

Quick Guide For Firefox OS App
Development
Creating HTML5 based apps for Firefox OS

Andre Garzia

This book is for sale at http://leanpub.com/quickguidefirefoxosdevelopment

This version was published on 2014-05-26

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have the right book and build
traction once you do.

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported
License

http://leanpub.com/quickguidefirefoxosdevelopment
http://leanpub.com
http://leanpub.com/manifesto
http://creativecommons.org/licenses/by-nc/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc/3.0/deed.en_US

Tweet This Book!
Please help Andre Garzia by spreading the word about this book on Twitter!

The suggested tweet for this book is:

I am learning to develop for #FirefoxOS

The suggested hashtag for this book is #FirefoxOS.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search?q=#FirefoxOS

http://twitter.com
https://twitter.com/search?q=%23FirefoxOS
https://twitter.com/search?q=%23FirefoxOS

To Elisangela Mendonça de Andrade Garzia

Contents

Acknowledgments . i
This book is in perpetual beta . i
Me, myself, and I . i
How this book came to be . i
Staying up to date . i
Donations . ii
How to contact the author . ii
Cover Illustration . ii
Who should read this book . ii
Best Practices vs Beginner Friendliness . iii
Feedback & Pull Requests . iii
Translations . iii
Version history . iv

Introduction . 1
Firefox OS . 1
The Platform That HTML5 Deserves . 2
Accessing The Hardware Using The WebAPI . 3
Freedom to Develop and Distribute . 3
Summary . 4

Setup For Firefox OS App Development . 5
The Gecko Engine . 5
What applications do you need? . 5
App Manager Setup . 6
Installing the Firefox OS Simulator . 8
Summary . 10

Basic Concepts . 11
The Application Manifest . 11
Types of Application . 13
Security Access Levels . 14
Mozilla’s WebAPIs . 15
Summary . 18

Our First App . 19
Creating the app manifest . 21
Building the HTML . 23

CONTENTS

Crafting the JavaScript code . 26
Testing the app with the App Manager . 35
Testing the app on the simulator . 39
Summary . 41

Developer Tools . 42
Introducing the Responsive Design View . 42
Developer tools . 45
Summary . 46

The App Manager . 47
Adding Apps . 48
Running your app . 49
Updating your app . 50
Debugging . 50
Testing apps on a real device . 51
Connecting with a Firefox OS device . 52
Summary . 52

The Firefox OS Simulator . 54
Adding Apps . 55
Debugging . 57
Testing apps on a real device . 58
Connecting with a Firefox OS device . 59
Summary . 60

Distributing Your Apps . 61
Hosted Apps . 61
Packaged Apps . 62
Summary . 62

The Firefox Marketplace . 63
Checklist before even thinking about sending an app to the marketplace 64
Preparing your app for submission . 64
Submitting your app to the marketplace . 65
Summary . 68

Appendix 1: Useful links . 70

CONTENTS i

Acknowledgments

To my wife Lili, the best wife in the world!

To Mozilla for always believing in us, for keeping the web open and free and for always placing
the user first!

To the Brazilian Mozilla Community for receiving me so well and being just awesome!

To my GSoC mentor Marcos Caceres, the Mozilla WebAPI Team, the Mozilla Tech Evangelists
and Dev Engagement teams for being more than awesome!

To Google for the Google Summer of Code 2013! This program is wonderful.

I also say thank you from the bottom of my heart to all people who invested their time and effort
in sending me pull requests to make this book better: Ryuno-Ki, chisophugis, ghost, dholbert,
marcoscaceres.

This book is in perpetual beta

My plan is to update this book often, expanding its contents and revising the text as issues are
found by readers. Since some APIs are still being implemented by Firefox OS, you will want to
make sure you’re reading an up-to-date version of this book.

Me, myself, and I

In this book you will find many parts where I express my personal opinion and make decisions
that may be different from what other programmers would do - particularly if it helps explain an
idea more easily. I will always try to make it clear and explain my reasoning when I am giving
my opinion. Anyway, if there is an error in what I am saying, I will revise the text and update
the book. See the Feedback & Pull Requests section for more information.

How this book came to be

Originally, I’d been writing this book inmy spare time - but thanks to the good help of myGoogle
Summer of Code (GSoC) mentor, Marcos Caceres, this book became part of my GSoC project -
which aimed to create useful developer resources for Firefox OS. So, huge thanks to Google for
funding this work and to Mozilla’s Web API team for letting me join them over the summer.

Staying up to date

This book is distributed for free using Leanpub¹.

¹http://leanpub.com

http://leanpub.com
http://leanpub.com

CONTENTS ii

You can register your email to receive automatic updates when you download this book from
its book page at Leanpub². The plan is to update this book many times per month. If you got
this book from a friend or from some other site, you should consider going to the page above to
download and register there thus making sure you will receive the update notices.

Donations

Writing a book requires a lot of work and I would like to dedicate more time in my life for this
type of activity after the 2013 Google Summer of Code is done. Those that think that this book is
useful (or cool) may move the price slider on Leanpub download page from zero to any desired
amount and give me some bucks. Those that would rather donate using PayPal, I can receive
donations under the agarzia@mac.com account.

Regardless of donations, you should fill your email on the download form to make sure that once
the book is updated you will receive a notice!

How to contact the author

To send comments and feedback please send an email to fxosquickguide@andregarzia.com³. My
website is http://andregarzia.com⁴. My Twitter account is @soapdog⁵.

If you want to help improve the content of this book, please see the Feedback & Pull Requests
section.

Cover Illustration

The cover page was created by Raphael Eckhardt, a designer and illustrator from Brazil. You can
check out his work and contact him (he is a freelancer) at http://raphaeleckhardt.com/⁶.

Who should read this book

This book is written for readers with an intermediate knowledge of HTML, CSS and JavaScript
who wants to build mobile applications for Firefox OS. Teaching HTML, CSS and JavaScript is
beyond the scope of this book. I will give you links for good reference books though.

²http://leanpub.com/quickguidefirefoxosdevelopment
³mailto:fxosquickguide@andregarzia.com
⁴http://andregarzia.com
⁵http://twitter.com/soapdog
⁶http://raphaeleckhardt.com/

http://leanpub.com/quickguidefirefoxosdevelopment
mailto:fxosquickguide@andregarzia.com
http://andregarzia.com
http://twitter.com/soapdog
http://raphaeleckhardt.com/
http://leanpub.com/quickguidefirefoxosdevelopment
mailto:fxosquickguide@andregarzia.com
http://andregarzia.com
http://twitter.com/soapdog
http://raphaeleckhardt.com/

CONTENTS iii

Best Practices vs Beginner Friendliness

Experienced developers will notice that sometimes I don’t follow all the good practices in the
source code of the examples of this book. Even though I am avoiding anti-patterns in here, I
am trying to keep the use of immediate functions and other similar practices to a minimum. The
main reason for that is to make the source code beginner friendly as this is an introductory book.
Seasoned programmers will know when and how to change things while beginner coders will
still be able to understand what is going on. All code here works and as I update this book I may
revisit the code and use more and more best practices depending on the readers feedback.

If you want to dive deeper in the world of high quality JavaScript coding here are some good
books:

• JavaScript: The Good Parts⁷: The JavaScript Book.
• JavaScript Patterns⁸: Patterns and best practices.
• JavaScript Enlightenment⁹: Advanced JavaScript techniques.
• Maintainable JavaScript¹⁰: Writing code that is easy to maintain and work with.

Feedback & Pull Requests

This is a Free and Open book and I am excited to receive all feedback that you people can give
me. All the content of the book is at a GitHub repository¹¹ and is built using Markdown (with
some extensions by Leanpub). To give me feedback, bug fixes and improvements just send me a
pull request. Thanks in advance for all contributions.

The Git repository for this book is at https://github.com/soapdog/firefoxos-quick-guide¹².

Translations

This book was originally written in Portuguese and translated into English by me. Both versions
are available for free on the net at:

• Portuguese Version¹³: Guia Rapido para Desenvolvimendo para Firefox OS.
• English Version¹⁴: Quick Guide for Firefox OS App Development.

I welcome all help to translate this book to even more languages (and to fix my broken English).

⁷http://shop.oreilly.com/product/9780596517748.do
⁸http://shop.oreilly.com/product/9780596806767.do
⁹http://shop.oreilly.com/product/0636920027713.do
¹⁰http://shop.oreilly.com/product/0636920027713.do
¹¹https://github.com/soapdog/firefoxos-quick-guide
¹²https://github.com/soapdog/firefoxos-quick-guide
¹³http://leanpub.com/guiarapidofirefoxos
¹⁴http://leanpub.com/quickguidefirefoxosdevelopment

http://shop.oreilly.com/product/9780596517748.do
http://shop.oreilly.com/product/9780596806767.do
http://shop.oreilly.com/product/0636920027713.do
http://shop.oreilly.com/product/0636920027713.do
https://github.com/soapdog/firefoxos-quick-guide
https://github.com/soapdog/firefoxos-quick-guide
http://leanpub.com/guiarapidofirefoxos
http://leanpub.com/quickguidefirefoxosdevelopment
http://shop.oreilly.com/product/9780596517748.do
http://shop.oreilly.com/product/9780596806767.do
http://shop.oreilly.com/product/0636920027713.do
http://shop.oreilly.com/product/0636920027713.do
https://github.com/soapdog/firefoxos-quick-guide
https://github.com/soapdog/firefoxos-quick-guide
http://leanpub.com/guiarapidofirefoxos
http://leanpub.com/quickguidefirefoxosdevelopment

CONTENTS iv

Version history

Version 0.3

Added new content for App Manager. Since most of the current devices still running Firefox
OS 1.1 we’re keeping the old simulator stuff.

