 
resulting bacteria became less “fit” in the broader and truer sense. Such strains of 
bacteria would immediately go extinct in virtually any natural environment.

In that enormous evolutionary experiment, the closest instance to an unambigu-
ously beneficial mutation was a mutation that allowed the bacteria to utilize citrate 
from the artificial medium [60]. However, this did not actually involve  evolution 
of a new function — the E. coli already had all the machinery needed for metabo-
lizing citrate, but the citrate could not normally pass through the bacteria’s exter-
nal membrane. In light of the work of Behe [61], in such a case the most likely 
explanation for this mutant strain would be a loss-of-function mutation that would 
result in a leaky membrane. Certainly no exhaustive research was done to prove 
that the mutation in question had zero deleterious effect.

3.1 Possible Objecti ons

Contrary to the thesis of this paper, some scientists have argued that beneficial 
mutations might be extremely common — even approaching 50% of all non-
neutral mutations [14,15,37]. The concept that beneficial mutations might be 
extremely common traces back to some simple mental constructs suggested by 
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Fisher [37]. Fisher’s most famous illustration was the example of focusing a 
microscope. If the microscope is significantly out of focus and one makes a small 
random adjustment, there is roughly a 50% chance of improving the focus (this 
would only be true for extremely small adjustments). Fisher argued that in the 
same way, a very low impact mutation might have roughly a 50% chance of 
improving fitness (in his day the near-neutral mutation problem had not yet been 
identified, and he apparently did not consider that such a low-impact mutation 
might be inherently un-selectable). When Fisher developed this illustration, DNA 
had not yet been discovered, genes seemed to be very simple (beads on a string), 
and the nature of mutation was unknown. With the advent of molecular genetics it 
is now evident why this analogy simply is not applicable.

Fisher knew mutations happened, but he did not know what they really were. 
We now know mutations are essentially spelling errors in the assembly manual of 
the cell. There are some small isolated parts of the  genome (such as gene promot-
ers), which can act like an electric rheostat or like a microscope’s focusing 
knob. Mutations within these special regions can raise of lower a gene’s expres-
sion level — and in this special case mutations that can increase expression can 
conceivably be almost as common as those that decrease expression. For example, 
mutations in the promoter region of the growth hormone gene might cause either 
giants or dwarfs. These special variable switches within DNA appear to function 
for the purpose of fine-tuning a trait such as height. But these special cases do not 
reflect the true nature of total fitness (total biological functionality), and do not 
reflect the way most of the genome functions. A change in height can only result 
in two possibilities — taller or shorter. But overall biological fitness is inherently 
multi-dimensional, it involves a multitude of separate traits and is contingent upon 
millions of nucleotides, and requires very precise genetic specifications. When a 
single trait is defined by just 100 functional nucleotides, that trait’s genetic opti-
mum is an extremely specific set of 100 base pairs (one specific set of 4100 sets, or 
one in 1060). If that trait is anywhere near its optimum, then there are a multitude 
of mutations which can make the trait worse, but there are very few opportunities 
to make the trait better. This is analogous to a random letter change in a text that 
results in a superior text. As a message becomes more and more complex and 
refined, a text change must be more and more specific in order to enhance that 
message, and hence the greater the constraint for achieving improvement via any 
random change. As this paper shows, the recent discovery of  poly-functional DNA 
vastly compounds this problem. To his credit, Fisher acknowledged that the 
chance of improvement via a random change must approach zero — either when 
the focus is already nearly optimized, as the size of the change in focus grows 
larger, or as the number of dimensions defining the trait (i.e., overall fitness) 
becomes larger [37].
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There is another aspect of Fisher’s theoretical work, which arose because he did 
not understand that genes specify information and that mutations are just errors in 
genetic specifications. Fisher imagined that all biological variation arose sym-
metrically. In the case of the focusing knob on a microscope, the knob turns 
equally well both ways, and Fisher imagined this would be equally true for muta-
tions affecting any biological trait — such as height or vigor. There would be just 
as many mutations that increased performance as diminished it. This is the error 
underlying Fisher’s famous “Fundamental Theorem of Natural Selection” [37]. 
Given a population with performance levels following a bell-shaped curve, he 
reasoned that any level of selection will always remove at least some of the under-
performers and will favor at least some of the higher performing individuals. This 
would consistently yield higher mean performance in the next generation. He then 
assumed new mutations would arise creating new variation symmetrically around 
the new mean. This is what led Fisher to believe he had a mathematical proof that 
continuous evolutionary improvement was unavoidable. But we now know that 
mutations are essentially word-processing errors in the DNA, so new variation will 
be extremely asymmetrical and will be almost exclusively deleterious. So, for 
example, apart from a small set of mutations within its promoter region, mutations 
deleterious for a gene’s function will be much more common than mutations for 
enhanced function — invalidating  Fisher’s Theorem, and negating his simple 
microscope analogy.

When we consider the organism as an integrated whole, we conclude beneficial 
mutations should generally be very rare for the reasons discussed above. We can 
only rationalize that beneficials might be common when considering one tiny 
component of fitness at a time, such as height. When we do this we artificially 
make fitness seem one-dimensional — analogous to Fisher’s example of focusing 
his microscope. Within this very limited context, most of the constraints on what 
constitute a “beneficial” mutation disappear. For example, in terms of malaria 
resistance, a deleterious mutation in the hemoglobin gene can be defined as “ben-
eficial”, even though it is actually a semi-lethal mutation. Under this type of very 
limited one-dimensional analysis, the rate of beneficial mutation can appear much 
higher than it really is. This is especially true in the case of those rare mutations 
that strongly interact with major environmental factors that are external to the 
organism (i.e.,  antibiotic resistance). Relative to just that single component of the 
entire biological system, one can expect a reasonable probability of beneficial 
mutation. This is because any genetic change that interacts with that specific 
external factor has a nearly equal probability of making that factor’s impact either 
better or worse. This allows biological fine-tuning for a single isolated trait, rela-
tive to a single external factor. In these special cases Fisher’s microscope analogy 
has some validity, so that relative to that single trait (or within a single code), 
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random mutations can have a reasonable probability of being beneficial. This may 
explain why most examples of beneficial mutation involve a form of adaptation to 
a local condition. However, most genomic information does not involve adapta-
tion to specific high-impact external factors, but rather specifies a labyrinth of 
complex, integrated, and optimized biological functions internal to a living 
 system. The important distinction between adaptation to some local external 
 condition versus maintenance of total genomic integrity is illustrated by a recent 
study. That study showed that specific adaptive mutations within a mutagenized 
population, when tested in a particular environment, obscured, but did not halt 
genetic degeneration [62].

A few recent studies have inferred extremely high beneficial mutations rates, 
based on data from  mutation accumulation (MA) experiments [14,15]. These MA 
experiments have significant problems. No actual mutations were actually seen, 
the beneficial and deleterious mutation rates were only inferred based upon the 
differential growth rates of a limited number of isolated strains. These experiments 
were not capable of identifying the vast majority of subtle mutations that arose in 
the populations. They could only detect those few mutations that had large effects 
and affected a single trait (growth rate on a given medium) making inferences 
about total mutation rates entirely unwarranted. The observed effects in these two 
studies could be attributed to a specific one-dimensional adaptation, which could 
arise due to a specific mutational hotspot, or could even be due to an  epigenetic 
effect. Lastly, unintentional selection could not be rigorously precluded. 

Given the one-dimensional nature of these MA experiments, a relatively high 
rate of beneficial mutation is not unexpected because only one trait was measured, 
making fitness appear one-dimensional (like Fisher’s microscope), or like a simple 
one-dimensional trait such as height. In both of these studies, fitness was meas-
ured only in a very narrow sense and in a very specific and unnatural environment. 
Instead of total fitness, what was being measured was the degree of biological 
fine-tuning to a very specific and very artificial circumstance. In one case [14], the 
researchers tested the ability of yeast strains that were initially grown under mini-
mal selection conditions (to allow mutations to accumulate), to then grow slightly 
faster than the source strain in the same artificial medium where the mutations had 
been accumulating. In that study 5.75% of the derived lines grew faster than the 
parental strain, under those specific conditions. In a very similar yeast experiment 
[15], the researchers again minimized selection to allow mutation accumulation, 
and then tested derived strains for ability to compete with the parental genotype in 
artificial medium. In the second study 25% of the derived lines out-grew the 
parental strain. In both cases the researchers used extremely narrow and unnatural 
criteria for measuring “fitness”, and the singular traits they focused on might 
 easily have been affected (for better or worse) by very simple genetic or 
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epigenetic variations. However,  natural selection, as it occurs in the natural world, 
must act on “fitness” in a much fuller sense — it must involve all heritable traits, 
all functional nucleotides, all codes, all relevant environments, and all phases of 
the life cycle. The authors of one of these two studies freely acknowledge these 
types of limitations on the interpretation of their study (including the possibility 
of unintentional selection) and state: “the large proportion of beneficial mutations 
observed in our experiment may in part reflect a combination of factors: the 
 ancestor’s distance from the fitness optimum, yeast’s recent  genome duplication, 
our examination of only a single environment and life-history stage, and the 
 recessive nature of deleterious mutations” [14].

The two isolated reports mentioned above, which claim very high rates of 
 beneficial mutation, are inconsistent with a much broader range of observations. 
For example, the net effect of currently observed human mutation is universally 
recognized as being distinctly deleterious, and hence clearly represents a serious 
problem in terms of public health. This is made obvious by the fact that there are 
thousands of Mendelian pathologies documented in man, in spite of the tendency 
for natural selection to eliminate such mutations from the population. Conversely, 
there are only a handful of putative beneficial mutations commonly cited for man, 
despite the tendency for natural selection to amplify such mutations. Moreover, 
the “benefit” of most such mutations is typically equivocal, usually being defined 
as beneficial in only a very narrow sense (as in the case of sickle cell anemia).

Another possible argument against the thesis of this paper might be that it is 
contradicted by a substantial volume of scientific literature that uses DNA 
sequence comparisons to infer historical  positive selection events for great num-
bers of putative beneficial mutations. It is important to realize that th e vast 
 majority of the putative beneficial mutations claimed in these papers are just 
observed alternative nucleotides — with no known biological function (the pre-
sumed benefits being inferred, not being in any way understood or observed). We 
naturally acknowledge the operation of selection for beneficials in the past, but 
argue that such selection is severely constrained by the reality of very low rates of 
beneficial mutations, as this study and common sense both demand. It is notewor-
thy that a significant part of this body of literature that claims proof of so much 
positive selection in the past (based upon observed sequence variability in the 
present), may suffer from systematic error and is now being challenged [43,54,55]. 
Inferences of specific positive selection events in the past, based solely upon 
sequence data and allele frequencies, are mere historical inferences. The observed 
sequence variations might be explained using alternative mechanisms such as 
 differential mutation rates or ordinary statistical fluctuations.

A final possible argument against the thesis of this paper might be that our 
analysis involved point mutations, but did not consider duplications. Some might 
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argue that genetic duplications are especially likely to be beneficial. However in 
terms of immediate effects, duplications are more likely than other mutations to 
cause harm. Duplications are more likely to be immediately deleterious because 
unlike point substitutions, they scramble the genome — causing frame shifts and 
generally disrupting genomic context and architecture. Like the duplication of 
letters, words, or paragraphs in a regular text — genomic duplications add noth-
ing, but systematically disrupt context. Furthermore, unlike other types of muta-
tions, duplications increase metabolic load for the host cell in terms of DNA 
replication, repair, transcription, and translation. So if a duplication is neutral in 
terms of information, it is then by definition a deleterious mutation due to 
increased metabolic cost.

Can it be argued that even if duplications are not immediately beneficial, they 
might still be beneficial in the long run, producing large reservoirs of “ junk DNA”, 
which could then serve as a breeding ground for future evolutionary “experimenta-
tion and innovation”? The concept of building up a large amount of “junk DNA” 
in the genome for possible long-term evolutionary benefit has several flaws. 
Firstly, the most recent evidence [35,54] suggests that the genome is mostly func-
tional and that so there is little junk DNA. Secondly, the huge metabolic cost of 
junk DNA would be immediately deleterious. Thirdly, long-term benefits would 
be remote and hypothetical, while selection only operates in the present and can-
not anticipate future benefits. Fourthly, even within junk DNA, mutations can still 
be deleterious due to negative interactions with the functional genome. Lastly, the 
prospects for beneficial mutations arising within junk DNA is very problematic, 
because like a letter within a text, no nucleotide is good or bad in itself, but only 
in the context of many other nucleotides. Within the context of a non-functional 
array of letters, it is not reasonable to expect a spelling error to ever create useful 
information. Single letters outside of a functional context cannot take on a  function 
of their own. In the same way, within any DNA sequence that is truly neutral 
“junk”, there is no frame of reference for defining a point substitution as being 
either beneficial or deleterious in terms of useful information. There is no 
f unctional context within which beneficial mutations could arise — with one 
major exception. Ironically, there is one type of beneficial mutation that should 
arise systematically within junk DNA — deletions. Essentially all deletions within 
junk DNA should be beneficial, due to improved metabolic efficiency. The larger 
the deletion — the more the benefit, and so the stronger the selective advantage. 
So to the extent that selection is actually operational, all junk DNA should be 
systematically deleted. This should happen long before enough beneficial muta-
tions might accumulate within the junk DNA to give it a new and meaningful 
biological function.
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4. Conclusions

Our analysis confirms mathematically what would seem intuitively obvious — 
multiple overlapping codes within the genome must radically change our expecta-
tions regarding the rate of beneficial mutations. As the number of overlapping 
codes increases, the rate of potential beneficial mutation decreases exponentially, 
quickly approaching zero. Therefore the new evidence for ubiquitous overlapping 
codes in higher genomes strongly indicates that beneficial mutations should be 
extremely rare. This evidence combined with increasing evidence that biological 
systems are highly optimized, and evidence that only relatively high-impact ben-
eficial mutations can be effectively amplified by natural selection, lead us to con-
clude that mutations which are both selectable and unambiguously beneficial must 
be vanishingly rare. This conclusion raises serious questions. How might such 
vanishingly rare beneficial mutations ever be sufficient for genome building? How 
might genetic degeneration ever be averted, given the continuous accumulation of 
low impact deleterious mutations?

Addendum: We append the following reference which appeared following the 
finalization of this chapter, which shows evidence that mammalian genes have 
extensive overlapping functions (“Locating protein-coding sequences under selec-
tion for additional, overlapping functions in 29 mammalian genomes.” Lin MF, 
Kheradpour P, Washietl S, Parker BJ, Pedersen JS, Kellis M. Genome Res. 2011 
Nov;21(11):1916–28. Epub 2011 Oct 12). We also append another significant 
paper (“The genetic code is nearly optimal for allowing additional information 
within protein-coding sequences”, Itzkovitz S., Alon U., Genome Res. 2007 Apr; 
17(4):405-12. Epub 2007 Feb 9).
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Abstract

It is commonly argued that the spectacular increase in order which has occurred on Earth is 
 consistent with the  second law of thermodynamics because the Earth is not an isolated system, and 
anything can happen in a non-isolated system as long as the entropy increases outside the system 
compensate the  entropy decreases inside the system. However, if we define “X-entropy” to be the 
entropy associated with any diffusing component X (for example, X might be heat), and, since 
entropy measures disorder, “X-order” to be the negative of X-entropy, a closer look at the equations 
for entropy change shows that they not only say that the X-order cannot increase in an isolated sys-
tem, but that they also say that in a non-isolated system the X-order cannot increase faster than it is 
imported through the boundary. Thus the equations for entropy change do not support the illogical 
“compensation” idea; instead, they illustrate the tautology that “if an increase in order is extremely 
improbable when a system is isolated, it is still extremely improbable when the system is open, 
unless something is entering (or leaving) which makes it not extremely improbable.” Thus unless we 
are willing to argue that the influx of solar energy into the Earth makes the appearance of spaceships, 
computers and the Internet not extremely improbable, we have to conclude that at least the basic 
principle behind the second law has in fact been violated here.

Key words: Entropy, Second Law of Thermodynamics

1. Compensation

It is probably fair to say that the majority view of science today holds that physics 
explains all of chemistry, chemistry explains all of biology, and biology com-
pletely explains the human mind; thus, physics alone explains the human mind, 
and all it does.

In fact, since there are only four known forces of physics (the gravitational, 
electromagnetic and strong and weak nuclear forces), this means that these four 
forces must explain everything that has happened on Earth, according to this 
majority view. For example, Peter Urone, in College Physics [1], writes “One of 
the most remarkable simplifications in physics is that only four distinct forces 
account for all known phenomena.”
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In my 2000 Mathematical Intelligencer article, “A Mathematician’s View of 
 Evolution” [2], I argued against this view, asserting that the increase in order 
which has occurred on Earth seems to violate the underlying principle behind the 
 second law of thermodynamics, in a spectacular way. I wrote:

I imagine visiting the Earth when it was young and returning now to find high-

ways with automobiles on them, airports with jet airplanes, and tall buildings full 

of complicated equipment, such as televisions, telephones and computers. Then I 

imagine the construction of a gigantic computer model which starts with the ini-

tial conditions on Earth 4 billion years ago and tries to simulate the effects that 

the four known forces of physics would have on every atom and every subatomic 

particle on our planet. If we ran such a simulation out to the present day, would 

it predict that the basic forces of Nature would reorganize the basic particles of 

Nature into libraries full of encyclopedias, science texts and novels, nuclear 

power plants, aircraft carriers with supersonic jets parked on deck, and computers 

connected to laser printers, CRTs and keyboards? If we graphically displayed the 

positions of the atoms at the end of the simulation, would we find that cars and 

trucks had formed, or that supercomputers had arisen? Certainly we would not, 

and I do not believe that adding sunlight to the model would help much.

Anyone who has made such an argument is familiar with the standard reply: the 
Earth is not an isolated system, it receives energy from the sun, and entropy can 
decrease in a non-isolated system, as long as it is “compensated” somehow by a 
comparable or greater increase outside the system. For example, Isaac Asimov, in 
the Smithsonian journal [3] recognizes the apparent problem:

You can argue, of course, that the phenomenon of life may be an exception [to the 

second law]. Life on earth has steadily grown more complex, more versatile, 

more elaborate, more orderly, over the billions of years of the planet’s existence. 

From no life at all, living molecules were developed, then living cells, then living 

conglomerates of cells, worms, vertebrates, mammals, finally Man. And in Man 

is a three-pound brain which, as far as we know, is the most complex and orderly 

arrangement of matter in the universe. How could the human brain develop out of 

the primeval slime? How could that vast increase in order (and therefore that vast 

decrease in entropy) have taken place?

But Asimov concludes that there is no conflict with the second law here, because

Remove the sun, and the human brain would not have developed. ... And in the 

billions of years that it took for the human brain to develop, the increase in 
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entropy that took place in the sun was far greater; far, far greater than the decrease 

that is represented by the evolution required to develop the human brain.

Similarly, Peter Urone, in College Physics [1], writes:

Some people misuse the second law of thermodynamics, stated in terms of 

entropy, to say that the existence and  evolution of life violate the law and thus 

require divine intervention. ... It is true that the evolution of life from inert matter 

to its present forms represents a large decrease in entropy for living systems. But 

it is always possible for the  entropy of one part of the universe to decrease, 

 provided the total change in entropy of the universe increases.

Some other authors appear to feel a little silly suggesting that increases in 
entropy anywhere in the universe could compensate for decreases on Earth, so 
they are careful to explain that this “compensation” only works locally; for 
 example in Order and Chaos [4], the authors write:

In a certain sense the development of civilization may appear contradictory to the 

second law. ... Even though society can effect local reductions in entropy, the 

general and universal trend of entropy increase easily swamps the anomalous but 

important efforts of civilized man. Each localized, man-made or machine-made 

entropy decrease is accompanied by a greater increase in entropy of the surround-

ings, thereby maintaining the required increase in total entropy.

2. The Equations of Entropy Change

Of course the whole idea of compensation, whether by distant or nearby events, 
makes no sense logically: an extremely improbable event is not rendered less 
improbable simply by the occurrence of “compensating” events elsewhere. 
According to this reasoning, the second law does not prevent scrap metal from 
reorganizing itself into a computer in one room, as long as two computers in the 
next room are rusting into scrap metal — and the door is open. (Or the thermal 
entropy in the next room is increasing, though I am not sure how fast it has to 
increase to compensate computer construction!1)

1 Daniel Styer, however, in an American Journal of Physics article [5], apparently has figured out 
how fast thermal entropy needs to increase to compensate evolution. Assuming that “each individual 
organism is 1000 times more improbable than the corresponding individual was 100 years ago” 
(a “very generous” assumption) and using a generous estimate for the number of organisms on Earth, 
he calculates that the rate of decrease of entropy due to evolution is very small, only about 302 Joules 

b1567_Sec1.3.1.indd   170b1567_Sec1.3.1.indd   170 5/8/2013   2:38:51 PM5/8/2013   2:38:51 PM

 B
io

lo
gi

ca
l I

nf
or

m
at

io
n 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
2.

4.
17

.1
40

 o
n 

08
/1

1/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



 Entropy, Evolution and Open Systems 171

b1567  Biological Information — New Perspectives b1567_Sec1.3.1 8 May 2013 2:47 PM

To understand where this argument comes from, we need to look at the equa-
tions for entropy change, as given in Appendix D of my 2005 John Wiley book [6], 
and previously in my 2001 Mathematical Intelligencer article [7], “Can 
ANYTHING Happen in an Open System?”

Consider the diffusion (conduction) of heat in a solid, R, with absolute tempera-
ture distribution U(x, y, z, t). The  first law of thermodynamics (conservation of 
energy) requires that

 Qt = −∇ • J (1)

where Q is the heat energy density (Qt = cρUt) and J is the heat flux vector. The 
second law requires that the flux be in a direction in which the temperature is 
decreasing, i.e.

 J • ∇U ≤ 0 (2)

Equation 2 simply says that heat flows from hot to cold regions — because the 
laws of probability favor a more uniform distribution of heat energy.

“Thermal entropy” is a quantity that is used to measure randomness in the 
 distribution of heat. The rate of change of thermal entropy, S, is given by the usual 
definition as

 St = ∫∫∫R Qt /U dV (3)

Using (3) and the first law (1), after doing a (multidimensional) integration by 
parts, we get

 St = ∫∫∫∫R  — (J • ∇U)/ U2 dV − ∫∫∂R (J • n)/U dA (4)

per degree Kelvin per second! He concludes, “Presumably the entropy of the Earth’s biosphere is 
indeed decreasing by a tiny amount due to evolution and the entropy of the cosmic microwave back-
ground is increasing by an even greater amount to compensate for that decrease.” It should be noted 
that if one is dealt a given poker hand, then replaces some cards, according to Styer we can compute 
the resulting entropy decrease in the universe, in units of Joules per degree Kelvin (!), as kB log(N), 
where kB is the Boltzmann constant, if the new hand is N times more improbable than the first. It 
should also be noted that if organisms become 1000 times more improbable every century, that 
would imply that organisms today are, on the average, about 1030000000 times “more improbable” than 
organisms a billion years ago, but, according to Styer, there is no conflict with the second law as long 
as something (anything, apparently!) is happening outside the Earth which, if reversed, would be 
even more improbable.
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where n is the outward unit normal on the boundary ∂R. From the second law (2), 
we see that the volume integral is nonnegative, and so

 St ≥ − ∫∫∂R (J • n)/U dA (5)

From (5) it follows that St ≥ 0 in an isolated system, where there is no heat flux 
through the boundary (J • n = 0). Hence, in an isolated system, the entropy can 
never decrease. Since thermal entropy measures randomness (disorder) in the 
 distribution of heat, its opposite (negative) can be referred to as “thermal order,” 
and we can say that the thermal order can never increase in an isolated system.

Since thermal  entropy is quantifiable, the application of the second law to ther-
mal entropy is commonly used as the model problem on which our thinking about 
the other, less quantifiable, applications is based. The fact that thermal entropy 
cannot decrease in an isolated system, but can decrease in a non-isolated system, 
was used to conclude that, in other applications, any entropy decrease in a non-
isolated system is possible as long as it is compensated somehow by entropy 
increases outside this system, so that the total “entropy” (as though there were 
only one type) in the universe, or any other isolated system containing this system, 
still increases.

However, there is really nothing special about “thermal” entropy. Heat conduc-
tion is just diffusion of heat, and we can define an “X-entropy” (and an X-order = 
-X-entropy), to measure the randomness in the distribution of any other substance 
X that diffuses; for example, we can let U(x, y, z, t) represent the concentration of 
carbon diffusing in a solid, and use equation (3) again to define this entropy (cρ = 1 
now, so Qt = Ut), and repeat the analysis leading to equation (5), which now says 
that the “carbon order” cannot increase in an isolated system.2

Furthermore, equation (5) does not simply say that the X-entropy cannot 
decrease in an isolated system; it also says that in a non-isolated system, the 
X-entropy cannot decrease faster than it is exported through the boundary, 
because the boundary integral there represents the rate at which X-entropy is 
exported across the boundary. To see this, notice that without the denominator U, 
the integral in (3) represents the rate of change of total X (energy, if X=heat) in 
the  system; with the denominator it represents the rate of change of X-entropy. 
Without the denominator U, the boundary integral in (5) represents the rate at 

2 “Entropy” sounds much more scientific than “order,” but note that in this paper, “order” is simply 
defined as the opposite of “entropy.” Where entropy is quantifiable, such as here, order is equally 
quantifiable. Physics textbooks also often use the term “entropy” in a less precise sense, to describe 
the increase in disorder associated with, for example, a plate breaking or a bomb exploding (e.g., [8], 
p 651). In such applications, “order” is equally difficult to quantify!
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which X (energy, if X=heat) is exported through the boundary; with the denomi-
nator therefore it must represent the rate at which X-entropy is exported. 
Although I am certainly not the first to recognize that the boundary integral has 
this interpretation (see [9], p. 202)3, this has been noticed by relatively few peo-
ple, no doubt because usually the special case of isotropic heat conduction or 
diffusion is assumed, in which case J = −K∇U, and then the numerator in the 
boundary integral is written as −K∂U/∂n, and in this form it is not obvious that 
anything is being imported or exported, only that in an isolated system, the 
boundary integral is zero. Furthermore, entropy as defined by (3) seems to be a 
rather abstract quantity, and it is hard to visualize what it means to import or 
export entropy.

Stated in terms of order, equation (5) says that the X-order in a non-isolated 
system cannot increase faster than it is imported through the boundary. According 
to (4), the X-order in a system can decrease in two different ways: it can be con-
verted to disorder (first integral term) or it can be exported through the boundary 
(boundary integral term). It can increase in only one way: by importation through 
the boundary.

3. A Tautology

The  second law of thermodynamics is all about probability; it uses probability at 
the microscopic level to predict macroscopic change.4 Carbon distributes itself 
more and more uniformly in an isolated solid because that is what the laws of 
probability predict when diffusion alone is operative. Thus the second law predicts 
that natural (unintelligent) causes will not do macroscopically describable things 
which are extremely improbable from the microscopic point of view. The reason 
natural forces can turn a computer or a spaceship into rubble and not vice versa is 
probability: of all the possible arrangements atoms could take, only a very small 

3 Dixon has a section “The Entropy Inequality for Open Systems,” which contains the inequality, 
written out in words: “rate of change of entropy inside > rate of entropy flow in — rate of entropy 
flow out.” In any case, even if one refuses to recognize that the boundary integral in (5) represents 
the (net) rate that entropy is exported, the tautology given in the next section is still illustrated by this 
application, because this boundary integral still represents the “something” that is crossing the 
boundary that makes the decrease in entropy not extremely improbable.
4 In Classical and Modern Physics, Kenneth Ford [8] writes “There are a variety of ways in which 
the second law of thermodynamics can be stated, and we have encountered two of them so far: 
(1) For an isolated system, the direction of spontaneous change is from an arrangement of lesser 
probability to an arrangement of greater probability. (2) For an isolated system, the direction of 
spontaneous change is from order to disorder.”
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percentage could add, subtract, multiply and divide real numbers, or fly astronauts 
to the moon and back safely.

Of course, we must be careful to define “extremely improbable” events to be 
events of probability less than some very small threshold: if we define events of 
probability less than 1% to be extremely improbable, then obviously natural 
causes can do extremely improbable things.5 But after we define a sufficiently low 
threshold, everyone seems to agree that “natural forces will rearrange atoms into 
digital computers” is a macroscopically describable event that is still extremely 
improbable from the microscopic point of view, and thus forbidden by the second 
law — at least if this happens in an isolated system. But it is not true that the laws 
of probability only apply to isolated systems: if a system is not isolated, you just 
have to take into account what is crossing the boundary when deciding what is 
extremely improbable and what is not. What happens in an isolated system 
depends on the initial conditions; what happens in a non-isolated system depends 
on the boundary conditions as well.

The “compensation” counter-argument was produced by people who general-
ized the model equation for isolated systems, but forgot to generalize the equation 
for non-isolated systems. Both equations are only valid for our simple models, 
where it is assumed that only heat conduction or diffusion is going on; naturally 
in more complex situations, the laws of probability do not make such simple pre-
dictions. Nevertheless, in “Can ANYTHING Happen in an Open System?” [7], 
I generalized the equations for non-isolated systems to the following tautology, 
which is valid in all situations:

If an increase in order is extremely improbable when a system is closed, it is still 

extremely improbable when the system is open, unless something is entering 

which makes it not extremely improbable.

5 If we repeat an experiment 2k times, and define an event to be “simply describable” (macroscopi-
cally describable) if it can be described in m or fewer bits (so that there are 2m or fewer such events), 
and “extremely improbable” when it has probability 1/2n or less, then the probability that any 
extremely improbable, simply describable event will ever occur is less than 2k+m/2n. Thus we just 
have to make sure to choose n to be much larger than k + m. If we flip a billion fair coins, any out-
come we get can be said to be extremely improbable, but we only have cause for astonishment if 
something extremely improbable and simply describable happens, such as “all heads,” or “every 
third coin is tails,” or “only every third coin is tails.” Since there are 1023 molecules in a mole of 
anything, for practical purposes anything that can be described without resorting to an atom-by-atom 
accounting (or coin-by-coin accounting, if there are enough coins) can be considered “macroscopi-
cally” describable.
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The fact that order is disappearing in the next room does not make it any easier 
for computers to appear in our room — unless this order is disappearing into our 
room, and then only if it is a type of order that makes the appearance of computers 
not extremely improbable, for example, computers. Importing thermal order into 
a system may make the temperature distribution less random, and importing car-
bon order may make the carbon distribution less random, but neither makes the 
formation of computers more probable.

My conclusion, from “Can ANYTHING Happen in an Open System?” [7] is 
the following:

Order can increase in an open system, not because the laws of probability are 

suspended when the door is open, but simply because order may walk in through 

the door.... If we found evidence that DNA, auto parts, computer chips, and books 

entered through the Earth’s atmosphere at some time in the past, then perhaps the 

appearance of humans, cars, computers, and encyclopedias on a previously barren 

planet could be explained without postulating a violation of the second law 

here.... But if all we see entering is radiation and meteorite fragments, it seems 

clear that what is entering through the boundary cannot explain the increase in 

order observed here.

4. The Common Sense Law of Physics

I was discussing the second law argument with a friend recently, and mentioned 
that the second law has been called the “common sense law of physics.” The next 
morning he wrote:

Yesterday I spoke with my wife about these questions. She immediately grasped 

that chaos results in the long term if she would stop caring for her home.

I replied:

Tell your wife she has made a perfectly valid application of the  second law of 

thermodynamics.6 In fact, let’s take her application a bit further. Suppose you and 

6 Isaac Asimov [3] writes, “We have to work hard to straighten a room, but left to itself, it becomes 
a mess again very quickly and very easily.... How difficult to maintain houses, and machinery, and 
our own bodies in perfect working order; how easy to let them deteriorate. In fact, all we have to do 
is nothing, and everything deteriorates, collapses, breaks down, wears out — all by itself — and that 
is what the second law is all about.”

b1567_Sec1.3.1.indd   175b1567_Sec1.3.1.indd   175 5/8/2013   2:38:51 PM5/8/2013   2:38:51 PM

 B
io

lo
gi

ca
l I

nf
or

m
at

io
n 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
2.

4.
17

.1
40

 o
n 

08
/1

1/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



176 G. Sewell 

b1567  Biological Information — New Perspectives b1567_Sec1.3.1 8 May 2013 2:47 PM

your wife go for a vacation, leaving a dog, a cat and a parakeet loose in the house 

(I put the animals there to cause the entropy to increase more rapidly, otherwise 

you might have to take a much longer vacation to see the same effect). When you 

come back, you will not be surprised to see chaos in the house. But tell her some 

scientists say, “but if you leave the door open while on vacation, your house 

becomes an open system, and the second law does not apply to open systems...

you may find everything in better condition than when you left.” I’ll bet she will 

say, “If a maid enters through the door and cleans the house, maybe, but if all that 

enters is sunlight, wind and other animals, probably not.”

Imagine trying to tell my friend’s wife that, provided her house is an open sys-
tem, the fact that chaos is increasing in the rest of the universe — or on the sun, 
provided sunlight enters through the door — means that chaos could decrease in her 
house while she is gone. Even if the door is left open, it is still extremely improb-
able that order in the house will improve, unless something enters that makes this 
not extremely improbable — for example, new furniture or an intelligent human.

Suppose we take a video of a tornado sweeping through a town, and run the 
video backward. Would we argue that although a tornado turning rubble into 
houses and cars represents a decrease in  entropy, tornados derive their energy from 
the sun, and the increase in entropy outside the Earth more than compensates the 
decrease seen in the video, so there is no conflict with the second law? Or would 
we argue that what we were seeing was too difficult to quantify, so we can’t be sure 
there is a problem? Some things are obvious even if they are difficult to quantify.

In Signature in the Cell [10], Stephen Meyer appeals to common sense in apply-
ing the second law to information:

[M]ost of us know from our ordinary experience that information typically 

degrades over time unless intelligent agents generate (or regenerate) it. The sands 

of time have erased some inscriptions on Egyptian monuments. The leak in the 

attic roof smudged the ink in the stack of old newspapers, making some illegi-

ble.... Common experience confirms this general trend — and so do prebiotic 

simulation experiments and origin-of-life research.

A recent article by Andy McIntosh [11] in International Journal of Design & 
Nature and Ecodynamics takes a detailed and technical look at the relationship 
between entropy and biological information, but also includes appeals to common 
sense such as:

Both Styer [5] and Bunn [12] calculate by slightly different routes a statistical 

upper bound on the total entropy reduction necessary to ‘achieve’ life on earth…
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these authors are making the same assumption — viz. that all one needs is suffi-

cient energy flow into a [non-isolated] system and this will be the means of 

increasing the probability of life developing in complexity and new machinery 

evolving. But as stated earlier this begs the question of how a local system can 

possibly reduce the entropy without existing machinery to do this… machines 

need to be pre-existing to enable an increase in order and complexity to take place.

5. Conclusions

Of course, one can still argue that the spectacular increase in order seen on Earth 
is consistent with the underlying principle behind the second law because what has 
happened here is not really extremely improbable. One can still argue that once 
upon a time, on a special planet called Earth, a collection of atoms formed by pure 
chance that was able to duplicate itself, and these complex collections of atoms 
were able to pass their complex structures on to their descendants generation after 
generation, even correcting errors. One can still argue that, after a long time, the 
accumulation of genetic accidents resulted in greater and greater information con-
tent in the DNA of these more and more complex collections of atoms, and eventu-
ally something called “intelligence” allowed some of these collections of atoms to 
design cars and trucks and spaceships and nuclear power plants. One can still 
argue that it only seems extremely improbable, but really isn’t, that under the right 
conditions, the influx of stellar energy into a planet could cause atoms to rearrange 
themselves into computers and laser printers and the Internet.7

But one would think that at least this would be considered an open question, 
and those who argue that it really is extremely improbable, and thus contrary to 
the basic principle underlying the  second law of thermodynamics, would be given 
a measure of respect, and taken seriously by their colleagues, but we aren’t.
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Abstract

Are there laws of information exchange? And how do the principles of thermodynamics connect with 
the communication of information?

We consider first the concept of information and examine the various alternatives for its defini-
tion. The reductionist approach has been to regard information as arising out of matter and energy. 
In such an approach, coded information systems such as DNA are regarded as accidental in terms of 
the origin of life, and it is argued that these then led to the  evolution of all life forms as a process of 
increasing complexity by  natural selection operating on mutations on these first forms of life. 
However scientists in the discipline of thermodynamics have long been aware that organisational 
systems are inherently systems with low local  entropy, and have argued that the only way to have 
consistency with an evolutionary model of the universe and common descent of all life forms is to 
posit a flow of low entropy into the earth’s environment and in this second approach they suggest 
that islands of low entropy form organisational structures found in living systems.

A third alternative proposes that information is in fact non-material and that the coded informa-
tion systems (such as, but not restricted to the coding of DNA in all living systems) is not defined at 
all by the biochemistry or physics of the molecules used to store the data. Rather than matter and 
energy defining the information sitting on the polymers of life, this approach posits that the reverse 
is in fact the case. Information has its definition outside the matter and energy on which it sits, and 
furthermore constrains it to operate in a highly non-equilibrium thermodynamic environment. This 
proposal resolves the thermodynamic issues and invokes the correct paradigm for understanding the 
vital area of thermodynamic/organisational interactions, which despite the efforts from alternative 
paradigms has not given a satisfactory explanation of the way information in systems operates.

Starting from the paradigm of information being defined by non-material arrangement and 
 coding, one can then postulate the idea of laws of information exchange which have some parallels 
with the laws of thermodynamics which undergird such an approach. These issues are explored 
tentatively in this paper, and lay the groundwork for further investigative study.

Keyword: Information, thermodynamics, free energy, organisation, entropy, open systems, 
machines, biopolymers
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1. Introduction

In 1981 Kenneth Miller of Brown University commenting on the famous Stanley 
Miller-Harold Urey [1] experiment made an assertion concerning the laws of ther-
modynamics and the  origin of life, particularly as it pertains to the formation of 
the nucleotide Adenine (C5H5N5, see Figure 1), one of the nucleotides needed in 
living systems, from Hydrogen Cyanide (HCN), (the part of this quote in square 
brackets has been added to clarify the context of the remark) [2]:

All this needs is energy in the system, adenine is far more complex than hydrogen 

cyanide. It forms. Why? Because it’s consistent with the  second law [of thermo-

dynamics], which says you can have an increase in complexity if energy is 

 available for the system. And you know what’s remarkable? Adenine is the most 

important base in living things and it is the first thing that forms, and it forms 

easily.

The essence of the throw away remark “all this needs is energy in the system” is 
an appeal to the natural laws of nature to produce, in the end, the structures 
 necessary to create life. It has often been used in the debate on origins when it 
comes to the thermodynamic issues. Kenneth Miller was not saying that the 
Miller-Urey experiment had proved conclusively that life could be formed from a 
mixture of water, methane, ammonia, and hydrogen. However he was stating that 
such examples of nucleotide production are demonstrations that a useful structure 
could arise spontaneously as long as enough energy is available. The idea that all 
one needs is to ‘just add energy’ is considered in this paper along with the issue of 
information.

John Sanford of Cornell commenting in some of his introductory writings for 
this conference on the progress made since the  human genome was mapped in 
2001, has stated [3]

Fig. 1.  The chemical structure of Adenine (C5H5N5) — Some have argued that Hydrogen Cyanide 
(HCN) was the precursor to forming this important nucleotide in origin-of-life scenarios.
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“Few anticipated the astounding discoveries of the last ten years, which have 

revealed that biological information, even in simple cells, is much more complex 

than we could have even imagined. Indeed, we now realize that the simplest free 

living organism reflects a virtual labyrinth of information. A single cell represents 

layer upon layer of information, each layer of information being encrypted within 

a great diversity of molecular types, each type of information being encoded via 

its own set of linguistic signals. Within a single living cell is an active communi-

cation network something like the internet, and what we can see of this “biologi-

cal internet” is expanding daily. This is forcing many scientists to reexamine our 

earlier understanding of biological information. Even while the amount of 

 biological complexity requiring explanation has been expanding exponentially, 

the traditional explanations of biological information have been unraveling”.

The concept of information has in fact been a major issue since the discovery by 
Francis Crick and James Watson of the coding structure of DNA in 1953. Crick 
himself stated [4]

“If the code does indeed have some logical foundation then it is legitimate to 

consider all the evidence, both good and bad, in any attempt to deduce it.”

This was stated in the context of the discovery that triplets of nucleotides running 
along the rungs of the double helix molecule of DNA carry information to code 
for a specific amino acid which then makes up the proteins of the living organism. 
Crick was always of a reductionist mindset and had no sympathy with any 
approach which regarded the coding as essentially an expression of a non-material 
intelligence transcendent to the polymer itself, and the above statement in its 
 original context is most definitely not advocating an exploration of information in 
any other paradigm than a purely materialist approach. However it is significant 
because it shows that scientific investigation can be trapped by only considering 
one pathway — what if the search for a ‘logical foundation’ advocated by Crick, 
actually leads one to the edge of the material region of scientific enquiry?

Stephen Jay Gould wrote of non-overlapping magisteria [5], often referred to 
with the acronym NOMA, in order to resolve the issues of how to approach both 
science describing the physical realm and the metaphysical/philosophical con-
cepts describing realities which are essentially non-material. This is diagrammati-
cally shown in Figure 2.

However such an approach to reality means that in investigations of the area of 
information and software/mind and consciousness, this view incorrectly locks the 
investigator into a materialistic approach which at the outset denies per se the most 
persuasive explanation of the intricate systems which have come to be understood 
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Nat ural  
Sc ienc es

St even J ay Gould ’s  v iew  – Non over lapping m agist er ia

Non 
m at er ia l  
real i t y

No Trespassing

Fig. 2.  Stephen Jay Gould’s non-overlapping magisteria (NOMA) view of reality.

Nat ura l  
Sc ienc es

Inform at ion
Sof t w are

Int e l l igenc e
Mind

c onsc iousness

Inform at ion
Sof t w are

Int e l l igenc e
Mind

c onsc iousness

Non 
m at er ia l  
rea l i t y

Fig. 3.  The view of reality advocated in this paper which defines information as constraining the 
matter and energy it sits on, but not defined by it.

in recent years. The antithesis to Gould’s approach is illustrated in Figure 3. It is 
argued that there is a legitimate realm where information, mind and consciousness 
lie — this area is undoubtedly interacting with the physical realm but is not 
entirely controlled by it. Though this clearly can have metaphysical implications, 
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we are here not talking about religious matters, but simply the area where thoughts, 
logic and mind exists, and where the importance of arrangement rather than matter 
itself is dominant — as for instance in the sequencing of the nucleotides in DNA.

The paradigm adopted here is the assumption that information is essentially 
defined as non-material but profoundly influences the material in which it is 
found, in a similar way that software is essentially coded non-material instructions 
but nevertheless controls the hardware of a computer. It should be emphasised that 
this is not a license for any lazy thinking, whereby anything which cannot be 
understood is put metaphorically into a box labelled ‘non-material and not to be 
further investigated’. This is no ‘god of the gaps’ thesis. Indeed, once adopted, this 
approach opens out a whole raft of new research routes which properly explain the 
control of living systems. A far more profound methodology is in view. What is 
being advocated here is an entirely different paradigm whereby the non-material 
message is accepted as being of an origin outside the area of physical investiga-
tion, but that its effect can readily be seen in the organisation of the molecular 
machinery in living organisms. Rather than the material and energy forming the 
information system as advocated by evolutionary philosophy, the non-material 
informational message expressed in the coded ordering of nucleotides is actually 
the mechanism of constraining the material itself. In this paradigm, it is the infor-
mation which organises and constrains the biopolymers. It is a known feature of 
living systems that they are information-rich and it is this that is more and more 
being recognised as the cause of their great efficiency [6]. Rather than the intricate 
machinery for such systems evolving from simpler systems, it is the thesis of this 
paper that the message/information itself is sitting on biochemical molecular 
bonds which are in a significantly raised free energy state. Understanding the 
thermodynamics of this machinery shows that it is thermodynamically impossible 
both to form such machinery (abiogenesis) without intelligence, and that the laws 
of thermodynamics prohibit any formation of new machinery which is not there 
already or latently coded for in the DNA (evolutionary development). A hierarchi-
cal system of information is involved in living systems (see Figure 4).

Furthermore recent research has confirmed that non-coding parts of DNA pre-
viously thought to be ‘ junk DNA’ are in fact not to be regarded as such [7]. More 
research is now coming to light [8] that the very folding of proteins carries with it 
a separate form of information transfer. This intertwining of information and mat-
ter lies at the heart of what is life itself, and fundamentally changes our view of 
how to understand living systems.
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2.  Biological information storage and retrieval — 
thermodynamic issues

There are major thermodynamic hurdles in arguing that the emergence of DNA 
(see Figure 5a) could come about by a random gathering together of the sugar 
phosphates and nucleotides. These are discussed in greater detail elsewhere [9,10].

In essence evolutionary arguments for the origin of information (e.g. Dawkins [11]) 
amount to appealing to random mutations as a means of increasing the range of pos-
sible phenotypic outcomes. The further appeal is often made to the concept of 
‘ Shannon information’, which idea comes from the basis that increased uncertainty 
can lead to a richer number of possibilities in a signal. This is sometimes termed 
Shannon entropy [12], but as shown in ref. [10], is in many ways the opposite of what 
is really needed, since it is really a measure of the spread of mutations at the nucleo-
tide level, and these mutations are virtually all deleterious [13].

There are two major obstacles to such a proposal. First the code is highly 
sequence specific. Each triplet of nucleotides codes for a specific amino acid and 
the protein formed from these requires a specific sequence of such amino acids. 
For example there are enzymes which are specifically assigned to nucleotide exci-
sion repair — they recognise wrongly paired bases in the DNA nucleotides 

Fig. 4.   Hierarchical layering of living systems. The evolutionary view is that abiogenesis led to 
the forming of the DNA code which then led to the emergence of complex information systems and 
intelligence. However the top down view regards information in a similar way to the software 
instructions of a computer. The instructions organise the nucleotides and control the biopolymers to 
be in a highly non equilibrium state.

Matter Energy

Information

Nucleotides

Mind / Intelligence

Matter Energy

Information

Nucleotides

Mind / Intelligence

Abiogenesis

Evolution

Design

Software / 
Instructions

Thermodynamic
effect

Complex 
Systems

Evolutionary bottom up 
view : simple to complex

Top down view : Information 
constrains matter and energy
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(a)

(b)

Fig. 5.  (a) DNA is a double helix formed by base pairs attached to a sugar-phosphate backbone. This 
then forms a series of triplets of nucleotides on the main (message bearing) strand and complimentary 
nucleotides on the opposite strand. The connection is by a weak hydrogen bond A–T and G–C. (b) DNA 
base excision and repair is performed by three enzymes. Glycolsylase first finds the damaged site and 
the nucleotide, and then endonuclease removes neighbouring bases. Then the protein DNA polymerase 
manufactures the appropriate nucleotide and the enzyme ligase encircles the damaged DNA, and the 
replacement nucleotide base is put in place. [DNA repair image (public domain) from www.clker.com.]
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(Adenine (A), Thymine (T), Cytosine (C) and Guanine (G)) connecting the two 
deoxyribose sugar-phosphate strands (see Figure 5a). This is summarised in 
Figure 5b where the excision and repair of a damaged nucleotide base is shown. 
First the enzyme Glycolsylase finds the damaged site and the nucleotide, and then 
endonuclease removes neighbouring bases. Then the protein DNA polymerase 
manufactures the appropriate nucleotide and the enzyme ligase encircles the dam-
aged DNA, and the replacement nucleotide base is put in place. This means that 
mutations are generally corrected (Jackson [14] and de Laat et al. [15]), so that 
even if speciation does occur due to slight modifications and adaptations of the 
phylogeny, any serious departures in the genetic information would be acted 
against by the DNA’s own repair factory. Mutations generally do not increase 
information content — rather the reverse is true.

The second obstacle is a more fundamental issue. At the molecular level, the 
principles of thermodynamics do not permit the formation of new machinery from 
that which is already set up or coded for in a particular function performed by the 
cells of living organisms. There is in fact an ‘uphill’ gradient in the formation of any 
of the molecular bonds in the nucleotides and most of the proteins, since they want 
to pull apart. Consequently there is no natural chemical pathway to form these, 
rather there is a move away from their formation to equilibrium. In the following 
sections we examine the thermodynamic principles governing living systems.

2.1 Thermodynamics and isolated systems

One form of the statement of the  second law of thermodynamics is “The amount 
of energy available for useful work in a given isolated system is decreasing. The 
entropy (dissipated energy per degree Kelvin which can no longer be used to do 
work) is always increasing.”

Thus according to the second law, heat always flows from hot to cold. In the 
process it can be made to do work but always some energy will be lost to the envi-
ronment, and that energy cannot be retrieved. Water flows downhill and loses 
 potential energy which is changed into  kinetic energy. This can again be made to 
do work (as in a hydroelectric power plant). However some energy will be lost 
such that if one was to use all the energy generated to pump the same water back 
up to its source, it would not reach the same level. The difference of original 
potential energy to that corresponding to the new level, divided by the temperature 
(which in that case is virtually constant) is the entropy of the system. Such a meas-
ure will always give an entropy gain.

There is no known system where this law does not apply. The fact that the 
entropy of a given isolated system increases, effectively brings with it an 
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inevitable eventual decline in usefulness of all sub-systems within such an isolated 
system.

2.2 Non isolated systems

In that the second law of inevitable entropy increase applies to an isolated system, 
some have maintained that with a closed (boundaries open to heat transfer) or open 
system (boundaries open to heat and mass transfer) one could have  entropy 
decreasing in one area while the overall entropy of the two systems together is 
increasing. An illustration would be of two ice boxes A and B (Figure 6) where 
there is an allowance for some small contact between them but with (perfect) 
insulation round the rest of the cube A and poor insulation round cube B. Systems 
A and B are both then non-isolated systems (technically closed as heat can pass 
the boundaries but not mass), as is the system A and B together (referred to as 
A + B), but system A and B with the surrounding region 1, (that is the complete 
system) is isolated. The entropy of the overall complete system then must increase 
with time. That is, there will eventually be equilibrium throughout every region.

2.2.1 Entropy deficiency

Suppose we start with Temperature T1 appreciably hotter than TA and TB. Thus for 
instance we could have T1 = 100°C and TA and TB both at -10°C. Initially as time 
progresses the original equal temperatures TA and TB become different. TA will stay 

Fig. 6. Non-isolated system A and B
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close to the original −10°C, but TB will begin to move to a higher value (say +5°C) 
due to there being good conduction of heat into ice box B (as against the insulated 
ice box A). Now consider system A and B together (A + B). One now has an open 
system with decreasing entropy called an entropy deficiency, in that useable 
energy transfer between the two ice boxes is possible, and work can be achieved 
where before in that system, treated in isolation, none was possible. However one 
notes two things. First that this is possible only for a finite time — eventually the 
temperature difference will reach a maximum (when TB gets close to T1) and at 
this point system A + B will have a minimum entropy condition. After this system 
A + B will then experience a rising  entropy condition. Secondly one must insert 
some device between A and B before use can be made of this energy flow. This 
demonstrates the reality of how the underlying principles of energy flow and its 
use to do useful work, still apply in open systems. Extra energy is of no use unless 
there is a mechanism to use it.

2.2.2 Open systems and machinery

In the debate concerning origins where thermodynamic considerations are in view, 
much is made of the fact that the earth is an open system receiving energy and 
some mass transfer from extra-terrestrial sources. The main source of energy of 
course is the Sun. When one considers non-isolated systems where heat transfer 
can take place at the boundary, some have argued that by adding energy in to the 
original system then one should be able to reverse the overall trend of entropy 
increase. But this is not the case [10]. Adding energy without an existing mecha-
nism which can make use of that additional energy, generally leads to simply the 
heating up of the surroundings faster than would otherwise have been the case. 
There can be cases where differential heating can occur (in the atmosphere or in 
the earth where rock and soil have thermal conductivity differences) following the 
same principle as outlined in Figure 6. Locally the entropy (∆Q/T where ∆Q is the 
heat gained by the system being considered and T is temperature) can increase at 
different rates and give rise to a deficiency in entropy in one location compared to 
another. This can then potentially give rise to  free energy which can do work. Thus 
for instance Freske [16] considers the entropy deficiency that sometimes can occur 
in a pile of bricks or rubble receiving energy from the sun, and that a device could 
make use of that energy supply

…. under the given conditions, an entropy deficiency is in fact generated in the 

pile. After several hours of exposure to the sun, the temperature will be higher at 

the top than at the bottom. If we were to measure the temperatures throughout the 

b1567_Sec1.3.2.indd   188b1567_Sec1.3.2.indd   188 5/8/2013   2:39:08 PM5/8/2013   2:39:08 PM

 B
io

lo
gi

ca
l I

nf
or

m
at

io
n 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
2.

4.
17

.1
40

 o
n 

08
/1

1/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



 Information and Thermodynamics in Living Systems 189

b1567  Biological Information — New Perspectives b1567_Sec1.3.2 8 May 2013 2:48 PM

pile, it would be a fairly simple matter to calculate the entropy deficiency. Useful 

energy could actually be extracted from the pile by means of a thermocouple, for 

example.

The last sentence concerning energy extraction actually demonstrates that the 
point at issue is not so much whether deficiency in  entropy can take place and 
thus useful energy can be made to do work, so much as the capacity to use the 
energy available. Whether it is capturing directly the energy input from the 
sun, or harvesting the differential energy flow due to entropy deficiency, a 
mechanism for making use of that energy flow is essential. Without the thermo-
couple in Freske’s illustration, very little will happen without directed purpose 
behind it.

In Section 3.2 below, we define a machine as a functional device that can do 
work [10], and it then follows that only by having in existence such a mechanism 
for capturing the incoming energy, can further useful work be achieved.

2.3 Can negati ve entropy be harvested from somewhere else?

Prigogine [17] and others (see for instance Styer [18]) have proposed that there is 
information in the non-material arrangement and organisation of systems and refer 
to an organisational entropy or ‘logical’ entropy. They propose the addition of 
other entropies which could then feed negative entropy into a given (non-isolated) 
system. Consequently the total entropy is considered to be

 ds = dsT + dslogical (1)

where dslogical represents the ordering principle or ‘logical’ negative entropy which 
gradually seeps in to the system. Thus even though ds overall is increasing with 
the thermal entropy dsT positive, the presence of dslogical coming in at the boundary 
ensures locally the low entropy needed to spark evolutionary development. 
Styer [18] speaks of a net entropy flux at the earth which would then be the source 
of evolution of early prokaryotes (cells reckoned to be primitive with no nuclei) to 
eukaryotic (cells with nuclei) individuals.

Thus complexity and the ordering principle is predicated on the notion that 
information can gradually increase from a random state. Again this is flawed for 
two reasons:
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(i) Firstly as stated above in Section 2.2.2, no flux of energy from outside the 
system can be made to do work within the system unless there is the necessary 
machinery to capture this energy [10].

(ii) Secondly the information itself (that is the message and meaning behind the 
communication) is not defined in purely thermodynamic terms or even in any 
ordered code such as in DNA when considering biological systems. Gitt [19] 
has shown that information is hierarchical in at least five levels. Two important 
levels are code (or language) and message which uses the coded communica-
tion system. Neither of these can actually be thought of as arising simply from 
a flux of  entropy locally. Rather the reverse of this is the reality, viz. that non-
material information (that is arrangement and coded instructions) sits on a 
material substrate in living systems and the non-material information arrange-
ment/coding causes a thermodynamic effect.

3. Free energy and Machines

In order to propose an alternative understanding of the information in living 
 systems, one of the key parts of the argument concerns the availability of energy 
to do work, coupled with the mechanism for harnessing of that energy.

3.1 Free energy

The Gibbs  free energy g is defined as the net energy available to do work. It effec-
tively takes away the unusable lost energy (associated with entropy) from the 
enthalpy h (which can be regarded as the total thermodynamic energy available). 
Thus

 g = h − Ts, and ∆g = ∆h − T∆s (2a,b)

3.2 Machines and raised free energies

As a consequence of the principles of thermodynamics applied to non-isolated 
systems [9,10] one can state that the following applies concerning the spontaneity 
of chemical reactions:

∆g < 0 Favoured reaction − Spontaneous

∆g = 0 Reversible reaction − Equilibrium (3)

∆g > 0 Disfavoured reaction − Non-spontaneous
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Consequently a positive free energy device cannot arise spontaneously. It always 
requires another operational machine to enable the free energy to be 
loaded/‘primed’, ready to do work. This can be illustrated in the example above 
(Figure 7) of two magnets with the same pole facing each other. Work needs to 
be put into the  system to hold the opposing magnets together — the free energy 
change is  positive — it is non-spontaneous, and the magnets want to pull apart. 
In a similar way to bring the molecules together which form living polymers 
requires an initial input of ordered energy to cause them to stay together. ∆g is 
positive.
This leads to a definition:
We define a machine as a device which can locally raise the  free energy to do 
 useful work.

Even if material exchange was involved (and one had a completely open 
 system), no amount of matter or energy exchange without information exchange 
would alter the fundamental finding (eqn (3)) concerning the spontaneity of 
chemical reactions.

Thus the free energy argument applies both to isolated systems with no contact 
with the surroundings and non-isolated systems. The latter include open systems 
where heat and mass can cross the boundary, as well as closed systems where just 
heat is allowed to cross.

One can now consider what happens if energy is added to a non-isolated system 
(as in Section 2.2) and it is evident that without a machine, the free energy to do 

Fig. 7.  All natural molecule formations are like magnets with the same pole facing each other such 
that if one lets the system ‘go’ they would pull apart: ∆g < 0 (due to g ≡ h − Ts > 0 ). To set this system 
up — that is to keep the opposing magnets together work needs to be put in — the free energy change 
to bring them together is positive. In a similar way to bring the molecules together which form living 
polymers requires an initial input of ordered energy by another machine.
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useful work is not increased. Certainly no new machine will arise simply by 
 adding random energy into an existing system. Furthermore the random energy 
input, though it may cause an internal energy flow (as in Figure 6), will not do 
 useful work unless an existing machine is present. Thus with direct sunlight a solar 
cell is a machine in this definition, since it is a free energy device to convert solar 
energy to electricity in order to do work. A wind turbine uses energy from the 
wind to convert to electricity, but a tornado, though it produces entropy deficiency 
[Section 2.2.2 and Ref. 16], is not a machine since there is no functionality, but 
rather it is an example of naturally occurring differential dissipation of energy.

3.3 Thermodynamic law of non-isolated systems

The principle outlined in Section 3.2 concerning the importance of  free energy has 
been discussed by Sewell [20] and can be expressed succinctly in the following 
thermodynamic law of non-isolated systems:

“In a non-isolated system, the free energy potential will never be greater than 
the total of that which was already initially in the isolated system and that coming 
in through the boundary of the system.”

3.4 Crystal formati on

Coming back to the biochemistry of DNA and the formation of the amino acids, 
proteins and all the ingredients of living cells, to suggest that reactions on their 
own can be moved against the  free energy principle is not true, since that situation 
could not be sustained. The DNA molecule along with all the nucleotides and 
other biopolymers could not change radically such that a low entropy situation 
would emerge. Certainly the situation cannot emerge whereby a sustained and 
specific sequence of thousands of raised free energy states of different molecular 
bonds is held, without a final subsiding to a new equilibrium where the free 
 energies are dissipated.

So some have argued that surely crystal formation is a counter example where low 
 entropy is achieved and an ordering principle is obtained? Consider again eqn (2b). 
If ∆H is negative but ∆S is also negative, then one can get cases where the net change 
in Gibbs free energy ∆G is zero. These cases (as referred to in eqn (3)) are examples 
of reversible reactions, and particularly happen at conditions of change of phase such 
as water going to ice crystals at 0°C (273K) (Figure 8). The entropy reduction mul-
tiplied by the temperature exactly balances the drop in the enthalpy. That is in the 
case of crystal formation, ∆H = T∆S. One can liken the ∆S in this equation to being 
the logical/geometric influence on the thermodynamics such that the order inherent 
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in the molecules themselves, given a low enough temperature, will cause the crystals 
of a particular shape to form. When such a compound is cooled to produce crystals, 
it is worth noting, however, that it is not the cooling itself which causes the crystals 
to occur, but the response to the molecular bonding which is very precise within the 
material and has a definite function of the state variables. Often this is regarded as 
demonstrating a new ordering principle emerging (and thus an argument for moving 
to functional form within a  system), when in fact the ordering principle is latently 
already there in the structure of the chemical elements to begin with. And most 
importantly, there is no new production of a free energy device (a machine). The 
change in free energy is  precisely zero, so there is no free energy device emerging 
that can do useful work.

3.5 Bio polymer formati on

Now consider briefly the HCN → C5H5N5 example that Kenneth Miller [2] dis-
cussed and we started with in the introduction. Given the right temperature and 
pressure in a container, Hydrogen Cyanide and energy from an electric spark will 
produce Adenine. Is this a gain in net free energy such that a molecular machine 
can be made? The answer is negative. Like crystallisation, the system is simply 
responding to external changes in temperature and pressure. Yes, it is producing 
Adenine and yes, Adenine is used as one of the nucleotides in DNA, but Kenneth 
Miller did not refer to the ensuing thermodynamic hurdles to then build the sugar 

Fig. 8.  Crystal formation — A snowflake (here viewed through a microscope) is an example where 
entropy is lowered as the phase change temperature is crossed, but the overall Gibbs free energy 
change is zero. The entropy reduction in crystallisation is simply a reflection of the geometry and 
the energy bonds already existing in the ions of the liquid phase as they connect up in the solid phase. 
The  entropy reduction does not produce new order that was not latently there already. And most 
importantly there is no new production of a  free energy device which can do useful work. (Image 
freely available from Wikimedia Commons, microphotograph by artgeek.jpg).
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phosphate bonds, the three other nucleotides, and the weak Hydrogen bonds 
which couple the paired nucleotides together (e.g. Thymine to Adenine) — all 
requiring positive free energy steps [21] (that is they will break apart if left to 
themselves). On top of this one has the homochirality issue. When Harold Urey 
and Stanley Miller [1] in 1953 managed to produce amino acids by passing an 
electric charge through a reducing atmosphere of methane, ammonia, water and 
hydrogen, they did produce amino acids with some (but by no means all) of the 
standard 20 amino acids which need to be coded for, in order to make the pro-
teins for life. But the most important difficulty was that they produced both left 
handed and right handed chirality molecules in the expected 50 : 50 ratio. 
However, living systems have entirely left handed versions of these molecules 
(i.e. homochirality) which otherwise are identical in chemical behaviour. Living 
systems are not just to do with chemicals, but with the shape and positioning of 
the chemicals. Stanley Miller acknowledged that the difficulties were indeed 
formidable when in 1991 he stated to Scientific American [22] that ‘the problem 
of the  origin of life has turned out to be much more difficult than I, and most 
other people, imagined ...’.

Furthermore the latest work in DNA studies [23] has produced some astounding 
discoveries that Hoogsteen base pairing (where a different part of the nucleotide 
bases is temporarily used to connect the coding and complimentary parts of the 
DNA) constitute a second transient layer of the genetic code. They state

…the DNA double helix intrinsically codes for excited state Hoogsteen base pairs 

as a means of expanding its structural complexity beyond that which can be 

achieved based on Watson-Crick base-pairing.

That is, there is already evidence that there is a further layer of information 
transfer in evidence — this again requires control of a suite of thermodynamic 
raised free energies by a different information system!

We stated in Section 3.2 that biopolymers could not change radically such 
that a low  entropy and sustained sequence of free energies would emerge. To 
alter the DNA constituents from one stable state say to another representative 
state with a distinct improvement, cannot be done by natural means alone with-
out additional information. The laws of thermodynamics are against such a 
procedure.

Put another way the carrier molecules of the information in living systems are 
actually kept in a non-equilibrium state by the very presence of the coded informa-
tion. They would fall apart to a disordered equilibrium state were it not for the 
information in the system making them act in this way.
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4.  A different paradigm: Thermodynamics constrained by 
functional information

We thus propose a different treatment which quantifies the effect of functional 
information in a system. This approach recognizes Gitt’s important deductions 
concerning real information systems being impossible to define in terms of mat-
ter and energy alone [19]. However one can recognise the effect of machines/
information systems (that is teleonomy) being present in exactly the same way as 
a digitally controlled machine (i.e. a computer) is operated by software. The high 
level program controls a set of electronic switches on a micro chip which are set 
in a certain predefined pattern (see right hand part of diagram in Figure 4). Thus 
the logical negative entropy (the switching of the micro chip in the analogy) 
rather than being the source of the information should be thought of as the effect 
of information carrying systems.

Only with the presence of a  free energy device (a machine already existing) will 
an energy flux outside the system do useful work and enable a local lowering of 
the entropy of the system. This is illustrated for  photosynthesis in Figure 9 
whereby it is evident that the machinery of the production of chlorophyll in the 
leaf acts as an important system for taking in Carbon Dioxide and forming sugars 

Fig. 9.  Photosynthesis in a living plant requires energy input, but the energy flux on its own would 
do nothing unless there was a machine already present (a free energy device) to enable the system 
to do work using the sunlight.
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and Oxygen. The energy flux on its own would do nothing unless there was a 
machine already present (a  free energy device) to enable the system to do work 
using the sunlight.

In this approach it is expected that there will be levels of information, and in 
particular language (code) and semantics (meaning). This is a very different para-
digm to that which is currently adopted, and leads to the proposition that machin-
ery and information are closely intertwined in living systems [10,24,25], in a very 
similar way that software in a digital computer is intertwined with the electronic 
hardware and the very small but precise energy levels used in the computer regis-
try, memory and storage facilities.

For a pure materialist there may be a natural reticence to adopting such an 
approach because of their presuppositions, but the evidence of the thermodynam-
ics of living systems supports the view that it is information in living systems that 
controls the thermodynamics, and not the other way round.

4.1 A diff erent paradigm: Informati on defi niti ons

In order to construct a new approach to information exchange in living systems it 
is becoming evident that a new set of definitions is needed to set up this very valu-
able line of research. The following are suggested, and have come from valuable 
discussions with John Sanford [13] of Cornell University.

Information: That which is communicated through symbolic language.

Intelligent agent: An entity with the ability to create information and communi-
cate it (i.e. — a human being).

Agency of intelligence: A secondary entity which is capable of being used to 
communicate information deriving from a higher source (i.e. — a computer).

Language: The symbolic medium through which information is communicated 
(i.e. Spanish).

Communication: The transmission of meaningful information through symbolic 
language.

4.2  A diff erent paradigm: principles of informati on 
and thermodynamics

The following are suggested principles to understand the nature of how non-
material information is transferred and communicated. In both the realm of 
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thermodynamics and non-material information there are principles of conservation 
and degeneration. The following principles of information exchange are similar to 
the first two laws of thermodynamics and the thermodynamic law of non-isolated 
systems referred to in Section 3.3.

4.2.1 Principles of information exchange

We postulate the following principles of information exchange:

The First Principle concerning information, language, and communication
Apart from creative intelligence, information cannot be derived from nothing. 
There has to be a precursor bank of such information.

This is a parallel principle to the principle of conservation of mass and energy 
( first law of thermodynamics).

The Second Principle concerning information, language, and communication
Apart from a sustaining intelligence, all information degenerates in terms of its 
functional utility. Information will corrupt unless it is sustained by an intelligent 
agent.

This principle is a parallel to the  second law of thermodynamics which effectively 
states that in a given isolated system, the energy available for doing useful work 
is diminishing — there is a principle of decay.

The principle of Information gain
The information content in a system is never greater than the total of that which 
was there already and that coming in through the boundary of the system.

This principle mirrors the thermodynamic law of non-isolated systems (Section 3.3).

4.2.2  Principles of information interaction with energy and matter in 
biological systems

We now summarize two further important principles which have been the main 
subject of this paper concerning the interaction of information with energy and 
matter in biological systems:

The First Principle of information interaction with matter in biological systems
Information in biological systems is expressed as coded instructions and is not 
defined by the energy levels or by the matter it resides in. It is not defined by the 
properties of that matter and is transcendent to it.
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Comment: This principle is best exemplified by the fact that software in a com-
puter is not defined by the hardware.

The Second Principle of information interaction with matter in biological 
systems
Information in biological systems constrains the matter and energy to be in a non-
equilibrium state.

Corollary to second principle of information interaction
In biological systems all information sits on a substrate where a series of free ener-
gies are kept in disequilibrium. Thus information in biological systems relies on 
machines — that is on devices which raise the  free energy.

Comment: This principle can be referred to as the ‘top-down’ principle — that is 
the information organises the thermodynamics of the system. The information 
does not arise out of the matter and energy.
Third principle of degeneration in living systems
Consequently the second principle of information interaction combined with the 
principle of thermodynamics decay, implies that degeneration, and in particular 
 information corruption (mutations), will inevitably take place.

5. Conclusions

Three views of informational reality (ontology) are considered in this paper. The 
first is that matter and energy is all there is. This is the materialistic view of infor-
mation (Dawkins (Oxford), Jones (University College, London), Atkins (Oxford) 
and others). Such authors argue that functional non-material information and 
design are an illusion. In their view matter and energy is all that there is in the 
Universe. Patterns only have meaning in a reductionist sense and do not carry any 
non-material ‘value’. The second scenario is a variation of the bottom up approach. 
In this view information is regarded as non-material but has arisen out of matter 
and energy. This is the view of Prigogine [17], Yockey [26], Wicken [27] and 
Kenneth Miller [2,28,29] and many other authors.

Both these approaches are flawed on two counts. Firstly they ignore the fact that 
real information systems are not defined by the codes and languages they use and 
that the arrangement of the physical objects used in the system (for DNA, this 
would be the nucleotide triplets) has to be in a specified order. So even non- 
materialists such as Prigogine, Yockey, Wicken or Kenneth Miller have insuperable 
hurdles with such a system. By proposing an evolutionary model of the bottom up 
approach, they do not have the means to derive the specificity [30] in the  ordering 
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arrangement of the nucleotides in DNA. These issues are discussed in the work of 
Abel and Trevors [31, 32]. Secondly a more subtle point, but a very  important one, 
is that there is an impossible thermodynamic barrier to such an approach. The 
information in living systems is mounted on molecules with a raised free energy 
such that the carriers of information would fall apart into equilibrium chemistry 
were it not for the information present. It is this barrier which shows that a top 
down approach is the only way to understand information in living systems.

The third view then that we have proposed in this paper is the top down 
approach. In this paradigm, the information is non-material and constrains the 
local thermodynamics to be in a non-equilibrium state of raised  free energy. It is 
the information which is the active ingredient, and the matter and energy are pas-
sive to the laws of thermodynamics within the system.

As a consequence of this approach, we have developed in this paper some sug-
gested principles of information exchange which have some parallels with the 
laws of thermodynamics which undergird this approach. They also have some 
profound implications concerning the inevitable decay in genetic material and the 
uniqueness of information in the beginning.
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Section Two — Biological Information and 
Genetic Theory: Introductory Comments

John C. Sanford — Section Chairman

In the 21st century, biological information has become the over-arching theme 
which unifies the life sciences. In the 19th century, Charles Darwin and his col-
leagues did not yet have the notion of biological information. Indeed Darwin 
completely misunderstood the nature of inheritance, which he pictured to be 
Lamarckian in nature. One of Darwin’s contemporaries, Gregor Mendel, discov-
ered that the determinants of certain biological traits are transmitted from genera-
tion to generation in discrete packages (this work was ignored for a generation). 
Mendel probably had some vague notion that these genetic packages somehow 
might contain a very simple type of “biological information”. But he could never 
have guessed that these genetic units which he observed were actually precisely-
specified instructions, encoded by language, with each gene being comparable in 
complexity to a book. When the early population geneticists developed their 
 models, they employed over-simplified mathematical models to try to describe 
their understanding of genetic change, but at that time genes were considered to 
be merely “beads on a string.”

When DNA was discovered, it finally became clear that genetic information is 
very much like human written information — an extensive array of language-
encoded strings of text. Where did all these text strings come from? For most 
biologists the already-ruling Darwinian paradigm seemed to be sufficient — they 
assumed that all biological information must arise merely by random letter 
changes in the text, combined with some reproductive filtering. In the last 
60 years, many thousands of scientists have made a truly monumental effort to try 
to explain the entire biosphere, just in terms of random mutations which are fil-
tered by natural selection. Has this effort been successful? It has certainly been 
successful in a sociological sense — this view is now faithfully upheld by the large 
majority in the academic community. The neo-Darwinian paradigm literally 
 saturates the content of most biological journals. In fact any deviation from this 
view is generally regarded as academic treason — often being characterized as a 
threat to science itself. Yet in this section of our proceedings (Biological 
Information and Genetic Theory), we will show that there are huge genetic 
 problems which bring this reigning paradigm into serious question.

As the figure below graphically illustrates, a paradigm shift appears to be immi-
nent. This is because the amount of biological information which demands expla-
nation is exploding, even while the explanatory power of Darwin’s mechanism of 
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natural selection is virtually collapsing. This section of our symposium focuses on 
these two things — the explosion and the collapse.

The first problem is the explosion in the amount of biological information 
which requires explanation. We now realize that the last century’s simplistic con-
cept of biological information (“DNA makes RNA makes protein makes life”) was 
incredibly naïve. We are just beginning to understand that biological information 
is profoundly multidimensional and moves in all directions through elaborate 
communication networks. The many layers of biological information are not only 
dynamic, they are globally integrated — overwhelming the previous generation’s 
understanding of information (a gene encodes a protein). This will be clearly dem-
onstrated by Wells in the first paper in this section, and is further developed by 
Seaman and Johnson in the last two papers of this section. Seaman and Johnson 
both correctly characterize the cell as being more like a network of computers than 
a set of books. These papers by Wells, Seaman, and Johnson act as the ‘bookends’ 
for this collection of research papers.

We need to better grasp the full scope of what “biological information” really is. 
It is a serious error to think of biological information as simply the genome. As 
discussed by Seaman, we can best understand the genome as the hard drive of the 
cell — it largely reflects stored static information. In that light, we should see that 
the RAM or active memory of the cell is that galaxy of RNAs and proteins which 
comprises the active communication network within the cell. These RNAs/pro-
teins are actually the active information which makes life alive. As discussed by 
Johnson, RNA and proteins can be viewed as actively operating algorithms, speci-
fying their own folding, their own transport, their own operation, and their various 
communication links with other molecules. Countless messages are continually 
being transmitted in both directions between the hard drive (the genome), and the 
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RAM (RNA and proteins). There is also continuous information being exchanged 
between different parts of the genome, and between RNAs and proteins, so there 
is a continuous interchange of information between all components. All this infor-
mation which is continuously being exchanged within a single cell has been 
termed the “interactome”, and it is vastly more complex than the genome itself. 
Such interactions within a living cell are beyond counting — and might best be 
compared to an internet system. The entire cell can be considered to be an exten-
sive communication network. Above and beyond the individual cell, there is still 
more biological information being regularly communicated between cells, 
between tissues, and between individuals. Lastly, there is the biological informa-
tion network that constitutes the brain/mind — which dwarfs everything else we 
have spoken of. With all this in mind, in this section we will primarily focus our 
attention on just the simplest level of biological information — the genome.

For decades it was believed that there is just one genetic code, and that only the 
protein-coding sequences within the genome were functional (less than 2% of the 
human genome). Essentially all other sequences were designated “junk DNA”. 
This concept has been dramatically reversed in the last ten years, as revealed by 
Wells in this section’s first paper. It is now clear that most of the non-protein-
coding genome is functional. This means two things — firstly it means there is a 
lot more information in the genome that needs to be explained, and secondly it 
means there are many codes other than the amino acid code.

The implications of having many languages (genetic codes) in the same genome 
are staggering, and the fact that these codes overlap extensively is breath-taking 
(see Montanez et al., in the previous section of these proceedings — Biological 
Information and Information Theory). In addition to the basic protein code, other 
codes associated with the conventional gene concept include the 12 codes of 
Trifanov, the transcription codes, the alternative splicing codes, and the RNA fold-
ing/processing codes. On an entirely different level, there are genome-wide codes 
that transcend the gene concept. These include the isochore codes, the nucleo-
some-positioning codes, the topological 3-D codes, and the epigenetic codes. 
Even the tiny but super-abundant Alu elements in the human genome, the most 
famous class of “junk DNA”, are now known to contain multiple codes. These 
include transcription-regulating code, protein-binding code, and also a special 
‘pyknon’ (small RNA) code. Some, but not all, of these codes are described in 
more detail by Wells. It should be obvious that more codes are waiting to be dis-
covered. In the second to last paper in this section, Seaman, discloses very exciting 
new evidence for repeat-based codes in the genome, which have an uncanny 
resemblance to the repeat structures characteristic of executable computer code.

How many genes are in the human genome? The textbooks still suggest there 
are just over 20,000 human genes — because they have not yet acknowledged the 
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paradigm shift ushered in by the ENCODE project. We now know that what we 
used to call a gene was a gross over-simplification. What we used to call a gene, 
we now know is actually a complex of many functional elements, encoding mul-
tiple proteins and many RNAs. If we define each of these functional elements as 
a gene, there must be hundreds of thousands of genes. Since there is now strong 
evidence that SINES and LINES are themselves functional elements, we should 
also recognize these as genes — so depending on how we define a gene, there may 
be over a million genes in the genome. Our awareness of biological information, 
just within the genome, is truly exploding. In the following section of this sympo-
sium (Biological Information and Molecular Biology), Dent and Wells each pre-
sent papers proposing additional new types of biological information which 
entirely transcend the genome. If validated, each of these will clearly require its 
own language or code. I am convinced that none of us has yet fully absorbed the 
significance of what is emerging, in terms of the richness and depth of biological 
information. There has simply never been a more exciting time to be a biologist.

The second problem is the collapse of the Darwinian mechanism, in terms of 
its power to explain how all this biological information arose and is sustained. 
This will be clearly demonstrated by the papers of Gibson et al., Sanford et al., 
Nelson et al., Brewer et al., and Baumgardner et al. Natural selection obviously 
works, the problem is it does not appear to be capable of performing as advertised. 
These papers show that, most fundamentally, the Darwinian mechanism cannot 
consistently create a net gain of information. This is because even as rare benefi-
cial mutations arise (only some of which can be selectively amplified), many more 
deleterious mutations must be accumulating continuously. Certainly this should 
result in “genetic change over time” — but the change should primarily be down-
ward. If mutation/selection causes genomes to primarily go down, not up, then the 
Darwinian mechanism cannot explain the origin of genomes, or even their main-
tenance. Consequently, the explanatory power of the Darwinian mechanism 
appear to be limited to the trivial and the mundane (i.e., minor superficial adapta-
tions in response to environmental change — mere fine-tuning). This is clearly 
documented in the following papers.

Gibson et al. summarize their extensive numerical simulation research address-
ing the problem of deleterious mutation accumulation — as affected by the selec-
tion threshold phenomenon. They have developed what is clearly the most 
advanced numerical simulation for modeling mutation accumulation within popu-
lations (“Mendel’s Accountant”). They use numerical simulation to demonstrate 
that given biologically realistic conditions, natural selection fails to selectively 
remove the large majority of deleterious mutations. They show that there are vari-
ous reasons why this happens, but the most important reason in that each popula-
tion has a certain characteristic selection threshold, and mutations which have 
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very small fitness effects fall below this threshold, and hence will become essen-
tially invisible to natural selection. Gibson et al. show that when biologically 
realistic conditions are modeled for a higher organism, the selection threshold is 
especially high, such that the vast majority of deleterious mutations are not 
selectable, and hence accumulate continuously. If the mutation/selection process 
is really all that is happening, then this means that all higher organisms should be 
continuously accumulating deleterious mutations at a high rate, even when there 
is strong natural selection pressure — which would logically lead to eventual 
extinction.

Sanford et al. have also studied the selection threshold problem, but they exam-
ine how it affects the accumulation of beneficial mutations. They use numerical 
simulation (again, Mendel’s Accountant) to demonstrate that there is a very clear 
selection threshold for beneficial mutations, and that only a very tiny fraction of 
all beneficial mutations have a large enough effect to be able to respond to selec-
tion. They show that the selection threshold problem is even more severe for ben-
eficial mutations than it is for deleterious mutations. Because it is clear that 
beneficial mutations are very rare anyway, the fact that only a very tiny fraction of 
them are selectable means that selectable beneficial mutations should be vanish-
ingly rare. When rare beneficial mutations do occur which are above the selection 
threshold, they respond to selection beautifully and can be rapidly amplified. This 
reflects the type of response we see when there is strong selection for something 
like a bacterial mutation for antibiotic resistance. But these types of rare and iso-
lated events can only explain what is known as microevolution (mere adaptation). 
Clearly, this type of fine-tuning to some specific environmental factor has no bear-
ing on how genomes might be created or sustained. Sanford et al. raise the impor-
tant question — “What mechanism could have established the hundreds of 
millions of very low-impact nucleotide sites within any higher genome?”

Nelson et al. use the well-known Avida simulation program to show that when 
Avida is run using biologically realistic parameters, the results are remarkably 
similar to when similar parameters are used in Mendel’s Accountant. For example, 
when a realistic distribution of mutation effects is employed (the Mendel default 
setting), both programs show no forward evolution at all, but rather a rapid loss of 
whatever genetic information was initially present. Conversely, when all muta-
tions have very large fitness effects (the Avida default setting), both simulation 
programs demonstrate explosive forward evolution. Avida, like Mendel’s 
Accountant, when run with biologically reasonable parameters, shows reverse 
evolution. Nelson et al. go on to use Avida to illustrate something that Mendel’s 
Accountant fails to demonstrate — that there is a clearly defined threshold for 
establishing irreducible complexity via the selective process, given reasonable 
probabilistic resources.
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The profound difficulties with the classic Darwinian mechanism, as described 
in the preceding papers, have been known within the population genetics commu-
nity for decades. The standard response to these problems has been either to ignore 
them, or to invoke ad hoc models to explain away the problems. These ad hoc 
models have never been critically examined or properly tested. There are two pri-
mary models used to explain why genetic change over time might primarily be 
upward, rather than downward. The first is what can be called the mutation count 
mechanism and the second is the synergistic epistasis mechanism.

Brewer et al. use numerical simulation to test the mutation count mechanism 
model. This model suggests that if selection is strongly directed specifically 
against those individuals with higher mutation counts, deleterious mutation accu-
mulation can be halted. The numerical simulations of Brewer et al. show that this 
mechanism actually can work, but only when mutation effects are relatively uni-
form, when there is truncation selection, and where there is sexual recombination. 
However, numerical simulations clearly show the mutation count mechanism 
becomes ineffective when any of the following are true: 1) there is a distribution 
of mutation effects which is realistically broad; 2) probability selection is operat-
ing; 3) a species reproduces clonally. Few if any situations occur in nature where 
none of three conditions are present, hence the mutation count mechanism cannot 
be operational in any general sense. Therefore, Brewer et al. have effectively falsi-
fied the mutation count hypothesis.

Baumgardner et al. use numerical simulation to test the synergistic epistasis 
hypothesis. This hypothesis proposes that as mutations accumulate continuously — 
they will amplify each other’s deleterious effect, so that genetic damage does not 
increase linearly but rather increases exponentially. It is thought that at some critical 
point, just one or a few additional mutations will create a profoundly deleterious 
effect (“the straw that broke the camel’s back”). In this way selection might be 
focused more strongly against those individuals who have a higher mutation count 
(just as with the mutation count mechanism). This hypothesis is highly problematic, 
is entirely ad hoc, and it is entirely incompatible with all the normal population 
genetics assumptions. None the less, this hypothetical mechanism is rigorously 
tested using numerical simulation by Baumgardner et al. It is shown that the syner-
gistic epistasis mechanism fails to halt deleterious mutation accumulation, and con-
sistently accelerates mutational degeneration, just as common sense would dictate.

Given all the theoretical evidence that the mutation/selection should yield to a 
net loss in functional information, it’s very reasonable to ask if there are living 
systems that actually show this might be happening. This is generally difficult to 
demonstrate experimentally, because most biological systems change very slowly, 
especially on the level of the whole genome. Brewer, Smith, and Sanford have 
chosen to study RNA viruses, which have short replication cycles and extremely 
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high mutation rates, and so they can change rapidly in short intervals of time. They 
examine such viruses to better understand loss of information in real biological 
systems. They examine pandemic histories which suggest that some human pan-
demics involving RNA virus may come to an end because of mutation accumula-
tion leading to natural genetic attenuation of the virus. They then do a series of 
numerical simulations that confirm that based upon known RNA viral mutations 
rates and based upon the biology of pandemics, a significant fitness decline in the 
virus should be expected during the course of a typical pandemic. These authors 
then go on to use numerical simulations to examine what factors might accelerate 
such natural genetic attenuation. They show that use of pharmaceuticals that are 
known to enhance the viral mutation rate should be highly effective in reducing 
both the extent and the duration of pandemics. Other practices which should accel-
erate genetic attenuation would include reducing inoculum levels during disease 
transmission (stronger bottlenecking), and reducing titer levels in the infected host 
(lower selection efficiency).

These papers, along with many other lines of evidence (i.e., see Behe’s paper in 
the following section “Biological Information and Molecular Biology”), clearly 
show that the explanatory power of the classic Darwinian mechanism is suddenly 
collapsing. This is happening at exactly the same time that we are being over-
whelmed with evidence that the actual amount of biological information that 
requires explanation is vastly deeper and richer than we could have imagined. 
Surely this is an exciting time to be a biologist!
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Not Junk After All: Non-Protein-Coding DNA Carries 
Extensive Biological Information

Jonathan Wells

Discovery Institute, 208 Columbia Street, Seattle, WA 98104, USA. jonwells2001@comcast.net

Abstract

In the 1950s Francis Crick formulated the  Central Dogma of molecular biology, which states 
(in effect) that DNA makes RNA makes protein makes us. By 1970, however, biologists knew that 
the vast majority of our  genome does not encode proteins, and the non-protein-coding fraction 
became known as “ junk DNA.” Yet data from recent genome projects show that most nuclear DNA 
is transcribed into RNAs, many of which perform important functions in cells and tissues. Like 
protein-coding DNA, non-protein-coding regions carry multiple  overlapping codes that profoundly 
affect gene expression and other cellular processes. Although there are still many gaps in our under-
standing, new functions of non-protein-coding DNA are being reported every month. Clearly, the 
notion of “junk DNA” is obsolete, and the amount of biological information in the genome far 
exceeds the information in protein-coding regions.

Key words: Central Dogma, Sequence Hypothesis, junk DNA, non-protein-coding DNA, non- 
protein-coding RNA, chromatin, centromere, inverted nuclei

1. Introduction

James Watson and Francis Crick’s 1953 discovery that DNA consists of two 
complementary strands suggested a possible copying mechanism for Mendel’s 
genes [1,2]. In 1958, Crick argued that “the main function of the genetic mate-
rial” is to control the synthesis of proteins. According to the “ Sequence 
Hypothesis,” Crick wrote that the specificity of a segment of DNA “is expressed 
solely by the sequence of bases,” and “this sequence is a (simple) code for the 
amino acid sequence of a particular protein.” Crick further proposed that DNA 
controls protein synthesis through the intermediary of RNA, arguing that “the 
transfer of information from nucleic acid to nucleic acid, or from nucleic acid to 
protein may be possible, but transfer from protein to protein, or from protein to 
nucleic acid, is impossible.” Under some circumstances RNA might transfer 
sequence information to DNA, but the order of causation is normally “DNA 
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makes RNA makes protein.” Crick called this the “ Central Dogma” of molecular 
biology [3], and it is sometimes stated more generally as “DNA makes RNA 
makes protein makes us.”

The  Sequence Hypothesis and the Central Dogma imply that only protein-
coding DNA matters to the organism. Yet by 1970 biologists already knew that 
much of our DNA does not code for proteins. In fact, less than 2% of human DNA 
is protein-coding. Although some people suggested that non-protein-coding DNA 
might help to regulate gene expression, the dominant view was that  non-protein-
coding regions had no function. In 1972, biologist Susumu Ohno published an 
article wondering why there is “so much ‘ junk’ DNA in our  genome” [4].

In 1976, Oxford biologist Richard Dawkins wrote: “The amount of DNA in 
organisms is more than is strictly necessary for building them: A large fraction of 
the DNA is never translated into protein. From the point of view of the individual 
organism this seems paradoxical. If the ‘purpose’ of DNA is to supervise the 
 building of bodies, it is surprising to find a large quantity of DNA which does no 
such thing. Biologists are racking their brains trying to think what useful task this 
apparently surplus DNA is doing. But from the point of view of the selfish genes 
themselves, there is no paradox. The true ‘purpose’ of DNA is to survive, no more 
and no less. The simplest way to explain the surplus DNA is to suppose that it is 
a parasite, or at best a harmless but useless passenger, hitching a ride in the 
 survival machines created by the other DNA” [5].

If one assumes that only protein-coding regions of DNA matter to the organism, 
and non-protein-coding DNA is just parasitic junk, it makes sense also to assume 
that only protein-coding regions would be transcribed into RNA. Why would an 
organism engaged in a struggle for survival waste precious internal resources on 
transcribing junk? Yet it turns out that organisms do transcribe most of their DNA 
into RNA — and there is growing evidence that much (perhaps even most) of this 
RNA performs essential functions in cells and tissues.

2. Widespread Transcription Into RNAs That Are Probably 
Functional

Even before the  Human Genome Project was completed in 2003 [6] there had 
been reports of the widespread transcription of non-protein-coding DNA. In 2002, 
the Japanese FANTOM Consortium (for Functional ANnoTation Of the 
Mammalian Genome) identified 11,665 non-protein-coding RNAs in mice and 
concluded that “non-coding RNA is a major component of the transcriptome” [7]. 
Other scientists reported that transcription of two human chromosomes resulted in 
ten times more RNA than could be attributed to protein-coding exons [8].
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In 2003, the  ENCODE project (for ENCyclopedia Of DNA Elements) set out 
to identify all the functional elements in the human genome. It soon became 
 obvious that most of the mammalian genome is transcribed into RNA [9,10]. 
Preliminary data provided “convincing evidence that the genome is pervasively 
transcribed, such that the majority of its bases can be found in primary transcripts, 
including non-protein-coding transcripts” [11].

