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Preface

These lecture notes on differential equations are based on my experience
teaching Math 280 and Math 351 at California State University, Northridge
since 2000. The content of Math 280 is more applied (solving equations)
and Math 351 is more theoretical (existence and uniqueness) but I have
attempted to integrate the material together in the notes in a logical order
and I select material from each section for each class.

The subject matter is classical differential equations and many of the excit-
ing topics that could be covered in an introductory class, such as nonlinear
systems analysis, bifurcations, chaos, delay equations, and difference equa-
tions are omitted in favor of providing a solid grounding the basics.

Some of the more theoretical sections have been marked with the traditional
asterisk∗. You can’t possibly hope to cover everything in the notes in a
single semester. If you are using these notes in a class you should use them
in conjunction with one of the standard textbooks (such as [2], [9] or [12] for
all students in both 280 and 351, and by [5] or [11] for the more theoretical
classes such as 351) since the descriptions and justifications are necessarily
brief, and there are no exercises.

The current version has been typeset in LATEX and many pieces of it were
converted using file conversion software to convert earlier versions from
various other formats. This may have introduced as many errors as it
saved in typing time. There are probably many more errors that haven’t
yet been caught so please let me know about them as you find them.

While this document is intended for students in my classes at CSUN you
are free to use it and distribute it under the terms of the Creative Com-
mons Attribution – Non-commercial – No Derivative Works 3.0 United
States license. If you discover any bugs please let me know. All feedback,
comments, suggestions for improvement, etc., are appreciated, especially if
you’ve used these notes for a class, either at CSUN or elsewhere, from both
instructors and students.
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Lesson 1

Basic Concepts

A differential equation is any equation that includes derivatives, such as

dy

dt
= y (1.1)

or

t2
d2y

dt2
+ (1− t)

(
dy

dt

)2

= ety (1.2)

There are two main classes of differential equations:

• ordinary differential equations (abbreviated ODES or DES) are
equations that contain only ordinary derivatives; and

• partial differential equations (abbreviated PDES) are equations
that contain partial derivatives, or combinations of partial and ordi-
nary derivatives.

In your studies you may come across terms for other types of differen-
tial equations such as functional differential equations, delay equations,
differential-algebraic equations, and so forth. In order to understand any
of these more complicated types of equations (which we will not study this
semester) one needs to completely understand the properties of equations
that can be written in the form

dy

dt
= f(t, y) (1.3)

where f(t, y) is some function of two variables. We will focus exclusively
on equations of the form given by equation 1.3 and its generalizations to
equations with higher order derivatives and systems of equations.

1



2 LESSON 1. BASIC CONCEPTS

Ordinary differential equations are further classified by type and degree.
There are two types of ODE:

• Linear differential equations are those that can be written in a
form such as

an(t)y(n) + an−1(t)y(n−1) + · · ·+ a2(t)y′′ + a1(t)y′ + a0(t) = 0 (1.4)

where each ai(t) is either zero, constant, or depends only on t, and
not on y.

• Nonlinear differential equations are any equations that cannot be
written in the above form. In particular, these include all equations
that include y, y′, y′′, etc., raised to any power (such as y2 or (y′)3);
nonlinear functions of y or any derivative to any order (such as sin(y)
or ety; or any product or function of these.

The order of a differential equation is the degree of the highest order
derivative in it. Thus

y′′′ − 3ty2 = sin t (1.5)

is a third order (because of the y′′′) nonlinear (because of the y2) differential
equation. We will return to the concepts of degree and type of ODE later.

Definition 1.1 (Standard Form). A differential equation is said to be
in standard form if we can solve for dy/dx, i.e., there exists some function
f(t, y) such that

dy

dt
= f(t, y) (1.6)

We will often want to rewrite a given equation in standard form so that we
can identify the form of the function f(t, y).

Example 1.1. Rewrite the differential equation t2y′+3ty = yy′ in standard
form and identify the function f(t, y).

The goal here is to solve for y′:

t2y′ − yy′ = −3ty

(t2 − y)y′ = −3ty

y′ =
3ty

y − t2

 (1.7)

hence

f(t, y) =
3ty

y − t2
(1.8)
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Definition 1.2 (Solution, ODE). A function y = φ(t) is called a solution
of y′ = f(t, y) if it satisfies

φ′(t) = f(t, φ(t)) (1.9)

By a solution of a differential equation we mean a function y(t) that sat-
isfies equation 1.3. We use the symbol φ(t) instead of f(t) for the solution
because f is always reserved for the function on the right-hand side of 1.3.

To verify that a function y = f(t) is a solution of the ODE, is a solution,
we substitute the function into both sides of the differential equation.

Example 1.2. A solution of

dy

dt
= 3t (1.10)

is

y =
3

2
t2 (1.11)

We use the expression “a solution” rather than “the solution” because so-
lutions are not unique! For example,

y =
3

2
t2 + 27 (1.12)

is also a solution of y′ = 3t. We say that the solution is not unique.

Example 1.3. Show1 that y = x4/16 is a solution of y′ = xy1/2

Example 1.4. Show2 that y = xex is a solution of y′′ − 2y′ + y = 0.

Example 1.5. We can derive a solution of the differential equation

dy

dt
= y (1.13)

by rewriting it as
dy

y
= dt (1.14)

and then integrating both sides of the equation:∫
dy

y
=

∫
dt (1.15)

1Zill example 1.1.1(a)
2Zill example 1.1.1(b)
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From our study of calculus we know that∫
dy

y
= ln |y|+ C (1.16)

and ∫
dt = t+ C (1.17)

where the C’s in the last two equations are possibly different numbers. We
can write this as

ln |y|+ C1 = t+ C2 (1.18)

or
ln |y| = t+ C3 (1.19)

where C3 = C2 − C1.

In general when we have arbitrary constants added, subtracted, multiplied
or divided by one another we will get another constant and we will not
distinguish between these; instead we will just write

ln |y| = t+ C (1.20)

It is usually nice to be able to solve for y (although most of the time we
won’t be able to do this). In this case we know from the properties of
logarithms that a

|y| = et+C = eCet (1.21)

Since an exponential of a constant is a constant, we normally just replace eC

with C, always keeping in mind that that C values are probably different:

|y| = Cet (1.22)

We still have not solved for y; to do this we need to recall the definition of
absolute value:

|y| =
{
y if y ≥ 0
−y if y < 0

(1.23)

Thus we can write

y =

{
Cet if y ≥ 0
−Cet if y < 0

(1.24)

But both C and −C are constants, and so we can write this more generally
as

y = Cet (1.25)

So what is the difference between equations 1.22 and 1.25? In the first case
we have an absolute value, which is never negative, so the C in equation
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1.22 is restricted to being a positive number or zero. in the second case
(equation 1.25) there is no such restriction on C, and it is allowed to take
on any real value.

In the previous example we say that y = Cet, where C is any arbitrary
constant is the general solution of the differential equation. A constant
like C that is allowed to take on multiple values in an equation is sometimes
called a parameter, and in this jargon we will sometimes say that y = Cet

represents the one-parameter family of solutions (these are sometimes
also called the integral curves or solution curves) of the differential
equation, with parameter C. We will pin the value of the parameter down
more firmly in terms of initial value problems, which associate a specific
point, or initial condition, with a differential equation. We will return
to the concept of the one-parameter family of solutions in the next section,
where it provides us a geometric illustration of the concept of a differential
equation as a description of a dynamical system.

Definition 1.3 (Initial Value Problem (IVP)). An initial value prob-
lem is given by

dy

dt
= f(t, y) (1.26)

y(t0) = y0 (1.27)

where (t0, y0) be a point in the domain of f(t, y). Equation 1.27 is called
an initial condition for the initial value problem.

Example 1.6. The following is an initial value problem:

dy

dt
= 3t

y(0) = 27

 (1.28)

Definition 1.4 (Solution, IVP). The function φ(t) is called a solution
of the initial value problem

dy

dt
= f(t, y)

y(t0) = y0

 (1.29)

if φ(t) satisfies both the ODE and the IC, i.e., dφ/dt = f(t, φ(t)) and
φ(t0) = y0.
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Example 1.7. The solution of the IVP given by example 1.6 is given by
equation 1.12, which you should verify. In fact, this solution is unique,
in the sense that it is the only function that satisfies both the differential
equation and the initial value problem.

Example 1.8. Solve the initial value problem dy/dt = t/y , y(1) = 2.

We can rewrite the differential equation as

ydy = tdt (1.30)

and then integrate, ∫
ydy =

∫
tdt (1.31)

1

2
y2 =

1

y
t2 + C (1.32)

When we substitute the initial condition (that y = 2 when t = 1) into the
general solution, we obtain

1

2
(2)2 =

1

2
(1)2 + C (1.33)

Hence C = 3/2. Substituting back into equation 1.32 and multiplying
through by 2,

y2 = t2 + 3 (1.34)

Taking square roots,

y =
√
t2 + 3 (1.35)

which we call the solution of the initial value problem. The negative square
root is excluded because of the initial condition which forces y(1) = 2.

Not all initial value problems have solutions. However, there are a large
class of IVPs that do have solution. In particular, those equations for
which the right hand side is differentiable with respect to y and the partial
derivative is bounded. This is because of the following theorem which we
will accept without proof for now.

Theorem 1.5 (Fundamental Existence and Uniqueness Theorem).
Let f(t, y) be bounded, continuous and differentiable on some neighborhood
R of (t0, y0), and suppose that ∂f/∂y is bounded on R. Then the initial
value problem 1.29 has a unique solution on some open neighborhood of
(t0, y0).
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Figure 1.1 illustrates what this means. The initial condition is given by
the point (t0, y0) (the horizontal axis is the t-axis; the vertical axis is y). If
there is some number M such that |∂f/∂y| < M everywhere in the box R,
then there is some region N where we can draw the curve through (t0, y0).
This curve is the solution of the IVP.3

Figure 1.1: Illustration of the fundamental existence theorem. If f is
bounded, continuous and differentiable in some neighborhood R of (t0, R0),
and the partial derivative ∂f∂y is also bounded, then there is some (pos-
sibly smaller) neighborhood of (t0, R0) through which a unique solution to
the initial value problem, with the solution passing through (t0, y0), exists.
This does not mean we are able to find a formula for the solution.

A solution may be either implicit or explicit. A solution y = φ(t) is said
to be explicit if the dependent variable (y in this case) can be written
explicitly as a function of the independent variable (t, in this case). A
relationship F (t, y) = 0 is said to represent and implicit solution of the
differential equation on some interval I if there some function φ(t) such
that F (t, φ(t)) = 0 and the relationship F (t, y) = 0 satisfies the differential
equation. For example, equation 1.34 represents the solution of {dy/dt =
t/y, y(1) = 2} implicitly on the interval I = [−

√
3,
√

3] which (1.35) is an
explicit solution of the same initial value problem problem.

3We also require that |f | < M everywhere on R and that f be continuous and
differentiable.
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Example 1.9. Show that y = exy is an implicit solution of

dy

dx
=

y2

1− xy
(1.36)

To verify that y is an implicit solution (it cannot be an explicit solution
because it is not written as y as a function of x), we differentiate:

dy

dx
= exy × d

dx
(xy) (1.37)

= y

(
x
dy

dx
+ y

)
(subst.y′ = exy) (1.38)

= yx
dy

dx
+ y2 (1.39)

dy

dx
− yxdy

dx
= y2 (1.40)

dy

dx
(1− yx) = y2 (1.41)

dy

dx
=

y2

1− yx
(1.42)

Definition 1.6 (Order). The order (sometimes called degree) of a differ-
ential equation is the order of the highest order derivative in the equation.

Example 1.10. The equation(
dy

dt

)3

+ 3t = y/t (1.43)

is first order, because the only derivative is dy/dt, and the equation

ty′′ + 4y′ + y = −5t2 (1.44)

is second order because it has a second derivative in the first term.

Definition 1.7 (Linear Equations). A linear differential equation is a
DE that only contains terms that are linear in y and its derivatives to all
orders. The linearity of t does not matter. The equation

y + 5y′ + 17t2y′′ = sin t (1.45)

is linear but the following equations are not linear:

y + 5t2 sin y = y′′ (because of sin y)
y′ + ty′′ + y = y2 (because of y2)
yy′ = 5t (because of yy′)

(1.46)
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We will study linear equations in greater detail in section 4.

Often we will be faced with a problem whose description requires not one,
but two, or even more, differential equations. This is analogous to an
algebra problem that requires us to solve multiple equations in multiple
unknowns. A system of differential equations is a collection of re-
lated differential equations that have multiple unknowns. For example, the
variable y(t) might depend not only on t and y(t) but also on a second
variable z(t), that in turn depends on y(t). For example, this is a system of
differential equations of two variables y and z (with independent variable
t):

dy

dt
= 3y + t2 sin z

dz

dt
= y − z

 (1.47)

It is because of systems that we will use the variable t rather than x for the
horizontal (time) axis in our study of single ODEs. This way we can have
a natural progression of variables x(t), y(t), z(t), . . . , in which to express
systems of equations. In fact, systems of equations can be quite difficult
to solve and often lead to chaotic solutions. We will return to a study of
systems of linear equations in a later section.
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Lesson 2

A Geometric View

One way to look at a differential equation is as a description of a trajectory
or position of an object over time. We will steal the term “particle” from
physics for this idea. By a particle we will mean a “thing” or “object” (but
doesn’t sound quite so coarse) whose location at time t = t0 is given by

y = y0 (2.1)

At a later time t > t0 we will describe the position by a function

y = φ(t) (2.2)

which we will generally write as y(t) to avoid the confusion caused by the
extra Greek symbol.1 We can illustrate this in the following example.

Example 2.1. Find y(t) for all t > 0 if dy/dt = y and y(0) = 1.

In example 1.5 we found that the general solution of the differential equation
is

y = Cet (2.3)

We can determine the value of C from the initial condition, which tells us
that y = 1 when t = 1:

1 = y(0) = Ce0 = C (2.4)

Hence the solution of the initial value problem is

y = et (2.5)

1Mathematically, we mean that φ(t) is a solution of the equations that describes what
happens to y as a result of some differential equation dy/dt = f(t, y); in practice, the
equation for φ(t) is identical to the equation for y(t) and the distinction can be ignored.

11



12 LESSON 2. A GEOMETRIC VIEW

We can plug in numbers to get the position of our “particle” at any time
t: At t = 0, y = e0 = 1; at t = 0.1, y = e(0.1) ≈= 1.10517; at t = 0.2,
y = e0.2 ≈ 1.2214; etc. The corresponding “trajectory” is plotted in the
figure 2.1.

Figure 2.1: Solution for example 2.1. Here the y axis gives the particle
position as a function of time (the t or horizontal axis.

(0,1)
(0.1, e    ) 0.1

(0.2, e    ) 0.2

0.1 0. 0.1 0.2 0.3
0.9

1.

1.1

1.2

1.3

t

y

Since the solution of any (solvable2) initial value problem dy/dt = f(t, y),
y(t0) = y0 is given by some function y = y(t), and because any function
y = y(t) can be interpreted as a trajectory, this tells us that any initial value
problem can be interpreted geometrically in terms of a dynamical (moving
or changing) system.3 We say “geometrically” rather than “physically”
because the dynamics may not follow the standard laws of physics (things
like F = ma) but instead follow the rules defined by a differential equation.
The geometric (or dynamic) interpretation of the initial value problem y′ =
y, y(0) = 1 given in the last example is is described by the plot of the
trajectory (curve) of y(t) as a function of t.

2By solvable we mean any IVP for which a solution exists according to the funda-
mental existence theorem (theorem 1.5). This does not necessarily mean that we can
actually solve for (find) an equation for the solution.

3We will use the word “dynamics” in the sense that it is meant in mathematics
and not in physics. In math a dynamical system is anything that is changing in
time, hence dynamic. This often (though not always) means that it is governed by
a differential equation. It does not have to follow the rules of Newtonian mechanics.
The term “dynamical system” is frequently bandied about in conjunction with chaotic
systems and chaos, but chaotic systems are only one type of dynamics. We will not
study chaotic systems in this class but all of the systems we study can be considered
dynamical systems.
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We can extend this geometric interpretation from the initial value problem
to the general solution of the differential equation. For example we found in
example 1.5 that y = Cet is the solution to the ODE y′ = y, and we called
the expression the one-parameter family of solutions. To see what this
means consider the effect of the initial condition on y = Cet: it determines
a specific value for C. In fact, if we were to plot every conceivable curve
y = Cet (for every value of C), the picture would look something like those
shown in figure 2.2 The large black dot indicates the location of the point

Figure 2.2: Illustration of the one parameter family of solutions found in
example 1.5.

1. 0.5 0. 0.5 1.
3

2

1

0

1

2

3

t

y(
t)

C=.5

C=1.0

C=1.5

C=0

C= -5

(0, 1), and the values of C are shown for several of the curves.4 We see that
the curve corresponding to C = 1.0 is the only curve that passes through
the point (0, 1) - this is a result of the uniqueness of the solutions. As long
the conditions of the fundamental theorem (theorem 1.5) are met, there
is always precisely one curve that passes through any given point. The
family (or collection) of curves that we see in this picture represents the
one-parameter family of solutions: each member of the family is a different
curve, and is differentiated by its relatives by the value of C, which we call
a parameter. Another term that is sometimes used for the one-parameter
family of solutions is the set of integral curves.

4In fact, not all curves are shown here, only the curves for C =
. . . ,−.5, 0, 0.5, 1, 1.5, . . . . Curves for other values fall between these.
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Example 2.2. Find and illustrate the one-parameter family of solutions
for the ODE

dy

dt
= − t

y
(2.6)

Cross multiplying and integrating∫
ydy = −

∫
tdt (2.7)

1

2
y2 = −1

2
t2 + C (2.8)

Multiplying through by 2, bringing the t to the left hand side and redefining
C ′ = 2C gives us

y2 + t2 = C2 (2.9)

which we (should!) recognize as the equation of a circle of radius C. The
curves for several values of C = 1, 2, . . . is illustrated in figure 2.3.

Figure 2.3: One parameter family of solutions for example 2.2.

6 5 4 3 2 1 0 1 2 3 4 5 6
6
5

4

3

2

1

0

1

2

3

4
5

6

Sometimes its not so easy to visualize the trajectories; a tool that gives us
some help here is the direction field. The direction field is a plot of the
slope of the trajectory. We know from the differential equation

dy

dt
= f(t, y) (2.10)
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that since the slope of the solution y(t) at any point is dy/dt, and since
dy/dt = f , then the slope at (t, y) must be equal to f(t, y). We obtain the
direction field but dividing the plane into a fixed grid of points Pi = (ti, yi)
and then then drawing a little arrow at each point Pi with slope f(ti, yi).
The lengths of all the arrows should be the same. The general principal is
illustrated by the following example.

Example 2.3. Construct the direction field of

dy

dt
= t2 − y (2.11)

on the region −3 ≤ t ≤ 3,−3 ≤ y ≤ 3, with a grid spacing of 1.

First we calculate the values of the slopes at different points. The slope is
given by f(t, y) = t2 − y. Several values are shown.

t y = −3 y = −2 y = −1 y = 0 y = 1 y = 2 y = 3

t = −3 12 11 10 9 8 7 6
t = −2 7 6 5 4 3 2 1
t = −1 4 3 2 1 0 −1 −2
t = 0 3 2 1 0 −1 −2 −3
t = 1 4 3 2 1 0 −1 −2
t = 2 7 6 5 4 3 2 1
t = 3 12 11 10 9 8 7 6

The direction field with a grid spacing of 1, as calculated in the table
above, is shown in figure 2.4 on the left.5 At each point, a small arrow is
plotted. For example, an arrow with slope 6 is drawn centered on the point
(-3,3); an arrow with slope 1 is drawn centered on the point (-2, 3); and so
forth. (The values are taken directly with the table). A direction field of
the same differential equation but with a finer spacing is illustrated in fig
2.4 on the right. From this plot we can image what the solutions may look
like by constructing curves in our minds that are tangent to each arrow.

Usually it is easier if we omit the arrows and just draw short lines on the
grid (see figure 2.5, on the left6). The one-parameter family of solutions is
illustrated on the right.7

5The direction field can be plotted in Mathematica using f[t , y ] := t^2 - y;

VectorPlot[{1, f[t, y]}/Norm[{1, f[t, y]}], {t, -3, 3}, {y, -3, 3}]. The nor-
malization ensures that all arrows have the same length.

6In Mathematica: f[t , y ] := t^2 - y; followed by v[t , y , f ] :=

0.1*{Cos[ArcTan[f[t, y]]], Sin[ArcTan[f[t, y]]]}; L[t , y , f ] := Line[{{t,
y - v[t, y, f], {t, y} + v[t, y, f]}]; Graphics[Table[L[t, y, f], {t, -3, 3, .2}, {y, -3, 3, .2}]]

7The analytic solution y = e−t
(
ett2 − 2ett+ 2et − et0 t02 + et0y0 − 2et0 + 2et0 t0

)
was used to generate this plot. The solution can be found in Mathematica via
DSolve[{y’[t] == t^2 - y[t], y[t0] == y0}, y[t], t].
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Figure 2.4: Direction fields with arrows. See text for details.
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Figure 2.5: Direction fields with short lines (left) and one parameter family
of solutions (right) for (2.11).
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Lesson 3

Separable Equations

An ODE is said to be separable if the parts that depend on t and y can
be separated to the different sides of the equation. This makes it possible
to integrate each side separable.1 Specifically, an equation is separable if it
can be written is

dy

dt
= a(t)b(y) (3.1)

for some function a(t) that depends only on t, but not on y, and some
function b(y) that depends only on y and and not on t. If we multiply
through by dt and divide by b(y) the equation becomes

dy

b(y)
= a(t)dt (3.2)

so we may integrate: ∫
dy

b(y)
=

∫
a(t)dt (3.3)

We have already seen many separable equations. Another is given in the
following example.

Example 3.1.
dy

dt
=

(
1− t

2

)
y2

y(0) = 1

 (3.4)

1In this section of the text, Boyce and DiPrima have chosen to use x rather than t as
the independent variable, probably because it will look more like exact two-dimensional
derivatives of the type you should have seen in Math 250.

17
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This equation is separable with

a(t) = 1− t

2
(3.5)

and
b(y) = y2 (3.6)

and it can be rewritten as

dy

y2
=

(
1− t

2

)
dt (3.7)

Integrating, ∫
y−2dy =

∫ (
1− t

2

)
dt (3.8)

−1

y
= t− 1

4
t2 + C (3.9)

The initial condition gives

− 1 = 0− 0 + C (3.10)

hence
1

y
=

1

4
t2 − t+ 1 =

1

4
(t2 − 4t+ 4) =

1

4
(t− 2)2 (3.11)

Solving for y,

y =
4

(t− 2)2
(3.12)

Often with separable equations we will not be able to find an explicit ex-
pression for y as a function of t; instead, we will have to be happy with an
equation that relates the two variables.

Example 3.2. Find a general solution of

dy

dt
=

t

ey − 2y
(3.13)

This can be rearranged as

(ey − 2y)dy = tdt (3.14)

Integrating, ∫
(ey − 2y)dy =

∫
tdt (3.15)

ey − y2 =
1

2
t2 + C (3.16)



19

Since it is not possible to solve this equation for y as a function of t, is is
common to rearrange it as a function equal to a constant:

ey − y2 − 1

2
t2 = C (3.17)

Sometimes this inability to find an explicit formula for y(t) means that the
relationship between y and t is not a function, but is instead multi-valued,
as in the following example where we can use our knowledge of analytic
geometry to learn more about the solutions.

Example 3.3. Find the general solution of

dy

dt
= − 4t

9y
(3.18)

Rearranging and integrating:∫
9ydy = −

∫
4tdt (3.19)

9

2
y2 = −2t2 + C (3.20)

9y2 + 4t2 = C (Different C) (3.21)

Dividing both sides by 36,

y2

4
+
t2

9
= C (Different C) (3.22)

Dividing by C
y2

4C
+

t2

9C
= 1 (3.23)

which is the general form of an ellipse with axis 2
√
C parallel to the y

axis and axis 3
√
C parallel to the y axis. Thus the solutions are all el-

lipses around the origin, and these cannot be solved explicitly as a function
because the formula is multi-valued.

Example 3.4. Solve2 (1 + x)dy − ydx− 0. Ans: y = c(1 + x)

Example 3.5. Solve3

dy

dx
= y2 − 4 (3.24)

Ans:

y = 2
1 + Ce4x

1− Ce4x
or y = ±2 (3.25)

2Zill Example 2.2.1
3Zill Example 2.2.3
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Example 3.6. Solve4

(e2y − y) cosx
dy

dx
= ey sin 2x, y(0) = 0 (3.26)

Ans:

ey + ye−y + e−y = 4− 2 cosx (3.27)

Example 3.7. Solve5

dy

dx
= e−x

2

, y(3) = 5 (3.28)

Ans:

y(x) = 5 +

∫ x

3

e−t
2

dt (3.29)

Definition 3.1. The Error Function erf(x) is defined as

erf(x) =
2√
π

∫ x

0

e−t
2

dt (3.30)

A plot of erf(x) is given in figure 4.2.

Example 3.8. Rewrite the solution to example 3.7 in terms of erf(x)

y(x) = 5 +

√
π

2
(erf(x)− erf(3)) (3.31)

Sometimes it is not so easy to tell by looking at an equation if it is separable
because it may need to be factored before the variables can be separated.
There is a test that we can use that will sometimes help us to disentangle
these variables. To derive this test, we will rearrange the general separable
equation as follows

dy

dt
= a(t)b(y) (3.32)

dy

b(y)
= a(t)dt (3.33)

dy

b(y)
− a(t)dt = 0 (3.34)

N(y)dy +M(t)dt = 0 (3.35)

4Zill Example 2.2.4
5Zill Example 2.2.5
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where M(t) = −a(t) and N(y) = 1/b(y) are new names that we give our
functions. This gives us the standard form for a separable equation

M(t)dt+N(y)dy = 0 (3.36)

The reason for calling this the standard format will become more clear when
we study exact equations. To continue deriving our test for separability we
rearrange 3.36 as

dy

dt
= −M(t)

N(y)
(3.37)

Recalling the standard form of an ordinary differential equation

dy

dt
= f(t, y) (3.38)

we have

f(t, y) = −M(t)

N(y)
(3.39)

Since M is only a function of t,

∂M

∂t
= M ′(t) =

dM

dt
,

∂M

∂y
= 0 (3.40)

and because N is only a function of y,

∂N

∂t
= 0,

∂N

∂y
= N ′(y) =

dN

dy
(3.41)

Similarly

ft =
∂f

∂t
= −M

′(t)

N(y)
(3.42)

and

fy =
∂f

∂y
= −M(t)N ′(y)

N2(y)
(3.43)

The cross-derivative is

fty =
∂2f

∂t∂y
= −M

′(t)N ′(y)

N2(y)
(3.44)

Hence

ffty =

(
−M(t)

N(y)

)(
−M

′(t)N ′(y)

N2(y)

)
(3.45)

=

(
−M

′(t)

N(y)

)(
−M(t)N ′(y)

N2(y)

)
(3.46)

= ftfy (3.47)
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In other words, the equation y′ = f(t, y) is separable if and only if

f(t, y)
∂2f

∂t∂y
=
∂f

∂t

∂f

∂y
(3.48)

Example 3.9. Determine if

dy

dt
= 1 + t2 + y3 + t2y3 (3.49)

is separable.

From the right hand side of the differential equation we see that

f(t, y) = 1 + t2 + y3 + t2y3 (3.50)

Calculating all the necessary partial derivatives,

∂f

∂t
= 2t+ 2ty3 (3.51)

∂f

∂y
= 3y2 + 3t2y2 (3.52)

Hence

∂f

∂t

∂f

∂y
=
(
2t+ 2ty3

) (
3y2 + 3t2y2

)
(3.53)

= 6ty2 + 6t3y2 + 6ty5 + 6t3y5 (3.54)

and

f(t, y)
∂2f

∂t∂y
=
(
1 + t2 + y3 + t2y3

)
6ty2 (3.55)

= 6ty2 + 6t3y2 + 6ty5 + 6t3y5 (3.56)

=
∂f

∂t

∂f

∂y
(3.57)

Consequently the differential equation is separable.

Of course, knowing that the equation is separable does not tell us how to
solve it. It does, however, tell us that looking for a factorization of

f(t, y) = a(t)b(y) (3.58)

is not a waste of time. In the previous example, the correct factorization is

dy

dt
= (1 + y3)(1 + t2) (3.59)
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Example 3.10. Find a general solution of

dy

dt
= 1 + t2 + y3 + t2y3 (3.60)

From (3.59) we have

dy

dt
= (1 + y3)(1 + t2) (3.61)

hence the equation can be re-written as∫
dy

1 + y3
=

∫
(1 + t2)dt (3.62)

The integral on the left can be solved using the method of partial fractions:

1

1 + y3
=

1

(y + 1)(y2 − y + 1)
=

A

1 + y
+

By + C

y2 − y + 1
(3.63)

Cross-multiplying gives

1 = A(y2 − y + 1) + (By + C)(1 + y) (3.64)

Substituting y = −1 gives

1 = A(1 + 1 + 1) =⇒ A =
1

3
(3.65)

Sbstituting y = 0

1 = A(0− 0 + 1) + (0 + C)(1 + 0) =
1

3
+ C =⇒ C =

2

3
(3.66)

Using y = 1

1 = A(1− 1 + 1) + (B(1) + C)(1 + 1) =
1

3
+ 2B +

4

3
(3.67)

Hence

2B = 1− 5

3
= −2

3
=⇒ B = −1

3
(3.68)
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Thus∫
dy

1 + y3
=

1

3

∫
dy

1 + y
+

∫
(−1/3)y + 2/3

y2 − y + 1
dy (3.69)

=
1

3
ln |1 + y|+

∫
(−1/3)y + 2/3

y2 − y + 1
dy (3.70)

=
1

3
ln |1 + y|+

∫
(−1/3)y + 2/3

y2 − y + 1/4− 1/4 + 1
dy (3.71)

=
1

3
ln |1 + y|+

∫
(−1/3)y + 2/3

(y − 1/2)2 + 3/4
dy (3.72)

=
1

3
ln |1 + y| − 1

3

∫
ydy

(y − 1/2)2 + 3/4
+

+
2

3

∫
dy

(y − 1/2)2 + 3/4
(3.73)

=
1

3
ln |1 + y| − 1

6
ln |y2 − y + 1|+ 2

3

√
4

3
tan−1 y − 1/2√

3/4
(3.74)

=
1

3
ln |1 + y| − 1

6
ln |y2 − y + 1|+ 4

3
√

3
tan−1 2y − 1√

3
(3.75)

Hence the solution of the differential equation is

1

3
ln |1 + y| − 1

6
ln |y2 − y + 1|+ 4

3
√

3
tan−1 2y − 1√

3
− t− 1

3
t3 = C (3.76)



Lesson 4

Linear Equations

Recall that a function y is linear in a variable x if it describes a straight
line, e.g., we write something like

y = Ax+B (4.1)

to mean that y is linear in x. If we have an algebraic system that depends
on t, we might allow A and B to be functions of t, e..g, the equation

y = A(t)x+B(t) (4.2)

is also linear in x. For example,Recall that a function is linear in a

y = t2x+ 3 sin t (4.3)

is linear in x because for any fixed value of t, it has the form

y = Ax+B (4.4)

Thus to determine the linearity of a function in x, the nature of the depen-
dence on any other variable does not matter. The same definition holds for
differential equations.

By a linear differential equation we mean a differential equation of
a single variable, say y(t), whose derivative depends on itself only
linearly. The nature of the dependence on the time variable does not
matter. From our discussion above, something is linear in x if it is written
as

Ax+B (4.5)

25
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where A and B do not depend on x. Hence something is linear in y if it
can be written as

Ay +B (4.6)

if A and B do not depend on y. Thus for a differential equation to be linear
in y it must have the form

dy

dt
= Ay +B (4.7)

where neither A norB depends on y. However, both A and B are allowed
to depend on t. To emphasize this we write the terms A and B as A(t)
and B(t), so that the linear equation becomes

dy

dt
= A(t)y +B(t) (4.8)

For convenience of finding solutions (its not clear now why this is conve-
nient, but trust me) we bring the term in A(t)y to the left hand side of the
equation:

dy

dt
−A(t)y = B(t) (4.9)

To be consistent with most textbooks on differential equations we will re-
label A(t) = −p(t) and B(t) = q(t), for some function p(t) and q(t), and
this gives us

dy

dt
+ p(t)y = q(t) (4.10)

which we will refer to as the standard form of the linear ODE. Sometimes
for convenience we will omit the t (but the dependence will be implied) on
the p and q and write the derivative with a prime, as

y′ + py = q (4.11)

There is a general technique that will always work to solve a first order
linear ODE. We will derive the method constructively in the following para-
graph and then give several examples of its use. The idea is look for some
function µ(t) that we can multiply both sides of the equation:

µ× (y′ + py) = µ× q (4.12)

or

µy′ + µpy = µq (4.13)
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So far any function µ will work, but not any function will help. We want
to find an particular function µ such that the left hand side of the equation
becomes

d(µy)

dt
= µy′ + µpy = µq (4.14)

The reason for looking for this kind of µ is that if we can find µ then

d

dt
(µy) = µq (4.15)

Multiplying both sides by dt and integrating gives∫
d

dt
(µ(t)y)dt =

∫
µ(t)q(t)dt (4.16)

Since the integral of an exact derivative is the function itself,

µ(t)y =

∫
µ(t)q(t)dt+ C (4.17)

hence dividing by µ, we find that if we can find µ to satisfy equation
4.14 then the general solution of equation 4.10 is

y =
1

µ(t)

[∫
µ(t)q(t)dt+ C

]
(4.18)

So now we need to figure out what function µ(t) will work. From the
product rule for derivatives

d

dt
(µy) = µy′ + µ′y (4.19)

Comparing equations 4.14 and 4.19,

µy′ + µ′y = µy′ + µpy (4.20)

µ′y = µpy (4.21)

µ′ = µp (4.22)

Writing µ′ = dµ/dt we find that we can rearrange and integrate both sides
of the equation:

dµ

dt
= µp (4.23)

dµ

µ
= pdt (4.24)∫

1

µ
dµ =

∫
pdt (4.25)

lnµ =

∫
pdt+ C (4.26)
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Exponentiating both sides of the equation

µ = e

∫
pdt+ C

= e

∫
pdt

eC = C1e

∫
pdt

(4.27)

where C1 = eC and C is any constant. Since we want any function µ that
will work, we are free to choose our constant arbitrarily, e.g., pick C = 0
hence C1 = 1, and we find that

µ(t) = e

∫
p(t)dt

(4.28)

has the properties we desire. We say the equation 4.28 is an integrating
factor for the differential equation 4.10. Since we have already chosen
the constant of integrate, we can safely ignore the constant of integration
when integrating p. To recap, the general solution of y′+py = q is given by
equation 4.18 whenever µ is given by 4.28. The particular solution of a given
initial value problem involving a linear ODE is then solved by substituting
the initial condition into the general solution obtained in this manner.

It is usually easier to memorize the procedure rather than the formula for
the solution (equation 4.18):

Method to Solve y′ + p(t)y = q(t)

1. Computer µ = e
∫
p(t)dt and observe that µ′(t) = p(t)µ(t).

2. Multiply the ODE through by µ(t) giving

µ(t)y′ + µ′(t)y = µ(t)q(t)

3. Observe that the left-hand side is precisely (d/dt)(µ(t)y).

4. Integrate both sides of the equation over t, remembering that∫
(d/dt)(µy)dt = µ(t)y,

µ(t)y =

∫
q(t)ydt+ C

5. Solve for y by dividing through by µ. Don’t forget the constant
on the right-hand side of the equation.

6. Use the initial condition to find the value of the constant, if this
is an initial value problem.
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Example 4.1. Solve the differential equation

y′ + 2ty = t (4.29)

This has the form y′ + p(t)y = q(t), where p(t) = 2t and q(t) = t. An
integrating factor is

µ(t) = exp

(∫
p(t)dt

)
= exp

(∫
2tdt

)
= et

2
(4.30)

Multiplying equation (4.29) through by the integrating factor µ(t) gives

et
2
(y′ + 2ty) = tet

2
(4.31)

Recall that the left hand side will always end up as the derivative of yµ
after multiplying through by µ; we can also verify this with the product
rule:

d

dt

(
yet

2
)

= y′et
2

+ 2tet
2
y = et

2
(y′ + 2ty) (4.32)

Comparing the last two equations tells us that

d

dt

(
yet

2
)

= tet
2

(4.33)

Multiply through both sides by dt and integrate:∫
d

dt

(
yet

2
)
dt =

∫
tet

2
dt (4.34)

The left hand side is an exact derivative, hence

yet
2

=

∫
tet

2
dt+ C (4.35)

The right hand side can be solved with the substitution u = t2:∫
tet

2
dt =

1

2

∫
eudu =

1

2
eu + C =

1

2
et

2
+ C (4.36)

Combining the last two equations,

yet
2

=
1

2
et

2
+ C (4.37)

Hence we can solve for y,

y =
1

2
+ Ce−t

2
. (4.38)
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Example 4.2. Solve ty′ − y = t2e−t.

We first need to put this into standard form y′ + p(t)y = q(t). If we divide
the differential equation on both sides by t then

y′ − 1

t
y = te−t (4.39)

Hence

p(t) = −1

t
(4.40)

An integrating factor is

µ(t) = exp

(∫
−1

t
dt

)
= exp(− ln t) = exp

(
ln

1

t

)
=

1

t
(4.41)

Multiplying the differential equation (in standard form) through by µ(t),

1

t

(
y − 1

t
y

)
=

(
1

t

)
(te−t) = e−t (4.42)

The left hand side is the exact derivative of µy:

d

dt
µy =

d

dt

(y
t

)
=
ty′ − y
t2

=
1

t

(
y′ − y

t

)
(4.43)

Hence
d

dt

(y
t

)
= e−t (4.44)

Multiplying by dt and integrating,∫
d

dt

(y
t

)
dt =

∫
e−tdt (4.45)

Since the left hand side is an exact derivative,

y

t
=

∫
e−tdt+ C = −e−t + C (4.46)

Solving for y,

y = −te−t + Ct (4.47)

Example 4.3. Solve the initial value problem

y′ + y = cos t, y(0) = 1 (4.48)



31

Since p(t) = 1 (the coefficient of y), an integrating factor is

µ = exp

(∫
1 · dt

)
= et (4.49)

Multiplying the differential equation through by the integrating factor gives

d

dt

(
ety
)

= et(y′ + y) = et cos t (4.50)

Multiplying by dt and integrating,∫
d

dt

(
ety
)
dt =

∫
et cos tdt (4.51)

The left hand side is an exact derivative; the right hand side we can find
from an integral table or WolframAlpha:

yet =

∫
et cos tdt =

1

2
et (sin t+ cos t) + C (4.52)

The initial condition tells us that y = 1 when t = 0,

(1)e0 =
1

2
e0 (sin(0) + cos(0)) + C (4.53)

1 =
1

2
+ C (4.54)

C =
1

2
(4.55)

Substituting C = 1/2 into equation 4.52 gives

yet =
1

2
et (sin t+ cos t) +

1

2
(4.56)

We can then solve for y by dividing by et,

y =
1

2
(sin t+ cos t) +

1

2
e−t (4.57)

which is the unique solution to the initial value problem.

Example 4.4. Solve the initial value problem

y′ − 2y = e7t

y(0) = 1

}
(4.58)
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The equation is already given in standard form, with p(t) = −2. Hence an
integrating factor is

µ(t) = exp

(∫ t

0

(−2)dt

)
= e−2t (4.59)

Multiply the original ODE by the integrating factor µ(t) gives

e−2t(y′ − 2y) = (e−2t)(e7t) (4.60)

Simplifying and recognizing the left hand side as the derivative of µy,

d

dt

(
ye−2t

)
= e5t (4.61)

Multiply by dt and integrate:∫
d

dt

(
ye−2t

)
dt =

∫
e5tdt (4.62)

ye−2t =
1

5
e5t + C (4.63)

y =
1

5
e7t + Ce2t (4.64)

From the initial condition

1 =
1

5
e0 + Ce0 =

1

5
+ C (4.65)

Hence C = 4/5 and the solution is

y =
1

5
e7t +

4

5
e2t (4.66)

Example 4.5. Find the general solutions of

ty′ + 4y = 4t2 (4.67)

To solve this we first need to put it into standard linear form by dividing
by t:

y′ +
4y

t
=

4t2

t
= 4t (4.68)

Since p(t) = 4/t an integrating factor is

µ = exp

(∫
4

t
dt

)
= exp (4 ln t) = t4 (4.69)
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Multiplying equation 4.68 by µ gives

d

dt

(
t4y
)

= t4
(
y′ +

4y

t

)
= (4t)(t4) = 4t5 (4.70)

Integrating, ∫
d

dt
(t4y)dt =

∫
4t5dt (4.71)

t4y =
2tt

3
+ C (4.72)

y =
2t2

3
+
C

t4
(4.73)

The last example is interesting because it demonstrates a differential equa-
tion whose solution will behave radically differently depending on the initial
value.

Example 4.6. Solve 4.67 with initial conditions of (a) y(1) = 0; (b) y(1) =
1; and (c) y(1) = 2/3.

(a) With y(1) = 0 in equation 4.73

0 =
(2)(1)

3
+
C

1
=

2

3
+ C (4.74)

hence C = −2/3, and

y =
2t2

3
− 2

3t4
(4.75)

(b) With y(1) = 1,

1 =
(2)(1)

3
+
C

1
=

2

3
+ C (4.76)

hence C = 1/3, and

y =
2t2

3
+

1

3t4
(4.77)

(c) With y(1) = 2/3,
2

3
=

(2)(1)

3
+
C

1
=

2

3
+ C (4.78)

hence C = 0 and

y =
2t2

3
(4.79)
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Figure 4.1: Different solutions for example 4.6.
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The three solutions are illustrated in the figure 4.1. In cases (a) and (b),
the domain of the solution that fits the initial condition excludes t = 0; but
in case (c), the solution is continuous for all t. Furthermore, limt→0 y is
radically different in all three cases. With a little thought we see that

lim
t→0+

y(t) =


∞, if y(1) > 2/3

0, if y(1) = 2/3

−∞, if y(1) < 2/3

(4.80)

As t → ∞ all of the solutions become asymptotic to the curve y = 2t2/3.
The side on of the curved asymptote on which the initial conditions falls
determines the behavior of the solution for small t.

What if we were given the initial condition y(0) = 0 in the previous exam-
ple? Clearly the solution y = 2t2/3 satisfies this condition, but if we try to
plug the initial condition into the general solution

y =
2t2

3
+
C

t4
(4.81)

we have a problem because of the C/t4 term. One possible approach is to
multiply through by the offending t4 factor:

yt4 =
2

3
t6 + C (4.82)
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Substituting y = t = 0 in this immediately yields C = 0. This problem
is a direct consequence of the fact that we divided our equation through
by t4 previously to get an express solution for y(t) (see the transition from
equation 4.72 to equation 4.73): this division is only allowed when t 6= 0.

Example 4.7. Solve the initial value problem

dy

dt
− 2ty =

2√
π

y(0) = 0

 (4.83)

Since p(t) = −2t, an integrating factor is

µ = exp

(∫
−2tdt

)
= e−t

2

(4.84)

Following our usual procedure we get

d

dt

(
ye−t

2
)

=
2√
π
e−t

2

(4.85)

If we try to solve the indefinite integral we end up with

ye−t
2

=
2√
π

∫
e−t

2

dt+ C (4.86)

Unfortunately, there is no exact solution for the indefinite integral on the
right. Instead we introduce a new concept, of finding a definite integral.
We will use as our lower limit of integration the initial conditions, which
means t = 0; and as our upper limit of integration, some unknown variable
u. Then ∫ u

0

d

dt

(
ye−t

2
)
dt =

∫ u

0

2√
π
e−t

2

dt (4.87)

Then we have (
ye−t

2
)
t=0
−
(
ye−t

2
)
t=u

=
2√
π

∫ u

0

e−t
2

dt (4.88)

Using the initial condition y(0) = 0, the left hand side becomes

y(u)e−(u)2 − y(0)e−(0)2 = ye−u
2

(4.89)

hence

ye−u
2

=
2√
π

∫ u

0

e−t
2

dt (4.90)
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Figure 4.2: The error function, given by equation (4.91).

1

1

Note that because of the way we did the integral we have already taken the
initial condition into account and hence there is no constant C in the result
of our integration.

Now we still do not have a closed formula for the integral on the right but it
is a well-defined function, which is called the error function and written
as

erf(t) =
2√
π

∫ t

0

e−x
2

dx (4.91)

The error function is a monotonically increasing S-shaped function that
passes through the origin and approaches the lines y = ±1 as t→ ±∞, as
illustrated in figure 4.2. Using equation 4.91 in equation 4.90 gives

ye−t
2

= erf(t) (4.92)

and solving for y,

y = et
2

erf(t) (4.93)

The student should not be troubled by the presence of the error function
in the solution since it is a well-known, well-behaved function, just like an
exponential or trigonometric function; the only difference is that erf(x) does
not (usually) have a button on your calculator. Most numerical software
packages have it built in - for example, in Mathematica it is represented by
the function Erf[x].

This last example gives us another algorithm for solving a linear equation:
substitute the initial conditions into the integral in step (4) of the algorithm
given on page 28. To see the consequence of this, we return to equation
4.16, but instead take the definite integrals. To have the integration make
sense we need to first change the variable of integration to something other
than t:



37

∫ t

t0

d

ds
(µ(s)y(s))ds =

∫ t

t0

µ(s)q(s)ds (4.94)

Evaluating the integral,

µ(t)y(t)− µ(t0)y(t0) =

∫ t

t0

µ(s)q(s)ds (4.95)

Solving for y(t) gives a general formula for the solution of a linear initial
value problem:

y(t) =
1

µ(t)

[
µ(t0)y(t0) +

∫ t

t0

µ(s)q(s)ds

]
(4.96)

Example 4.8. Use equation 4.96 to solve

t
dy

dt
+ 2y =

4

t
sin t

y(π) = 0

 (4.97)

Rewriting in standard form for a linear differential equation,

y′ +
2

t
y =

4

t2
sin t (4.98)

Hence p(t) = 2/t and q(t) = (4/t)2 sin t. An integrating factor is

µ(t) = exp

(∫
2

t
dt

)
= exp (2 ln t) = t2 (4.99)

Thus equation 4.96 gives us

y(t) =
1

t2

[
(π2)(0) +

∫ t

π

(s2)

(
4

s2
sin s

)
ds

]
(4.100)

=
4

t2

∫ t

π

sin s ds (4.101)

= −4(cos t− cosπ)

t2
(4.102)

= −4(cos t+ 1)

t2
(4.103)
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Lesson 5

Bernoulli Equations

The Bernoulli differential equation has the form

y′ + p(t)y = ynq(t) (5.1)

which is not-quite-linear, because of the factor of yn on the right-hand side
of equation 5.1 would be linear. It does reduce to a linear equation, when
either n = 0 or n = 1. In the first case (n = 0), we have

y′ + p(t)y = q(t) (5.2)

which is a general first-order equation. In the second case (n = 1)the
Bernoulli equation becomes

y′ + p(t)y = q(t)y (5.3)

which can be rearranged to give

y′ = (q(t)− p(t))y (5.4)

This can be solved by multiplying both sides of equation 5.4 by dt/y, and
integrating: ∫ (

dy

dt

)
dt =

∫
(q(t)− p(t))dt (5.5)

y =

∫
(q(t)− p(t))dt+ C (5.6)

For any other value of n, Bernoulli equations can be made linear by making
the substitution

39
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z = y1−n (5.7)

Differentiating,

dz

dt
= (1− n)y−n

dy

dt
(5.8)

Solving for dy/dt,

dy

dt
=

1

1− n
yn
dz

dt
, n 6= 1 (5.9)

The restriction to n 6= 1 is not a problem because we have already shown
how to solve the special case n = 1 in equation 5.6.

Substituting equation 5.9 into 5.1 gives

1

1− n
yn
dz

dt
+ p(t)y = ynq(t) (5.10)

Dividing through by yn,

1

1− n
dz

dt
+ p(t)y1−n = q(t) (5.11)

Substituting from equation 5.7 for z,

1

1− n
dz

dt
+ p(t)z = q(t) (5.12)

Multiplying both sides of the equation by 1− n,

dz

dt
+ (1− n)p(t)z = (1− n)q(t) (5.13)

which is a linear ODE for z in in standard form.

Rather than writing a formula for the solution it is easier to remember the
technique of (a) making a substitution z = y1−n; (b) rearranging to get
a first-order linear equation in z; (c) solve the ODE for z; and then (d)
substitute for y.

Example 5.1. Solve the initial value problem

y′ + ty = t/y3 (5.14)

y(0) = 2 (5.15)
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This is a Bernoulli equation with n = -3, so we let

z = y1−n = y1−(−3) = y4 (5.16)

The initial condition on z is

z(0) = y(0)4 = 214 = 16 (5.17)

Differentiating equation 5.16

dz

dt
= 4y3 dy

dt
(5.18)

Hence
dy

dt
=

1

4y3

dz

dt
(5.19)

Substituting equation 5.19 into the original differential equation equation
5.14

1

4y3

dz

dt
+ ty =

t

y3
(5.20)

Multiplying through by 4y3,

dz

dt
+ 4ty3 = 4t (5.21)

Substituting for z from equation 5.16,

dz

dt
+ 4tz = 4t (5.22)

This is a first order linear ODE in z with p(t) = 4t and q(t) = 4t. An
integrating factor is

µ = exp

(∫
4tdt

)
= e2t

2
(5.23)

Multiplying equation 5.22 through by this µ gives(
dz

dt
+ 4tz

)
e2t

2
= 4te2t

2
(5.24)

By construction the left hand side must be the exact derivative of zµ; hence

d

dt

(
ze2t

2
)

= 4te2t
2

(5.25)
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Multiplying by dt and integrating,∫
d

dt

(
ze2t

2
)
dt =

∫
4te2t

2
dt (5.26)

Hence

ze2t
2

= e2t
2

+ C (5.27)

From the initial condition z(0) = 16,

16e0 = e0 + C =⇒ 16 = 1 + C =⇒ C = 15 (5.28)

Thus

z = 1 + 15e−2t2 (5.29)

From equation 5.16, y = z1/4, hence

y =

(
1 + 15e−2t2

)1/4

(5.30)



Lesson 6

Exponential Relaxation

One of the most commonly used differential equations used for mathemat-
ical modeling has the form

dy

dt
=
y − C
τ

(6.1)

where C and τ are constants. This equation is so common that virtually
all of the models in section 2.5 of the text, Modeling with Linear Equations,
take this form, although they are not the only possible linear models.

In the mathematical sciences all variables and constants have some units
assigned to them, and in this case the units of C are the same as the units
of y, and the units of τ are time (or t). Equation 6.1 is both linear and
separable, and we can solve it using either technique. For example, we can
separate variables

dy

y − C
=
dt

τ
(6.2)

Integrating from (t0, y0) to (t, y) (and changing the variables of integration

43
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appropriately first, so that neither t nor y appear in either integrand)1

∫ y

y0

du

u− C
=

∫ t

t0

ds

τ
(6.3)

ln |y − C| − ln |y0 − C| =
t

τ
− t0
τ

(6.4)

ln

∣∣∣∣ y − Cy0 − C

∣∣∣∣ =
1

τ
(t− t0) (6.5)

Exponentiating both sides of the equation∣∣∣∣ y − Cy0 − C

∣∣∣∣ = e(t−t0)/τ (6.6)

hence
|y − C| = |y0 − C|e(t−t0)/τ (6.7)

The absolute value poses a bit of a problem of interpretation. However, the
only way that the fraction

F =
y − C
y0 − C

(6.8)

can change signs is if it passes through zero. This can only happen if

0 = e(t−t0)/τ (6.9)

which has no solution. So whatever the sign of F , it does not change. At
t = t0 we have

y − C = y0 − C (6.10)

hence ∣∣∣∣ y − Cy0 − C

∣∣∣∣ = 1 (6.11)

and
y − C
y0 − C

= 1 (6.12)

so by continuity with the initial condition

y = C + (y0 − C)e(t−t0)/τ (6.13)

It is convenient to consider the two cases τ > 0 and τ < 0 separately.

1We must do this because we are using both t and y as endpoints of our integration,
and hence must change the name of the symbols we use in the equation, e.g, first we
turn (6.2) into du/(u− C) = ds/τ .
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Exponential Runaway

First we consider τ > 0. For convenience we will choose t0 = 0. Then

y = C + (y0 − C)et/τ (6.14)

The solution will either increase exponentially to ∞ or decrease to −∞
depending on the sign of y0 − C.

Example 6.1. Compound interest. If you deposit an amount y0 in the
bank and it accrues interest at a rate r, where r is measured in fraction per
year (i.e., r = 0.03 means 3% per annum, and it has units of 1/year), and t
is measured in years, then the rate at which the current amount on deposit
increases is given by

dy

dt
= ry (6.15)

Then we have C = 0 and τ = 1/r, so

y = y0e
rt (6.16)

So the value increases without bound over time (we don’t have a case where
y0 < because that would mean you owe money).

Suppose we also have a fixed salary S per year, and deposit that entirely
into our account. Then instead of (6.15), we have

dy

dt
= ry + S = r(y + S/r) (6.17)

In this case we see that C = −S/r, the negative ratio of the fixed and
interest-based additions to the account. The solution is then

y = −S
r

+

(
y0 +

S

r

)
ert (6.18)

We still increase exponentially without bounds.

Now consider what happens if instead of depositing a salary we instead
withdraw money at a fixed rate of W per year. Since W causes the total
amount to decrease, the differential equation becomes

dy

dt
= ry −W = r(y −W/r) (6.19)

Now C = W/r. If W/r < y0 then the rate of change will be positive initially
and hence positive for all time, and we have

y =
W

r
+

(
y0 −

W

r

)
ert (6.20)
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Figure 6.1: Illustration of compound interest at different rates of withdrawal
in example 6.1. See text for details.
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If instead W/r > y0, the initial rate of change is negative so the amount will
always be less than y0 and your net deposit is decreasing. The term on the
right is exponentially increasing, but we can only make withdrawals into
the balance is zero. This occurs when the right hand side of the equation
is zero.

W

r
=

(
W

r
− y0

)
ert (6.21)

or at a time given by

t = −1

r
ln
(

1− y0r

W

)
(6.22)

So if you withdraw money at a rate faster than ry0 you money will rapidly
go away, while if you withdraw at a slower rate, your balance will still
increase. Figure 6.1 shows the net balance assuming a starting deposit of
$1000 and a fixed interest rate of 5% per annum, for rates of withdraw
(bottom to top) of $250, $100, $60, and $40 per year. For the example the
break-even point occurs when W = ry0 = (.05)(1000)=$50.

Exponential Relaxation

When τ < 0 we will see that the behavior is quite different - rather then
exponential run-away, the solution is pulled to the value of C, whatever the
initial value. We will call this phenomenon exponential relaxation.

As before, it is convenient to assume that t0 = 0 and we also define T =
−τ > 0 as a positive time constant. Then we have

y = C + (y0 − C)e−t/T (6.23)
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Figure 6.2: Illustration of the one-parameter family of solutions to y′ =
(y − C)/τ . As t→∞, all solutions tend towards C.

C

If y0 − C 6= 0 then the second term will be nonzero. The exponential
factor is always decreasing, so the second term decreases in magnitude with
time. Consequently the value of y → C as t → ∞. To emphasize this we
may chose to replace the symbol C with y∞ (this is common in biological
modeling) giving

y = y∞ + (y0 − y∞)e−t/τ (6.24)

Example 6.2. RC-Circuits. An example from engineering is given by
RC-circuits (see figure 6.3). The RC refers to a circuit that contains a
battery (or other power source); a resistor of resistance R and a capacitor
of capacity C. If there is an initial charge q on the capacity, then the charge
will decay exponentially if the voltage is sent to zero. RC circuits have the
following rules Electric Circuits are governed by the following rules:

1. The voltage drop across a resistor (the difference in voltages between
the two ends of the resistor) of resistance R with a current i flowing
through it is given by ∆Vresistor = iR (Ohm’s Law)

2. Current i represents a flow of charge i = dq/dt.

3. If there is a voltage drop across a capacitor of capacitance C, there
will be a charge q = CV on the capacitor, hence (by differentiating),
there is a current of i = CdV/dt.

4. The voltage drop across an inductor of inductance L is ∆Vinductor =
Ldi/dt.

5. The total voltage drop around a loop must sum to zero.
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Figure 6.3: Schematic of RC circuit used in example 6.2.
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6. The total current through any node (a point where multiple wires
come together) must sum to zero (Kirchoff’s Law).

If we were to measure the voltage between points a and b in an RC circuit
as illustrated in fig 6.3, these rules tell us first that the capacitor should
cause the voltage along the left branch to fluctuate according to

iC = C
dVab
dt

(6.25)

where iC is the current through the capacitor. If iR is the current through
the resistor, then the voltage drop through the lower side of the circuit is

Vab = Vbatt + iRR (6.26)

Solving for the current through the resistor,

iR =
Vab − Vbatt

R
(6.27)

Since the total current around the loop must be zero, iC + iR = 0,

0 = iR + iC =
Vab − Vbatt

R
+ C

dVab
dt

(6.28)

Dropping the ab subscript,

dV

dt
=
Vbatt − V
RC

(6.29)
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This is identical to
dV

dt
=
V∞ − V

τ
(6.30)

with
V∞ = Vbatt (6.31)

τ = RC (6.32)

Therefore the voltage is given by

V = Vbatt + (V0 − Vbatt)e−t/RC (6.33)

where V0 is the voltage at t = 0. Regardless of the initial voltage, the
voltage always tends towards the battery voltage. The current through the
circuit is

i = C
dV

dt
=
V0 − Vbatt

R
e−t/RC (6.34)

so the current decays exponentially.

Example 6.3. Newton’s Law of Heating (or Cooling) says that the rate
of change of the temperature T of an object (e.g., a potato) is proportional
to the difference in temperatures between the object and its environment
(e.g., an oven), i.e.,

dT

dt
= k(Toven − T ) (6.35)

Suppose that the oven is set to 350 F and a potato at room temperature
(70 F) is put in the oven at t = 0, with a baking thermometer inserted into
the potato. After three minutes you observe that the temperature of the
potato is 150. How long will it take the potato to reach a temperature of
350?

The initial value problem we have to solve is

T ′ = k(400− T )

T (0) = 70

}
(6.36)

Dividing and integrating, ∫
dT

400− T
=

∫
kdt (6.37)

− ln(400− T ) = kt+ C (6.38)

From the initial condition

C = − ln(400− 70) = − ln 330 (6.39)
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Hence
− ln(400− T ) = kt− ln 330 (6.40)

ln
400− T

330
= −kt (6.41)

From the second observation, that T (3) = 150,

ln
400− 150

330
= −3k (6.42)

we conclude that

k =
1

3
ln

33

25
≈ .09 (6.43)

From (6.41)
400− T

330
= e−.09t (6.44)

T = 400− 330e−.09t (6.45)

The problem asked when the potato will reach a temperature of 350. Re-
turning to (6.41) again,

t ≈ − 1

.09
ln

400− 350

330
≈ 11 ln

33

5
≈ 20 minutes (6.46)

The motion of an object subjected to external forces F1, F2, ...is given by
the solution of the differential equation

Example 6.4. Falling Objects. Suppose an object of constant mass m
is dropped from a height h, and is subject to two forces: gravity, and air
resistance. The force of gravity can be expressed as

Fgravity = −mg (6.47)

where g = 9.8 meters/ sec ond2, and the force due to air resistance is

Fdrag = −CD
dy

dt
(6.48)

where CD is a known constant, the coefficient of drag; a typical value of
CD ≈ 2.2. According Newtonian mechanics

m
d2y

dt2
=
∑
i

F = −mg − CD
dy

dt
(6.49)

Making the substitution

v =
dy

dt
(6.50)
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this becomes a first-order ODE in v

m
dv

dt
= −mg − CDv (6.51)

Example 6.5. Suppose we drop a 2010 penny off the top of the empire
state building. How long will it take to hit the ground?

The drag coefficient of a penny is approximately CD ≈ 1 and its mass is
approximately 2.5 grams or 0.0025 kilograms. The height of the observation
deck is 1250 feet = 381 meters.

Since the initial velocity is zero, the IVP is

v′ = −9.8− v
v(0) = 0

}
(6.52)

Rearranging,
v′ + v = −9.8 (6.53)

An integrating factor is et so

d

dt

(
vet
)

= −9.8et (6.54)

Integrating
vet = −9.8et + C (6.55)

Dividing by et,
v ≈ −9.8 + Ce−t (6.56)

From the initial condition,

0 = −9.8 + C =⇒ C = 9.8 (6.57)

hence
v = −9.8 + 9.8e−t (6.58)

Now we go back to our substitution of (6.50), we have another first order
linear differential equation:

dy

dt
= −9.8 + 9.8e−t (6.59)

Integrating (6.59)
y = −9.8t− 9.8e−t + C (6.60)

If the object is dropped from a height of 381 meters then

y(0) = 381 (6.61)
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hence
381 = −9.8 + C =⇒ C ≈ 391 (6.62)

thus
y = −9.8t− 9.8e−t + 391 (6.63)

The object will hit the ground when y = 0, or

0 = −9.8t− 9.8e−t + 998 (6.64)

This can be solved numerically to give t ≈ 40 seconds. 2.

2For example, in Mathematica, we can write NSolve[0 ==-9.8 t - 9.8 E^-t + 391,

t]



Lesson 7

Autonomous Differential
Equations and Population
Models

In an autonomous differential equation the right hand side does not de-
pend explicitly on t, i.e.,

dy

dt
= f(y) (7.1)

Consequently all autonomous differentiable equations are separable. All of
the exponential models discussed in the previous section (e.g., falling ob-
jects, cooling, RC-circuits, compound interest) are examples of autonomous
differential equations. Many of the basic single-species population models
are also autonomous.

Exponential Growth

The exponential growth model was first proposed by Thomas Malthus in
1798.1 The basic principle is that as members of a population come to-
gether, they procreate, to produce more of the species. The rate at which
people come together is assumed to be proportional to the the population,
and it is assumed that procreation occurs at a fixed rate b. If y is the
population, then more babies will be added to the population at a rate by.

1In the book An Essay on the Principle of Population.
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Hence
dy

dt
= by (7.2)

If we assume that people also die at a rate dy then

dy

dt
= by − dy = (b− d)y = ry (7.3)

where r = b− d. As we have seen, the solution of this equation is

y = y0e
rt (7.4)

Hence if the birth rate exceeds the death rate, then r = b− d > 0 and the
population will increase without bounds. If the death rate exceeds the birth
rate then the population will eventually die if. Only if they are precisely
balanced will the population remain fixed.

Logistic Growth

Exponential population growth is certainly seen when resources (e.g., food
and water) are readily available and there is no competition; an example
is bacterial growth. However, eventually the population will become very
large and multiple members of the same population will be competing for
the same resources. The members who cannot get the resources will die off.
The rate at which members die is thus proportional to the population:

d = αy (7.5)

so that
dy

dt
= ry − dy = by − αy2 = ry

(
1− α

b
y
)

(7.6)

for some constant α. It is customary to define

K =
r

α
(7.7)

which is called the carrying capacity of the population:

dy

dt
= ry

(
1− y

K

)
(7.8)

Equation (7.8) is called the logistic growth model, or logistic differential
equation. We can analyze this differential equation (without solving it)
by looking at the right hand side, which tells us how fast the population
increases (or decreases) as a function of population. This is illustrated in
figure 7.1
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Figure 7.1: A plot of the right-hand side of y′ = f(y) for the logistic model
in equation 7.8. When f(y) > 0, we know that dy/dt > 0 and thus y will
increase, illustrated by a rightward pointing arrow. Similarly, y decreases
when f(y) < 0. All arrows point toward the steady state at y = K.

dy/dt < 0

dy/dt > 0

K/2 K
y

rK/4

dy/dt

When y < K, then dy/dx > 0, so the population will increase; this is
represented by the arrow pointing to the right. When y > K, dy/dt < 0,
so the population will decrease. So no matter what the starting value of
y (except for y = 0), the arrows always point towards y = K. This tells
us that the population will approach y = K as time progresses. Thus the
carrying capacity tells us the long-term (or steady state) population.

We can solve the logistic model explicitly. In general this is not something
we can do in mathematical modeling. hence the frequent use of simple
models like exponential or logistic growth. Rewrite (7.8) and separating
the variables:

K

∫
dy

y(K − y)
= r

∫
dt (7.9)

Using partial fractions,

1

y(K − y)
=
A

y
+

B

K − y
(7.10)

Cross multiplying and equating the numerators,

1 = A(K − y) +By (7.11)

Substituting y = K gives B = 1/K; and substituting y = 0 gives A = 1/K.
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Hence ∫
dy

y(K − y)
=

1

K

∫
dy

y
+

1

K

∫
dy

K − y
(7.12)

=
1

K
(ln y − ln(K − y)) (7.13)

=
1

K
ln

y

K − y
(7.14)

Using (7.14) in (7.9)

ln
y

K − y
= rt+ C (7.15)

Multiplying through by K and exponentiating,

y

K − y
= ert+C = erteC (7.16)

If we set y(0) = y0 then

eC =
y0

K − y0
(7.17)

Hence
y

K − y
=

y0

K − y0
ert (7.18)

Multiplying by K − y,

y = K
y0

K − y0
ert + y

y0

K − y0
ert (7.19)

Bringing the second term to the left and factoring a y,

y

(
1 +

y0

K − y0
ert
)

= K
y0

K − y0
ert (7.20)

Multiplying both sides by K − y0,

y
(
K − y0 + y0e

rt
)

= Ky0e
rt (7.21)

Solving for y,

y =
Ky0e

rt

(K − y0) + y0ert
(7.22)

=
Ky0

y0 + (K − y0)e−rt
(7.23)

We can see from equation (7.23) that for large t the second term in the
denominator approaches zero, hence y → K.
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Figure 7.2: Solutions of the logistic growth model, equation (7.23). All
nonzero initial populations tend towards the carrying capacity K as t→∞.

1/r
t

K

y

Thresholding Model

If we switch the sign of equation (7.8) it becomes

dy

dt
= −ry

(
1− y

T

)
(7.24)

where we still assume that r > 0 and T > 0. The analysis is illustrated
below. Instead of all populations approaching T , as it did in the logistic
model, all models diverge from T .

The number T is a threshold of the model. At the value y = T the behavior
of the solution changes. We expect unlimited growth if y0 > T and that y
will decay towards zero if y0 < T . This type of model describes a species in
which there is not sufficient procreation to overcome the death rate unless
the initial population is large enough. Otherwise the different members
don’t run into each other often enough to make new babies. Following the
same methods as previously we obtain the solution

y =
Ty0

y0 + (T − y0)ert
(7.25)

We point out the difference between (7.25) and (7.23) - which is the sign of
r in the exponential in the denominator.

When y0 < T then equation (7.25) predicts that y → 0 as t → ∞. It
would appear to tell us the same thing for T < y0 but this is misleading.
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Figure 7.3: Plot of the right hand side of the thresholding model (7.24).
Since f(y) < 0 when y < T , the population decreases; when y > T , the
population increases.

dy/dt > 0

dy/dt < 0

T/2 T
y

- rT/4

dy/dt

Suppose that y0 is just a little bit larger than T . Then the population
because increasing because the right hand side of the equation is positive.
As time progresses the second term in the denominator, which is negative,
gets larger and larger. This means that the denominator is getting smaller.
This causes the population to grow even faster. The denominator becomes
zero at t = t∗ given by

0 = y0 + (T − y0)ert
∗

(7.26)

Solving for t∗

t∗ =
1

r
ln

y0

y0 − T
(7.27)

Since y > T the argument of the logarithm is positive, so the solution gives
a positive real value for t∗. At this point, the population is predicted to
reach ∞; in other words, t = t∗ is a vertical asymptote of the solution.