This version was done as a quick update to include the AppManager section. This section will be
improved in the next releases. If you find anything wrong with this new section (or any section)
then please report the issues at issue tracker on GitHub¹⁵.

Version 0.2

Book was revised by Marcos Caceres of Mozilla’s WebAPI team. The content of each chapter
was checked for technical correctness, and many grammatical mistakes and typos were fixed
throughout.

Version 0.1

This is the first version of this book. I am yet to run this through an editor and it was not revised
for typos, grammar mistakes and general bad things. English is not my first language so please
correct me when I am wrong. What you’re reading here begun on the 20th of August of 2013 as
a quick guide to be distributed at BrazilJS Conference¹⁶ that happened on the 22nd and 23rd. So
you’re basically reading a quick draft written in two days.

I am using the Leanpub¹⁷ system to write this book. This system allows me to iterate quickly and
manage this project while keeping me sane. This version is a quasi-literal translation from the
original in Portuguese.

¹⁵https://github.com/soapdog/firefoxos-quick-guide/issues
¹⁶http://braziljs.com.br/
¹⁷http://leanpub.com

https://github.com/soapdog/firefoxos-quick-guide/issues
http://braziljs.com.br/
http://leanpub.com
https://github.com/soapdog/firefoxos-quick-guide/issues
http://braziljs.com.br/
http://leanpub.com

Introduction
Firefox OS

Firefox OS

Firefox OS¹⁸ is a new mobile platform developed by Mozilla¹⁹ and its partners. Devices running
Firefox OS are already available in many countries and will reach even more places by the end
of 2013.

Targeted at developing markets, Firefox OS has the mission to bring the next billion people
online. To achieve this, Firefox OS devices are built to serve as a great first smartphone along
with competitive pricing. Firefox OS devices should not be compared with high-end smartphones
such as the Apple iPhone 5S and Samsung Galaxy S4; they are built to be an alternative to feature
phones so that people using said devices are able to upgrade to a Firefox OS one at an affordable
cost and receive the full smartphone experience.

In developing markets such as Brazil and Colombia, smartphones with decent performance are
generally too expensive for the average consumer. People are able to buy cheap phones, but the
platforms used in these phones are intended for high-end devices - as such, the phone’s hardware

¹⁸http://www.mozilla.org/firefox/os/
¹⁹http://mozilla.org

http://www.mozilla.org/firefox/os/
http://mozilla.org
http://www.mozilla.org/firefox/os/
http://mozilla.org

Introduction 2

tends to underperform, which leads to a terrible user experience. Firefox OS is specifically
designed to run on limited hardware while providing a decent user experience.

Another differentiating factor of Firefox OS is its openness. Consider that the current mainstream
mobile operating systems are proprietary silos, where each vendor has the privilege to force his
way on the developers and users regardless of their wishes (remember when Apple tried banning
languages other than Objective-C from the iTunes App Store?). In those proprietary ecosystems
you can only distribute your apps on authorized channels - and the vendor usually keeps a
significant part of the the money from any purchases made on the device.

Besides locking the developers to proprietary distribution channels, these systems lock you to
their software development kits (SDKs). If you want to build a native app for both iOS and
Android using the official toolkits you will need to code one app using Objective-C and another
with Java respectively. This means that, code-wise, a developer will reuse very little between
projects (and maybe reuse some media assets). That kind of effort requires that the developer
learns two languages and build the same software twice.

Firefox OS differentiates itself by using “HTML5” as the development platform. HTML5 is a
marketing term used to mean the ever-evolving collection of Web standards known as HTML,
CSS and JavaScript. These royalty free standards are implemented by the major web browsers,
and are what make web applications possible. By leveraging the technologies that encompass
HTML5, millions of web developers are already able to code for Firefox OS. And apps built for
Firefox OS are easy to port to another platform by using wrappers such as Phonegap²⁰.

The Platform That HTML5 Deserves

The web is everywhere. Its on your computer, mobile phone, smart TV, and even in your video
game consoles. The programming language of the web, JavaScript, is one of the most popular
languages in the world. As already mentioned, when people talk about HTML5 they usually
mean the collection of three technologies known as HTML, CSS and JavaScript. Recent advances
in HTML have brought in a range of new features - advanced form controls, Web sockets, and
more semantic markup - when compared to XHTML 1.0 and HTML 4.01. Advances in CSS have
also introduced lots of new features, such as Flexbox and CSS Animations, that make it a lot
easier to create beautiful responsive layouts. And recent advances in JavaScript have brought
significant performance improvements and new capabilities, all while remaining easy to use for
both beginners and seasoned developers alike.

Firefox OS is in essence, an extension of the mobile web. By making HTML5 a first class citizen,
Mozilla has opened its platform to millions of web developers. Even if some other browser
vendors implement HTML5 in their mobile offerings, Firefox OS goes beyond that by offering a
collection of APIs to access the underlying hardware and system using JavaScript. These APIs
are collectively known as the WebAPIs.

²⁰http://phonegap.com

http://phonegap.com
http://phonegap.com

Introduction 3

Accessing The Hardware Using The WebAPI

Some earlier platforms also tried to create operating systems that used web technologies for app
creation. For example, when the iPhone was introduced to the world, the only way to create
apps was using web technologies. However, those web apps were limited in that they had no
hardware or device access - meaning that only a limited range of applications could be built.
When Apple then allowed developers to code apps in Objective-C, and also access the device’s
capabilities, it spurred a huge amount of innovation. Sadly, web apps did not gain access to the
device’s capabilities, and were thus left as “second-class citizens” - this made them unattractive
to both users and developers alike, and unable to compete with native apps in that system.

When we say device capabilities we actually mean accessing hardware and OS level features
and services: We’re talking about things such as updating the address book, sending SMS, and
accessing the camera and media gallery. On Firefox OS, the WebAPI²¹s are the means by which
you will access many of those capabilities.

Another earlier platform, WebOS, also offered hardware access via JavaScript but never tried
to standardize its APIs. Mozilla is working with the W3C and other stakeholders to make sure
that the WebAPIs are an open standard and that other browsers adopt them too. As these APIs
are implemented by other browsers, your apps will require less and less changes to work across
different platforms.

It’s important to emphasize that the WebAPIs are not exclusive to Firefox OS devices. Mozilla
is implementing it for the other platforms on which Firefox runs, such as desktop and android.
This way, you can use your open web app in Firefox OS, Firefox on the desktop and Firefox for
Android.

Freedom to Develop and Distribute

Like everything that Mozilla does, Firefox OS is developed in the open and is free. All
development can be followed on the Mozilla B2G repository²² on GitHub. With Firefox OS
you have the freedom to follow and contribute with the development of the system and you
also have the freedom to distribute your applications on your own channels or on The Firefox
Marketplace²³. What’s really awesome is that all the system applications are written in HTML5,
so you can check them out and see how the are put together.

The main idea is that you’re not locked to Mozilla for anything. If you want to pick the source
code for the system and change it for your own needs, so be it. If you need to build apps for
internal use on your company, or if you want to distribute your creations only on your own web
site, you’re free to do it. Usually, in other platforms you’re locked into the official app store as
the only channel to distribute your apps. Firefox OS also has an official market called Firefox
Marketplace which has an approval process but you’re free to distribute your app outside this
store if you want. Like in the web where you can host your web site anywhere you want, on
Firefox OS you can do the same with your applications.

²¹https://developer.mozilla.org/en-US/docs/WebAPI
²²https://github.com/mozilla-b2g/B2G
²³https://marketplace.firefox.com/

https://developer.mozilla.org/en-US/docs/WebAPI
https://github.com/mozilla-b2g/B2G
https://marketplace.firefox.com/
https://marketplace.firefox.com/
https://developer.mozilla.org/en-US/docs/WebAPI
https://github.com/mozilla-b2g/B2G
https://marketplace.firefox.com/

Introduction 4

This comes with a small caveat, sadly: some of the WebAPIs are too security sensitive to just
allow anyone to use them. To distribute apps that use some of the more “privileged” APIs, you
will need to get your applications signed and reviewed by Mozilla’s staff.

Summary

HTML5 is here to stay and will only get better. Firefox OS is the new open mobile operating
system by Mozilla completely based on web technologies. This system is built on the open and
offers a robust HTML5 implementation that goes beyond the other platforms by offering the
WebAPI which is a collection of APIs to access hardware and operating system services using
JavaScript. These new APIs are being standardized through the World Wide Web Consortium
(W3C) and will hopefully be adopted by other browsers in the future.

In the next chapter we’ll quickly get you set up with everything you need to develop for Firefox
OS.

Setup For Firefox OS App
Development
The Gecko Engine

Browsers use different engines for rendering web pages: Google Chrome and Opera use Blink (a
fork of WebKit), Internet Explorer uses Trident, while Safari uses WebKit. Mozilla has its own
engine, called Gecko which is used in Firefox desktop, Firefox for Android, and Firefox OS. As
these products use the same engine, it is possible to develop for Firefox OS using the Firefox
desktop browser (but with some caveats²⁴).

What applications do you need?

To develop and test apps made for Firefox OS you will need:

• A recent version of the Firefox Browser²⁵.
• The Firefox OS Simulator²⁶ if you’re running a device with Firefox OS 1.1.
• A text editor for programming²⁷.

Be aware that the Firefox OS Simulator is made to work with devices running Firefox OS
1.0 up to 1.1, devices running Firefox OS 1.2+ will be tested using the App Manager which
we will talk more later.

When this book was first written Firefox OS 1.1 was current and the official way of testing
things was with the Firefox OS 1.1 Simulator. Mozilla is now transitioning to the new App
Manager which is much better than the old simulator but unfortunately not able to connect to
Firefox OS 1.1 devices.