The ENCODE Project and  FANTOM Consortium showed that RNAs are tran-
scribed from both strands of DNA, and that antisense RNA is a major component 
of the mammalian transcriptome [12-15]. Not only is some RNA transcribed from 
the antisense strand, but RNAs can also be transcribed from several different start 
sites within an open reading frame. So a single open reading frame can carry 
 multiple  overlapping codes that specify both protein-coding RNAs and non- 
protein-coding RNAs [16-20].

Widespread transcription suggests probable function; so does sequence conser-
vation. In 2004 and 2005, several groups of scientists identified non-coding 
regions of DNA that were completely identical in humans and mice. They called 
these “ultra-conserved regions (UCRs)” and noted that they were clustered around 
genes involved in early development. The researchers concluded that the long 
 non-coding UCRs act as regulators of developmentally important genes [21-24].

In 2006, a team studying endothelial cells (which line the inside of human 
blood vessels) reported that “conserved non-coding sequences” — some within 
introns — were enriched in sequences that “may play a key role in the regulation 
of endothelial gene expression” [25]. Oxford geneticists comparing large 
 non-protein-coding RNAs in humans, rats and mice reported conserved sequences 
that “possess the imprint of purifying selection, thereby indicating their function-
ality” [26]. And in 2009, a team of American scientists found “over a thousand 
highly conserved large non-coding RNAs in mammals” that are “implicated in 
diverse biological processes” [27].

3. Direct Evidence for Some Specific Functions of Non-Protein-
Coding RNAs

There is also direct evidence for specific functions of non-protein-coding RNAs. 
Paraspeckles are domains inside the nuclei of mammalian cells that play a role in 
gene expression by retaining certain RNAs within the nucleus [28]. Several 
 non-protein-coding RNAs are known to be essential constituents of them [29,30], 
 binding to specific proteins to form ribonucleoproteins that stabilize the para-
speckles and enable them to persist through cell divisions even though they are not 
bounded by membranes [31,32].
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Non-protein-coding RNAs are also involved in alternative splicing. When a 
eukaryotic gene is transcribed into RNA, its non-protein-coding introns are 
removed and the protein-coding exons are then spliced together before being 
translated into protein. In the great majority of cases (80-95%), the exons can be 
“alternatively spliced,” which means that the resulting transcripts can lack some 
exons or contain duplicates of others [33,34]. Alternative splicing plays an essen-
tial role in the differentiation of cells and tissues at the proper times during embryo 
development, and many alternatively spliced RNAs occur in a  developmental-stage- 
and tissue-specific manner [35-37].

Although introns do not code for proteins, the RNAs transcribed from them 
contain specific codes that regulate alternative splicing [38-40]. The mammalian 
thyroid hormone receptor gene produces two variant proteins with opposite 
effects, and the alternative splicing of those variants is regulated by an intron [41]. 
An intronic element plays a critical role in the alternative splicing of  tissue- specific 
RNAs in mice [42], and regulatory elements in introns control the alternative 
splicing of growth factor receptors in mammalian cells [43].

In 2007, Italian biologists reported that intronic sequences regulate the alterna-
tive splicing of a gene involved in human blood clotting [44]. In 2010, a team of 
Canadian and British scientists studying splicing codes in mouse embryonic and 
adult tissues — including the central nervous system, muscles, and the digestive 
system — found that introns are rich in splicing-factor recognition sites. It had pre-
viously been assumed that most such sites are close to the affected exons —  leaving 
long stretches of DNA not involved in the process of alternative  splicing — but the 
team concluded that their results suggested “regulatory elements that are deeper 
into introns than previously appreciated” [45].

Introns encode other functional RNAs, as well. Short non-protein-coding RNAs 
are known to regulate gene expression [46], and in 2004 British scientists identi-
fied such RNAs within the introns of 90 protein-coding genes [47]. In 2007, 
Korean biologists reported that in humans a “majority” of short non-protein- 
coding RNAs originate “within intronic regions” [48]. One of these, according to 
American medical researchers, is involved in regulating cholesterol levels in 
humans [49]. Introns also encode many of the small RNAs essential for the 
 processing of ribosomal RNAs, as well as the regulatory elements associated with 
such RNA-coding sequences [50,51].

Chromatin organization profoundly affects gene expression.  Non-protein-coding 
RNAs are essential for chromatin organization [52,53], and non-protein-coding 
RNAs have been shown to affect gene expression by modifying chromatin 
 structure [54,55]. A recent study of chromatin-associated RNAs in some human 
cells revealed that almost two-thirds of them are derived from introns [56].
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 Pseudogenes are transcribed into non-protein-coding RNAs that in some cases 
regulate the expression of the corresponding protein-coding genes. For example, 
pseudogenes can reduce gene expression through RNA interference. Since RNA 
transcribed from the antisense strand of a pseudogene is complementary to the 
RNA transcribed from the gene, the former binds to the latter to make double-
stranded RNA that is not translated [57-59].

Pseudogenes can also increase gene expression through target mimicry. Since 
the non-protein-coding RNA transcribed from the sense strand of a pseudogene 
resembles in many respects the protein-coding RNA transcribed from the gene, the 
former can provide an alternative target for RNA-degrading enzymes that would 
normally reduce the expression of a gene by inactivating its messenger RNA 
[60-62].

About half of the  human genome consists of non-protein-coding  repetitive 
DNA, and about two-thirds of this is made up of Long Interspersed Nuclear 
Elements ( LINEs) and Short Interspersed Nuclear Elements ( SINEs). In mam-
mals, the most common LINE has been designated L1, and in humans the most 
common SINEs are Alus — so named because they are recognized by an enzyme 
from the bacterium Arthrobacter luteus.

Human L1 sequences function by mobilizing various RNAs in the cell [63]. L1s 
also silence a gene that is expressed in the liver in human fetuses but not in adults 
[64]. In a 2008 review, an Italian biologist concluded that human L1 “regulates 
fundamental biological processes” [65]. LINEs also participate in the necessary 
inactivation of most protein-coding regions of the second X chromosome in female 
eutherian mammals. In 2010, British researchers reported that X chromosome inac-
tivation depends on non-protein-coding RNAs that act more efficiently in L1-rich 
domains [66]. The same year, French biologists concluded that LINEs function at 
two different levels in X chromosome inactivation: First, LINE DNA produces 
a rearrangement in the chromatin that inactivates some genes; second, RNAs 
 transcribed from LINEs coat and silence other portions of the chromosome [67].

Alu elements contain functional binding sites for transcription factors [68]. 
RNAs derived from Alu sequences repress transcription during the cellular 
response to elevated temperatures [69]. Alu-derived RNAs are also involved in the 
editing and alternative spicing of other RNAs and in the translation of RNAs into 
proteins [70-74]. In 2009, Colorado researchers studying the biological functions 
of Alus reported that they are transcribed into RNAs that help to control gene 
expression by controlling the transcription of messenger RNAs and by editing 
other RNAs. The researchers concluded: “Finding… that these SINE encoded 
RNAs indeed have biological functions has refuted the historical notion that 
SINEs are merely ‘ junk DNA’” [75].
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4. Functions of Non-Protein-Coding DNA That Are Not 
Determined by Precise Nucleotide Sequences

The  genome functions hierarchically, and the order of nucleotides in protein- coding 
and non-protein-coding DNA constitutes only the first level of that  hierarchy. The 
length of DNA sequences (even non-protein-coding ones) is a second level; chro-
matin organization is a third level; and the position of chromosomes within the 
nucleus is a fourth [76,77]. There is evidence that DNA functions at the second, 
third, and fourth levels in ways that are independent of the precise nucleotide 
sequence.

4.1 The Length of DNA Sequences

In 1986, British biologist David Gubb suggested that the time needed to transcribe 
eukaryotic genes is a factor in regulating the quantity of protein they produce. He 
proposed that the sheer length of introns in some genes “would affect both the 
spatial and temporal pattern of expression of their gene products” [78]. In 1992, 
American biologist Carl Thummel likewise argued that “the physical arrangement 
and lengths of transcription units can play an important role in controlling their 
timing of expression.” For example, the very long introns in certain key develop-
mental genes could delay their transcription, “consistent with the observation that 
they function later in development” than genes with shorter introns [79].

In 2008, Harvard systems biologists Ian Swinburne and Pamela Silver summa-
rized circumstantial evidence that intron length has significant effects on the 
 timing of transcription. “Developmentally regulated gene networks,” they wrote, 
“where timing and dynamic patterns of expression are critical, may be particularly 
sensitive to intron delays” [80]. So introns might have a function in gene regula-
tion that is independent of their exact nucleotide sequence — namely, regulating 
the timing of transcription simply by their length.

The long stretches of non-protein-coding DNA between protein-coding regions 
might also affect gene expression by their length. In 1997, molecular biologist 
Emile Zuckerkandl suggested that DNA may function in ways that do not depend 
on its particular nucleotide sequence. “Along noncoding sequences,” he wrote, 
“nucleotides tend to fill functions collectively, rather than individually.” Sequences 
that are non-functional at the level of individual nucleotides may function at 
higher levels involving physical interactions [81].

Because the distance between enhancers and promoters is a factor in gene 
regulation, Zuckerkandl wrote in 2002, “genomic distance per se — and, there-
fore, the mass of intervening nucleotides — can have functional effects.” He 
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concluded: “Given the scale dependence of nucleotide function, large amounts of 
‘ junk DNA’, contrary to common belief, must be assumed to contribute to the 
complexity of gene interaction systems and of organisms” [82]. In 2007, 
Zuckerkandl (with Giacomo Cavalli) wrote that “SINEs and LINEs, which have 
been considered ‘junk DNA,’ are among the repeat sequences that would appear 
liable to have teleregulatory effects on the function of a nearby promoter, through 
changes in their numbers and distribution” [83].

Since enhancers can be tens of thousands of nucleotides away from the genes 
they regulate, bringing together enhancers and promoters that are on the same 
chromosome requires chromosome “looping” [84,85]. The size of a chromosome 
loop depends on the length of the DNA. For physical reasons, a loop consisting 
only of DNA must be at least 500 nucleotides long, while a loop consisting of 
chromatin (because of its greater stiffness) must be at least 10,000 nucleotides 
long [86]. In such cases it may be the sheer length of the DNA that matters, not 
whether it encodes RNAs.

4.2 Chromati n Organizati on

Because DNA is packaged into chromatin, and because RNA polymerase must 
have access to the DNA to transcribe it, the structure of chromatin is all- important 
in gene regulation. In many cases, various proteins and RNAs mediate the attach-
ment of RNA polymerase to the DNA by interacting with specific sequences of 
nucleotides, but in some cases a mere change in the three-dimensional conforma-
tion of chromatin can activate transcription by exposing the DNA to RNA 
 polymerase [87].

In 2007, scientists in Massachusetts produced a genome-scale, high-resolution 
three-dimensional map of DNA and found similar conformations that were inde-
pendent of the underlying nucleotide sequences. They concluded that  “considerably 
different DNA sequences can share a common structure” due to their similar 
 chromatin conformation, and some transcription factors may be “conformation-
specific … rather than DNA sequence-specific” [88].

Two years later, scientists reported that functional non-protein-coding regions 
of the human genome are correlated with chromatin-related “local DNA topogra-
phy” that can be independent of the underlying sequence. “Although similar 
sequences often adopt similar structures,” they wrote, “divergent nucleotide 
sequences can have similar local structures,” suggesting that “they may perform 
similar biological functions.” The authors of the report concluded that “some of 
the functional information in the non-coding portion of the genome is conferred 
by DNA structure as well as by the nucleotide sequence” [89].
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The clearest example of a chromatin-level function that can be independent of 
the exact DNA sequence is the “centromere,” a special region on a eukaryotic chro-
mosome that serves as the chromosome’s point of attachment to other  structures in 
the cell. For example, before a eukaryotic cell divides it makes a duplicate of each 
chromosome, and the duplicate copies of each chromosome are joined together at 
their centromeres until they separate and move to daughter cells.

Centromeres can form only on a foundation provided by the chromosome. Yet 
centromeres are built upon long stretches of repetitive DNA that some biologists 
have regarded as junk [90]. Although much of the DNA that underlies centromeres 
is now known to be transcribed into RNAs that perform a variety of functions 
[91-96], it turns out that centromere formation is to a great extent independent of 
the exact nucleotide sequence.

The DNA sequences of centromere regions vary significantly from species to 
species, though all centromeres function similarly [97]. If the chromosome region 
containing a centromere is artificially deleted and replaced by synthetic repetitive 
DNA, a functional centromere can form again at the same site [98]. Extra cen-
tromeres (called “neo-centromeres”) can also form abnormally elsewhere on a 
chromosome that already has one, or on a chromosome fragment that has sepa-
rated from the part bearing a centromere [99,100]. It seems that centromeres can 
form at many different places on a chromosome, regardless of the underlying 
DNA sequence.

Nevertheless, the underlying chromatin must have certain characteristics that 
make centromere formation possible. For example, there is evidence that some 
aspects of the DNA sequence are conserved [101,102]. In humans and other  primates, 
centromere activity is normally associated with repeated blocks of 171- nucleotide 
subunits termed  alpha-satellite DNA. (Researchers in the 1960s  discovered that a 
fraction of DNA consisting of millions of short, repeated nucleotide sequences 
 produced “satellite” bands when DNA was centrifuged to separate it into fractions 
with different densities.) Every normal human centromere is located on alpha- 
satellite DNA [103–105].

Human neo-centromeres form on parts of a chromosome that do not consist of 
alpha-satellite DNA, though the neo-centromere DNA still has special 
 characteristics — most notably, an unusually high proportion of  LINEs [106]. 
These non-protein-coding segments apparently play a role in localizing proteins 
that are required for the formation of the centromere and kinetochore [107,108].

In the 1980s, biologists identified several proteins associated with centromeres 
and called them CENPs (for CENtromere Proteins) [109]. Subsequent research 
revealed that one of these, CENP-A, takes the place of some of the histones in 
chromatin [110]. The incorporation of CENP-A makes chromatin stiffer and 
 provides a foundation for assembling the other components of centromeres 
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[111,112]. In fact, centromeres in all organisms are associated with CENP-A, 
which must be present for a centromere to form, though CENP-A by itself is not 
sufficient [113,114].

The modification of chromatin by CENP-A and other centromere-specific 
proteins can be passed down from generation to generation. Indeed, the location 
of a centromere on a particular chromosome can persist for thousands of 
generations. From the perspective of the  Central Dogma and  Sequence Hypothesis 
(i.e., the view that DNA sequences determine the essential features of organisms 
by encoding proteins), centromeres are an enigma because they show that a cell 
can impose an essential and heritable structure on its DNA that is independent of 
the precise nucleotide sequence.

4.3 Chromosome Arrangement in the Nucleus

Between cell divisions, chromosomes are not randomly distributed in the nucleus; 
instead, they occupy distinct domains [115]. Chromosome domains affect gene 
regulation, in part, by bringing together specific regions of chromosomes and 
facilitating interactions among them [116,117]. Different cell and tissue types in 
the same animal can have different three-dimensional patterns of chromosomes in 
their nuclei, which account for at least some differences in gene expression 
[118,119].

One notable feature of nuclear domains is their radial arrangement [120]. In 
1998, biologists in New York reported that chromatin localized to the periphery of 
the nucleus in yeast cells tends to be “transcriptionally silent” [121]. In 2001, 
British biologists wrote that “most gene-rich chromosomes concentrate at the 
centre of the nucleus, whereas the more gene-poor chromosomes are located 
towards the nuclear periphery” [122]. In 2008, Dutch biologists reported that 
human chromosome domains associated with the periphery of the nucleus “repre-
sent a repressive chromatin environment” [123]. The same year, several teams of 
researchers reported independently that they could suppress the expression of 
specific genes by relocating them to the nuclear periphery [124–126].

These data are consistent with the observation that in most nuclei the gene-rich 
euchromatin is concentrated near the center while the gene-poor heterochromatin 
is situated more peripherally. An important exception to this radial arrangement, 
however, occurs in the retinas of nocturnal mammals (Fig. 1).

The retina of a vertebrate eye contains several different kinds of light-sensing 
cells. Cone cells detect colors and function best in bright light; rod cells are more 
numerous and more sensitive to low light. Nocturnal animals such as mice need to 
see under conditions of almost no light, so they need exceptionally sensitive rod 
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cells. In 1979, medical researchers examined mouse retinas with an electron 
microscope and found that the heterochromatin in cone cells was located near the 
periphery of the nucleus, as in most other eukaryotic cells, but the heterochromatin 
in rod cells was concentrated in “one large, central clump” [127].

Another team of medical researchers used mice to study the genetic mutation 
responsible for an inherited human disease that causes nerve degeneration [128]. 
The team found that the mutation causes blindness in mice by altering the arrange-
ment of the chromatin in rod cells. Instead of containing “a single, large clump of 
heterochromatin surrounded by a spare rim of euchromatin,” the rod cells in 
mutant mice “showed a dramatic chromatin decondensation” and “resembled cone 
nuclei” [129].

Clearly, the unique localization of heterochromatin in the center of rod cells in 
mouse retinas is essential for normal vision in these animals. In 2009, European 
scientists called the unusual pattern of centrally located heterochromatin “inverted,” 
and they reported finding an inverted pattern in the rod cell nuclei of various other 
mammals that are primarily nocturnal (including cats, rats, foxes, opossums,  rabbits 
and several species of bats) but not of mammals that are primarily active in daylight 
(such as cows, pigs, donkeys, horses, squirrels, and chipmunks). These scientists 
observed that the centrally located heterochromatin had a high refractive index — a 
characteristic of optical lenses — and by using a two-dimensional computer simu-
lation they showed that a main consequence of the inverted pattern was to focus 
light on the light-sensitive regions of rod cells [130].

In 2010, molecular biologists in France reported that the organization of the 
central heterochromatin in the rod nuclei of nocturnal mammals is consistent with 

Fig. 1 Left:  A simplified view of the internal arrangement of chromatin in most eukaryotic nuclei. 
Gene-poor heterochromatin (black) is on the periphery, and the gene content of the chromatin 
increases toward the center, which consists of gene-rich euchromatin (white). Right: A simplified 
view of the inverted chromatin arrangement found in rod cells in the retinas of nocturnal mammals. 
Gene-rich euchromatin is on the periphery, while gene-poor heterochromatin is in the center. The 
centrally located heterochromatin acts as a liquid-crystal lens that focuses the few photons available 
at night onto the light-sensitive outer segments of the rod cells.
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a “liquid crystal model” [131], and British biophysicists improved upon the 2009 
study by using a new computer simulation to show that “the focusing of light by 
inverted nuclei” in three dimensions is “at least three times as strong” as it is in 
two dimensions [132].

So evidence for the functionality of non-protein-coding DNA comes from 
 several sources: pervasive transcription of the  genome, including transcription 
from antisense DNA and from multiple start sites within open reading frames; 
conservation of a substantial fraction of non-protein-coding sequences; particular 
sequence-dependent functions of RNAs transcribed from introns,  pseudogenes, 
repetitive DNA (much of which is not conserved, but species-specific); and func-
tions that are to a large extent independent of the exact nucleotide sequence, such 
as the influence of intron length on transcription timing, the role of chromatin 
topology in gene expression and centromere placement, and the light-focusing 
property of heterochromatin in inverted nuclei. Clearly, it is no longer reasonable 
to maintain that the vast majority of our DNA is “junk.”

5. Conclusion: Multiple Levels of Biological Information

The concept of information as applied to a linear sequence — such as letters in an 
English sentence or nucleotides in a DNA molecule — has been extensively ana-
lyzed [133-143]. Although protein-coding DNA constitutes less than 2% of the 
human genome, the amount of such information in such DNA is enormous. Recent 
discoveries of multiple overlapping functions in non-protein-coding DNA show 
that the biological information in the  genome far exceeds that in the protein- 
coding regions alone.

Yet biological information is not limited to the genome. Even at the level of 
gene expression — transcription and translation — the cell must access informa-
tion that is not encoded in DNA. Many different RNAs can be generated from a 
single piece of DNA by alternative splicing, and although some splicing codes 
occur in intronic DNA there is no empirical justification for assuming that all of 
the information for tissue- and developmental-stage-specific alternative splicing 
resides in DNA. Furthermore, even after RNA has specified the amino acid 
sequence of a protein, additional information is needed: Protein function depends 
on three-dimensional shape, and the same sequence of amino acids can be folded 
differently to produce proteins with different three-dimensional shapes [144–147]. 
Conversely, proteins with different amino acid sequences can be folded to produce 
similar shapes and functions [148,149].

Many scientists have pointed out that the relationship between the genome and 
the organism — the genotype-phenotype mapping — cannot be reduced to a 
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genetic program encoded in DNA sequences. Atlan and Koppel wrote in 1990 that 
advances in artificial intelligence showed that cellular operations are not  controlled 
by a linear sequence of instructions in DNA but by a “distributed multilayer 
 network” [150]. According to Denton and his co-workers, protein folding appears 
to involve formal causes that transcend material mechanisms [151], and according 
to Sternberg this is even more evident at higher levels of the genotype-phenotype 
mapping [152].

So non-protein-coding regions of DNA that some previously regarded as “junk” 
turn out to encode biological information that greatly increases the known 
 information-carrying capacity of DNA. At the same time, DNA as a whole turns 
out to encode only part of the biological information needed for life.

Addendum

Due to a delay in the publication of these proceedings, the material in this chapter 
is now (2013) over two years old. Yet it is still accurate. Indeed, the fact that most 
non-protein-coding DNA serves biological functions was dramatically confirmed in 
September 2012 by 37 papers published by the  ENCODE Project in Nature, 
Genome Research, Genome Biology, The Journal of Biological Chemistry, and 
Science [153-189]. The Project concluded that 80% of the genome is linked to bio-
logical functions, but Project Coordinator Ewan Birney pointed out that this conclu-
sion was based on analyses of only 147 cell types, and “the human body has a few 
thousand.” As more cell types are studied, Birney said, “It’s likely that 80 percent 
will go to 100 percent.” [190] A commentary accompanying the papers in Nature 
described the ENCODE results as “dispatching the widely held view that the human 
genome is mostly ‘ junk DNA’.” [191] A commentary published at the same time in 
Science announced “ENCODE Project writes eulogy for junk DNA.” [192]
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Abstract

Most deleterious mutations have very slight effects on total fitness, and it has become clear that 
below a certain fitness effect threshold, such low-impact mutations fail to respond to  natural 
 selection. The existence of such a selection threshold suggests that many low-impact deleterious 
mutations should accumulate continuously, resulting in relentless erosion of genetic information. In 
this paper, we use  numerical simulation to examine this problem of selection threshold.

The objective of this research was to investigate the effect of various biological factors individu-
ally and jointly on mutation accumulation in a model human population. For this purpose, we used 
a recently-developed, biologically-realistic numerical simulation program,  Mendel’s Accountant. 
This program introduces new mutations into the population every generation and tracks each muta-
tion through the processes of recombination, gamete formation, mating, and transmission to the new 
offspring. This method tracks which individuals survive to reproduce after selection, and records the 
transmission of each surviving mutation every generation. This allows a detailed mechanistic 
accounting of each mutation that enters and leaves the population over the course of many genera-
tions. We term this type of analysis genetic accounting.

Across all reasonable parameters settings, we observed that high impact mutations were selected 
away with very high efficiency, while very low impact mutations accumulated just as if there was no 
selection operating. There was always a large transitional zone, wherein mutations with intermediate 
fitness effects accumulated continuously, but at a lower rate than would occur in the absence of 
 selection. To characterize the accumulation of mutations of different fitness effect we developed a 
new statistic, selection threshold (STd), which is an empirically determined value for a given popula-
tion. A population’s selection threshold is defined as that fitness effect wherein deleterious mutations 
are accumulating at exactly half the rate expected in the absence of selection. This threshold is 
 mid-way between entirely selectable, and entirely unselectable, mutation effects.
Our investigations reveal that under a very wide range of parameter values, selection thresholds for 
deleterious mutations are surprisingly high. Our analyses of the selection threshold problem indicate 
that given even modest levels of noise affecting either the genotype-phenotype relationship or the 
genotypic fitness-survival-reproduction relationship, accumulation of low-impact mutations continu-
ally degrades fitness, and this degradation is far more serious than has been previously acknowl-
edged. Simulations based on recently published values for mutation rate and effect-distribution in 
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humans show a steady decline in fitness that is not even halted by extremely intense selection 
 pressure (12 offspring per female, 10 selectively removed). Indeed, we find that under most realistic 
circumstances, the large majority of harmful mutations are essentially unaffected by  natural selection 
and continue to accumulate unhindered. This finding has major theoretical implications and raises 
the question, “What mechanism can preserve the many low-impact nucleotide positions that consti-
tute most of the information within a genome?”

Key words: deleterious mutation, genetic deterioration, mutation accumulation, near-neutral, popu-
lation genetics, selection threshold, simulation

Introduction

More than forty years ago, Muller [1] concluded that there exists a class of low-
impact mutations that are beyond the reach of natural selection. Kimura greatly 
expanded upon this theme, using mathematical modeling to study the problem [2]. 
Although Kimura initially described such mutations as ‘neutral’, Ohta [3–6] 
argued that such mutations should more accurately be termed ‘nearly neutral’, and 
Kimura later agreed [7, 8]. Kondrashov realized that very low impact mutations 
are not only inherently unselectable, but they also create a profound evolutionary 
paradox [9]. Later, Lynch et al. [10, 11] and Higgins and Lynch [12] provided 
evidence that accumulation of low-impact mutations plays an important role in the 
extinction process. Recently, Loewe [13] showed that accumulation of nearly 
 neutral mutations is a theoretical problem even for haploid genomes as small as 
that of human mitochondria. His analysis suggests that accumulation of nearly-
neutral mutations within the mitochondria alone could potentially lead to human 
extinction. Given that nearly-neutral mutations have such profound  biological 
implications, it would seem important to understand better the primary factors that 
control the accumulation of low-impact deleterious mutations.

A useful way to conceptualize selection’s ability to influence the accumulation 
of low-impact mutations is in terms of signal versus noise. ‘Signal’ corresponds to 
the level of influence a mutation has on its own transmission. ‘Noise’, by contrast, 
corresponds to various types of interference that reduce the correlation between a 
mutation’s effect on functional fitness and its probability of transmission. When 
the signal is weak and the noise is sufficiently strong, the signal is obscured and 
selection breaks down. At that point the correlation between the mutation’s effect 
on functional fitness and the likelihood of that mutation’s transmission becomes 
too small for selection to affect the frequency of that mutation in the population in 
any significant way.

Kimura [7] was the first to attempt to quantify the threshold for selection break-
down. His calculations focused only on the influence of one source of ‘noise’ on 
the rate of mutation fixation, i.e., that of gametic sampling. Kimura found that the 
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strength of this confounding effect on selection varies inversely with the effective 
population size, Ne. In small populations, a relatively small number of gametes are 
extracted to produce the next generation. This restricted gametic sampling results 
in sampling error that leads to random fluctuations in each allele’s frequency 
within the population. These random fluctuations represent a type of noise that 
interferes with selection. It is well known that this type of genetic drift is strong in 
small populations and can override all but the strongest selection pressures. 
However, in larger populations the gametic sampling error is smaller, and thus the 
resulting random fluctuations in allele frequency are smaller. Therefore, selection 
for low-impact mutations can be more effective in larger populations. Restricting 
his analysis to this single source of noise, Kimura developed his now well-known 
approximation of the magnitude of the selection coefficient needed to overcome 
drift, expressed as s = 1/(2Ne). This expression implies a direct relationship 
between the selection threshold and the effective population size Ne [7]. Most 
subsequent studies of nearly-neutral mutations and their accumulation have 
 utilized this estimate for the point at which selection breaks down and  genetic drift 
becomes predominant [9–13].

It is obvious, however, that there are other sources of biological noise besides 
 gametic sampling. All of these other sources of noise should reduce the correlation 
between the magnitude of the effect (di) of a specific mutation on the functional 
fitness of an individual and the influence of that mutation on the individual’s 
reproductive success. Lynch [14], for example, notes that small population size, 
large nucleotide distances between crossovers, and high mutation rates all syner-
gistically reduce the efficiency of  natural selection. To study some of these bio-
logical factors and to quantify how they affect the selection threshold beyond their 
predicted direct effect on the selection coefficient, s, we adopt a numerical simula-
tion strategy using the program Mendel’s Accountant (Mendel) [15, 16, http://
www.MendelsAccountant.info]. This numerical approach affords us much flexi-
bility to explore the biological complexity of the mutation-selection process, as it 
actually occurs in nature. Numerous other studies have explored mutation accu-
mulation via simulation [17–19], including the consequences of a non-uniform 
distribution of mutational effects. We extend those explorations by including 
 environmental variance, a range of different mutation rates, and various forms of 
selection (truncation, partial truncation, and standard  probability selection).

The earliest reference to the idea of a selection threshold seems to be from 
Muller [1]. He stated, “There comes a level of advantage, however, that is too small 
to be effectively seized upon by selection, its voice being lost in the noise, so to 
speak. This level would necessarily differ greatly under different circumstances 
(genetic, ecological, etc.), but this is a subject that has as yet been subject to little 
analysis… although deserving of it.” Muller’s recognition that there are deleterious 

b1567_Sec2.2.indd   234b1567_Sec2.2.indd   234 5/8/2013   2:41:11 PM5/8/2013   2:41:11 PM

 B
io

lo
gi

ca
l I

nf
or

m
at

io
n 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
2.

4.
17

.1
40

 o
n 

08
/1

1/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



 Can Purifying Selection Preserve Biological Information? 235

b1567  Biological Information — New Perspectives b1567_Sec2.2 8 May 2013 2:50 PM

mutations that are practically invisible to the selection process contributed to his 
overall concern about genetic deterioration. It also contributed to his concern about 
the problem of linkage-mediated deterioration in fitness (“ Muller’s ratchet”). The 
goal of this paper is to explore the biological circumstances (to which Muller 
alluded) that can make a large fraction of deleterious mutations immune to 
 selection. Our results reveal that even modest degrees of either environmental 
 variance or randomness in the selection process (probability selection) cause 
 selection breakdown for most deleterious mutations, and this problem is 
 compounded by high mutation rates.

Results

Conditi ons allowing perfect purifying selecti on

Several experiments were first conducted to discover the region of parameter 
space in which there is zero near-neutral mutation accumulation. We found that 
complete elimination of near-neutrals requires that all sources of noise be reduced 
to either extremely low levels or zero. As a general rule, this requires zero 
 environmental variation (heritability = 1), perfect  truncation selection, suffi-
ciently high selection intensity, and sufficiently low mutation rates to maintain 
near-zero genetic variance. Only when these conditions were satisfied was selec-
tion  effective enough to preclude accumulation of nearly neutral mutations. Under 
these special circumstances, low-impact mutations were eliminated just as if they 
were fully lethal. This was because under these conditions, selection becomes a 
matter of simply choosing between mutant versus non-mutant individuals. We 
obtained this result, for example, for the case of zero environmental variance, 
perfect truncation selection, a mutation rate of one mutation per individual per 
generation, and the default reproduction rate of six offspring per female (allowing 
for selection to eliminate 2/3 of all offspring, maintaining a constant population 
size). In this case, the Poisson distribution defining the number of new mutations 
assigned to each offspring yielded enough individuals with no mutations (37% on 
average) so that truncation selection against all mutations still allowed mainte-
nance of the designated population size. This guaranteed elimination of all indi-
viduals with even a single mutation, regardless of how small the mutation’s effect. 
As in all other experiments reported here, replicate experiments with different 
random number seeds produced no meaningful differences in outcome. Therefore 
for this and all following analyses, we will only report results from single repre-
sentative runs.
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Eff ects of high mutati on rate and mutati on-mutati on interference

We next conducted a series of similar experiments, but with mutation rates of 5, 
10, 20, and 40 per diploid genome per generation. For mutation rates greater than 
one new mutation per individual, a type of biological noise arises associated with 
 selection interference among mutations. Results are summarized in Figure 1, 
which plots the mutation fitness effect versus mutation accumulation relative to 
the neutral expectation. While high-impact mutations had zero accumulation, 
extremely low-impact mutations displayed accumulation fractions approaching 
1.0. The transition zone between these two extremes is characterized by an 
S-shaped curve. We define the selection threshold for deleterious mutations (STd) 
as the midpoint of this transition zone. More specifically, STd is the value of muta-
tional fitness effect for which the accumulation fraction is 0.5, indicating that 
half as many mutations have accumulated as would be expected under complete 
 neutrality (i.e., no selection). This can be visualized in Figures 1, 2, 3, and 4 as 
the intersection of the horizontal line corresponding to 0.5 on the y-axis and the 
curve that plots the fraction of mutational retention.

As shown in Figure 1, mutation rates greater than one per offspring resulted in 
accumulation of low-impact alleles. Increasing the mutation rate resulted in the 
accumulation of alleles with increasingly large fitness effects. In other words, 
higher mutation rates lead to progressively higher STd values. This means that 
increasing numbers of alleles that would otherwise have been selectable (to the left 
of the threshold) became unselectable (to the right of the threshold). With a muta-
tion rate of 10, almost half of all deleterious mutations were retained, with a nearly 
constant accumulation rate of 4.5 mutations per individual per generation. The 
mean population fitness declined continuously, reflecting this accumulation of 
deleterious mutations, but the decline was very slow because the accumulating 
alleles had very small fitness effects. Figure 1 illustrates that an increased muta-
tion rate, and consequent selection interference among alleles, led to STd values 
increasing from 6.8 × 10–9 for a mutation rate of 5; to 7.4 × 10–8 for a mutation rate 
of 10; to 5.2 × 10–7 for a mutation rate of 20; to 3.2 × 10–6 for a mutation rate of 40. 
At the highest mutation rate, 75% of the mutations were below the selection 
threshold, and hence were effectively unselectable.

Eff ects of environmental variance

We conducted a series of similar experiments, but instead of increasing mutation 
rate, we kept the rate at one per offspring and introduced  environmental variance, 
quantified in terms of fitness heritability (i.e., genotypic variance/phenotypic 
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variance ratio). To illustrate our findings we present three cases with fitness herita-
bilities of 0.4, 0.04, and 0.004 (Figure 2).

As can be observed in Figure 2, modest levels of  environmental variance led to 
substantial STd levels. Heritability of fitness in nature has often been found to be 
very low, and such a fitness heritability value (h2 = 0.004) yielded a high STd 
(2.6 × 10–5 after 10,000 generations). Given this level of environmental variance, 

Fig. 1.  Fractional retention of mutations as a function of fitness effect for various mutation rates. 
In these experiments, fitness heritability is 1.0 (i.e., there is no environmental noise), and truncation 
selection is chosen (i.e., there is no randomness in the selection process). Results for average muta-
tion rates of 5, 10, 20, and 40 new mutations per offspring are displayed. Mutational fitness effect is 
shown using a log scale along the x-axis, with lethal mutations assigned the value of 1.0. Mutations 
of small effect are entirely unselectable, and have a fractional retention of 100% (y-axis value of 1.0), 
while mutations of large effect are eliminated entirely by selection and have a fractional retention of 
zero. The selection threshold (STd) is defined as that fitness effect class which has a fractional reten-
tion value of 0.5 (indicated by the dotted line). Note that selection breakdown becomes progressively 
worse as mutation rate increases. For a mutation rate of 1 per offspring on average, all mutations are 
selectively eliminated, so mutation accumulation is 0. With an average of 1 new mutation distributed 
in a Poisson manner and with four of every six offspring selectively eliminated,  truncation selection 
is able to exclude every offspring that has one or more mutations. Because of the very large number 
of mutations accumulated in these experiments, given computer memory limitations, mutations with 
extremely small effects were not all tracked in detail, although their effects were fully accounted for. 
For this reason, the right edge of the distributions end at different fitness effect values.
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the average mutation count per individual increased at nearly a constant rate of 
0.86 mutations per individual per generation. This means that 86% of all the newly 
arising mutations were below the selection threshold and were essentially 
 unselectable, in spite of very intense selection pressure.

Eff ects of varying degrees of randomness within the selecti on process

In another series of experiments we examined the manner in which some 
 randomness in the selection process itself (e.g., partial or complete probability 
selection) influences STd (Figure 3).

Figure 3 summarizes two experiments in which the only source of noise was a 
specified degree of randomness inherent to the selection process. These experi-
ments were similar to the case that displayed zero mutation accumulation (that is, 
a mutation rate of one per offspring and zero environmental variance). However, 
instead of truncation selection, we applied two other forms of selection, i.e., 
 probability selection and what we refer to as partial truncation (quasi-truncation) 

Fig. 2.  Fractional retention of mutations as a function of fitness effect for various fitness heritabili-
ties. In these experiments, the mutation rate is 1.0 per offspring on average, and truncation selection 
was applied (i.e., there was no randomness in the selection process). Results for fitness heritabilities 
of 0.4, 0.04, and 0.004 are displayed. Note that selection breakdown became progressively worse as 
heritability decreased (i.e., environmental variance increased). The selection threshold value for the 
lowest heritability value is 2.6 × 10–5.
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selection. Under probability selection, the probability of an individual’s reproduc-
tion is directly proportional to that individual’s phenotypic fitness, such that even 
individuals with relatively low phenotypic fitness still have some likelihood of 
reproducing. It is generally understood that probability selection corresponds most 
closely to what occurs under natural circumstances.  Probability selection contrasts 
strongly with truncation selection wherein there is no element of randomness. 
Under  truncation selection, all individuals above a specific phenotypic value have 
a 100% probability of reproduction, while all individuals below that value have 
zero probability of reproduction. Such full truncation selection is almost never 
realized, even under the highly controlled conditions of artificial plant or animal 

Fig. 3.  Fractional retention of mutations as a function of fitness effect for various types of 
 selection. In these experiments, the mutation rate was 1.0 per offspring and the fitness heritability 
was 1.0. Results are shown for three selection modes: truncation, partial truncation, and  probability 
selection. Under  truncation selection with this low mutation rate, all mutations are eliminated so that 
the fraction of mutations retained is zero for all fitness effect values (all bars in histogram have zero 
value). This occurs because, with new mutations distributed in a Poisson manner and with four of 
every six offspring selectively eliminated, truncation selection is able to exclude every offspring with 
one or more mutations. Note that selection breakdown becomes progressively worse as the level of 
randomness in the selection process increases. The transition from full truncation selection to partial 
truncation to probability selection results in increasing selection threshold (ST) values. The STd for 
probability selection is 3 × 10–4.
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breeding. The selection method we refer to as partial truncation (sometimes also 
referred to as “broken-line” selection) is intermediate between truncation selection 
and probability selection.

Figure 3 shows that probability selection led to a profound increase in STd 
(3.0 × 10–4). The mean mutation count per individual over 10,000 generations 
increased at the nearly constant rate of 0.93 per generation. This means that 93% 
of all mutations were essentially unselectable. Mean fitness declined by a total of 
9%. The noise introduced by the random aspects of probability selection resulted 
in a much higher STd than any other single source of noise we examined. Even 
with partial truncation selection, the STd was high (8.4 × 10–5), resulting in 91% of 
all mutations being unselectable. Even a very moderate degree of randomness in 
the selection process makes a large fraction of all mutations unselectable.

Eff ects of minimal levels of noise from multi ple sources

Here we present an experiment that combines minimal levels of noise from mul-
tiple sources. The purpose of this experiment was to estimate the lower limit for 
STd values in typical mammalian populations. We chose what we felt were “best 
case” parameter settings, but it should be clear that the settings used are biologi-
cally unrealistic in that there should be much more noise in most natural circum-
stances. The parameter choices were: (a) partial truncation selection; (b) a 
mutation rate of 5.0; and (c) a fitness heritability of 0.4. Results from this experi-
ment are shown in Figures 4–7.

Figure 4 shows that multiple sources of noise, even at minimal levels, result in 
a very appreciable STd value (7.6 x 10–5). In this instance 90% of all mutations 
were below the selection threshold and were hence effectively unselectable. Some 
mutations accumulated which had fitness effects as large as 0.001. Selection 
breakdown was essentially complete below 0.00001.

The higher mutation rate of this experiment resulted in a higher mean mutation 
count and a much more severe reduction in fitness (Figures 5–7).

Figure 5 shows the distribution of mutant allele accumulation in greater detail, 
using a linear scale for the x-axis and focusing on just low-impact alleles. Moving 
from left to right, a smooth transition is evident from fully-selectable alleles to 
partially-selectable alleles, and finally to alleles that are entirely unselectable.

Figure 6 shows that the rate of mutation accumulation was remarkably constant 
at 4.5 mutations per individual per generation over 10,000 generations, even with 
intense selection pressure. Given the mutation rate of 5.0, only 10% of deleterious 
mutations were successfully eliminated by selection. We consistently observed a 
very constant rate of mutation accumulation, even when experiments were 
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extended to the point of extinction or to the point of computer memory overflow 
(due to large numbers of accumulated mutations being tracked for every 
individual).

Figure 7 shows that, under biologically relevant conditions, the population’s 
mean fitness declined continuously as mutation count per individual increased. In 
this particular case, fitness declined by 16% during the first 10,000 generations. 
When this experiment was extended to the limits of computer memory, fitness 
declined to near extinction in 40,831 generations, with an average accumulation 
of 174,890 mutations per individual. The rate of fitness decline was essentially 
linear after generation 10,000.

Eff ects of larger populati on size, more ti me, and more recombinati on

Figure 8 shows the effects of population size on STd over time, using partial trun-
cation selection with the same settings as for the case displayed in Figs. 4–7. Here, 

Fig. 4.  Fractional retention of mutations as a function of fitness effect, with multiple sources of 
noise. This case used a mutation rate of 5.0 new mutations per offspring on average, a fitness herit-
ability of 0.4, and partial truncation selection. Note that even with these modest levels of noise, STd 
was appreciable (7.6 × 10–5).

b1567_Sec2.2.indd   241b1567_Sec2.2.indd   241 5/8/2013   2:41:12 PM5/8/2013   2:41:12 PM

 B
io

lo
gi

ca
l I

nf
or

m
at

io
n 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
2.

4.
17

.1
40

 o
n 

08
/1

1/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



242 P. Gibson, J. R. Baumgardner, W. H. Brewer and J. C. Sanford 

b1567  Biological Information — New Perspectives b1567_Sec2.2 8 May 2013 2:50 PM

Fig. 5.  Mutation distribution as a function of fitness effect, shown on a linear scale. The case is the 
same as shown in Fig 4. The curved line is the theoretical distribution with no selection. The histo-
gram is the actual mutation distribution given intense selection. Note that only a small portion of the 
vertical and horizontal scales is displayed.

as in all our other simulations, when starting with zero genetic variance (as might 
occur after a severe bottleneck), STd values initially start very high but decline 
rapidly. This is due to the accumulation of segregating alleles in the population as 
time increases, such that selection has more to act upon and so becomes more 
effective. As the amount of genetic variance approaches an equilibrium, the 
decline in STd levels off. As this happens the initially drastic decline in STd reaches 
a plateau. As can be seen in Figure 8, for a population size of 100, the STd declined 
noticeably until generation 2000 and became relatively stable after roughly 4000 
generations. For a population of 1,000, the STd value became relatively stable after 
roughly 6000 generations. For a population of 10,000, the STd value was still 
 falling after 10,000 generations, meaning the population had not yet reached an 
equilibrium for selection efficiency (i.e., a constant value for STd).

When this experiment was extended, we saw that for the population size of 
10,000, there was no significant decline in STd after roughly 150,000 generations. 
Larger populations clearly took longer to reach selection equilibrium, but given 
enough time (assuming that selection could consistently favor the same alleles 
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throughout this many generations), reach markedly lower final STd values. In the 
time frame of this experiment, increasing the population size from 1,000 to 10,000 
slowed fitness decline only modestly (average fitness of 0.84 vs. 0.79 at generation 
10,000). This result may seem surprising in light of the conventional wisdom that 
selection effectiveness is directly proportional to population size. However, 
increasing population size from 1,000 to 10,000 reduced the STd at generation 
10,000 by only a small amount on an absolute scale (1.5 × 10–4 to 7.2 × 10–5), and 
thus did not greatly slow the decline of fitness.

Figure 9 shows the effect of population size on percent retention after 10,000 
generations. Within this limited amount of time, there was only a trivial advantage 
in having population sizes greater than 5,000. With a population size of 5,000, the 
rate of mutation accumulation was 89.38%. Doubling the population size to 
10,000 resulted in 89.05% accumulation, and doubling the population size again 
to 20,000 resulted in no further improvement (89.05% accumulation). It is clear 
that the advantage of larger population size beyond 1000 is only realized in deep 
time, which seems to imply the need for some type of very long-term selection 
equilibrium, which may be conceptually problematic.

Fig. 6.  Mean mutation count per individual as a function of generation number. The case is the 
same as shown in Figs. 4 and 5. With no selection, the mean mutation count would have been 50,000 
after 10,000 generations, compared to the 45,000 actually accumulated.
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In a related series of experiments (data not shown), we found that having fewer 
than 500 linkage blocks resulted in much more severe mutation accumulation due 
to selection interference between mutations and due to Muller’s ratchet. However, 
increasing the number of  linkage blocks beyond 1,000 had very little additional 
benefit, apparently because mutations in proximal linkage blocks separated only 
rarely (two randomly placed crossovers per chromosome per generation), even 
though proximal mutations were technically in different linkage blocks.

Experiments using the latest esti mate of human mutati on rate and 
fi tness eff ect distributi on

For mutation accumulation simulations to have relevance to the biological world, 
the mutation rate and the distribution of mutational fitness effects must be reason-
ably realistic. The experiments summarized in Figure 1–9 used the most conserva-
tive parameters settings possible, representing best case scenarios for halting 
mutation accumulation. However, all these experiments employed Mendel’s default 

Fig. 7.  Mean population fitness (red) and fitness standard deviation (green), as a function of gen-
eration number. The case is the same as shown in Figs. 4, 5, and 6, with a mutation rate of 5.0 new 
mutations per offspring on average, a fitness heritability of 0.4, and partial truncation selection. The 
accumulating mutations reduced mean fitness by 16% after 10,000 generations.
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setting for mutation fitness effect distribution — and some might challenge this 
 distribution. Therefore we report two Mendel experiments using the most recently 
published estimate of the human mutation fitness effect distribution (24), which 
required shifting the fitness effect distribution toward higher-impact mutations. The 
sum of different types of mutations discussed by Lynch (24) is approximately 8 −10 
per individual that are apparently under at least weak selection, implying some 
level of deleterious effect. More specifically, Lynch estimated that each newborn 
human inherits an average of approximately 0.86 deleterious mutations that cause 
amino-acid changes in polypeptides, plus an additional 2 to 3 deleterious mutations 
of substantial effect (averaging 10–2 or stronger), including major deletions, gene 
duplications, and splice-site mutations. This means that there is an average of at 
least 3 distinctly deleterious mutations per newborn — a very conservative estimate 
that we chose to use in these experiments. Lynch reported various other types of 
mutations whose effects are almost certainly deleterious, but possibly weak, so 
these were not considered in these experiments. The default distribution of fitness 

Fig. 8.  Selection threshold (STd) as a function of generation number for three population sizes. 
Population sizes of 100, 1000, and 10,000 were used. Except for population size, parameters for 
these three cases were identical to those for the case shown in Figures 4–7. STd values for each popu-
lation size were initially very high and decreased rapidly. For population sizes of 100 and 1000, there 
was little or no decrease in STd values after 2,000 to 4,000 generations. For the population of 10,000, 
STd values stabilized much later.
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effects in  Mendel’s Accountant was adjusted to match Lynch’s estimate of 27% of 
effects stronger than 10–2, with the minimum fitness effect being adjusted upward 
to 10–6 by setting the genome size at 106, thus excluding from consideration the 
several other mutations per newborn, the effects of which might be less than 10–6 
per mutation. The resulting distribution of fitness effects had a much higher mean 
fitness effect than the Mendel default distribution, and is a reasonable approxima-
tion of Lynch’s distribution (ignoring all very low-impact mutations).

We ran two Mendel experiments using this new fitness effect distribution, employ-
ing a mutation rate of just 3 new deleterious mutations per newborn. The first experi-
ment employed both partial  truncation selection and a very high fitness heritability 
(0.4), as with the previous experiments. The second experiment used all the same 
parameters, except that it employed  probability selection — which is much more 
realistic. Figure 10 shows the fitness history of these experiments. The result of using 
the Lynch fitness effect distribution was much faster degeneration than when using 
Mendel’s default settings. The initial rate of fitness decline was approximately 5% 
per generation (data not shown), agreeing well with the fitness decline surmised by 
Lynch. However, over deeper time, as genetic variation for fitness built up, selection 

Fig. 9.  Percent retention of deleterious mutations as a function of population size within 
10,000 generations. The parameters for these experiments were the same as for figure 8, but with 
population sizes ranging from 100 to 20,000. Within the time frame of 10,000 generations, increas-
ing population size beyond 5,000 resulted in no meaningful improvement in selection efficacy.
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could act upon a wider range of variation and thus became more effective, slowing 
the decline, but not stopping it. The rate of fitness decline over time became 
extremely linear, with partial truncation selection resulting in a mean fitness of 0.31 
after 100,000 generations. Using probability selection, the rate of fitness decline also 
became extremely linear over time, resulting in extinction at generation 83,647.

Discussion

General Implicati ons

This study shows that, under conditions relevant to many mammalian populations, 
the large majority of deleterious mutations should escape  purifying selection. 

Fig. 10 .  Fitness history using the latest estimate of human mutation rate and fitness effect 
 distribution, comparing partial truncation selection versus probability selection. The upper line 
(green) resulted from a run using partial truncation selection. The lower line (red) resulted from an 
identical run, but employing  probability selection. In both cases, a fitness effect distribution was 
employed based upon Lynch [24], strongly skewed toward higher impact mutations. In both cases, 
the mutation rate was just 3, again in agreement with Lynch [24]. Population size was 10,000, fitness 
heritability was 0.4.
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Given a specific population and specific circumstances, there must be a certain 
point where selection against low-impact mutations breaks down. Numerical 
simulation allows us to empirically determine this selection threshold, STd, for any 
particular set of conditions. We expand on previous work by showing that the 
value of STd is not a simple function of population size, but is affected by 
 numerous variables. To our knowledge, the methodology used here (i.e., numerical 
simulation based on genetic accounting) provides the most biologically relevant 
treatment of the problem of germline mutation accumulation to date. The theoreti-
cal and practical implications of these results should be of wide interest.

For a typical mammalian model population (e.g. 10,000 individuals, genome 
size of 3 billion), our estimate for the lower limit of STd is in the range of 10–4 
to 10–5. Thus even with minimal levels of biological noise interfering with the 
phenotypic expression of the genotype, those deleterious mutations which 
reduce fitness by less than 10–4 to 10–5 will largely escape  purifying selection and 
will accumulate linearly. We show that three important sources of noise which 
substantially increase the value of the selection threshold in large populations 
are: (1)  selection interference between mutations; (2)  environmental variance; 
and (3) any significant degree of  probability selection (in contrast to  truncation 
selection, which never occurs in nature). Our experiments show that depending 
on these variables, STd values for mammalian species may be as high as 10–3 or 
higher. Given Mendel’s default fitness effect distribution, STd values in the range 
of 10–3 to 10–5 results in 82–97% of all deleterious mutations becoming effec-
tively unselectable.

Our simulations indicate that the on-going accumulation of low-impact muta-
tions results in continuous fitness loss. Consistent with the findings of others, our 
analyses reveal that the greatest contributor to this fitness loss is not the entirely 
unselectable mutations (having negligible fitness effects even in large numbers), 
but rather the accumulation of mutations with effects near the selection threshold. 
We observe that mutations in this zone accumulate more slowly than if there was 
no selection, yet still accumulate continuously and in large numbers. This transi-
tion zone between mutations that are entirely selectable and entirely un-selectable 
is often at least two orders of magnitude wide and typically encompasses fitness 
effects on the order of 0.001 to 0.00001. Accumulating alleles within this transi-
tion zone are primarily responsible for the reduction in fitness.

In view of the expected accumulation of low-impact mutations, it is important to 
estimate accurately the lower limit of effects that respond effectively to selection. 
Over the past several decades it has been tacitly assumed that population size is the 
primary determinant of this lower limit. This important assumption, explicit in 
Kimura’s famous formula, s = 1/(2Ne) [7], has been used by most investigators for 
defining the threshold for selection breakdown. However, our extensive 
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investigations have indicated that mutation rate, environmental variance, selection 
mode, and time are all important variables that affect STd in addition to population 
size. In populations of 1000 or more, these other variables are often more important 
than population size. We consistently observed that, regardless of the mode of 
 selection, increasing population size beyond 1,000 provided only modest gains in 
selection efficiency in the time frame of thousands of generations. The advantages of 
population sizes beyond 10,000 were only realized after tens of thousands of genera-
tions, and even that depended on the very questionable assumption that all selection 
coefficients could remain constant. It is clear that selection breakdown is not a  simple 
function of population size. In other words, Kimura’s famous formula represents an 
over-simplification of biological reality and the failure to consider other sources of 
noise can therefore lead to serious error and serious under-estimation of the selection 
threshold problem. This is especially true when mutation rates are above 1 per indi-
vidual per generation (resulting in substantial selection interference between muta-
tions), or when the effect of truncation or quasi-truncation selection is considered 
instead of simple  probability selection. Although future studies should explore the 
behavior of larger populations in much deeper time (as greater computational power 
becomes available), the present results strongly suggest that population sizes larger 
than 10,000 will have a minimal effect on the effect on STd values.

The inability of  natural selection to effectively remove large numbers of 
 low-impact mutations has major implications regarding the long-term mainte-
nance of the genetic integrity of populations. A substantial but unknown fraction 
of the many mutations in each eukaryotic individual must be deleterious. Yet this 
study indicates that most such deleterious mutations are too subtle to respond to 
natural selection. How can this be? Unless some entirely unknown mechanism is 
operating, it appears that net genetic deterioration is an inevitable aspect of the 
mutation/selection process, given known mutation rates and fitness effects. It is 
widely supposed that within any viable population, natural selection must be able 
to act effectively on deleterious mutations at millions of loci simultaneously, even 
though most such mutations have vanishingly small fitness effects and their 
 selection is compromised by multiple levels of interfering biological noise. The 
results of the current study involving biologically realistic  numerical simulation 
clearly show that selection simply cannot do this. This simple reality seems to be 
widely understood by leading population geneticists (e.g., see references [1–13]), 
yet it appears to be generally regarded as a matter of small significance judging 
by the lack of much serious investigation into factors influencing mutation 
 accumulation. However, if natural selection cannot reasonably be expected to halt 
degeneration of genomic information, then there must be a profound problem with 
the present formulation of neo-Darwinian theory. We suggest this is a matter of 
great significance and should interest all serious scholars.
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Robustness of Findings

The primary findings of this study are that the selection threshold problem is real 
and that it is more serious than generally recognized. These findings are very 
robust. Our basic conclusions do not depend on a narrow range of parameter set-
tings; rather the same picture emerges under all reasonable biological settings, 
indicating that the basic phenomenon is fundamental. Our most realistic simula-
tions (see Figures 7 and 10) still employed extremely conservative parameter 
 settings, based upon the premise that most mutations are entirely neutral, the 
premise of partial truncation selection, and the premise of a very high fitness 
 heritability. We do not believe any of these assumptions are reasonable--they were 
applied only to define the lower range of the deleterious selection threshold for a 
model human population. Simulations with what we consider to be more realistic 
parameter settings have indicated an even more serious erosion of genetic infor-
mation than is presented here.

We suggest that, unlike many phenomena in the realm of physics, the biology 
of population dynamics is too complex to be reliably reduced to a small set of 
equations. The primary deficiency we observe in prior mutation accumulation 
studies is the extreme simplification that has been required both in mathematical 
formulations and in numerical simulations. Common simplifying restrictions 
include assuming that all mutation effects are equal and that  environmental vari-
ance is zero; usually also assuming perfect probability selection or perfect  trunca-
tion selection. These simplifications may be why previous analytical models have 
not fully illuminated the phenomenon of mutation accumulation. Such extreme 
simplification is no longer required. Today’s rapidly expanding computational 
resources and much more sophisticated numerical simulations provide the capacity 
for comprehensive numerical simulations that can address population genetic 
 systems in their entirety, simultaneously considering all the major variables that 
affect mutation accumulation.

 Mendel’s Accountant was programmed to be a comprehensive numerical simu-
lation, reflecting biological reality as closely as possible for all the primary vari-
ables known to influence selection effectiveness [14, 15]. Mendel empirically and 
mechanistically tracks the basic biological processes of mutation, meiosis, crosso-
ver, gamete formation, mating, zygote formation, and selection. During the course 
of thousands of generations, millions of individuals are simulated, and hundreds 
of millions of mutations are tracked individually and continuously — an approach 
we call  genetic accounting. This approach allows us to observe empirically how 
different biological factors interact as they influence selection efficiency, requiring 
far fewer prior assumptions and far less abstraction than the conventional  algebraic 
analysis. We have repeatedly seen that, given parameter settings that correspond 

b1567_Sec2.2.indd   250b1567_Sec2.2.indd   250 5/8/2013   2:41:14 PM5/8/2013   2:41:14 PM

 B
io

lo
gi

ca
l I

nf
or

m
at

io
n 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
2.

4.
17

.1
40

 o
n 

08
/1

1/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



 Can Purifying Selection Preserve Biological Information? 251

b1567  Biological Information — New Perspectives b1567_Sec2.2 8 May 2013 2:50 PM

to the standard simplifying assumptions, Mendel supports the expectations of 
 classic population genetic theory. However, in simulations that more realistically 
reflect the complexity of living populations (i.e., multiple sources of noise), 
Mendel’s Accountant illuminates some fundamental problems in standard theory 
that were previously clouded by unrealistic simplifications. Mendel’s Accountant 
thus marks a significant step forward in our ability to understand the problem of 
mutation accumulation, building upon the foundational work of Kimura and Ohta.

We have found these results to be highly reproducible. Replicated runs employ-
ing alternate random number seeds produce essentially identical results, creating 
only trivial variations. Other researchers can replicate the experiments reported 
here by downloading the Mendel’s Accountant program along with its user manual 
at www.mendelsaccountant.info and by using the parameter settings listed in 
Appendix 1 for those parameters not presented in the specific experiments above.

Readers may ask whether we explored enough parameter space to enable us to 
reach the overall conclusions we claim. While the results of any given numerical 
experiment will, of course, depend on the specific parameter choices of the inves-
tigator, yet for each parameter, we included values that encompassed a range that 
was wider than seemed biologically reasonable, and explored an extensive number 
of combinations of the various parameters. These investigations revealed that a 
high selection threshold and continuous, nearly linear mutation accumulation are 
universal across all reasonable portions of parameter space. The results of these 
investigations cannot be summarized in any single paper, although our previous 
publications summarize many of our results [15, 16]. These extensive investiga-
tions have indicated that mutation rate,  environmental variance, selection mode, 
and time are important variables that affect STd — in addition to population size. 
In populations of 1000 or more these factors are often more important than 
 population size. For this reason we focused this paper on those specific variables, 
exploring the full range of their potential effects. In so doing we consistently find 
that the majority of deleterious mutations are not selectable, except within small 
and extremely unrealistic slivers of parameter space (e.g., the combination of less 
than 1 mutation per individual, no environmental variance, and full  truncation 
selection). In this light, our conclusion that most deleterious mutations are beyond 
the reach of  natural selection appears to be robust.

Potenti al Eff ects of Other Factors

Some will question the Mendel default settings for fitness effect distribution. We 
have tested other distributions and have not found them to produce fundamentally 
different results. In particular, in this paper we used Mendel to examine the latest 
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estimate of the human mutation rate and the human fitness effect distribution, as 
recently reported by Lynch [24]. We observed that using the Lynch-based 
 parameter settings, we saw much more rapid fitness decline than when using the 
Mendel default settings (Figure 10). Shifting the fitness effect distribution toward 
significantly higher impact mutations makes the fitness decline problem much 
worse. Lynch’s estimate of a rate of only 3 to 4 mutations/person/generation with 
distinctly negative consequences (non-synonymous coding sites plus other high 
impact mutations) is very dependent on the assumption that outside of the 1.5% of 
the genome that directly codes for protein, most of the genome is functionally 
inert. However, the findings of ENCODE [25] and others [26] now suggest that 
most of the genome is transcribed and much more than 1.5% of the genome has 
sequence-dependent function. This information suggests that a much more realis-
tic mutation rate estimate would be well above 5 non-neutral mutations per 
 generation, since more than 5% of the genome appears to have sequence- dependent 
function. A non-neutral mutation rate higher than Lynch’s estimate is also sup-
ported by a recent reviews of mutations associated with human disease [27, 37], 
which cite many instances in which single-nucleotide substitutions in various 
types of non-coding regions are implicated in debilitating human diseases, as are 
synonymous mutations in both coding and non-coding regions. The normal 
Mendel default value of 10 new mutations per individual seems more realistic, and 
in our view is still too conservative.

It has been speculated by Lynch [24] and others that greater fecundity and 
more difficult living conditions in the past resulted in enhanced  natural selection 
which may have been powerful enough to stop deleterious mutation accumula-
tion. In order to test that hypothesis, simulations were conducted with 12 off-
spring per female, no random death, and a mutation rate of 3. These settings result 
in ten of every twelve offspring being selectively removed. This very extreme 
form of selection slowed mutation accumulation and the rate of fitness decline, 
but did not stop it. After 10,000 generations, fitness declined to 0.22 with  prob-
ability selection, and 0.57 with partial truncation. In both cases, mutations of 
non-trivial effect were still accumulating and fitness was still declining when the 
runs ended.

Do recessive or dominant mutations give different results? We have done many 
experiments (data not shown) which indicate, as expected, that using an all-reces-
sive mutation model (rather than co-dominant ones, as in this study) results in a 
slower rate of fitness decline, but also results in the accumulation of higher num-
bers of mutations, more fixation, and higher STd values. Thus, mutation accumula-
tion is ultimately more damaging to the population when all mutations are 
recessive than when they are co-dominant.
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Given the problem of the continuous accumulation of deleterious mutations, it 
is important to consider the role beneficial mutations might play in alleviating this 
problem. For the sake of simplicity and clarity, this study does not address benefi-
cial mutations, but we focus on this topic in a companion paper [28]. In that paper 
we show there is a selection threshold for beneficial mutations very similar in 
magnitude to the one for deleterious mutations. We find that, while beneficial 
mutations can offset some of the damage from accumulating deleterious muta-
tions, beneficial mutations that are substantial enough to respond to selection tend 
to strongly interfere with the selective removal of deleterious mutations. This is 
due both to  selection interference and to the physical  linkage of beneficial and 
deleterious mutations (which tends to makes both less selectable).

It has been postulated that a special form of selection, based essentially on 
mutation count (rather than fitness), might be a possible solution to the near-neu-
tral paradox [29], and it has been suggested that such a situation might arise due 
to synergistic epistasis. In companion papers we deal with the special case of 
selection based upon mutation count [30] and the mechanism of synergistic 
 epistasis [31]. Our results clearly show neither of these mechanisms can substan-
tially slow mutation accumulation under real-world conditions.

Conclusion

In conclusion,  numerical simulation shows that realistic levels of biological noise 
result in a high selection threshold. This results in the ongoing accumulation of 
low-impact deleterious mutations, with deleterious mutation count per individual 
increasing linearly over time. Even in very long experiments (more than 100,000 
generations), slightly deleterious alleles accumulate steadily, causing eventual 
extinction. These findings provide independent validation of previous analytical 
and simulation studies [2–13]. Previous concerns about the problem of accumula-
tion of nearly neutral mutations are strongly supported by our analysis. Indeed, 
when numerical simulations incorporate realistic levels of biological noise, our 
analyses indicate that the problem is much more severe than has been acknowl-
edged, and that the large majority of deleterious mutations become invisible to the 
selection process. Even apart from numerical simulation, it would seem readily 
obvious that the following factors should interfere with selection effectiveness 
and thereby increase the threshold for selection: (a) large functional genome size; 
(b) high mutation rate; (c) significant  environmental variance; (d) randomness in 
the selection process; (e) extensive linkage; and (f) small or fragmented popula-
tions. These factors are characteristic of all higher life forms [14] and should 
therefore be included in any future analyses. Our numerical simulation program 
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incorporates all these factors, and suggests that the threshold for selection break-
down should be very substantial for most eukaryotic species. As stated by 
Keightley and Eyre-Walker “How humans and related species evade the effects of 
mutation load on an evolutionary time scale is also an open question” [32]. It is 
unclear what factors could realistically stop the decline of fitness due to mutation 
accumulation, although studies of the effects of bottlenecks, sub-populations, and 
other possible factors are underway using Mendel’s Accountant. This issue 
deserves much more serious investigation, and Mendel’s Accountant provides a 
biologically realistic simulation approach for such investigations.

Materials and Methods

We have applied  Mendel’s Accountant to simulate biological reality as closely as 
possible. Mendel introduces new mutations into the population every generation 
and tracks each mutation through the processes of recombination, gamete forma-
tion, mating, and transmission to the new offspring. This method tracks which 
individuals survive to reproduce after selection and records the transmission of 
each surviving mutation every generation. This allows a detailed mechanistic 
accounting of each mutation that enters and leaves the population over the course 
of many generations. We term this type of analysis genetic accounting, as 
reflected in the name of the program, Mendel’s Accountant [15, 16]. Its inner 
workings are described in great detail elsewhere [15]. It meticulously records and 
tracks huge numbers of discrete genetic events over time. This discrete approach 
contrasts with the traditional approach that has been used by population geneti-
cists for the past nine decades who have sought to represent the processes solely 
in terms of analytical equations and then to solve these equations. Like any 
accounting program, its primary limitations are the appropriateness of the input 
data, in this case a set of parameters that characterizes the particular biological 
circumstance the user wants to investigate, and the computer processing speed 
and memory.

Although Mendel is designed with the ability to model a broad spectrum of 
haploid and diploid organisms, for the sake of simplicity we have limited our con-
sideration in this paper to sexual diploid organisms with large genomes. We use 
parameters appropriate for human populations because more is generally known 
about the relevant values in humans than in other complex eukaryotes. We start 
with a genetically-uniform population, approximating the relative genetic uniform-
ity that follows a significant population bottleneck, and we initially assign each 
individual a fitness of 1. Across the experiments reported here, we keep all input 
parameters constant, except for the following: (1) mutation rate; (2)  environmental 
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variance; (3) selection mode; (4) population size; (5) number of   linkage blocks; 
and (6) number of generations.

Mendel’s calculations use a mutation’s effect on functional fitness (fitness 
effect), rather than its selection coefficient, in order to disentangle the genetic 
impact of a mutation on biological function from the selection process itself. In 
much of the population genetic literature, the selection coefficient and the 
influence of a given mutation on genetic fitness (fitness effect) have been equated 
by definition, which is true only when probability selection is combined with the 
multiplicative model of mutational effects and no other confounding factors occur. 
However, with other forms of selection and with the inclusion of other factors, a 
complex relationship emerges between a mutation’s impact on functional fitness, 
its predicted selection coefficient, and its actual selectability [33, 34]. This actual 
selectability determines the change in allele frequencies, which by definition 
corresponds to the actual selection coefficient. Functional fitness is a concept 
integrating every element that influences survival and reproduction. We believe 
that the term functional fitness is both easily understood and conceptually useful. 
Our investigations show that numerous factors confound the correlation between 
a mutation’s effect on functional fitness and its actual selectability.

Mendel outputs a new statistic we term deleterious selection threshold (STd), 
which marks the center of the transition zone in fitness effect between mostly 
selectable and mostly unselectable deleterious mutations. STd can be defined as 
the mutational fitness effect value at which the number of mutant alleles in the 
population is 50% of the number expected if there were no selection. The 
computed STd value lies at the mid-point of the transition zone separating large-
effect, selectable mutations (that display nearly zero accumulation) and small-
effect unselectable mutations (that display nearly 100% accumulation). This 
statistic provides, at any desired generation, a simple empirical basis for comparing 
selection effectiveness among cases involving different biological parameters. In 
this paper we restrict our discussion to only a few of the factors that influence this 
threshold, namely, mutation rate,  environmental variation, selection scheme, 
population size, and degree of linkage.

The mutation rates we employ are based upon an estimate of approximately 100 
new human mutations per person per generation [20, 21]. We adjust this estimate 
based on the fraction of the  human genome assumed to be functional. We consider 
a minimal estimate of the functional genome to be 1% (yielding a functional muta-
tion rate of 1), and a very conservative estimate to be 5% (yielding a functional 
mutation rate of 5). In light of increasing evidence of extensive genomic function-
ality [26, 27], we also examine functional mutation rates of 10, 20, or 40 new 
mutations per individual per generation, corresponding to a 10%, 20%, and 40% 
functional genome, respectively. By discounting the mutation rate based upon the 
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size of the functional genome, we are postulating a very conservative mutation rate 
because we effectively remove from consideration all non-functional DNA. This 
eliminates from consideration any absolutely neutral mutations. In this paper, for 
clarity and brevity, only detrimental mutations are considered, although the fate 
and impact of beneficial mutations are reported in a companion paper by Sanford 
et al. [28].

In Mendel, mutations follow an “infinite sites” model, and a Poisson distribu-
tion describes the random number of new mutations assigned to each individual. 
The distribution of mutational effects is a  Weibull-type distribution [22] of the 
form d = exp(axγ), where d is the effect of a homozygous pair of mutant alleles, 
a is the inverse of the functional genome size, x is a uniformly distributed random 
number between 0 and 1, and γ is determined by the frequency of high-impact 
mutations and their user-defined cut-off value. All these parameters, as well as 
degree of dominance and numerous other variables, can be specified by the 
Mendel user.

While there is room for debate regarding the exact shape of the mutation effect 
distribution curve, its general shape is considered by most scientists to be expo-
nential, with high impact mutations rare and very low impact mutations strongly 
predominant. There should be a fairly smooth distribution curve going from the 
rare semi-lethal to the typical low-impact, non-neutral mutation, and this curve 
should be approximately exponential in character. If this were not true and higher-
impact mutations were more common, humans would quickly become extinct, 
given that we have such a high mutation rate and have already accumulated very 
large numbers of deleterious mutations.

The Weibull-type distribution, widely used in engineering for modeling degra-
dation processes [22], readily accommodates the wide range of effects that we 
want to consider (eight or more orders of magnitude). This function is similar to a 
gamma distribution but allows a wider range of fitness effects. The use of this 
distribution is based on the evidence that even synonymous mutations and muta-
tions in non-coding regions often have at least a very slightly deleterious effect 
[35, 36]. Indeed, two recent papers [23, 36] contend that the two-parameter 
Weibull distribution fits biological reality very well. Because of the basic similar-
ity of exponential distributions, there is little reason that alternative exponential-
type distributions should give substantially different results. An obvious 
consequence of the strong skewing of the mutational effects towards very small 
values in these exponential distributions is that a high proportion of the mutations 
are unselectable. In experiments where the distribution was shifted to yield more 
high-impact mutations, the proportion of mutations eliminated by selection was 
somewhat higher. However, fitness loss was even more rapid than when the distri-
bution was more strongly skewed toward low-impact values, because the mean 
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effect on fitness from the mutations that did accumulate was higher. Thus, except 
at very low mutation rates in conditions that allow for perfect  purifying selection, 
shifting the mutation distribution toward higher-impact mutations actually intensi-
fies the problem of continuous mutation accumulation and ever-increasing genetic 
load.

The nature of genetic information requires that, as the functional genome size 
increases, the fractional information content of each individual nucleotide must be 
less and less. For example, in genomes with one hundred million functional 
nucleotides, a typical individual nucleotide change must have an extremely small 
impact on total information content, perhaps on the order of one part in one hun-
dred million. While the impact of an individual mutation on fitness could be larger 
or smaller than the inverse of the functional  genome size, it would seem reasona-
ble that most non-neutral mutations would have at least that great an effect in view 
of the interdependent nature of many biological functions. Therefore, it seems 
reasonable to use the inverse of the functional genome size as the minimum fitness 
effect to be considered for non-neutral mutations.

For these experiments, we set a = 3 × 10–9 (reflecting the inverse of 3 × 108 bp, a 
conservative estimate of the functional genome size in humans), thus setting the 
lower limit of the mutational effect for homozygous mutations in the model. Thus, 
the magnitude of homozygous mutational effects ranges from −1 (lethal) to −3 × 10–9. 
For the cases described in this study, we set the value of γ by specifying high-impact 
mutations as those with a homozygous fitness effect of at least 0.1, with a frequency 
of 0.001, reflecting an estimate that one in a thousand mutations in humans reduces 
fitness by ten percent. This parameterization generates almost no lethal mutations 
and very few nearly lethal mutations. As discussed earlier, using distributions that 
give greater frequencies of lethal and semi-lethal mutations had little effect on muta-
tion accumulation, and resulted in more rapid fitness decline.

Our experience has taught us that if the curve is too steep it does not correspond 
to reality, since in such a distribution, most mutations are very nearly neutral such 
that accumulation of large numbers of these mutations has almost no effect on 
 fitness, even in the absence of selection. Likewise if the curve is too shallow it also 
results in an unrealistic scenario in which most mutations have substantial deleteri-
ous effects, such that mutation accumulation leads to very rapid extinction, even 
with intense selection. Our default mutation distribution was reached by consider-
ing: (1) the empirical data that is available concerning fitness effects for low-impact 
mutations in complex organisms, (2) general understanding of the effect of  mutations 
on biological function, and (3) simulations that tested a range of distribution charac-
teristics. It is our view that this default distribution is biologically  reasonable. 
Moreover, we observe that moderate shifting of the distribution in either direction 
does not change the result that most deleterious mutations are unselectable.

b1567_Sec2.2.indd   257b1567_Sec2.2.indd   257 5/8/2013   2:41:14 PM5/8/2013   2:41:14 PM

 B
io

lo
gi

ca
l I

nf
or

m
at

io
n 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
2.

4.
17

.1
40

 o
n 

08
/1

1/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



258 P. Gibson, J. R. Baumgardner, W. H. Brewer and J. C. Sanford 

b1567  Biological Information — New Perspectives b1567_Sec2.2 8 May 2013 2:50 PM

To avoid potential confounding effects of variable degrees of dominance, we 
have defined the mutational fitness effect of all mutations in terms of their homozy-
gous state. For simplicity, the present study treated all mutations as  co-dominant. 
However, Mendel offers the flexibility to specify the fractions of recessive and 
dominant mutations and also their levels of heterozygous expression.

We consider four cases of  environmental variance: zero environmental variance 
(heritability of 1.0); slight variance (heritability of 0.4); moderate variance (herit-
ability of 0.04); and high variance (heritability of 0.004). While a heritability value 
of 0.04 would be very small for a simple phenotypic trait such as height, it is about 
10-fold higher than what is commonly estimated for total fitness heritability [8]. 
Indeed, heritability of fitness is often found to be too small to measure. Selection 
is always based on each individual’s phenotypic fitness, which reflects not only 
the genotype but also random environmental effects. A given heritability is 
achieved in Mendel by adding a random number to each individual’s genotypic 
fitness to yield its phenotypic fitness value. These numbers are drawn from a zero-
mean normal distribution of random numbers with a variance determined by the 
specified heritability.

We consider three types of selection: a) perfect  truncation selection (approxi-
mating the sort of artificial selection applied in plant and animal breeding); b) 
standard  probability selection (in which the probability of survival and reproduc-
tion is proportional to phenotypic fitness); and c) partial truncation (an intermedi-
ate type of selection, also called broken-line selection). A level of partial truncation 
was selected that gives results midway between strict probability and strict trunca-
tion selection (partial truncation input parameter = 0.5).

Parameters that were fixed for most of the evaluations in this study included: 
(a) six offspring per female (which implies that, averaged over the population, 
four out of six offspring are selected away based on phenotypic fitness); 
(b)  Weibull-type distribution of homozygous mutation effects (mean value of 
–5.4 × 10–4, median value of −1.4 × 10–7, and 0.1% of the mutations with effects 
exceeding 0.1 in magnitude); (c) no beneficial mutations; (d) all mutations co-
dominant; (e)  mutation effects combine additively; (f) no random death; (g) no 
fertility decline associated with fitness decline; (h) a diploid sexual species; and 
(i) dynamic  recombination within 23 sets of chromosomes, with two random 
crossovers per chromosome every generation. Unless specified otherwise, the 
number of  linkage blocks across a haploid set of 23 chromosomes was 989 
(43 per chromosome) and the population size was maintained at 10,000 repro-
ducing individuals (30,000 offspring in each generation).

Addendum — These  numerical simulation studies have been theoretical in nature, 
based upon biologically realistic numerical simulations. A new study of actual 

b1567_Sec2.2.indd   258b1567_Sec2.2.indd   258 5/8/2013   2:41:14 PM5/8/2013   2:41:14 PM

 B
io

lo
gi

ca
l I

nf
or

m
at

io
n 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
2.

4.
17

.1
40

 o
n 

08
/1

1/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



 Can Purifying Selection Preserve Biological Information? 259

b1567  Biological Information — New Perspectives b1567_Sec2.2 8 May 2013 2:50 PM

mutation accumulation with the  H1N1 Influenza virus now provides strong 
 empirical validation of our findings. See: Carter R.C. & Sanford, J.C. (2012). 
A new look at an old virus: patterns of mutation accumulation in the human  H1N1 
influenza virus since 1918. Theoretical Biology and Medical Modeling 
9:42doi:10.1186/1742-4682-9-42. That study analyses actual mutation accumula-
tion within the H1N1 Influenza viral genome since 1918. During the entire history 
of human H1N1, mutations accumulated in a perfectly linear fashion — exactly as 
seen in all our theoretical studies. In the course of 90 years, almost 15% of the 
viral genome mutated, with mutation count increasing at a very constant rate. 
During this time, viral fitness, as reflected by associated human mortality rates, 
declined continuously and systematically from 1918 all the way to the apparent 
extinction of the human H1N1 strain in 2009.

We also append another significant new citation appearing since the finaliza-
tion of this chapter. See: Sanford, J. & Nelson, C. (2012). The Next Step in 
Understanding Population Dynamics: Comprehensive Numerical Simulation, 
Studies in Population Genetics, in: M. Carmen Fusté (Ed.), ISBN: 978-953-51-
0588-6, InTech, Available from: http://www.intechopen.com/books/studies-in-
population-genetics/the-next-step-in-understanding-population-dynamics-
comprehensive-numerical-simulation.
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Appendix 1: Key parameter settings and their basis

Mutation rate = 5 (unless otherwise specified). Although the human mutation rate 
is known to be in the range of 100 new mutations per person per generation 
[20, 21, 24], we use the extremely conservative number of just 5 as the default. 
This presumes that at least 95% of the human genome is perfectly inert “junk”, 
which is contrary to the mounting evidence indicating a substantial fraction of the 
human genome has function [25, 26]). More realistic mutation rates only make the 
selection threshold problem worse.

Population size = 10,000 (unless otherwise specified). This default population size 
would be realistic for an isolated tribe, and is the most commonly used figure in 
human evolutionary scenarios, but obviously does not apply to modern popula-
tions. However, in our simulations, we observe that increasing population size 
beyond 1,000 results in only modest and rapidly diminishing benefits in terms of 
selection efficiency and reduced STd.

Generations = 10,000 (unless otherwise specified). Sufficient to approach selec-
tion equilibrium for population sizes of 100 to 5,000.

Fraction of beneficial mutations = 0.0. While beneficials are desirable in them-
selves, they confound selection against deleterious mutations, tending to make the 
STd problem worse. The effect of beneficial mutations on STd are dealt with in a 
companion paper.

Selection mode = partial truncation (unless otherwise specified). It is generally 
understood that probability selection best characterizes selection in nature and that 
strict truncation selection is never observed in nature. Our partial truncation treat-
ment is extremely conservative, being halfway between probability selection and 
truncation selection.

Offspring per female = 6. In Mendel’s default mode, all surplus progeny are 
selected away. Since two offspring per female are needed for population conti-
nuity, this setting causes two thirds of all progeny to be selected away (intense 
selection).

Chromosomes = 23 sets; Linkage blocks = 989 (unless otherwise stated). In most 
experiments we use 989 linkage blocks, evenly distributed across chromosomes. 
We have determined empirically that additional linkage blocks have little benefit 
in terms of improved selection efficiency and reduced STd, but require more com-
puter memory and decrease the problem size possible. The program models two 
randomly positioned crossovers per chromosome pair per generation.

Distribution of mutation effects = Weibull distribution, wherein 0.1% of all muta-
tions reduce fitness by 10% or more. This results in a mean mutation effect which 
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reduces fitness by roughly 0.1%. Altering the shape of the distribution to be either 
steeper or less steep does not significantly affect the STd phenomenon.

Dominant versus recessive = co-dominance. Although Mendel allows mutations to 
be partially dominant, for simplicity we make all mutations in this paper co-dom-
inant. We have observed that this parameter has only a very minor impact on STd.

Heritability = 0.4 (unless otherwise specified). This is a very generous heritability, 
since it is widely recognized that under natural conditions fitness heritabilities are 
typically too small to measure and are easily an order of magnitude lower than our 
default setting. Low heritability reflects high environmental variance.

Population sub-structure = none. Mendel allows modeling of tribal population 
sub-structure with specified migration rates between tribes, but here we only 
model a simple population with fully random mating.

Mutation effects combination method = additive. Mendel also allows use of the 
multiplicative model, but we feel the additive model is more realistic. Use of the 
multiplicative model does not significantly affect the STd phenomenon.
To reproduce these results: all other settings can be set to the normal Mendel 
default settings (Version 1.2.1).
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Abstract

Background. In a companion paper, careful  numerical simulation was used to demonstrate that there 
is a quantifiable selection threshold, below which low-impact deleterious mutations escape  purifying 
selection and, therefore, accumulate without limit. In that study we developed the statistic, STd, 
which is the mid-point of the transition zone between selectable and un-selectable deleterious muta-
tions. We showed that under most natural circumstances, STd values are surprisingly high, such that 
the large majority of all deleterious mutations are un-selectable. Does a similar selection threshold 
exist for beneficial mutations?

Methods. As in our companion paper we here employ what we describe as  genetic accounting to 
quantify the selection threshold (STb) for beneficial mutations, and we study how various biological 
factors combine to determine its value.

Results. In all experiments that employ biologically reasonable parameters, we observe high STb 
values and a general failure of selection to preferentially amplify the large majority of beneficial 
mutations. High-impact beneficial mutations strongly interfere with selection for or against all low-
impact mutations.

Conclusions. A selection threshold exists for beneficial mutations similar in magnitude to the selec-
tion threshold for deleterious ones, but the dynamics of that threshold are different. Our results sug-
gest that for higher eukaryotes, minimal values for STb are in the range of 10−4 to 10−3. It appears 
very likely that most functional nucleotides in a large  genome have fractional contributions to fitness 
much smaller than this. This means that, given our current understanding of how  natural selection 
operates, we cannot explain the origin of the typical functional nucleotide.

Key words: beneficial mutation, genetic degeneration, mutation accumulation, near-neutral, popula-
tion genetics, selection threshold, simulation
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Introduction

Muller [1] first argued that at a certain point, low-impact mutations should become 
outside the reach of  natural selection. Muller’s primary concern was the accumula-
tion of deleterious mutations. Later, Kimura used rigorous mathematical analysis 
to validate this idea [2]. While Kimura initially described such mutations as ‘neu-
tral’, Ohta [3–6] argued that such mutations should more accurately be termed 
‘nearly neutral’, and Kimura eventually acknowledged this [7, 8]. Again, their 
focus was on deleterious mutations. Kondrashov described how low-impact muta-
tions which are essentially un-selectable create a profound evolutionary paradox 
[9], because deleterious mutations should accumulate continuously, causing con-
tinuous fitness decline. Lynch et al. [10,11] and Higgins and Lynch [12] showed 
that accumulation of low-impact deleterious mutations should be a key factor in 
the extinction process. More recently, Loewe [13] demonstrated that the accumu-
lation of nearly neutral deleterious mutations in just the human mitochondrial 
chromosome could theoretically eventually lead to extinction.

In a companion paper [14], numerical simulation was used to clearly show that 
the problem of continuously accumulating low-impact deleterious mutations is 
indeed a very real problem. We showed that under any given biological circum-
stance there is a definitive “selection threshold” for mutational fitness effect, and 
mutations with a fitness effect below this threshold accumulate largely unhindered 
by the selection process. We further showed that, under realistic conditions, this 
selection threshold is surprisingly high, in the range of 10−4 to 10−3. Those findings 
indicate that most deleterious mutations should be un-selectable, confirming 
“Kondrashov’s Paradox” [9] and reinforcing long-standing concerns about genetic 
load [1–13].

One widely-cited mechanism which might counteract the accumulation of 
slightly deleterious mutations is the concept of “compensating mutations”, as first 
proposed by Ohta [3] and later expanded by others [15,16]. Ohta proposed that for 
each accumulating deleterious mutation, there is somewhere else in the  genome a 
beneficial mutation that has a more or less equal but opposite compensating effect 
on fitness. This could not possibly be happening independent of selection, because 
we know that deleterious mutations strongly outnumber beneficial mutations 
[17–26]. Therefore the hypothesis of compensating mutations would only be con-
ceivable if there could be effective selection for “equal but opposite” beneficial 
mutations. This appears problematic because the deleterious mutations are accu-
mulating precisely because their fitness effects are too small to be selectable. 
Logically one might suspect that beneficial mutations with fitness effect values of 
similar amplitude would be equally un-selectable. This raises important questions. 
Is there a selection threshold for beneficial mutations? Under biologically realistic 
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circumstances, how large might such a selection threshold be? What are the bio-
logical implications of such a threshold?

Kimura [7] attempted to quantify the threshold for selection breakdown. His 
calculations focused on deleterious mutations and considered the influence of only 
one source of biological ‘noise’ on the rate of mutation fixation, that of gametic 
sampling. It is obvious, however, that there are other sources of biological noise 
besides gametic sampling. Except under strict probability selection (for which 
transmission of a gamete to the next generation is in strict proportion to the rela-
tive fitness of the parent), each of these other sources of noise should influence the 
selection threshold. Lynch [27], for example, notes that small population size, 
large nucleotide numbers between crossovers, and high mutation levels all syner-
gistically reduce the efficiency of natural selection. To study some of these bio-
logical factors and to quantify how they affect the selection threshold, we have 
implemented a numerical simulation strategy using a program named Mendel’s 
Accountant [28, 29]. Mendel’s Accountant (Mendel) is freely available at http://
www.MendelsAccountant.info. This numerical approach enables us to explore the 
biological complexity of the mutation-selection process as it actually occurs in 
nature in a way not before possible.

As early as 1964, Muller called for more research aimed at better understanding 
the selection threshold problem [1]. He stated, “There comes a level of advantage, 
however, that is too small to be effectively seized upon by selection, its voice being 
lost in the noise, so to speak. This level would necessarily differ greatly under dif-
ferent circumstances (genetic, ecological, etc.), but this is a subject that has as yet 
been subject to little analysis…although deserving of it.” The companion paper 
[14] does the very analysis which Muller felt was needed for deleterious muta-
tions. The goal of this second paper is to describe the parallel analysis relative to 
the factors that affect the selectability of beneficial mutations.

Results

Conditi ons allowing opti mal selecti on for benefi cial mutati ons

To better understand the selection threshold phenomenon, we employed the same 
methodology described in our companion paper [14], conducting  numerical simu-
lation experiments using the genetic accounting program called “ Mendel’s 
Accountant”. The details of how Mendel’s Accountant works and how we con-
ducted our experiments are given in the methods section at the end of this paper.

We first conducted experiments to see if there were any parameter settings that 
allowed selection to amplify beneficial allele frequencies across the full range of 
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mutational fitness effects. We found that even under idealized selection conditions 
and zero biological noise, perfect selection for low-impact beneficial mutations 
never occurs. In this regard, beneficial mutations have a distinctly worse selection 
threshold problem than do deleterious mutations, because given the same biologi-
cal parameters that allow all deleterious mutations to be selected away, a large 
fraction of beneficial mutations remain immune to  selective amplification. Even 
with high selection intensity, minimal  selection interference, zero  environmental 
variation, and perfect  truncation selection, we observe a significant STb, as seen in 
Figure 1.

Figure 1 displays the rate of accumulation of beneficial mutations as a function 
of mutational fitness effect, relative to the case of zero selection. Mutational fitness 

Fig. 1.  Accumulation of beneficial mutations as affected by degree of benefit — optimal selec-
tion case. This experiment employed extremely unrealistic parameters chosen for maximal selection 
efficiency (low mutation rate, no deleterious mutations, 67% of all progeny were selected away every 
generation using truncation selection, with zero environmental variance). Beneficial mutation effects 
on fitness ranged from 3 × 10−8 to 1.0 × 10−3 (x axis). The height of the bins (y axis) reflects the rela-
tive rate of accumulation, compared to that expected when there is no selection. Bins at or near 1.0 
are not responding to selection (see lower dotted line). Bins at or near 2.0 (see upper dotted line) are 
accumulating twice as fast as expected when there is no selection (we define this as the beneficial 
selection threshold — STb). Bins above 2.0 can be seen to be accumulating at increasingly rapid 
rates. Mutational effects falling in the first two orders of magnitude of mutational effect failed to 
respond to selection. Note that the vertical scale is clipped at a value of 10.
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effect, shown on the x-axis using a logarithmic scale, ranges from a minimum 
non-neutral mutational value up to a maximal fitness effect. We define the minimal 
non-neutral mutation value as the reciprocal of the functional genome size (in this 
case we are considering a human population, and are assuming only 10% of the 
genome is functional). Each bin represents a fitness effect interval, and the height 
of the bin reflects the accumulation ratio of that class of mutations relative to the 
case of no selection. A height of 1.0, therefore, corresponds to the level of accu-
mulation that occurs when selection is entirely ineffective (i.e., a mutation’s fre-
quency is influenced only by genetic drift). We define the beneficial selection 
threshold STb as the fitness effect value for which the distribution has the value 
2.0. (i.e. the first fitness effect interval which displays twice the accumulation ratio 
expected in the absence of selection). This is in contrast to the deleterious selec-
tion threshold, STd, which is defined as the fitness effect where mutation accumu-
lation is half of what is expected in the absence of selection. The beneficial 
selection threshold value can be seen visually in Figure 1 as the intersection point 
of the upper dotted line with the mutation distribution (at 1.34 × 10−6). To the right 
of this selection threshold value, the heights of all bins increase rapidly because 
selection is highly effective in amplifying beneficial mutation frequency in this 
region.