Logistic Growth with a Threshold

The problem with the threshold model is that it blows up. More realis-
tically, when y0 > T , we would expect the rate of growth to eventually
decrease as the population gets larger, perhaps eventually reaching some
carrying capacity. In other words, we want the population to behave like a
thresholding model for low populations, and like a logistic model for larger
populations.
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Figure 7.4: Solutions of the threshold model given by (7.25). When y0 < T
the population slow decays to zero; when y0 > T the population increases
without bounds, increasing asymptotically to ∞ at a time t∗ that depends
on y0 and T (eq. (7.27)).

1/r
t

T

y

Suppose we have a logistic model, but let the rate of increase depend on
the population:

dy

dt
= r(y)y

(
1− y

K

)
(7.28)

We want the rate of increase to have a threshold,

r(y) = −r
(

1− y

T

)
(7.29)

combining these two

dy

dt
= −ry

(
1− y

T

)(
1− y

K

)
(7.30)

Now we have a growth rate with three zeros at y = 0, y = T , and y = K,
where we want 0 < T < K. If the population exceeds T then it approaches
K, while if it is less than T it diminishes to zero.
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Figure 7.5: Top: The rate of population change for the logistic model with
threshold given by equation (7.30). For t0 > T all populations tend towards
the carrying capacity K; all smaller initial populations decay away towards
zero. Bottom: The solutions for different initial conditions.

dy/dt < 0dy/dt < 0

dy/dt > 0

T K
y

dy/dt

t

T

K

y



Lesson 8

Homogeneous Equations

Definition 8.1. An ordinary differential equation is said to be homoge-
neous if it can be written in the form

dy

dt
= g

(y
t

)
(8.1)

Another way of stating this definition is say that

y′ = f(t, y) (8.2)

is homogeneous if there exists some function g such that

y′ = g(z) (8.3)

where z = y/t.

Example 8.1. Show that

dy

dt
=

2ty

t2 − 3y2
(8.4)

is homogeneous.
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The equation has the form y′ = f(t, y) where

f(t, y) =
2ty

t2 − 3y2
(8.5)

=
2ty

(t2)(1− 3(y/t)2)
(8.6)

=
2(y/t)

1− 3(y/t)2
(8.7)

=
2z

1− 3z2
(8.8)

where z = y/t. Hence the ODE is homogeneous.

The following procedure shows that any homogeneous equation can be con-
verted to a separable equation in z by substituting z = y/t.

Let z = y/t. Then y = tz and thus

dy

dt
=

d

dt
(tz) = t

dz

dt
+ z (8.9)

Thus if
dy

dt
= g

(y
t

)
(8.10)

then

t
dz

dt
+ z = g(z) (8.11)

where z = y/t. Bringing the the z to the right-hand side,

t
dz

dt
= g(z)− z (8.12)

dz

dt
=
g(z)− z

t
(8.13)

dz

g(z)− z
=
dt

t
(8.14)

which is a separable equation in z.

Example 8.2. Find the one-parameter family of solutions to

y′ =
y2 + 2ty

t2
(8.15)

Since

y′ =
y2 + 2ty

t2
=
y2

t2
+

2ty

t2
=
(y
t

)2

+ 2
y

t
= z2 + 2z (8.16)
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where z = y/t, the differential equation is homogeneous. Hence by equation
(8.12) it is equivalent to the following equation in z:

t
dz

dt
+ z = z2 + 2z (8.17)

Rearranging and separating variables,

t
dz

dt
= z2 + z (8.18)

dt

t
=

dz

z2 + z
=

dz

z(1 + z)
=

(
1

z
− 1

1 + z

)
dz (8.19)

Integrating, ∫
dt

t
=

∫
dz

z
−
∫

dz

1 + z
(8.20)

ln |t| = ln |z| − ln |1 + z|+ C = ln

∣∣∣∣ z

1 + z

∣∣∣∣+ C (8.21)

Exponentiating,

t =
C ′z

1 + z
(8.22)

for some new constant C’. Dropping the prime on the C and rearranging
to solve for z,

(1 + z)t = Cz (8.23)

t = Cz − zt = z(C − t) (8.24)

z =
t

C − t
(8.25)

Since we started the whole process by substituting z = y/t then

y = zt =
t2

C − t
(8.26)

as the general solution of the original differential equation.

Example 8.3. Solve the initial value problem

dy

dt
=
y

t
− 1

y(1) = 2

 (8.27)

Letting z = y/t the differential equation becomes

dy

dt
= z − 1 (8.28)
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Substituting y′ = (zt)′ = tz′ + z gives

t
dz

dt
+ z = z − 1 (8.29)

Canceling the z’s on both sides of the equation

dz

dt
= −1

t
(8.30)∫

dz = −
∫
dt

t
(8.31)

Integrating,
z = − ln t+ C (8.32)

Since z = y/t then y = tz, hence

y = t(C − ln t) (8.33)

From the initial condition y(1) = 2,

2 = (1)(C − ln 1) = C (8.34)

Hence
y = t(2− ln t) (8.35)



Lesson 9

Exact Equations

We can re-write any differential equation

dy

dt
= f(t, y) (9.1)

into the form

M(t, y)dt+N(t, y)dy = 0 (9.2)

Usually there will be many different ways to do this.

Example 9.1. Convert the differential equation y′ = 3t+ y into the form
of equation 9.2.

First we write the equation as

dy

dt
= 3t+ y (9.3)

Multiply across by dt:

dy = (3t+ y)dt (9.4)

Now bring all the terms to the left,

− (3t+ y)dt+ dy = 0 (9.5)

Here we have

M(t, y) = −3t+ y (9.6)

N(t, y) = 1 (9.7)
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This is not the only way we could have solved the problem. We could have
stated by dividing by the right-hand side,

dy

3t+ y
= dt (9.8)

To give

− dt+
1

3t+ y
dy = 0 (9.9)

which is also in the desired form, but with

M(t, y) = −1 (9.10)

N(t, y) =
1

3t+ y
(9.11)

In general there are infinitely many ways to do this conversion.

Now recall from calculus that the derivative of a function φ(t, y) with re-
spect to a third variable, say u, is given by

d

du
φ(t, y) =

∂φ

∂t

dt

du
+
∂φ

∂y

dy

du
(9.12)

and that the exact differential of φ(t, y) is obtained from (9.12) by multi-
plication by du:

dφ(t, y) =
∂φ

∂t
dt+

∂φ

∂y
dy (9.13)

We can integrate the left hand side:∫
dφ = φ+ C (9.14)

If, however, the right hand side is equal to zero, so that dφ = 0, then

0 =

∫
dφ = φ+ C =⇒ φ = C ′ (9.15)

where C ′ = −C is still a constant.

Let us summarize:
dφ = 0 =⇒ φ = C (9.16)

for some constant C.

If dφ = 0 then the right hand side of (9.12) is also zero, hence

∂φ

∂t
dt+

∂φ

∂y
dy = 0 =⇒ φ = C (9.17)
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Now compare equation (9.2) with (9.17). The earlier equation says that

M(t, y)dt+N(t, y)dy = 0 (9.18)

This means that if there is some function φ such that

M =
∂φ

∂t
and N =

∂φ

∂y
(9.19)

Then φ = C is a solution of the differential equation.

So how do we know when equation (9.19) holds? The answer comes from
taking the cross derivatives:

∂M

∂y
=

∂2φ

∂y∂t
=

∂2φ

∂t∂y
=
∂N

∂t
(9.20)

The second equality follows because the order of partial differentiation can
be reversed.

Theorem 9.1. If
∂M

∂y
=
∂N

∂t
(9.21)

then the differential equation

M(t, y)dt+N(t, y)dy = 0 (9.22)

is called an exact differential equation and the solution is given by some
function

φ(t, y) = C (9.23)

where

M =
∂φ

∂t
and N =

∂φ

∂y
(9.24)

We illustrate the method of solution with the following example.

Example 9.2. Solve

(2t+ y2)dt+ 2tydy = 0 (9.25)

This is in the form Mdt+Ndy = 0 where

M(t, y) = 2t+ y2 and N(t, y) = 2ty (9.26)

First we check to make sure the equation is exact:

∂M

∂y
=

∂

∂y
(2t+ y2) = 2y (9.27)
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and
∂N

∂t
=

∂

∂t
(2ty) = 2y (9.28)

Since
My = Nt (9.29)

the equation is exact, and therefore the solution is

φ = C (9.30)

where
∂φ

∂t
= M = 2t+ y2 (9.31)

and
∂φ

∂y
= N = 2ty (9.32)

To solve the original ODE (9.25) we need to solve the two partial differential
equations (9.31) and (9.32). Fortunately we can illustrate a procedure to
do this that does not require any knowledge of the methods of partial
differential equations, and this method will always work.

Method 1. Start with equation (9.31)

∂φ

∂t
= 2t+ y2 (9.33)

Integrate both sides over t (because the derivative is with respect to t),
treating y as a constant in the integration. If we do this, then the constant
of integration may depend on y:∫

∂φ

∂t
dt =

∫
(2t+ y2)dt (9.34)

φ = t2 + y2t+ g(y) (9.35)

where g(y) is the constant of integration that depends on y. Now substitute
(9.35) into (9.32)

∂

∂y
(t2 + y2t+ g(y)) = 2ty (9.36)

Evaluating the partial derivatives,

2yt+
∂g(y)

∂y
= 2ty (9.37)

Since g(y) only depends on y, then the partial derivative is the same as
g′(y):

2yt+
dg

dy
= 2ty (9.38)
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Hence
dg

dy
= 0 =⇒ g = C ′ (9.39)

for some constant C ′. Substituting (9.39) into (9.35) gives

φ = t2 + y2t+ C ′ (9.40)

But since φ = C is a solution, we conclude that

t2 + y2t = C ′′ (9.41)

is a solution for some constant C ′′.

Method 2 Start with equation (9.32) and integrate over y first, treating t
as a constant, and treating the constant of integration as a function h(t) :

∂φ

∂y
= 2ty (9.42)∫

∂φ

∂y
dy =

∫
2tydy (9.43)

φ = ty2 + h(t) (9.44)

Differentiate with respect to t and use equation (9.31)

∂φ

∂t
=

∂

∂t
(ty2 + h(t)) = y2 +

dh

dt
= 2t+ y2 (9.45)

where the last equality follows from equation (9.31). Thus

dh

dt
= 2t =⇒ h = t2 (9.46)

We can ignore the constant of integration because we will pick it up at the
end. From equation (9.44),

φ = ty2 + h(t) = ty2 + t2 (9.47)

Since φ = C is the solution of (9.25), we obtain

ty2 + t2 = C (9.48)

is the solution.

Now we can derive the method in general. Suppose that

M(t, y)dt+N(t, y)dy = 0 (9.49)
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where
My(t, y) = Nt(t, y) (9.50)

Then we conclude that
φ(t, y) = C (9.51)

is a solution where

φt(t, y) = M(t, y) and φy(t, y) = N(t, y) (9.52)

We start with the first equation in (9.52), multiply by dt and integrate:

φ =

∫
φt(t, y)dt =

∫
M(t, y)dt+ g(y) (9.53)

Differentiate with respect to y:

φy =
∂

∂y

∫
M(t, y)dt+ g′(y) =

∫
My(t, y)dt+ g′(y) (9.54)

Hence, using the second equation in (9.52)

g′(y) = φy(t, y)−
∫
My(t, y)dt (9.55)

= N(t, y)−
∫
My(t, y)dt (9.56)

Now multiply by dy and integrate:

g(y) =

∫
g′(y)dy =

∫ (
N(t, y)−

∫
My(t, y)dt

)
dy (9.57)

From equation (9.53)

φ(t, y) =

∫
M(t, y)dt+

∫ (
N(t, y)−

∫
My(t, y)dt

)
dy (9.58)

Alternatively, we can start with the second of equations (9.52), multiply by
dy (because the derivative is with respect to y), and integrate:

φ =

∫
φy(t, y)dy =

∫
N(t, y)dy + h(t) (9.59)

where the constant of integration depends, possibly, on t, because we only
integrated over y. Differentiate with respect to t:

φt(t, y) =
∂

∂t

∫
N(t, y)dy + h′(t) =

∫
Nt(t, y)dy + h′(t) (9.60)
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From the first of equations (9.52),

M(t, y) =

∫
Nt(t, y)dy + h′(t) (9.61)

hence

h′(t) = M(t, y)−
∫
Nt(t, y)dy (9.62)

Multiply by dt and integrate,

h(t) =

∫
h′(t)dt =

∫ (
M(t, y)−

∫
Nt(t, y)dy

)
dt (9.63)

From (9.59)

φ(t, y) =

∫
N(t, y)dy +

∫ (
M(t, y)−

∫
Nt(t, y)dy

)
dt (9.64)

The following theorem summarizes the derivation.

Theorem 9.2. If M(t, y)dt+N(t, y)dy = 0 is exact, i.e., if

∂M(t, y)

∂y
=
∂N(t, y)

∂t
(9.65)

The φ(t, y) = C is a solution of the ODE, where either of the following
formulas can be used for φ:

φ(t, y) =

∫
M(t, y)dt+

∫ (
N(t, y)−

∫
My(t, y)dt

)
dy (9.66)

φ(t, y) =

∫
N(t, y)dy +

∫ (
M(t, y)−

∫
Nt(t, y)dy

)
dt (9.67)

In practice, however, it is generally easier to repeat the derivation rather
than memorizing the formula.

Example 9.3. Solve

(t+ 2y)dt+ (2t− y)dy = 0 (9.68)

This has the form M(t, y)dt+N(t, y)dy where

M(t, y) = t+ 2y (9.69)

N(t, y) = 2t− y (9.70)

Checking that it is exact,

My(t, y) = 2 = Nt(t, y) (9.71)
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Hence (9.68) is exact and the solution is given by φ(t, y) = C where

∂φ

∂t
= M(x, y) = t+ 2y (9.72)

∂φ

∂y
= N(t, y) = 2t− y (9.73)

Integrating (9.73) over t,

φ(t, y) =

∫
∂φ(t, y)

∂t
dt =

∫
(t+ 2y)dt =

1

2
t2 + 2ty + h(y) (9.74)

because the constant of integration may be a function of y. Taking the
partial with respect to y and setting the result equal to (9.73)

∂φ

∂y
= 2t+ h′(y) = 2t− y (9.75)

Thus

h′(y) = −y =⇒ h(y) = −y
2

2
(9.76)

we conclude that h′(y) = −y or h(y) = −y2/2. From equation (9.74)

φ(t, y) =
1

2
t2 + 2ty − 1

2
y2 (9.77)

Therefore the solution is

1

2
t2 + 2ty − 1

2
y2 = C (9.78)

for any constant C.

Example 9.4. Find the one-parameter family of solutions to

y′ = − y cos t+ 2tey

sin t+ t2ey + 2
(9.79)

We can rewrite the equation (9.79) as

(y cos t+ 2tey)dt+ (sin t+ t2ey + 2)dy = 0 (9.80)

which has the form M(t, y)dt+N(t, y)dy = 0 where

M(t, y) = y cos t+ 2tey (9.81)

N(t, y) = sin t+ t2ey + 2 (9.82)
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Differentiating equations (9.81) and (9.82) gives

∂M(t, y)

∂y
= cos t+ 2tey =

∂N(t, y)

∂t
(9.83)

and consequently equation (9.79) is exact. Hence the solution is

φ(t, y) = C (9.84)

where

∂φ

∂t
= M(t, y) = y cos t+ 2tey (9.85)

∂φ

∂y
= N(t, y) = sin t+ t2ey + 2 (9.86)

Integrating equation (9.85) over t

φ(t, y) =

∫
∂φ(t, y)

∂t
dt =

∫
(y cos t+ 2tey) dt = y sin t+ t2ey+h(y) (9.87)

where h is an unknown function of y.

Differentiating (9.87) respect to y and setting the result equal to (9.86)
gives

∂φ

∂y
= sin t+ t2ey + h′(y) = sin t+ t2ey + 2 (9.88)

Thus
h′(y) = 2 =⇒ h(y) = 2y (9.89)

Using this back in equation (9.87)

φ(t, y) = y sin t+ t2ey + 2y (9.90)

Hence the required family of solutiosn is

y sin t+ t2ey + 2y = C (9.91)

for any value of the constant C.

Example 9.5. Solve the differential equation

y′ =
at− by
bt+ cy

(9.92)

where a, b, c, and d are arbitrary constants.
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Rearranging the ODE,

(by − at)dt+ (bt+ cy)dy = 0 (9.93)

which is of the form M(t, y)dt+N(t, y)dy = 0 with

M(t, y) = by − at (9.94)

N(t, y) = bt+ cy (9.95)

Since
My = b = Nt (9.96)

equation (9.93) is exact. Therefore the solution is φ(t, y) = K, where

∂φ(t, y)

∂t
= M(t, y) = by − at (9.97)

∂φ(t, y)

∂y
= N(t, y) = bt+ cy (9.98)

and K is any arbitrary constant (we don’t use C because it is confusing
with c already in the problem). Integrating equation in (9.97) over t gives

φ(t, y) =

∫
(by − at)dt = byt− a

2
t2 + h(y) (9.99)

Differentiating with respect to y and setting the result equal to the (9.98),

bt+ h′(y) = bt+ cy (9.100)

h′(y) = cy =⇒ h(y) =
c

2
y2 (9.101)

From equation (9.99)

φ(t, y) =

∫
(by − at)dt = byt− a

2
t2 +

c

2
y2 (9.102)

Therefore the solution of (9.92) is∫
(by − at)dt = byt− a

2
t2 +

c

2
y2 = K (9.103)

for any value of the constant K.

Example 9.6. Solve the initial value problem

(2ye2t + 2t cos y)dt+ (e2t − t2 sin y)dy = 0

y(0) = 1

}
(9.104)
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This has the form Mdt+Ndy = 0 with

M(t, y) = 2ye2t + 2t cos y (9.105)

N(t, y) = e2t − t2 sin y (9.106)

Since

My = 2e2t − 2 sin y = Nt (9.107)

we conclude that (9.104) is exact. Therefor the solution of the differential
is equation φ(t, y) = C for some constant C, where

∂φ

∂t
= M(t, y) = 2ye2t + 2t cos y (9.108)

∂φ

∂y
= N(t, y) = e2t − t2 sin y (9.109)

Integrating (9.108) over t

φ(t, y) =

∫
(2ye2t + 2t cos y)dt+ h(y) = ye2t + t2 cos y + h(y) (9.110)

Taking the partial derivative with respect to y gives

∂φ

∂y
= e2t − t2 sin y + h′(y) (9.111)

Comparison of equations (9.111) and (9.109) gives h′(y) = 0; hence h(y) is
constant. Therefore

φ(t, y) = ye2t + t2 cos y (9.112)

and the general solution is

ye2t + t2 cos y = C (9.113)

From the initial condition y(0) = 1,

(1)(e0) + (02) cos 1 = C =⇒ C = 1 (9.114)

and therefore the solution of the initial value problem is

ye2t + t2 cos y = 1. (9.115)
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Example 9.7. Solve the initial value problem

(y/t+ cos t)dt+ (ey + ln t)dy = 0

y(π) = 0

}
(9.116)

The ODE has the form Mdt+Ndy = 0 with

M(t, y) = y/t+ cos t (9.117)

N(t, y) = ey + ln t (9.118)

Checking the partial derivatives,

My =
1

t
= Nt (9.119)

hence the differential equation is exact. Thus the solution is φ(t, y) = C
where

∂φ

∂t
= M(t, y) =

y

t
+ cos t (9.120)

∂φ

∂y
= N(t, y) = ey + ln t (9.121)

Integrating the first of these equations

φ(t, y) =

∫ (y
t

+ cos t
)
dt+ h(y) = y ln t+ sin t+ h(y) (9.122)

Differentiating with respect to y and setting the result equal to (9.121),

∂φ

∂y
=

∂

∂y
(y ln t+ sin t+ h(y)) = N(t, y) = ey + ln t (9.123)

ln t+ h′(y) = ey + ln t (9.124)

h′(y) = ey =⇒ h(y) = ey (9.125)

From (9.122),
φ(t, y) =) = y ln t+ sin t+ ey (9.126)

The general solution of the differential equation is φ(t, y) = C, i.e.,

y ln t+ sin t+ ey = C (9.127)

The initial condition is y(π) = 0; hence

(0) lnπ + sinπ + e0 = C =⇒ C = 1 (9.128)

Thus
y ln t+ sin t+ ey = 1. (9.129)



Lesson 10

Integrating Factors

Definition 10.1. An integrating factor for the differential equation

M(t, y)dt+N(t, y)dy = 0 (10.1)

is a any function such µ(t, y) such that

µ(t, y)M(t, y)dt+ µ(t, y)N(t, y)dy = 0 (10.2)

is exact.

If (10.2) is exact, then by theorem 9.1

∂

∂y
(µ(t, y)M(t, y)) =

∂

∂t
(µ(t, y)N(t, y)) (10.3)

In this section we will discuss some special cases in which we can solve (10.3)
to find an integrating factor µ(t, y) that satisfies (10.3). First we give an
example to that demonstrates how we can use an integrating factor.

Example 10.1. Show that(
sin y

y
− 2e−t sin t

)
dt+

(
cos y + 2e−t cos t

y

)
dy = 0 (10.4)

is not exact, and then show that

µ(t, y) = yet (10.5)

is an integrating factor for (10.4), and then use the integrating factor to
find a general solution of (10.4).

77
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We are first asked to verify that (10.4) is not exact. To do this we must
show that My 6= Nx, so we calculate the partial derivatives.

∂M

∂y
=

∂

∂y

(
sin y

y
− 2e−t sin t

)
=
y cos t− sin y

y2
(10.6)

∂N

∂t
=

∂

∂t

(
cos y + 2e−t cos t

y

)
= −2

y
e−t (sin t+ cos t) (10.7)

Since My 6= Nt we may conclude that equation (10.4) is not exact.

To show that (10.5) is an integrating factor, we multiply the differential
equation by µ(t, y). This gives(

et sin y − 2y sin t
)
dt+

(
et cos y + 2 cos t

)
dy = 0 (10.8)

which is in the form M(t, y)dt+N(t, y)dy with

M(t, y) = et sin y − 2y sin t (10.9)

N(t, y) = et cos y + 2 cos t (10.10)

The partial derivatives are

∂M(t, y)

∂y
=

∂

∂y
(et sin y − 2y sin t) (10.11)

= et(cos y − 2 sin t) (10.12)

∂N(t, y)

∂t
=

∂

∂t
(et cos y + 2 cos t) (10.13)

= et(cos y − 2 sin t) (10.14)

Since My = Nt, we may conclude that (10.8) is exact.

Since (10.8) is exact, its solution is φ(t, y) = C for some function φ that
satisifes

∂φ

∂t
= M(t, y) = et sin y − 2y sin t (10.15)

∂φ

∂y
= N(t, y) = et cos y + 2 cos t (10.16)

From (10.15)
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φ(t, y) =

∫
∂φ(t, y)

∂t
dt+ h(y) (10.17)

=

∫
M(t, y)dt+ h(y) (10.18)

=

∫
(et sin y − 2y sin t)dt+ h(y) (10.19)

= et sin y + 2y cos t+ h(y) (10.20)

Differentiating with respect to y,

∂φ(t, y)

∂y
= et cos y + 2 cos t+ h′(y) (10.21)

From equation (10.16),

et cos y + 2 cos t+ h′(y) = et cos y + 2 cos t (10.22)

h′(y) = 0 =⇒ h(y) = constant (10.23)

Recall the that solution is φ(t, y) = C where from (10.20), and using h(y) =
K,

φ(t, y) = et sin y + 2 cos t+K (10.24)

hence
et sin y + 2y cos t = C (10.25)

is the general solution of (10.8).

There is no general method for solving (10.3) to find an integrating fac-
tor; however, sometimes we can find an integrating factor that works under
certain simplifying assumptions. We will present five of these possible sim-
plifications here as theorems. Only the first case is actually discussed in
Boyce & DiPrima (6th Edition).

Theorem 10.2. Integrating Factors, Case 1. If

P (1)(t, y) =
My(t, y)−Nt(t, y)

N(t, y)
≡ P (1)(t) (10.26)

is only a function of t, but does not depend on y, then

µ(1)(t, y) = exp

(∫
P (1)(t)dt

)
= exp

(∫
My(t, y)−Nt(t, y)

N(t, y)
dt

)
(10.27)

is an integrating factor.
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Theorem 10.3. Integrating Factors, Case 2. If

P (2)(t, y) =
Nt(t, y)−My(t, y)

M(t, y)
≡ P (2)(y) (10.28)

is only a function of y, but does not depend on t, then

µ(2)(t, y) = exp

(∫
P (2)(y)dt

)
= exp

(∫
Nt(t, y)−My(t, y)

M(t, y)
dt

)
(10.29)

is an integrating factor.

Theorem 10.4. Integrating Factors, Case 3. If

P (3)(t, y) =
Nt(t, y)−My(t, y)

tM(t, y)− yN(t, y)
≡ P (3)(z) (10.30)

is only a function of the product z = ty, but does not depend on either t
or y in any other way, then

µ(3)(t, y) = exp

(∫
P (3)(z)dz

)
= exp

(∫
Nt(t, y)−My(t, y)

tM(t, y)− yN(t, y)
dz

)
(10.31)

is an integrating factor.

Theorem 10.5. Integrating Factors, Case 4. If

P (4)(t, y) =
t2(Nt(t, y)−My(t, y))

tM(t, y) + yN(t, y)
≡ P (4)(z) (10.32)

is only a function of the quotient z = y/t, but does not depend on either t
or y in any other way, then

µ(4)(t, y) = exp

(∫
P (4)(z)dz

)
= exp

(∫
t2(Nt(t, y)−My(t, y))

tM(t, y) + yN(t, y)
dz

)
(10.33)

is an integrating factor.

Theorem 10.6. Integrating Factors, Case 5. If

P (5)(t, y) =
y2(My(t, y)−Nt(t, y))

tM(t, y) + yN(t, y)
≡ P (5)(z) (10.34)

is only a function of the quotient z = t/y, but does not depend on either t
or y in any other way, then

µ(5)(t, y) = exp

(∫
P (5)(z)dz

)
= exp

(∫
y2(My(t, y)−Nt(t, y))

tM(t, y) + yN(t, y)
dz

)
(10.35)

is an integrating factor.
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Proof. In each of the five cases we are trying to show that µ(t, y) is an
integrating factor of the differential equation

M(t, y)dt+N(t, y)dy = 0 (10.36)

We have already shown in the discussion leading to equation (10.3) that
µ(t, y) will be an integrating factor of (10.36) if µ(t, y) satisfies

∂

∂y
(µ(t, y)M(t, y)) =

∂

∂t
(µ(t, y)N(t, y)) (10.37)

By the product rule for derivatives,

µ(t, y)My(t, y) + µy(t, y)M(t, y) = µ(t, y)Nt(t, y) + µt(t, y)N(t, y) (10.38)

To prove each theorem, we need to show that under the given assumptions
for that theorem, the formula for µ(t, y) satisfies equation (10.38).

Case 1. If µ(t, y) is only a functions of t then (a) µy(t, y) = 0 (there is
no y in the equation, hence the corresponding partial is zero); and (b)
µt(t, y) = µ′(t) (µ only depends on a single variable, t, so there is no
distinction between the partial and regular derivative). Hence equation
(10.37) becomes

µ(t)My(t, y) = µ(t)Nt(t, y) + µ′(t)N(t, y) (10.39)

Rearranging,
d

dt
µ(t) =

My(t, y)−Nt(t, y)

N(t, y)
µ(t) (10.40)

Separating variables, and integrating,∫
1

µ(t)

d

dt
µ(t)dt =

∫
My(t, y)−Nt(t, y)

N(t, y)
dt (10.41)

Hence

lnµ(t) =

∫
P (1)(t)dt =⇒ µ(t) = exp

(∫
P (1)(t)dt

)
(10.42)

as required by equation (10.27). (Case 1)

Case 2. If µ(t, y) = µ(y) is only a function of y then (a) µt(t, y) = 0 (because
µ has no t-dependence); and (b) µy(t, y) = µ′(t) (because µ is only a
function of a single variable y). Hence (10.38) becomes

µ(y)My(t, y) + µ′(y)M(t, y) = µ(y)Nt(t, y) (10.43)
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Rearranging,

1

µ(y)

d

dy
µ(y) =

Nt(t, y)−My(t, y)

M(t, y)
= P (2)(y) (10.44)

Multiply by dy and integrating,∫
1

µ(y)

d

dy
µ(y)dy =

∫
P (2)(y)dy (10.45)

Integrating and exponentiating

µ(y) = exp

(∫
P (2)(y)dy

)
(10.46)

as required by equation (10.29). (Case 2).

Case 3. If µ(t, y) = µ(z) is only a function of z = ty then

∂z

∂t
=
∂(ty)

∂t
= y (10.47)

∂z

∂y
=
∂(ty)

∂y
= t (10.48)

Since µ(z) is only a function of a single variable z we will denote

µ′(z) =
dµ

dz
(10.49)

By the chain rule and equations (10.47),(10.48), and (10.49),

∂µ

∂t
=
dµ

dz

∂z

∂t
= µ′(z)y (10.50)

∂µ

∂y
=
du

dz

∂z

∂y
= µ′(z)t (10.51)

Using these results in (10.38),

µ(z)My(t, y) + µ′(z)tM(t, y) = µ(z)Nt(t, y) + µ′(z)yN(t, y) (10.52)

µ′(z)× (tM(t, y)− yN(t, y)) = µ(z)× (Nt(t, y)−My(t, y)) (10.53)

µ′(z)

µ(z)
=

Nt(t, y)−My(t, y)

tM(t, y)− yN(t, y))
= P (3)(z) (10.54)

Integrating and exponentiating,

µ(z) = exp

(∫
P (3)(z)dz

)
(10.55)
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as required by equation (10.31). (Case 3)

Case 4. If µ(t, y) = µ(z) is only a function of z = y/t then

∂z

∂t
=

∂

∂t

y

t
= − y

t2
(10.56)

∂z

∂y
=

∂

∂y

y

t
=

1

t
(10.57)

By thee chain rule

∂µ

∂t
=
dµ

dz

∂z

∂t
= −µ′ y

t2
(10.58)

∂µ

∂y
=
dµ

dz

∂z

∂y
=
µ′

t
(10.59)

where µ′(z) = du/dz. Equation (10.38) becomes

µ(z)My(t, y) +
µ′(y)

t
×M(t, y) = µ(y)Nt(t, y) +

(
−µ′(z) y

t2

)
×N(t, y)

(10.60)
Rearranging and solving for µ′(z)

µ(z)(My(t, y)−Nt(t, y)) = −µ′(z)
(
yN(t, y)

t2
+
M(t, y)

t

)
(10.61)

= −µ
′(z)

t2
(yN(t, y) + tM(t, y)) (10.62)

µ′(z)

µ(z)
=
t2(Nt(t, y)−My(t, y)

yN(t, y) + tM(t, y)
= P (4)(z) (10.63)

Integrating and exponentiating,

µ(z) = exp

(∫
P (4)zdz

)
(10.64)

as required by equation (10.33). (Case 4)

Case 5. If µ(t, y) = µ(z) is only a function of z = t/y then

∂z

∂t
=

∂

∂t

t

y
=

1

y
(10.65)

∂z

∂y
=

∂

∂y

t

y
= − t

y2
(10.66)
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By the chain rule,

∂µ

∂t
=
dµ

dz

∂z

∂t
=
µ′

y
(10.67)

∂µ

∂y
=
dµ

dz

∂z

∂y
= −µ

′t

y2
(10.68)

where µ′(z) = du/dz. Substituting this into equation (10.38) gives

µ(z)My(t, y) +

(
−µ(z)t

y2

)
M(t, y) = µ(z)Nt(t, y) +

(
µ′(z)

y

)
N(t, y)

(10.69)
Rearranging

µ(z)(My(t, y)−Nt(t, y)) =

(
µ′(z)

y

)
N(t, y) +

(
µ(z)t

y2

)
M(t, y) (10.70)

=
µ′(z)

y2
(yN(t, y) + tM(t, y)) (10.71)

µ′(z)

µ(z)
=
y2(My(t, y)−Nt(t, y))

yN(t, y) + tM(t, y)
= P (5)(z) (10.72)

Multiplying by dz, integrating, and exponentiating gives

µ(z) = exp

(∫
P (5)(z)dz

)
(10.73)

as required by equation (10.35). (Case 5)

This completes the proof for all five case.

Example 10.2. . Solve the differential equation

(3ty + y2) + (t2 + ty)y′ = 0 (10.74)

by finding an integrating factor that makes it exact.

This equation has the form Mdt+Ndy where

M(t, y) = 3ty + y2 (10.75)

N(t, y) = t2 + ty (10.76)

First, check to see if the equation is already exact.

My = 3t+ 2y (10.77)

Nt = 2t+ y (10.78)
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Since My 6= Nt, equation (10.74) is not exact.

We proceed to check cases 1 through 5 to see if we can find an integrating
factor.

P (1)(t, y) =
My −Nt

N
(10.79)

=
(3t+ 2y)− (2t+ y)

t2 + ty
(10.80)

=
t+ y

t2 + ty
=

1

t
(10.81)

This depends only on t, hence we can use case (1). The integrating factor
is

µ(t) = exp

(∫
P (t)dt

)
= exp

(∫
1

t
dt

)
= exp (ln t) = t (10.82)

Multiplying equation (10.74) by µ(t) = t gives

(3t2y + y2t)dt+ (t3 + t2y)dy = 0 (10.83)

Equation (10.83) has

M(t, y) = 3t2y + y2t (10.84)

N(t, y) = t3 + t2y (10.85)

This time, since
My = 3t2 + 2yt = Nt (10.86)

we have an exact equation.

The solution of (10.83) is φ(t, y) = C, where C is an arbitrary constant,
and

∂φ

∂t
= M(t, y) = 3t2y + ty2 (10.87)

∂φ

∂y
= N(t, y) = t3 + t2y (10.88)

To find φ(t, y) we begin by integrating (10.87) over t:

φ(t, y) =

∫
∂φ

∂t
dt =

∫
(3t2 + ty2)dt = t3y +

1

2
t2y2 + h(y) (10.89)

Differentiating with respect to y

∂φ

∂y
= t3 + t2y + h′(y) (10.90)
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Equating the right hand sides of (10.88) and (10.90) gives

t3 + t2y + h′(y) = t3 + t2y (10.91)

Therefore h′(y) = 0 and h(y) is a constant. From (10.89), general solution
of the differential equation, which is φ = C, is given by

t3y +
1

2
t2y2 = C. (10.92)

Example 10.3. Solve the initial value problem

(2y3 + 2)dt+ 3ty2dy = 0

y(1) = 4

}
(10.93)

This has the form M(t, y)dt+N(t, y)dy with

M(t, y) = 2y3 + 2 (10.94)

N(t, y) = 3ty2 (10.95)

Since

My = 6y2 (10.96)

Nt = 3y2 (10.97)

To find an integrating factor, we start with

P (t, y) =
My −Nt

N
=

6y2 − 3y2

3ty2
=

3y2

3ty2
=

1

t
(10.98)

This is only a function of t and so an integrating factor is

µ = exp

(∫
1

t
dt

)
= exp (ln t) = t (10.99)

Multiplying (10.93) by µ(t) = t,

(2ty3 + 2t)dt+ 3t2y2dy = 0 (10.100)

which has

M(t, y) = 2ty3 + 2t (10.101)

N(t, y) = 3t2y2 (10.102)

Since
My(t, y) = 6ty2 = Nt(t, y) (10.103)
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the revised equation (10.100) is exact and therefore the solution is φ(t, y) =
C where

∂φ

∂t
= M(t, y) = 2ty3 + 2t (10.104)

∂φ

∂y
= N(t, y) = 3t2y2 (10.105)

Integrating (10.104) with over t,

φ(t, y) =

∫
∂φ

∂t
dt+ h(y) (10.106)

=

∫
(2ty3 + 2t)dt+ h(y) (10.107)

= t2y3 + t2 + h(y) (10.108)

Differentiating with respect to y,

∂φ(t, y)

∂y
= 3t2y + h′(y) (10.109)

Equating the right hand sides of (10.109) and (10.105) gives

3t2y2 + h′(y) = 3t2y2 (10.110)

Hence h′(y) = 0 and h(y) = C for some constant C. From (10.108) the
general solution is

t2(y3 + 1) = C (10.111)

Applying the initial condition y(1) = 4,

(1)2(43 + 1) = C =⇒ C = 65 (10.112)

Therefore the solution of the initial value problem (10.93) is

t2(y3 + 1) = 65 (10.113)

Example 10.4. Solve the initial value problem

ydt+ (2t− yey)dy = 0

y(0) = 1

}
(10.114)

Equation (10.114) has the form M(t, y)dt+N(t, y)dy = 0 with M(t, y) = y
and N(t, y) = 2t− yey. Since My = 1 6= 2 = Nt the differential equation is
not exact. We first try case 1:

P (1)(t, y) =
My(t, y)−Nt(t, y)

N(t, y)
=

1

yey − 2t
(10.115)
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This depends on both t and y; case 1 requires that P (1)(t, y) only depend
on t. Hence case 1 fails. Next we try case 2

P (2)(t, y) =
Nt(t, y)−My(t, y)

M(t, y)
=

1

y
(10.116)

Since P (2) is purely a function of y, the conditions for case (2) are satisfied.
Hence an integrating factor is

µ(y) = exp

(∫
(1/y)dy

)
= exp (ln y) = y (10.117)

Multiplying equation the differential equation through µ(y) = y gives

y2dt+ (2ty − y2ey)dy = 0 (10.118)

This has

M(t, y) = y2 (10.119)

N(t, y) = 2ty − y2ey (10.120)

Since My = 2y = Nt, equation (10.118) is exact. Thus we know that the
solution is φ(t, y) = C where

∂φ

∂t
=M(t, y) = y2 (10.121)

∂φ

∂y
=N(t, y) = 2ty − y2ey (10.122)

Integrating (10.121) over t,

φ(t, y) =

∫
∂φ

∂t
dt+ h(y) =

∫
y2dt+ h(y) = y2t+ h(y) (10.123)

Differentiating with respect to y,

∂φ

∂y
= 2ty + h′(y) (10.124)

Equating the right hand sides of (10.124) and (10.122),

2yt+ h′(y) = 2ty − y2ey (10.125)

h′(y) = −y2ey (10.126)

h(y) =

∫
h′(y)dy (10.127)

= −
∫
y2eydy (10.128)

= −ey(2− 2y + y2) (10.129)
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Substituting (10.129) into (10.123) gives

φ(t, y) = y2t− ey(2− 2y + y2) (10.130)

The general solution of the ODE is

y2t+ ey(−2 + 2y − y2) = C (10.131)

The initial condition y(0) = 1 gives

C = (12)(0) + e1(−2 + (2)(1)− 12) = −e (10.132)

Hence the solution of the initial value problem is

y2t+ ey(−2 + 2y − y2) = −e (10.133)
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Lesson 11

Method of Successive
Approximations

The following theorem tells us that any initial value problem has an equiv-
alent integral equation form.

Theorem 11.1. The initial value problem

y′(t, y) = f(t, y)

y(t0) = y0

}
(11.1)

has a solution if and only if the integral equation

φ(t) = y0 +

∫ t

0

f(s, φ(s))ds (11.2)

has the same solution.

Proof. This is an “if and only if” theorem, so to prove it requires showing
two things: (a) that (11.2) =⇒ (11.1); and (b) that (11.1) =⇒ (11.2).

To prove (a), we start by assuming that (11.1) is true; we then need to
show that (11.2) follows as a consequence.

If (11.1) is true then it has a solution y = φ(t) that satisfies

dφ

dt
= f(t, φ(t))

φ(t0) = y0

 (11.3)
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Let us change the variable t to s,

dφ(s)

ds
= f(s, φ(s)) (11.4)

If we multiply by ds and integrate from s = t0 to s = t,∫ t

t0

dφ(s)

ds
ds =

∫ t

t0

f(s, φ(s))ds (11.5)

By the fundamental theorem of calculus, since φ(s) is an antiderivative of
dφ(s)/ds, the left hand side becomes∫ t

t0

dφ(s)

ds
ds = φ(t)− φ(t0) = φ(t)− y0 (11.6)

where the second equality follows from the second line of equation (11.3).

Comparing the right-hand sides of equations (11.5) and (11.6) we find that

φ(t)− y0 =

∫ t

t0

f(s, φ(s))ds (11.7)

Bringing the y0 to the right hand side of the equation gives us equation
(11.2) which was the equation we needed to derive. This completes the
proof of part (a).

To prove part (b) we assume that equation (11.2) is true and need to show
that equation (11.1) follows as a direct consequence. If we differentiate
both sides of (11.2),

d

dt
φ(t) =

d

dt

(
y0 +

∫ t

0

f(s, φ(s))ds

)
(11.8)

=
dy0

dt
+
d

dt

∫ t

0

f(s, φ(s))ds (11.9)

= φ(t, φ(t)) (11.10)

where the last equation follows from the fundamental theorem of calculus.
Changing the name of the variable from φ to y in (11.10) gives us y′ =
f(t, y), which is the first line (11.1).

To prove that the second line of (11.1) follows from (11.2), we substitute
t = t0 in (11.2).

φ(t0) = y0 +

∫ t0

0

f(s, φ(s))ds = y0 (11.11)
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because the integral is zero (the top and bottom limits are identical).
Changing the label φ to y in equation (11.11) returns the second line of
(11.1), thus completing the proof of part (b).

The Method of Successive Approximations, which is also called Pi-
card Iteration, attempts to find a solution to the initial value problem
(11.1) by solving the integral equation (11.2). This will work because both
equations have the same solution. The problem is that solving the integral
equation is no easier than solving the differential equation.

The idea is this: generate the sequence of functions φ0, φ1, φ2, . . . , defined
by

φ0(t) = y0 (11.12)

φ1(t) = y0 +

∫ t

t0

f(s, φ0(s))ds (11.13)

φ2(t) = y0 +

∫ t

t0

f(s, φ1(s))ds (11.14)

...

φn+1(t) = y0 +

∫ t

t0

f(s, φn(s))ds (11.15)

...

From the pattern of the sequence of functions, we try to determine

φ(t) = lim
n→∞

φn(t) (11.16)

If this limit exists, then it converges to the solution of the initial value
problem.

Theorem 11.2. Suppose that f(t, y) and ∂f(t, y)/∂y are continuous in
some box

t0 − a ≤ t ≤ t0 + a (11.17)

y0 − b ≤ y ≤ y0 + b (11.18)

then there is some interval

t0 − a ≤ t0 − h ≤ t ≤ t0 + h ≤ t0 + a (11.19)
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in which the Method of Successive Approximations converges to the unique
solution of the initial value problem

dy

dt
= f(t, y)

y(t0) = y0

 (11.20)

The proof of this theorem is quite involved and will be discussed in the
sections 12 and 13.

The procedure for using the Method of Successive Approximations is sum-
marized in the following box.1

Procedure for Picard Iteration

To solve y′ = f(t, y) with initial condition y(t0) = y0:

1. Construct the first 3 iterations φ0, φ1, φ2, φ3.

2. Attempt to identify a pattern; if one is not obvious you
may need to calculate more φn.

3. Write a formula for the general φn(t) from the pattern.

4. Prove that when you plug φn(t) into the right hand side of
equation (11.15) you get the same formula for φn+1 with
n replaced by n+ 1.

5. Prove that φ(t) = limn→∞ φn converges.

6. Verify that φ(t) solve the original differential equation and
initial condition.

1The Method of Successive Approximations is usually referred to as Picard iteration
for Charles Emile Picard (1856-1941) who popularized it in a series of textbooks on
differential equations and mathematical analysis during the 1890’s. These books became
standard references for a generation of mathematicians. Picard attributed the method
to Hermann Schwartz, who included it in a Festschrift honoring Karl Weierstrass’ 70’th
birthday in 1885. Guisseppe Peano (1887) and Ernst Leonard Lindeloff (1890) also
published versions of the method. Since Picard was a faculty member at the Sorbonne
when Lindeloff, also at the Sorbonne, published his results, Picard was certainly aware
of Lindeloff’s work. A few authors, including Boyce and DiPrima, mention a special
case published by Joseph Liouville in 1838 but I haven’t been able to track down the
source, and since I can’t read French, I probably won’t be able to answer the question
of whether this should be called Liouville iteration anytime soon.
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Example 11.1. Construct the Picard iterates of the initial value problem

y′ = −2ty

y(0) = 1

}
(11.21)

and determine if they converge to the solution.

In terms of equations (11.12) through (11.15), equation (11.21) has

f(t, y) = −2ty (11.22)

t0 = 0 (11.23)

y0 = 1 (11.24)

Hence from (11.12)

φ0(t) = y0 = 1 (11.25)

f(s, φ0(s)) = −2sφ0(s) = −2s (11.26)

φ1(t) = y0 +

∫ t

0

f(s, φ0(s))ds (11.27)

= 1− 2

∫ t

0

sds (11.28)

= 1− t2 (11.29)

We then use φ1 to calculate f(s, φ1(s)) and then φ2:

f(s, φ1(s)) = −2sφ1(s) = −2s(1− s2) (11.30)

φ2(t) = y0 +

∫ t

0

f(s, φ1(s))ds (11.31)

= 1− 2

∫ t

0

s(1− s2)ds (11.32)

= 1− t2 +
1

2
t4 (11.33)

Continuing as before, use φ2 to calculate f(s, φ2(s)) and then φ3:

f(s, φ2(s)) = −2sφ2(s) = −2s

(
1− s2 +

1

2
s4

)
(11.34)

φ3(s) = y0 +

∫ t

0

f(s, φ2(s))ds (11.35)

= 1− 2

∫ t

0

s

(
1− s2 +

1

2
s4

)
ds (11.36)

= 1− t2 +
1

2
t4 − 1

6
t6 (11.37)
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Continuing as before, use φ3 to calculate f(s, φ3(s)) and then φ4:

f(s, φ3(s)) = −2sφ3(s) = −2s

(
1− s2 +

1

2
s4 − 1

6
s6

)
(11.38)

φ4(s) = y0 +

∫ t

0

f(s, φ3(s))ds (11.39)

= 1− 2

∫ t

0

(
s− s3 +

1

2
s5 − 1

6
s7

)
ds (11.40)

= 1− t2 +
t2

2
− t6

6
+
t8

24
(11.41)

That pattern that appears to be emerging is that

φn(t) =
t2 · 0

0!
− t

2·1

1!
+
t2·2

2!
− t

2·3

3!
+ · · ·+ (−1)nt2n

n!
=

n∑
k=0

(−1)kt2k

k!
(11.42)

The only way to know if (11.42) is the correct pattern is to plug it in and
see if it works. First of all, it works for all of the n we’ve already calculated,
namely, n = 1, 2, 3, 4. To prove that it works for all n we use the principal
of mathematical induction: A statement P (n) is true for all n if and
only if (a) P (1) is true; and (b) P (n) =⇒ P (n− 1). We’ve already proven
(a). To prove (b), we need to show that

φn+1(t) =

n+1∑
k=0

(−1)kt2k

k!
(11.43)

logically follows when we plug equation (11.42) into (11.15). The reason for
using (11.15) is because it gives the general definition of any Picard iterate
φn in terms of the previous iterate. From (11.15), then

φn+1(t) = y0 +

∫ t

t0

f(s, φn(s))ds (11.44)

To evaluate (11.44) we need to know f(s, φn(s)), based on the expression
for φn(s) in (11.42):

f(s, φn(s)) = −2sφn(s) (11.45)

= −2s

n∑
k=0

(−1)ks2k

k!
(11.46)

= −2

n∑
k=0

(−1)ks2k+1

k!
(11.47)



97

We can then plug this expression for f(s, φn(s)) into (11.44) to see if it
gives us the expression for φn+1 that we are looking for:

φn+1(t) = 1− 2

n∑
k=0

(−1)k

k!

∫ t

0

s2k+1ds (11.48)

= 1− 2

n∑
k=0

(−1)k

k!

t2k+2

2k + 2
(11.49)

= 1 +

n∑
k=0

(−1)k+1

k!

t2k+2

k + 1
(11.50)

=
−10t(20̇)

0!
+

n∑
k=0

(−1)k+1

(k + 1)!
t2(k+1) (11.51)

The trick now is to change the index on the sum. Let j = k + 1. Then
k = 0 =⇒ j = 1 and k = n =⇒ j = n+ 1. Hence

φn+1(t) =
−10t(20̇)

0!
+

n+1∑
j=1

(−1)j

(j)!
t2j =

n+1∑
j=0

(−1)jt2j

j!
(11.52)

which is identical to (11.43). This means that our hypothesis, given by
equation (11.42), is correct:

φn(t) =

n∑
k=0

(−1)kt2k

k!
(11.53)

Our next question is this: does the series

φ(t) = lim
n→∞

φn(t) =

∞∑
k=0

(−1)kt2k

k!
=

∞∑
k=0

(−t2)k

k!
(11.54)

converge? If the answer is yes, then the integral equation, and hence the
IVP, has a solution given by φ(t). Fortunately equation (11.54) resembles
a Taylor series that we know from calculus:

ex =

∞∑
k=0

xk

k!
(11.55)

Comparing the last two equations we conclude that the series does, in fact,
converge, and that

φ(t) = e−t
2

(11.56)
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Our final step is to verify that the solution found in this way actually works
(because we haven’t actually stated any theorems that say the method
works!). First we observe that

d

dt
φ(t) =

d

dt
e−t

2

= −2te−t
2

= −2tφ(t) (11.57)

which agrees with the first line of equation (11.21). To verify the initial
condition we can calculate

φ(0) = e−(0)2 = 1 (11.58)

as required.



Lesson 12

Existence of Solutions*

In this section we will prove the fundamental existence theorem. We will
defer the proof of the uniqueness until section 13. Since we will prove
the theorem using the method of successive approximations, the following
statement of the fundamental existence theorem is really just a re-wording
of theorem 11.2 with the references to uniqueness and Picard iteration
removed. By proving that the Picard iterations converge to the solution, we
will, in effect, be proving that a solution exists, which is why the reference
to Picard iteration is removed.

Theorem 12.1 (Fundamental Existence Theorem). Suppose that
f(t, y) and ∂f(t, y)/∂y are continuous in some rectangle R defined by

t0 − a ≤ t ≤ t0 + a (12.1)

y0 − b ≤ y ≤ y0 + b (12.2)

Then the initial value problem

dy

dt
= f(t, y)

y(t0) = y0

 (12.3)

has a solution in some interval

t0 − a ≤ t0 − h ≤ t ≤ t0 + h ≤ t0 + a (12.4)

∗Most of the material in this section can be omitted without loss of continuity with
the remainder of the notes. Students should nevertheless familiarize themselves with the
statement of theorem 12.1.
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Results from Calculus and Analysis. We will need to use several results
from Calculus in this section. These are summarized here for review.

• Fundamental Theorem of Calculus.

1.
d

dt

∫ t

a

f(s)ds = f(t)

2.

∫ b

a

d

ds
f(s)ds = f(b)− f(a)

• Boundedness Theorem . Suppose |f | < M and a < b. Then

1.

∫ b

a

f(t)dt ≤M(b− a)

2.

∫ b

a

f(t)dt ≤

∣∣∣∣∣
∫ b

a

f(t)dt

∣∣∣∣∣ ≤
∫ b

a

|f(t)|dt

• Mean Value Theorem . If f(t) is differentiable on [a, b] then there
is some number c ∈ [a, b] such that f(b)− f(a) = f ′(c)(b− a).

• Pointwise Convergence . Let A,B ⊂ R, and suppose that fk(t) :
A → B for k = 0, 1, 2, ... Then the sequence of functions fk,k =
0, 1, 2, ... is said to converge pointwise to f(t) if for every t ∈ A,
lim
k→∞

fk(t) = f(t), and we write this as fk(t)→ f(t).

• Uniform Convergence . The sequence of functions fk,k = 0, 1, 2, ...
is said to converge uniformly to f(t) if for every ε > 0 there exists an
integer N such that for every k > N , |fk(t)− f(t)| < ε for all t ∈ A.
Furthermore, If fk(t) is continuous andfk(t)→ f(t) uniformly, then

1. f(t) is continuous.

2. lim
k→∞

∫ b
a
fk(t)dt =

∫ b
a

lim
k→∞

fk(t)dt =
∫ b
a
f(t)dt

• Pointwise Convergence of a Series. The series
∑∞
k=0 fk(t) is

said to converge pointwise to s(t) if the sequence of partial sums
sn(t) =

∑n
k=0 fk(t) converges pointwise to s(t), and we write this as∑∞

k=0 fk(t) = s(t).

• Uniform convergence of a Series. The series
∑∞
k=0 fk(t) is said

to converge uniformly to s(t) if the sequence of partial sums sn(t) =∑n
k=0 fk(t) converges uniformly to s(t).
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• Interchangeability of Limit and Summation . If
∑∞
k=0 fk(t)

converges uniformly to s(t): lim
t→a

∑∞
k=0 fk(t) =

∑∞
k=0 lim

t→a
fk(t) =∑∞

k=0 f(a) = s(a). In other words, the limit of the sum is the sum of
the limits. 5

Approach The method we will use to prove 12.1 is really a formalization
of the method we used in example 11.1:

1. Since f is continuous in the box R it is defined at every point in R,
hence it must be bounded by some number M . By theorem (12.3), f
is Lipshitz (Definition (12.2)). In Lemma (12.4) use this observation
to show that the Picard iterates exist in R and satisfy

|φk(t)− y0| ≤M |t− t0| (12.5)

2. Defining sn(t) = [φn(t)− φn−1(t)], we will show in Lemma (12.5)
that the sequence φ0, φ1, φ2, . . . converges if and only if the series

S(t) =

∞∑
n=1

sn(t) (12.6)

also converges.

3. Use the Lipshitz condition to prove in Lemma (12.6) that

|sn(t)| = |φn − φn−1| ≤ Kn−1M
(t− t0)n

n!
(12.7)

4. In Lemma (12.7), use equation (12.7) to show that S, defined by
(12.6), converges by comparing it with the Taylor series for an expo-
nential, and hence, in Lemma (12.8), that the sequence φ0, φ1, φ2, . . .
also converges to some function φ = lim

n→∞
φn.

5. In Lemma (12.9), show that φ = lim
n→∞

φn is defined and continuous

on the rectangle R.

6. Show that φ(t) satisfies the initial value problem (12.3),

Assumptions. We will make the following assumptions for the rest of this
section.

1. R is a rectangle of width 2a and height 2b, centered at (t0, y0). Equa-
tions (12.1) and (12.2) follow as a consequence.
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2. f(t, y) is bounded by some number M on a rectangle R, i.e,

|f(t, y)| < M (12.8)

for all t, y in R.

3. f(t, y) is differentiable on R.

4. ∂f/∂y is also bounded by M on R, i.e.,∣∣∣∣∂f(t, y)

∂y

∣∣∣∣ < M (12.9)

5. Define the Picard iterates as φ0(t) = y0 and

φk(t) = y0 +

∫ t

t0

f(s, φk−1(s))ds (12.10)

for all k = 1, 2, . . . .

Definition 12.2. Lipshitz Condition. A function f(t, y) is said to satisfy
a Lipshitz Condition on y in the rectangle R or be Lipshitz in y on R if
there exists some number K > 0, that we will call the Lipshitz Constant,
such that

|f(t, y1)− f(t, y2)| ≤ K|y1 − y2| (12.11)

for all t, y1, y2 in some rectangle R.

Example 12.1. Show that f(t, y) = ty2 is Lipshitz on the square −1 <
t < 1,−1 < y < 1.

We need to find a K such that

|f(t, p)− f(t, q)| ≤ K|p− q| (12.12)

for f(t, y) = ty2, i.e., we need to show

|tp2 − tq2| ≤ K|p− q| (12.13)

But
|tp2 − tq2| = |t(p− q)(p+ q)| (12.14)

so we need to find a K such that

|t(p− q)(p+ q)| ≤ K|p− q| (12.15)

|t||p+ q| ≤ K (12.16)
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But on the square −1 ≤ t ≤ 1,−1 ≤ y ≤ 1,

|t||p+ q| ≤ 1× 2 = 2 (12.17)

So we need to find a K ≥ 2. We can pick any such K, e.g., K = 2. Then
every stop follows as a consequence reading from the bottom (12.16) to the
top (12.13). Hence f is Lipshitz.

Theorem 12.3. Boundedness =⇒ Lipshitz. If f(t, y) is continuously
differentiable and there exists some positive number K such that∣∣∣∣∂f∂y

∣∣∣∣ < K (12.18)

for all y, y ∈ R (for some rectangle R), then f is Lipshitz in y on R with
Lipshitz constant K.

Proof. By the mean value theorem, for any p, q, there is some number c
between p and q such that

∂

∂y
f(t, c) =

f(t, p)− f(t, q)

p− q
(12.19)

By the assumption (12.18),∣∣∣∣f(t, p)− f(t, q)

p− q

∣∣∣∣ < K (12.20)

hence

|f(t, p)− f(t, q)| < K|p− q| (12.21)

for all p, q, which is the definition of Lipshitz. Hence f is Lipshitz.

Example 12.2. Show that f(t, y) = ty2 is Lipshitz in −1 < t < 1,−1 <
y < 1.

Since ∣∣∣∣∂f∂y
∣∣∣∣ = |2ty| ≤ 2× 1 ≤ 1 = 2 (12.22)

on the square, the function is Lipshitz with K = 2.

Lemma 12.4. If f is Lipshitz in y with Lipshitz constant K, then each of
the φi(t) are defined on R and satisfy

|φk(t)− y0| ≤M |t− t0| (12.23)
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Proof. For k = 0, equation says

|φ0(t)− y0| ≤M |t− t0| (12.24)

Since φ0(t) = y0, the left hand side is zero, so the right hands side, being
an absolute value, is ≥ 0.

For k > 0, prove the Lemma inductively. Assume that (12.23) is true and
use this prove that

|φk+1(t)− y0| ≤M |t− t0| (12.25)

From the definition of φk (see equation (12.10)),

φk+1(t) = y0 +

∫ t

t0

f(s, φk(s))ds (12.26)

|φk+1(t)− y0| =
∣∣∣∣∫ t

t0

f(s, φk(s))ds

∣∣∣∣ (12.27)

≤
∫ t

t0

|f(s, φk(s))|ds (12.28)

≤
∫ t

t0

Mds (12.29)

= M |t− t0| (12.30)

which proves equation (12.25).

Lemma 12.5. The sequence φ0, φ1, φ2, . . . converges if and only if the
series

S(t) =

∞∑
k=1

sn(t) (12.31)

also converges, where

sn(t) = [φn(t)− φn−1(t)] (12.32)

Proof.

φn(t) = φ0 + (φ1 − φ0) + (φ2 − φ1) + · · ·+ (φn − φn−1) (12.33)

= φ0 +

n∑
k=1

(φk − φk−1) (12.34)

= φ0 +

n∑
k=1

sn(t) (12.35)
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Thus

lim
n→∞

φn = φ0 + lim
n→∞

n∑
k=1

sn(t) = φ0 +

∞∑
k=1

sn(t) = φ0 + S(t) (12.36)

The left hand side of the equation exists if and only if the right hand side
of the equation exists. Hence limn→∞ φn exists if and only if S(t) exists,
i.e, S(t) converges.

Lemma 12.6. With sn, K, and M as previously defined,

|sn(t)| = |φn − φn−1| ≤ Kn−1M
|t− t0|n

n!
(12.37)

Proof. For n = 1, equation (12.37) says that

|φ1 − φ0| ≤ K0M
|t− t0|1

1!
= M |t− t0| (12.38)

We have already proven that this is true in Lemma (12.4).

For n > 1, prove inductively. Assume that (12.37) is true and then prove
that

|φn+1 − φn| ≤ KnM
|t− t0|n+1

(n+ 1)!
(12.39)

Using the definition of φn and φn+1,

|φn+1 − φn| =
∣∣∣∣y0 +

∫ t

t0

f(s, φn+1(s))ds− y0 −
∫ t

t0

f(s, φn(s))ds

∣∣∣∣ (12.40)

=

∣∣∣∣∫ t

t0

[f(s, φn+1(s))ds− f(s, φn(s))]ds

∣∣∣∣ (12.41)

≤
∫ t

t0

|f(s, φn+1(s))ds− f(s, φn(s))|ds (12.42)

≤
∫ t

t0

K|φn+1(s)− φn(s)|ds (12.43)

where the last step follows because f is Lipshitz in y. Substituting equation
(12.37) gives

|φn+1 − φn| ≤ K
∫ t

t0

Kn−1M
|s− t0|n

n!
ds (12.44)

=
KnM

n!

∫ t

t0

|s− t0|nds (12.45)

=
KnM

n!

|t− t0|n+1

n+ 1
(12.46)
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which is what we wanted to prove (equation (12.39)).

Lemma 12.7. The series S(t) converges.

Proof. By Lemma (12.6)

∞∑
n=1

|φn(t)− φ(t)| ≤
∞∑
n=1

Kn−1M
|t− t0|n

n!
(12.47)

=
M

K

∞∑
n=1

|K(t− t0)|n

n!
(12.48)

=
M

K

( ∞∑
n=0

|K(t− t0)|n

n!
− 1

)
(12.49)

=
M

K

(
eK|t−t0| − 1

)
(12.50)

≤ M

K
eK|t−t0| (12.51)

Since each term in the series for S is absolutely bounded by the correspond-
ing term in the power series for the exponential, the series S converges
absolutely, hence it converges.

Lemma 12.8. The sequence φ0, φ1, φ2, . . . converges to some limit φ(t).

Proof. Since the series for S(t) converges, then by Lemma (12.5), the se-
quence φ0, φ1, . . . converges to some function φ(t).

Lemma 12.9. φ(t) is defined and continous on R.

Proof. For any s, t,

|φn(s)− φn(t)| =
∣∣∣∣∫ s

t0

f(x, φn(x))dx−
∫ t

t0

f(x, φn(x))dx

∣∣∣∣ (12.52)

=

∣∣∣∣∫ s

t

f(x, φn(s))dx

∣∣∣∣ (12.53)

≤
∣∣∣∣∫ s

t

Mdx

∣∣∣∣ (12.54)

= M |s− t| (12.55)

Hence taking the limit,

lim
n→∞

|φn(s)− φn(t)| ≤M |s− t| (12.56)
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because the right hand side does not depend on n. But since φn → φ, the
left hand side becomes |φ(s)− φ(t)|, i.e,

|φ(s)− φ(t)| ≤M |s− t| (12.57)

To show that φ(t) is continuous we need to show that for every ε > 0, there
exists a δ > 0 such that whenever |s− t| < δ, then |φ(s)− φ(t)| < ε.

Let ε > 0 be given and define δ = ε/M . Then

|s− t| < δ =⇒ |φ(s)− φ(t)| ≤M |s− t| ≤Mδ = ε (12.58)

as required. Hence φ(t) is continuous.

Proof of the Fundamental Existence Theorem (theorem (12.1)). We
have already shown that the sequence φn → φ converges to a continuous
function on R. To prove the existence theorem we need only to show that
φ satisfies the initial value problem (12.3), or equivalently, the integral
equation

φ(t) = y0 +

∫ t

t0

f(s, φ(s))ds (12.59)

Let us define the function

F (t) = y0 +

∫ t

t0

f(s, φ(s))ds (12.60)

Since F (t0) = y0, F satisfies the initial condition, and since

F ′(t) = f(t, φ(t)) = φ′(t) (12.61)

F also satisfies the differential equation. If we can show that F (t) = φ(t)
then we have shown that φ solves the IVP.

We consider the difference

|F (t)− φn+1(t)| =
∣∣∣∣y0 +

∫ t

t0

f(s, φ(s))ds− y0 −
∫ t

t0

f(s, φn(s))ds

∣∣∣∣ (12.62)

=

∣∣∣∣∫ t

t0

(f(s, φ(s))− f(s, φn(s))) ds

∣∣∣∣ (12.63)

≤
∫ t

t0

|f(s, φ(s))− f(s, φn(s))| ds (12.64)

≤ K
∫ t

t0

|φ(s)− φn(s)| ds (12.65)
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where the last step follows from the Lipshitz condition. Taking limits

lim
n→∞

|F (t)− φn+1(t)| ≤ lim
n→∞

K

∫ t

t0

|φ(s)− φn(s)| ds (12.66)

But since φn → φ,

|F (t)− φ(t)| ≤ K
∫ t

t0

∣∣φ(s)− φ(s)
∣∣ ds = 0 (12.67)

Since the left hand side is an absolute value it must also be greater then or
equal to zero:

0 ≤ |F (t)− φ(t)| ≤ 0 (12.68)

Hence
|F (t)− φ(t)| = 0 =⇒ F (t) = φ(t) (12.69)

Thus φ satisfies the initial value problem.



Lesson 13

Uniqueness of Solutions*

Theorem 13.1. Uniqueness of Solutions. Suppose that y = φ(t) is a
solution to the initial value problem

y′(t) = f(t, y)

y′(0) = t0

}
(13.1)

where f(t, y) and ∂f(t, y)/∂y are continuous on a box R defined by

t0 − a ≤ t ≤ t0 + a (13.2)

y0 − b ≤ y ≤ y0 + b (13.3)

The the solution y = φ(t) is unique, i.e., if there is any other solution
y = ψ(t) then φ(t) = ψ(t) for all t ∈ R.

The following example illustrates how a solution might not be unique.

Example 13.1. There is no unique solution to the initial value problem

y′(t) =
√
y

y(1) = 1

}
(13.4)

Of course we can find a solution - the variables are easily separated,∫
y−1/2dy =

∫
dt (13.5)

2y1/2 = t+ C (13.6)

y =
1

4
(t+ C)2 (13.7)
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From the initial condition,

1 =
1

4
(1 + C)2 (13.8)

When we solve for C we get two possible values:

(1 + C)2 = 4 (13.9)

1 + C = ±
√

4 = ±2 (13.10)

C = ±2− 1 = 1 or − 3 (13.11)

Using these in equation (13.7) gives two possible solutions:

y1 =
1

4
(t+ 1)2 (13.12)

y2 =
1

4
(t− 3)2 (13.13)

It is easily verified that both of these satisfy the initial value problem. In
fact, there are other solutions that also satisfy the initial value problem,
that we cannot obtain by the straightforward method of integration given
above. For example, if a < −1 then

ya =


1

4
(t− a)2, t ≤ a

0, a ≤ t ≤ −1
1

4
(t+ 1)2, t ≥ −1

(13.14)

is also a solution (you should verify this by (a) showing that it satisfies the
initial condition; (b) differentiating each piece and showing that it satisfies
the differential equation independently of the other two pieces; and then
showing that (c) the function is continuous at t = a and t = −1.

10 5 0 5 10
0.

0.5

1.

1.5

2.

The different non-unique solutions are illustrated in the figure above; they
all pass through the point (1,1), and hence satisfy the initial condition.
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The proof of theorem (13.1) is similar to the following example.

Example 13.2. Show that the initial value problem

y′(t, y) = ty

y(0) = 1

}
(13.15)

has a unique solution on the interval [−1, 1].