Since there are a lot of people running Firefox OS 1.1 and most of the devices sold in the
retails market are still 1.1 devices we’ll keep the Firefox OS 1.1 Simulator instructions but we’ll
duplicate any section related to that simulator and also present how to do the same tasks in the
App Manager. I will present the App Manager content first because thats the current stuff and
then present the content for the old simulator.

TheAppManager is bundled with Firefox 29 or newer. We’ll describe it in detail on the chapter
about App Manager.

²⁴Although the same engine is used for all Mozilla products, the version of the engine in Firefox OS is generally behind that of the desktop
browser. This is because the release cycle of Firefox OS is currently slower than that of the Desktop browser. In practice, this will mean that
some features may not be available (or work as expected) when you try them out in Firefox OS - so always make sure you test your applications
on a device that runs Firefox OS. Also, be mindful that users might also be on different versions of Firefox OS, so they might not have all the
bleeding edge features. Be sure to always provide a fallback in case where some feature is unavailable.

²⁵http://getfirefox.com
²⁶https://addons.mozilla.org/en-US/firefox/addon/firefox-os-simulator/
²⁷There are many good editors out there with different levels of complexity and features. A very popular one that I recommend for those

that don’t have a favorite one is SublimeText. Personally, I use WebStorm which is a complete IDE for web app creation.

http://getfirefox.com
https://addons.mozilla.org/en-US/firefox/addon/firefox-os-simulator/
http://getfirefox.com
https://addons.mozilla.org/en-US/firefox/addon/firefox-os-simulator/
http://sublimetext.com/
http://www.jetbrains.com/webstorm/

Setup For Firefox OS App Development 6

App Manager Setup

If you’re running the current version of Firefox (a.k.a. 29 or newer) then you have the App
Manager available to you. Having the App Manager is not enough though. You still need to
install the simulators on the App Manager itself to be able to test things without hooking a
device to your machine. Mozilla has extensive documentation about the App Manager²⁸ so if
you want to dive a bit deeper check it out.

The App Manager is able to manage multiple Firefox OS versions so you can install simulators
for version 1.3, 1.4 and 2.0, remember that the higher the version number the earlier it is. And by
earlier I mean buggy but since we can have multiple versions then we should just install them
all so that we’re able to test our apps with different Firefox OS versions.

Lets take the new App Manager for a spin and install the stuff we’ll need for later. To launch the
App Manager go to the menu Tools -> Web Developer -> App Manager.

Where you can find the App Manager

After you launch the App Manager you will see a screen like this

²⁸https://developer.mozilla.org/en-US/Firefox_OS/Using_the_App_Manager

https://developer.mozilla.org/en-US/Firefox_OS/Using_the_App_Manager
https://developer.mozilla.org/en-US/Firefox_OS/Using_the_App_Manager

Setup For Firefox OS App Development 7

The App Manager Help

You need to click the Install Simulator button and select the versions you want to install.

The App Manager uses ADB to communicate with connected devices. It is able to handle all the
ADB stuff for you if you install the ADB Helper Add-on available at Install the ADB Helper
add-on²⁹.

My recommendation is to install all available versions of the simulator and the ADB Helper.

²⁹https://ftp.mozilla.org/pub/mozilla.org/labs/fxos-simulator/

https://ftp.mozilla.org/pub/mozilla.org/labs/fxos-simulator/
https://ftp.mozilla.org/pub/mozilla.org/labs/fxos-simulator/
https://ftp.mozilla.org/pub/mozilla.org/labs/fxos-simulator/

Setup For Firefox OS App Development 8

The page to download Simulators and the ADB Helper

Installing the Firefox OS Simulator

If you have a device running FirefoxOS 1.1 then you need to install the FirefoxOS 1.1 Simulator
because your device can’t communicate with the new App Manager.

After installing Firefox, the next step is the installation of the Firefox OS Simulator that will be
used to test our applications. With Firefox installed and running, go to the Toolsmenu and select
Add-ons.

Setup For Firefox OS App Development 9

Tools menu with *Add-ons** menu selected

Using the search box on the top right corner, search for Firefox OS Simulator and install the
add-on by clicking the install button.

Add-on manager showing the simulator add-on

Attention: If you’re running Firefox 29 or newer and you have a device running
Firefox OS 1.1 or earlier then you will need another version of the Firefox OS 1.1
Simulator that is not currently listed on the add-ons marketplace. This version is
BETA but its the best we’ve got right now. You can fetch it for Mac OS X³⁰, Linux³¹ or
Windows³². Just drop the xpi file on Firefox and follow the installation instructions. If
you want to follow up on the quest of making the Firefox OS 1.1 simulator work on
Firefox 29 then check out bug request #1001590 it³³.

³⁰http://ftp.mozilla.org/pub/mozilla.org/labs/r2d2b2g/r2d2b2g-5.0pre7-mac.xpi
³¹http://ftp.mozilla.org/pub/mozilla.org/labs/r2d2b2g/r2d2b2g-5.0pre7-linux.xpi
³²http://ftp.mozilla.org/pub/mozilla.org/labs/r2d2b2g/r2d2b2g-5.0pre7-windows.xpi
³³https://bugzilla.mozilla.org/show_bug.cgi?id=1001590

http://ftp.mozilla.org/pub/mozilla.org/labs/r2d2b2g/r2d2b2g-5.0pre7-mac.xpi
http://ftp.mozilla.org/pub/mozilla.org/labs/r2d2b2g/r2d2b2g-5.0pre7-linux.xpi
http://ftp.mozilla.org/pub/mozilla.org/labs/r2d2b2g/r2d2b2g-5.0pre7-windows.xpi
https://bugzilla.mozilla.org/show_bug.cgi?id=1001590
http://ftp.mozilla.org/pub/mozilla.org/labs/r2d2b2g/r2d2b2g-5.0pre7-mac.xpi
http://ftp.mozilla.org/pub/mozilla.org/labs/r2d2b2g/r2d2b2g-5.0pre7-linux.xpi
http://ftp.mozilla.org/pub/mozilla.org/labs/r2d2b2g/r2d2b2g-5.0pre7-windows.xpi
https://bugzilla.mozilla.org/show_bug.cgi?id=1001590

Setup For Firefox OS App Development 10

After the installation of the add-on, you will be able to access the simulator by going to the menu
Tools -> Web Developer -> Firefox OS Simulator.

Where you can find the simulator after is installed

Alternatively, you can navigate to the Firefox OS Simulator³⁴ addon page, and download the
simulator from there.

Summary

In this chapter we learned that all we need to develop Firefox OS apps is the Firefox browser, the
App Manager and Firefox OS Simulators (and a good text editor).

Now that we have setup all the tools we need, lets learn some basic concepts before we build our
first app.

³⁴https://addons.mozilla.org/en-US/firefox/addon/firefox-os-simulator/

https://addons.mozilla.org/en-US/firefox/addon/firefox-os-simulator/
https://addons.mozilla.org/en-US/firefox/addon/firefox-os-simulator/

Basic Concepts
Before we get our hands dirty and build our first app, let’s learn some basic concepts about
developing for Firefox OS. We learned in the introduction that, just like web pages, apps in
Firefox OS are based on HTML5. However, we haven’t explained what makes Firefox OS apps
different from regular web pages.

If we use our collective knowledge about other mobile platforms we can see that native
application generally will have:

• A name and an icon that the user can press to launch the app.
• Access to system services and hardware capabilities.

Looking at the big picture, a Firefox OS app is just a web page that has an icon, a name and is
usually able to work offline (depending on how the app is implemented). All the data about an
application such as name, icon and more is defined in a application manifest file that is the focus
of our next section.

The Application Manifest

The manifest³⁵ is a JSON³⁶ file that describes aspects of an hosted web app. Usually this file is
calledmanifest.webapp and lives next to yourmain HTML file that is usually called index.html.

Sample Manifest

1 {

2 "name": "Memos",

3 "version": "1.1",

4 "description": "A simple memo taking app",

5 "launch_path": "/index.html",

6 "permissions": {

7 "storage": {

8 "description": "Required for storing and retrieving notes."

9 }

10 },

11 "developer": {

12 "name": "Andre Garzia",

13 "url": "http://andregarzia.com"

14 },

15 "icons": {

³⁵https://developer.mozilla.org/docs/Apps/Manifest
³⁶http://json.org

https://developer.mozilla.org/docs/Apps/Manifest
http://json.org
https://developer.mozilla.org/docs/Apps/Manifest
http://json.org

Basic Concepts 12

16 "60": "/style/icons/icon_60.png",

17 "128": "/style/icons/icon_128.png"

18 }

19 }

Abovewe can see themanifest for an application calledmemos³⁷. Among other things it describes
who created the application, which icons are used, what is the name of the app, what file is used
to launch the app (in this case it is index.html), what hardware access permissions your app
requires, etc. This file is used by Firefox OS to add the application to the device’s home screen
and by the Firefox Marketplace to display the application on the catalog as we can see in the
image below.

Memos app shown at the Firefox Marketplace

Note how the information from the manifest is used by the system to add the app to the
homescreen, as we can see on the following screenshot.

³⁷This is a sample app for Firefox OS as seen on the Firefox Marketplace for which the source code is on GitHub.

https://marketplace.firefox.com/app/memos
https://github.com/soapdog/memos-for-firefoxos

Basic Concepts 13

Memos on the simulator

By gathering your HTML, CSS, JavaScript, and a manifest file you already have an application
ready to run on Firefox OS. Moving on our topic about basic concepts let’s learn more about
what application types there are.

Types of Application

Firefox OS currently has two types of applications: hosted apps and packaged apps - thoughmore
types may become available in the future (e.g. custom keyboards and the ability to create other
system services).