Figure 1 reveals that, even under these idealized selection conditions, there is a 
fitness effect interval spanning more than two orders of magnitude, in which selec-
tion was exerting no meaningful influence on mutational frequency. This “zone of 
no selection” included all mutations from the smallest effect (3 × 10−8), up to a 
value of just over 10−6 (STb = 1.34 × 10−6). This basic result was highly reproduci-
ble across multiple independent replicates that employed different random number 
seeds (data not shown). This method of representing the accumulating mutations 
is very useful, yet fails to convey the actual number of mutations in each bin, 
because the bin height represents merely a ratio of the actual mutation count ver-
sus the mutation count expected in the case of zero selection. It is important to 
realize that the mutation distribution is approximately exponential, so that the bins 
on the far left (i.e., low-impact mutations) contain the vast majority of beneficial 
mutations, while the bins on the right (i.e., high-impact mutations), even when 
filled, represent very few mutations. Even in this idealized selection experiment, 
given this mutation effect distribution, we actually observed that 92.7% of all 
beneficial mutations lay below the selection threshold. There will be occasional 
high-impact beneficial mutations that arise beyond the range of mutation effects 
of this experiment (above .001), but they will be so rare as to have very little effect 
on the fraction of mutations which are not selectable. As we will see, higher-
impact beneficial mutations actually make the selection threshold problem worse, 
and need to be considered separately.
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Eff ect of environmental variance

In the preceding experiment, parameters were chosen to maximize selection effi-
ciency without any regard for biological realism. Two of the most unrealistic 
aspects of that experiment were the use of  truncation selection and the assumption 
of zero  environmental variation. To explore the influence of environmental varia-
tion, we conducted a series of experiments using identical parameters, except that 
we increased the level of environmental variance, quantified in terms of fitness 
heritability (the ratio of genotypic variance to total phenotypic variance). Figure 2 
shows three cases, with fitness heritabilities (h2) of 0.4, 0.04, and 0.004. Resulting 
STb values were 1.69 × 10−6, 6.29 × 10−6, and 1.4 × 10−5, respectively. As can be 
observed, higher levels of  environmental variance led to higher STb levels and a 
larger no-selection zone. The lowest fitness heritability value we used (h2 = 0.004) 
is from Kimura [8], and is in keeping with the enormous impact environmental 
variance has on total phenotypic fitness under natural conditions. That particular 
heritability value yielded an STb approximately one order of magnitude higher 

Fig. 2.  Accumulation of beneficial mutations as affected by degree of benefit — introducing 
increasingly realistic levels of environmental variance. This figure combines the results of three 
experiments which employed the same unrealistic parameters as Figure 1, but simply introduced 
varying degrees of environmental variance (as reflected by heritability values less than 1.0). 
Heritability values (h2) are shown in the figure. As can be seen, adding realistic levels of environ-
mental variance increased the STb value by an order of magnitude.
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than the zero environmental variance case (Figure 1), and we observed that in that 
instance 98.8% of the beneficial mutations fell below the selection threshold.

Introducti on of probability into the selecti on process

In another series of experiments, we examined how more realistic modes of selec-
tion impact the beneficial selection threshold. Figure 3 contrasts our first experi-
ment which employed  truncation selection to more realistic cases employing 
partial truncation and  probability selection. Figure 3 compares the results from the 
case shown in Figure 1 (red) with identical runs, but with partial truncation (green) 
or probability selection (blue).

It is well known that  probability selection corresponds most closely to what 
occurs in nature. Under probability selection, the probability of an individual’s 
reproduction is directly proportional to that individual’s phenotypic fitness. Under 
this type of selection, even individuals with relatively low phenotypic fitness still 
have some likelihood of reproducing. Probability selection contrasts strongly with 
 truncation selection, for which all individuals above a specific phenotypic fitness 
value have a 100% probability of reproduction, while all individuals below that 
value have zero probability of reproduction. Full truncation selection is an ideal-
ized version of  artificial (conscious)  selection, as employed by plant or animal 
breeders — it never happens in nature. The selection method we refer to as partial 
truncation (sometimes also referred to as “broken-line” selection) is intermediate 
between full truncation selection and probability selection. In this experiment we 
have employed a form of partial truncation representing an exact 50/50 blending 
of classical probability selection and full truncation selection.

Figure 3 shows that introducing even a modest degree of probability selection 
(partial truncation) results in markedly higher STb values. The STb value for partial 
truncation selection in this otherwise idealized selection experiment (2.54 × 10−4) 
was more than two orders of magnitude larger than for pure  truncation selection 
(1.68 × 10−6). Full  probability selection, which is commonly recognized as the 
actual mode of selection happening in nature, led to a complete breakdown of 
selection over the entire range of mutational effects considered in this experiment 
(the maximal beneficial fitness effect being 0.001). This indicates that the STb 
must have been greater than 0.001. We have consistently observed that the noise 
associated with the random aspects of probability selection leads to a greater 
increase in selection thresholds than any other source of noise we have examined. 
The only exception to this is in the case of extremely beneficial mutations, as will 
be described below. It is clear that even moderate levels of randomness in the 
selection process (i.e., a limited degree of “survival of the luckiest”), causes the 
vast majority of beneficial mutations to become un-selectable.
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Eff ect of high mutati on rate and consequent selecti on interference 
among benefi cial mutati ons

We next conducted a series of experiments, still using truncation selection and zero 
 environmental variance, but with higher beneficial mutation rates, ranging from 5 
to 40. As mutations accumulate, there arises a type of biological noise associated 
with  selection interference among the mutations. Figure 4 summarized a series of 
experiments that reveal that increasing the rate of beneficial mutations lead to 
higher selection thresholds. This means that as mutation rate increases, more and 
more of the alleles that otherwise would be selectable escape selection. Increased 
mutation rate and the consequent selection interference among alleles resulted in 
STb values increasing from 1.68 × 10−6 for a mutation rate of 5; up to 5.84 × 10−6 for 
a mutation rate of 10; up to 1.00 × 10−5 for a mutation rate of 20; up to 1.46 × 10−5 

Fig. 3.  Accumulation of beneficial mutations as affected by degree of benefit, employing three 
different modes of selection. Parameters are the same as in Figure 1, except that increasingly real-
istic forms of selection are introduced. Red: full truncation selection. Green: partial truncation selec-
tion (0.5). Blue: probability selection. As can be seen, introduction of probabilistic selection 
increased STb by roughly three orders of magnitude. The blue and green distributions become sparse 
on the right side of the figure because given an exponential distribution of mutational effects, alleles 
in this range were very rare apart from selective amplification.
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for a mutation rate of 40. This last STb value for a mutation rate of 40 indicates that 
98.8% of the beneficial mutations were below the selection threshold.

Eff ect of extremely benefi cial mutati ons

Until this point, we have employed a ceiling value of 0.001 for beneficial muta-
tional fitness effects. The rationale for this choice is given in the discussion section 
and was employed because very high-impact mutations need to be handled sepa-
rately. We therefore conducted experiments with higher maximal fitness effect 
values, up to 1.0. When homozygous, a single beneficial mutation with a fitness 
effect of 1.0 will double the fitness of any individual, relative to the initial fitness 
value. We find that the inclusion of mutations with fitness values of 0.1 or greater 
have such a profound effect on the behavior of the whole population that we refer 
to them as “extremely beneficial” mutations. As can be seen in Figure 5, when we 
repeated the experiment illustrated in Figure 1, but merely extended the upper 
range of beneficial mutational effects up to 1.0, the result was a very dramatic 

Fig. 4.  Accumulation of beneficial mutations as affected by degree of benefit, employing four 
different mutation rates. Parameters are the same as in Figure 1, except that increasingly higher 
mutation rates (u) are introduced. As can be seen, higher mutation rates cause substantially higher 
STb values, due to  selection interference.
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increase in the STb value (2.96 × 10−3). This was the single factor in our studies that 
by itself most dramatically increased the beneficial selection threshold.

The STb value seen in Figure 5 indicates that 98.0% of the beneficial mutations 
were below the selection threshold. This STb value is more than three orders of 
magnitude greater than what is seen in Figure 1 and is comparable to the increase 
we see when we switch from truncation selection to probability selection. 
Ironically, the effects of very high-impact beneficial mutations overshadow low-
impact beneficial mutations so profoundly that it results in selection breakdown 
for all beneficial mutations with fitness effects less than approximately 0.001. This 
is true even when all other factors are chosen to minimize the selection threshold, 
including full  truncation selection and zero  environmental variance. These very 
high-impact beneficial mutations are in a sense “too selectable”. The very rare 
alleles that are represented on the far right of Figure 5 dominate the selection pro-
cess and exhaust almost all the selection potential available. This represents the 
most dramatic form of selection interference we have seen in over six years of 
experimentation with genetic accounting methodology.

Fig. 5.  Accumulation of beneficial mutations as affected by degree of benefit, when extremely 
beneficial mutations are allowed. Parameters are the same as in Figure 1, except that the maximal 
mutational fitness effect has been increased from .001 to 1.0. Allowing extremely beneficial muta-
tions causes intense  selection interference and raises the selection threshold more than 3 orders of 
magnitude.
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Eff ect of adding deleterious mutati ons

The experiments described above show that increasing beneficial mutation rates 
leads to increased  selection interference, and that introduction of extremely 
 beneficial mutations leads to an especially profound type of selection interference. 
However, all experiments described thus far have involved only beneficial muta-
tions. We know that, in reality, the majority of mutations are deleterious. To what 
extent do beneficial and deleterious mutations affect each other’s relative selecta-
bility? To address this question we conducted an experiment similar to that of 
Figure 1 with  truncation selection, zero  environmental variance, and just one new 
beneficial mutation per offspring. In addition to the average of one beneficial 
mutation per offspring, we also added an average of one deleterious mutation per 
offspring. This experiment yielded a selection threshold for deleterious mutations 
of 2.30 × 10−6, as shown in Figure 6. By contrast, the parallel case (as described in 
our companion paper [14]), with one new deleterious mutation per offspring but 

Fig. 6.  Accumulation of deleterious mutations as affected by degree of harmfulness, given 
equal rates of deleterious and beneficial mutations. Parameters are the same as in Figure 1, except 
that an equal rate of deleterious mutation was added. Selection interference due to the accumulating 
beneficial mutations causes very significant accumulation of deleterious mutations under conditions 
where none would have accumulated otherwise (see companion paper [14]).
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zero new beneficial mutations per offspring, gave the result of zero deleterious 
mutations accumulated.

The beneficial mutations clearly caused very serious  selection interference in 
terms of the selectability of the deleterious mutations. However, the converse was 
not true. The accumulation of deleterious mutations only had a very modest effect 
on the accumulation of beneficial mutations. This can be seen by comparing 
Figure 7 (STb = 2.00 × 10−6) with Figure 1 (STb = 1.34 × 10−6). This asymmetrical 
aspect of selection interference between deleterious and beneficial mutations 
reflects a fundamental difference in dynamics between  purifying selection versus 
positive selection. Purifying selection very effectively eliminates high-impact 
 deleterious mutations, such that the remaining deleterious mutations are all low-
impact, have a highly diffuse genetic effect, and constitute a minor source of noise 
relative to the selectability of the beneficial mutations. However,  positive selection 
amplifies only the very high-impact beneficial mutations, which then very effec-
tively “highjack” almost all the selection potential of the population, severely 
diminishing the effectiveness of purifying selection.

Fig. 7.  Accumulation of beneficial mutations as affected by degree of benefit, given equal 
rates of deleterious and beneficial mutation. Parameters are the same as in Figure 1, except that 
an equal rate of deleterious mutation was included. When deleterious mutations are included, they 
have minimal effect on the selection threshold of beneficial mutations (contrast with Figure 1, where 
there were no deleterious mutations).
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Eff ect of multi ple sources of noise, at minimal levels

Here we present an experiment that combines minimal levels of noise from all 
the primary factors affecting selection threshold. The key parameter settings were 
as follows: a very conservative mutation rate (5.0), a very conservative level of 
 environmental variance (h2 = 0.4), an intermediate value for the maximal benefi-
cial effect (0.1), and an extremely generous selection mode (50% truncation). We 
also added a minimal number of deleterious mutations (50% of mutations being 
harmful). We chose these highly unrealistic settings so that we might approxi-
mate a lower limit on the beneficial selection threshold that might be expected 
for a typical mammalian population. Results from this experiment are shown in 
Figures 8 and 9.

As seen in Figure 8, given multiple sources of biological noise at minimal levels 
(including interfering beneficial mutations), deleterious mutations accumulated 
massively, resulting in a STd value of 2.34 × 10−3 (97.7% of deleterious mutations 
were below the selection threshold). Likewise, these minimal levels of biological 

Fig. 8.  Accumulation of deleterious mutations as affected by degree of harmfulness, with 
multiple sources of noise at low levels. Critical parameters: mutation rate = 5, fraction beneficial = 
0.5, maximum beneficial effect = 0.1, fitness heritability = 0.4, partial truncation = 0.5. Multiple 
sources of noise, even at minimal values, cause very high STd values.
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noise combined with interfering deleterious mutations resulted in the failure to 
amplify almost all beneficial mutations (Figure 9), resulting in a STb value of 1.96 
× 10−3 (99.4% of all beneficial mutations were below the selection threshold).

Modest levels of noise with a larger populati on

Here we present an experiment that combines larger population size with levels of 
noise which are more realistic but still very modest. The key parameter settings 
were as follows: mutation rate (10);  environmental variance (h2 = 0.04); beneficial 
mutations (10%), and a more realistic selection mode (partial truncation, but with 
10% truncation and 90%  probability selection). All prior experiments necessarily 
employed a modest population size of 1000, because the parameters settings were 
so extremely unrealistic that they resulted in massive amplification of certain 
 beneficial mutations, which would then exhaust available RAM resources 
(16 GB). In this experiment, using more realistic parameters, we were able to 
employ a larger population size of 10,000. These more realistic settings 

Fig. 9.  Accumulation of beneficial mutations as affected by degree of benefit, with multiple 
sources of noise at low levels. Parameters as in Figure 8. Multiple sources of noise, even at minimal 
values, cause very high STb values.
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were chosen in order to approximate a more realistic lower limit for the beneficial 
selection threshold, as might be expected for a typical mammalian population. 
Results from this experiment are shown in Figures 10 and 11.

As seen in Figure 10, given a mixture of deleterious and beneficial mutations, 
combined with multiple sources of biological noise at modest levels, and with a 
larger population size, deleterious mutations again accumulated at very high rates, 
resulting in the highest STd value of this study, which was 4.96 × 10−3 (98.5% of 
all deleterious mutations were below the selection threshold).

Likewise, given a mixture of deleterious and beneficial mutations, combined 
with multiple sources of biological noise at modest levels, and with a larger popu-
lation size, there was a failure to amplify the vast majority of beneficial mutations 
(Figure 11), resulting in the highest STb value of this study, which was 3.16 × 10−3 
(99.6% of beneficial mutations were below the selection threshold).

Fig. 10.  Distribution of accumulating deleterious mutations, with multiple sources of noise at 
modest levels, larger population. Critical parameters: population size = 10000, generations = 1000, 
mutation rate = 10, fraction beneficial = 0.1, maximum beneficial effect = 0.1, fitness heritability = 
0.04, partial truncation = 0.1. Multiple sources of noise, even at modest levels, and even with larger 
population size, cause very high STb values. Note: due to memory limits, in this experiment we used 
a tracking limit of 1.0 × 10−5, and so could not plot the lowest three orders of low-impact mutations 
which would have been on far right.
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The eff ect of ti me on STd and STb values

Here we present examples of how ST values can change over time. In all of our 
experiments where we begin with zero genetic variance, we see that ST values are 
initially exceptionally high, but rapidly decline as the population moves toward 
selection equilibrium, at which point ST values stabilize.

Figure 12 gives an example of this, where both beneficial and deleterious muta-
tions are accumulating (population size = 1000, mutation rate = 5, fraction benefi-
cial = 0.5, maximum benefit = 0.1, heritability = 0.4, partial truncation = 0.5). 
After 2000 generations, it can be seen that the beneficial mutations begin to 
approach selection equilibrium more rapidly than the deleterious mutations. After 
5000 generations, ST values are very stable. In this experiment, STb stabilized at 
a slightly higher value than STd.

Fig. 11.  Distribution of accumulating beneficial mutations, with multiple sources of noise at 
modest levels, larger population. Critical parameters: population size = 10000, generations = 1000, 
mutation rate = 10, fraction beneficial = 0.1, maximum beneficial effect = 0.1, fitness heritability = 
0.04, partial truncation = 0.1. Multiple sources of noise, even at modest levels, and even with larger 
population size, cause very high STb values. Note: due to memory limits, in this experiment we used 
a tracking limit of 1.0 × 10−5, and so could not plot the lowest three orders of low-impact mutations 
which would have been on far left.
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Fig. 12.  Deleterious and beneficial selection thresholds plotted over time, with multiple 
sources of noise. It takes many generations to reach selection equilibrium. The beneficial and delete-
rious selection thresholds equilibrate at very nearly the same levels. Beneficial selection threshold 
cannot be plotted until about generation 500 (until then, there are too few beneficial mutations to 
produce meaningful data).
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Figure 13 shows how STb changes over time in the special case where there is 
a larger population (10,000), but extremely beneficial mutations are allowed 
( beneficial fitness effects up to 1.0), and all other parameters are optimized for 
selection efficiency (population size = 10,000; mutation rate = 1; fraction benefi-
cial = 1,; heritability = 1; full truncation). Runs which include high-impact benefi-
cial mutations tend to become limited by computer memory, because of the rapid 
amplification of those beneficial mutations. For that reason, longer-term experi-
ments such as this require that all unnecessary tracking be suspended. Even with 

Fig. 13.  Beneficial selection threshold plotted over time for a larger population, when 
extremely beneficial mutations are allowed. Critical parameters: population size = 10000, genera-
tions = 8000, mutation rate = 1, fraction beneficial = 1.0, maximum beneficial effect = 1.0, fitness 
heritability = 1.0, full truncation. Plotting started at generation 500.
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this accommodation, memory overflowed in this experiment after 8,000 genera-
tions. Adding extremely beneficial mutations, even under ideal conditions, greatly 
increases initial and ending STb values. STb values reach a minimum after roughly 
1000 generations (about 2 × 10−3) and then gradually increased due to growing 
 selection interference as high-impact mutations increased.

Discussion

This analysis leaves no doubt that there must be a very significant selection thresh-
old for beneficial mutations in higher organisms. This threshold is not a simple 
function of population size, but is affected by numerous factors. The reality of 
such a threshold has profound theoretical and practical implications. Our results 
show that the beneficial selection threshold for higher eukaryotes should be so 
large under realistic biological circumstances that nearly all beneficial mutations 
must be below that threshold. This constitutes a mystery. If the vast majority of 
beneficial mutations lie below the selection threshold and thus are not acted upon 
by selection, how can we explain the origin of low-impact functional nucleotides? 
Most functional nucleotides within a large genome must each make only an 
extremely small fractional contribution to total fitness, and therefore certainly 
must lie below the selection thresholds we are seeing. Simple logic therefore sug-
gests that most functional nucleotides in large  genomes could not have arisen via 
selection, at least not as  natural selection is presently understood to operate.

There is substantial room for discussion regarding which parameter choices 
would be most appropriate for a given species and which choices might be most 
representative of a given natural circumstance. However, if we use extremely con-
servative estimates for all the relevant parameter choices that affect selection 
threshold, we should be able to estimate reasonably well the lower limits for mam-
malian STb values. The experiment summarized in Figures 10 and 11 does just 
this, yielding a STb value of approximately 3 × 10−3. We have found that whenever 
we combine multiple sources of noise, even when using our most conservative 
parameter settings, we see STb values in this range. Therefore, we suggest that 10−3 
is a reasonable approximation of the beneficial selection threshold for a typical 
mammalian population.

Even given extremely unrealistic selection parameters which confer the small-
est possible selection threshold (Figure 1), we show that the large majority of 
beneficial mutations still lie below that threshold. When we introduce greater and 
greater levels of biological realism into our experiments, the selection threshold 
problem becomes progressively more severe (Figures 2–11). For example, our 
experiments show that when there are higher rates of mutations, or when there are 
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just both classes of mutations (both beneficial and deleterious), this can cause 
strong  selection interference, which further increases selection threshold values 
(Figures 4, 5, 6). This is seen when we increased beneficial mutations rates beyond 
one new mutation per offspring (Figure 4), or when we simultaneously allow both 
deleterious and beneficial mutations (Figure 6). We see this most dramatically 
(Figure 5), when we introduce very high-impact beneficial mutations, which 
strongly interfere with selection for all other mutations. The problem of selection 
interference has been casually recognized in several earlier papers [20, 26, 30], but 
no attempt has been made to quantify its effect under realistic circumstances, and 
the problem has largely been dismissed. Our studies suggest that selection inter-
ference is extremely important, and cannot be properly understood except by using 
biologically realistic genetic accounting programs such as  Mendel’s Accountant. 
This approach appears to bring the greatest clarity to the problem of selection 
interference and provides an excellent research tool for those who wish to study 
the problem further.

In a large  genome (e.g., 108 functional nucleotides), non-neutral mutations must 
typically have very tiny fitness effects, with a lower limit of perhaps ±10−8. Given 
that both deleterious and beneficial mutations have selection threshold magnitudes 
in the range of 10−3 or higher, it becomes clear that there exists a “zone of 
 no-selection” which covers several orders of magnitude in fitness effect on either 
side of zero. We have previously shown that, when considering deleterious 
 mutations by themselves, the large majority must fall within this “no selection 
zone” [14]. We here show that when high rates of beneficial mutations are included 
in the analysis, the selection breakdown for deleterious mutations becomes still 
worse (Figures 6, 8, 10). More importantly, we show that beneficial mutations 
themselves consistently have a very high selection threshold under all reasonable 
conditions (Figures 3, 5, 7, 9, 11). We show that given reasonable parameter 
 settings, more than 99% all beneficial mutations are consistently un-selectable, 
leaving only a very small number of outlying high-impact beneficial mutations 
subject to selection. These findings raise a number of questions.

Can low-impact benefi cial mutati ons contribute 
to genome building?

Building genomes without the use of low-impact nucleotides is very problematic. 
Since the time of Darwin it has been commonly thought that  evolution must occur 
through an endless series of miniscule improvements (i.e. one nucleotide at a 
time). In light of our findings, this does not appear feasible. If beneficial mutations 
with fitness effects of less than 0.1% are not selectable, then evolution must only 
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advance via larger and more discrete steps. For example, if fitness typically 
advances in increments of 1–10%, then only 10 to 100 mutational steps would be 
needed to double biological functionality. But the typical functional nucleotide in 
a large  genome is generally assumed to carry a selection coefficient orders of 
magnitude smaller than this. How did such low-impact functional nucleotides 
arise? It is widely recognized that we each carry tens of thousands of deleterious 
mutations, yet we remain fairly robust, indicating that the damaged functional 
nucleotide sites in our genome must generally have each been conferring very tiny 
contributions to fitness. If selection cannot preserve such functional nucleotides, 
how could selection have put them in their place to begin with?

Can high-impact benefi cial mutati ons explain 
the origin of the genome?

A very high-impact beneficial mutation (an extremely beneficial mutation), can 
obviously contribute to genome building, but only in a very limited sense. Indeed, 
we observe that, given high rates of high-impact beneficial mutations, net fitness 
can increase rapidly, even while a much larger number of deleterious mutations are 
continuously accumulating at a steady rate. Under these conditions we can see 
huge leaps in fitness scores, yet this improvement is entirely dependent upon only 
a handful of isolated, unlinked, non-complementary mutations. Under these condi-
tions, selection can at best eliminate the worst deleterious mutations, while ampli-
fying only the highest-impact beneficial mutations.

In terms of numerical scores within a simulation experiment, just a few extremely 
beneficial mutations can more than compensate for large numbers of low-impact 
deleterious mutations. But this leads to increasing “fitness” only in a narrow and 
artificial sense. In the broader sense, the whole genome is still degenerating, 
because, while a few nucleotide sites are being improved, large numbers are being 
degraded. This type of trade-off is not sustainable, as it results in a shrinking func-
tional genome size. More and more nucleotide sites are losing their specificity, and 
hence their functionality. Taken to the extreme, this would eventually yield a bio-
logical absurdity — a functional genome consisting of a handful of high-impact 
nucleotide sites that somehow code for all of the organism’s functionality.

Extremely beneficial mutations undoubtedly play an important role in adaptation 
to specific environmental circumstances, as in the case of microbial resistance to 
antibiotics, or in the case of human resistance to malaria. However, beyond this type 
of dramatic adaptation to some lethal external factor, extremely beneficial muta-
tions seem to have very limited explanatory power in terms of genome building. 
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To the extent that extremely beneficial mutations are undergoing selection, our 
experiments show that they cause a sharp increase in both STd and STb values. This 
is a serious problem, because it means extremely beneficial mutations are hijack-
ing most of the “selection power” inherent in the surplus population, and thus are 
contributing to selection breakdown for the vast majority of both deleterious and 
other beneficial mutations. Another way of expressing this is that the organism is 
being improved relative to only a few highly specific traits, but otherwise is “rust-
ing out” in innumerable other ways. The actual fitness gain in such cases is gener-
ally no more than a transient response to a fluctuating environmental condition 
and so is fundamentally superficial, yet the cost is a continuously growing genetic 
load involving systematic, long-term, and irreversible decay of innumerable and 
essential internal functions.

 Natural selection must explain more than just a few high-impact nucleotide 
sites. It needs to also explain all the low-impact nucleotide sites surrounding any 
given high-impact nucleotide site — because these create the proper context 
which gives the high-impact nucleotide its functionality. Because extremely 
 beneficial mutations must be extraordinarily rare, there is a statistical necessity for 
extremely beneficial mutations to arise singly, unlinked, and with functional inde-
pendence, and this profoundly limits their utility. They are self-limiting in that 
they can only accomplish the types of things that a single typographical error 
might achieve. Naturally, a single nucleotide change can readily destroy a func-
tion or interfere with some key interaction. But a single nucleotide change gener-
ally is not expected to create, de novo, any new complex functionality. If only 
high-impact nucleotide positions are selectable, where do the many low-impact 
nucleotides come from which create the context for the rare high-impact 
nucleotide?

Can equal-but-opposite compensati ng 
mutati ons stop degenerati on?

One implication of high selection thresholds for beneficial mutations is that Ohta’s 
hypothesis of compensating mutations [3,15,16] does not appear viable. A multi-
tude of low-impact deleterious mutations cannot be systematically compensated 
by selection for equal-but-opposite beneficial mutations at other sites in the 
genome. Our analysis indicates that selection thresholds for beneficial mutations 
are comparable in amplitude to those for deleterious mutations, so equal-but-
opposite beneficial mutations must be equally un-selectable, rendering such a 
stabilizing mechanism inoperative.
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Can high-impact compensati ng benefi cial mutati ons 
stop degenerati on?

A single high-impact beneficial mutation can, in a limited sense, compensate for 
many low-impact deleterious mutations. If there were enough high-impact beneficial 
mutations, this might appear to solve the problem of genetic degeneration. We 
have conducted extensive analyses of this question using Mendel and find that 
stopping genetic degeneration is feasible only when the rate of high-impact 
 beneficial mutations is sufficiently high.

A major unknown for any genetic simulation is the exact frequency of benefi-
cial mutation. Beneficial mutations are generally considered much too rare to 
allow empirical determination of their exact rate. In this paper we used extremely 
high fractions of beneficial mutation (10–100%), not because we consider such 
high numbers to be realistic, but because it was necessary in order to obtain defini-
tive estimates for STb. We needed to generate a relatively large number of benefi-
cial mutations to define the selection thresholds in a reproducible manner. When 
we use rates of beneficial frequencies that are consistent with estimates of other 
investigators [19, 20] and that seem reasonable to us (e.g., less than one in 10,000), 
beneficial mutations have essentially no effect. In all our experiments where 
 deleterious mutations outnumber beneficial mutations by 3–6 orders of magni-
tude, the beneficial mutations exert essentially no effect on fitness change over 
time (except rare and anomalous mutations which are extremely beneficial and 
create a short-term spike in fitness).

Might benefi cial mutati ons be common?

Is it possible that the rate of beneficial mutations might actually be extremely high, 
such that random drift and just a little selection might fill the  genome with func-
tional nucleotides? This does not seem reasonable because it would imply that 
practically any sequence is equally functional and that functional sequence infor-
mation requires little specificity. However, most biologists understand that func-
tional information is very specific, and thus beneficial mutations must be very 
rare. Indeed, beneficial mutation rates have often been estimated to be in the range 
of only one in a million [19, 20]. A large majority of geneticists acknowledge the 
scarcity of beneficial mutations, and complain of the difficulty in studying them 
due to their scarcity [17–26]. However, a few scientists have argued that beneficial 
mutations might be extremely common, even approaching 50% of all non-neutral 
mutations [31, 32]. If applied to the written information within a given assembly 
manual, this concept would suggest that 50% of all typographical errors in a set of 
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instructions will result in an improved product. This is obviously not reasonable, 
as it implies that almost any letter sequence will specify the same instruction. 
These issues are dealt with in more depth in another companion paper [33].

It is sometimes argued that genetic information must actually be quite non-
specific, because many random changes have been thought to be perfectly neutral. 
This common misconception arose in part because of the casual use of the term 
“neutral mutation” to describe any low-impact mutation that escapes selection. 
However, on a functional level, the perfect neutrality of any mutation is neither 
testable nor logical. Every mutation should logically have some biological effect, 
no matter how small. Significantly, synonymous mutations, the long-standing 
paragon of neutral mutation, can no longer be assumed to be neutral. Synonymous 
mutations can be non-neutral because synonymous codon substitutions can pro-
foundly affect RNA stability, protein translation rate, and even protein folding 
[34]. In a parallel development, the long-held paradigm of “ junk DNA” is increas-
ingly being challenged [35], undermining the other primary rationale for assuming 
that most mutations are perfectly neutral.

To address the issue of neutral mutation,  Mendel’s Accountant allows the muta-
tion rate to be discounted by whatever fraction the user feels is a reasonable esti-
mate of the rate of neutral mutation. For example, for the experiment summarized 
in Figures 10 and 11, we used a mutation rate of just 10, even though the actual 
human mutation rate is known to be in the range of 60–100. This reflects the 
premise that 90% of the genome is perfectly inert, and so 90% of all mutations are 
neutral, which we feel is extremely over-generous. We have earnestly sought to 
circumvent the confusion associated with the concept of neutral mutation by only 
considering mutations within the “functional genome” (as opposed to any junk 
DNA sequences). By focusing only on the functional genome, we feel we can 
focus just on those mutations within “functional sequences”. To be functional, 
sequences must be specific, and so random changes within such sequences should 
very rarely increase their functionality.

For many reasons, unambiguously beneficial mutations must be very rare, and 
beneficial mutations above the selection threshold must be extraordinarily rare 
[33]. Invoking high rates of extremely beneficial mutations does not seem to offer 
a realistic solution to the selection threshold problem.

Possible criti cisms

A possible criticism of this study might be that no one really knows the exact dis-
tribution of beneficial mutations. Therefore, some might claim that the  Weibull 
distribution we used in these studies may be distorting our conclusions about 
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selection threshold for beneficial mutations. However, our results do not depend on 
the precise shape of the distribution curve. As long as the distribution is approxi-
mately exponential, we get similar results and reach the same basic conclusions. 
There is essentially unanimous consent that the beneficial mutation distribution 
must be approximately exponential [17,23,24,26,36–43], with high-impact muta-
tions being very rare and very low-impact mutations being the vast majority. Indeed 
various papers [38, 42, 44], contend that the Weibull distribution fits biological 
reality as well or better than the other variations on the basic exponential theme.

A second possible criticism of this study might be that our thesis is contradicted 
by a large volume of scientific literature that uses DNA sequence comparisons to 
infer historical  positive selection events for great numbers of putative beneficial 
mutations. To the extent that theory and actual observations conflict, there arises 
a scientific paradox which demands a reexamination of either the standing theory, 
or the observed data, or both. We naturally acknowledge the operation of selection 
for beneficial mutations in the past, but argue that such selection is severely con-
strained by the reality of selection threshold, as this study and common sense both 
demand.  Natural selection, as presently understood, simply cannot do what so 
many are attributing to it — at least relative to low-impact mutations. It is note-
worthy that a significant part of this body of literature that claims proof of positive 
selection in the past (based upon observed sequence variability in the present), 
may suffer from systematic error and is now being challenged [45–47]. Authors 
arguing for ubiquitous positive selection in the past, based solely upon sequence 
data, need to explain why their observed sequence variations might not be 
explained just as readily using alternative mechanisms such as differential muta-
tional rates or ordinary statistical fluctuations. At the same time, they rightfully 
should point to the findings of this study and include in their discussion the theo-
retical problems inherent in selecting simultaneously for a multitude of very low-
impact mutations with both positive and negative effects.

A third possible criticism of this study might be that our results are unique to 
our program and that this program was specifically designed to give these 
results. Yet in truth we went to great lengths to design Mendel to best reflect 
biological reality, and it is in fact clear that  Mendel’s Accountant is the most 
biologically-realistic forward-time population genetics numerical simulation yet 
developed. Furthermore, apart from specific details, our observations are in 
good agreement with what sound population genetics and logic would predict, 
and our work reflects an expansion, not a reversal, of previous studies [1–29]. 
Moreover, in another paper in these proceedings [48], and also in a separate 
paper [49], it is shown that the digital genetics simulation program known as 
‘ Avida’ produces very similar results regarding selection threshold and selection 
breakdown as we report here — when Avida is run using realistic fitness effects. 
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In fact, Avida shows selection thresholds substantially worse than what we 
report here [48, 49].

Concluding comments

Our findings raise a very interesting theoretical problem — in a large  genome, 
how do the millions of low-impact (yet functional) nucleotides arise? It is univer-
sally agreed that selection works very well for high-impact mutations. However, 
unless some new and as yet undiscovered process is operating in nature, there 
should be selection breakdown for the great majority of mutations that have small 
impact on fitness. We have now shown that this applies equally to both beneficial 
and deleterious mutations, and we have shown that selection interference is espe-
cially important when there are high-impact beneficial mutations. We conclude 
that only a very small fraction of all non-neutral mutations are selectable within 
large genomes. Our results reinforce and extend the findings of earlier studies 
[1–13], which in general employed many simplifying assumptions and rarely 
included more than a single source of biological noise. We show that selection 
breakdown is not just a simple function of population size, but is seriously 
impacted by other factors, especially  selection interference. We are convinced that 
our formulation and methodology (i.e., genetic accounting) provide the most 
biologically-realistic analysis of selection breakdown to date.

Methods

For both the companion paper [14] and this paper, our basic approach has been to 
develop and employ the computer program  Mendel’s Accountant (henceforth 
“Mendel” for short) to simulate genetic change over time. Mendel’s numerical 
approach introduces a discrete set of new mutations into the population every gen-
eration and then tracks each mutation through the processes of mating, recombina-
tion, gamete formation, and transmission to the new offspring in all successive 
generations. Our method tracks which individuals survive to reproduce after selec-
tion and records the transmission of each surviving mutation every generation. 
This allows a detailed mechanistic accounting of each mutation that enters and 
leaves the population over the course of many generations. We term this type of 
analysis genetic accounting, as reflected in the name of the program, Mendel’s 
Accountant [28,29]. Its inner workings are described in great detail elsewhere [28]. 
Mendel is designed to mimic Mendelian heredity as we currently understand it. It 
acts as a meticulous accounting program to record and track huge numbers of 
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discrete genetic events over time. This discrete approach contrasts sharply with the 
traditional approach that has been used by population geneticists for the past nine 
decades that has sought to represent the processes solely in terms of analytical 
equations and then to solve these equations by hand. Like any accounting program, 
Mendel’s primarily limitation is the requirement that the inputs’ parameter values 
be clearly and honestly stated, so they properly characterizes the particular biologi-
cal circumstance the user wants to investigate.

Although Mendel is designed with the ability to model a broad spectrum of 
haploid and diploid organisms, for the sake of simplicity we have limited our con-
sideration in this paper to sexual diploid organisms with large genomes. We use 
parameters appropriate for human populations because more is generally known 
about the relevant values. We start with a genetically uniform population, approxi-
mating the relative genetic uniformity that follows a significant population bot-
tleneck, and we initially assign each individual a fitness of 1. In the experiments 
reported here, we keep all parameters constant, except for the following: 1) muta-
tion rate, 2)  environmental variance, 3) fraction of beneficial mutations, 4) selec-
tion mode, 5) population size, and 6) number of generations.

Mendel’s calculations use a mutation’s fitness effect, rather than its selection 
coefficient, in order to disentangle the genetic impact of a mutation on biological 
function from the selection process itself. In much of the population genetic litera-
ture, the selection coefficient and the influence of a given mutation on genetic 
fitness (fitness effect) have been equated by definition, which is true only when 
 probability selection is combined with the multiplicative model of mutational 
effects and no other confounding factors occur. However, with other forms of 
selection and with the inclusion of other factors, a complex relationship emerges 
between a mutation’s impact on functional fitness, its predicted selection coeffi-
cient, and its actual selectability [50, 51]. Functional fitness is a concept integrat-
ing every element that influences survival and reproduction. We believe that the 
term “functional fitness” is both easily understood and conceptually useful. Our 
investigations show that numerous factors confound the correlation between a 
mutation’s effect on functional fitness and its selectability.

In Mendel, a Poisson distribution describes the random number of new muta-
tions assigned to each individual. Mutations obey an “infinite sites” model, and the 
distribution of mutational effects is a  Weibull-type distribution [52], of the form 
d = exp(axγ). Here d is the effect of a homozygous pair of mutant alleles, a is the 
inverse of the functional genome size, x is a uniformly distributed random number 
between 0 and 1, and γ is determined by the frequency of “high-impact” mutations 
and their defining cut-off value. All these parameters, as well as degree of domi-
nance and numerous other variables, can be specified by the Mendel user. The 
Weibull-type distribution, widely used in engineering for modeling degradation 
processes [52], readily accommodates the wide range of effects that we want to 
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consider (eight or more orders of magnitude). This function is similar to a gamma 
distribution but allows a wider range of fitness effect.

In regard to the parameters needed to characterize the Weibull distribution, for 
deleterious mutations we use a = 3 × 10−9 (reflecting the inverse of 3 × 108 bp, a 
conservative estimate of the functional  genome size in humans), which serves as 
the lower limit of the mutational effect for homozygous mutations in the model. 
Thus, the magnitude of homozygous deleterious mutational effects ranges from −1 
(lethal) to −3 × 10−9. With the Weibull-type distribution, mutations of small effect 
are much more frequent than those with large effect. To set the value of γ for the 
cases described in this study, we specify as high-impact mutations those with a 
homozygous deleterious fitness effect of at least 0.1 and fix their frequency at 
0.001, reflecting an estimate that one in a thousand mutations in humans reduces 
fitness by ten percent. This parameterization generates almost no lethal mutations. 
Lethals have little effect on mutation accumulation, and thus are ignored in this 
analysis.

In this paper, when we specify the distribution of mutations, we must also 
include the beneficial mutations. Apart from their relative abundance, which is a 
user input, Mendel generates the distribution for deleterious and beneficial muta-
tions in a very similar manner, such that they have the same basic shape to their 
distribution, except for their range. We take minimum magnitude for deleterious 
and beneficial mutations to be the same (one divided by the functional genome 
size). However, while the largest negative effect for deleterious mutations is 
always −1.0 (there can always be a few entirely lethal mutations), the maximum 
value Mendel allows for beneficial mutations is user-specified. While we believe 
a limiting value for beneficial effects in higher organisms should be on the order 
of a percent or less, we evaluate STb with values as large as +1.0. The distribu-
tion for beneficial mutation effects has the form d = d0exp(axγ), where d0 is the 
limiting beneficial effect, a is the reciprocal of the product of the functional 
genome size and d0, and γ is determined by the same parameters as deleterious 
mutations except that the cutoff value for “high-impact” mutations is scaled by 
the factor d0.

Mendel outputs a statistic that we term selection threshold (ST), which marks 
the center of the transition zone in fitness effect between selectable and 
 un-selectable mutations. For deleterious mutations, STd is defined as the muta-
tional fitness effect value at which the number of mutant alleles in the population 
is exactly half of the number expected if there were no selection. The computed 
STd value lies at the mid-point of the transition zone separating large-effect, 
selectable mutations (that display essentially zero accumulation) and small-effect 
un-selectable mutations (that display essentially 100% accumulation). This statis-
tic provides, at any desired generation, a simple empirical basis for comparing 
selection effectiveness among cases involving different biological parameters.
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For beneficial mutations, a similar statistic, STb, can be defined as the muta-
tional fitness effect value at which the number of mutant alleles in the population 
is exactly twice that of the number expected if there were no selection. This pro-
vides a very useful benchmark for tracking at what point selection for low-impact 
mutations breaks down, and has a basic symmetry with the deleterious selection 
threshold. The computed STb value lies at a critical point where beneficial muta-
tion effects start to be strongly amplified. This marks the transition zone separat-
ing large-effect, extremely selectable mutations (which display greatly accelerated 
accumulation rates) and very small-effect un-selectable mutations that display 
accumulation rates consistent with random drift.

Our choice for mutation rate is informed by recent estimates that tend to fall in 
the range of 100 new human mutations per person per generation [52, 53]. We 
adjust this estimate based on the fraction of the human genome assumed to be 
functional. We consider a minimal estimate of the functional genome to be 1% 
(yielding a functional mutation rate of 1) and very conservative estimates to be 5% 
and 10% (yielding functional mutation rates of 5 and 10). In light of increasing 
evidence of extensive genomic functionality [35], we also examine functional 
mutation rates of 20 or 40 new mutations per individual per generation, corre-
sponding to a 20% and 40% functional genome, respectively. By discounting the 
mutation rate based upon the size of the functional genome, we are postulating a 
very conservative mutation rate because we effectively remove from consideration 
all non-functional DNA. This also eliminates from consideration all mutations 
which are absolutely neutral.

In regard to  environmental variance, we consider four cases: zero environmen-
tal variance (fitness heritability of 1.0), small variance (fitness heritability of 0.4), 
moderate variance (fitness heritability of 0.04), and large variance (fitness herit-
ability of 0.004). While a heritability value of 0.04 would be very small for a 
simple phenotypic trait such as height, it is still about 10-fold higher than what is 
commonly estimated for total fitness heritability [8]. Indeed, heritability of over-
all fitness is often found to be too small to measure. Selection is always based on 
each individual’s phenotypic fitness, which reflects the genotype fitness plus a 
random environmental effect. In Mendel, a given heritability is achieved by add-
ing a random number to each individual’s genotypic fitness to yield its pheno-
typic fitness value. These numbers are drawn from a zero-mean normal 
distribution of random numbers with just the right variance to produce the desired 
heritability.

We consider three relative frequencies of deleterious versus beneficial muta-
tion: a) deleterious mutations are entirely absent; b) the deleterious mutation rate 
equals the beneficial mutation rate; and c) the deleterious mutations are 9-fold 
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more common than the beneficial mutations. We consider three types of selection: 
a) perfect phenotypic  truncation selection (approximating the sort of artificial 
selection applied in plant and animal breeding); b) standard  probability selection 
(in which the probability of survival and reproduction is proportional to pheno-
typic fitness); and c) partial truncation (an intermediate type of selection, also 
called broken-line selection). A level of partial truncation was selected for most 
cases that gives results midway between strict probability and strict truncation 
selection (partial truncation input parameter = 0.5), but in more realistic cases we 
use partial truncation with 10% truncation selection and 90% probability selection 
(partial truncation input parameter = 0.1).

Parameters that were fixed for most of the evaluations in this study included: a) 
six offspring per female (which implies that, averaged over the population, four 
out of six offspring are selected away); b)  Weibull-type distribution of homozy-
gous mutation effects (0.1% of the mutations with effects larger in magnitude than 
0.1 for deleterious mutations and 0.1 times the limiting value for beneficial muta-
tions); c) all mutations co-dominant; d) mutation effects combine additively; e) no 
random death; f) no fertility decline associated with fitness decline; g) a diploid 
sexual species; and h) dynamic recombination within 23 sets of chromosomes, 
with two random crossovers per chromosome every generation. Unless specified 
otherwise, the number of  linkage blocks across a haploid set of 23 chromosomes 
was 989 (43 per chromosome) and the population size was maintained at 1,000 
reproducing individuals (3,000 offspring in each generation).

Addendum —

We append a significant new citation appearing since the finalization of this chap-
ter: Sanford, J. & Nelson, C. (2012). The Next Step in Understanding Population 
Dynamics: Comprehensive  Numerical Simulation, Studies in Population Genetics, 
in: M. Carmen Fusté (Ed.), ISBN: 978-953-51-0588-6, InTech, Available from: 
http://www.intechopen.com/books/studies-in-population-genetics/the-
next-step-in-understanding-population-dynamics-comprehensive-numerical-
simulation.
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Appendix I: Key parameter settings and their justification:

Mutation rate = 1, 5, or 10 (unless otherwise specified). Although the human muta-
tion rate is known to be roughly 100 new mutations per person per generation 
[53–55], we typically use the extremely conservative maximal value of 10. This 
presumes that at least 90% of the human genome is perfectly inert “junk”, which 
is contrary to the mounting evidence indicating a substantial fraction of the human 
genome has function [35]. More realistic mutation rates only make the selection 
threshold problem worse.

Population size = 1,000 (unless otherwise specified). This default population size 
would be realistic for an isolated tribe or set of tribes. Population sizes larger than 
1,000 do not significantly decrease ST values or change the percent of mutations 
which are un-selectable [14], but when we allow extremely beneficial mutations 
in larger populations, their rapid multiplication leads to overflow of memory.

Generations = 1000 (unless otherwise specified). We find that this is sufficient for 
STb to largely stabilize for the population sizes we have been studying.

Offspring per female = 6. In Mendel’s default mode, all surplus progeny are 
selected away. Since two offspring per female are needed for population continu-
ity, this setting causes two thirds of all progeny to be selected away and represents 
extremely intense selection.

Distribution of mutation effects = Weibull distribution, wherein 0.1% of all muta-
tions reduce fitness by 10% or more. Altering the shape of the distribution to be 
either steeper or less steep, does not significantly affect the ST phenomenon.

Dominant versus recessive = co-dominance. Although Mendel allows some muta-
tions to be partially or fully dominant, while others are partially or fully recessive, 
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for simplicity we make all mutations in this paper co-dominant. We have observed 
that this parameter has only a minor impact on ST values.

Mutation effects combination method = additive. Mendel also allows use of the 
multiplicative model, but we feel the additive model is more realistic, and use of 
the multiplicative model does not significantly affect the ST phenomenon.

To reproduce these results: all other settings can be set to the normal Mendel 
default settings (Version 1.4.3).
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Abstract

There is now abundant evidence that the continuous accumulation of deleterious mutations within 
natural populations poses a major problem for neo-Darwinian theory. It has been proposed that a viable 
evolutionary mechanism for halting the accumulation of deleterious mutations might arise if fitness 
depends primarily on an individual’s “mutation-count”. In this paper the hypothetical  “ mutation-count 
mechanism” (MCM) is tested using  numerical simulation, to determine the viability of the hypothesis 
and to determine what biological factors affect the relative efficacy of this mechanism.

The MCM is shown to be very strong when given all the following un-natural conditions: all 
mutations have an equal effect, low environmental variance, and full  truncation selection. Conversely, 
the MCM effect essentially disappears given any of the following natural conditions: asexual repro-
duction, or  probability selection, or accumulating mutations having a natural distribution of fitness 
effects covering several orders of magnitude. Realistic levels of  environmental variance can also 
abolish or greatly diminish the MCM effect.

Equal mutation effects when combined with partial truncation (quasi-truncation) can create a 
moderate MCM effect, but this disappears in the presence of less uniform mutation effects and rea-
sonable levels of environmental variance.

MCM does not appear to occur under most biologically realistic conditions, and so is not a gener-
ally applicable evolutionary mechanism. MCM is not generally capable of stopping deleterious 
mutation accumulation in most natural populations.

Key words: mutation count mechanism, mutation accumulation, natural selection, neo-Darwinian 
theory, numerical simulation, Mendel’s Accountant

Introduction

There is a significant body of literature, based upon both logic and mathematical 
modeling, which indicates that direct selection against deleterious mutations is 
insufficient to halt deleterious mutation accumulation [1–6]. Recent studies using 
 numerical simulation have demonstrated this point [7–10]. A primary reason for 
this paradoxical mutation accumulation problem is that most deleterious 
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mutations have extremely small biological effects, and thus are essentially invisi-
ble to selection [11–16].

It has been argued that this fundamental problem might be resolved by a form 
of selection not based directly upon the biological effect of each mutation, but 
instead upon an individual’s “mutation count” [17–20]. We term this the “ muta-
tion-count mechanism” (MCM). In this paper we use numerical simulation to 
explore whether the MCM can realistically be expected to stop mutation accumu-
lation. In a companion paper, numerical simulation is used to test a related con-
cept, the synergistic epistasis hypothesis. That more elaborate hypothesis, also 
attempts to deal with the mutation accumulation problem by focusing selection 
specifically against high-mutation-count individuals [10].

The concept of selection based upon mutation count was first put forward by 
Muller [1], but has primarily been developed and expanded by Crow [17–20]. For 
decades, Crow, Muller, and others have acknowledged that deleterious mutations 
should logically accumulate continuously in populations, creating an evolutionary 
paradox. This is especially apparent when mutation rates are higher than one 
mutation per individual per generation [1]. Even when mutation rates are well 
below one per individual per generation, Ohta and others [11–16] have shown that 
most mutations have such small biological effects that they must be “nearly neu-
tral” (effectively neutral), and must routinely escape the influence of selection, 
leading to continuous accumulation. The problem of continuous accumulation of 
deleterious mutations creates an evolutionary paradox, wherein populations 
should logically degenerate continuously, leading inevitably to extinction [1–6].

The idea of selection based upon an individual’s mutation count was developed 
to address this theoretical problem of continuous genetic degeneration. The con-
cept is that, when mutations accumulate to significant levels within a population, 
some individuals will have substantially more mutations than others due to ran-
dom statistical fluctuations. If selection is strongly focused against those “high 
mutation count” individuals, elimination of single individuals might systemati-
cally eliminate proportionately more mutations. All this might be feasible if there 
were a strong correlation between mutation count and phenotypic fitness. Given a 
strong correlation, the MCM might progressively slow mutation accumulation and 
eventually even stop it. In such a case, the mean mutation count per individual 
would increase up to a maximum and then plateau, and mean fitness would cease 
its decline.

Numerical simulations using biologically reasonable parameters have consist-
ently failed to show any evidence of the MCM, when using natural mutation dis-
tributions [8, 9]. This is most readily seen by plotting mean mutation count per 
individual over time. Using natural mutation distributions (wherein mutational 
effects vary over a wide range), the mutation count per individual consistently 
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increases over time in a linear manner. This is seen even given intense selection, 
large populations, and many generations. In such experiments, no stabilization of 
mutation count is observed, and fitness declines continuously. This is because 
individuals are being selected based upon phenotypic fitness, as in nature, not 
based upon a contrived parameter such as an individual’s “mutation count”. Under 
realistic conditions, phenotypic fitness should have a weak correlation to mutation 
count within a natural population. Random sampling of gametes from within the 
same breeding population will have a strong statistical tendency toward producing 
similar mutation counts among all the progeny. Individual mutation counts will 
consistently track closely the population’s mean mutation count. Not only will all 
individuals have approximately the same mutation count, the vast majority of the 
mutations within any individual will be nearly-neutral. Any meaningful genetic 
differences between individuals will be due to relatively few higher-impact muta-
tions. These non-trivial mutations should strongly dominate the selection process, 
largely negating any correlation between an individual’s mutation count and that 
individual’s fitness. The correlation between an individual’s mutation count and 
total fitness should logically be weak in most biological situations. This is exactly 
what is seen in careful numerical simulations; deleterious mutations invariably 
increase continuously at a constant rate.

Because the MCM hypothesis is a primary rationale for discounting pervasive 
genetic degeneration in nature, we desired to more carefully explore experimentally 
the potential for MCM using  numerical simulation. For this purpose we employed 
the numerical forward-time population genetics program,  Mendel’s Accountant [7]. 
We modified this program so that selection could be based directly upon an indi-
vidual’s mutation count. This was achieved by specifying that all deleterious muta-
tions have exactly the same fitness effect. The result is that an individual’s reduction 
in genotypic fitness can correlate perfectly with its deleterious mutation count. This 
provided us with a research tool for evaluating the potential of MCM and allowed 
us to study various factors that affect the efficacy of this mechanism.

Methods

We apply the program Mendel’s Accountant [7] (henceforth, ‘MENDEL’) to study 
the influence of MCM on mutation accumulation and genetic degeneration. This 
program was designed to study mutation accumulation [8–10], and we believe it 
is the first biologically-realistic population genetics program [7–10].

It is known that mutation accumulation is affected by many parameters. No set 
of equations solvable by hand can simultaneously account for all these interacting 
factors without introducing major simplifying assumptions. Of course, this limits 
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both the scope and generality of such analyses. There is enormous biological com-
plexity inherent in the mutation/selection process, especially when it is considered 
at the level of the whole  genome and the whole population. Therefore it cannot be 
assumed that traditional analytical approaches are adequate for studying the con-
sequences of hypotheses such as MCM. However, thanks to modern advances in 
scientific computing, complex systems of this type can now be analyzed reliably 
using  numerical simulation. MENDEL tracks a complete biological system, starting 
with individual mutations, mutation-mutation interactions, linkage blocks, chro-
mosomes, genotypes, phenotypes, mating/recombination events, sub-populations, 
and whole populations. Using MENDEL, all the primary known parameters that 
affect the selection/mutation process are accounted for, and can be specified by the 
program user, and so the computational processing can be faithful to our under-
standing of how genetic systems operate.

MENDEL can incorporate beneficial mutations, but for the sake of clarity in this 
paper we include only deleterious mutations. Except where indicated, we use 
MENDEL’s human default parameters, as might reflect a small human population 
after a population bottleneck, with very intense selection (67% of progeny selected 
away every generation). Unless otherwise indicated, the most fundamental param-
eters were as follows: ploidy = diploid; reproduction = sexual; mating = random; 
linkage = dynamic recombination; new mutations per individual = 10; offspring per 
female = 6; mode of combining mutation effects = additive; population size = 1000; 
generations = 500; gene expression = co-dominance; fitness heritability = 1.0.

In these experiments we sometimes used “partial truncation”, where selection 
was intermediate between full truncation selection and full  probability selection. 
Mendel allows the user to specify the degree of partial truncation, with 0.1 speci-
fying 10% truncation and 90% probability selection, while 0.5 specifies 50% 
truncation and 50% probability selection.

When either truncation or partial truncation selection are employed in our simu-
lations, we have seen that it can result in un-naturally narrow genetic variance, and 
since we normally scale  environmental variance to genetic variance (to specify a 
given heritability), this can result in a population that has an unreasonable narrow 
range of phenotypic variance. For this reason we established a non-scaling noise 
parameter where we can specify a minimal level of phenotypic variance, by adding 
some non-scaling environmental variance, to generate a reasonably heterogeneous 
phenotypic population even under  truncation selection. In this study, whenever we 
select a heritability value less than one, we set the non-scaling noise at 0.05 (creat-
ing a minimum standard deviation of 0.05 for phenotypic fitness).

We begin by modeling the MCM using idealized conditions for optimal selec-
tion efficiency, and then investigate MCM in more depth by introducing more and 
more elements of realism.

b1567_Sec2.4.indd   301b1567_Sec2.4.indd   301 5/8/2013   2:41:54 PM5/8/2013   2:41:54 PM

 B
io

lo
gi

ca
l I

nf
or

m
at

io
n 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
2.

4.
17

.1
40

 o
n 

08
/1

1/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



302 W. H. Brewer, J. R. Baumgardner and J. C. Sanford 

b1567  Biological Information — New Perspectives b1567_Sec2.4 8 May 2013 2:50 PM

Results

Our previous studies have clearly shown that given a natural distribution of muta-
tional effects, mutations will accumulate continuously and at a constant rate [7–10]. 
Therefore, we already knew at the on-set of this research that one essential require-
ment for activation of MCM is some type of very narrow distribution of mutation 
fitness effects. For this reason all of the experiments done in this study employed 
either uniform mutations affects, or a relatively narrow range of fitness effects. This 
makes these experiments generally unrealistic biologically — yet we needed to 
make this concession to the MCM hypothesis in order to examine it more closely.

We first examined the MCM using highly idealized conditions. We caused all 
mutations to affect fitness in an equally deleterious way (each mutation, when in 
the homozygous form, reduced fitness by 0.001, relative to a reference genotype 
with a fitness of 1.0). We combined the fitness effects of such mutations additively 
within individuals. In this way we created a perfect correlation between genotypic 
fitness reduction and the individual’s mutation count. We then applied zero  envi-
ronmental variation (heritability = 1.0), such that phenotypic fitness and genotypic 
fitness were identical. We then applied artificial truncation (wherein reproduction 
by a given individual depends exclusively on whether its phenotypic fitness is 
greater than an arbitrary fitness threshold).

Under these highly artificial conditions we found that MCM was indeed able to 
very effectively halt both mutation accumulation and fitness decline, as seen in 
Figure 1. However, using all the same parameters, but suspending sexual recom-
bination (as would apply to any asexual species), completely abolished the MCM 
effect (Figure 1). Mutation accumulation and fitness decline were both perfectly 
linear without sexual recombination. Likewise, we found that using the original 
parameter settings and simply switching to  probability selection essentially abol-
ished the MCM effect (Figure 1), except as the population approached zero mean 
fitness (extinction). This extinction-related MCM effect must be seen as an arti-
fact. As a population approaches a zero mean fitness, mutational load is so high 
that many individuals have a fitness of zero or less. These individuals are auto-
matically and unconditionally removed from the population, forcing the popula-
tion from probability selection into an artificially-induced form of truncation 
selection. However, in the natural world, a population would normally go extinct 
long before a large fraction of that population had zero biological functionality 
(for many reasons, including fertility decline and population collapse). Thus this 
type of MCM effect near the very end of our runs, whenever probability selection 
is in effect, must be viewed as an artifact of the simulation process which allows 
mean fitness to approach zero. Apart from this extinction-induced truncation phe-
nomenon, we consistently see that mutation accumulation is essentially linear, 
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even given idealized conditions, whenever probability selection is employed. 
In summary, Figure 1 shows us that the MCM can be effective, given equal 
 mutation effects, zero  environmental variance, and  truncation selection. However, 
even with all mutation effects being equal, the MCM effect disappears whenever 
there is either asexual reproduction or probability selection.

We next examined the effect of partial truncation and environmental variance. 
We repeated the idealized experiment as described above with all mutations being 
equal, but instead employed partial truncation. We then did a series of runs where 
we studied the effect of environmental variance, and let the runs go longer (1000 

Fig. 1.  Mean mutation accumulation per individual (top) and fitness history (bottom) for three 
experiments. Phenotypic fitness depended solely upon mutation count, that is, mutations all had the 
same effect (-0.001), and no environmental noise was added. Selection modes were: a) perfect trun-
cation selection; b) perfect  probability selection, and truncation selection without sexual recombina-
tion. Mutation count and fitness stabilized quickly when truncation selection was applied, due to the 
MCM effect. Either probability selection or asexual reproduction abolished the MCM effect.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 100 200 300

A
vg

. n
um

be
r 

of
 d

el
. m

ut
n.

/i
nd

iv
.

Perfect Trunc. Sel.

Trunc. Sel., Asexual

Perfect Prob. Sel.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350

Fi
tn

es
s

Number of Generations

Perfect Trunc. Sel.

Trunc. Sel., Asexual

Perfect Prob. Sel.

b1567_Sec2.4.indd   303b1567_Sec2.4.indd   303 5/8/2013   2:41:54 PM5/8/2013   2:41:54 PM

 B
io

lo
gi

ca
l I

nf
or

m
at

io
n 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
2.

4.
17

.1
40

 o
n 

08
/1

1/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



304 W. H. Brewer, J. R. Baumgardner and J. C. Sanford 

b1567  Biological Information — New Perspectives b1567_Sec2.4 8 May 2013 2:50 PM

generations). Figure 2 shows that partial truncation (set at 0.5 – a selection mode 
halfway between perfect truncation and perfect  probability selection), when com-
bined with zero environmental variance, still produced a delayed, but still strong 
MCM effect. We then did experiments that added a low level of environmental 
variance and a high level of environmental variance. When we combine partial 
truncation with a low level of environmental noise (fitness heritability = 0.2), we 
saw that the MCM effect became somewhat weaker (Figure 2). When we com-
bined partial truncation with a high level of environmental noise (fitness heritabil-
ity = 0.02), we saw that the MCM effect was greatly reduced, becoming insufficient 
to prevent extinction under those settings (Figure 2).

Fig. 2.  Mean mutation accumulation per individual (top) and fitness history (bottom) for three 
experiments involving partial truncation (0.5) with varying amounts of  environmental variance: zero 
environmental variance (heritability = 1.00), low environmental variance (heritability = 0.2), and 
high environmental variance (heritability = 0.02).
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Numerical simulations as described above, revealed evidence for a very signifi-
cant MCM effect when mutation effects were perfectly uniform, and when selec-
tion was either full truncation or strong partial truncation. Addition of substantial 
environmental variation could greatly reduce the MCM, but did not entirely 
negate it. We therefore wished to examine how a moderate amount of variation in 
mutation effects might influence the efficacy of the MCM. Instead of using 
entirely uniform mutation fitness effects, we truncated our normal  Weibull distri-
bution of mutational effects so that the smallest mutational effect reduced fitness 
one part in 100,000 (3000-fold less than the Mendel default value). We then tested 
the four selection modes: full truncation, strong partial truncation (0.5), weak 
partial truncation (0.1), and probability selection. We let these experiments run 
10,000 generations, introducing a modest amount of environmental variance 
(heritability = 0.2). The results of these experiments are shown in Figure 3. Given 

Fig. 3.  Mean mutation accumulation per individual (top) and fitness history (bottom) for four experi -
ments involving four modes of selection, given modest a amount of  environmental variation (heritability = 
0.2), and a relatively narrow range of fitness effects (lower limit = .00001). Selection modes were: full trun-
cation, strong partial truncation selection (0.5), weak  truncation selection (0.10), and  probability selection.
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these very favorable parameter settings, selection effectively removed all muta-
tions with fitness effects of 0.001 or more (data not shown), and also removed 
most mutations with fitness effects between 0.0001 and 0.001. Therefore the 
accumulating mutations in these experiments were primarily in the range of 
0.00001 to 0.0001 (varying across just over one order of magnitude). Despite this 
relatively narrow range of fitness effects, mutation accumulation eventually 
became essentially linear — regardless of whether selection mode was truncation, 
strong partial truncation (0.5), weak partial truncation (0.1), or probability selec-
tion. In the same way, fitness decline also became essentially linear regardless of 
selection mode, until population colapse occurred (mutational meltdown), as zero 
mean fitness was approached.

Discussion

Crow [19] recognized that if the deleterious mutation rate approached even one 
per generation, selective removal would fail and then de-evolution would logically 
result. Trying to escape this problem, he went back to the logic of Muller [1]. To 
quote Crow [19], “There is a way out, however. In stating his genetic death prin-
ciple, Muller stated, ‘For each mutation, then, a genetic death — except in so far 
as, by judicious choosing, several mutations may be picked off in the same victim.’ 
Thus,  natural selection… can indeed pick off several mutations at once…”.

This is the essence of the mutation count mechanism — selecting away the 
highest mutation-count individuals by “judicious choosing”, such that one death 
can remove more than one deleterious mutation. Our numerical simulations vividly 
illustrate the power of the MCM mechanism under ideal conditions (Figure 1). 
When all deleterious mutations have equal fitness effects, with no  environmental 
variance, and with artificial  truncation selection, mutation accumulation can be 
halted in very few generations.

Crow goes on to say “…such an efficient way of removal of mutations at small 
cost is strictly a consequence of sexual reproduction. An asexual species must 
either have a much lower mutation rate or suffer a large number of genetic deaths.” 
Our  numerical simulations also vividly confirm Crow’s second assertion. Given 
the same idealized conditions as produced extremely effective halting of mutation 
accumulation, but excluding sexual recombination, the MCM effect vanishes com-
pletely (Figure 1). Genetic degeneration progresses like clockwork when we 
model asexual species, even given equal mutation effects, no environmental vari-
ance, and full truncation selection. Therefore the MCM mechanism does not 
appear to apply to dandelions, viruses, most bacteria, and innumerable other 
microbes. This means that the MCM mechanism is not generically applicable in 
the biological realm, and cannot be a generalized solution to the problem of 
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mutation accumulation. The balance of this study has focused on populations hav-
ing regular sexual recombination.

Even given normal sexual recombination combined with uniform mutation 
effects and zero environmental noise, the MCM effect essentially disappears given 
natural  probability selection (Figure 1). It is widely understood that probability 
selection is what is generally happening in nature. Truncation selection is the type 
of artificial selection employed consciously by plant and animal breeders, and is 
not generally applicable to natural populations (truncation selection seems to pri-
marily be invoked for natural populations only when the MCM is deemed desira-
ble). However, it is significant to note that given uniform mutation effects and 
probability selection, as the population approaches zero mean fitness (extinction), 
we often observe clear evidence of the MCM effect, and this can slow or even stop 
mutation accumulation. This effect is weakly evident in Figure 2. But this special 
phenomenon actually helps prove the point, because what is happening as the 
population approaches extinction is that selection is forced from probability selec-
tion into a type of truncation selection. This actually helps demonstrate that some 
form of truncation is required to activate the MCM. In this particular case, as the 
population’s mean fitness approaches zero, many individuals have a fitness of zero 
or less, and they are hence unconditionally removed from the population 
(truncation).

When selection regimes are employed that are intermediate between  probability 
selection and  truncation selection (partial truncation), with mutation effects still 
being equal and with no environmental variance, there is still a strong MCM effect 
— which can either slow or halt mutation accumulation (Figure 2). Low levels of 
 environmental variation can interfere with the MCM effect under partial trunca-
tion, but cannot by itself negate it (Figure 2). However, higher levels of environ-
mental variation can strongly interfere with the MCM effect (Figure 2), most 
especially in the case of full truncation selection (not shown).

Although it is instructive to model uniform mutation effects on fitness, we know 
that mutation fitness effects are never uniform, and are actually extremely variable 
in all living systems. Therefore we tested how effective the MCM might be, given 
a distribution of mutation effects which was intermediate between a totally uni-
form fitness effect and a realistic distribution for higher organisms. We did this by 
doing experiments using a  Weibull distribution of mutation fitness effects having 
a higher than normal minimal fitness effect (.00001). This is 3,000 times greater 
than what we consider reasonable (i.e., the inverse of the functional  genome size). 
In a large genome, there should be many mutation effects smaller than one is a 
million or even one in a billion. Even in free-living bacteria, deleterious mutation 
effects should minimally range down to .00001. We did a series of experiments 
using this more limited range of mutation effects. Given this distribution, the 
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mutations that were accumulating only ranged from .001 to .00001 (just one to 
two orders of magnitude). We found that even given this relatively narrow range 
of accumulating fitness effects, mutation accumulation and fitness decline could 
not be halted, even under full truncation selection (Figure 3). Some non-linearity 
of mutation accumulation and fitness decline is evident early in these runs, but in 
all four experiments these rates eventually became very linear. Mutation accumu-
lation and fitness decline then progressed at constant rates all the way to popula-
tion collapse just prior to extinction, regardless of whether selection was full 
truncation, strong truncation, weak truncation, or probability selection. The selec-
tion mode merely affected the time to extinction (Figure 3).

We also experimented with an even narrower Weibull mutation distribution, 
with a lower limit of .001 (data not shown). When we combined this distribution 
with partial truncation selection (0.1), low environmental variance (heritability = 
0.2), and a high mutation rate (10) the population went to extinction very rapidly, 
due to the high mean mutation effect. However if the mutation rate was reduced 
to 5, then there was sufficient time for the MCM mechanism to operate, and the 
population stabilized prior to extinction. This is hardly surprising when we con-
sider that under those favorable conditions, the selection threshold was below 
.001, making the range of accumulation mutations extremely narrow (less than 
one order of magnitude). Because high-impact deleterious mutations (i.e., with 
fitness effects above .001) are rare, and because the few that do arise are rapidly 
removed from the population, the mutation accumulation problem is largely con-
fined to low-impact mutations. To the extent that we can define conditions where 
there are no low-impact mutations, the mutation accumulation problem largely 
goes away. However, this is not realistic, especially for organisms with large func-
tional genomes, where most mutations should have extremely subtle effects.

We believe that the lower limit of mutation effects for a given species can rea-
sonably be approximated to be one over the functional  genome size. In this light, 
a viroid might reasonably have mutation fitness effects that only range down to 
.001, and a typical virus might reasonably have fitness effects that only range 
down to .0001. Extremely small genomes of this type might reasonably be subject 
to the MCM — except for two problems. Firstly, most of these tiny genomes lack 
sexual recombination, and secondly such organisms should normally be subject to 
 probability selection. Either of these is sufficient to negate the MCM effect. 
Indeed, even when we model the  influenza virus (10,000 bp), which does have 
some limited recombination, the MCM effect is very weak. In such a case the 
mutation count increase is not initially strictly linear, yet mutation accumulation 
is not halted (data not shown). When we model genomes that would reflect any 
free-living organism (genomes of 106 bp or above), under all reasonable parame-
ters settings, MCM very consistently fails and mutation accumulation is linear.
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A possible objection to our methodology might involve the artificiality of defin-
ing certain nucleotides to be “mutant”, since it might be argued from an evolution-
ary point of view that all nucleotides arose as mutations. This line of thinking 
would suggest that any hypothetical selection mechanism based upon “mutation 
count” is inherently contrived and artificial. This objection is reasonable; however 
it must be addressed to those who developed the MCM model in the first place. 
We are merely testing the viability of that concept. The MCM hypothesis obvi-
ously rests entirely on the idea that individuals within a population can actually 
have knowable and meaningful differences in their “mutation counts”. On a practi-
cal level we have simulated this by assuming a genetically uniform population (as 
mighty arise after an extreme bottleneck), with all individuals initially having the 
same genotype and the same relative fitness of 1.0. This starting reference geno-
type then serves as our basis for defining all “new” mutations and for tracking 
each individual’s subsequent “mutation count”. All new mutations represent 
deviations from the starting reference genotype.

Careful  numerical simulation reveals that the MCM hypothesis has very limited 
power to explain how deleterious mutation accumulation can be halted in natural 
populations. The mechanism works very well under highly unrealistic conditions, 
but fails when realistic parameters are applied. Previous numerical simulation stud-
ies have already clearly demonstrated that mean mutation count per individual 
consistently increases linearly over time [8, 9], given realistic parameter settings. 
Whenever there is a realistic distribution of mutation effects, even when all other 
relevant parameters are optimized, there is no stabilization of mutation count or 
fitness, indicating that meaningful selection against higher mutation-count indi-
viduals is not happening. We conclude that the MCM is not generally operational.

The primary reason MCM fails is because in real populations the distribution 
of deleterious mutational effects is never uniform, but must vary over many orders 
of magnitude. Deleterious mutation fitness effects should range from negative one 
(lethal), down to parts per million or even parts per billion. Therefore there must 
be a vanishingly small correlation between phenotypic fitness and actual mutation 
count. This means there can be no mechanism whereby  natural selection can do 
any “judicious choosing” to remove individuals with slightly higher mutation 
counts, as required by Muller [21] and Crow [19, 22].

In this paper, we effectively falsify the general MCM hypothesis. In a compan-
ion paper [10], we falsify the synergistic epistasis hypothesis, which is a more 
elaborate model, but also employs the concept of focusing selection against high 
mutation-count individuals. These two hypotheses have been used for several dec-
ades, to try to dismiss the mutation accumulation problem. The falsification of 
both hypotheses leaves modern genetic theory without any credible mechanism 
that might halt genetic degeneration within natural populations. This strongly 
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suggests there is a very fundamental flaw in our current understanding of theoreti-
cal genetics.

Addendum — Since the finalization of this chapter, a significant new paper has 

been published. See: Sanford, J. & Nelson, C. (2012). The Next Step in 

Understanding Population Dynamics: Comprehensive  Numerical Simulation, 

Studies in Population Genetics, in: M. Carmen Fusté (Ed.), ISBN: 978-953-51-

0588-6, InTech, Available from: http://www.intechopen.com/books/studies-in-

population-genetics/the-next-step-in-understanding-population-dynamics-

comprehensive-numerical-simulation.
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Abstract

The process of deleterious mutation accumulation is influenced by numerous biological factors, 
including the way in which the accumulating mutations interact with one another. The phenomenon 
of negative mutation-to-mutation interactions is known as synergistic epistasis (SE). It is widely 
believed that SE should enhance selective elimination of mutations and thereby diminish the problem 
of genetic degeneration. We apply  numerical simulation to test this commonly expressed assertion.

We find that under biologically realistic conditions, synergistic epistasis exerts little to no dis-
cernible influence on mutation accumulation and genetic degeneration. When the synergistic effect 
is greatly exaggerated, mutation accumulation is not significantly affected, but genetic degeneration 
accelerates markedly. As the synergistic effect is exaggerated still more, degeneration becomes cata-
strophic and leads to rapid extinction. Even when conditions are optimized to enhance the SE effect, 
selection efficiency against deleterious mutation accumulation is not appreciably influenced.

We also evaluated SE using parameters that result in extreme and artificially high selection effi-
ciency ( truncation selection and perfect genotypic fitness heritability). Even under these conditions, 
synergistic epistasis causes accelerated degeneration and only minor reductions in the rate of muta-
tion accumulation.

When we included the effect of  linkage within chromosomal segments in our SE analyses, it 
made degeneration still worse and even interfered with mutation elimination. Our results therefore 
strongly suggest that commonly held perceptions concerning the role of  synergistic epistasis in halt-
ing mutation accumulation are not correct.

Key words: mutation accumulation, synergistic epistasis, mutational meltdown, numerical simula-
tion, Mendel’s Accountant

Introduction

There is a significant body of literature indicating that direct selection against 
deleterious mutations is insufficient to halt mutation accumulation [1–5]. This has 
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recently been validated using biologically realistic numerical simulations [6–9]. 
A primary reason for this result is that most deleterious mutations have extremely 
small effects on fitness and thus are invisible to selection [10–15].

Some have argued that this fundamental issue might be resolved if selection is 
not ultimately based directly upon the biological effects of individual mutations 
acting in isolation of one another, but instead is based largely upon interactions 
between mutations, interactions that act to compound the biological effects of the 
individual mutations. Such effect-enhancing interaction between deleterious 
mutations has been termed  synergistic epistasis (SE). It is widely claimed that SE 
acts to slow deleterious mutation accumulation and thereby helps prevent genetic 
degeneration and mutational meltdown [16–29]. We will refer to this concept as 
the SE hypothesis.

The logic behind this hypothesis is somewhat counterintuitive. The reasoning is 
that, while the number of mutations per individual increases in roughly a linear 
manner, the number of potential mutation-mutation interactions increases in a 
non-linear fashion. The number of pair-wise interactions increases as the square of 
the mutation count, for example. Hence, if SE effects are significant, then at a 
certain point individuals who carry the most mutations might conceivably begin to 
display a significant reduction in fitness relative to the rest of the population. This, 
in turn, might increase selection against high mutation count individuals and 
thereby eliminate a larger total number of mutations from the population than 
would occur otherwise. Eventually, this intensifying selection against high muta-
tion count individuals, if sufficiently strong, might stabilize the mutation count 
and thereby halt further genetic degeneration. This SE hypothesis is counterintui-
tive, because in most circumstances increasing the negative effects of deleterious 
mutations on fitness only serves to increase the rate of fitness decline and hasten 
 mutational meltdown and extinction. For the SE hypothesis to be viable, the selec-
tion against high mutation count individuals must be sufficiently strong so that at 
some point it is able to counter the associated increased rate of fitness decline.

The circumstances under which selection, apart from any SE effects, can come 
to be based primarily upon mutation count, rather than the additive or multiplica-
tive fitness effects of the individual’s mutations, has been discussed by several 
investigators [17-20]. In a companion paper [9], we apply  numerical simulation to 
test the efficacy of selection based upon mutation-count entirely apart from SE 
effects. In this paper we apply numerical simulation in a similar manner to evalu-
ate whether or not SE has the ability to halt mutation accumulation.

Interactions among mutations within a  genome are diverse in their impact. Any 
two mutations may act independently of each other (that is, have no interaction, 
which leads to the standard  additive model), act multiplicatively (the  multiplica-
tive model), diminish each other’s effect (antagonistic epistasis), or compound 
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each other’s effect ( synergistic epistasis). Undoubtedly, all of these types of inter-
actions operate in any sizeable  genome. Therefore it is not reasonable to assume 
all mutation-mutation interactions in any genome are exclusively of a single type. 
Nevertheless, non-interaction should be the norm, with the other types of interac-
tion being the exceptions. The only rationale for modeling a 100% multiplicative 
model or a model with SE contributions from 100% of the deleterious mutation 
interactions is to try to understand in which direction the exceptional interactions 
tend to pull the overall behavior away from the norm of additivity.

It is noteworthy that the main exceptions to the general rule of additivity pull in 
opposite directions. Both antagonistic epistasis and the multiplicative model drive 
population fitness in the direction opposite to that of synergistic epistasis. That is 
to say, as mutation count increases, both the antagonistic epistasis model and the 
multiplicative model cause fitness decline to slow down, while SE causes fitness 
to decline faster and faster. So when combined, the other types of interactions 
should cancel out the effects of the SE interactions in whole or in part, leaving 
what should closely approximate an  additive model. Therefore, in a complex 
genome it would seem most realistic to assume the additive model, with interac-
tions constituting a low level of “genetic noise” (which we would normally just 
refer to simply as “epistasis” or “general epistasis”).

We therefore conclude that a genetic model in which all mutations interact in a 
synergistic manner is an artificial model, one that does not represent any real bio-
logical population. Moreover, such a model contradicts an extensive body of popu-
lation genetics literature, which for nearly 90 years has been built on the 
assumption that most mutational effects combine either additively or multiplica-
tively (the latter effectively counteracting any generalized SE effect). The idea of 
genome-wide generic SE interaction is virtually never invoked, except as special 
pleading as a theoretical mechanism to halt mutation accumulation and degenera-
tion. The present study uses  numerical simulation to show that even if there were 
widespread and generic SE, it still could not halt mutation accumulation. Instead, 
what is seen is that as SE effects become stronger, there is more and more genetic 
degeneration, just as logic and common sense would suggest.

Methods

The program  Mendel’s Accountant [6], hereafter referred to as Mendel, is applied 
to study the effects of SE on mutation accumulation and genetic degeneration. This 
software uses realistic genetic accounting to study mutation accumulation [7–9].

There is enormous biological complexity inherent in the mutation/selection 
process when it is considered at the level of the whole  genome and the whole 
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population. It is not reasonable to assume that such complexity can be effectively 
captured by any tractable set of analytic equations. However, thanks to the com-
putational capabilities now available, complex systems of this type can now be 
routinely analyzed using  numerical simulation. Mendel, developed over the past 
five years, is a  genetic accounting program which can actually do this. This soft-
ware models and tracks a complete biological system, from individual mutations, 
to mutation-mutation interactions, to  linkage blocks, to chromosomes, to geno-
types, to phenotypes, to mating/recombination events, to sub-populations, to 
whole populations. Using Mendel, all the appropriate parameters are accounted 
for and are specified by the program user, and the computational processing is 
faithful to our understanding of how genetic systems operate.

The basic process underlying this numerical simulation is as follows. Mendel 
creates a population with specified biological characteristics. The individuals in 
this population are allowed to create gametes, mate, and generate offspring for a 
new generation. Each offspring inherits the mutations in the gametes from its two 
parents, including possible new mutations that arose in the germ line of the parents 
during their lifetime. Each new mutation has its own fitness effect and its own 
 genome location involving a specific linkage block. Mendel then calculates the 
genotypic fitness of each offspring based upon the net effect of all the mutations 
it carries. Random environmental noise is next added to obtain a value for pheno-
typic fitness. Selection is then applied, based on phenotypic fitness, to determine 
which of the offspring will mate and reproduce to create the next generation. 
Although Mendel readily treats beneficial mutations, for the sake of clarity in this 
paper we include deleterious mutations only. We use Mendel’s human default 
parameters, as might reflect a small human population, except as indicated. Apart 
from these exceptions, the default parameters in all our experiments are as fol-
lows: ploidy = diploid; reproduction = sexual; mating = random; linkage = 
dynamic; new mutations per individual = 10; beneficials = none; offspring per 
female = 4 (resulting in 50% selective elimination); population size = 1000; gen-
erations = 2000; haploid genome size = 3 billion; rate of high impact mutations 
(fitness impact of 0.1 or higher) = .001; gene expression = complete co-domi-
nance; fitness heritability = 1.0; fertility decline with fitness decline = none; selec-
tion type = probability.

Modeling general epistasis

Mutational interactions are, by their very nature, unique and specific, so it is 
somewhat problematic to account for interactions in a generic manner. However, 
there is one generic aspect of nucleotide interactions which we can easily describe 
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and model, namely, the phenomenon of general epistasis. General epistasis 
reflects the net effect of all types of mutation-mutation interaction. When there is 
genetic diversity within a sexual population and the segregating nucleotides 
recombine with each other every generation, many specific interactions in the par-
ent are destroyed, and many new interactions are created in the progeny. These 
changing interactions generation to generation result in what is called epistasis. 
The overall effect of such epistasis is a type of non-heritable variation (noise), 
resulting in lower heritability and reduced selection efficiency. So the dominant 
effect of the ever-changing nucleotide interactions within the genome is generic 
epistasis, which hinders selection efficiency to a modest degree. In  numerical 
simulations, the phenomenon of  general epistasis can very reasonably be modeled 
simply by decreasing the genotypic heritability parameter by an appropriate 
amount.

Modeling additi ve interacti ons

While generic epistatic interaction as described above is significant, by far the 
most common relationship between any two given nucleotides should be 
 non-interaction (or vanishingly small interaction). Like any two misspellings in 
a long text, any two nucleotides in a large  genome will have a vanishingly small 
chance of having any meaningful direct interaction. When two letters are 
changed in a text, they generally need to be in the same word, or at least in the 
same sentence, to have any reasonable likelihood of interaction (wherein one 
affects the meaning of the other). In the same way, any two mutations are 
unlikely to interact significantly unless they are in the same gene, or at least in 
the same pathway. The vast majority of mutations should not significantly inter-
act with one another.

The non-interaction of most mutations is the theoretical basis for the conven-
tional additive model for combining the effects of mutations within an individual. 
The  additive model assumes that as mutations accumulate, each new mutation 
affects fitness independently of the others. Under this model if an individual in a 
population has an initial fitness of 1.0, and we introduce two independent harmful 
mutations, with each reducing fitness by an increment of 0.1, the resulting fitness 
will be 0.8. If we then introduce a good mutation that increases fitness by an incre-
ment of 0.1, the new fitness will be 0.9. The mutational effects of all the mutations 
in a given individual are simply added. The additive model is commonly employed 
in population genetics because in a large genome it is only reasonable to assume 
that non-interaction is the rule and interaction is the exception. Mendel employs 
the additive model of mutation effect combination as its default.
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Modeling multi plicati ve interacti ons

The most common alternative to the additive model is the  multiplicative model. 
Under this model, as mutations accumulate, their mutational effects combine mul-
tiplicatively. This means that as deleterious mutations accumulate, they have less 
and less effect relative to the original fitness, while as beneficial mutations accu-
mulate they have greater and greater effect. To draw an analogy, deleterious muta-
tions act similarly to inflation eroding the value of a bank account, while beneficial 
mutations act as earned interest which is being compounded. This type of interac-
tion is only reasonable where mutations act in a sequential manner, with one 
interaction building upon the effect of another, in series. This might plausibly 
occur when multiple mutations affect the same biochemical pathway. While some 
specific sets of mutations will doubtless interact multiplicatively, it is not reason-
able to assume that all mutations would or could interact in this way. It is also not 
reasonable to use the multiplicative model as the primary method of combining 
mutational effects, because a purely multiplicative model can never reach a fitness 
of zero (i.e., extinction). In fact, under the strict multiplicative model, a small 
genome might have every nucleotide become mutated, with the genotype still 
retaining a positive fitness.

In the big picture, on the level the whole  genome, the additive model should 
most generally be true, with the multiplicative model being applicable only to a 
limited number of special interactions. In other words, multiplicative interactions 
should only represent deviations from the norm of additive interaction. Mendel 
has been designed to allow any blend of additive and multiplicative interaction, 
ranging from 100% additive to 100% multiplicative. In our opinion, a fraction of 
0.99 additive and 0.01 multiplicative interactions is reasonable, but this choice is 
left to the Mendel user.

By allowing any fraction of additive and multiplicative general interaction, and 
by adjusting heritability downward to allow for general epistatic noise, Mendel 
allows for the modeling of the primary mutation-mutation interactions.

Modeling synergisti c epistasis

Mendel has also been designed, however, to handle the special type of reinforcing 
interaction between mutations known as  synergistic epistasis. Like multiplicative 
interaction, SE interaction must be viewed as a deviation from the general rule of 
non-interaction (i.e., the  additive model). SE interaction implies that as deleterious 
mutations accumulate, each additional mutation has a greater and greater effect on 
fitness. This is the exact antithesis of multiplicative interaction, wherein each 
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deleterious mutation has less and less effect on fitness. Both multiplicative and SE 
interactions represent deviations from the additive model, but they pull in opposite 
directions. To the extent that multiplicative and SE interactions occur at a similar 
frequency, they should largely cancel each other. Viewing the  genome as a whole, if 
90% of all mutations combine additively, and 5% combine multiplicatively and 5% 
combine via SE, the result should be that the two types of deviation mostly cancel, 
yielding results nearly equivalent to a purely additive model. For most genetic simu-
lations, a realistic and practical choice is simply to use the standard additive model.

Because SE has often been invoked as a hypothetical mechanism which might 
be able to halt mutation accumulation, we have included it as an option in Mendel. 
In doing so, we have endeavored to treat SE in as biologically realistic a manner 
as possible. Our implementation, however, involves a few assumptions which we 
shall now review.

First, we assume a reference genotype. From an evolutionary perspective all 
nucleotides have arisen by mutation, so viewed from that perspective, all nucleo-
tides are “mutant”. However, to treat SE in the normal sense of that term logically 
requires a reference genotype relative to which “mutations” may unambiguously 
be defined. The approach employed in Mendel is to assume a population with zero 
initial genetic variation, as might be approximated by a population after a severe 
bottleneck at a specific point in time. All subsequent mutations causing deviation 
from that starting genotype are tracked individually and contribute to the distinct 
set of mutations and hence to the mutation count of each member of the population 
in subsequent generations. This assumption of a reference genotype is inherent to 
Mendel’s underlying formulation and does not apply in any special way to the 
treatment of SE. Note that when there is just one mutation in a genome, all the 
interactions involving that mutation are with non-mutant nucleotides, so 100% of 
that mutation’s fitness effect is due to its interactions with non-mutant sites. Thus 
all solitary mutations have a non-epistatic effect on fitness that arises entirely from 
its interactions with non-mutant nucleotide sites.

As additional mutations accumulate, however, there are more and more poten-
tial mutation-mutation interactions. As the mutation count increases, the deleteri-
ous SE contribution to fitness increases at an accelerating rate, accelerating 
because the number of possible pair-wise interactions increases in proportion to 
the square of the number of mutations. A second assumption is that we restrict our 
SE treatment to these pair-wise interactions, that is, to interactions between pairs 
of individual mutations. A third is that we assume the strength of the SE effect on 
fitness is directly proportional to the non-epistatic fitness effects of each of the 
mutations in the pair. This means that if a mutation’s effect on the non-mutant 
genome is small, then the SE contribution from its interactions with other muta-
tions likewise is small.
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We further assume that, in regard to SE interactions, it is proper to distinguish 
between linked mutation pairs, that is, those which reside within the same linkage 
block on a chromosome and those pairs which reside in separate  linkage blocks. 
Linked mutations are inherited together. Not only are the non-epistatic fitness 
effects of all such mutations inherited together, but the SE effects of all their 
mutual interactions are as well. By contrast, genetic recombination progressively 
tends to scramble mutations that are not linked together. Hence, the SE contribu-
tion from non-linked mutations has a transient component. The SE effects arising 
from the non-linked interactions which change from one generation to the next act 
like a type of noise that interferes with the selection process. Therefore, realistic 
modeling of SE requires that linked and non-linked SE effects be treated sepa-
rately. We therefore partition the SE effects on fitness into two parts, one involving 
interactions between deleterious mutations occurring in the same linkage block 
(linked interactions) and the other part involving interactions of deleterious muta-
tions on different linkage blocks (non-linked interactions). SE effects from linked 
interactions are inherited, while part of those from non-linked interactions are 
transient and act, in effect, as a type of noise as far as the selection process is 
concerned.

Another major difference between linked and non-linked SE interactions is the 
relative magnitude of their effects. Intuitively, the strongest SE interactions should 
be within the same linkage block, even as two misspellings in an encyclopedia are 
likely to interact more strongly if they occur within the same chapter or paragraph 
or sentence. Two mutations are most likely to interact if they occur within the 
same protein-coding sequence or at least the same genic region. Therefore, the 
treatment in Mendel includes separate scaling factors for each of these two catego-
ries of SE effects. Normally, the scaling factor for linked interactions should be 
much larger (perhaps by a factor of 1000) than the one for non-linked 
interactions.

Since linked SE interactions are inherited perfectly, they must always make the 
degeneration problem worse. This is because the SE contributions act to reinforce 
the negative non-epistatic fitness effects of the mutations on each linkage block 
and, in effect, make the non-epistatic effects even more negative.

Let us now consider how Mendel actually treats the linked SE interactions. We 
assume the amplitude of the linked SE effect of each pair-wise interaction to be 
proportional to the product of non-epistatic fitness effects of the paired mutations. 
If a mutation’s effect on the non-mutant  genome is small, the SE contribution from 
its interactions with other mutations is likewise small. If we denote the number of 
mutations in a given linkage block by m, the number of pair-wise interactions each 
mutation has with the other mutations is m-1, and the total number of unique 
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 pair-wise interactions in the linkage block is m(m-1)/2. Mendel stores the fitness f 
(relative to unity, when no mutations are present) of each linkage block as well as 
the number m of mutations it carries.