The solution itself is easy to find; the equation is separable.∫
dy

y
=

∫
tdt =⇒ y = Cet

2/2 (13.16)

The initial condition tells us that C = 1, hence y = et
2/2.

The equivalent integral equation to (13.15) is

y(t) = y0 +

∫ t

t0

f(s, y(s))ds (13.17)

Since f(t, y) = ty, t0 = 0, and y0 = 1,

y(t) = 1 +

∫ t

0

sy(s)ds (13.18)

Suppose that z(t) is another solution; then z(t) must also satisfy

z(t) = 1 +

∫ t

0

sz(s)ds (13.19)

To prove that the solution is unique, we need to show that y(t) = z(t)
for all t in the interval [−1, 1]. To do this we will consider their difference
δ(t) = |z(t)− y(t)| and show that is must be zero.

δ(t) = |z(t)− y(t)| (13.20)

=

∣∣∣∣1 +

∫ t

0

sz(s)ds− 1−
∫ t

0

sy(s)ds

∣∣∣∣ (13.21)

=

∣∣∣∣∫ t

0

[sz(s)ds− sy(s)]ds

∣∣∣∣ (13.22)

≤
∫ t

0

|s||z(s)− y(s)|ds (13.23)

≤
∫ t

0

|z(s)− y(s)|ds (13.24)

=

∫ t

0

δ(s)ds (13.25)
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where the next-to-last step follows because inside the integral |s| < 1.

Next, we define a function F (t) such that

F (t) =

∫ t

0

δ(s)ds (13.26)

Since F is an integral of an absolute value,

F (t) ≥ 0 (13.27)

Then

F ′(t) =
d

dt

∫ t

0

δ(s)ds = δ(t) (13.28)

Since by equation (13.25) δ(t) ≤ F (t), we arrive at

F ′(t) = δ(t) ≤ F (t) (13.29)

Therefore

F ′(t)− F (t) ≤ 0 (13.30)

From the product rule,

d

dt

[
e−tF (t)

]
= e−tF ′(t)− e−tF (t) (13.31)

= e−t[F ′(t)− F (t)] (13.32)

≤ 0 (13.33)

Integrating both sides of the equation from 0 to t,∫ t

0

d

dt

[
e−sF (s)ds

]
≤ 0 (13.34)

e−tF (t)− e0F (0) ≤ 0 (Fund. Thm. of Calc.) (13.35)

e−tF (t) ≤ 0 (F (0)=0) (13.36)

F (t) ≤ 0 (divide by the exponential) (13.37)

Now compare equations (13.27) and (13.37); the only consistent conclusion
is that

F (t) = 0 (13.38)

for all t. Thus ∫ t

0

δ(s)ds = 0 (13.39)



113

But δ(t) is an absolute value, so it can never take on a negative value. The
integral is the area under the curve from 0 to t. The only way this area can
be zero is if the

δ(t) = 0 (13.40)

for all t. Hence
z(t) = y(t) (13.41)

for all t. Thus the solution is unique.

Theorem 13.2. Gronwall Inequality. Let f, g be continuous, real func-
tions on some interval [a, b] that satisfy

f(t) ≤ K +

∫ t

a

f(s)g(s)ds (13.42)

for some constant K ≥ 0. Then

f(t) ≤ Kexp

(∫ t

a

g(s)ds

)
(13.43)

Proof. Define the following functions:

F (t) = K +

∫ t

a

f(s)g(s) (13.44)

G(t) =

∫ t

a

g(s)ds (13.45)

Then

F (a) = K (13.46)

G(a) = 0 (13.47)

F ′(t) = f(t)g(t) (13.48)

G′(t) = g(t) (13.49)

By equation (13.42) we are given that

f(t) ≤ F (t) (13.50)

hence from equation (13.48)

F ′(t) = f(t)g(t) ≤ F (t)g(t) = F (t)G′(t) (13.51)

where the last step follows from (13.49). Hence

F ′(t)− F (t)G′(t) ≤ 0 (13.52)
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By the product rule,

d

dt

[
F (t)e−G(t)

]
= F ′(t)e−G(t) − F (t)G′(t)e−G(t) (13.53)

= [F ′(t)− F (t)G′(t)]e−G(t) (13.54)

≤ 0 (13.55)

Integrating the left hand side of (13.53)∫ t

a

d

ds

[
F (s)e−G(s)

]
ds = F (t)e−G(t) − F (a)e−G(a) (13.56)

= F (t)e−G(t) −K (13.57)

Since the integral of a negative function must be negative,

F (t)e−G(t) −K ≤ 0 (13.58)

F (t)e−G(t) ≤ K (13.59)

F (t) ≤ KeG(t) (13.60)

which is equation (13.43).

Proof of Theorem (13.1) Suppose that y and z are two different solutions
of the initial value problem. Then

y(t) = y0 +

∫ t

t0

f(s, y(s))ds (13.61)

z(t) = y0 +

∫ t

t0

f(s, z(s))ds (13.62)

Therefore

|y(t)− z(t)| =
∣∣∣∣∫ t

t0

f(s, y(s))ds −
∫ t

t0

f(s, z(s))ds

∣∣∣∣ (13.63)

=

∣∣∣∣∫ t

t0

[f(s, y(s))− f(s, z(s))]ds

∣∣∣∣ (13.64)

≤
∫ t

t0

|f(s, y(s))− f(s, z(s))|ds (13.65)

Since |∂f/∂y| is continuous on a closed interval it is bounded by some
number M , and hence f is Lipshitz with Lipshitz constant M . Thus

|f(s, y(s))− f(s, z(s)| ≤M |y(s)− z(s)| (13.66)
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Substituting (13.66) into (13.65)

|y(t)− z(t)| ≤M
∫ t

t0

|y(s)− z(s)|ds (13.67)

Let
f(t) = |y(t)− z(t)| (13.68)

Then

f(t) ≤M
∫ t

t0

f(s)ds (13.69)

Then f satisfies the condition for the Gronwall inequality with K = 0 and
g(t) = M , which means

f(t) ≤ K exp

∫ t

a

g(s)ds = 0 (13.70)

Since f(t) is an absolute value it can never be negative so it must be zero.

0 = f(t) = |y(t)− z(t)| (13.71)

for all t. Hence
y(t) = z(t) (13.72)

for all t. Thus any two solutions are identical, i.e, the solution is unique.
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Lesson 14

Review of Linear Algebra

In this section we will recall some concepts from linear algebra class

Definition 14.1. A Euclidean 3-vector v is object with a magnitude
and direction which we will denote by the ordered triple

v = (x, y, z) (14.1)

The magnitude or absolute value or length of the v is denoted by the
postitive square root

v = |v| =
√
x2 + y2 + z2 (14.2)

This definition is motivated by the fact that v is the length of the line
segment from the origin to the point P = (x, y, z) in Euclidean 3-space.

A vector is sometimes represented geometrically by an arrow from the origin
to the point P = (x, y, z), and we will sometimes use the notation (x, y, z)
to refer either to the point P or the vector v from the origin to the point
P . Usually it will be clear from the context which we mean. This works
because of the following theorem.

Definition 14.2. The set of all Euclidean 3-vectors is isomorphic to the
Euclidean 3-space (which we typically refer to as R3).

If you are unfamiliar with the term isomorphic, don’t worry about it; just
take it to mean “in one-to-one correspondence with,” and that will be
sufficient for our purposes.
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Definition 14.3. Let v = (x, y, z) and w = (x′, y′, z′) be Euclidean 3-
vectors. Then the angle between v and w is defined as the angle between
the line segments joining the origin and the points P = (x, y, z) and P ′ =
(x′, y′, z′).

We can define vector addition or vector subtraction by

v + w = (x, y, z) + (x′, y′, z′) = (x+ x′, y + y′, z + z′) (14.3)

where v = (x, y, z) and w = (x′, y′, z′), and scalar multiplcation (multi-
plication by a real number) by

kv = (kx, ky, kz) (14.4)

Theorem 14.4. The set of all Euclidean vectors is closed under vector
addition and scalar multiplication.

Definition 14.5. Let v = (x, y, z),w = (x′, y′, z′) be Euclidean 3-vectors.
Their dot product is defined as

v ·w = xx′ + yy′ + zz′ (14.5)

Theorem 14.6. Let θ be the angle between the line segments from the
origin to the points (x, y, z) and (x′, y′, z′) in Euclidean 3-space. Then

v ·w = |v||w| cos θ (14.6)

Definition 14.7. The standard basis vectors for Euclidean 3-space are
the vectors

i =(1, 0, 0) (14.7)

j =(0, 1, 0) (14.8)

k =(0, 0, 1) (14.9)

Theorem 14.8. Let v = (x, y, z) be any Euclidean 3-vector. Then

v = ix+ jy + kz (14.10)

Definition 14.9. The vectors v1,v2, . . . ,vn are said to be linearly de-
pendent if there exist numbers a1, a2, . . . , an, not all zero, such that

a1v1 + a2v2 + · · ·+ anvn = 0 (14.11)

If no such numbers exist the vectors are said to be linearly independent.
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Definition 14.10. An m×n (or m by n) matrix A is a rectangular array
of number with m rows and n columns. We will denote the number in the
ith row and jth column as aij

A =


a11 a12 · · · a1n

a21 a22 a2n

...
...

am1 am2 · · · amn

 (14.12)

We will sometimes denote the matrix A by [aij ].

The transpose of the matrix A is the matrix obtained by interchanging
the row and column indices,

(AT)ij = aji (14.13)

or
[aij ]

T = [aji] (14.14)

The transpose of an m× n matrix is an n×m matrix. We will sometimes
represent the vector v = (x, y, z) by its 3×1 column-vector representation

v =

xy
z

 (14.15)

or its 1× 3 row-vector representation

vT =
(
x y z

)
(14.16)

Definition 14.11. Matrix Addition is defined between two matrices of
the same size, by adding corresponding elemnts.a11 a12 · · ·

a21 a22 · · ·
...

+

b11 b12 · · ·
b21 b22 · · ·
...

 =

a11 + b11 b22 + b12 · · ·
a21 + b21 a22 + b22 · · ·

...


(14.17)

Matrices that have different sizes cannot be added.

Definition 14.12. A square matrix is any matrix with the same number
of rows as columns. The order of the square matrix is the number of rows
(or columns).

Definition 14.13. Let A be a square matrix. A submatrix of A is the
matrix A with one (or more) rows and/or one (or more) columns deleted.
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Definition 14.14. The determinant of a square matrix is defined as
follows. Let A be a square matrix and let n be the order of A. Then

1. If n = 1 then A = [a] and detA = a.

2. If n ≥ 2 then

detA =
n∑
i=1

aki(−1)i+k det(A′ik) (14.18)

for any k = 1, .., n, where by A′ik we mean the submatrix of A with the
ith row and kth column deleted. (The choice of which k does not matter
because the result will be the same.)

We denote the determinant by the notation

detA =

∣∣∣∣∣∣∣
a11 a12 · · ·
a21 a22 · · ·
...

∣∣∣∣∣∣∣ (14.19)

In particular, ∣∣∣∣a b
c d

∣∣∣∣ = ad− bc (14.20)

and ∣∣∣∣∣∣
A B C
D E F
G H I

∣∣∣∣∣∣ = A

∣∣∣∣E F
H I

∣∣∣∣−B ∣∣∣∣D F
G I

∣∣∣∣+ C

∣∣∣∣D E
G H

∣∣∣∣ (14.21)

Definition 14.15. Let v = (x, y, z) and w = (x′, y′, z′) be Euclidean 3-
vectors. Their cross product is

v ×w =

∣∣∣∣∣∣
i j k
x y z
x′ y′ z

∣∣∣∣∣∣ = (yz′ − y′z)i− (xz′ − x′z)j + (xy′ − x′y)k (14.22)

Theorem 14.16. Let v = (x, y, z) and w = (x′, y′, z′) be Euclidean 3-
vectors, and let θ be the angle between them. Then

|v × v| = |v||w| sin θ (14.23)

Definition 14.17. A square matrix A is said to be singular if detA = 0,
and non-singular if detA 6= 0.

Theorem 14.18. The n columns (or rows) of an n × n square matrix A
are linearly independent if and only if detA 6= 0.
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Definition 14.19. Matrix Multiplication. Let A = [aij ] be an m × r
matrix and let B = [bij ] be an r × n matrix. Then the matrix product is
defined by

[AB]ij =

r∑
k=1

aikbkr = rowi(A) · columnjB (14.24)

i.e., the ijth element of the product is the dot product between the ith row
of A and the jth column of B.

Example 14.1.

(
1 2 3
4 5 6

) 8 9
10 11
12 13

 =

(
(1, 2, 3) · (8, 10, 12) (1, 2, 3) · (9, 11, 13)
(4, 5, 6) · (8, 10, 12) (4, 5, 6) · (9, 11, 13)

)
(14.25)

=

(
64 70
156 169

)
(14.26)

Note that the product of an [n× r] matrix and an [r×m] matrix is always
an [n × m] matrix. The product of an [n × r] matrix and and [s × n] is
undefined unless r = s.

Theorem 14.20. If A and B are both n× n square matrices then

detAB = (detA)(detB) (14.27)

Definition 14.21. Identity Matrix. The n × n matrix I is defined as
the matrix with 1’s in the main diagonal a11, a22, . . . , amm and zeroes
everywhere else.

Theorem 14.22. I is the identity under matrix multiplication. Let A be
any n× n matrix and I the n× n Identity matrix. Then AI = IA = A.

Definition 14.23. A square matrix A is said to be invertible if there
exists a matrix A−1, called the inverse of A, such that

AA−1 = A−1A = I (14.28)

Theorem 14.24. A square matrix is invertible if and only if it is nonsin-
gular, i.,e, detA 6= 0.

Definition 14.25. Let A = [aij ] be any square matrix of order n. Then
the cofactor of aij , denoted by cof aij , is the (−1)i+j detMij where Mij

is the submatrix of A with row i and column j removed.
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Example 14.2. Let

A =

1 2 3
4 5 6
7 8 9

 (14.29)

Then

cof a12 = (−1)1+2

∣∣∣∣4 6
7 9

∣∣∣∣ = (−1)(36− 42) = 6 (14.30)

Definition 14.26. Let A be a square matrix of order n. The Clasical
Adjoint of A, denoted adj A, is the transopose of the matrix that results
when every element of A is replaced by its cofactor.

Example 14.3. Let

A =

1 0 3
4 5 0
0 3 1

 (14.31)

The classical adjoint is

adj A = Transpose (1)[(1)(5)− (0)(3)] (−1)[(4)(1)− (0)(0)] (1)[(4)(3)− (5)(0)]
(−1)[(0)(1)− (3)(3)] (1)[(1)(1)− (3)(0)] (−1)[(1)(3)− (0)(0)]
(1)[(0)(0)− (3)(5)] (−1)[(1)(0)− (3)(4)] (1)[(1)(5)− (0)(4)]


(14.32)

= Transpose

 5 −4 12
9 1 −3
−15 12 5

 =

 5 9 −15
−4 1 12
12 −3 5

 (14.33)

Theorem 14.27. Let A be a non-singular square matrix. Then

A−1 =
1

detA
adj A (14.34)

Example 14.4. Let A be the square matrix defined in equation 14.31.
Then

detA = 1(5− 0)− 0 + 3(12− 0) = 41 (14.35)

Hence

A−1 =
1

41

 5 9 −15
−4 1 12
12 −3 5

 (14.36)
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In practical terms, computation of the determinant is computationally in-
efficient, and there are faster ways to calculate the inverse, such as via
Gaussian Elimination. In fact, determinants and matrix inverses are very
rarely used computationally because there is almost always a better way to
solve the problem, where by better we mean the total number of computa-
tions as measure by number of required multiplications and additions.

Definition 14.28. Let A be a square matrix. Then the eigenvalues of A
are the numbers λ and eigenvectors v such that

Av = λv (14.37)

Definition 14.29. The characteristic equation of a square matrix of
order n is the nth order (or possibly lower order) polynomial

det(A− λI) = 0 (14.38)

Example 14.5. Let A be the square matrix defined in equation 14.31.
Then its characteristic equation is

0 =

∣∣∣∣∣∣
1− λ 0 3

4 5− λ 0
0 3 1− λ

∣∣∣∣∣∣ (14.39)

= (1− λ)(5− λ)(1− λ)− 0 + 3(4)(3) (14.40)

= 41− 11λ+ 7λ2 − λ3 (14.41)

Theorem 14.30. The eigenvalues of a square matrix A are the roots of
its characteristic polynomial.

Example 14.6. Let A be the square matrix defined in equation 14.31.
Then its eigenvalues are the roots of the cubic equation

41− 11λ+ 7λ2 − λ3 = 0 (14.42)

The only real root of this equation is approximately λ ≈ 6.28761. There are
two additional complex roots, λ ≈ 0.356196− 2.52861i and λ ≈ 0.356196 +
2.52861i.

Example 14.7. Let

A =

2 −2 3
1 1 1
1 3 −1

 (14.43)
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Its characteristic equation is

0 =

∣∣∣∣∣∣
2− λ −2 3

1 1− λ 1
1 3 −1− λ

∣∣∣∣∣∣ (14.44)

= (2− λ)[(1− λ)(−1− λ)− 3] + 2[(−1− λ)− 1] (14.45)

+ 3[3− (1− λ)] (14.46)

= (2− λ)(−1 + λ2 − 3) + 2(−2− λ) + 3(2 + λ) (14.47)

= (2− λ)(λ2 − 4)− 2(λ+ 2) + 3(λ+ 2) (14.48)

= (2− λ)(λ+ 2)(λ− 2) + (λ+ 2) (14.49)

= (λ+ 2)[(2− λ)(λ− 2) + 1] (14.50)

= (λ+ 2)(−λ2 + 4λ− 3) (14.51)

= −(λ+ 2)(λ2 − 4λ+ 3) (14.52)

= −(λ+ 2)(λ− 3)(λ− 1) (14.53)

Therefore the eigenvalues are -2, 3, 1. To find the eigenvector corresponding
to -2 we would solve the system of2 −2 3

1 1 1
1 3 −1

xy
z

 = −2

xy
z

 (14.54)

for x, y, z. One way to do this is to multiply out the matrix on the left and
solve the system of three equations in three unknowns:

2x− 2y + 3z = −2x (14.55)

x+ y + z = −2y (14.56)

x+ 3y − z = −2z (14.57)

However, we should observe that the eigenvector is never unique. For ex-
ample, if v is an eigenvector of A with eigenvalue λ then

A(kv) = kAv = kλv (14.58)

i.e., kv is also an eigenvalue of A. So the problem is simplified: we can
try to fix one of the elements of the eigenvalue. Say we try to find an
eigenvector of A corresponding to λ = −2 with y = 1. Then we solve the
system

2x− 2 + 3z = −2x (14.59)

x+ 1 + z = −2 (14.60)

x+ 3− z = −2z (14.61)
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Simplifying

4x− 2 + 3z = 0 (14.62)

x+ 3 + z = 0 (14.63)

x+ 3 + z = 0 (14.64)

The second and third equations are now the same because we have fixed
one of the values. The remaining two equations give two equations in two
unknowns:

4x+ 3z = 2 (14.65)

x+ z = −3 (14.66)

The solution is x = 11, z = −14. Therefore an eigenvalue of A correspond-
ing to λ = −2 is v = (11, 1,−14), as is any constant multiple of this vector.

Definition 14.31. The main diagonal of a square matrix A is the list
(a11, a22, . . . , ann).

Definition 14.32. A diagonal matrix is a square matrix that only has
non-zero entries on the main diagonal.

Theorem 14.33. The eigenvalues of a diagonal matrix are the elements
of the diagonal.

Definition 14.34. An upper (lower) triangular matrix is a square
matrix that only has nonzero entries on or above (below) the main diagonal.

Theorem 14.35. The eigenvalues of an upper (lower) triangular matrix
line on the main diagonal.
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Lesson 15

Linear Operators and
Vector Spaces

Definition 15.1. A Vector Space over R1 is a set V combined with two
operations addition (denoted by x+ y, y, y ∈ V) and scalar2 multiplica-
tion (denoted by c× y or cy, x ∈ R, y ∈ V ). with the following properties:

1. Closure under Addition and Scalar Multiplication

y, z ∈ V =⇒ y + z ∈ V
t ∈ R, y ∈ V =⇒ ty ∈ V

(15.1)

2. Commutativity of Addition

y, z ∈ V =⇒ y + z = z + y (15.2)

3. Associativity of Addition and Scalar Multiplication

w, y, z ∈ V =⇒ (w + y) + z = w + (y + z)

a, b ∈ R, y ∈ V =⇒ (ab)y = a(by)
(15.3)

4. Additive Identity. There exists a 0 ∈ V such that

y ∈ V =⇒ y + 0 = 0 + y = y (15.4)

1This definition generalizes with R replaced by any field.
2A scalar is any real number or any real variable.
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5. Additive Inverse. For each y ∈ V there exists a −y ∈ V such that

y + (−y) = (−y) + y = 0 (15.5)

6. Multiplicative Identity. For every y ∈ V,

1× y = y × 1 = y (15.6)

7. Distributive Property. For every a, b ∈ R and every y, z ∈ V,

a(y + z) = ay + az

(a+ b)y = ay + by
(15.7)

Example 15.1. The usual Euclidean 3D space forms a vector space, where
each vector is a triple of numbers corresponding to the coordinates of a point

v = (x, y, z) (15.8)

If w = (p, q, r) then addition of vectors is defined as

v + w = (x+ p, y + q, r + z) (15.9)

and scalar multiplication is given by

av = (ax, ay, az) (15.10)

You should verify that all seven properties hold.

We are particularly interested in the following vector space.

Example 15.2. Let V be the set of all functions y(t) defined on the real
numbers. Then V is a vector space under the usual definitions of addition
of functions and multiplication by real numbers. For example, if f and g
are functions in V then

h(t) = f(t) + g(t) (15.11)

is also in V, and if c is a real number, then

p(t) = cf(t) (15.12)

is also in V. To see that the distributive property holds, observe that

a(f(t) + g(t)) = af(t) + bg(t) (15.13)

(a+ b)f(t) = af(t) + bft(t) (15.14)

You should verify that each of the other six properties hold.
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Example 15.3. By a similar argument as in the previous problem, the set
of all functions

f(t) : Rn → Rm (15.15)

is also a vector space, using the usual definitions of function addition and
multiplication by a constant.

Definition 15.2. Let V be a vector space. Then a norm on V is any
function ‖y‖ : V → R (i.e., it maps every vector y in V to a real number
called ‖y‖) such that

1. ‖y‖ ≥ 0 and ‖y‖ = 0 ⇐⇒ y = 0.

2. ‖cy‖ = |c|‖y‖ for any real number c, vector y.

3. ‖y + z‖ ≤ ‖y‖+ ‖z‖ for any vectors y, z. (Triangle Inequality)

A normed vector space is a vector space with a norm defined on it.

Example 15.4. In the usual Euclidean vector space, the 2-norm, given by

‖v‖ =
√
x2 + y2 + z2 (15.16)

where the positive square root is used. You probably used this norm in
Math 280.

Example 15.5. Another norm that also works in Euclidean space is called
the sup-norm, defined by

‖v‖∞ = max(|x|, |y|, |z|) (15.17)

Checking each of the three properties:

1. ‖v‖∞ is an absolute value, so it cannot be negative. It can only be
zero if each of the three components x = y = z = 0, in which case
v = (0, 0, 0) is the zero vector.

2. This follows because

‖cv‖∞ = ‖c(x, y, z)‖∞ (15.18)

= ‖(cx, cy, cz))‖∞ (15.19)

= max(|cx|, |cy|, |cz|) (15.20)

= |c|max(|x|, |y|, |z|) (15.21)

= |c|‖v‖∞ (15.22)
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3. The triangle follows from the properties of real numbers,

‖v + w‖∞ = ‖(x+ p, y + q, z + r)‖ (15.23)

= max(|x+ p|, |y + q|, |z + r|) (15.24)

≤ max(|x|+ |p|, |y|+ |q|, |z|+ |r|) (15.25)

because |x+ p| ≤ |x|+ |p|, etc.Hence

‖v + w‖∞ ≤ max(|x|, |y|, |z|) + max(|p|, |q|, |r|) (15.26)

= ‖v‖∞ + ‖w‖∞ (15.27)

Thus ‖v‖∞ is a norm.

Example 15.6. Let V be the set of all functions y(t) defined on the interval
0 ≤ t ≤ 1. Then

‖y‖ =

(∫ 1

0

|y(t)|2dt
)1/2

(15.28)

is a norm on V.

The first property follows because the integral of an absolute value is a
positive number (the area under the curve) unless y(t) = 0 for all t, in
which case the area is zero.

The second property follows because

‖cy‖ =

(∫ 1

0

|cy(t)|2dt
)1/2

= |c|
(∫ 1

0

|y(t)|2dt
)1/2

= |c|‖y‖ (15.29)

The third property follows because

‖y + z‖2 =

∫ 1

0

|y(t) + z(t)|2dt (15.30)

=

∫ 1

0

|y(t)2 + 2y(t)z(t) + z(t)2|dt (15.31)

≤
∫ 1

0

|y(t)|2dt+ 2

∫ 1

0

|y(t)||z(t)|dt+

∫ 1

0

|z(t)|2dt (15.32)

By the Cauchy Schwarz Inequality3∣∣∣∣∫ 1

0

y(t)z(t)dt

∣∣∣∣2 ≤ (∫ 1

0

|y(t)|2dt
)(∫ 1

0

|z(t)|2dt
)

= ‖y‖2‖z‖2 (15.33)

3The Cauchy-Schwarz inequality is a property of integrals that says exactly this for-
mula.
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Therefore

‖y + z‖2 ≤ ‖y‖2 + 2‖y‖‖z‖+ ‖z‖2 = (‖y‖+ ‖z‖)2 (15.34)

Taking square roots of both sides gives the third property of norms.

Example 15.7. Let V be the vector space consisting of integrable functions
on an interval (a, b), and let f ∈ V. Then the sup-norm defined by

‖f‖∞ = sup{|f(t)| : t ∈ (a, b)} (15.35)

is a norm.

The first property follows because it is an absolute value. The only way
the supremum of a non-negative function can be zero is if the function is
identically zero.

The second property follows because sup |cf(t)| = |c| sup |f(t)|
The third property follows from the triangle inequality for real numbers:

|f(t) + g(t)| ≤ |f(t)|+ |f(t)| (15.36)

Hence

‖f + g‖ = sup |f(t)+g(t)| ≤ sup |f(t)|+sup |f(t)| = ‖f‖+‖g‖ (15.37)

Definition 15.3. A Linear Operator is a function L : V 7→ V whose do-
main and range are both the same vector space, and which has the following
properties:

1. Additivity. For all vectors y, z ∈ V,

L(y + z) = L(y) + L(z) (15.38)

2. Homogeneity. For all numbers a and for all vectors y ∈ V,

L(ay) = aL(y) (15.39)

These two properties are sometimes written as

L(ay + bz) = aL(y) + bL(z) (15.40)

It is common practice to omit the parenthesis when discussing linear oper-
ators.
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Definition 15.4. If y, z are both elements of a vector space V, and A and
B are any numbers, we call

w = Ay +Bz (15.41)

a Linear Combination of y and z

Example 15.8. If v = (1, 0, 3) and w = (5,−3, 12) are vectors in Euclidean
3 space, then for any numbers A and B,

u = Av +Bw = A(1, 0, 3) +B(5,−3, 12) = (A+ 5B,−3B, 3A+ 12B)
(15.42)

is a linear combination of v and w.

The closure property of vector spaces is sometimes stated as following: Any
linear combination of vectors is an element of the same vector
space. For example, we can create linear combinations of functions and
we know that they are also in the same vector space.

Example 15.9. Let f(t) = 3 sin t, g(t) = t2− 4t be functions in the vector
space V of real valued functions. Then if A and B are any real numbers,

h(t) = Af(t) +Bg(t) (15.43)

= A sin t+B(t2 − 4t) (15.44)

is a linear combination of the functions f and g. Since V is a vector space,
h is also in V.

Example 15.10. Let V be the vector space consisting of real functions on
the real numbers. Then differentiation, defined by

D(y) =
dy(t)

dt
(15.45)

is a linear operator. To see that both properties hold let y(t) and z(t) be
functions (e.g., y, z ∈ V) and let c be a constant. Then

D(y + z) =
d(y(t) + z(t)

dt
=
dy(t)

dt
+
dz(t)

dt
= D(y) +D(z) (15.46)

D(cy) =
d(cy(t)

dt
= c

dy(t)

dt
= cD(y) (15.47)

Hence D is a linear operator.
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Definition 15.5. Two vectors y, z are called linearly dependent if there
exists nonzero constants A, B such that

Ay +Bz = 0 (15.48)

If no such A and B exist, then we say that y and z are Linearly Inde-
pendent.

In Euclidean 3D space, linearly dependent vectors are parallel, and lin-
early independent vectors can be extended into lines that will eventually
intersect.

Since we can define a vector space of functions, the following also definition
makes sense.

Definition 15.6. We say that two functions f and g are linearly depen-
dent if there exist some nonzero constants such that

Af(t) +Bg(t) = 0 (15.49)

for all values of t. If no such constants exists then we say that f and g
are linearly independent.
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Lesson 16

Linear Equations With
Constant Coefficients

Definition 16.1. The general second order linear equation with con-
stant coefficients is

ay′′ + by′ + cy = f(t) (16.1)

where a, b, and c are constants, and a 6= 0 (otherwise (16.1) reduces to
a linear first order equation, which we have already covered), and f(t)
depends only on t and not on y.

Definition 16.2. The Linear Differential Operator corresponding to
equation (16.1)

L = aD2 + bD + c (16.2)

where

D =
d

dt
and D2 =

d2

dt2
(16.3)

is the same operator we introduced in example (15.10). We can also write
L as

L = a
d2

dt2
+ b

d

dt
+ c (16.4)

In terms of the operator L, equation (16.1) becomes

Ly = f(t) (16.5)

135



136 LESSON 16. LINEAR EQS. W/ CONST. COEFFICENTS

Example 16.1. Show that L is a linear operator.

Recall from definition (15.3) we need to show the following to demonstrate
that L is linear

L(αy + βz) = αLy + βLz (16.6)

where α and β are constants and y(t) and z(t) are functions. But

L(αy + βz) = (aD2 + bD + c)(αy + βz) (16.7)

= aD2(αy + βz) + bD(αy + βz) + c(αy + βz) (16.8)

= a(αy + βz)′′ + b(αy + βz)′ + c(αy + βz) (16.9)

= a(αy′′ + βz′′) + b(αy′ + βz′) + c(αy + βz) (16.10)

= α(ay′′ + by′ + cy) + β(az′′ + bz′ + cz) (16.11)

= αLy + βLz (16.12)

Definition 16.3. The characteristic polynomial corresponding to char-
acteristic polynomial (16.1) is

ar2 + br + c = 0 (16.13)

Equation (16.13) is also called the characteristic equation of the differ-
ential equation.

The following example illustrates why the characteristic equation is useful.

Example 16.2. For what values of r does y = ert satisfy the differential
equation

y′′ − 4y′ + 3y = 0 (16.14)

Differentiating y = ert,

y′ = rert (16.15)

y′′ = r2ert (16.16)

Plugging both expressions into (16.14),

r2ert − 4rert + 3ert = 0 (16.17)

Since ert can never equal zero we can cancel it out of every term,

r2 − 4r + 3 = 0 (16.18)

Equation (16.18) is the characteristic equation of (16.14). Factoring it,

(r − 3)(r − 1) = 0 (16.19)



137

Hence both r = 1 and r = 3. This tells us each of the following functions
are solutions of (16.14):

y = et (16.20)

y = e3t (16.21)

We will see shortly how to combine these to get a more general solution.

We can generalize the last example as follows.

Theorem 16.4. If r is a root of the characteristic equation of Ly = 0,
then ert is a solution of Ly = 0.

Proof.

L[ert] = a(ert)′′ + b(ert)′ + c(ert) (16.22)

= ar2ert + brert + cert (16.23)

= (ar2 + br + c)ert (16.24)

Since r is a root of the characteristic equation,

ar2 + br + c = 0 (16.25)

Hence
L[ert] = 0 (16.26)

Thus y = ert is a solution of Ly = 0.

Theorem 16.5. If the characteristic polynomial has a repeated root r,
then y = tert is a solution of Ly = 0.

Proof.

L(tert) = a(tert)′′ + b(tert)′ + c(tert) (16.27)

= a(ert + rtert)′ + b(ert + rtert) + ctert (16.28)

= a(2rert + r2tert) + b(ert + rtert) + ctert (16.29)

= ert(2ar + b+ (ar2 + br + c)t) (16.30)

Since r is a root, r2 + br + c = 0. Hence

L(tert) = ert(2ar + b) (16.31)

Since r is root, from the quadratic equation,

r =
−b±

√
b2 − 4ac

2a
(16.32)
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When a root is repeated, the square root is zero, hence

r = − b

2a
(16.33)

Rearranging gives

2ar + b = 0 (16.34)

whenever r is a repeated root. Substituting equation (16.34) into equation
(16.31) gives L(tert) = 0.

Example 16.3. We can use theorem (16.4) to find two solutions of the
homogeneous linear differential equation

y′′ − 7y′ + 12y = 0 (16.35)

The characteristic equation is

r2 − 7r + 12 = 0 (16.36)

Factoring gives

(r − 3)(r − 4) = 0 (16.37)

Since the roots are r = 3 and r = 4, two solutions of the differential equation
(16.35) are

yH1 = e3t (16.38)

yH2 = e4t (16.39)

Thus for any real numbers A and B,

y = Ae3t +Be4t (16.40)

is also a solution.

Because equation (16.14) involves a second-order derivative the solution
will in general include two constants of integration rather than the single
arbitrary constant that we had when we were solving first order equations.
These initial conditions are expressed as the values of both the function
and its derivative at the same point, e.g.,

y(t0) = y0

y′(t0) = y1

}
(16.41)
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The second order linear initial value problem is then

Ly = 0

y(t0) = y0

y′(t0) = y1

 (16.42)

This is not the only way to express the constraints upon the solution. It
is also possible to have boundary conditions, of which several types are
possible:

y(t0) = y0, y(t1) = y1 (Dirichlet Boundary Conditions) (16.43)

y(t0) = y0, y
′(t1) = y1 (Mixed Boundary Condition) (16.44)

y′(t0) = y0, y
′(t1) = y1 (Neumann Boundary Conditions) (16.45)

Differential equations combined with boundary conditions are called Bound-
ary Value Problems. Boundary Value Problems are considerably more
complex than Initial Value Problems and we will not study them in this
class.

Definition 16.6. The homogeneous linear second order differential
equation with constant coefficients is written as

ay′′ + by′ + cy = 0 (16.46)

or
Ly = 0 (16.47)

We will denote a solution to the homogeneous equations as yH(t) to distin-
guish it from a solution of

ay′′ + by′ + cy = f(t) (16.48)

If there are multiple solutions to the homogeneous equation we will num-
ber them yH1, yH2, .... We will call any solution of (16.48) a particular
solution and denote it as yP (t). If there are multiple particular solutions
we will also number them if we need to.

Theorem 16.7. If yH(t) is a solution to

ay′′ + by′ + cy = 0 (16.49)

and yP (t) is a solution to

ay′′ + by′ + cy = f(t) (16.50)

then
y = yH(t) + yP (t) (16.51)

is also a solution to (16.50).



140 LESSON 16. LINEAR EQS. W/ CONST. COEFFICENTS

Proof. We are give LyH = 0 and LyP = f(t). Hence

Ly = L(yH + yP ) = LyH + LyP = 0 + f(t) = f(t) (16.52)

Hence y = hH + yP is a solution.

General Principal. The general solution to

Ly = ay′′ + by′ + cy = f(t) (16.53)

is the sum of a homogeneous and a particular part:

y = yH(t) + yP (t) (16.54)

where LyH = 0 and LyP = f(t).

Theorem 16.8. Principle of Superposition If yH1(t) and yH2(t) are
both solutions of Ly = 0, then any linear combination

yH(t) = AyH1(t) +ByH2(t) (16.55)

is also a solution ofLy = 0.

Proof. Since yH1(t) and yH2(t) are solutions,

LyH1 = 0 = LyH2 (16.56)

Since L is a linear operator,

LyH = L[AyH1 +ByH2] (16.57)

= ALyH1 +BLyH2 (16.58)

= 0 (16.59)

Hence any linear combination of solutions to the homogeneous equation is
also a solution of the homogeneous equation.

General Solution of the Homogeneous Equation with Constant
Coefficients. From theorem (16.4) we know that ert is a solution of Ly = 0
whenever r is a root of the characteristic equation. If r is a repeated root,
we also know from theorem (16.5) that tert is also a solution. Thus we
can always find two solutions to the homogeneous equation with constant
coefficients by finding the roots of the characteristic equation. In general
these are sufficient to specify the complete solution.
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The general solution to
ay′′ + by′ + cy = 0 (16.60)

is given by

y =

{
Aer1t +Ber2t r1 6= r2 (distinct roots)

(A+Bt)ert r = r1 = r2 (repeated root)
(16.61)

where r1 and r2 are roots of the characteristic equation ar2 + br + c = 0.

Example 16.4. Solve the initial value problem

y′′ − 6y′ + 8y = 0

y(0) = 1

y′(0) = 1

 (16.62)

The characteristic equation is

0 = r2 − 6r + 8 = (r − 4)(r − 2) (16.63)

The roots are r = 2 and r = 4, hence

y = Ae2t +Be4t (16.64)

From the first initial condition,

1 = A+B (16.65)

Differentiating (16.64)
y′ = 2Ae2t + 4Be4t (16.66)

From the second initial condition

1 = 2A+ 4B (16.67)

From (16.65), B = 1−A, hence

1 = 2A+ 4(1−A) = 4− 2A =⇒ 2A = 3 =⇒ A =
3

2
(16.68)

hence

B = 1−A = 1− 3

2
= −1

2
(16.69)

The solution to the IVP is

y =
3

2
e2t − 1

2
e4t (16.70)
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Example 16.5. Solve the initial value problem

y′′ − 6y′ + 9y = 0

y(0) = 4

y′(0) = 17

 (16.71)

The characteristic equation is

0 = r2 − 6r + 9 = (r − 3)2 (16.72)

Since there is a repeated root r = 3, the general solution of the homogeneous
equation is

y = Ae3t +Bte3t (16.73)

By the first initial condition, we have 4 = y(0) = A.Hence

y = 4e3t +Bte3t (16.74)

Differentiating,
y′ = 12e3t +Beet + 3Bte3t (16.75)

From the second initial condition,

17 = y′(0) = 12 +B + 3B = 12 +B =⇒ B = 5 (16.76)

Hence the solution of the initial value problem is

y = (4 + 5t)e3t. (16.77)



Lesson 17

Some Special
Substitutions

Equations with no y dependence.

If c = 0 in L then the differential equation

Ly = f(t) (17.1)

simplifies to
ay′′ + by′ = f(t) (17.2)

In this case it is possible to solve the equation by making the change of
variables z = y′, which reduces the ODE to a first order linear equation
in z. This works even when a or b have t dependence. This method is
illustrated in the following example.

Example 17.1. Find the general solution of the homogeneous linear equa-
tion

y′′ + 6y′ = 0 (17.3)

Making the substitution z = y′ in (17.3) gives us

z′ + 6z = 0 (17.4)

Separating variables and integrating gives∫
dz

z
= −

∫
6dt =⇒ z = Ce−6t (17.5)

143
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Replacing z with its original value of z = y′,

dy

dt
= Ce−6t (17.6)

Hence

y =

∫
dy

dt
dt (17.7)

=

∫
Ce−6tdt = (17.8)

= −1

6
Ce−6t + C ′ (17.9)

Since −C/6 is still a constant we can rename it C ′′ = −C/6, then rename
C ′′ back to C, giving us

y = Ce−6t + C ′ (17.10)

Example 17.2. Find the general solution o

y′′ + 6y′ = t (17.11)

We already have solved the homogeneous problem y′′+ 6y′ = 0 in example
(17.1). From that we expect that

y = YP + YH (17.12)

where
YH = Ce−6t + C ′ (17.13)

To see what we get if we substitute z = y′ into (17.11) and obtain the first
order linear equation

z′ + 6z = t (17.14)

An integrating factor is µ = exp
(∫

6dt
)

= e6t, so that

d

dt

(
ze6t

)
= (z′ + 6t) e6t = te6t (17.15)

Integrating, ∫
d

dt

(
ze6t

)
dt =

∫
te6tdt (17.16)

ze6t =
1

36
(6t− 1)e6t + C (17.17)

z =
1

6
t− 1

36
+ Ce−6t (17.18)
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Therefore since z = y′,

dy

dt
=

1

6
t− 1

36
+ Ce−6t (17.19)

Integrating gives

y =
1

12
t2 − 1

36
t− 1

6
Ce−6t + C ′ (17.20)

It is customary to combine the (−1/6)C into a single unknown constant,
which we again name C,

y =
1

12
t2 − 1

36
t+ Ce−6t + C ′ (17.21)

Comparing this with (17.12) and (17.13) we see that a particular solution
is

yP =
1

12
t2 − 1

36
(17.22)

This method also works when b(t) has t dependence.

Example 17.3. Solve
y′′ + 2ty′ = t

y(0) = 1

y′(0) = 0

 (17.23)

Substituting z = y′ gives
z′ + 2tz = t (17.24)

An integrating factor is exp
(∫

2tdt
)

= et
2

. Hence

d

dt

(
zet

2
)

= tet
2

(17.25)

zet
2

=

∫
tet

2

dt+ C =
1

2
et

2

+ C (17.26)

z =
1

2
+ Ce−t

2

(17.27)

From the initial condition y′(0) = z(0) = 0, C = −1/2, hence

dy

dt
=

1

2
− 1

2
e−t

2

(17.28)

Changing the variable from t to s and integrating from t = 0 to t gives∫ t

0

dy

ds
ds =

∫ t

0

1

2
ds− 1

2

∫ t

0

e−s
2

ds (17.29)
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From (4.91), ∫ t

0

e−s
2

ds =

√
π

2
erf(t) (17.30)

hence

y(t)− y(0) =
t

2
−
√
π

4
erf(t) (17.31)

From the initial condition y(0) = 1,

y(t) = 1 +
t

2
−
√
π

4
erf(t) (17.32)

] This method also works for nonlinear equations.

Example 17.4. Solve y′′ + t(y′)2 = 0

Let z = y′, then z′ = y′′, hence z′ + tz2 = 0. Separating variables,

dz

dt
= −tz2 (17.33)

z−2dz = −tdt (17.34)

1

z
+ C1 = −1

2
t2 (17.35)

Solving for z,
dy

dt
= z =

−1

t2/2 + C1
=

−2

t2 + C2
(17.36)

where C2 = 2C1 hence

y = −2 arctan
t

k
+ C (17.37)

where k =
√
C2 and C are arbitrary constants of integration.

Equations with no t dependence

If there is no t-dependence in a linear ODE we have

Ly = ay′′ + by′ + cy = 0 (17.38)

This is a homogeneous differential equation with constant coefficients and
reduces to a case already solved.

If the equation is nonlinear we can make the same substitution
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Example 17.5. Solve yy′′ + (y′)2 = 0.

Making the substitution z = y′ and y′′ = z′ gives

zz′ + z2 = 0 (17.39)

We can factor out a z,
z(z′ + z) = 0 (17.40)

hence either z = 0 or z′ = −z. The first choice gives

dy

dt
= 0 =⇒ y1 = C (17.41)

as a possible solution. The second choice gives

dz

z
= −dt =⇒ ln z = −t+ k =⇒ z = Ke−t (17.42)

where K = e−k is a constant. Hence

dy

dt
= Ke−t =⇒ dy = Ke−tdt (17.43)

y = −Ke−t +K1 (17.44)

where K1 is a second constant of integration. If we let K0 = −K then this
solution becomes

y2 = K0e
−t +K1 (17.45)

Since we cannot distinguish between the two arbitrary constants K1 in the
second solution and C in the first, we see that the first solution is actually
found as part of the second solution. Hence (17.45) gives the most general
solution.

Factoring a Linear ODE

The D operator introduced in example (15.10) will be quite useful in study-
ing higher order linear differential equations. We will usually write it as a
symbol to the left of a function, as in

Dy =
dy

dt
(17.46)

where D is interpreted as an operator, i.e., D does something to whatever
is written to the right of it. The proper analogy is like a matrix: think of
D as an n × n matrix and y as a column vector of length n (or an n × 1
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matrix). Then we are allowed to multiply D by y on the right, to gives us
another function. Like the matrix an vector, we are not allowed to reverse
the order of the D and whatever it operates on. Some authors write D[y],
D(y), Dty, or ∂ty instead of Dy.

Before we begin our study of higher order equations, we will look at what
the D operator represents in terms of linear first order equations. While
it doesn’t really add anything to our understanding of linear first order
equations, looking at how it can be used to describe these equations will
help us to understand its use in higher order linear equations.

We begin by rewriting the first order linear differential equation

dy

dt
+ p(t)y = q(t) (17.47)

as
Dy + p(t)y = q(t) (17.48)

The trick here is to think like matrix multiplication: we are still allowed
the distributive law, so we can factor out the y on the left hand side, but
only on the right. In other words, we can say that

[D + p(t)]y = q(t) (17.49)

Note that we cannot factor out the y on the left, because

Dy 6= yD (17.50)

so it would be incorrect to say anything like

y(D + p(t)) = q(t) (17.51)

In fact, anytime you see a D that is not multiplying something on its right,
that should ring a bell telling you that something is wrong and you have
made a calculation error some place.

Continuing with equation 17.49 we can now reformulate the general initial
value problem as

[D + p(t)]y = q(t)

y(t0) = y0

}
(17.52)

The D operator has some useful properites. In fact, thinking in terms of
matrices, it would be nice if we could find an expression for the inverse of
D so that we could solve for y. If M is a matrix then its inverse M−1 has
the property that

MM−1 = M−1M = I (17.53)
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where I is the identity matrix.

Since the inverse of the derivative is the integral, then for any function f(t),

D−1f(t) =

∫
f(t)dt+ C (17.54)

Hence

DD−1f(t) = D

(∫
f(t) + C

)
= f(t) (17.55)

and

D−1Df(t) =

∫
Df(t)dt+ C = f(t) + C (17.56)

We write the general linear first order initial value problem in terms of the
linear differential operator D = d/dt as

[D + p(t)] y = q(t), y(t0) = y0 (17.57)

From the basic properties of derivatives,

Def(t) =
d

dt
ef(t) = ef(t) d

dt
f(t) = ef(t)Df(t) (17.58)

From the product rule,

Df(t)g(g) = f(t)Dg(t) + g(t)Df(t) (17.59)

Hence

D(ef(t)y) = ef(t)Dy + yDef(t) (17.60)

= ef(t)Dy + yef(t)Df(t) (17.61)

= ef(t) (Dy + yDf(t)) (17.62)

If we let

f(t) =

∫
p(t)dt = D−1p(t)dt (17.63)

then (using our previous definition of µ),

ef(t) = exp

(∫
p(t)dt

)
= µ(t) (17.64)
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hence

D(ef(t)y) = ef(t)(Dy + yDD−1p(t)) (17.65)

= ef(t)(Dy + yp(t)) (17.66)

= ef(t)(D + p(t))y (17.67)

D(µ(t)y) = µ(t)(D + p(t))y (17.68)

= µ(t)q(t) (17.69)

Applying D−1 to both sides,

D−1D(µ(t)y) = D−1(µ(t)q(t)) (17.70)

The D−1 and D are only allowed to annihilate one another if we add a
constant of integration (equation 17.56)

µ(t)y = D−1(µ(t)q(t)) + C (17.71)

or

y =
1

µ

(
D−1µq + C

)
(17.72)

which is the same result we had before (see equation 4.18):

y =
1

µ(t)

(∫
µ(t)q(t)dt+ C

)
(17.73)

This formalism hasn’t really given us anything new for a general linear
equation yet. When the function p is a constant, however, it does give us
a useful way to look at things.

Suppose that
p(t) = A (17.74)

where A is an constant. Then the differential equation is

(D +A)y = q(t) (17.75)

This will become useful when we solve higher order linear equations with
constant coefficients because they can be factored:

(D +A)(D +B)y = D2y + (A+B)Dy +ABy (17.76)

Thus any equation of the form

y′′ + ay′ + by = q(t) (17.77)
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can be rewritten by solving

a = A+B (17.78)

b = AB (17.79)

for A and B. Then the second order equation is reduced to a sequence of
first order equations

(D +A)z = q(t) (17.80)

(D +B)y = z(t) (17.81)

One first solves the first equation for z then plugs the solution into the
second equation to solve for y.
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Lesson 18

Complex Roots

We know form algebra that the roots of the characteristic equation

ar2 + br + c = 0 (18.1)

are given by the quadratic formula

r =
−b±

√
b2 − 4ac

2a
(18.2)

When
b2 < 4ac (18.3)

the number in the square root will be negative and the roots will be complex.

Definition 18.1. A complex number is a number

z = a+ bi (18.4)

where a, b are real numbers (possibly zero) and

i =
√
−1 (18.5)

To find the square root of a negative number we factor out the −1 and use
i =
√
−1, and use the result that

√
−a =

√
(−1)(a) =

√
−1
√
a = i

√
a (18.6)

Example 18.1. Find
√
−9.

√
−9 =

√
(−1)(9) =

√
−1
√

9 = 3i (18.7)
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Example 18.2. Find the roots of

r2 + r + 1 = 0 (18.8)

We have a = b = c = 1 hence according to (18.2) the roots are

r =
−1±

√
12 − (4)(1)(1)

2(1)
=
−1±

√
−3

2
(18.9)

Since −3 < 0 it does not have a real square root;
√
−3 =

√
(3)(−1) =

√
−1
√

3 = i
√

3 (18.10)

hence

r =
−1± i

√
3

2
= −1

2
± i
√

3

2
(18.11)

Properties of Complex Numbers

1. If z = a + ib, where a, b ∈ R, then we say that a is the real part of
z and b is the imaginary part, and we write

Re(z) = Re(a+ ib) = a

Im(z) = Im(a+ ib) = b

}
(18.12)

2. The absolute value of z = x + iy is the distance in the xy plane
from the origin to the point (x, y). Hence

|x+ iy| =
√
x2 + y2 (18.13)

3. The complex conjugate of z = x+ iy is a complex number with all
of the i’s replaced by −i, and is denoted by z,

z = x+ iy =⇒ z = x+ iy = x− iy (18.14)

4. If z = x+ iy is any complex number then

|z|2 = zz (18.15)

because
x2 + y2 = (x+ iy)(x− iy) (18.16)

5. The phase of a complex number z = x+ iy, denoted by Phase(z) is
the angle between the x − axis and the line from the origin to the
point (x, y)

Phase(z) = arctan
y

x
(18.17)



155

Theorem 18.2. Euler’s Formula

eiθ = cos θ + i sin θ (18.18)

Proof. Use the fact that

i2 = −1

i3 = i(i2) = −i
i4 = i(i3) = i(−i) = 1

i5 = i(i4) = i

 =⇒


i4k+1 = i

i4k+2 = −1

i4k+3 = −i
i4k+4 = 1

 for all k = 0, 1, 2, . . .

(18.19)
in the formula’s for a Taylor Series of eiθ:

eiθ = 1 + (iθ) +
(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+

(iθ)5

5!
+ · · · (18.20)

= 1 + iθ +
i2θ2

2!
+
i3θ3

3!
+
i4θ4

4!
+
i5θ5

5!
+ · · · (18.21)

= 1 + iθ − θ2

2!
+−iθ

3

3!
+
θ4

4!
+ i

θ5

5!
+ · · · (18.22)

=

even powers of θ︷ ︸︸ ︷(
1− θ2

2!
+
θ4

4!
− θ6

6!
+ · · ·

)
+i

(
θ − θ3

3!
+
θ5

5!
− θ7

7!
+ · · ·

)
︸ ︷︷ ︸

odd powers of θ

(18.23)

= cos θ + i sin θ (18.24)

where the last step follows because we have used the Taylor series for sin θ
and cos θ.

Theorem 18.3. If z = a+ ib where a and b are real numbers than

ez = ea+ib = ea(cos θ + i sin θ) (18.25)

Theorem 18.4. If z = x+ iy where x, y are real, then

z = r(cos θ + i sin θ) = reiθ (18.26)

where θ = Phase(z) and r = |z|.

Proof. By definition θ = Phase(z) is the angle between the x axis and the
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line from the origin to the point (x, y). Hence

cos θ =
x√

x2 + y2
=

x

|z|
(18.27)

sin θ =
y√

x2 + y2
=

y

|z|
(18.28)

Therefore

z = x+ iy (18.29)

= |z|
(
x

|z|
+ i

y

|z|

)
(18.30)

= |z|(cos θ + i sin θ) (18.31)

= |z|eiθ (18.32)

This form is called the polar form of the complex number.

Roots of Polynomials

1. If z = x + iy is the root of a polynomial, then z = x − iy is also a
root.

2. Every polynomial of order n has precisely n complex roots.

3. Every odd-ordered polynomial of order n has at least one real root:
the number of real roots is either 1, or 3, or 5, ..., or n; the remaining
roots are complex conjugate pairs.

4. An even-ordered polynomial of order n has either zero, or 2, or 4,
or 6, or ... n real real roots; all of the remaining roots are complex
conjugate pairs.

Theorem 18.5. Every complex number z has precisely n unique nth roots.

Proof. Write z in polar form.

z = reiθ = reiθ+2kπ = reiθe2kπ, k = 0, 1, 2, . . . (18.33)

where r and θ are real numbers. Take the nth root:

n
√
z = z1/n (18.34)

=
(
reiθ+2kπ

)1/n
(18.35)

= r1/nei(θ+2kπ)/n (18.36)

= n
√
r

(
cos

θ + 2kπ

n
+ i sin

θ + 2kπ

n

)
(18.37)
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For k = 0, 1, 2, . . . , n− 1 the right hand side produces unique results. But
for k ≥ n, the results start to repeat: k = n gives the same angle as k = 0;
k = n + 1 gives the same angle as k = 1; and so on. Hence there are
precisely n unique numbers.

Example 18.3. Find the three cube roots of 27.

To find the cube roots we repeat the proof!

27 = 27 + (0)i = 27e(i)(0) = 27e(i)(0+2π) = 27e2kπi (18.38)
3
√

27 = 271/3(e2kπi)1/3 (18.39)

= 3e2kπi/3 (18.40)

For k = 0 this gives
3
√

27 = 3 (18.41)

For k = 1 this gives

3
√

27 = 3e2πi/3 = 3

(
cos

2π

3
+ i sin

2π

3

)
= −3

2
+ i

3
√

3

2
(18.42)

For k = 2 this gives

3
√

27 = 3e4πi/3 = 3

(
cos

4π

3
+ i sin

4π

3

)
= −3

2
− i3
√

3

2
(18.43)

Using k = 3 will give us the first result, and so forth, so these are all the
possible answers.

Theorem 18.6. If the roots of

ar2 + br + c = 0 (18.44)

are a complex conjugate pair

r1 = µ+ iω

r2 = µ− iω

}
(18.45)

where µ, ω ∈ R and ω 6= 0, (this will occur when b2 < 4ac), then the solution
of the homogeneous second order linear ordinary differential equation with
constant coefficients

Ly = ay′′ + by′ + cy = 0 (18.46)

is given by

yH = C1e
r1t + C2e

r2t (18.47)

= eµt (A cosωt+B sinωt) (18.48)
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where

A = C1 + C2 (18.49)

B = i(C1 − C2) (18.50)

Proof.

yH = C1e
r1t + C2e

r2t (18.51)

= C1e
(µ+iω)t + C2e

(µ−iω)t (18.52)

= eµt(C1e
iωt + C2e

−iωt) (18.53)

= eµt [C1(cosωt+ i sinωt) + C2(cosωt− i sinωt)] (18.54)

= eµt [(C1 + C2) cosωt+ i(C1 − C2) sinωt] (18.55)

= eµt (A cosωt+B sinωt) (18.56)

Example 18.4. Find the general solution of

y′′ + 6y′ + 25y = 0 (18.57)

The characteristic polynomial is

r2 + 6r + 25 = 0 (18.58)

and the roots are

r =
−6±

√
−64

2
=
−6± 8i

2
= −3± 4i (18.59)

Hence the general solution is

y = e−3tA cos 4t+B sin 4t]. (18.60)

for any numbers A and B.

Example 18.5. Solve the initial value problem

y′′ + 2y′ + 2y = 0

y (0) = 2

y′ (0) = 4

 (18.61)

The characteristic equation is

r2 + 2y + 2 = 0 (18.62)
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and its roots are given by

r =
−2±

√
(2)2 − 4(1)(2)

2
=
−2± 2i

2
= −1± i (18.63)

The solution is then
y = e−t(A cos t+B sin t) (18.64)

The first initial condition gives

2 = A (18.65)

and thus the solution becomes

y = e−t(2 cos t+B sin t) (18.66)

Differentiating this solution

y′ = −e−t(2 cos t+B sin t) + e−t(−2 sin t+B cos t) (18.67)

The second initial condition gives us

4 = −2 +B =⇒ B = 6 (18.68)

Hence
y = e−t(2 cos t− 6 sin t) (18.69)

Summary. General solution to the homogeneous linear equation with
constant coefficients.

The general solution to
ay′′ + by′ + cy = 0 (18.70)

is given by

y =


Aer1t +Ber2t r1 6= r2 (distinct real roots)

(A+Bt)ert r = r1 = r2 (repeated real root)

eµt(A cosωt+B sinωt) r = µ± iω (complex roots)

(18.71)

where r1 and r2 are roots of the characteristic equation ar2 + br + c = 0.
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Why Do Complex Numbers Work?*

We have not just pulled i =
√
−1 out of a hat by magic; we can actually

define the Field of real numbers rigorously using the following definition.

Definition 18.7. Let a, b ∈ R. Then a Complex Number is an ordered
pair

z = (a, b) (18.72)

with the following properties:

1. Complex Addition, defined by

z + w = (a+ c, b+ d) (18.73)

2. Complex Multiplication, defined by

z × w = (ac− bd, ad+ bc) (18.74)

where z = (a, b) and w = (c, d) are complex numbers.

Then we can define the real and imaginary parts of z as the components
Rez = Re(a, b) = a and Imz = Im(a, b) = b.

The Real Axis is defined as the set

{z = (x, 0)|x ∈ R} (18.75)

and the imaginary axis is the set of complex numbers

{z = (0, y)|y ∈ R} (18.76)

We can see that there is a one-to-relationship between the real numbers
and the set of complex numbers (x, 0) that we have associated with the
real axis, and there is also a one-to-one relationship between the set of all
complex numbers and the real plane R2. We sometimes refer to this plane
as the complex plane or C.

To see that equations 18.73 and 18.74 give us the type of arithmetic that we
expect from imaginary numbers, suppose that a, b, c ∈ R and define scalar
multiplication by

c(a, b) = (ca, cb) (18.77)

To see that this works, let u = (x, 0) be any point on the real axis. Then

uz = (x, 0)× (a, b) = (ax− 0b, bx− 0a) = (ax, bx) = x(a, b) (18.78)
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The motivation for equation 18.74 is the following. Suppose z = (0, 1).
Then by 18.74,

z2 = (0, 1)× (0, 1) = (−1, 0) (18.79)

We use the special symbol i to represent the complex number i = (0, 1).
Then we can write any complex number z = (a, b) as

z = (a, b) = (a, 0) + (b, 0) = a(1, 0) + b(0, 1) (18.80)

Since i = (0, 1) multiplication by (1, 0) is identical to multiplication by 1
we have

z = (a, b) = a+ bi (18.81)

and hence from 18.79
i2 = −1 (18.82)

The common notation is to represent complex numbers as z = a+ bi where
a, b ∈ R, where i represents the square root of −1. It can easily be shown
that the set of complex numbers defined in this way have all of the properties
of a Field.

Theorem 18.8. Properties of Complex Numbers

1. Closure. The set of complex numbers is closed under addition and
multiplication.

2. Commutivity. For all complex number w, z,

w + z = z + w
wz = zw

}
(18.83)

3. Associativity. For all complex numbers u, v, w,

(u+ v) + w = u+ (v + w)
(uv)w = u(vw)

}
(18.84)

4. Identities. For all complex numbers z,

z + 0 = 0 + z = z
z1 = 1z = z

}
(18.85)

5. Additive Inverse. For every complex number z, there exists some
unique complex number w such that z +w = 0. We call w = −z and

z + (−z) = (−z) + z = 0 (18.86)
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6. Multiplicative Inverse. For every nonzero complex number z, there
exists some unique complex number w such that zw = wz = 1. We
write w = 1/z, and

z(z−1) = (z−1)z = 1 or z(1/z) = (1/z)z = 1 (18.87)

7. Distributivity. For all complex numbers u,w, z,

u(w + z) = uw + uz (18.88)



Lesson 19

Method of Undetermined
Coefficients

We showed in theorem (22.7) that a particular solution for

ay′′ + by′ + cy = f(t) (19.1)

is given by

yP =
1

a
er2t

∫
e(r1−r2)t

(∫
f(t)e−r1tdt

)
dt (19.2)

where r1 and r2 are roots of the characteristic equation. While this for-
mula will work for any function f(t) it is difficult to memorize and there
is sometimes an easier to find a particular solution. In the method of
undetermined coefficients we do this:

1. Make an educated guess on the form of yP (t) up to some unknown
constant multiple, based on the form of f(t).

2. Plug yP into (19.1).

3. Solve for unknown coefficients.

4. If there is a solution then you have made a good guess, and are done.

The method is illustrated in the following example.

Example 19.1. Find a solution to

y′′ − y = t2 (19.3)
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Since the characteristic equation is r2− 1 = 0, with roots r = ±1, we know
that the homogeneous solution is

yH = C1e
t + C2e

−t (19.4)

As a guess to the particular solution we try

yP = At2 +Bt+ C (19.5)

Differentiating,

y′P = 2At+B (19.6)

y′′P = 2A (19.7)

Substituting into (19.1),

2A−At2 −Bt− C = t2 (19.8)

Since each side of the equation contains polynomials, we can equate the
coefficients of the power on each side of the equation. Thus

Coefficients of t2 : −A = 1 (19.9)

Coefficients of t : B = 0 (19.10)

Coefficients of t0 : 2A− C = 0 (19.11)

The first of these gives A = −1, the third C = 2A = −2. Hence

yP = −t2 − 2 (19.12)

Substitution into (19.1) verifies that this is, in fact, a particular solution.
The complete solution is then

y = yH + yP = C1e
r + C2e

−t − t2 − 2 (19.13)

Use of this method depends on being able to come up with a good guess.
Fortunately, in the case where f is a combination of polynomials, exponen-
tials, sines and cosines, a good guess is given by the following heuristic.

1. If f(t) is a polynomial of degree n, use

yP = ant
n + an−1t

n−1 + · · · a2t
2 + a1t+ a0 (19.14)

2. If f(t) = ert and r is not a root of the characteristic equation, try

yP = Aert (19.15)
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3. If f(t) = ert and r is a root of the characteristic equation, but is not
a repeated root, try

yP = Atert (19.16)

4. If f(t) = ert and r is a repeated root of the characteristic equation,
try

yP = At2ert (19.17)

5. If f(t) = α sinωt+ β cosωt, where α, β, ω ∈ R, and neither sinωt nor
cosωt are solutions of the homogeneous equation, try

yP = A cosωt+B sinωt (19.18)

If (19.18) is a solution of the homogeneous equation, instead try

yP = t(A cosωt+B sinωt) (19.19)

6. If f is a product of polynomials, exponentials, and/or sines and
cosines, use a product of polynomials, exponentials, and/or sines and
cosines. If any of the terms in the product is a solution of the homo-
geneous equation, multiply the entire solution by t or t2, whichever
ensures that no terms in the guess are a solution of Ly = 0.

Example 19.2. Solve
y′′ + y′ − 6y = 2t (19.20)

The characteristic equation is

r2 + r − 6 = (r − 2)(r + 3) = 0 (19.21)

hence
yH = C1e

2t + C2e
−3t (19.22)

Since the forcing function (right-hand side of the equation) is 2t we try a
particular function of

yP = At+B (19.23)

Differentiating,

y′P = A (19.24)

y′′P = 0 (19.25)

Substituting back into the differential equation,

0 +A− 6(At+B) = 6t (19.26)

−6At+A+B = 6t (19.27)
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Equating like coefficients,

−6A = 6 =⇒ A = −1 (19.28)

A+B = 0 =⇒ B = −A = 1 (19.29)

yp = −t+ 1 (19.30)

hence the general solution is

y = C1e
2t + C2e

−3t − t+ 1 (19.31)

Example 19.3. Find the general solution to

y′′ − 3y′ − 4y = e−t (19.32)

The characteristic equation is

r2 − 3r − 4 = (r − 4)(r + 1) = 0 (19.33)

so that
yH = C1e

4t + C2e
−t (19.34)

From the form of the forcing function we are tempted to try

yP = Ae−t (19.35)

but that is already part of the homogeneous solution, so instead we try

yP = Ate−t (19.36)

Differentiating,

y′ = Ae−t −Ate−t (19.37)

y′′ = −2Ae−t +Ate−t (19.38)

Substituting into the differential equation,

−2Ae−t +Ate−t − 3(Ae−t −Ate−t)− 4(Ate−t) = e−t (19.39)

−2A+At− 3(A−At)− 4(At) = 1 (19.40)

−2A+At− 3A+ 3At− 4At = 1 (19.41)

−5A = 1 (19.42)

A = −1

5
(19.43)

hence

yP = −1

5
te−t (19.44)

and the general solution of the differential equation is

y = C1e
4t + C2e

−t − 1

5
te−t (19.45)
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Example 19.4. Solve

y′′ + 4y = 3 sin 2t

y(0) = 0

y′(0) = −1

 (19.46)

The characteristic equation is

r2 + 4 = 0 (19.47)

So the roots are ±2i and the homogeneous solution is

yH = C1 cos 2t+ C2 sin 2t (19.48)

For a particular solution we use

y = t(A cos 2t+B sin 2t) (19.49)

y′ = Aa cos 2t+B sin 2t+ t(2B cos 2t− 2A sin 2t) (19.50)

y′′ = 4B cos 2t− 4A sin 2t+ t(−4A cos 2t− 4B sin 2t) (19.51)

Plugging into the differential equation,

4B cos 2t− 4A sin 2t+ t(−4A cos 2t− 4B sin 2t)

+ 4t(A cos 2t+B sin 2t) = 3 sin 2t (19.52)

Canceling like terms,

4B cos 2t− 4A sin 2t = 3 sin 2t (19.53)

equating coefficients of like trigonometric functions, A = 0, B = 3
4 , hence

y = C1 cos 2t+ C2 sin 2t+
3

4
t sin 2t (19.54)

From the first initial condition, y(0) = 0,

0 = C1 (19.55)

hence

y = C2 sin 2t+
3

4
t sin 2t (19.56)

Differentiating,

y′ = 2C2 cos 2t+
3

4
sin 2t+

3

4
t cos 2t (19.57)
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The second initial condition is y′(0) = −1 so that

− 1 = 2C2 (19.58)

hence

y = −1

2
sin 2t+

3

4
t sin 2t (19.59)

Example 19.5. Solve the initial value problem

y′′ − y = t+ e2t

y(0) = 0

y′(0) = 1

 (19.60)

The characteristic equation is r2 − 1 = 0 so that

yH = C1e
t + C2e

−t (19.61)

For a particular solution we try a linear combination of particular solutions
for each of the two forcing functions,

yP = At+B + Ce2t (19.62)

y′P = A+ 2Ce2t (19.63)

y′′P = 4Ce2t (19.64)

Substituting into the differential equation,

4Ce2t −At−B − Ce2t = t+ e2t (19.65)

3Ce2t −At−B = t+ e2t (19.66)

A = −1 (19.67)

B = 0 (19.68)

C =
1

3
(19.69)

Hence

y = C1e
t + C2e

−t − t+
1

3
e2t (19.70)

From the first initial condition, y(0) = 0,

0 = C1 + C2 +
1

3
(19.71)

From the second initial condition y′(0) = 1,

1 = C1 − C2 +
2

3
(19.72)
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Adding the two equations gives us C1 = 0 and substitution back into either
equation gives C2 = −1/3. Hence

y = −1

3
e−t − t+

1

3
e2t (19.73)

Here are some typical guesses for the particular solution that will work for
common types of forcing functions.