• Hosted Apps:Are hosted on a web server just like normal websites. This means that when
the user launches a hosted app, its content is loaded from the remote server (or from the
cache, if available).

• Packaged Apps: Are distributed as a zip file and copied to the device when installed.
When the user launches a packaged app, its contents are loaded from the zip file instead
of a remote server.

There are pros and cons to both types. On the one hand, hosted apps are easier to maintain, as
all you need to do is maintain files on your web server. However, it’s harder to make them work
offline because it requires the use of the much despised appcache³⁸. Hosted apps are also limited

³⁸https://developer.mozilla.org/pt-BR/docs/HTML/Using_the_application_cache

https://developer.mozilla.org/pt-BR/docs/HTML/Using_the_application_cache
https://developer.mozilla.org/pt-BR/docs/HTML/Using_the_application_cache

Basic Concepts 14

in which WebAPIs they can use, which means they can’t do all the things a packaged app can
do.

On the other hand, packaged apps have all their content stored on the device - which means they
are always available when the user is offline (and so avoid needing appcache). They also have the
ability to access security-sensitive WebAPIs that are not available to hosted apps. Updating them
can be a bit painful, because you need to upload any new version to the Firefox Marketplace -
which means going through a review process, which can take some time.

When trying to choose which type of application to build, consider: if you require advanced
WebAPIs, then you should use a packaged app. However, if your application works fine without
needing to access any advanced system services or device capabilities beyond those already
available in a web browser, then always choose a hosted app. It is ok to use packaged apps if you
don’t have a place to host it.

Above I mentioned that appcache can be problematic (which is sometimes required for hosted
apps). Don’t worry too much as there are tools available to make appcache generation and
deployment easier ³⁹.

In this book we’re going to build packaged apps, as it will allow us to explore what is possible
with the WebAPIs. However, most of what we will learn about manifests applies to hosted apps.
If you want to know more about distributing hosted apps, check the hosted applications link at
the developer hub⁴⁰.

Now that we’ve covered the two types of applications that Firefox OS supports, let’s look at the
different levels of system access they can have.

Security Access Levels

There are three security levels on Firefox OS - with each level having more access to APIs than
the previous level.

• Plain (a.k.a. web): This is the default level for all applications. This level applies to hosted
apps and packaged apps that do not declare a type property in their manifest file. These
apps have access to the common set of APIs found in browsers - but don’t have access to
any of Mozilla’s WebAPIs.

• Privileged: This type of app has access to all common APIs found in the Firefox browser,
plus some additional ones, such as contacts, and system alarms. Only packaged apps
can be privileged apps and the package must be digitally signed by the Firefox OS
Marketplace.

• Certified: For security reasons, this level is only available to Mozilla and its partners (e.g.
phone manufacturers, telecoms, etc.). Certified apps are able to access all the APIs, such
as telephony and more. An example of certified app is the Firefox OS dialer application.

³⁹There are many useful tools out there, check out Gulp, Grunt, Volo, Yeoman, Bower. There is a lot of overlap among these tools, its a matter
of preference which one you use. (I like Volo more than Grunt mostly because Volofiles are easier for me to read).

⁴⁰https://marketplace.firefox.com/developers/docs/hosted

https://marketplace.firefox.com/developers/docs/hosted
https://marketplace.firefox.com/developers/docs/hosted
https://github.com/gulpjs/gulp
http://gruntjs.com
http://volojs.org/
http://yeoman.io/
http://bower.io/
https://marketplace.firefox.com/developers/docs/hosted

Basic Concepts 15

During development, it is possible for us to access privileged APIs without needing any special
permission from Mozilla. But when we want to distribute a privileged app, it first needs to go
to the Firefox Marketplace. There, the code is checked as part of a rigorous approval process,
and if it’s found to be OK, it will be digitally signed - which tells users of Firefox OS that this
application is allowed to access sensitive APIs.

On the page about the WebAPIs on the Mozilla Developer Network⁴¹ we can see what APIs are
implemented on what platforms and what access level is needed to use each API.

Access levels for the APIs

As we can see on the image above, any application can access the IndexedDB API and FileHandle
API but only privileged apps can access the Contacts API and Device Storage API.

Mozilla’s WebAPIs

Firefox OS provides us with the APIs that enable us to build applications that are just as capable
as native apps on other platforms. Access to hardware and services is done through theWebAPIs.
To learn more about the list of available APIs for the current Firefox OS version check out the
WebAPI page on the Mozilla Wiki⁴².

Lets review some code examples to see how easy those APIs are to use. Don’t take this example
as a full documentation of the WebAPIs, they are just a small sample to make you understand
how we can access device features using JavaScript.

Example #1: Making calls

Imagine that you have an application that needs to open the dialer with a phone number already
filled in. You can just use the following code:

⁴¹https://developer.mozilla.org/en-US/docs/WebAPI
⁴²https://wiki.mozilla.org/WebAPI

https://developer.mozilla.org/en-US/docs/WebAPI
https://wiki.mozilla.org/WebAPI
https://wiki.mozilla.org/WebAPI
https://developer.mozilla.org/en-US/docs/WebAPI
https://wiki.mozilla.org/WebAPI

Basic Concepts 16

Sending a phone number to the dialer

1 var call = new MozActivity({

2 name: "dial",

3 data: {

4 number: "5555-9999"

5 }

6 });

This code makes a request to the dialer app to call a particular number. Note that this doesn’t
actually place a call - the user will still need to tap the dial button to place the call. Requiring
explicit user action before executing some other action is pretty common: it’s a good security
pattern because it requires user interaction through consent before allowing something to
happen. Other APIs that can place calls without user interaction are available for more elevated
access levels. Certified apps can place calls without interaction for example. The API used in the
code above, called “Web Activities”, is available to all apps though.

Check out the the Mozilla Blog for more information about Web Activites⁴³.

Example #2: Saving a contact

Imagine that you have a company intranet and you want to provide a way to transfer a contact
from the online intranet address book to the phone address book. You can do that with the
Contacts API.

Saving a contact

1 var contact = new mozContact();

2 contact.init({name: "Odin"});

3

4 var request = navigator.mozContacts.save(contact);

5 request.onsuccess = function() {

6 // contact saved successfully

7 };

8 request.onerror = function() {

9 // there was an error while trying to save the contact

10 };

This API creates an object with the contact data and saves it into the phone address book without
requiring user interaction. Because access to contacts carries potential privacy implications, this
API is only available for privileged apps. This pattern where you create an object with a success
and an error callback is used in many of the WebAPIs.

To learn more about this API, read the page about the Contacts API on the Mozilla Wiki⁴⁴.

⁴³https://hacks.mozilla.org/2013/01/introducing-web-activities/
⁴⁴https://wiki.mozilla.org/WebAPI/ContactsAPI

https://hacks.mozilla.org/2013/01/introducing-web-activities/
https://wiki.mozilla.org/WebAPI/ContactsAPI
https://hacks.mozilla.org/2013/01/introducing-web-activities/
https://wiki.mozilla.org/WebAPI/ContactsAPI

Basic Concepts 17

Example #3: Picking an image from the camera

Imagine you are building an application that applies fancy filters to pictures. You want to place a
button in your app that allows the user to pick a photo from a photo album or from the camera.

Picking an image

1 var getphoto = new MozActivity({

2 name: "pick",

3 data: {

4 type: ["image/png", "image/jpg", "image/jpeg"]

5 }

6 });

7

8 getphoto.onsuccess = function () {

9 var img = document.createElement("img");

10 if (this.result.blob.type.indexOf("image") != -1) {

11 img.src = window.URL.createObjectURL(this.result.blob);

12 }

13 };

14

15 getphoto.onerror = function () {

16 // error!

17 };

Here we see another example of aWebActivity⁴⁵. These activities are available to all applications.
In this specific sample we’re using the pick activity and passing in the MIME Types of the files
that we wish to retrieve. When this code is executed, the system shows a screen to the user asking
where he or she wants to retrieve the image from (camera, gallery, wallpapers). If the user selects
an image, the success callback is triggered. If the user cancels the operation, the error callback
is executed. On the image below, we can see the dialog that lets the user pick a photo from the
device:

Example of the pick activity

⁴⁵https://hacks.mozilla.org/2013/01/introducing-web-activities/

https://hacks.mozilla.org/2013/01/introducing-web-activities/
https://hacks.mozilla.org/2013/01/introducing-web-activities/

Basic Concepts 18

Summary

In this chapter we saw that, unlike regular web pages, both Firefox OS’ hosted apps and packaged
apps rely on a manifest file. We also saw that, from a security perspective, packaged apps can
be “privileged” or “certified”. Only privileged and certified apps can access Mozilla’s powerful
set of WebAPIs. The more sensitive WebAPIs are not available to hosted apps or to regular web
pages.

Now it’s about time we get our hands dirty and create an app!

Our First App

Memos, a minimalist notepad app

In this chapter we’re going to build a simple Memos application, which is an application for
taking notes. Before coding, let’s review how this app works.

The app has three screens. The first one is the main screen and has a list of your stored notes
by title. When you click a note (or add a new one) you’re moved to the detail screen that allows
you to edit the content and title of the given note. This is shown in the figure below.

Our First App 20

Memos, editing screen

On the screen shown above the user can choose to delete the selected note by clicking on the
trash icon. This will cause a confirmation dialog to be shown.

Our First App 21

Memos, note removal confirmation screen

The source code for Memos is available at the Memos Github Repo⁴⁶ (also available as a .zip⁴⁷
file). I recommend you download the files, so it’s easier to follow along. Another copy of the
source code is available on the code folder inside the github repository for this book⁴⁸.