Mendel computes the SE contribution to fitness whenever a new mutation is 
added to the linkage block. This contribution is proportional to the non-epistatic 
effect of the new mutation times the sum of the non-epistatic effects of each of the 
individual mutations already present on the block. When these SE contributions 
are accumulated, each of the m(m-1)/2 unique pair-wise interactions is accounted 
for. These contributions are scaled by a user-specified factor α. We also assume 
co-dominance for these SE interactions, which implies each haploid occurrence of 
a mutation gives 50% expression of the mutation’s total non-epistatic value. This 
reduces the SE effect by a factor of 0.25. We note that, because mutations within 
a given linkage block are passed intact from one generation to the next, the SE 
effects arising from linked mutations are also passed intact from parent to off-
spring. Therefore, as we have already noted, the net result of including SE relative 
to linked deleterious mutations is always to increase the magnitude of their nega-
tive effect on fitness.

Mendel treats the non-linked SE interactions in a similar manner. Let M be the 
total number of mutations in the genome of a given member of the population and 
n be the number of equal-sized linkage blocks. The total number of unique pair-
wise interactions between mutations is M(M-1)/2, the mean number of mutations 
per linkage block is M/n, and the approximate number of linked interactions is 
n(M/n)[(M/n) −1]/2 = M(M-n)/2n. With this approximation, the number of non-
linked interactions becomes (1 − 1/n)M2/2 and the ratio of the number of non-
linked interactions to linked ones is n-1/(1-n/M). With n typically 1000 or greater, 
as M becomes much greater than n, this ratio approaches n. In other words, as the 
total number of mutations becomes large relative to n, the number of non-linked 
mutations approaches n times the number of linked mutations.

Let us denote by F the overall genotypic fitness, apart from any SE effects, of 
a given member of the population. We assume the amplitude of the non-linked SE 
effect of each pair-wise interaction to be proportional to the product of non-epi-
static fitness effects of the two mutations in each pair. The total non-linked SE 
fitness contribution is then nearly proportional to the sum of the non-epistatic 
 fitness effects of all the individual mutations, (1-F), but scaled to account for the 
portion of the mutations which are linked using the factor (1 − 1/n), times the mean 
non-epistatic fitness effect of these mutations, (1-F)/M, times the number of 
unique pair-wise interactions, (1 − 1/n)M/2, that each non-linked mutation has 
with the others. This estimate has included the contributions from the self-interac-
tion of each of the mutations, contributions that should not be included and which 
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Mendel omits. However, when the total number of mutations is large, the sum of 
these contributions is relatively small, in which case the estimate is reasonable 
accurate. We again assume co-dominance, which implies each haploid occurrence 
of a mutation gives 50% expression of the mutation’s non-epistatic value. This 
reduces the overall contribution by a factor of 0.25. We scale this non-linked SE 
contribution with a user-specified input parameter β. As already mentioned, one 
expects that interaction between mutations within the same  linkage block will, on 
average, have much greater SE effects than mutations which are more distant 
within the  genome. Hence, a value for β much less than α is usually appropriate. 
The resulting approximate expression for the non-linked SE contribution to indi-
vidual fitness is therefore 0.125ββ (1-F)2(1 − 1/n)2. Mendel corrects this by subtract-
ing away the sum of the self-interaction contributions.

We note that the negative SE contribution to fitness from all the non-linked 
interactions is proportional to (1-F)2. Since the number of linkage blocks is typi-
cally 1000 or greater, the factor (1 − 1/n)2 can usually be approximated as unity. 
The SE contribution from non-linked interactions is larger for individuals in the 
population with lower fitness and smaller for individuals with higher fitness. It 
therefore tends to accentuate the spread in fitness across the population and thus 
to enhance selection efficiency. Since fitness F tends to be dominated by the rela-
tively few mutations in the high-impact tail of the fitness effect distribution, F is 
largely insensitive to mutation count. This non-linked SE contribution is therefore 
insensitive as well. Since the mean mutation fitness effect is directly proportional 
to (1-F), the overall impact of this SE contribution from non-linked interactions 
is to increase the mean negative mutational fitness effect, just as is the case for 
the SE contribution from the linked interactions. Therefore, the net effect of SE 
for both linked and non-linked interactions should be a higher rate of fitness 
decline with time. There is nothing from a theoretical standpoint to suggest 
otherwise.

Finally in this section, let us estimate what a biologically reasonable value 
might be for the non-linked scaling factor β. The total SE fitness contribution in 
Mendel for non-linked mutations, assuming no linkage at all, is approximated 
by the expression 0.125β(1-F)2, where F is the individual genotypic fitness. A 
 plausibly hard upper bound on the magnitude of β might be the value that drives 
F to zero when, without SE, the fitness F of a given individual is 0.5. In this case, 
β = 0.5/(0.125 × 0.52) = 16. This means that, if the accumulated mutations in a 
given individual reduce the fitness of a given individual to 0.5 without SE, then 
with SE and β =16, the fitness of this individual drops to zero. In our view, a 
 biologically realistic value for the non-linked scaling factor β should therefore be 
no larger than 1.0 and more plausibly on the order of 0.1 or less.
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Results

Preliminaries

We ran a number of experiments with  Mendel’s Accountant to ascertain a reason-
able value for the linked scaling factor α relative to the non-linked factor β. We 
found that choosing α some 2000 times larger than β gave comparable SE contri-
butions from linked relative to non-linked mutations. We considered cases with 
just under 2000 total  linkage blocks for the diploid  genome, or about 1000 for the 
haploid genome. This implies much larger linkage blocks and more linked muta-
tions that observations would suggest for most organisms. Therefore, α should 
almost certainly be chosen larger than 2000 relative to β when the number of link-
age blocks is increased if one wants the SE contribution from linked mutations to 
be comparable to that from linked mutations.

Large SE eff ects and modest selecti on pressure

We begin our exploration of the SE effects on fitness with SE scaling factors α and 
β that are large but with the selection pressure, controlled by fertility, relatively low. 
For a low level of selection pressure we chose a fertility of 1.1, which for a constant 
population size, implies that only 10% of the offspring in each generation do not 
reproduce. For SE scaling parameters we chose 10 for the non-linked mutation 
pairs and 2 × 104 for the linked mutation pairs, or 2000 times the non-linked scaling 
factor β. These parameter choices are about 100 times the maximum  values we 
consider to be biologically realistic. What we found was that the effects on fitness 
after 2000 generations were too small to quantify, even though mean fitness due to 
normal mutation accumulation had decreased by 33%. Typically, we found that the 
mean number of accumulated mutations after 2000 generations was about 0.7% 
smaller with this level of SE relative to no SE. Despite the small effect on fitness, 
these values of 10 for β and 2 × 104 for α are likely still far higher than is realistic 
for most natural populations. Nevertheless, these experiments prompted us to 
explore what larger values for α and β were might reveal concerning SE behavior.

Let us consider cases with the same low selection intensity but with β = 300 and 
α = 6 × 105, both 30 times larger than before. Figure 1 displays the mutation 
 accumulation and the population fitness histories for the following four cases: (1) 
no SE effects, (2) SE effects from non-linked interactions only, (3) SE effects from 
both linked and non-linked interactions, and (4) SE effects from both linked and 
non-linked interactions, but with both scaling factors doubled.
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Fig. 1.  Mutation accumulation (A) and the population fitness histories (B) for modest selection 
pressure and extreme SE interactions for four cases: (1) no SE effects, (2) SE effects from non-
linked interactions only, (3) SE effects from both linked and non-linked interactions, and (4) SE 
effects from both linked and non-linked interactions, but with both scaling factors twice as large as 
in case (3). All cases apply  probability selection, perfect genotypic heritability, and a fertility of 1.1, 
which implies 10% of the offspring in each generation do not reproduce in the next. The scaling 
factor for non-linked SE interactions in cases (2) and (3) is 3 × 102 and for linked interactions in case 
(3) is 6 × 105
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Several features of these numerical experiments are readily apparent. First, the 
effects on mutation accumulation are relatively small given the large values of the 
SE scaling factors. With the mean mutation rate of 10 new mutations per offspring, 
if there were no selection, the average number of mutations per individual would 
be 20,000. The actual numbers of accumulated mutations per individual after 2000 
generations for the first three cases are 19405, 18807, and 18763, respectively. The 
average number of accumulated mutations for case (3) is only 642 (3%) fewer than 
the case with no SE included, despite the large SE scaling factors. Also noteworthy 
is the fact that case (4) undergoes mutational meltdown at generation 1766 due to 
the strong deleterious SE effect on fitness.

These experiments show that it is possible, at least numerically, to make the SE 
effect sufficiently strong to drive a population to extinction. However, the scaling 
factors required for this to take place within 2000 generations are extreme.

Extreme SE eff ects and moderate selecti on pressure

In our next set of experiments we increase the selection pressure to a moderately 
high level. Instead of a fertility of 1.1, we choose a fertility of 2.0. This means that 
twice as many offspring are produced in each generation than are allowed to repro-
duce in the succeeding generation. That is, the selection process excludes half the 
offspring in each generation from reproducing in the next. For SE scaling factors 
we use 105 for non-linked interactions and 2 × 108 for linked interactions, and then 
examine a case with both scaling factors increased. Figure 2 displays the mutation 
accumulation and the population fitness histories for the following cases: (1) no 
SE effects, (2) SE effects assuming all interactions are non-linked, (3) SE effects 
from both linked and non-linked interactions, and (4) SE effects from both linked 
and non-linked interactions, but with scaling factors five times larger. The mean 
numbers of accumulated mutations after 2000 generations for the first three cases 
are 19570, 16510, and 16110, respectively. Cases (4) underwent mutational melt-
down in generation 1960. We note that even with the SE effects exaggerated to this 
degree there is no hint that mutation accumulation can be halted, or even slowed 
to any significant degree, before mutational meltdown takes place.

Extremely exaggerated SE eff ects and extreme selecti on pressure

For this final set of cases we retain the fertility of 2.0, but instead of  probability 
selection, we apply truncation selection.  Truncation selection is artificial in that 
there is no randomness in the selection process. With a fertility of 2.0, each offspring 
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Fig. 2.  Mutation accumulation (A) and the population fitness histories (B) for moderate selection 
pressure and extremely exaggerated SE interactions for cases: (1) no SE effects, (2) SE effects assum-
ing all interactions are non-linked, (3) SE effects from both linked and non-linked interactions, and 
(4) SE effects from both linked and non-linked interactions, but with scaling factors 5 times larger. 
All cases apply probability selection, perfect genotypic heritability, and a fertility of 2.0, which 
implies half the offspring in each generation do not reproduce in the next. The scaling factor is 105 
for non-linked SE interactions in cases (2) and (3) and 2 × 108 for linked interactions in case (3).
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with fitness below the median value is selected away and does not reproduce in the 
succeeding generation, while each offspring with fitness above the median value 
does survive to reproduce. For SE scaling factors we use 5 × 105 for non-linked 
interactions and 109 for linked interactions, the same values that gave meltdown in 
the previous set of experiments. We also include a non-linked case with a scaling 
factor three times as large. Figure 3 displays the mutation accumulation and the 
population fitness histories for the following four cases: (1) no SE effects, (2) SE 
effects assuming all interactions are non-linked, (3) SE effects from both linked and 
non-linked interactions, and (4) SE effects assuming all interactions are non-linked 
with a scaling factor of 1.5 × 106. It is noteworthy that with truncation selection, 
fewer mutations accumulate for case (1) with no SE effects than for cases (2), (3), 
and (4) which include significant SE effects. The mean numbers of accumulated 
mutations after 2000 generations are 14388, 15480, 14510, and 14700 for these 
cases, respectively. In other words, instead of reducing mutation accumulation, SE 
actually increases the rate of mutation accumulation slightly in these experiments. 
This is almost certainly because SE increases the fitness variance considerably 
which makes the selection process less efficient. Also to be observed is that case 
(4) is in the process of  mutational meltdown at generation 2000. These cases show 
 persuasively that even with SE greatly exaggerated and selection efficiency also 
greatly exaggerated, SE fails to halt, or even slow, the accumulation of deleterious 
mutations.

Discussion

The importance of genic interacti ons

Like the letters in a text, nucleotides have meaning only within the context of other 
nucleotides, which is to say that nucleotides interact extensively. Such interaction 
between symbolic characters is the underlying basis for all language and all infor-
mation systems. Functional genetic information is the basis of life and results from 
extensive networks of extremely specific, consistently positive, nucleotide-nucle-
otide interactions. Most mutations are deleterious because most represent disrup-
tions of these networks of highly optimized sets of positive nucleotide-nucleotide 
interactions.

A given mutation’s net biological effect arises from all of its actual interactions 
with other nucleotides within the  genome. Each new mutation may have several or 
perhaps several dozen very specific significant interactions. A beneficial mutation 
is beneficial because it involves more positive total interactive effects than nega-
tive interactive effects. Most mutations are deleterious because, again, they disrupt 
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Fig. 3.  Mutation accumulation (A) and the population fitness histories (B) for extremely exagger-
ated selection pressure and extremely exaggerated SE interactions for four cases: (1) no SE effects, 
(2) SE effects assuming all interactions are non-linked, (3) SE effects from both linked and non-
linked interactions, and (4) SE effects assuming all interactions are non-linked, but with a scaling 
factor three times as large. All cases apply  truncation selection, perfect genotypic heritability, and a 
fertility of 2.0, which implies 50% of the offspring in each generation do not reproduce in the next. 
The scaling factor for non-linked SE interactions for cases (2) and (3) is 5 × 105, for linked interac-
tions in case (3) is 1 × 109, and for non-linked interactions in case (4) is 1.5 × 106.

b1567_Sec2.5.indd   327b1567_Sec2.5.indd   327 5/8/2013   2:42:40 PM5/8/2013   2:42:40 PM

 B
io

lo
gi

ca
l I

nf
or

m
at

io
n 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
2.

4.
17

.1
40

 o
n 

08
/1

1/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



328 J. R. Baumgardner, W. H. Brewer and J. C. Sanford 

b1567  Biological Information — New Perspectives b1567_Sec2.5 8 May 2013 2:51 PM

or degrade existing highly specific positive nucleotide interactions that represent 
functional genetic specifications.

It is impossible to model all the possible interactions between nucleotides in a 
large genome. For example, the haploid genome of man has roughly 3 billion 
nucleotides. The number of potential pair-wise nucleotide interactions therefore is 
roughly 5 × 1018. This is still an underestimate, because we are diploid and hete-
rozygous at millions of sites, making the potential number of interactions even 
larger. Like widely spaced pairs of letters in a large book, the vast majority of 
nucleotide-nucleotide interactions surely have negligible effects. When there is a 
meaningful interaction, the biological effect can range from strongly negative to 
strongly positive. However, the vast majority of interactions that are not entirely 
neutral are surely still extremely subtle and nearly-neutral. We note that nearly-
neutral interactions are beyond measurement, are not suited to empirical analysis, 
and therefore can be modeled only in a generic way.

The signifi cance of SE

The primary reason that SE is of interest today is because it has been invoked as 
a mechanism that might possibly be able to halt mutation accumulation. This SE 
hypothesis, as we refer to it, has been embraced and advocated by several popula-
tion geneticists, but it has never been demonstrated to work. In fact, the hypothesis 
is notably counterintuitive. In a non-selective setting, SE logically must accelerate 
genetic degeneration and lessen the time to extinction. This is because as deleteri-
ous mutations accumulate, SE guarantees that, on average, each new mutation 
must have a greater and greater deleterious effect.

However, it has been argued that, within a strongly selective setting, mutation 
accumulation might be halted if the SE effects were acute enough to activate what 
we refer to as the  mutation-count mechanism (MCM). This mechanism requires 
selection to be strongly directed against those individuals within a population that 
have a higher mutation count than average. This conceivably might allow elimina-
tion of more mutations at less selective cost (that is, fewer individuals need be 
selected away). In a companion paper, we show that the MCM mechanism can 
operate only under certain highly artificial circumstances [9]. This special mecha-
nism appears to be feasible only in sexually reproducing populations in which the 
range of mutational fitness effect variation is extremely narrow, the  environmental 
variance is small, and  truncation selection prevails. Arguably, these conditions 
never occur together in the natural world.

However, the MCM still might conceivably be activated, it has been argued, if 
extensive, strong, generic, non-linked SE interactions occur. Under such 
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circumstances, fitness reduction from SE interactions might increase at an ever 
accelerating rate (while mutation count is increasing at a more or less constant 
rate), such that a mutation-count threshold arises. Above such a threshold, addi-
tional mutations might result in catastrophic fitness loss, triggering very strong 
truncation selection. If the SE effect were strong enough, mutation count might 
conceivably overwhelm the factors which otherwise would dominate (such as 
mutation rate, the mutation effect values themselves and their distribution, and 
environmental variance). At such a mutation-count threshold, truncation selection 
based primarily on mutation count might then potentially halt mutation accumula-
tion and stop mutational degeneration completely. At the point of such a threshold, 
a newly arising small-effect mutation might have the same impact as a nearly 
lethal mutation (because both affect mutation count the same), even though in 
realty they might differ in their biological effects by orders of magnitude.

Is the SE mechanism described above even technically feasible? This study was 
designed to answer that question. If the SE effects are not actually strong enough 
to create the required level of truncation selection based on mutation count, then 
the very SE interactions conjectured to save the  genome will instead more rapidly 
destroy it.

Testi ng the limits of SE

To probe the limits of how well the SE mechanism might conceivably work, we 
performed numerical experiments granting the SE hypothesis every possible 
advantage: 1) we allowed all mutation-mutation interactions to be SE interactions; 
2) we included no interactions that were multiplicative or involved antagonistic or 
general epistasis; 3) we neglected the effects of  linkage entirely; 4) we applied 
perfect  truncation selection and perfect heritability; and 5) we allowed SE effects 
to assume extreme values, far beyond what is biologically realistic. Cases (2) and 
(4) of Figure 3 incorporate all of these generous concessions.

Are these concessions reasonable? No. It is not reasonable, for example, to 
make all mutations interact synergistically, because the vast majority of muta-
tions should not interact with each other at all. In the big picture, non-interaction 
should be the norm, and simple additivity should describe how most mutations 
combine. Moreover, interactions that behave in a multiplicative manner as well 
as antagonistic epistatic interactions contribute to fitness in a manner opposite to 
that of SE. Further, it is not reasonable to neglect mutational  linkage. Almost all 
SE interactions should be between mutation pairs that are tightly linked. Zero 
linkage is therefore a major concession benefiting the SE hypothesis. We make 
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this concession simply because mutational linkage clearly neutralizes the  muta-
tion count mechanism [9]. When two mutations are linked, not only are the muta-
tions inherited together but their SE effects are as well, and this results inexorably 
in accelerated fitness decline. Moreover, it is not reasonable to assume zero 
environmental noise (a heritability of 1) or to employ strict truncation selection. 
We make all these concessions only because in another paper we have already 
shown that the MCM is largely negated by low fitness heritability and  probability 
selection [9].

Finally, although there should be a rational limit for how large each specific SE 
penalty should be relative to the basal, non-epistatic mutational fitness effect (as 
measured for a given mutation in an otherwise non-mutant  genome), we allowed 
the amplitudes of the SE effects to become extreme. We showed earlier that the 
total SE fitness contribution in Mendel for non-linked mutations, assuming no 
linkage at all, is approximated by the expression 0.125β(1-F)2, where F is the 
genotypic fitness. We applied this formula to show that, if the accumulated muta-
tions in a given individual reduce its fitness to 0.5 without SE, then with SE and a 
value for β of 16, the fitness of this individual drops to zero. We argued that a 
biologically realistic value for β should plausibly be on the order of 0.1 or less. In 
our numerical experiments we see a discernible SE effect only when we use 
 unrealistically exaggerated non-linked SE scaling (300 and 600 in Figure 1, 105 
and 5 × 105 in Figure 2, and 5 × 105 and 1.5 × 106 in Figure 3). In these experi-
ments the scaling factor values for the SE contribution were orders of magnitude 
beyond a plausible upper limit. This represents a major concession to the SE 
model, yet, instead of activating a strong MCM, the large scaling values led 
 consistently to accelerated genetic decline.

Cases (2) and (4) of Figure 3 incorporate all of these features that strongly favor 
the SE hypothesis. What we observe is that even with all these highly unrealistic 
concessions, the mutation count per individual actually increases slightly, rather 
than decreases, relative to the case of no SE. Even with exaggerated selection 
efficiency, both forms of SE cause starkly accelerated fitness decline relative to the 
default case of mutation non-interaction. We found that in order to see any note-
worthy SE effect at all, the SE scaling factors must be larger than anything that 
seems biologically reasonable. Even when we do this, we do not observe the 
effects which are so widely ascribed to the SE mechanism (halting of mutation 
accumulation and stabilization of fitness). Instead we see the opposite. If SE has 
any effect at all, it consistently makes genetic degeneration worse. The larger the 
SE effect, the more rapid is the degeneration. This agrees with the logical expecta-
tion of what should happen when there is the on-going accumulation of increas-
ingly severe mutational damage.
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Modeling SE realisti cally

To model SE realistically, the net SE effect must be only a slight deviation from 
the standard additive model, most SE interactions must arise from mutations 
within the same linkage block, individual SE effects must have reasonable limits, 
there must be small fitness heritability, and selection must be characterized 
 primarily by the probability model. These constraints all reflect biological reality 
as we understand it. Modeling SE in accord with any one of these five constraints 
negates the SE hypothesis. When we model SE under what we believe are the most 
realistic conditions, we consistently see no meaningful SE effect on either muta-
tion accumulation or fitness decline. We feel this reflects biological reality; that is, 
generic SE effects are necessarily small, are strongly overshadowed by much more 
significant biological phenomena, and do not affect mutation accumulation in any 
significant way.

Pros and cons of the SE hypothesis

It might be argued that logically there should always be some selection against 
high mutation count individuals, so this should help slow mutation accumulation. 
In particular, the SE mechanism should create an increased penalty against the 
high mutation count individuals, strengthening the potential MCM. The problem 
with this line of reasoning is that, while higher mutation count will have some 
correlation with lower fitness, this correlation under natural conditions will be 
extremely weak. The major reason for this weak correlation is the large variation 
in the magnitude of mutation fitness effects. Some mutations have substantial 
effects, but most have small to vanishingly small effects. Individuals in a popula-
tion with random mating should all have approximately the same number of muta-
tions, due to averaging. Moreover, most mutations are nearly neutral. The primary 
reason some individuals display reduced fitness relative to the others is due to only 
a few substantial mutations and not because of some small difference in total 
mutation count. Realistic  numerical simulation consistently confirms that this is 
true [this paper and 7–9].

Cases of genuine SE genetic interactions are well documented. Most involve 
the interactions of relatively large-impact mutations, usually within the same gene 
or same pathway and affecting a single trait. These specific examples of SE 
should not be interpreted to imply, however, that SE effects arise from interactions 
from every pair of mutations throughout the  genome. Naturally, high impact 
mutations can be expected to produce a few strong and measurable interactions, 
some of which will be synergistic. The interactions among such mutations, as 
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well as the mutations themselves, are then highly selectable. For a simple trait 
whose character is determined by only few genes, each gene is highly significant 
relative to that trait. In a sense the “genome” for that trait is small, which makes 
every mutation in that limited system potentially significant. Because the 
“genome” is small, the likelihood that two mutations within it will display an SE 
interaction is larger that it would be otherwise. However, in a large functional 
genome with billions of nucleotides, which encode for thousands of traits, the 
likelihood that mutations in distant parts of the genome will have significant 
mutual SE interaction is tiny.

Experimental evidence of generic genome-wide SE in living populations has 
been inconclusive [30, 31]. The inferred absolute amplitudes of generic SE effects 
are small. These studies on the extent of generic SE in natural populations in no 
way support a conclusion that the SE mechanism acts to slow genomic degenera-
tion. Our own analyses consistently show that regardless of the extent of generic 
SE in a genome, SE consistently accelerates degeneration and does almost nothing 
to slow mutation accumulation.

The SE hypothesis is that SE interactions cause  truncation selection at a critical 
threshold, such that any further mutation (even the lowest impact mutation) acts 
essentially as if it were lethal. If SE stabilizes genomes and stops genomic degen-
eration in this way, then constant and intense selection must operate just below 
that threshold, such that any additional mutations will be severely detrimental. 
This means that the population stabilizes just a few mutations short of disaster 
( mutational meltdown). Another way of saying this is that the population is stabi-
lized against mutational meltdown/extinction by maintaining itself on the verge of 
extinction. Ironically, in this state of extreme selective tension, an improvement in 
environmental conditions (e.g., good weather, fewer predators) could result in 
significantly relaxed selection, which could lead to mutation accumulation beyond 
the threshold, which could then lead to extinction in the more favorable environ-
ment. This seems more than counterintuitive. It is, in reality, entirely unreasonable. 
How could any population remain balanced on such a knife edge for millions, or 
even thousands, of generations?

Numerous mutation accumulation experiments have been performed involving a 
laboratory population of plants or animals placed in a state of relaxed selection for 
many generations. Such experiments cannot truly eliminate selection (there is 
always selection for embryo viability and fertility), but selection can be greatly 
reduced. Usually, the observed fitness decline is slow and gradual [32], consistent 
with very limited levels of SE. In the few cases where degeneration was more accel-
erated [27], it can readily be attributed to a few major interactions between a few 
high impact mutations (major mutations are naturally expected to have major 
interactions).
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Genetic bottlenecks, often invoked in evolutionary scenarios, result in greatly 
reduced selection (because genetic drift overrides selection when population size 
is small). This also ought to result in mutation accumulation past the critical SE 
threshold, causing  mutational meltdown and rapid extinction. Since such 
SE-induced meltdown is generally not thought to occur, this also seems to argue 
against the SE hypothesis.

Therefore, many lines of evidence, based upon both logic and biological data, 
argue strongly against the SE hypothesis. These evidences have now been vali-
dated by the  numerical simulations carried out in this study. Our findings are 
consistent with the findings of Butcher [19], but apply to sexual as well as asexual 
species. While any one of these individual lines of evidence by itself might be 
insufficient to discredit the SE hypothesis, taken together they constitute an over-
whelming case against the SE hypothesis, strong enough in our view to constitute 
falsification.

A very recent paper by Crow [33], forcefully argues against any significant role 
for epistasis in affecting selection efficiency. This would seem highly significant 
because the same author has for decades been a leading proponent for theoretical 
mechanisms that might resolve the mutational degeneration paradox, including 
the MCM and SE hypotheses. Crow now states, “My main objective here is to 
show that the breeders’ practice of ignoring epistasis in quantitative selection is 
fully justified…In general, the smaller the effects, the more nearly additive they 
are. Experimental evidence for this is abundant…Multiple factors with individu-
ally small effects acting in a near-additive manner seem to be the rule… although 
there may be large dominance and epistatic components, selection acts only on the 
additive variance…For these reasons, one would expect that epistatic variance 
would have only a small effect on predicting the progress of selection…Any 
attempt to include epistatic terms in prediction formulae is likely to do more harm 
than good.”

In summary, there appears to be neither theoretical nor observational support 
for the idea that a generic SE mechanism exists in nature capable of halting muta-
tion accumulation or of stabilizing natural populations against mutational melt-
down. Given that the SE hypothesis has so many glaring problems, one might ask 
how it ever became widely accepted. The SE hypothesis seems to have been pro-
posed solely as a possible means for dealing with one of the as yet unsolved dif-
ficulties for the classic neo-Darwinian model. It appears to have become widely 
accepted only because no alternative mechanism could be identified that might 
conceivably stop deleterious mutation accumulation. We suggest that until a more 
credible mechanism can be discovered for halting deleterious mutation accumula-
tion, the genetic degeneration problem should most honestly be described simply 
as a paradox that is yet to be explained.
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Conclusions

1. Theoretical considerations show that SE should not be able to stop mutation 
accumulation. It has already been shown in our companion paper that with 
any realistic distribution of mutational fitness effects, the  mutation count 
mechanism (MCM) does not operate and is of no avail in stopping deleteri-
ous mutation accumulation [9]. There is no theoretical basis for thinking that 
SE could stop mutation accumulation, even if it could activate the MCM 
effect. In this paper we show that for both linked and non-linked mutations, 
SE simply serves to amplify the fitness effect differences among mutations 
whenever the SE effect is directly related to the base, non-epistatic effect. In 
the case of linked mutations, the SE effects, like the linked mutations them-
selves, are inherited generation to generation, and therefore act simply as 
enhancements to the basal, non-epistatic mutational fitness effects. We show 
that the same is true of the non-linked SE interactions. Because of these 
enhancements to the basal mutation fitness effects, in both cases SE therefore 
logically can only serve to accelerate fitness decline and hasten  mutational 
meltdown.

2. Consistent with simple logic, this paper’s careful  numerical simulations sug-
gest that SE does nothing to halt mutation accumulation. In fact, even 
numerical experiments using  truncation selection and perfect genotypic her-
itability show SE slightly enhances mutation accumulation. To the extent that 
SE has any noteworthy effect at all, it consistently accelerates degeneration. 
When realistic levels of  linkage are included, this degeneration is accelerated 
even more.

3. If somehow these first two conclusions were not valid and the SE hypothesis 
were actually true, all species should mutate right up to the brink of their 
mutation-count threshold. Biological observations, however, do not support 
any type of mutation count threshold. In nature, if the SE hypothesis were 
true, any relaxation of selection pressure (a more favorable environment or a 
bottleneck episode) would be expected to cause rapid extinction. Likewise, lab 
mutation accumulation experiments, wherein selection is artificially relaxed, 
would be expected to result in rapid and catastrophic fitness meltdown. 
Neither result has ever been observed.

4. The SE hypothesis seems to have been proposed solely as a possible means 
for dealing with one of the as yet unsolved difficulties for the classic neo-
Darwinian model. It appears to have become widely accepted only because no 
alternative mechanism has yet been identified that might conceivably stop 
deleterious mutation accumulation. The genetic degeneration problem remains 
unresolved.
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Addendum – Since the finalization of this chapter, a significant new paper has been 
published. See: Sanford, J. & Nelson, C. (2012). The Next Step in Understanding 
Population Dynamics: Comprehensive Numerical Simulation, Studies in Population 
Genetics, in: M. Carmen Fusté (Ed.), ISBN: 978-953-51-0588-6, InTech, Available 
from: http://www.intechopen.com/books/studies-in-population-genetics/the-next-
step-in-understanding-population-dynamics-comprehensive-numerical-simulation .
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Abstract

Computational  evolution experiments using the population genetics simulation  Mendel’s Accountant 
have suggested that deleterious mutation accumulation may pose a threat to the long-term survival 
of many biological species. By contrast, experiments using the program  Avida have suggested that 
 purifying selection is extremely effective and that novel genetic information can arise via selection 
for high-impact beneficial mutations. The present study shows that these approaches yield seemingly 
contradictory results only because of disparate parameter settings. Both agree when similar settings 
are used, and both reveal a net loss of genetic information under biologically relevant conditions. 
Further, both approaches establish the existence of three potentially prohibitive barriers to the evolu-
tion of novel genetic information: (1) the selection threshold and resulting genetic decay; (2) the 
waiting time to beneficial mutation; and (3) the pressure of reductive evolution, i.e., the selective 
pressure to shrink the  genome and disable unused functions. The adequacy of mutation and  natural 
selection for producing and sustaining novel genetic information cannot be properly assessed with-
out a careful study of these issues.

Key words: Avida, digital organisms, experimental evolution, genetic entropy, irreducible 
 complexity, Mendel’s Accountant, reductive evolution, selection threshold, waiting time to beneficial 
mutation

Introduction

Mathematical models and  numerical simulation have long suggested that the accu-
mulation of slightly deleterious mutations may pose a threat to the long-term 
survival of many biological species, including humans [1–4]. Computational evo-
lution experiments with the forward-time population genetics simulation  Mendel’s 
Accountant have predicted a substantial fitness decline in the human species under 
biologically relevant conditions [5]. Moreover, experiments with biological 
 organisms have raised similar concerns, revealing that the majority of adaptive 
mutations cause a loss of functionality [6–10]. Lethal mutagenesis may also play 
a key role in  pathogen attenuation [11–13]. Recently, however, experiments using 
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the digital genetics software Avida have suggested that  purifying selection can be 
extremely effective and that novel genetic information can arise via selection for 
high-impact beneficial mutations [14].  Avida researchers have claimed a high 
degree of biological relevance for the program, using it to address numerous 
 biological questions [15,16].

In this study, we investigate why Avida and  Mendel’s Accountant yield seem-
ingly contradictory results. We find that most discrepancies are due to differences 
in default settings. Mendel’s default settings implement values plausible for 
 modeling the human species, while Avida’s default settings have virtually no 
 parallel in biological systems. Additionally, Avida introduces several un-biological 
mechanisms both for facilitating the development of novel genetic information 
and for preventing its loss. The most notable deviations from biological reality 
include the distribution of mutational fitness effects, the waiting time to high-
impact beneficial mutation, and the selective neutrality of inert genomic material. 
When used with more realistic settings, Avida’s results agree with other studies 
that reveal a net loss of genetic information under biologically realistic conditions. 
The results reported here suggest that three substantial barriers may prevent the 
evolution of genetic information by mutation and natural selection in biological 
organisms: (1) the selection threshold; (2) the waiting time to beneficial mutation; 
and (3) reductive evolution. Implications for theory and medicine are discussed.

Mendel’s Accountant

Detailed descriptions of Mendel’s Accountant (hereafter Mendel) are available 
elsewhere [17,18], and default settings are described in the Methods. Briefly, 
Mendel constitutes a  numerical simulation that tracks mutations as they arise 
within the members of a model population. The user specifies parameters such as 
population size,  genome size, mutation rate, and the proportion of beneficial muta-
tions. Mutational fitness effects are represented by a  Weibull distribution, with 
both deleterious and beneficial effects having lower and upper bounds. The largest 
deleterious fitness effect is –1.0 (lethal in most contexts), while the smallest effect 
is defined as the reciprocal of the functional genome size (–1/Ge), following the 
precedent of Kondrashov [2]. Beneficial mutations are limited by the same lower 
bound (1/Ge) and a user-defined upper bound (0.001 by default). Each mutation 
has its own fitness effect as well as its own location within an individual’s genome, 
allowing the investigator to model  linkage and recombination. To save computa-
tional resources, neutral mutations are not normally tracked. Instead, the mutation 
rate is scaled to exclude neutral mutations, such that the mutation rate defined by 
the user is the rate per effective genome, i.e., the rate of mutations affecting fitness. 
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The program periodically reports various statistics during an experiment, includ-
ing the population’s average fitness and the average number of deleterious and 
beneficial mutations per organism. The program is open source and is available 
online [19].

Avida

 Avida differs from Mendel in that it represents genomes directly using machine 
code instructions, and generally requires more computer science knowledge for 
use and interpretation of results. Twenty-six genomic instructions are defined in 
the software, and each performs a specific computational task (e.g., adding two 
numbers). Individual genomes, called digital organisms, consist of about 100 
instructions and undergo random mutation at a user-defined rate. Mutations may 
substitute, insert, or delete instructions at random. The Avidian organisms are 
themselves housed on a two dimensional grid. Replication is asexual, with 
 daughter cells randomly replacing one of the eight surrounding neighbors. 
Because of this, replication rate determines fitness in Avida; any changes that 
allow an organism to copy its  genome and replicate faster will allow it to replace 
other organisms, and its frequency in the population will increase.

Each organism in Avida has an associated merit value that determines its 
 relative replication rate. This value reflects both genome size and the ability to 
 perform one of nine computational functions (logic operations). Making merit 
proportional to genome size implements a scheme called size neutrality in which 
larger genomes are artificially given extra computational time. This removes the 
selective pressure to shrink genomes, making organisms with identical phenotypes 
but different genome sizes equivalent in fitness. Because of this, acquiring merit 
bonuses by performing any of the nine logic operations is the primary means by 
which organisms increase their replication rate in Avida. These functions arise 
when random mutations produce particular combinations of instructions that 
cause the functions to be executed. For example, the simplest logic operations, 
NAND and NOT, can occur when the instruction NAND arises in the correct com-
bination with input-output and labeling instructions.

Considering its frequent application to biological questions, Avida’s default 
range of beneficial mutational fitness effects is curiously high. The two simplest 
operations have a multiplicative merit bonus of 2, doubling an organism’s fitness. 
Bonuses increase exponentially with the complexity of a function, and EQU (the 
most complex function in Avida) multiplies fitness by 32 (Table 1). For purposes 
of biological comparison, relative fitness may be defined as w = 1 + s, where s is 
the mutational fitness effect and w is the relative fitness of an organism expressing 
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a particular function as compared to its function-free ancestor. Mutational fitness 
effects therefore range from 1.0 to 31.0 under Avida’s default settings. The 
 program is available online [20], and more detailed descriptions of the software 
are available elsewhere [21–23].

A previous study [24] has demonstrated that seven of the nine logic operations 
arise by mutation alone in  Avida, without selection, reflecting their informational 
simplicity within the software environment. Under default settings lasting about 
10,000 generations, an average of 8.6 (± 0.7) such functions successfully evolve 
(i.e., rise above a frequency of 50%), increasing fitness by an average of 
20,000,000 fold. Increases of this magnitude are enabled by the large multiplica-
tive fitness bonuses assigned to the logic operations (22 × 42 × 82 × 162 × 32 = 
33,554,432; Table 1). Fitness increases observed in biological evolution experi-
ments are negligible by comparison; e.g., in experiments with E. coli, fitness 
increased by only 75% after 20,000 generations [6]. Interestingly, the Avidian 
logic functions are prevented from reaching fixation by the relatively high 
 mutation rate (approximately 0.85 mutations per genome per generation). Fitness 
eventually levels off, as only nine functions are available.

Although Avida’s default mutational fitness effects range from 1.0 to 31.0, 
the user may specify other values. Using alternative values ranging from 0 to 
1.0, Nelson and Sanford [24] used an empirical approach to demonstrate that 
Avidian populations experience a selection threshold, or a critical fitness effect 

Logic Operation Computation
Number of NAND 
Operations Needed (n)

Default Multiplicative 
Bonus (2n)

Default Fitness 
Effect (w – 1)

NOT ~A; ~B 1 2 1.0

NAND ~(A and B) 1 2 1.0

AND A and B 2 4 3.0

ORNOT (A or ~B); 2 4 3.0

(~A or B)

OR A or B 3 8 7.0

ANDNOT (A and ~B); 3 8 7.0

(~A and B)

NOR ~A and ~B 4 16 15.0

XOR (A and ~B) or
(~A and B)

4 16 15.0

EQU (XNOR) (A and B) or

(~A and ~B) 5 32 31.0

Table 1.  Default fitness bonuses for performing nine logic operations in Avida. Adapted from 
Lenski et al. [14].
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below which drift dominates the behavior of a mutation. About half of the 
 functions evolve (rise above a frequency of 50%) with fitness effects of approxi-
mately 0.2, the empirically determined threshold value. With fitness effects of 
≤ 0.075, no new functions evolve, and those that have previously evolved break 
down.

Selecti on threshold and geneti c entropy

Muller [25] was one of the first to allude to a selection threshold, writing in 1964 
that “There comes a level of advantage… that is too small to be effectively seized 
upon by selection.” Population size is the most studied factor affecting the selec-
tion threshold [26], and its role is expressed in Kimura’s [27] inequality, |s| < 1/
(2Ne). This states that a mutation’s fate will be dominated by random genetic drift 
if the absolute value of its fitness effect (s) is less than the reciprocal of twice the 
effective population size (Ne). However, many other factors influence the efficacy 
of selection, including developmental canalization and  environmental effects. Any 
factor that influences reproduction in a way that is independent of the genotype 
will raise the threshold, causing more mutations to behave as if they are neutral. 
The point is well summarized by Eyre-Walker and Keightley:

… it seems unlikely that any mutation is truly neutral in the sense that it has no 

effect on fitness. All mutations must have some effect, even if that effect is 

 vanishingly small. However, there is a class of mutations that we can term effec-

tively neutral… As such, the definition of neutrality is operational rather than 

functional; it depends on whether natural selection is effective on the mutation in 

the population or the genomic context in which it segregates, not solely on the 

effect of the mutation on fitness [28].

Nei [29] has pointed out that  natural selection operates as the result of the 
 production of different genotypes in a population, and is therefore not the fun-
damental cause of  evolution. Selection can only alter the survival of variation 
that has already arisen in nature. As a result, net fitness can decrease even when 
natural selection is successful. ReMine [30] makes this point clear by using the 
 analogy of soldiers marching uphill on a descending conveyor belt. The  conveyor 
belt  represents the load of deleterious mutations that consistently decreases 
 fitness. The soldiers near the bottom are less fit, and tend to be eliminated as they 
fall off the lower edge (representing natural selection). Those that survive may 
replicate at a certain rate, and take a step upward each time a beneficial mutation 
occurs. This interplay is known as the mutation-selection balance [31]. If the 
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rate of beneficial mutations (rare steps upward) is insufficient to counteract the 
load of deleterious mutations (common steps downward), natural selection may 
work very effectively but concurrently be unable to prevent net information loss 
and eventual extinction. In such a situation, the entire population eventually 
slides off the  conveyor belt, experiencing error catastrophe or  mutational 
meltdown.

It is obvious that the potential lethality of deleterious mutational load is magni-
fied when selection is less effective. Because the majority of mutations are delete-
rious [28], random genetic drift imposes a high degree of directionality on 
evolution by favoring the fixation of mutations that decrease fitness [32]. These 
issues have caused concern about the long-term survival of numerous species, 
including humans [4], inspiring titles like “Contamination of the genome by very 
slightly deleterious mutations: why have we not died 100 times over?” [2]. No 
compelling solutions to this paradox have yet emerged, though many possibilities 
have been proposed [2,3] (see Discussion).

These considerations lead to the realization that, especially in species with large 
genomes, it is possible that mutation rates are so high and deleterious mutations 
so common that genetic information cannot be maintained. Sanford [33] has intro-
duced the term  genetic entropy to describe the deterministic deterioration of 
genetic information resulting from ineffective purifying selection. The aforemen-
tioned experiments with  Avida have demonstrated genetic entropy, providing 
empirical evidence that selection thresholds exist, and showing that ineffective 
selection may pose a substantial barrier to the evolutionary origin and  maintenance 
of complexity [24]. Experiments using Mendel have provided further  evidence of 
a selection threshold, and have explored the evolutionary fate of both beneficial 
and deleterious mutations [5,34–36].

The present study explores potential barriers to the progressive  evolution of 
novel genetic information by pursuing several lines of experimentation with 
Mendel and  Avida. First, Mendel is used to replicate results obtained under 
Avida’s default settings. This demonstrates Mendel’s versatility and reveals the 
parameters that are necessary to obtain results typical of an Avida experiment. 
Two additional sets of Mendel experiments are performed, one using default set-
tings, and another using settings more conducive to the occurrence of high-impact 
 beneficial mutations. Next, Avida is used to pursue two additional questions. 
First, functional precursors of the EQU operation are assigned neutral fitness 
effects in order to explore the evolutionary origin of complexity when beneficial 
mutations are not readily available. Second, various mechanisms preventing 
reductive   evolution (adaptive loss of genetic material and functionality) are disa-
bled and the evolutionary consequences observed.

b1567_Sec2.6.indd   343b1567_Sec2.6.indd   343 5/8/2013   2:42:55 PM5/8/2013   2:42:55 PM

 B
io

lo
gi

ca
l I

nf
or

m
at

io
n 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
2.

4.
17

.1
40

 o
n 

08
/1

1/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



344 C. W. Nelson and J. C. Sanford 

b1567  Biological Information — New Perspectives b1567_Sec2.6 8 May 2013 2:51 PM

Methods

Experiments using Mendel’s Accountant

All Mendel experiments used version 1.8.5. Random number seeds were chosen 
as integer values from 1 to 1,000. Experiments were performed using settings that: 
(1) approximate Avida’s default settings, (2) employ Mendel’s default  settings, 
and (3) use Mendel settings more conducive to the occurrence of  high-impact 
beneficial mutations. A full list of experimental settings appears in Table 2.

First, ten Mendel experiments were performed to approximate Avida’s default 
results. The most notable changes to Mendel’s default settings were a reduced 
genomic mutation rate of 0.01 (reflecting the size and selective neutrality of much 
of the ancestral Avidian  genome), a proportion of 0.000023 mutations being ben-
eficial, and uniform multiplicative beneficial fitness effects of 5.5. (Mendel does 
not lend itself to studying the large discrete fitness effects implemented in Avida, 
so uniform fitness effects were used.)

Next, ten experiments were performed under Mendel’s default settings. 
Following this, twenty experiments were performed under settings more conducive 
to the occurrence and selection of high-impact beneficial mutations. The fraction 
of beneficial mutations was increased to 0.001, the maximum beneficial fitness 
effect increased to 0.5, heritability increased to 0.5, and experiment length 
increased to 1,000 generations.

Experiments using Avida

All  Avida experiments used version 2.8.1. Random number seeds were chosen ran-
domly as an integer value from 1 to 1,000,000,000. Two sets of experiments were 
performed, one in which various precursor functions were assigned neutral fitness 
bonuses, and one in which mechanisms preventing  genome shrinkage were disabled.

For experiments in which functions were assigned neutral fitness bonuses, the 
number of neutral functions varied from zero to nine, with zero corresponding to 
Avida’s default settings and nine corresponding to all functions (including EQU) 
having no fitness effect. Two sets of 20 replicates were performed, one in which 
functions were made neutral from simple-to-complex (beginning with NOT), and 
one in which functions were made neutral from complex-to-simple (beginning with 
XOR). Each replicate therefore consisted of 10 experiments, one for each combina-
tion of neutral functions. In all instances, EQU was the last function made neutral 
(all nine neutral functions). Default fitness bonuses were maintained for advanta-
geous functions, and functions were made neutral by defining multiplicative 
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Table 2.  Parameter settings used in experiments with  Mendel’s Accountant. A dash (−) indicates 

the use of default values.

Parameter 
Category Parameter

Mendel Default 
Values (Expt 1)

Avida 
Approximation 
Values (Expt 2)

Altered 
Mutation 

Values (Expt 3)

Basic New mutations per offspring 10 0.01 -
Fraction of mutations 

beneficial
1.0 × 10–5 2.3 × 10–5 1.0 × 10–3

Offspring per female 6 4 -

Population size (per tribe) 1000 3600 -

Generations 500 10000 1000

Mutation Functional genome size 3.0 × 109 100 -
Fraction of mutations 

 having a large effect
0.001 Not applicable -

Minimum deleterious 
mutation effect 
 considered large

0.1 Not applicable -

Maximum beneficial effect 
per mutation

0.001 Not applicable 0.5

Number of initial 
beneficial loci

0 - -

Fraction recessive 0 - -

Combine mutations in 
multiplicative manner

No Yes -

Fraction multiplicative effect Not applicable 1 -

Consider all mutations equal No Yes -

Equal effect for each 
 deleterious mutation

Not applicable 0.001 -

Equal effect for each 
 beneficial mutation

Not applicable 5.5 -

Synergistic epistasis No - -

Allow back mutations No - -

Selection Random death 0 0.1 -
Heritability 0.2 1 0.5

Non-scaling noise 0 -

Fertility declining with 
fitness

Yes No -

Selection scheme Unrestricted 
probability 
selection

- -

(Continued)
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Population Clonal reproduction No Yes -
Haploid No Yes -

Fraction self fertilization 0 - -

Initial heterozygous alleles No - -

Dynamic linkage Yes - -

Number of chromosome 
pairs

23 - -

Number of linkage subunits 989 - -

Dynamic population size No - -

Population substructure No - -

Bottleneck No - -

Computation Tracking threshold 1.0 × 10–5 - -
Parallel processing No - -

Queuing system PBS - -

Simulation engine Fortran - -

Table 2. (Continued)

bonuses of 1.0 (fitness effect of 0) in the environment.cfg file (type=mult, 
value=1.0).

To examine the role of genome shrinkage in evolution, two sets of 30 replicates 
were performed, one each for genome sizes of 50 and 100. The default genome 
contained in default-classic.org was used for size 100, and genomes of size 50 
were constructed by removing 50 of the unnecessary NOP-C instructions from the 
default genome. For each replicate, three alternative scenarios were compared: 
(1) size neutrality on (default; SNON); (2) size neutrality off (SNOFF); and (3) size 
neutrality off with mutations to the H-COPY instruction disabled (SNOFF NHC). 
To disable size neutrality, the avida.cfg file was altered to make base merit constant 
(BASE_MERIT_METHOD 0). To disable mutations to H-COPY, the instset-clas-
sic.cfg file was altered (h-copy 0). Mutations substituting the H-COPY instruction 
into the Avidian replication loop allow a doubling of the replication rate, and it was 
found that this process can circumvent the pressure to reduce genome size.

Results

Experiments using  Mendel’s Accountant

Under Mendel’s default settings (Table 2), end-of-experiment fitness declined to 
an average of 0.76 (± 0.01) after 500 generations. Populations contained an 
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average of 4,906.1 (± 34.3) deleterious mutations and 0.03 (± 0.04) beneficial 
mutations per genome. Figure 1(A) displays the fitness trajectory of a case study 
population under these conditions.

Under settings designed to approximate results obtained under Avida’s default 
settings lasting 10,000 generations, fitness increased to an average of 35,730,000 
(ranging up to 126,900,000) relative to the ancestral population. These results 
matched  Avida very well, which produces an average fitness increase of approxi-
mately 19,749,130. Populations contained an average of 62.7 (± 5.2) deleterious 
mutations and 8.8 (± 0.9) beneficial mutations per  genome. Figure 1(B) displays 
the fitness trajectory of a case study population under these conditions.

To explore  evolution under conditions similar to the default settings but more 
favorable to beneficial mutation, the proportion of beneficial mutations was 
increased to 0.001, with a maximum effect of 0.5, heritability was increased to 0.5, 
and experiment length was increased to 1,000 generations. Under these condi-
tions, end-of-experiment fitness decreased to an average of 0.8 (± 0.1), with an 
average of 9,739.3 (± 50.2) deleterious mutations and 14.8 (± 3.2) beneficial muta-
tions per genome. Although no end-of-experiment fitnesses were above the ances-
tral fitness of 1.0, fitness did rise above 1.0 during the course of three (15%) of 
these experiments, with a maximum of 1.01. One of these cases is shown in Figure 
1(C). Here, a high-impact beneficial mutation (fitness effect of approximately 0.2) 
occurred around generation 270 and rapidly moved to fixation. No other mutations 
(beneficial or deleterious) reached fixation over the 1,000 generations of this 
experiment. End-of-experiment fitness was 0.85.

Experiments using Avida

Experiments were conducted to determine how many functional precursors must 
be rewarded to enable the  evolution of EQU in Avida. Results are summarized in 
Figure 2. EQU never evolved when seven or more precursor functions were 
 neutral. It also never evolved with six neutral precursors under the complex-to-
simple scenario, and evolved only once with six neutral functions under the sim-
ple-to-complex scenario. These findings expand the results of other studies, in 
which EQU never evolved when all simpler functions were neutral [14] and 
 certain combinations of neutral functions involving NOR and XOR were found to 
hinder the evolution of EQU [37]. The evolution of XOR and EQU therefore 
requires selection for functional precursors, and at least two precursors must be 
rewarded for EQU to evolve. EQU is more likely to evolve when relatively 
 complex operations are rewarded, because complex operations are less likely to 
arise without a selective advantage. Hitchhiking of neutral functions to high 
 frequencies (> 50%) was common in these experiments.
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Fig. 1.  Fitness trajectories of case study populations in  Mendel’s Accountant. Note that the axes 
differ. (A) Under Mendel’s default conditions, fitness decayed to an end-of-experiment value of 
0.76 as a result of the accumulation of approximately 4,897.2 deleterious mutations per individual. 
(B) Under conditions approximating Avida’s default settings, fitness leaped in stages to an end-of-
experiment value of 3,014,000 as a result of the spread of eight beneficial mutations with fitness 
effects of 5.5. Roughly 55.8 deleterious mutations were present per individual. Note that the y-axis 
is log base 10. (C) Under altered Mendel settings, fitness declined sharply, then leaped to 
1.01  following the introduction of a high-impact beneficial mutation (fitness effect of approxi-
mately 0.2) around generation 270. This offset the adverse effects of approximately 2,643.4 
 deleterious mutations that had accumulated in the individual in which it occurred. End-of-
experiment fitness was 0.85.

(A)

(B)

(C)
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 Avida experiments were also performed to examine the evolutionary conse-
quences of selection acting on  genome size (results not shown). Fewer functions 
evolved when size neutrality mechanisms were disabled, and this difference was 
more pronounced for organisms with smaller genomes. EQU evolved less often, 
and end-of-experiment fitnesses were lower for both genome sizes of 50 and 100. 
Though genome size tended to increase somewhat under default settings, this 
 pattern was reversed when size neutrality was not enforced. Therefore, size 
 neutrality artificially facilitates the  evolution of complexity in Avida, presumably 
by maintaining inert genomic code that can be used as raw material for  evolutionary 
innovation.

Discussion

Selecti on threshold and geneti c entropy

A previous study [24] demonstrated that a fitness effect selection threshold exists 
in  Avida. The selection threshold is defined as the mutational fitness effect at 

Fig. 2.  The effects of selectively neutral precursors on the evolution of EQU. EQU never evolved 
when seven or more functions were assigned neutral fitness bonuses.
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which natural selection and random genetic drift contribute equally to the fate of 
a mutation in the population. Practically, this is the fitness effect for which positive 
selection successfully captures half of the beneficial mutations that arise. In Avida, 
this occurs at a beneficial fitness effect of approximately 0.2 (of course, this is a 
lower estimate of the threshold value, as multiple mutations produce the same 
logic operations in each run). Moreover, zero new functions evolve when fitness 
effects are ≤ 0.075, and those that have previously evolved break down. Likewise, 
experiments with Mendel have estimated a selection threshold of approximately 
10–4 to 10–3 under conditions typical of mammalian populations [5,34].

The selection threshold can act as a barrier preventing the evolutionary origin 
and maintenance of novel adaptive genetic information. Unless selection is able to 
“see” the fitness effects of mutations, they will drift in the population as if neutral. 
Because the majority of mutations are deleterious, the suspension of selection for 
low-impact mutations strongly favors the fixation of mutations that decrease 
 fitness [32]. The net result is a phenomenon that Sanford [33] has termed  genetic 
entropy. When this occurs, purifying selection is unable to counteract the accumu-
lation of low-impact deleterious mutations. Even when rare beneficial mutations 
cause a selective sweep, they are linked to numerous deleterious mutations across 
many loci, such that the total number of functional loci decreases. Experiments 
with Mendel have confirmed that deleterious mutations accumulate in a linear 
fashion despite selection [5], consistent with biological studies (e.g., with E. coli 
[38]). It is worth emphasizing that the gradual fitness declines shown in Figures 
1(A) and 1(C) occur despite the concurrent action of reasonably strong selection; 
in these cases, selection is simply unable to counteract the net adverse effects of 
new mutations.

Genetic entropy is not merely a theoretical concern. Numerous analyses have 
confirmed that the accumulation of slightly deleterious mutations can cause 
gradual fitness loss leading to extinction in asexual species [12,25,39–42], and 
similar processes are relevant to sexual species [1,43], including humans [2–4,
44–47]. Lethal mutagenesis of pathogens, due to elevated mutation rates and 
 periodic bottlenecking upon infection, may also be applicable in novel medical 
approaches [11–13]. Novel means of genetic intervention to reduce mutation rates 
may be necessary to prevent the extinction of numerous species, though it is 
unclear whether this would be feasible.

High-impact beneficial mutations

The Mendel case study displayed in Figure 1(C) is an informative example of the 
effects of high-impact beneficial mutations. A single high-impact beneficial 
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mutation (fitness effect of approximately 0.2) occurred around generation 270, 
offsetting the effects of approximately 2,643 deleterious mutations in the indi-
vidual in which it arose. Beneficial mutations with large effects have certainly 
occurred in nature. For example, in the presence of an antibiotic, the fitness effect 
of any mutation conferring drug resistance is so large as to be mathematically 
undefined, as the ancestral fitness is rendered zero in that environment. Other 
examples of high-impact beneficial mutations have been reported in viruses in the 
presence of heat [48]. However, even though these mutations are beneficial in their 
respective environments, they work by damaging or eliminating genetic informa-
tion [8], not producing it (see below).

This phenomenon highlights one disadvantage of  Mendel’s Accountant, 
namely, that it treats  evolution merely as an accounting problem, in keeping with 
traditional population genetics. Evolution is seen as an exercise in fitness addition 
and subtraction, without any reference to the underlying genomic mechanisms or 
architecture. This favors progressive evolution, as it allows single beneficial 
 mutations of large effect to compensate for large numbers of deleterious  mutations. 
This phenomenon is made possible by the infinite allele model, and is precisely 
the process that Kimura invoked to explain the problem of very slightly deleterious 
mutation accumulation [27]. However, even though this model is clearly more 
conducive to progressive evolution, there are several reasons why it is not biologi-
cally realistic. Scenarios in which large numbers of deleterious mutations are 
 regularly offset by relatively few high-impact beneficial mutations lead inevitably 
to shrinkage of the functional genome. If such beneficial mutations are the sole 
source of progressive evolution, the functional genome must shrink each time 
evolution takes a step forward (i.e., each selective sweep). This type of change is 
not sustainable and cannot constitute the sole source of progressive evolution. (For 
this reason, deleterious and beneficial mutations have heretofore been studied 
separately with Mendel, with high-impact beneficial mutations being studied as a 
special case [34].) Instead, plausible scenarios of progressive adaptive evolution 
must allow the deterministic elimination of most deleterious mutations through 
purifying selection. Additionally, the gradual accumulation of beneficial muta-
tions through  natural selection must have the potential to build every complex 
biological feature requiring explanation. This process requires qualities of  linkage 
and functional integration that cannot be adequately represented with numerical 
simulation.

Distribution of mutational fitness effects

The mutational fitness effects implemented under Avida’s default settings 
(1.0 – 31.0) are extremely rare or nonexistent in the biological realm (but see Bull 
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et al. [48] on high-impact mutations in viruses). This renders published  Avida 
results irrelevant to the great majority of biological mutations. Some readers may 
object that, while Avida’s fitness effects are too large, those implemented in 
Mendel are too small. On the contrary, it is well established that (1) most muta-
tions are deleterious, and (2) most mutations have very slight effects [28]. For 
example, a recent study of nonessential ribosomal genes in Salmonella typhimu-
rium [49] examined a total of 126 single bp substitutions, revealing that 120 were 
weakly deleterious and 6 were neutral or nearly-neutral. Average deleterious 
selection coefficients were 0.0096 and 0.0131 for synonymous and nonsynony-
mous mutations, respectively. No significantly advantageous mutations were 
found, and no mutations caused a complete loss of function. In humans, most 
nonsynonymous mutations in protein coding regions have effects in the range of 
10–3 to 10–1 [28]. Moreover, mutations in functional regions of the  genome that are 
nonprotein-coding are likely to have even smaller effects. Viruses are somewhat 
exceptional for their high mutational sensitivity. Approximately 20 to 41% of viral 
mutations are lethal, while viable mutations have an average deleterious fitness 
effect of 0.10 to 0.13, and many mutations appear neutral [50,51]. However, viable 
mutations of small effect in viruses are still more abundant than those of large 
effect, and, as Lind et al. [49] have noted, it is possible that such experiments 
report large numbers of neutral mutations because of assays that lack sufficient 
sensitivity to detect low-impact mutations.

Junk DNA

A final concern is the existence of inert or “ junk” DNA, i.e., genomic material 
for which mutation does not affect functionality. It does seem possible that many 
genomic sites play functional roles that are (at least partially) independent of 
sequence. Avida accounts for this by specifying no-operation instructions for 
85% of the ancestral genome. Mendel also corrects for this possibility in two 
ways. First, Mendel models only the effective (functional) genome size, Ge, with 
10% as the default. Second, to account for truly neutral mutations (s = 0), only 
the genomic rate of mutations affecting fitness, not the total rate, is used in 
default settings. Neutral mutations are thus excluded from the mutation rate. 
Mendel therefore uses a human mutation rate of 10 per genome per generation, 
rather than the actual mutation rate of approximately 50 – 100 [2,4,52–54], and 
a genome size of 3.0 × 108 (rather than 3.0 × 109). This genome size limits the 
magnitude of  fitness effects to 1 / (3.0 × 108) = 3.33 × 10–9 and larger, allowing 
selection to act more effectively on mutations affecting fitness. These steps serve 
to account for neutral mutations and inert genomic material, to minimize the 
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required computational resources, and to focus the use of Mendel on the effective 
(functional) genome (though the ability to track neutral mutations is currently 
being implemented).

The above considerations grant the common assumption that approximately 
90% of the genome is indeed “junk.” However, this has been subject to challenge 
for some time [55]. Importantly, the term “ junk DNA” was first introduced by 
Ohno not as a result of experimentation, but rather as a theoretical necessity to 
avoid the evolutionary barrier of genetic entropy:

… there seems to be a strict upper limit for the number of gene loci which we can 

afford to keep in our genome. Consequently, only a fraction of our DNA appears 

to function as genes. … the moment we acquire 105 gene loci, the overall deleteri-

ous mutation rate per generation becomes 1.0 which appears to represent an 

unbearably heavy genetic load. … Even if allowance is made for the existence in 

multiplicates of certain genes, it is still concluded that, at the most, only 6% of 

our DNA base sequences is utilized as genes. … More than 90% degeneracy 

contained within our genome should be kept in mind when we consider evolu-

tional changes in genome sizes. … it is not likely that these sequences came into 

being as a result of positive selection. Our view is that they are the remains of 

nature’s experiments which failed [56].

This reasoning is common. For example, upon reporting a human mutation rate of 
64 mutations per generation, Drake et al. [52] note that:

It is hard to image [sic] that so many new deleterious mutations each generation 

is compatible with life, even with an efficient mechanism for mutation removal. 

Thus, the great majority of mutations in the noncoding DNA must be neutral.

Following the introduction of the junk DNA concept, many biologists quickly 
adopted the selfish DNA mechanism [57–59] to explain repetitive DNA [60], 
 suggesting that “The search for other explanations may prove, if not intellectually 
sterile, ultimately futile” [58]. Others resisted this line of reasoning and suggested 
that repetitive DNA may function in gene regulation [61,62].

A full discussion of the functionality of nonprotein-coding DNA is beyond the 
scope of this study. However, it is worth noting that junk DNA assumptions have 
proven to be largely incorrect, while hypotheses suggesting functionality are being 
increasingly vindicated. Mattick has remarked that the junk DNA dogma may “be 
a classic story of orthodoxy derailing objective analysis of the facts, in this case 
for a quarter of a century… [it] may well go down as one of the biggest mistakes 
in the history of molecular biology” (quoted in reference [63]). A wide range of 
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evidence now exists which suggests that nonprotein-coding DNA is indeed 
 functional. Nonprotein-coding DNA is often strongly conserved, and over 90% of 
the human genome is transcribed [28,64,65]. This pervasive transcription includes 
repetitive elements, which are generally expressed in a tissue-specific manner and 
perform regulatory roles [66]. Studies that dismiss these results [67] exclude 
nonprotein-coding RNAs as simply “transcriptional noise.” However, it is increas-
ingly clear that such RNAs constitute the majority of the transcriptome and arise 
abundantly from intergenic regions [68]. Moreover, it has been shown that even 
mutations at “silent” (synonymous) sites in protein-coding regions can affect 
 fitness and lead to disease [69,70]. Other evidence presented in this volume, such 
as that for genome-wide sequence patterns [71] and overlapping genomic codes 
[72], suggests functionality for a large fraction of the genome. If a large portion of 
nonprotein-coding DNA is indeed functional and sequence specificity is necessary 
for that functionality, then a very large class of mutations must exist in eukaryotes 
with very slight effects, smaller than the 10–3 – 10–1 range. These findings revive 
the concerns of Ohno [56] that humans may experience an “unbearably heavy 
genetic load” (i.e., genetic entropy), and suggest that human fitness may decline 
substantially in coming generations [4,45].

Several other mechanisms have been proposed to solve the paradox of how 
genomes could have survived extinction by  genetic entropy [2,3]. These include 
recombination, back mutation, mutation rate heterogeneity, and synergistic 
 epistasis between deleterious mutations. Such explanations are unlikely. Though 
theoretically possible, the perpetual back mutation or chance recombination of 
deleterious mutations into a single genotype represent sequences of events too rare 
to be plausible. As such, these mechanisms constitute appeals to rare chance 
events, not in keeping with the law-like operation of  natural selection. For 
 example, though uniform fitness effects and high heritability allow selection for 
mutation count under certain conditions [42], this effect disappears if there is a 
spectrum of fitness effects, and synergistic epistasis makes genomic decay more 
severe [35]. One other possibility is that the mutation rate has become elevated in 
the recent past, though this has not been studied in detail. Further work will be 
necessary before firm conclusions can be made about these issues and the severity 
of an impending fitness decline in the human species.

Irreducible complexity and the waiti ng ti me to benefi cial mutati on

All nine logic operations in  Avida require the coordination of multiple instructions. 
Yet it has been shown that seven of these operations (NOT, NAND, AND, ORNOT, 
OR, ANDNOT, and NOR) arise even without a selective advantage [24], indicating 
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that they are relatively simple in the  Avida environment. By contrast, XOR and 
EQU require selection for functional precursors. At least two precursors must be 
rewarded for EQU to evolve. EQU is more likely to evolve when more complex 
operations are rewarded, because complex operations occur at lower frequencies 
without a selective advantage. These results are relevant to a central issue in the 
study of progressive evolution, namely, the waiting time to beneficial mutation. 
This parameter determines the speed at which adaptation based on novel genetic 
information can progress. Indeed, billions of mutations have occurred in long-term 
 evolution experiments with E. coli, greatly exceeding the number of possible point 
mutations in its  genome of ~4.6 million bp, suggesting that all beneficial one-step 
mutations have likely been tested [73]. Many adaptive steps therefore seem to 
require multiple changes, yet the waiting time increases exponentially with each 
additional genomic site required to change [74]. If the waiting time becomes too 
great, a particular adaptive step can prevent an adaptive scenario. The Avida results 
reported here demonstrate that this evolutionary barrier can indeed be prohibitive.

Whether adaptive steps are generally difficult to achieve (i.e., whether they 
involve multiple genomic sites) is an empirical question that must be addressed by 
biological studies. On one hand, it has become clear from protein studies that the 
proportion of amino acid sequences that can be translated into functional proteins 
is very small. For proteins about 100 amino acids long, there are 20100 = 10130 
 possible sequences, yet only about 1 in 1074 [75] to 1 in 1063 [76] are capable of 
forming functional structures, and most enzymes in an organism such as E. coli 
are over 300 amino acids long [77]. By comparison, it has been estimated that only 
10120 to 10140 quantum particle interactions can have occurred in the entire universe 
since the Big Bang [78,79], and the probabilistic resources relevant to chemical 
reactions on Earth allow only about 1070 events [80]. As only a minute fraction of 
these events were amino acid interactions exploring protein space, it is clear that 
Earth has insufficient probabilistic resources for generating even one functional 
protein sequence by chance [77].

However, evolution need only wait for single adaptive steps, not entire proteins. 
Nevertheless, adaptive steps may require mutations at multiple genomic positions. 
The results reported in this study show that, given the probabilistic resources 
 available in roughly 10,000 generations of an Avida experiment (testing an aver-
age of 10.8 billion instructions [37]), the waiting time to beneficial mutation is 
prohibitive to the evolution of the EQU function when intermediate states are 
neutral. This is in agreement with results reported elsewhere [14,37]. Turning to 
biological organisms, we may ask if there are any complex features we should 
expect not to arise in Earth’s history because too many intermediates are neutral 
or maladaptive. Certainly, many complex biological features seem to require 
numerous steps (e.g., hundreds of nucleotides).
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Though it has been suggested that, counterintuitively, the waiting time to 
 beneficial mutation does not increase exponentially with the number of necessary 
sites involved [81], the results reported here suggest otherwise. Further, Axe [74] 
has provided a detailed mathematical treatment of this evolutionary barrier by 
modeling a bacterial population of 109 individuals experiencing 1000 generations 
each year for all of Earth’s history. Under these conditions, if intermediate states 
are neutral, adaptations involving at most six genomic sites can be expected to 
arise over the course of history; if intermediate states are maladaptive, adaptations 
involving at most two sites can be expected. (This hypothetical population strongly 
favors progressive evolution.) It follows that there is not enough time in Earth’s 
history for mutation to generate any adaptive step involving > 6 genomic sites in 
any species. Several studies have alluded to these limitations. Orr has noted that 
“ natural selection is essentially constrained to surveying those [sequences] that 
differ from wild-type by single-point mutations… Double mutations are too rare 
to be of much evolutionary significance” [82]. Similarly, the eventual stasis 
observed in long-term evolution experiments with E. coli has been explained thus: 
“Either further major improvements (with fitness increments of more than a few 
percent in this environment) do not exist or else they are evolutionarily  inaccessible 
(e.g., adaptations requiring multiple genetic changes in which the intermediate 
states are unfit)” [83].

These concerns are usually discussed in terms of the waiting time to beneficial 
mutation, and generate spirited discussion in the literature [74,81,84–88]. 
However, although such calculations are usually interpreted to support the 
Darwinian mechanism of  evolution, they are often incompatible with current 
 theory. For example, Durrett and Schmidt [88] have calculated that the waiting 
time for a beneficial step involving only two sites, assuming a neutral intermedi-
ate, is roughly 100 million years in humans—yet humans are thought to have 
diverged from chimpanzees within the past 10 million years. Moreover, the chal-
lenge of generating the necessary adaptive mutations is complemented by the 
subsequent challenge of their fixation. This issue, classically known as the cost of 
substitution, is discussed elsewhere by ReMine [30,89].

The waiting time to beneficial mutation may alternatively be framed in terms of 
irreducible complexity [87,90]. The concept of irreducible complexity has had a 
great impact on the biological community, with numerous studies attempting to 
dismiss its importance.  Avida has been used for this purpose [14–16,91]. Ironically, 
the program confirms that the problem is a reality by introducing what Dembski 
and Marks [92] have called stair step active information in order to evolve the 
EQU function, i.e., it provides information about the target (EQU) by rewarding 
the necessary building blocks, each of which can be feasibly constructed by muta-
tion alone. This provides an easily scalable fitness landscape, in which successive 
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steps are advantageous (Figure 3). Thus the EQU function can be built gradually 
from precursors of lower complexity, each of which is easy to generate through 
random mutation.

To justify the fitness scheme implemented in Avida, Lenski et al. have noted 
merely that this “is precisely what evolutionary theory requires” [14]. However, 
evidence suggests that paths to adaptive functions in biological organisms involve 
many genomic sites, with many of the intermediate states being maladaptive. For 
 example, experiments with TEM-1 β-lactamase have shown that, for homologues 
of <~66% identity, intermediate protein sequences are typically non-functional 
when hybridized by random composite. This is the case even when only a fraction 

Fig. 3.  Simple two-dimensional adaptive landscapes that become increasingly conducive to 
 progressive evolution. The initial state is represented by the white ball. Natural selection can only 
promote intermediate states that increase fitness (steps “upward”). Shown are landscapes in which: 
(A) intermediate states are maladaptive; (B) intermediates states are neutral; and (C) intermediate 
states are beneficial.
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of the total protein length is hybridized and sequences exhibit ~90% identity to 
wild type proteins [93]. These data suggest that contiguous stretches of co- 
optimized residues exist in biological proteins, and many intermediates between 
similar proteins may be nonfunctional. Moreover, most readily available adaptive 
changes are loss-of-function mutations [6,8,9]. These paths will be preferred by 
selection, as longer adaptive paths confer no advantage until distant targets are 
reached.

 Avida demonstrates that the waiting time to beneficial mutation increases with 
the number of neutral intermediates, and that certain features cannot be expected 
to evolve unless simpler precursors are highly beneficial. While the problem of 
excessive waiting times does not make adaptive  evolution formally impossible, it 
does render certain evolutionary scenarios implausible. Irreducible complexity 
means complexity that is not reducible to parts that have a selective advantage on 
their own, such that multiple coordinated changes are required without the help of 
selection. In other words, adaptations requiring multiple mutations are simply less 
likely, and the waiting time for their occurrence is greater. As Avida shows, this 
barrier can be prohibitive to progressive evolution. Unfortunately, computer simu-
lations cannot provide a thorough understanding of the waiting times to adaptive 
steps in biology. As more is learned about the distribution of mutational fitness 
effects [28,94] and the genetic basis of adaptive change [8], the answers to these 
problems will become clearer.

Reducti ve evoluti on

 Reductive evolution can entail an advantageous reduction in either genomic 
 material or gene expression [9,95–97]. In both instances, organisms benefit from 
eliminating superfluous energy expenditure. The pressure to eliminate excess 
genomic material has been termed “compression selection” [97] and has been 
demonstrated in several biological systems. For example, in a classic serial 
 transfer experiment with Qβ bacteriophage, replication rate increased by a factor 
of 15 and genome size decreased by 83%, with biological competency lost by the 
fifth transfer [95]. Some reductions in  genome size have also been observed in 
evolution experiments with E. coli (e.g., reduced by 1.2% [38]). Although 
 compression selection may not be strong in organisms for which the cost of main-
taining and replicating DNA is a small fraction of the cell’s total energy budget 
[26], it is clearly operational in some smaller systems.

More frequently, reductive evolution proceeds via the elimination of unneces-
sary gene expression. Gauger et al. [9] have shown that, because these types of 
mutations are relatively common [96], reductive evolutionary paths are usually 
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taken even when short progressive paths are available. Long-term evolution 
experiments with E. coli have provided numerous examples of this process. One 
mutation that reduced glmUS expression by 10% was highly (~5%) beneficial 
[98], as was another mutation that reduced spoT expression [96]. Moreover, 
Cooper & Lenski [6] have reported that unused catabolic functions decayed as 
fitness increased in 12 experimental populations of E. coli, reducing diet breadth. 
One mutation, loss of the ability to use D-ribose, occurred in all 12 populations in 
the first 2,000 generations as a result of highly advantageous deletion mutations, 
increasing fitness by ~1.4% [7].

These studies indicate that the reduction of biological information can be highly 
advantageous. Recent reviews [8,10,99] have reported that the majority of studied 
adaptations involve the loss of traits and the reduction of genetic information. 
Whether a mutation is beneficial may depend critically upon the environment in 
which it arises (e.g., whether nutrients are available or antibiotics are present), 
meaning that the effect of a mutation on genetic information cannot be inferred 
from relative growth rates alone. Reductive changes are often (though not always) 
associated with fitness loss in other environments [100]. For example, the ability 
to transport (and therefore metabolize) citrate in oxic conditions evolved in one E. 
coli population after about 31,000 generations of experimental  evolution [73]. 
However, the mutant is inferior on glucose, likely because it involves the alteration 
of a citrate transporter that normally operates only in anoxic conditions. Other 
decreases in channel constriction have also conferred advantages [100]. Similarly, 
Bull et al. [48] have reported high-impact beneficial mutations in the virus φX174 
that increase fitness in an inhibitory, hot environment, but all of which reduce 
 fitness at normal temperatures.

The Mendel software uses the classic infinite allele model, and so is not condu-
cive to a straightforward study of the evolution of  genome size. On the other hand, 
 Avida is very tractable for this purpose. Importantly, the biological examples of 
adaptation discussed above involve  reductive evolution, in contrast with adapta-
tion under Avida’s default settings, where novel functions arise and provide 
extreme advantages. It is somewhat surprising that Avidian populations achieve in 
only 10,000 generations what E. coli populations fail to glimpse in 50,000 genera-
tions. This occurs partly because artificial size neutrality mechanisms were 
 introduced into the Avida software as a means of preventing the pressure of 
 reductive evolution:

The advantage gained by shrinking the code is so dramatic, however, that cells 

might even choose to shed sections of code that trigger moderate bonuses. Such 

a method certainly provides for very efficient optimization while discouraging the 

evolution of complex code by magnifying the barrier to neighboring local minima 
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in the fitness landscape. ... Another possibility is to distribute CPU time in a 

manner proportional to the length of the code. This is the size-neutral scheme also 

used in  tierra. The resulting fitness landscape is intuitively much smoother; 

strings that behave in the same way but differ in length of code are degenerate as 

far as their replication rate is concerned and far-lying regions in genotype-space 

can be accessed easily. Clearly this mechanism is much more conducive to the 

evolution of complexity… Note that enforcing size neutrality is strictly speaking 

un-biological, as it is known that self-replicating strings will shed all unnecessary 

instructions if given the opportunity. In avida, size neutrality is necessary in order 

to jump start the evolution of complexity [21].

Although the results reported here suggest that size neutrality is not strictly neces-
sary for the evolution of complexity in Avida, it certainly improves success. 
Therefore Avida confirms that reductive evolution is also a potential barrier to the 
evolution of novel genetic information. Moreover, this barrier will be more 
 prohibitive if new functions confer more realistic fitness bonuses.

The barrier that compression selection poses for progressive evolution is most 
extreme for small genomes. These results demonstrate that, when size neutrality 
is disabled, larger genomes evolve more logic operations than smaller genomes. 
This occurs because large genomes contain more superfluous material that may be 
used as raw material for evolutionary tinkering. If highly beneficial adaptations 
arise before prohibitive  genome shrinkage occurs, the pressure to maintain highly 
beneficial functions can prevent further shrinking, which is only slightly adaptive. 
The large default rewards implemented in  Avida dwarf the advantages gained by 
shrinking the genome, so evolved functions are retained once a minimal genome 
size is reached. This appears to be another case in which the waiting time to ben-
eficial mutation is an important consideration, as innovations that require too 
much time may not arise before the extraneous genomic raw material is removed 
by selection.

Conclusions

This study used th e evolutionary simulations Avida and  Mendel’s Accountant to 
examine three barriers to the production of genetic information by the neo- 
Darwinian mechanism of mutation and  natural selection: (1) the selection 
 threshold and resultant  genetic entropy; (2) the waiting time to beneficial  mutation, 
i.e., irreducible complexity; and (3) the pressure of  reductive evolution, i.e., the 
pressure to shrink genomes and to disable unnecessary functions. The apparent 
disparity between the two programs results primarily from differences in default 

b1567_Sec2.6.indd   360b1567_Sec2.6.indd   360 5/8/2013   2:42:56 PM5/8/2013   2:42:56 PM

 B
io

lo
gi

ca
l I

nf
or

m
at

io
n 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
2.

4.
17

.1
40

 o
n 

08
/1

1/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



 Computational Evolution Experiments ... Net Loss of Information 361

b1567  Biological Information — New Perspectives b1567_Sec2.6 8 May 2013 2:51 PM

settings. When used with similar settings that reflect biological systems, both 
 confirm that all three of the aforementioned barriers can prevent the progressive 
evolution of novel genetic information. Though neutral or even maladaptive 
changes (e.g., gene duplication) are often considered “complex features” 
[16,26,101,102], it is important to note that this is not synonymous with genetic 
information. Even adaptive changes typically eliminate genetic information within 
a  genome [8,10].

The evolutionary barriers discussed in this report are not merely of theoretical 
importance. As Lynch [4] and others [2,3,44–47] have shown, the human species 
faces a potentially lethal threat from the accumulation of very slightly deleterious 
mutations. Additionally, the lethal mutagenesis of pathogen populations may be 
applicable in novel medical approaches to cure infection and thwart pandemics 
[11–13]. It may be the case that novel means of genetic intervention to reduce 
mutation will be necessary to prevent the extinction of numerous species, includ-
ing our own.

While both Avida and Mendel demonstrate that neo-Darwinian evolution may 
be a theoretical possibility under certain conditions, both programs also suggest 
that it is not a plausible explanation of most biological information. Such compu-
tational approaches can provide informative predictions of the values that key 
parameters (e.g., the distribution of mutational fitness effects) must assume if neo-
Darwinian theory is viable. However, biological studies will be necessary to 
 determine the values that these parameters actually assume in nature.

Digital genetics pioneer Thomas Ray made the following point about computa-
tional evolutionary studies:

To understand the biology of digital organisms requires a knowledge of the 

properties of machine instructions and machine language algorithms. ... there 

exists a complementary relationship between biological theory and the synthesis of 

life. Theory suggests how the synthesis can be achieved, while application of the 

theory in the synthesis is a test of the theory. If theory suggests that a certain factor 

will contribute to increasing diversity, then synthetic systems can be run with and 

without that factor. The process of synthesis becomes a test of the theory [103].

It would seem, then, that the “unbiological” [21] parameters required to make the 
neo-Darwinian mechanism succeed in computational experiments should call the 
biological theory into question. As science commentator David Berlinski has 
remarked, “Computer simulations of Darwinian  evolution fail when they are 
 honest and succeed only when they are not” [104]. As more is learned about the 
genetic basis of adaptive change and the distribution of mutational fitness effects, 
the severity of these concerns for theory and medicine will become clearer.
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Addendum

Because of a delay in this work’s publication, several new relevant studies are not 
discussed therein. First, the authors have expanded upon the topic of numerical 
genetic simulation in another paper (Sanford, J.C., Nelson, C.W.: The next step in 
understanding population dynamics: comprehensive numerical simulation. In: 
Fusté, M.C. (ed.), Studies in Population Genetics, InTech, pp. 117–136). This 
paper reviews population genetic simulations, comments on Avida, and discusses 
general population genetic principles revealed by  Mendel’s Accountant,  especially 
as concerns fixation. The selection threshold concept is also further developed, as 
first discussed by Nelson and Sanford in reference 24. Two papers utilizing the 
Avida platform have been released. The first (Adami, C., Qian, J., Rupp, M., 
Hintze, A.: Information content of colored motifs in complex networks. Artif Life 
17, 375–390) traces network evolution in Avidian organisms, implementing typical 
parameter values. Fitness increases 100,000-fold over 90,000 updates 
 (approximately 9,000 generations), reflecting the program’s high-impact  beneficial 
mutations. Another study (Clune, J., Pennock, R.T., Ofria, C., Lenski, R.E.: 
Ontogeny tends to recapitulate phylogeny in digital organisms. Am Nat 180, 
E54–63) also used default fitness effects. To our knowledge, biologically 
 meaningful fitness effects have not been used, and direct mutational paths to 
 complex instruction combinations are implemented. Thus, Avida researchers have 
not yet addressed concerns (e.g., those first raised in reference 24) regarding the 
 relevance of Avida to biological organisms.
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Abstract

Loss of information is not always bad. In this paper, we investigate the potential for accelerating the 
genetic degeneration of RNA viruses as a means for slowing/containing pandemics. It has previously 
been shown that  RNA viruses are vulnerable to lethal mutagenesis (the concept of inducing muta-
tional degeneration in a given pathogen). This has led to the use of  lethal mutagenesis as a clinical 
treatment for eradicating RNA virus from a given infected patient. The present study uses  numerical 
simulation to explore the concept of accelerated mutagenesis as a way to enhance natural genetic 
attenuation of RNA viral strains at the epidemiological level. This concept is potentially relevant to 
improved management of pandemics, and may be applicable in certain instances where eradication 
of certain diseases is sought.

We propose that mutation accumulation is a major factor in the natural attenuation of pathogenic 
strains of RNA viruses, and that this may contribute to the disappearance of old pathogenic strains 
and natural cessation of pandemics. We use a numerical simulation program,  Mendel’s Accountant, 
to support this model and determine the primary factors that can enhance such degeneration. Our 
experiments suggest that natural  genetic attenuation can be greatly enhanced by implementing three 
practices. (1) Strategic use of antiviral pharmaceuticals that increase RNA mutagenesis. (2) 
Improved hygiene to reduce inoculum levels and hence increase genetic bottlenecking. (3) Strategic 
use of broad-spectrum vaccines that induce partial immunity. In combination, these three practices 
should profoundly accelerate loss of biological information (attenuation) in RNA viruses.

Key words: mutation accumulation, lethal mutagenesis, error catastrophe, mutation meltdown, 
pandemic, Mendel’s Accountant

Introduction

The concept of lethal mutagenesis has been put forward as a strategy for control-
ling pathogens [1, 2]. The idea of lethal mutagenesis is to enhance the mutation 
rate of the pathogen, thereby accelerating mutation accumulation and leading to 
 mutational meltdown and extinction of the pathogen within a specific host indi-
vidual. The concept of mutation accumulation in RNA viruses has been explored 
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in biological experiments involving bacteriophage [3], tobacco etch virus [4], 
poliovirus [5], vesicular stomatitis virus [6, 5], and HIV [7–10]. All these research-
ers report rapid fitness declines of viral strains as deleterious mutations accumu-
late, often leading to the actual extinction of some strains. This strongly contradicts 
claims that RNA viruses are somehow robust against the accumulation of deleteri-
ous mutations [11–13]. Lethal mutagenesis is considered a potential antiviral 
therapy for infected patients and is also recognized as having relevance to manage-
ment of pandemics [2].

RNA viruses are excellent candidates for genetic degeneration because they 
typically have an extraordinarily high mutation rate [14]. The higher mutation rate 
of RNA viruses is a consequence of the novel mechanisms required for RNA 
 replication, which are especially prone to mutation, and the lack of effective repair 
enzymes for RNA replication. Even in RNA viruses with relatively small genomes, 
there appear to be as many as 0.1 to 1.0 new mutations per virus per replication 
cycle [15]. The mutation rate in RNA viruses is so high that it becomes difficult 
to speak of a given viral “strain”, because any genotype quickly mutates into a 
complex of genotypes, such that any patient is soon infected with a “viral swarm”.  
With such a high mutation rate, the large majority of viral genotypes in a patient 
must carry many deleterious mutations, and so will be inferior to the original 
infecting genotype. This implies the lack of a realistic mechanism to preserve a 
“standard genotype”, and all RNA viral swarms should typically be on the verge 
of  mutational meltdown.

When a virus is transmitted from one individual to the next, the first individual 
harbors a viral swarm. The second individual becomes infected by a random 
 subset of that swarm (conceivably a single genotype). With this type of bottleneck-
ing, the “best” viral genotypes within the first swarm have a small probability of 
being transmitted to the next host. This probability becomes especially small when 
infection arises from a single viral particle. Given a high mutation rate and regular 
bottlenecks, the operation of  Muller’s Ratchet becomes quite certain, which 
should result in a continuous ratchet-like mutational degeneration of the viral 
genome [6].

This type of genetic degeneration happens independently of specific virulence 
factors. A viral strain may have a few high-impact beneficial mutations that affect 
“virulence” (i.e., compatibility with a specific host), yet at the same time that same 
strain can be accumulating large numbers of low-impact mutations throughout its 
genome, which should systematically degrade function and reduce net fitness. 
Therefore such a strain can be undergoing genetic degeneration, even while it 
retains (or gains) favorable virulence factors.

In this light, it appears very likely that  RNA viruses should have a strong. 
 tendency to undergo what we will call “natural  genetic attenuation”. This should 
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happen within the individual host organism as the mean fitness of the viral swarm 
continues to diminish with every replication cycle. This should happen even more 
dramatically as the viral swarm undergoes recurrent bottlenecking, as it passes 
from host individual to host individual. Such natural genetic attenuation should 
logically contribute to the transient nature of RNA viral infections within the 
 individual, as well as the transient nature of pandemics caused by RNA viruses.

Historical evidence that RNA viruses undergo natural 
geneti c att enuati on 

Dengue type-2 virus ( DENV), a mosquito-borne, positive-sense, single-strand 
 RNA virus, caused an epidemic in several Pacific Islands from 1971 to 1974. A 
recent paper [16] studied the epidemiological, clinical and biologic observations 
recorded during this time. The authors note that the time period, population 
dynamics and isolation of this epidemic gives a unique opportunity to study  virus 
evolution minus many confounding factors. The initial outbreak of the disease, on 
Fiji and Tahiti, caused severe clinical symptoms, while the final outbreak on Tonga 
produced mild symptoms and near-silent transmission. Sequence and phyloge-
netic analysis showed that the outbreaks were genetically related and all due to a 
single introduction. Also these analyses placed the Tongan viral isolates in a single 
clade, with some unique site substitutions compared to viral isolates early in the 
epidemic. It is these deleterious genetic changes that Steel et al. [16] believe was 
responsible for the reduced epidemic severity on Tonga in 1973/1974.

Severe acute respiratory syndrome ( SARS) caused by an animal-derived coro-
navirus appeared in the human population of Guangdong Province of China in late 
2002. Sixty-one viral isolates from humans were sequenced from the early, middle 
and late phases of the outbreak in this region and were compared to animal derived 
viral sequences [17]. This epidemic was characterized by its sudden appearance, 
its extreme virulence, its rapid spread, and the rapid collapse of the pandemic after 
just two months [17]. This dramatic collapse cannot reasonably be attributed to 
human intervention. Given that SARS in man appears to have an inordinately high 
mutation rate of roughly 3 mutations per replication [18], and given that during 
this very short-term pandemic 291 mutations accumulated in the virus, it seems 
most reasonable to conclude that the outbreak ended prematurely because the 
virus underwent mutational degeneration and natural  genetic attenuation.

Similarly,  Ebola outbreaks have emerged explosively, initially being extremely 
virulent and extremely contagious, but very quickly they became self-contained 
apart from human intervention. While the Ebola virus appears to have an extremely 
wide host range, it has been almost impossible to find it in the natural fauna of the 
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relevant regions [19]. This can most reasonably be explained by self-containment 
of the virus due to high mutation rates and natural  genetic attenuation. Bowen 
et al. [20] cite the World Health Organization’s report suggesting that such attenu-
ation occurred after just 10–11 passages within the human population.

Influenza A virus causes respiratory infections in mammals and birds. In 
humans, this virus causes a yearly epidemic and an occasional pandemic. It 
appears that influenza strains are continuously going extinct at a high rate. The 
actual precursor strains of the H1N1 strain that caused the disastrous 1918 pan-
demic are unknown, and can be presumed to be extinct [i.e., 21, 22]. The  H1N1 
strain itself appears to have gone extinct in the mid-twentieth century, and appar-
ently was inadvertently re-introduced from a researcher’s lab freezer in 1977 [23, 
24]. During the 2009 H1N1 pandemic, one of two original strains went extinct 
[25]. Given the global nature of influenza spread and distribution, it can very rea-
sonably be asked - why does the previous year’s strain of the flu routinely disap-
pear so quickly? Why do most strains of influenza appear to routinely go extinct? 
The most reasonable answer would seem to be natural  genetic attenuation due to 
mutation accumulation. 