Forcing Function Particular Solution
Constant A
t At+B
at2 + bt+ c At2 +Bt+ C
ant

n + · · ·+ a0 Ant
n + · · ·+A0

a cosωt A cosωt+B sinωt
b sinωt A cosωt+B sinωt
t cosωt (At+B) cosωt+ (Ct+D) sinωt
t sinωt (At+B) cosωt+ (Ct+D) sinωt
(ant

n + · · ·+ a0) sinωt (Ant
n + · · ·+A0) cosωt+

(Ant
n + · · ·+A0) sinωt

(ant
n + · · ·+ a0) cosωt (Ant

n + · · ·+A0) cosωt+
(Ant

n + · · ·+A0) sinωt
eat eat
teat (At+B)eat
t sinωteat eat((At+B) sinωt+ (Ct+D) cosωt)
(ant

n + · · ·+ a0)eat (Ant
n + · · ·+A0)eat

(ant
n + · · ·+ a0)eat cosωt (Ant

n + · · ·+A0)eat cosωt+
(Ant

n + · · ·+A0)eat sinωt

If the particular solution shown is already part of the homogeneous solution
you should multiply by factors of t until it no longer is a term in the
homogeneous solution.



170 LESSON 19. METHOD OF UNDETERMINED COEFFICIENTS



Lesson 20

The Wronskian

We have seen that the sum of any two solutions y1, y2 to

ay′′ + by′ + cy = 0 (20.1)

is also a solution, so a natural question becomes the following: how many
different solutions do we need to find to be certain that we have a general
solution? The answer is that every solution of (20.1) is a linear com-
bination of two linear independent solutions. In other words, if y1

and y2 are linearly independent (see definition (15.6)), i.e, there is no
possible combination of constants A and B, both nonzero, such that

Ay1(t) +By2(t) = 0 (20.2)

for all t, and if both y1 and y2 are solutions, then every solution of (20.1)
has the form

y = C1y1(t) + C2y2(t) (20.3)

We begin by considering the initial value problem1

y′′ + p(t)y′ + q(t)y = 0

y(t0) = y0

y′(t0) = y′0

 (20.4)

Suppose that y1(t) and y2(t) are both solutions of the homogeneous equa-
tion; then

y(t) = Ay1(t) +By2(t) (20.5)

1Eq. (20.1) can be put in the same form as (20.4) so long as a 6= 0, by setting
p(t) = b/a and q(t) = c/a. However, (20.4) is considerably more general because we are
not requiring the coefficients to be constants.
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is also a solution of the homogeneous ODE for all values of A and B. To
see if it is possible to find a set of solutions that satisfy the initial condition,
(20.4) requires that

y(t0) = Ay1(t0) +By2(t0) = y0 (20.6)

y′(t0) = Ay′1(t0) +By′2(t0) = y′0 (20.7)

If we multiply the first equation by y′2(t0) and the second equation by y2(t0)
we get

Ay1(t0)y′2(t0) +By2(t0)y′2(t0) = y0y
′
2(t0) (20.8)

Ay′1(t0)y2(t0) +By′2(t0)y2(t0) = y′0y2(t0) (20.9)

Since the second term in each equation is identical, it disappears when we
subtract the second equation from the first:

Ay1(t0)y′2(t0)−Ay′1(t0)y2(t0) = y0y
′
2(t0)− y′0y2(t0) (20.10)

Solving for A gives

A =
y0y
′
2(t0)− y′0y2(t0)

y1(t0)y′2(t0)− y′1(t0)y2(t0)
(20.11)

To get an equation for B we instead multiply (20.6) by y′1(t0) and (20.7)
by y1(t0) to give

Ay1(t0)y′1(t0) +By2(t0)y′1(t0) = y0y
′
1(t0) (20.12)

Ay′1(t0)y1(t0) +By′2(t0)y1(t0) = y′0y1(t0) (20.13)

Now the coefficients of A are identical, so when we subtract we get

By2(t0)y′1(t0)−By′2(t0)y1(t0) = y0y
′
1(t0)− y′0y1(t0) (20.14)

Solving for B,

B =
y0y
′
1(t0)− y′0y1(t0)

y2(t0)y′1(t0)− y′2(t0)y1(t0)
(20.15)

If we define the Wronskian Determinant of any two functions y1 and y2

as

W (t) =

∣∣∣∣y1(t) y2(t)
y′1(t) y′2(t)

∣∣∣∣ = y1(t)y′2(t)− y2(t)y′1(t) (20.16)

then

A =
1

W (t0)

∣∣∣∣y0 y2(t0)
y′0 y′2(t0)

∣∣∣∣ , B =
1

W (t0)

∣∣∣∣y1(t0) y0

y′1(t0) y′0

∣∣∣∣ (20.17)

Thus so long as the Wronskian is non-zero we can solve for A and
B.
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Definition 20.1. The Wronskian Determinant of two functions y1 and
y2 is given by

W (t) =

∣∣∣∣y1(t) y2(t)
y′1(t) y′2(t)

∣∣∣∣ = y1(t)y′2(t)− y2(t)y′1(t) (20.18)

If y1 and y2 are a fundamental set of solutions of a differential equation,
then W (t) is called the Wronskian of the Differential Equation.

Example 20.1. Find the Wronskian of y1 = sin t and y2 = x2.

W (y1, y2)(t) = y1y
′
2 − y2y

′
1 (20.19)

= (sin t)(x2)′ − (x2)(sin t)′ (20.20)

= 2x sin t− x2 cos t (20.21)

Example 20.2. Find the Wronskian of the differential equation y′′−y = 0.

The roots of the characteristic equation is r2 − 1 = 0 are ±1, and a fun-
damental pair of solutions are y1 = et and y2 = e−t. The Wronskian is
therefore

W (x) =

∣∣∣∣ et e−t

et −e−t
∣∣∣∣ = −2. (20.22)

The discussion preceding Example (20.1) proved the following theorem.

Theorem 20.2. Existence of Solutions. Let y1 and y2 be any two
solutions of the equation

y′′ + p(t)y′ + q(t)y = 0 (20.23)

such that
W (t0) = y1(t0)y′2(t0)− y′1(t0)y2(t0) 6= 0 (20.24)

Then the initial value problem

y′′ + p(t)y′ + q(t)y = 0

y(t0) = y0

y′(t0) = y′0

 (20.25)

has a solution, given by (20.17).

Theorem 20.3. General Solution. Suppose that y1 and y2 are solutions
of

y′′ + p(t)y′ + q(t)y = 0 (20.26)
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such that for some point t0 the Wronskian

W (t0) = y1(t0)y′2(t0)− y′1(t0)y2(t0) 6= 0 (20.27)

then every solution of (20.26) has the form

y(t) = Ay1(t) +By2(t) (20.28)

for some numbers A and B. In this case y1 and y2 are said to form a
fundamental set of solutions to (20.26).

Theorem 20.4. Let f and g be functions. If their Wronskian is nonzero
at some point t0 then they are linearly independent.

Proof. Suppose that the Wronskian is non-zero at some point t0. Then

W (f, g)(t0) =

∣∣∣∣f(t0) g(t0)
f ′(t0) g′(t0)

∣∣∣∣ 6= 0 (20.29)

hence
f(t0)g′(t0)− g(t0)f ′(t0) 6= 0 (20.30)

We will prove the result by contradiction. Suppose that f and g are linearly
dependent. Then there exists some non-zero constants A and B such that
for all t,

Af(t) +Bg(t) = 0 (20.31)

Differentiating,
Af ′(t) +Bg′(t) = 0 (20.32)

which holds for all t. Since (20.31) and (20.32) hold for all t, then they hold
for t = t0. Hence

Af(t0) +Bg(t0) = 0 (20.33)

Af ′(t0) +Bg′(t0) = 0 (20.34)

We can write (20.33) as a matrix:[
f(t0) g(t0)
f ′(t0) g′(t0)

] [
A
B

]
= 0 (20.35)

From linear algebra, since A and B are not both zero, we know that the
only way that this can be true is the determinant equals zero. Hence

f(t0)g′(t0)− g(t0)f ′(t0) = 0 (20.36)

This contradicts equation (20.30), so some assumption we made must be
incorrect. The only assumption we made was that f and g were linearly
dependent.

Hence f and g must be linearly independent.
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Example 20.3. Show that y = sin t and y = cos t are linearly independent.

Their Wronskian is

W (t) = (sin t)(cos t)′ − (cos t)(sin t)′ (20.37)

= − sin2 t− cos2 t (20.38)

= −1 (20.39)

Since W (t) 6= 0 for all t then if we pick any particular t, e.g., t = 0, we have
W (0) 6= 0. Hence sin t and cos t are linearly independent.

Example 20.4. Show that y = sin t and y = t2 are linearly independent.

Their Wronskian is

W (t) = (sin t)(t2)′ − (t2)(sin t)′ (20.40)

= 2t sin t− t2 cos t (20.41)

At t = π, we have

W (π) = 2π sinπ − π2 cosπ = π2 6= 0 (20.42)

Since W (π) 6= 0, the two functions are linearly independent.

Corollary 20.5. If f and g are linearly dependent functions, then their
Wronskian must be zero at every point t.

Proof. If W (f, g)(t0) 6= 0 at some point t0 then theorem (20.4) tells us that
f and g must be linearly independent. But f and g are linearly dependent,
so this cannot happen. Hence their Wronskian can never be nonzero.

Suppose that y1 and y2 are solutions of y′′ + p(t)y′ + q(t)y = 0. Then

W (y1, y2)(t) = y1y
′
2 − y2y

′
1 (20.43)

Differentiating,

d

dt
W (y1, y2)(t) = y1y

′′
2 + y′1y

′
2 − y2y′′1 − y′2y′1 (20.44)

= y1y
′′
2 − y2y

′′
1 (20.45)

Since y1 and y2 are both solutions, they each satisfy the differential equa-
tion:

y′′1 + p(t)y′1 + q(t)y1 = 0 (20.46)

y′′2 + p(t)y′2 + q(t)y2 = 0 (20.47)
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Multiply the first equation by y2 and the second equation by y1,

y′′1 y2 + p(t)y′1y2 + q(t)y1y2 = 0 (20.48)

y′′2 y1 + p(t)y′2y1 + q(t)y1y2 = 0 (20.49)

Subtracting the first from the second,

y1y
′′
2 − y2y

′′
1 + y1y

′
2p(t)− y2y

′′
1p(t) = 0 (20.50)

Substituting (20.45),
W ′(t) = −p(t)W (t) (20.51)

This is a separable differential equation in W ; the solution is

W (t) = Cexp

(
−
∫
p(t)dt

)
(20.52)

This result is know is Abel’s Equation or Abel’s Formula, and we summarize
it in the following theorem.

Theorem 20.6. Abel’s Formula. Let y1 and y2 be solutions of

y′′ + p(t)y′ + q(t)y = 0 (20.53)

where p and q are continuous functions. Then for some constant C,

W (y1, y2)(t) = Cexp

(
−
∫
p(t)dt

)
(20.54)

Example 20.5. Find the Wronskian of

y′′ − 2t sin(t2)y′ + y sin t = 0 (20.55)

up to a constant multiple.

Using Abel’s equation,

W (t) = C exp

(∫
2t sin(t2)dt

)
= Ce− cos t2 (20.56)

Note that as a consequence of Abel’s formula, the only way that W can be
zero is if C = 0; in this case, it is zero for all t. Thus the Wronskian of
two solutions of an ODE is either always zero or never zero. If
their Wronskian is never zero, by Theorem (20.4), the two solutions must
be linearly independent. On the other hand, if the Wronskian is zero at
some point t0 then it is zero at all t, and

W (y1, y2)(t) =

∣∣∣∣y1(t) y2(t)
y′1(t) y′2(t)

∣∣∣∣ = 0 (20.57)
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and therefore the system of equations[
y1(t) y2(t)
y′1(t) y′2(t)

] [
A
B

]
= 0 (20.58)

has a solution for A and B where at least one of A and B are non-zero.
This means that there exist A and B, at least one of which is non-zero,
such that

Ay1(t) +By2(t) = 0 (20.59)

Since this holds for all values of t, y1 and y2 are linearly dependent. This
proves the following theorem.

Theorem 20.7. Let y1 and y2 be solutions of

y′′ + p(t)y′ + q(t)y = 0 (20.60)

where p and q are continuous. Then

1. y1 and y2 are linearly dependent ⇐⇒ W (y1, y2)(t) = 0 for all t.

2. y1 and y2 are linearly independent ⇐⇒ W (y1, y2)(t) 6= 0 for all t.

We can summarize our results about the Wronskian of solutions and Linear
Independence in the following theorem.

Theorem 20.8. Let y1(t) and y2(t) be solutions of

y′′ + p(t)y′ + q(t)y = 0 (20.61)

Then the following statements are equivalent:

1. y1 and y2 form a fundamental set of solutions.

2. y1 and y2 are linearly independent.

3. At some point t0, W (y1, y2)(t0) 6= 0.

4. W (y1, y2)(t) 6= 0 for all t.
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Lesson 21

Reduction of Order

The method of reduction of order allows us to find a second solution to the
homogeneous equation if we already know one solution. Suppose that y1 is
a solution if

y′′ + p(t)y′ + q(t)y = 0 (21.1)

then we look for a solution of the form

y2 = g(t)y1(t) (21.2)

Differentiating twice,

y′2 = gy′1 + g′y1 (21.3)

y′′2 = gy′′1 + 2g′y′1 + g′′y1 (21.4)

Substituting these into (21.1),

gy′′1 + 2g′y′1 + g′′y1 + pgy′1 + pg′y1 + qgy1 = 0 (21.5)

2g′y′1 + y1g
′′ + pg′y1 + (y′′1 + py′1 + qy1)g = 0 (21.6)

Since y1 is a solution of (21.1), the quantity in parenthesis is zero. Hence

y1g
′′ + (2y′1 + py1)g′ = 0 (21.7)

This is a first order equation in z = g′,

y1z
′ + (2y′1 + py1)z = 0 (21.8)
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which is separable in z.

1

z

dz

dt
= −2y′1 + py1

y1
= −2

y′1
y1
− p (21.9)

ln z = −2

∫
y′1
y1
−
∫
pdt (21.10)

= −2 ln y1 −
∫
pdt (21.11)

z =
1

y2
1(t)

exp

(
−
∫
p(t)dt

)
(21.12)

Since z = g′(t),

g(t) =

∫ (
1

y2
1(t)

exp

(
−
∫
p(t)dt

))
dt (21.13)

and since y2 = gy1, the method of reduction of order gives

y2(t) = y1(t)

∫ (
1

y2
1(t)

exp

(
−
∫
p(t)dt

))
dt (21.14)

Example 21.1. Use (21.14) to find a second solution to

y′′ − 4y′ + 4y = 0 (21.15)

given that one solution is y1 = e2t.

Of course we already know that since the characteristic equation is (r−2)2 =
0, the root r = 2 is repeated and hence a second solution is y2 = te2t. We
will now derive this solution with reduction of order.

From equation (21.14), using p(t) = −4,

y2(t) = y1(t)

∫ (
1

y2
1(t)

exp

(
−
∫
p(t)dt

))
dt (21.16)

= e2t

∫ (
e−4texp

(∫
4dt

))
dt (21.17)

= e2t

∫ (
e−4te4t

)
dt (21.18)

= e2t

∫
dt (21.19)

= te2t (21.20)
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The method of reduction of order is more generally valid then for equations
with constant coefficient which we already know how to solve. It is usually
more practical to repeat the derivation rather than using equation (21.14),
which is difficult to memorize.

Example 21.2. Find a second solution to

y′′ + ty′ − y = 0 (21.21)

using the observation that y1 = t is a solution.

We look for a solution of the form

y2 = y1u = tu (21.22)

Differentiating,

y′2 = tu′ + u (21.23)

y′′2 = tu′′ + 2u′ (21.24)

Hence from (21.21)

tu′′ + 2u′ + t2u′ + tu− tu = 0 (21.25)

tu′′ + 2u′ + t2u′ = 0 (21.26)

tz′ + (2 + t2)z = 0 (21.27)

where z = u′. Rearranging and separating variables in z,

1

z

dz

dt
= −2 + t2

t
= −2

t
− t (21.28)∫

1

z

dz

dt
dt = −

∫
2

t
dt−

∫
tdt (21.29)

ln z = −2 ln t− 1

2
t2 (21.30)

z =
1

t2
e−t

2/2 (21.31)

Therefore
du

dt
=

1

t2
e−t

2/2 (21.32)

or

u(t) =

∫
t−2e−t

2/2dt (21.33)

Thus a second solution is

y2 = tu = t

∫
t−2e−t

2/2dt (21.34)
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Substitution back into the original ODE verifies that this works. Hence a
general solution of the equation is

y = At+Bt

∫
t−2e−t

2/2dt (21.35)

Example 21.3. Find a second solution of

t2y′′ − 4ty′ + 6y = 0 (21.36)

assuming that t > 0, given that y1 = t2 is already a solution.

We look for a solution of the form y2 = uy1 = ut2. Differentiating

y′2 = u′t2 + 2tu (21.37)

y′′2 = u′′t2 + 4tu′ + 2u (21.38)

Substituting in (21.36),

0 = t2(u′′t2 + 4tu′ + 2u)− 4t(u′t2 + 2tu) + 6ut2 (21.39)

= t4u′′ + 4t3u′ + 2t2u− 4t3u′ − 8t2u+ 6t2u (21.40)

= t4u′′ (21.41)

Since t > 0 we can never have t = 0; hence we can divide by t4 to give
u′′ = 0. This means u = t. Hence

y2 = uy1 = t3 (21.42)

is a second solution.

Example 21.4. Show that

y1 =
sin t√
t

(21.43)

is a solution of Bessel’s equation of order 1/2

t2y′′ + ty′ +

(
t2 − 1

4

)
y = 0 (21.44)

and use reduction of order to find a second solution.

Differentiating using the product rule

y′1 =
d

dt

(
t−1/2 sin t

)
(21.45)

= t−1/2 cos t− 1

2
t−3/2 sin t (21.46)

y′′1 = −t−1/2 sin t− t−3/2 cos t+
3

4
t−5/2 sin t (21.47)
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Plugging these into Bessel’s equation,

t2
(
−t−1/2 sin t− t−3/2 cos t+

3

4
t−5/2 sin t

)
+

t

(
t−1/2 cos t− 1

2
t−3/2 sin t

)
+

(
t2 − 1

4

)
t−1/2 sin t = 0 (21.48)

(
−t3/2 sin t− t−1/2 cos t+

3

4
t1/2 sin t

)
+(

t1/2 cos t− 1

2
t−1/2 sin t

)
+ t3/2 sin t− 1

4
t−1/2 sin t = 0 (21.49)

All of the terms cancel out, verifying that y1 is a solution.

To find a second solution we look for

y2 = uy1 = ut−1/2 sin t (21.50)

Differentiating

y′2 = u′t−1/2 sin t− 1

2
ut−3/2 sin t+ ut−1/2 cos t (21.51)

y′′2 = u′′t−1/2 sin t− 1

2
u′t−3/2 sin t+ u′t−1/2 cos t

− 1

2
u′t−3/2 sin t+

3

4
ut−5/2 sin t− 1

2
ut−3/2 cos t

+ u′t−1/2 cos t− 1

2
ut−3/2 cos t− ut−1/2 sin t (21.52)

= u′′t−1/2 sin t+ u′
(
−t−3/2 sin t+ 2t−1/2 cos t

)
+

u

(
3

4
t−5/2 sin t− t−3/2 cos t− t−1/2 sin t

)
(21.53)

Hence

0 = t2
[
u′′t−1/2 sin t+ u′

(
−t−3/2 sin t+ 2t−1/2 cos t

)
+

u

(
3

4
t−5/2 sin t− t−3/2 cos t− t−1/2 sin t

)]
+ t

(
u′t−1/2 sin t− 1

2
ut−3/2 sin t+ ut−1/2 cos t

)
+

(
t2 − 1

4

)
ut−1/2 sin t (21.54)
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All of the terms involving u cancel out and we are left with

0 = u′′t3/2 sin t+ 2u′t3/2 cos t (21.55)

Letting z = u′ and dividing through by t3/2 sin t,

0 = z′ + 2z cot t (21.56)∫
dz

z
= −2

∫
cot tdt (21.57)

ln z = −2 ln sin t (21.58)

z = sin−2 t (21.59)

Since z = u′ this means

du

dt
=

1

sin2 t
=⇒ u = cot t (21.60)

Since y2(t) = uy1(t),

y2 =
cot t sin t√

t
=

cos t√
t

(21.61)

Thus the general solution is

y = Ay1 +By2 =
A sin t+B cos t√

t
(21.62)

Method for Reduction of Order. Given a first solution u(t) to
y′′ + p(t)y′ + q(t)y = 0, we can find a second linearly independent solution
v(t) as follows:

1. Calculate the Wronskian using Abel’s formula,

W (t) = e−
∫
p(t)dt

2. Calculate the Wronskian directly a second time as

W (t) = u′(t)v(t)− v′(t)u(t)

3. Set the two expressions equal; the result is a first order differential
equation for the second solution v(t).

4. Solve the differential equation for v(t).

5. Then general solution is then y = Au(t) + Bv(t) for some constants
A and B.
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Example 21.5. Find a second solution to the differential equation

ty′′ + 10y′ = 0 (21.63)

given the observation that y1(t) = 1 is a solution.

Since p(t) = 10/t, Abel’s formula gives

W (t) = e−
∫

(10/t)dx = t−10 (21.64)

By direct calculation,

W (t) =

∣∣∣∣ y1 y2

y′1 y′2

∣∣∣∣ =

∣∣∣∣ 1 y2

0 y′2

∣∣∣∣ = y′2 (21.65)

Equating the two expressions for W,

y′2 = t−10 (21.66)

Therefore, y2 = −(1/9)t−9; the general solution to the homogeneous equa-
tion is

y = C1y1 + C2y2 = C1 + C2t
−9. (21.67)

Example 21.6. Find a fundamental set of solutions to

t2y′′ + 5ty′ − 5y = 0 (21.68)

given the observation that y1 = t is one solution.

Calculating the Wronskian directly,

W (t) =

∣∣∣∣ t y2

1 y′2

∣∣∣∣ = ty′2 − y2 (21.69)

From Abel’s Formula , since p(t) = a1(t)/a2(t) = 5/t,

W (t) = e−
∫

(5/t)dt = t−5 (21.70)

Equating the two expressions and putting the result in standard form,

y′2 − (1/t)y2 = t−6 (21.71)

An integrating factor is

µ(t) = e
∫

(−1/t)dx = 1/t (21.72)

Therefore

y′2 = t

∫
(1/t)t−6dt = t

[
t−6

6

]
=

1

5
t−5 (21.73)

The fundamental set of solutions is therefore {t, t−5}.
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Lesson 22

Non-homogeneous
Equations with Constant
Coefficients

Theorem 22.1. Existence and Uniqueness. The second order linear
initial value problem

a(t)y′′ + b(t)y′ + c(t)y = f(t)

y(t0) = y0

y(t0) = y1

 (22.1)

has a unique solution, except possibly where a(t) = 0. In particular, the
second order linear initial value with constant coefficients,

ay′′ + by′ + cy = f(t)

y(t0) = y0

y(t0) = y1

 (22.2)

has a unique solution.

We will omit the proof of this for now, since it will follow as an immediate
consequence of the more general result for systems we will prove in chapter
(26).

Theorem 22.2. Every solution of the differential equation

ay′′ + by′ + cy = f(t) (22.3)

187
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has the form
y(t) = AyH1(t) +ByH2(t) + yP (t) (22.4)

where yH1 and yH2 are linearly independent solutions of

ay′′ + by′ + cy = 0 (22.5)

and yP (t) is a solution of (22.3) that is linearly independent of yH1 and
yH2. Equation (22.4) is called the general solution of the ODE (22.3).
The two linearly independent solutions of the homogeneous equation are
called a fundamental set of solutions.

General Concept: To solve the general equation with constant coeffi-
cients, we need to find two linearly independent solutions to the homo-
geneous equation as well as a particular solution to the non-homogeneous
solutions.

Theorem 22.3. Subtraction Principle. If yP1(t) and yP2(t) are two
different particular solutions of

Ly = f(t) (22.6)

then
yH(t) = yP1(t)− yP2(t) (22.7)

is a solution of the homogeneous equationLy = 0.

Proof. Since

LyP1 = f(t) (22.8)

LyP2 = f(t) (22.9)

Then

L(yP1 − yP2) = LyP1 − LyP2 (22.10)

= f(t)− f(t) (22.11)

= 0 (22.12)

Hence yH given by (22.7) satisfies LyH = 0.

Theorem 22.4. The linear differential operator

Ly = aD2y + bDy + cy (22.13)

can be factored as

Ly = (aD2 + bD + c)y = a(D − r1)(D − r2)y (22.14)
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where r1 and r2 are the roots of the characteristic polynomial

ar2 + br + c = 0 (22.15)

Proof. Using the quadratic equation, the roots of the characteristic poly-
nomial satisfy

r1 + r2 =
−b+

√
b2 − 4ac

2a
+
−b−

√
b2 − 4ac

2a
= − b

a
(22.16)

r1r2 =

(
−b+

√
b2 − 4ac

2a

)(
−b−

√
b2 − 4ac

2a

)
=
b2 − (b2 − 4ac)

4a2
=
c

a

(22.17)

hence

b = −a(r1 + r2) (22.18)

c = ar1r2 (22.19)

Thus

Ly = ay′′ + by′ + cy
= ay′′ − a(r1 + r2)y′ + ar1r2y
= a[y′′ − (r1 + r2)y′ + r1r2y]
= a(D − r1)(y′ − r2y)
= a(D − r1)(D − r2)y

(22.20)

Hence L = a(D − r1)(D − r2) which is the desired factorization.

Theorem (22.4) provides us with the following simple algorithm for solving
any second order linear differential equation or initial value problem with
constant coefficients.
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Algorithm for 2nd Order, Linear, Constant Coefficients IVP

To solve the initial value problem

ay′′ + by′ + cy = f(t)

y(t0) = y0

y′(t0) = y1

 (22.21)

1. Find the roots of the characteristic polynomial ar2 + br + c = 0.

2. Factor the differential equation as a(D − r1) (D − r2)y︸ ︷︷ ︸
z(t)

= f(t).

3. Substitute z = (D − r2)y = y′ − r2y to get a(D − r1)z = f(t).

4. Solve the resulting differential equation z′ − r1z =
1

a
f(t) for z(t).

5. Solve the first order differential equation y′− r2y = z(t) where z(t) is
the solution you found in step (4).

6. Solve for arbitrary constants using the initial conditions.

Example 22.1. Solve the initial value problem

y′′ − 10y′ + 21y = 3 sin t

y(0) = 1

y′(0) = 0

 (22.22)

The characteristic polynomial is

r2 − 10r + 21 = (r − 3)(r − 7) (22.23)

Thus the roots are r = 3, 7 and since a = 1 (the coefficient of y′′), the
differential equation can be factored as

(D − 3) (D − 7)y︸ ︷︷ ︸
z

= 3 sin t (22.24)

To solve equation (22.24) we make the substitution

z = (D − 7)y = y′ − 7y (22.25)

Then (22.24) becomes

(D − 3)z = 3 sin t (22.26)

z′ − 3z = 3 sin t (22.27)
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This is a first order linear equation.An integrating factor is µ = e−3t. Mul-
tiplying both sides of (22.27) by µ,

d

dt

(
ze−3t

)
= 3e−3t sin t (22.28)

Integrating,

ze−3t = 3

∫
e−3t sin tdt =

3

10
e−3t(−3 sin t− cos t) + C (22.29)

or

z = − 3

10
(3 sin t+ cos t) + Ce−3t (22.30)

Substituting back for z = y′ − 7y from equation (22.25) gives us

y′ − 7y = − 3

10
(3 sin t+ cos t) + Ce3t (22.31)

This is also a first order linear ODE, which we know how to solve. An
integrating factor is µ = e−7t. Multiplying (22.31) by µ and integrating
over t gives

(y′ − 7y)(e−7t) =

[
− 3

10
(3 sin t+ cos t) + Ce3t

]
(e−7t) (22.32)

d

dt

(
ye−7t

)
= − 3

10
e−7t(3 sin t+ cos t) + Ce−4t (22.33)

ye−7t =

∫ [
− 3

10
e−7t(3 sin t+ cos t) + Ce−4t

]
dt (22.34)

= − 3

10

∫
e−7t(3 sin t+ cos t)dt+ C

∫
e−4tdt (22.35)

Integrating the last term would put a −4 into the denominator; absorbing
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this into C and including a new constant of integration C ′ gives

ye−7t = − 9

10

∫
e−7t sin tdt− 3

10

∫
e−7t cos ttdt+ Ce−4t + C ′ (22.36)

= − 9

10

(
− 1

50
e−7t(cos t+ 7 sin t)

)
− 3

10

(
1

50
(sin t− 7 cos t)

)
+ Ce−4t + C ′ (22.37)

= e−7t

(
9

500
cos t+

63

500
sin t− 3

500
sin t+

21

500
cos t

)
+ Ce−4t + C ′ (22.38)

=
1

50
e−7t (3 cos t+ 6 sin t) + Ce−4t + C ′ (22.39)

y =
1

50
(3 cos t+ 6 sin t) + Ce3t + C ′e−7t (22.40)

The first initial condition, y(0) = 1, gives us

1 =
3

50
+ C + C ′ (22.41)

To apply the second initial condition, y′(0) = 0, we need to differentiate
(22.40)

y′ =
1

50
(−3 sin t+ 6 cos t) + 3Ce3t − 7C ′e−7t (22.42)

Hence

0 =
6

50
+ 3C − 7C ′ (22.43)

Multiplying equation (22.41) by 7

7 =
21

50
+ 7C + 7C ′ (22.44)

Adding equations (22.43) and (22.44)

7 =
27

50
+ 10C =⇒ C =

323

500
(22.45)

Substituting this back into any of (22.41), (22.43), or (22.44) gives

C ′ =
147

500
(22.46)

hence the solution of the initial value problem is

y =
1

50
(3 cos t+ 6 sin t) +

323

500
e3t +

147

500
e−7t (22.47)
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Theorem 22.5. Properties of the Linear Differential Operator. Let

L = aD2 + bD + c (22.48)

and denote its characteristic polynomial by

P (r) = ar2 + br + c (22.49)

Then for any function y(t) and any scalar r,

Ly = P (D)y (22.50)

Lert = P (r)ert (22.51)

Lyert = ertP (D + r)y (22.52)

Proof. To demonstrate (22.50) we replace r by D in (22.49):

P (D)y = (aD2 + bD + c)y = Ly (22.53)

To derive (22.51), we calculate

Lert = a(ert)′′ + b(ert)′ + c(ert (22.54)

= ar2ert + brert + cert (22.55)

= (ar2 + br + c)ert (22.56)

= P (r)ert (22.57)

To derive (22.52) we apply the differential operator to the product yert and
expand all of the derivatives:

Lyert = aD2(yert) + bD(yert) + cyert (22.58)

= a(yert)′′ + b(yert)′ + cyert (22.59)

= a(y′ert + ryert)′ + b(y′ert + ryert) + cyert (22.60)

= a(y′′ert + 2ry′ert + r2yert)

+ b(y′ert + ryert) + cyert (22.61)

= ert[a(y′′ + 2ry′ + r2y) + b(y′ + ry) + cy] (22.62)

= ert
[
a(D2 + 2Dr + r2)y + b(D + r)y + cy

]
(22.63)

= ert
[
a(D + r)2y + b(D + r)y + cy

]
(22.64)

= ert
[
a(D + r)2 + b(D + r) + c

]
y (22.65)

= ertP (D + r)y (22.66)
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Derivation of General Solution. We are now ready to find a general
formula for the solution of

ay′′ + by′ + cy = f(t) (22.67)

where a 6= 0, for any function f(t). We begin by dividing by a,

y′′ +By′ + Cy = q(t) (22.68)

where B = b/a, C = c/a, and q(t) = f(t)/a. By the factorization theorem
(theorem (22.4)), (22.68) is equivalent to

(D − r1)(D − r2)y = q(t) (22.69)

where

r1,2 =
1

2

(
−B ±

√
B2 − 4C

)
(22.70)

Defining
z = (D − r2)y = y′ − r2y (22.71)

equation (22.69) becomes

(D − r1)z = q(t) (22.72)

or equivalently,
z′ − r1z = q(t) (22.73)

This is a first order linear ODE in z(t) with integrating factor

µ(t) = exp

(∫
−r1dt

)
= e−r1t (22.74)

and the solution of (22.73) is

z =
1

µ(t)

(∫
q(t)µ(t)dt+ C1

)
(22.75)

Using (22.71) this becomes

y − r2y = p(t) (22.76)

where

p(t) =
1

µ(t)

(∫
q(t)µ(t)dt+ C1

)
(22.77)

Equation (22.76) is a first order linear ODE in y(t); its solution is

y(t) =
1

ν(t)

(∫
p(t)ν(t)dt+ C2

)
(22.78)
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where

ν(t) = exp

(∫
−r2dt

)
= e−r2t (22.79)

Using (22.77) in (22.78),

y(t) =
1

ν(t)

∫
p(t)ν(t)dt+

C2

ν(t)
(22.80)

=
1

ν(t)

∫ [
1

µ(t)

(∫
q(t)µ(t)dt+ C1

)]
ν(t)dt+

C2

ν(t)
(22.81)

=
1

ν(t)

∫ [
ν(t)

µ(t)

(∫
q(t)µ(t)dt

)
+
C1ν(t)

µ(t)

]
dt+

C2

ν(t)
(22.82)

=
1

ν(t)

∫
ν(t)

µ(t)

(∫
q(t)µ(t)dt

)
dt+

1

ν(t)

∫
C1ν(t)

µ(t)
dt+

C2

ν(t)
(22.83)

Substituting µ = e−r1t and ν = e−r2t,

y(t) = er2t
∫
e(r1−r2)t

(∫
q(t)e−r1tdt

)
dt+ C1e

r2t

∫
e(r1−r2)tdt+ C2e

r2t

(22.84)

If r1 6= r2, then ∫
e(r1−r2)tdt =

1

r1 − r2
e(r1−r2)t (22.85)

and thus (when r1 6= r2),

y(t) = er2t
∫
e(r1−r2)t

(∫
q(t)e−r1tdt

)
dt+ C1e

r1t + C2e
r2t (22.86)

Note that the C1 in (22.86) is equivalent to the C1 in (22.88) divided by
(r1− r2); since C1 is arbitrary constant, the r1− r2 has been absorbed into
it.

If r1 = r2 = r in (22.88) (this occurs when B2 = 4C and hence r = −B/2 =
−b/2a), then ∫

e(r1−r2)tdt = t (22.87)

hence when r1 = r2 = r,

y(t) = ert
∫ (∫

q(t)e−rtdt

)
dt+ (C1t+ C2)ert (22.88)

Thus the homogeneous solution is

yH =

{
C1e

r1t + C2e
r2t if r1 6= r2

(C1t+ C2)ert if r1 = r2 = r
(22.89)
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and the particular solution, in either case, is

yP = er2t
∫
e(r1−r2)t

(∫
q(t)e−r1tdt

)
dt (22.90)

Returning to the original ODE (22.67), before we defined q(t) = f(t)/a,

yP =
1

a
er2t

∫
e(r1−r2)t

(∫
f(t)e−r1tdt

)
dt (22.91)

We have just proven the following two theorems.

Theorem 22.6. The general solution of the second order homogeneous
linear differential equation with constant coefficients,

ay′′ + by′ + cy = 0 (22.92)

is

yH =

{
C1e

r1t + C2e
r2t if r1 6= r2

(C1t+ C2)ert if r1 = r2 = r
(22.93)

where r1 and r2 are the roots of the characteristic equation

ar2 + br + c = 0 (22.94)

Theorem 22.7. A particular solution for the second order linear differen-
tial equation with constant coefficients

ay′′ + by′ + cy = f(t) (22.95)

is

yP =
1

a
er2t

∫
e(r1−r2)t

(∫
f(t)e−r1tdt

)
dt (22.96)

where r1 and r2 are the roots of the characteristic equation

ar2 + br + c = 0 (22.97)

Example 22.2. Solve the initial value problem

y′′ − 9y = e2t

y(0) = 1

y′(0) = 2

 (22.98)
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The characteristic equation is

r2 − 9 = (r − 3)(r + 3) = 0 =⇒ r = ±3 (22.99)

Thus the solution of the homogeneous equation is

yH = Ae3t +Be−3t (22.100)

From equation (22.96) with a = 1, r1 = 3, r2 = −3, and f(t) = e2t, a
particular solution is

yP =
1

a
er2t

∫
e(r1−r2)t

(∫
f(t)e−r1tdt

)
dt (22.101)

= e−3t

∫
e6t

(∫
e2te−3tdt

)
dt (22.102)

= e−3t

∫
e6t

(∫
e−tdt

)
dt (22.103)

= −e−3t

∫
e6te−tdt (22.104)

= −e−3t

∫
e5tdt (22.105)

= −1

5
e−3te5t (22.106)

= −1

5
e2t (22.107)

Hence the general solution is

y = Ae3t +Be−3t − 1

5
e2t (22.108)

The first initial condition gives

1 = A+B − 1

5
=⇒ B =

6

5
−A (22.109)

To apply the second initial condition we must differentiate (22.108):

y′ = 3Ae3t − 3Be−3t − 2

5
e2t (22.110)

hence

2 = 3A− 3B − 2

5
=⇒ 12

5
= 3A− 3B (22.111)
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From (22.109)

12

5
= 3A− 3

(
6

5
−A

)
(22.112)

= 6A− 18

5
(22.113)

30

5
= 6A (22.114)

A = 1 (22.115)

B =
6

5
−A =

1

5
(22.116)

Consequently

y = e3t +
1

5
e−3t − 1

5
e2t (22.117)

is the solution of the initial value problem.



Lesson 23

Method of Annihilators

In this chapter we will return to using the D operator to represent the
derivative operator. In particular, we will be interested the general nth

order linear equation with constant coefficients

anD
ny + an−1D

n−1y + · · ·+ a1Dy + a0y = g(t) (23.1)

which we will represent as
Ly = g(t) (23.2)

where L is the operator

L = anD
n + an−1D

n−1 + · · ·+ a1D + a0 (23.3)

As we have seen earlier (see chapter 15) the L operator has the useful
property that it can be factored

L = (D − r1)(D − r2) · · · (D − rn) (23.4)

where r1, . . . , rn are the roots of the characteristic equation

anr
n + an−1r

n−1 + · · ·+ a1r + a0 = 0 (23.5)

Definition 23.1. An operator L is said to be an annihilator of a function
f(t) if Lf = 0.

A solution of a linear homogeneous equation is then any function that can
be annihilated by the corresponding differential operator.

Theorem 23.2. Dn annihilates tn−1.
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Since

D1 = 0 =⇒ D annihilates 1 (23.6)

D2t = 0 =⇒ D2 annihilates t (23.7)

D3t2 = 0 =⇒ D3 annihilates t2 (23.8)

... (23.9)

Dntn−1 = 0 =⇒ Dn annihilates tk−1 (23.10)

Theorem 23.3. (D − a)n annihilates tn−1eat.

Proof. (induction). For n = 1, the theorem states that D − a annihilates
eat. To verify this observe that

(D − a)eat = Deat − aeat = aeat − aeat = 0 (23.11)

hence the conjecture is true for n = 1.

Inductive step: Assume that (D − a)n annihilates tn−1eat. Thus

(D − a)ntn−1eat = 0 (23.12)

Consider

(D − a)n+1tneat = (D − a)n(D − a)tneat (23.13)

= (D − a)n(Dtneat − atneat) (23.14)

= (D − a)n(ntn−1eat + tnaeat − atneat) (23.15)

= (D − a)nntn−1eat (23.16)

= n(D − a)ntn−1eat (23.17)

= 0 (23.18)

where the last line follows from (23.12).

Theorem 23.4. (D2+a2) annihilates any linear combination of cos ax and
sin ax

Proof.

(D2 + a2)(A sin at+B cos at) = AD2 sin at+Aa2 sin at (23.19)

+BD2 cos at+ a2B cos at (23.20)

= −Aa2 sin at+Aa2 sin at+ (23.21)

−Bas cos at+ a2B cos at (23.22)

= 0 (23.23)
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Theorem 23.5. (D2 − 2aD + (a2 + b2))n annihilates tn−1eat cos bt and
tn−1eat sin bt.

Proof. For n=1.

(D2 − 2aD + (a2 + b2))1t1−1eat sin bt

= (D2 − 2aD + a2 + b2)(eat sin bt) (23.24)

= ((D − a)2 + b2)(eat sin bt) (23.25)

= (D − a)(D − a)(eat sin bt) + b2eat sin bt (23.26)

= (D − a)(aeat sin bt+ beat cos bt− aeat sin bt) + b2eat sin bt (23.27)

= (D − a)(beat cos bt) + b2eat sin bt (23.28)

= abeat cos bt− b2eat sin bt− abeat cos bt+ b2eat sin bt (23.29)

= 0 (23.30)

For general n, assume that (D2 − 2aD + (a2 + b2))ntn−1eat cos bt = 0 and
similarly for sin bt. Consider first

(D2 − 2aD + (a2 + b2))tneat cos bt (23.31)

= [(D − a)2 + b2](tneat cos bt) (23.32)

= (D − a)2(tneat cos bt) + b2(tneat cos bt) (23.33)

= (D − a)[ntn−1eat cos bt+ atneat cos bt− btneat sin bt]

+ b2(tneat cos bt) (23.34)

= n(n− 1)tn−2eat cos bt+ natn−1eat cos bt− nbtn−1eat sin bt

+ natn−1eat cos bt+ a2tneat cos bt− abtneat sin bt

− bntn−1eat sin bt− abtneat sin bt− b2tneat cos bt

− antn−1eat cos bt− a2tneat cos bt+ abtneat sin bt

+ b2tneat cos bt (23.35)

= n(n− 1)tn−2eat cos bt+ natn−1eat cos bt− nbtn−1eat sin bt

− abtneat sin bt− bntn−1eat sin bt (23.36)

The last line only contains terms such as

tn−1eat cos bt (23.37)

tn−1eat sin bt (23.38)

tn−1eat cos bt (23.39)
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But by the inductive hypothesis these are all annihilated by (D2 − 2aD +
(a2 + b2))n. Hence (D2 − 2aD + (a2 + b2))n+1 annihilates tneat cos bt. A
similar argument applies to the sin bt functions, completing the proof by
induction.

Example 23.1. To solve the differential equation

y′′ − 6y′ + 8y = t (23.40)

We first solve the homogeneous equation. Its characteristic equation is

r2 − 6y + 8 = 0 (23.41)

which has roots at 2 and 4, so

yH = C1e
2t+ C2e

4t (23.42)

Then we observe that D2 is an annihilator of t. We rewrite the differential
equation as

(D2 − 6D + 8)y = t (23.43)

D2(D2 − 6D − 8)y = D2 = 0 (23.44)

(23.45)

The characteristic equation is

r2(r − 4)(r − 2) = 0 (23.46)

so the roots are 4,2,0, and 0, giving us additional particular solutions of

yP = At+B (23.47)

The general solution is

y = C1e
2t+ C2e

4t+At+B (23.48)

To find A and B we differentiate,

y′P = A (23.49)

y′′P = 0 (23.50)

Substituting into the original differential equation,

0− 6A+ 8(At+B) = t (23.51)

Equating coefficients gives A = 1/8 and 8B = 6A = 3/4 =⇒ B = 3/32.
Hence

y = C1e
2t+ C2e

4t+
1

8
t+

3

32
(23.52)

The constants C1 and C2 depend on initial conditions.
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The method of annihilators is really just a variation on the method of
undetermined coefficients - it gives you a way to remember or get to the
functions you need to remember to get a particular solution. To use it to
solve Ly = g(t) you would in general use the following method:

1. Solve the homogeneous equation Ly = 0. Call this solution yH .

2. Operate on both sides of Ly = g with some operator L′ so that
L′Ly = L′g = 0, i.e., using an operator that annihilates g.

3. Find the characteristic equation of L′Ly = 0.

4. Solve the homogeneous equation L′Ly = 0.

5. Remove the terms in the solution of L′Ly = 0 that are linearly de-
pendent on terms in you original solution to Ly = 0. The terms that
remain are your yp.

6. Use undetermined coefficients to determine any unknowns in your
particular solution.

7. The general solution is y = yH + yp where LyH = 0.
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Lesson 24

Variation of Parameters

The method of variation of parameters gives an explicit formula for
a particular solution to a linear differential equation once all of the homo-
geneous solutions are known. The particular solution is a pseudo-linear
combination of the homogeneous equation. By a pseudo-linear combina-
tion we mean an expression that has the same form as a linear combination,
but the constants are allowed to depend on t :

yP = u1(t)y1 + u2(t)y2 (24.1)

where u1(t) and u(t) are unknown functions of t that are treated as param-
eters. The name of the method comes from the fact that the parameters
(the functions u1 and u2 in the linear combination) are allowed to vary.

For the method of variation of parameters to work we must already know
two linearly independent solutions to the homogeneous equations
Suppose that y1(t) and y2(t) are linearly independent solutions of

a(t)y′′ + b(t)y′ + c(t)y = 0 (24.2)

The idea is to look for a pair of functions u(t) and v(t) that will make

yP = u(t)y1 + v(t)y2 (24.3)

a solution of
a(t)y′′ + b(t)y′ + c(t)y = f(t). (24.4)

Differentiating equation (24.3)

y′P = u′y1 + uy′1 + v′y2 + vy′2 (24.5)
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If we now make the totally arbitrary assumption that

u′y1 + v′y2 = 0 (24.6)

then
y′P = uy′1 + vy′2 (24.7)

and therefore
y′′P = u′y′1 + uy′′1 + v′y′2 + vy′′2 (24.8)

From equation (24.4)

f(t) = a(t)(u′y′1 + uy′′1 + v′y′2 + vy′′2 )

+ b(t) (uy′1 + vy′2) + c(t) (uy1 + vy2) (24.9)

= a(t) (u′y′1 + v′y′2) + u [a(t)y′′1 + b(t)y′1 + c(t)y1]

+ v[a(t)y′′2 + b(t)y′2 + c(t)y2] (24.10)

= a(t)(u′y′1 + v′y′2) (24.11)

Combining equations (24.6) and (24.11) in matrix form(
y1 y2

y′1 y′2

)(
u′

v′

)
=

(
0

f(t)/a(t)

)
(24.12)

The matrix on the left hand side of equation (24.12) is the Wronskian,
which we know is nonsingular, and hence invertible, because y1 and y2

form a fundamental set of solutions to a differential equation. Hence

(
u′

v′

)
=

(
y1 y2

y′1 y′2

)−1(
0

f(t)/a(t)

)
=

1

W (t)

(
y′2 −y2

−y′1 y1

)(
0

f(t)/a(t)

)
=

1

W (t)

(
−y2f(t)/a(t)
y1f(t)/a(t)

) (24.13)

where W (t) = y1y
′
2 − y2y

′
1. Hence

du

dt
=
−y2f(t)

a(t)W (t)
(24.14)

dv

dt
=

y1f(t)

a(t)W (t)
(24.15)

Integrating each of these equations,

u(t) = −
∫

y2(t)f(t)

a(t)W (t)
dt (24.16)

v(t) =

∫
y1(t)f(t)

a(t)W (t)
dt (24.17)
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Substituting into equation (24.3)

yP = −y1

∫
y2f(t)

a(t)W (t)
dt+ y2

∫
y1f(t)

a(t)W (t)
dt (24.18)

which is the basic equation of the method of variation of parameters. It is
usually easier to reproduce the derivation, however, then it is to remember
the solution. This is illustrated in the following examples.

Example 24.1. Find the general solution to y′′ − 5y′ + 6y = et

The characteristic polynomial r2 − 5r + 6 = (r − 3)(r − 2) = 0, hence a
fundamental set of solutions is y1 = e3t, y2 = e2t. The Wronskian is

W (t) =

∣∣∣∣ e3t e2t

3e3t 2e2t

∣∣∣∣ = −e5t (24.19)

Since f(t) = et and a(t) = 1,

yP =− e3t

∫
e2tet

−e5t
dt+ e2t

∫
e3tet

−e5t
dt (24.20)

=e3t

∫
e−2tdt− e2t

∫
e−tdt (24.21)

=− 1

2
et + et =

1

2
et (24.22)

(We ignore any constants of integration in this method). Thus the general
solution is

y = yP + yH =
1

2
et + C1e

3t + C2e
2t (24.23)

Example 24.2. Find a particular solution to y′′−5y′+6y = t by repeating
the steps in the derivation of (24.18) rather than plugging in the general
formula.

From the previous example we have homogeneous solutions y1 = e3t and
y2 = e2t. Therefore we look for a solution of the form

y = u(t)e3t + v(t)e2t (24.24)

Differentiating,

y′ = u′(t)e3t + 3u(t)e3t + v′(t)e2t + 2v(t)e2t (24.25)

Assuming that the sum of the terms with the derivatives of u and v is zero,

u′(t)e3t + v′(t)e2t = 0 (24.26)



208 LESSON 24. VARIATION OF PARAMETERS

and consequently
y′ = 3u(t)e3t + 2v(t)e2t (24.27)

Differentiating,

y′′ = 3u′(t)e3t + 9u(t)e3t + 2v′(t)e2t + 4v(t)e2t (24.28)

Substituting into the differential equation y′′ − 5y′ + 6y = t,

t =(3u′(t)e3t + 9u(t)e3t + 2v′(t)e2t + 4v(t)e2t)− 5(3u(t)e3t + 2v(t)e2t)

+ 6(u(t)e3t + v(t)e2t) (24.29)

=3u(t)′e3t + 2v(t)′e2t (24.30)

Combining our results gives (24.26) and (24.30) gives

u′(t)e3t + v′(t)e2t = 0 (24.31)

3u(t)′e3t + 2v′(t)e2t = t (24.32)

Multiplying equation (24.31) by 3 and subtracting equation (24.32) from
the result,

v′(t)e2t = −t (24.33)

We can solve this by multiplying through by e−2t and integrating,

v(t) = −
∫
te−2tdt = −

(
− t

2
− 1

4

)
e−2t =

(
t

2
+

1

4

)
e−2t (24.34)

because
∫
teatdt =

[
t/a− 1/a2

]
eat.

Multiplying equation (24.31) by 2 and subtracting equation (24.32) from
the result,

u′(t)e3t = t (24.35)

which we can solve by multiplying through by e−3t and integrating:

u(t) =

∫
te−3tdt =

(
− t

3
− 1

9

)
e−3t = −

(
t

3
+

1

9

)
e−3t (24.36)

Thus from (24.24)

y = u(t)e3t + v(t)e2t (24.37)

=

(
−
(
t

3
+

1

9

)
e−3t

)
e3t +

((
t

2
+

1

4

)
e−2t

)
e2t (24.38)

= − t
3
− 1

9
+
t

2
+

1

4
(24.39)

=
t

6
+

5

36
(24.40)
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Example 24.3. Solve the initial value problem

t2y′′ − 2y = 2t

y(1) = 0

y′(1) = 1

 (24.41)

given the observation that y = t2 is a homogeneous solution.

First, we find a second homogeneous solution using reduction of order. By
Abel’s formula, since there is no y′ term, the Wronskian is a constant:

W (t) = e−
∫

0dt = C (24.42)

A direct calculation of the Wronskian gives

W (t) =

∣∣∣∣ t2 y2

2t y′2

∣∣∣∣ = t2y′2 − 2ty2 (24.43)

Setting the two expressions for the Wronskian equal to one another gives

t2y′ − 2ty = C (24.44)

where we have omitted the subscript. This is a first order linear equation
in y;putting it into standard form,

y′ − 2

t
y =

C

t2
(24.45)

An integrating factor is µ = e
∫

(−2/t)dt = e−2 ln t = t−2, hence

d

dt

y

t2
= Ct−4 (24.46)

Integrating both sides of the equation over t,

y

t2
= −C

3
t−3 + C1 (24.47)

Multiplying through by t2,

y = C1t
2 +

C2

t
(24.48)

where C2 = C/ − 3. Since y1 = t2, we conclude that y2 = 1/t. This gives
us the entire homogeneous solution.



210 LESSON 24. VARIATION OF PARAMETERS

Next, we need to find a particular solution; we can do this using the varia-
tion of parameters formula. Since a(t) = t2 and f(t) = 2t, we have

yP = −y1(t)

∫
y2(t)f(t)

a(t)W (t)
dt+ y2(t)

∫
y1(t)f(t)

a(t)W (t)
dt (24.49)

We previously had W = C; but here we need an exact value. To get
the exact value of C, we calculate the Wronskina from the now-known
homogeneous solutions,

C = W =

∣∣∣∣ y1 y2

y′1 y′2

∣∣∣∣ =

∣∣∣∣ t2 1/t
2t −1/t2

∣∣∣∣ = −3 (24.50)

Using y1 = t2, y2 = 1/t, f(t) = 2t, and a(t) = t2,

yP = −t2
∫

2t

t · t2 · −3
dt+

1

t

∫
t2 · 2t
t2 · −3

dt (24.51)

=
2t2

3

∫
t−2dt− 2

3t

∫
tdt (24.52)

=
2t2

3
· −1

t
− 2

3t
· t

2

2
(24.53)

= −2t

3
− t

3
= −t (24.54)

Hence yP = −t and therefore

y = yH + yP = C1t
2 + C2t−

1

t
(24.55)

From the first initial condition we have 0 = C1 + C2 − 1 or

C1 + C2 = 1. (24.56)

To use the second condition we need the derivative,

y′ = 2C1t−
C2

t2
− 1 (24.57)

hence the second condition gives 1 = 2C1 − C2 − 1 or

2C1 − C2 = 2. (24.58)

Solving for C1 and C2 gives C1 = 1, hence C2 = 0, so that the complete
solution of the initial value problem is

y = t2 − 1

t
(24.59)



Lesson 25

Harmonic Oscillations

If a spring is extended from its resting length by an amount y then a restor-
ing force, opposite in direction from but proportional to the displacement
will attempt to pull the spring back; the subsequent motion of an object of
mass m attached to the end of the spring is described by Newton’s laws of
motion:

my′′ = −ky (25.1)

where k is a positive constant that is determined by the mechanical prop-
erties of the spring. The right-hand side of quation (25.1) – that the force
is proportional to the displacement – is known as Hooke’s Law.

Simple Harmonic Motion

Rearranging equation (25.1),

y′′ + ω2y = 0 (25.2)

where ω =
√
k/m is called the oscillation frequency. Equation (25.2)

is called the simple harmonic oscillator equation because there are no
additional drag or forcing functions. The oscillator, once started, continues
to oscillate forever in this model. There are no physical realizations of
(25.2) in nature because there is always some amount of drag. To keep a
spring moving we need to add a motor. Before we see how to describe drag
and forcing functions we will study the simple oscillator.
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The characteristic equation is r2 + ω2 = 0, and since the roots are purely
imaginary (r = ±iω) the motion is oscillatory,

y = C1 cosωt+ C2 sinωt (25.3)

It is sometimes easier to work with a single trig function then with two. To
do this we start by defining the parameter

A2 = C2
1 + C2

2 (25.4)

where we chose the positive square root for A, and define the angle φ such
that

cosφ =
C1

A
(25.5)

sinφ = −C2

A
(25.6)

We know such an angle exists because 0 ≤ |C1| ≤ A and 0 ≤ |C2| ≤ A and
by (25.4) φ satisfies the identity cosφ + sin2 φ = 1 as required. Thus

y = A cosφ cosωt−A sinφ sinωt (25.7)

= A cos(φ+ ωt) (25.8)

Then φ = tan−1(C1/C2) is known as the phase of the oscillations and A
is called the amplitude. As we see, the oscillation is described by a single
sine wave of magnitude (height) A and phase shift φ. With a suitable re-
definition of C1 and C2, we could have made the cos into sin rather than a
cosine, e.g., C1/A = sinφ and C2/phi = cosφ.

Damped Harmonic Model

In fact, equation (25.2) is not such a good model because it predicts the
system will oscillate indefinitely, and not slowly damp out to zero. A good
approximation to the damping is a force that acts linearly against the mo-
tion: the faster the mass moves, the stronger the damping force. Its direc-
tion is negative, since it acts against the velocity y′ of the mass. Thus we
modify equation (25.2) to the following

my′′ = −Cy′ − ky (25.9)

where C ≥ 0 is a damping constant that takes into account a force that
is proportional to the velocity but acts in the opposite direction to the
velocity.
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It is standard to define a new constant b = C/m and a frequency ω =
√
k/m

as before so that we can rearrange our equation into standard form as

y′′ + by′ + ω2y = 0 (25.10)

Equation (25.10) is the standard equation of damped harmonic motion.
As before, it is a linear second order equation with constant coefficients, so
we can solve it exactly by finding the roots of the characteristic equation

r2 + br + ω2 = 0 (25.11)

The roots of the characteristic equation are given by the quadratic equation
as

r =
−b±

√
b2 − 4ω2

2
(25.12)

The resulting system is said to be

• underdamped when b < 2ω;

• critically damped when b = 2ω; and

• overdamped when b > 2ω.

In the underdamped system (b < 2ω) the roots are a complex conjugate
pair with negative real part, r = µ± i$ where

µ = b/2 > 0, $ = ω
√

1− (b/2ω)2 (25.13)

and hence the resulting oscillations are described by decaying oscillations

y = Ae−µt sin($t+ φ) (25.14)

The critically damped system has a single positive real repeated root r =
µ = b/2 , so that

y = (C1 + C2t)e
−µt (25.15)

The critically damped systems decays directly to zero without crossing the
y-axis.

The overdamped system has two negative real roots −µ±|$| (where |$| <
µ) and hence

y = e−µt
(
C1e

|$|t + C2e
−|$|t

)
(25.16)

The system damps to zero without oscillations, but may cross the y-axis
once. The first term in parenthesis in (25.16) does not give an exponential
increase because |$| < µ.
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Figure 25.1: Harmonic oscillations with ω = 1 and initial conditions y(0) =
1, y′(0) = 0. (a) simple harmonic motion; (b) under-damped system with
b = 0.25; (c) critically damped system with b = 2.0; (d) under-damped
system with b = 0.025.

Forced Oscillations

Finally, it is possible to imaging adding a motor to the spring that produces
a force f(t). The resulting is system, including damping, called the forced
harmonic oscillator:

my′′ = −Cy′′ − ky + f(t) (25.17)

If we define a force per unit mass F (t) = f(t)/m and ω and the parameter
b as before, this becomes, in standard form,

y′′ + by′ + ω2y = F (t) (25.18)

This is the general second-order linear equation with constant coefficients
that are positive. Thus any second order linear differential equation with
positive constant coefficients describes a harmonic oscillator of some sort.
The particular solution is

yP = er2t
∫
t

e(r1−r2)u

∫
u

e−r1sF (s)ds (25.19)

where r1 and r2 are the roots of the characteristic equation. For example,
suppose the system driven by a force function

F (t) = F0 sinαt (25.20)

Then

yP =F0e
r2t

∫
t

e(r1−r2)u

∫
u

e−r1s sinαs dsdu (25.21)

=
F0

α2 + r2
1

er2t
∫
t

e−r2u(α cosαu+ r1 sinαu)du (25.22)
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As with the unforced case, we can define the amplitude and phase angle by

A sin θ = −α(r1 + r2) (25.23)

A cos θ = α2 − r1r2 (25.24)

Then

yP =
F0A sin(αt+ θ)

(α2 + r2
1)(α2 + r2

2)
(25.25)

where

A2 = [−α(r1 + r2)]2 + [α2 − r1r2]2 (25.26)

= α2b2 + (α2 − ω2)2 (25.27)

because r1 + r2 = −b and r1r2 = ω2. Furthermore,

(α2 + r2
1)(α2 + r2

2) = α4 + (r2
1 + r2

2)α2 + (r1r2)2

(25.28)

and therefore

yP =
F0 sin(αt+ θ)√
α2b2 + (α2 − ω2)2

(25.29)

Forcing the oscillator pumps energy into the system; it has a maximum
at α = ω, which is unbounded (infinite) in the absence of damping. This
phenomenon – that the magnitude of the oscillations is maximized when
the system is driven at its natural frequency – is known as resonance. If
there is any damping at all the homogeneous solutions decay to zero and
all that remains is the particular solution – so the resulting system will
eventually be strongly dominated by (25.29), oscillating in synch with the
driver. If there is no damping (b = 0) then

y = C sin(ωt+ φ) +
F0 sin(αt+ θ)

|α2 − ω2|
(25.30)

where C is the natural magnitude of the system, determined by its initial
conditions.
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Figure 25.2: The amplitude of oscillations as a function of the frequency
of the forcing function, α, as given by (25.29), is shown for various values
of the damping coefficient b = 1, 0.3, 0.1, 0.03, 0.01 (bottom to top) with
ω = 1.The oscillations resonate as α→ ω.
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Lesson 26

General Existence
Theory*

In this section we will show that convergence of Picard Iteration is the
equivalent of finding the fixed point of an operator in a general linear vector
space. This allows us to expand the scope of the existence theorem to initial
value problems involving differential equations of any order as well systems
of differential equations. This section is somewhat more theoretical and
may be skipped without any loss of continuity in the notes.

Before we look at fixed points of operators we will first review the concept
of fixed points of functions.

Definition 26.1. Fixed Point of a Function. Let f : R 7→ R. A number
a ∈ R is called a fixed point of f if f(a) = a.

Example 26.1. Find the fixed points of the function f(x) = x4 + 2x2 +
x− 3.

x = x4 + 2x2 + x− 3

0 = x4 + 2x2 − 3

= (x− 1)(x+ 1)(x2 + 3)

Hence the real fixed points are x = 1 and x = −1.

A function f : R 7→ R has a fixed point if and only if its graph intersects
with the line y = x. If there are multiple intersections, then there are
multiple fixed points. Consequently a sufficient condition is that the range
of f is contained in its domain (see figure 26.1).
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Figure 26.1: A sufficient condition for a bounded continuous function to
have a fixed point is that the range be a subset of the domain. A fixed
point occurs whenever the curve of f(t) intersects the line y = t.

a

a

b

b

S

Theorem 26.2 (Sufficient condition for fixed point). Suppose that
f(t) is a continuous function that maps its domain into a subset of itself,
i.e.,

f(t) : [a, b] 7→ S ⊂ [a, b] (26.1)

Then f(t) has a fixed point in [a, b].

Proof. If f(a) = a or f(b) = b then there is a fixed point at either a or b.
So assume that both f(a) 6= a and f(b) 6= b. By assumption, f(t) : [a, b] 7→
S ⊂ [a, b], so that

f(a) ≥ a and f(b) ≤ b (26.2)

Since both f(a) 6= a and f(b) 6= b, this means that

f(a) > a and f(b) < b (26.3)

Let g(t) = f(t) − t. Then g is continuous because f is continuous, and
furthermore,

g(a) = f(a)− a > 0 (26.4)

g(b) = f(b)− b < 0 (26.5)

Hence by the intermediate value theorem, g has a root r ∈ (a, b), where
g(r) = 0. Then

0 = g(r) = f(r)− r =⇒ f(r) = r (26.6)

i.e., r is a fixed point of f .
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In the case just proven, there may be multiple fixed points. If the derivative
is sufficiently bounded then there will be a unique fixed point.

Theorem 26.3 (Condition for a unique fixed point). Let f be a
continuous function on [a, b] such that f : [a, b] 7→ S ⊂ (a, b), and suppose
further that there exists some postive constant K < 1 such that

|f ′(t)| ≤ K, ∀t ∈ [a, b] (26.7)

Then f has a unique fixed point in [a, b].

Proof. By theorem 26.2 a fixed point exists. Call it p,

p = f(p) (26.8)

Suppose that a second fixed point q ∈ [a, b], q 6= p also exists, so that

q = f(q) (26.9)

Hence
|f(p)− f(q)| = |p− q| (26.10)

By the mean value theorem there is some number c between p and q such
that

f ′(c) =
f(p)− f(q)

p− q
(26.11)

Taking absolute values,∣∣∣∣f(p)− f(q)

p− q

∣∣∣∣ = |f ′(c)| ≤ K < 1 (26.12)

and thence
|f(p)− f(q)| < |p− q| (26.13)

This contradicts equation 26.10. Hence our assumption that a second,
different fixed point exists must be incorrect. Hence the fixed point is
unique.

Theorem 26.4 (Fixed Point Iteration Theorem). Let f be as defined
in theorem 26.3, and p0 ∈ (a, b). Then the sequence of numbers

p1 = f(p0)
p2 = f(p1)

...
pn = f(pn−1)

...


(26.14)

converges to the unique fixed point of f in (a, b).
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Proof. We know from theorem 26.3 that a unique fixed point p exists. We
need to show that pi → p as i→∞.

Since f maps onto a subset of itself, every point pi ∈ [a, b].

Further, since p itself is a fixed point, p = f(p) and for each i, since pi =
f(pi−1), we have

|pi − p| = |pi − f(p)| = |f(pi−1)− f(p)| (26.15)

If for any value of i we have pi = p then we have reached the fixed point
and the theorem is proved.

So we assume that pi 6= p for all i.

Then by the mean value theorem, for each value of i there exists a number
ci between pi−1 and p such that

|f(pi−1)− f(p)| = |f ′(ci)||pi−1 − p| ≤ K|pi−1 − p| (26.16)

where the last inequality follows because f ′ is bounded by K < 1 (see
equation 26.7).

Substituting equation 26.15 into equation 26.16,

|pi − p| = |f(pi−1)− f(p)| ≤ K|pi−1 − p| (26.17)

Restating the same result with i replaced by i− 1, i− 2, . . . ,

|pi−1 − p| = |f(pi−2)− f(p)| ≤ K|pi−2 − p|
|pi−2 − p| = |f(pi−3)− f(p)| ≤ K|pi−3 − p|
|pi−3 − p| = |f(pi−4)− f(p)| ≤ K|pi−4 − p|

...
|p2 − p| = |f(p1)− f(p)| ≤ K|p1 − p|
|p1 − p| = |f(p0)− f(p)| ≤ K|p0 − p|


(26.18)

Putting all these together,

|pi − p| ≤ K2|pi−2 − p| ≤ K3|pi−2 − p| ≤ · · · ≤ Ki|p0 − p| (26.19)

Since 0 < K < 1,

0 ≤ lim
i→∞

|pi − p| ≤ |p0 − p| lim
i→∞

Ki = 0 (26.20)

Thus pi → p as i→∞.
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Theorem 26.5. Under the same conditions as theorem 26.4 except that
the condition of equation 26.7 is replaced with the following condition:
f(t) is Lipshitz with Lipshitz constant K < 1. Then fixed point iteration
converges.