Memos uses IndexedDB⁴⁹ to store the notes and the Gaia Building Blocks⁵⁰ to build the interface.
In a future update to this book I will talk more about the Gaia Building Blocks, but at the moment
I am just going to use them. You can check the link above to learn more about them and what
user interface tools they provide.

The first step is to create a folder for the application, let’s call this foldermemos.

Creating the app manifest

Memos manifest is pretty straight forward. Create a file namedmanifest.webapp on thememos
folder. Manifests are JSON⁵¹ files that describes an application. In this file we place things such
as the name of the app, who the developer is, what icons are used, what file is used to launch the
app, what privileged APIs it would like to use, and more.

⁴⁶https://github.com/soapdog/memos-for-firefoxos
⁴⁷https://github.com/soapdog/memos-for-firefoxos/archive/master.zip
⁴⁸https://github.com/soapdog/firefoxos-quick-guide
⁴⁹https://developer.mozilla.org/en-US/docs/IndexedDB/Using_IndexedDB
⁵⁰http://buildingfirefoxos.com/building-blocks
⁵¹http://json.org

https://github.com/soapdog/memos-for-firefoxos
https://github.com/soapdog/memos-for-firefoxos/archive/master.zip
https://github.com/soapdog/firefoxos-quick-guide
https://developer.mozilla.org/en-US/docs/IndexedDB/Using_IndexedDB
http://buildingfirefoxos.com/building-blocks
http://json.org
https://github.com/soapdog/memos-for-firefoxos
https://github.com/soapdog/memos-for-firefoxos/archive/master.zip
https://github.com/soapdog/firefoxos-quick-guide
https://developer.mozilla.org/en-US/docs/IndexedDB/Using_IndexedDB
http://buildingfirefoxos.com/building-blocks
http://json.org

Our First App 22

Below we can see the contents of the Memos app manifest. Attention when copying this data
because it’s very easy to place a comma on the wrong place and create an invalid JSON.
There are many tools that you can use to validate JSON files but there is a special one
that is built specifically for validating app manifests. You can check out this online tool at
http://appmanifest.org/⁵². To learn more about app manifests read this page on MDN about
them⁵³.

Memos manifest file (manifest.webapp)

1 {

2 "name": "Memos",

3 "version": "1.1",

4 "description": "A simple memo taking app",

5 "launch_path": "/index.html",

6 "permissions": {

7 "storage": {

8 "description": "Required for storing and retrieving notes."

9 }

10 },

11 "developer": {

12 "name": "Andre Garzia",

13 "url": "http://andregarzia.com"

14 },

15 "icons": {

16 "60": "/style/icons/icon_60.png",

17 "128": "/style/icons/icon_128.png"

18 }

19 }

Let’s review the fields from the manifest above.

Field Description

name This is the name of the application.
version This is the current version of the app.
launch_path What file is used to launch your application.
permissions What API permissions your app requests. More information

about this below.
developer Who developed this application
icons The icons used by the app in many different sizes.

The most interesting part of this manifest is the permissions field where we ask for the storage
permission that allows us to use IndexedDB without size restrictions⁵⁴ (thanks to that permission
we can store as many notes as we want - though we should be mindful not to use too much of

⁵²http://appmanifest.org/
⁵³https://developer.mozilla.org/docs/Apps/Manifest
⁵⁴To learn more about permissions read the page on MDN about app permissions.

http://appmanifest.org/
https://developer.mozilla.org/docs/Apps/Manifest
https://developer.mozilla.org/docs/Apps/Manifest
http://appmanifest.org/
https://developer.mozilla.org/docs/Apps/Manifest
https://developer.mozilla.org/en-US/docs/Web/Apps/App_permissions

Our First App 23

the user’s disk space!).

Now that the manifest is ready let’s move on to the HTML.

Building the HTML

Before we start working on the HTML, let’s take a brief detour to talk quickly about the Gaia
Building Blocks⁵⁵, which are a collection of reusable CSS and JS with the look and feel of Firefox
OS that we can use on our own apps.

Just like on the Web, you’re not required to use the look and feel of Firefox OS in your own
app. Using or not using the Gaia Building Blocks is a personal decision - and a good applications
should have its own distinctive style and user experience. The important thing to understand is
that your app will not suffer any type of prejudice or penalty on the Firefox Marketplace by not
using the Gaia look and feel. I am using it here because I am not a good designer so ready made
UI toolkits appeal to me (it’s either that or hiring a designer).

The HTML structure that we use in this application was built following the patterns adopted by
the Gaia Building Blocks where each screen is a <section> and the elements follow a predefined
format. If you haven’t already, download the source code from the memos repository⁵⁶ so that
you have the files (including the Building Blocks) to use. For those not confident with git and
GitHub, the files are also available as a .zip file⁵⁷.

Warning: The version of the Gaia Building Blocks I used for this app is not the
most up-to-date available from Mozilla. Trying to update to the current version will,
unfortunately, break the Memos app. In your own projects, however, always use the
latest version of the Gaia Building Blocks.

Including the Building Blocks

Before doing anything else copy the shared and the styles folders that you obtained by
downloading the Memos repository to the memos folder you created. This will allow use to
use the Gaia Building Blocks in our app.

Let’s begin our index.html files by including the needed bits.

⁵⁵http://buildingfirefoxos.com/building-blocks
⁵⁶https://github.com/soapdog/memos-for-firefoxos
⁵⁷https://github.com/soapdog/memos-for-firefoxos/archive/master.zip

http://buildingfirefoxos.com/building-blocks
http://buildingfirefoxos.com/building-blocks
https://github.com/soapdog/memos-for-firefoxos
https://github.com/soapdog/memos-for-firefoxos/archive/master.zip
http://buildingfirefoxos.com/building-blocks
https://github.com/soapdog/memos-for-firefoxos
https://github.com/soapdog/memos-for-firefoxos/archive/master.zip

Our First App 24

1 <!DOCTYPE html>

2 <html>

3 <head>

4 <meta charset="utf-8">

5 <link rel="stylesheet" type="text/css" href="style/base.css" />

6 <link rel="stylesheet" type="text/css" href="style/ui.css" />

7 <link rel="stylesheet" type="text/css" href="style/building_blocks.css" />

8 <link rel="stylesheet" type="text/css"

9 href="shared/style/headers.css" />

10 <link rel="stylesheet" type="text/css"

11 href="shared/style_unstable/lists.css" />

12 <link rel="stylesheet" type="text/css"

13 href="shared/style_unstable/toolbars.css" />

14 <link rel="stylesheet" type="text/css"

15 href="shared/style/input_areas.css" />

16 <link rel="stylesheet" type="text/css"

17 href="shared/style/confirm.css" />

18 <title>Memos</title>

19 </head>

On line 01 we declare the DOCTYPE as HTML5. From line 05 up to 15 we include the CSS from
the various components that we’re going to use in our app such as headers, lists, text entry fields
and more.

Building the main screen

Now we can start building the various screens. As mentioned earlier, each screen used by our
app is a <section> inside the HTML <body>. The body tag must have an attribute role with its
value equal to application because that is used by the CSS selectors to build the interface, so our
body tag will be <body role="application">. Let’s build the first screen and declare our body
tag as well.

1 <body role="application">

2

3 <section role="region" id="memo-list">

4 <header>

5 <menu type="toolbar">

6 add</\

7 a>

8 </menu>

9 <h1>Memos</h1>

10 </header>

11 <article id="memoList" data-type="list"></article>

12 </section>

Our First App 25

Our screen has a <header> containing a button to add new notes and the application name. The
screen also has an <article> which will be used to hold the list of stored notes. We’re going to
use the button and the article IDs to capture events whenwe reach the JavaScript implementation
part.

Be aware that each screen is a fairly straight forward HTML chunk. Building these same screens
in many languages usually requires a lot more work. All we’re doing is declaring our containers
and giving them IDs when we need to reference them later.

Now that the main screen is done, let’s build the editing screen.

Building the editing screen

The editing screen is a bit more complex because it also holds the dialog box used when the user
tries to delete a note.

1 <section role="region" id="memo-detail" class="skin-dark hidden">

2 <header>

3 <button id="back-to-list">back

4 </button>

5 <menu type="toolbar">

6 share</s\

7 pan>

8

9 </menu>

10 <form action="#">

11 <input id="memo-title" placeholder="Memo Title" required="required"

12 type="text">

13 <button type="reset">Remove text</button>

14 </form>

15 </header>

16 <p id="memo-area">

17 <textarea placeholder="Memo content" id="memo-content"></textarea>

18 </p>

19 <div role="toolbar">

20

21

22 <button id="delete-memo" class="icon-delete">Delete</button>

23

24

25 </div>

26 <form id="delete-memo-dialog" role="dialog" data-type="confirm"

27 class="hidden">

28 <section>

29 <h1>Confirmation</h1>

30 <p>Are you sure you want to delete this memo?</p>

31 </section>

Our First App 26

32 <menu>

33 <button id="cancel-delete-action">Cancel</button>

34 <button id="confirm-delete-action" class="danger">Delete</button>

35 </menu>

36 </form>

37 </section>

At the top of the screen, represented by the <header> element, we have:

• a back button to return to the main screen,
• a text entry field that is used to hold the title of the given note,
• and a button that is used to share the note over email.

Below the top toolbar, we have a paragraph holding a <textarea> that holds the content of the
note and then another toolbar with a trashcan button used to delete the current viewed note.

These three elements and their child nodes are the editing screen. After them we have a <form>
that is used as a dialog box containing the confirmation screen that is presented to the user when
he or she tries to delete a note. This dialog box is pretty simple, it only contains the text of the
confirmation prompt and two buttons; one for deleting the note and another for canceling the
action.

Now that we’re closing this <section> we have all our screens implemented and the remaining
HTML code is only there to include the JavaScript files and close the html file.