Methods and Results 

We have conducted a series of  numerical simulation experiments using the genetic 
accounting program  Mendel’s Accountant (Mendel). This program tracks muta-
tion accumulation over time, as affected by the primary relevant variables such as 
mutation rate, distribution of mutational effects, selection pressure, and population 
size [26–31]. Although Mendel has traditionally been used to model higher organ-
isms (e.g., diploid, sexually reproducing species), it has alternative parameter 
 settings that allow us to model populations of organisms with small haploid 
genomes and which reproduce clonally. 

In these experiments, we model a generic  RNA virus similar to the influenza 
virus. We model only a single viral sub-strain, which becomes a viral swarm, which 
is then transmitted through a single lineage as it moves through a series of 100 indi-
viduals during a pandemic lasting 300 days. We model an RNA virus that employs 
RNA to RNA replication with a viral doubling time of one hour (24  replication 
cycles per day) [32, 33]. We assume that passage to a new host individual happens 
every 3 days [34], and that infection in the new host individual involves the trans-
mission of either a low or high level of inoculum, depending on the model run (10 
or 1000 viable viral particles randomly sampled from the viral swarm). Following 
each new host infection, the swarm is allowed to amplify in number until a specified 
steady-state population size is reached within the individual host. We use a maximal 
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population size of 10,000 (in our experience, creating populations larger than this 
has minimal effect on selection efficiency and mutation accumulation, but consist-
ently causes overflow of computer memory). We assume a functional genome size 
of 10,000 nucleotides, and we assume a starting baseline reference genotype, which 
we define as our “wild type” (having zero initial mutations by definition). We model 
10% of all mutations as being perfectly neutral, with the remainder of mutations 
being 99% deleterious and 1% beneficial [35]. We model back-mutations based 
upon mutation rate and the fraction of nucleotides already mutated. We use the well-
accepted  Weibull distribution for mutation effects (a natural, exponential-type dis-
tribution [26]). In this type of distribution, low-impact mutations are much more 
abundant than high-impact mutations. The lowest impact mutation we model 
(excluding perfect neutrals) has a fitness effect which is the inverse of the genome 
size (such a mutation would reduce fitness by one part in 10,000 when arising in a 
 genome of 10,000 functional nucleotides).

In order to be consistent with what is known about deleterious viral mutation 
distributions, we shape the mutation distribution such that there is a very substan-
tial fraction of all mutations that have a large effect on fitness (10% of the deleteri-
ous mutations reduce fitness by 10% or more). We model beneficial mutations to 
have a similar distribution as deleterious mutations, but with a much narrower 
range (maximal fitness effect = 0.01). This upper limit excludes major virulence 
factor mutations, which are outside the scope of these experiments (we wish to 
study overall fitness, not singular host/pathogen compatibility factors). Viruses are 
recognized as having a much higher rate of lethal mutations than other organisms 
[35], and our Weibull distribution does not fully model this. However, since all 
viral particles with lethal mutations will fail to replicate, they are easily accounted 
for by simply adjusting the rate of “random deaths”. Mutational effects are com-
bined additively within a viral genotype [3].

Mutations were introduced into the viral population at rates ranging from 0.1 to 
1.0 mutation per genome per replication [15, 25]. Viral replication was modeled as 
a simple asexual doubling every replication cycle, causing population size to dou-
ble. After every replication, we eliminated the surplus population by applying  natu-
ral selection (partial  truncation selection) based upon phenotype, restoring the 
initial population size. When bottlenecking was modeled, every time a new host was 
infected the population size was reduced to either 10 or 1000 particles. The popula-
tion was allowed to undergo rapid growth to restore population size. This was done 
by temporary partial relaxation of selection, such that roughly 50% of the surplus 
viral particles were not selected away but were allowed to contribute to population 
re-growth. As deleterious mutations accumulated to high levels, some viral particles 
had zero fitness and could not replicate. When there were not enough viable viral 
particles to repopulate the viral population after each selection cycle, the size of the 
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viral population necessarily began to shrink each generation. If this continued, the 
viral population would shrink to zero, causing extinction of the viral swarm.

Our first experiment was a preliminary Mendel run using very conservative 
parameters. This was designed as a base-line for minimal  genetic attenuation of 
our model  RNA virus, as would occur during a 300-day pandemic. We used a low 
mutation rate of 0.1 mutations per virus particle per replication cycle. In every 
replication cycle the number of viral particles was allowed to double, and we mod-
eled zero random death (zero percent of the viral particles were randomly lost). 
Phenotypic selection was applied (partial truncation), to eliminate all of the 
 surplus population (50%), such that the initial population size was restored. In this 
first experiment, we did not model any population bottlenecks. The results of this 
experiment are summarized in Figure 1. We see that even using highly favorable 
assumptions and intense selection, the simulation failed to prevent mutation accu-
mulation. After 7200 replication cycles, each virus accumulated an average of 235 
deleterious, 74 neutral, and 9.4 beneficial mutations. There were 523 polymorphic 
mutant alleles segregating in the population, meaning that it was a very genetically 
diverse viral swarm. Although 7 beneficial mutations went to fixation within the 
swarm, these carried with them 180 deleterious mutations that also went to fixa-
tion. Fitness declined 16% in just 300 days. By the end of the experiment deleteri-
ous mutation count per virus was increasing at an essentially constant rate, and 
mean viral fitness was declining at nearly a constant rate. These results indicate 
the presence of strong forces working to attenuate any given strain, even when 
conditions for maintenance of the virus are optimal.

We then conducted a series of four simulations wherein we modeled the effect 
of factors that might accelerate natural  genetic attenuation. Figure 2 summarizes 
the fitness decline seen in these experiments. In the first of these experiments, we 
introduced a realistic, but modest degree of random loss of viral particles (25%), 
as might be expected due to chance and various host defense mechanisms. 
Simultaneously, we introduced a very weak, and recurrent bottlenecking of popu-
lation size (1000 viral particles/infection), corresponding to high inoculum levels 
during viral transmission to new host individuals. The result of this second experi-
ment was a very slight acceleration in the rate of genetic attenuation compared to 
Figure 1 (final mean fitness was reduced from 0.84 to 0.82, see Figure 2).

In the second simulation, we tested the effect of increasing the random loss of 
viral particles as might arise, for example, due to host RNase activity, or as a result 
of antiviral pharmaceuticals, or as might arise due to partial immunity within the 
host. We eliminated 40% of all viral particles by random death, thus reducing the 
viral surplus population from 50% to 10%. This effectively reduces selection 
intensity. The result was another very slight acceleration of fitness decline (final 
mean fitness declined to 0.79, see Figure 2).
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Fig.1.  A preliminary  numerical simulation experiment with parameters optimized for slowing 
genetic degeneration of a model RNA virus. Mutation rate = 0.1/genome/replication (89% of 
 mutations deleterious, 10% neutral, and 1% beneficial). Partial truncation selection was employed 
(50% selective elimination, every replication cycle). No random death and no bottlenecking. Mean 
mutation count per virus over time (figure above), and fitness decline over time (figure below).
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In the third simulation, we tested the effect of much more severe bottlenecking, 
with just 10 viable viral particles per new infection. This might be clinically 
achieved either by use of antiviral pharmaceuticals or through better hygiene. We 
see that when we have strong bottlenecking, selection is significantly less effective 
and genetic attenuation is much faster. Fitness declined 45% in 300 days (final 
mean fitness was 0.55, see Figure 2). After 7200 replication cycles, each virus 
accumulated an average of 356 deleterious, 77 neutral, and 9.9 beneficial muta-
tions. There were only 81 segregating polymorphic alleles in the population, 
reflecting the homogenizing effect of recurrent bottlenecking. Although 9 benefi-
cial mutations went to fixation, along with them 338 deleterious mutations went 
to fixation.

In the fourth of these simulations, we modeled intensified bottlenecking com-
bined with 40% random loss. The result was dramatically accelerated fitness 
decline (final mean fitness was 0.35, see Figure 2).

As evident from Figure 2, more severe bottlenecking and higher rates of ran-
dom loss combine synergistically to greatly accelerate both fitness decline and 
 genetic attenuation. More random death by itself had a very small effect, while the 
effect of bottlenecking by itself was more significant, but still fairly modest. 
However, a higher rate of random loss (hence lower viral titer) greatly amplified 

Fig. 2.  Four simulations demonstraing the effect of bottlenecking and random death on fitness 
degradation during an RNA virus pandemic. VIR213 = minimal bottlenecking and modest random 
loss, VIR217 = more random loss, VIR212 = more severe bottlenecking, VIR216 = combination of 
more random loss and more severe bottlenecking. Nb is the population size during the bottleneck. Frd 
is the fractional occurrence of random death.
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the bottleneck effect (because after a serious bottleneck, random loss increases the 
time needed for population size to recover, effectively extending the duration of 
each bottleneck).

We lastly conducted a series of four simulations wherein we examined the 
 consequence of increasing mutation rate, as might be achieved by using a pharma-
ceutical such as  Ribavirin. We used the most conservative settings shown in Figure 
2 (weak bottlenecking and only a moderate rate of random loss), and we then 
examined the effect of increasing mutation rate from 0.1 to 0.2, 0.4, 0.6 and 0.8. 
The fitness decline resulting from an elevated mutation rate is shown in Figure 3.

As can be seen, even modest changes in the viral mutation rate had a substantial 
effect on viral fitness decline. This should not be surprising because it is known 
that  RNA viruses are already near the edge of error catastrophe, due to mutation 
rates which are already very high. A mutation rate of 0.2 resulted in a final mean 
fitness of 0.57 (as opposed to a final fitness of 0.82 when the mutation rate was 
0.1). A mutation rate of 0.4 caused strain extinction after 5,743 replications (239 
days into the pandemic). A mutation rate of 0.6 caused strain extinction after 2,224 
replications (93 days into the pandemic). A mutation rate of 0.8 caused strain 
extinction after 1,003 replications (42 days into the pandemic). As can be seen, 
even these very modest increases in mutation rate caused very rapid acceleration 
of fitness decline, due to the  mutational meltdown phenomenon.

Fig. 3.  Effect of mutation rate (u) on fitness degradation over time during an RNA virus 
pandemic.  Four experiments showing that slight increases in mutation rate dramatically shorten 
pandemic  duration. Mutations per virion per replication (u) were 0.2, 0.4, 0.6, and 0.8.
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Discussion 

 Numerical simulations support our thesis that RNA viruses should be subject to 
natural  genetic attenuation through mutation accumulation. Using conservative 
parameter settings for our model RNA virus, we observed continuous increases in 
the number of deleterious mutations per viral particle, and continuous genetic 
declines in viral fitness (Figure 1). Across a wide range of parameter settings, we 
have consistently observed that natural selection fails to remove a large fraction of 
the deleterious mutations, and that deleterious mutation count per viral particle 
increases linearly with time.

Our simulations indicate that genetic attenuation was accelerated by any of 
three factors (Figure 2), including: (1) increased rates of random death of virions 
(where there is significant loss of virions due either to poor assembly, degradation, 
or other host defenses); (2) more intense genetic bottlenecking; and (3) elevated 
mutation rates. Mutation rate had the greatest effect, and random death had the 
least effect. However, these three factors were most effective, by far, when acting 
in concert. When combined, these three factors caused very rapid genetic attenu-
ation and would have clearly caused premature collapse of the model pandemic. 
How much fitness loss is required to stop a pandemic? This is unknown, but cer-
tainly fitness does not need to approach zero. The fitness loss in our most con-
servative case (16% decline, see Figure 1) may be sufficient in itself to explain the 
natural cessation of most pandemics.

We saw that even slight increases in the mutation rate had a profound effect on 
the rate of genetic attenuation. Just an 8-fold increase in the mutation rate was 
enough to cause rapid  mutational meltdown and strain extinction after just 42 days 
(see Figure 3). This is consistent with Domingo et al. [5] who claim that even a 2.5-
fold increase in mutation rate is sufficient to cause loss of infectivity of both polio-
virus and vesicular stomatitis virus. Such elevated mutation rates can be readily 
achieved using certain pharmaceuticals [36–39, 9, 10]. Indeed, even if only half the 
infected people employed such antiviral medications, the use of such pharmaceuti-
cals would be expected to increase the average mutation rate very significantly.

Use of mutation-enhancing pharmaceuticals should have the additional benefit 
of simultaneously reducing viral titers (“random loss”), and increasing the degree 
of bottlenecking. These benefits, along with an elevated mutation rate, should act 
synergistically in accelerating genetic attenuation. Better hygiene might also 
greatly increase bottlenecking, and thus significantly enhance genetic attenuation. 
Likewise, broad-spectrum vaccines, which help build more general immunity, 
along with other treatments that reduce viral titers, should also enhance attenua-
tion. In some cases, these combined treatments might even be employed where a 
 RNA virus has been targeted for eradication.
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Our results suggest that, while  lethal mutagenesis holds promise for treating 
individuals, a much more significant application may be on the epidemiological 
level. There appears to be a great potential for more effectively managing pandem-
ics by increasing those factors described above. To the extent that we can signifi-
cantly increase the mutation rate in RNA viruses, we can clearly accelerate natural 
genetic attenuation, and in many cases may be able to cause mutational meltdown 
of a given viral strain in a relatively short period of time. Deployment of better 
hygiene practices by itself should reduce inoculum levels, which should result in 
stronger bottlenecking and accelerated decline. Lastly, adding a higher rate of 
random elimination of viral particles, as might occur due to various factors favora-
ble for viral elimination (i.e., partial immunity, fever, use of complimentary anti-
viral drugs, etc.), should further accelerate genetic attenuation. It is noteworthy 
that only 1% of poliovirus released from a host cell are able to complete a full 
cycle of replication [15]. These three factors (mutation rate, bottlenecking, and 
various mechanisms that reduce viral load) clearly combine synergistically to 
accelerate viral degeneration.

We acknowledge that our model virus may not precisely match any known 
RNA virus, but we feel it provides a reasonable approximation of a typical RNA 
virus. Our greatest reservation is that no one knows the precise shape of the distri-
bution of mutation effects for a given virus. Our distribution of mutation effects 
may be skewed too far toward higher-impact mutations (the mean mutation effect 
in all these experiments, prior to selection, was 3.7% reduction in fitness). This 
may be causing unrealistically rapid genetic decline, resulting in over-estimation 
of the rate of fitness decline. Alternatively, our distribution of mutational fitness 
effects may be too skewed toward low-impact mutations, in which case the simu-
lations would indicate unrealistically slow genetic decline, thereby resulting in 
under-estimating the rate of attenuation. However, we have consistently observed 
that when we shift the mutation effect distribution toward mutations with lower 
impact on fitness, the selection breakdown phenomenon is much more severe, 
such that a much higher proportion of deleterious mutations escape selection alto-
gether. Shifting the distribution of mutation effects either up or down creates 
tradeoffs, resulting in only modest changes in the way the genetic damage accu-
mulates. Therefore, we feel our model RNA virus is a useful approximation of 
how a real  RNA virus should respond to the mutation/selection process.

We believe there is strong theoretical evidence that RNA viruses should system-
atically undergo natural attenuation, which in now supported by our  numerical 
simulations. This raises the obvious question – if this is true, why have not all 
RNA viruses gone extinct? The most likely explanation seems to be that such 
viruses are preserved in natural reservoirs where they are more stable. The most 
obvious way for an RNA virus to be more genetically stable is to be 
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in an environment where they have slower replication, and higher fidelity RNA 
replication. Since the host provides sub-units for the RNA replicase complex, the 
host should have very significant impact on both speed of replication and fidelity 
of replication, and therefore a specific host may foster much greater viral stability 
for a given virus. In the case of retroviruses, we know they can persist indefinitely 
in their DNA form (within the host genome). In this form they have very low 
mutation rates. Other viruses may lay dormant indefinitely in other states and in 
other types of natural reservoirs. For example, the  H1N1 strain of influenza appar-
ently went extinct for 20 years in the mid-twentieth century, but it is thought to 
have been resurrected from a researcher’s freezer in 1977, and is once again 
 circulating globally [23, 24]. The 1918 influenza virus strain (which gave rise to 
essentially all the current human and pig influenza strains) is assumed to have 
arisen from the natural reservoir of aquatic birds which harbor influenza viruses. 
However, there is no clear precursor for the 1918 strain in either bird hosts or other 
known hosts [i.e., 21, 22], so we can only say modern human/pig influenza 
emerged from an unknown natural reservoir around the turn of the twentieth cen-
tury. There may be many ways that an RNA virus may be held in reserve for long 
periods of time in natural reservoirs.

Conclusions

Our findings are consistent with the idea that there are already very high rates of 
natural extinction among RNA viral strains, and that the vast majority of RNA 
viral strains die out naturally due to mutation accumulation. Such mutational 
degeneration should play a significant role in the natural progression of pandem-
ics, with mutation accumulation causing the natural  genetic attenuation of any 
given RNA viral strain. Our  numerical simulations strongly indicate that such 
natural genetic attenuation can be enhanced during pandemics by: (a) employing 
strategic use of antiviral pharmaceuticals that increase RNA mutagenesis; 
(b) increasing genetic bottlenecking by reducing inoculum levels through 
improved hygiene and other means; and (c) strategic use of broad-spectrum 
 vaccines that induce partial immunity and other means for reducing viral titers.

Addendum — This study was purely theoretical, based upon biologically realis-
tic numerical simulations. After this chapter was already accepted and finalized, 
an empirical analysis was initiated of actual mutation accumulation within the 
H1N1 Influenza viral genome since 1918. The results provided a remarkable 
validation of the present theoretical study. Within the human lineage, nearly 
every  H1N1 strain that arose very quickly became extinct. All circulating human 
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H1N1 strains went extinct in the mid-1950s, but the human H1N1 lineage was 
re-seeded into the human population in 1976, apparently from a researcher’s 
freezer. The human lineage apparently again went extinct in 2009. During the 
entire history of H1N1 within man, mutations accumulated in a perfectly linear 
fashion – exactly as seen in this theoretical study. In the course of 90 years, 
almost 15% of the viral genome mutated, always at a very constant rate. Viral 
fitness, as reflected by associated human mortality rates, declined continuously 
and systematically from 1918 all the way to the apparent extinction of the human 
H1N1 strain in 2009. Because the publication of these proceedings was signifi-
cantly delayed, the empirical study was published before the present theoretical 
study (which spawned the empirical study). See: Carter R.C. & Sanford, J.C. 
(2012). A new look at an old virus:  patterns of mutation accumulation in the 
human H1N1 influenza virus since 1918. Theoretical Biology and Medical 
Modeling 9:42doi:10.1186/1742-4682-9-42.
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DNA.EXE: A Sequence Comparison between 
the Human Genome and Computer Code

Josiah Seaman
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Program, Aurora, CO 80045–0511, USA. Josiah.Seaman@ucdenver.edu

Abstract

This study presents evidence that executable computer programs and  human genomes contain simi-
lar patterns of repetitive code. When viewed with sequence visualization tools, these similarities are 
both striking and pervasive. The primary similarities are listed in order of scale: (1) homopolymers, 
(2) tandem repeats, (3) distributed repeats, (4) isochores, (5) and entire chromosome/file organiza-
tion. Most strikingly, data visualization reveals that executable codes regularly make extensive use 
of tandem repeats which exhibit similar visual patterns as seen in higher genomes. In biology these 
tandem repeat patterns are normally attributed to replication errors, insertions, deletions, and substi-
tutions. Similarly, on a larger scale, executable codes display regions with different ratios of 1’s and 
0’s which parallel the isochore patterns within chromosomes, caused by local variation in the number 
of A/T vs. G/C. Further, blocks of data are stored at the beginning or end of a file, while the primary 
instructions occupy the middle of a file. This creates the same organizational patterns observed in 
human chromosome arms, where repetitive sequences are grouped near the telomeres and 
centromeres.

I propose that these similarities can be explained by universal constraints in efficient information 
encoding and execution. The  genome may be viewed as the executable program that encodes life. 
Given the evidence that computer programs and genomes use many of the same patterns of organiza-
tion, despite having very different context, it should be informative to explore the ways in which 
knowledge of computer architecture can be applied to biology and vice versa.

Key words: computer code, alu, tandem repeats, junk DNA, small RNA, biological computer, 
 retrotransposon, programming, cybernetics, data visualization, data analysis

Introduction

The study of the human DNA sequence has been dominated by the study of protein 
coding genes. These protein coding regions, called exons, constitute a mere 1.2% 
of the  human genome [1]. Exons use a very simple code called the codon code that 
can be expressed in terms of a single table of 64 values. Without the key of the 
codon code, exons would appear to be meaningless nonsense to us. Thankfully, the 
codon code is a (relatively) straightforward and known entity and with it we can 
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predict the amino acid sequence of most genes in the nucleus. The codon code 
represents the first code in the human genome that we were able to decipher.

Those with even a passing understanding of human genetics should understand 
how incomplete this picture is. Exons using the codon code do not stand in isola-
tion but are intertwined and dependent on numerous other genome elements which 
employ their own codes. Transcription of genes is regulated by promoters which 
use a transcription factor binding site code along with protein combinations. The 
newly formed pre-mRNA transcript contains elements called introns that use a 
third code, the splicing code, for determining how all of the exons are spliced 
together. All three of these codes are separate yet interdependent on each other to 
make the right protein product at the right time. Many other codes have been, and 
will continue to be discovered.

What is a code? A code is a precise mapping from a set of symbols to specified 
meanings, actions, and objects. We use codes for many purposes such as naming 
parts (e.g. A, B, and C) in an assembly manual. Human language itself is a type of 
code, though one that is much more elaborate and flexible than any other code. 
Cyphers used to conceal meaning for cryptography are sometimes called “codes” 
but cyphers are just one subset of codes. However, their use underscores a very 
important attribute of encoding: If one does not know the code in which something 
is written, it will appear to be meaningless nonsense.

In the previous century, the study of genomics was largely constricted to protein 
coding exons, which were already a formidable challenge to study. The other 98% 
of the human genome was dismissed as junk because it appeared to be meaning-
less nonsense [2, 3]. Slowly, exons’ deadlock on genomics was loosened, first 
through gene expression analysis that showed the importance of promoters and 
enhancers, and then through the realization that alternative splicing was critical to 
understanding the complexity of the human body. The work of Barash et al. in 
2009 was just the first step to cracking open the complexity of the splicing 
code [4]. There has been rapidly mounting evidence that various non-coding 
RNAs inside the cell serve useful functions and that there is a veritable zoo of 
RNA types. In 2007, the  ENCODE project opened up the field by showing that 
over 90% of the human genome is transcribed [5, 6]. This forces us to conclude 
that either the cell wastes energy on extensive junk transcription, or, in keeping 
with the discovery of new RNA types, that the majority of the human genome is 
functional [7]. Transitioning from a 2–3% functional genome to > 90% function is 
understandably unattractive to some, because it means that the majority of genetic 
research to date has only scratched the surface of all that the  human genome actu-
ally encodes. An enormous task lies before us, as we endeavor to comprehend the 
many undiscovered functions of the multifaceted genome. To do this we need bet-
ter tools and new approaches.
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Methods

 Skittle Genome Visualizer (Skittle for short) is a new sequence visualization tool 
suite [8]. This tool is especially sensitive for detection of any type of repeating 
pattern within sequence data. Although it was developed to analyze DNA 
sequences, it is very effective in analyzing repeat patterns in any type of 
sequence — including RNA, protein, written text, music, or computer code.

When DNA sequences from higher eukaryotes were examined using Skittle, 
extensive repetition was very clearly seen [8]. This might not seem surprising, as 
such repetition was previously known, and was presumed to be the result of 
numerous types of copying errors — generating a large amount of  junk DNA.

During the course of browsing a number of chromosome sequence files using 
Skittle, a non-genome sequence file was opened accidentally. The program was 
directed to its own executable file: SkittleToo.exe. The same visualization that had 
been so successful in studying chromosome sequences was accidentally applied to 
computer machine code. Surprisingly, computer code revealed the same patterns 
and types of variations seen in the human genome. Yet none of these repeating 
patterns could be attributed to copying errors – every bit in the repeat patterns was 
there for a reason, and therefore the repeating patterns reflected the essential and 
inherent architecture of the computer code information system.

In order to make these visual comparisons easier, the executable computer code 
was converted to a base-4 symbol set of ‘ACGT’ (00 = A, 01 = C, 10 = G, 11 = T). 
In the figures, programs that have been converted to base-4 will have a .fa exten-
sion to indicate the change. For example, SkittleToo.exe becomes SkittleToo.fa 
when converted to the base-4 symbol set for comparison.

The main innovation in Skittle is to transform a sequence into an image by rep-
resenting each letter with a color. This engages human visual recognition for struc-
tures and patterns instead of the target recognition that the brain uses when reading 
a sentence. In each of the figures (except Figure 2), the sequence is read from left 
to right starting at the upper right corner in the same way that one would read 
English text. Instead of displaying simple text, each letter is replaced with a 
colored square “pixel” that represents that letter. At Scale = 1 each pixel represents 
one letter or nucleotide. The visualization can “zoom out” by increasing the scale 
such that each pixel is the color average of multiple values (Figures 4B, 5, 6, 7). At 
Scale = 10 the color for one pixel is computed by taking the next 10 letters in the 
sequence, converting them into 10 colors and then averaging the colors together.

In addition to this, Skittle contains a suite of visualizations specialized for spe-
cific tasks (Figure 5, 7). For a more in depth explanation of the visualization 
methods and the pattern recognition algorithms used in this paper refer to “Skittle: 
a 2-Dimensional  Genome Visualization Tool”[8].
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R esults

Negati ve Controls

This study examines significant patterns of sequence repetition within genomes and 
within executable computer code. To determine how these patterns are distributed in 
other information formats a whole variety of file types were examined. Among the 
file types visualized in Skittle were: exe, dll, cab, zip, png, bmp, jpg, tif, mp3, wav, 
cod, and txt. Human text (cod, txt), such as books, had almost no discernible patterns 
(Figure 1B). On the other hand, data files (png, bmp, jpg, tif, mp3, wav) appeared as 
a single uniform  tandem repeat (Figure 1A). Compressed regions of files (cab, zip) 
lack most visible patterns (data not shown). Executable programs (exe, dll) were the 
only kind of information examined that showed the same variation and diversity of 
repeat patterns that can be seen in eukaryotic  genomes. Examples of the similarities 
between genomes and executable code were found at every scale.

Fig. 1.  A) MP3 recording of Beethoven’s Moonlight Sonata. MP3 files consist of thousands of 
copies of a repeat monomer. In this example, each line has a homo-polymer of variable length. In 
general, data files are a single repeat of one format in contrast to computer programs which contain 
many different types of information. B) Text of Moby Dick. The Nucleotide Display essentially 
looks like colored static with no changing color bias. Similarly, the figure shows no repeats. English 
prose actually shows almost no tandem repetition. The only detectable tandem repeat in the entire 
text of Moby Dick is a short song about the sea that repeats the chorus 3 times.
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R esults – From Small to Large

These results show five primary ways in which computer programs and chromo-
somes are similar. These five levels of similarity, arranged from smallest to largest, 
are: homopolymers, tandem repeats, distributed repeats, isochores (sequence 
bias), and whole chromosome/program structure. These five levels of organization 
are well known attributes of human chromosomes. Paradoxically, it was actually 

Fig. 2.  These bar graphs show the abundance of all strings of length 5 (base-4). Strings are sorted 
by the CGR algorithm [9]. Coloring in this graph is based on abundance. Low abundance words are 
blue, medium are green to orange, with high abundance words being purple. A) All 5-mer strings in 
chromosome 21. In this graph, TTTTT is in the lower left, AAAAA is the lower right, CCCCC is 
the upper right, and GGGGG is the upper left. The poly-A and poly-T strings are by far the most 
frequent short strings in the genome. Also dominant in the lower center are two bars correspond to 
TAAAA and ATTTT respectively. B) All 5-mer (base-4) strings in the SkittleToo.fa computer code 
file. In this graph, 1111111111 is in the lower left, 0000000000 is the lower right. In computer pro-
grams the homopolymer-dominant pattern is just as strong as in the human genome. This computer 
code example contains the same pair of matching peaks (purple) as well as two smaller matching 
peaks in the bottom center, which correspond to TAAAA and ATTTT in the genome.
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easier to find strong examples of these patterns in computer code than it was to 
find examples in DNA. Overall, computer code appears to be significantly more 
repetitive than the  human genome.

Homopolymers — The human genome has an overabundance of strings that 
consist entirely of AAAAA or TTTTT (Figure 2). Since Adenine and Thymine bind 
less strongly than Guanine and Cytosine, these areas of the sequence are spots 
where the double helix can open more easily. Poly-A strings are found at the ends 
of mRNA strands as well. In computer code, 0 is often used as padding for a variety 
of reasons. Data files also contain homo-polymers in structured locations, but prose 
does not (Figure 1). A small positive number will have a long string of 0’s at the 
beginning while a small negative number will have a long string of 1’s. In both code 
and genomes they can be used as a dividing marker between different elements, 
similar to a space or paragraph break. Figure 2 demonstrates a strong similarity in 
the homopolymer patterns within the human genome and executable computer code.

Tandem repeats — The most striking visual patterns seen when higher genomes are 
visualized with Skittle are the tandem repeats (Figure 3). Tandem repeats in the human 
genome have long been considered  junk DNA left over from replication errors. 
Tandem repeats are useful in forensics because of their anomalously high mutation 
rate, which can be up to one million times higher depending on the estimation tech-
nique. Both Weber and Brinkmann report mutation rates of at least 7 × 10–3 per locus 
per haploid per generation [10, 11], while the background mutation rate for the whole 
genome has recently been measured at 1.1 × 10–8 per position per haploid genome per 
generation [12]. Given that the patterns of variation visible within genomic repeats do 
not appear to be random (Figure 3) [8], it is reasonable to consider the possibility that 
such variation may not be the result of an entirely random mutation process.

In computer programs,  tandem repeats are often used to store data in a struc-
tured format. When examined with Skittle, computer code shows remarkably simi-
lar tandem repeats as those seen in eukaryotic genomes. Also seen are the same 
types of internal structured variation as genomic tandem repeats (Figure 3).

In the  genome we do not understand the function of tandem repeats, but in execut-
able code, tandem repeats can be traced back to the original source code written by 
a programmer and to its function in the program. For example, visible tandem repeats 
can be mapped to data files (typically, columns of letters or numbers). Computer data 
consists of tokens that are often larger than one byte. When a token varies from the 
consensus, we observe straights columns or “covariance” (Figure 3B) and when a 
token has a variable length, we observe wavy columns or “indels” (Figure 4B).

Figures 3B and 4B show two specific examples of repeats in machine code, 
extracted from openofficeorg32.msi. This file is freely available, and is responsi-
ble for installing the Open Office software suite. When visualized in Skittle, the 
file is found to contain all the major features that biologists associate 
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with chromosomes. It contains isochores, segmental duplications, tandem repeats, 
distributed repeats, and sequence variations that have the same appearance as 
mutations. The lower sixth of the file consists of a segmental duplication with a 
length of 231,600 bytes per repeat monomer with 7 copies. The other half of the 
file is two larger segmental duplications of 295,852 bytes per repeat monomer.

Figure 4B shows a tandem repeat from openofficeorg32.msi visualized in 
Skittle. The text inside this particular example is in English, so we can see the 
content, while most computer code (in Hex) would be unreadable to the average 
person. A sample of the text in Figure 4B is shown in as follows.

Fig. 3.  Structured variation in tandem repeats. Pixel coloring: 00 = A = Black, 01 = C = Red, 10 = 
G = Green, 11 = T = Blue. A) Chr Y: Start: 392,304 bp Length: 7,128 bp. This tandem repeat lies 
near the telomere of chromosome Y and was used in the first Skittle paper [8] as a strong example 
of nucleotide covariance. The arrows point to the substitutions in the 3 columns near the center, that 
show covariance. B) OpenOfficeorg32.msi: Start: 39,554,645 Length: 4,672 (x2) bits. This repeat 
shows a strong resemblance to Figure 3A, but it’s found in computer code. The nucleotide covariance 
(arrow) is caused by replacing a token longer than 2 bits in the repeat, which involves simultaneously 
changing of a series of contiguous bits. Both repeats look like straight vertical bars because they 
contain no “insertions or deletions”. Contrast this with the wavy, staggered appearance of Figure 4. 
Both repeats have columns that are highly variable, and columns that are entirely invariant.
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…_REGISTRY_OPENOFFICEORG32{F0B285B1–7227-CDDC-6CEA-FA264CF46679}
(REGISTER_DOCX=1) AND (WRITE_REGISTRY…

…_REGISTRY_OPENOFFICEORG32{CF642EF8–3237–7F5A-6D31–18FFF1ACB2C1}
(REGISTER_DOT=1) AND (WRITE_REGISTRY=…

…_REGISTRY_OPENOFFICEORG32{98C7CE2B-EA3B-AB57–7F43–6987BCFF2C7E}
(REGISTER_DOTM=1) AND (WRITE_REGISTRY…

…_REGISTRY_OPENOFFICEORG32{C2E5C8BB-4D40–61A3–8D84–625E34119744}
(REGISTER_DOTX=1) AND (WRITE_REGISTRY…

…_REGISTRY_OPENOFFICEORG32{73E532F7-BAD7-F137–00C6–9188EA72701C}
(REGISTER_POT=1) AND (WRITE_REGISTRY=…

…_REGISTRY_OPENOFFICEORG32{837B2E93-F7D2–61BB-D711-E65E54F951AC}
(REGISTER_POTM=1) AND (WRITE_REGISTRY…

Fig. 4.   Tandem repeats with indels. Pixel coloring: 00 = A = Black, 01 = C = Red, 10 = G = Green, 
11 = T = Blue. A) Chr19: Start: 32,611,935 bp Length: 27,702 bp. Every human chromosome has a 
centromere, which is primarily a large tandem repeat. This alpha satellite repeat shows both substitu-
tions and indels (wavy columns). B) OpenOfficeorg32.msi: Start: 212,581 Length: 8,001 (x2) bits 
Scale: 4 bp/pixel. This repeat was picked from computer code as an example that has both substitu-
tions and indels (wavy columns). In this case the variable columns are concentrated together in the 
middle. These columns encode the unique ID that’s written into the registry (see text). For clear visu-
alization, each pixel is one byte. The color is an average of 4 “base pairs” per pixel or 8 bits per pixel. 
For a more detailed look at visualizing structured variation inside tandem repeats, including nucleo-
tide covariance and indels please see “Skittle: a 2-Dimensional  Genome Visualization Tool” [8].
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…_REGISTRY_OPENOFFICEORG32{1F1B63BC-3767–643B-9973–1A893B7488E5}
(REGISTER_POTX=1) AND (WRITE_REGISTRY…

…_REGISTRY_OPENOFFICEORG32{04A22EC4–39CD-4254-A2AD-22E5F170B043}
(REGISTER_PPS=1) AND (WRITE_REGISTRY=…

The repeated instruction “REGISTRY_OPENOFFICEORG32” provides con-
text for the data. These are registry entries to be written during installation. The 
variable parts of this  tandem repeat are the unique entries being entered e.g. 
“{F0B285B1–7227-CDDC-6CEA-FA264CF46679}”. This setup means that each 
repeat entry can be read independently. The variable columns correspond to the 
unique entries while the duplicated text provides context. Also notice the next 
token lists various file types: e.g. “(REGISTER_DOCX=1)”. DOCX, DOT, 
DOTM, PPS are all file types that Open Office can read. Most file types are 3 let-
ters (TXT) but some file types are four letters long (DOCX). This token will vary 
length by one letter, creating the shifts referred to in biology as indels. Computer 
code also contains tandem repeats in the form of repetitive instructions.

Distributed repeats — Distributed repeats are sequences that are nearly identical 
and are found in many locations in a  genome. The most common distributed repeats 
in the  human genome are  LINES and  SINES, which have many functions, includ-
ing regulation of transcription [14]. Similarly, computer programs have specific 
commands that are used frequently such as ADD, STORE, and LOAD. These com-
mon commands create a distributed repeat pattern. Distributed repeats are also the 
one repetitive pattern that can be observed in English prose. Words like “the” occur 
much more often than chance along with longer sentence fragments that are fre-
quently reused. “For example”, “the reality is”, “a few”, “a little”, “about time”, 
and “at this stage” are all used more often than would happen by chance. Figure 5A 
shows a given distributed repeat in the human genome, as mapped by Skittle, and 
Figure 5B shows a similar distributed repeat within SkittleToo.exe.

Isochore Patterns — In eukaryotic chromosomes, the sequence shows usage 
bias changes between G/C vs. A/T. This change in bias has been known since at 
least the 1970s, creating visible bands under a microscope when the chromosome 
is stained [15, 16]. These bands correlate with the presence of much larger DNA 
elements, and represent a basic division in eukaryotic sequences. G/C rich 
regions contain more genes, CpG islands, and are physically unpacked in the 
interphase nucleus. Unpacked regions are referred to as open chromatin because 
they are less dense [13]. A/T rich regions are associated with closed chromatin 
and lower levels of transcription.

Surprisingly, the isochore type of pattern is even stronger in computer code. We 
can observe the same kind of character usage bias, revealing both gradual changes, 
and sharp disjunctions. The change is due to the large-scale organization of types 
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of elements in code. Execution code and data are separated. Since data types are 
contiguous, the same encoding scheme (data format) will show up in discrete 
blocks. Elements in the program employ different codes and some codes are used 
in combination with each other. Each code will have a different bit distribution. 
For example, English letters occupy only 52 of the 256 possible values on the 
ASCII table. This means that by using Skittle one can visually differentiate 
English text from other types of codes. Isochores in programs are the result of 
large-scale organization and the use of multiple codes.

Whole chromosome/program architecture — Tandem repeats are much more 
common near the ends of chromosomes and near the centromere. Computer 

Fig. 5.  Distributed repeats are highlighted in green using the Skittle Sequence Highlighter similar 
to searching for text in a document. Gray pixels are non-matching sequence. A) Chr19 Start: 97,281 
bp Length: 338,428 bp. Sequence: TGGGATTACAGGTGTGAGCCACCGCGCCCG at 80% simi-
larity. The  human genome is filled with distributed repeats, but their positioning is not entirely ran-
dom. Some bands of the chromosome will have very few of a certain repeat sequence, while others 
will be very dense. These concentrated bands on the chromosome follow the isochore patterns 
(Figure 6). For example, Alu repeats are concentrated in GC rich regions along with genes [13]. B) 
SkittleToo.fa Sequence: AGAGCCACAAGCAAACAGAGCAC (001000100101000100001001000
0000100100010010001) at 80% similarity. The banding pattern of repeats observed in human chro-
mosomes is actually easier to see in computer code because the computer programs are more repeti-
tive. Note the horizontal bands where many repeats are highlighted in green and the dark region just 
below it with no repeats highlighted.
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programs also store large repetitive blocks of data at the end of programs. Many 
executable files actually contain a majority of repetitive sequences because of icons 
and graphics stored in the executable. Repeats are packed in at the end of computer 
programs because they are organized to make them easier to use. This organization 
extends to the RAM, where memory is allocated into the Stack and the Heap. The 
Stack contains the primary program and just a few local variables. The Heap con-
tains the majority of the data and frequently changes size and  composition during 
execution. Similarly in DNA, repetitive elements are packed towards the end of 
chromosome arms and  tandem repeats show much higher  mutation rates (often 

Fig. 6.  Examples of isochore-type structure seen at much larger scales. Pixel coloring: 00 = A = 
Black, 01 = C = Red, 10 = G = Green, 11 = T = Blue. This figure is a zoomed out view of a whole 
chromosome arm where each pixel is the color average of thousands of nucleotides (see Scale). A) 
Chr19: Start: 1 bp Length: 22,272,512 bp Scale: 1,061 bp/pixel. Using color averaging, the changing 
bias in GC content can be clearly seen on the short arm of chromosome 19. GC content has a high 
correlation with many other  genome elements. B) SkittleToo.fa Start: 10,509,078 Length: 3,715,584 
(x2) bits Scale: 177 bp/pixel. Isochore-type patterns can be clearly seen in computer code, even more 
clearly than the genome. Regions with many 1’s in the code appear blue while the areas more rich 
in 0’s have a dark reddish color. Even the variation in the size of the isochore bands is similar in both 
A and B, though the scale is different. Genomic  tandem repeats appear at this scale as spots and 
streaks of bright color (usually green or red), and a similar pattern can be seen in the computer code 
in the small black horizontal lines that litter the image. (This image’s contrast was increased for 
clarity in printing.)
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seen as changes in size) than anywhere else in the genome [10, 11]. Like in com-
puter programs, eukaryotic genomes tend to segregate highly repetitive sequences, 
which is further exemplified by recent research showing that chromosomes are 
organized in 3D space in the nucleus. For example, in the yeast genome, the cen-
tromeres of all the chromosomes can cluster together in one spot while the arms of 
the chromosome stretch out from that point. This is called a Rosette pattern [17]. 

Fig. 7.  Skittle’s Repeat Overview is used to highlight  tandem repeats in bright colors to show the 
structure and distribution of a whole chromosome arm or an entire program. A) Chromosome X: 
Start: 1 bp Length: 8,670,000 bp Scale: 500 bp / pixel. Tandem repeats displayed in bright colors are 
primarily concentrated near the telomere in the top of this image. Large black lines are areas that 
were not sequenced, often because these regions are large tandem repeats. B) SkittleToo.fa Start: 
26946779 Length: 21,501,600 (x2) bits Scale: 1,240 bp / pixel. The second half of the Skittle execut-
able code can be seen here with repeats in bright colors and non-repetitive regions in dark blue. The 
image has been flipped vertically for comparison with Chr X. The less repetitive control code occu-
pies the lower ⅔ of the image, while the repetitive icons, data tables, and other program resources 
are stored at the end of the file (displayed at top). In both sequences, repetitive structures are far more 
abundant near the ends.
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The mammalian  genome organization is noticeably more complex [18], but the 
pattern of aggregating similar sequences is still a major factor.

Discussion

The striking structural similarities between higher genomes and computer code 
strongly suggest they operate on similar principles, and that genomes and com-
puter code may each instruct us on how to more fully understand the other. The 
results of this paper show that computers and cells use very similar encoding 
 patterns despite the fact that the first code compilers could not have been designed 
to mimic the genome because the invention of compilers predates genome 
sequencing technology.

I propose that the simplest explanation for this similarity is that these findings 
represent convergent  evolution driven by similar design constraints. Computers 
were not developed all at once. Instead, a number of different possibilities were 
tested. Similarly, compilers have gone through a series of revisions and optimiza-
tions. As an ongoing process of refinement, computer architecture is subject to 
many of the same constraints as biology, meaning that many of the optimal encod-
ing patterns will be the same.

The comparison is half analogy and half reality. Obviously, there are major dif-
ferences between the molecular computing of DNA and the electronic architecture 
of modern computers. Yet the first computer conceived by Alan Turing was an 
entirely mechanical apparatus moving along a tape — which has more resem-
blance to a polymerase on DNA than it does to modern computers [19].  Computer 
Science has shown that computation can take many forms, yet the fundamentals 
principles and constraints seem to remain the same.

The following are suggested as possible parallels between computers and 
 biological systems:

Biology Computer Comments

DNA Hard Drive DNA is analogous to a hard drive because it serves as the 
canonical, non-volatile copy that is copied but not 
frequently edited.

RNA RAM RNA is analogous to the RAM in a computer because it acts 
as the active, working copy of the information that is 
edited, used, and then discarded. 

Tandem Repeats Data blocks This explains the anomalously high mutation rates. Cells are 
purposefully storing inherited information in the DNA strand.

Continued
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Polymerase + 

Ribosomes

Processors The cell is a multi-processor system, with multiple parallel 
events occurring and being communicated through 
epigenetic modification and RNA. Variety in protein/RNA 
complexes are processors specialized for different tasks.

Cytoplasm 

Phenotype

Output Most of the computation that goes into the decision process is 
never obvious to the user.

Nucleus Motherboard Computational center for the cell with hard drives integrated 
as closely as possible.

Nucleolus CPU Central area where most of the processors and memory is 
congregated for speed reasons.

Differences — While there are striking similarities between  genomes and 
 executable programs, there are also very important differences. These differences 
serve to highlight why the similarities are so informative: they reveal the 
 underlying design constraints at work in both.

• DNA lacks large blocks of numbers sorted in ascending order.
• DNA does not have as many zero values as code in large blocks (such as 

padding), though the  human genome does have a strong bias towards 
strings of A’s or T’s.

• Computers usually use a fixed word length, which shows up as a periodic-
ity in the frequency graph. Exons in DNA show this same pattern because 
the codon code follows a fixed length look-up table, but there are many 
variable length elements as well.

• For structured variation in  tandem repeats, computer code will often have 
zeroed out fields as part of covariance. A “zero value” has not been 
directly observed in biological sequences. With better token recognition, 
zero values could simply be skipped, in which case they would look like 
deletions.

These findings provide new tools to direct future research. In  computer science, 
engineers use the attributes of an object to determine the type of object. This is 
called duck typing because it follows the phrase, “If it walks like a duck, and 
quacks like a duck, it’s a duck”. The comparison between computer programs and 
the  human genome shows that elements in the genome share the same attributes 
with programming products. By applying duck typing, we get more than just a 
single hypothesis. We get a whole set of hypotheses about the function of any 
 element in the genome that has similar properties to an element in a program. The 
starting hypothesis would be that the reason they look the same is because they are 

Continued
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fulfilling the same types of function. This gives us a useful road map for designing 
biological experiments and predicting function.

Until recently, previous research has focused on genes and promoters, which 
constitute at most 3% of the genome. The rest of the genome has been a complete 
mystery. Despite some advances, the task ahead still remains daunting. The model 
of the  genome as a computer system can act as a paradigm for exploring the whole 
genome, not just protein coding genes. Historically, Egyptian hieroglyphics were not 
deciphered until the discovery of the Rosetta stone. This was crucial because they 
found the same things written in Greek as was written in the indecipherable hiero-
glyphics. This allowed real translation between the two. It is possible that computer 
program architecture may be the Rosetta stone for unlocking the rest of the genome. 
Without a working model, the human genome appears to be indecipherable junk. But 
using a comparable architecture, we stand a real chance of deciphering the whole 
genome, starting with the basic components that make up all executable programs.

The rewards for such an endeavor are enormous. There are essentially two 
fields of science that can benefit from adapting the principles and knowledge of 
one into experiments and techniques in the other. Computer science can offer 
biologists information on system design, encapsulation, encoding, and abstraction. 
But biological systems are vastly more sophisticated than modern computers. 
Computer science can learn many lessons from biology about massively parallel 
architectures, self-assembling machines,  overlapping codes, etc. With complete 
understanding of the mechanisms of biology, biologists might program an organ-
ism’s metabolism for a specific task. With a clear understanding of the computa-
tional components of the cell, engineers might harness yeast as an all-purpose 
computer that could self-replicate, giving humans access to exponentially increas-
ing computer power.

Conclusions

Executable code and genomes show striking similarities in the way information is 
structured, despite the fact that their physical mechanisms are completely differ-
ent. I propose that this is because both kinds of code are subject to many of the 
same constraints dictated by  information theory. Given the striking similarities 
between genomes and computer code, it will be fruitful to study the architecture 
of executable computer code, so that we might better understand how genomes 
function. We know that in computer code, there is no “junk code”, and that all the 
structure we are seeing is functional. Therefore it is reasonable to expect that func-
tion underlies all the analogous structures seen within the  genome.
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Abstract

 Biocybernetics is the study of life’s hardware and software systems, which control the chemistry and 
physics of all of life’s processes, including metabolism, manufacturing, control, and feedback. 
Unlike chemistry and physics, which are physical sciences, biology is an  information science since 
what differentiates biology from complex organic chemistry is its information processing systems. 
Semiosis connects two independent worlds of signs and meaning by the conventional rules of a code. 
Many arbitrary coded symbol systems, with over 20 discovered in the past decade, play very 
 important roles in communicating information between life’s components. Life’s networked 
 computers and computer programs instantiated into DNA and RNA memory devices are discussed. 
A  prescriptive algorithm can be implemented in either hardware or software. The “ artificial genome” 
manufactured by Venter et al. demonstrates experimentally the reality of computer hardware and 
software in each cell.

Any serious origin-of-life or origin-of-species scenario must explain the origin of the required 
 biological information. It is argued that each protein arises as the result of the execution of a genuine 
computer program. The creation of a functional protein via the mutation/selection paradigm lacks 
support from information science. Those who understand the reality of  bioinformation, especially 
the prescriptive information of biocybernetics, will be able to incorporate that understanding into 
new models that will lead to a more complete understanding of life.

Key words: biosemiosis, biocybernetics, prescriptive information, DNA software, artificial genome, 
life’s computers

Introduction

 Biocybernetics is the study of life’s hardware and software systems that use digital 
information processing to control, integrate, and maintain life’s processes. While 
physics and chemistry are physical sciences whose interactions are wholly deter-
mined by physicality, biology is an  information science since all of the defining 
characteristics of biology are controlled by life’s information processing systems. 
Biology isn’t just complicated chemistry, since it involves coded messages (semi-
otics) [1, 2] and coded algorithmic prescriptive instructions (instantiated computer 
programs) [3–5]. The vital nature of information in life has been downplayed by 

 B
io

lo
gi

ca
l I

nf
or

m
at

io
n 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
2.

4.
17

.1
40

 o
n 

08
/1

1/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



 Biocybernetics and Biosemiosis 403

b1567  Biological Information — New Perspectives b1567_Sec2.9 8 May 2013 2:53 PM

most materialists, since functional information has no feasible cause from physi-
cality (though infeasible scenarios have been speculated). When addressed at all, 
the informational aspects of life are usually treated as metaphors or analogies, 
rather than realities.

Information is a non-material entity that can be instantiated into physicality for 
storage or communication. Information always involves contingency, such that it 
could have been different. If there is no contingency, the value is not informa-
tional, but instead is determined by natural law. Any property determined wholly 
by law is not informational. It is common to mistakenly view a physical property 
of an object as information. For example, the temperature of an object is a prop-
erty totally determined by a number of physical laws related to mass, specific 
heat, energy flow, radiation, etc. Since temperature is determined by law, that 
property is not information, even though it can be transduced into functional 
information by use of a device known as a thermometer (which could be part of 
a thermostat for controlling the temperature). The temperature of an object could 
be information if it were contingent through appropriate choice of constraints. For 
example, a rock could convey binary information: hot = yes, cold = no, where the 
information rock is placed in either a bed of coals or a glacier to record the choice, 
before placing it in an insulated container for later examination. Obviously this 
stored information would be lost with time, as the rock nears ambient tempera-
ture, but a bit of RAM memory in your computer also requires a refresh to retain 
its information. The radiation from a star is totally determined by physicality, but 
a spectrophotometer could be used to produce information related to the star’s 
temperature, composition, velocity, etc. The star’s radiation has no contingency in 
that its properties cannot be otherwise give the initial constraints and the laws 
involved. The human measurements of that radiation, on the other hand, involve 
considerable contingency, and could even be incorrect if the instruments weren’t 
properly calibrated. The weather is totally determined by law and initial con-
straints. Even a dark cloud with rain descending is not informational without an 
observer with the capability to ascertain meaning from the physical properties 
observed.

The broadest classification of information is that from information theory 
developed by Shannon [6], which requires nothing meaningful, except in the case 
of a coded information subset. Uncertainty is a better descriptive term since the 
 Shannon “Information” of a pattern is inversely related to the pattern’s probability. 
A random sequence has the highest possible uncertainty. A subset of the broadest 
category is functional information, which has meaning (such as in coded informa-
tion). The most restrictive classification of information is prescriptive information, 
which is not only functional/meaningful, but is algorithmic (a recipe). Consider 
data typed into a word-processing program. Most such data is functional in that it 
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has a purpose of communicating information to the ultimate reader of that infor-
mation. If a monkey typed random data into the program, that complex data, pro-
duced by chance contingency, would have no purpose, but would have a very high 
Shannon uncertainty since that deals only with the probability of the data pattern, 
irrespective of any meaning. A computer program typed into the word processor 
is more than just meaningful, but is prescriptive in that it contains instructions to 
accomplish objectives based on data to be supplied during the execution of the 
program being typed. Prescriptive information may be a simple step-wise recipe, 
or may express the decisions to be made and the criteria for the different execution 
paths.

Some have questioned whether there are actual computer programs (instanti-
ated algorithms) in life, or there is just a “resemblance” to computer-like charac-
teristics. One of the most significant experimental confirmations of the reality that 
life is hardware/software was the announcement in 2010 of Venter’s computer-
generated  artificial genome [7]. Venter stated “It certainly changed my views of 
definitions of life and how life works... Life is basically the result of an informa-
tion process, a software process. Our genetic code is  our software” [8]. Venter’s 
team didn’t “create life,” but they put life synthesized pieces of the target DNA 
into yeast which assembled the target bacterium’s  genome. They didn’t engineer 
specific instructions (algorithms), but rather combined DNA blocks that matched 
the target sequence. The assembled genome was transplanted into a different bac-
terium and ‘booted up’ to create a new synthetic version of the target. For this 
“proof of principle” instance, they synthesized a bacterium as close to the original 
genome as they could, using the original DNA as a “standard” for comparison, 
replacing the genome’s application program set stored in the original organism’s 
DNA memory with a genetically engineered application program set matching the 
target. The operating systems and the interacting computers in the cell whose 
genome was replaced remained intact and were able to function by using the 
replacement software. One of the things this research demonstrated is that (at least 
for the two bacteria involved) life uses common operating systems, programming 
languages, and devices (otherwise the programs for one machine wouldn’t execute 
on another).

Since many believe it is important to differentiate hardware from software, 
perhaps it is beneficial to consider some related computer science principles. To 
be functional, both hardware and software are instantiations of algorithms, which 
are step-by-step solutions to problems. In the case of hardware, the algorithm 
could be developed using state-transition diagrams or a hardware description 
 language before instantiation in an electronic circuit. Any hardware-generated 
control signals could be generated by software control. There is also an important 
distinction in  computer science between architecture and organization.
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Computer architecture refers to the machine characteristics visible to lowest-
level user programming (the assembly language instruction set). Organization 
refers to the implementation of the architecture. For example, a CPU’s control unit 
uses the fetched machine language instruction, along with other inputs, to generate 
the control signals needed to carry out the instruction. A control unit could be 
purely electronic, which is often done for the fastest computers. A control unit is 
usually implemented using a less-expensive control storage interpreter which uses 
the machine instruction to generate an address for reading the instruction’s control 
signals from a control memory (microcode). The control storage can be permanent 
or writeable (allowing different machine architectures using the same hardware). 
The functionality is identical for any organization for the same architecture, and 
organization couldn’t be ascertained from functionality. This is important for life’s 
information because it may not be critical to identify what is software and what is 
hardware when analyzing functionality. Since hardware and software can’t be 
 differentiated based on functionality in electronic computers, there is no  informa-
tion science reason to expect differentiation would be possible based on function-
ality of  biocybernetic systems. That differentiation may be important when 
ascertaining mechanisms, however.

Life’s Computers

Most people tend to have a very narrow view as to what a computer can be. 
Realize that the first computer, Babbage’s 1837 Analytic Engine (Fig.1), was 
totally mechanical, and yet “Turing complete” (could theoretically be programmed 
to compute anything possible to compute). Many architectures and organizations 
can be classified as “computers” since the necessary and sufficient requirements 
for a computer are: input (or embedded data), memory, an instantiated program, 
processing capability, and output. Note that the first electronic computer was not 
Turing complete (no branching capability) and couldn’t be re-programmed, so 
those characteristics (as found in many biological computers) aren’t required to be 
a “computer.” There are many components of life that can thus be classified as 
computers or components of computers, so that the reality and variety of  biological 
computers should not be surprising. For example, multiple proteins (including 
RNA polymerase) may form a computer to read the DNA memory/program to 
output the mRNA transcription. The “program” could be in the non-coding DNA, 
which could use the “gene” as data to transcribe. Some hypothesize that the tran-
scription components are “merely” under control of a master computer, and are 
equivalent to a disk head assembly (perhaps with built-in control as found in a 
hard drive’s read/write head assembly) [9]. Without being dogmatic, 
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that alternative approach wouldn’t explain the fact that the replisome has higher 
priority than polymerase, causing a transcription in progress to abort [10] (why 
would a “master” control computer start such a transcription?). High-performance 
pipelined computers often use “optimistic scheduling” to start operations that 
won’t ultimately complete, but this would seem to be a waste of energy for a 
 process of life. Multiple networked interacting semi-autonomous computers seem 
to fit the observations better (at least based on what is currently known). Is the 
mRNA “simply” a coded digital message for the ribosome to process, or is mRNA 
a program to be interpreted by the ribosome? The later seems likely since mRNA 
can be generated by multiple means, each producing a protein as the output 
 during the execution of the computationally-halting program (a requirement of a 

Fig. 1.  Babbage Mechanical Computer – Babbage’s 1837 Analytic Engine, was totally 
 mechanical, and yet “Turing complete”. B
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functional algorithm) when the mRNA program is interpreted by the ribosome 
(equivalent to a micro-programmed control unit interpreting a machine instruction 
sequence). Since the ribosome contains RNA memory, in addition to a multitude 
of proteins, and interprets the prescriptive program of its input mRNA, it seems 
likely that a ribosome is indeed a genuine specific-purpose computer (it has all 
necessary and sufficient requirements). It should also be noted that the  epigenome, 
polypeptides (including proteins) and micro-RNAs of various lengths can serve as 
information-carrying structures and/or memories. The author has peer reviewed 
publications using serially-shared information within multiprocessor systems 
[11–13], and can attest to the importance of protocols for functionality when 
 communicating such information.

When examining tRNA, a computer scientist quite naturally considers the 
 purpose of its RNA memory structure. Does tRNA operate totally by “law,” or 
might this be another computer? Although the total mechanism for attaching a 
particular amino acid so that it matches the codon on the opposite end of the tRNA 
is complex, and not fully understood, the presence of RNA, a memory structure, 
may indicate that multiple proteins can form a computer with the tRNA’s instruc-
tion memory to select and attach the appropriate amino acid, and release it as 
output at the ribosome’s request. Once again, the tRNA complex possesses the 
necessary and sufficient characteristics that define a computer. If a mechanism 
based on law can explain the functionality of tRNA, then perhaps its RNA mem-
ory simply serves as a separator, as opposed to being functional memory (which 
seems unlikely to the author). In any case, each protein is the result of the execu-
tion of a real computer program, ultimately instantiated in DNA for the protein’s 
sequence. Venter’s  artificial genome experiment demonstrated that even mRNA 
generated by alternative mechanisms than direct transcription ultimately depends 
on the DNA memory.

Thus far, there has been no feasible mechanism proposed for writing computer 
programs by inanimate nature. There also has been no feasible mechanism for 
computer hardware being implemented from inanimacy. All known computer pro-
grams and hardware systems require formal solutions before a functional result is 
obtained. The prescriptive information incorporated in both life’s hardware and 
software currently lacks any feasible explanation from chance and necessity. 
Scientific answers are needed, as no scenarios proposed so far are compatible with 
information science. The  Origin-of-Life Prize (www.lifeorigin.info) highlights the 
major difficulties and “will be awarded for proposing a highly plausible mecha-
nism for the spontaneous rise of genetic instructions in nature sufficient to give 
rise to life” [14]. OOL requires that each nucleotide of the RNA sequence be 
selected for potential function, as opposed to natural selection’s favoring of 
 existing functionality. Since  natural selection depends on already existing protein 
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structures of the phenotype, and each protein is a result of the genomic algorithm 
instantiated in the DNA, natural selection is not a mechanism for generation of 
new prescriptive information, but at most is a sorting procedure to weed out organ-
isms that are less fit. What mutation/selection really says is that, “randomly chang-
ing a functional program can sometimes produce a modified program with 
improved functionality.” Such a random net increase in non-trivial functionality 
has never been documented in  computer science. For example, random changes in 
so-called “artificial life” programs use designed targets and fitness functions to 
steer results in desirable directions for functionality [15,16]. When irreducibly 
complex structures are considered, multiple programs would require simultaneous 
modification.

The polynucleotide sequence of DNA or RNA is an ideal information storage 
structure since each nucleotide has no dependence on preceding or following 
nucleotides, and can be arbitrarily set to the functional value desired from the four 
possible values. It should also be mentioned that within the DNA helix, only half 
of the nucleotides are informational since one strand is totally determined (and is 
redundant) by the other (informational) strand. Information requires contingency, 
and one strand has none. Note that other information for decoding overlapping 
genes and reverse transcription is not directly in the DNA sequence. The prescrip-
tive information in a DNA sequence is a recipe or algorithm to accomplish a 
desired task. What complicates this is the fact that many nucleotides are compo-
nents of multiple prescriptions, such as in overlapping genes or alternative splicing 
schemes. In those cases, the nucleotide has to be set so that it becomes a functional 
component of multiple algorithms. The algorithms can be those for protein gen-
eration or one of the numerous cellular controls. Sub-coded (codes within codes) 
information [17] and a second genetic code [18] characterizing alternative splicing 
have been discovered. Various transcribed RNAs are mixed and matched and 
spliced into mRNAs for specifying protein construction and other controls, some-
times joining messages that were separated by thousands of nucleotides. “For 
example, three neurexin genes can generate over 3,000 genetic messages that help 
control the wiring of the brain” [19]. Even “simple” prescription information lacks 
any feasible explanation using known science. Much more challenging are the 
explanations required for multiple and overlapping levels of prescriptive 
information.

Biosemiosis

“Physicality is the only reality” is a paradigm which encounters severe difficulties 
when confronted with biological coding systems (semiosis), and the associated 
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formal operations which are required. What is a  semiotic system? “A semiotic 
system is a system made of two independent worlds that are connected by the 
conventional rules of a code. A semiotic system ... is necessarily made of three 
distinct entities: signs, meanings and code” [20]. The best-known biological code 
is the codon-to-amino acid translation during protein construction which uses 
tRNAs to translate one codon from the 64-codon alphabet (a sign) into one amino 
acid in the 20 amino acid alphabet (meaning). There is no chemical or other deter-
ministic link between the opposite ends of a tRNA that causes a particular amino 
acid to be associated with a particular codon. They are associated by an arbitrary 
rule determined by a code. Over 20 other  semiotic codes have been discovered in 
life in the past decade, with each code having arbitrary rules agreed on by both 
sender and receiver of the coded information message, as described briefly below.

A coactivator code for coregulators may confer specificity to ubiquitous tran-
scriptional regulatory factors, with wide-reaching implications. Cofactors use a 
variety of mechanisms to contribute to gene transcription activation and repression 
[21]. A protein destination code ensures delivery of the protein to the correct des-
tination. “Proteins are the workhorses of the cell, but to get the most work out of 
them, they need to be in the right place. In neurons, for example, proteins needed 
at axons differ from those needed at dendrites, while in budding yeast cells, the 
daughter cell needs proteins the mother cell does not. In each case, one strategy 
for making sure a protein gets where it belongs is to shuttle its messenger RNA to 
the right spot before translating it. The destination for such an mRNA is encoded 
in a set of so-called “zipcode” elements, which loop out of the RNA string to link 
up with RNA-binding proteins. In yeast, these proteins join up with a myosin 
motor that taxis the complex to the encoded location” [22]. A code for resolving 
 overlapping codes is needed to start transcription appropriately. “Genomes encode 
multiple signals, raising the question of how these different codes are organized 
along the linear  genome sequence” [23]. The detailed coding “signals consist of 
both known and potentially novel codes, including position dependent secondary 
RNA structure, bacteria-specific depletion of transcription and translation initia-
tion signals, and eukaryote-specific enrichment of microRNA target sites” [23].

The cytoskeleton anchoring code [1] determines the ultimate relationship 
between the cellular structures that the cytoskeleton is working on and the micro-
tubule and microfilament components of the cytoskeleton. Every microtubule 
starts from a centrosome, with the other end growing or contracting in an explora-
tory “strategy” in a search for an anchor. There is a “dynamic instability” as mono-
mers are added and taken away (if an anchor is not found), so the cytoskeleton can 
rapidly explore all of the cytoplasm’s space, until a stable anchor code is found.

Barbieri lists 20  semiotic codes [20] from a variety of research papers, including 
adhesive code, sugar code, histone code, neural transcriptional codes, regulatory 

 B
io

lo
gi

ca
l I

nf
or

m
at

io
n 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
2.

4.
17

.1
40

 o
n 

08
/1

1/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



410 D. Johnson 

b1567  Biological Information — New Perspectives b1567_Sec2.9 8 May 2013 2:53 PM

code in mammalian organogenesis, code of post translational modifications, 
nuclear receptors combinatorial code, transcription factors code, acetylation 
codes, estrogen receptor code, metabolic codes, rna codes, error-correcting codes, 
modular code of the cytoskeleton, lipid-based code in nuclear signaling, immune 
self-code, and signal transduction codes. In each case, the code provides an arbi-
trary translation between disjoint domains. This list only scratches the surface of 
all the codes that are still waiting to be discovered.

Since information is non-material, there have been no feasible scenarios for pro-
duction of semiotic systems from physicality. Barbieri proposes “natural conven-
tions” as the required codemaker that creates the required semiotic translation 
bridge between the sender and receiver [20]. Barbieri fails to present a feasible 
mechanism, but argues it “must have happened” since semiosis is a ubiquitous real-
ity and is actually the mechanism he proposes for macroevolution. In his view, for 
something totally new to appear, a new organic code that had never existed before 
must come into being. Biological specificity (required for heredity and reproduc-
tion) was the result of the origin of the genetic code. Signal transduction codes 
allowed systems to produce their own signals, separating their internal space from 
the environment. The origin of the eukaryote nucleus was brought about by the 
origin of splicing codes [1,24]. The development of any coding system must account 
for information (especially transfer of information), in a manner compatible with 
 information theory. The next paragraph provides the technical details, but the bot-
tom line is that codes cannot evolve from simpler to more complex basic codes 
without violating an information theory theorem that has stood for over 60 years.

Given the probability vector, pA, of the elements of alphabet A in a source prob-
ability space [Ω, A, pA] and the probability vector, pB, of the elements of alphabet 
B in destination probability space [Ω, B, pB], then a unique mapping of the sym-
bols of alphabet A onto the symbols of alphabet B is called a code [25]. Mutual 
 entropy is a mathematical measure of the similarity between any two sequences 
one wishes to compare. Mutual entropy relates the input (x) and output (y) chan-
nels via: I(B;A) = I(A;B) = H(x) -H(x|y), where the conditional (xi given yi 

received)  entropy is H(x|y) = -∑ijpj p(i|j) log2 p(i|j), pj =∑
n

i
  pip(j|i) (which relates 

the probability vector, p, elements to those of the conditional probability matrix, P), 
and H(x) = -∑

n

i=1
 pi log2(pi) is the information entropy. The Shannon Channel 

Capacity is also the maximum mutual entropy. For a transmitting system with 
fewer symbols in [Ω, A, pA] to pass information to [Ω, B, pB], the maximum 
mutual entropy would be exceeded.  The channel capacity thus prohibits a simpler 
symbolic alphabet (e.g. a 2-nucleotide “codon”) from evolving into an alphabet 
with more intrinsic symbols. Some have suggested it “must have happened,” but 
have provided no falsification of Shannon Channel Capacity Theorem that has 
stood for over 60 years. Without such falsification, the original instantiation of any 
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semiotic code would have an alphabet at least as symbolically complex as that 
currently used. Note that an alphabet symbol may consist of other symbols. For 
example, the American Standard Code for Information Interchange (ASCII) 
defines printable characters represented by seven bits, with a 7-bit group being one 
sign for the source alphabet.

The growing acknowledgment that the mutation/selection model of  evolution is 
not sufficient to explain the origin of elaborate information processing systems 
seems to suggest that a major paradigm shift is imminent. The leading contender 
as a replacement is the “Extended Synthesis” [26], which is very flexible, incor-
porating essentially all proposed mechanisms for evolution, including concepts 
like “natural genetic engineering” [27, 28] for mutation selection and “natural 
conventions” [20] as  semiotic code. Whatever the replacement will be, science 
needs to ensure that any scenarios are compatible with  information science. The 
most difficult realities to accommodate will probably be the prescriptive informa-
tion of  biocybernetics and the arbitrary information translation codes of   biosemiosis. 
There are numerous very specific problems that must explained if the the neo-
Darwinian paradigm is to survive. Given all these challenges the defenders of the 
status quo must provide scientific answers to a series of extremely difficult 
 questions, include the following [14].

1. How did nature write the prescriptive programs needed to organize life-
sustaining metabolism? Programs are shown by computer science to require a 
formal solution prior to implementation. How did inanimate nature formally solve 
these complex problems and write the programs? How did nature develop the 
operating systems and programming languages to implement the algorithms? 
How did nature develop Turing machines capable of computational halting? How 
did nature develop the arbitrary protocols for communication and coordination 
among the thousands (or millions) of computers in each cell?

2. How did nature develop multiple semiotic coding systems, including the 
redundant (surjective) codon-based coding system (for symbolic translation) that 
involves transcribing, communicating, and translating the symbolic triplet nucleo-
tide block-codes into amino acids of the proteins? How did nature develop alter-
native generation of such messages using techniques such as overlapping genes, 
messages within messages, multi-level encryption, and consolidation of dispersed 
messages? A protein may obtain its consolidated prescriptive construction 
instructions from multiple genes and/or from the “ junk” DNA, sometimes with 
over a million nucleotides separating the instructions to be combined.

3. How did nature defy computer science principles by avoiding software engi-
neering’s top-down approach required for complex programming systems? How 
did nature produce complex functional programs without planning, by randomly 
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modifying existing algorithms? How did multiple such programs become simulta-
neously modified to result in the production of irreducibly complex structures?

These questions demand scientific answers that are compatible with  informa-
tion science. “It must have happened” is not science, but belief.
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Section Three — Theoretical Molecular 
Biology: Introductory Comments

Michael J. Behe — Section Chairman 

Biological information must be expressed to be consequential. In the past half 
century, science has discovered that expression often takes the form of sophisti-
cated molecular machinery. Information resides in the very shape of the machin-
ery itself, as well as in the instructions to build the machinery, to regulate it, to 
allow separate systems to communicate with it, and more. In all these cases the 
information must be physically instantiated to be effective. This section focuses on 
systems that are known, or speculated, to instantiate information, and how they 
may be affected by evolutionary forces.

The chapter by Macosko and Smelser reviews the evidence that the genetic 
code used by nearly all life forms on earth is far from a “ frozen accident” — that 
is, far from an arbitrary assignment of codons to amino acids that got locked into 
place because changing it would have been beyond the reach of Darwinian pro-
cesses, as was speculated by early investigators. Rather, close analysis of the code 
has shown it to be better than the vast majority of possible codes in resisting the 
occurrence of deleterious mutations, in resisting their impact if they occur, and 
more. The conjecture that the code was optimized by Darwinian selection runs 
headlong into the profound difficulty that a change in the code used by an  organism 
would affect all proteins coded for by its  genome. Almost certainly such a change 
would negatively impact the functioning of many proteins, and be resisted by the 
very selection that is posited to shepherd the code to greater efficiency. Macosko 
and Smelser argue that the hypothesis of purposeful intelligent design better fits 
the data, and can lead to new insights into this basic feature of life.

The chapter by Dent seeks to discern how widely-separated molecules obtain 
the information with which to find their targets. Deeming the standard explanation 
of a random Brownian search to be inadequate in many cases, Dent hypothesizes 
that there exist coherent oscillator structures within chromosomes and proteins 
with a narrow range of resonant frequencies. Such oscillations are thought to 
attract biomolecules to one another with great specificity. In experiments using 
ultra-high-frequency  Doppler vibrometry, live onion cells and fish eggs were 
scanned for the presence of vibrations in the gigahertz range, predicted of DNA. 
Although such signals were not detected in the present study, they may not in fact 
reach the cell surface, but be confined to the nucleus. Further work is planned to 
investigate this possibility.
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The chapter by Behe investigates the tempo and mode of  evolution with respect 
to information-bearing genetic elements such as coding regions, control elements, 
modification signals, and so on. It has been known since Darwin that evolution can 
proceed as readily by losing a pre-existing function as by gaining one. For exam-
ple, in order to adapt to its environment the lineage leading to birds developed the 
power of flight. Yet, also in order to adapt to their environment, the lineages 
 leading to ostriches and penguins lost the power of flight. A difficulty in judging 
the underlying basis of the modification is that a phenotypic loss of function may 
be caused by a genetic gain of function and vice-versa. In the past few decades, 
however, the informational elements comprising the  genome have substantially 
been elucidated. It has been discovered that functional elements often consist of 
long stretches of contiguous nucleotides, many of which would lead to loss of 
function if they were mutated. A simple model demonstrates that in many situa-
tions loss-of-function genetic mutations will appear much more rapidly than 
 gain-of-function mutations, and thus have the opportunity to spread in the popula-
tion before alternative beneficial mutations appear. The model is shown to fit well 
with evolutionary results from the laboratory and from the wild in which the 
molecular bases of adaptation have been ascertained.

The chapter by Wells argues that important heritable biological information 
exists apart from the genome. While acknowledging that, for example, proteins 
involved in genetic regulatory networks (GRN) which are necessary for embryo-
logical development are coded in DNA, he points out that the spatial information 
necessary for development is not. Fertilized eggs already possess spatial informa-
tion outlining major body axes before GRNs are activated, the result of determi-
nants in the cell cortex, the point of entry of the sperm, and more. Endogenous 
electric fields exist within embryos, the result of the topological arrangement of 
ion pumps, which is not coded in DNA. External electric fields applied to probe 
their effect on the developing embryo show that such fields can induce cell migra-
tion in vitro, and disrupt normal development in vivo. The position in the cell 
membrane of nanoclusters of membrane proteins involved in intracellular signal-
ing is often essential to their proper functioning. Glycolipids and glycoproteins on 
cell surfaces direct cell-cell interactions. Patterns of membrane proteins can be 
inherited apart from DNA, as shown most vividly by ciliates with inverted rows 
obtained from a surgically-rotated cortex, whose pattern has been stably main-
tained for thousands of generations. Wells concludes that the existence and inherit-
ance of DNA-independent biological information fits poorly with standard 
evolutionary theory, and that to more closely describe nature evolutionary theory 
must take into account the higher dimensions of biological information.

The chapter by Axe and Gauger begins by pointing out that life consists of 
multiple layers of information, from the molecular to the cellular, to the organismal, 
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to the ecosystem. A basic level, however, is that of bacterial metabolism. If 
Darwinian theory is to give a thorough account of life, then it at least has to give an 
account of such a basic level. Yet, the authors argue, it has failed to do so, and there 
are strong reasons to judge that it cannot do so. The authors review the systematic 
difficulties that a bottom-up development of a metabolic pathway faces, from the 
cost of gene expression to the need to combine rare events in a single gene to causal 
circularity (the need for the product of the pathway as a participant in the pathway 
itself). Not content to leave their discussion as a compilation of the difficulties a 
Darwinian process faces at a very basic level of life, Axe and Gauger go on to 
 propose tentative principles that envision a top-down paradigm to replace it.

Can we draw an overarching theme from the chapters in this section? One such 
theme, I think, is that it is a basic task of biology, especially as motivated by a 
theory of intelligent design, to seek out new sources of information in life and new 
ways in which that information may be instantiated. While other general theories 
of biology do not physically prevent investigators from such investigations, 
 neither do they encourage it and they may actively discourage it. At a number of 
points in the history of modern biology, Darwinism (since it is said to predict 
much waste in nature), has mistakenly discounted significant aspects of life as the 
unintended debris of inefficient  natural selection. “ Junk DNA” is perhaps the 
 latest and most spectacular example of this. Minimally, the intelligent design 
hypothesis should help guard against a dismissive attitude regarding biological 
information and its origin.
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An Ode to the Code: Evidence for 
Fine-Tuning in the Standard Codon Table

Jed C. Macosko* and Amanda M. Smelser

Department of Physics, Wake Forest University, Winston-Salem, 
NC 27109, USA. (*Corresponding author: macoskjc@wfu.edu)

Abstract

The  Standard Codon Table (SCT) records the correlation observed in nature between the complete 
set of 64 trinucleotide codons and the 20 amino acids plus 3 nonsense (i.e. stop or termination) 
signals. This table was called a frozen accident by Francis Crick, yet current evidence points to 
optimization that minimizes harmful effects of mutations and mistranslations while maximizing the 
encoding of multiple messages into a single sequence. For example, a recent article with the running 
title “The best of all possible codes?” concluded that “evidence is clear” for the optimized nature of 
the SCT, and another study found that difficult-to-encode secondary signals are minimized in the 
SCT. Additionally, the initiating amino acid methionine has been found to minimize the nascent 
peptide chain’s barrier to exit the ribosome. Moreover, the symmetry in the SCT between 
4- fold-synonymous and <4-fold synonymous codons has been explained in terms of minimizing 
mistranslation. In this paper, the hypothesis that the finely tuned optimization of the SCT originates 
in external intelligence is compared to the hypothesis that its fine tuning is due to the adaptive 
 selection of earlier codes. It is concluded that, in the absence of metaphysical biases against this 
hypothesis, external intelligence better explains the origin of the SCT. Additionally, this hypothesis 
prompts lines of inquiry that, 50 years ago, would have accelerated the discovery of the now-known 
features of the SCT and that, today, can lead to new discoveries.

Key words: genetic code, origin of life, adaptive code, error minimizing code, stereochemical 
 origin, frozen accident, amino acid biosynthesis, coevolution, family non-family symmetry

Introduction

In 1976, Francis Crick and coauthors wrote, “The origin of protein synthesis is a 
notoriously difficult problem” [1]. Proteins are synthesized based on information 
contained in mRNA, according to an easily-represented map between RNA trinu-
cleotides and protein building blocks [2]. This map describes the flow of informa-
tion from mRNA to protein in nearly every organism and is usually called “the 
genetic code”.

Here, the map (Figure 1) is called the  Standard Codon Table (SCT) to distin-
guish it both from the physical machinery (Figure 2) that enables this flow of 
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information and from additional codes of secondary signals. These so-called “sub-
codes” or “second-layer codes”, and the coding machinery itself, are integral parts 
of the true genetic code, i.e. the full code that starts with the genetic information in 
DNA and ends with the protein and RNA machines that keep organisms alive [3].

The evolutionary origin of the protein synthesis scheme shown in Figure 2 is 
what Crick considered a “difficult problem” [1]. There are two parts of this prob-
lem: first, how the general coding scheme (Figure 2) originated, and second, how 
the specific correspondence between trinucleotides and amino acids, i.e the SCT 
(Figure 1), came about. These two parts are interrelated, but it is helpful at first to 
consider them separately.

Theories of the Origin of the Standard Codon Table

Currently there are four theories that, alone or in combination, address the origin 
of the SCT (see review: [4]). First, there is the  frozen accident model, which takes 
its name from Crick’s suggestion that the SCT was a frozen accident [2]. In other 

Fig. 1.  The Standard Codon Table (SCT) arranged to highlight the family/split-box symmetry. In 
gray are eight “family” amino acids, specified by four codons each for a total of 32 codons. In black 
are the other 32 codons: the three stop codons and the codons for the 12 “split-box” amino acids that 
are coded by three or less codons each. Three amino acids — serine, arginine and leucine — use both 
family and split-box codons. For purposes of tRNA comparison, the tRNAs that recognize the grey 
ser, arg, and leu codons are considered family tRNAs and those that recognize the black ser, arg, and 
leu codons are considered split-box tRNAs.
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words, neither the mechanism that led to the general coding scheme (Figure 2), nor 
any other mechanism, dictated the pattern in the SCT (Figure 1). It was purely an 
accident; the SCT could have ended up with any arbitrary structure. Thus, the 
 current structure does not reveal any information about a past mechanism.

The other three theories all assume that the SCT was not an accident but was 
formed by a mechanism. By examining the nature of the SCT, one can learn about 
the mechanism that formed it. The first of these theories is the error  minimization 
model. In this model, the SCT was formed by a mechanism that primarily  minimized 
the negative impact of DNA mutations, of mRNA mistranscriptions, and of protein 
chain mistranslations [5]. Thus, the arrangement of amino acids in Figure 1 is not 
accidental. For example, once a guanine (G) base in the first codon position and an 
adenine (A) base in the second position came to represent one of the negatively 
charged amino acids, then both negatively charged amino acids became encoded 
with the sequence GAN (where N is any base) so that a mutation in the third position 
would simply exchange one negatively charged amino acid for another.

Another theory proposes that the origin of the SCT is linked to, or coevolved 
with, primordial  amino acid biosynthesis [6]. Several of the 20 amino acids 

Fig. 2.  The tRNAs, shown inside a ribosome, are key pieces of the physical machinery that actual-
izes the information flow from the mRNA to the polypeptide (protein) chain. This flow follows the 
SCT; for example, the mRNA letters UCG are recognized by the tRNA that has CGA (as read in the 
5’ to 3’ direction) in its anticodon loop and that carries serine at its opposite end. This example of 
UCG=serine is shown in Figure 1 (see the grey box labeled “serine” at the intersection of “first base 
U” and “second base C”).
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shown in Figure 1 are synthesized in living cells starting from other amino acids. 
For example, the negatively charged amino acid, aspartic acid, is known to be a 
precursor for methionine, threonine, isoleucine, and lysine [7]. These four amino 
acids are encoded by ANA and ANG codons (see Figure 1), which some take as 
evidence in favor of this theory [8].

The final theory depends on  stereochemical interactions between amino acids 
and their respective trinucleotide codons (Figure 1) or anticodons. This model was 
popular immediately after the elucidation of the SCT, since it postulated a simple 
mechanism for the origin of the codon assignments: each codon (or anticodon) had 
a physical affinity for its respective amino acid, and not for other amino acids [9]. 
Thus, had this theory proved true, the assignments shown in Figure 1 would have 
been biochemically predestined by virtue of stereochemical interactions. As it is, 
the evidence is limited with respect to statistically significant interactions between 
the codons or anticodons and their respective amino acids. Of the 20 amino acids, 
only seven (phenylalanine, isoleucine, leucine, histidine, arginine, tyrosine, and 
tryptophan) show such interactions, and the preference for codon versus anticodon 
involvement appears random [10].

Of the four theories, error minimization and amino acid biosynthesis are 
 currently favored, though some claim these mechanisms are minor influences 
compared to the overall frozen accident nature of the SCT [11].

It is important to remember that these four SCT origin theories do not explain 
the origin of the machinery (e.g. Figure 2) that is responsible for converting 
mRNA information into amino acid sequences. Theories for the origin of the 
 coding machinery are abundant and are generally viewed as extremely speculative 
(e.g. [12] and reviewer comments). As such, this paper does not address these 
theories but focuses on just the origin of the codon assignments themselves.

In the next section, we present four studies that describe SCT features that are 
optimal and are orthogonal, i.e. the optimality of one would not necessarily lead 
to the optimality of the others. These features are 1) similar amino acids are coded 
by similar codons thus minimizing the impact of errors, 2) the family/non-family 
symmetry minimizes mistranslations while maximizing tRNA usage efficiency, 3) 
the stop codons are related to commonly occurring amino acids in a way that opti-
mizes second-layer codes, and 4) methionine is an optimal initiating amino acid 
due to its minimized energy for exiting the ribosome.

Orthogonally Optimized Features of the Standard Codon Table

Previous studies [5, 13–16] have compared the optimality of the SCT to those of 
alternative codon tables in terms of how they mitigate genetic errors by ensuring 
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that similar amino acids are coded with similar codons (see the “error minimiza-
tion” theory above). One of these studies in 2000 by Freeland et al. determined the 
most optimized code, given different values of two parameters [15]. The first 
parameter was the relative likelihood of transitions — A:G or thymine(T):cytosine(C) 
exchanges — and transversions — A or G exchanging with T or C. The second 
parameter was the relative impact of mutation as modulated by the power to which 
the error equation is raised. For most of the intermediate values of these two 
parameters, the real SCT was the single most optimized codon table — the “best 
of all possible codes” as this paper’s running title suggested. Interestingly, this 
100% optimization of the SCT was demonstrated within a restricted set of codon 
tables. The restricted set reflected the  amino acid biosynthesis theory described 
above. Thus, this paper blended the two favored mechanisms for the origin of the 
SCT — error minimization and biosynthesis — and quantified a level of optimiza-
tion that was near or at the global maximum.

Freeland et al.’s landmark study tacitly assumes that an optimized code imparts 
to its owner a selectable advantage over organisms that have not-as-optimized 
codes. Recent work by Geiler-Samerotte et al. helps to answer the question, “What 
selective effect would a more optimal code have?” [17]. These authors compared 
the fitness of mutant yeasts expressing a gratuitous protein that misfolded to vary-
ing extents. When the protein mostly misfolded and was present at high levels 
(47,000 copies out of ~40 million total protein molecules per cell, or ~0.1%) the 
selective disadvantage was 3.2%. Ideally, a selectable disadvantage might be 
purged from a population when the disadvantage exceeds the inverse of population 
size, which in yeast is ~107 (i.e. 0.00001% when inverted). The authors extrapolate 
from 47,000 copies to just one misfolded molecule per cell and predict a fitness 
disadvantage of 0.00008%, that is to say, 8 times greater than the selection thresh-
old. Thus, relative to less optimal codes, any code that results in one less misfolded 
protein molecule per cell, or even per ~8 cells, can produce a selective advantage. 
How many less misfolded molecules arise thanks to a “best of all possible” code 
or a “one in a million” code is still an open question that awaits a direct experi-
mental link between mistranslation rates and misfolding probability.1

1 Interestingly, the Geiler-Samerotte et al. paper nearly provides this experimental link. They state 
that “random PCR mutagenesis’ was performed to generate mutants of the gratuitous protein. 10 
 mutations out of 238 amino acids were found to cause misfolding. These mutations were: N23I, 
E32K, G40V, M78V, K101E, I123V, D155G, V163A, Q183H, and S208P. If we assume that these 
were the complete set of single amino-acid changes that resulted in perceptible misfolding, then the 
probability that a wrong amino acid causes perceptable misfolding is 10 out of 4522 (i.e. the 238 
amino acids multiplied by the 19 possible wrong amino acids at each position). In their study, 
“ perceptible” misfolding appears to be 10%. Thus, for a typical mistranslation rate of 10-4 per codon, 
~500 codons per protein, and 4 × 107 total proteins per cell, there are > 4400 misfolded proteins per 
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While Freeland et al. reported on how the SCT minimizes the impact of errors, 
another study found an SCT feature that avoids errors in the first place. In 2001, 
Lim and Curran modeled the specificity of correct codon-anticodon duplex forma-
tion during translation [18]. One of the propositions of their model is that, for 
ribosomes to reject an incorrect duplex, the incorrect duplex must have at least one 
uncompensated hydrogen bond. This criteria for rejection is problematic when 
duplexes have a pair of pyrimidines — U (uracil, the RNA equivalent of T) or 
C — in the wobble position (i.e. third position in codon, first position in antico-
don). Pyrimidine bases are smaller than the G and A purine bases and, if they are 
in the wobble position, they allow certain mismatches in the second position to 
form non-Watson-Crick pairs thereby compensating their missing hydrogen 
bonds. These mismatches in the second position then fail to be properly rejected 
and result in a mistranslation event.

This problem of failed rejection nicely explains why 32 codons in the SCT are 
in “split boxes”, and the other 32 are in “family boxes”, i.e. the so called family/
non-family symmetry of the SCT (see Figure 1). This explanation begins with the 
observation that the failed rejection problem can be solved by modifying an anti-
codon’s pyrimidine in the wobble position such that it can no longer form a 
pyrimidine pair. If pyrimidines are modified in this way, then a single anticodon 
that could have recognized four codons can now only recognize two codons. In 
other words, there will now need to be one tRNA for the third position pyrimi-
dines, U and C, and another tRNA for the third position purines, A and G.

Lim and Curran’s explanation continues with another observation. If each tRNA 
could recognize four codons apiece, there only would need to be 16 tRNAs for 64 
codons. However, these 16 tRNAs could then only encode 16 amino acids. Life 
requires 20 amino acids and one termination signal, therefore at least some tRNAs 
must recognize less than four codons (see Figure 3). Conveniently, Lim and 
Curran showed that there is already a set of tRNAs that must recognize less than 
four codons — those that are modified to avoid the failed rejection problem.

The choice of which codon boxes in the SCT should be “split” is thus predeter-
mined by the same stereochemistry that determines which mismatches in the 
second position fall prey to the failed rejection problem. The codons that are 
 susceptible to failed rejection are those with N1A2, U1 or A1U2, and U1 or A1G2 — 
i.e. exactly the split boxes of Figure 1. The symmetry that is observed in the SCT 

cell. Which means that if a genetic code caused a ~0.02% increase in “wrong” amino acids relative 
to a different genetic code, it would result in one additional misfolded protein and would therefore, 
by Geiler-Samerotte et al.’s argument, experience negative selection. For comparison, a completely 
randomized code increases “wrong” amino acids >100 times more, relative to the universal code, 
than this factor of 0.02%.
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is not an accident, it is precisely the symmetry one would expect if the SCT was 
optimized to avoid translation errors, in particular the failed rejection errors due to 
unmodified pyrimidines in the wobble position.

Itzkovitz and Alon in 2007 described a third remarkable orthogonal advantage 
of the SCT: the assignments of UAA, UAG, and UGA as stop codons [19]. High 
frequency codons, such as those coding for aspartic or glutamic acid, can fre-
quently form stop codons if the reading frame shifts. Consequently, translation of 
a frame-shift error is halted more quickly on average in the real genetic code than 
in 99.3% of alternative codes, thus saving the cell significant expense. Correlated 
with this advantage is the SCT’s nearly optimal ability to contain secondary signal 
sequences within the protein-coding sequence, for example, those that encode 
regulatory and structural protein binding, and splicing sites.

The reason for the correlation between these two advantages is quite simple. 
Secondary signal sequences are likely to contain all trinucleotide combinations, 
including UAA, UAG, or UGA, but if any of these three combinations appear as 
in-frame codons in the protein-coding sequence they will be read as stop codons 
during translation. However, since, as noted above, UAA, UAG and UGA are 
frame-shifts of common codons, it is more probable that they can be success-
fully embedded in the protein-coding sequence. In other words, the first advan-
tage of the SCT (translation of frame shifted sequences stops sooner) leads to 
the second advantage (secondary signals are embedded more successfully) and 
vice versa.