Proof. Lipshitz gives equation 26.16. The rest of the the proof follows as
before.

The Lipshitz condition can be generalized to apply to functions on a vector
space.

Definition 26.6. Lipshitz Condition on a Vector Space. Let V be a
vector space and let t ∈ R. Then f(t, y) is Lipshitz if there exists a real
constant K such that

|f(t, y)− f(t, z)| ≤ K|y, z| (26.21)

for all vectors y, z ∈ V.

Definition 26.7. Let V be a normed vector space, S ⊂ V. A contraction
is any mapping T : S 7→ V such that

‖Ty − Tz‖ ≤ K‖y − z‖ (26.22)

where 0 < K < 1, holds for all y, z ∈ S. We will call the number K
the contraction constant. Observe that a contraction is analogous to a
Lipshitz condition on operators with K < 1.

We will need the following two results from analysis:

1. A Cauchy Sequence is a sequence y0, y1, . . . of vectors in V such
that ‖vm − vn‖ → 0 as n,m→∞.

2. Complete Vector Field. If every Cauchy Sequence converges to an
element of V, then we call V complete.

The following lemma plays the same role for contractions that Lemma (12.6)
did for functions.

Lemma 26.8. Let T be a contraction on a complete normed vector space
V with contraction constant K. Then for any y ∈ V

‖Tny − y‖ ≤ 1−Kn

1−K
‖Ty − y‖ (26.23)
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Proof. Use induction. For n = 1, the formula gives

‖Ty − y‖ ≤ 1−K
1−K

‖Ty − y‖ = ‖Ty − y‖ (26.24)

which is true.

For n > 1 suppose that equation 26.23 holds. Then

‖Tn+1y − y‖ = ‖Tn+1y − Tny + Tny − y‖ (26.25)

≤ ‖Tn+1y − Tny‖+ ‖Tny − y‖ (triangle ineqality) (26.26)

≤ ‖Tn+1y − Tny‖+
1−Kn

1−K
‖Ty − y‖ (by (26.23)) (26.27)

= ‖TnTy − Tny‖+
1−Kn

1−K
‖Ty − y‖ (26.28)

≤ Kn‖Ty − y‖+
1−Kn

1−K
‖Ty − y‖ (because T is a contraction)

(26.29)

=
(1−K)Kn + (1−Kn)

1−K
‖Ty − y‖ (26.30)

=
1−Kn+1

1−K
‖Ty − y‖ (26.31)

which proves the conjecture for n+ 1.

Definition 26.9. Let V be a vector space let T be an operator on V. Then
we say y is a fixed point of T if Ty = y.

Note that in the vector space of functions, since the vectors are functions,
the fixed point is a function.

Theorem 26.10. Contraction Mapping Theorem1 Let T be a con-
traction on a normed vector space V . Then T has a unique fixed point
u ∈ V such that Tu = u. Furthermore, any sequence of vectors v1, v2, . . .
defined by vk = Tvk−1 converges to the unique fixed point Tu = u. We
denote this by vk → u.

Proof. 2 Let ε > 0 be given and let v ∈ V.

1The contraction mapping theorem is sometimes called the Banach Fixed Point The-
orem.

2The proof follows “Proof of Banach Fixed Point Theorem,” Encyclopedia of Math-
ematics (Volume 2, 54A20:2034), PlanetMath.org.
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Since Kn/(1 − K) → 0 as n → ∞ (because T is a contraction, K < 1),
given any v ∈ V, it is possible to choose an integer N such that

Kn‖Tv − v‖
1−K

< ε (26.32)

for all n > N . Pick any such integer N .

Choose any two integers m ≥ n ≥ N , and define the sequence

v0 = v
v1 = Tv
v2 = Tv1

...
vn = Tvn−1

...


(26.33)

Then since T is a contraction,

‖vm − vn‖ = ‖Tmv − Tnv‖ (26.34)

= ‖TnTm−nv − Tnv‖ (26.35)

≤ Kn‖Tm−nv − v‖ (26.36)

From Lemma 26.8 we have

‖vm − vn‖ ≤ Kn 1−Km−n

1−K
‖Tv − v‖ (26.37)

=
Kn −Km

1−K
‖Tv − v‖ (26.38)

≤ Kn

1−K
‖Tv − v‖ < ε (26.39)

Therefore vn is a Cauchy sequence, and every Cauchy sequence on a com-
plete normed vector space converges. Hence vn → u for some u ∈ V.

Either u is a fixed point of T or it is not a fixed point of T .

Suppose that u is not a fixed point of T . Then Tu 6= u and hence there
exists some δ > 0 such that

‖Tu− u‖ > δ (26.40)

On the other hand, because vn → u, there exists an integer N such that
for all n > N ,

‖vn − u‖ < δ/2 (26.41)
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Hence

‖Tu− u‖ ≤ ‖Tu− vn+1‖+ ‖vn+1 − u‖ (26.42)

= ‖Tu− Tvn‖+ ‖u− vn+1‖ (26.43)

≤ K‖u− vn‖+ ‖u− vn+1‖ (because T is a contraction)
(26.44)

≤ ‖u− vn‖+ ‖u− vn+1‖ (because K < 1)
(26.45)

= 2‖u− vn‖ (26.46)

< δ (26.47)

This is a contradiction. Hence u must be a fixed point of T .

To prove uniqueness, suppose that there is another fixed point w 6= u.

Then ‖w − u‖ > 0 (otherwise they are equal). But

‖u− w‖ = ‖Tu− Tw‖ ≤ K‖u− w‖ < ‖u− w‖ (26.48)

which is impossible and hence and contradiction.

Thus u is the unique fixed point of T .

Theorem 26.11. Fundamental Existence Theorem. Let D ∈ R2 be
convex and suppose that f is continuously differentiable on D. Then the
initial value problem

y′ = f(t, y), y(t0) = y0 (26.49)

has a unique solution φ(t) in the sense that φ′(t) = f(t, φ(y)), φ(t0) = y0.

Proof. We begin by observing that φ is a solution of equation 26.49 if and
only if it is a solution of

φ(t) = y0 +

∫ t

t0

f(x, φ(x))dx (26.50)

Our goal will be to prove 26.50.

Let V be the set of all continuous integrable functions on an interval (a, b)
that contains t0. Then V is a complete normed vector space with the sup-
norm as norm, as we have already seen. mn

Define the linear operator T on V by

T (φ) = y0 +

∫ t

t0

f(s, φ(s))ds (26.51)
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for any φ ∈ V.

Let g, h be functions in V.

‖Tg − Th‖∞ = sup
a≤t≤b

|Tg − Th| (26.52)

= sup
a≤t≤b

∣∣∣∣y0 +

∫ t

t0

f(x, g(x))dx− y0 −
∫ t

t0

f(x, h(x))dx

∣∣∣∣
(26.53)

= sup
a≤t≤b

∣∣∣∣∫ t

t0

[f(x, g(x))− f(x, h(x))] dx

∣∣∣∣ (26.54)

Since f is continuously differentiable it is differentiable and its derivative
is continuous. Thus the derivative is bounded (otherwise it could not be
continuous on all of (a, b)). Therefore by theorem 12.3, it is Lipshitz in its
second argument. Consequently there is some K ∈ R such that

‖Tg − Th‖∞ ≤ L sup
a≤t≤b

∫ t

t0

|g(x)− h(x)| dx (26.55)

≤ K(t− t0) sup
a≤t≤b

|g(x))− h(x)| (26.56)

≤ K(b− a) sup
a≤t≤b

|g(x))− h(x)| (26.57)

≤ K(b− a) ‖g − h‖ (26.58)

Since K is fixed, so long as the interval (a, b) is larger than 1/K we have

‖Tg − Th‖∞ ≤ K ′‖g − h‖∞ (26.59)

where
K ′ = K(b− a) < 1 (26.60)

Thus T is a contraction. By the contraction mapping theorem it has a fixed
point; call this point φ. Equation 26.50 follows immediately.

This theorem means that higher order initial value problems also have
unique solutions. Why is this? Because any higher order differential equa-
tion can be converted to a system of equations, as in the following example.

Example 26.2. Convert initial value problem

y′′ + 4t3y′ + y3 = sin(t)

y(0) = 1

y′(0) = 1

 (26.61)
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to a system.

We create a system by defining the variables

x1 = y

x2 = y′
(26.62)

Then the differential equation becomes

x′2 + 4t3x2 + x3
1 = sin t (26.63)

which we can rewrite as

x′2 = sin t− x3
1 − 4t3x2 (26.64)

We then define functions f , and g,

f(x1, x2) = sin t− x3
1 − 4t3x2

g(x1, x2) = x2

(26.65)

so that our system can be written as

x′1 = f(x1, x2)

x′2 = g(x1, x2)
(26.66)

with initial condition

x1(0) = 1

x2(0) = 1
(26.67)

It is common to define a vector x = (x1, x2) and a vector function

F(x) = (f(x1, x2), g(x1, x2)) (26.68)

Then we have a vector initial value problem

x′(t) = F(x) = (sin t− x3
1 − 4t3x2, x2)

x(0) = (1, 1)

}
(26.69)

Since the set of all differentiable functions on R2 is a vector space, our
theorem on vector spaces applies. Even though we proved theorem (26.50)
for first order equations every step in the proof still works when y and f
become vectors. On any closed rectangle surrounding the initial condition
F and ∂F/∂xi is bounded, continuous, and differentiable. So there is a
unique solution to this initial value problem.



Lesson 27

Higher Order Linear
Equations

Constant Coefficients and the Linear Operator

Generalizing the previous sections we can write the general nth-order linear
equation with constant coefficients as

any
(n) + an−1y

(n−1) + · · ·+ a1y
′ + a0y = f(t) (27.1)

The corresponding characteristic polynomial is

Pn(r) = anr
n + an−1r

n−1 + · · ·+ a0 (27.2)

= an(r − r1)(r − r2) · · · (r − rn) (27.3)

= 0 (27.4)

and the corresponding n-th order linear operator is

Ln = anD
n + an−1D

n−1 + · · ·+ a0 (27.5)

= an(D − r1)(D − r2) · · · (D − rn) (27.6)

where a0, ..., an ∈ R are constants and r1, r2, ..., rn ∈ C are the roots of
Pn(r) = 0 (some or all of which may be repeated). The corresponding
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initial value problem is
Lny = f(t)

y(t0) = y0

y′(t0) = y1

...

y(n)(t0) = yn


(27.7)

where y0, ..., yn ∈ R are constants.

While the roots of Pn(r) = 0 may be complex we will restrict the coefficients
and initial conditions to be real. The linear operator has the following
properties:

Ln(y) = Pn(D)y (27.8)

Ln(ert) = ertPn(r) (27.9)

Ln(erty) = ertPn(D + r)y (27.10)

Equations (27.8) and (27.9) are straightforward; (27.10) can be proven by
induction.

Proof of (27.10) by induction (inductive step only).∗ Assume Ln(erty) =
ertPn(D + a). Then

Ln+1(erty) = an+1(D − r1) · · · (D − rn+1)erty (27.11)

= (D − r1)z (27.12)

where
z = an+1(D − r2)(D − r3) · · · (D − rn+1)(erty) (27.13)

Since (27.12) is an nth order equation, the inductive hypothesis holds for
it, namely, that

z = ertan+1(D + r − r2)(D + r − r3) · · · (D + r − rn+1)y = ertu (27.14)

where
u = an+1(D + r − r2) · · · (D + r − rn+1)y (27.15)

Substituting,

Ln+1(erty) = (D − r1)z = (D − r1)ertu
= rertu+ ertu′ − r1e

rtu
= ert(D + r − r1)u

(27.16)

Substituting back for u from (27.15) and applying the definition of Pn+1(x)



229

Ln+1(erty) = ertan(D + r − r1)(D + r − r2) · · · (D + r − rn+1)y
= ertPn+1(D + r)y

(27.17)
which proves the assertion for n+ 1, completing the inductive proof. .

The general solution to (27.1) is

y = yH + yP (27.18)

where
yH = C1yH,1 + C2yH,2 + · · ·+ CnyH,n (27.19)

and the yH,i are linearly independent solutions of the homogeneous equation
Lny = 0. If L is n-th order then there will be n linearly independent
solutions; taken together, any set of n linearly independent solutions are
called a fundamental set of solutions. Note that the set is not unique,
because if y is a solution the differential equation then so is cy for any
constant c.

Superposition and Subtraction

As before with second order equations, we have a principle of superposition
and a subtraction principle.

Theorem 27.1. (Principle of Superposition.) If u(t) and v(t) are any two
solutions of Lny = 0 then any linear combination w(t) = c1u(t) + c2v(t) is
also a solution of Lny = 0.

Theorem 27.2. (Subtraction Principle)If u(t) and v(t) are any solutions
to Lny = f(t) then w(t) = u(t) − v(t) is a solution to the homogeneous
equation Lny = 0.
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The Homogeneous Equation

The solutions we found for second order equations generalize to higher or-
der equations. In fact, the solutions to the homogeneous equation are the
functions ert, tert,..., tk−1ert where each r is a root of Pn(r) with multi-
plicity k, and these are the only solutions to the homogeneous equation, as
we prove in the following two theorems.

Theorem 27.3. Let r be a root of Pn(r) with multiplicity k. Then
ert, tert, ..., tk−1ert are solutions to the homogeneous equation Lny = 0.

Proof. Since r is a root of Pn(r), then Pn(r) = 0. Hence

Lne
rt = ertPn(r) = 0 (27.20)

Suppose that r has multiplicity k. Renumber the roots r1, r2, ..., rn as
r1, r2, ..., rn−k, r, ..., r︸ ︷︷ ︸

k times

. Then

Pn(x) = an(x− r1)(x− r2) · · · (x− rn−k)(x− r)k (27.21)

Let s ∈ {0, 1, 2, ..., k−1} so that s < k is an integer. Then by the polynomial
shift property (27.10) and equation (27.21)

Ln(ertts) = ertPn(D + r)ts
(27.22)

because Dk(ts) = 0 for any integer s < k.

Theorem 27.4. Suppose that the roots of Pn(r) = anr
n + an−1r

n−1 +
· · · + a0 are r1, ..., rk with multiplicities m1,m2, ...,mk (where m1 + m2 +
· · ·+mk = n). Then the general solution of Lny = 0 is

yH =

k∑
i=1

erit
mi−1∑
j=0

Cijt
j (27.23)

Before we prove theorem 27.3 will consider several examples

Example 27.1. Find the general solution of y′′′ − 3y′′ + 3y′ − y = 0 The
characteristic equation is

r3 − 3r2 + 3r − 1 = (r − 1)3 = 0 (27.24)

which has a single root r = 1 with multiplicity 3. The general solution is
therefore

y = (C1 + C2t+ C3t
3)et (27.25)
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Example 27.2. Find the general solution of y(4) − 2y′′ + y = 0

The characteristic equation is

0 = r4 − 2r2 + r = (r2 − 1)2 = (r − 1)2(r + 1)2 (27.26)

The roots are 1 and -1, each with multiplicity 2. Thus the solution is

y = et(C1 + C2t) + e−t(C3 + C4t) (27.27)

Example 27.3. Find the general solution of y(4) − y = 0

The characteristic equation is

0 = r4 − 1 = (r2 − 1)(r2 + 1) = (r − 1)(r + 1)(r − i)(r + i) (27.28)

There are four distinct roots r = ±1,±i. The real roots give solutions e±t;
the complex roots r = 0 ± i give terms sin t and cos t. Hence the general
solution is

y = C1e
t + C2e

−t + C3 cos t+ C4 sin t (27.29)

Example 27.4. Find the general solution of y(4) + y = 0

The characteristic equation is r4 + 1 = 0.

Therefore r = (−1)1/4. By Euler’s equation,

− 1 = eiπ = ei(π+2kπ) (27.30)

hence the four fourth-roots are

(−1)1/4 = exp

[
i(π + 2kπ)

4

]
(27.31)

= cos

(
π

4
+
kπ

2

)
+ i sin

(
π

4
+
kπ

2

)
, k = 0, 1, 2, 3 (27.32)

Therefore

ri = ±
√

2

2
± i
√

2

2
=

√
2

2
(±1± i) =

1√
2

(±1± i) (27.33)

and the general solution of the differential equation is

y = et/
√

2

[
C1 cos

t√
2

+ C2 sin
t√
2

]
+ e−t/

√
2

[
C3 cos

t√
2

+ C4 sin
t√
2

]
(27.34)
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To prove theorem 27.31 we will need a generalization of the fundamental
identity. We first define a the following norm of a function:

‖f(t)‖2 =

n−1∑
i=0

∣∣∣f (i)(t)
∣∣∣2 (27.35)

= |f(t)|+ |f ′(t)|+ · · ·+
∣∣∣f (n−1)(t)

∣∣∣2 (27.36)

That ‖· · · ‖ defines a norm follows from the fact that for any two functions
f(t) and g(t), and for and constant c, the following four properties are true
for all t :
Properties of a Norm of a Function:

1. ‖f(t)‖ ≥ 0

2. ‖f(t)‖ = 0 ⇔ f(t) = 0

3. ‖f(t) + g(t)‖ ≤ ‖f(t)‖+ ‖g(t)‖

4. ‖cf(t)‖ ≤ |c| ‖f(t)‖

For comparison to the norm of a vector space, see definition 15.2 which is
equivalent to this for the vector space of functions.

Lemma 27.5. (Fundamental Identity for nth order equations) Let φ(t) be
a solution of

Lny = 0, y(t0) = y0, ..., y
(n−1)(t0) = yn (27.37)

then
‖φ(t0)‖ e−K‖t−t0‖ ≤ ‖φ(t)‖ ≤ ‖φ(t0)‖ eK‖t−t0‖ (27.38)

for all t.

Lemma 27.6. 2 |a| |b| ≤ |a|2 + |b|2

Proof. (|a|+ |b|)2
= |a|2 + |b|2 − 2 |a| |b| ≥ 0.

Proof. (of Lemma 27.5.) We can assume that an 6= 0; otherwise this would
not be an nth-order equation. Further, we will assume that an = 1; other-
wise, redefine Ln by division through by an.

Let

u(t) = ‖φ(t)‖2 =

n−1∑
i=0

∣∣∣φ(i)(t)
∣∣∣2 =

n−1∑
i=0

φ(i)(t)φ(i)∗(t) (27.39)

1This material is somewhat more abstract and the reader may wish to skip ahead to
the examples following the proofs.
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Differentiating,

u′(t) =
d

dt

n−1∑
i=0

∣∣∣φ(i)(t)
∣∣∣2 =

d

dt

n−1∑
i=0

φ(i)(t)φ(i)∗(t) (27.40)

Taking the absolute value and applying the triangle inequality twice

|u′(t)| ≤
n−1∑
i=0

∣∣∣φ(i+1)(t)φ(i)∗(t) + φ(i)(t)φ(i+1)∗(t)
∣∣∣ (27.41)

Since |a| = |a∗|

|u′(t)| ≤
n−1∑
i=0

2
∣∣∣φ(i+1)(t)

∣∣∣ ∣∣∣φ(i)(t)
∣∣∣ (27.42)

Isolating the highest order term

|u′(t)| ≤

{
n−2∑
i=0

2
∣∣∣φ(i+1)(t)

∣∣∣ ∣∣∣φ(i)(t)
∣∣∣}+ 2

∣∣∣φ(n)(t)
∣∣∣ ∣∣∣φ(n−1)(t)

∣∣∣ (27.43)

Since Lnφ(t) = 0 and an = 1,∣∣∣φ(n)(t)
∣∣∣ =

∣∣∣∣∣−
n−1∑
i=0

aiφ
(i)(t)

∣∣∣∣∣ ≤
n−1∑
i=0

∣∣∣aiφ(i)(t)
∣∣∣ =

n−1∑
i=0

|ai|
∣∣∣φ(i)(t)

∣∣∣ (27.44)

Combining the last two results,

|u′(t)| ≤

{
n−2∑
i=0

2
∣∣∣φ(i+1)(t)

∣∣∣ ∣∣∣φ(i)(t)
∣∣∣}+ 2

∣∣∣∣∣
n−1∑
i=0

|ai|
∣∣∣φ(i)(t)

∣∣∣∣∣∣∣∣ ∣∣∣φ(n−1)(t)
∣∣∣

(27.45)
By lemma 2,

2
∣∣∣φ(i+1)

∣∣∣ ∣∣∣φ(i)
∣∣∣ ≤ ∣∣∣φ(i+1)

∣∣∣2 +
∣∣∣φ(i)

∣∣∣2 (27.46)

Hence

|u′(t)| ≤

{
n−2∑
i=0

(∣∣∣φ(i+1)(t)
∣∣∣2 +

∣∣∣φ(i)(t)
∣∣∣2)}

+2
∣∣∣φ(n−1)(t)

∣∣∣ n−1∑
i=0

|ai|
∣∣∣φ(i)(t)

∣∣∣ (27.47)

By a change of index in the first term (let j = i+ 1)

n−2∑
i=0

∣∣∣φ(i+1)
∣∣∣2 =

n−1∑
j=1

∣∣∣φ(j)(t)
∣∣∣2 (27.48)
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so that

|u′(t)| ≤
n−1∑
i=1

∣∣∣φ(i)(t)
∣∣∣2 +

n−2∑
i=0

∣∣∣φ(i)(t)
∣∣∣2 + 2

∣∣∣φ(n−1)(t)
∣∣∣ n−1∑
i=0

|ai|
∣∣∣φ(i)(t)

∣∣∣
(27.49)

Since
n−1∑
i=1

|ci| ≤
n−1∑
i=0

|ci| (27.50)

and
n−2∑
i=0

|ci| ≤
n−1∑
i=0

|ci| (27.51)

for any set of numbers ci, this becomes

|u′(t)| ≤
n−1∑
i=0

∣∣∣φ(i)(t)
∣∣∣2 +

n−1∑
i=0

∣∣∣φ(i)(t)
∣∣∣2

+2
∣∣∣φ(n−1)(t)

∣∣∣ n−1∑
i=0

|ai|
∣∣∣φ(i)(t)

∣∣∣ (27.52)

From equation (27.39),

|u′(t)| ≤ 2u(t) + 2
∣∣∣φ(n−1)(t)

∣∣∣ n−1∑
i=0

|ai|
∣∣∣φ(i)(t)

∣∣∣ (27.53)

From lemma 1,
detM 6= 0 (27.54)

Therefore,

|u′(t)| ≤ 2u(t) +

n−1∑
i=0

|ai| 2u(t) (27.55)

= 2u(t)

[
1 +

n−1∑
i=0

|ai|

]
= 2Ku(t) (27.56)

Hence

− 2K ≤ u′(t)

u(t)
≤ 2K (27.57)

Let u(t0) = u0 and integrate from t0 to t

− 2K

∫ t

to

ds ≤
∫ t

to

u′(s)

u(s)
ds ≤ 2K

∫ t

to

ds (27.58)
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Integrating,

− 2K |t− t0| ≤ ln |u(t)/u(t0)| ≤ 2K |t− t0| (27.59)

Exponentiating,

|u0(t)| e−2K|t−t0| ≤ |u(t)| ≤ |u0(t)| e2K|t−t0| (27.60)

By equation (27.39) this last statement is equivalent to the desired result,
which is the fundamental inequality.

Proof. (Theorem 27.3) By the previous theorem, each term in the sum is a
solution of Lny = 0, and hence by the superposition principle, (27.23) is a
solution.

To prove that it is the general solution we must show that every solution
of Lny = 0 has the form (27.23).

Suppose that u(t) is a solution that does not have the form given by (27.23),
i.e., it is not a linear combination of the yij = erittj .

Renumber the yij to have a single index y1, ..., yn, and let u0 = u(t0), u1 =
u′(t0), ..., un−1 = u(n−1)(to). Then u(t) is a solution of some initial value
problem

Lny = 0, y(t0) = u0, y
′(t0) = u1, ..., y

(n−1)(t0) = un−1 (27.61)

and by uniqueness it must be the only solution of (27.61). Let

v = c1y1 + c2y2 + · · ·+ cnyn (27.62)

Differentiating n times,

v′ = c1y
′
1 + c2y

′
2 + · · ·+ cny

′
n (27.63)

We ask whether there is a solution c1, c2, ..., cn to the system

v(t0) = c1y1(t0) + c2y2(t0) + · · ·+ cnyn(t0) = u0 (27.64)

If the matrix

M =


y1(t0) y2(t0) · · · yn(t0)
y′1(t0) y′2(t0) y′n(t0)

...
. . .

...

y
(n−1)
1 (t0) y

(n−1)
2 (t0) y

(n−1)
n (t0)

 (27.65)



236 LESSON 27. HIGHER ORDER EQUATIONS

is invertible, then a solution of (27.64) is

c = M−1u0 (27.66)

where c = (c1 c2 · · · cn)T and u0 = (u0 u1 · · · un−1)T. But M is
invertible if and only if detM 6= 0. We will prove this by contradiction.

Suppose that detM = 0. Then Mc = 0 for some non-zero vector c, i.e,
y1(t0) y2(t0) · · · yn(t0)
y′1(t0) y′2(t0) y′n(t0)

...
. . .

...

y
(n−1)
1 (t0) y

(n−1)
2 (t0) y

(n−1)
n (t0)




c1
c2
...
cn

 = 0 (27.67)

and line by line,

v(j)(t0) =

n∑
i=1

ciy
(j)
i (t0) = 0, j = 0, 1, ..., n− 1 (27.68)

Using the norm defined by (27.35),

‖v(t0)‖2 =

n−1∑
i=0

∣∣∣v(j)(t0)
∣∣∣2 = 0 (27.69)

By the fundamental inequality, since v(t) is a solution,

‖v(t0)‖ e−K|t−t0| ≤ ‖v(t)‖ ≤ ‖v(t0)‖ eK|t−t0| (27.70)

Hence ‖v(t)‖ = 0, which means v(t) = 0 for all t. Since all of the yi(t) are
linearly independent, this means that all of the ci = 0, i.e., c = 0. But this
contradicts (27.67), so it must be true that detM 6= 0.

Since detM 6= 0, the solution given by (27.66) exists. Thus v(t), which ex-
ists as a linear combination of the yi is a solution of the same initial value
problem as u(t). Thus v(t) and u(t) must be identical by uniqueness, and
our assumptions that u(t) was not a linear combination of the yi is contra-
dicted. This must mean that no such solution exists, and every solution of
Lny = 0 must be a linear combination of the yi.

The Particular Solution

The particular solution can be found by the method of undetermined coef-
ficients or annihilators, or by a generalization of the expression that gives
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a closed form expression for a particular solution to Lny = f(t). Such an
expression can be found by factoring the differential equation as

Lny = an(D − r1)(D − r2) · · · (D − rn)y (27.71)

= an(D − r1)z = f(t) (27.72)

where z = (D − r2) · · · (D − rn)y. Then

z′ − r1z = (1/an)f(t) (27.73)

An integrating factor is µ = e−r1t, so that

(D − r2) · · · (D − rn)y = z (27.74)

=
1

an
er1t

∫
t

e−r1s1f(s1)ds1 = f1(t) (27.75)

where the last expression on the right hand side of (27.74) is taken as the
definition of f1(t). We have ignored the constants of integration because
they will give us the homogeneous solutions.

Defining a new z = (D − r3) · · · (D − rn)y gives

z′ − r2z = f1(t) (27.76)

An integrating factor for (27.76) is µ = e−r2t, so that

(D − r3) · · · (D − rn)y = z = er2t
∫
t

e−r2s2f1(s2)ds2 = f2(t) (27.77)

where the expression on the right hand side of (27.77) is taken as the
definition of f2(t). Substituting for f1(s2) from (27.74) into (27.77) gives

(D − r3) · · · (D − rn)y = er2t
∫
t

e−r2s2
1

an
er1s2

∫
s2

e−r1s1f(s1)ds1ds2

(27.78)

Repeating this procedure n times until we have exhausted all of the roots,

yP =
ernt

an

∫
t

e(rn−1−rn)sn

∫
sn

e(rn−2−rn−1)sn−1 · · ·

· · ·
∫
s3

e(r1−r2)s2

∫
s2

e−r1s1f(s1)ds1 · · · dsn
(27.79)
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Example 27.5. Find the general solution to y′′′ + y′′ − 6y′ = et.

The characteristic equation is

0 = r3 + r2 − 6r = r(r − 2)(r + 3) (27.80)

which has roots r1 = 0, r2 = 2, and r3 = −3. The general solution to the
homogeneous equation is

yH = C1 + C2e
2t + C3e

−3t (27.81)

From (27.79), a particular solution is

yP = er3t
∫
t

e(r2−r3)s3

∫
s3

e(r1−r2)s2

∫
s2

e−r1s1f(s1)ds1ds2ds3 (27.82)

= e−3t

∫
t

e5s3

∫
s3

e−2s2

∫
s2

es1ds1ds2ds3 (27.83)

= e−3t

∫
t

e5s3

∫
s3

e−2s2es2ds2ds3 (27.84)

= e−3t

∫
t

e5s3

∫
s3

e−s2ds2ds3 (27.85)

= −e−3t

∫
t

e5s3e−s3ds3 (27.86)

= −e−3t

∫
t

e4s3ds3 (27.87)

= −1

4
e−3te4t (27.88)

= −1

4
et (27.89)

Hence the general solution is

y = yP + yH = −1

4
et + C1 + C2e

2t + C3e
−3t (27.90)

In general it is easier to use undetermined coefficients to determine yP
if a good guess for its form is known, rather than keeping track of the
integrals in (27.79). Failing that the bookkeeping still tends to be easier if
we reproduce the derivation of (27.79) by factoring the equation one root
at a time than it is to use (27.79) directly. In general the best ”guess” for
the form of a particular solution is the same for higher order equations as
it is for second order equations. For example, in the previous example we
would have looked for a solution of the form yP = cet.
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Example 27.6. Find the general solution of y(4) − 5y′′ + 4y = t

The characteristic equation is 0 = r4 − 5r2 + 4 = (r2 − 1)(r2 − 4) so the
roots are 1, -1, 2, and –2, and the homogeneous solution is

yH = C1e
t + C2e

−t + C3e
2t + C4e

−2t (27.91)

Using the factorization method: we write the differential equation as

(D − 1)(D + 1)(D − 2)(D + 2)y = (D − 1)z = t (27.92)

where z = (D+ 1)(D− 2)(D+ 2)y. Then z′ − z = t. An integrating factor
is e−t, so that

z = et
∫
te−tdt = et

[
−(t+ 1)e−t

]
= −t− 1 (27.93)

where we have ignored the constant of integration because we know that
they will lead to the homogeneous solutions. Therefore

z = (D + 1)(D − 2)(D + 2)y = (D + 1)w = −t− 1 (27.94)

where w = (D − 2)(D + 2)y. Equation (27.94) is equivalent to w′ + w =
−t− 1, so that

w = −e−t
[∫

et(t+ 1)dt

]
(27.95)

= −e−t
[∫

tetdt+

∫
etdt

]
(27.96)

= −e−t
[
(t− 1)et + et

]
(27.97)

= −t (27.98)

Therefore

w = (D − 2)(D + 2)y (27.99)

= (D − 2)u = −t (27.100)

where u = (D + 2)y = y′ + 2y. Equation (27.99) is u′ − 2u = −t. An
integrating factor is e−2t and the solution for u is

u = −e2t

∫
te−2tdt = −e2t

[
−1

2
t− 1

4

]
e−2t =

1

2
t+

1

4
(27.101)

Therefore

y′ + 2y =
1

4
(2t+ 1) (27.102)
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An integrating factor is e2t so that

y =
1

4
e−2t

∫
e2t(2t+ 1)dt (27.103)

=
1

4
e−2t

[
2

∫
te2tdt+

∫
e2tdt

]
(27.104)

=
1

4
e−2t

[
2

(
t

2
− 1

4

)
e2t +

1

2
e2t

]
(27.105)

=
t

4
(27.106)

Therefore yP = t/4.

Alternatively, using the method of undetermined coefficients, we try yP =

ct in the differential equation y(4) − 5y′′ + 4y = t. Since y′ = c and y′′ =
y(4) = 0 we find 4ct = t or c = 1/4, again giving yP = t/4.

Hence the general solution is

y = yP + yH =
1

4
t+ C1e

t + C2e
−t + C3e

2t + C4e
−2t (27.107)

We also have an addition theorem for higher order equations.

Theorem 27.7. If yP,i, i = 1, 2, ..., k are particular solutions of LnyP,i =
fi(t) then

yP = yP,1 + yP,2 + · · ·+ yP,k (27.108)

is a particular solution of

Lny = f1(t) + f2(t) + · · ·+ fk(t) (27.109)

Example 27.7. Find the general solution of y′′′ − 4y′ = t+ 3 cos t+ e−2t.

The general solution is

y = yH + y1 + y2 + y3 (27.110)

where

y′′′H − 4y′H = 0 (27.111)

y′′′1 − 4y′1 = t (27.112)

y′′′2 − 4y′2 = 3 cos t (27.113)

y′′′3 − 4y′3 = e−2t (27.114)
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The characteristic equation is

0 = r3 − 4r = r(r2 − 4) = r(r − 2)(r + 2) (27.115)

Since the roots are r = 0,±2, the solution of the homogeneous equation is

yH = C1 + C2e
2t + C3e

−2t (27.116)

To find y1, our first inclination would be to try y = At + B. But e0t is
a solution of the homogeneous equation so we try y + 1 = tk(at + b) with
k = 1.

y1 = tk(a+ bt)e0t = at+ bt2 (27.117)

Differentiating three times

y′1 = a+ 2bt (27.118)

y′′1 = 2b (27.119)

y′′′1 = 0 (27.120)

Substituting into the differential equation gives

t = y′′′1 − 4y′1 = 0− 4(a+ 2bt) = −4a− 8bt (27.121)

This must hold for all t, so equating like coefficients of t gives us a = 0 and
b = −1/8 so that the first particular solution is

y1 = −1

8
t2 (27.122)

For y2, since r = ±i are not roots of the characteristic equation we try

y2 = a cos t+ b sin t (27.123)

Differentiating three times,

y′2 = −a sin t+ b cos t (27.124)

y′′2 = −a cos t− b sin t (27.125)

y′′′2 = a sin t− b cos t (27.126)

Substituting into the differential equation for y2

3 cos t = a sin t− b cos t− 4(−a sin t+ b cos t) (27.127)

= a sin t− b cos t+ 4a sin t− 4b cos t (27.128)

= 5a sin t− 5b cos t (27.129)
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Equating coefficients gives a = 0 and b = -3/5, and hence

y2 = −3

5
sin t (27.130)

For y3, Since r = −2 is already a root of the characteristic equation with
multiplicity one, we will try

y3 = ate−2t (27.131)

Differentiating three times gives

y′3 = a
(
e−2t − 2te−2t

)
(27.132)

= ae−2t(1− 2t) (27.133)

y′′3 = a
[
−2e−2t(1− 2t) + e−2t(−2)

]
(27.134)

= ae−2t(−4 + 4t) (27.135)

y′′′3 = a
[
−2e−2t(−4 + 4t) + e−2t(4)

]
(27.136)

= ae−2t(12− 8t) (27.137)

Substituting for y3 into its ODE gives

e−2t =
[
ae−2t(12− 8t)

]
− 4

[
ae−2t(1− 2t)

]
= 8ae−2t (27.138)

and therefore a = 1/8, so that

y3 =
1

8
te−2t (27.139)

Combining all of the particular solutions with the homogeneous solution
gives us the general solution to the differential equation, which is given by

y = C1 + C2e
2t + C3e

−2t − 1

8
t2 − 3

5
sin t+

1

8
te−2t. (27.140)
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The Wronskian

In this section we generalize the definition of Wronskian to higher order
equations. If {y1, ..., yk} are any set of functions then we can form the
matrix

W [y1, ..., yk](t) =


y1 y2 · · · yk
y′1 y′2 y′k
...

...

y
(k−1)
1 y

(k−1)
2 · · · y

(k−1)
k

 (27.141)

We use the square bracket notation [· · · ] above to indicate that W depends
on a set of functions enclosed by the bracket, and the usual parenthesis
notation (· · · ) to indicate that W depends on a single independent variable
t. When it is clear from the context what we mean we will omit the [· · · ]
and write W(t) where we mean (implicitly) W[· · · ](t).
Denote the general nth order linear differential equation by

Lny = an(t)y(n) + an−1(t)y(n−1) + · · ·+ a1(t)y′ + ao(t)y = f(t) (27.142)

and let {y1, ..., yk} form a fundamental set of solutions to Lny = 0. Recall
that y1, . . . , yk form a fundamental set of solutions if they are linearly in-
dependent and every other solution can be written as a linear combination.
If the functions in the W matrix are a fundamental set of solutions to a
differential equation then (27.141) is called the fundamental matrix of
Lny = 0.

The determinant of (27.141), regardless of whether the solutions form a
fundamental set, is called the Wronskian, which we will denote by W (t).

W [y1, ..., yk](t) =

∣∣∣∣∣∣∣
y1 · · · yk
...

...

y
(k−1)
1 · · · y

(k−1)
k

∣∣∣∣∣∣∣ = detW (27.143)

Again, we will omit the square brackets [· · · ] and write the Wronskian as
W (t) when the set of functions it depends on is clear as W (t). When the
set of functions {y1, ..., yk} form a fundamental set of solutions to Lny = 0
we will call it the Wronskian of the differential equation.

If we calculate the Wronskian of a set of functions that is not linearly inde-
pendent, then one of the functions can be expressed as a linear combination
of all other functions, and consequently, one of the columns of the matrix
will be a linear combination of all the other columns. When this happens,
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the determinant will be zero. Thus the Wronskian of a linearly dependent
set of functions will always be zero. In fact, as we show in the following
theorems, the Wronskian will be nonzero if and only if the functions form
a complete set of solutions to the same differential equation.

Example 27.8. Find the Wronskian of y′′′ − 4y′ = 0.

The characteristic equation is 0 = r3− 4r = r(r2− 4) = r(r− 2)(r+ 2) and
a fundamental set of solutions are y1 = 1, y2 = e2t, and y3 = e−2t. Their
Wronskian is

W (t) =

∣∣∣∣∣∣
y1 y2 y3

y′1 y′2 y′3
y′′1 y′′2 y′′3

∣∣∣∣∣∣ (27.144)

=

∣∣∣∣∣∣
1 e2t e−2t

0 2e2t −2e−2t

0 4e2t 4e−2t

∣∣∣∣∣∣ (27.145)

=

∣∣∣∣2e2t −2e−2t

4e2t 4e−2t

∣∣∣∣ = 16. (27.146)

Example 27.9. Find the Wronskian of y′′′ − 8y′′ + 16y′ = 0.

The characteristic equation is 0 = r3−8r2+16r = r(r2−8r+16) = r(r−4)2,
so a fundamental set of solutions is y1 = 1, y2 = e4t and y3 = te4t. Therefore

W (t) =

∣∣∣∣∣∣
1 e4t te4t

0 4e4t e4t(1 + 4t)
0 16e4t 8e4t(1 + 2t)

∣∣∣∣∣∣ (27.147)

= (4e4t)[8e4t(1 + 2t)]− [e4t(1 + 4t)](16e4t) (27.148)

= 16e8t (27.149)

Theorem 27.8. Suppose that y1, y2, ..., yn all satisfy the same higher
order linear homogeneous differential equation Lny = 0 on (a, b) Then
y1, y2, ..., yn form a fundamental set of solutions if and only if for some
t0 ∈ (a, b), W [y1, ..., yn](t0) 6= 0.

Proof. Let y1, ..., yn be solutions to Lny = 0, and suppose thatW [y1, ..., yn](t0) 6=
0 for some number t0 ∈ (a, b).

We need to show that y1, ..., yn form a fundamental set of solutions. This
means proving that any solution to Lny = 0 has the form

φ(t) = C1y1 + C2y2 + · · ·+ Cnyn (27.150)

Consider the initial value problem

Lny = 0, y(t0) = y0, ..., y
(n−1)(t0) = yn (27.151)
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Certainly every φ(t) given by (27.150) satisfies the differential equation; we
need to show that for some set of constants C1, ..., Cn it also satisfies the
initial conditions.

Differentiating (27.150) n− 1 times and combining the result into a matrix
equation,


φ(t0)
φ′(t0)

...
φ(n−1)(t0)

 =


y1(t0) y2(t0) · · · yn(t0)
y′1(t0) y′2(t0) y′n(t0)

...
...

y
(n−1)
1 (t0) y

(n−1)
2 (t0) · · · y

(n−1)
n (t0)




C1

C2

...
Cn


(27.152)

The matrix on the right hand side of equation (27.152) is W[y1, ..., yn](t0).
By assumption, the determinant W [y1, ..., yn](t0) 6= 0, hence the corre-
sponding matrix W[y1, ..., yn](t0) is invertible. Since W[y1, ..., yn](t0) is
invertible, there is a solution {C1, ..., Cn} to the equation y0

...
yn

 = W[y1, ..., yn](t0)

 C1

...
Cn

 (27.153)

given by  C1

...
Cn

 = {W[y1, .., yn](t0)}−1

 y0

...
yn

 (27.154)

Hence there exists a non-trivial set of numbers {C1, ..., Cn} such that

φ(t) = C1y1 + C2y2 + · · ·+ Cnyn (27.155)

satisfies the initial value problem (27.151).

By uniqueness, every solution of this initial value problem must be identical
to (27.155), and this means that it must be a linear combination of the
{y1, ..., yn}.
Thus every solution of the differential equation is also a linear combination
of the {y1, ..., yn}, and hence {y1, ..., yn} must form a fundamental set of
solutions.

To prove the converse, suppose that y1, ..., yn are a fundamental set of solu-
tions. We need to show that for some number t0 ∈ (a, b), W [y1, ..., yn](t0) 6=
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0. Since y1, ..., yn form a fundamental set of solutions, any solution to the
initial value problem (27.151) must have the form

φ(t) = C1y1 + C2y2 + · · ·+ Cnyn (27.156)

for some set of constants {C1, ..., Cn}. Hence there must exist constants
C1, ..., Cn such that

C1y1(t0) + · · ·+ Cnyn(t0) = y0

C1y
′
1(t0) + · · ·+ Cny

′
n(t0) = y1

...

C1y
(n−1)
1 (t0) + · · ·+ Cny

(n−1)
n (t0) = yn−1

(27.157)

i.e., there is a solution {C1, ..., Cn} to y1(t0) · · · yn(t0)
...

...

y
(n−1)
1 (t0) · · · y

(n−1)
n (t0)


 C1

...
Cn

 =

 y0

...
yn

 (27.158)

This is only true if the matrix

W[y1, ..., yn](t0) =

 y1(t0) · · · yn(t0)
...

...

y
(n−1)
1 (t0) · · · y

(n−1)
n (t0)

 (27.159)

is invertible, which in turn is true if and only if its determinant is nonzero.
But the determinant is the Wronskian, hence there exists a number t0 such
that the Wronskian W [y1, ..., yn](t0) 6= 0.

Theorem 27.9. Suppose y1, ..., yn are solutions Lny = 0 on an interval
(a, b), and let their Wronskian be denoted by W [y1, ..., yn](t). Then the
following are equivalent:

1. W [y1, ..., yn](t) 6= 0 ∀t ∈ (a, b)

2. ∃t0 ∈ (a, b) such that W [y1, ..., yn](t0) 6= 0

3. y1, ..., yn are linearly independent functions on (a, b).

4. y1, ..., yn are a fundamental set of solutions to Lny = 0 on (a, b).

Example 27.10. Two solutions of the differential equation 2t2y′′+ 3ty′−
y = 0 are y1 = t1/2 and y2 = 1/t; this can be verified by substitution into
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the differential equation. Over what domain do these two functions form a
fundamental set of solutions?

Calculating the Wronskian, we find that

W (t) =

∣∣∣∣ t1/2 1/t
1/(2t1/2) −1/t2

∣∣∣∣ (27.160)

= − t
1/2

t2
− 1

t(2t1/2)
(27.161)

=
−3

2t3/2
(27.162)

This Wronskian is never equal to zero. Thus these two solutions form a
fundamental set on any open interval over which they are defined, namely
t > 0 or t < 0.

Theorem 27.10 (Abel’s Formula). The Wronskian of

an(t)y(n) + an−1(t)y(n−1) + · · ·+ a1(t)y + a0(t) = 0 (27.163)

is
W (t) = Ce−

∫
p(t)dt (27.164)

where p(t) = an−1(t)/an(t). In particular, for n = 2, the Wronskian of

y′′ + p(t)y′ + q(t)y = 0 (27.165)

is also given by the same formula, W (t) = Ce−
∫
p(t)dt.

Lemma 27.11. Let M be an n × n square matrix with row vectors mi,
determinant M , and let d(M, i) be the same matrix with the ith row vector
replaced by dmi/dt. Then

d

dt
detM =

n∑
i=1

det d(M, i) (27.166)

Proof. For n=2,

dM

dt
=

d

dt
(m11m22 −m12m21) (27.167)

= m11m
′
22 +m′11m22 −m12m

′
21 −m′12m21 (27.168)

Now assume that (27.166) is true for any n × nmatrix, and let M be any
n+ 1× n+ 1 matrix. Then if we expand its determinant by the first row,

M =

n+1∑
i=1

(−1)1+im1i min(m1i) (27.169)
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where min(mij) is the minor of the ij th element. Differentiating,

dM

dt
=

n+1∑
i=1

(−1)1+im′1i min(m1i) +

n+1∑
i=1

(−1)1+im1i
d

dt
min(m1i) (27.170)

The first sum is d(M,1). Since (27.166) is true for any n × n matrix, we
can apply it to min(m1i) in the second sum.

dM
dt = d(M, 1) +

∑n+1
i=1 (−1)1+im1i

∑n
j=1 d(min(m1i), j) (27.171)

which completes the inductive proof of the lemma.

Proof. (Abel’s Formula)

(n = 2). Suppose y1 and y2 are solutions of (27.165). Their Wronskian is

W (t) = y1y
′
2 − y2y

′
1 (27.172)

Differentiating,

W ′(x) = y1y
′′
2 + y′1y

′
2 − y′2y′1 − y2y

′′
1 = y1y

′′
2 − y2y

′′
1 (27.173)

Since L2y1 = L2y2 = 0,

y′′1 = −p(t)y′1 − q(t)y1 (27.174)

y′′2 = −p(t)y′2 − q(t)y2 (27.175)

Hence

W ′(t) = y1(−p(t)y′2 − q(t)y2)− y2(−p(t)y′1 − q(t)y1)
= −p(t)(y1y

′
2 − y2y

′
1)

= −p(t)W (t)
(27.176)

Rearranging and integrating gives W (t) = C exp
[
−
∫
p(t)dt

]
.

General Case. The Wronskian is

W [y1, ..., yn](t) =

∣∣∣∣∣∣∣
y1 · · · yn
...

...

y
(n−1)
1 · · · y

(n−1)
n

∣∣∣∣∣∣∣ (27.177)
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By the lemma, to obtain the derivative of a determinant, we differentiate
row by row and add the results, hence

dW

dt
=

∣∣∣∣∣∣∣∣∣∣∣

y′1 · · · y′n
y′1 y′n
y′′1 y′′n
...

...

y
(n−1)
1 · · · y

(n−1)
n

∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣

y′1 · · · y′n
y′′1 y′′n
y′′1 y′′n
...

...

y
(n−1)
1 · · · y

(n−1)
n

∣∣∣∣∣∣∣∣∣∣∣

+ · · ·+

∣∣∣∣∣∣∣∣∣∣∣

y1 · · · yn
y′1 y′n
y′′1 y′′n
...

...

y
(n)
1 · · · y

(n)
n

∣∣∣∣∣∣∣∣∣∣∣
(27.178)

Every determinant except for the last contains a repeated row, and since
the determinant of a matrix with a repeated row is zero, the only nonzero
term is the last term.

dW

dt
=

∣∣∣∣∣∣∣∣∣∣∣

y1 · · · yn
y′1 y′n
y′′1 y′′n
...

...

y
(n)
1 · · · y

(n)
n

∣∣∣∣∣∣∣∣∣∣∣
(27.179)

Since each yj is a solution of the homogeneous equation,

y
(n)
j = −an−1(t)

an(t)
y

(n−1)
j − an−2(t)

an(t)
y

(n−2)
j − · · · − a0(t)

an(t)
yj (27.180)

= − 1

an(t)

n−1∑
i=0

ai(t)y
(i)
j (27.181)

Hence
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dW

dx
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y1 · · · yn
y′1 y′n
...

...

y
(n−2)
1 y

(n−2)
n

− 1

an(t)

n−1∑
i=0

ai(t)y
(i)
1 · · · − 1

an(t)

n−1∑
i=0

ai(t)y
(i)
m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(27.182)

The value of a determinant is unchanged if we add a multiple of one to an-
other. So multiply the first row bya0(t)/an(t), the second row bya2(t)/an(t),
etc., and add them all to the last row to obtain

dW

dt
=

∣∣∣∣∣∣∣∣∣∣∣

y1 · · · yn
y′1 y′n
...

...

y
(n−2)
1 y

(n−2)
n

−p(t)y(n−1)
1 · · · −p(t)y(n−1)

n

∣∣∣∣∣∣∣∣∣∣∣
(27.183)

where p(t) = an−1(t)/an(t). We can factor a constant out of every element
of a single row of the determinant if we multiply the resulting (factored)
determinant by the same constant.

dW

dt
= −p(t)

∣∣∣∣∣∣∣∣∣∣∣

y1 · · · yn
y′1 y′n
...

...

y
(n−2)
1 y

(n−2)
n

y
(n−1)
1 · · · y

(n−1)
n

∣∣∣∣∣∣∣∣∣∣∣
= −p(t)W (t) (27.184)

Integrating this differential equation achieves the desired formula for W .

Example 27.11. Calculate the Wronskian of y′′ − 9y = 0.

Since p(t) = 0, Abel’s formula gives W = Ce−
∫

0·dt = C.

Example 27.12. Use Abel’s formula to compute the Wronskian of y′′′ −
2y′′ − y′ − 3y = 0

This equation has p(t) = −2, and therefore W = Ce−
∫

(−2)dt = Ce2t.

Example 27.13. Compute the Wronskian of x2y(??)+xy(??)+y′′−4x = 0.

We have p(t) = t/t2 = 1/t. Therefore W = Ce−
∫

(1/t)dt = Ce− ln t = C/t.
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Example 27.14. Find the general solution of

ty′′′ − y′′ − ty′ + y = 0 (27.185)

given that y = et and y = e−t are solutions.

From Abel’s formula,

W (t) = exp

{
−
∫

(−1/t)dt

}
= exp{ln t} = t (27.186)

By direct calculation,

W (t)=

∣∣∣∣∣∣
e−t et y
−e−t et y′

e−t et y′′

∣∣∣∣∣∣ (27.187)

= e−t
∣∣∣∣et y′

et y′′

∣∣∣∣+ e−t
∣∣∣∣et y
et y′′

∣∣∣∣+ e−t
∣∣∣∣et y
et y′

∣∣∣∣ (27.188)

= e−t[(ety′′ − ety′) + (ety′′ − ety) + (ety′ − ety)] (27.189)

= y′′ − y′ + y′′ − y + y′ − y (27.190)

= 2y′′ − 2y (27.191)

Setting the two expressions for the Wronskian equal to one another,

y′′ − y =
t

2
(27.192)

The method of undetermined coefficients tells us that

y = C1e
−t + C2e

t − 1

2
t (27.193)

is a solution ( the first two terms are yH and the third is yP ).
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Variation of Parameters

Theorem 27.12 (Variation of Parameters.). Suppose that y1, ..., yn are a
fundamental set of solutions to

Lny = an(t)y(n) + an−1(t)y(n−1) + · · ·+ a0(t)y = 0 (27.194)

Then a particular solution to

Lny = an(t)y(n) + an−1(t)y(n−1) + · · ·+ a0(t)y = f(t) (27.195)

is given by

yP = y1

∫
t

W1(s)f(s)

W (s)an(s)
ds+ y2

∫
t

W2(s)f(s)

W (s)an(s)
ds

+ · · ·+ yn

∫
t

Wn(s)f(s)

W (s)an(s)
ds (27.196)

where Wj(t) is the determinant of W[y1, ..., yn](t) with the jth column
replaced by a vector with all zeroes except for a 1 in the last row. In
particular, for n = 2, a particular solution to a(t)y′′ + b(t)y′ + c(t)y = f(t)
is

yp = −y1(t)

∫
t

y2(s)f(s)

W (s)a(s)
ds+ y2(t)

∫
t

y1(s)f(s)

W (s)a(s)
ds (27.197)

Proof for general case. Look for a solution of the form

y = u1y1 + · · ·+ unyn (27.198)

This is under-determined so we can make additional assumptions; in par-
ticular, we are free to assume that

u′1y1 + · · ·+ u′nyn = 0
u′1y
′
1 + · · ·+ u′ny

′
n = 0

...

u′1y
(n−2)
1 + · · ·+ u′ny

(n−2)
n = 0

(27.199)

Then

y′ = u1y
′
1 + · · ·+ uny

′
n

y′′ = u1y
′′
1 + · · ·+ uny

′′
n

...

y(n−1) = u1y
(n−1)
1 + · · ·+ uny

(n−1)
n

y(n) = u1y
(n)
1 + · · ·+ uny

(n)
n + u′1y

(n−1)
1 + · · ·+ u′ny

(n−1)
n

(27.200)
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So that

f(t) = an(t)y(n) + an−1(t)y(n−1) + · · ·+ a0(t)y

= an(t)
[
u1y

(n)
1 + · · ·+ uny

(n)
n + u′1y

(n−1)
1 + · · ·+ u′ny

(n−1)
n

]
+

an−1(t)
[
u1y

(n−1)
1 + · · ·+ uny

(n−1)
n

]
+ · · ·+

a1(t) [u1y
′
1 + · · ·+ uny

′
n] + a0(t) [u1y1 + · · ·+ unyn]

= an(t)
[
u′1y

(n−1)
1 + · · ·+ u′ny

(n−1)
n

]
(27.201)

Combining (27.201) and (27.199) in matrix form,
y1 y2 · · · yn
y′1 y′2 y′n
...

...

y
(n−2)
1 y

(n−2)
2 · · · y

(n−2)
n

y
(n−1)
1 y

(n−1)
2 · · · y

(n−1)
n




u′1
u′2
...

u′n−1

u′n

 =


0
0
...
0

f(t)/an(t)


(27.202)

The matrix on the left is the fundamental matrix of the differential equation,
and hence invertible, so that

u′1
u′2
...

u′n−1

u′n

 =


y1 · · · yn
y′1 y′n
...

...

y
(n−2)
1 · · · y

(n−2)
n

y
(n−1)
1 · · · y

(n−1)
n




0
0
...
0

f(t)/an(t)

 =
f(t)

an(t)


[W−1]1n
[W−1]2n

...

[W−1]nn


(27.203)

where W is the fundamental matrix and [W−1]ij denotes the ijth element
of W−1.

[W−1]jn =
cof [W ]ni

detW
=
Wi(t)

W (t)
(27.204)

Therefore

dui
dt

=
f(t)Wi(t)

an(t)W (t)
(27.205)

ui(t) =

∫
t

f(s)Wi(s)

an(s)W (s)
ds (27.206)

Substitution of equation (27.206) into equation (27.198) yields equation
(27.196).



254 LESSON 27. HIGHER ORDER EQUATIONS

Example 27.15. Solve y′′′ + y′ = tan t using variation of parameters.

The characteristic equation is 0 = r3 + r = r(r + i)(r − i); hence a funda-
mental set of solutions are y1 = 1, y2 = cos t, and y3 = sin t. From either
Abel’s formula or a direct calculation, W (t) = 1, since

W =

∣∣∣∣∣∣
1 cos t sin t
0 − sin t cos t
0 − cos t − sin t

∣∣∣∣∣∣ = 1 (27.207)

yP = y1

∫
t

W1(s)f(s)

W (s)a3(s)
ds+y2

∫
t

W2(s)f(s)

W (s)a3(s)
ds+y3

∫
t

W3(s)f(s)

W (s)a3(s)
ds (27.208)

where a3(s) = 1, f(s) = tan s, and

W1 =

∣∣∣∣∣∣
0 cos t sin t
0 − sin t cos t
1 − cos t − sin t

∣∣∣∣∣∣ = 1 (27.209)

W2 =

∣∣∣∣∣∣
1 0 sin t
0 0 cos t
0 1 − sin t

∣∣∣∣∣∣ = − cos t (27.210)

W3 =

∣∣∣∣∣∣
1 cos t 0
0 − sin t 0
0 − cos t 1

∣∣∣∣∣∣ = − sin t (27.211)

Therefore

yP =

∫
t

tan sds− cos t

∫
t

cos s tan sds− sin t

∫
t

sin s tan sds (27.212)

Integrating the first term and substituting for the tangent in the third term,

yP = − ln |cos t| − cos t

∫
t

sin sds− sin t

∫
t

sin2 s

cos s
ds (27.213)

The second integral can not be integrated immediately, and the final inte-
gral can be solved by substituting sin2 s = 1− cos2 s

yP=− ln |cos t|+ cos2 t− sin t

∫
t

1− cos2 s

cos s
ds (27.214)

Since the first term (the constant) is a solution of the homogeneous equa-
tion, we can drop it from the particular solution, giving

yP = ln |cos t| − sin t ln |sec t+ tan t| (27.215)

and a general solution of

y = ln |cos t| − sin t ln |sec t+ tan t|+C1 +C2 cos t+C3 sin t. (27.216)
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Series Solutions

In many cases all we can say about the solution of

a(t)y′′ + b(t)y′ + c(t)y = f(t)

y(t0) = y0

y′(t0) = y1

 (28.1)

is a statement about whether or not a solution exists. So far, however, we
do not have any generally applicable technique to actually find the solution.
If a solution does exist, we know it must be twice differentiable (n times
differentiable for an nth order equation).

If the solution is not just twice, but infinitely, differentiable, we call it an
analytic function. According to Taylor’s theorem, any function that is
analytic at a point t = t0 can be expanded in a power series

y(t) =

∞∑
k=0

ak(t− t0)k (28.2)

where

ak =
y(k)(t0)

k!
(28.3)

Because of Taylor’s theorem, the term analytic is sometimes used to mean
that a function can be expanded in a power series at a point (analytic ⇐⇒
infinitely differentiable ⇐⇒ power series exists).

The method of series for solving differential equations solutions looks
for analytic solutions to (28.1) by substituting equation (28.2) into the
differential equation and solving for the coefficients a0, a1, ...

255
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If we can somehow find a non-trivial solution for the coefficients then we
have solved the initial value problem. In practice, we find the coefficients
by a generalization of the method of undetermined coefficients.

Example 28.1. Solve the separable equation

ty′ − (t+ 1)y = 0

y(0) = 0

}
(28.4)

by expanding the solution as a power series about the point t0 = 0 and
show that you get the same solution as by the method of separation of
variables.

Separating variables, we can rewrite the differential equation as dy/y =
[(t+ 1)/t]dt; integrating yields

ln |y| = t+ ln |t|+ C (28.5)

hence a solution is

y = ctet (28.6)

for any value of the constant c. We should obtain the same answer using
the method of power series.

To use the method of series, we begin by letting

y(t) =

∞∑
k=0

akt
k (28.7)

be our proposed solution, for some unknown (to be determined) numbers
a0, a1, . . . . Then

y′ =

∞∑
k=0

kakt
k−1 (28.8)

Substituting (28.7) and (28.8) into (28.4),

0 = ty′ − (t+ 1)y = t

∞∑
k=0

kakt
k−1 − (t+ 1)

∞∑
k=0

akt
k (28.9)
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Changing the index of the second sum only to k = m− 1,

0 =

∞∑
k=0

kakt
k −

∞∑
k=0

akt
k+1 −

∞∑
k=0

akt
k (28.10)

=

∞∑
k=0

kakt
k −

∞∑
m=1

am−1t
m −

∞∑
k=1

akt
k (28.11)

=

∞∑
k=1

(k − 1)akt
k −

∞∑
k=1

ak−1t
k (28.12)

=

∞∑
k=1

[(k − 1)ak − ak−1]tk (28.13)

In the last line we have combined the two sums into a single sum over k.
Equation (28.13) must hold for all t. But the functions

{
1, t, t2, ...

}
are

linearly independent, and there is no non-trivial set of constants {Ck} such
that

∑∞
k=0 Ckt

k = 0, i.e., Ck = 0 for all k. Hence

a0 = 0 (28.14)

(k − 1)ak − ak−1 = 0, k = 1, 2, ... (28.15)

Equation (28.15) is a recursion relation for ak; it is more convenient to
write it as (k − 1)ak = ak−1. For the first several values of k it gives:

k = 1 :0 · a1 = a0 (28.16)

k = 2 :1 · a2 = a1 ⇒ a2 = a1 (28.17)

k = 3 :2 · a3 = a2 ⇒ a3 =
1

2
a2 =

1

2
a1 (28.18)

k = 4 :3 · a4 = a3 ⇒ a4 =
1

3
a3 =

1

3 · 2
a1 (28.19)

k = 5 :4 · a5 = a4 ⇒ a5 =
1

4
a4 =

1

4 · 3 · 2
a1 (28.20)

...

The general form appears to be ak = a1/(k − 1)!; this is easily proved by
induction, since the recursion relationship gives

ak+1 = ak/k = a1/[k · (k − 1)!] = a1/k! (28.21)



258 LESSON 28. SERIES SOLUTIONS

by assuming ak = a1/(k − 1)! as an inductive hypothesis. Hence

y = a1t+ a2t
2 + a3t

3 + · · · (28.22)

= a1

(
t+ t2 +

1

2
t3 +

1

3!
t4 +

1

4!
t5 + · · ·

)
(28.23)

= a1t

(
1 + t+

1

2
t2 +

1

3!
t3 +

1

4!
t4 + · · ·

)
(28.24)

= a1te
t (28.25)

which is the same solution we found by separation of variables. We have
not applied the initial condition, but we note in passing the only possible
initial condition that this solution satisfies at t0 = 0 is y(0) = 0.

Example 28.2. Find a solution to the initial value problem

y′′ − ty′ − y = 0

y(0) = 1

y′(0) = 1

 (28.26)

Letting y =
∑∞
k=0 ckt

k and differentiating twice we find that

y′ =

∞∑
k=0

kckt
k−1 (28.27)

y′′ =

∞∑
k=0

k(k − 1)ckt
k−2 (28.28)

The initial conditions tell us that

c0 = 1, (28.29)

c1 = 1 (28.30)

Substituting into the differential equation.

0 =

∞∑
k=0

k(k − 1)ckt
k−2 − t

∞∑
k=0

kckt
k−1 −

∞∑
k=0

ckt
k (28.31)

Let j = k − 2 in the first term, and combining the last two terms into a
single sum,

0 =

∞∑
j=−2

(j + 2)(j + 1)cj+2t
j −

∞∑
k=0

(k + 1)ckt
k (28.32)
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Since the first two terms (corresponding to j = −2 and j = −1) in the
first sum are zero, we can start the index at j = 0 rather than j = −2.
Renaming the index back to k, and combining the two series into a single
sum,

0=

∞∑
k=0

(k + 2)(k + 1)ck+2t
k −

∞∑
k=0

(k + 1)ckt
k (28.33)

By linear independence,

(k + 2)(k + 1)ck+2 = (k + 1)ck (28.34)

Rearranging, ck+2 = ck/(k + 2); letting j = k + 2 and including the initial
conditions (equation (28.29)), the general recursion relationship is

c0 = 1, c1 = 1, ck = ck−2/k (28.35)

Therefore

c2 =
c0
2

=
1

2
c3 =

c1
3

=
1

3
(28.36)

c4 =
c2
4

=
1

4 · 2
c5 =

c3
5

=
1

5 · 3
(28.37)

c6 =
c4
6

=
1

6 · 4 · 2
c7 =

c5
7

=
1

7 · 5 · 3
(28.38)

...

So the solution of the initial value problem is

y=c0 + c1t+ c2t
2 + c3t

3 + · · · (28.39)

=1 +
1

2
t2 +

1

4 · 2
t4 +

1

6 · 4 · 2
t6 + · · · (28.40)

+t+
1

3
t3 +

1

5 · 3
t5 +

1

7 · 5 · 3
t7 + · · · (28.41)

Example 28.3. Solve the Legendre equation of order 2, given by

(1− t2)y′′ − 2ty′ + 6y = 0

y(0) = 1

y′(0) = 0

 (28.42)

We note that “order 2” in the name of equation (28.42) is not related to the
order of differential equation, but to the fact that the equation is a member
of a family of equations of the form

(1− t2)y′′ − 2ty′ + n(n+ 1)y = 0 (28.43)
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where n is an integer (n = 2in this case). Expanding as usual we obtain

y =

∞∑
k=0

ckt
k (28.44)

y′ =

∞∑
k=0

kckt
k−1 (28.45)

y′′ =

∞∑
k=0

k(k − 1)ckt
k−2 (28.46)

Substituting into the differential equation,

0 = (1− t2)

∞∑
k=0

ckk(k − 1)tk−2 − 2t

∞∑
k=0

ckkt
k−1 + 6

∞∑
k=0

ckt
k (28.47)

=

∞∑
k=0

ckk(k − 1)tk−2 −
∞∑
k=0

ckk(k − 1)tk − 2t

∞∑
k=0

ckkt
k−1 + 6

∞∑
k=0

ckkt
k

(28.48)

=

∞∑
k=0

ckk(k − 1)tk−2 − 2t

∞∑
k=0

ckkt
k−1 +

∞∑
k=0

(6− k2 + k)ckt
k (28.49)

The first term can be rewritten as

∞∑
k=0

ckk(k − 1)tk−2 =

∞∑
k=2

ckk(k − 1)tk−2 (28.50)

=

∞∑
m=0

cm+2(m+ 1)(m+ 2)tm (28.51)

=

∞∑
k=0

ck+2(k + 1)(k + 2)tk (28.52)

and the middle term in (28.49) can be written as

−2t

∞∑
k=0

ckkt
k−1 =

∞∑
k=0

(−2)kckt
k (28.53)
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Hence

0 =

∞∑
k=0

ck+2(k + 1)(k + 2)tk +

∞∑
k=0

(−2)kckt
k +

∞∑
k=0

(6− k2 + k)ckt
k

(28.54)

=

∞∑
k=0

ck+2(k + 1)(k + 2)tk +

∞∑
k=0

(k2 + k − 6)ckt
k (28.55)

=

∞∑
k=1

[ck+2(k + 1)(k + 2)− (k + 3)(k − 2)ck] tk (28.56)

By linear independence

ck+2 =
(k + 3)(k − 2)

(k + 2)(k + 1)
ck, k = 0, 1, ... (28.57)

or

ck =
(k + 1)(k − 4)

k(k − 1)
ck−2, k = 2, 3, ... (28.58)

From the initial conditions we know that c0 = 1 and c1 = 0. Since c3, c5,
... are all proportional to c1, we conclude that the odd-indexed coefficients
are all zero.