1 <script src="/js/model.js"></script>

2 <script src="/js/app.js"></script>

3 </body>

4 </html>

Crafting the JavaScript code

Now we’re going to breathe life into our app by adding JavaScript. To better organize this code,
I’ve divided the JavaScript code into two files:

• model.js: contains the routines to deal with storage and retrieval of notes but does not
contain any app logic or anything related to the interface or data entry. In theory, we
could reuse this same file in other apps that required text notes.

• app.js: attaches the HTML elements with their event handlers and contains the app logic.

Both files should be placed inside a js folder next to the style and shared folders.

Our First App 27

model.js

We’re going to use IndexedDB⁵⁸ to store our notes. Since we asked the storage permission on the
app manifest we can store as many notes as we want - however, we should not abuse this! Firefox
OS devices generally have very limited storage space, so you always need to be mindful of what
data you store (users will delete and down-rate your app if it uses too much storage space!). And
storing excessive amounts of data will have a performance penalty, which will make your app
feel sluggish. Please also note that when you submit an application to the Firefox OSMarketplace,
reviewers will ask you why you need unlimited storage space - if you can’t justify why, your
application will be rejected.

The part of the code frommodel.js that is shown below is responsible for opening the connection
and creating the storage.

..

Important: This code was written to be understood easily and does not represent the best
practices for JS programming. Some global variables are used (I’m so going to hell for this)
among other tidbits. The error handling code is basically non-existant. The main objective of
this book is to teach the workflow of developing apps for Firefox OS and not teaching best JS
patterns. That being said, depending on feedback, I will update the code in this book to better
reflect best practices if enough people think it will not impact the beginners.

1 var dbName = "memos";

2 var dbVersion = 1;

3

4 var db;

5 var request = indexedDB.open(dbName, dbVersion);

6

7 request.onerror = function (event) {

8 console.error("Can't open indexedDB!!!", event);

9 };

10 request.onsuccess = function (event) {

11 console.log("Database opened ok");

12 db = event.target.result;

13 };

14

15 request.onupgradeneeded = function (event) {

16

17 console.log("Running onUpgradeNeeded");

18

19 db = event.target.result;

20

21 if (!db.objectStoreNames.contains("memos")) {

22

⁵⁸https://developer.mozilla.org/en-US/docs/IndexedDB/Using_IndexedDB

https://developer.mozilla.org/en-US/docs/IndexedDB/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/IndexedDB/Using_IndexedDB

Our First App 28

23 console.log("Creating objectStore for memos");

24

25 var objectStore = db.createObjectStore("memos", {

26 keyPath: "id",

27 autoIncrement: true

28 });

29 objectStore.createIndex("title", "title", {

30 unique: false

31 });

32

33 console.log("Adding sample memo");

34 var sampleMemo1 = new Memo();

35 sampleMemo1.title = "Welcome Memo";

36 sampleMemo1.content = "This is a note taking app. Use the plus sign " +

37 "in the topleft corner of the main screen to " +

38 "add a new memo. Click a memo to edit it. All " +

39 "your changes are automatically saved.";

40

41 objectStore.add(sampleMemo1);

42 }

43 }

..

Important: Forgive me again for the globals, this is an educational resource only. Another detail
is that I removed the comments from the source code to save space in the book. If you pick the
source from GitHub you will get all the comments.

The code above creates a db object and a request object. The db object is used by other functions
in the source to manipulate the notes storage.

On the implementation of the request.onupgradeneeded function we also create a welcome
note. This function is executed when the application runs for the first time (or when the database
version changes). This way once the application launches for the first time, the database is
initialized with a single welcome note.

With our connection open and the storage initialized its time to implement the basic functions
for note manipulation.

Our First App 29

1 function Memo() {

2 this.title = "Untitled Memo";

3 this.content = "";

4 this.created = Date.now();

5 this.modified = Date.now();

6 }

7

8 function listAllMemoTitles(inCallback) {

9 var objectStore = db.transaction("memos").objectStore("memos");

10 console.log("Listing memos...");

11

12 objectStore.openCursor().onsuccess = function (event) {

13 var cursor = event.target.result;

14 if (cursor) {

15 console.log("Found memo #" + cursor.value.id +

16 " - " + cursor.value.title);

17 inCallback(null, cursor.value);

18 cursor.continue();

19 }

20 };

21 }

22

23 function saveMemo(inMemo, inCallback) {

24 var transaction = db.transaction(["memos"], "readwrite");

25 console.log("Saving memo");

26

27 transaction.oncomplete = function (event) {

28 console.log("All done");

29 };

30

31 transaction.onerror = function (event) {

32 console.error("Error saving memo:", event);

33 inCallback({

34 error: event

35 }, null);

36

37 };

38

39 var objectStore = transaction.objectStore("memos");

40

41 inMemo.modified = Date.now();

42

43 var request = objectStore.put(inMemo);

44 request.onsuccess = function (event) {

45 console.log("Memo saved with id: " + request.result);

46 inCallback(null, request.result);

Our First App 30

47

48 };

49 }

50

51 function deleteMemo(inId, inCallback) {

52 console.log("Deleting memo...");

53 var request = db.transaction(["memos"],

54 "readwrite").objectStore("memos").delete(inId);

55

56 request.onsuccess = function (event) {

57 console.log("Memo deleted!");

58 inCallback();

59 };

60 }

On the piece of code above we create a constructor function that creates new Memos with some
fields already initialized. After that we implement functions for listing, saving and removing
notes. Many of these functions receive a callback parameter called inCallback which is a
function to be called after the function does its thing. This is needed due to the asynchronous
nature of IndexedDB. All callbacks have the same signature which is callback(error, value)

where one of the values is null depending on the outcome of the previous function.

..

Since this is a beginner book I’ve opted not to use Promises since many beginners are not
familiar with the concept. I recommend using such concepts to create easier to maintain code
that is more pleasant to read.

https://developer.mozilla.org/en-US/docs/Mozilla/JavaScript_code_modules/Promise.jsm/Promise

Now that our note storage and manipulation functions are ready, let’s implement our app logic
in a file called app.js.

app.js

This file will contain our app logic. Since the source code is too large for me to place it all at once
on the book, I will break it in parts and explain each part piece by piece.

https://developer.mozilla.org/en-US/docs/Mozilla/JavaScript_code_modules/Promise.jsm/Promise
https://developer.mozilla.org/en-US/docs/Mozilla/JavaScript_code_modules/Promise.jsm/Promise

Our First App 31

1 var listView, detailView, currentMemo, deleteMemoDialog;

2

3 function showMemoDetail(inMemo) {

4 currentMemo = inMemo;

5 displayMemo();

6 listView.classList.add("hidden");

7 detailView.classList.remove("hidden");

8 }

9

10

11 function displayMemo() {

12 document.getElementById("memo-title").value = currentMemo.title;

13 document.getElementById("memo-content").value = currentMemo.content;

14 }

15

16 function shareMemo() {

17 var shareActivity = new MozActivity({

18 name: "new",

19 data: {

20 type: "mail",

21 body: currentMemo.content,

22 url: "mailto:?body=" + encodeURIComponent(currentMemo.content) +

23 "&subject=" + encodeURIComponent(currentMemo.title)

24

25 }

26 });

27 shareActivity.onerror = function (e) {

28 console.log("can't share memo", e);

29 };

30 }

31

32 function textChanged(e) {

33 currentMemo.title = document.getElementById("memo-title").value;

34 currentMemo.content = document.getElementById("memo-content").value;

35 saveMemo(currentMemo, function (err, succ) {

36 console.log("save memo callback ", err, succ);

37 if (!err) {

38 currentMemo.id = succ;

39 }

40 });

41 }

42

43 function newMemo() {

44 var theMemo = new Memo();

45 showMemoDetail(theMemo);

46 }

Our First App 32

At the beginning we declare some global variables (yuck!!!) to hold references to some DOM
elements that we want to use later inside some functions. The most interesting global is
currentMemo which is an object that holds the current note that the user is reading.

The showMemoDetail() and displayMemo() functions work together. The first one loads the
selected note into the currentMemo and manipulates the CSS of the elements so that the editing
screen is shown. The second one picks the content from the currentMemo variable and places it
on the screen. We could do both things on the same function but having them separate makes it
easier to experiment with new implementations.

The shareMemo() function uses a WebActivity⁵⁹ to open the email application with a new
message pre-filled with the selected notes content.

The textChanged() function picks the data from the entry fields and place them into the
currentMemo object and then saves the note. This is done because the application is an auto-save
app where your content is always saved. All alterations on the content or title of the note will
trigger this function and the note will always be saved on the IndexedDB storage.

The newMemo() function creates a new note and opens the editing screen with it.

1 function requestDeleteConfirmation() {

2 deleteMemoDialog.classList.remove("hidden");

3 }

4

5 function closeDeleteMemoDialog() {

6 deleteMemoDialog.classList.add("hidden");

7 }

8

9 function deleteCurrentMemo() {

10 closeDeleteMemoDialog();

11 deleteMemo(currentMemo.id, function (err, succ) {

12 console.log("callback from delete", err, succ);

13 if (!err) {

14 showMemoList();

15 }

16 });

17 }

18

19 function showMemoList() {

20 currentMemo = null;

21 refreshMemoList();

22 listView.classList.remove("hidden");

23 detailView.classList.add("hidden");

24 }

The requestDeleteConfirmation() function is responsible for showing the note removal
confirmation dialog.

⁵⁹https://hacks.mozilla.org/2013/01/introducing-web-activities/

https://hacks.mozilla.org/2013/01/introducing-web-activities/
https://hacks.mozilla.org/2013/01/introducing-web-activities/

Our First App 33

The closeDeleteMemoDialog() and deleteCurrentMemo() are triggered by the buttons on the
removal confirmation dialog.