Fig. 3.  Family/split-box ratio as a function of total tRNA count (shown in blue, fit with a black 
line). If each codon had one tRNA, the total tRNA count would be 61 (the three stop codons do not 
require tRNA) and the family tRNAs to split-box tRNAs ratio would be 32/29 (= 1.1, green line). If 
each amino acid used only one tRNA, the total tRNAs count would be 23 (not 20, since we are 
double counting arg, leu and ser, as described in the text) and the ratio would be 8/15 (= 0.53, purple 
line). The actual ratio, below 75 total tRNAs, starts at an absolute minimum of 9/18 and climbs to 
an average that is slightly below 1.1 before settling into an average of 0.85 for organisms with > 75 
tRNAs (linear fit). The fact that the ratio is below 1.1 for most organisms indicates that tRNA usage 
is economized via the mechanism described by Lim and Curran (see text).
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The fourth orthogonal feature of the SCT is its use of methionine as the initiat-
ing amino acid. In 2011 Lim, Curran and Garber devised a novel theory explaining 
interactions between biomolecules in solution.2 The lowest barrier to interaction 

2 Lim VI, Curan JF, Garber MB (2012) Hydration shells of molecules in molecular association. A 
mechanism for biomolecular recognition. J Theo Bio 301:42.

Fig. 4.  A new format for displaying the SCT. This version of the new format shows the structure 
of the 20 amino acid side chains. To identify which trinucleotide codons match which amino acids, 
follow four steps: 1) Find the quadrant that matches the 2nd base (U=north, G=south, C=east, 
A=west); 2) Find the square within this quadrant that corresponds to the 1st base (U=north, etc.); 3) 
Go to the corner of this square that corresponds to the 3rd base (U=north, etc.); 4) Read off amino 
acid. For example, the AUG codon stands for methionine and has its: 1) second base in the U (north) 
quadrant 2) first base in the A (west) square 3) third base in the G (south) corner. This new format 
is useful for showing different patterns in the SCT (see next figure). The rainbow color scheme used 
here is: most red for most hydrophobic, most blue for most hydrophilic, and grey for the three stop 
codons. Note, the “family” serine region of the SCT is labeled SerC and the “split-box” serine region 
is labeled SerG. Serine is the only amino acid that has codons on the SCT that are not contiguous, 
i.e. they cannot be connected by single mutations. To go from a SerC to a SerG codon requires at least 
two simultaneous mutations.
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results from hydrophobic molecules that present one another with the smallest 
surface area. A quick inspection of Figure 4 shows that lysine and methionine are 
the longest, unbranched amino acid residues. Of these two, only methionine is also 
hydrophobic. Indeed when Lim et al. calculated which residue had the lowest 
interaction barrier, methionine was by far the most optimal.

Besides these four orthogonal features (summarized in Table 1), there are addi-
tional SCT features that appear to be orthogonally optimized — three that will be 
given here as examples. First, the SCT uses fewer codons for rarer and more ener-
getically costly amino acids, thus conserving cellular resources, particularly in 
mitochondria [20]. Second, it has been shown that frame shifts of the coding and 
non-coding strands of genes (i.e. protein coding DNA) are more likely to translate 
into folded proteins than frame shifts of non-genes. In other words, the SCT facili-
tates the encoding of several proteins in a single region of DNA up to a maximum 
of six: three on one strand and three on the complementary strand [21]. This high 
compression of protein data occurs naturally in some viruses that, due the small 
volume of their capsids, must encode their protein data in their DNA  genome as 
efficiently as possible [22]. Third, the SCT ensures that more common amino 
acids are less prone to change due to a single base mutation relative to less com-
mon ones. This keeps the total number of amino acid changes lower. Interestingly, 
alternate codon tables that ensure this effect on both strands of the DNA are 
extremely rare, and again the SCT is “one in a million” in this respect [23].

These three additional features are reminders that there are undoubtedly more 
optimal aspects of the SCT that are awaiting discovery. In the next section, two 

Table 1.  Summary of four orthogonally optimized features of the SCT.

Name Evidence Extent of optimization

Error impact minimization Similar amino acids encoded 
by similar codons

Best possible codes, with 
restrictions1

Error occurrence 
minimization

Family/ split box symmetry, 
computer simulation

Specifies symmetry of code2

Secondary signal 
maximization

Stop codons frame shift to 
common codons

Stop codons vis-a vis common 
codons

Exit barrier minimization Initiating methionine has 
lowest exit barrier

specifies the initiating amino 
acids

1 The three restrictions are that all possible codes must have 1) the synonymous codon groupings of the SCT, 2) 
the stop codons of the SCT, and 3) must not be allowed to change the SCT’s groupings of biosynthetically 
related amino acids.

2 Placing 32 codons into four-fold synonymous groupings and the other, symmetry-related 32 codons into two-
fold synonymous groupings reduces the number of possible codes from 2164 (~1084) to 218×2116 (~1031) or a 
1053-fold optimization.
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theories for the origin of optimality in the SCT will be compared. The first theory 
depends on the adaptive selection of earlier codes. The second theory depends on 
the influence of external intelligence. These theories will be evaluated based on 
whether they plausibly explain the origin of the SCT’s optimality in the absence 
of metaphysical biases. They will also be evaluated based on whether they are 
conducive to future discoveries of SCT features.

The Origin of Optimality in the Standard Codon Table

The first section of this paper outlined the four theories for the origin of the SCT: 
frozen accident, error minimization, biosynthesis, and stereochemistry. The 
 second section examined orthogonally optimal features of the code, without speci-
fying models for their origin. In this section, origins are again discussed, but only 
the origin of the optimality of the SCT is considered. Since frozen accident, 
 biosynthesis and stereochemistry are not optimizing mechanisms and produce 
optimal features only as a collateral effect, they will not be discussed in this sec-
tion; rather, the error minimization theory will be examined in more detail and 
compared to the hypothesis that an external intelligence is responsible for the 
observed optimal features.

Table 1 lists four orthogonally optimal features and the extent of optimization 
in the SCT due to each one. At first glance, it may seem that one feature — error 
impact minimization — completely determines any and all optimization in the 
SCT, since using the error impact criterion alone the SCT was shown to be the 
most optimal of all possible codes [15]. However, there are three important 
restrictions placed on the possible codes to which the SCT is compared. First, 
these other codes must match the SCT in terms of synonymous codons, i.e. the 
other codes will have the same grey and black boxes shown in Figure 1, but with 
different amino acids in each box. Second, the other codes must match the SCT 
in terms of their stop codons, i.e. they all use UAA, UAG, and UGA as stop 
codons. Third, to construct an alternate code, amino acids cannot swap their 
 positions in Figure 1 with all others but only biosynthetically related ones. The 
four groups of related amino acids used to construct the alternate codes were: 1) 
Phe, Ser, Tyr, Cys, Trp; 2) Leu, Pro, His, Gln, Arg; 3) Ile, Met, Tyr, Asn, Lys; and 
4) Val, Ala, Asp, Glu, Gly.

The SCT is the best of all possible codes within a specific subset of possible 
codes. If one of the three restrictions is relaxed, the SCT is no longer the best of 
all. For example, the prior work of Freeland et al. did not include the third restric-
tion; as a result they found one alternative codon table out of one million attempts 
that outperformed the SCT in terms of error impact minimization [13]. Interestingly, 
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the other two restrictions are at least partially set by optimal features discussed 
earlier (Table 1). Error occurrence minimization [18] partially sets the first restric-
tion—matching synonymous codon boxes — and secondary signal maximization 
[19] roughly sets the second restriction — UAA, UAG, and UGA stop codons. 
With two of three restrictions in place, to a first approximation the SCT appears to 
be at least a “one in a million” code.

The question at this point is: What is the mechanism for the SCT’s optimiza-
tion? It is useful to consider three hypotheses — law, chance, and intelligence 
[24]. In other words, is the optimization best explained by a predictable, law-like 
process, by random chance, or by intelligent causation? To distinguish between 
these choices, it is useful to evaluate them sequentially, beginning with law-like 
processes. If no law-like processes explain the effect, the probability that chance 
processes should be considered. Finally, if chance is ruled out based on low prob-
abilities relative to the available time and opportunities, then intelligent causation 
is by default the best explanation for the effect.

Is there a law that can explain the SCT optimization? Several papers have con-
sidered this possibility [4, 11, 25]. For example, if there were primordial organ-
isms that all used different codon tables and if these organisms competed such that 
only the most fit lineage survived, then by the law-like process of  natural selection 
this lineage would become the last universal common ancestor (LUCA) and its 
codon table would become the standard for all of life.

Competition between separate lineages with different codes is deemed more 
likely than a changing code over time within a lineage, where each changed code 
would need to be backward compatible to the genetic messages of the previous 
code [2]. Yet despite being more likely, many publications have argued that the 
laws of competition between lineages cannot explain the SCT’s optimization [6, 
10, 16, 26–30]. The problem is that if the SCT is “one in a million” there must be 
a million competing genetic codes in the population of primordial organisms. This 
problem becomes worse when the optimization of the SCT approaches the “best 
of all possible codes”. In that case, the population of competing codes would need 
to approach 1084 — a ludicrous population size, considering that 1084 carbon atoms 
are a trillion, trillion, trillion times more massive than the earth.

Is chance, then, a reasonable explanation for the SCT’s optimization? In 2007 
Eugene Koonin invoked the chance hypothesis to explain the complexity of a 
“translation-replication” system, which would include the SCT, translation com-
ponents such as shown in Figure 2, and a host of other translation and replication 
machines [12]. How could a chance occurrence possibly explain even more com-
plexity and optimization than the SCT alone? Koonin’s answer is that, if our uni-
verse is but one of many in an infinite multiverse, “emergence of highly complex 
systems by chance is inevitable”.
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Koonin was criticized by Eric Bapteste in the open access reviewers’ comments 
that accompanied this paper for using a metaphysical argument that “could open 
a huge door to the tenants of intelligent design”. An appeal to an infinite multi-
verse, which has never been nor can ever be observed, is a poor way to rescue the 
chance hypothesis from overwhelmingly low probabilities. Better to rule out the 
chance hypothesis and proceed to the next hypothesis, for even if the particular 
intelligence responsible for a low probability effect is not known, the general pat-
tern of intelligence producing finely-tuned, optimized effects is well-known and 
well-studied.

Design is not controversial, but a designer is. All scientists admit that aspects of 
the universe — and biological systems in particular — conform to various designs 
that achieve various functions. Yet most scientists reject the possibility that an 
external intelligence, i.e. a designer, is responsible for the observed design.

There is a persistent, pervasive bias against the design hypothesis, which 
ensures that even if law and chance fail to explain a biological effect (e.g. the 
optimization of the SCT), external intelligence will never be considered as an 
option. However, once this bias is removed, the external intelligence hypothesis 
becomes the best working hypothesis. Therefore, it should be considered the most 
viable explanation until a natural mechanism can be found that explains the degree 
of SCT optimization, or until new data show that the current assessment of opti-
mization is grossly overestimated.

A lingering question is: Why this bias against external intelligence? Possibly, 
scientists worry that explaining some natural effects via an intelligent force will 
encourage all effects to be explained in this way, thereby dooming the scientific 
method. This is a reasonable concern. The final section of this paper, therefore, 
examines the benefits of using external intelligence as a working hypothesis in the 
specific case of SCT optimization.

Using the Hypothesis of External Intelligence 
to Guide Discovery

Before the discovery of the SCT in the early 1960’s, many researchers assumed 
that the code would be optimal in some respect. For example, the “diamond” code 
proposed by George Gamow in 1954 was optimal in its information storage [31]. 
A chain of N amino acids could be coded by a chain of N+2 mRNA letters, 
whereas, in the real SCT, N amino acids are specified by 3N mRNA letters. 
Another pre-SCT code, proposed by Crick, Griffith and Orgel in 1957, was 
“comma free” and optimal for avoiding frame shifts [32]. Still other codes had 
interesting mechanisms for automatically correcting errors in translation [33].
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With the discovery of the real SCT (see Figures 4 and 5 for a format that is 
slightly different than Figure 1), two features were immediately recognized: the 
SCT lacked the host of “nonsense” codons that were required in the comma free 
codes, and the SCT assigned similar codons to similar amino acids [34–36]. The 
first feature implied that the physical machinery of the genetic code (e.g. Figure 2) 
had to be vastly more complex — or more of a random accident — than originally 
envisioned. The second feature revealed a new type of optimization that was not 
anticipated, and, surprisingly, was not readily accepted as an optimization. The 
majority of publications for 30 years seemed intent on explaining away this opti-
mization and interpreting the lack of nonsense codons as evidence of randomness 
rather than complexity (see [37]) of the biosynthetic SCT origin theory via codon 
expansion, also called “codon capture”, where biosynthetically related amino 
acids capture the codons of amino acids that are already being used in the SCT [38]. 
In this theory, physiochemical similarities, not biosynthetic pathways, determined 
how similar codons were assigned to groups of amino acids.

Would SCT research have taken a different tack if external intelligence was 
considered as its possible source? Would it have taken over 30 years to demon-
strate that the obvious pattern of similar amino acids in similar codons confers an 
impressive level of error impact minimization?

Would other features — secondary signal encoding and error occurrence 
 minimization — have been discovered earlier?

Fig. 5.  Example patterns in the standard codon table. Left: Family/split-box symmetry. Right: 
Hydrophobic (red dashed lines) and hydrophilic (blue dashed lines) amino acids; rankings are the 
average of five commonly used indices.
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At least two papers in the late 1960s suggested that the observed pattern was 
real optimization and not an artifact of biosynthesis or codon expansion [37, 39]. 
However, only one of these took an experimental approach and actually tested the 
SCT against other possible codes, showing that it was more optimal than a random 
code [37]. This study from 1969 was only cited three times in the 1970s, but 
gained citations as interest in the optimization of the SCT grew in the late 1980s 
and into the 1990s. By the time Freeland and Hurst published their “one in a mil-
lion” paper in 1998, discussion of error impact minimization in the SCT was in 
full swing.

It is impossible to state unequivocally that optimized features in the SCT would 
have been discovered and discussed more rapidly in the absence of a bias against 
external intelligence. However, it is instructive to look at an example from archeol-
ogy, where external intelligence — i.e. human intelligence — is assumed to 
account for many features. The Rosetta Stone’s discovery in 1799 sparked wide-
spread global interest [40]. Copies were circulated to museums, and each new 
observation that brought scholars closer to cracking the hieroglyphs was heralded 
across Europe.

Contrast this scene with the discovery of the SCT. Certainly there was wide-
spread interest, though perhaps shorter lived; an article published three years after 
the SCT’s discovery bore the title “The Genetic Code after the excitement” [41].

The main difference was that the features in the SCT that we now know to be 
highly optimized were noticed immediately but explained away. Would the discov-
ery today of an intergalactic Rosetta Stone, with the potential to decipher an extra-
terrestrial language be explained away as an artifact? Certainly not. The bias for 
or against external intelligence makes all the difference.

There are more features of the SCT that merit examination. Does the proximity 
in the SCT of biosynthetically related amino acids merely reflect its historical 
 evolution or could this, too, be an optimized feature? Is it significant that the 
SCT’s stop codons would have the weakest codon-anticodon interactions? These 
and other features will surely be investigated, but the speed at which they will be 
studied would accelerate if researchers considered the SCT a possible product of 
external intelligence, with optimized, carefully-engineered features awaiting 
discovery.

Conclusion

The SCT is by no means the most complex piece of the biological world. On the 
contrary, its relative simplicity is the reason it has been examined in this paper. 
Since it is an arrangement of 20 amino acids (and the signal for “stop polymerizing 
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amino acids”) with known properties onto 64 trinucleotides with known proper-
ties, it is an ideal test case to examine orthogonal optimized features and to apply 
the filter of law, chance, and intelligence. If the optimization of the SCT lies 
between “one in a million” and “the best of all possible codes” as is likely to be 
the case, the law and chance hypotheses are increasingly untenable and external 
intelligence becomes the most promising working hypothesis. As new orthogo-
nally optimized features are discovered, the explanatory divide between law and 
chance on one hand and intelligence on the other becomes more pronounced.
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A New Model of Intracellular Communication 
Based on Coherent, High-Frequency 

Vibrations in Biomolecules

L. Dent

Pepperdine University/NASC, 24255 Pacific Coast Highway, Malibu, CA 90263–4321, 
USA.  laurieanne.dent@pepperdine.edu

Abstract

Chemistry has been the ruling paradigm for understanding the communication network that inte-
grates a living cell. However, biochemistry alone is insufficient to explain how widely-separated 
biomolecules locate and move toward one another with accuracy and speed. We propose a new 
model wherein cytoplasmic motion is vibrationally-directed due to a community of oscillating 
 biomolecules. DNA vibrations have been predicted in the 2-GHz range, thus we used high-frequency 
laser-Doppler  vibrometry to test the hypothesis that resonance-driven molecular motion would be 
detectable as picometer surface displacements in live onion epidermal cells and fish eggs but would 
be absent in dead cells. Although, no surface vibrations were detected under these conditions, we 
discuss implications for the vibrational model of intracellular communication and suggest future 
experiments.

Key words: cellular communication networks, intracellular signaling, DNA vibrations,  biomolecular 
resonance, biological oscillators

Introduction

Cells are constantly processing information from their external and internal 
 environments in order to function properly. Information about the status of energy 
sources, cell-specific functions, and the condition of the  genome must be communi-
cated continuously. To give a few examples: a) the presence of a carbon source, 
lactose, in the environment induces expression of bacterial lac operon genes, effi-
ciently optimizing the biochemistry of the cell for lactose utilization; b) reciprocal 
signaling between adjacent cells expressing wingless and hedgehog genes maintains 
precise segmental boundaries in the developing fruit fly; and c) the p53 DNA repair 
pathway is activated when chromosomal damage has been detected. These astonish-
ingly complex cellular communication systems, constituted of biochemical  pathways 
and signaling cascades and involving interactions between myriads of biomolecules, 
have been described only in small part by biochemists and molecular biologists. 
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So complicated are subcellular processes, that in recent years computer animators 
have been employed to help us visualize these sophisticated molecular machines and 
 processes at work. When watching an animation of, say, gene  expression, we see 
biomolecules “flying around”,  apparently guided to their targets;  protein transcrip-
tion factors glide to their  specific DNA-binding sequences, mRNA transcripts seem 
to be directed through nuclear pores toward ribosomes for  translation, tRNAs land 
on a ribosome and perfectly align with mRNA to make the anticodon-codon hybrid. 
What we cannot appreciate from these animations are the blinding speeds at which 
these processes occur. DNA replication occurs at a rate of 50 nucleotides per second 
in humans, and Escherichia coli bacteria can add 40 amino acids per second during 
protein synthesis. Animators have greatly reduced the speed of these systems so the 
motion can be apprehended by the human eye. How, then, do these biomolecules 
locate each other with such accuracy and rapidity?

Classically, Brownian motion has been invoked as the mechanism in cellular 
biochemistry wherein two biomolecules perform a “random walk” through the 
cell, and then by chance, collide at just the right orientation to allow a chemical 
reaction [reviewed in 1]. This may happen in cases where enzymes and substrates 
are at high density and close proximity — such as in a typical bacterium, where 
each  soluble enzyme contacts every other enzyme and substrate once every 
 second — ,but it is not sufficient to explain cases where large molecules must find 
each other, starting from relatively great distances. Illustrations of this problem 
would include the precise synapsis of homologous chromosomes during meiosis I, 
or the  trans-acting factors (proteins that initiate transcription) which must locate 
a  specific DNA sequence on a specific chromosome amid billions of base pairs 
during gene regulation. Brownian motion simply does not appear to be adequate 
to overcome the “crowded-cell problem” in terms of the need for vast numbers 
of macromolecules to find their distant targets quickly. These well-established 
 biochemical models of cellular communication do not adequately consider the 
localization and transport information that is required for all the component parts 
to find each other and react in assembly line fashion. For example, forty years ago, 
it was shown that the  targeting of the lac repressor to its DNA-binding site 
occurred up to 1,000 times faster than the predictions of diffusion and random 
collision [2]. This finding spawned what has become a very large research effort 
in structural and molecular biology focused on discovery of protein-nucleic acid 
target-search mechanisms. These studies have yielded hypothetical 
 “one- dimensional diffusion” mechanisms of protein hopping, sliding, and 
intersegmental transfer. In their excellent review of experiments investigating 
these mechanisms, Gorman and Green [3] conclude,

Importantly, none of the published studies where one-dimensional diffusion was 

visualized used DNA substrates that actually contained specific target sites for the 
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proteins being studied, so diffusion and target binding still remain to be seen in 

the same reaction trajectory

Thus, a chronic challenge in diffusion and macromolecular crowding research is 
the difficulty of interpreting data from experimental or theoretical studies that 
strain to approximate the complex intracellular environment [1, 4, 5].

While the role of cytoskeletal trafficking of biomolecules within the cytoplas-
mic [Drosophila axis patterning: 6, 7, 8; signal transduction pathways in yeast: 9; 
hyphal polarity in fungi:10; review: 11] and nucleoplasmic [plant chromatin 
remodeling: 12; interphase chromosome repositioning: 13, 14; Cajal bodies and 
U2 snRNA gene:15; nuclear rearrangement and transcription enhancement: 
16, 17] compartments is an integral principle, cytoskeletal mechanisms cannot 
account for all instances of biomolecular transport. Curiously, filamentous actin 
(the cytoplasmic type) is not found in the nucleus whereas many actin-binding 
proteins (ABPs) are. The ABPs of the nucleus accomplish chromatin remodeling 
via nucleosome and histone interactions. When actin is translocated to the nucleus, 
it appears to be facilitated by cofilin [18]. These beg the question of how actin and 
non-filamentous actin-related proteins themselves find their specific nuclear 
 targets. An as yet undiscovered mechanism must be at work in marshaling distant 
biomolecules involved in coordinated cellular functions.

To address the problem of how biomolecules might find each other apart from 
simple Brownian motion, we have developed the following hypothetical model. We 
propose that the molecular motion in the cytoplasm is not truly random, but is 
 vibrationally-directed and coherent due to a community of oscillator structures within 
chromosomes and proteins, within a narrow distribution of resonant  frequencies. We 
predict that specific nucleotide sequences will vibrate at characteristic resonances, 
and that these are closely matched to the inherent oscillation frequencies of the 
α-helices in functionally-linked proteins (e.g., transcription factors). Such harmonic 
interaction might facilitate the mutual identification and attraction of protein-DNA 
binding. These vibrationally-coupled “communication channels” may then synchro-
nize the resonant motifs within other biomolecules, perhaps establishing oscillations 
across a family of harmonic frequencies, with the DNA molecule vibrating at the 
fundamental frequency; and in so doing, attract biomolecules to one another with 
great specificity while providing an essential cell “lubricant” to free cellular  molecules 
from the “stickiness” associated with the cytoskeleton and crowded cytoplasm so that 
molecules can find each other with greater rapidity. This novel hypothesis may help 
us to understand how molecules might interact from a distance, and if correct, would 
reveal an entirely new level of biological information.

Vibrations in DNA molecules and proteins have been known for more than 
twenty years. Vibrational modes in DNA and proteins have been predicted theo-
retically [19–23] and measured experimentally using Raman spectroscopy 
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techniques [24–28]. One of the principal investigators, studying theoretical  models 
of DNA vibrations in the microwave range, was K. C. Chou who predicted an 
ultra-high frequency vibrational mode in DNA, around 2 GHz [23].

In this light, we felt our model was potential useful and should be tested. Since 
DNA vibrations in the gigahertz range have been predicted [23] and eukaryotic 
nuclei have a high DNA content, it seemed reasonable to begin looking for 
 ultra-high frequency vibrations in the vicinity of a cell nucleus. These collective 
vibrations may be transmitted to the cell surface and detectable as ultra-high 
 frequency displacements. In this paper, we present preliminary experiments aimed 
at detecting such coherent molecular motion within living cells, which should be 
absent from dead cells, in onion cells and fish eggs using ultra-high frequency 
laser-Doppler  vibrometry.

Materials and Methods

Cellular material

We prepared plant and animal cell specimens in order to investigate the possible 
presence of high frequency vibrations at the cell surface. Onion epidermal cells 
were selected as representative plant cells because of the following attractive fea-
tures: size, proximity of nucleus to cell surface, and ease of preparation. Cells are 
large (approximate length = 100 µm) and form a flat monolayer which can be teased 
easily from an onion scale by use of fine forceps. Also, the nucleus is relatively large 
(approximately 10-µm diameter), larger than some eukaryotic cell types. Owing to 
the size of the nucleus, it easily visible under low magnification and lies near the 
cell surface which consists of a plasma membrane covered by a cell wall. Live cells 
were obtained from freshly-harvested green onions. We determined whether cells 
were living by observing cytoplasmic streaming under light microscopy.

Animal cells were obtained from freshly killed female jacksmelt fish which had 
been caught the same day by fishermen at Newport Beach, California. We  manually 
expelled roe from two gravid females, and hundreds of unfertilized fish eggs were 
available for immediate analysis. Eggs were spread into a single layer in a plastic 
petri dish and assumed to be viable based on the rapid collection protocol.

Laser-Doppler vibrometry

A 0.5-cm2 section of live, green onion epidermis was excised, and then flattened 
onto a dry microscope slide with the waxy surface facing up. The specimen was 
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positioned on the stage of the vibration-isolated workstation of a Micro System 
Analyzer (MSA-500-TPM2–20-D, Polytec, Inc., Irvine, California, USA) which 
combined microscopy with scanning laser-Doppler vibrometry for detection of 
surface vibrational signals across a large bandwidth of frequencies.

First, a living onion cell was located under 50X magnification via the live video 
stream capabilities of the MSA Optical Unit, and then a 1-µm laser spot was 
focused over the nucleus. We acquired cell surface displacement data over two 
frequency ranges, 0–20 kHz and 30 kHz–24 MHz. For the first range, the surface 
velocity was measured and then converted to displacement using the Polytec 
vibrometer software. For the latter frequency range, the surface displacement was 
measured directly. Data acquisition as well as conversion of the raw data into the 
frequency domain, using a Fast Fourier Transform (FFT), was performed within 
the Polytec vibrometer software. We utilized an extremely broadband approach 
because we hypothesized that the supercoiling of DNA molecules may lower the 
functional frequencies, although the work of Chou and his colleagues predicted 
DNA vibrations in the ultra-high frequency range. In probing the cell surface for 
the presence of vibratory signals, both single-point measurement and scanning 
routines were used. In the latter, the optical unit was programmed to analyze 
 several points across a two-dimensional array of the cell surface above the nucleus, 
and then the beam collected velocity/displacement measurements at each point 
according to this pre-programmed routine. Off-line data analyses were performed 
in MATLAB (v. 7.10.0.499, R2010a, The MathWorks, Inc.).

For comparison with live cells, we continued to collect measurements from 
cells that showed no cytoplasmic streaming after having been probed for several 
minutes with the beam; these were presumed to be dead due to damage from the 
laser, although no defects could be seen in the vicinity of the laser spot. Also, we 
took measurements on other varieties of onions, red and white, that did not show 
cytoplasmic streaming; however, we could not ascertain whether the cells were 
dormant or dead.

On the basis of Chou’s theoretical modeling of DNA vibrational modes in the 
gigahertz range, onion cells were also examined for the presence of ultra-high 
frequency surface vibratory signals, up to 1.2 GHz, using the UHF-120 Ultra High 
Frequency Vibrometer (Polytec, Inc., Irvine, CA, USA). As in the case of the 
MSA-500 for the frequency range of 30 kHz to 24 MHz, the UHF-120 also 
 measures surface displacement directly. Experimental protocols and data analysis 
similar to those used with the MSA-500 system were carried out for ultra-high 
frequencies.

We repeated these tests on fish eggs, employing the same measurement 
 protocols described above. Here, the chief difficulty was determining the health of 
the cells; we did not have an assay for live versus dead animal cells.
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Both the MSA-500 and the UHF-120 are laser Doppler vibrometers, which are 
precision non-contact optical transducers used for detecting vibration velocity and 
displacement at a fixed location. The technology is based on the Doppler Effect, 
sensing the frequency shift of the back scattered laser light. The surface velocity 
is determined using the following relationship:

 
*

2
Df ln =  

v is the surface velocity of the object at the location of the laser spot, fD is the 
Doppler shift in frequency and λ is the wavelength of the laser light.

Results

We tested the prediction that ultra-high frequency vibrations emanating from the 
nucleus of live onion epidermal cells and fish eggs would be detectable at the cell 
surface, whereas in dead cells, no surface vibrations would be present.

Cell surface vibrati ons are not detectable in onion cells

Highly-sensitive laser-Doppler  vibrometry capable of detecting frequencies up to 
1.2 GHz with picometer displacement resolution did not reveal a passive vibratory 
signal at the surface of an onion epidermal cell (Fig. 1a-c). The only peaks present 
in the lower frequency bandwidth, 0–40 kHz (Fig. 1a), were noise components 
from the electronic circuitry. For example, peaks below 2.5 kHz included 60 Hz 
plus harmonics associated with the power grid; also, the two peaks around 24 and 
25 kHz (arrow) were characteristic laser resonances from its power supply. We are 
confident that any nucleus-originating vibratory signal propagated to the cell 
 surface would have been detectable with this instrumentation. It is generally 
accepted that plasma membranes are 7–10 nm-thick, so with a broadband noise 
floor in the order of a few picometers, any peaks of biological origin would have 
been apparent. Similarly, Figure 1b shows no cell surface vibrations across a 
 frequency bandwidth of 30 kHz to 20 MHz. Here, the noise floor encompasses 
about 350 pm. The tailing off of signal magnitude observed at the upper ends of 
the frequency spectra is a function of filter roll-off (Fig. 1a and b, asterisks). 
Finally, no ultra-high frequency vibrations up to 1.2 GHz were present at the cell 
surface (Fig. 1c); the noise floor was about 20 pm. Resonances of biological origin 
characteristically produce broad peaks or “humps” in a magnitude-frequency plot. 
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Here, only “lines” are present, spikes of energy at a single frequency, typical of 
laser resonances (coherent light) and electronic artifacts.

Measurements collected from epidermal cells in other varieties of onions, red 
and white, showed a similar lack of cell surface vibrations (data not shown).

Fig. 1.  Broadband frequency analyses performed by laser-Doppler vibrometry show no cell surface 
vibrations in onion epidermal cells or fish eggs. (a) Surface displacement magnitude as a function of 
lower frequencies, 0–40 kHz, is shown for a region over the nucleus of a live green onion. Low-
frequency peaks, <2.5 kHz, are non-biological and represent electronic noise (e.g., fundamental and 
harmonics of 60 Hz contribution from electrical power grid). The log-transformed y-axis reveals two 
prominent peaks around 24–25 kHz (arrow) known to represent the laser power supply. The upper 
bandwidth limit of the decoder is evident in the filter roll-off response at higher frequencies 
 (asterisk). (b) The same specimen in ‘a’, analyzed for higher frequency vibrations across a range of 
30 kHz–20 MHz, produces no signal above the noise; and then, again, (c) for ultra-high frequencies, 
up to 1.2 GHz, where peaks present are not of biological origin. (d) Also, no peaks of biological 
origin are present in a fish egg analyzed for ultra-high frequency surface vibrations. It is important 
to keep in mind that all the vibration signals represented in the plots (a) through (d) are well below 
1 nm, which is very small.
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Ultra-high frequency cell surface vibrati ons are not detectable 
in fi sh eggs

We used ultra-high frequency laser-Doppler  vibrometry to probe for cell plasma 
membrane vibrations on unfertilized fish eggs for comparison with onion cells 
which have a cell wall. No resonance peaks of biological origin were present in 
frequency analyses up to 1.2 GHz (Fig. 1d; similar to experimental parameters of 
Fig. 1c); only artifactual resonance lines appeared above the approximately 15-pm 
noise floor. We conservatively suggest that these data were collected from viable 
oocytes, since only two hours had lapsed between collection of fish at the pier and 
analysis in the laboratory.

Discussion

In this study, we are seeking to test one hypothesis that arises from a new model 
of a communication network that may integrate a living cell. Our model proposes 
that nuclear-originating, broadband vibrational frequencies elicit sympathetic 
vibrations in functionally-related biomolecules and order the molecular motion of 
the cytoplasm. To our knowledge, this study is the first test of the vibrational 
model of intracellular communication. We tested the specific prediction that cell 
surface vibrations will be present as ultra-high frequencies due to the propagation 
of coherent molecular motion, especially emanating from the nucleus; further-
more, we predicted that vibrations would be present in live cells but absent in dead 
cells. Although we were unable to detect vibrations on the surface of living cells 
across a broad frequency range using the highest-precision, most-sensitive instru-
mentation available, we propose the following causes may have prevented signal 
detection, including (i) constraints of cell architecture, (ii) heat damage during 
laser measurements, and (iii) the limitation of detecting frequencies above 
1.2 GHz.

Plant cells are surrounded by a rigid cell wall. This thick, inflexible structure 
may have damped any high frequency vibrations that may have propagated to 
the perimeter of the cell. However, animal cells do not have a cell wall, and we 
were not able to detect any surface vibrations on the fish eggs. It is possible that 
nucleus-originating vibrations are not reaching the cell’s plasma membrane. The 
filtering properties of the nuclear envelope in response to compressional waves are 
not known. Its double-thick phospholipid bilayer, separated by a space of 20–40 nm, 
may be sufficient to restrict intranuclear vibrations to the nuclear  compartment. 
Even if some vibratory energy were transmitted to the cytoplasm, the  filtered 
 signal may attenuate rapidly, especially as frequency increases. One might imagine 
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that the intranuclear environment — a relatively small space packed with nucleic 
acids and other biomolecules — requires a communication system which utilizes 
ultra-high frequency carrier signals for high-energy, short-range signaling. If, 
therefore, DNA is oscillating at frequencies in the gigahertz range, it may not be 
possible, due to the short reach of the vibrational energy, to detect the signal at the 
cell surface, whether plant or animal.

We also considered that the cells may have sustained heat damage from the laser 
beam during scans, denaturing DNA and proteins and, thus, disrupting  normal cell 
functions. For this reason, we were careful to check for cytoplasmic streaming 
after each point scan of onion epidermis to confirm the health of the cell. However, 
following one extended multi-point scanning routine, no cytoplasmic streaming 
was observed, and we inferred the cell had sustained heat damage from the laser 
measurement. The fish eggs, without the additional protection of a cell wall, may 
be even more liable to laser damage. In both laser-Doppler  vibrometry systems, 
the MSA-500 and the UHF-120, mechanisms are in place to minimize exposure of 
the specimen to the laser; the laser power can be attenuated manually (MSA-500), 
or a built-in gating function dims the laser when measurements are not being taken 
(UHF-120).

Detecting out-of-plane vibrations of 1.2 GHz is at the limit of cutting-edge 
laser-Doppler vibrometry, however, it is unlikely to be “good enough.” On the 
basis of the predictions of Zhang and Chou [23], though, 2-GHz vibrational modes 
in DNA would, indeed, be beyond the detection capabilities of the instruments 
used in these experiments.

Of these possible explanations for the absence of cell surface vibrations in our 
experiments, I believe the most likely is the compartmental organization of the cell. 
Suppose the mechanism of intracellular communication includes an intranuclear 
communication network consisting of ultra-high frequencies generated by DNA. 
One might expect the vibratory frequency to be predictably related to DNA nucleo-
tide sequence; possibly, prominent resonances could develop most easily across 
sequences of  tandem DNA  repeats. It is interesting that more than 50% of the 
 human genome consists of repetitive DNA. Much of this repetitive DNA is located 
in the centromeres of chromosomes (which facilitate proper segregation of 
 replicated chromosomes during mitosis). Centromeric DNA is characterized by 
repetitive, simple, non-coding sequences called “satellite” DNA; one type in par-
ticular, α-satellite DNA, consists of a 171 bp-long repeating unit, and thousands of 
tandem arrays may stretch over one million bases of a chromosome. The higher-
order molecular structure of centromeric DNA has been difficult to study, however 
it may be similar to non-centromeric DNA structure which has been compared to a 
“solenoid” — 160 bp of DNA wrapped twice around a histone octamer core 
(nucleosome) which is further coiled into a superhelix that contains 
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six nucleosomes per turn [29]. (The assumption of higher-order supercoiling in 
centromeric DNA  motivated our search for cell surface vibrations in the megahertz 
frequency range — larger coils should affect downward frequency modulations.) It 
may be that the three-dimensional architecture of a centromere fundamentally 
based on tandem repeats of DNA generates a standing oscillation which could act 
as a vibratory signal, possibly ultra-high frequency, to other biomolecules within 
the nuclear compartment.

It would seem, then, that the operation of the vibrational model may be limited 
to the intranuclear compartment. How might other biomolecules in the nucleus 
receive this signal? The first three-dimensional structure of a biomacromolecule to 
be solved was the α-helix in proteins in 1948 by Linus Pauling who later won a 
Nobel Prize for his discovery. These α-helices may function as resonance structures 
within proteins, something like an antenna. Notably, many proteins that interact 
with specific DNA sequences have multiple α-helix domains; for example, the 
α-helices of the p53 tetramer (modulates the cell cycle by controlling  expression of 
DNA repair proteins) are closely associated with the DNA helix in predicted three-
dimentional models of the complex. It may be that the α-helices of DNA-binding 
proteins have characteristic resonances that are related fundamentally or by har-
monics to the resonance of its specific DNA sequence. These functionally-related 
biomolecules may oscillate within a narrow bandwidth such that spontaneous 
sympathetic vibration occurs, generating directed, rapid  movement between 
 protein and target DNA sequence. In the relatively small, “noisy” nuclear compart-
ment, densely populated with nucleic acids and proteins, an ultra-high frequency, 
high-intensity, but short-range signaling network, shielded from the rest of the cell 
by a double-thick phospholipid bilayer nuclear envelope, may constitute ideal 
 conditions for rapid, high-precision intranuclear communication.

Molecular vibration as a mechanism for carrying information via biomolecules 
is not entirely without precedent. Recently, behavioral studies in fruit flies 
(Drosophila melanogaster) showed that the animals could discriminate between 
isotopes of the same odorant [30]. The researchers were interested in testing the 
mechanism of odorant-receptor recognition, which is not understood. Traditionally, 
odor recognition has been attributed to a biochemical mechanism where binding 
affinity depends on a “lock-and-key” fit between odorant and receptor. In this 
study, flies were trained to choose between deuterated and nondeuterated odorants 
that would have had the same molecular shape but would have differed in vibra-
tional modes due to differences in mass numbers of the atomic nuclei. Although 
this study of odorant recognition strongly suggests that vibrational differences in 
molecules carry different information detectable by the animal’s nervous system, 
it does not go as far as our hypothesis which suggests that different vibrational 
modes in biomolecules give rise to directed motion in a medium.
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The theoretical grounds for resonant mechanical vibrations giving rise to 
directed motion may be found in the asymmetry of biomolecules. Asymmetrical 
objects that are enveloped by moving fluids experience differential pressures at 
different points on the object, resulting in motion of the object down the pressure 
gradient. A classic example is an airfoil that experiences lift due to lower fluid 
pressure on the more-curved upper surface where fluid is flowing faster relative to 
the flat lower surface. Asymmetrical biomolecules like DNA and proteins 
 vibrating in resonance may create regions of low pressure by displacing more fluid 
on one side, between them where the molecules can “fall together”, sliding down 
a steep pressure gradient, perhaps something like the nodal patterns of Chladni 
plates that change as a function of resonant frequency. An interesting study by 
Baldwin and colleagues [31] showed that DNA molecules aggregate in vitro in a 
sequence-specific fashion. They constituted a mixture of two types of double-
helical DNA molecules with similar nucleotide composition and length but 
 differing in nucleotide sequence, labeled with green or red fluorescent dye, and 
then used confocal imaging to quantify the fluorescence to indirectly measure the 
segregation of DNA. They observed that in a protein-free, electrolytic environ-
ment, DNA molecules with similar sequences aggregated, while DNA molecules 
with dissimilar sequences segregated as evidenced by significant color separation. 
The mechanism they proposed was based on the ability of double helices to 
remain in register because of the sequence-dependent pitch of juxtaposed DNA 
molecules. In an important DNA–DNA interaction like homologous chromosome 
synapsis, the result of this study is powerfully suggestive because it rules out 
mechanisms of Brownian motion and cytoskeletal transport.

If our vibration-based model is limited by the nuclear envelope to intranuclear 
communication, what form of energy might carry the information that integrates 
the entire cell? For example, how might a specific transcription factor manufac-
tured by ribosomes in the cytoplasm get “called up” for translocation to the nuclear 
compartment? It is known that many cellular processes are affected by electromag-
netic fields [32–35]. Thus, another component of our model, not addressed by the 
preliminary experiments of this paper, proposes there is a cellular (“global”) posi-
tioning system based on electromagnetism that establishes a three-dimensional 
coordinate system across the cell. In addition to providing spatial coordinates, it 
may be that DNA or another nucleus-associated biomolecule,  generates timing 
information, a kind of “clock frequency” (as in a computer), that provides the 
fundamental frequency and harmonizes cellular components and biomolecules via 
families of harmonic frequencies. More locally, functionally-related biomolecules 
may have intrinsically-oscillating electromagnetic  resonances that vibrate sympa-
thetically and generate a local field within which directed motion may occur. We 
have begun to explore the theoretical basis for resonance between biomolecules 
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that must locate a specific target within a broad search area — transcription factors 
and their specific DNA-binding sequences. Specifically, we are in the process of 
planning computer simulation-based investigations of the model’s prediction that 
molecules with similar vibrational signatures may attract at a distance, allowing 
directed molecular motion in the cell.

While this study provided no evidence for our hypothesis that living, nucleated 
cells have a vibration that may originate in the nucleus and cause coherent cyto-
plasmic motion, we hope to find a suitable cell model and the right experimental 
and computational approaches to continue testing the vibrational model of intra-
cellular communication. Developing an in vitro system where resonance 
 correlations between DNA-binding proteins and DNA can be studied may be the 
next logical step. Raman spectroscopy techniques may reveal frequency patterns 
in functional families of biomolecules. I strongly believe the  attraction-at-a- distance 
mechanism is based on a resonance principle, but whether the resonance may be 
mechanical or electromagnetic or a combination of both—will have to wait for 
future experiments.

Addendum

Other researchers are also seeking evidence for a  resonance principle at work in 
directing important cellular events. They have predicted from theoretical models 
that  electrical fields arising from synchronized oscillations within centrosomes, 
microtubules, and chromatin drive centrosome mov ements and homologous 
 chromosome synapsis during mitosis and meiosis (Zhao and Zhan, 2012a); and 
that “chromatin oscillation cluster” formation may coordinate the efficient tran-
scription of genes across the genome (Zhao and Zhan, 2012b). See references 
Zhao Y, Zhan Q (2012a) Electrical fields generated by synchronized oscillations 
of microtubules, centrosomes and chromosomes regulate the dynamics of mitosis 
and meiosis. Theor Biol Med Model 9:26.; Zhao Y, Zhan Q (2012b) Electrical 
oscillation and coupling of chromatin regulate chromosome packaging and 
 transcription in eukaryotic cells. Theor Biol Med Model 9:27.
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Getting There First: An Evolutionary Rate Advantage 
for Adaptive Loss-of-Function Mutations
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Abstract

Over the course of  evolution organisms have adapted to their environments by mutating to gain new 
functions or to lose pre-existing ones. Because adaptation can occur by either of these modes, it is 
of basic interest to assess under what, if any, evolutionary circumstances one of them may predomi-
nate. Since mutation occurs at the molecular level, one must look there to discern if an adaptation 
involves gain- or loss-of-function. Here I present a simple, deterministic model for the occurrence 
and spread of adaptive gain-of-function versus loss-of-function mutations, and compare the results 
to laboratory evolution experiments and studies of evolution in nature. The results demonstrate that 
loss-of-function mutations generally have an intrinsic evolutionary rate advantage over gain-of-
function mutations, but that the advantage depends radically on population size, ratio of selection 
coefficients of competing adaptive mutations, and ratio of the mutation rates to the adaptive states.

Key words: gain-of-function mutation, loss-of-function mutation, rate of fixation

1. Introduction

In On the Origin of Species Charles Darwin emphasized that  natural selection is 
relentless, continuously monitoring each organism for its fitness, selecting those 
with an advantage and weeding out the disadvantaged [1]. However, as Darwin 
also knew, an organism’s advantage in a particular set of circumstances did not 
have to involve the gain of a new ability, such as the power to fly or swim. Indeed, 
it could involve the loss of those abilities. Flightless birds had adapted to their 
habitats partially by abandoning such a faculty. Some organisms went even fur-
ther. Darwin described some barnacles in which the male was reduced to a trans-
parent sac, with little but a reproductive system remaining [2]. By specializing in 
this way, the barnacles and their descendants presumably gained an adaptive 
advantage over competitors.

In the nineteenth century Darwin and his contemporaries could identify muta-
tions only through their phenotypic effects. However, with the progress of biology 
especially in the last half-century, contemporary science can now characterize 
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mutations also by their molecular effects to the genetic material of a species. In 
order to understand the roles of loss-of-function (LOF) versus gain-of-function 
(GOF) mutations, one must keep phenotypic versus molecular changes separate. 
An altered, visually observable phenotype may be due to any of a number of dis-
parate underlying molecular mutations. For example, a mutant mouse that is 50% 
larger than its litter mates might have had the gene for a repressor protein that 
switches off production of growth hormone deleted. At the molecular level, that 
would be an LOF mutation, since a functional molecular feature was deleted, even 
though the increased size of the mouse may strike the casual observer as a 
 gain-of-function. On the other hand, a large mutant mouse might be due to the 
formation of a new promoter site for a transcription factor near a gene involved in 
growth, which would be a GOF mutation, since a new functional molecular feature 
(the promoter site) was produced. In this paper I will consider LOF and GOF 
mutations as affecting functional molecular features such as genes and regulatory 
elements, no matter what their possible phenotypic effects may be.

2. The model

Consider a population of organisms that comes under a new selective pressure. To 
respond to the pressure two different adaptive mutations are postulated to be 
potentially available: one which results in the gain of a molecular function, and 
another which results in the loss of one. What factors might affect the probabilities 
of either kind of mutation becoming fixed in the population in competition with 
the other? One factor of immediate importance is the rate of appearance of the 
adaptive mutations. It is very often possible to eliminate a molecular function by 
a variety of mutations. GOF mutations, on the other hand, are generally much 
more specific, sometimes being produced in only one way.

As an illustration, consider several mutations to human genes that give a meas-
ure of resistance to malaria. The best known such mutation is the sickle cell gene 
in which, by means of a single A→T transversion, the codon for a glutamic acid 
residue in the sixth position of the β-chain globin gene is converted to a codon for 
valine [3]. This can be considered a GOF mutation, because the hemoglobin gains 
a self-association site on its surface, allowing the individual proteins upon deoxy-
genation to aggregate into microtubular-like structures [4]. By an as-yet-unknown 
mechanism, the polymerization negatively affects the growth of the malarial 
 parasite (which spends part of its life cycle in the red blood cell) [5, 6]. Another 
mutation which confers a measure of resistance to malaria is deficiency of 
 glucose-6-phosphate dehydrogenase (G6PD), in which a mutant gene produces 
little or no functional enzyme [7]. For reasons that are unclear, this interferes with 
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parasite viability. Population genetic studies have shown that hundreds of separate 
mutations have led to deficiency of wild-type G6PD in populations at risk for 
malaria. On the other hand, the mutation producing the sickle gene is thought to 
have arisen de novo only a few times in the last 10,000 years, or perhaps only 
once [8].

The reason for the disparity in the number of de novo mutations is straightfor-
ward. To secure a sickle mutation a particular nucleotide of the β-globin gene must 
be substituted. Since the nucleotide mutation rate of humans is on the order of 10−8 
substitutions/ generation, that is also the de novo rate of appearance of the sickle 
gene [9]. On the other hand, there are many ways to produce a nonfunctional pro-
tein such as malaria-resistant G6PD. For example, during replication the insertion 
of a nucleotide anywhere within the coding sequence results in a frame-shift and 
likely an inactive polypeptide. Deletion of a nucleotide in the coding region will 
have the same affect, as will alteration of a codon from sense to nonsense. Longer 
insertions and deletions will frequently have the same effect. Missense mutations, 
although likely not completely inactivating the protein, will often make the protein 
less stable or less functional. Thus, considered as a class, the mutation rate from a 
functional to a nonfunctional gene may be several orders of magnitude greater 
than the basic nucleotide mutation rate. (Indeed, the adaptation rate of E. coli, 
whose generational nucleotide mutation rate is 50-fold lower than that of humans, 
has recently been measured as 10−5)[10]. For the two classes of mutations, in this 
paper I explore the effect of this factor on the evolutionary rate of spread of 
 adaptive mutations as a function of population size, mutation rate, selection coef-
ficient, ratio of selection coefficients of the competing adaptive mutations, and 
ratio of mutation rates to the adaptive state.

Calculations were performed using Mathematica [34].

3. Results

3.1 Relati vely small populati on sizes

In this section I consider small population sizes (Ne << 1/v), where Ne is the 
 effective population size and v is the mutation rate per generation. Unless other-
wise stated, organisms are assumed to be haploid (because most laboratory  evolu-
tion experiments have been done with haploids), and the model is developed 
accordingly. The resulting equations can be applied to diploid organisms by 
replacing Ne by 2Ne.

In order for an adaptive mutation to become fixed in a population of relatively 
small size two separate processes must occur, each with its own time scale: (1) if 
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the mutation does not yet exist in the population when the selective pressure 
begins, then the expected waiting time to the appearance of the selected mutation 
is tw1 = 1/(2Nevs), where s is the selection coefficient; (2) once the selected muta-
tion appears, the time for it to fix in the population is tfx1 = (2 ln Ne)/s [11].

If one is comparing two distinct mutations in the same population that are 
responsive to the same selective pressure, however, both the rates of mutation to 
the adaptive state and the selection coefficients may differ. For the second muta-
tion, the expected waiting time to the appearance of the selected mutation may be 
written as tw2 = 1/(2Nevsrvrs), where rv is the ratio of the mutation rates to the 
 adaptive state and rs is the ratio of the selection coefficients for the two cases. The 
expected time for the second mutation to spread to fixation in the population can 
be written tfx2 = (2 ln Ne)/rss. Considering the case of a GOF versus LOF mutation, 
if we take v to be the nucleotide mutation rate, then in general rv will range from 
1 to ∼1000 for an LOF mutation. rs can take any positive value (both selection 
coefficients are positive because both the GOF and the LOF mutations are postu-
lated to be adaptive).

A useful metric for comparing the prospects of fixation for the GOF versus 
LOF mutations is rD/fx, which is defined as the expected time to appearance of an 
adaptive GOF mutation minus that for an adaptive LOF mutation, divided by the 
time for the LOF mutant to spread to fixation in the population. If the difference 
in the expected waiting times between the selected GOF versus LOF mutations is 
greater than the time required for the LOF mutation to spread, then the LOF muta-
tion will have already fixed in the population before the expected appearance of 
the selected GOF mutation. The expected difference in waiting time to appearance 
of the selected mutations is

 
1 1 1 1

1
2 2 2D wG wL

e e v s e v s

t t t
N vs N vsr r N vs r r

Ê ˆ
= - = - = -Á ˜Ë ¯  (1)

The ratio of the time difference tD to the time for the LOF mutation to spread to 
fixation in the population, tfxL, is

 
/

1 1
1

2 1 1
2 4 ln  l n

e v sD
D fx s

fxL e e v
e

s

N vs r rt
r r

t N v N rN
r s

Ê ˆ
-Á ˜ Ê ˆË ¯

= = = -Á ˜Ë ¯
 (2)

Thus whenever rD/fx > 1, the LOF mutation is expected to fix in the population 
before the selected GOF mutation appears. Figure 1 illustrates this situation. Two 
curves are plotted for the appearance and subsequent spread of an LOF and a GOF 
mutation in a population of 106 organisms. The selection coefficient for the GOF 
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is 0.1 and for the LOF is 0.01; thus rs is 0.1. The basic nucleotide mutation rate is 
taken to be 10−9, and rv, the ratio of the mutation rate to the adaptive state for the 
LOF vs GOF mutation, is set at 100. The expected waiting time to the appearance 
of the selected LOF mutation under these circumstances is 500 generations, while 
for the GOF mutation the time is 5,000 generations. On average the GOF mutation 
would take 276 generations to fix in the population; the LOF mutation would 
require 2763 generations. Figure 1 shows that under such circumstances the 
selected LOF mutation would be expected to fix in the population before the 
selected GOF mutation appeared. Equation 2 determines the ratio rD/fx for this situ-
ation to be 1.62.

If rs = 1/rv, then equation 2 evaluates to zero, which means there is no expected 
difference tD in the waiting time to the appearance of the selected LOF versus GOF 
mutations — the rate advantage of the LOF mutation is exactly offset by the rela-
tive weakness of its selection coefficient. If rs < 1/rv, then rD/fx will be negative, 
which means that there is less time to the appearance of the selected GOF muta-
tion than to the LOF mutation — the rate disadvantage of the GOF mutation is 
more than offset by the relative strength of its selection coefficient.

Fig. 1.  Time in generations to occurrence and spread of an adaptive LOF mutation versus GOF 
mutation. The LOF mutant (———) has a selection coefficient 0.1-times that of the GOF mutant 
(— — —), but a mutation rate to the adaptive state 100-times that of the GOF mutant. The effective 
population size Ne is set at 106. The GOF mutation rate v is 10−9 per generation and the GOF selection 
coefficient s = 0.1.
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Figure 2 plots the value of rD/fx versus the effective population size Ne for several 
values of rv, with rs held constant at one. As can be seen, the value of rD/fx is largely 
insensitive to changes in rv, the ratio of the mutation rates to the adaptive state. 
Decreasing rv 100-fold from 1000 to 10 leaves the value of rD/fx little changed. In 
all of these circumstances (except where rv = 2 at effective population sizes very 
near 107) the ratio of the time for the LOF mutation to spread to the difference in 
the expected waiting time to the selected GOF versus LOF mutations, rD/fx, is well 
above one.

Figure 3 examines the relationship between the value of rD/fx versus the effective 
population size Ne for several values of rs, with rv held constant at 1000, its likely 
maximum for a typical gene. In this case rD/fx depends linearly on the ratio of the 
selection coefficients: at any population size in the range, a decrease of a factor of 10 
in rs decreases rD/fx by approximately the same factor. (The magnitude of s, the selec-
tion coefficient itself, which is absent from equation 2, does not affect the results.) 
Thus, when rs is 0.01 (that is, when the selection coefficient for the LOF mutation is 
only 1% of that of the GOF mutation), rD/fx decreases to a value of one at a population 
size of about 1.5 × 105, versus a population size of 1.5 × 107 when rs is one.

Fig. 2.  The ratio rD/fx versus effective population size Ne. rD/fx is the time to appearance of an adaptive 
GOF mutation minus that for an adaptive LOF mutation, divided by the time for the LOF mutant to 
spread to fixation in the population. In this figure the LOF and GOF selection coefficients are equal. 
The mutation rate v is 10−9 per generation. (———) rv = 1000; (············) rv = 10; (— — —) rv = 2.
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Figure 4 shows the dependence of rD/fx on rv and rs at a fixed value of Ne = 106. 
As can be seen rD/fx is essentially independent of rv over a wide range, but is line-
arly dependent on rs. The pronounced curvature for both plots at lower values on 
the x-axis reflects the approach of the factor (rs - 1/rv) to zero.

3.2 Relati vely large populati on sizes

In this section I consider relatively large population sizes (Ne ≥ 1/v). As population 
size increases, the expected waiting time to the appearance of either or both 
selected mutations can shrink to much less than the expected time for the muta-
tions to spread in the population. In fact, one or both mutations may be present 
continuously in the population at a low percentage as a neutral or detrimental 
allele before the new selective pressure makes it adaptive. Thus in this population 
size range a different metric is required to follow the relative advantage of LOF 
versus GOF mutations.

Fig. 3.  The ratio rD/fx versus effective population size Ne. rD/fx is the time to appearance of an adap-
tive GOF mutation minus that for an adaptive LOF mutation, divided by the time for the LOF mutant 
to spread to fixation in the population. In this figure the rate of mutation to the adaptive state of the 
LOF mutant is 1000-times that of the GOF mutant. The mutation rate v is 10–9 per generation. 
(———) rs = 1; (············) rs = 0.1; (— — —) rs = 0.01.
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A useful measure is the ratio of the fractions of LOF to GOF mutations in the 
population when the sum of those fractions first increases to 1.0. The time t in 
generations required to increase the frequency of a selected mutation from a value 
of q0 to qt can be calculated from [11]:

 
0
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Thus (ignoring double mutants) the number of generations required for the 
 fractions of an LOF and GOF mutation to sum to one can be calculated from:
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 (3)

Fig. 4.  The ratio rD/fx versus rs and rv. rD/fx is the time to appearance of an adaptive GOF mutation 
minus that for an adaptive LOF mutation, divided by the time for the LOF mutant to spread to fixa-
tion in the population. rs is the ratio of the LOF to GOF selection coefficients. rv is the ratio of the 
rate of LOF to GOF mutation to the adaptive state. The effective population size Ne is set at 106 and 
the GOF mutation rate v is 10−9 per generation. (———) rs is set at 1 and rv ranges from 1 to 1000; 
(— — —) rv is set at 1000 and rs ranges from 0.001 to 1.
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The initial fraction q0 when a selected mutation begins to increase in a haploid 
population is at a minimum 1/Ne. However, for population sizes greater than the 
inverse of the mutation rate, numerous mutants are expected to be present in the 
initial population. For example, if the mutation rate v is 10−9 and the population 
size is 1012, then there will be 103 mutants  produced in the first generation. So the 
initial fraction q0G is at least 

1 1
,e

e e e

N v
v

N N N
+ = +  and q0L is at least 

1
v

e

r v
N

+ .
The time t in equation (3) is the time required for the selected mutation to 

spread. Thus if we are counting generations from the first application of the selec-
tive pressure, then the expected waiting time for the selected mutation must be 
accounted for. As mentioned previously, for a haploid GOF mutation this is twG = 
1/(2Nevs) and for an LOF mutation twL = 1/(2Nevsrvrs). Equation (3) can then be 
re-written as:

 ( ) ( )0 0

0 0

1 1
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q q
e e

q q
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 (4)

where (tfx - tw) is the time for the mutations to spread to a sum fraction of 1.0 after 
the waiting time for at least one kind of selected mutation to first appear in the 
population. Given Ne, v, s, rv, and rs, equation 4 can be solved for tfx and the value 
used to determine rfx, which is the fraction of adaptive LOF mutations divided by 
the fraction of adaptive GOF mutations in the population when the two fractions 
first sum to one:
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Figure 5 plots rfx from equation 5 at rs = 1 and rv = 1000 for population sizes Ne 
ranging from 107 to 1010. It is seen that at lower values of Ne, rfx increases very 
rapidly. Indeed, at population sizes of 107 or less, rfx is greater than Ne, reflecting 
the fact that less than one GOF mutant is expected to be present in the population 
when the LOF mutant has fixed. As Ne increases, rfx approaches a constant value 
of approximately 31.6. Thus when the population initially consists entirely of LOF 
and GOF mutants and Ne ≥ 109, under the circumstances described in Figure 5 
LOF mutants will represent about 97% of the population.

Figure 6 plots rfx as a function of rv for population sizes from 106.5 to 1012, with 
rs = 1. At the smallest population sizes the fixation ratio is extremely sensitive to 
the ratio of mutation rates. As Ne increases, however, and it becomes more likely 
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Fig. 5.  The ratio rfx versus the effective population size Ne. rfx is the fraction of adaptive LOF muta-
tions divided by the fraction of adaptive GOF mutations in the population when the two fractions 
first sum to one. rs = 1; rv = 1000; s = 0.1; v = 10−9 per generation.

Fig. 6.  The ratio rfx versus the ratio rv. rfx is the fraction of adaptive LOF mutations divided by the 
fraction of adaptive GOF mutations in the population when the two fractions first sum to one. rv is 
the ratio of the rate of LOF to GOF mutation to the adaptive state. rs is set at 1; v is 10−9. (———) 
Ne = 106.5; (············) Ne = 107; (- - - - -) Ne = 107.5; (– ·· – ·· – ·· –) Ne = 108; (— — —) Ne = 109; 
(– · – · – · –) Ne = 1012.
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Fig. 7.  The ratio rfx versus the effective population size Ne. rfx is the fraction of adaptive LOF muta-
tions divided by the fraction of adaptive GOF mutations in the population when the two fractions 
first sum to one. For all curves rv is set to 1000. (———) s = 0.1, rs = 1, v = 10−9; (············) s = 0.0001, 
rs = 1, v = 10−9; (— — —) s = 0.1, rs = 0.5, v = 10−9; (- - - - -) s = 0.1, rs = 1, v = 10−10.

that the mutants are present in the population from the first generation, the 
 sensitivity decreases. As seen in the figure, the plots of rfx versus rv for values of 
Ne ≥ 1/v are essentially superimposable, and closely approximate the relationship 

.fx vr r=

Figure 7 plots rfx versus Ne for several variables. The solid curve reproduces the 
values from Figure 5 of s = 0.1 and rs = 1. Coinciding with the solid curve is a 
dotted curve for which s = 0.0001, demonstrating the insensitivity of the curve to 
changes in the selection coefficient itself. The long-dashed curve uses the same 
parameters as the solid curve except that the value of rs has been decreased to 0.5. 
As can be seen, this decreases the value of rfx by several orders of magnitude, so 
that at large population sizes the value is below one, and the GOF mutation pre-
dominates at fixation, despite the initial 1,000-fold advantage of the LOF mutation 
rate. The short-dashed curve uses the same parameters as the solid curve except 
that the value of v has been decreased from 10−9 to 10−10. As can be seen, this has 
the effect of simply moving the curve an order of magnitude to the right on the 
population axis.

Figure 8 plots rfx versus rv at three values of rs with Ne »1/v. As seen, modestly 
varying the ratio of the selection coefficients displaces the curve considerably 
along the rfx axis and slightly alters its slope. Figure 9 compares rv and rs versus 
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Fig. 8.   The ratio rfx versus the ratio rv. rfx is the fraction of adaptive LOF mutations divided by the 
fraction of adaptive GOF mutations in the population when the two fractions first sum to one. rv is 
the ratio of the rate of LOF to GOF mutation to the adaptive state. For all curves, Ne is set at 1012 and 
v is 10−9. (———) rs = 1; (············) rs = 0.8; (- - - - -) rs = 1.25.

rfx, showing the relative sensitivity of the fixation ratio to those parameters at large 
Ne. Figure 9 plots values for rs including from one to 100; that is, for situations in 
which the selection coefficient of the LOF mutation is greater than or equal to that 
of the GOF mutation. rfx is greater than one and increases rapidly in this region. In 
general, whenever rs ≥ 1 and rv > 1, rfx will be greater than one at any population 
size. That is, the LOF mutation will always be the majority of the population when 
the entire population is initially comprised of LOF and GOF mutations.

4. Discussion

4.1 LOF versus GOF adapti ve mutati ons

Organisms can adapt to their environment either by acquiring new abilities or by 
abandoning old ones. This can be observed in such examples as legless snakes and 
sightless cave fish. Science has learned especially in the last fifty years that altered, 
observable phenotypes are the manifestation of changes to the genetic endowment 
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of an organism. It has also learned that there is not a necessary correlation between 
loss or gain of an ability at the phenotypic level and loss or gain of a functional 
genetic element at the molecular level. In other words, what strikes an observer as 
a phenotypic gain of function may be caused by either a molecular loss or gain of 
function. The same holds for a phenotypic loss of function: it may be the result of 
a genetic gain or loss of function. Because organisms can adapt by either molecu-
lar GOF mutations or LOF mutations it is of basic interest to  determine which, if 
either, kind of mutation will dominate under various circumstances.

Research over the past fifty years has shown that many genetic elements consist 
of multiple nucleotides. Protein coding regions can be thousands of nucleotides in 
length; RNA genes can be hundreds of nucleotides; regulatory elements and pro-
cessing signals can be several nucleotides to dozens of nucleotides long. A sub-
stantial portion of possible mutations in these elements will result in the diminution 
or loss of their function. Thus, as a class, LOF mutations for a particular genetic 
element will occur at a rate from several times to several-orders-of-magnitude 
times the basic nucleotide substitution rate.

Fig. 9.  The ratio rfx versus rs and versus rv. rfx is the fraction of adaptive LOF mutations divided by 
the fraction of adaptive GOF mutations in the population when the two fractions first sum to one. rs 
is the ratio of the LOF to GOF selection coefficients. rv is the ratio of the rate of LOF to GOF 
 mutation to the adaptive state. For both curves, Ne is set to 1012 and v is 10−9. (———) rfx versus rs, 
rv is set at 1000; (— — —) rfx versus rv, rs is set at 1.
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That is not the case for GOF mutations. Consider two examples: First, a tran-
scription factor binding site that is 10 nucleotides in length, and a second DNA 
sequence which has 9 of 10 nucleotides that are necessary to form a second regula-
tory site. Suppose that in response to a new selective pressure an adaptive effect 
could be secured either by mutating the first site so that it lost its function or by 
mutating the single mismatching residue of the second site so that it gained 
 function. The LOF mutation would on average appear at 10-times the nucleotide 
substitution rate, simply because there are multiple ways to break the functioning 
element. The GOF mutation, however, would appear at even less than the basic 
rate of nucleotide substitution (because for a currently-nonfunctional, potential 
genetic element there it is possible that one of the “correct” nucleotides in the 
sequence will mutate before the “incorrect” one [12]). Second, consider a recently 
duplicated gene which could provide an adaptive effect in response to a new 
 selective pressure if a certain nucleotide in the gene were altered (allowing the 
duplicate gene product to, say, diverge productively in activity from the parent 
gene product). Suppose, however, that an adaptive effect could also be had by 
reducing or eliminating the activity of another, separate gene. Because of the many 
ways in which a gene can be altered to lose function, the LOF mutation would 
have a rate several orders of magnitude greater than that of the GOF mutation for 
the duplicated gene.

There can be cases in which a GOF mutation may appear at several times the 
nucleotide substitution rate. I discussed earlier the sickle mutation, in which a 
single particular nucleotide in the β-globin gene must be changed. Yet in other 
cases of GOF, there can be several possible nucleotides to change, each of which 
will suffice. For example, Couñago et al. [13] replaced the essential gene for ade-
nylate kinase in Geobacillus stearothermophilus — a moderate thermophile — 
with that of Bacillus subtilis, a mesophile, which they then grew in a turbidostat 
at increasing temperatures. Over the course of 1500 generations they isolated six 
thermostable mutants of the enzyme — one single point mutant and five double 
point mutants derived from the single mutant. Thus in this circumstance the 
enzyme could gain the function of being active in a hostile environment by alter-
ing any of six positions. Nonetheless, the number of ways to break a functional 
element will almost always be much greater than the number of ways to construct 
one, so that in almost all cases rv would be expected to be greater than one.

4.2 Eff ect of disparity in adapti ve rate

In this chapter I investigate the effect of the disparity in rate of mutation to an 
adaptive state for LOF and GOF mutations as a function of several parameters. 
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The model presented here is a simple, deterministic one, which does not consider 
the probabilistic nature of changes in allele frequencies [11]. Because of its sim-
plicity, the general behavior of the investigated model is visible with considerable 
clarity and the issue of the evolutionary rate advantage of adaptive LOF mutations 
is highlighted.

The behavior at relatively small population sizes is governed by equation 2, 
which accounts for the two separate phases of fixation of a new mutation: the 
expected waiting time to the appearance of the selected mutation, and the time 
taken for the mutation to spread within the population. An interesting aspect of the 
equation is that it does not contain the selection coefficient s; that is, the ratio of 
the selection coefficients rs influences the competition between the two mutations 
rather than the absolute value of either or both selection coefficients. (This also is 
the case at relatively large population sizes, as shown by Figure 7.) Whenever 
equation 2 evaluates to rD/fx >1, then the LOF mutation is expected to fix in the 
population before a selected GOF mutation appears. Thus, as illustrated in Figure 
1, an LOF mutation whose selection coefficient is ten-fold weaker than an adap-
tive GOF mutation can outrace it to fixation, due to its greater rate of mutation to 
an adaptive state.

Figures 2 and 3 show that this effect exerts substantial influence at relatively 
low population sizes. For a population size of < 107, if rs ≥ 1 and rv > 1, then an 
LOF mutant is always expected to fix in the population before a selected GOF 
mutant appears. Because of an increasing disparity in waiting times, at population 
sizes <<107 an LOF mutant may be fixed in the population first even if its selective 
advantage is considerably less than that of a GOF mutant. For example, for a 
population size of 105, an LOF adaptive mutation will become fixed first at rv ≥ 1 
even if its selection coefficient is only one-hundredth that of a GOF adaptive muta-
tion; that is, if rs ≥ 0.01. At smaller population sizes, the advantage for the LOF 
mutation increases linearly with 1/Ne.

If an LOF mutation with a smaller selection coefficient is first fixed in a 
population, what scenario is most likely to occur after the GOF mutation 
 eventually appears? The answer to that question is likely to depend sharply on 
the specific genetic elements involved. One possible scenario is that the GOF 
 mutation also spreads to fixation, and the LOF mutation remains fixed. A second 
possibility is that, depending on the physical nature of the mutation, the LOF 
mutation may be repaired by subsequent mutation after the GOF mutation 
spreads in the population. If it cannot be repaired, it may be replaced by 
 horizontal gene transfer or by having its function taken over by another genetic 
element, or the organism may adapt in other ways to its loss. Penman et al. [14] 
recently demonstrated that the outcome in competition between the sickle 
 mutation (which is highly protective against malaria) and various thalassemic 
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disorders (which are less protective) is quite difficult to predict because of 
 epistatic effects unrelated to their anti-malarial activities. Thus the future course 
of the evolution of a system after initial fixation of an LOF mutation might be 
considerably more complex than a linear succession of mutations with increas-
ing selective value.

For v = 10−9, at population sizes Ne >108 an LOF mutation is no longer 
expected to fix in the population before a selectable GOF mutation appears, 
even if rs = 1, because the larger population sizes produce both types of 
 mutations within the time it would take for the LOF mutation to spread in the 
population. Nonetheless, even though the metric rD/fx decreases below one in this 
range, in many cases the LOF mutation will become the dominant mutation in 
the population. In order to assess the advantages of LOF versus GOF mutations 
in this population range, a new metric, rfx, was introduced in equation 5. rfx is 
the ratio of LOF to GOF mutants when their fraction of the population first sums 
to one.

Figure 6 shows that LOF mutations always possess a rate advantage over GOF 
mutations if the respective selection coefficients are equal; that is, if rs = 1. Under 
these circumstances at large population sizes (Ne ≥ 1/v), ,fx vr rª  and the ratio of 
LOF to GOF mutations when their fraction first sums to one will range from 1.41 
to 31.6 for values of rv ranging from 2 to 1000. Thus the LOF mutant will  comprise 
from 59% of the population to 97% of the population. If at this point the mutants 
then drift neutrally in the population (because it is postulated that neither has a 
selective advantage over the other), the LOF mutant is expected to become fixed 
with a probability equal to its population fraction [15].

Under what circumstances would two selection coefficients be expected to be 
equal? If two mutations both met the new selective pressure without causing 
 deleterious pleiotropic effects, then their selection coefficients would be expected 
to be the same. Thus whenever such a situation presents itself, the LOF mutation 
would have an advantage.

If the selection coefficients are not equal, how likely is it that a GOF mutation 
will have a value of s greater than that of an LOF mutation, or vice-versa? The 
answer to that question is not known, but both LOF and GOF mutations can have 
significant selection coefficients. The selection coefficient for LOF mutations of 
the rpoS gene of E. coli has been measured at 0.217, a substantial value [16]. The 
selection coefficient for the GOF sickle mutation has been estimated as 0.05 to 
0.18, again a large value [17]. If in general there is no overall correlation between 
adaptive GOF versus LOF mutations and the magnitude of the selection coeffi-
cient, then the intrinsic rate advantage enjoyed by LOF mutations will bias long-
term  evolution in that direction.
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4.3 Comparison to laboratory evoluti on experiments

Over the past forty years many laboratories have conducted evolution experi-
ments, observing adaptation of micro-organisms to varying environmental condi-
tions, and in many cases identifying the molecular changes that comprised the 
adaptive mutation [4]. How do the results obtained in this chapter bear on the 
interpretation of those experiments?

Comparison to experiments where Ne < 1/v: The most extensive laboratory evo-
lution experiment to date has been performed under the direction of Richard 
Lenski at Michigan State University [18]. Starting in the early 1990s, Lenski and 
colleagues began growing 10 ml cultures of E. coli, which undergo six to seven 
doublings per day. Each day they transferred 1% of the culture to fresh medium. 
Over the years the cultures have undergone more than 50,000 generations. All 
adaptive mutations identified to date appear to be LOF ones [4]. The single most 
beneficial mutation was the destruction of the rbs operon by insertion sequences. 
The value of the selective coefficient for this was approximately 0.02 [19]. Other 
identified LOF mutations include ones in the pykF, nadR, pbpA-rodA, hokB/sokB, 
malT, and topA genes. A number of other adaptive genes have been identified to 
date, but the natures of the mutations, whether LOF or GOF, have not yet been 
reported [20].

The rate of nucleotide mutations per generation of E. coli is ∼5 × 10−10 [21]. The 
effective population size Ne of Lenski’s [18] cultures of E. coli is ∼2 × 107, which 
is the harmonic mean between the initial population of the day’s culture (5×106) 
and the final population of the day (5×108) if the population is assumed to double 
in discrete generations [11]. Substituting these numbers into equation 2 shows that 
rD/fx would be 1.47 — greater than one — if rs were one and rv were 100. An LOF 
mutation would thus be expected to be fixed in the population before a GOF muta-
tion appeared if their selection coefficients were equal. How great of a selective 
advantage must a GOF mutation have to outcompete an LOF mutation under these 
circumstances? Using equation 2 it is seen that if rs is 0.68, then rD/fx falls slightly 
below one. In other words, a GOF mutation would have to have a selection coef-
ficient about 50% greater than an LOF mutation in these circumstances in order to 
at least appear in the population before the LOF mutation were fixed.

To find out how much greater the selection coefficient must be to actually out-
compete the LOF mutation, we must use equations 4 and 5 to calculate rfx. 
Assuming rs were 0.68, there would be approximately one GOF allele in the popu-
lation per ∼2×107 LOF alleles. In order to overcome the LOF rate advantage, 
however, rs would have to fall to ∼0.25. In other words, if the selection coefficient 
of the GOF mutation were approximately four times that of the LOF mutations, 
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then the GOF mutation would be slightly more than half the population. In order 
to dominate the population by ∼90% rs would have to be ∼0.2; that is, the selection 
coefficient of the GOF mutation would have to be about five-fold that of the LOF 
mutation. Since no GOF mutations have yet been seen, we can tentatively con-
clude that there are no GOF mutations available whose selective value is five-fold 
greater than the least-adaptive LOF mutations seen in this series of experiments. 
(Lenski’s group recently reported a very adaptive Cit+ phenotype, which appar-
ently required both LOF and gene duplication mutations [22]). If an LOF mutation 
appeared within the first 25,000 generations, it would require a minimum selection 
coefficient of 0.00076 to spread to fixation in the next 25,000 generations. To 
outcompete it, a GOF mutation would require a minimum selection coefficient of 
five-times this value, i.e. ∼0.0038. Thus it can be concluded that there are no GOF 
mutations available under the circumstances of the experiment whose selection 
coefficients exceed that number.

The question might be asked, what if a potential GOF mutation with a suffi-
ciently strong selection coefficient existed, but simply failed to arise during the 
term of the experiment? That is always a possibility, but an unlikely one. Given 
the scale of the Lenski experiment [20], with an effective population size of 
2×107 over 50,000 generations and a nucleotide mutation rate of ∼5×10−10, each 
nucleotide is expected to be substituted 500-fold over the course of the experi-
ment. Deletions, additions, and other kinds of mutations would similarly be 
expected to occur multiple times. There were many redundant opportunities for 
all simple mutations to arise (the Cit+ phenotype apparently needed several muta-
tions to arise). Thus we can be confident that if a particular mutation, or kind of 
mutation, was not observed, then it is very unlikely to have the necessary selec-
tion coefficient.

Comparison to experiments where Ne > 1/v: As seen in Figures 7–9, at Ne ≥1/v, 
rfx is much more sensitive to rs than at smaller population sizes. Just a slight advan-
tage in the selection coefficient for a GOF mutation is sufficient to offset a 1,000-
fold advantage in the rate of LOF mutation. This great sensitivity can be used to 
infer whether such a GOF mutation is available under particular environmental 
circumstances. That is, if a certain selective pressure is applied, one or more LOF 
mutations are observed, and Ne ≥1/v, then the failure to observe a GOF mutation 
would imply that no GOF mutation is available within a single mutational step 
that had a somewhat greater selection coefficient than the LOF mutations(s). 
Conversely, if a GOF mutation were observed but no LOF mutation, we could 
deduce that no LOF mutation was available that had a selection coefficient greater 
than or equal to the GOF mutation.

As mentioned earlier, Couñago et al. [13] replaced the essential gene for  adenylate 
kinase in Geobacillus stearothermophilus — a moderate thermophile — with that of 
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Bacillus subtilis, a mesophile, which they then grew in a turbidostat at increasing 
temperatures. Over the course of 1500 generations they isolated six thermostable 
mutants of the enzyme — one single point mutant and five double point mutants 
derived from the single mutant, which can all be classified as GOF mutations. The 
mutation rate of G. stearothermophilus can be estimated by using a value for the 
mutation rate of approximately 0.003 per  genome per generation for DNA-based 
microbes, which yields a value of about 5×10−10 mutations per generation [21]. Since 
the authors maintained a continuous culture, the population was not subject to the 
large changes in size seen in Lenski’s experiments, so the effective population of 
microbes per generation in the turbidostat was ∼5×1010. In other words, in the 
Couñago et al. [13] experiment, Ne >1/v. Inserting these values into equations 4 and 
5 shows that if a potentially adaptive LOF mutation were available with the same 
selection coefficient as a GOF mutation, then it would dominate the population with 
an rfx of 9.9; in other words, it would comprise ~91% of the population. Thus it can 
be concluded that, despite the frequency of adaptive LOF mutations in Lenski’s 
work, no LOF mutation with an rs ≥ 1 compared to the observed GOF mutations was 
available in the experiment conducted by Couñago et al. [13]. The likely reason for 
the disparate results is the differing experimental regimens. Lenski did not put strong 
constraints on the direction for E. coli to evolve, but Couñago et al. [13] replaced an 
essential gene with a substitute optimized for a different growth temperature before 
applying selective pressure, which they termed a “weak link” method. Furthermore, 
Couñago et al. [13] used an Ne that was more than three orders of magnitude greater 
than Lenski’s group. The activity of the thermophilic adenylate kinase activity had 
to be replaced or compensated for. Apparently, the fastest way available to do so at 
high Ne was by GOF point mutations to the mesophilic substitute gene.

4.3.1  Comparison to experiments where two selective routes were 
potentially available

An interesting conceptual blend of the Lenski [18] and Couñago et al. [13] 
approaches was recently published by Gauger et al. [23]. This group mutated two 
amino acid residues of a plasmid-borne trpA gene of E. coli, transfected a Trp− 
bacterial strain with the plasmid, and grew it in a tryptophan-limiting medium. 
One of the mutations (E49V) alone completely inactivates the gene product; the 
other mutation (D60N), when present alone, allows weak Trp+ activity and sup-
ports growth in Trp− media when the plasmid-borne gene is overexpressed. The 
authors expected cells containing the double mutant plasmid to take a short, 
selected route to full Trp+ activity when grown in tryptophan-limiting medium by 
first reverting the inactivating mutation at position 49 (allowing the resumption of 
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weak Trp+ activity) and then reverting the second mutation at position 60 to regain 
full activity. However, almost all mutants recovered after sustained growth had not 
taken even the first step on that expected pathway. Rather, the expression of the 
trpA gene was decreased either by deletion, insertion of an IS element, or by 
 various point mutations, apparently saving the cell the energy of overproducing 
the protein.

The E. coli point mutation rate is 5×10−10. Gauger et al. [23] grew liquid 
 cultures to an effective population size Ne of ∼0.6×107 cells per generation. 
Substituting these numbers into equation 2 shows that rD/fx would be 5.3 — 
greater than one — if rs were one and rv were 100. That is, if the selective advan-
tage the cell received from shutting down overexpression of the plasmid-borne 
gene were equal to the selective advantage it would receive from taking the first 
GOF mutational step to partial Trp+ activity, the LOF mutation would be 
expected to easily be fixed in the population well before a GOF mutation 
appeared. For one partial-revertant to be expected to appear before the LOF 
mutant fixed under the conditions of the experiment rs would have to be about 
0.2. That is, the selection coefficient for the GOF mutation would have to be 
approximately five-fold greater than that of the LOF mutation. Equations 4 and 
5 can be used to show that for the GOF mutant to be expected to dominate the 
population to >90%, the GOF  selection coefficient would have to be about 12.5-
times that for the LOF mutation. Apparently, regaining merely limited Trp+ 
 activity did not have 12.5-times the selective value of the decrease in expression 
of the plasmid gene caused by the LOF mutations. Thus, under the conditions of 
the experiment, the selective pathway back to full Trp+ activity is blocked at the 
first step. Interestingly, if cells transfected with either singly-mutated plasmid 
(E49V or D60N) were grown in liquid culture, Trp+ revertants quickly took over 
the culture, indicating the  selection coefficient for full-reversion was greater than 
12.5-times the selection coefficient for saving the cell the energy of overproduc-
ing the protein [23].

4.4 Comparison to short-term evoluti on in the wild

A possible objection to results from laboratory  evolution experiments is that they 
are artificial. The organisms are housed in special environments and not exposed 
to the rigor and variety of challenges they would encounter in nature. Thus the 
many advantageous LOF mutations observed in experimental work may not 
reflect what happens in nature, since presumably the great majority of an organ-
ism’s genes are required in the wild, and therefore few if any adaptive LOF 
 mutations are available in nature.
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While that may turn out to be the case, and more data will be required to come 
to a definitive conclusion, an increasing number of results from nature appear to 
ratify the importance of adaptive LOF mutations in the wild. One class of such 
LOF mutations which I have mentioned previously includes genes that help adapt 
humans to the presence of malaria [4]. Other important human adaptive mutations 
are also LOF mutations: immunity to HIV due to a deletion variant of CCR-5 [24]; 
and resistance to tuberculosis by a deletion variant of SLC11A1 [25]. Development 
of lactose tolerance in adult humans [26] also seems a good candidate for an 
 adaptive LOF mutation, perhaps by loss of a repressor binding site, although that 
has not yet been confirmed. In a recent survey of multiple human genomes it has 
been determined that for humans, “On average, each person is found to carry 
approximately 250 to 300 loss-of-function variants in annotated genes...,” over 1% 
of the total number of human genes [27].

A second example of LOF mutation in nature is seen in the evolution of the 
plague bacterium Yersinia pestis. A plausible evolutionary scenario to explain its 
great virulence is that it serially acquired several plasmids which conferred on it 
the ability to be transferred between mammalian hosts by flea bite [28, 29]. After 
the acquisition of these plasmids (which are GOF events), the Y. pestis genome 
lost several hundred genes, apparently because they were no longer necessary for 
its new life cycle [29, 30]. Thus, after several GOF events, the plague bacterium 
adjusted to its new environment by much more numerous and rapid LOF adaptive 
mutations.

Nadeau and Jiggins [31] have recently reviewed genomic studies of adaptation 
in natural populations and note that “Many of the well-studied examples of 
 adaptive  evolution have involved trait loss, such as the loss of bony structures in 
freshwater stickleback populations and the reduction of pigmentation and eyes in 
cavefish.” Although, as mentioned earlier in this chapter, there is not a necessary 
correlation between phenotypic trait loss and adaptive LOF mutations, in the cases 
mentioned by Nadeau and Jiggins [31] they coincide. Loss of pelvic spines in 
freshwater sticklebacks has been traced to deletion of a Pitx1 enhancer [32]. Eye 
reduction in cavefish apparently involves multiple genes [33]. Of those that have 
been identified three involve decreased expression of the gene (γ-M crystallin, 
rhodopsin, and αA crystallin). One gene, hsp90α, has increased expression, and it 
appears to be involved in promoting apoptosis.

5. Conclusion

Organisms have adapted over evolutionary history both by gaining and losing 
functions. Therefore it is of basic interest to determine if one or the other 
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dominates during particular circumstances. Until the past few decades, however, 
the molecular events underlying these processes were obscure. In recent decades 
science has in some cases gained the ability to determine whether the events 
behind a phenotypic adaptation involve an adaptive GOF mutation or an adaptive 
LOF mutation [4].

Both experimental laboratory work over the past few decades and recent 
genomic studies of adaptation in natural populations attest to the importance, even 
dominance, of LOF mutations in short term evolutionary episodes. The work pre-
sented in this paper helps show why this should be the case. Functional genetic 
elements such as genes and regulatory regions are built of multiple nucleotides, 
and a substantial fraction of mutations to these elements will cause them to lose 
their function. Thus the LOF mutation rate can be orders of magnitude greater than 
the nucleotide substitution rate. On the other hand, GOF mutations tend to be quite 
specific. So the rate for adaptive GOF mutations tends to be equal or very similar 
to the nucleotide mutation rate. As shown here, for some population size regions 
and for some values for the ratio of selection coefficients, the greater rate of muta-
tion to the adaptive state for LOF versus GOF gives adaptive LOF mutations an 
intrinsic edge over adaptive GOF mutations.

In retrospect, the result is straightforward. Yet it also seems somewhat surpris-
ing because, as Nadeau and Jiggins [31] write, “there clearly are complex 
 structures that are gained during  evolution ... and we currently know little about 
how this process takes place.” It may be hoped that understanding how organisms 
survive in the short term by adaptive LOF mutations will be a step toward 
 understanding how complex structures are built over the long term.
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The Membrane Code: A Carrier of Essential 
Biological Information That Is Not Specified 

by DNA and Is Inherited Apart from It
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Abstract

According to the most widely held modern version of Darwin’s theory, DNA mutations can supply 
raw materials for morphological  evolution because they alter a genetic program that controls embryo 
development. Yet a genetic program is not sufficient for  embryogenesis: biological information 
 outside of DNA is needed to specify the body plan of the embryo and much of its subsequent devel-
opment. Some of that information is in cell membrane patterns, which contain a two-dimensional 
code mediated by proteins and carbohydrates. These molecules specify targets for morphogenetic 
determinants in the cytoplasm, generate  endogenous electric fields that provide spatial coordinates 
for embryo development, regulate intracellular signaling, and participate in cell–cell interactions. 
Although the individual membrane molecules are at least partly specified by DNA sequences, their 
two-dimensional patterns are not. Furthermore, membrane patterns can be inherited independently 
of the DNA. I review some of the evidence for the  membrane code and argue that it has important 
implications for modern evolutionary theory.

Key words: gene regulatory networks, embryogenesis, spatial information, membrane patterns, 
endogenous electric fields, intracellular signaling, sugar code

Introduction

According to the most common modern version of evolutionary theory, genetic 
programs encoded in linear sequences of DNA are sufficient to control the devel-
opment of embryos — from their basic body plans to all aspects of their morphol-
ogy and physiology. Major evolutionary changes would then depend primarily on 
changes in genetic programs. Although a few biologists are critical of this view 
[1–3], some evolutionary developmental biologists have recently argued that 
 interacting transcription factors in  gene regulatory networks (GRNs) support it.

For example, Eric H. Davidson writes, “The body plan of an animal, and hence 
its exact mode of development, is a property of its species and is thus encoded in 
the  genome. Embryonic development is an enormous informational transaction, in 
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which DNA sequence data generate and guide the system-wide spatial deployment 
of specific cellular functions. Because development of the body plan is caused by 
the operation of GRNs, evolutionary change in the body plan is change in GRN 
structure occurring over deep time” [4].

According to Sean B. Carroll, “Given that development is controlled by GRNs, 
it follows that the evolution of development and form is due to changes within 
GRNs… I have presented the case for a genetic theory of morphological evolution 
that can be condensed into two statements: (1) form evolves largely by altering the 
expression of functionally conserved proteins; and (2) such changes largely occur 
through mutations in the cis-regulatory regions of mosaically pleiotropic develop-
mental regulatory genes” [5].

On occasion, Davidson and Carroll have both acknowledged that GRNs act 
within preexisting spatial domains, but they argue that such spatial specification 
can be neglected and that GRNs are the principal factors in development. Davidson 
writes that animal embryos “illustrate two features. The less important is the vari-
able specifics of the initial cytoplasmic bases of spatial anisotropy. The other 
feature is of ultimate importance: This is the common functional endpoint of these 
very diverse initial stratagems for the spatial indication of future developmental 
domains. The principle is that whatever the bases of the anisotropies, however they 
come into being, whatever the cell fates that derive from what they set in train, 
they end up causing certain maternal transcription factors to be present and active 
in some spatially defined embryo nuclei, but not in others” [6].

According to Carroll, “Ultimately, the beginning of  spatial information in the 
embryo often traces back to asymmetrically distributed molecules deposited in the 
egg during its production in the ovary that initiate the formation of the two main 
axes of the embryo (so the egg did come before the chicken). I’m not going to 
trace these steps — the important point to know is that the throwing of every 
switch is set up by preceding events, and that a switch, by turning on its gene in a 
new pattern, in turn sets up the next set of patterns and events in development” [7].

Yet GRNs cannot differentiate one region of the embryo from another without 
spatial information that is specified beforehand in the fertilized egg. Evidence for 
this comes from a wide variety of animals.

The Need for Spatial Information Prior to Localization of Gene 
Products

The maternal, segmentation, and  Hox genes in embryos of the fruit fly 
Drosophila melanogaster comprise a GRN, yet that network depends on the 
prior establishment of the embryo’s first body axis by polarized cytoskeletal 
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arrays and spatially localized targets already present in the oocyte; those polari-
zations and localizations, in turn, derive from prior asymmetries inherent in the 
ovary [8–14].