Starting with k = 2 the even-indexed coefficients are

c2 =
(2 + 1)(2− 4)

2(2− 1)
c0 = −3c0 = −3

c4 =
(4 + 1)(4− 4)

4(4− 1)
c2 = 0

c6 = c8 = c10 = · · · = 0


(28.59)

Hence

y = c0 + c1t+ c2t
2 + c3t

3 + · · · = 1− 3t2 (28.60)

which demonstrates that sometimes the infinite series terminates after a
finite number of terms.
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Ordinary and Singular Points

The method of power series solutions we have described will work at any or-
dinary point of a differential equation. A point t = t0 is called an ordinary
point of the differential operator

Lny = an(t)y(n) + an−1(t)y(n−1) + · · ·+ a0(t)y (28.61)

if all of the functions

pk(t) =
ak(t)

an(t)
(28.62)

are analytic at t = t0, and is called a singular point (or singularity) of
the differential operator if any of the pk(t) are not analytic at t = t0. If not
all the pk(t) are analytic at t = t0 but all of the functions

qk(t) = (t− t0)n−kpk(t) (28.63)

namely,

qn−1(t) = (t− t0)
an−1(t)

an(t)

qn−2(t) = (t− t0)2 an−2(t)

an(t)
...

q0(t) = (t− t0)n
a0(t)

an(t)


(28.64)

are analytic, then the point is called a regular (or removable) singular-
ity. If none of the qk(t) are analytic, then the point is called an irregular
singularity. We will need to modify the method at regular singularities,
and it may not work at all at irregular singularities.

For second order equations, we say the a point of t = t0 is an ordinary
point of

y′′ + p(t)y′ + q(t)y = 0 (28.65)

if both p(t) and q(t) are analytic at t = t0; a regular singularity if
(t − t0)p(t) and (t − t0)2q(t) are analytic at t = t0; and an irregular
singularity if at least one of them is not analytic at t = t0

Theorem 28.1. [Existence of a power series solution at an ordinary point]
If {pj(t)}, j = 0, 1, ..., n− 1 are analytic functions at t = t0 then the initial
value problem

y(n) + pn−1(t)y(n−1) + pn−2(t)y(n−2) + · · ·+ p0(t)y = 0

y(t0) = y0, y
′(t0) = y1, ..., y

n−1(t0) = yn

}
(28.66)
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has an analytic solution at t = t0, given by

y =

∞∑
k=0

ck(t− t0)k (28.67)

where
ck =

yk
k!
, k = 0, 1, ..., n− 1 (28.68)

and the remaining ck may be found by the method of undetermined coef-
ficients. Specifically, if p(t) and q(t) are analytic functions at t = t0, then
the second order initial value problem

y′′ + p(t)y′ + q(t)y = 0

y(t0) = y0

y′(t0) = y1

 (28.69)

has an analytic solution

y = y0 + y1(t− t0) +

∞∑
k=2

ck(t− t0)k (28.70)

Proof. (for n = 2). Without loss of generality we will assume that t0 = 0.
We want to show that a non-trivial set of {cj} exists such that

y =

∞∑
j=0

cjt
j (28.71)

To do this we will determine the conditions under which (28.71) is a solution
of (28.69). If this series converges, then we can differentiate term by term,

y′ =

∞∑
j=0

jcjt
j−1 (28.72)

y′′ =

∞∑
j=0

j(j − 1)cjt
j−2 (28.73)

Observing that the first term of the y′ series and the first two terms of the
y′′ series are zero, we find, after substituting k = j − 1 in the first and
k = j − 2 in the second series, that

y′ =

∞∑
k=0

(k + 1)ck+1t
k (28.74)

y′′ =

∞∑
k=0

(k + 2)(k + 1)ck+2t
k (28.75)
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Since p(t) and q(t) are analytic then they also have power series expansions
which we will assume are given by

p(t) =

∞∑
j=0

pjt
j (28.76)

q(t) =

∞∑
j=0

qjt
j (28.77)

with some radius of convergence R. Substituting (28.71), (28.74) and (28.76)
into (28.69)

0 =

∞∑
k=0

(k + 2)(k + 1)ck+2t
k +

 ∞∑
j=0

pjt
j

( ∞∑
k=0

(k + 1)ck+1t
k

)

+

 ∞∑
j=0

qjt
j

( ∞∑
k=0

ckt
k

)
(28.78)

Since the power series converge we can multiply them out term by term:

0 =

∞∑
k=0

(k + 2)(k + 1)ck+2t
k +

∞∑
j=0

∞∑
k=0

pjt
j(k + 1)ck+1t

k

+

∞∑
j=0

∞∑
k=0

qjt
jckt

k (28.79)

We next use the two identities,

∞∑
k=0

∞∑
j=0

(k + 1)ck+1pjt
j+k =

∞∑
k=0

k∑
j=0

(j + 1)cj+1pk−jt
k (28.80)

and
∞∑
k=0

∞∑
j=0

qjckt
k+j =

∞∑
k=0

k∑
j=0

qk−jcjt
k (28.81)

Substituting (28.80) and (28.81) into the previous result

0 =

∞∑
k=0

(k + 2)(k + 1)ck+2t
k (28.82)

Since the tkare linearly independent,

(k + 2)(k + 1)ck+2 = −
k∑
j=0

[(j + 1)cj+1pk−j + cjqk−j ] (28.83)



265

By the triangle inequality,

|(k + 2)(k + 1)ck+2| ≤
k∑
j=0

[(j + 1) |cj+1| |pk−j |+ |cj | |qk−j |] (28.84)

Choose any r such that 0 < r < R, where R is the radius of convergence
of (28.76). Then since the two series for p and q converge there is some
number M such that

|pj | rj ≤M, |qj | rj ≤M (28.85)

Otherwise there would be a point within the radius of convergence at which
the two series would diverge. Hence

|(k + 2)(k + 1)ck+2| ≤
M

rk
∑k
j=0 r

j [(j + 1) |cj+1|+ |cj |] (28.86)

where in the second line we are merely adding a positive number to the
right hand side of the inequality. Define C0 = |c0| , C1 = |c1|, and define
C3, C4, ... by

(k + 2)(k + 1)Ck+2 =
M

rk

k∑
j=0

rj [(j + 1)Cj+1 + Cj ] +MCk+1r (28.87)

Then since |(k + 2)(k + 1)ck+2| ≤ (k+2)(k+1)Ck+2 we know that |ck| ≤ Ck
for all k. Thus if the series

∑∞
k=0 Ckt

k converges then the series
∑∞
k=0 ckt

k

must also converge by the comparison test. We will do this by the ratio
test. From (28.87)

k(k + 1)Ck+1 =
M

rk−1

k−1∑
j=0

rj [(j + 1)Cj+1 + Cj ] +MCkr (28.88)

k(k − 1)Ck =
M

rk−2

k−2∑
j=0

rj [(j + 1)Cj+1 + Cj ] +MCk−1r (28.89)

Multiplying (28.88) by r, and writing the last term of the sum explicitly,

k(k + 1)Ck+1r =
M

rk−2

∑k−1
j=0 r

j [(j + 1)Cj+1 + Cj ] +MCkr
2

=
M

rk−2

∑k−2
j=0 r

j [(j + 1)Cj+1 + Cj ] +Mr [kCk + Ck−1] +MCkr
2

(28.90)
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Substituting equation (28.89) into equation (28.90)

rk(k + 1)Ck+1 = k(k − 1)Ck −MCk−1r +M [kCk + Ck−1] r +MCkr
2

(28.91)
Dividing by rk(k + 1)Ck gives

Ck+1

Ck
=
k(k − 1) +Mkr +Mr2

rk(k + 1)
(28.92)

Multiplying by t = tk+1/tk and taking the limit as k →∞

lim
k→∞

∣∣∣∣Ck+1t
k+1

Cktk

∣∣∣∣ = lim
k→∞

∣∣∣∣k(k − 1) +Mkr +Mr2

rk(k + 1)
t

∣∣∣∣ (28.93)

Dividing the numerator an denominator by k2,

lim
k→∞

∣∣∣∣Ck+1t
k+1

Cktk

∣∣∣∣ = |t| lim
k→∞

∣∣∣∣1− 1/k +Mr/k +Mr2/k2

r + r/k

∣∣∣∣ =
|t|
|r|

(28.94)

Therefore by the ratio test
∑∞
k=0 Ckt

k converges for |t| < r, and hence
by the comparison test

∑∞
k=0 ckt

k also converges. Therefore there is an
analytic solution to any second order homogeneous ordinary differential
equation with analytic coefficients. The coefficients of the power series
are given by c0 = y0, c1 = y1 (by Taylor’s theorem) and the recursion
relationship (28.83) for c2, c3, ...

Many of the best-studied differential equations of mathematical physics
(see table 28.1) are most easily solved using the method of power series
solutions, or the related method of Frobenius that we will discuss in the
next section. A full study of these equations is well beyond the scope of
these notes; many of their most important and useful properties derive from
the fact that many of them arise from their solutions as boundary value
problems rather than initial value problems. Our interest in these functions
is only that they illustrate the method of power series solutions.

Example 28.4. Find the general solutions to Airy’s Equation:

y′′ = ty (28.95)

Using our standard substitutions,

y =

∞∑
k=0

akt
k (28.96)

y′′ =

∞∑
k=0

k(k − 1)tk−2 (28.97)
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Table 28.1: Table of Special Functions defined by Differential Equations.

Name Differential Equation
of Equation Names of Solutions
Airy y′′ = ty
Equation Airy Functions Ai(t), Bi(t)
Bessel t2y′′ + ty′ + (t2 − ν2)y = 0, 2ν ∈ Z+

Equation Bessel Functions Jν(t)
Neumann Functions Yν(t)

Modified t2y′′ + ty′ − (t2 + ν2)y = 0, ν ∈ Z+

Bessel Modified Bessel Functions Iν(t), Kν(x)
Equation Hankel Functions Hν(t)
Euler t2y′′ + αty′ + βy = 0, α, β ∈ C
Equation tr, where r(r − 1) + αr + β = 0
Hermite y′′ − 2ty′ + 2ny = 0, n ∈ Z+

Equation Hermite polynomials Hn(t)
Hypergeometric t(1− t)y′′ + (c− (a+ b+ 1)t)y′ − aby = 0, a, b, c, d ∈ R
Equation Hypergeometric Functions F , 2F1

Jacobi t(1− t)y′′ + [q − (p+ 1)t]y′ + n(p+ n)y = 0, n ∈ Z, a, b ∈ R
Equation Jacobi Polynomicals Jn
Kummer ty′′ + (b− t)y′ − ay = 0, a, b ∈ R
Equation Confluent Hypergeometric Functions 1F1

Laguerre ty′′ + (1− t)y′ +my = 0,m ∈ Z+

Equation Laguerre Polynomials Lm(t)
Associated ty′′ + (k + 1− t)y
Laguerre Eqn. Associated Laguerre Polynomials Lkm(t)
Legendre (1− t2)y′′ − 2ty′ + n(n+ 1)y = 0, n ∈ Z+

Equation Legendre Polynomials Pn(t)

Associated (1− t2)y′′ − 2ty′ +
[
n(n+ 1)− m2

1−t2

]
y = 0,m, n ∈ Z+

Legendre Eq. Associate Legendre Polynomials Pmn (t)
Tchebysheff (1− t2)y′′ − ty′ + n2y = 0 (Type I)
Equation (1− t2)y′′ − 3ty′ + n(n+ 2)y = 0 (Type II)

Tchebysheff Polynomials Tn(t), Un(t)
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in the differential equation gives

∞∑
k=0

k(k − 1)akt
k−2 = t

∞∑
k=0

akt
k =

∞∑
k=0

akt
k+1 (28.98)

Renumbering the index to j = k − 2 (on the left) and j = k + 1 (on the
right), and recognizing that the first two terms of the sum on left are zero,
gives

∞∑
j=0

(j + 2)(j + 1)aj+2t
j =

∞∑
j=1

aj−1t
j (28.99)

Rearranging,

2a2 +

∞∑
j=1

[(j + 2)(j + 1)aj+2 − aj−1] tj = 0 (28.100)

By linear independence, a2 = 0 and the remaining aj satisfy

(j + 2)(j + 1)aj+2 = aj−1 (28.101)

If we let k = j + 2 and solve for ak,

ak =
ak−3

k(k − 1)
(28.102)

The first two coefficients, a0 and a1, are determined by the initial condi-
tions; all other coefficients follow from the recursion relationship.. In partic-
ular, since a2 = 0, every third successive coefficient a2 = a5 = a8 = · · · = 0.
Starting with a0 and a1 we can begin to tabulate the remaining ones:

a3 =
a0

3 · 2
(28.103)

a6 =
a3

6 · 5
=

a0

6 · 5 · 3 · 2
(28.104)

a9 =
a6

9 · 8
=

a0

9 · 8 · 6 · 5 · 3 · 2
(28.105)

...

and

a4 =
a1

4 · 3
(28.106)

a7 =
a4

7 · 6
=

a1

7 · 6 · 4 · 3
(28.107)

a10 =
a7

10 · 9
=

a1

10 · 9 · 7 · 6 · 4 · 3
(28.108)

...
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Thus

y = a0

(
1 +

1

6
t3 +

1

180
t6 +

1

12960
t9 + · · ·

)
(28.109)

+ a1t

(
1 +

1

12
t3 +

1

504
t6 +

1

45360
t9 + · · ·

)
(28.110)

= a0y1(t) + a1y2(t) (28.111)

where y1 and y2 are defined by the sums in parenthesis. It is common to
define the Airy Functions

Ai(t) =
1

32/3Γ(2/3)
y1(t)− 1

31/3Γ(1/3)
y2(t) (28.112)

Bi(t) =

√
3

32/3Γ(2/3)
y1(t) +

√
3

31/3Γ(1/3)
y2(t) (28.113)

Either the sets {y1, y2} or {Ai,Bi} are fundamental sets of solutions to the
Airy equation.

Figure 28.1: Solutions to Airy’s equation. Left: The fundamental set y1

(solid) and y2(dashed). Right: the traditional functions Ai(t)(solid) and
Bi(t) (dashed). The renormalization keeps Ai(t) bounded, whereas the un-
normalized solutions are both unbounded.
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Example 28.5. Legendre’s Equation of order n is given by

(1− t2)y′′ − 2ty′ + n(n+ 1)y = 0 (28.114)

where n is any integer. Equation (28.114) is actually a family of differential
equations for different values of n; we have already solved it for n = 2 in
example 28.3, where we found that most of the coefficients in the power
series solutions were zero, leaving us with a simple quadratic solution.
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Figure 28.2: Several Legendre Polynomials. P1 (Bold); P2 (Bold, Dotted);
P3 (Bold, Dashed); P4 (Thin, Dotted); P5 (Thin, Dashed).
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0.5

1.

In general, the solutions of the nth equation (28.114) will give a polynomial
of order n, called the Legendre polynomial Pn(t).

To solve equation (28.114) we substitute

y =

∞∑
k=0

akt
k (28.115)

y′ =

∞∑
k=0

kakt
k−1 (28.116)

y′′ =

∞∑
k=0

k(k − 1)akt
k−2 (28.117)
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into (28.114) and collect terms,

0 = (1− t2)

∞∑
k=0

k(k − 1)akt
k−2 − 2t

∞∑
k=0

kakt
k−1 + n(n+ 1)

∞∑
k=0

akt
k

(28.118)

Let j = k − 2 in the first sum and observe that the first two terms in that
sum are zero.

0 =

∞∑
j=0

(j + 1)(j + 2)aj+2t
j +

∞∑
k=0

[
−k − k2 + n(n+ 1)

]
akt

k (28.119)

We can combine this into a single sum in tk; by linear independence all of
the coefficients must be zero,

(k + 1)(k + 2)ak+2 − [k(k + 1)− n(n+ 1)]ak = 0 (28.120)

for all k = 0, 1, 2, ..., and therefore

ak+2 =
k(k + 1)− n(n+ 1)

(k + 1)(k + 2)
ak, k = 0, 1, 2, ... (28.121)

The first two coefficients, a0 and a1 are arbitrary. The remaining ones are
determined by (28.121), and generates two sequences of coefficients

a1, a3, a5, a7, ...
a0, a2, a4, a6, ...

(28.122)

so that we can write

y =
∑
k even

akt
k +

∑
k odd

akt
k (28.123)

These two series are linearly independent. In particular, the right hand side
of (28.121) vanishes when

k(k + 1) = n(n+ 1) (28.124)

so that for k = n one of these two series will be a finite polynomial of order
n. Normalized versions of the solutions are called the Legendre Polynomials,
and the first few are given in the (28.125) through (28.135).
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P0(t) = 1 (28.125)

P1(t) = t (28.126)

P2(t) =
1

2

(
3t2 − 1

)
(28.127)

P3(t) =
1

2

(
5t3 − 3t

)
(28.128)

P4(t) =
1

8

(
35t4 − 30t2 + 3

)
(28.129)

P5(t) =
1

8

(
63t5 − 70t3 + 15t

)
(28.130)

P6(t) =
1

16

(
231t6 − 315t4 + 105t2 − 5

)
(28.131)

P7(t) =
1

16

(
429t7 − 693t5 + 315t3 − 35t

)
(28.132)

P8(t) =
1

128

(
6435t8 − 12012t6 + 6930t4 − 1260t2 + 35

)
(28.133)

P9(t) =
1

128

(
12155t9 − 25740t7 + 18018t5 − 4620t3 + 315t

)
(28.134)

P10(t) =
1

256

(
46189t10 − 109395t8 + 90090t6 − 30030t4 + 3465t2 − 63

)
(28.135)
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Summary of Power series method.

To solve the linear differential equation

Lny = an(t)y(n) + · · ·+ a0(t)y = f(t) (28.136)

or the corresponding initial value problem with

y(t0) = y0, ..., y
(n−1)(t0) = yn (28.137)

as a power series about the point t = t0

1. Let y =

∞∑
k=0

ck(t− t0)k

2. If initial conditions are given, use Taylor’s theorem to assign the first
n values of ck as

ck = y(k)(t0)/k! = yk/k!, k = 0, 1, ..., n− 1 (28.138)

3. Calculate the first n derivatives of y.

4. Substitute the expressions for y, y′, ..., y(n) into (28.136).

5. Expand all of the an(t)that are not polynomials in Taylor series about
t = t0 and substitute these expansions into the expression obtained
in step 4.

6. Multiply out any products of power series into a single power series.

7. By an appropriate renumbering of indices, combine all terms in the
equation into an equation of the form

∑
k uk(t− t0)k = 0 where each

uk is a function of some set of the ck.

8. Use linear independence to set the uk = 0 and find a relationship
between the ck.

9. The radius of convergence of power series is min{ti}(|t0 − ti)) where
{ti} is the set of all singularities of a(t).
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Lesson 29

Regular Singularities

The method of power series solutions discussed in chapter 28 fails when
the series is expanded about a singularity. In the special case of regular
singularity this problem can be rectified with method of Frobenius, which
we will discuss in chapter 30. We recall the definition of a regular singular
point here.

Definition 29.1. Let

a(t)y′′ + b(t)y′ + c(t)y = 0 (29.1)

have a singular point at t0, i.e., a(t0) = 0. Then if the limits

lim
t→t0

(t− t0)b(t)

a(t)
= L1 (29.2)

lim
t→t0

(t− t0)2c(t)

a(t)
= L2 (29.3)

exist and are finite we say that t0 is a regular singularity of the dif-
ferential equation. Note that these limits will always exist when the
arguments of the limit are analytic (infinitely differentiable) at t0. If either
of the limits does not exist or are infinite (or the arguments of either limit
is not analytic) then we say that t0 is an irregular singularity of the
differential equation. If a(t0) 6= 0 then we call t0 an ordinary point of
the differential equation.

Theorem 29.2. The power series method of chapter 28 works whenever the
series is expanded about an ordinary point, and the radius of convergence
of the series is the distance from t0 to the nearest singularity of a(t).

275
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Proof. This is a restatement of theorem 28.1.

Example 29.1. The differential equation (1 + t2)y′′ + 2ty′ + 4t2y = 0 has
singularities at t = ±i. The series solution

∑
akt

k about t0 = 0 has a radius
of convergence of 1 while the series solution

∑
bk(t− 1)k about t0 = 1 has

a radius of convergence of
√

2.

The Cauchy-Euler equation

t2y′′ + αty′ + βy = 0 (29.4)

where α, β ∈ R is the canonical (standard or typical) example of a differ-
ential equation with a regular singularity at the origin. It is useful because
it provides us with an insight into why the Frobenius method that we will
discuss in chapter 30 will work, and the forms and methods of solution
resemble (though in simpler form) the more difficult Frobenius solutions to
follow.

Example 29.2. Prove that the Cauchy-Euler equation has a regular sin-
gularity at t = 0.

Comparing with equation 29.1, we have that a(t) = t2, b(t) = αt, and
c(t) = β. First, we observe that a(0) = 0, hence there is a singularity at
t = 0. Then, applying the definition of a regular singularity (definition
29.1) with t = 0,

lim
t→0

(t) · αt
t2

= α (29.5)

lim
t→0

(t2) · β
t2

= β (29.6)

Since both α and β are given real number, the limits exist and are finite.
Hence by the definition of a regular singularity, there is a regular singularity
at t = 0.

The following example demonstrates one of the problem that arises when we
go blindly ahead and attempt to find a series solution to the Cauchy-Euler
equation.

Example 29.3. Attempt to find a series solution about t = 0 to the
Cauchy-Euler equation (29.4).

We begin by letting y =
∑∞
k=0 akt

k in (29.4), which gives
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0 = t2
∞∑
k=0

akk(k − 1)tk−2 + αt

∞∑
k=0

kakt
k−1 + β

∞∑
k=0

akt
k (29.7)

=

∞∑
k=0

akk(k − 1)tk +

∞∑
k=0

αkakt
k +

∞∑
k=0

βakt
k (29.8)

=

∞∑
k=0

akt
k[k(k − 1) + αk + β] (29.9)

Since this must hold for all values of t, by linear independence we require
that

ak[k(k − 1) + αk + β] = 0 (29.10)

for all k = 0, 1, ...

Hence either

ak = 0 (29.11)

or

k(k − 1) + αk + β = 0 (29.12)

for all values of k. Since α and β are given real numbers, it is impossible
for (29.12) to hold for all values of k because it is quadratic k. It will hold
for at most two values of k, which are most likely not integers.

This leads us to the following conclusion: the only time when (29.4) has a
series solution is when

r1,2 =
1− α±

√
(1− α)2 − 4β

2
(29.13)

are both non-negative integers, say p and q, in which case the series solution
is really just two terms

y = apt
p + aqt

q (29.14)

When there is not a non-negative integer solution to (29.13) then (29.4)
does not have a seris solution.

The result we found in example 29.3 does suggest to us one way to solve
the Cauchy-Euler method. What if we relax the restriction on equation
29.10 that k be an integer. To see how this might come about, we consider
a solution of the form

y = xr (29.15)
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for some unknown number (integer, real, or possibly complex) r. To see
what values of r might work, we substitute into the original ODE (29.4):

t2r(r − 1)tr−2 + αtrtr−1 + βtr = 0 (29.16)

=⇒ tr[r(r − 1) + αr + β] = 0 (29.17)

Since this must hold for all values of t, the second factor must be identically
equal to zero. Thus we obtain

r(r − 1) + αr + β = 0 (29.18)

without the restriction that r ∈ Z. We call this the indicial equation
(even though there are no indices) due to its relationship (and similarity)
to the indicial equation that we will have to solve in Frobenius’ method in
chapter 30.

We will now consider each of the three possible cases for the roots

r1,2 =
1− α±

√
(1− α)2 − 4β

2
(29.19)

Case 1: Two real roots. If r1, r2 ∈ R and r1 6= r2, then we have found two
linearly independent solutions and the general solution is

y = C1t
r1 + C2t

r2 (29.20)

Example 29.4. Find the general solution of

2t2y′′ + 3ty′ − y = 0 (29.21)

In standard from this becomes

t2y′′ +
3

2
ty′ − 1

2
y = 0 (29.22)

The indicial equation is

0 = r(r − 1)− 3

2
r +

1

2
=

2

2
r2 +

1

2
r +

1

2
(29.23)

0 = 2r2 + r + 1 = (2r − 1)(r + 1) =⇒ r =
1

2
,−1 (29.24)

Hence

y = C1

√
t+

C2

t
(29.25)
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Case 2: Two equal real roots. Suppose r1 = r2 = r. Then

r =
1− α

2
(29.26)

because the square root must be zero (ie., (1 − α)2 − 4β = 0) to give a
repeated root.

We have one solution is given by y1 = tr = t(1−α)/2. To get a second
solution we can use reduction of order.

From Abel’s formula the Wronskian is

W = C exp

(
−
∫
αtdt

t2

)
= C exp

(
−α

∫
dt

t

)
= Ce−α ln t =

C

tα
(29.27)

By the definition of the Wronskian a second formula is given by

W = y1y
′
2 − y2y

′
1 (29.28)

=
(
t(1−α)/2

)
y′2 − y′2

(
1− α

2

)(
t(−1−α)/2

)
(29.29)

Equating the two expressions for W ,(
t(1−α)/2

)
y′2 − y′2

(
1− α

2

)(
t(−1−α)/2

)
=
C

tα
(29.30)

y′2 −
(

1− α
2

)
t(−1−α)/2

t(1−α)/2
y′2 =

C

tα(t(1−α)/2)
(29.31)

y′2 +

(
α− 1

2t

)
y′2 =

C

t(1+α)/2
(29.32)

This is a first order linear equation; an integrating factor is

µ(t) = exp

(∫
α− 1

2t
dt

)
= exp

(
α− 1

2
ln t

)
= t(α−1)/2 (29.33)

If we denote q(t) = Ct−(1+α)/2 then the general solution of (29.32) is

y =
1

µt

[∫
µ(t)q(t)dt+ C1

]
(29.34)

= t(1−α)/2

[∫
t(α−1)/2Ct−(1+α)/2dt+ C1

]
(29.35)

= Cy1

∫
dt

t
+ C1y1 (29.36)

= Cy1 ln |t|+ C1y1 (29.37)
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because y1 = tr = t(1−α)/2.

Thus the second solution is y2 = y1 ln |t|, and the the general solution to
the Euler equation in case 2 becomes

y = C1t
r + C2t

r ln |t| (29.38)

Example 29.5. Solve the Euler equation t2y′′ + 5ty′ + 4y = 0.

The indicial equation is

0 = r(r − 1) + 5r + 4 = r2 + 4r + 4 = (r + 2)2 =⇒ r = −2 (29.39)

This is case 2 with r = −2, so y1 = 1/t2 and y2 = (1/t2) ln |t|, and the
general solution is

y =
C1

t2
+
C2

t2
ln |t| (29.40)

Case 3: Complex Roots. If the roots of t2y′′+αty′+ βy = 0 are a complex
conjugate pair then we may denote them as

r = λ± iµ (29.41)

where λ and µ are real numbers. The two solutions are given by

tr = tλ±iµ = tλt±iµ (29.42)

= tλeln(t±iµ) (29.43)

= tλe±iµ ln t (29.44)

= tλ[cos(µ ln t)± i sin(µ ln t)] (29.45)

Hence the general solution is

y = C1t
r1 + C2t

r2 (29.46)

= C1t
λ[cos(µ ln t) + i sin(µ ln t)]

+ C2t
λ[cos(µ ln t)− i sin(µ ln t)] (29.47)

= tλ [(C1 + C2) cos(µ ln t) + (C1 − iC2) sin(µ ln t)] (29.48)

Thus for any C1 and C2 we can always find and A and B (and vice versa),
where

A = C1 + C2 (29.49)

B = C1 − iC2 (29.50)

so that
y = Atλ cos(µ ln t) +Btλ sin(µ ln t) (29.51)
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Example 29.6. Solve t2y′′ + ty′ + y = 0. The indicial equation is

0 = r(r − 1) + r + 1 = r2 + 1 =⇒ r = ±i (29.52)

Thus the roots are a complex conjugate pair with real part λ = 0 and
imaginary part µ = 1. Hence the solution is

y = At0 cos(1 · ln t) +Bt0 sin(1 · ln t) = A cos ln t+B sin ln t (29.53)

Summary of Cauchy-Euler Equation

To solve t2y′′ + αty′ + βy = 0 find the roots of

r(r − 1) + αr + β = 0 (29.54)

There are three possible case.

1. If the roots are real and distinct, say r1 6= r2, then the solution is

y = C1t
r1 + C2t

r2 (29.55)

2. If the roots are real and equal, say r = r1 = r2, then the solution is

y = C1t
r + C2t

r ln |t| (29.56)

3. If the roots form a complex conjugate pair r = λ±iµ, where λ, µ ∈ R,
then the solution is

y = C1t
λ cos(µ ln t) + C2t

λ sin(µ ln t) (29.57)

where, in each case, C1 and C2 are arbitrary constants (that may be
determined by initial conditions).
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Lesson 30

The Method of Frobenius

If the equation
y′′ + b(t)y′ + c(t)y = 0 (30.1)

has a regular singularity at the point t = t0, then the functions

p(t) = (t− t0)b(t) (30.2)

q(t) = (t− t0)2c(t) (30.3)

are analytic at t = t0 (see the discussion following (28.65)). Substituting
(30.2) and (30.3) into (30.1) and then multiplying the result through by
(t− t0)2 gives

(t− t0)2y′′ + (t− t0)p(t)y′ + q(t)y = 0 (30.4)

Thus we are free to take equation (30.4) as the canonical form any second
order differential equation with a regular singularity at t = t0. By canonical
form, we mean a standard form for describing any the properties of any
second order differential equation with a regular singularity at t = t0.

The simplest possible form that equation (30.4) can take occurs when t0 = 0
and p(t) = q(t) = 1,

t2y′′ + ty′ + y = 0 (30.5)

Equation (30.5) is a form of the Cauchy-Euler equation

t2y′′ + aty′ + by = 0, (30.6)

where a and b are nonzero constants. The fact that theorem 28.1 fails
to guarantee a series solution around t = 0 is illustrated by the following
example.

283
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Example 30.1. Attempt to find a series solution for equation (30.5).

Following our usual procedure we let y =
∑∞

0 ckt
k, differentiate twice, and

substitute the results into the differential equation, leading to

0 = t2
∞∑
k=0

ckk(k − 1)tk−2 + t
∞∑
k=0

ckkt
k−1 +

∞∑
k=0

ckt
k (30.7)

=

∞∑
k=0

ckk(k − 1)tk +

∞∑
k=0

ckkt
k +

∞∑
k=0

ckt
k (30.8)

=

∞∑
k=0

ck(k(k − 1) + k + 1)tk (30.9)

=

∞∑
k=0

ck(k2 + 1)tk (30.10)

By linear independence,
ck(k2 + 1) = 0 (30.11)

for all k. But since k2 + 1 is a positive integer, this means ck = 0 for all
values of k. Hence the only series solution is the trivial one, y = 0.

Before one is tempted to conclude that there is no non-trivial solution to
equation (30.5), consider the following example.

Example 30.2. Use the substitution x = ln t to find a solution to (30.5).

By the chain rule

y′ =
dy

dx

dx

dt
=

1

t

dy

dx
(30.12)

Differentiating a second time,

y′′=
d

dt

(
1

t

dy

dx

)
(30.13)

= − 1

t2
dy

dx
+

1

t

d

dt

(
dy

dx

)
(30.14)

=− 1

t2
dy

dx
+

1

t

d

dx

(
dy

dx

)
dx

dt
(30.15)

=− 1

t2
dy

dx
+

1

t2
d2y

dx2
(30.16)

Substituting (30.12) and (30.16) into (30.5) gives

d2y

dx2
+ y = 0 (30.17)
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This is a homogeneous linear equation with constant coefficients; the solu-
tion is

y = C1 cosx+ C2 sinx (30.18)

= C1 cos ln t+ C2 sin ln t. (30.19)

The solution we found to (30.5) in example 30.2 is not even defined, much
less analytic at t = 0. So there is no power series solution. However, it
turns out that we can still make use of the result we found in example 30.1,
which said that the power series solution only “exists” when k2 + 1 = 0,
if we drop the requirement that k be an integer, since then we would have
k = ±i, and our “series” solution would be

y =
∑
k∈S

ckt
k = c−it

−i + cit
i (30.20)

where the sum is taken over the set S = {−i, i}.

Example 30.3. Show that the “series” solution given by (30.20) is equiv-
alent to the solution we found in example 30.2.

Rewriting (30.20),

y = c−it
−i + cit

i (30.21)

= c−i exp ln t−i + ci exp ln ti (30.22)

= c−i exp(−i ln t) + ci exp(i ln t) (30.23)

= c−1[cos(−i ln t) + i sin(−i ln t)] + ci[cos(i ln t) + i sin(i ln t)] (30.24)

= c−1 cos(i ln t)− ic−1 sin(i ln t) + ci cos(i ln t) + ici sin(i ln t) (30.25)

= (ci + c−1) cos(i ln t) + i(ci − c−1) sin(i ln t) (30.26)

= C1 cos(i ln t) + C2 sin(i ln t) (30.27)

where

C1 = c−i + ci (30.28)

C2 = i(ci − c−i) (30.29)

Since this is a linear system and we can solve for ci and c−i, namely

ci =
1

2
(C1 − iC2) (30.30)

c−i =
1

2
(C1 + iC2) (30.31)

Given either solution, we can find constants that make it the same as the
other solution, hence the two solutions are identical.
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Since each term in (30.20) has the form tα for some complex number α,
this led Georg Ferdinand Frobenius to look for solutions of the form

y = (t− t0)αS(t) (30.32)

where S(t) is analytic at t0 and can be expanded in a power series,

S(t) =

∞∑
k=0

ck(t− t0)k (30.33)

To determine the condition under which Frobenius’ solution works, we dif-
ferentiate (30.32) twice

y′ = α(t− t0)α−1S + (t− t0)αS′ (30.34)

y′′ = α(α− 1)(t− t0)α−2S + 2α(t− t0)α−1S′ + (t− t0)αS′′ (30.35)

and substitute equations (30.32), (30.34), and (30.35) into the differential
equation (30.4):

0=(t− t0)2
[
α(α− 1)(t− t0)α−2S + 2α(t− t0)α−1S′ + (t− t0)αS′′

]
+(t− t0)

[
α(t− t0)α−1S + (t− t0)αS′

]
p(t) + (t− t0)αSq(t) (30.36)

=(t− t0)α+2S′′ + [2α+ p(t)] (t− t0)α+1S′

+ [α(α− 1) + αp(t) + q(t)] (t− t0)αS (30.37)

For t 6= t0, the common factor of (t − t0)α can be factored out to and the
result becomes

0 = (t−t0)2S′′+[2α+ p(t)] (t−t0)S′+[α(α− 1) + αp(t) + q(t)]S (30.38)

Since p(t), q(t), and S(t) are all analytic at t0 the expression on the right-
hand side of (30.38) is also analytic, and hence infinitely differentiable, at
t0. Thus it must be continuous at t0 (differentiability implies continuity),
and its limit as t→ t0 must equal its value at t = t0. Thus

[α(α− 1) + αp(t0) + q(t0)]S(t0) = 0 (30.39)

So either S(t0) = 0 (which means that y(t0) = 0) or

α(α− 1) + αp(t0) + q(t0) = 0 (30.40)

Equation (30.40) is called the indicial equation of the differential equation
(30.4); if it is not satisfied, the Frobenius solution (30.32) will not work.
The Indicial equation plays a role analogous to the characteristic equation
but at regular singular points.

Before we prove that the indicial equation is also sufficient, we present the
following example that demonstrates the Method of Frobenius.
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Example 30.4. Find a Frobenius solution to Bessel’s equation of order
1/2 near the origin,

t2y′′ + ty′ + (t2 − 1/4)y = 0 (30.41)

By “near the origin” we mean “in a neighborhood that includes the point
t0 = 0.

The differential equation has the same form as y′′ + b(t)y′ + c(t)y = 0 with
b(t) = 1/t and c(t) = (t2 − 1/4)/t2, neither of which is analytic at t = 0.
Thus the origin is not an ordinary point. However, since

p(t) = tb(t) = 1 (30.42)

and
q(t) = t2c(t) = t2 − 1/4 (30.43)

are both analytic at t = 0, we conclude that the singularity is regular.
Letting t0 = 0, we have p(t0) = p(0) = 1 and q(t0) = −1/4, so the indicial
equation is

0 = α(α− 1) + α− 1

4
= α2 − 1

4
(30.44)

The roots are α = ±1/2, so the two possible Frobenius solutions

y1 =
√
t

∞∑
k=0

akt
k =

∞∑
k=0

akt
k+1/2 (30.45)

y2 =
1√
t

∞∑
k=0

bkt
k =

∞∑
k=0

bkt
k−1/2 (30.46)

Starting with the first solution,

y′1 =

∞∑
k=0

ak(k + 1/2)tk−1/2 (30.47)

y′′1 =

∞∑
k=0

ak(k2 − 1/4)tk−3/2 (30.48)

Using (30.45) and (30.47) the differential equation gives

0 =

∞∑
k=0

ak

(
k2 − 1

4

)
tk+1/2 +

∞∑
k=0

ak

(
k +

1

2

)
tk+1/2

+

(
t2 − 1

4

) ∞∑
k=0

akt
k+1/2 (30.49)
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Canceling the common factor of
√
t,

0 =

∞∑
k=0

ak

(
k2 − 1

4

)
tk +

∞∑
k=0

ak

(
k +

1

2

)
tk

+

∞∑
k=0

akt
k+2 − 1

4

∞∑
k=0

akt
k (30.50)

=

∞∑
k=0

ak

(
k2 − 1

4
+ k +

1

2
− 1

4

)
+

∞∑
k=0

akt
k+2 (30.51)

=

∞∑
k=0

ak(k2 + k) +

∞∑
k=0

akt
k+2 (30.52)

Letting j = k + 2 in the second sum,

0 =

∞∑
k=0

ak(k2 + k)tk +

∞∑
j=2

aj−2t
j (30.53)

Since the k = 0 term is zero and the k = 1 term is 2a1t in the first sum,

0 = 2a1t+

∞∑
j=2

[
aj(j

2 + j) + aj−2

]
tj (30.54)

By linear independence,

a1 = 0 (30.55)

aj =
−aj−2

j(j + 1)
, j ≥ 2 (30.56)

Since a1 = 0, all subsequent odd-numbered coefficients are zero (this follows
from the second equation). Furthermore,

a2 =
−a0

3 · 2
, a4 =

−a2

5 · 4
=
a0

5!
, a6 =

−a4

7 · 6
= −a0

7!
, · · · (30.57)
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Thus a Frobenius solution is

y1 =
√
t

∞∑
k=0

akt
k (30.58)

=
√
t(a0 + a1t+ a2t

2 + · · · ) (30.59)

= a0

√
t

(
1− 1

3!
t2 +

1

5!
t4 − 1

7!
t6 + · · ·

)
(30.60)

a0√
t

(
t− t3

3!
+
t5

5!
− t7

7!
+ · · ·

)
(30.61)

=
a0√
t

sin t (30.62)

Returning to the second solution

y2 =
b0√
t

+ b1
√
t+ b2t

3/2 + b3t
5/2 + · · · (30.63)

This series cannot even converge at the origin unless b0 = 0. This leads to

y2 = b1
√
t+ b2t

3/2 + b3t
5/2 + · · · (30.64)

=
√
t(b1 + b2t+ b3t

2 + · · · ) (30.65)

which is the same as the first solution. So the Frobenius procedure, in this
case, only gives us the one solution.

Theorem 30.1. (Method of Frobenius) Let

p(t) =

∞∑
k=0

pk(t− t0)k and (30.66)

q(t) =

∞∑
k=0

qk(t− t0)k (30.67)

be analytic functions at t = t0, with radii of convergence r, and let α1, α2

be the roots of the indicial equation

α(α− 1) + αp(t0) + q(t0) = 0. (30.68)

Then

1. If α1, α2 are both real and α = max{α1, α2}, there exists some set of
constants {a1, a2, ...} such that

y = (t− t0)α
∞∑
k=0

ak(t− t0)k (30.69)
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is a solution of

(t− t0)2y′′ + (t− t0)p(t)y′ + q(t)y = 0 (30.70)

2. If α1, α2 are both real and distinct, such that ∆ = α1 − α2 is not an
integer, then (30.69) gives a second solution with α = min{α1, α2}and
a (different) set of coefficients {a1, a2, ...}.

3. If α1, α2 are a complex conjugate pair, then there exists some sets of
constants {a1, a2, ...} and {b1, b2, ...} such that

y1 = (t− t0)α1

∞∑
k=0

ak(t− t0)k (30.71)

y2 = (t− t0)α2

∞∑
k=0

bk(t− t0)k (30.72)

form a fundamental set of solutions to (30.70).

Example 30.5. Find the form of the Frobenius solutions for

2t2y′′ + 7ty′ + 3y = 0 (30.73)

The differential equation can be put into the standard form

t2y′′ + tp(t)y′ + q(t)y = 0 (30.74)

by setting p(t) = 7/2 and q(t) = 3/2. The indicial equation is

0 = α2 + (p0 − 1)α+ q0 (30.75)

= α2 + (5/2)α+ 3/2 (30.76)

= (α+ 3/2)(α+ 1) (30.77)

Hence the roots are α1 = −1, α2 = −3/2. Since ∆ = α1 − α2 = 1/2 /∈ Z,
each root leads to a solution:

y1 =
1

t

∞∑
k=0

akt
k =

a0

t
+ a1 + a2t+ a3t

2 + · · · (30.78)

y2 = t−3/2
∞∑
k=0

bkt
k =

b0
t3/2

+
b1
t1/2

+ b2t
1/2 + b3t

3/2 + · · · (30.79)
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Example 30.6. Find the form of the Frobenius solutions to

t2y′′ − ty + 2y = 0 (30.80)

This equation can be written in the form t2y′′ + tp(t)y′ + q(t)y = 0 where
p(t) = −1 and q(t) = 2. Hence the indicial equation is

0 = α2 + (p0 − 1)α+ q0 = α2 − 2α+ 2 (30.81)

The roots of the indicial equation are α = 1± i, a complex conjugate pair.
Since ∆α = (1 + i)− (1− i) = 2i 6∈ Z, each root gives a Frobenius solution:

y1 = t1+i
∞∑
k=0

akt
k (30.82)

= (cos ln t+ i sin ln t)
(
a0t+ a1t

2 + a2t
3 + · · ·

)
(30.83)

y2 = t1−i
∞∑
k=0

bkt
k (30.84)

= (cos ln t− i sin ln t)
(
b0t+ b1t

2 + b2t
3 + · · ·

)
. (30.85)

Example 30.7. Find the form of the Frobenius solution for the Bessel
equation of order -3,

t2y′′ + ty′ + (t2 + 9) = 0 (30.86)

This has p(t) = 1 and q(t) = t2 + 9, so that p0 = 1 and q0 = 9. The indicial
equation is

α2 + 9 = 0 (30.87)

The roots are the complex conjugate pair α1 = 3i, α2 = −3i. For a
complex conjugate pair, each root gives a Frobenius solution, and hence we
have two solutions

y1 = t3i
∞∑
k=0

akt
k = [cos(3 ln t) + i sin(3 ln t)]

∞∑
k=0

akt
k (30.88)

y2 = t−3i
∞∑
k=0

bkt
k = [cos(3 ln t)− i sin(3 ln t)]

∞∑
k=0

bkt
k (30.89)

where we have used the identity

tix = eix ln t = cos(x ln t) + i sin(x ln t) (30.90)

in the second form of each expression.
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Proof. (of theorem 30.1). Suppose that

y = (t− t0)αS(x) (30.91)

is a solution of (30.70), where

S =

∞∑
n=0

cn(t− t0)n. (30.92)

We will derive formulas for the ck.

For n = 1, we start by differentiating equation (30.38)

0=2(t− t0)S′′ + (t− t0)2S′′′

+ [p(t) + 2α]S′ + (t− t0)p′(t)S′ + (t− t0) [p(t) + 2α]S′′′

+ [q′(t) + αp′(t)]S + [q(t) + α(α− 1) + αp(t)]S′ (30.93)

Everything on the right hand side of this equation is analytic, and hence
continuous. Taking the limit as t→ t0, we have,

0= [p(t0) + 2α]S′(t0)

+ [q′(t0) + αp′(t0)]S + [q(t0) + α(α− 1) + αp(t0)]S′(t0) (30.94)

By Taylor’s Theorem cn = S(n)(t0)/n! so that c0 = S(t0) and c1 = S′(t0);
similarly, p(t0) = p0, p′(t0) = p1, q(t0) = q0, and q′(t0) = q1 in (30.66), and
therefore

0 = (p0 + 2α)c1 + [q1 + αp1]c0 + [q0 + α(α− 1) + αp0]c1 (30.95)

The third term is zero (this follows from (30.68)) and hence

c1 = −q1 + αp1

p0 + 2α
c0. (30.96)

For n > 1, we will need to differentiate equation (30.38) n times, to obtain
a recursion relationship between the remaining coefficients, starting with

0 = D(n)
[
(t− t0)2S′′

]
+D(n) {[2α+ p(t)] (t− t0)S′}

+D(n) {[α(α− 1) + αp(t) + q(t)]S} (30.97)

We then apply the identity

Dn(uv) =

n∑
k=0

(
n
k

)
(Dku)(Dn−kv) (30.98)
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term by term to (30.97). Starting with the first term,

Dn
[
(t− t0)2S′′

]
=

n∑
j=0

(
n
j

)[
Dj(t− t0)2

] [
Dn−jS′′

]
(30.99)

=

(
n
0

)
(t− t0)2DnS′′ + 2

(
n
1

)
(t− t0)Dn−1S′′

+ 2

(
n
2

)
Dn−2S′′ (30.100)

Even for n > 2 there are only 3 terms because Dn(t − t0)2 = 0 for n ≥ 3.
Hence

Dn
[
(t− t0)2S′′

]
= (t− t0)2S(n+2) + 2(n− 1)(t− t0)S(n+1)

+ n(n− 1)S(n) (30.101)

At t = t0,

Dn
[
(t− t0)2S′′

]∣∣
t=t0

= n(n− 1)S(n)(t0) = n(n− 1)cnn! (30.102)

Similarly, the second term in (30.97)

Dn {(t− t0)[2α+ p(t)]S′(t)}

=

n∑
k=0

(
n
k

)
Dk(t− t0)Dn−k {S′(t)[2α+ p(t)]} (30.103)

= (t− t0)Dn {S′(t)[2α+ p(t)]}+ nDn−1 {S′(t)[2α+ p(t)]} (30.104)

At t = t0,

Dn {(t− t0)[2α + p(t)]S′(t)} (t0)

= nDn−1 {S′(t)[2α+ p(t)]} (t0) (30.105)

= n

n−1∑
k=0

(
n− 1
k

){
[2α+ p(t)](k)(t0)

}
S(n−k)(t0) (30.106)

= n[2α+ p(t0)]S(n)(t0)

+ n

n−1∑
k=1

(
n− 1
k

){
[2α+ p(t)](k)(t0)

}
S(n−k)(t0) (30.107)

= n[2α+ p(t0)]S(n)(t0) + n

n−1∑
k=1

(
n− 1
k

)
p(k)(t0)S(n−k)(t0) (30.108)
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By Taylor’s theorem p(k)(t0) = k!pk and S(n−k)(t0) = (n− k)!cn−k, where
pk and ck are the Taylor coefficients of p(t) and S(t), respectively,

Similarly, the third term in (30.97) is

D(n) {[α(α− 1) + αp(t) + q(t)]S} (t0)

=

n∑
k=0

(
n
k

){
[α(α− 1) + αp(t) + q(t)]

(k)
(t0)

}
S(n−k)(t0) (30.109)

Extracting the first (k = 0) term,

D(n) {[α(α− 1) + αp(t) + q(t)]S} (t0)

= [α(α− 1) + αp0 + q0]S(n)(t0)

+

n∑
k=1

(
n
k

)[
αp(k)(t0) + q(k)(t0)

]
S(n−k)(t0) (30.110)

By the indicial equation, the first term is zero. Substituting the formulas
for the Taylor coefficients and simplifying,

D(n) {[α(α− 1) + αp(t) + q(t)]S} (t0) =

n∑
k=1

(
n
k

)
[αk!pk + k!qk] (n−k)!cn−k

(30.111)
Substituting (30.111) and (30.102) into (30.97),

0 =n(n− 1)cnn! + nn!(2α+ p0)cn

+

n−1∑
k=1

n!(n− k)pkcn−k +

n∑
k=1

n! [αpk + qk] cn−k (30.112)

Rearranging and simplifying,

n(n− 1 + 2α+ p0)cn +

n−1∑
k=1

[(n− k + α)pk + qk]cn−k = 0 (30.113)

Letting r > 0 be the radius of convergence of the Taylor series for p and
q, then there is some number M such that |pk| rk ≤ M and |qk| rk ≤ M .
Then

|n(n− 1 + 2α+ p0)cn| ≤M
n−1∑
k=1

1

rk
[|n− k + α|+ 1] |cn−k| (30.114)

Define the numbers C0 = |c0| , C1 = |c1|, and, for n ≥ 2,

|n− 1 + 2α+ p0|Cn =
M

n

n−1∑
k=1

1

rk
[|n− k + α|+ 1]Cn−k (30.115)
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Let j = n− k. Then

|n− 1 + 2α+ p0|Cn =
M

nrn

n−1∑
j=1

rj [|j + α|+ 1]Cj (30.116)

Evaluating (30.116) for n+ 1,

|n+ 2α+ p0|Cn+1 = M
(n+1)rn+1

∑n
j=1 r

j [|j + α|+ 1]Cj
(30.117)

Therefore

|n+ 2α+ p0|Cn+1r(n+ 1) = {n |n− 1 + 2α+ p0|+M [|n+ α|+ 1]}Cn
(30.118)

so that

Cn+1(t− t0)

Cn
=
n |n− 1 + 2α+ p0|+M [|n+ α|+ 1]

|n+ 2α+ p0| (n+ 1)

(t− t0)

r
(30.119)

=
n|n−1+2α+p0|

n2 +M |n+α|+1
n2

|n+2α+p0|(n+1)
n2

(t− t0)

r
(30.120)

Hence

lim
n→∞

∣∣∣∣Cn+1(t− t0)

Cn

∣∣∣∣ =

∣∣∣∣ t− t0r

∣∣∣∣ < 1 (30.121)

Therefore by the ratio test
∑∞
k=0 Ck(t − t0)k converges; by the compari-

son test, the sum
∑∞
n=0 cn(t − t0)n also converges. Equations (30.96) and

(30.113) give formulas for the cn

c1 = −q1 + αp1

p0 + 2α
c0 (30.122)

and

cn =
−1

n(n− 1 + 2α+ p0)

n−1∑
k=1

[(n− k + α)pk + qk] cn−k (30.123)

so that

y = (t− t0)α
∞∑
n=0

cn(t− t0)n (30.124)

is a solution of (30.70) so long as

n− 1 + 2α+ p0 6= 0. (30.125)
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By the indicial equation, α2 + α(p0 − 1) + q0 = 0, so that

α =
1

2

[
1− p0 ±

√
(1− p0)2 − 4q0

]
(30.126)

Designate the two roots by α+ and α− and define

∆ = α+ − α− =
√

(1− p0)2 − 4q0 (30.127)

If they are real, then the larger root satisfies 2α+ ≥ 1− p0, so that

n− 1 + 2α+ + p0 ≥ n− 1 + 1− p0 + p0 = n > 0 (30.128)

Therefore (30.124) gives a solution for the larger of the two roots. The
other root gives

n− 1 + 2α− + p0 = n− 1 + 1− p0 −
√

(p0 − 1)2 − 4q0 + p0

(30.129)
This is never zero unless the two roots differ by an integer. Thus the smaller
root also gives a solution, so long as the roots are different and do not differ
by an integer.

If the roots are complex, then

α =
1

2
[1− p0 ± i∆] (30.130)

where ∆ 6= 0 and therefore

n− 1 + 2α+ p0 = n− 1 + 1− p0 ± i∆ + p0 = n± i∆ (30.131)

which can never be zero. Hence both complex roots lead to solutions.

When the difference between the two roots of the indicial equation is an
integer, a second solution can be found by reduction of order.

Theorem 30.2. (Second Frobenius solution.) Suppose that p(t) and q(t)
are both analytic with some radius of convergence r, and that α1 ≥ α2 are
two (possibly distinct) real roots of the indicial equation

α2 + (p0 − 1)α+ q0 = 0 (30.132)

and let ∆ = α1 − α2. Then for some set of constants {c0, c1, ...}

y1(t) = (t− t0)α1

∞∑
k=0

ck(t− t0)k (30.133)
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is a solution of

(t− t0)2y′′ + (t− t0)p(t)y′ + q(t)y = 0 (30.134)

with radius of convergence r (as was shown in theorem 30.1), and a second
linearly independent solution, also with radius of convergence r, is given by
one of the following three cases.

1. If α1 = α2 = α, then

y2 = ay1(t) ln |t− t0|+ (t− t0)α
∞∑
k=0

ak(t− t0)k (30.135)

2. If ∆ ∈ Z, then

y2 = ay1(t) ln |t− t0|+ (t− t0)α2

∞∑
k=0

ak(t− t0)k (30.136)

3. If ∆ 6∈ Z, then

y2 = (t− t0)α2

∞∑
k=0

ak(t− t0)k (30.137)

for some set of constants {a, a0, a1, ...}.

Proof. We only give the proof for t0 = 0; otherwise, make the change of
variables to x = t − t0 and the proof is identical. Then the differential
equation becomes

t2y′′ + tp(t)y′ + q(t)y = 0 (30.138)

and the first Frobenius solution (30.133) is

u(t) = tα
∞∑
k=0

ckt
k (30.139)

where α is the larger of the two roots of the indicial equation. By Abel’s
formula the Wronskian of (30.138)

W (t) = exp

{
−
∫
p(t)

t
dt

}
= exp

{
−
∞∑
k=0

pk

∫
tk−1dt

}
(30.140)

where {p0, p1, ...} are the Taylor coefficients of p(t). Integrating term by
term

W (t) = exp

{
−p0 ln |t| −

∞∑
k=1

pk
k
tk

}
= |t|−p0 exp

{
−
∞∑
k=1

pk
k
tk

}
(30.141)
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Since

e−u = 1 +

∞∑
k=1

(−1)k
uk

k!
(30.142)

we can write

exp

{
−
∞∑
k=1

pk
k
tk

}
= 1 +

∞∑
k=1

akt
k (30.143)

for some sequence of numbers a1, a2, .... We do not actually need to know
these numbers, only that they exist. Hence

W (t) = |t|−p0
{

1 +

∞∑
k=1

akt
k

}
(30.144)

By the method of reduction of order, a second solution is given by

v(t) = u(t)

∫
W (t)

u2(t)
dt = u(t)

∫
|t|−p0

u2(t)

{
1 +

∞∑
k=1

akt
k

}
dt (30.145)

From equation (30.139), since u is analytic, so is 1/u, except possibly at its
zeroes, so that 1/u can also be expanded in a Taylor series. Thus

1

u2(t)
= t−2α

{ ∞∑
k=0

ckt
k

}−2

= t−2αc−2
0

{
1 +

∞∑
k=1

bkt
k

}
(30.146)

for some sequence b1, b2, ... Letting K = 1/c20,

v(t) = Ku(t)

∫
|t|−p0−2α

{
1 +

∞∑
k=1

bkt
k

}{
1 +

∞∑
k=1

akt
k

}
dt (30.147)

for some sequence d1, d2, ...

By the quadratic formula

α1 =
1

2

(
1− p0 +

√
(1− p0)2 − 4q0

)
=

1

2
(1− p0 + ∆) (30.148)

α2 =
1

2

(
1− p0 −

√
(1− p0)2 − 4q0

)
=

1

2
(1− p0 −∆) (30.149)

and therefore
2α+ p0 = 1 + ∆ (30.150)

since we have chosen α = max(α1, α2) = α1. Therefore

v(t) = Ku(t)

∫
|t|−(1+∆)

{
1 +

∞∑
k=1

dkt
k

}
dt (30.151)
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Evaluation of the integral depends on the value of ∆. If ∆ = 0 the first term
is logarithmic; if ∆ ∈ Z then the k = ∆ term in the sum is logarithmic;
and if ∆ /∈ Z, there are no logarithmic terms. We assume in the following
that t > 0, so that we can set |t| = t; the t < 0 case is left as an exercise.

Case 1. ∆ = 0. In this case equation (30.151) becomes

v(t) = Ku(t)

{∫
1

t
dt+

∞∑
k=1

dk

∫
tk−1dt

}
(30.152)

= Ku(t)

{
ln |t|+

∞∑
k=1

dk
tk

k

}
(30.153)

Substitution of equation (30.139) gives

v(t) = Ktα
∞∑
k=0

ckt
k

ln |t|+
∞∑
j=1

dj
tj

j

 (30.154)

= Ktα ln |t|
∞∑
k=0

ckt
k +Ktα

∞∑
k=0

∞∑
j=1

ckdj
tj+k

j
(30.155)

Since the product of two differentiable functions is differentiable, then the
product of two analytic functions is analytic, hence the product of two
power series is also a power series. The last term above is the product
of two power series, which we can re-write as a single power series with
coefficients ej as follows,

v(t) = Ktα ln |t|
∞∑
k=0

ckt
k +Ktα

∞∑
k=0

ekt
k (30.156)

= K ln |t|u(t) + tα
∞∑
k=0

ekt
k (30.157)

for some sequence of numbers {e0, e1, ...}. This proves equation 30.135.

Case 2. ∆ = a positive integer. In this case we rewrite (30.151) as

v(t) = Ku(t)

∞∑
k=0

dk

∫
tk−(1+∆)dt (30.158)
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Integrating term by term,

v(t) = Ku(t)

d∆

∫
t−1dt+

∞∑
k=0,k 6=∆

dk

∫
tk−(1+∆)dt

 (30.159)

= Ku(t)

d∆ ln |t|+
∞∑

k=0,k 6=∆

dk
k −∆

tk−∆

 (30.160)

Substituting equation (30.139) in the second term,

v(t) = au(t) ln |t|+Ktα
∞∑
k=0

ckt
k

∞∑
k=0,k 6=∆

dk
k −∆

tk−∆ (30.161)

where a is a constant, and we have factored out the common t−∆ in the
second line.

Since the product of two power series is a power series, then there exists a
sequence of numbers {a0, a1, ...} such that

v(t) = au(t) ln |t|+ tα2

∞∑
k=0

akt
k (30.162)

where we have used the fact that α2 = α−∆. This proves (30.136).

Case 3. ∆ 6= 0 and ∆ is not an integer. Integrating (30.151) term by term,

v(t) = Ku(t)

[
− t
−∆

∆
+

∞∑
k=1

dk
k −∆

tk−∆

]
(30.163)

= u(t)t−∆
∞∑
k=0

fkt
k (30.164)

where f0 = −K/∆ and fk = Kdk/(k − ∆), for k = 1, 2, .... Substitution
for u(t) gives

v(t) = tα−∆
∞∑
k=0

ckt
k
∞∑
j=0

fjt
j (30.165)

Since α2 = α − ∆, and since the product of two power series is a power
series, there exists some sequence of constants {a0, a1, ...} such that

v(t) = tα2

∞∑
k=0

akt
k (30.166)

which proves (30.137).
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Example 30.8. In example 30.4 we found that one solution of Bessel’s
equation of order 1/2, given by

t2y′′ + ty′ + (t2 − 1/4)y = 0 (30.167)

near the origin is

y1 =
sin t√
t

(30.168)

Find a second solution using the method of Frobenius.

In example 30.4 we found that the the roots of the indicial equation are

α1 = 1/2 and α2 = −1/2 (30.169)

Since the difference between the two roots is

∆ = α1 − α2 = 1 (30.170)

We find the result from theorem 30.2, case 2, which gives a second solution

y2(t) = ay1(t) ln |t|+ tα2

∞∑
k=0

akt
k (30.171)

The numbers a and a0, a1, ... are found by substituting (30.171) into the
original differential equation and using linear independence. In fact, since
we have a neat, closed form for the first solution that is not a power series,
it is easier to find the second solution directly by reduction of order.

In standard form the differential equation can be rewritten as

y′′ +
1

t
y′ +

t2 − 1/4

t2
y = 0 (30.172)

which has the form of y′′+ py′+ q = 0 with p(t) = 1/y. By Abel’s formula,
one expression for the Wronskian is

W = C exp

∫
−1

t
dt =

C

t
(30.173)

According to the reduction of order formula, a second solution is given by

y2 = y1(t)

∫
W (t)

y1(t)2
dt =

sin t√
t

∫
1

t
·
( √

t

sin t

)2

dt =
sin t√
t

∫
csc2 t (30.174)

= − sin t√
t

cot t = −cos t√
t

(30.175)
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Example 30.9. Find the form of the Frobenius solutions to Bessel’s equa-
tion of order 3,

t2y′′ + ty + (t2 − 9)y = 0 (30.176)

Equation (30.176) has the form t2y′′ + tp(t)y′ + q(t)y = 0, where p(t) = 1
and q(t) = t2 − 9 are both analytic functions at t = 0. Hence p0 = 1,
q0 = −9, and the indicial equation α2 + (p0 − 1)α+ q0 = 0 is

α2 − 9 = 0 (30.177)

Therefore α1 = 3 and α2 = −3. The first Frobenius solution is

y1 = t3
∞∑
k=0

akt
k = a0t

3 + a1t
4 + a2t

5 + · · · (30.178)

Since ∆ = α1 − α2 = 6 ∈ Z, the second solution is

y2 = a (ln t) t3
∞∑
k=0

akt
k + t−3

∞∑
k=0

bkt
k (30.179)

The coefficients a, ak and bk are found by substituting the expressions
(30.178) and (30.179) into the differential equation.



Lesson 31

Linear Systems

The general linear system of order n can be written as

y′1 = a11y1 + a12y2 + · · ·+ a1n + f1(t)

...

y′n = an1y1 + an2y2 + · · ·+ ann + f2(t)

 (31.1)

where the aij are either constants (for systems with constant coefficients) or
depend only on t and the functions fi(t) are either all zero (for homogeneous
systems) or depend at most on t.

We typically write this a matrix equation

y
′
1
...
y′n

 =

a11 a12 · · · a1n

...
. . .

...
an1 · · · ann


y1

...
yn

+

f1(t)
...

fn(t)

 (31.2)

We will write this as the matrix system

y′ = Ay + f (31.3)

where it is convenient to think of y, f(t) : R → Rn as vector-valued func-
tions.

In analogy to the scalar case, we call a set of solutions to the vector equation
{y1, ...,yn} to the homogeneous equation

y′ = Ay (31.4)

303
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a fundamental set of solutions if every solution to (31.4) can be written
in the form

y = C1y1(t) + · · ·+ Cnyn(t) (31.5)

for some set of constants C1, . . . , Cn. We define the fundamental matrix
as

W =
(
y1 · · · yn

)
(31.6)

and the Wronskian as its determinant,

W (t) = det W (31.7)

The columns of the fundamental matrix contain the vector-valued solutions,
not a solution and its derivatives, as they did for the scalar equation.

However, this should not be surprising, because if we convert an nth order
equation into a system by making the change of variables u1 = y, u2 = y′,
u3 = y′′, ..., un = y(n−1), the two representations will be identical.

Homogeneous Systems

Theorem 31.1. The fundamental matrix of the system y′ = Ay satisfies
the differential equation.

Proof. Let y1, ..., yn be a fundamental set of solutions. Then each solution
satisfies y′i = Ayi. But by definition of the fundamental matrix,

W′ =
(
y′1 · · · y′n

)
(31.8)

=
(
Ay1 · · · A]yn

)
(31.9)

= A
(
y1 · · · yn

)
(31.10)

= AW (31.11)

Thus W satisfies the same differential equation.

For n = 2, we can write equation the homogeneous system as

u′ = au+ bv

v′ = cu+ dv

}
(31.12)

where u = y1, v = y2, and a, b, c, and d are all real constants.

the characteristic equation of the matrix

A =

(
a b
c d

)
(31.13)
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is
λ2 − Tλ+ ∆ = 0 (31.14)

where
T = a+ d = trace(A)

∆ = ad− bc = det(A)

}
(31.15)

The roots λ1 and λ2 of (31.14) are the eigenvalues of A; we will make use
of this fact shortly.

By rearranging the system (31.12) it is possible to separate the two first
order equations into equivalent second order equations with the variables
separated.

If both b = 0 and c = 0, we have two completely independent first order
equations,

u′ = au, v′ = dv (31.16)

If b 6= 0, we can solve the first of equations (31.12) for v,

v =
1

b
[u′ − au] (31.17)

Substituting (31.17) into both sides of the second of equations (31.12),

1

b
[u′′ − au′] = v′ = cu+ dv = cu+

d

b
[u′ − au] (31.18)

Rearranging,
u′′ − (a+ d)u′ + (da− bc)u = 0 (31.19)

If b = 0 and c 6= 0 the first of equations (31.12) becomes

u′ = au (31.20)

and the second one can be solved for u,

u =
1

c
[v′ − dv] (31.21)

Substituting (31.21) into (31.20),

1

c
[v′′ − du′] = u′ = au =

a

u
[v′ − dv] (31.22)

Rearranging,
v′′ − (a+ d)v′ + adv = 0 (31.23)

By a similar process we find that if c 6= 0

v′′ − (a+ d)v′ + (ad− bc)v = 0 (31.24)
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and that if c = 0 but b 6= 0,

u′′ − (a+ d)u′ + adu = 0 (31.25)

In every case in which one of the equations is second order, the character-
istic equation of the differential equation is identical to the characteristic
equation of the matrix, and hence the solutions are linear combinations of
eλ1t and eλ2t, if the eigenvalues are distinct, or are linear combinations of
eλt and teλt if the eigenvalue is repeated. Furthermore, if one (or both) the
equations turn out to be first order, the solution to that equation is still
eλt where λ is one of the eigenvalues of A.

Theorem 31.2. Let

A =

(
a b
c d

)
(31.26)

Then the solution of y′ = Ay is given be one of the following four cases.

1. If b = c = 0, then the eigenvalues of A are a and d, and

y1 = C1e
at

y2 = C2e
dt

}
(31.27)

2. If b 6= 0 but c = 0, then the eigenvalues of A are a and d, and

y1 =

{
C1e

at + C2e
dt a 6= d

(C1 + C2t)e
at a = d

y2 = C3e
dt

 (31.28)

3. If b = 0 but c 6= 0, then the eigenvalues of A are a and d, and

y1 = C1e
dt

y2 =

{
C2e

at + C3e
dt a 6= d

(C2 + C3t)e
at a = d

 (31.29)

4. If b 6= 0 and c 6= 0, then the eigenvalues of A are

λ =
1

2

[
T ±

√
T 2 − 4∆

]
(31.30)

and the solutions are

(a) If λ1 = λ2 = λ
yi = (Ci1 + Ci2t)e

λt (31.31)
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(b) If λ1 6= λ2 ∈ R, i.e., T 2 ≥ 4∆,

yi = Ci1e
λ1t + Ci2e

λ2t (31.32)

(c) It T 2 < 4∆ then λ1,2 = µ± iσ, where µ, σ ∈ R, and

yi = eµt(Ci1 cosσt+ Ci2 sinσt) (31.33)

Example 31.1. Solve the system

y′ = Ay, y(0) =

(
6
5

)
(31.34)

where

A =

(
1 1
4 −2

)
(31.35)

by elimination of variables.