The showMemoList() function does some clean up before showing the list of stored notes. For
example, it cleans the content of currentMemo since we’re not reading any memo yet.

1 function refreshMemoList() {

2 if (!db) {

3 // HACK:

4 // this condition may happen upon first time use when the

5 // indexDB storage is under creation and refreshMemoList()

6 // is called. Simply waiting for a bit longer before trying again

7 // will make it work.

8 console.warn("Database is not ready yet");

9 setTimeout(refreshMemoList, 1000);

10 return;

11 }

12 console.log("Refreshing memo list");

13

14 var memoListContainer = document.getElementById("memoList");

15

16

17 while (memoListContainer.hasChildNodes()) {

18 memoListContainer.removeChild(memoListContainer.lastChild);

19 }

20

21 var memoList = document.createElement("ul");

22 memoListContainer.appendChild(memoList);

23

24 listAllMemoTitles(function (err, value) {

25 var memoItem = document.createElement("li");

26 var memoP = document.createElement("p");

27 var memoTitle = document.createTextNode(value.title);

28

29 memoItem.addEventListener("click", function (e) {

30 console.log("clicked memo #" + value.id);

31 showMemoDetail(value);

32

33 });

34

35 memoP.appendChild(memoTitle);

36 memoItem.appendChild(memoP);

37 memoList.appendChild(memoItem);

38

39

40 });

41 }

Our First App 34

The refreshMemoList() function modifies the DOM by building element by element the list of
notes that is displayed on the screen. It would be a lot easier to use some templating aid such as
handlebars⁶⁰ or underscore⁶¹ but since this app is built using nothing but vanilla javascript we’re
doing everything by hand. This function is called by showMemoList() that was shown above.

These are all the functions used by our app. The only part of the code that is missing is the
initialization of the event handlers and the initial call of refreshMemoList().

1 window.onload = function () {

2 // elements that we're going to reuse in the code

3 listView = document.getElementById("memo-list");

4 detailView = document.getElementById("memo-detail");

5 deleteMemoDialog = document.getElementById("delete-memo-dialog");

6

7 // All the listeners for the interface buttons and for the input changes

8 document.getElementById("back-to-list")

9 .addEventListener("click", showMemoList);

10 document.getElementById("new-memo")

11 .addEventListener("click", newMemo);

12 document.getElementById("share-memo")

13 .addEventListener("click", shareMemo);

14 document.getElementById("delete-memo")

15 .addEventListener("click", requestDeleteConfirmation);

16 document.getElementById("confirm-delete-action")

17 .addEventListener("click", deleteCurrentMemo);

18 document.getElementById("cancel-delete-action")

19 .addEventListener("click", closeDeleteMemoDialog);

20 document.getElementById("memo-content")

21 .addEventListener("input", textChanged);

22 document.getElementById("memo-title")

23 .addEventListener("input", textChanged);

24

25 // the entry point for the app is the following command

26 refreshMemoList();

27

28 };

Now all files are ready and we can begin trying our application on the simulator. There are
two ways of doing this depending if you’re using the App Manager or the old Firefox OS 1.1
simulator. In the following section we’ll show both. There will be specific chapters on each
technology later.

If you’re running Firefox 29 or newer then you have the App Manager, if you’re running an
older version then you can use the old simulator. Be aware that the App Manager is only able to
connect to Firefox OS 1.2+ devices.

⁶⁰http://handlebarsjs.com/
⁶¹http://underscorejs.org/

http://handlebarsjs.com/
http://underscorejs.org/
http://handlebarsjs.com/
http://underscorejs.org/

Our First App 35

If you have a Firefox OS 1.1 device and you’re running Firefox 29 then install the Firefox OS
1.1 simulator version 5.0 available for Mac OS X⁶², Linux⁶³ or Windows⁶⁴. If you install this
simulator you will be able to follow the instructions for the old Firefox OS 1.1 simulator and be
able to connect your device.

If your device running Firefox OS 1.1 is unlocked and able to receive version 1.2 or later then you
should upgrade because it will make your life a lot easier. The Geeksphone Keon, Geeksphone
Peak andGeeksphone Revolution have daily FirefoxOS builds available at http://downloads.geeksphone.com/⁶⁵.
The ZTE Open can also be upgraded following the instructions at Upgrading your ZTE Open to
Firefox 1.1 or 1.2 (fastboot enabled)⁶⁶. The LG Fireweb can’t be upgraded, if you are like me and
don’t like this then go bug LG to open/upgrade their device on Twitter. The Alcatel One Touch
Fire can be unlocked but this type of instruction is beyond this book.

Notice: This bug request #1001590⁶⁷ on bugzilla will fix the current problem of not being
able to run the Firefox OS 1.1 simulator on Firefox 29.

Testing the app with the App Manager

Before we try our application on the simulator we’d better check out if the files are in the correct
place. Your memos folder should look like this one:

List of files used by Memos

If you have a hunch that you wrote something wrong, just compare your version with the one
on the memos github repository⁶⁸ (There is also a copy of the source code in a folder called code
on the book repository⁶⁹).

To open the Simulator Dashboard go to the menu for Tools ->WebDeveloper -> AppManager.

⁶²http://ftp.mozilla.org/pub/mozilla.org/labs/r2d2b2g/r2d2b2g-5.0pre7-mac.xpi
⁶³http://ftp.mozilla.org/pub/mozilla.org/labs/r2d2b2g/r2d2b2g-5.0pre7-linux.xpi
⁶⁴http://ftp.mozilla.org/pub/mozilla.org/labs/r2d2b2g/r2d2b2g-5.0pre7-windows.xpi
⁶⁵http://downloads.geeksphone.com/
⁶⁶https://hacks.mozilla.org/2014/01/upgrading-your-zte-open-to-firefox-1-1-or-1-2-fastboot-enabled/
⁶⁷https://bugzilla.mozilla.org/show_bug.cgi?id=1001590
⁶⁸https://github.com/soapdog/memos-for-firefoxos
⁶⁹https://github.com/soapdog/guia-rapido-firefox-os

http://ftp.mozilla.org/pub/mozilla.org/labs/r2d2b2g/r2d2b2g-5.0pre7-mac.xpi
http://ftp.mozilla.org/pub/mozilla.org/labs/r2d2b2g/r2d2b2g-5.0pre7-linux.xpi
http://ftp.mozilla.org/pub/mozilla.org/labs/r2d2b2g/r2d2b2g-5.0pre7-windows.xpi
http://downloads.geeksphone.com/
https://hacks.mozilla.org/2014/01/upgrading-your-zte-open-to-firefox-1-1-or-1-2-fastboot-enabled/
https://hacks.mozilla.org/2014/01/upgrading-your-zte-open-to-firefox-1-1-or-1-2-fastboot-enabled/
https://bugzilla.mozilla.org/show_bug.cgi?id=1001590
https://github.com/soapdog/memos-for-firefoxos
https://github.com/soapdog/guia-rapido-firefox-os
http://ftp.mozilla.org/pub/mozilla.org/labs/r2d2b2g/r2d2b2g-5.0pre7-mac.xpi
http://ftp.mozilla.org/pub/mozilla.org/labs/r2d2b2g/r2d2b2g-5.0pre7-linux.xpi
http://ftp.mozilla.org/pub/mozilla.org/labs/r2d2b2g/r2d2b2g-5.0pre7-windows.xpi
http://downloads.geeksphone.com/
https://hacks.mozilla.org/2014/01/upgrading-your-zte-open-to-firefox-1-1-or-1-2-fastboot-enabled/
https://bugzilla.mozilla.org/show_bug.cgi?id=1001590
https://github.com/soapdog/memos-for-firefoxos
https://github.com/soapdog/guia-rapido-firefox-os

Our First App 36

Where you can find the App Manager

With the App Manager open, click the Add Packaged App option on the Apps tab and browse
to where you placed the memos files and select that folder.

Our First App 37

Adding a new app

If everything works as expected you will see the Memos app on the list of apps.

Our First App 38

Memos showing on the App Manager

After adding your application, click the Start Simulator button and run one of your installed
simulators. If you haven’t installed any simulator yet, I suggest you follow the instructions on
screen and install them all.

With the Simulator running press the Update button on the memos listing on the App Manager
to install memos on the running Simulator. After the installation the memos icon will appear at
the Simulator home screen. You can just click it to run your app.

Our First App 39

Memos installed on the Simulator

Congratulations! You created and tested your first app. It’s not a complex or revolutionary app
- but I hope it helped you understand the development workflow of Firefox OS. As you can see,
it’s not very different from standard Web development.

Remember that whenever you alter some of the source files you need to press theUpdate button
to update the copy of the app that is stored on the running Simulator.

Testing the app on the simulator

Before we try our application on the simulator we’d better check out if the files are in the correct
place. Your memos folder should look like this one:

Our First App 40

List of files used by Memos

If you have a hunch that you wrote something wrong, just compare your version with the one
on the memos github repository⁷⁰ (There is also a copy of the source code in a folder called code
on the book repository⁷¹).

To open the Simulator Dashboard go to the menu for Tools -> Web Developer -> Firefox OS
Simulator.

How to open simulator dashboard

With the dashboard open, click the Add Directory button and browse to where you placed the
memos files and select the app manifest.

⁷⁰https://github.com/soapdog/memos-for-firefoxos
⁷¹https://github.com/soapdog/guia-rapido-firefox-os

https://github.com/soapdog/memos-for-firefoxos
https://github.com/soapdog/guia-rapido-firefox-os
https://github.com/soapdog/memos-for-firefoxos
https://github.com/soapdog/guia-rapido-firefox-os

Our First App 41

Adding a new app

If everything works as expected you will see the Memos app on the list of apps.