 Spatial information also precedes and directs the GRNs in embryos of the 
nematode Caenorhabditis elegans. The sperm centrosome first establishes an 
anterior-posterior axis by initiating cytoskeletal changes that produce a polarized 
distribution of zygotic proteins. These in turn lead to asymmetrical cell divisions 
and subsequent differentiation [15–17].

In ascidian oocytes, the cortex (the cell membrane plus underlying cytoplasmic 
and cytoskeletal elements) already contains spatially localized morphogenetic 
determinants that specify the primary axis of the embryo. Upon fertilization, the 
sperm centrosome induces cytoskeletal changes that reorganize those determi-
nants and establish the second (dorsal-ventral) axis [18,19].

Oocytes of the frog Xenopus laevis also have a primary axis before the sperm 
enters. The sperm establishes a second axis by aligning a microtubule array in the 
zygote that directs morphogenetic determinants to the future dorsal side of the 
embryo [20–22].

In all of these cases, spatial coordinates are established in the embryo before 
zygotic GRNs become active. Such coordinates provide biological information by 
specifying domains in the embryo that later differentiate by means of GRNs in 
progressively finer detail. Spatial information can be mediated by polarized 
cytoskeletal arrays, which in some embryos are reorganized by the sperm upon 
fertilization. Other spatial information is mediated by cortical or membrane 
 patterns. The remainder of this paper focuses on the latter.

Endogenous Electric Fields

One way membranes can provide spatial information is by generating electric 
fields. Indeed, all living cells produce electric fields by transporting ions across 
their membranes. The sodium-potassium pump utilizes energy from ATP to move 
three sodium ions out of the cell while taking in only two potassium ions [23]. 
With each cycle of the pump the interior of the cell thus acquires a net negative 
charge equivalent to one electron. So the inside of every living cell is electrically 
negative with respect to its external environment, and the voltage across the 
 membrane — the “membrane potential” — ranges from about 50 to 200 mV DC 
(average ~70 mV). This produces a steady  endogenous electric field in the 
10–100 mV/mm range [24].

Multicellular organisms, and their organs, are covered by an epithelium — 
a single layer of cells laterally connected by tight junctions that block the flow of 
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ions. Epithelia are polarized, in the sense that the ion channels on the side facing 
away from the organ or organism are different from the ion channels on the side 
facing the organ or organism. The result is a “transepithelial potential” that (unlike 
the transmembrane potential of individual cells) is usually negative on the outside 
of the organ or organism and positive on the inside. The transepithelial potential 
typically ranges from 15 to 60 mV [24].

Xenopus laevis embryos generate endogenous electric fields from the single 
cell stage through at least the neurula stage [25–27]. In the embryos of chicks 
(Gallus gallus) and mice (Mus musculus), large ionic currents pass through the 
primitive streak, a furrow through which cells move into the interior as they dif-
ferentiate into tissues and organs [28,29].

In 1995, Riyi Shi and Richard Borgens proposed that  endogenous electric fields 
could “both polarize the early vertebrate embryo and serve as cues for morphogen-
esis and pattern.” If this were true, they wrote, “at least five corollaries must be 
satisfied: (1) embryonic cells must be responsive to extracellular voltages within 
the range of magnitudes measured within embryos, (2) disturbance of these 
endogenous gradients of voltage by imposed voltages in the physiological range 
should result in developmental arrest or abnormality, (3) this disturbance should 
be most profound at the embryonic stages when endogenous fields are present 
within the embryo, (4) since the internal voltages are spatially polarized during 
development, the form of teratological change in the embryo produced by an arti-
ficially imposed field should be predictable based on its orientation relative to the 
embryo’s orientation, and (5) any technique that will reduce or eliminate an 
endogenous voltage gradient should lead to  developmental arrest or retardation. 
All five of these requirements have been met” [30].

For example, applied electric fields of physiological strength can induce and 
guide cell migration in vitro [31–39]. Furthermore, targeted disruption of endog-
enous electric fields disrupts normal development in ways that suggest the fields 
are controlling morphogenesis [40–43]. There is also evidence that direct currents 
in the physiological range can affect gene expression [44,45].

(Note that this has nothing to with the controversy surrounding the alleged 
effects of environmental electromagnetic fields — whether extremely low fre-
quency or microwave frequency. The endogenous electric fields that concern us 
here are steady, not oscillating.)

Since the topology of an endogenous electric field would depend on the spatial 
arrangement of ion channels in the membrane or epithelium, such a field could be 
one way that membrane patterns provide spatial coordinates for embryo develop-
ment. Another way that membrane patterns could affect development is through 
intracellular signaling.
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Membrane Proteins and Intracellular Signaling

Networks of intracellular signaling molecules regulate a cell’s morphology, physi-
ology. They also interface with GRNs to regulate gene expression, and they medi-
ate a cell’s response to extracellular signals such as hormones and growth factors.

Membrane proteins are key nodes in such networks. Many intracellular signals 
originate with them, and their spatial localization is often essential to their proper 
functioning. Some of the more important membrane-bound signaling molecules 
are the Ras proteins (so called because they were originally found in cells trans-
formed by Rat sarcoma viruses) [46].

Ras proteins are localized mostly on the inner face of the plasma membrane, 
though they also occur in inner membranes such as the Golgi apparatus [47]. They 
come in many forms: in humans alone, the Ras superfamily includes more than 
150 different members [48]. Distinct Ras isoforms have distinct functions [49], 
including the regulation of ion channels [50], cell migration [51], and cytoskeletal 
remodeling [52]. Proper Ras functioning is essential to mammalian development, 
and its disruption has been linked to cancer [53].

Ras proteins are organized in the membrane into spatially segregated 
 “nanoclusters,” each containing several proteins [54–56]. The spatial localization 
of Ras proteins in nanoclusters is essential for generating and regulating spatially 
distinct intracellular signaling circuits [57,58]. In 2008, Angus Harding and John 
Hancock wrote that those circuits “integrate and process signals to operate as 
switches, oscillators, logic gates, memory modules and many other types of 
 control system. These complex processing capabilities enable cells to respond 
appropriately to the myriad of external cues that direct growth and development.” 
Harding and Hancock identified “common design principles that highlight how 
the spatial organization of signal transduction circuits can be used as a fundamen-
tal control mechanism to modulate system outputs in vivo” [59].

For example, Ras nanoclusters operate as analog-digital-analog converters. Ras 
is either non-activated (off) or activated (on); it responds to an external signaling 
molecule such as epidermal growth factor by switching on; the concentration of 
the external signaling molecule determines how many Ras molecules are  activated; 
and the number of activated Ras molecules determines the downstream concentra-
tion of an intracellular molecule that interacts with other signaling networks and 
regulates gene expression. The spatial organization of Ras molecules in nanoclus-
ters is essential to reduce noise and produce high fidelity signal transmission 
across the membrane [60–62].

So spatial organization is essential to the proper functioning of membrane 
 proteins, and those proteins can generate intracellular signals that regulate gene 
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expression. The  gene regulatory networks described by Davidson and Carroll are 
related to DNA information at one end and  spatial information at the other. Neither 
source of information can be discounted.

The Sugar Code

Cell–cell interactions — including those in developing embryos — depend on 
carbohydrates localized on the surface of each cell. Sugars can be attached either 
to lipids (glycolipids) or to membrane proteins (glycoproteins). Carbohydrate-
binding proteins (lectins) mediate their interactions. Because sugars can be cova-
lently linked in a variety of ways (unlike amino acids in a protein, which are all 
linked by identical peptide bonds), the diversity of side chains on glycolipids and 
glycoproteins is enormous.

In 1985 Ronald Schnaar wrote, “There appears to be a code on the surface of 
each cell that specifies its function and directs its interactions with other cells, a 
code in some ways comparable to the genetic code carried on the DNA molecules 
inside each cell.” The “letters” of the cell surface code to which Schnaar was 
r eferring are sugar molecules. A few monosaccharide building blocks can produce 
the enormous diversity of “words” needed to identify the many different kinds of 
cells in a complex organism, Schnaar explained, because “each building block can 
assume several different positions. It is as if an A could serve as four different 
 letters, depending on whether it was standing upright, turned upside down, or laid 
on either of its sides. In fact, seven simple sugars can be rearranged to form 
 hundreds of thousands of unique words, most of which have no more than five 
letters. (This alphabet is even more efficient than the genetic code: the four nucleic 
acids that constitute DNA — guanine, adenine, thymine, and cytosine — can be 
 connected only front to back, like roller coaster cars.) So, not only are sugars in 
the right place to serve as the alphabet for the cell-surface code, they have the 
requisite structural flexibility too.” Schnaar concluded, “It may be that as much 
control over the cell’s fate, and as much of the language of life’s unfolding, reside 
on the cell’s surface as in its nucleus” [63].

Hans-Joachim Gabius has called this the “ sugar code.” According to Gabius, 
sugars provide a “high-density coding system” that is “essential to allow cells to 
communicate efficiently and swiftly through complex surface interactions.” This 
is because “all the structural requirements for forming a wide array of signals with 
a system of minimal size are met by oligomers of carbohydrates. These molecules 
surpass amino acids and nucleotides by far in information-storing capacity and 
serve as ligands in biorecognition processes for the transfer of information” 
[64,65]. In 2009, Lopez and Schnaar provided evidence that membrane patterns in 
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cells of the immune system and the nervous system depend in part on lateral 
 interactions among their constituent glycolipids [66].

So the  sugar code carries essential biological information in addition to that 
carried by DNA sequences. It is not known whether the sugar code can be directly 
inherited, but there is evidence that other cell surface patterns are heritable 
 independently of DNA sequences.

Some Membrane Patterns Can Be Inherited 
apart from the DNA

In single-celled protozoa, changes in cilia patterns in the cortex can be inherited 
apart from changes in the DNA. In 1965, Beisson and Sonneborn induced one 
member of a conjugating pair of Paramecium aurelia to transfer to its partner a 
section of cortex that had been surgically inverted 180º relative to the surrounding 
cortex. The DNA was unchanged. Ciliates with artificially inverted rows have 
been stably maintained for thousands of generations [67,68].

In 1977, Ng and Frankel reported similar results with Tetrahymena pyriformis 
and concluded, “The cell as an architect thus not only makes use of the genomic 
information to produce the appropriate building blocks, but, in addition, also 
arranges the building blocks according to the blueprint as defined in the preexist-
ing architecture” [69]. Frankel called this extra-genic blueprint the “corticotype” 
[70]. Similar results have been reported in Tetrahymena by Nanney and in 
Stylonychia by Grimes [71,72]. Clearly, cortical patterns in ciliates can serve as 
their own templates when they replicate.

There is also evidence that some cellular patterns in multicellular organisms 
are heritable apart from the DNA. In 1977, Albrecht-Buehler reported that 
after mitoses in cultured 3T3 mouse fibroblast cells, about 40% of daughter 
cells contained mirror symmetrical actin-bundle patterns and performed direc-
tional changes in a mirror symmetrical way. He concluded that the “organiza-
tions of daughter 3T3 cells form mirror images of each other” at the time of 
mitosis [73].

In 1979, Solomon observed that about 60% of sister pairs in cultured neuroblas-
toma cells displayed analogous morphologies. He concluded that “determinants of 
biologically functional shape can be dictated to some extent by the cells them-
selves. Such a program of information can be heritable through mitosis,” though 
“we do not know, of course, how or in what structures this information is stored” 
[74]. In 1981, Solomon found additional circumstantial evidence for endogenous 
determinants of morphology, and he concluded, “It is possible that detailed cell 
 morphology is specified by structures which nucleate the assembly of the 
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cytoskeletal fibers that underlie that morphology,” though “an alternative model is 
that the endogenous determinants of neuroblastoma morphology may reside at the 
cell surface” [75].

In 1990, Locke reported paired patterns in caterpillar epidermis cells that 
“imply that a part of the epigenetic sequence leading to the formation of the 
 pattern has replicated [and been] inherited by daughter cells. It is not just genetic 
material that is inherited but part of a cell in a particular state. Inheritance is 
somatic, in the sense that it is part of the operation of an epigenetic determinant 
that has been inherited.” According to Locke, the problem with such inheritance is 
that it “requires more than number and kind of molecule. The duplication of 
 pattern involves relative position and orientation,” factors that “cannot be specified 
only by a base sequence.” Locke concluded, “The observations suggest that while 
the detailed arrangement of cell components may be variable and not under direct 
genetic control, some patterns result from epigenetic determinants that replicate 
and are inherited from one mitosis to the next” [76]. The following year, Locke 
and his colleagues published “further evidence for the operation of transiently 
heritable factors as determinants for cell pattern” [77], and in 2007 an international 
team of biologists reported that similar mirror-symmetric divisions are essential 
for proper neural tube development in zebrafish embryos [78].

As Solomon pointed out, such symmetrical divisions may be due to the inherit-
ance of cytoskeletal patterns, or membrane patterns, or both. In the case of 
 membrane patterns, proteins from the cell interior are incorporated during mem-
brane growth only if they match the existing matrix. George Palade wrote in 1983 
that membranes “recognize and incorporate like components, grow by expansion 
in two dimensions, and eventually divide into two sets of descendant membranes, 
one for each daughter cell. These sets are qualitatively identical” [79].

Robert Poyton has proposed a detailed hypothesis to explain how this process 
might work. According to Poyton, the units of epigenetic spatial memory in 
 membranes are hetero-oligomeric membrane proteins, of which there are many 
kinds. These proteins are localized on membrane surfaces in quasistable “unit 
areas.” When phospholipids are incorporated into the membrane in preparation for 
replication, the hetero-oligomers dissociate into their subunits. Then newly synthe-
sized subunits in the cytoplasm associate with the corresponding older subunits to 
form hybrid hetero-oligomers that are chemically identical to the originals. Thus 
membrane replication — like DNA replication — is semi-conservative. Poyton 
wrote, “It is the preexisting spatial memory encoded in a membrane that brings new 
proteins to its surface… Realizing that genetic memory is one-dimensional, along 
a DNA molecule, whereas spatial memory is likely to be two-dimensional, along 
membrane surfaces, and three-dimensional within the cellular interior, it is probable 
that spatial memory is more complicated and diverse than genetic memory” [80].
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Some recently published work is consistent with several aspects of Poyton’s 
hypothesis. First, empirical and theoretical studies indicate that the interaction of 
membrane proteins — in particular, the stability of homo- and hetero-dimers — is 
affected by the extent of their dilution in lipid bilayers [81,82]. Second, as prions 
demonstrate, proteins can serve as templates for their own self-replication 
[83–85]. Third, experiments show that membrane proteins selectively recruit other 
proteins to Ras nanoclusters and adjust their orientation to maintain intracellular 
signaling [86–89].

Implications for Modern Evolutionary Theory

Clearly, the biological information needed for  embryogenesis exceeds the infor-
mation encoded in DNA sequences. RNAs and proteins encoded by DNA form 
 gene regulatory networks that are essential for development, but those networks 
must be localized in spatial domains for the embryo to differentiate into various 
cell types and organs, and those domains must be spatially ordered with respect to 
each other for the organism to develop its proper morphology.

Two features of cells and embryos that provide spatial cues are the membrane 
and the cytoskeleton. Both are composed of subunits that are encoded in DNA, but 
their two- or three-dimensional patterns are not determined by those subunits, just 
as the structure of a house is not determined by its bricks.

The arrangement of proteins and carbohydrates in a membrane is analogous 
to a two-dimensional code that specifies many aspects of a cell’s morphology 
and physiology, as well as its interactions with other cells. Indeed, several 
 membrane codes can be distinguished: the pattern of ion channels in the epithe-
lium of an embryo generates an  endogenous electric field that provides a three-
dimensional coordinate system to guide migrating cells; the pattern of 
membrane-bound proteins such as those in the Ras family spatially organizes 
intracellular signaling and mediates responses to extracellular signals; and the 
complex pattern of carbohydrates on a cell surface is essential for cell–cell 
interactions.

Membrane patterns in ciliates are known to be heritable independently of the 
information in DNA sequences, and there is evidence that some cytoskeletal and 
membrane patterns in the cells of multicellular organisms can also be inherited 
apart from the DNA. Taken together, the data suggest that embryo development is 
not controlled by DNA alone, and thus that DNA mutations are not sufficient to 
provide raw materials for  evolution.

In 1983, John Maynard Smith defended the gene-centered view of development 
and evolution and asserted that the DNA-independent inheritance of cortical 
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 patterns in ciliates constituted “the only significant experimental threat” to that 
view [90]. It now appears that ciliates are not the only example of non-genic devel-
opmental information and DNA-independent inheritance.

One could speculate that accidental changes in membrane patterns —  analogous 
to accidental mutations in DNA — could provide the missing raw materials for 
evolution. Yet two- and three-dimensional information-carrying patterns are likely 
to entail more specified complexity than the one-dimensional information in DNA 
sequences, making beneficial “mutations” in such patterns much less probable 
than beneficial mutations in DNA. At the very least, calculations of the time 
required for evolution will now have to take into account these higher dimensions 
of biological information.
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Explaining Metabolic Innovation: 
Neo-Darwinism versus Design

Douglas D. Axe and Ann K. Gauger

Biologic Institute, 16310 NE 80th Street, Redmond, WA 98052, USA. 
daxe@biologicinstitute.org, agauger@biologicinstitute.org

Abstract

Like all life, bacterial life depends on a complex, integrated network of precise metabolic processes. 
These processes are carried out by more than a thousand enzymes — genetically encoded proteins 
with information-rich three-dimensional structures that catalyze specific chemical reactions. Can 
neo-Darwinian theory explain the origin of this network of enzymes that orchestrates  metabolic 
complexity? Building on previous experimental and theoretical work, we argue here that it cannot. 
But instead of merely listing the theory’s shortcomings, we attempt to construct a full and coherent 
picture of how it has failed to explain metabolic innovation, from the level of single enzymes all the 
way up to the network of enzymatic pathways that composes metabolism as a whole. Then, from this 
critical synthesis we identify six key principles of a new theory of biological innovation. Although 
these principles only hint at the substance of the new theory, they show clearly that it will be strik-
ingly unlike neo-Darwinism. Whereas the old theory focuses on the simple material processes of 
mutation and selection in the hope that these can drive innovation, the new one focuses on innovation 
itself — on the concepts that guide effective designs. Consequently, the new theory will look more 
like the systematic concepts of an engineering discipline than a set of causal laws.

Key words: metabolic complexity, innovation, pathway evolution, complex adaptation, enzyme 
recruitment, cost of gene expression, causal circularity, design principles, critique of neo-Darwinism

Introduction

Life exhibits extraordinary functional complexity on many scales, from the molec-
ular to the organismal and on up to whole ecosystems. Near the bottom of this 
arrangement is  metabolic complexity, which refers to the intricate networks of 
coordinated chemical reactions that undergird all biological phenomena. Even the 
very simplest organisms, bacteria, are highly complex in this respect, which makes 
metabolic complexity a universal hallmark of life. Its universality also makes it a 
benchmark for assessing theories of biological origins. That is, any theory claim-
ing to explain the origin of biological complexity in general must tackle the par-
ticular challenge of explaining metabolic complexity.
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How well has the dominant theory, neo-Darwinism, met this challenge? The 
structure of metabolism itself suggests that this should be assessed in a hierar-
chical way. At the lower level the question is how well the theory explains the 
origin of new functions for single enzymes, while at the higher level it is how 
well it explains the origin of the more complex metabolic functions that emerge 
when enzyme functions are combined to form metabolic pathways, and the inte-
grated networks of pathways that constitute metabolism as a whole. Notice that 
 natural selection relates more directly to the higher level, in that this is where 
phenotypic traits are manifested, whereas mutation relates more directly to the 
lower level, in that individual mutations typically alter single genes, and there-
fore single enzymes. The perennial challenge for neo-Darwinism has been to 
explain how mutation and selection, two disparate phenomena operating at dif-
ferent levels, can combine to produce such spectacular functional innovations at 
both levels.

The hope has always been that explaining evolutionary innovation at the level 
of single genes would eventually simplify the task of explaining innovation at the 
level of complete pathways. That reductionistic hope seems to be fading. Even at 
the level of single genes, explaining innovation is growing harder, not easier, as 
more and more distinct protein structures are discovered. The count of fundamen-
tally distinct structures, or folds1 as they are known, now stands at about 2,000, 
with more being added every year.

The extraordinary difficulty that neo-Darwinism encounters with single-gene 
innovations requiring a new protein fold has recently been described in detail [1]. 
That raises an obvious question. If the Darwinian mechanism cannot reliably 
explain innovation at the level of a single protein fold, what can it explain? This 
prompted us to investigate the more modest case of enzymatic innovation within 
a fold family, which we regard as metabolic innovation on the smallest scale pos-
sible.2 With that aim, we attempted to modify one particular bacterial enzyme so 
as to make it perform the function of another that closely resembles it [2]. 
Although we were ultimately unable to achieve this functional conversion, exten-
sive testing of the kinds of amino-acid substitutions that ought to promote it 

1 Proteins have three-dimensional folded structures that determine their function. Those with second-
ary structural elements (alpha helices and beta strands) in the same order and similar spatial arrange-
ment are said to have a common fold, or in other words, to be members of the same fold family. 
Proteins with fundamentally distinct folds differ in the arrangements of secondary structural ele-
ments and/or in their order. 
2 Although adaptations can certainly occur on a smaller scale, ‘innovation’ refers to the first-time 
appearance of a genuinely new function, not the adjustment of an existing function.
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demonstrated that success would, for our test case, require many more specific 
changes than the Darwinian mechanism can accomplish, even over billions 
of years.

It would be tempting to disregard that result if there were a body of contrary 
evidence. Instead, as we have discussed [2], our result is just one contribution to a 
consistent picture based on numerous studies (see below). No one denies the pos-
sibility of converting enzymes to new functions, but it seems that anyone attempt-
ing it with the assumption that it can be done with just a few nucleotide changes 
is in for a surprise.

Where to go from here is a matter of perspective. Darwin’s theory certainly will 
not benefit from ignoring or denying the severity of the problems that have beset 
it. Once that is conceded, the most important question is whether the theory needs 
to be remedied or replaced. Among the things that will be needed to answer that 
question is a full picture of what has gone wrong with the standard evolutionary 
account. In other words, it will be increasingly helpful to go beyond a mere catalog 
of inexplicable facts to something more like a synthesis of the whole problem. We 
use the word ‘helpful’ here because a synthesis of this kind should, we think, be 
the start of something much more positive than the dismantling of an old theory. 
It should instead be seen as an opportunity to gain key insights for constructing a 
new theory by building a clear understanding of how the old theory went wrong.

With that in mind, we here take a step toward such a synthesis by describing 
briefly the general aspects of metabolic innovation that most profoundly challenge 
the current neo-Darwinian model. The aspects are logically separable, which 
allows them to be examined as distinct topics, but their effects are highly intercon-
nected. We will show this by developing a synthesis of the whole problem in a 
progressive way as each aspect is considered. Based on this critical synthesis we 
then offer the beginnings of a positive synthesis — a set of principles that hint at 
a new theory of innovation. The ultimate aim, of course, is to develop a theoretical 
framework from which to understand all biological innovation. Metabolic innova-
tion will admittedly be only a small part of that big picture, but its relative simplic-
ity makes it a promising first part for getting the whole project underway.

As should now be obvious, this paper is written primarily for readers who are 
willing to at least consider the possibility that Darwin’s theory might be funda-
mentally deficient as an explanation for innovation in the history of life. We rec-
ognize that a great many talented biologists may not place themselves in that 
category, but we think the time is right for the evidential case against the standard 
Darwinian model to be presented in order to begin a serious discussion of the 
alternatives.
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Problem 1: Offsetting the cost of gene expression

The most widely accepted explanation for the origin of new enzymes is  gene dupli-
cation and recruitment [3, 4]. This process involves duplication of an existing gene, 
followed by divergent  evolution of one of the copies to a new function. For this 
process to work, though, the diverging duplicate must continue to be transcribed 
and translated. But these processes of gene expression carry a resource cost [5–8]. 
Consequently, a duplicate gene undergoing divergent evolution will only confer a 
net benefit if that cost is more than offset by its positive biological contribution. In 
many cases this makes cost reduction by deletion or inactivation of the duplicate 
gene much more likely than innovation as an adaptive response. Several recent 
papers have demonstrated this by finding that cells reduce expression of nones-
sential or duplicate genes, or completely inactivate them, in competitive environ-
ments [8–12]. When under continuous selection for metabolic efficiency, such as 
when growing under nutrient-limiting conditions, cells that reduce the total cost of 
gene expression by inactivating or deleting unneeded genes have a significant fit-
ness advantage and can quickly overtake the population [8, 10].

In judging the degree to which the cost of gene expression impedes metabolic 
innovation, it is particularly important to distinguish  natural selection from labora-
tory selection. Reported experimental conversions of two enzymes to o-succinylb-
enzoate synthase (OSBS) activity illustrate this point. Working with an Escherichia 
coli (E. coli) strain in which the chromosomal gene encoding OSBS was deleted, 
Schmidt and coworkers identified single mutations that enable two other genes to 
replace this missing function well enough for selection in vivo under specified 
laboratory conditions. Among those conditions, though, was high-level expression 
of the replacing gene,3 which was needed in order to compensate for the very low 
activity of the converted function (0.0004% or 0.06% of wild-type activity based 
on kcat/Km, depending on the source gene [13]). Even with the boosted expression, 
though, the converted genes fell well short of fully restoring growth [13]. So while 
the enzyme conversions reported in that study provide useful information, it 
should not be assumed that they would succeed in nature.

Considering that newly evolved functions are likely to be extremely weak, it 
should be expected that they would need amplified expression in order to be of any 
use. But if so, the expression cost might easily outweigh any functional benefit. 
Natural genes, of course, escape this dilemma by having extremely high catalytic 
proficiencies and by minimizing expression costs through regulated expression 
(turning expression off when it is not needed).

3 Achieved with an induced tac promoter on a multi-copy plasmid [13]. For vector details, see http://
www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nuccore&id=45614.
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First obstacle: Because gene expression is costly, it cannot be assumed that 

weakly converted enzyme functions isolated by laboratory selection would pro-

vide net selective benefit in wild populations.

Problem 2: Winning the fixation lottery

Bacteria reproduce rapidly enough to exhaust any pool of nutrients, no matter how 
large, in a short time frame. This means that local extinction (by starvation) figures 
much more prominently in the dynamics of bacterial populations than it does for 
higher organisms. Many bacterial cells alive now, for example, will manage to 
have billions of descendants alive a year from now. But for each of these cells 
destined for success, billions in the current population are destined to expire in that 
time frame, leaving no descendants. Thus, losers in the game of bacterial procrea-
tion vastly outnumber winners.

The overall effect of these frequent local extinctions or near-extinctions is a 
dramatic reduction in genetic variability, which means a dramatic increase in the 
time required for rare genotypic variants to become fixed (i.e., to become the new 
wild-type). In population genetics, the parameter that characterizes this phenom-
enon is the effective population size, Ne. Roughly speaking, Ne is the size of the 
subpopulation in each generation that will influence the genetic makeup of future 
generations. So the smaller Ne is relative to the true population size, N, the more 
rare winners are in the propagation lottery.

The estimated value of Ne for wild bacterial populations is 109 [14, 15], roughly 
eleven orders of magnitude lower than estimates of N [16]. Consequently, particu-
lar beneficial mutations have to appear on the order of 1011 times before they have 
any reasonable likelihood of being fixed. And because that likelihood scales with 
the coefficient of selection, s [17], which is commonly assumed to have a small 
fractional value, something like 1012 or more appearances may be needed in order 
for fixation to become probable. In a population of 1020 organisms that passes 
through 103 generations per year [18], this does not prevent fixation of common 
mutations. A beneficial mutation that occurs once in 109 cells, for example, will 
appear 1011 times per generation, which means that a cell line destined to carry this 
mutation to fixation will probably be present within roughly 10 generations. But 
the situation changes for rare mutations or rare combinations of mutations. At an 
incidence rate of one new carrier in the population per generation, some 1012 gen-
erations (∼109 years) would be required for fixation to become likely, even though 
the genotype in question exists somewhere in the population most of the time.

Second obstacle: Beneficial mutations appearing less than about once per genera-

tion in a global bacterial population may remain unfixed for a billion years or more.
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Problem 3: Complex adaptation — Combining rare genetic events

From here on it will become increasingly apparent that each of the problems we 
describe is compounded by the others. If new enzyme functions can evolve by 
consecutive adaptive mutations,4 each known to occur spontaneously with reason-
able frequency, then Problem 2 would be of no consequence. The difficulty arises 
from the fact that they typically appear not to be achievable in this way.

As mentioned in the introduction, when we attempted to convert an enzyme to 
perform a new function, we found it to be surprisingly difficult [2]. The starting 
point was an enzyme we designated Kbl2 (2-amino-3-ketobutyrate CoA ligase), 
and the target function was that of BioF2 (8-amino-7-oxononanoate synthase). The 
structures of Kbl2 and BioF2 are so similar (Fig. 1) that the enzymes are commonly 
assumed to be close evolutionary relatives. However, after extensive testing of 
mutations that were carefully chosen for their potential to achieve the desired 
conversion, we found success to be elusive. Still, we were able to deduce from our 
results that the shortest path to conversion would involve seven or more mutations. 
That is, at least seven mutations would be required before any level of the new 
function would be achieved. The true number is probably much higher, consider-
ing that we introduced many more than seven substitutions without success. But 
seven is high enough to cause a severe problem. Mathematical analysis shows that 
even this seemingly modest number of mutations places the conversion well 
beyond what neo-Darwinian  evolution can explain (Fig. 2) [2, 21].

There is an understandable tendency for defenders of a theory, when faced with 
challenging evidence like this, to marshal as much opposing evidence as can be 
found. Indeed, if there were a solid body of evidence showing that genuine conver-
sions of enzyme function usually are achievable with one or two nucleotide sub-
stitutions, we would conclude that the case we examined happened to be 
exceptionally problematic. But the result of our study is actually quite consistent 
with the whole body of work on functional conversions in enzymes, even as others 
have summarized it. For example, two well-known contributors to the field, John 
Gerlt and Patricia Babbit, recently gave this sobering assessment of the field:

Interchanging reactions catalyzed by members of mechanistically diverse super-

families might be envisioned as “easy” exercises in (re)design: if Nature did it, 

why can’t we? ...Anecdotally, many attempts at interchanging activities in 

mechanistically diverse superfamilies have since been attempted, but few suc-

cesses have been realized [22].

4 Adaptive mutations are those that increase the fitness of the organism that carries them, meaning that the 
organism can grow and reproduce faster than its neighbors. Most mutations are neutral or deleterious.
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Similarly, Philip Romero and Frances Arnold drew the conclusion that many 
researchers (including us) have reached:

Some functions, however, simply cannot be reached through a series of small 

uphill steps and instead require longer jumps that include mutations that would 

be neutral or even deleterious when made individually. Examples of functions 

that might require multiple simultaneous mutations include the appearance of a 

new catalytic activity… [23]

Apart from neo-Darwinian expectations, perhaps the difficulty of enzyme conver-
sion should not have been a surprise. The information content of an enzyme is quite 
large. Its one-dimensional protein sequence bears a complex causal relationship to 

Fig. 1.  Structural similarity of BioF and Kbl. a) Dimeric enzymes BioF2 (left; 1DJ9 [17]) and 
Kbl2 (right; 1FC4 [18]) viewed along axes of symmetry. Active sites are at the monomer interfaces. 
b) Aligned backbones of BioF and Kbl monomers. c) Identical side chains in the BioF2 (dark) and 
Kbl2 (light) active sites, labeled according to BioF positions. PLP-external aldimines are shown in 
the center of the active sites. This figure was originally published as Fig. 5 in reference 2.
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its three-dimensional folded structure and to its dynamic behavior as an enzyme. 
Its activity depends upon many distinct and context-dependent interactions that 
enable it to form a stable folded structure and to carry out its chemistry. Converting 
an enzyme to a new catalytic activity is therefore likely to require the simultaneous 
reconfiguration of many amino-acid interactions, so any step-wise process of enzy-
matic conversion almost inevitably will involve non-functional intermediates.

In the end, two things seem inescapable. One is that enzymatic innovations 
requiring more than two specific mutations in a spare gene (provided by a duplica-
tion event) are implausible in neo-Darwinian terms [21]. The other is that once this 
limitation is taken into account, most reported experimental conversions of 
enzyme function are beyond the reach of neo-Darwinian processes under natural 
conditions.

Fig. 2.  Expected waiting times for an enzyme conversion requiring from seven to twelve 
specific base changes. The assumed starting point is a population lacking a duplicate version of the 
gene to be converted. As discussed (Problem 1), cells in which a duplicate appears are disadvan-
taged by the cost of expressing a raw duplicate. Shown are the predicted times for a 1% fitness cost 
(s− = – 0.01; top line), a 0.1% fitness cost (s− = – 0.001; second from top), and a 0.01% fitness cost 
(s− = – 0.0001; third from top), and no cost (bottom line). Other parameter values are as listed in 
Table 1 of [19]. The dashed line marks the boundary between feasible waiting times (below) and 
waiting times that exceed the age of life on earth (above), assuming 103 generations per year. This 
figure was originally published as Fig. 11 of reference 2.
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Third obstacle: Adaptations requiring duplication and modification of an exist-

ing gene should not be presumed feasible if they require more than two specific 

base substitutions, which seems to exclude most functional conversions.

Problem 4: The complexity of metabolic pathways

The severe challenge to the Darwinian model posed by the first three problems 
becomes exponentially more severe when we recognize that the relevant scale of 
genetic innovation is not a single new enzyme function, but rather the coordinated 
sequence of enzymatic steps needed to produce a new phenotypic trait. Our reported 
attempt to change Kbl2 into a BioF2-like enzyme in E. coli illustrates this point [2]. 
To make selection of successful mutants possible, one of us (AG) engineered a 
strain that lacks the gene encoding BioF2. Without that gene the engineered strain 
is unable to make biotin, an essential cofactor for fatty acid biosynthesis and other 
carboxylation reactions [24–26]. This makes growth impossible unless either func-
tional conversion is achieved (which never happened) or biotin is supplied as a 
nutrient (which is how we maintained the strain). This suited our experimental 
objectives well, but it is important to recognize that our engineered strain is wholly 
unrealistic as a natural evolutionary context for the origin of BioF2.

The complete metabolic pathway for biotin synthesis (Fig. 3) shows why this is 
so. BioF2 is just one of four enzymes that are exclusively dedicated to biotin pro-
duction. This means that any proposed explanation of the origin of biotin produc-
tion as a phenotypic trait must account for innovation on a considerably larger 
scale than the already problematic scale of a single functional conversion. The full 
impact of this becomes evident when we realize that quadrupling the scale of a 
complex adaptation increases the evolutionary difficulty not merely by a factor of 
four, but rather by a power of four [21].5

The biotin example illustrates the problem of pathway complexity nicely, but is 
it typical or exceptional for metabolic pathways to depend on four dedicated 
enzymes? To answer this we need to examine the whole metabolic picture. When 
we do this, we see that the biotin pathway is unexceptional in its complexity. 
According to EcoCyc, a comprehensive database of metabolic information on E. 
coli, this common bacterium uses 1,467 enzymes to carry out the functions of 281 
metabolic pathways.6 That amounts to just over five enzymes per pathway, on 

5 More precisely, it increases the required probabilistic resources (opportunities for success) by a 
power of four, which would increase the waiting time in generations by more than a power of four 
(assuming each generation provides multiple opportunities for success).
6 See http://ecocyc.org/ECOLI/organism-summary?object=ECOLI.
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average. Similarly, in 2001 Teichmann et al. reported 581 proteins used in 106 
small-molecule metabolic pathways in E. coli [27]. Although the definition of 
“pathway” is somewhat imprecise, these figures give us at least a rough picture of 
the complexity of metabolic processes in terms of enzymatic steps, and from that 
picture we deduce that most of the innovations that brought new metabolic traits 
did indeed involve multiple enzymatic innovations.

This poses a severe challenge for neo-Darwinism. Mechanisms that have been 
proposed in attempts to meet this challenge, such as retrograde  evolution [28], or 
serial duplication and recruitment [29] do not match the actual distribution of 
protein domains across and within pathways [30]. Rather, most pathways employ 
several different protein folds, which, as we discuss next, raises another problem.

Fourth obstacle: Accounts of metabolic innovation must recognize that beneficial 

metabolic traits typically depend on multiple dedicated genes.

Problem 5: Radical innovation — the need for new protein folds

The previous problem makes it clear that a realistic treatment of metabolic innova-
tion has to explain more than a single new enzyme function. Explaining how a new 
enzyme function might appear is a key part of the problem, but it is not the whole 
problem for several reasons. The first, as just discussed, is that new metabolic 

Fig. 3.  The dedicated pathway for microbial biotin biosynthesis.
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traits typically require multiple new enzyme functions, not just one. The second is 
that these new functions often call for new protein folds, which adds the problem 
of structural innovation to the already mushrooming problem of functional inno-
vation. The problem of converting an existing fold to a new function is very mod-
est compared to the problem of generating a stable new fold with enzymatic 
activity from scratch.

The basis for thinking that such structural innovation is typically beyond the 
reach of Darwinian  evolution has been described [1]. The next question is how 
prevalent structural innovation appears to have been in the early history of life. More 
specifically, how often did metabolic innovation involve structural innovation? We 
can get at least a rough answer to this in a couple of different ways. One is to esti-
mate the number of distinct fold types used by a typical bacterial species and divide 
that by the number of metabolic pathways that these folds serve. This avoids the 
need to reconstruct history by giving us an average value — the average number of 
new folds that have to be explained per pathway explanation. A previous analysis 
found this average to be about four (991 distinct folds serving 263 pathways [1]), 
which means that the vast majority of early metabolic pathways required new folds.7

A complementary approach is to get a rough lower-bound estimate of the total 
number of distinct protein folds used in bacterial life. Analysis of the bacterial 
genomes that have been sequenced so far indicates that a substantial majority 
(>80%) of the 1,962 known protein folds are used in at least one bacterial species.8 
Although there is no reliable way to estimate the actual total number of folds, that 
result suggests that bacterial life uses most of them. Currently, about 40% of the 
proteins known to exist are known only by the sequence of their encoding gene 
(i.e., nothing is known of their structure or function [31]). As more genomes are 
sequenced, the list of these uncharacterized proteins continues to grow, and again 
a substantial fraction of them (about 50%) are of bacterial origin [31]. A concerted 
effort has been made in recent years to target these proteins for structural analysis, 
with interesting results. Of 248 newly determined structures described by 
Jaroszewski et al. [31], 44 are completely new folds, and another 23 have only 
partial similarity to known folds. Thus, the folds that have been identified so far 
may be only the tip of a very large ‘iceberg.’

Fifth obstacle: Accounts of metabolic innovations must recognize that they often 

depend on new protein folds.

7 Using the Poisson distribution with an expectation of 991/263 = 3.8 new folds per pathway gives a 
98% likelihood of at least one new fold having been needed for a randomly chosen pathway.
8 Based on analysis of Superfamily assignments for 1,392 bacterial genomes (version 1.75; see http://
supfam.cs.bris.ac.uk/SUPERFAMILY/).
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Problem 6: Causal circularity

Kun, Papp, and Szathmáry have described the problem of “kick-starting metabolic 
networks” [32]. Their abstract begins, “If chemical A is necessary for the synthesis 
of more chemical A, then A has the power of replication.” Accordingly, they apply 
the term “autocatalytic” to A. To avoid confusion, we suggest that this term ought 
to be reserved for cases where A is sufficient for the production of itself (with no 
extraordinary preconditions). By contrast, A being necessary for making A does 
not mean that supplies of A are self-renewing. Rather, it means that the absence of 
A assures its continued absence. We will use the term causal circularity to describe 
this case.

Whenever a biosynthetic process exhibits causal circularity (requiring its 
product, A), selection-based accounts of the origin of this process encounter 
complications. In the first place, since the biosynthesis of A as we now see it 
requires not just the genes encoding the enzymes that produce A but also A 
itself, a satisfactory account has to go beyond gene origins. The current biosyn-
thetic apparatus for making A must, in such a case, not only come into existence 
but also be primed with pre-existing A in order to begin working. But this pre-
sents another complication. If A was pre-existing, how would acquiring a way 
of making A provide a selective advantage? Although it is possible to construct 
answers to this, they all suppose circumstances beyond the simple fact that A is 
useful, which makes the final explanation only as compelling as those supposi-
tions are.

How common is causal circularity, though? By analyzing metabolic network 
models for various microbial species, Kun and coworkers showed that ATP pro-
duction involves causal circularity in all organisms, with other metabolites show-
ing circularity in some organisms but not in others [32]. However, because their 
analysis focused on net reactions rather than on the actual physical requirements 
for them to occur, they may have underestimated the generality of this 
phenomenon.

A few examples will illustrate this. One is the biosynthesis of cysteine in bac-
teria. The reactant that provides the sulfur atom for incorporation into cysteine is 
hydrogen sulfide (H2S),9 which itself must be produced from sulfate (SO4

2–) in a 
multi-step enzymatic process.10 The final step of this process is catalyzed by sulfite 
reductase, an enzyme that depends upon a prosthetic group consisting of four iron 
atoms bridged by four inorganic sulfur atoms (an Fe4S4 iron-sulfur cluster [33]) 
and coordinated to the protein by means of four cysteine side chains (Fig. 4). 

9 http://BioCyc.org/ECOLI/NEW-IMAGE?type=PATHWAY&object=CYSTSYN-PWY.
10 http://BioCyc.org/ECOLI/NEW-IMAGE?type=PATHWAY&object=SO4ASSIM-PWY.
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Consequently, without those coordinating cysteine residues, sulfite reductase can-
not produce H2S, and without H2S, cysteine synthase cannot produce cysteine. So 
cysteine biosynthesis is a striking example of causal circularity. Other amino acid 
pathways provide additional examples. The biosynthesis of arginine depends on 
ornithine carbamoyltransferase (ArgF),11 which has an essential arginine residue in 
its active site [34], and the biosynthesis of lysine depends on diaminopimelate 
decarboxylase (LysA),12 which requires a lysine residue to form a Schiff-base link-
age to its PLP prosthetic group.13

In fact, there is a simple way to generalize the principle of causal circularity. 
Since life is a prerequisite for all biosynthesis, any biosynthetic product that is 
necessary for life in its present form is also necessary for its own biosynthesis in 
modern life. So causal circularity exists for all essential biosynthetic products. In 
some cases the loop is extremely tight. LysA, for example, embodies a causal loop 
in itself by both producing and requiring lysine directly. More often the causal 
loop involves multiple activities. Biotin production is a good example of this, 

11 http://biocyc.org/ECOLI/NEW-IMAGE?type=PATHWAY&object=ARGSYN-PWY&detail-level=2.
12 http://biocyc.org/ECOLI/NEW-IMAGE?type=PATHWAY&object=DAPLYSINESYN-PWY.
13 See PDB entry 1KNW and reference 35.

Fig. 4.  The enzyme sulfite reductase. As shown in the expanded view, the active site of sulfite 
reductase uses two prosthetic groups. The larger of these is siroheme (dark honeycomb structure). 
Coupled down below the iron center of siroheme is the cube-like iron-sulfur cluster, which is held 
in place by four cysteine side chains.
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biotin being necessary for fatty acid biosynthesis, which is necessary for building 
the cell membrane, which is necessary for life, which is necessary for the biosyn-
thesis of everything, including biotin.

So, in order to conceive of an evolutionary origin of biotin biosynthesis, we 
must suppose that prior to this origin either A) cells were making their membranes 
without biotin, or B) cells had an abiotic source of biotin. Either way, the question 
of how the ability to make biotin would have been beneficial is raised. To answer 
it, we have to contrive a selective scenario that goes well beyond plain facts, which 
means we end up having to justify both a contrived selection story and a seemingly 
unlikely supposition (either A or B) about the state of life prior to biotin biosyn-
thesis. Of course it is possible to suppose any number of additional things in an 
attempt to do this, but each of these suppositions adds to the complication of an 
already complicated story.

Sixth obstacle: The fact that life depends on numerous components jointly means 

that no simple relationship exists between the functions of these components and 

the selective story that would be needed for them to have arisen as simple 

adaptations.

Discussion

When the key shortcomings of neo-Darwinism are examined in any detail, it is 
hard to escape the impression that the theory is unraveling. All theories encounter 
unsolved problems, but for a solid theory these are challenges in the positive sense 
of the word — opportunities to prove itself further. With neo-Darwinism, on the 
other hand, things appear to be moving in the other direction. As we learn more 
about biological systems, we encounter apparently insoluble problems at every 
level. To make matters worse, as we have seen here the interdependence of these 
individual failures compounds them greatly, making repair of the theory seem very 
unlikely.

As negative as this may sound, it has a positive side: the insights we gain from 
identifying the obstacles facing neo-Darwinism can and should inform the con-
struction of a new theory to take its place. That is, in pinpointing the key problems 
with the old theory we are identifying crucial respects in which its replacement 
must differ from it. We ourselves have become convinced that intelligent causa-
tion is essential as a starting point for any successful theory of biological innova-
tion. If this is so, what is needed now is an elaboration of the general principles 
by which living things have been designed. Accordingly, we have attempted to 
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identify design principles from each of the problems described above. The six 
principles, paired with the obstacles they address, are as follows:

First obstacle: Because gene expression is costly, it should not be assumed that 

weakly converted enzyme functions isolated by laboratory selection would pro-

vide net selective benefit in wild populations.

First principle: Innovations are more like investments than quick cash. They must 

be well implemented to offset their cost, and even then the benefits tend to accrue 

over a long period.

Second obstacle: Beneficial mutations appearing less than about once per gen-

eration in a global bacterial population may remain unfixed for a billion years or 

more.

Second principle: For innovations to be established reliably they need to be car-

ried past a critical ‘tipping point’ in numerical representation, beyond which they 

become self-establishing.

Third obstacle: Adaptations requiring duplication and modification of an exist-

ing gene should not be presumed feasible if they require more than two specific 

base substitutions, which seems to exclude most functional conversions.

Third principle: The substantial reworking of a homologous structure needed to 

give it a genuinely new function is more suggestive of reapplication of a concept 

than adjustment of a physical thing.

Fourth obstacle: Accounts of metabolic innovation must recognize that beneficial 

metabolic traits typically depend on multiple dedicated genes.

Fourth principle: Useful innovations tend to require the simultaneous solution of 

multiple new problems, which means they tend to be compound innovations.

Fifth obstacle: Accounts of metabolic innovations must recognize that they often 

depend on new protein folds.

Fifth principle: Useful innovations often involve both the reapplication of proven 

design concepts and the de novo invention of new ones.

Sixth obstacle: The fact that life depends on numerous components jointly means 

that no simple relationship exists between the functions of these components and 

the selective story that would be needed for them to have arisen as simple 

adaptations.

Sixth principle: The implementation of innovation is nearly the opposite of ordi-

nary physical causation. It is the top-down arrangement of matter in such a way 
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that the resulting bottom-up behavior of that matter serves the intended purpose 

of the innovator.

Even in this rough form these principles suggest some interesting things. One 
is that biological innovation seems similar in essence to human innovation, 
though certainly beyond it in degree. This realization is attracting an increasing 
number of engineers to biology with the aim of reapplying biological innovations 
in human technology [36]. Although that field of study, known as biomimetics, 
has practical ambitions, the fact that it exists (and is thriving) also implies an 
essential similarity between intelligent design in engineering and intelligent 
design in life.

Another interesting aspect of the above set of principles is that while they were 
drawn from observations at the molecular scale of metabolic innovation, they do 
not appear to be restricted to that scale. Indeed, they have the appearance of gen-
eral rules that make sense irrespective of the particulars of the innovation, includ-
ing its physical scale. Since universality of that kind is precisely what we expect 
of a useful theory, this suggests that the principles may be a starting point for 
framing the first successful theory of biological innovation.

Next, and perhaps most significantly, it is clear that this new theory will be of 
an entirely different kind than the one it hopes to replace. Darwinism is purely 
mechanistic in its approach, in that it offers a bottom-up causal explanation for the 
origin of all biological forms and phenomena. In this respect it is also intrinsically 
reductionistic — it takes physical causation to be the fundamental explanation of 
all origins events. The design-based theory hinted at in this paper will differ radi-
cally in both respects. The new theory will be fundamentally top-down in its 
approach and therefore fundamentally non-reductionistic. It will focus mainly on 
design principles rather than on mechanisms. Just as students of engineering and 
design focus mainly on high-level principles that leave a great deal of freedom as 
to their physical implementation, so too students of the new theory will focus 
mainly on the principles that inform biological designs [37] rather than on the 
processes by which these designs may be implemented.

Might this new theory transform biology beyond the topic of origins? Most 
who reflect on the current state of biology sense a need for understanding to 
catch up with the enormous flow of new data. Sydney Brenner, one of the pio-
neers of modern molecular biology, has concluded that “biology urgently needs 
a theoretical basis to unify it and it is only theory that will allow us to convert 
data to knowledge [38].” He continues by pointing out that the trend toward 
performing measurements on whole systems instead of their isolated parts (one 
of the emphases of systems biology) brings us no closer to the needed theory, 
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but his suggestion that we should return to hard-core reductionism also misses 
the mark:

Our approach directly reflects the structure of biological systems and, as we reduce 

each level to the level below — organisms to cells and cells to molecules — we 

can then confidently complete the reductionist programme because the properties 

of molecules can be reduced to physics [38].

The problem with this approach is that reducing a living thing to its simplest mate-
rial causes does not lead to an understanding of it. By way of analogy, those who 
want to understand software should have some exposure to the zeros and ones of 
machine language, but they would do well to spend most of their time studying 
principles of software design that are nowhere to be found among the bits. More 
generally, one can acquire a great deal of knowledge of the operation of a complex 
innovative system without having the slightest grasp of the genius behind it. To 
grasp that, we need to consider how it was designed.

In the end Brenner’s search for a new theory seems to be hamstrung by the old 
theory. He thinks “we need to remember that whereas mathematics is the art of 
the perfect and physics is the art of the optimal, biology, because of  evolution, is 
only the art of the satisfactory [38].” We think it may actually be much more than 
that.
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Section Four — Biological Information 
and Self-Organizational Complexity 

Theory: Introductory Comments

Bruce L. Gordon — Section Chairman

No discussion of new perspectives on biological information would be complete 
without consideration of the anti-reductionist approach of the self-organizational 
school of thought. The reductionist approach focuses on systematically taking 
apart complex systems and analyzing their individual components, seeking to 
explain the behavior of the whole in terms of its parts. This strategy has been very 
fruitful and such research undoubtedly will continue, but, like the intelligent 
design scientists and researchers exemplified by the editors and other contributors 
to this volume, self-organizational theorists believe that new theoretical approaches 
are necessary to understand the hierarchically integrated information networks 
that undergird morphogenesis in developmental biology and  evolution. How do 
systems of genes and proteins integrate into holistic information structures? How 
do dynamic organelle structures form in cells? What controls cell growth, division 
and differentiation in organisms? How is genomic information regulated in the 
construction of an organism? How do selective environmental pressures integrate 
through time with organismal development to affect the evolution of species? How 
do integrated ecosystems form and evolve? Both self-organizational theorists and 
intelligent design (ID) theorists believe that  natural selection operating on random 
genetic mutation is an insufficient basis on which to explain the origins of biologi-
cal complexity and irrelevant to the origin of life. ID theorists also believe that the 
self-organizational capacities of physical systems are limited, falling far short of 
the order we observe, so the ultimate source of information for the origin of life 
and hierarchically integrated morphogenesis in both organismal development and 
speciation must be extrinsic to biological systems and their physical environments. 
In contrast, self-organizational researchers argue that global pattern development, 
including the highly complex hierarchical information structures characteristic of 
life, can emerge solely from the interactions of lower-level components and part-
whole dynamics without ultimate or proximate goal-directed input. Whether bio-
logical information is somehow self-originating is thus a central point of 
disagreement between intelligent design theorists and self-organizational com-
plexity theorists.

Taking their cue from non-equilibrium thermodynamics, self-organizational 
theorists maintain that living systems rely on a continuous flow of energy to main-
tain themselves far from equilibrium, and it is this constant flux of energy and 
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material passing through living systems that enables autopoiesis as energy- 
dissipating components spontaneously self-organize into complex structures under 
a variety of physical and selective constraints. As Franklin Harold summarizes the 
situation in The Way of the Cell: Molecules, Organisms, and the Order of Life 
(2001: 232), “living organisms are autopoietic systems: self-constructing, 
 self-maintaining, energy transducing autocatalytic entities” that are “capable of 
evolving by variation and  natural selection: self-reproducing entities whose forms 
and functions are adapted to their environments and reflect the composition and 
history of an ecosystem.” It is the hope of self-organizational theorists to elucidate 
the complex systems dynamics which, subject to internal systemic constraints and 
the external constraints of physical law, catalyze the spontaneous emergence of 
order and dynamic organization in the molecular systems constitutive of living 
organisms.

The contributors to this discussion of biological information from the standpoint 
of complex systems dynamics are well-known names among self- organizational 
theorists: Stuart Kauffman and Bruce Weber. Their involvement in this project 
traces back to a 2007 conference I organized in Boston under the auspices of the 
Discovery Institute’s Center for Science and Culture. The conference commemo-
rated the famous 1967 Wistar Symposium on “Mathematical Challenges to the 
Neo-Darwinian Interpretation of  Evolution.” Several of the ID scientists whose 
work is represented in this volume also participated in this Wistar retrospective. 
The general perception among the participants in the Boston  symposium, as with 
the participants in the Cornell University conference giving rise to this compen-
dium, is that the mathematical and biological challenges posed to the modern 
evolutionary synthesis (neo-Darwinism) have not been resolved, but  actually have 
grown more acute as our knowledge of molecular biology, cell  biology, develop-
mental biology, and genetics has exploded. A different — or at least  modified and 
vastly supplemented — approach is needed, along with  different mathematical 
models. Of course, ID theorists and self-organizational theorists diverge both indi-
vidually and collectively in their heuristic strategies and in the models they pro-
pose, but they have things to learn from each other, and it is in this spirit that 
Kauffman and Weber have contributed to this volume.

Stuart Kauffman’s essay, “Evolution Beyond Entailing Law: The Roles of 
Embodied Information and Self-Organization,” radically revises evolutionary mod-
eling on the premise that no law entails the evolution of the biosphere. The world-
view of physics, he maintains, terminates at the doorstep of life. In making this 
point, Kauffman argues (among other things) that the phase space of biological 
 evolution is always changing, rendering the “sample space” of adjacent  biological 
possibilities unknowable in a way that precludes information-theoretic analysis (thus 
creating an insurmountable barrier for intelligent design). In particular, evolution 
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unites the irreducible indeterminacy of genetic mutation with deterministic natural 
selective pressures so as to rule out the possibility of  monolithic nomological devel-
opment: part-whole interactions in the autopoietic context of living systems give rise 
to an autocatalytic network of top-down and bottom-up causes with unpredictable 
results. Nonetheless, despite the absence of entailing laws, Kauffman proposes that 
ensembles of interactive systems are  subject to statistical laws and profound self-
organization in ways that enable us to understand how undirected abiogenesis and 
speciation are possible, albeit a form of “natural magic.” He concludes his argument 
with three examples of the ensemble approach to evolutionary modeling that exhibit 
strong self-organizational  properties: (1) models of ensembles of genetic regulatory 
systems; (2) the  emergence of collectively autocatalytic sets argued to be relevant to 
the chemical  origin of life; and (3) the statistical features of tunably rugged fitness 
landscapes. In closing, Kauffman invites us to envision a new kind of science that 
explores the growth of embodied information beyond entailing law.

In his paper “Towards a General Biology: Emergence of Life and Information 
from the Perspective of Complex Systems Dynamics,” Bruce Weber argues that 
the “Darwinian Research Tradition” (understood as an interlinked set of research 
programs embracing  natural selection as one major source of biological adaptation, 
order, and innovation, but allowing for other intramundane sources as well), can 
be extended into a general theory of biology that includes  origin of life research 
by appropriating the background assumptions and resources of complex systems 
dynamics. After reviewing the history of neo-Darwinism and the Modern 
Evolutionary Synthesis and making the case for complex systems dynamics as the 
foundation for evolutionary research, Weber discusses its application to the 
emergence of life. He begins with an account of Kauffman’s computer simulations 
of autocatalytic ensembles of peptides and Ghardiri’s experimental studies to test 
their accuracy and viability, acknowledging the difficulty of finding a reasonable 
model for the appearance of nucleic acids and discussing the shortcomings of 
RNA-world, metabolism-first, and cell-first models, ultimately favoring the proto-
cell approach as the one most amenable to articulation and experimental 
investigation using complex systems theory.  Natural selection emerges as a 
phenomenon along with the emergence of life (characterized by the transmission 
of representational information via genetic encoding), which he theorizes in turn 
to be the synergistic result of multiply interacting self-organizational and general 
selectional principles. Non-equilibrium thermodynamics drives self-organization, 
but kinetic mechanisms are the pathways of emergence, especially after life itself 
has made an appearance and kinetic control (as evinced, for example, in 
replication) gives birth to the teleonomic and semiotic character of living systems. 
As Weber describes it, therefore, in contrast to intelligent design, the emergentist 
perspective of self-organizational complexity theory sees organisms as “begotten 
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not made, that is, they are the result of developmental processes individually and 
of evolving lineages,” all these phenomena issuing from the continual holistic 
interplay of selection and self-organization.

Considered together, the essays by Kauffman and Weber provide both an excel-
lent overview of the state-of-the-art in self-organizational thinking and an 
extremely useful guide to the literature on the subject. It is to be hoped that self-
organizational theorists and intelligent design theorists will continue to engage in 
mutually beneficial and constructive dialogue as these new perspectives on bio-
logical information grow to maturity.
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Evolution Beyond Entailing Law:

The Roles of Embodied Information and Self Organization

Stuart Kauffman

Departments of Mathematics and Biochemistry, University of Vermont, Burlington, 
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Abstract

It is argued that no law entails the  evolution of the biosphere. Biological evolution rests on both 
quantum random and classical non-random  natural selection and whole-part interactions that render 
the sample space of adjacent biological possibilities unknowable. This would seem to create an 
insurmountable problem for intelligent design in biology. Nonetheless, the evolution of ensembles 
of interacting systems can be modeled by statistical laws that have strong self-organizational proper-
ties. Some compelling examples modeling evolutionary self-organization in biology are presented 
and it is concluded that a new science of order and organization beyond entailing law is required.

Key words: Evolution, Entailing Law, Adjacent Possible, Quantum Randomness, Classical Non-
randomness, Natural Selection, Kantian Wholes, Darwinian Pre-adaptations, Embodied Information, 
Intelligent Design, Ensemble Approach, Genetic Regulatory Networks, Autocatalytic Sets, Rugged 
Fitness Landscapes, Self Organization

Introduction

I wish to make major claims in this article. Foremost, as presaged in the title, 
I claim that no law entails the evolution of the biosphere. We must be deeply 
 careful of so large a claim, for if it is true, the Reductionist dream of a “final 
theory” that will entail all that happens in the universe is false. But this has been 
the dream, since the Greeks, through Newton, Einstein, and Schrodinger, to most 
recently, Steven Weinberg in his Dreams of a Final Theory [1].

If the claim is correct that no law entails the evolution of the biosphere, it will 
follow that we do not know the ever-changing phase space of the future evolution 
of the biosphere. F. Bailly and G. Longo [2] make this point emphatically in their 
Mathematics and the Natural Sciences: The Physical Singularity of Life, as do I, 
in Reinventing the Sacred [3].
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From the fact that we do not know the ever-changing phase space of biological 
 evolution, it will follow that we do not know the “sample space” of what I call the 
“Adjacent Possible” of the evolution of the biosphere. From this it follows that 
standard notions of  Information Theory, such as Shannon and Kolmogorov, cannot 
be applied, since both require prestatement of the sample space of the process. For 
example, for Shannon, prestatement of the set of possible messages — the sample 
space — is needed to compute the entropy of the information of the Source. If we 
do not know the sample space of evolution, Shannon’s starting point is moot.

Moreover, if we do not know the sample space of the process of biological 
evolution, then probability calculations utilized by Intelligent Design scholars are 
also either moot, or deeply suspect.

These issues mean we need to invent a new concept of biological information. 
No adequate formulation now exists. I will propose the start (only) of such a 
formulation.

If no law entails the evolution of the biosphere, then we must ask what forms 
of laws, if any, we can have. One approach that I will discuss is the study of 
ensembles of systems [4]. For example, the study of (i) ensembles of model 
genetic regulatory networks controlling cell differentiation and ontogeny, (ii) 
ensembles of reaction networks capable of catalysis of the same reactions to form 
collectively autocatalytic sets for the origin of molecular reproduction and life, 
and (iii) ensembles of tunably rugged fitness landscapes [5]. Two major features 
of this ensemble approach are: (i) A search for statistical laws, despite the absence 
of entailing laws. As more facts are learned about the systems in question, more 
refined ensembles can be built for better statistical laws. (ii) Remarkable evidence 
for profound self organization has been found, for example, as typical, or generic, 
properties of ensembles of genetic regulatory networks. This self organization 
almost surely plays a role with selection in evolution. A generic phase transition 
has been found, in chemical reaction networks, to the self-organized emergence of 
collectively autocatalytic sets capable of molecular reproduction that are likely to 
play a role in the origin of life. Furthermore, a remarkable linkage has been found 
between species co-evolving on tunably rugged landscapes and the very structure 
of those landscapes also evolving, such that evolution itself can tune the structure 
of fitness landscapes on which evolution occurs, to lower or even perhaps mini-
mize the rate of extinction, and hence maximize species lifetimes. In all these 
cases, we find both statistical laws without entailing laws for the evolution of the 
biosphere, and unexpected and powerful self organization that mingles with 
  natural selection in the panorama of life’s becoming.

This article is organized as follows: In section 1, I discuss work with senior 
French/Italian mathematician Giuseppe Longo that is the strongest case we can 
currently make that no law entails the detailed evolution of life. Hence my 
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conclusion that this spells “the end of a physics worldview.” In this discussion, I 
expand on my own work [3] and that of F. Bailly and Longo [2], both of which 
claim and demonstrate that the phase space of evolving life persistently changes in 
ways we cannot say. In section 2, I discuss the stunning fact that evolution, without 
selection, creates its own “adjacent possible” empty niches, which it may fill. 
Hence  evolution, in a kind of “natural magic”, builds the very possibilities it 
becomes. That is, I demonstrate the truly astonishing fact that, without  natural 
selection acting at all, the evolving biosphere creates the ever new Adjacent 
Possible empty ecological niches that evolution may/will fill. Thus,  without any 
selection acting to create this astonishing aspect of evolution, evolution itself is 
building the very possibilities that evolution becomes. Here the claim from 
Heraclitus that “Life Bubbles Forth” seems right and deeply new. In section 3, I lay 
out the claim that we do not know the sample space of the evolutionary process, so 
standard  information theory is moot. In section 4, I relate the above results briefly 
to the hopes of the Intelligent Design community to demonstrate Irreducible 
Complexity [6], and its vast improbability by normal evolutionary  processes [7]. In 
section 5, I describe three examples of the use of the “ensemble approach” to find 
statistical laws in the absence of entailing laws for the detailed becoming of the 
biosphere. I discuss models of ensembles of genetic regulatory networks, the emer-
gence of collectively autocatalytic sets, and the statistical features of evolving 
 fitness landscapes. All also exhibit the self organization alluded to above [5].

I. Evolution Is Beyond Entailing Law

At the dawn of Western philosophy and science, some 2,700 years ago, Heraclitus 
declared, roughly, that “the world bubbles forth”. There is, in this fragment of 
thought, a natural magic, a creativity beyond the entailing laws of modern physics. 
I believe Heraclitus was right about the evolution of the biosphere and human life. 
We live beyond entailing law in a kind of natural magic we co-create.

Early sociologist Max Weber said that with Isaac Newton, we became disen-
chanted and entered Modernity. He was right. Before Newton, our tradition, from 
Genesis, saw a creator God whose divine agency, rather like the natural magic of 
Heraclitus, created the world also beyond entailing law.

With Newton’s three laws of motion, universal gravitation, and the differential 
and integral calculus, our world transformed profoundly. Given the initial condi-
tions of billiard balls’ positions and momenta on the table, the boundary conditions 
of the shape of the table, and the motions of the balls given in differential equation 
form using the laws of motion, then integration, a form of deduction, yielded the 
entire future and past trajectories of the balls.
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With Pierre-Simon Laplace, this became the bedrock of reductionism: Given 
the positions and momenta of all the particles in the universe, a vast intelligence 
could, using Newton’s laws, deduce the entire future and past of the universe. For 
Laplace, the complete determinism of Newton’s laws co-existed with a capacity 
for accurate prediction. With Poincaré and the three body gravitational problem, 
deterministic chaos was discovered. Here the system remains deterministic but 
unpredictable because of sensitivity to initial conditions and the fact that any 
measurements of initial conditions require a finite interval of space and time — a 
point that Bailly and Longo stress [2]. Thus, in modern classical physics, deter-
minism does not imply predictability.

The framework of entailing laws remains in the twin pillars of twentieth- century 
physics — classical physics with General Relativity, and quantum  mechanics — in 
both cases with differential equations and their entailed integration. Bailly and 
Longo [2], stress that in physics, it is always possible to prestate the phase space of 
the system, typically derived from its underlying symmetries. In classical physics, 
a least action principle assures that the actual behavior of the classical system in its 
“possible phase space” is always a unique “shortest path”, or geodesic, on some 
manifold. In quantum physics, given the indeterminism of quantum  mechanics, the 
analogous behavior is a geodesic of a probability distribution. In short, the frame-
work of physics prestates its phase space in which, via laws of motion in ordinary 
or partial differential equation form, initial and boundary condition, and  integration, 
yield the entailed geodesic behavior of the system.

I believe we reach a terminus of this physics worldview at the watershed of life. 
As we will see, it seems Heraclitus was right: Life bubbles forth in a kind of 
 “natural magic”. A purpose of this article is to spell out this natural magic, which 
exhibits itself as the evolving biosphere literally constructs, without selection, its 
own future possibilities.

First, and of truly central importance,  evolution itself defies both the complete-
ness of quantum mechanics and the completeness of classical mechanics, yet 
unites them both. We know this, but never say it. Mutations are often quantum 
random and indeterminate events yielding Darwin’s heritable variations. Yet 
 evolution itself is not random, as the phenomenon of convergent evolution demon-
strates. For example, the eye has evolved independently eleven times. And the 
convergence of the independently evolved vertebrate and octopus camera eye to a 
stunning near identity, the result of powerful  natural selection, is obviously not 
random. More examples are found in the convergent evolution of marsupials and 
mammals.

Thus, in blunt terms, biological evolution is neither quantum indeterminate 
 random, nor deterministic classical mechanics. The living world really is “new”. 
Quantum mechanics alone and classical physics alone each seem to be incomplete.
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The fact of evolution, mixing quantum and classical physics for which each 
alone is insufficient, is clear. What might this truth mean?

One very important possibility is that, after 85 years of unsuccessful attempts 
to unite quantum mechanics and General Relativity, it may really not be possible 
to unify them into the single theory whose “Dream” is that of Weinberg [1]. We 
may have to live with quantum mechanics and classical physics un-united. In this 
case, evolution itself demonstrates that both nevertheless “mix” together: quantum 
indeterminate yet random mutations united with the non-random effects of natural 
selection acting at the level, at least in part, of classical physics, and thus the 
 camera eye evolved in octopus and vertebrates. But this requires something that 
seems not to be entailed in current physics: Let a quantum indeterminate random 
DNA mutation occur, then natural selection act to evolve toward the tuned camera 
eye. As this largely classical physics  evolution occurs, different alleles of mutated 
genomes are selected in the evolving population. Thus, when quantum random and 
indeterminate mutations creating yet new alleles occur, the very possibilities of 
what those quantum event mutations might be, i.e., in which gene sequences they 
may occur, has changed due to largely classical physics  natural selection. In turn, 
the quantum random indeterminate mutations alter what natural selection will do. 
Taken together, evolution is both quantum indeterminate and also non-random.

Given this mixture of quantum indeterminate random, and classical physics 
non-random natural selection, it seems very hard on this basis alone to conceive 
of a single law that entails the detailed evolution of the biosphere.

In a related intellectual effort to link quantum mechanics and the mind-brain 
system, inspired by Sir Roger Penrose, but taking a different track, I have pro-
posed in “Answering Descartes: Beyond Turing” [8], that even in the mind-brain 
system, perhaps in synapses, a similar non-determinate yet non-random mixture 
of quantum indeterminate and yet non-random classical behavior can occur. It may 
be important that there now appears to be a Poised Realm, where systems, via 
decoherence and recoherence, can hover back and forth between quantum 
 coherence and classicality for all practical purposes (FAPP). This hovering may 
play a role in organisms and be indeterminate, yet non-random. There may also be 
no entailing law for this behavior.

In short, if we cannot unite quantum mechanics and General Relativity under a 
single law, this may not be an intellectual tragedy, but may free us, after the 350 
years since Newton, from the dream of universal entailment. Then true novelty, 
beyond entailment, can arise. Life can “bubble forth”. I now discuss further 
 reasons to believe that no law entails the evolution of the biosphere.

Second, biological evolution concerns “Kantian wholes” [9], where the whole 
exists for and by means of the parts and the parts exist for and by means of the 
whole. An instance is a collectively autocatalytic set of peptides, as produced by 
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Gonen Ashkenazi of Ben Gurion University in his nine-peptide autocatalytic set. 
This is a clean example of a Kantian whole. No peptide catalyzes its own forma-
tion from two fragments of itself, but instead catalyzes the formation of one of the 
other nine peptides from two fragments of that peptide. The set of peptides as a 
whole catalyses the entire set of reactions by which the set of nine peptides repro-
duces itself in a collectively autocatalytic set. If we call catalyzing a reaction a 
“catalytic task”, then the set achieves a “closure” in catalytic task space. All the 
reactions that require catalysis are catalyzed by one or more members of the set. 
Note that, given a Kantian whole, the “function” of a given peptide can be defined 
as its role in sustaining the reproduction of the whole nine peptide collectively 
autocatalytic set.

In his forthcoming book, Incomplete Nature [10], Terrence Deacon, a  professor 
at U.C. Berkeley, points out that philosopher Jaegwon Kim has argued that even 
such Kantian wholes do not preclude deduction upward from particles to wholes. 
But, points out Kim, according to Deacon, who agrees, that argument rests on 
classical “materialism,” i.e., the classical physics of point particles and fields. 
Deacon rightly notes that quantum mechanics, as in Feynman’s sum over all pos-
sible  pathways that, e.g., a photon might take through the two slits,  obviates such 
a naive materialism. The position and momentum of a particle cannot be jointly 
measured with precision; quantum mechanics precludes point particles existing 
prior to measurement, and multi-particle quantum systems are, ineluctably, 
“wholes”. Thus the collectively autocatalytic set is a Kantian “Organized 
Being,” whose ever-changing atoms and molecules exist in the universe — when 
most complex things above atoms will never exist — as a united whole, an entity 
which is sustained existing in the universe by the linked dynamical classical and 
quantum processes of parts and whole enabling one another. The specific peptides 
may come and go, yet the Kantian whole remain as non-equilibrium, self- 
sustaining, partly quantum, partly classical, and perhaps partially Poised Realm, 
processes.

Third, a living, dividing cell is both a collectively autocatalytic set, and thus a 
Kantian whole. But of central importance, it achieves a task closure in a much 
wider set of tasks than mere catalysis. Proteins are vectored to specific cell 
 locations, energy is transduced, pumps operate in work cycles, and chromosomes 
are separated in mitosis, completing a set of task closures in some wide set of tasks 
such that the dividing cell reproduces. The function of each such task, typically a 
subset of the causal consequences of the physical processes involved, is its role in 
sustaining the reproduction of the cell as a Kantian whole.

Fourth, and of deep importance is this: We cannot name all the causal conse-
quences or uses of any object, say a screw driver, alone or with other objects. The 
set of uses appears to be both unbounded or “indefinite”, and un-orderable. But 
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that means we cannot know that we have ever “listed” all the uses of a screw driver 
alone or with other objects or processes.

Now consider an evolving cell in which one or more objects or processes, each 
with myriad causal consequences, finds a novel use that we cannot prestate, but 
which enhances the fitness of the cell, and so is grafted by  natural selection into 
the evolving biosphere. This “finding of a novel use that we cannot prestate” 
occurs all the time. The famous flagellar motor of some bacteria made use, via 
Darwinian preadaptations or exaptations (discussed further below), of fragments 
of its flagellar proteins that were serving entirely different functions in other 
bacteria.

Fifth, Darwinian preadaptations are typically not prestatable. A Darwinian pre-
adaptation is a causal consequence of a part of a process in an organism of no 
selective significance in the current environment that “finds a use” in a novel 
selective environment and is selected, typically, for a novel function. Preadaptations 
occur all the time in  evolution. I give but one example. Some fish have swim 
 bladders, sacs partly filled with air and water, whose ratio adjusts neutral  buoyancy 
in the water column. Paleontologists believe that swim bladders evolved from the 
lungs of lung fish: water got into some lungs, and then there was a sac partly filled 
with air and water, poised to evolve into a swim bladder. I now raise three 
 questions: (i) Did a new function come to exist in the biosphere? Yes. Neutral 
buoyancy in the water column. (ii) Did the evolution of the swim bladder alter the 
future evolution of the biosphere? Yes, the possibilities of new species with swim 
bladders, new proteins, and new ecological niches came into existence: for 
 example, a bacterium or worm might evolve that is only able to live in swim 
 bladders. I return to this example below. (iii) Do you think you could prestate all 
the possible Darwinian preadaptations just for humans in the next million years? 
We all say “no”. Here is why: We cannot finitely prestate all the possible uses of 
parts, alone or together, of an organism, for they are indefinite in number and un-
orderable. We cannot know we have completed the list of uses. Next, we cannot 
say all possible selective environments for which such uses might be found to be 
useful. How would we know we had listed all possible selective environments?

But this means something terribly important. Let me call the set of possible next 
Darwinian preadaptations the Adjacent Possible of the  evolution of the biosphere 
via preadaptations. We do not know what this set of possibilities is! Thus, and of 
central importance, we do not know the “sample space” of the evolution of the 
biosphere by Darwinian preadaptations.

But the fact that we do not know the sample space means we cannot make 
 normal probability statements. Consider instead flipping a fair coin 10,000 times 
and calculating the probability of 4698 heads using the Binomial theorem. We can 
do this, but notice that we know ahead of time “all possible outcomes”, all heads, 
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all tails, all 2 to the 10,000 power possible outcomes of our 10,000 flips. We know 
the sample space, so we can erect a probability measure.

In contrast, for the evolution of the biosphere by preadaptations, we do not 
know the sample space and so seem entirely unable make normal probability 
 statements. In turn, I think this inability has its roots in the indefinite set of uses 
of any part or set of parts or processes in a cell or organism, which set is also un-
orderable. We cannot know we have listed all the possible uses, nor the set of all 
adjacent possible selective environments. We do not know what features alone or 
together in, say, a dividing cell, may find a novel use in some environment and be 
grafted by  natural selection into the Kantian whole, creating a novel function and 
a novel Kantian whole in the evolving biosphere.

Sixth, mathematics requires that we have the concepts beforehand of the 
 relevant variables, say, mass and length of a pendulum, for the law of the pendu-
lum. The older view of mathematics as mere formal manipulation of syntactic 
symbol strings given uninterpreted axioms, has given way to a more modern 
 “constructivist” mathematics, as Bailly and Longo argue [2], in which the settled 
concepts with their semantics, not just syntax, is central to the development of 
mathematics. For Newton, F = MA rested on a pre-Newtonian notion of “mass”.

But unlike physics, where the phase spaces are always prestated, in evolution 
the phase space is always changing [2, 3], and as we shall see, even more stun-
ningly, building without selection, the very possible ways it may change its phase 
space. Thus, for evolution of the biosphere by ever new causal consequences, 
which may “find some unprestatable use” by Darwinian preadaptations in evolving 
Kantian wholes that constitute cells with ever changing Task closure, we do not 
know the relevant variables, so we cannot write down the laws of motion for the 
evolving biosphere.

Seventh, we do not know ahead of time the emerging novel Adjacent Possible 
empty niches, such as the fish swim bladder into which some worm or bacteria 
could evolve to live. But those niches constitute the boundary conditions on 
 natural selection shaping the evolution of the worm or bacterium to live in the 
swim bladder.

Newton taught us that we need the laws of motion, which by point six above we 
do not have, and we need the initial and the boundary conditions, to integrate the 
laws of motion for the trajectory of, say, the billiard balls on the billiard table. But 
we do not know the boundary conditions that the swim bladder, when it may 
evolve, will constitute, so we cannot integrate the laws of motion, (which we do 
not have anyway), for the  evolution of the biosphere. Lacking the boundary 
 conditions would be like trying to integrate the motions of the billiard balls with 
no idea of the shape of the billiard table. We do not even have a mathematical 
model if we lack the boundary conditions!
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In summary of these points, first through seventh, no law entails the detailed 
evolution of the biosphere. If this is true, it is the end of a physics worldview.

II. Life Bubbles Forth

Heraclitus was right: Life bubbles forth, beyond entailing law. Consider the evolu-
tion of the swim bladder above by a Darwinian preadaptation. Did  natural selec-
tion act to craft a well-functioning swim bladder in an evolving population of fish? 
Of course. But did natural selection act to craft the new adjacent possible empty 
ecological niche that the swim bladder constituted? NO. No natural selection acted 
to create the new adjacent possible empty niche into which the worm or bacteria 
might evolve to live.

But this means that, without any selection at all, the biosphere is building its own 
adjacent possible pathways of evolution. The biosphere is building, without selec-
tion, its own future possibilities. By a kind of “natural magic”, the biosphere  creates 
its own future. Heraclitus was right: Life bubbles forth beyond entailing law.

If the above is true, we must give up our deep belief, at least since Newton, if 
not the Greeks, that without entailing law, the world cannot become in a coherent 
way: The biosphere has been doing just fine for 3.7 billion years of becomings as 
Kantian wholes make their largely self-consistent but ever-changing worlds ever 
anew with one another. We need to think anew how this becoming, even with 
extinction avalanches, can be coherent without entailing law.

More, if Max Weber is right that with Newton we became disenchanted and 
entered Modernity, my hope is that the “natural magic” of life bubbling forth, and, 
a fortiori, human life, can re-enchant us. Perhaps we can move beyond Modernity.

III. Beyond Standard Information Theory 
to Embodied Information

I begin with Shannon’s famous information theory [11]. Shannon chose, on pur-
pose, to ignore any semantics, and concentrate on purely syntactic symbol strings, 
or “messages” over some pre-chosen symbol alphabet, most simply 0 and 1. Then 
he considered an Information Source filled with diverse bit string “messages”, say 
bit strings of length N. Each message might occur once or many times in the 
source. Let pi be the frequency of the ith message. Then −∑piln(pi) over the set of 
messages in the source is the “ entropy” of the source. Given a measure of the 
entropy of the source and a noisy channel with a decoder at the far end, he could 
study information transmission down the channel from source to decoder.
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It is clear that Shannon’s invention requires that the ensemble of all possible 
messages, here the possible 2 to the Nth power bit strings length N, be stable head 
of time. Without this statement, the entropy of the information source cannot be 
defined.

Now let’s turn to  evolution. We saw above that we cannot prestate the adjacent 
possibilities of the evolution of the biosphere by Darwinian preadaptations. Thus, 
we cannot construct anything like Shannon’s probability measure over the future 
evolution of the biosphere; thus, in turn, we cannot apply information theory in 
any obvious way to that evolution.

This blunt statement ignores further huge difficulties in applying Information 
Theory in biology. For Shannon, a bit is a bit, 0 or 1, hence the only “features” are 
the members of the alphabet of pre-chosen symbols, here 0 or 1. But in biological 
evolution, where we cannot finitely state the causal consequences of uses of any 
one or many features or processes in cells or organisms, where the set is both 
indefinite and unbounded, even if we prestated the “features” we could not state 
the alphabet of their relevant causal consequences or uses. It is precisely because 
of these causal consequences alone or together that “find a use” in an evolving cell 
or organism that these ever new features are grafted into the evolving biosphere.

More, what counts as a “feature”? Any causal consequence of “one” or many 
parts or processes which alone or together “find a use” that enhances fitness of the 
Kantian whole so enters the biosphere. We cannot even prestate what aspects of a 
cell may constitute a feature. In terms of Shannon, we don’t even know the 
“alphabet”.

The same concerns arise for Kolmogorov [12], who again requires a defined 
alphabet and symbol strings of some length distribution in that alphabet. Again, 
Kolmogorov uses only a syntactic approach. Life is deeply semantic with no 
 prestated alphabet, no “Source”, no definable entropy of a source, but unprestat-
able causal consequences which alone or together may find a use in an evolving 
Kantian whole of a cell or organism.

In summary, standard information theory, both purely syntactic and requiring a 
prestated sample space, is largely useless with respect to evolution. On the other 
hand, there is a persistent becoming of ever novel structures and processes that 
constitute specific novel and integrated functionalities in the Kantian wholes that 
co-create the evolving biosphere. Note that the causal consequences and uses in 
Kantian wholes have a deep semantic content in embodied cells and organisms 
living in an embodied physical world. We need a new theory of embodied func-
tional information in a cell, ecosystem or the biosphere.

A start of such a theory is taken in Kauffman [13]. The issues include these: 
(i) How do we measure the diversity of functions embodied in one or a community 
of Kantian wholes making their worlds together at any point in their  evolution? 
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(ii) How do we measure the “degree of organization” of the processes carried out 
in those embodied functions? Consider the heart. Its function is to pump blood. 
But it makes heart sounds and jiggles water in the pericardial sac. The function of 
the heart is to pump blood, not make heart sounds or jiggle water in the pericardial 
sac. Thus, the function of a part of an organism is typically a subset of its causal 
consequences.

In Kauffman [13] I propose the steps of: (i) Distinguishing the system into a set 
of “parts and processes”. (ii) For each of these, list its set of immediate causal 
consequences. (iii) Find that choice, for each of the distinguished “parts”, of that 
one of its causal consequence, such that, when taken over all the parts together, 
that choice of one causal consequence per part maximizes a measure of the total 
diversity of processes of the total system. This measure is called Set Complexity. 
This maximal Set Complexity measure with its identified single causal conse-
quence, among all the causal consequences of each part, will hopefully pick out 
the causal consequence of each part which is the true functions of that part. 
Thereby this will measure the total diversity of functions in the total system. 
(iv) For work processes, measure the power efficiency per unit fuel consumed of 
that process as a macroscopic measure of the “degree of organization” of that 
functional work process. Power efficiency per unit fuel consumed for work pro-
cesses picks out an optimal displacement from equilibrium, hence is of consider-
able interest as a measure of the degree of organization of a process. (v) Multiply 
each identified functional work process of each part by its power efficiency and 
sum over the parts in the system to get an overall measure of the total diversity of 
organized processes.

I do not know how to generalize this to functions in cells or organisms which 
are not work processes.

If we could invent a measure along these lines, we could measure the diversity 
of organized processes in an ecosystem, or even the biosphere, at any moment of 
time. Then this diversity is a natural measure of the “embodied information” in the 
Kantian wholes co-creating their worlds. With this measure, should we get it, we 
could measure the change, presumably an average secular increase over evolution-
ary time, of the embodied information of the biosphere.

IV. Implications for Intelligent Design

The underlying concept of Intelligent Design, ID, is perfectly sensible but perhaps 
in a restricted set of scientific contexts. For example, ID can be taken to ask: 
(i) given an alphabet and messages, is the set of received messages highly 
 improbable given the entropy of the Shannon source? (ii) Alternatively, given 
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absorption or emission signals from atoms from stars, is the observed time 
sequence so improbable that it suggests “design”. SETI has just this legitimate 
problem.

At issue is whether Intelligent Design is well founded in asking this question of 
biology. Here there are at least two issues: First of all, Irreducible Complexity [6], 
exemplified by the bacterial flagellar motor, is a phenomenon said by ID a dvocates 
to be too specifically complex to have arisen by random variation and  natural 
selection. But this approach ignores Darwinian preadaptations where old parts, 
selected for different purposes, are recombined for a new function — e.g., the 
 flagellar motor itself, assembled, it is thought, from proteins serving different 
functions in different bacteria.

Secondly and more deeply, Intelligent Design seeks to accomplish the analogue 
of SETI. But if, as above, we can construct no probability measure for the 
 emergence and  evolution into the ever changing adjacent possible of the evolving 
biosphere, it would seem that such calculations are either moot or questionable at 
present.

Whether the attempt to show that evolution is, in some definable sense, more 
“ordered” than some new and yet to be defined measure of randomness concern-
ing what the myriad branching pathways of evolution, with some confidence 
level, would allow, remains to be seen. It would seem that Intelligent Design 
 researchers — indeed, all of us — need to begin to cope with the amazing bub-
bling forth of new niches without selection, allowing new directions of evolution 
as life itself bubbles forth.

V. The Ensemble Approach to Statistical Laws 
and Self Organization with No Entailing Law

The “ensemble approach” [4] may prove useful. I will give four examples where it 
has been applied: (1) genetic regulatory networks, (2) the  origin of life, (3)  statistical 
features of “rugged fitness landscapes, and (4) in physics, spin glasses. I discuss the 
first in detail.

The Ensemble Approach to Geneti c Regulatory Networks

As a young man, I thought about cell differentiation. How could different cells in 
us, all having the same genes, be different, liver, kidney, etc? It was known that in 
different cells types, different genes were active making specific and different sets 
of proteins. In 1961 and 1963, French microbiologists, F. Jacob and J. Monod, 
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cracked the problem when they showed that, in E. coli bacteria, one gene, say A, 
could make a protein, say A, that bound to a DNA region next to another gene, say 
the B gene, and turn on or turn off the B gene’s formation of its own B protein. In 
a seminal 1963 paper [14], they argued that if two genes, A and B, each repressed, 
or turned off, the other gene, the little two gene circuit had two dynamical steady 
states: (1) A on and B off, or (2) A off and B on. Hence, they said, the SAME set 
of genes could express different proteins corresponding to two cell types [14].

All biologists recognize that Jacob and Monod set the now central question of 
Systems Biology: what is the genetic regulatory network among 23,000 human 
genes, of which about 2,200 genes coding for transcription factors, and others 
 coding for microRNAs, regulate one another’s activities and regulate the rest of 
the 23,000? Here we need to know which genes regulate which genes, and by what 
“dynamical rules”. Then we need to “integrate” the equations of motion of such a 
network to discover its integrated behavior. Just as Newton’s laws for billiard balls 
yield, upon integration with given initial and boundary conditions, the trajectory 
of the balls, so for a classical physics genetic network, the behavior of the system 
has a trajectory from each initial state, i.e., from each pattern of gene expression 
among all 23,000 genes. These flow through a sequence of patterns, or states of 
gene expression, and typically the flows, or “trajectories”, end up on small subsets 
of states, called “attractors”, each of which drains a “basin of attraction”. Cell 
types probably correspond to attractors and differentiation corresponds to noise or 
signal induced flow among attractors [5, 15].

Here is the “ensemble approach”: I wondered if  natural selection had to  struggle 
to create very specifically selected, hence “engineered”, networks to achieve 
 controlled differentiation from the fertilized egg, or zygote, called “ontogeny”, or, 
I hoped, some broad class or “ensemble” of networks would all have “good 
enough” dynamical behavior to underlie ontogeny with just some tuning by 
 natural selection.

To ask this question I idealized the behavior of a gene as an on-off device, a 
light bulb, and asked if there was a class of large genetic networks that yielded 
“orderly behavior”. To ask this question is inherently to take the Ensemble 
Approach: it asks whether there are typical (i.e. generic) behaviors in different 
classes or “ensembles” of networks. In my case I imagined N genes, each with 
K inputs. There are vastly many networks, an entire “ensemble” of networks, with 
N = 23,000 genes, and K = say 2 inputs per gene. To study the typical properties 
of this ensemble, one approach is to sample at random from this ensemble. Thus, 
I chose the K = 2 inputs to each gene at random from among the N, and for each 
I assigned at random one of the 16 possible logical, or “Boolean functions” 
 prescribing the behavior of the regulated gene at the “next time moment”, given 
the on or off states of its two inputs at the current moment. The “AND” function 
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is such a Boolean function. It says the regulated gene will be “on” at the next 
moment only if both its inputs are “on” at the present moment.

To summarize many years of work by many on Random Boolean Networks, it 
turns out that they behave in three regimes: Ordered, Chaotic, and a “Critical” 
“edge of chaos” regime which is a phase transition between order and chaos. K = 2 
networks turn out to be critical for the ensemble of networks with randomly 
 chosen Boolean functions. Critical networks can have other values of K greater 
than 2 by using non-random choices of Boolean functions of K [5].

Now three essential facts: (i) Critical and Ordered networks exhibit very 
ordered, and also multiple, attractors, hence the generic behaviors of these 
networks exhibits a new form of SELF ORGANIZATION — generic order in 
an Ensemble of systems. These ordered attractors are so ordered that the dif-
ferent attractors could explain the order of the different cell types in an organ-
ism. (ii) It is becoming clear that differentiated cell types are almost certainly 
“attractors” [14]. (iii). More amazingly, cells appear to be “Critical”, to live on 
the edge of chaos [16–19].

Note three essential feature of the Ensemble Approach: (i) There is a vast 
ensemble of NK Random Boolean Networks, or more realistic models of genetic 
networks, all of which are dynamically critical. In short, “criticality” is a feature 
of an entire ENSEMBLE of networks, not just of one. ii. Importantly, this means 
that the generic behaviors of this class of networks is independent of the physics 
of any specific member of the ensemble. iii. Critical networks are a subset of all 
Random Boolean Networks, those at the edge of chaos. If cells are critical,  Natural 
Selection must hold networks at the edge of chaos for adaptive reasons — here is 
the mixture of Ensemble Self-Organization AND Natural Selection.

The Ensemble Approach Can Yield Stati sti cal Laws Beyond 
Entailing Laws

As stressed at the start of this article, no law entails the detailed  evolution of the 
biosphere, including the evolution of genetic regulatory networks. This means we 
cannot deduce ab initio what those networks are. But the Ensemble Approach 
allows statistical laws about the typical features and behaviors of the entire 
 ensemble of critical networks. More profoundly, evolution does NOT follow geo-
desics. Thus evolution is NOT entailed. It follows myriad pathways mixing quan-
tum random indeterminate mutations and non random natural selection. The 
Ensemble Approach is the natural way to seek statistical laws about the behaviors 
of genetic regulatory networks, without needing to know the details of any specific 
genetic regulatory network. As we learn more about real networks we can refine 
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the specifications of the ensemble, hence the generic behaviors of the refined 
ensemble, for better statistical predictions.