To eliminate variables means we try to reduce the system to either two
separate first order equations or a single second order equation that we can
solve. Multiplying out the matrix system gives us

u′ = u+ v, u0 = 6 (31.36)

v′ = 4u− 2v, v0 = 5 (31.37)

Solving the first equation for v and substituting into the second,

v′ = 4u− 2v = 4u− 2(u′ − u) = 6u− 2u′ (31.38)

Differentiating the first equations and substituting

u′′ = u′ + v′ = u′ + 6u− 2u′ = −u′ + 6u (31.39)

Rearranging,
u′′ + u′ − 6u = 0 (31.40)

The characteristic equation is r2 + r − 6 = (r − 2)(r + 3) = 0 so that

u = C1e
2t + C2e

−3t (31.41)

From the initial conditions, u′0 = u0 + v0 = 11. Hence

C1 + C2 = 6
2C1 − 3C2 = 11

(31.42)

Multiplying the first of (31.42) by 3 and adding to the second gives 5C1 = 29
or C1 = 29/5, and therefore C2 = 6− 29/5 = 1/5. Thus
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u =
29

5
e2t +

1

5
e−3t (31.43)

We can find v by substitution int (31.36):

v = u′ − u (31.44)

=
58

5
e2t − 3

5
e−3t − 29

5
e2t − 1

5
e−3t (31.45)

=
29

5
e2t − 4

5
e−3t (31.46)

The Matrix Exponential

Definition 31.3. Let M be any square matrix. Then we define the expo-
nential of the matrix as

exp(M) = eM = I + M +
1

2
M2 +

1

3!
M3 +

1

4!
M4 + · · · (31.47)

assuming that the series converges.

Theorem 31.4. The solution of y′ = Ay with initial conditions y(t0) = y0

is y = eA(t−t0)y0.

Proof. Use Picard iteration:

Φ0(t) = y0 (31.48)

Φk(t) = y0 +

∫ t

t0

AΦk−1(s)ds (31.49)

Then

Φ1 = y0 +

∫ t

t0

AΦ0(s)ds (31.50)

= y0 +

∫ t

t0

Ay0ds (31.51)

= y0 + Ay0(t− t0) (31.52)

= [I + A(t− t0)]y0 (31.53)

and in general

Φk =

I +

k∑
j=1

1

k!
Ak(t− t0)k

y0 (31.54)
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We will verify (31.54) by induction. We have already demonstrated it for
k = 1 (equation 31.53). We take (31.54) as an inductive hypothesis and
compute

Φk+1(t) = y0 +

∫ t

t0

AΦk(s)ds (31.55)

= y0 +

∫ t

t0

A

I +

k∑
j=1

1

k!
Ak(s− t0)k

y0ds (31.56)

= y0 +

∫ t

t0

AIy0ds+

∫ t

t0

k∑
j=1

1

k!
Ak+1(s− t0)ky0ds (31.57)

= y0 + AIy0(t− t0) +

k∑
j=1

1

k!
Ak+1

∫ t

t0

(s− t0)ky0ds (31.58)

= y0 + AIy0(t− t0) +

k∑
j=1

1

(k + 1)!
Ak+1(t− t0)k+1y0 (31.59)

= y0 + AIy0(t− t0) +

k+1∑
j=2

1

j!
Aj(t− t0)jy0 (31.60)

= y0 +

k+1∑
j=1

1

j!
Aj(t− t0)jy0 (31.61)

=

I +

k+1∑
j=1

1

k!
Ak(t− t0)k

y0 (31.62)

which completes the proof of equation (31.54). The general existence the-
orem (Picard) then says that

y =

I +

∞∑
j=1

1

k!
Ak(t− t0)k

y0 (31.63)

If we define a matrix M = A(t− t0) and observe that M0 = I, then

y =

M0 +

∞∑
j=1

1

k!
Mk

y0 = eMy0 = eA(t−t0)y0 (31.64)

as required.
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Example 31.2. Solve the system

y′ = Ay where y(0) =

(
6
5

)
(31.65)

and

A =

(
1 1
4 −2

)
(31.66)

From theorem 31.4

y = eA(t−t0)y0 =

{
exp

[(
1 1
4 −2

)
t

]}(
6
5

)
(31.67)

The problem now is that we don’t know how to calculate the matrix expo-
nential! We will continue this example after we have discussed some of its
properties.

Theorem 31.5. Properties of the Matrix Exponential.

1. If 0 is a square n× n matrix composed entirely of zeros, then

e0 = I (31.68)

2. If A and B are square n×nmatrices that commute (i.e., ifAB = BA),
then

eA+B = eAeB (31.69)

3. eA is invertible, and (
eA
)−1

= e−A (31.70)

4. If A is any n×n matrix and S is any non-singular n×n matrix, then

S−1eAS = exp
(
S−1AS

)
(31.71)

5. Let D = diag(x1, ..., xn) be a diagonal matrix. Then

eD = diag(ex1 , ..., exn). (31.72)

6. If S−1AS = D, where D is a diagonal matrix, then eA = SeDS−1.

7. If A has n linearly independent eigenvectors x1, ...,xn with corre-
sponding eigenvalues λ1, ..., λn, then eA = UEU−1, where U =
(x1, ...,xn) and E = diag

(
eλ1 , ..., eλn

)
.

8. The matrix exponential is differentiable and
d

dt
eAt = AeAt.
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The Jordan Form

Let A be a square n× n matrix.

A is diagonalizable if for some matrix U, U−1AU = D is diagonal.

A is diagonalizable if and only if it has n linearly independent eigenvectors
v1, ...,vn, in which case U =

(
v1 · · · vn

)
will diagonalize A.

If λ1, ..., λk are the eigenvalues of A with multiplicities m1, ...,mk (hence
n = m1 + · · ·+mk) then the Jordan Canonical Form of A is

J =


B1 0 · · · 0

0 B2

...
...

. . . 0
0 · · · 0 Bk

 (31.73)

where (a) if mi = 1, Bi = λi (a scalar or 1 × 1 matrix; and (b) if mi 6= 1,
Bi is an mi×mi submatrix with λi repeated in every diagonal element, the
number 1 in the supra-diagonal, and zeroes everywhere else, e.g., if mi = 3
then

Bi =

 λi 1 0
0 λi 1
0 0 λi

 (31.74)

The Bi are called Jordan Blocks.

For every square matrix A, there exists a matrix U such J = U−1AU
exists.

If J is the Jordan form of a matrix, then

eJ =

e
B1 0 0

0
. . . 0

0 0 eBk

 (31.75)

Thus eA = UeJU−1.

Example 31.3. Evaluate the solution

y = eA(t−t0)y0 =

{
exp

[(
1 1
4 −2

)
t

]}(
6
5

)
(31.76)

found in the previous example.
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The eigenvalues of A =

(
1 1
4 −2

)
are λ = 2,−3, which we find by solving

the the characteristic equation. Let x1 and x2 be the eigenvectors of A.
From the last theorem we know that

eAt =
(
x1 x2

)(e2t 0
0 e−3t

)(
x1

x2

)
(31.77)

where x1 is the eigenvector with eigenvalue 2 and x2 is the eigenvector with
eigenvalue -3.

Let xi =

(
ui
vi

)
.

Then since Axi = λixi,(
1 1
4 −2

)(
u1

v1

)
= 2

(
u1

v1

)
=⇒ u1 = v1 (31.78)(

1 1
4 −2

)(
u2

v2

)
= −3

(
u2

v2

)
=⇒ v2 = −4u2 (31.79)

Since one component of each eigenvector is free, we are free to choose the
following eigenvectors:

x1 =

(
1
1

)
and x2 =

(
1
−4

)
(31.80)

Let

U =
(
x1 x2

)
=

(
1 1
1 −4

)
(31.81)

Then

U−1 =
1

det U
[cof(U)]T = −1

5

(
−4 −1
−1 1

)
(31.82)

Therefore

eAt =
1

5

(
1 1
1 −4

)(
e2t 0
0 e−3t

)(
4 1
1 −1

)
(31.83)

=
1

5

(
1 1
1 −4

)(
4e2t e2t

e−3t −e−3t

)
(31.84)

=
1

5

(
4e2t + e−3t e2t − e−3t

4e2t − 4e−3t e2t + 4e−3t

)
(31.85)

=
1

5

[(
4 1
4 1

)
e2t +

(
1 −1
−4 4

)
e−3t

]
(31.86)

Hence the solution is
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y =
1

5

[(
4 1
4 1

)
e2t +

(
1 −1
−4 4

)
e−3t

](
6
5

)
(31.87)

=
1

5

[(
29
29

)
e2t +

(
1
−4

)
e−3t

]
(31.88)

=
29

5
e2t

(
1
1

)
+

1

5
e−3t

(
1
−4

)
(31.89)

We observe in passing that the last line has the form y = ax1e
λ1t+bx2e

λ2t.

Properties of Solutions

Theorem 31.6. y = eλtv is a solution of the system y′ = Ay if and only
if v is an eigenvector of A with eigenvalue λ.

Proof. Suppose that {λ,v} are an eigenvalue/eigenvector pair for the ma-
trix A. Then

Av = λv (31.90)

and
d

dt

(
eλtv

)
= λeλtv = eλtAv = A

(
eλtv

)
(31.91)

Hence y = eλtv is a solution of y′ = Ay.

To prove the converse, suppose that y = eλtv for some number λ ∈ C and
some vector v, is a solution of y′ = Ay. Then y = eλtvmust satisfy the
differential equation, so

λeλtv = y′ = Ay = Aeλtv (31.92)

Dividing by the common scalar factor of eλt, which can never be zero, gives
Av = λv. Hence λ is an eigenvalue of A with eigenvector v.

Theorem 31.7. The matrix eAt is a fundamental matrix of y′ = Ay.

Proof. Let W = eAt. From the previous theorem,

W′ =
d

dt
eAt = AeAt = AW (31.93)
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Let y1, ...,yn denote the column vectors of W. Then by (31.93)(
y′1 · · · y′n

)
= W′ (31.94)

= AW (31.95)

= A
(
y1 · · · yn

)
(31.96)

=
(
Ay1 · · · Ayn

)
(31.97)

Equating columns,

y′i = Ayi, i = 1, . . . , n (31.98)

hence each column of W is a solution of the differential equation.

Furthermore, by property (3) of of the Matrix Exponential, W = eAt is
invertible. Since a matrix is invertible if and only if all of its column vectors
are linearly independent, this means that the columns of W form a linearly
independent set of solutions to the differential equation. To prove that they
are a fundamental set of solutions, suppose that y(t) is a solution of the
initial value problem with y(t0) = y0.

We must show that it is a linear combination of the columns of W. Since
the matrix W is invertible, the numbers C1, C2, ..., Cn, which are the com-
ponents of the vector

C = [W(t0)]
−1

y0 (31.99)

exist. But

Ψ = WC (31.100)

=
(
y1 · · · yn

)C1

...
Cn

 (31.101)

= C1y1 + · · ·+ Cnyn (31.102)

is a solution of the differential equation, and by (31.99), Ψ(t0) = W (t0)C =
y0, so that Ψ(t) also satisfies the initial value problem. By the uniqueness
theorem, y and Ψ(t) must be identical.

Hence every solution of y′ = Ay is a linear combination of the column
vectors of W, because any solution can be considered a solution of some
initial value problem. Thus the column vectors form a fundamental set of
solutions, and hence W is a fundamental matrix.
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Theorem 31.8. (Abel’s Formula.) The Wronskian of y′ = Ay, where A
is a constant matrix, is

W (t) = W (t0)e(t−t0)trace(A) (31.103)

If A is a function of t, then

W (t) = W (t0) exp

∫ t

t0

[trace(A(s))]ds (31.104)

Proof. Let W be a fundamental matrix of y′ = Ay. Then by the formula
for differentiation of a determinant,

W ′(t) =

∣∣∣∣∣∣∣∣∣
y′11 y′21 · · · y′n1

y12 y22 yn2

...
. . .

y13 y2n ynn

∣∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣∣
y11 y21 · · · yn1

y′12 y′22 y′n2
...

. . .

y13 y2n ynn

∣∣∣∣∣∣∣∣∣
+ · · ·+

∣∣∣∣∣∣∣∣∣
y11 y21 · · · yn1

y12 y22

...
. . .

y′13 y′2n y′nn

∣∣∣∣∣∣∣∣∣ (31.105)

But since W satisfies the differential equation, W′ = AW, so that

W′ = AW =

a11 · · · a1n

...
...

an1 · · · ann

(y1 · · · yn
)

(31.106)

=

a1 · y1 · · · a1 · yn
...

...
an · y1 · · · an · yn

 (31.107)

where ai is the ith row vector of A, and the ai · yj represents the vector
dot product between the i th row of A and the jth solution vector yj .
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Comparing the last two results,

W ′(t) =

∣∣∣∣∣∣∣∣∣
a1 · y1 a1 · y2 · · · a1 · yn
y12 y22 yn2

...
. . .

y13 y2n ynn

∣∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣∣
y11 y21 · · · yn1

a2 · y1 a2 · y2 a2 · yn
...

. . .

y13 y2n ynn

∣∣∣∣∣∣∣∣∣
+ · · ·+

∣∣∣∣∣∣∣∣∣
y11 y21 · · · yn1

y12 y22

...
. . .

an · y1 an · y2 an · yn

∣∣∣∣∣∣∣∣∣ (31.108)

The first determinant is

∣∣∣∣∣∣∣∣∣
a1 · y1 · · · a1 · yn
y12 yn2

...
...

y13 · · · ynn

∣∣∣∣∣∣∣∣∣ (31.109)

=

∣∣∣∣∣∣∣∣∣
a11y11 + · · ·+ a1ny1n a11y21 + · · ·+ a1ny2n · · · a11yn1 + · · ·+ a1nynn

y12 y22 yn2

...
. . .

y13 y2n ynn

∣∣∣∣∣∣∣∣∣
We can subtract a21 times the second row, a31 times the third row, ...,
an1 times the nth row from the first row without changing the value of the
determinant,∣∣∣∣∣∣∣∣∣

a1 · y1 a1 · y2 · · · a1 · yn
y12 y22 yn2

...
. . .

y13 y2n ynn

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
a11y11 a11y21 · · · a11yn1

y12 y22 yn2

...
. . .

y13 y2n ynn

∣∣∣∣∣∣∣∣∣
(31.110)

We can factor out a11 from every element in the first row,∣∣∣∣∣∣∣∣∣
a1 · y1 a1 · y2 · · · a1 · yn
y12 y22 yn2

...
. . .

y13 y2n ynn

∣∣∣∣∣∣∣∣∣ = a11

∣∣∣∣∣∣∣∣∣
y11 y21 · · · yn1

y12 y22 yn2

...
. . .

y13 y2n ynn

∣∣∣∣∣∣∣∣∣ = a11W (t)

(31.111)
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By a similar argument, the second determinant is a22W (t), the third one
is a33W (t), ..., and the nth one is annW (t). Therefore

W ′(t) = (a11 + a22 + · · ·+ ann)W (t) = (traceA)W (t) (31.112)

Dividing by W (t) and integrating produces the desired result.

Theorem 31.9. Let y1, ...,yn : I → Rn be solutions of the linear system
y′ = Ay, where A is an n × n constant matrix, on some interval I ⊂ R,
and let W (t) denote their Wronskian. Then the following are equivalent:

1. W (t) 6= 0 for all t ∈ I.

2. For some t0 ∈ I, W (t0) 6= 0

3. The set of functions y1(t), ...,yn(t) are linearly independent.

4. The set of functions y1(t), ...,yn(t) form a fundamental set of solutions
to the system of differential equations on I.

Proof. (1)⇒ (2). Suppose W (t) 6= 0 for all t ∈ I (this is (1)). Then pick
any t0 ∈ I. Then ∃t0 ∈ I such that W (t0) 6= 0 (this is (2)).

(2)⇒ (1). This follows immediately from Abel’s formula.

(1)⇒ (3). Since the Wronskian is nonzero, the fundamental matrix is in-
vertible. But a matrix is invertible if and only if its column vectors are
linearly independent.

(3)⇒ (1). Since the column vectors of the fundamental matrix are linearly
independent, this means the matrix is invertible, which in turn implies that
its determinant is nonzero.

(3)⇒ (4). This was proven in a previous theorem.

(4)⇒ (3). Since the functions form a fundamental set, they must be linearly
independent.

Since (4) ⇐⇒ (3) ⇐⇒ (1) ⇐⇒ (2) all four statements are equivalent.

Theorem 31.10. Let A be an n × n matrix with n linearly independent
eigenvectors v1, ...,vn with corresponding eigenvalues λ1, ..., λn. Then

y1 = v1e
λ1t, . . .yn = vne

λnt (31.113)

form a fundamental set of solutions for y′ = Ay.
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Proof. We have show previously that each function in equations (31.113) is
a solution of y′ = Ay. Since the eigenvectors are linearly independent, the
solutions are also linearly independent. It follows that the solutions form a
fundamental set.

Generalized Eigenvectors

As a corollary to theorem 31.10, we observe that if A is diagonalizable
(i.e. it has n linearly independent eigenvectors) then the general solution
of y′ = Ay is

y =

n∑
i=1

Civie
λit (31.114)

If the matrix is not diagonalizable, then to find the fundamental matrix we
must first find the Jordan form J of A, because

eA = UeJU−1 (31.115)

where J = U−1AU for some matrix U that we must determine. If A were
diagonalizable, the columns of U would be the eigenvectors of A. Since the
system is not diagonalizable there are at least two eigenvectors that share
the same eigenvalue.

Let J = U−1AU be the Jordan Canonical Form of A. Then since A = UJU−1,
we can rearrange the system of differential equations y′ = Ay as

y′ = Ay = UJU−1y (31.116)

Let z = U−1y. Then
Uz′ = y′ = UJz (31.117)

Multiplying through by U−1 on the left, we arrive at the Jordan form of
the differential equation,

z′ = Jz (31.118)

where J is the Jordan Canonical Form of A. Hence J is block diagonal,
with each block corresponding to a single eigenvalue λi of multiplicity mi.
Writing

z′ = Jz =


B1 0 · · · 0

0 B2

...
...

. . . 0
0 · · · 0 Bk




z1

z2

...
zk

 (31.119)



319

we can replace (31.118) with a set of systems

z′i = Bizi =


λi 1 0 0

0 λi
. . .

...
...

. . .
. . . 1

0 · · · 0 λi

 zi (31.120)

where Bi is an mi×mi matrix (mi is the multiplicity of λi). Starting with
any block, denote the components of zi as ζ1, ζ2, ..., ζm, and (for the time
being, at least) omit the index i. Then in component form,

ζ ′1 =λζ1 + ζ2 (31.121)

ζ ′2 =λζ2 + ζ3 (31.122)

...

ζn−1 =λζn−1 + ζn (31.123)

ζ ′n =λiζn (31.124)

We can solve this type of system by “back substitution” – that is, start
with the last one, and work backwards. This method works because the
matrix is upper-triangular. The result is

ζm = ame
λt (31.125)

where a1, ..., am are arbitrary constants. Rearranging,

z =


ζ1
ζ2
...
ζm

 =


a1 + a2t+ · · ·+ am

tm−1

(m−1)!

...
am−1 + amt

am

 eλt (31.126)

hence

z = a1e
λt


1
0
...
0

+ a2e
λt


t
1
0
...
0

+ · · ·+ ame
λt


tm−1

(m−1)!

...
t
1

 (31.127)

Denoting the standard basis vectors in Rm as e1, ..., em,
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z = a1e
λte1 + a2e

λt (e2 + e1t) + a3e
λt

(
e3 + e2t+

1

2
e1t

2

)
+

+ · · ·+ ame
λt

(
em + em−1t+ · · ·+ e1

tm−1

(m− 1)!

)
(31.128)

Definition 31.11. Let (λ,v) be an eigenvalue-eigenvector pair ofA with
multiplicity m. Then the set of generalized eigenvectors of A corre-
sponding to the eigenvalue λ are the vectors w1, ...,wm where

(A− λI)kwk = 0, k = 1, 2, ...,m (31.129)

For k = 1, equation (31.129) gives

0 = (A− λI)w1 = Aw1 − λw1 (31.130)

i.e.,
w1 = v (31.131)

So one of the generalized eigenvectors corresponding to the eigenvector v is
always the original eigenvector v itself. If m = 1, this is the only generalized
eigenvector. If m > 1, there are additional generalized eigenvectors.

For k = 2, equation (31.129) gives

0 = (A− λI)2w2 (31.132)

= (A− λI)(A− λI)w2 (31.133)

= A(A− λI)w2 − λ(A− λI)w2 (31.134)

Rearranging,
A(A− λI)w2 = λ(A− λI)w2 (31.135)

Thus (A−λI)w2 is an eigenvector of A with eigenvalue λ. Since w1 = v is
also an eigenvector with eigenvalue λ, we call it a generalized eigenvector.
Thus we also have, from equation 31.135 and 31.129

(A− λI)w2 = w1 (31.136)

In general, if the multiplicity of the eigenvalue is m,

(A− λI)w1 = 0 (31.137)

(A− λI)w2 = w1 (31.138)

...

(A− λI)wm = wm−1 (31.139)
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Corollary 31.12. The generalized eigenvectors of the m×m matrix

B =


λ 1 0 0

0 λ
. . .

...
...

. . .
. . . 1

0 · · · 0 λ

 (31.140)

are the standard basis vectors e1, e2, ..., em.

Proof.

(B− λI)e1 = λe1 − λe1 = 0 (31.141)

(B− λI)e2 = Be2 − λe2 (31.142)

= (1, λ, 0, . . . , 0)T − (0, λ, 0, . . . , 0, )T = e1 (31.143)

(B− λI)e3 = (0, 1, λ, 0 . . . , 0)T − (0, 0, λ, 0, . . . , 0)T = e2 (31.144)

...

(B− λI)em = (0, . . . , 0, 1, λ))T − (0, . . . , 0, 1, 0)T = em−1 (31.145)

Returning to equation (31.128), which gave the solution z of the ith Jordan
Block of the Jordan form z′ = Jz of the differential equation, we will now
make the transformation back to the space of the usual y variable, using
the fact that y = Uz

y = Uz (31.146)

= a1e
λtw1 + a2e

λt (w2 + w1t)

+ · · ·+ ame
λt

(
wm + wm−1t+ · · ·+ w1

tm−1

(m− 1)!

)
(31.147)

where

wi = Uei (31.148)

are the generalized eigenvectors of A. This establishes the following theo-
rem.
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Theorem 31.13. Let λ1, λ2, ..., λj be the eigenvalues of A correspond-
ing to distinct, linearly independent, eigenvectors v1, ...,vj . Denote the
multiplicity of eigenvalue λi by ki, for i = 1, 2, ..., j (i.e.,

∑
ki = n). Let

wi1, · · · ,wij be the generalized eigenvectors for λi, with wi1 = vi. Then a
fundamental set of solutions to y′ = Ay are

yi1 = wi1e
λit (31.149)

yi2 = (twi1 + wi2)eλit (31.150)

yi3 =

(
t2

2
wi1 + twi2 + wi3

)
eλit (31.151)

...

yij =

ki∑
m=1

tki−m

(ki −m)!
wme

λit (31.152)

Example 31.4. Solve

y′ =

(
3 3
0 3

)
y (31.153)

The characteristic polynomial is

0 =

∣∣∣∣ 3− λ 3
0 3− λ

∣∣∣∣ = (3− λ)2 (31.154)

which has λ = 3 as a solution of multiplicity 2. Letting

(
a
b

)
denote the

eigenvector, (
3 3
0 3

)(
a
b

)
= 3

(
a
b

)
(31.155)

which can be decomposed into the following pair of equations

3a+ 3b = 3a
3b = 3b

(31.156)

Hence there is only one eigenvector corresponding to λ = 3, namely (any
multiple of) (1 0)T . Therefore one solution of the differential equation is

y1 = veλt =

(
1
0

)
e3t (31.157)

and a second, linearly independent solution, is

y2 = (tv + w2)e3t (31.158)
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where (A− λI)w2 = w1, i.e.,{(
3 3
0 3

)
− 3

(
1 0
0 1

)}
w2 =

(
1
0

)
(31.159)

Letting w2 =

(
c
d

)
, this simplifies to

(
0 3
0 0

)(
c
d

)
=

(
1
0

)
(31.160)

which gives d = 1/3 and leaves c undetermined (namely, any value will do,

so we choose zero). Hence w2 =

(
0

1/3

)
:

y2 = e3t

[
t

(
1
0

)
+

(
0

1/3

)]
= e3t

(
t

1/3

)
(31.161)

The general solution is then

y = c1y1 + c2y2 (31.162)

= c1

(
1
0

)
e3t + c2

(
t

1/3

)
e3t (31.163)

where c1 and c2 are arbitrary constants. qed

Variation of Parameters for Systems

Theorem 31.14. A particular solution of

y′ = Ay + g(t) (31.164)

is

yP = eAt
∫
e−Atg(t)dt (31.165)

Proof. Let W be a fundamental matrix of the homogeneous equation
y′ = Ay, and denote a fundamental set of solutions by y1, ...,yn. We will
look for a particular solution of the form

yP =

n∑
i=1

yi(t)ui(t) = Wu (31.166)
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for some set of unknown functions u1(t), ..., un(t), and u = (u1(t) u2(t) · · · un(t))
T

.
Differentiating (31.166) gives

y′P = (Wu)′ = W′u + Wu′ (31.167)

Substitution into the differential equation (31.164) gives

W′u + Wu′ = AWu + g (31.168)

Since W′ = AW,

AWu + Wu′ = AWu + g (31.169)

Subtracting the commong term AWu gives

Wu′ = g (31.170)

Multiplying both sides of the equation by W−1 gives

du

dt
= u′ = W−1g (31.171)

Since W = eAt, W−1 = e−At, and therefore

u(t) =

∫
du

dt
dt =

∫
e−Atg(t)dt (31.172)

Substition of (31.172) into (31.166) yields the desired result, using the fact
that W = eAt.

Example 31.5. Find a particular solution to the system

x′ = x+ 3y + 5

y′ = 4x− 3y + 6t

}
(31.173)

The problem can be restated in the form y′ = Ay + g where

A =

(
1 3
4 −3

)
, and g(t) =

(
5
6t

)
(31.174)

We first solve the homogeneous system. The eigenvalues of A satisfy

0 = (1− λ)(−3− λ)− 12 (31.175)

= λ2 + 2λ− 15 (31.176)

= (λ− 3)(λ+ 5) (31.177)
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so that λ = 3,−5. The eigenvectors satisfy(
1 3
4 −3

)(
a
b

)
= 3

(
a
b

)
⇒ 2a = 3b⇒ v3 =

(
3
2

)
(31.178)

and(
1 3
4 −3

)(
c
d

)
= −5

(
c
d

)
⇒ d = −2c⇒ v−5 =

(
1
−2

)
(31.179)

Hence

yH = c1e
3t

(
3
2

)
+ c2e

−5t

(
1
−2

)
(31.180)

where c1, c2 are arbitrary constants. Define a matrix U whose columns are
the eigenvectors of A. Then

U =

(
3 1
2 −2

)
and U−1 =

(
1/4 1/8
1/4 −3/8

)
(31.181)

Then

eAt = UeDtU−1 (31.182)

where D = diag(3, −5). Hence

eAt =

(
3 1
2 −2

)(
e3t 0
0 e−5t

)(
1/4 1/8
1/4 −3/8

)
(31.183)

=

(
3 1
2 −2

)(
e3t/4 e3t/8
e−5t/4 −3e−5t/8

)
(31.184)

=

3

4
e3t +

1

4
e−5t 3

8
e3t − 3

8
e−5t

1

2
e3t − 1

2
e−5t 1

4
e3t +

3

4
e−5t

 (31.185)

Since

e−At = (UeDtU−1)−1 = Ue−DtU−1 (31.186)

we have

e−At =

(
3 1
2 −2

)(
e−3t 0

0 e5t

)(
1/4 1/8
1/4 −3/8

)
(31.187)

=

3

4
e−3t +

1

4
e5t 3

8
e−3t − 3

8
e5t

1

2
e−3t − 1

2
e5t 1

4
e−3t +

3

4
e5t

 (31.188)
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By the method of variation of parameters a particular solution is then

yP = eAt
∫
eAtg(t)dt (31.189)

= eAt
∫ (

3
4e
−3t + 1

4e
5t 3

8e
−3t − 3

8e
5t

1
2e
−3t − 1

2e
5t 1

4e
−3t + 3

4e
5t

)(
5
6t

)
dt (31.190)

Using the integral formulas
∫
eatdt = 1

ae
at and

∫
teatdt =

(
t/a− 1/a2

)
eat

we find

yP = eAt

 15
4(−3)e

−3t + 5
4(5)e

5t + 9
4

(
t
−3 −

1
9

)
e−3t − 9

4

(
t
5 −

1
25

)
e5t

5
2(−3)e

−3t − 5
2(5)e

5t + 3
2

(
t
−3 −

1
9

)
e−3t + 9

2

(
t
5 −

1
25

)
e5t


= eAt

(
− 3

2e
−3t + 17

50e
5t − 3t

4 e
−3t − 9t

20e
5t

−e−3t − 17
25e

5t − t
2e
−3t + 9t

10e
5t

)
(31.191)

Substituting equation (31.183) for eAt

yP =

(
3
4e

3t + 1
4e
−5t 3

8e
3t − 3

8e
−5t

1
2e

3t − 1
2e
−5t 1

4e
3t + 3

4e
−5t

)(
− 3

2e
−3t + 17

50e
5t − 3t

4 e
−3t − 9t

20e
5t

−e−3t − 17
25e

5t − t
2e
−3t + 9t

10e
5t

)

=


(

3
4e

3t + 1
4e
−5t
) (
− 3

2e
−3t + 17

50e
5t − 3t

4 e
−3t − 9t

20e
5t
)

+
(

3
8e

3t − 3
8e
−5t
) (
−e−3t − 17

25e
5t − t

2e
−3t + 9t

10e
5t
)(

1
2e

3t − 1
2e
−5t
) (
− 3

2e
−3t + 17

50e
5t − 3t

4 e
−3t − 9t

20e
5t
)

+
(

1
4e

3t + 3
4e
−5t
) (
−e−3t − 17

25e
5t − t

2e
−3t + 9t

10e
5t
)


=

(
− 29

25 −
6
5 t

− 42
25 + 2

5 t

)
(31.192)

Hence

y = yH + yP (31.193)

= c1e
3t

(
3
2

)
+ c2e

−5t

(
1
−2

)
+

(
− 29

25 −
6
5 t

− 42
25 + 2

5 t

)
(31.194)

In terms of the variables x and y in the original problem,

x = 3c1e
3t + c2e

−5t − 29

25
− 6

5
t (31.195)

y = 2c1e
3t − 2c2e

−5t − 42

25
+

2

5
t (31.196)
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Non-constant Coefficients

We can solve the general linear system

y′ = A(t)y(t) + g(t) (31.197)

where the restriction that A be constant has been removed, in the same
manner that we solved it in the scalar case. We expect

M(t) = exp

[
−
∫

A(t)dt

]
(31.198)

to be an integrating factor of (31.197); in fact, since

M′(t) = −M(t)A(t) (31.199)

we can determine

d

dt
(M(t)y) = M(t)y′ + M′(t)y (31.200)

= M(t)y′ −M(t)A(t)y (31.201)

= M(t)(y′ −A(t)y(t)) (31.202)

= M(t)g(t) (31.203)

Hence

M(t)y =

∫
M(t)g(t)dt+ C (31.204)

and therefore the solution of (31.197) is

y = M−1(t)

[∫
M(t)g(t)dt+ C

]
(31.205)

for any arbitrary constant vector C.

Example 31.6. Solve y′ = A(t)y + g(t), y(0) = y0, where

A =

(
0 −t
−t 0

)
, g(t) =

(
t
3t

)
, y0 =

(
4
2

)
(31.206)

To find the integrating factor M = exp
∫
−A(t)dt, we first calculate

P(t) = −
∫

A(t)dt =
1

2

(
0 t2

t2 0

)
(31.207)

The eigenvalues of P are

λ1 = − t
2

2
, λ2 =

t2

2
(31.208)
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The corresponding eigenvectors are

v1 =

(
−1
1

)
, v2 =

(
1
1

)
(31.209)

The diagonalizing matrix is then

S = (v1 v2) =

(
−1 1
1 1

)
(31.210)

and its inverse is given by

S−1 =
1

2

(
−1 1
1 1

)
(31.211)

so that

D = S−1PS =
1

2

(
−t2 0
0 t2

)
(31.212)

is diagonal. Hence M = eP = SeDS−1, which we calculate as follows.

M =

(
−1 1
1 1

)(
e−t

2/2 0

0 et
2/2

)
1
2

(
−1 1
1 1

)
= 1

2

(
−1 1
1 1

)(
−e−t2/2 e−t

2/2

et
2/2 et

2/2

)

= 1
2

(
e−t

2/2 + et
2/2 −e−t2/2 + et

2/2

−e−t2/2 + et
2/2 e−t

2/2 + et
2/2

)
=

(
cosh(t2/2) sinh(t2/2)
sinh(t2/2) cosh(t2/2)

)
(31.213)

and (using the identity cosh2 x− sinh2 x = 1),

M−1 =

(
cosh(t2/2) − sinh(t2/2)
− sinh(t2/2) cosh(t2/2)

)
(31.214)

Furthermore,

M(t)g(t) =

(
cosh(t2/2) sinh(t2/2)
sinh(t2/2) cosh(t2/2)

)(
t
3t

)
(31.215)

=

(
t cosh(t2/2) + 3t sinh(t2/2)
t sinh(t2/2) + 3t cosh(t2/2)

)
(31.216)

Using the integral formulas∫
t cosh(t2/2)dt = sinh(t2/2) (31.217)∫
t sinh(t2/2)dt = cosh(t2/2) (31.218)
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we find that∫
M(t)g(t)dt =

(
3 cosh(t2/2) + sinh(t2/2)
cosh(t2/2) + 3 sinh(t2/2)

)
(31.219)

hence

M−1(t)

∫
M(t)g(t)dt (31.220)

=

(
cosh(t2/2) − sinh(t2/2)
− sinh(t2/2) cosh(t2/2)

)(
3 cosh(t2/2) + sinh(t2/2)
cosh(t2/2) + 3 sinh(t2/2)

)
(31.221)

=

(
3
1

)
(31.222)

Since y = M−1(t)
[∫

M(t)g(t)dt+ C
]
, the general solution is

y =

(
3
1

)
+

(
cosh(t2/2) − sinh(t2/2)
− sinh(t2/2) cosh(t2/2)

)(
C1

C2

)
(31.223)

=

(
3 + C1 cosh(t2/2)− C2 sinh(t2/2)
1− C1 sinh(t2/2) + C2 cosh(t2/2)

)
(31.224)

The initial conditions give(
4
2

)
=

(
3 + C1

1 + C2

)
(31.225)

Hence C1 = C2 = 1 and

y =

(
3 + cosh(t2/2)− sinh(t2/2)
1− sinh(t2/2) + cosh(t2/2)

)
(31.226)

Since

coshx− sinhx =
ex + e−x

2
− ex − e−x

2
= e−x (31.227)

we have the solution of the initial value problem as

y =

(
3 + e−t

2/2

1 + e−t
2/2

)
. (31.228)
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Lesson 32

The Laplace Transform

Basic Concepts

Definition 32.1 (Laplace Transform). We say the Laplace Transform
of the function f(t) is the function F (s) defined by the integral

L[f(t)] = F (s) =

∫ ∞
0

e−stf(t)dt (32.1)

provided that integral exists.

The notation L[f(t)] and F (s) are used interchangeably with one another.

Example 32.1. Find the Laplace Transform of f(t) = t.

Solution. From the definition of the Laplace Transform and equation A.53

L[t] =

∫ ∞
0

te−stdt (32.2)

=

(
t

s
− 1

s2

)
e−st

∣∣∣∣∞
0

(32.3)

=
1

s2
(32.4)

Example 32.2. Find the Laplace Transform of f(t) = e2t.
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Solution. From the definition of the Laplace Transform

L
[
e2t
]

=

∫ ∞
0

e2te−stdt =

∫ ∞
0

e(2−s)tdt (32.5)

=
1

2− s
e(2−s)t

∣∣∣∣∞
0

(32.6)

=
1

s− 2
so long as s > 2 (32.7)

Remark. As a generalization of the last example we can observe that

L
[
eat
]

=
1

s− a
, s > a (32.8)

Definition 32.2 (Inverse Transform). If F (s) is the Laplace Transform of
f(t) then we say that f(t) is the Inverse Laplace Transform of F (s) and
write

f(t) = L−1[F (s)] (32.9)

Example 32.3. From the example 32.1 we can make the following obser-
vations:

1. The Laplace Transform of the function f(t) = t is the function
L[f(t)] = 1/s2.

2. The Inverse Laplace Transform of the function F (s) = 1/s2 is the
function f(t) = t.

In order to prove a condition that will guarantee the existence of a Laplace
transform we will need some results from Calculus.

Definition 32.3 (Exponentially Bounded). Suppose that there exist some
constants K > 0, a, and M > 0, such that

|f(t)| ≤ Keat (32.10)

for all t ≥M . Then f(t) is said to be Exponentially Bounded.

Definition 32.4 (Piecewise Continuous). A function is said to be Piece-
wise Continuous on an interval (a, b) if the interval can be partitioned
into a finite number of subintervals

a = t0 < t1 < t2 < · · · < tn = b (32.11)

such that f(t) is continuous on each sub-interval (ti, ti+1) (figure 32).
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Figure 32.1: A piecewise continuous function. This function is piecewise
continuous in three intervals [−1, 1/2], [1/2, 3/2], [3/2, 2] and the function
approaches a finite limit at the endpoint of each interval as the endpoint is
approached from within that interval.

1 1
2

1
2

1 3
2

2

1

1
2

1
2

1

3
2

2

Theorem 32.5 (Integrability). If f(t) is piecewise continuous on (a, b)
and f(t) approaches a finite limit at the endpoint of each interval as it is

approached from within the interval then
∫ b
a
f(t)dt exists, i.e., the function

is integrable on (a,b).

Theorem 32.6 (Existence of Laplace Transform). Let f(t) be defined for
all t ≥ 0 and suppose that f(t) satisfies the following conditions:

1. For any positive constant A, f(t) is piecewise continuous on [0, A].

2. f(t) is Exponentially Bounded.

Then the Laplace Transform of f(t) exists for all s > a.

Proof. Under the stated conditions, f is piecewise continuous, hence inte-
grable; and |f(t)| ≤ Keat for some K, a,M for all t ≥M . Thus

L[F (t)] =

∫ ∞
0

e−stf(t)dt (32.12)

=

∫ M

0

e−stf(t)dt+

∫ ∞
M

e−stf(t)dt (32.13)

Since f is piecewise continuous, so is e−stf(t), and since the definite integral
of any piecewise continuous function over a finite domain exists (it is the
area under the curves) the first integral exists.
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The existence of the Laplace Transform therefore depends on the existence
of the second integral We must show that this integral converges. But

|e−stf(t)| ≤ Ke−steat = Ke(a−s)t (32.14)

Thus the second integral is bounded by∫ ∞
M

e−stf(t)dt ≤
∫ ∞
M

|e−stf(t)|dt

≤
∫ ∞
M

Ke(a−s)tdt

= lim
T→∞

∫ T

M

Ke(a−s)tdt

= lim
T→∞

K

a− s
e(a−s)t

∣∣∣∣T
M

= lim
T→∞

K

a− s
[e(a−s)T − e(a−s)M ]

=

{
0 if a < s
∞ if a ≥ s

Thus when s > a, the second integral in (32.13) vanishes and the total
integral converges (is defined).

Theorem 32.7 (Linearity). The Laplace Transform is lineary, e.g., for any
two functions f(t) and g(t) with Laplace Transforms F (s) and G(s), and
any two constants A and B,

L[Af(t) +Ag(t)] = AL[f(t)] +BL[g(t)] = AF (s) +BG(s) (32.15)

Proof. This property follows immediately from the linearity of the integral,
as follows:

L[Af(t) +Ag(t)] =

∫ ∞
0

(Af(t) +Bg(t))e−stdt (32.16)

= A

∫ ∞
0

f(t)e−stdt+B

∫ ∞
0

g(t)e−stdt (32.17)

= AL[f(t)] +BL[g(t)] = AF (s) +BG(s) (32.18)



335

Example 32.4. From integral A.107,

L[cos kt] =

∫ ∞
0

cos kt e−stdt

=
e−st(k sin kt− s cos kt)

k2 + s2

∣∣∣∣∞
0

=
s

s2 + k2

Example 32.5. From integral A.105,

L[sin kt] =

∫ ∞
0

sin kt e−stdt

=
e−st(−s sin kt− k cos kt)

k2 + s2

∣∣∣∣∞
0

=
k

s2 + k2

Example 32.6.

L
[
eat
]

=

∫ ∞
0

eate−stdt =
e(a−s)t

a− s

∣∣∣∣∞
0

=
1

s− a
, s > a (32.19)

Example 32.7. Using linearity and example 32.6,

L[cosh at]dt = L
[

1

2
(eat + e−at)

]
(32.20)

=
1

2

(
L
[
eat
]

+ L
[
e−at

])
(32.21)

=
1

2

(
1

s− a
+

1

s+ a

)
(32.22)

=
s

s2 − a2
(32.23)

Example 32.8. Using linearity and example 32.6,

L[sinh at]dt = L
[

1

2
(eat − e−at)

]
(32.24)

=
1

2

(
L
[
eat
]
− L

[
e−at

])
(32.25)

=
1

2

(
1

s− a
− 1

s+ a

)
(32.26)

=
a

s2 − a2
(32.27)
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Example 32.9. Find the Laplace Transform of the step function

f(t) =

{
0, 0 ≤ t ≤ 3
2, t ≥ 3

(32.28)

Using the definition of L[f(t)], we compute

L[f(t)] =

∫ ∞
2

3e−tsdt = −3

s
e−ts

∣∣∣∣∞
2

=
3e−2s

s
(32.29)

Laplace Transforms of Derivatives

The Laplace Transform of a derivative is what makes it useful in our study
of differential equations. Let f(t) be any function with Laplace Transform
F (s). Then

L
[
df(t)

dt

]
=

∫ ∞
0

df(t)

dt
e−stdt (32.30)

We can use integration by parts (which means we use equation A.3) to solve
this problem; it is already written in the form

∫
udv with

u = e−st (32.31)

dvf ′(t)dt (32.32)

Since this gives v = f and du = −se−stdt, we obtain

L[f ′(t)] = e−stf(t)
∣∣∞
0

+ s

∫ ∞
0

f(t)estdt (32.33)

= −f(0) + sF (s) (32.34)

which we will write as

L[f ′(t)] = sF (s)− f(0) (32.35)

Thus the Laplace Transform of a Derivative is an algebraic func-
tion of the Laplace Transform. That means that Differential equations
can be converted into algebraic equations in their Laplace representation,
as we will see shortly.

Since the second derivative is the derivative of the first derivative, we can
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apply this result iteratively. For example,

L[f ′′(t)] = L
[
d

dt
f ′(t)

]
(32.36)

= −f ′(0) + sL[f ′(t)] (32.37)

= −f ′(0) + s(−f(0) + sF (s)) (32.38)

= −f ′(0)− sf(0) + s2F (s) (32.39)

Theorem 32.8. Let f, f ′, . . . , f (n−1) be continuous on [0,∞), of expo-
nential order, and suppose that f (n)(t) is piecewise continuous on [0,∞).
Then

L
[
f (n)(t)

]
= snF (s)− sn−1f(0)− sn−2f ′(0)− · · · − f (n−1)(0) (32.40)

where F (s) = L[f(t)].

Proof. This can be proven by mathematical induction. We have already
proven the cases for n = 1 and n = 2. As an inductive hypothesis we will
assume (32.40) is true for general n ≥ 1. We must prove that

L
[
f (n+1)(t)

]
= sn+1F (s)− snf(0)− sn−1f ′(0)− · · · − f (n)(0) (32.41)

follows directly from (32.40).

Let g(t) = f (n). Then g′(t) = f (n+1)(t) by definition of derivative notation.
Hence

L
[
f (n+1)(t)

]
= L[g′(t)] (32.42)

= sG(s)− g(0) (32.43)

= sL
[
f (n)(t)

]
− f (n+1)(0) (32.44)

Substitution of (32.40) yields (32.41) as required.
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The Gamma Function

Definition 32.9. The Gamma Function is defined by

Γ(x) =

∫ ∞
0

ux−1e−udu (32.45)

for x ∈ R but x not equal to a negative integer.

Figure 32.2: The Gamma function Γ(t).
.

4 3 2 1 1 2 3 4
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If we make a change of variable u = st for some constant s and new variable
t in (32.57), then du = sdt and

Γ(x) =

∫ ∞
0

(st)x−1e−st sdt = sx
∫ ∞

0

tx−1e−st dt (32.46)

Thus

Γ(x+ 1) = sx+1

∫ ∞
0

txe−st dt = L[tx] (32.47)

or

L[tx] =
Γ(x+ 1)

sx+1
(32.48)

The gamma function has an interesting factorial like property. Decreasing
the argument in (32.49) by 1,

Γ(x) = L
[
tx−1

]
(32.49)

But since

tx−1 =
1

x

d

dt
tx (32.50)



339

L
[
tx−1

]
= L

[
1

x

d

dt
tx
]

=
1

x
L
[
d

dt
tx
]

(32.51)

Let f(t) = tx. Then

L
[
d

dt
tx
]

= L[f ′(t)] = sF (s)− f(0) = sF (s) (32.52)

since f(0) = 0, where F (s) is given by the right hand side of (32.57)
Substituting (32.52) into (32.51) gives

L
[
tx−1

]
=

1

x
L
[
d

dt
tx
]

=
s

x

Γ(x+ 1)

sx+1
(32.53)

But from (32.51) directly

L
[
tx−1

]
=

Γ(x)

sx
(32.54)

Equating the last two expressions gives

Γ(x)

sx
=
s

x

Γ(x+ 1)

sx+1
(32.55)

which after cancellation gives us the fundamental property of the Gamma
function:

Γ(x+ 1) = xΓ(x) (32.56)

Now observe from (32.57) that

Γ(1) =

∫ ∞
0

u1−1e−udu =

∫ ∞
0

e−udu = 1 (32.57)

From (32.56)

Γ(2) = 1 · Γ(1) = 1 · 1 = 1 = 1! (32.58)

Γ(3) = 2 · Γ(2) = 2 · 1 = 2 = 2! (32.59)

Γ(4) = 3 · Γ(3) = 3 · 2 = 6 = 3! (32.60)

Γ(5) = 4 · Γ(4) = 4 · 6 = 24 = 4! (32.61)

Γ(6) = 5 · Γ(5) = 5 · 4! = 5! (32.62)

... (32.63)

Γ(n) = (n− 1)! for n ∈ Z+ (32.64)

hence for n an integer

L[tn] =
n!

sn+1
(32.65)



340 LESSON 32. THE LAPLACE TRANSFORM

Using Laplace Transforms to Solve Linear Differential
Equations

The idea is this: the Laplace Transform turns derivatives into algebraic
functions. So if we convert an entire linear ODE into its Laplace Transform,
since the transform is linear, all of the derivatives will go away. Then we
can solve for F (s) as a function of s. A solution to the differential equation
is given by any function f(t) whose Laplace transform is given by F (s).
The process is illustrated with an example.

Example 32.10. Solve y′ + 2y = 3, y(0) = 1, using Laplace transforms.

Let Y (s) = L[y(t)] and apply the Laplace Transform operator to the entire
equation.

y′(t) + 2y(t) = 3t (32.66)

L[y′(t) + 2y(t)] = L[3t] (32.67)

L[y′(t)] + 2L[y(t)] = 3L[t] (32.68)

From example 32.1, and equation 32.35,

sY (s)− y(0) + 2Y (s) =
3

s2
(32.69)

(s+ 2)Y (s) =
3

s2
+ y(0) =

3

s2
+ 1 =

3 + s2

s2
(32.70)

(32.71)

Solving for Y (s),

Y (s) =
3 + s2

(s+ 2)s2
(32.72)

The question then becomes the following: What function has a Laplace
Transform that is equal to (3 + s2)/(s2(s + 2))? This is called the inverse
Laplace Transform of Y (s) and gives y(t):

y(t) = L−1

[
3 + s2

(s+ 2)s2

]
(32.73)

We typically approach this by trying to simplify the function into smaller
parts until we recognize each part as a Laplace transform. For example, we
can use the method of Partial Fractions to separated the expression:

3 + s2

(s+ 2)s2
=
A+Bs

s2
+
C +Ds

s+ 2
(32.74)

=
(A+Bs)(s+ 2)

s2(s+ 2)
+

(C +Ds)s2

s2(s+ 2)
(32.75)
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Equating numerators and expanding the right hand side,

3 + s2 = (A+Bs)(s+ 2) + (C +Ds)s2 (32.76)

= As+ 2A+Bs2 + 2Bs+ Cs2 +Ds3 (32.77)

= 2A+ (A+ 2B)s+ (B + C)s2 +Ds3 (32.78)

Equating coefficients of like powers of s,

3 = 2A =⇒ A =
3

2
(32.79)

0 = A+ 2B =⇒ B =
−A
2

= −3

4
(32.80)

1 = B + C =⇒ C = 1−B =
7

4
(32.81)

0 = D (32.82)

Hence

3 + s2

(s+ 2)s2
=

3
2 −

3
4s

s2
+

7
4

s+ 2
(32.83)

=
3

2
· 1

s2
− 3

4
· 1

s
+

7

4
· 1

s+ 2
(32.84)

From equations (32.4) and (32.8)

we see that

3 + s2

(s+ 2)s2
=

3

2
· L[t]− 3

4
· L
[
e0
]

+
7

4
· L
[
e−2t

]
(32.85)

= L
[

3

2
t− 3

4
+

7

4
· e−2t

]
(32.86)

y(t) =L−1

[
3 + s2

(s+ 2)s2

]
=

3

2
t− 3

4
+

7

4
· e−2t (32.87)

which gives us the solution to the initial value problem.

Here is a summary of the procedure to solve the initial value problem for
y′(t):

1. Apply the Laplace transform operator to both sides of the differential
equation.
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2. Evaluate all of the Laplace transforms, including any initial condi-
tions, so that the resulting equation has all y(t) removed and replaced
with Y (s).

3. Solve the resulting algebraic equation for Y (s).

4. Find a function y(t) whose Laplace transform is Y (s). This is the
solution to the initial value problem.

The reason why this works is because of the following theorem, which we
will accept without proof.

Theorem 32.10 (Lerch’s Theorem1). For any function F (s), there is at
most one continuous function function f(t) defined for t ≥ 0 for which
L[f(t)] = F (s).

This means that there is no ambiguity in finding the inverse Laplace trans-
form.

The method also works for higher order equations, as in the following ex-
ample.

Example 32.11. Solve y′′ − 7y′ + 12y = 0, y(0) = 1, y′(0) = 1 using
Laplace transforms.

Following the procedure outlined above:

0 = L[y′′ − 7y′ + 12y] (32.88)

= L[y′′]− 7L[y′] + 12L[y] (32.89)

= s2Y (s)− sy(0)− y′(0)− 7(sY (s)− y(0)) + 12Y (s) (32.90)

= s2Y (s)− s− 1− 7sY (s) + 7 + 12Y (s) (32.91)

= (s2 − 7s+ 12)Y (s) + 6− s (32.92)

Y (s) =
s− 6

s2 − 7s+ 12
=

s− 6

(s− 3)(s− 4)
=

3

s− 3
− 2

s− 4
(32.93)

where the last step is obtained by the method of partial fractions. Hence

y(t) = L−1

[
3

s− 3
− 2

s− 4

]
= 3e3t − 2e4t. (32.94)

1Named for Mathias Lerch (1860-1922), an eminent Czech Mathematician who pub-
lished more than 250 papers.
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Derivatives of the Laplace Transform

Now let us see what happens when we differentiate the Laplace Transform.
Let F (s) be the transform of f(t).

d

ds
F (s) =

d

ds

∫ ∞
0

e−stf(t)dt (32.95)

=

∫ ∞
0

d

ds
e−stf(t)dt (32.96)

= −
∫ ∞

0

e−sttf(t)dt (32.97)

= −L[tf(t)] (32.98)

By a similar argument, we get additional factors of −t for each order of
derivative, so in general we have

F (n)(s) =
d(n)

ds(n)
L[f(t)] = (−1)nL[tnf(t)] (32.99)

Thus we have the results

L[tf(t)] = F ′(s) (32.100)

L[tnf(t)] = (−1)nF (n)(s) (32.101)

Example 32.12. Find F (s) for f(t) = t cos kt.

From (32.19) we have L[cos kt] = s/(s2 + k2). Hence

L[t cos kt] =
d

ds
L[cos kt] (32.102)

= − d

ds

s

s2 + k2
(32.103)

= − (s2 + k2)(1)− s(2s)
(s2 + k2)2

(32.104)

=
s2 − k2

(s2 + k2)2
(32.105)

Step Functions and Translations in the Time
Variable

Step functions are special cases of piecewise continuous functions, where the
function “steps” between two different constant values like the treads on
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a stairway. It is possible to define more complicated piecewise continuous
functions in terms of step functions.

Definition 32.11. The Unit Step Function with step at origin, U(t)
is defined by

U(t) =

{
0, t < 0
1, t ≥ 0

(32.106)

The Unit Step Function with Step at t0, U(t− t0) is then given by

U(t− t0) =

{
0, t < t0
1, t ≥ t0

(32.107)

The second function is obtained from the first by recalling that subtraction
of t0 from the argument of a function translates it to the right by t0 units
along the x-axis.

Figure 32.3: A Unit Step Function U(t− t0) with step at t = t0.

t0

1

Unit step functions make it convenient for us to define stepwise continu-
ous functions as simple formulas with the need to list separate cases. For
example, the function

f(t) =


0, t < 1

1, 0 ≤ t < 2

0, t ≥ 2

(32.108)

can also be written as (figure 32.3)

f(t) = U(t− 1)− U(t− 2) (32.109)

while the function

f(t) =


0 t < −1

e−t
2 −1 ≤ t < 1

0 t > 1

(32.110)
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can be written as

f(t) = e−t
2

(U(t+ 1)− U(t− 1) (32.111)

as illustrated in figure 32.4.

Figure 32.4: A piecewise continuous function defined with step functions.

2 1 1 2

0.25

0.5

0.75

1.

We can also use the combination to produce piecewise continuous transla-
tions, for example,

f(t) =

{
e−(x−3)2 , x ≥ 2

0, x < 2
= U(t− 2)f(t− 3) (32.112)

The second factor (f(t−3)) translates the bell curve to the right by 3 units,
while the first factor cuts off the part to the left of t = 2 (figure 32.5).

Figure 32.5: A piecewise continuous function defined by a translation mul-
tiplied by a step functions.
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1.
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The Laplace Transform of the step function is easily calculated,

L[U(t− a)] =

∫ ∞
0

U(t− a)e−stdt (32.113)

=

∫ ∞
a

e−stdt (32.114)

=
e−as

s
(32.115)

We will also find the Laplace Transforms of shifted functions to be useful:

L[f(t)U(t− a)] =

∫ ∞
0

f(t)U(t− a)e−stdt (32.116)

=

∫ ∞
a

f(t)e−stdt (32.117)

Here we make a change of variable

x = t− a (32.118)

so that

L[f(t)U(t− a)] =

∫ ∞
0

f(x+ a)e−s(x+a)dx (32.119)

= e−sa
∫ ∞

0

f(x+ a)e−sxdx (32.120)

= e−saL[f(t+ a)] (32.121)

A similar result is obtained for

L[f(t− a)U(t− a)] =

∫ ∞
0

f(t− a)U(t− a)e−stdt (32.122)

=

∫ ∞
a

f(t− a)e−stdt (32.123)

Now define
x = t− a (32.124)

so that

L[f(t− a)U(t− a)] =

∫ ∞
0

f(t)e−s(x+a)dx (32.125)

= e−sa
∫ ∞

0

f(t)e−sxdx (32.126)

= e−asF (s) (32.127)



347

Translations in the Laplace Variable

If F (s) is the Laplace Transform of f(t),

F (s) =

∫ ∞
0

f(t)e−stdt (32.128)

What happens when we shift the s-variable a distance a? Substituting
S = s− a,

F (s− a) = F (S) =

∫ ∞
0

f(t)e−Stdt (32.129)

=

∫ ∞
0

f(t)e−(s−a)tdt (32.130)

=

∫ ∞
0

eatf(t)e−stdt (32.131)

= L
[
eatf(t)

]
(32.132)

which is often more useful in its inverse form,

L−1[F (s− a)] = eatf(t) (32.133)

Example 32.13. Find f(t) such that F (s) =
s+ 2

(s− 2)2
.

Using partial fractions,

s+ 2

(s− 2)2
=

A

s− 2
+

B

(s− 2)2
(32.134)

=
A(s− 2)

(s− 2)2
+

B

(s− 2)2
(32.135)

s+ 2 = As+ (B − 2A) (32.136)

Hence

A = 1 (32.137)

B − 2A = 2 =⇒ B = 4 (32.138)

Therefore

F (s) =
s+ 2

(s− 2)2
=

1

s− 2
+

4

(s− 2)2
(32.139)
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Inverting the transform,

f(t) = L−1[F (s)] = L−1

[
1

s− 2
+

4

(s− 2)2

]
(32.140)

= L−1

[
1

s− 2

]
+ 4L−1

[
1

(s− 2)2

]
(32.141)

= e2tL−1

[
1

s

]
+ 4e2tL−1

[
1

t2

]
(32.142)

= e2t · 1 + 4e2t · t (32.143)

= (1 + t)e2t] (32.144)

Example 32.14. Solve y′+4y = e−4t, y(0) = 2, using Laplace Transforms.

Applying the transform,

L[y′] + 4L[y] = L
[
e−4t

]
(32.145)

sY (s)− y(0) + 4Y (s) =
1

s+ 4
(32.146)

(s+ 4)Y (s) = 2 +
1

s+ 4
(32.147)

Solving for Y (s),

Y (s) =
2

s+ 4
+

1

(s+ 4)2
(32.148)

y(t) = L−1[Y (s)] (32.149)

= L−1

[
2

s+ 4
+

1

(s+ 4)2

]
(32.150)

= L−1

[
2

s+ 4

]
+ L−1

[
1

(s+ 4)2

]
(32.151)

= 2e−4tL−1

[
1

s

]
+ e−4tL−1

[
1

s2

]
(32.152)

= 2e−4t · 1 + e−4t · t (32.153)

= (2 + t)e−4t (32.154)
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Summary of Translation Formulas

L[U(t− a)] =
e−as

s
(32.155)

L[f(t)U(t− a)] = e−saL[f(t+ a)] (32.156)

L[f(t− a)U(t− a)] = e−asF (s) (32.157)

L
[
eatf(t)

]
= F (s− a) (32.158)

L−1[F (s− a)] = eatf(t) (32.159)

Convolution

Definition 32.12 (Convolution). Let f(t) and g(t) be integrable functions
on (0,∞). Then the convolution of f and g is defined by

(f ∗ g)(t) =

∫ t

0

f(u)g(t− u)dt (32.160)

Som Useful Properties of the Convolution

1. f ∗ g = g ∗ f (commutative)

2. f ∗ (g + h) = f ∗ g + f ∗ h (distributive)

3. f ∗ (g ∗ h) = (f ∗ g) ∗ h (associative)

4. f ∗ 0 = 0 ∗ f = 0 (convolution with zero is zero)

Example 32.15. Find sin t ∗ cos t

sin t ∗ cos t =

∫ t

0

sinx cos(t− x)dx (32.161)

=

∫ t

0

sinx(cos t cosx+ sin t sinx)dx (32.162)

= cos t

∫ t

0

sinx cosxdx+ sin t

∫ t

0

sin2 xdx (32.163)

= cos t
1

2
sin2 x

∣∣∣∣t
0

+ sin t

(
x

2
− sin 2x

4

)∣∣∣∣t
0

(32.164)

=
1

2
cos t sin2 t+ sin t

(
t

2
− sin 2t

4

)
(32.165)
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Using trig substitution,

sin t ∗ cos t =
1

2
cos t sin2 t+

1

2
sin t (t− sin t cos t) (32.166)

=
1

2
t sin t (32.167)

Theorem 32.13 (Convolution Theorem). Let f(t) and g(t) be piecewise
continuous functions on [0,∞) of expnonential order with Laplace Trans-
forms F (s) and G(s). Then

L[f ∗ g] = F (s)G(s) (32.168)

The Laplace transform of the convolution is the product of the transforms.
In its inverse form, the inverse transform of the product is the convolution:

L−1[F (s)G(s)] = f ∗ g (32.169)

Proof.

F (s)G(s) =

(∫ ∞
0

f(t)e−tsdt

)(∫ ∞
0

g(x)e−sxdx

)
(32.170)

=

∫ ∞
0

∫ ∞
0

f(t)g(x)e−ts−xsdtdx (32.171)

=

∫ ∞
0

f(t)

(∫ ∞
0

g(x)e−s(t+x)dx

)
dt (32.172)

In the inner integral let u = t+ x. Then

F (s)G(s) =

∫ ∞
0

f(t)

(∫ ∞
t

g(u− t)e−sudu
)
dt (32.173)

Interchanging the order of integration:

F (s)G(s) =

∫ ∞
0

e−su
(∫ t

0

g(u− t)f(t)dt

)
du (32.174)

=

∫ ∞
0

e−su(f ∗ g)(u)du (32.175)

= L[f ∗ g] (32.176)

as expected.

Example 32.16. Find a function f(t) whose Laplace Transform is

F (s) =
1

s(s+ 1)
(32.177)
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The inverse transform is

f(t) = L−1

[
1

s(s+ 1)

]
(32.178)

= L−1

[
1

s

]
L−1

[
1

s+ 1

]
(32.179)

= 1 · e−1·t (32.180)

= e−t (32.181)

Example 32.17. Find a function f(t) whose Laplace Transform is

F (s) =
s

(s2 + 4s− 5)2
(32.182)

The inverse transform is

f(t) = L−1

[
s

(s2 + 4s− 5)2

]
(32.183)

= L−1

[
s

s2 + 4s− 5
· 1

s2 + 4s− 5

]
(32.184)

= L−1

[
s

(s+ 5)(s− 1)
· 1

(s+ 5)(s− 1)

]
(32.185)

= L−1

[
s

(s+ 5)(s− 1)

]
· L−1

[
1

(s+ 5)(s− 1)

]
(32.186)

Using partial fractions,

1

(s+ 5)(s− 1)
= −1

6
· 1

s+ 5
+

1

6
· 1

s− 1
(32.187)

s

(s+ 5)(s− 1)
=

5

6
· 1

s+ 5
+

1

6
· 1

s− 1
(32.188)

The inverse transforms of (32.187) and (32.188) are thus

L−1

[
1

(s+ 5)(s− 1)

]
= −1

6
L−1

[
1

s+ 5

]
+

1

6
L−1

[
1

s− 1

]
(32.189)

= −1

6
e−5t +

1

6
et (32.190)

L−1

[
s

(s+ 5)(s− 1)

]
=

5

6
L−1

[
1

s+ 5

]
+

1

6
L−1

[
1

s− 1

]
(32.191)

=
5

6
e5t +

1

6
et (32.192)
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Substituting back into (32.186),

f(t) =

(
−1

6
e−5t +

1

6
et
)(

5

6
e5t +

1

6
et
)

(32.193)

Periodic Functions

Definition 32.14. A function f(t) is said to be periodic with period T
if there exists some positive number such that

f(t+ T ) = f(t) (32.194)

for all values of t.

To find the transform of a periodic function we only have to integrate over
a single interval, as illustrated below. Let f(t) be a periodic function with
period T . Then its transform is

F (S) =

∫ ∞
0

f(t)e−tsdt (32.195)

=

∫ t

0

f(t)e−stdt+

∫ ∞
T

f(t)e−tsdt (32.196)

In the second integral make the substitution u = t− T , so that

F (S) =

∫ t

0

f(t)e−stdt+

∫ ∞
0

f(u+ T )e−(u+T )sdu (32.197)

=

∫ t

0

f(t)e−stdt+ e−sT
∫ ∞

0

f(u)e−usdu since f(u+ T ) = f(u)

(32.198)

=

∫ t

0

f(t)e−stdt+ e−sTF (s) (32.199)

Rearranging and solving for F (s),

F (s)(1− e−sT ) =

∫ t

0

f(t)e−stdt (32.200)

which gives us the following result for periodic functions:

F (s) = L[f(t)] =
1

1− e−sT

∫ t

0

f(t)e−stdt (32.201)



353

Example 32.18. Find the Laplace transform of the full-wave rectification
of sin t,

f(t) =

{
sin t 0 ≤ t < π

f(t− π) t ≥ π
(32.202)

Using the formula for the transform of a periodic function,

F (s) =
1

1− e−πs

∫ π

0

sin te−stdt (32.203)

=
1

1− e−πs
1

1 + s2
e−st(−s sin t− cos t)

∣∣∣∣π
0

(32.204)

using (A.105) to find the integral. Hence

F (s) =
1

1− e−πs
1

1 + s2
[e−πs(−s sinπ − cosπ)

− e0(−s sin 0− cos 0)] (32.205)

=
1

1− e−πs
1

1 + s2
[e−πs(1) + (1)] (32.206)

=
1 + e−πs

1− e−πs
· 1

1 + s2
(32.207)

Example 32.19. Solve y′′ + 9y = cos 3t, y(0) = 2, y′(0) = 5.

The Laplace Transform is

s2Y (s)− sy(0)− y′(0) + 9Y (s) =
s

s2 + 9
(32.208)

Substituting the initial conditions and grouping,

(9 + s2)Y (s)− 2s− 5 =
s

s2 + 9
(32.209)

rearranging terms and solving for Y (s),

(9 + s2)Y (s) = 2s+ 5 +
s

s2 + 9
(32.210)

Y (s) =
2s+ 5

9 + s2
+

s

(9 + s2)2
(32.211)

= 2 · s

9 + s2
+ 5 · 1

9 + s2
+

s

(9 + s2)2
(32.212)
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The inverse transform is

y(t) = 2 · L−1

[
s

9 + s2

]
+ 5 · L−1

[
1

9 + s2

]
+ L−1

[
s

(9 + s2)2

]
(32.213)

=
2

3
cos 3t+

5

3
sin 3t+ L−1

[
s

9 + s2

]
∗ L−1

[
1

9 + s2

]
(32.214)

=
2

3
cos 3t+

5

3
sin 3t+

1

9
cos 3t ∗ sin 3t (32.215)

The convolution is

cos 3t ∗ sin 3t =

∫ t

0

cos 3x sin 3(t− x)dx (32.216)

=
1

2
t sin(3t) (32.217)

hence

y(t) =
2

3
cos 3t+

5

3
sin 3t+

1

18
t sin 3t (32.218)

Impulses

Impulses are short, sudden perturbations of a system: quickly tapping on
the accelerator of your car, flicking a light switch on and off, injection of
medicine into the bloodstream, etc. It is convenient to describe these by
box functions – with a step on followed by a step off. We define the Unit
Impulse of Width a at the Origin by the function

δa(t) =


0 t < −a
2a −a ≤ t < a

0 t > a

(32.219)

In terms of the unit step function,

δa(t) =
1

2a
(U(t+ a)− U(t− a)) (32.220)

As the value of a is decreased the width of the box gets narrower but
the height increases, making it much more of a sudden spike, but in each
case, the area of the box is unity. In the limit, a sequence of narrower
and narrower boxes approaches an infinitely tall spike which we call the
Dirac-delta function2

δ(t) = lim
a→0

δa(t) (32.221)

2For Paul Dirac (1902-1982), one of the founders of quantum mechanics.
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Similarly, we can express a unit impulse centered at t0 by a right shift, as
δa(t− t0), and an infinite unite spike as δ(t− t0).