In short, the Ensemble Approach marries to the lack of entailing law for evolu-
tion, to yield one viable approach to statistical laws beyond entailing law.

The Ensemble Approach to the Emergence of Collecti vely 
Autocatalyti c Sets as a Generic Phase Transiti on in 
Complex Chemical Reacti on Networks

Perhaps the central problem concerning the  origin of life is the onset of molecular 
reproduction, given a “soup” of prebiotic organic molecules such as amino acids, 
lipids, nucleotides and other organic molecules. These molecules may have been 
present on the early earth due to meteorite infall, abiotic synthesis on the early 
earth, or both.

Such small organic molecules, say in confined spaces such as tidal pools or 
rocks with interconnected hollow chambers, may be a necessary condition for the 
onset of molecular reproduction, but not sufficient. In 1971, the received view was 
that life must be based on template replication of arbitrary sequences of single 
stranded DNA, RNA, or similar molecules. The hope was that a single, say, RNA 
template strand would line up free A,U,C, and G nucleotides to Watson-Crick 
match the arbitrary single template strand, then the free nucleotides would be 
bonded by 3’–5’ phosphodiester bonds to make a second complementary strand, 
then the two strands would melt apart and cycle. This would create, without 
enzymes, a self replicating arbitrary RNA sequence. Forty years of intense work 
has so far failed.

A current approach, pinioned on the observation that RNA molecules can act as 
enzymes, called ribozymes, is a search for an RNA ribozyme, single stranded, able 
to copy a second complementary RNA strand, then copy that complementary 
strand back into a copy of the initial strand. Such a ribozyme would, acting as a 
“polymerase”, be able to copy any single-stranded RNA molecule, including 
itself. Some progress has been made, but I have concerns: (i) Such molecules may 
exist but be very rare, so unlikely to arise by chance. (ii) How does such a mole-
cule build the network of metabolism around itself? (iii) If the ribozyme is error 
prone, its copies will have more errors, and their copies yet more errors, and may 
create a runaway “error catastrophe” if the mutation rate is stronger than the 
 selective advantage of the good ribozyme(s).

In 1971 [20, 21, 5], I took the ensemble approach based on a different 
 conception. What was needed, I thought, was a set of molecules that were 
 collectively autocatalytic, as is Gonen Ashkenasi’s nine-peptide collectively 

 B
io

lo
gi

ca
l I

nf
or

m
at

io
n 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
2.

4.
17

.1
40

 o
n 

08
/1

1/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



528 S. Kauffman 

b1567  Biological Information — New Perspectives b1567_Sec4.1 8 May 2013 2:56 PM

autocatalytic set [22]. His set, by the way, conclusively demonstrates that molecu-
lar reproduction need have nothing to do with DNA, RNA, or nucleotides.

To approach my question in an ensemble sense, I asked this: Given a set of 
molecules, M in number, with R reactions among them, and some distribution of 
which, if any, of the R reactions, each of the M might catalyze, could one find 
conditions under which, generically, collectively autocatalytic sets would arise? 
The answer can be yes. Under simple assumptions in which, as a 0th order 
 hypothesis, each molecule among M has a probability P to catalyze each of the 
R  reactions, it is a theorem that, as the diversity of M and the greater diversity of 
R and hence R/M increases, a phase transition is reached at which collectively 
 autocatalytic sets emerge with probability near 1. Importantly, the same results 
arise with more realistic models of which molecules catalyze which reactions by a 
local “matching” rule [21, 5].

This work has been confirmed and extended in a number of ways. It is the 
ensemble approach, for it says that independent of the detailed chemistry and 
physics, it is a typical or generic property of complex reaction networks — whose 
molecules are also candidates to catalyze the reactions — that collectively auto-
catalytic sets will arise. (I emphasize that this remains theory and is not confirmed 
experimentally yet, but is fully open to being tested using libraries of random 
peptides, RNA, DNA, or mixtures of the above.) Here are the important features 
of this ensemble approach: (i) The emergence of collectively autocatalytic sets as 
a phase transition in complex reaction networks is a powerful example of self 
organization. (ii) Since DNA, RNA, and peptide collectively autocatalytic sets 
have been synthesized by good chemists [23, 24, 22], such sets are our only 
 current examples of self reproducing molecular systems and are Kantian wholes 
as noted above. (iii) The theory of the emergence of such autocatalytic sets is again 
independent of the specific underlying physics, so it cannot be reduced to any 
specific physics, such as the choice of a specific set of molecules that happens to 
be one among trillions of collectively autocatalytic sets. The routes to molecular 
reproduction lie in chance and number, not specific physics. (iv) It now turns out 
that such systems in hollow lipid vesicles called liposomes can, in silico, synchro-
nize the division of the liposome with that of the autocatalytic set [25], and can 
undergo open ended evolution [26]. (v) With the inclusion of inhibition of  catalysis 
as well as catalysis, such systems can exhibit alternative attractors and critical 
dynamical behavior, like model genetic regulatory networks [26]. Thus, if critical 
autocatalytic sets are selectively advantageous, as I suspect, there will be a vast 
ensemble of such possible networks among a larger set of non-critical autocata-
lytic sets, so selection will have interacted with self organization to yield the use-
ful ensemble, again a marriage of self organization and selection.
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The Ensemble Approach to Tunably Rugged Fitness Landscapes

The concept of fitness landscapes, introduced by Sewall Wright into biology [27], 
is well established. Briefly, in one concrete case, over a set of haploid genotypes, 
each has a fitness in some fixed environment. This fitness can be thought of as a 
“height” over a large-dimension space of all the gene sequences under considera-
tion. Now, in genetics, it is known that the fitness contribution of one version, or 
allele, of a gene at one “locus”, may depend upon the alleles and other loci. This 
dependence is called “epistasis”. The ensemble approach I utilized was borrowed 
with modification from “spin glasses” in physics [28]. I presumed N genes, each 
with two alternative alleles, or versions. I assumed that each gene allele’s fitness 
contribution depended upon the allele of that gene and the alleles of K other genes. 
The rest of this NK model was randomly constituted, hence the ensemble approach. 
I assigned the K epistatic inputs to each gene at random among the N. I assigned 
the fitness contribution of a given gene, i, for each of the 2 to the K + 1 alleles of 
that gene and the K other input genes, at random from the uniform interval from 
0 to 1. I defined the fitness of a given vector, or list, or state of the alleles of the 
N genes, and the average of their fitness contributions. These simple ensemble 
assumptions yield, for each randomly built NK model, a fitness landscape over all 
2 to the N th power haploid genotypes. Hence any NK model is a random sample, 
having fixed N and K, of an entire ensemble of fitness landscapes with the same N 
and K [5].

The result is an ensemble of fitness landscapes, whose statistical properties 
depend upon N and K. Briefly, for K = 0, each allele of each gene makes a fitness 
contribution that is independent of all other genes. There is a Fujiyama fitness 
landscape with one peak and smooth sides. For K = N −1, its maximum value, the 
fitness landscape is random, there are 2 to the N divided by (N + 1) local fitness 
peaks on the landscape, and many other statistical features. These features are 
tuned as N and K are tuned [5].

It is clear that the NK model inquires into the typical or generic properties of 
fitness landscapes only as a function of the epistatic coupling K, and the size of 
the system N. K captures conflicting constraints, hence as K increases the land-
scapes become more rugged. This model has found use in the economics of learn-
ing curves, maturation of the immune response, molecular  evolution over rugged 
landscapes, and even in management models [27].

Surprisingly, if species co-evolve on NK landscapes and can both invade one 
another’s niches, and when they do, they carry their own landscape ruggedness 
parameter, K, which varies in the population and can itself evolve, the system 
evolves to a state that increases species life-time distributions, smooths landscapes 
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to an intermediate ruggedness, and yields a power law distribution of avalanches 
of extinction events matching the evolutionary record. Hence, evolution can 
modify the landscapes upon which evolution occurs [29].

Conclusion

I have offered rather radical views. Most notably, it may well be true that there is 
no law which entails the evolution of the biosphere. If so, what I speak of is, in 
fact, the end of a physics worldview, of the dream of reductionism to find a fun-
damental “final theory” that entails all that occurs in the universe. This is a very 
large claim requiring careful investigation. But if true, it begins to appear that it is 
not the tragedy we may have feared for so long. In its place is a vast creativity in 
the living world, far beyond what we have imagined. In Answering Descartes: 
Beyond Turing, (8), I hope I have been able to articulate similar ideas that could 
give a new account of major problems in the philosophy of mind and neuroscience 
concerning how mind can act “acausally” on matter via decoherence, and how we 
might have a responsible free will by a similar marriage of quantum random 
 indeterminism and classical determinism in what I call Trans-Turing systems 
operating in the Poised Realm that hovers reversibly between quantum-coherent 
and classicality-FAPP behaviors.

If no law entails the becoming of the biosphere, we do not know the sample 
space of evolution, for its phase space persistently changes. Hence, we need to 
invent a new form of Embodied Information, which is laden with the semantics of 
the functions of parts of Kantian wholes in sustaining the existence and co-existence 
of such Kantian wholes. I have proposed what may be a start of such embodied 
information that seeks the “diversity of organized processes” in a cell, organism, 
ecosystem, or the biosphere, as a measure of the embodied information in the bio-
sphere and how it may grow over time. Such growth would be a true form of infor-
mation creation, beyond entailing law, and since merely syntactic information in a 
prestated sample space is of no use in biological evolution, whose phase space, as 
stressed, keeps changing in ways we do not know.

Self organization, as in the emergence and evolution of collectively autocata-
lytic sets as a generic property in ensembles of complex chemical reaction 
 networks, and in ensembles of genetic regulatory networks, must play a profound 
role in the emergence of functional order, beyond entailing law, in co-evolving 
Kantian wholes. With  natural selection, the entire process, beyond entailing law, 
has created a functional biosphere that has persisted and flourished for 3.7 billion 
years. We are thus invited to new science and a new view of what is required for 
order and organization to emerge and flourish beyond entailing law.
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Towards a General Biology: Emergence of Life 
and Information from the Perspective of Complex 

Systems Dynamics1

Bruce H. Weber
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Science & Natural Philosophy, Bennington College

Abstract

I argue that Darwinism is best described as a research tradition in which specific theories of how 
 natural selection acts to produce common descent and evolutionary change are instantiated by spe-
cific dynamical assumptions. The current Darwinian research program is the genetical theory of 
natural selection, or the Modern Evolutionary Synthesis. Presently, however, there is ferment in the 
Darwinian Research Tradition as new knowledge from molecular and developmental biology, 
together with the deployment of complex systems dynamics, suggests that an expanded and extended 
evolutionary synthesis is possible, one that could be particularly robust in explaining the emergence 
of evolutionary novelties and even of life itself. Critics of Darwinism need to address such theoretical 
advances and not just respond to earlier versions of the research tradition.

Key words: complex systems dynamics; Darwinian Research Tradition; emergence; expanded/
extended evolutionary synthesis; genetical theory of natural selection; Modern Evolutionary 
Synthesis; origin of life; self-organization

My thesis is that the Darwinian Research Tradition, defined below, is being enriched, 
extended and expanded by new information and concepts and that a Darwinian evo-
lutionary synthesis deploying background assumptions of complex systems dynam-
ics can robustly guide further research into biological phenomena and lead to the 

1 The Wistar Institute held a conference in 1966 to explore the adequacy of the neo-Darwinian inter-
pretation of evolution, the proceedings of which were subsequently published by the Wistar Institute 
Press as Mathematical Challenges to the Neo-Darwinian Interpretation of Evolution [1]. In addition 
to mathematical critiques of the version of population genetics upon which the neo-Darwinian 
Synthesis, or more accurately the Modern Evolutionary Synthesis, was based, there were presenta-
tions, particularly by Conrad Waddington, that pointed out that the synthesis had not adequately 
included developmental biological phenomena and was by implication incomplete. Two of the key 
figures in the development and deployment of the second phase of the neo-Darwinian synthesis, 
Richard Lewontin and Ernst Mayr, were participants, defending the Modern Evolutionary Synthesis 
even as they provided some criticism of the limitations of one version of the neo-Darwinian program 
that reduced all biological phenomena to population genetics.
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development of a theory of general biology. Such a general theory could and should 
address issues of the emergence of life, topics properly previously screened off in the 
Darwinian discourse. After reviewing the history of neo-Darwinism and the Modern 
Evolutionary Synthesis in the Darwinian Research Tradition,2 and making the case 
for shifting background dynamical assumptions to those of complex systems, I will 
focus specifically on the current status of “ origin of life” research and how such 
work may contribute to a theory of general biology. Finally, I will argue that intel-
ligent design theory does not provide a suitable scientific alternative in that it does 
not provide a conceptual framework for empirical and theoretical research on the 
phenomena of emergent complexity.3 However, criticisms from intelligent design 
theorists, among others, of on-going efforts to develop a new Darwinian evolution-
ary synthesis can help sharpen the deployment of such a research program.

The Modern Evoluti onary Synthesis and the Darwinian 
Research Traditi on

In Darwinism Evolving and subsequent publications, David Depew and I have 
argued that there is not a single Darwinism synonymous with evolutionary theory, 

This paper had its origins in a 2007 conference in Boston organized by Bruce Gordon under the 
auspices of the Center for Science and Culture at Discovery Institute, which funded the event, In the 
style and spirit of the Wistar Conference, it was meant to explore, some forty years later, the robustness 
of the earlier neo-Darwinian mathematical population-genetics theory of evolution in light of the pro-
gress in molecular and developmental biology, as well as in ecology, in the intervening time. A number 
of the critics of Darwinism present at the conference articulated an alternative explanation of func-
tional biological complexity known as ‘intelligent design’ or more succinctly ID. Others present, like 
myself, while moving beyond the specific program based upon population genetics, defended the more 
general concept of a Darwinian evolutionary synthesis under a ‘self-organizational’ rubric.
2 Since there was a research program known as neo-Darwinism in the late nineteenth century based 
upon Weismannian inheritance that was taken to preclude any Lamarckian mechanisms of heredity, 
many historians of biology prefer to use the term ‘Modern Evolutionary Synthesis’ rather than neo-
Darwinism, or neo-Darwinian synthesis, to characterize the genetical theory of evolution based upon 
population genetics (see discussion in [2]). I will use neo-Darwinism to mean the specific program 
based upon early Mendelian genetics and Modern Evolutionary Synthesis for a more broadly con-
ceived synthesis that includes the version based upon population genetics. I will use the term 
‘Darwinian Research Tradition’ to refer to an interlinked set of research programs over time that 
share a commitment to natural selection as a major, though not sole, source of biological adaptation, 
order, and innovation, even as the concept of natural selection is articulated against different sets of 
background assumptions about systems dynamics.
3 This is not to say that there cannot be a productive research program based upon assumptions of 
intelligent design, particularly in areas studying cultural artifacts and social and cultural phenomena 
more generally. Also, I can imagine productive programs so based for studying atemporal aspects of 
biological phenomena.
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nor is the Modern Evolutionary Synthesis (often called neo-Darwinism, but see 
footnote 2) a monolithic research program [2–6]. Rather, we see a Darwinian 
Research Tradition, which has itself changed over time in light of new empirical 
data and conceptual advances, and which has assimilated new information and 
resolved entailing theoretical problems through a process of modifying underlying 
assumptions about the nature of biological systems and the dynamics of their 
changes over time. For example, we see “Darwin’s Darwinism” as being informed 
by Newtonian systems dynamics that emphasized differential survival of individ-
ual organisms in populations and saw  natural selection as analogous to a 
Newtonian force that acted gradually, instantaneously equilibrating with other 
forces (such as variation), to produce adaptation. For the two to three decades fol-
lowing the rediscovery of Mendelian genetics in 1900 the discrete nature of muta-
tions seemed to contradict the notion of small, continuous variation that was 
assumed by Darwin in his Newtonian conceptual framework. Indeed, many critics 
saw and/or hoped for the demise of Darwinism.

After all, Darwinism was not the only research tradition that addressed the 
phenomena of evolutionary biology. There were many evolutionary biologists in 
the nineteenth and early twentieth centuries who worked within a Lamarckian, 
a Geoffroyean, or a Spencerian conceptual framework and research program, in 
which internal factors, developmental processes, or natural laws of complexifi-
cation, respectively, were taken as the driving force of evolution rather than 
natural selection as a Newtonian-type of force. All three of these alternatives 
seemed to be gaining adherents in the early twentieth century, even when such 
scientists called themselves Darwinians, which was for some just a label for 
accepting descent by modification. As Depew and I recount, the great concep-
tual advance brought about by Sergei Chetverikov, J.B.S. Haldane, Ronald 
Fisher, and Sewall Wright that produced the basis of the “genetical theory of 
evolution.” This move, which formed the basis of the “Modern Evolutionary 
Synthesis,” involved shifting the underlying concepts of systems and systems 
dynamics from Newtonian to Boltzmannian. This shift took advantage of statis-
tical insights used by Boltzmann in his development of statistical mechanics in 
which macroscopic, thermodynamic properties of matter and physical processes 
were re-described in terms of the aggregate behavior of the microscopic atomic 
and molecular constituents. The analogy of the action of selection on the fre-
quencies of genes in populations with statistical mechanics was explicitly for-
mulated by Fisher in his seminal The Genetical Theory of Natural Selection [7]. 
What mattered in this view was that the gradual shifting of the frequencies of a 
number of genes within an interbreeding population of a species due to the 
action of adaptive natural selection, by which change the fitness of the overall 
population was increased.
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Not only did this first phase of the  Modern Evolutionary Synthesis resolve the 
apparent conflict of discontinuous Mendelian genetical variation and gradualistic 
Darwinian natural selection by changing the background systems dynamics, it was 
attractive since it provided biologists with a mathematical theory of population 
genetics that could be rigorously tested. Further it placed biology within the 
broader “statistical revolution” that had already occurred in the physical sciences. 
Finally, during the 1930s and 1940s it provided the basis for a second phase and a 
broader synthesis of a number of areas of biology within the rubric of population 
genetics. The creative work of Theodosius Dobzhansky, Julian Huxley, Ernst 
Mayr, George Gaylord Simpson, and G. Ledyard Stebbins produced a more gen-
eral synthesis of evolutionary biology, based upon population genetics, that incor-
porated much of biology including botany, paleontology, systematics and 
population ecology [8,9]. This version of the  Modern Evolutionary Synthesis, as 
noted above, is sometimes called neo-Darwinism or the Synthetic Theory of 
Evolution and continues to provide a basis for a robust program of empirical and 
theoretical biology [10].

Despite any misgivings about the completeness of the Modern Evolutionary 
Synthesis, its advocates assumed that the action of  natural selection on gene 
frequencies over generational time (“microevolution” see [11]) could account for 
the phenomena of common descent over geological time (“macroevolution”). 
But this synthesis was not complete, as Conrad Waddington repeatedly argued, 
since it bracketed off developmental biological phenomena, which were assumed 
to be merely the readout of the genes in the conceptual framework of neo-Dar-
winism [12–14]. Similarly bracketed off were aspects of ecology, such as energy 
flow and community interactions that went beyond population ecology [15–20]. 
Despite expectations that knowledge of the molecular sequence structures of 
biological macromolecules (DNA, RNA, proteins) would fit neatly into the neo-
Darwinian framework, such knowledge has raised interesting puzzles and identi-
fied new evolutionary phenomena that need to be either incorporated into an 
expanded version of the Modern Evolutionary Synthesis or serve as the basis for 
a new, yet Darwinian, Expanded and Extended Modern Evolutionary Synthesis 
[2, 21–23]. Paleontologists Stephen Gould and Niles Eldredge have argued that 
the Synthesis is unfinished and needs a hierarchical expansion with selection 
acting in different ways at different levels of the biological hierarchy [24–26]. 
Scott Gilbert has continued Waddington’s efforts to call for taking developmental 
phenomena seriously in an expanded and extended evolutionary synthesis, espe-
cially in light of the advances in “evo-devo” [27–32]. Gilbert sees development 
as a complementary process working with natural selection, producing variation 
and novelty, rather than replacing population genetics [28]. Mary Jane West-
Eberhard has shown how developmental plasticity can provide variation even 
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when there are no changes in the  genome and how such phenomena impact evo-
lutionary theory in ways that are not anticipated in the Modern Evolutionary 
Synthesis even though they are consistent with a more broadly conceived 
Darwinism [33,34].

Toward an Expanded Darwinian Synthesis and a General Biology

More innovative approaches to catch evolutionary phenomena in a expanded syn-
thesis have relied upon a variety of tools from the still developing sciences of 
complexity. One example is that of Daniel Brooks and E.O. Wiley who, along with 
John Collier and Jonathan Smith, have sought to expand the evolutionary synthesis 
by introducing concepts from  information theory and non-equilibrium thermody-
namics to robustly account for the appearance of new biological information and 
pattern as well as natural selection itself via a process of ‘infodynamics’ [35–42; 
see also 43]. Using non-equilibrium thermodynamics in a more conventional 
usage Jeffrey Wicken sought to “expand the Darwinian program” not only to 
account for the emergence of new information in biological systems but to extend 
a kind of Darwinian approach to the problem of the origin, or more properly the 
emergence, of life [44]. Stuart Kauffman applied concepts of non-linear dynamics 
and self-organization to both developmental genetic systems and to the problem 
of the  origin of life, to the latter of which he also brought in non-equilibrium ther-
modynamic considerations as well as consideration of the emergence of ‘agency’ 
[45–47]. I will return to the issue of the origin of life below. With regard to the 
inclusion of developmental biology into evolutionary theory, Depew and I have 
argued that the shift to such systems dynamics employing insights from the behav-
ior of complex systems can provide the conceptual context within which a synthe-
sis both can be effected while staying within in the Darwinian Research Tradition, 
if not narrowly formulated versions of neo-Darwinism as espoused by Richard 
Dawkins, for example [48–50]. One attempt to forge such a synthesis is known as 
Developmental Systems Theory (see contributions in [51] as well as in [52]). It 
shows a range of commitment from some form of Darwinism (see [53]) all the 
way to embracing instead an alternative research tradition, such as the Lamarckian 
[54–57] or the Geoffroyean [58–60]. Jablonka and Lamb argue that since in later 
editions of On the Origin of Species Darwin’s hypothetical mechanism of inherit-
ance had a Lamarckian character their inclusion of epigenetic factors could be 
considered as a recovery of Darwin’s original vision [56–57]. A recent review of 
developmental genetics and epigenetics by Robert Reid argues for an evolutionary 
theory that is in his own terms outside the Darwinian tradition but more at home 
in a Lamarckian or Geoffroyean one [61].
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A current research program, which we might denote as ‘emergentist’ as a con-
venient label, has the goal of developing a theory of general biology, that is, a 
theory of structural and functional complexity and the emergence of novel struc-
ture/function as well as new information and phenomena [45–47,62–77]. This is a 
program very much in its early stages, but one that holds the promise of eventually 
developing a theory of biological organization that would hold not only for terrene 
biology but also for possible biological phenomena elsewhere in the universe. 
Such a general biology would be part of a more general theory of emergence (see 
contributions to [66]).

Cauti onary Considerati ons and a Perspecti ve on Emergence

When we are evaluating the sufficiency or inadequacy of the  Modern Evolutionary 
Synthesis, or of Darwinism more generally as a research tradition in some new 
synthesis, or of rival naturalistic research traditions, or of theories such as intelli-
gent design that posit sources of order and information outside of natural pro-
cesses, it is important that we take care in being explicit about what we are 
discussing. Some evolutionary thinkers, such as Gould or Corning, see their 
approaches, for all the new empirical and theoretical content, as closer in concep-
tual stance to Darwin’s original Darwinism than to a narrowly construed  Modern 
Evolutionary Synthesis. Others, such as Deacon, Depew, Kauffman, Wicken and 
myself, see the deployment of the new complex systems dynamics leading to a 
totally new version of Darwinism, but still a research program within the 
Darwinian Research Tradition. Critics of Darwinism, such as Stanley Salthe, Eva 
Jablonka, and Robert Reid, are not rejecting evolutionary phenomena nor are they 
calling for sources of order outside nature. Rather, they are arguing for a different 
set of naturalist assumptions and dynamics that they regard to be better suited to 
guide future research. As a commitment to methodological naturalism does not 
logically entail a commitment to philosophical materialism, so we should not take 
any version of Darwinism as being a synonym or a placeholder for philosophical 
materialism, unless such a move is self avowed or can be demonstrated, as is the 
case in writers such as Dawkins and Dennett.

In what follows, I am going to examine current research on emergence theory 
as well as current work on emergence of life. Even though this issue of the  origin 
of life historically lies outside the orbit of the Darwinian Research Tradition, I will 
take the cue from Wicken, as well as Kauffman, and Terrence Deacon that the 
processes and phenomena are rightfully the topic of a general biology and can and 
should be incorporated in any expanded version or new synthesis of Darwinism. 
I will assess the value of any theoretical approach in terms of its potential 
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fecundity and robustness in the development of such a new synthesis and theory 
of general biology and of emergence. This means I am viewing science not as a 
body of established facts only, but rather as a process of exploring nature and 
deepening our understanding of natural phenomena.

Emergence of Emergence as Paradigm

The latter part of the twentieth century saw the rise of a new way of understanding 
nature, employing complex systems dynamics to explore and explain phenomena 
of self-organization and emergence (for an overview see for example [2,3,45,46,
65–68,71–73,78–88]). Self-organization, or more properly systems-organization, 
in which the interaction of the system and its environment under particular initial 
and boundary conditions leads to the emergence of novel order and structure, 
occurs widely in nature as well as under laboratory conditions and can be consid-
ered as a natural phenomenon [89,90]. Developing a theory of such emergent 
organization has as its goal providing natural explanations for such phenomena. 
This is very much a work still in progress but the insights gained so far provide a 
conceptual framework for thinking about and guiding research on the problem of 
the origin of life.

I define emergence as the appearance of novel properties, structures, and/or 
patterns in a system that are not present in the constituent components or easily 
predicted (weak form) or explained (strong form) from the laws and processes 
affecting the constituents of the system. The new level of phenomena and the 
lower level of constituents have mutual constraints and the arrows of causal expla-
nation point in both directions. If we are tracking the process of the appearance of 
the new phenomena we are speaking of diachronic emergence in which the lower-
level causality exceeds that of the upper level, but when the system has settled to 
a steady state we than have an instance of synchronic emergence in which the 
constraints fully mutual. In any event, the emergentist view is that the new, upper-
level structure/properties/processes/phenomena represent real natural phenomena 
and not epiphenomena. In reductionism the lower level is the locus of causality 
and the upper-level properties are regarded as merely epiphenomenal, that is, with-
out causality; in holism the upper level has the causality and the lower levels are 
epiphenomenal.

It is the strong form of emergence that will be of concern here, especially with 
regard to the emergence of life. In strong emergence, the emergent phenomena are 
novel in that they have properties not contained in the components, and are irreduc-
ible in sense that the emergent phenomena are not identical to their composition. 
Emergent systems exhibit a kind of holism in that the emergent phenomena cannot 
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be analyzed into their parts without losing sight of their essential character. 
Further, in strong emergence the emergent phenomena obey laws that rely, in at 
least part, on their novel properties, that is, some of the processes and laws them-
selves are emergent, even as the process of their emergence itself operates under 
general natural laws (including for example a putative ‘fourth of thermodynamics’ 
in addition to other natural laws [45,46]). Finally, in strong emergence the emer-
gent phenomena can impose conditions on their constituents that depend on the 
nature of the identity of the emergent phenomena, that is, such systems can exhibit 
downward causation.

Following Deacon’s analysis I will further distinguish three types of emergence: 
first-order or supervenience, second-order or self-organization, and third order or 
 evolution [67]. In supervenience, the higher-order properties of an aggregate are 
determined by the statistical or stochastic properties of the ensemble. For example, 
the liquid properties of water are said to supervene on the properties of individual 
water molecules. Second-order emergence, or self-organization, occurs on a higher 
hierarchical level than first-order emergence but as in all hierarchical systems the 
lower level continues to operate. In self-organization the configurations of individ-
ual components and the unique interactions in the system exert an organizing effect 
on the entire ensemble. Initial conditions and outliers can strongly affect the ensem-
ble properties. Self-organization occurs in systems open to matter/energy flows that 
keep the systems away from equilibrium, resulting in macroscopic structures such 
as convection cells. Second order emergence also includes phenomena associated 
with nonlinearity and chaos. It is characteristic of all second-order emergent sys-
tems that they have a spatially distributed re-entrant causality that allows microstate 
variation to amplify and influence macrostate development, even as the macro-
relationships undermine, constrain and bias micro-relationships. Snowflakes, 
Benard convection cells, tornados, chemical waves in the Belousov-Zhabotinskii 
reaction are examples of such second-order emergence. Self-organizing systems 
that generate and store information that is useful for system stability and survival 
evolve. Such informational memory produces recursive, self-referential self-organ-
ization that exerts a causal, cumulative (over time) influence over the future of the 
system. Fitness, function, and natural selection itself can be seen as examples of 
third-order emergence. Third-order emergence biases across iterations or genera-
tions, as in biological development or biological evolution, and can be viewed as an 
autopoiesis of autopoieses. “So life, even in its simplest forms, is third-order emer-
gent. That is why its products cannot be fully understood apart from either historical 
or functional concerns” [67, p 300]. Both second and third order emergence exhibit 
a diachronic symmetry breaking not seen in first order emergence. Although higher 
levels in the hierarch are based upon the lower ones they can exhibit properties not 
seen at the lower levels because of this symmetry breaking.
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The formation of Benard convection cells is an example of a self-organizing 
process in which the macroscopic structure of the convection flow allows for more 
efficient dissipation of the energy gradient, giving a thermodynamic “reward” for 
the production of structure. The process of formation of such convection cells 
involves a type of selection process working with self-organization. Rod Swenson 
has shown that the initial formation of convection cells produces macroscopic 
structures of various sizes and shapes, but that the system quickly settles down into 
a pattern of hexagonal cells of uniform size [91,92]. Thus there is a sorting or 
selection process working with self-organization. Brian Goodwin saw the shape 
and size selection as an instance of physical selection for the most stable [80,85]. 
To this Swenson added selection of the most dissipatively efficient. For complex 
chemical systems exhibiting self-organization there is additionally selection for 
the catalytically efficient, in addition to that for thermodynamic efficiency and 
physical stability. Thus, even before there is biological selection for the reproduc-
tively fit, emerging with the emergence of life, there exists in nature interplay of 
self-organization and selection at the level of physical and chemical phenomena 
[2–4,45,46,68,69,71,92].

Is the Origin of Life a Darwinian Problem?

Darwin himself carefully avoided the issue of the  origin of life since he was con-
cerned with explaining how living beings and their lineages changed over time and 
how novelties could arise through the action of natural selection upon heritable 
variation. For example, “How a nerve becomes sensitive to light hardly concerns 
us more than how life itself originated” [93, p187] was consistent with his accept-
ing that life was “breathed into a few forms or into one” [93, p490] (Darwin 
[1859] 1964, 490). This position served to distinguish Darwin’s theory of  evolu-
tion from Lamarck’s in which “active matter” spontaneously and continuously 
generated life [see 94–96]. Privately, Darwin was willing to speculate about the 
origin of life, as he did in a letter to Joseph Hooker in 1871, “But if (and oh what 
a big if) we could conceive in some warm little pond with all sorts of ammonia 
and phosphoric salts, light, heat, electricity and etc., present, that a protein com-
pound was chemically formed, ready to undergo still more complex changes” 
(Cambridge University Library Manuscript Collection: DAR 94: 188–89).

Herbert Spencer argued that biological  evolution is a part of a general, cosmic 
process of the universe becoming less homogeneous and more complex in which 
the  origin of life was a specific instance [97]. Josiah Royce reasserted the more 
narrow claims of Darwinism as distinguished from those of the Spencerians [98]. 
With the rise of the  Modern Evolutionary Synthesis, the demarcation of the 
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problem of the origin of life from matters Darwinian was reasserted and continues 
today in mainstream evolutionary discourse [99,100].

However, one of the founders of the Modern Evolutionary Synthesis, J.B.S. 
Haldane, along with Alexander Oparin and J.D. Bernal (Marxists all), argued that 
advances in biochemistry and geochemistry meant that serious scientific study of 
the origin of life is possible, even if not required by the theories of the Darwinian 
Research Tradition [101–105]. They recognized that from their commitment to 
philosophical materialism it was necessary that the origin of life be the result of 
natural processes only. Opponents of Darwinism and also of philosophical mate-
rialism similarly argue that the origin of life is conflated with Darwinian theories 
[106–110]. Indeed, some neo-Darwinian advocates, such as Richard Dawkins, 
accept this conflation. In order to reduce biological phenomena to “selfish genes” 
Dawkins assumes that, however improbable, all that was needed for the appear-
ance of life was to get a nucleic acid molecule that could replicate itself, although 
later this “naked replicator” decorated itself over time with proteins, lipids, etc. to 
produce better “survival machines” [49,50]. Alex Rosenberg attempts to achieve 
reduction of all biology to molecular genetics by a slightly different move at the 
origin of life [111]. He argues that  natural selection has to be grounded in chemi-
cal and physical selection during the process of life’s origin. During the process of 
life’s origins, I agree; but this attempt at reduction points instead toward an emer-
gentist account [112,113,118]. In what follows, I will consider experimental and 
theoretical approaches to the emergence of life as well as the implications of the 
dynamics of emergent complexity for our understanding of biological organiza-
tion and how it arises.

Current Perspecti ves on the Emergence of Life

Whether a reductionist or emergentist approach is taken to the origin of life, the pos-
sible reactions and routes to the organized complexity of living entities is con-
strained by the properties of matter and the laws of chemistry and physics 
[43,113–118]. Not all types of bonding arrangements and compounds are possible 
[119]. In aqueous environments, for example, phosphate has unique properties that 
make it essential for life and even for proto-life. Only phosphoanhydrides had the 
needed mix of thermodynamic instability and kinetic stability to serve as an inter-
mediate for capturing and providing energy. One consequence is that polypeptides 
can be synthesized abiotically from amino acids, polyphosphate (a phosphoanhy-
dride) and magnesium cation [120]. Of course, life may be possible using non-
aqueous chemistry, and such possibilities should be explored in a theory of general 
biology. Steven Benner has suggested that what is essential for the emergence of life 
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is some sort of solvent system, the chemical elements carbon, hydrogen, nitrogen, 
sulfur, phosphorous, and oxygen, along with thermodynamic disequilibrium and 
temperatures consistent of chemical bonding [121].

However, for the present it is a sufficient challenge to address what might have 
happened during the emergence of life on earth. Given that, we can proceed with 
the understanding that the possibility space of chemical reactions in living systems 
is not unconstrained, nor random, but rather reflects in part structural, thermody-
namic, kinetic, and combinatorial constraints. Overall, the transition to life and the 
subsequent  evolution of living systems involves retention of reduced compounds 
in the presence of the resulting ever more oxidizing environment [114]. With an 
on-going influx of energy and matter the complexity of chemical reactions would 
be expected to increase as well as non-sequence specific macromolecules under 
pre-biotic conditions [44].

The minimal elements that need to be considered in any account of the emer-
gence of life are:

• An energy source (gradient) and a mechanism to capture energy such 
that the  entropy of the ‘system’ decreases even as the entropy of the 
system + environment increases

• Abiotically produced component molecules (subsequently produced by 
autocatalytic networks in proto-cells, and later in cellular metabolism

• Autocatalytic sets of catalysts (polypeptides, polynucleotides)
• Closure in both the sense of physical closure (an osmotic barrier) that 

separates the system from everything else, and chemical or catalytic 
closure

• Some means of reproduction and variation at the level of autocatalytic 
sets and thermodynamic cycles

• Templates for replication and for coding for catalysts.

It is an open question as to which of these steps must be prior to others or if 
some ensemble of factors is needed before the transition to life could occur. In an 
emergentist approach it would be expected that several steps could arise concur-
rently and act synergistically to give rise to more complex structures and phenom-
ena, among which would be included  natural selection [43,113,122].

Stanley Miller, working in the laboratory of Harold Urey, demonstrated that a 
number of amino acids could be produced via chemical processes that might have 
occurred on the primitive earth [123]. Although the atmosphere globally might not 
have been as reducing as Miller assumed, mainly due to escape of hydrogen gas, 
there would be local regions that were, such as near volcanoes or deep-ocean 
hydrothermal vents [124]. Alternative pathways to amino acids are plausible from 
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carbon dioxide and from hydrogen cyanide [124]. Further, the presence of amino 
acids in the interior of meteorites indicates that they can be produced elsewhere in 
the universe by natural processes; indeed, extraterrestrial sources of organic com-
pounds might have been up to three orders of magnitude greater than terrestrial 
ones for the primitive earth [117 p49,125]. Further, similar such putative processes 
involving electrical discharge and/or solar-driven photochemical reactions involv-
ing hydrogen cyanide, formic acid, hydrogen sulfide, and methane have been 
shown to produce sugars and purine and pyrimidine bases [for reviews see 
113,124,126–129]. Chirality in such momoners could arise in a geologically short 
period of time due to asymmetry in cosmic radiation that was bombarding the 
earth [130]. Such monomers could polymerize to form polypeptides and proteins 
under plausible ambient temperatures [129,131]. Alternatively, hydrogen cyanide 
polymers form spontaneously when hydrogen cyanide is exposed to an electrical 
discharge; when such polymers react with water they yield polypeptides, and even 
polynucleotides [132–134]. Yet another alternative for generating such polymers 
is considered below involving chemiosmotic-type mechanisms.

Theorizing about the abiotic generation of the organic molecules that are the 
building blocks of living entities has given rise to a “prebiotic soup” model of 
increasingly complex molecules, driven by energy flows, from which macromol-
ecules arise allowing the emergence of directed synthesis of catalysts, from which 
protocells would eventually be possible, followed by metabolism in true cells 
[44,135]. Alternative approaches follow a “metabolism first” approach, harkening 
back to Haldane, Oparin, and Bernal, often invoking the catalytic capacities of 
clays [136–138]. A third group of approaches assumes the early presence of some 
sort of encapsulating barrier, a “proto-cell first” model in which chemical pro-
cesses occur in high and sequestered concentrations, within which emerge the 
catalytic polymers and ultimately directed synthesis [77,139,140]. In this scenario 
the mutual interaction of catalytic macromolecules and the reactions of a proto-
metabolism within an osmotic barrier provides the “theatre” within which speci-
fied information can emerge.

Regardless of the approach, at some point catalytic polymers would be expected 
to emerge and open new chemical possibilities. Polypeptides and proteins pro-
duced abiotically would initially have a random sequence [44]. But such sequences 
have a high probability (at least 25%) of assuming a compact, globular tertiary 
structure and can exhibit some weak catalytic activity [117,141]. Given that many 
different sequences of amino acids fold up into the same or similar three dimen-
sional structure, the number of such possible folds is a relatively rather small 
number [142]. Further, completely different and unrelated sequences can produce 
the same active-site geometry and catalytic function, that is they overlap in the 
map of catalytic task space [143]. Thus a highly specified informational content is 
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not necessary for a polypeptide to serve as a catalyst. However, when such a speci-
fication process became available via nucleic acid templates, there would be an 
enormous advantage to such specified information, selected on the basis of cata-
lytic and thermodynamic efficiency.

The “hard problem” in  origin-of-life research is not so much how the mono-
mers and even polymers might have arisen by physical and chemical pro-
cesses, but rather how it came to be that a digital-type code in nucleic acids 
came to specify the analogical information in the thousands of proteins that 
catalyze metabolism and are involved in signally and information processing 
[43,45–47,69,108,109,113,118,144–148]. It is here that the new sciences of 
complexity can have their greatest impact.

The Complex Systems View of the Emergence of Life

As Kauffman has analyzed in his simulations, “protein sequence space” can cover 
what he terms the “catalytic task space” of all possible chemical reactions that can 
be catalyzed by polypeptides [45]. Thus, even an ensemble of random peptides 
would be able to provide such coverage. Such an ensemble can be self-sustaining 
when it can catalyze the formation of more such catalytic polymers in what is 
called an autocatalytic cycle. When such a set of autocatalytic cycles can produce 
their components such that they are self-sustaining, a condition termed catalytic 
closure is said to obtain. Such catalytically closed, autocatalytic cycles can be 
maintained, grow, and complexify if they also have some mechanism by which 
they can tap available energy gradients so as to drive the ensemble away from 
chemical equilibrium [44,46]. In such emergent systems there would be physical 
selection of clusters of amino acid sequences that are soluble in water and more 
stable in an aqueous environment since the less stable structures would tend to 
degrade and less soluble to precipitate. There would also be a chemical selection 
of those sequences that were more efficient catalysts or which more efficiently 
contributed to the autocatalytic cycles and/or more efficiently extracted energy 
from ambient gradients as the ensembles to which they occur would tend to persist 
longer. Kauffman, who suspects that such an emergence of organization and com-
plexity, an emergence of life, would be an expected consequence of natural law, 
possibly a fourth law of thermodynamics, writes: “We can think of the  origin of 
life as an expected emergent collective property of a modestly complex mixture of 
catalytic polymers” [45, xvi, emphasis in original]. Such ensembles of catalytic 
polymers would be expected to show weak inheritance due to the action of physi-
cal and chemical selection. Such systems as those modeled by Kauffman currently 
are being experimentally studied by Reza Ghardiri to document their dynamics as 
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compared to those shown in computer simulations (Kauffman, personal commu-
nication). These experiments could be enhanced through incorporating thermody-
namic work cycles in their action to make them more realistic. We are moving 
from theoretical speculation and computer simulations to experimental testing of 
approaches based upon complex systems dynamics.

In such autocatalytic ensembles, possibly encapsulated in ensembles of proto-
cells (see below), would be catalyzing not only their assembly but could catalyze, 
if weakly, chemical reactions to produce component monomers as well as the 
processes by which energy is extracted from the environment. These ensembles 
could grow and reproduce themselves even in the absence of central templates 
coding for such catalytic sets. Not only does Kauffman see an innate holism dur-
ing the emergence of life, but he concludes that “the routes to life are broader than 
imagined” [45, p. 330]. Nevertheless, a crucial event during the emergence of life 
was the appearance of nucleic acids.

Although an “ RNA World” is a popular scenario for the emergence of life, since 
RNA can both code and serve as a limited catalyst, there are problems with this 
approach because of the difficulty of abiotically adding purine and pyrimidine 
bases to ribose phosphate to form nucleosides and nucleotides. However, some 
speculative proposals still need exploration [109,149,150]. Such a problem could 
easily be overcome if there were some sort of proto-metabolism catalyzed by an 
ensemble of polypeptides that covered catalytic task space. This would be particu-
larly so if there were an ensemble of proto-cells in which the Kauffman catalytic 
sets were sequestered.

The cell-first, or proto-cell first, scenarios mentioned above have a potential 
advantage over the chemistry of dilute solution. David Deamer has shown that 
amphiphilic molecules, those with a hydrophobic or “water-hating” end and a hydro-
philic or “water-loving” end, though not lipids per se, can be extracted from carbo-
naceous chondrites (meteors containing carbon compounds) and that these molecules 
spontaneously form bilayered vesicles [151,152]. Other amphiphilic molecules of 
terrestrial origin similarly show the spontaneous formation of vesicles [153]; also 
photochemical routes to lipid molecules have been documented [117]. Further, vesi-
cles of generic amphipiles and/or lipids show an autocatalytic self-replication 
[117,154]. Such a proto-membrane would have provided not only a way of localizing 
the chemistry in an ensemble of such vesicles or proto-cells, but provide surfaces at 
which additional chemistry could occur [117]. More importantly, membranes allow 
for important energy transduction reactions, driven either chemically or photochemi-
cally. Such chemiosmotic reactions, as they are called, use proton gradients across, 
and possibly within, the membrane to energize movement of molecules across the 
membrane as well as to form phosphoanhydrides — ATP in modern cells — but 
likely polyphosphate in early proto-cells [115,155–158]. Indeed, such chemiosmotic 
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mechanisms are probably one of the most ancient of the characteristics of life [159]. 
When vesicles of amphiphiles derived from a meteorite are supplemented with poly-
cyclic hydrocarbons also extracted from meteorites have light shinned upon them 
they pump protons across the membrane [160]. Thus such vesicles could not only 
have provided the cradle for life to emerge but also an energy-capture mechanism, 
which, polyphophates (and later ATP) could power polymerization reactions of 
amino acids and nucleotides. Alternatively, iron-sulfur membranes could have 
formed in the ocean of early earth near thermal vents, for which there is geological 
evidence as well as experimental replication in the laboratory [161]. In either possi-
bility, the chemistry within such membranes would facilitate the actions of autocata-
lytic polypeptide sets and the reactions needed to generate nucleic acids, as well as 
the proto-metabolism in which true lipid components for membranes could have 
been made. What we have here is a scenario in which the elements of a complex 
system are emerging together and articulating with each other.

In such a case, the role of nucleic acids may have come later rather than sooner. 
Once both protein and nucleic acid polymers were present, though not yet in a 
coding relationship, there would be interactions between these types of macro-
molecules, possibly initially providing mutual stabilization of these polymers 
against hydrolysis and such interactions have been proposed as having to potential 
to lead to specific templating and ultimately the genetic code [44,162]. The cru-
cial consequence of such a template coding of nucleic acids for protein sequences 
would be that the nucleic acids would stabilize the metabolic and autocatalytic 
cycle information that were more stable and efficient. Pier Luigi Luisi has esti-
mated that such a minimal proto-cell with its osmotic barrier, from which true 
cells could have emerged, would probably have required around fifty to one hun-
dred nucleic acid templates, or genes, in order to sustain viability rather than the 
thousands now present in the simplest bacterial cell. From such an emergence of 
proto-cells would arise true biological or  natural selection of the reproductively 
fit [43]. With this type of perspective made available through the application of 
complex systems theory, it is possible to develop experimental plans using com-
puter simulations and laboratory experiments to explore how such a process 
might have occurred. The hard problem is still hard but it is amenable to scientific 
inquiry.

Drawing upon empirical data and deploying computer models as well as experi-
mental studies, emergentists are seeking to develop a theory that encompasses the 
problems of the  origin of life itself, of biological information and of natural selec-
tion that is general in its principles, incorporating life as we know it but also life 
as it might be. Kauffman assumes that the universe is not a closed system and thus 
is not fully determined by initial and boundary conditions, but rather is open and 
has a possibility so enormous that fifteen billion years has been sufficient for 
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exploration of only a small subset of the possible patterns of organization [46]. 
When a sufficiently complex organization emerges, not only does natural selection 
arise, but also the autonomous agency exhibited by living entities. He seeks a pos-
sible fourth law of thermodynamics that would account for the emergence of life 
and new organization. Deacon seeks to develop a broader theory of general biol-
ogy through expanding our conception of organism [69]. His autaea are the 
chemical systems that exhibit autonomous self-maintenance, in contrast to all 
other configurations of matter, and include autocells. Autocells have coherent and 
integrated organization as well as self-reproduction in that they can reproduce by 
direct morphological means. Such morphota would include not only autocells, but 
also bilayer vesicles capable of reproduction or reproduction of autocatalytic sets. 
The transition to life comes when it is possible to transmit information of repre-
sentation via genetic coding, so living things as we know them are also examples 
of semeota. The criteria Deacon develops for these categories and the specific 
example he explores can give us insight as to how to frame questions as to whether 
some entity encountered elsewhere in the universe is living or to delineate the logi-
cal requirements for the emergence of life. In Deacon’s view, as in that of Weber 
and Depew, natural selection emerges as a phenomenon along with the phenom-
enon of the emergence of life, which in turn is a specific instance of the interaction 
of self-organizational principles with each other and with general selectional 
principles [3,43,67,69,71,113,118,163,164].

Implicati ons of an Emerging Emergence Paradigm

We are in the very early stages of the development of the emergentist research 
program. If successful and if widely adopted such theories of emergent organiza-
tion and general biology may in time become a new paradigm. Even in these early 
years it is generating new theoretical and experimental approaches that are par-
ticularly relevant to the problem of the emergence of life. When a more complete 
picture of how life might have emerged is available and we see how it fits into a 
broader theory of general biology, it will be time to assess whether the Darwinian 
Research Tradition, if not the  Modern Evolutionary Synthesis, can encompass 
such insights, or if some new conceptual synthesis will be required. At this point 
we can acknowledge that Conrad Waddington’s intuitions were fecund but needed 
the developments in biochemistry, molecular biology, developmental genetics, 
computer simulations, and complexity theory to be cashed out.

The complexification of abiotic chemical reactions is driven primarily by non-
equilibrium thermodynamics, exploring state space in an ergodic fashion. When 
the transition occurs to living systems, a much larger state space of combinatorial 
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possibilities, provided by catalytic (and templating) polymers, is explored by a 
combination of self-organizing and selecting processes via what Kauffman terms 
the “adjacent possible” [45,46]. Though thermodynamics provides the driving 
force for self-organization, it is the kinetic mechanisms that afford the pathways 
of emergence. With the emergence of life there is a shift to an extreme expression 
of kinetic control in which thermodynamic requirements play a supporting rather 
than directing role. Replication is an instance of this kinetic control. From this 
emerges the teleonomic and semiotic character of living entities.

In the emergentist perspective, organisms are begotten not made, that is they are 
the result of developmental processes individually and of evolving lineages. In 
both cases these phenomena are viewed the result of an on-going interplay of 
selection and self-organization. What organisms, or their constituent parts, are not, 
are artifacts. Although emergentist and reductionist approaches to biology share a 
commitment to methodological naturalism, they view organisms differently in this 
sense of the importance of epigenetic processes. What the reductionist version of 
the Modern Evolutionary Synthesis and proponents of intelligent design theory 
share is a view of biological traits and molecules as artifacts, something made by 
a designer or by the process of random variation and selection. Emergentists argue 
that natural and artifactual systems should not be conflated; by anchoring the 
emergence of life and  natural selection in natural laws and processes of thermody-
namics and kinetics, a conceptual wedge is driven between natural organization 
and design.

Elsewhere I address my more general philosophical problems with design argu-
ments [165–167]. Here I am attempting only to argue that whereas the emerging 
theory of general biology is generating novel theoretical insights, predictions, and 
experimental approaches by which we can deepen our understanding of the emer-
gence of life, ID theory does not suggest how to proceed theoretically or experi-
mentally as to how life originated, other than to place the causes outside of 
scientific scrutiny. ID seems to me to provide only a negative capability by criticiz-
ing proposed naturalistic and emergentist explanations for the  origin of life. Good 
critics are always helpful in the process of scientific research, but any research 
program worth its salt also has to guide in the generation of new experiments and 
theories. The latter is being achieved by those, such as Deacon, Deamer, Ghardiri, 
Kauffman, Luisi, Morowitz, and Wicken among others, seeking to understand the 
emergence of life, but not yet substantially by those advocating design arguments.4 

4 ID advocates would, of course, dispute these assessments, arguing that intelligent causes can reli-
ably be distinguished from unintelligent (undirected natural) causes, and that intelligent causation 
therefore forms a significant part of our understanding of the cause-and-effect structure of the world 
under uniformitarian assumptions and constraints. As noted above, emergentists would argue against 
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Through processes of emergence, life itself may be viewed as begotten, not made, 
from underlying natural laws and a dialectic of self-organization and selection.

What Might We Expect from a Theory of General Biology 
About the Origin of Life?

We not only have to acknowledge the difficulty of the problem of how life might 
have emerged here on earth, let alone how it might emerge and instantiate else-
where in the universe, but we need to accept that we should not expect a single 
narrative trajectory for life’s emergence. Not only would the earliest true living 
beings destroy the traces of earlier transitional forms, but the action of living 
systems alters in fundamental ways the chemistry of their environments. Thus, we 
can only hope to elucidate plausible pathways of emergence, tested by simula-
tions, experiments, and what geological data is available. This is not unlike the 
point Keith Miller makes about the paleontological record, in which we do not 
have all the details but do have some general patterns to explain [168]. Thus, we 
need to explore all possible routes of chemistry and proto-biochemistry to 
develop a range of plausible scenarios for life’s emergence on earth and to elimi-
nate those that are unlikely, through theoretical analysis, computer simulations, 
and experimentation.

In complex systems not only is the whole defined by closure conditions (physi-
cal and catalytic) but there is redundancy and parallelism. Thus even weakly 
insipient functional patterns of structure and interaction can persist due to greater 
stability and/or efficiency. With functionality comes pressure for improved struc-
tures/stability/efficiency, through an on-going process of selection and self-
organization. Thus in the  origin of life, we should not expect one function to be 
perfected, say replication, before others appear, but that there would be an inherent 
holism in the process by which cellular life arose [43,45,46,113,118,140,147].

If there is not grandeur in this view of the emergence of life at least there is a 
reasonable hope for progress, through application of the tools of complex systems 
dynamics, towards developing a theory of emergence and of general biology.

this conflation of natural and artifactual systems. To be fair to ID advocates, however, a more sub-
stantial ID research program seems to be brewing as of late, as evidenced in the research being done 
through the Evolutionary Informatics Lab (http://www.evoinfo.org) and in the work of Biologic 
Institute (http://www.biologicinstitute.org) and its journal BIO-Complexity (http://bio-complexity.
org/ojs/index.php/main/index). Indeed, this present volume is part of that general trend. The only 
thing that can be said is that we must wait and see whether these efforts will go anywhere. For a 
broader discussion of these issues from a variety of perspectives, both supportive of ID and critical, 
see Gordon and Dembski [169].

 B
io

lo
gi

ca
l I

nf
or

m
at

io
n 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
2.

4.
17

.1
40

 o
n 

08
/1

1/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



 Towards a General Biology…Complex Systems Dynamics 551

b1567  Biological Information — New Perspectives b1567_Sec4.2 8 May 2013 2:56 PM

References

  1. Moorehead PS, Kaplan MM (eds) (1967) The Mathematical challenges to the Neo-

Darwinian interpretation of evolution. Wisar Institute Press, Philadelphia, PA.

  2. Depew DJ, Weber BH (1995) Darwinism Evolving: Systems Dynamics and the 

Genealogy of Natural Selection. MIT Press, Cambridge, MA.

  3. Weber BH, Depew DJ (1996) Natural selection and self-organization: Dynamical 

models as clues to a new evolutionary synthesis. Biol and Phil 11: 33–65.

  4. Weber BH, Depew DJ (1999a), Does the second law of thermodynamics refute the 

neo-Darwinian synthesis? In: Koslowski P (ed) Sociobiology and Bioeconomics: 

The Theory of Evolution in Biological and Economic Theory, pp. 50–75. Springer 

Verlag, Berlin.

  5. Weber BH, Depew DJ (1999b) The modern evolutionary synthesis and complex 

systems dynamics: Prospects for a new synthesis. In: Taborsky E (ed), Semiosis, 

Evolution, Energy: Towards a Reconceptualization of the Sign, pp. 263–281. Saker 

Verlag, Aachen.

  6. Weber BH (2007c) Fact, phenomenon and theory in the Darwinian research tradi-

tion. Biological Theory 2: 168–178.

  7. Fisher RA (1930) The Genetical Theory of Natural Selection. Oxford University 

Press, Oxford.

  8. Jepsen GL, Mayr E, Simpson GG (eds) (1949) Genetics, Paleontology, and 

Evolution. Princeton University Press, Princeton, NJ.

  9. Mayr E, Provine WB (1980) The Evolutionary Synthesis: Perspective on the 

Unification of Biology. Harvard University Press, Cambridge, MA.

 10. Nowak MA (2006) Evolutionary Dynamics: Exploring the Equations of Life. 

Harvard University Press, Cambridge, MA.

 11. Mayr E (1988) Toward a New Philosophy of Biology: Observations of an 

Evolutionist. Cambridge MA: Harvard University Press.

 12. Waddington CH (1940) Organizers and Genes. Cambridge University Press, 

Cambridge.

 13. Waddington CH (ed) (1968–72) Towards a Theoretical Biology. Aldine, Chicago.

 14. Waddington CH (1975) The Evolution of an Evolutionist. Cornell University Press, 

Ithaca NY.

 15. Lotka AJ (1924) Elements of Physical Biology. Williams and Wilkins, Baltimore, MD.

 16. Odam E (1969) The strategy of ecosystem development. Science 164: 262–270.

 17. Odam HT (1988) Self-organization, transformity, and information. Science 242: 

1132–1139.

 18. Ulanowicz RE (1986) Growth and Development: Ecosystems Phenomenology. 

Springer Verlag, New York.

 B
io

lo
gi

ca
l I

nf
or

m
at

io
n 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
2.

4.
17

.1
40

 o
n 

08
/1

1/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



552 B. H. Weber 

b1567  Biological Information — New Perspectives b1567_Sec4.2 8 May 2013 2:56 PM

 19. Ulanowicz RE (1997) Ecology, The Ascendent Perspective. Columbia University 

Press, New York.

 20. Ulanowicz RE (2007) Emergence, naturally! Zygon 42: 945–960.

 21. Nei M (1987) Molecular Evolutionary Genetics. Columbia University Press, New York.

 22. Gillespie JH (1991) The Causes of Molecular Evolution. Oxford University Press, 

New York.

 23. Lewin R (1999) Patterns in Evolution: The New Molecular View. Scientific American 

Library, New York.

 24. Gould SJ (1982) Darwinism and the expansion of evolutionary theory. Science 216: 

380–387.

 25. Gould SJ (2002) The Structure of Evolutionary Theory. Harvard University Press, 

Cambridge, MA.

 26. Eldredge N (1985) Unfinished Synthesis: Biological Hierarchies and Modern 

Evolutionary Thought. Oxford University Press, New York.

 27. Gilbert SF (2006a) Developmental Biology, 8th edn. Sinauer, Sunderland, MA.

 28. Gilbert SF (2006b) The generation of novelty: The province of developmental biology. 

Biological Theory 1: 209–212.

 29. Gilbert SF, Opitz JM, Raff RA (1996), Resynthesizing evolutionary theory and 

developmental biology. Devel Biol 173: 357–372.

 30. Carroll SB, Grenier JK, Weatherbee SD (2001), From DNA to Diversity: Molecular 

Genetics and the Evolution of Animal Design. Blackwell Science, Malden MA.

 31. Carroll SB (2005) Endless Forms Most Beautiful: The New Science of Evo-Devo. 

Norton, New York.

 32. Forgas G, Newman SA (2005) Biological Physics of the Developing Embryo. 

Cambridge University Press, Cambridge.

 33. West-Eberhard MJ (2003) Developmental Plasticity and Evolution. Oxford University 

Press, New York.

 34. West-Eberhard MJ (2007) Dancing with DNA and flirting with the ghost of Lamarck. 

Biol Phil 22: 439–451.

 35. Brooks DR, Wiley EO (1986) Evolution as Entropy: Toward a Unified Theory of 

Biology, 2nd edn. University of Chicago Press, Chicago.

 36. Brooks DR (1998) The unified theory and selection processes. In: Van De Vijver G, 

Sathe SN, Delpos M (eds) Evolutionary Systems: Biological and Epistemological 

Perspectives on Selection and Self-Organization, pp 113–128. Kluwer, Dordrecht.

 37. Brooks DR, McClennan, DA (1999) The nature of the organisms and the emergence of 

selection processes and biological signals. In: Taborsky E (ed) Semiosis, Evolution, 

Energy: Towards a Reconceptualization of the Sign, pp. 185–218. Aachen: Saker Verlag.

 38. Collier J (1986) Entropy in evolution. Biol Phil 1: 5–24.

 39. Collier J (1998) Information increase in biological systems: How does adaptation fit? 

In: Van De Vijver G, Sathe SN, Delpos M (eds) Evolutionary Systems: Biological 

 B
io

lo
gi

ca
l I

nf
or

m
at

io
n 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
2.

4.
17

.1
40

 o
n 

08
/1

1/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



 Towards a General Biology…Complex Systems Dynamics 553

b1567  Biological Information — New Perspectives b1567_Sec4.2 8 May 2013 2:56 PM

and Epistemological Perspectives on Selection and Self-Organization, pp 129–139. 

Kluwer, Dordrecht.

 40. Collier J (1999) The dynamical basis of information and the origins of semiosis. In: 

Taborsky E (ed) Semiosis, Evolution, Energy: Towards a Reconceptualization of the 

Sign, pp. 111–138. Saker Verlag, Aachen.

 41. Smith JDH (1998) Canonical ensembles, evolution of competing species, and the 

arrow of time. In: Van De Vijver G, Sathe SN, Delpos M (eds) Evolutionary Systems: 

Biological and Epistemological Perspectives on Selection and Self-Organization, 

pp 141–153. Kluwer, Dordrecht.

 42. Smith JDH (1999) On the evolution of semiotic capacity. In: Taborsky E (ed) Semiosis, 

Evolution, Energy: Towards a Reconceptualization of the Sign, pp. 283–309. Saker 

Verlag, Aachen.

 43. Weber BH (1998) Emergence of life and biological selection from the perspective of 

complex systems dynamics. In: Van De Vijver G, Sathe SN, Delpos M (eds) 

Evolutionary Systems: Biological and Epistemological Perspectives on Selection 

and Self-Organization, pp 59–66. Kluwer, Dordrecht.

 44. Wicken JS (1987) Evolution, Information and Thermodynamics: Extending the 

Darwinian program. Oxford University Press, New York.

 45. Kauffman SA (1993) The Origins of Order: Self-Organization and Selection in 

Evolution. Oxford University Press, New York.

 46. Kauffman SA (2000) Investigations. Oxford University Press, New York.

 47. Kauffman SA (2004), Autonomous agents. In: Barrow JD, Davies, PCW, Harper Jr. CL 

(eds) Science and Ultimate Reality: Quantum Theory, Cosmology, and Complexity, 

pp. 654–666. Cambridge University Press, Cambridge.

 48. Weber BH, Depew DJ (2001) Developmental systems, Darwinian evolution, and the 

unity of science. In: Oyama S, Griffiths PE, Gray RD (eds) Cycles of Contingency: 

Developmental Systems and Evolution. MIT Press, Cambridge, MA.

 49. Dawkins R (1976) The Selfish Gene. Oxford University Press, Oxford.

 50. Dawkins R (1989) The Selfish Gene. Oxford University Press, Oxford.

 51. Oyama S, Griffiths PE, Gray RD (eds) (2001) Cycles of Contingency: Developmental 

Systems and Evolution. MIT Press, Cambridge, MA.

 52. Weber. BH, Depew DJ (2003) Evolution and Learning: The Baldwin Effect 

Reconsidered. MIT Press, Cambridge, MA.

 53. Griffiths PE (2007) The Phenomena of Homology. Biol Phil 22: 643–658.

 54. Jablonka E, Lamb MJ (1995) Epigenetic Inheritance and Evolution: The Lamarckian 

Dimension. Oxford University Press, Oxford.

 55. Jablonka E, Lamb MJ (1998) Bridges between development and evolution. Biol Phil 

13: 119–145.

 56. Jablonka E, Lamb MJ (2005), Evolution in Four Dimensions: Genetic, Epigenetic, 

Behavioral ad Symbolic Variation in the History of Life. MIT Press, Cambridge, MA.

 B
io

lo
gi

ca
l I

nf
or

m
at

io
n 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
2.

4.
17

.1
40

 o
n 

08
/1

1/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



554 B. H. Weber 

b1567  Biological Information — New Perspectives b1567_Sec4.2 8 May 2013 2:56 PM

 57. Jablonka E, Lamb MJ (2007), The expanded evolutionary synthesis — a reply to 

Godfrey-Smith, Haig, and West-Eberhard. Biol Phil 22: 453–472.

 58. Salthe SN (1993) Development in Evolution: Complexity and Change in Biology. 

MIT Press, Cambridge, MA.

 59. Salthe SN (1998) The role of natural selection theory in understanding evolutionary 

systems. In: Van De Vijver G, Sathe SN, Delpos M (eds) Evolutionary Systems: 

Biological and Epistemological Perspectives on Selection and Self-Organization, 

pp. 13–20. Kluwer, Dordrecht.

 60. Salthe SN (1999) Energy, Development and Semiosis. In: Taborsky E (ed.) Semiosis, 

Evolution, Energy: Towards a Reconceptualization of the Sign, pp. 245–261. Saker 

Verlag, Aachen.

 61. Reid R (2007) Biological Emergences: Evolution by Natural Experiment. MIT Press, 

Cambridge, MA.

 62. Kauffman SA (2007) Beyond reductionism: Reinventing the sacred. Zygon 42: 

903–914.

 63. Kauffman SA, Clayton P (2006) On emergence, agency, and organization. Biol Phil 

21: 501- 521.

 64. Kauffman SA, Logan RK, Este R, Goebel R, Hobill D, Shmulevich I (2008) 

Propagating organization: an enquiry. Biol Phil 23: 27–45.

 65. Clayton, P. (2004) Mind and Emergence: From Quantum to Consciousness. Oxford 

University Press, Oxford.

 66. Clayton, P. and P. Davies (2006) The Re-emergence of Emergence: The Emergentist 

Hypothesis from Science to Religion. Oxford University Press, New York.

 67. Deacon TW (2003) The hierarchic logic of emergence: Untangling the interdepen-

dence of evolution and self-organization. In: Weber BH, Depew DJ (eds) Evolution 

and Learning: The Baldwin Effect Reconsidered, pp. 273–308. MIT Press, 

Cambridge, MA.

 68. Deacon TW (2006) Emergence: The hole at the wheel’s hub. In: Clayton P, Davies 

P (eds) The Re-emergence of Emergence: The Emergentist Hypothesis from Science 

to Religion, pp. 111–150. Oxford University Press, New York.

 69. Deacon TW (2006) Reciprocal linkage between self-organizing processes is suffi-

cient for self-reproduction and evolvability. Biological Theory 1: 136–149.

 70. Sherman J, Deacon TW (2007) Teleology for the perplexed: How matter began to 

matter. Zygon 42: 873–901.

 71. Weber BH, Deacon TW (2000) Thermodynamic cycles, developmental systems, and 

emergence. Cybernetics and Human Knowing 7: 21–43.

 72. Johnson S (2001) Emergence: The Connected Lives of Ants, Brains, Cities, and 

Software. Scribner, New York.

 73. Salthe SN (2004) The spontaneous origin of new levels in a scalar hierarchy. Entropy 

6: 327–343.

 B
io

lo
gi

ca
l I

nf
or

m
at

io
n 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
2.

4.
17

.1
40

 o
n 

08
/1

1/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



 Towards a General Biology…Complex Systems Dynamics 555

b1567  Biological Information — New Perspectives b1567_Sec4.2 8 May 2013 2:56 PM

 74. Schneider ED, Sagan D (2005) Into the Cool: Energy Flow Thermodynamics and 

Life. University of Chicago Press, Chicago.

 75. Corning P (2003) Nature’s Magic: Synergy in Evolution and the Fate of Humankind. 

Cambridge University Press, Cambridge.

 76. Corning P (2005) Holistic Darwinism: Synergy, Cybernetics, and the Bioeconomics 

of Evolution. University of Chicago Press, Chicago.

 77. Morowitz H, Smith E (2007) Energy flow and the organization of life. Complexity 

13: 51–59.

 78. Casti JL (1994) Complexification: Explaining a Paradoxical World through the 

Science of Surprise. HarperCollins, New York.

 79. Crofts AR (2007) Life, information, entropy, and time. Complexity 13: 14–50.

 80. Goodwin, BC (1994) How the Leopard Changed Its Spots: The Evolution of 

Complexity. London: Weidenfeld and Nicolson.

 81. Juarrero, A. (1999), Dynamics in Action: Intentional Behavior as a Complex System. 

MIT Press, Cambridge, MA.

 82. Morowitz, H. (2002), The Emergence of Everything: How the World Became 

Complex. Oxford University Press, New York.

 83. Schneider, ED, Sagan, D (2005), Into the Cool: Energy Flow Thermodynamics and 

Life. University of Chicago Press, Chicago.

 84. Silberstein M (2002) Reduction, emergence and explanation. In: Machamer P, 

Silberstein M (eds). The Blackwell Guide to the Philosophy of Science, pp. 80–107. 

Blackwell, Malden, MA.

 85. Solé R, Goodwin BC (2000) Signs of Life: How Complexity Pervades Biology. 

Basic Books, New York.

 86. Taylor MC (2003) The Moment of Complexity: Emerging Network Cultures. 

University of Chicago Press, Chicago.

 87. Ulanowicz RE (2002) Ecology, a dialog between the quick and the dead. Emergence 

4: 34–52.

 88. Wheeler TJ (2007) Analysis, modeling, emergence & integration in complex systems: 

a modeling and integration framework & system biology. Complexity 13: 60–75.

 89. Camazine S, Deneubourg J-L, Franks NR, Sneyd J, Theraulaz G, Bonabeau E (2001) 

Self-Organization in Biological Systems. Princeton University Press, Princeton NJ.

 90. Milsteli T (2001) The concept of self-organization in cellular architecture. Journal of 

Cell Biology 155: 181–185.

 91. Swenson R (1989) Emergent attractors and the law of maximum entropy production: 

Foundations to a theory of general evolution. Systems Research 6: 187–197.

 92. Swenson, R. (1998) Spontaneous order, evolution, and autocatakinetics: The 

nomoloical basis for the emergence of meaning. In: Van De Vijver G, Sathe SN, 

Delpos M (eds) Evolutionary Systems: Biological and Epistemological Perspectives 

on Selection and Self-Organization, pp. 155–180. Kluwer, Dordrecht.

 B
io

lo
gi

ca
l I

nf
or

m
at

io
n 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
2.

4.
17

.1
40

 o
n 

08
/1

1/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



556 B. H. Weber 

b1567  Biological Information — New Perspectives b1567_Sec4.2 8 May 2013 2:56 PM

 93. Darwin CR ([1859] 1964) On the Origin of Species by Means of Natural Selection, 

or the Preservation of Favoured Races in the Struggle for Life. Facsimile of the 

English first edition published by John Murray; with introduction by Ernst Mayr, 

Harvard University Press, Cambridge, MA.

 94. Desmond A (1989) The Politics of Evolution. University of Chicago Press, Chicago.

 95. Fry I. (2000) The Emergence of Life on Earth: A Historical and Scientific Overview. 

Rutgers University Press, New Brunswick, NJ.

 96. Strick JE (2000) Sparks of Life: Darwinism and the Victorian Debates over 

Spontaneous Generation. Harvard University Press, Cambridge, MA.

 97. Spencer H (1864), The Principles of Biology. Williams and Norgate, London.

 98. Royce J (1904) Herbert Spencer: An Estimate and Review. Collier, New York.

 99. Miller KR (1999) Finding Darwin’s God: A Scientist’s Search for Common Ground 

between God and Evolution. Harper Collins, New York.

100. Scott EC (2004) Evolution vs. Creationism: An Introduction. Greenwood, Westport CT.

101. Haldane JBS ([1929] 1967) The origin of life. Rationalist Animal. Reprinted in: The 

Origin of Life, Bernal JD (ed), pp. 242–249. World, Cleveland OH.

102. Oparin AI (1924) Proiskhozhdenie zhizy. Moskovski Rahochii, Moscow. (English 

translation reprinted as: The origin of life, in Bernal JD (ed) The Origin of Life, 

pp. 199–241. World, Cleveland, OH.

103. Oparin AI (1938) The Origin of Life. Macmillan, London.

104. Bernal JD (1951) The Physical Basis of Life. Routledge and Kegan Paul, London.

105. Bernal JD (ed) (1967) The Origin of Life. World, Cleveland, OH.

106. Behe MJ (1996) Darwin’s Black Box: The Biochemical Challenge to Evolution. Free 

Press, New York.

107. Behe MJ (2007) The Edge of Evolution: The Search for the Limits of Darwinism. 

Free Press, New York.

108. Meyer SC (2003) DNA and the origin of life, information, specification, and expla-

nation. In: Campbell JH and S.C. Meyer SC (eds) Darwinism, Design, and Public 

Education, pp. 223–285. Michigan State University Press, Lansing, MI.

109. Meyer SC (2009) Signature in the Cell: DNA and the Evidence for Intelligent 

Design. HarperOne, San Francisco.

110. Bradley WL (2004) Information, entropy, and the origin of life. In: Dembski WA, 

Ruse M (eds) Debating Design: From Darwin to DNA, pp. 331–351. Cambridge 

University Press, Cambridge.

111. Rosenberg A (2006) Darwinian Reductionism: Or, How to Stop Worrying and Love 

Molecular Biology. University of Chicago Press, Chicago.

112. Weber BH (2007) Back to basics. Nature 445: 601.

113. Weber BH (2007) Emergence of life. Zygon 42: 837–856.

114. Williams RJP, Fraústo Da Silva JJR (2003) Evolution was chemically constrained. 

J Theor Biol 220: 323–343.

 B
io

lo
gi

ca
l I

nf
or

m
at

io
n 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
2.

4.
17

.1
40

 o
n 

08
/1

1/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



 Towards a General Biology…Complex Systems Dynamics 557

b1567  Biological Information — New Perspectives b1567_Sec4.2 8 May 2013 2:56 PM

115. Williams RJP, Fraústo Da Silva JJR (2006) The Chemistry of Evolution. Elsevier, 

Amsterdam.

116. Lurquin PF (2003) The Origins of Life and the Universe. Columbia University Press, 

New York.

117. Luisi PL (2006) The Emergence of Life: From Chemical Origins to Synthetic 

Biology. Cambridge University Press, Cambridge.

118. Weber BH (2009) On the emergence of living systems. Biosemiotics 2: 343–359.

119. Deamer DW (2011) First Life: Discovering the Connections between Stars, Cells, 

and How Life Began. University of California Press, Berkeley.

120. Yamagata Y, Inomata K (1997) Condensation of glycylclycine to oligoglycines with 

trimetaphosphate in aqueous solution II: Catalytic effect of magnesium ion. Origins 

of Life and Evolution of the Biosphere 27:339–344.

121. Benner SA, Ricardo A, Carrigan MA (2004) Is there a common chemical model for 

life in the universe? Curr Opin Chem Biol 8: 672–689.

122. Shapiro R (2007) A simpler origin of life. Scientific American 296(6): 46–53.

123. Miller SL (1953) A production of amino acids under possible primitive earth condi-

tions. Science 117: 528–529.

124. Bada JL (2004) How life began on earth: A status report. Earth and Planetary Science 

Letters 226: 1–15.

125. Ehrenfreund P, Irvine W, Becker L (2002) Astrophysical and astrochemical insights 

into the origin of life. Reports of Progress in Physics 65: 1427–1487.

126. Lahav N (1999) Biogenesis: Theories of Life’s Origin. Oxford University Press, 

New York.

127. Wills C, Bada J (2000) The Spark of Life: Darwin and the Primeval Soup. Perseus, 

Cambridge, MA.

128. Bada JL, Lazcano A (2003) Prebiotic soup — revisiting the Miller experiment. 

Science 300: 745–746.

129. Leman L, Orgel L, Ghadiri MR (2004) Carbonylsulfide-mediated prebiotic forma-

tion of peptides. Science 306: 283–286.

130. Kondepudi D (1988) Parity violation and the origin of biomolecular chirality. In: 

Weber BH, Depew DJ, Smith JD (eds) Entropy, Information, and Evolution: New 

Perspectives on Physical and Biological Evolution, pp. 41–50. MIT Press, Cambridge, MA.

131. Kumar JK, Oliver JS (2002) Proximity effects in monolayer films: Kinetic analysis 

of amide bond formation in the air-water interface using proton NMR spectroscopy. 

J Am Chem Soc 124: 11307–11314.

132. Matthews CN, Moser RE (1967) Peptide synthesis from hydrogen cyanide and 

water. Nature 215: 1230–1234.

133. Liebman SA, Pesce-Rodriguez RA, Matthews CN (1995) Organic analysis of hydro-

gen cyanide polymers: Prebiotic and extratrerrestrial chemistry. Advances in Space 

Research 15(3): 71–80.

 B
io

lo
gi

ca
l I

nf
or

m
at

io
n 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
2.

4.
17

.1
40

 o
n 

08
/1

1/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



558 B. H. Weber 

b1567  Biological Information — New Perspectives b1567_Sec4.2 8 May 2013 2:56 PM

134. Minard RD, Hatcher PG, Gourley RC, Matthews CN (1998) Structural investigations 

of hydrogen cyanide polymers: New insights using TMAH Thermochemolysis/

GC-MS. Origin of Life and Evolution of the Biosphere 28: 461–473.

135. Fox SW (1988) The Emergence of Life. Academic Press, New York.

136. Wächterhäuser G (1988) Before enzymes and templates: Theory of surface metabo-

lism. Microbiological Reviews 52: 452–484.

137. Wächterhäuser G (1992) Groundworks for an evolutionary biochemistry: The iron-

sulfur world. Progress in Biophysics and Moleculr Biology 58: 85–201.

138. Wächterhäuser G (1997) The origin of life and its methodological challenge. J Theor 

Biol 187: 483–494.

139. Morowitz H, Deamer DW, Smith T (1991) Biogenesis as an evolutionary process. 

J Mol Evol 33: 207–208.

140. Morowitz H (1992) Beginnings of Cellular Life: Metabolism Recapitulates 

Biogenesis. Yale University Press, New Haven.

141. Shakhnovich EI, Gutin AM (1990) Implications of Thermodynamics of Protein 

Folding for Evolution of Primary Sequences. Nature 346: 773–775.

142. Bowie JU (1990) Deciphering the message in protein sequences: tolerance of amino 

acid substitutions. Science 247: 1306–1310.

143. Hazen RM, Griffin PL, Carothers JM, Szostak JW (2007) Functional information 

and the emergence of biocomplexity. Proc Natl Acad Sci USA 104: 8574–8531.

144. Axe DD (2010) The case against a Darwinian origin of protein folds. BIO-

Complexity 2010(1):1–12. doi:10.5048/BIO-C.2010.1

145. Fox RF (1997) The origins of life: What one needs to know. Zygon 32: 393–406.

146. Meyer SC, Nelson PA (2011) Can the origin of the genetic code be explained by 

direct RNA templating? BIO-Complexity 2011(2): 1–10.

147. Weber BH (2010) What is Life? Defining life in the context of emergent complexity. 

Origins of Life and Evolution of Biospheres 40: 221–229.

148. Yockey HP (2005) Information Theory, Evolution, and the Origin of Life. Cambridge 

University Press, Cambridge.

149. Joyce GF, Orgel, LE (1993), Prospects for understanding the origin of the RNA 

world. In: R.F. Gesteland RF, Atkins JF (eds) The RNA World, pp. 1–25. Cold Spring 

Harbor Press, Cold Spring Harbor MA.

150. Schwartz AW (1997) Speculation on the RNA precursor problem. J Mol Biol 187: 

523–527.

151. Deamer DW, Pashley RM (1989) Amphiphilic components of the Murchison carbo-

naceous chondrite: Surface properties and membrane formation. Origin of Life and 

Evolution of the Biosphere 19: 21–38.

152. Deamer DW, Dworkin JP, Sandford SA, Bernstein MP, Allamandola LJ (2002), The 

first cell membranes. Astrobiology 2: 371–381.

 B
io

lo
gi

ca
l I

nf
or

m
at

io
n 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
2.

4.
17

.1
40

 o
n 

08
/1

1/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



 Towards a General Biology…Complex Systems Dynamics 559

b1567  Biological Information — New Perspectives b1567_Sec4.2 8 May 2013 2:56 PM

153. Ourisson G, Nakatani Y (1994) The terpenoid theory of the origin of cellular life: 

The evolution of terpenoids to cholesterol. Curr Biol 1: 11–23.

154. Bachmann PA, Luisi PL, Lang J (1992) Autocatalytic self-replication micelles as 

modes for prebiotic structures. Science 357: 57–58.

155. Mitchell PD (1961) Coupling of phosphorylation to electron and hydrogen transfer 

by a chemiosmotic type of mechanism. Nature 191: 144–148.

156. Williams RJP (1961) Possible functions of chains of catalysts. J Theoret Biol 1: 1–17.

157. Weber BH, Prebble JN (2006) An issue of originality and priority: The correspon-

dence and theories of oxidative phosphorylation of Peter Mitchell and Robert J. P. 

Williams, 1961–1980. Journal of the History of Biology 39: 125–163.

158. Prebble J, Weber BH (2003) Wandering in the Gardens of the Mind: Peter Mitchell 

and the Making of Glynn. Oxford University Press, New York.

159. Lane N (2006) Power, Sex, Suicide: Mitochondria and the Meaning of Life. Oxford 

University Press, Oxford.

160. Deamer DW (1992) Polycyclic aromatic hydrocarbons: Primitive pigment systems 

in the prebiotic environment. Advances in Space Research 12: 1–4.

161. Martin W, Russell MT (2003) On the origins of cells: A hypothesis for the evolution-

ary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and 

from prokaryotes to nucleated cells. Phil Trans Royal Society of London (Series B) 

358: 59–85.

162. Carter CW, Kraut J (1974) A proposed model for interaction of polypeptides with 

RNA. Proc Natl Acad Sci USA 71: 283–287.

163. Weber BH (2000) Closure in the Emergence and Evolution of Life. NY Acad Sci 

901: 132–138.

164. Weber BH (2003a), Emergence of mind and the Baldwin effect. In: B.H. Weber BH, 

Depew DJ (eds) Evolution and Learning: The Baldwin Effect Reconsidered, 

pp. 309–326.

165. Weber BH (2003b) Biochemical complexity: Emergence of design? In: J.A. Campbell JA, 

Meyer SC (eds) Darwinism, Design, and Public Education, pp. 455–462. Michigan 

State University Press, East Lansing, MI.

166. Weber BH, Depew DJ (2004) Darwinism, Design, and Complex Systems Dynamics. 

In: Dembski WA, Ruse M (eds) The Appearance of Design in Nature, pp. 173–190. 

Cambridge University Press, Cambridge UK.

167. Weber BH (2011) Design and its discontents. Synthese 178 (2): 271–289.

168. Miller KB (2003) Common descent, transitional forms, and the fossil record. In: 

Miller KB (ed) Perspectives on an Evolving Creation, pp. 152–181. Eerdmans, 

Grand Rapids MI.

169. Gordon BL, Dembski WA (eds) (2011) The Nature of Nature: Examining the Role 

of Naturalism in Science. ISI Books, Wilmington, DE.

 B
io

lo
gi

ca
l I

nf
or

m
at

io
n 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
2.

4.
17

.1
40

 o
n 

08
/1

1/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



561

b1567  Biological Information — New Perspectives b1567_Index 8 May 2013 2:32 PM

Index

active information 26, 46, 52, 53, 55, 
57, 60, 61

additive model 313, 314, 316, 317
Algorithmic Information 16
Algorithmic Information theory 

12, 24
α-satellite DNA 217, 231
amino acid biosynthesis 420, 422
antibiotic resistance 159
applied topology 89, 90
artificial selection 270
artificial genome 402, 404, 407
Avida 26, 106, 124, 287, 338–341, 343, 

344, 347, 349, 352, 354–356, 358–360

Big Bang 27
biocybernetic 402, 405, 411
biosemiosis 411

Cambrian explosion 105–107, 111, 113, 
124

Central Dogma 210, 211, 218
Chaitin-Kolmogorov complexity 24
chemical evolution xiii
computer science 11, 397, 398, 404, 408
consciousness xviii
conservation of information 26, 37, 47, 

52, 54, 55, 57, 58, 60

DENV 371
Doppler vibrometry 415

Ebola 371
electrical fields 446
embryogenesis 474, 482
ENCODE project 141, 154, 212, 221, 386
endogenous electric field 474, 476, 477, 

482

entropy 22, 26, 168, 170, 172, 176, 179, 
187–190, 192–194, 410, 521, 543

environmental variance 234, 236, 237, 
248, 250, 251, 253–255, 258, 267, 269, 
270–271, 273, 274, 276, 277, 289, 291, 
298, 301–307, 328

epigenetic 160
epigenome 407
evolution xvi, 12, 26, 87, 88, 91–95, 98, 

100, 103, 105–107, 111, 113, 118, 121, 
122, 124, 125, 157, 169, 170, 179, 282, 
338, 342, 343, 347, 349, 351, 355, 356, 
358, 359, 361, 397, 411, 416, 431, 450, 
452, 465, 469–471, 474, 482, 492, 494, 
498, 499, 505, 509, 510, 513–517, 519, 
520, 522, 524, 526, 529, 540, 541, 543

FANTOM Consortium 212
first law of thermodynamics 171, 197
Fisher’s Theorem 141, 159
fossil record 106
fractals 90
free energy 188, 190–193, 195, 196, 

198, 199
frozen accident 415

frozen accident model 419

gametic sampling 234
gene duplication 492
general epistasis 316
gene regulatory networks 474, 479, 482
genetic accounting 250, 264, 315
genetic attenuation 369–372, 374, 376, 

378, 380
genetic drift 156, 234
genetic entropy 343, 350, 354, 360
genome xvi, xvii, 26, 72, 139–141, 

154, 156–158, 161, 210, 211, 215, 220, 

b1567_Index.indd   561b1567_Index.indd   561 5/8/2013   2:24:36 PM5/8/2013   2:24:36 PM

 B
io

lo
gi

ca
l I

nf
or

m
at

io
n 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
2.

4.
17

.1
40

 o
n 

08
/1

1/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



562 Index 

b1567  Biological Information — New Perspectives b1567_Index 8 May 2013 2:32 PM

257, 264, 265, 281–283, 285, 288, 290, 
301, 307, 308, 313–319, 321, 322, 326, 
329–331, 338–340, 344, 347, 349, 352, 
355, 358–361, 373, 385, 387, 388, 390, 
392, 393, 395, 397–399, 404, 415, 416, 
426, 435, 468, 474, 537

H1N1 259, 372, 380
influenza virus 308

Hox genes 475
human genome 180, 214, 255, 385, 386, 

390, 393, 394, 398, 443
Human Genome Project xviii, 211, 385

information science 18, 402, 405, 
411, 412

information theory xvii, xviii, 22, 26, 
89, 399, 410, 514, 515, 537

interactome xvii

junk DNA 141, 154, 162, 183, 210, 211, 
214, 216, 221, 286, 352, 353, 387, 390, 
411, 417

kinetic energy 186

lethal mutagenesis 369, 379
LINEs 214, 217, 393
linkage 244, 253, 255, 258, 292, 312, 

315, 319, 321, 322, 329, 334, 339, 351

membrane code 474
Mendel’s Accountant 232, 246, 250, 

254, 266, 282, 286–288, 300, 314, 322, 
338, 339, 345, 346, 348, 351, 360, 362, 
369, 372

metabolic complexity 489
Modern Evolutionary Synthesis 536, 

538, 541, 548
Muller’s ratchet 235, 370
multiplicative model 313, 317
mutation accumulation experiments 160

mutational meltdown 313, 326, 
332–334, 343, 369, 370, 377, 378

mutation count mechanism 298, 299, 
328, 330, 334

natural selection xiii, xiv, xvi, 95, 96, 
105, 106, 110, 111, 121, 155, 156, 161, 
179, 232–234, 249, 251, 252, 264, 265, 
281, 284, 287, 306, 309, 338, 342, 351, 
354, 356, 360, 373, 407, 417, 428, 450, 
490, 492, 509, 510, 511, 513–517, 
519–521, 524–526, 530, 533, 535, 536, 
542, 543, 547, 549

numerical simulation xvii, 232, 249, 
253, 258, 264, 266, 292, 298, 300, 301, 
306, 309, 310, 312–316, 331, 333, 334, 
338, 339, 369, 372, 375, 378–380

origin of life xiv, xv, 106, 107, 180, 194, 
407, 511, 524, 527, 534, 537, 538, 541, 
545, 547, 549, 550

overlapping codes 26, 141, 143, 144, 
148, 152, 155, 156, 210, 212, 399, 
409

pathogen attenuation 338
photosynthesis 195
poly-constrained 149, 152
poly-functional DNA 139, 149, 154, 

155, 158
positive selection 161, 275, 287
potential energy 186
pragmatic information 25, 64, 66, 68, 

71, 72, 75, 81–83
probability selection 234, 239, 246–249, 

252, 258, 270, 277, 289, 292, 298, 
301–305, 307, 308, 323, 324, 330

pseudogenes 214, 220
purifying selection 140, 247, 248, 257, 

264, 275, 338, 339

reductive evolution 358, 359, 360
repetitive DNA 214

b1567_Index.indd   562b1567_Index.indd   562 5/8/2013   2:24:36 PM5/8/2013   2:24:36 PM

 B
io

lo
gi

ca
l I

nf
or

m
at

io
n 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
2.

4.
17

.1
40

 o
n 

08
/1

1/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



 Index 563

b1567  Biological Information — New Perspectives b1567_Index 8 May 2013 2:32 PM

resonance principle 446
Ribavirin 377
RNA virus 369–372, 374, 377–379
RNA World xv, 546

SARS 371
search matrix 26–28, 30–38, 40, 43, 46, 

47
second law of thermodynamics 168, 

169, 173, 175, 177, 180, 186, 197
selection interference 236, 248, 253, 

267, 271–275, 281, 282, 288
selective amplification 267
semiotic code 409, 411
Sequence Hypothesis 210, 211, 218
Shannon information 22, 23, 184, 403
SINEs 214, 393
Skittle Genome Visualizer 387
spatial information 475, 476, 479
specified complexity 24
Standard Codon Table 418
stereochemical interactions 421

sugar code 479, 480
synergistic epistasis 312–314, 317
syntax 14, 18, 24

tandem repeat 388, 390, 392, 393, 395, 
396, 398

thermodynamics xvii, 26, 88
Tierra 26, 105–110, 112–115, 122–125, 

360
truncation selection 235, 237, 239, 246, 

248, 250, 251, 258, 267, 269, 270, 273, 
274, 292, 298, 301, 303, 305–307, 312, 
324, 327–329, 332, 334, 373

Universal Information 11, 16–18, 
22–25

vibrometry 435, 438, 440, 442, 443
virus evolution 371

Weibull-type distribution 256, 258, 286, 
289, 292, 305, 307, 339, 373

b1567_Index.indd   563b1567_Index.indd   563 5/8/2013   2:24:36 PM5/8/2013   2:24:36 PM

 B
io

lo
gi

ca
l I

nf
or

m
at

io
n 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
2.

4.
17

.1
40

 o
n 

08
/1

1/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.