Figure 32.6: Unit impulse of width a at the origin (left). Sequence of
sharper and sharper impulses on the right, with smaller and smaller a
values.

a a

1 2a

2 1 0 1 2
0

1

2

3

4

5

The Laplace transform of the unit impulse is

L[δa(t− t0)] = L
[

1

2a
(U(t+ a− t0)− U(t− a− t0))

]
(32.222)

=
1

2a
[L[U(t+ a− t0)]− L[U(t− a− t0)]] (32.223)

=
e(a−t0)s

2as
− e−(a+t0)s

2as
(32.224)

= e−t0s
eas − e−as

2as
(32.225)

= e−t0s
sinh as

as
(32.226)

To get the Laplace transform of the delta function we take the limit as
a→ 0,

L[δ(t− t0)] = lim
a→0

e−t0s
sinh as

as
(32.227)

Since the right hand side → 0/0 we can use L‘Hopital’s rule from calculus,

L[δ(t− t0)] = e−t0s lim
a→0

a cosh as

a
(32.228)

= e−t0s lim
a→0

cosh as (32.229)

= e−t0s (32.230)
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Since when t0 = 0, e−t0s = e0 = 1,

L[δ(t)] = 1 (32.231)

Example 32.20. Solve the initial value problem

y′′ + y = δ(y − π), y(0) = y′(0) = 0 (32.232)

The Laplace transform gives us

s2Y (s)− sy(0)− y′(0) + Y (S) = e−πs (32.233)

(s2 + 1)Y (s) = e−πs (32.234)

Y (s) =
e−πs

1 + s2
= (32.235)

But recall that (see (32.156))

L[f(t− a)U(t− a)] = e−asF (s) (32.236)

=⇒ f(t− a)U(t− a) = L−1
[
e−asF (s)

]
(32.237)

=⇒ f(t− π)U(t− π) = L−1
[
e−aπF (s)

]
(32.238)

If we let F (s) = 1/(1 + s2) then f(t) = sin t. Hence

U(t− π) sin t = L−1

[
e−πs

1 + s2

]
(32.239)

and therefore
y(t) = U(t− π) sin t (32.240)
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Figure 32.7: Solution of example in equation 32.232. The spring is initially
quiescent because there is neither any initial displacement nor velocity,
but at t = π there is a unit impulse applied causing the spring to begin
oscillations. 0 � 2 3 4101 � � �
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Lesson 33

Numerical Methods

Euler’s Method

By a dynamical system we will mean a system of differential equations
of the form

y′1 = f1(t, y1, y2, . . . , yn)

y′2 = f2(t, y1, y2, . . . , yn)

...

y′n = fn(t, y1, y2, . . . , yn)

 (33.1)

and accompanying initial conditions

y1(t0) = y10, y2(t0) = y2,0, . . . , yn(t0) = yn0 (33.2)

In the simplest case we have a single differential equation and initial con-
dition (n=1)

y′ = f(t, y), y(0) = y0 (33.3)

While it is possible to define dynamical systems that cannot be expressed in
this form, e.g., they have partial derivatives or depend on function values
at earlier time points, we will confine our study to these equations. In
particular we will look as some of the techniques to solve the single equation
33.3. The generalization to higher dimensions (more equations) comes from
replacing all of the variables in our methods with vectors.

Programming languages, in general, do not contain methods to solve dif-
ferential equations, although there are large, freely available libraries that
can be used for this purpose. Analysis environments like Mathematica and

359
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Matlab have an extensive number of functions built in for this purpose, so
in general, you will never actually need to implement the methods we will
discuss in the next several sections if you confine yourself to those envi-
ronments. Sometimes, however, the built-in routines don’t provide enough
generality and you will have to go in and modify them. In this case it helps
to understand the basics of the numerical solution of differential equations.

By a numerical solution of the initial value problem

y′ = f(t, y), y(t0) = y0 (33.4)

we mean a sequence of values

y0, y1, y2, ..., yn−1, yn; (33.5)

a corresponding mesh or grid M by

M = {t0 < t1 < t2 < · · · < tn−1 < tn}; (33.6)

and a grid spacing as

hj = tj+1 − tj (33.7)

Then the numerical solution or numerical approximation to the solution is
the sequence of points

(t0, y0), (t1, y1), . . . , (tn−1, yn−1), (tn, yn) (33.8)

In this solution the point (tj , yj) represents the numerical approximation
to the solution point y(tj). We can imagine plotting the points (33.8) and
then “connecting the dots” to represent an approximate image of the graph
of y(t), t0 ≤ t ≤ tn. We will use the convenient notation

yn ≈ y(tn) (33.9)

which is read as “yn is the numerical approximation to y(t) at t = tn.”

Euler’s Method or the Forward Euler’s Method is constructed as
illustrated in figure 33.1. At grid point tn, y(t) ≈ yn, and the slope of the
solution is given by exactly y′ = f(tn, y(tn)). If we approximate the slope
by the straight line segment between the numerical solution at tn and the
numerical solution at tn+1 then

y′n(tn) ≈ yn+1 − yn
tn+1 − tn

=
yn+1 − yn

hn
(33.10)
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Figure 33.1: Illustration of Euler’s Method. A tangent line with slope
f(t0, y0) is constructed from (t0, y0) forward a distance h = t1−t0 in the t−
direction to determined y1. Then a line with slope f(t1, y1) is constructed
forward from (t1, y1) to determine y2, and so forth. Only the first line is
tangent to the actual solution; the subsequent lines are only approximately
tangent.

t0 t1 t2

y0

y1
y2

Since y′(t) = f(t, y), we can approximate the left hand side of (33.10) by

y′n(tn) ≈ f(tn, yn) (33.11)

and hence

yn+1 = yn + hnf(tn, yn) (33.12)

It is often the case that we use a fixed step size h = tj+1− tj , in which case
we have

tj = t0 + jh (33.13)

In this case the Forward Euler’s method becomes

yn+1 = yn + hf(tn, yn) (33.14)

The Forward Euler’s method is sometimes just called Euler’s Method.

An alternate derivation of equation (33.12) is to expand the solution y(t)
in a Taylor Series about the point t = tn:

y(tn+1) = y(tn + hn) = y(tn) + hny
′(tn) +

h2
n

2
y′′(tn) + · · · (33.15)

= y(tn) + hnf(tn, y(n)) + · · · (33.16)
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We then observe that since yn ≈ y(tn) and yn+1 ≈ y(tn+1), then (33.12)
follows immediately from (33.16).

If the scalar initial value problem of equation (33.4) is replaced by a systems
of equations

y′ = f(t,y), y(t0) = y0 (33.17)

then the Forward Euler’s Method has the obvious generalization

yn+1 = yn+ hf(tn,yn) (33.18)

Example 33.1. Solve y′ = y, y(0) = 1 on the interval [0, 1] using h = 0.25.

The exact solution is y = ex. We compute the values using Euler’s method.
For any given time point tk, the value yk depends purely on the values of
tk1 and yk1 . This is often a source of confusion for students: although the
formula yk+1 = yk + hf(tk, yk) only depends on tk and not on tk+1 it gives
the value of yk+1.

We are given the following information:

(t0, y0) = (0, 1)

f(t, y) = y

h = 0.25

 (33.19)

We first compute the solution at t = t1.

y1 = y0 + hf(t0, y0) = 1 + (0.25)(1) = 1.25 (33.20)

t1 = t0 + h = 0 + 0.25 = 0.25 (33.21)

(t1, y1) = (0.25, 1.25) (33.22)

Then we compute the solutions at t = t1, t2, . . . until tk+1 = 1.

y2 = y1 + hf(t1, y1) (33.23)

= 1.25 + (0.25)(1.25) = 1.5625 (33.24)

t2 = t1 + h = 0.25 + 0.25 = 0.5 (33.25)

(t2, y2) = (0.5, 1.5625) (33.26)

y3 = y2 + hf(t2, y2) (33.27)

= 1.5625 + (0.25)(1.5625) = 1.953125 (33.28)

t3 = t2 + h = 0.5 + 0.25 = 0.75 (33.29)

(t3, y3) = (0.75, 1.953125) (33.30)
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y4 = y3 + hf(t3, y3) (33.31)

= 1.953125 + (0.25)(1.953125) = 2.44140625 (33.32)

t4 = t3 + 0.25 = 1.0 (33.33)

(t4, y4) = (1.0, 2.44140625) (33.34)

Since t4 = 1 we are done. The solutions are tabulated in table ?? for this
and other step sizes.

t h = 1/2 h = 1/4 h = 1/8 h = 1/16 exact solution
0.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0625 1.0625 1.0645
0.1250 1.1250 1.1289 1.1331
0.1875 1.1995 1.2062
0.2500 1.2500 1.2656 1.2744 1.2840
0.3125 1.3541 1.3668
0.3750 1.4238 1.4387 1.4550
0.4375 1.5286 1.5488
0.5000 1.5000 1.5625 1.6018 1.6242 1.6487
0.5625 1.7257 1.7551
0.6250 1.8020 1.8335 1.8682
0.6875 1.9481 1.9887
0.7500 1.9531 2.0273 2.0699 2.1170
0.8125 2.1993 2.2535
0.8750 2.2807 2.3367 2.3989
0.9375 2.4828 2.5536
1.0000 2.2500 2.4414 2.5658 2.6379 2.7183
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The Backwards Euler Method

Now consider the IVP

y′ = −5ty2 +
5

t
− 1

t2
, y(1) = 1 (33.35)

The exact solution is y = 1/t. The numerical solution is plotted for three
different step sizes on the interval [1, 25] in the following figure. Clearly
something appears to be happening here around h = 0.2, but what is it?
For smaller step sizes, a relatively smooth solution is obtained, and for
larger values of h the solution becomes progressively more jagged (figure
??).

Figure 33.2: Solutions for equation 33.35 for various step sizes using Euler’s
method.

5 10 15 20 25
t

0.1

0.2

0.3

0.4

y

This example illustrates a problem that occurs in the solution of differential
equations, known as stiffness. Stiffness occurs when the numerical method
becomes unstable. One solution is to modify Euler’s method as illustrated
in figure 33.3 to give the Backward’s Euler Method:

yn = yn−1 + hnf(tn, yn) (33.36)

The problem with the Backward’s Euler method is that we need to know the
answer to compute the solution: yn exists on both sides of the equation, and
in general, we can not solve explicitly for it. The Backwards Euler Method
is an example of an implicit method, because it contains yn implicitly.
In general it is not possible to solve for yn explicitly as a function of yn−1

in equation 33.36, even though it is sometimes possible to do so for specific
differential equations. Thus at each mesh point one needs to make some
first guess to the value of yn and then perform some additional refinement
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Figure 33.3: Illustration of the Backward’s Euler Method. Instead of con-
structing a tangent line with slope f(t0, y0) through (t0, y0) a line with slope
f(t1, y1) is constructed. This necessitates knowing the solution at the t1 in
order to determine y1(t1)

t0 t1 t2

y0

y1

y2

to improve the calculation of yn before moving on to the next mesh point.
A common method is to use fixed point iteration on the equation

y = k + hf(t, y) (33.37)

where k = yn−1. The technique is summarized here:

• Make a first guess at yn and use that in right hand side of 33.36. A
common first guess that works reasonably well is

y(0)
n = yn−1 (33.38)

• Use the better estimate of yn produced by 33.36 and then evaluate
33.36 again to get a third guess, e.g.,

y(ν+1)
n = yn−1 + hf(tn, y

(ν)
n ) (33.39)

• Repeat the process until the difference between two successive guesses
is smaller than the desired tolerance.

It turns out that Fixed Point iteration will only converge if there is some
number K < 1 such that |∂g/∂y| < K where g(t, y) = k+hf(t, y). A more
stable method technique is Newton’s method.
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Figure 33.4: Result of the forward Euler method to solve y′ = −100(y −
sin t), y(0) = 1 with h = 0.001 (top), h = 0.019 (middle), and h = 0.02
(third). The bottom figure shows the same equation solved with the back-
ward Euler method for step sizes of h = 0.001, 0.02, 0.1, 0.3, left to right
curves, respectively
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Improving Euler’s Method

All numerical methods for initial value problems of the form

y′(t) = f(t, y), y(t0) = y0 (33.40)

variations of the form

yn+1 = yn + φ(tn, yn, . . . ) (33.41)

for some function φ. In Euler’s method, φ = hf(tn, yn); in the Backward’s
Euler method, φ = hf(tn+1, yn+1). In general we can get a more accurate
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result with a smaller step size. However, in order to reduce computation
time, it is desirable to find methods that will give better results withou
a significant decrease in step size. We can do this by making φ depend
on values of the solution at multiple time points. For example, a Linear
Multistep Method has the form

yn+1 + a0yn + a1yn−1 + · · · = h(b0fn+1 + b1fn + b2fn−1 + · · · ) (33.42)

For some numbers a0, a1, . . . and b0, b1, . . . . Euler’s method has a0 =
−1, a1 = a2 = · · · = 0 and b1 = 1, b0 = b2 = b3 = · · · = 0

Here we introduce the Local Truncation Error, one measure of the
“goodness” of a numerical method. The Local truncation error tells us
the error in the calculation of y, in units of h, at each step tn assuming
that there we know yn−1 precisely correctly. Suppose we have a numerical
estimate yn of the correct solution at y(tn). Then the Local Truncation
Error is defined as

LTE =
1

h
(y(tn)− yn) (33.43)

=
1

h
(y(tn)− y(tn−1) + y(tn−1)− yn) (33.44)

Assuming we know the answer precisely correctly at tn−1 then we have

yn−1 = y(tn−1) (33.45)

so that

LTE =
y(tn)− y(tn−1)

h
+
yn−1 − yn

h
(33.46)

=
y(tn)− y(tn−1)

h
− 1

h
φ(tn, yn, . . . ) (33.47)

For Euler’s method,
φ = hf(t, y) (33.48)

hence

LTE(Euler) =
y(tn)− y(tn−1)

h
− f(tn, yn) (33.49)
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If we expand y in a Taylor series about tn−1,

y(tn) = y(tn−1) + hy′(tn−1) +
h2

2
y′′(tn−1) + · · · (33.50)

= y(tn−1) + hf(tn−1, yn−1) +
h2

2
y′′(tn−1) + · · · (33.51)

Thus

LTE(Euler) =
h

2
y′′(tn−1) + c2h

2 + c3h
3 + · · · (33.52)

for some constants c1, c2, ... Because the lowest order term in powers of h
is proportional to h, we say that

LTE(Euler) = O(h) (33.53)

and say that Euler’s method is a First Order Method. In general, to
improve accuracy for a given step size, we look for higher order methods,
which are O(hn); the larger the value of n, the better the method in general.

The Trapezoidal Method averages the values of f at the two end points.
It has an iteration formula given by

yn = yn−1 +
hn
2

(f(tn, yn) + f(tn−1, yn−1)) (33.54)

We can find the LTE as follows by expanding the Taylor Series,

LTE(Trapezoidal) =
y(tn)− y(tn−1)

h
− f(tn, yn) (33.55)

=
1

h

(
y(tn−1) + hy′(tn−1) +

h2

2
y′′(tn−1) +

h3

3!
y′′′(tn−1) + · · · − y(tn−1)

)
− 1

2
(f(tn, yn) + f(tn−1, yn−1)) (33.56)

Therefore using y′(tn−1) = f(tn−1, yn−1),

LTE(Trapezoidal) =
1

2
f(tn−1, yn−1) +

h

2
y′′(tn−1) +

h2

6
y′′′(tn−1) · · · − 1

2
f(tn, yn)

(33.57)
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Expanding the final term in a Taylor series,

f(tn, yn) = y′(tn) (33.58)

= y′(tn−1) + hy′′(tn−1) +
h2

2
y′′′(tn−1) + · · · (33.59)

= f(tn−1, yn−1) + hy′′(tn−1) +
h2

2
y′′′(tn−1) + · · · (33.60)

Therefore the Trapezoidal method is a second order method:

LTE(Trapezoidal =
1

2
fn−1 +

h

2
y′′n−1 +

h2

6
y′′′n−1 + · · ·

− 1

2
fn−1 −

1

2
hy′′n−1 −

1

4
h2y′′′n−1 + · · · (33.61)

= − 1

12
h2y′′′n−1 + · · · (33.62)

= O(h2) (33.63)

The theta method is given by

yn = yn−1 + h [θf(tn−1, yn−1) + (1− θ)f(tn, yn)] (33.64)

The theta method is implicit except when θ = 1, where it reduces to Euler’s
method, and is first order unless θ = 1/2. For θ = 1/2 it becomes the trape-
zoidal method. The usefulness of the comes from the ability to remove the
error for specific high order terms. For example, when θ = 2/3, there is no
h3 term even though there is still an h2 term. This can help if the coefficient
of the h3 is so larger that it overwhelms the the h2 term for some values of h.

The second-order midpoint method is given by

yn = yn−1 + hnf

(
tn−1/2,

1

2
[yn + yn−1]

)
(33.65)

The modified Euler Method, which is also second order, is

yn = yn−1 +
hn
2

[f(tn−1, yn−1) + f(tn, yn−1 + hf(tn−1, yn−1))] (33.66)
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Heun’s Method is

yn = yn−1+
hn
4

[
f(tn−1, yn−1) + 3f

(
tn−1 +

2

3
h, yn−1 +

2

3
hf(tn−1, yn−1)

)]
(33.67)

Both Heun’s method and the modified Euler method are second order and
are examples of two-step Runge-Kutta methods. It is clearer to implement
these in two “stages,” eg., for the modified Euler method,

ỹn = yn−1 + hf(tn−1, yn−1) (33.68)

yn = yn−1 +
hn
2

[f(tn−1, yn−1) + f(tn, ỹn)] (33.69)

while for Heun’s method,

ỹn = yn−1 +
2

3
hf(tn−1, yn−1) (33.70)

yn = yn−1 +
hn
4

[
f(tn−1, yn−1) + 3f

(
tn−1 +

2

3
h, ỹn

)]
(33.71)

Runge-Kutta Fourth Order Method. This is the “gold standard” of
numerical methods - its a lot higher order than Euler but still really easy
to implement. Other higher order methods tend to be very tedious – even
to code – although once coded they can be very useful. Four intermediate
calculations are performed at each step:

k1 = hf(tn, yn) (33.72)

k2 = hf(tn + .5h, yn + .5k1) (33.73)

k3 = hf(tn + .5h, yn + .5k2) (33.74)

k4 = hf(tn + h, yn + k3) (33.75)

Then the subsequent iteration is given by

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4) (33.76)

Example 33.2. Compute the solution to the test equation y′ = y, y(0) = 1
on [0, 1] using the 4-stage Runge Kutta method with h = 1/2.

Since we start at t = 0 and need to compute through t = 1 we have to
compute two iterations of RK. For the first iteration,

k1 = y0 = 1 (33.77)
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k2 = y0 +
h

2
f(t0, k1) (33.78)

= 1 + (0.25)(1) (33.79)

= 1.25 (33.80)

k3 = y0 +
h

2
f(t1/2, k2) (33.81)

= 1 + (0.25)(1.25) (33.82)

= 1.3125 (33.83)

k4 = y0 + hf(t1/2, k3) (33.84)

= 1 + (0.5)(1.3125) (33.85)

= 1.65625 (33.86)

y1 = y0 +
h

6
(f(t0, k1) + 2f(t1/2, k2) + 2f(t1/2, k3) + f(t1, k4)) (33.87)

= y0 +
h

6
(k1 + 2k2 + 2k3 + k4) (33.88)

= 1 +
.5

6
1 + 2(1.25) + 2(1.3125) + 1.65625 (33.89)

= 1.64844 (33.90)

Thus the numerical approximation to y(0.5) is y1 ≈ 1.64844. For the second
step,

k1 = y1 = 1.64844 (33.91)

k2 = y1 +
h

2
f(t1, k1) (33.92)

= 1.64844 + (0.25)(1.64844) (33.93)

= 2.06055 (33.94)

k3 = y1 +
h

2
f(t1.5, k2) (33.95)

= 1.64844 + (0.25)(2.06055) (33.96)

= 2.16358 (33.97)
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k4 = y1 + hf(t1.5, k3) (33.98)

= 1.64844 + (0.5)(2.16358) (33.99)

= 2.73023 (33.100)

y2 = y1 +
h

6
(k1 + 2k2 + 2k3 + k4) (33.101)

= 1.64844 +
.5

6
1.64844 + 2(2.06055) + 2(2.16358) + 2.73023 (33.102)

= 2.71735 (33.103)

This gives us a numerical approximation of y(1) ≈ 2.71735, and error of
approximately 0.034% (the exact value is e ≈ 2.71828. By comparison, a
forward Euler computation with the same step size will yield a numerical
result of 2.25, an error approximately 17%.

Since it is an explicit method, the Runge-Kutta 4-stage method is very easy
to implement in a computer, even though calculations are very tedious to
do by hand



Lesson 34

Critical Points of
Autonomous Linear
Systems

Definition 34.1. A differential equation (or system of differential equa-
tions) is called autonomous if it does not expressly depend on the in-
dependent variable t, e.g., the equation y′ = f(t, y) can be replaced with
y′ = g(y) for some function g.

Example 34.1. The function y′ = sin y is autonomous, while the function
y′ = t cos y is not autonomous. The system

x′ = cos y + x2 (34.1)

y′ = sinx (34.2)

is autonomous, while the system

x′ = cos y + x2 (34.3)

y′ = sinx+ eat (34.4)

is not autonomous.

When we talk about systems, we do not loose any generality by only focus-
ing on autonomous systems because any non-autonomous system can be
converted to an autonomous system with one additional variable. For ex-
ample, the system 34.3 to 34.4 can be made autonomous by defining a new
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variable with differential equation z = t, with differential equation z′ = 1,
and adding the third equation to the system:

x′ = cos y + x2 (34.5)

y′ = sinx+ eaz (34.6)

z′ = 1 (34.7)

We will focus on the general two dimensional autonomous system

x′ = f(x, y) x(t0) = x0

y′ = g(x, y) y(t0) = y0

(34.8)

where f and g are differentiable functions of x and y in some open set
containing the point (x0, y0). From the uniqueness theorem, we know that
there is precisely one solution {x(t), y(t)} to (34.8). We can plot this solu-
tion as a curve that goes through the point (x0, y0) and extends in either
direction for some distance. We call this curve the trajectory of the solu-
tion. The xy-plane itself we will call the phase-plane.

We must take care to distinguish trajectories from solutions: the trajec-
tory is a curve in the xy plane, while the solution is a set of points that
are marked by time. Different solutions follow the same trajectory, but at
different times. The difference can be illustrated by the following analogy.
Imagine that you drive from home to school every day on certain road, say
Nordhoff Street. Every day you drive down Nordhoff from the 405 freeway
to Reseda Boulevard. On Mondays and Wednesdays, you have morning
classes and have to drive this path at 8:20 AM. On Tuesdays and Thurs-
days you have evening classes and you drive the same path, moving in the
same direction, but at 3:30 PM. Then Nordhoff Street is your trajectory.
You follow two different solutions: one which puts you at the 405 at 8:20
AM and another solution that puts at the 405 at 3:30 PM. Both solutions
follow the same trajectory, but at different times.

Returning to differential equations, an autonomous system with initial con-
ditions x(t0) = a, y(t0) = b will have the same trajectory as an autonomous
system with initial conditions x(t1) = a, y(t1) = b, but it will be a differ-
ent solution because it will be at different points along the trajectory at
different times.

In any set where f(x, y) 6= 0 we can form the differential equation

dy

dx
=
g(x, y)

f(x, y)
(34.9)
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Since both f and g are differentiable, their quotient is differentiable (away
from regions wheref = 0) and hence Lipshitz; consequently the initial value
problem

dy

dx
=
g(x, y)

f(x, y)
, y(x0) = y0 (34.10)

has a unique solution, which corresponds to the trajectory of equation
(34.8) through the point (x0, y0). Since the solution is unique, we con-
clude that there is only one trajectory through any point, except possibly
wheref(x, y) = 0. A plot showing the one-parameter family of solutions to
(34.9), annotated with arrows to indicate the direction of motion in time,
is called a phase portrait of the system.

Example 34.2. Let {x1, y1} and {x2, y2} be the solutions of

x′ = −y, x(0) = 1 (34.11)

y′ = x, y(0) = 0 (34.12)

and

x′ = −y, x(π/4) = 1 (34.13)

y′ = x, y(π/4) = 0 (34.14)

respectively.

The solutions are different, but both solutions follow the same trajectory.

To see this we solve the system by forming the second order differential
equation representing this system: differentiate the second equation to ob-
tain y′′ = x′; then substitute the first equation to obtain

y′′ = −y (34.15)

The characteristic equation is r2+1 = 0 with roots of±i; hence the solutions
are linear combinations of sines and cosines. As we have seen, the general
solution to this system is therefore

y = A cos t+B sin t (34.16)

x = −A sin t+B cos t (34.17)

where the second equation is obtained by differentiating the first (because
x = y′).
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The initial conditions for (34.11) give

0 = A cos 0 +B sin 0 = A (34.18)

1 = −A sin 0 +B cos 0 = B (34.19)

hence the solution is

y = sin t (34.20)

x = cos t (34.21)

The trajectory is the unit circle because

x2 + y2 = 1 (34.22)

for all t, and the solution is the set of all points starting at an angle of 0
from the x axis.

The initial conditions for (34.13), on the other hand, give

0 = A

√
2

2
+B

√
2

2
(34.23)

1 = −A
√

2

2
+B

√
2

2
(34.24)

adding the two equations

1 = 2B

√
2

2
= B
√

2 =⇒ B =
1√
2

=

√
2

2
(34.25)

hence

A = −B = −
√

2

2
(34.26)

which gives a solution of

y = −
√

2

2
cos t+

√
2

2
sin t (34.27)

x =

√
2

2
sin t+

√
2

2
cos t (34.28)
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Using the cosπ/4 =
√

2/2 and angle addition formulas,

y = − cos
π

4
cos t+ sin

π

4
sin t (34.29)

= − cos
(π

4
+ t
)

(34.30)

x = cos
π

4
sin t+ sin

π

4
cos t (34.31)

= sin
(π

4
+ t
)

(34.32)

The trajectory is also the the unit circle, because we still have x2 + y2 = 1,
but not the solution starts at the point 45 degrees above the x-axis.

The two solutions are different, but they both follow the same trajectory.

Definition 34.2. A Critical Point of the system x′ = f(x, y), y′ = g(x, y)
(or fixed point or local equilibrium) is a any point (x∗, y∗) such that
both of the following conditions

f(x∗, y∗) = 0 (34.33)

g(x∗, y∗)0 (34.34)

hold simultaneously.

A critical point is a unique kind of trajectory: anything that starts there,
stays there, for all time. They are thus zero-dimensional, isolated trajec-
tories. Furthermore, no other solution can pass through a critical point,
because once there, it would have to stop.1

If there is an open neighborhood about a critical point that does not contain
any other critical points, it is called an isolated critical point. Certain
properties (that we will discuss presently) of linear systems at isolated criti-
cal points determine the global geometry of the phase portrait; for nonlinear
systems, these same properties determine the local geometry.

We will classify a critical point P based on the dynamics of a particle
placed in some small neighborhood N of P, and observe what happens as
t increases. We call P a

1. Sink, Attractor, or Stable Node if all such points move toward P ;

1This does not prevent critical points from being limit points of solutions (ast→ ±∞)
and thus appearing to be part of another trajectory but this is an artifact of how we
draw phase portraits.
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Figure 34.1: Varieties of isolated critical points of linear systems. The
circles represented neighborhoods; the lines trajectories; the arrows the
direction of change with increasing value of t in a solution.

Sink Source Saddle Center

2. Source, Repellor, or Unstable Node if all such points move away
from P ;

3. Center, if all trajectories loop around P in closed curves;

4. Saddle Point or Saddle Node if some solutions move toward P
and some move away.

Let us begin by studying the linear system

x′ = ax+ by

y′ = cx+ dy

}
(34.35)

where the matrix

A =

(
a b
c d

)
(34.36)

is nonsingular (i.e., its determinant is non-zero and the matrix is invertible).
To find the critical points we set the derivatives equal to zero:

0 = ax∗ + by∗ (34.37)

0 = cx∗ + dy∗ (34.38)

The only solution is (x∗, y∗) = (0, 0). Hence (34.35) has a single isolated
critical point at the origin.

The solution depends on the roots of the characteristic equation, or eigen-
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values, of the matrix. We find these from the determinant of A− λI,

0 =

∣∣∣∣a− λ b
c d− λ

∣∣∣∣ (34.39)

= (a− λ)(d− λ)− bc (34.40)

= λ2 − (a+ d)λ+ ad− bc (34.41)

Writing

T = trace(A) = a+ d (34.42)

∆ = det(A) = ad− bc (34.43)

the characteristic equation becomes

0 = λ2 − Tλ+ ∆ (34.44)

There are two roots,

λ1 =
1

2

(
T +

√
T 2 − 4∆

)
(34.45)

λ2 =
1

2

(
T −

√
T 2 − 4∆

)
(34.46)

(34.47)

If there are two linearly independent eigenvectors v and w, then the general
solution of the linear system is(

x
y

)
= Aveλ1t +Bweλ2t (34.48)

This result holds even if the eigenvalues are a complex conjugate pair, or if
there is a degenerate eigenvalue with multiplicity 2, so long as there are a
pair of linearly independent eigenvectors.

If the eigenvalue is repeated but has only one eigenvector, v then(
x
y

)
= [Av +B(tv + w)] eλt (34.49)

where w is the generalized eigenvector. In the following paragraphs we will
study the implications of equations (34.48) to (34.49) for various values of
the eigenvalues, as determined by the values of the trace and determinant.
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Figure 34.2: Topology of critical points as determined by the trace and
determinant of a linear (or linearized) system.
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Distinct Real Nonzero Eigenvalues of the Same Sign

If T 2 > 4∆ > 0 both eigenvalues will be real and distinct. Repeated
eigenvalues are excluded because T 2 6= 4∆.

IfT > 0, both eigenvalues will both be positive, while if T < 0 both eigenval-
ues will be negative (note that T = 0 does not fall into this category). The
solution is given by (34.48); A and B are determined by initial conditions.

The special case A = B = 0 occurs only whenx(t0) = y(t0) = 0, which
gives the isolated critical point at the origin. For nonzero initial conditions,
the solution will be a linear combination of the two eigensolutions

y1 = veλ1t (34.50)

y2 = weλ2t (34.51)

By convention we will choose λ1 to be the larger of the two eigenvalues
in magnitude; then we will call the directions parallel to v and vthe fast
eigendirection and the slow eigendirection, respectively.

If both eigenvalues are positive, every solution becomes unbounded as t→
∞ (because eλit → ∞ as t → ∞) and approaches the origin as t → −∞
(because eλit → 0 as t→ −∞), and the origin is called a source, repellor,
or unstable node.

If both eigenvalues are negative, the situation is reversed: every solution
approaches the origin in positive time, as t → ∞, because eλit → 0 as
t → ∞, and diverges in negative time as t → −∞ (because eλit → ∞ at
t→ −∞), and the origin is called a sink, attractor, or stable node.

The names stable node and unstable node arise from the dynamical
systems interpretation: a particle that is displaced an arbitrarily small
distance away from the origin will move back towards the origin if it is a
stable node, and will move further away from the origin if it is an unstable
node.

Despite the fact that the trajectories approach the origin either as t →
∞ or t → −∞, the only trajectory that actually passes through the
origin is the isolated (single point) trajectory at the origin. Thus the only
trajectory that passes through the origin is the one with A = B = 0. To
see this consider the following. For a solution to intersect the origin at a
time t would require

Aveλ1t +Bweλ2t = 0 (34.52)
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This means that we could define new constants at any fixed time t

a(t) = Aeλ1t and b(t) = Beλ2t (34.53)

such that
a(t)v + b(t)w = 0 (34.54)

Since mathbfv and w are linearly independent, the only way this can hap-
pen is when a(t) = 0 and b(t) = 0 at the same same time. There is no t
value for which this can happen because

eλt 6= 0 (34.55)

for all possible values of λ. Thus the only way for (34.54) to be true is for
A = B = 0. This corresponds to the solution (x, y) = (0, 0), which is the
point at the origin.

Figure 34.3: Phase portraits typical of an unstable (left) and stable (right)
node.

fast eigendirection

slow eigendirection

slow eigendirection

fast eigendirection

Unstable Node Stable Node

The geometry is illustrated in figure 34.3. The two straight lines passing
through the origin correspond to A = 0, B 6= 0 and B = 0, A 6= 0 respec-
tively, namely the two eigendirections. The solutions on the eigendirections
are Aeλ1t and Beλ2 t, with different initial conditions represented by differ-
ent values of A and B. If the eigenvalues are positive, a particle that starts
along one of these eigendirections (i.e., has initial conditions that start the
system on an eigendirection) moves in a straight line away from the origin
as t→∞ and towards the origin as t→ −∞. If the eigenvalues are nega-
tive, the particle moves in a straight line away from the origin as t→ −∞
and towards the origin ast → ∞. Trajectories that pass through other
points have both A 6= 0 and B 6= 0 so that y = Aveλ1t + Bweλ2t. If both
eigenvalues are positive, then for large positive time (as t → ∞) the fast
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eigendirection {λ1, v1}dominates and the solutions will approach lines par-
allel to v1, while for large negative time (t→ −∞) the solutions approach
the origin parallel to the slow eigendirection. The situation is reversed for
negative eigenvalues: the trajectories approach the origin along the slow
eigendirection as t → ∞ and diverge parallel to the fast eigendirection as
t→ −∞.

Figure 34.4: Phase portrait for the system (34.56).

3 0 3
3

0

3

Example 34.3. Classify the fixed points and sketch the phase portrait of
the system

x′ = x+ y

y′ = −2x+ 4y.

}
(34.56)

The matrix of coefficients is

A =

(
1 1
−2 4

)
(34.57)

so that T = 5 and ∆ = 6. Consequently the eigenvalues are

λ =
1

2

(
T ±

√
T 2 − 4∆

)
(34.58)

=
1

2

(
5±
√

25− 24
)

(34.59)

= 3, 2 (34.60)
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The eigenvalues are real, positive, and distinct, so the fixed point is a
source. The fast eigenvector, corresponding to the larger eigenvalue, λ = 3,

is v =

(
1
2

)
. The slow eigenvector, corresponding to the smaller eigenvalue

λ = 2, is w =

(
1
1

)
. Near the origin, the slow eigendirection dominates,

while further away, the fast eigendirection dominates. The trajectories
mostly leave the origin tangentially to the line y = x, which is along the
slow eigendirection, then bend around parallel the fast eigendirection as
one moves away from the origin. The phase portrait is illustrated in figure
34.4.

Repeated Real Nonzero Eigenvalues

If T 2 = 4∆ 6= 0, the eigenvalues are real and repeated (we exclude the case
with both eigenvalues equal to zero for now because that only occurs when
the matrix of coefficients has a determinant of zero). In this case we are
not required to have two linearly independent eigenvectors.

If there are two linearly independent eigenvectors v and w, then the solution
is

y = (Av +Btw)eλt (34.61)

and if there is only a single eigenvector v then

y = [Av +B(tv + w)]eλt (34.62)

where w is the generalized eigenvector satisfying (A− λI)w = v.

In the first case (linearly independent eigenvectors) all solutions lie on
straight lines passing through the origin, approaching the origin in posi-
tive time (t → ∞) if λ > 0, and in negative time (t → −∞) if λ < 0.
The critical point at the origin is called a star node: a stable star if
λ = T/2 < 0 and an unstable star if λ = T/2 > 0.

If there is only a single eigenvector then the trajectories approach the origin
tangent to v; as one moves away from the origin, the trajectories bend
around and diverge parallel to v (see figure 34.5). The origin is called either
a stable degenerate node (λ = T/2 < 0) or an unstable degenerate
node (λ = T/2 > 0).
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Figure 34.5: Phase portraits typical of an unstable star node (left) and an
unstable degenerate node (right). The corresponding stable nodes have the
arrows pointing so that the solutions approach the origin in positive time.

Real Eigenvalues with Opposite Signs

If ∆ < 0, one eigenvalue will be positive and one eigenvalue will be negative,
regardless of the value of T. Denote them as λ and −µ, where λ > 0 and
µ > 0. The solution is

y = Aveλt +Bwe−µt (34.63)

Solutions that start on the line through the origin with direction v (A 6= 0
but B = 0) diverge as t → ∞ and approach the origin as t → −∞; the
corresponding trajectory is called the stable manifold of the critical
point.

Solutions that start on the line through the origin with direction w ((A = 0
with B 6= 0) diverge as t → −∞ and approach the origin as t → ∞; the
corresponding trajectory is called the unstable manifold of the critical
point. Besides the stable manifold and the unstable manifold, no other
trajectories approach the origin. The critical point itself is called a saddle
point or saddle node (see figure 34.6).

Example 34.4. The system

x′ = 4x+ y

y′ = 11x− 6y

}
(34.64)
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Figure 34.6: Topology of a saddle point (left) and phase portrait for example
34.4 (right).

stable manifold

unstable manifold

saddle
point

has trace
T = 4− 6 = −2 (34.65)

and determinant

∆ = (4)(−6)− (1)(11) = −24 +−11 = −35 (34.66)

Thus √
T 2 − 4∆ =

√
(−2)2 − 4(−35) =

√
144 = 12 (34.67)

and the eigenvalues are

λ =
1

2

(
T ±

√
T 2 − 4∆

)
=
−2± 12

2
= 5,−7 (34.68)

Since the eigenvalues have different signs, the origin is a saddle point. Eigen-

vectors are

(
1
1

)
(for 5) and

(
1
−1

)
(for -7). The stable manifold is the line

y = x (corresponding to the negative eigenvalue), and the unstable mani-
fold is the line y = −11x (corresponding the positive eigenvalue). A phase
portrait is shown in figure 34.6.
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Complex Conjugate Pair with nonzero real part.

If 0 < T 2 < 4∆ the eigenvalues will be a complex conjugate pair, with real
part T. T may be either positive or negative, but T = 0 is excluded from
this category (if T = 0, the eigenvalues will either be purely imaginary,
when∆ > 0, or real with opposite signs, if∆ < 0).

Writing
µ = T/2, ω2 = 4∆− T 2 (34.69)

the eigenvalues become λ = µ± iω, µ, ω ∈ R. Designating the correspond-
ing eigenvectors as v and w, the solution is

y = eµt
[
Aveiωt +Bwe−iωt

]
(34.70)

= eµt [Av (cosωt+ i sinωt) +Bw (cosωt− i sinωt)] (34.71)

= eµt [p cosωt+ q sinωt] (34.72)

where

p = Av +Bw (34.73)

q = i(Av −Bw) (34.74)

are purely real vectors (see exercise 6) for real initial conditions. The factor
in parenthesis in (34.70) gives closed periodic trajectories in the xy plane,
with period 2π/ω; the exponential factor modulates this parameterization
with either a continually increasing (µ > 0) or continually decreasing (µ <
0) factor.

When µ > 0, the solutions spiral away from the origin as t → ∞ and in
towards the origin as t→ −∞. The origin is called an unstable spiral.

When µ < 0, the solutions spiral away from the origin as t → −∞ and in
towards the origin as t→∞; the origin is then called a stable spiral.

Example 34.5. The system

x′ = −x+ 2y

y′ = −2x− 3y

}
(34.75)

has trace T = −4 and determinant ∆ = 7; hence the eigenvalues are

λ =
1

2

[
T ±

√
T 2 − 4∆

]
= −2± i

√
3 (34.76)
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Figure 34.7: An unstable spiral node.

which form a complex conjugate pair with negative real part. Hence the
origin is a stable spiral center.

Example 34.6. The system

x′ = ax− y
y′ = x+ ay

}
(34.77)

where a is a small real number, has a spiral center at the origin. It is easily
verified that the eigenvalues are λ = a ± i. To get an explicit formula for
the spiral we use the following identities:

rr′ = xx′ + yy′ (34.78)

r2θ′ = xy′ − yx′ (34.79)

to convert the system into polar coordinates. The radial variation is

rr′ = xx′ + yy′ (34.80)

= x(ax− y) + y(x+ ay) (34.81)

= a(x2 + y2) (34.82)

= ar2 (34.83)

and therefore (canceling a common factor of r from both sides of the equa-
tion),

r′ = ar (34.84)
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The angular change is described by

r2θ′ = xy′ − yx′ (34.85)

= x(x+ ay)− y(ax− y) (34.86)

= x2 + y2 (34.87)

= r2 (34.88)

so that (canceling the common r2 on both sides of the equation),

θ′ = 1 (34.89)

Dividing r′ by θ′ gives
dr

dθ
=
r′

θ′
= ar (34.90)

and hence

r = r0e
a(θ−θ0) (34.91)

which is a logarithmic spiral with r(t0) = r0 and θ(t0) = θ0.

Purely Imaginary Eigenvalues

If T = 0 and ∆ > 0 the eigenvalues will be a purely imaginary conjugate
pair λ = ±i∆. The solution is

y = v cosωt+ w sinωt (34.92)

The origin is called a center . Center’s have the unusual property (unusual
compared to the other types of critical points we have discussed thus far)
of being topologically unstable to variations in the equations, as illustrated
by the following example. A system is topologically unstable if any small
change in the system changes the geometry, e.g., the systems changes from
one type of center to another.

Example 34.7. The system

x′ = x+ 2y

y′ = −3x− y

}
(34.93)

has a trace of T = 0 and determinant of ∆ = 5. Thus

λ =
1

2

[
T ±

√
T 2 − 4∆

]
= ±i

√
5 (34.94)
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Since the eigenvalues are purely imaginary, the origin is a center.

If we perturb either of the diagonal coefficients, the eigenvalues develop a
real part. For example, the system

x′ = 1.01x+ 2y

y′ = −3x− y

}
(34.95)

has eigenvalues λ ≈ 0.005± 2.23383i, making it an unstable spiral; and the
system

x′ = 0.99x+ 2y

y′ = −3x− y

}
(34.96)

has eigenvalues λ ≈ −0.005± 2.2383i, for a stable spiral.

The magnitude of the real part grows approximately linearly as the pertur-
bation grows. In general, the perturbed system

x′ = (1 + ε)x+ 2y

y′ = −3x− y

}
(34.97)

will have eigenvalues

λ =
1

2

[
ε±

√
−20 + 4ε+ ε2

]
(34.98)

=
ε

2
± i
√

5

√
1− ε

5
− ε2

20
(34.99)

The results for perturbations of ε = ±0.05 are shown in figure 34.8.

Non-isolated Critical Points

When the matrix A in equation (34.36) is singular, the critical points will
not, in general, be isolated, and they will not fall into any of the categories
that we have discussed so far.

Set ∆ = ad−bc = 0, and suppose that all four of a, b, c, and d are nonzero.
Then we can solve for any one of the four coefficients in terms of the others,
e.g., d = bc/a, so that the trajectories are defined by

dy

dx
=
cx+ dy

ax+ by
=
cx+ (bc/a)y

ax+ by
=
c

a
=
d

b
(34.100)

The trajectories are parallel lines with slope c/a. There is only one critical
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Figure 34.8: Topological instability of center nodes. Solutions to equations
(34.97) are plotted for epsilon=0.05, -0.05, -.25, 0.5, with initial conditions
of x, y = 1, 0 (black dot). The bounding box is [−2, 2]× [−2, 2] in each case.

point, at the origin as usual. The nullclines are y = −bx/a (for x ) and
y = −(c/d)x for y (figure 34.9). At the other extreme, if all the coefficients
are zero, then every point in the plane is a critical point and there are
no trajectories – wherever you start, you will stay there for all time. If
precisely one of a,b,c or d is zero, but the others are nonzero, the matrix
will be nonsingular so the only remaining cases to consider have one or two
coefficients nonzero.

If a = b = 0 and c 6= 0 and/or d 6= 0, we the system becomes

x′ = 0

y′ = cx+ dy

}
(34.101)

so the solutions are all vertical lines, and every point on the line y = −cx/d
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Figure 34.9: Phase portraits of singular linear system where all coefficients
are nonzero for c/a > 0.

is a critical point (when d 6= 0), or on the line x = 0 (when d = 0). The
directions of motion along the trajectories switch along the critical line. A
good analogy is to think of the critical line as the top of a ridge (or the
bottom of a valley), compared to a single apex for a nonsingular system
(Figure 34.9). We essentially have a whole line of sources or sinks.

By a similar argument, if c = d = 0 and a 6= 0 and/or b 6= 0, the system
becomes

x′ = ax+ by

y′ = 0

}
(34.102)

The solutions are all horizontal lines, and there is a ridge or valley of critical
points along the line y = ax/b (if b 6= 0) or along the line x = 0 (if b = 0).

If a = c = 0 with b 6= 0 and d 6= 0, the system is

x′ = by

y′ = dy

}
(34.103)

The x-axis (the line y = 0) is a critical ridge (valley) and the trajectories
are parallel lines with slope d/b. Similarly, if b = d = 0 with a 6= 0 and
d 6= 0 the system is

x′ = ax

y′ = ay

}
(34.104)

so that the trajectories are parallel lines with slope c/a and the y-axis is a



393

Figure 34.10: phase portraits for the system (34.101); every point on the
entire “ridge” line is a critical point.

critical ridge (valley).
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Appendix A

Table of Integrals

Basic Forms

∫
xndx =

1

n+ 1
xn+1 (A.1)

∫
1

x
dx = lnx (A.2)

∫
udv = uv −

∫
vdu (A.3)

∫
1

ax+ b
dx =

1

a
ln |ax+ b| (A.4)

Integrals of Rational Functions

∫
1

(x+ a)2
dx = − 1

x+ a
(A.5)

∫
(x+ a)ndx =

(x+ a)n+1

n+ 1
+ c, n 6= −1 (A.6)

∫
x(x+ a)ndx =

(x+ a)n+1((n+ 1)x− a)

(n+ 1)(n+ 2)
(A.7)

395
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∫
1

1 + x2
dx = tan−1 x (A.8)

∫
1

a2 + x2
dx =

1

a
tan−1 x

a
(A.9)

∫
x

a2 + x2
dx =

1

2
ln |a2 + x2|+ c (A.10)

∫
x2

a2 + x2
dx = x− a tan−1 x

a
(A.11)

∫
x3

a2 + x2
dx =

1

2
x2 − 1

2
a2 ln |a2 + x2| (A.12)

∫
1

ax2 + bx+ c
dx =

2√
4ac− b2

tan−1 2ax+ b√
4ac− b2

(A.13)

∫
1

(x+ a)(x+ b)
dx =

1

b− a
ln
a+ x

b+ x
, a 6= b (A.14)

∫
x

(x+ a)2
dx =

a

a+ x
+ ln |a+ x| (A.15)

∫
x

ax2 + bx+ c
dx =

1

2a
ln |ax2 + bx+ c|

− b

a
√

4ac− b2
tan−1 2ax+ b√

4ac− b2
(A.16)

Integrals with Roots

∫ √
x− adx =

2

3
(x− a)3/2 (A.17)

∫
1√
x± a

dx = 2
√
x± a (A.18)

∫
1√
a− x

dx = −2
√
a− x (A.19)
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∫
x
√
x− adx =

2

3
a(x− a)3/2 +

2

5
(x− a)5/2 (A.20)

∫ √
ax+ bdx =

(
2b

3a
+

2x

3

)√
ax+ b (A.21)

∫
(ax+ b)3/2dx =

2

5a
(ax+ b)5/2 (A.22)

∫
x√
x± a

dx =
2

3
(x∓ 2a)

√
x± a (A.23)

∫ √
x

a− x
dx = −

√
x(a− x)− a tan−1

√
x(a− x)

x− a
(A.24)

∫ √
x

a+ x
dx =

√
x(a+ x)− a ln

[√
x+
√
x+ a

]
(A.25)

∫
x
√
ax+ bdx =

2

15a2
(−2b2 + abx+ 3a2x2)

√
ax+ b (A.26)

∫ √
x(ax+ b)dx =

1

4a3/2

[
(2ax+ b)

√
ax(ax+ b)

−b2 ln
∣∣∣a√x+

√
a(ax+ b)

∣∣∣] (A.27)

∫ √
x3(ax+ b)dx =

[
b

12a
− b2

8a2x
+
x

3

]√
x3(ax+ b)

+
b3

8a5/2
ln
∣∣∣a√x+

√
a(ax+ b)

∣∣∣ (A.28)

∫ √
x2 ± a2dx =

1

2
x
√
x2 ± a2 ± 1

2
a2 ln

∣∣∣x+
√
x2 ± a2

∣∣∣ (A.29)
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∫ √
a2 − x2dx =

1

2
x
√
a2 − x2 +

1

2
a2 tan−1 x√

a2 − x2
(A.30)

∫
x
√
x2 ± a2dx =

1

3

(
x2 ± a2

)3/2
(A.31)

∫
1√

x2 ± a2
dx = ln

∣∣∣x+
√
x2 ± a2

∣∣∣ (A.32)

∫
1√

a2 − x2
dx = sin−1 x

a
(A.33)

∫
x√

x2 ± a2
dx =

√
x2 ± a2 (A.34)

∫
x√

a2 − x2
dx = −

√
a2 − x2 (A.35)

∫
x2

√
x2 ± a2

dx =
1

2
x
√
x2 ± a2 ∓ 1

2
a2 ln

∣∣∣x+
√
x2 ± a2

∣∣∣ (A.36)

∫ √
ax2 + bx+ cdx =

b+ 2ax

4a

√
ax2 + bx+ c

+
4ac− b2

8a3/2
ln
∣∣∣2ax+ b+ 2

√
a(ax2 + bx+c)

∣∣∣ (A.37)

∫
x
√
ax2 + bx+ c =

1

48a5/2

(
2
√
a
√
ax2 + bx+ c

−
(
3b2 + 2abx+ 8a(c+ ax2)

)
+3(b3 − 4abc) ln

∣∣∣b+ 2ax+ 2
√
a
√
ax2 + bx+ x

∣∣∣) (A.38)

∫
1√

ax2 + bx+ c
dx =

1√
a

ln
∣∣∣2ax+ b+ 2

√
a(ax2 + bx+ c)

∣∣∣ (A.39)
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∫
x√

ax2 + bx+ c
dx =

1

a

√
ax2 + bx+ c

− b

2a3/2
ln
∣∣∣2ax+ b+ 2

√
a(ax2 + bx+ c)

∣∣∣ (A.40)

∫
dx

(a2 + x2)3/2
=

x

a2
√
a2 + x2

(A.41)

Integrals with Logarithms

∫
ln axdx = x ln ax− x (A.42)

∫
ln ax

x
dx =

1

2
(ln ax)

2
(A.43)

∫
ln(ax+ b)dx =

(
x+

b

a

)
ln(ax+ b)− x, a 6= 0 (A.44)

∫
ln
(
x2 + a2

)
dx = x ln

(
x2 + a2

)
− 2x+ 2a tan−1 x

a
(A.45)

∫
ln
(
x2 − b2

)
dx = x ln

(
x2 − b2

)
− 2x+ a ln

x+ a

x− a
(A.46)

∫
ln
(
ax2 + bx+ c

)
dx =

1

a

√
4ac− b2 tan−1 2ax+ b√

4ac− b2

− 2x+

(
b

2a
+ x

)
ln
(
ax2 + bx+ c

)
(A.47)

∫
x ln(ax+ b)dx =

bx

2a
− 1

4
x2 +

1

2

(
x2 − b2

a2

)
ln(ax+ b) (A.48)
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∫
x ln

(
a2 − b2x2

)
dx = −1

2
x2 +

1

2

(
x2 − a2

b2

)
ln
(
a2 − b2x2

)
(A.49)

Integrals with Exponentials

∫
eaxdx =

1

a
eax (A.50)

∫ √
xeaxdx =

1

a

√
xeax +

i
√
π

2a3/2
erf
(
i
√
ax
)
,

where erf(x) =
2√
π

∫ x

0

e−t
2

dt (A.51)

∫
xexdx = (x− 1)ex (A.52)

∫
xeaxdx =

(
x

a
− 1

a2

)
eax (A.53)

∫
x2exdx =

(
x2 − 2x+ 2

)
ex (A.54)

∫
x2eaxdx =

(
x2

a
− 2x

a2
+

2

a3

)
eax (A.55)

∫
x3exdx =

(
x3 − 3x2 + 6x− 6

)
ex (A.56)

∫
xneaxdx =

xneax

a
− n

a

∫
xn−1eaxdx (A.57)

∫
xneax dx =

(−1)n

an+1
Γ[1 + n,−ax],

where Γ(a, x) =

∫ ∞
x

ta−1e−t dt

(A.58)
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∫
eax

2

dx = − i
√
π

2
√
a

erf
(
ix
√
a
)

(A.59)

∫
e−ax

2

dx =

√
π

2
√
a

erf
(
x
√
a
)

(A.60)

∫
xe−ax

2

dx = − 1

2a
e−ax

2

(A.61)

∫
x2e−ax

2

dx =
1

4

√
π

a3
erf(x

√
a)− x

2a
e−ax

2

(A.62)

Integrals with Trigonometric Functions

∫
sin axdx = −1

a
cos ax (A.63)

∫
sin2 axdx =

x

2
− sin 2ax

4a
(A.64)

∫
sinn axdx = −1

a
cos ax 2F1

[
1

2
,

1− n
2

,
3

2
, cos2 ax

]
(A.65)

∫
sin3 axdx = −3 cos ax

4a
+

cos 3ax

12a
(A.66)

∫
cos axdx =

1

a
sin ax (A.67)

∫
cos2 axdx =

x

2
+

sin 2ax

4a
(A.68)

∫
cosp axdx = − 1

a(1 + p)
cos1+p ax× 2F1

[
1 + p

2
,

1

2
,

3 + p

2
, cos2 ax

]
(A.69)

∫
cos3 axdx =

3 sin ax

4a
+

sin 3ax

12a
(A.70)
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∫
cos ax sin bxdx =

cos[(a− b)x]

2(a− b)
− cos[(a+ b)x]

2(a+ b)
, a 6= b (A.71)

∫
sin2 ax cos bxdx = − sin[(2a− b)x]

4(2a− b)
+

sin bx

2b
− sin[(2a+ b)x]

4(2a+ b)
(A.72)

∫
sin2 x cosxdx =

1

3
sin3 x (A.73)

∫
cos2 ax sin bxdx =

cos[(2a− b)x]

4(2a− b)
− cos bx

2b

− cos[(2a+ b)x]

4(2a+ b)
(A.74)

∫
cos2 ax sin axdx = − 1

3a
cos3 ax (A.75)

∫
sin2 ax cos2 bxdx =

x

4
− sin 2ax

8a
− sin[2(a− b)x]

16(a− b)

+
sin 2bx

8b
− sin[2(a+ b)x]

16(a+ b)
(A.76)

∫
sin2 ax cos2 axdx =

x

8
− sin 4ax

32a
(A.77)

∫
tan axdx = −1

a
ln cos ax (A.78)

∫
tan2 axdx = −x+

1

a
tan ax (A.79)

∫
tann axdx =

tann+1 ax

a(1 + n)
× 2F1

(
n+ 1

2
, 1,

n+ 3

2
,− tan2 ax

)
(A.80)
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∫
tan3 axdx =

1

a
ln cos ax+

1

2a
sec2 ax (A.81)

∫
secxdx = ln | secx+ tanx| = 2 tanh−1

(
tan

x

2

)
(A.82)

∫
sec2 axdx =

1

a
tan ax (A.83)

∫
sec3 x dx =

1

2
secx tanx+

1

2
ln | secx+ tanx| (A.84)

∫
secx tanxdx = secx (A.85)

∫
sec2 x tanxdx =

1

2
sec2 x (A.86)

∫
secn x tanxdx =

1

n
secn x, n 6= 0 (A.87)

∫
cscxdx = ln

∣∣∣tan
x

2

∣∣∣ = ln | cscx− cotx| (A.88)

∫
csc2 axdx = −1

a
cot ax (A.89)

∫
csc3 xdx = −1

2
cotx cscx+

1

2
ln | cscx− cotx| (A.90)

∫
cscn x cotxdx = − 1

n
cscn x, n 6= 0 (A.91)

∫
secx cscxdx = ln | tanx| (A.92)
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Products of Trigonometric Functions and Monomials

∫
x cosxdx = cosx+ x sinx (A.93)

∫
x cos axdx =

1

a2
cos ax+

x

a
sin ax (A.94)

∫
x2 cosxdx = 2x cosx+

(
x2 − 2

)
sinx (A.95)

∫
x2 cos axdx =

2x cos ax

a2
+
a2x2 − 2

a3
sin ax (A.96)

∫
xncosxdx = −1

2
(i)n+1 [Γ(n+ 1,−ix) + (−1)nΓ(n+ 1, ix)] (A.97)

∫
xncosaxdx =

1

2
(ia)1−n [(−1)nΓ(n+ 1,−iax)− Γ(n+ 1, ixa)] (A.98)

∫
x sinxdx = −x cosx+ sinx (A.99)

∫
x sin axdx = −x cos ax

a
+

sin ax

a2
(A.100)

∫
x2 sinxdx =

(
2− x2

)
cosx+ 2x sinx (A.101)

∫
x2 sin axdx =

2− a2x2

a3
cos ax+

2x sin ax

a2
(A.102)

∫
xn sinxdx = −1

2
(i)n [Γ(n+ 1,−ix)− (−1)nΓ(n+ 1,−ix)] (A.103)
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Products of Trigonometric Functions and Exponentials

∫
ex sinxdx =

1

2
ex(sinx− cosx) (A.104)

∫
ebx sin axdx =

1

a2 + b2
ebx(b sin ax− a cos ax) (A.105)

∫
ex cosxdx =

1

2
ex(sinx+ cosx) (A.106)

∫
ebx cos axdx =

1

a2 + b2
ebx(a sin ax+ b cos ax) (A.107)

∫
xex sinxdx =

1

2
ex(cosx− x cosx+ x sinx) (A.108)

∫
xex cosxdx =

1

2
ex(x cosx− sinx+ x sinx) (A.109)

Integrals of Hyperbolic Functions

∫
cosh axdx =

1

a
sinh ax (A.110)

∫
eax cosh bxdx =


eax

a2 − b2
[a cosh bx− b sinh bx] a 6= b

e2ax

4a
+
x

2
a = b

(A.111)

∫
sinh axdx =

1

a
cosh ax (A.112)

∫
eax sinh bxdx =


eax

a2 − b2
[−b cosh bx+ a sinh bx] a 6= b

e2ax

4a
− x

2
a = b

(A.113)
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∫
eax tanh bxdx =



e(a+2b)x

(a+ 2b)
2F1

[
1 +

a

2b
, 1, 2 +

a

2b
,−e2bx

]
−1

a
eax2F1

[ a
2b
, 1, 1E,−e2bx

]
a 6= b

eax − 2 tan−1[eax]

a
a = b

(A.114)

∫
tanh ax dx =

1

a
ln cosh ax (A.115)

∫
cos ax cosh bxdx =

1

a2 + b2
[a sin ax cosh bx+ b cos ax sinh bx] (A.116)

∫
cos ax sinh bxdx =

1

a2 + b2
[b cos ax cosh bx+ a sin ax sinh bx] (A.117)

∫
sin ax cosh bxdx =

1

a2 + b2
[−a cos ax cosh bx+ b sin ax sinh bx] (A.118)

∫
sin ax sinh bxdx =

1

a2 + b2
[b cosh bx sin ax− a cos ax sinh bx] (A.119)

∫
sinh ax cosh axdx =

−2ax+ sinh 2ax

4a
(A.120)

∫
sinh ax cosh bxdx =

b cosh bx sinh ax− a cosh ax sinh bx

b2 − a2
(A.121)



Appendix B

Table of Laplace
Transforms

f(t) L[f(t)] = F (s)

1
1

s
(1)

eatf(t) F (s− a) (2)

U(t− a)
e−as

s
(3)

f(t− a)U(t− a) e−asF (s) (4)

δ(t) 1 (5)

δ(t− t0) e−st0 (6)

tnf(t) (−1)n
dnF (s)

dsn
(7)

f ′(t) sF (s)− f(0) (8)

fn(t) snF (s)− s(n−1)f(0)− · · · − f (n−1)(0) (9)
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∫ t

0

f(x)g(t− x)dx F (s)G(s) (10)

tn (n ∈ Z)
n!

sn+1
(11)

tx (x ≥ −1 ∈ R)
Γ(x+ 1)

sx+1
(12)

sin kt
k

s2 + k2
(13)

cos kt
s

s2 + k2
(14)

eat
1

s− a
(15)

sinh kt
k

s2 − k2
(16)

cosh kt
s

s2 − k2
(17)

eat − ebt

a− b
1

(s− a)(s− b)
(18)

aeat − bebt

a− b
s

(s− a)(s− b)
(19)

teat
1

(s− a)2
(20)

tneat
n!

(s− a)n+1
(21)

eat sin kt
k

(s− a)2 + k2
(22)

eat cos kt
s− a

(s− a)2 + k2
(23)

eat sinh kt
k

(s− a)2 − k2
(24)
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eat cosh kt
s− a

(s− a)2 − k2
(25)

t sin kt
2ks

(s2 + k2)2
(26)

t cos kt
s2 − k2

(s2 + k2)2
(27)

t sinh kt
2ks

(s2 − k2)2
(28)

t cosh kt
s2 − k2

(s2 − k2)2
(29)

sin at

t
arctan

a

s
(30)

1√
πt
e−a

2/4t e−a
√
s

√
s

(31)

a

2
√
πt3

e−a
2/4t e−a

√
s (32)

erfc

(
a

2
√
t

)
e−a
√
s

s
(33)
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Appendix C

Summary of Methods

First Order Linear Equations

Equations of the form y′ + p(t)y = q(t) have the solution

y(t) =
1

µ(t)

(
C +

∫
µ(s)q(s)ds

)
where

µ(t) = exp

(∫
t

p(s)ds

)

Exact Equations

An differential equation

M(t, y)dt+N(t, y)dy = 0

is exact if
∂M

∂y
=
∂N

∂t

in which case the solution is a φ(t) = C where

M =
∂φ

∂t
,N =

∂φ

∂y

φ(t, y) =

∫
Mdt+

∫ (
N −

∫
∂M

∂y
dt

)
dy
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Integrating Factors

An integrating factor µ for the differential equation

M(t, y)dt+N(t, y)dy = 0

satisfies
∂(µ(t, y)M(t, y))

∂y
=
∂(µ(t, y)N(t, y))

∂t

If

P (t, y) =
My −Nt

N

is only a function of t (and not of y) then µ(t) = e
∫
P (t)dt is an integrating

factor.If

Q(t, y) =
Nt −My

M

is only a function of y (and not of t) then µ(t) = e
∫
Q(t)dt is an integrating

factor.

Homogeneous Equations

An equation is homogeneous if has the form

y′ = f(y/t)

To solve a homogeneous equation, make the substitution y = tz and rear-
range the equation; the result is separable:

dz

F (z)− z
=
dt

t

Bernoulli Equations

A Bernoulli equation has the form

y′(t) + p(t)y = q(t)yn

for some number n. To solve a Bernoulli equation, make the substitution

u = y1−n
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The resulting equation is linear and

y(t) =

[
1

µ

(
C +

∫
µ(t)(1− n)q(t)dt

)]1/(1−n)

where

µ(t) = exp

(
(1− n)

∫
p(t)dt

)

Second Order Homogeneous Linear Equation with Con-
stant Coefficients

To solve the differential equation

ay′′ + by′ + cy = 0

find the roots of the characteristic equation

ar2 + br + c = 0

If the roots (real or complex) are distinct, then

y = Aer1t +Ber2t

If the roots are repeated then

y = (A+Bt)ert

Method of Undetermined Coefficients

To solve the differential equation

ay′′ + by′ + cy = f(t)

where f(t) is a polynomial, exponential, or trigonometric function, or any
product thereof, the solution is

y = yH + yP

where yH is the complete solution of the homogeneous equation

ay′′ + by′ + cy = 0
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To find yP make an educated guess based on the form form of f(t). The
educated guess should be the product

yP = P (t)S(t)E(t)

where P (t) is a polynomial of the same order as in f(t). S(t) = rn(A sin rt+
B cos rt) is present only if there are trig functions in rt in f(t), and n is the
multiplicity of r as a root of the characteristic equation (n = 0 if r is not a
root). E(t) = rnert is present only if there is an exponential in rt in f(t).
If f(t) = f1(t) + f2(t) + · · · then solve each of the equations

ay′′ + by′ + cy = fi(t)

separately and add all of the particular solutions together to get the com-
plete particular solution.

General Non-homogeneous Linear Equation with Con-
stant Coefficients

To solve
ay′′ + by′ + cy = f(t)

where a, b, c are constants for a general function f(t), the solution is

y = Aer1t +Ber1t
∫
t

er2−r1sds+
er1t

a

∫
t

er2−r1s

∫
s

e−r2uf(u)duds

where r1 and r2 are the roots of ar2 + br + c = 0.

An alternative method is to factor the equation into the form

(D − r1)(D − r2)y = f(t)

and make the substitution

z = (D − r2)y

This reduces the second order equation in y to a first order linear equation
in z. Solve the equation

(D − r1)z = f(t)

for z, then solve the equation

(D − r2)y = z
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for y once z is known.

Method of Reduction of Order

If one solution y1 is known for the differential equation

y′′ + p(t)y′ + q(t)y = 0

then a second solution is given by

y2(t) = y1(t)

∫
W (y1, y2))(t)

y1(t)2
dt

where the Wronskian is given by Abel’s formula

W (y1, y2)(t) = Cexp

(
−
∫
p(s)ds

)

Method of Variation of Parameters

To find a particular solution to

y′′ + p(t)y′ + q(t)y = r(t)

when a pair of linearly independent solutions to the homogeneous equation

y′′ + p(t)y′ + q(t)y = 0

are already known,

yp = −y1(t)

∫
t

y2(s)r(s)

W (y1, y2)(s)
ds+ y2(t)

∫
t

y1(s)r(s)

W (y1, y2)(s)
ds

Power Series Solution

To solve
y′′ + p(t)y′ + q(t)y = g(t)

expand y, p, q and g in power series about ordinary (non-singular) points
and determine the coefficients by applying linear independence to the pow-
ers of t.
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To solve
a(t)y′′ + b(t)y′ + c(t)y = g(t)

about a point t0 where a(t) = 0 but the limits b(t)/a(t) and c(t)/a(t) exist
as t→ 0 (a regular singularity), solve the indicial equation

r(r − 1) + rp0 + q0 = 0

for r where p0 = limt→0 b(t0)/a(t0) and and q0 = limt→0 c(t0)/a(t0). Then
one solution to the homogeneous equation is

y(t) = (t− t0)r
∞∑
k=0

ck(t− t0)k

for some unknown coefficients ck.Determine the coefficients by linear inde-
pendance of the powers of t. The second solution is found by reduction of
order and the particular solution by variation of parameters.

Method of Frobenius

To solve
(t− t0)2y′′ + (t− t0)p(t)y′ + q(t)y = 0

where p and q are analytic at t0, let p0 = p(0) and q0 = q(0) and find the
roots α1 ≥ α2 of

α2 + (p0 − 1)α+ q0 = 0

Define ∆ = α1 − α2. Then for some unknowns ck, a first solution is

y1(t) = (t− t0)α1

∞∑
k=0

ck(t− t0)k

If ∆ ∈ R is not an integer or the roots are complex,

y2(t) = (t− t0)α2

∞∑
k=0

ak(t− t0)k

If α1 = α2 = α, then y2 = ay1(t) ln |t− t0|+ (t− t0)α
∞∑
k=0

ak(t− t0)k

If ∆ ∈ Z, then y2 = ay1(t) ln |t− t0|+ (t− t0)α2

∞∑
k=0

ak(t− t0)k
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