Memos showing on the dashboard

When you add a new application, the simulator will launch with your new app running -
allowing you to test it. Now you can test all the features for Memos.

Congratulations! You created and tested your first app. It’s not a complex or revolutionary app
- but I hope it helped you understand the development workflow of Firefox OS. As you can see,
it’s not very different from standard Web development.

Remember that whenever you alter some of the source files you need to press the Refresh button
to update the copy of the app that is stored on the simulator.

Summary

In this chapter we built our first application for Firefox OS and saw it running on the simulator.
In the next chapter we’re going to check out the developer tools that comes bundled with Firefox,
they will make your life a lot easier when developing applications.

Developer Tools
Firefox has many tools to help web developers do their job. Many people are still using FireBug⁷²
and haven’t realize that Firefox now has its own built-in tools. In this chapter we’re going to
review the tools that are most useful for developing apps for Firefox OS.

If you’re interested in learning more about these tools, and what other dev tools goodness is
about to land in Firefox, check out the developer tools⁷³ page on Mozilla’s Developer Network
(really, go check that link! I will wait).

Introducing the Responsive Design View

A common workflow in Web development is changing a HTML file and then reloading the
page in the browser to see what’s changed. Unless you are using something like Grunt or Volo,
generally there won’t be the need for a compilation step or similar. Even though the Firefox OS
Simulator permits you to use that same workflow, the emulator is currently restricted to one
resolution (480x320). This is less than ideal if you are also designing your application to work on
tablets, phablets, giant TVs, or anything in between.

To check how your app will look on any screen resolution, you can use Firefox’s Responsive
Design View tool to change the screen (and viewport). It can be enabled by going to the Tools
menu ->Web Developer -> Responsive Design View as shown in the image below. When you
activate this tool, the window will change so that you can alter the viewport size using the drag
corners or the selection box.

⁷²https://addons.mozilla.org/pt-BR/firefox/addon/firebug/
⁷³https://developer.mozilla.org/en-US/docs/Tools

https://addons.mozilla.org/pt-BR/firefox/addon/firebug/
https://developer.mozilla.org/en-US/docs/Tools
https://addons.mozilla.org/pt-BR/firefox/addon/firebug/
https://developer.mozilla.org/en-US/docs/Tools

Developer Tools 43

Activating Responsive Design View

Using the responsive design view is specially useful for testing outmedia queries⁷⁴, as it allows
you to resize the screen and see how your site responds to changes in layout in real time. Another
great feature of the Responsive Design View is that you can save predefined sizes. If you know
what viewport sizes you are targetting, then your can quickly check different viewport sizes
without needing to resize the actual browser window.

⁷⁴https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Media_queries

https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Media_queries
https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Media_queries

Developer Tools 44

Responsive Design View Sample

At the time of writing, most of the Firefox OS phones that are on the market are running on
a 480x320 resolution - and at a pixel density of about 96 pixels-per-inch. However, you should
expect this to change as new Firefox OS hardware becomes available as time goes on: screens
will likely pack more pixels and have higher pixel densities (just like Apple’s retina displays).

To future proof your app, don’t hard-code your CSS to any resolution or pixel density. Instead,
you should use media queries and the responsive design methodology to create apps that adapt
to any screen size. To learn more about responsive design, I recommend the following books
Responsive Web Design⁷⁵ and Mobile First⁷⁶.

In summary, the responsive design view allows us to test our web applications using many
different screen sizes without the need to resize the Firefox browser window itself. In my humble
opinion this is one of the most useful web developer tools available - but it has one big limitation:
it does not currently allow you to test different pixel densities (i.e. to see what your site would
look like on a “retina” display or better).

⁷⁵http://www.abookapart.com/products/responsive-web-design
⁷⁶http://www.abookapart.com/products/mobile-first

http://www.abookapart.com/products/responsive-web-design
http://www.abookapart.com/products/mobile-first
http://www.abookapart.com/products/responsive-web-design
http://www.abookapart.com/products/mobile-first

Developer Tools 45

Developer tools

Firefox’s developer tools are similar to FireBug and the tools available in other modern browsers.
Using these tools you can execute and debug your JavaScript using the console⁷⁷, and manipulate
both the DOM and the CSS on the current page.

To bring up the console, you can either:

1 * Go to "Tools menu > Web Developer > Web Console".

• right-click on the page you want to debug, and select “Inspect Element”, then click on
“Console” tab.

JavaScript Console

Besides the JavaScript Console there are many other tools available such as the style editor⁷⁸, the
network monitor⁷⁹, the JavaScript profiler⁸⁰, the JavaScript debugger⁸¹, the page inspector⁸² and
many others.

⁷⁷https://developer.mozilla.org/en-US/docs/Web/API/console
⁷⁸https://developer.mozilla.org/en-US/docs/Tools/Style_Editor
⁷⁹https://developer.mozilla.org/en-US/docs/Tools/Network_Monitor
⁸⁰https://developer.mozilla.org/en-US/docs/Tools/Profiler
⁸¹https://developer.mozilla.org/en-US/docs/Tools/Debugger
⁸²https://developer.mozilla.org/en-US/docs/Tools/Page_Inspector

https://developer.mozilla.org/en-US/docs/Web/API/console
https://developer.mozilla.org/en-US/docs/Tools/Style_Editor
https://developer.mozilla.org/en-US/docs/Tools/Network_Monitor
https://developer.mozilla.org/en-US/docs/Tools/Network_Monitor
https://developer.mozilla.org/en-US/docs/Tools/Profiler
https://developer.mozilla.org/en-US/docs/Tools/Debugger
https://developer.mozilla.org/en-US/docs/Tools/Page_Inspector
https://developer.mozilla.org/en-US/docs/Web/API/console
https://developer.mozilla.org/en-US/docs/Tools/Style_Editor
https://developer.mozilla.org/en-US/docs/Tools/Network_Monitor
https://developer.mozilla.org/en-US/docs/Tools/Profiler
https://developer.mozilla.org/en-US/docs/Tools/Debugger
https://developer.mozilla.org/en-US/docs/Tools/Page_Inspector

Developer Tools 46

In the application we’ve built in the previous chapter, we used the console to check the progress
of our application. This is a pretty powerful way to debug our apps - but some developers are
still using alert() all over their JavaScript code as their “debug tool”.

Using alert() is really bad because if one forgets to remove any alert()s, it’s the user’s whowill
ultimately pay the price. Using the console avoids this problem as it harmlessly (and silently!)
routes all messages to a place that user’s don’t normally access - so it doesn’t disrupt the user
experience. Using the console also means you don’t need to remove your console messages from
your code, unless you really want to. This can help with code maintenance and debugging if
things do go wrong (as they generally do with any software!).

Learning how to properly use the developer tools bundled with Firefox (or whatever browser
you’re using) is an important step in becoming a better developer. That’s why I advise everyone
to check the links above and get more familiar with the various tools available in Firefox.

One special tool that was not mentioned above is the remote debugger⁸³. That tool allows us to
connect to a phone running Android or Firefox OS, and use the developer tools to debug the
code that is running on the device in real time.

Summary

This chapter provided a brief tour of the developer tools that come bundled with Firefox. Using
these tools will make your development process easier, specially when you use them together
with the Firefox OS simulator. They are an indispensable combination for putting together an
application. In the next chapter we’re going to learn more about the simulator and how to make
the best use of it.

⁸³https://developer.mozilla.org/en-US/docs/Tools/Remote_Debugging

https://developer.mozilla.org/en-US/docs/Tools/Remote_Debugging
https://developer.mozilla.org/en-US/docs/Tools/Remote_Debugging

The App Manager

Firefox OS Simulator Dashboard

We’ve setup the Simulator in the chapter about preparing the environment and we used it on
the chapter about building our first app. Now we’re going to take a deeper look into the App
Manager features and learn how to do the most common tasks.

To learn more about it, check out the Firefox OS: Using the App Manager page⁸⁴ on MDN.

Remember: that if you are using a device running Firefox OS 1.1 or older then you need
to use the Firefox OS 1.1 Simulator extension with it and not the App Manager. This
Simulator is explained in the next chapter.

⁸⁴https://developer.mozilla.org/docs/Mozilla/Firefox_OS/Using_the_App_Manager

https://developer.mozilla.org/docs/Mozilla/Firefox_OS/Using_the_App_Manager
https://developer.mozilla.org/docs/Mozilla/Firefox_OS/Using_the_App_Manager

The App Manager 48

Adding Apps

You can add both hosted and packaged apps to the App Manager. Lets see how to add each type
of app:

Adding packaged apps

You already saw how to add packaged apps to the App Manager during our first app creation,
but we’re going to do a recap so I can show you what else is possible.

To add a new packaged application click the Add Packaged App button on the App Manager
Dashboard as shown in the screenshot below.

Showing the Add Packaged App option that adds a packaged app to the App Manager

When you click on the button highlighted on the image, Firefox opens a file selection dialog.
You should browse your hard drive and select the folder that contains the manifest file for the

The App Manager 49

application that you want to add to the App Manager. If there are no issues with your manifest
then your app will be addes to the list on screen.

Adding hosted apps

If you’re building a hosted app then you should test it by using a web server. Do not try to use
the method described above for hosted apps because you may miss some errors that will only
happen on a hosted environment - such as serving the manifest with the wrongMIME type. Note
that the simulator won’t warn you about things like incorrect MIME types, but it’s important to
get such things right if you submit your app to the Mozilla Marketplace.

Most of the hosted apps are not applications built exclusively for Firefox OS but responsive design
based websites that are able to adapt themselves to different devices and resolutions. These web
apps usually have a complex backend that needs to be in-place for the application to work and
that’s why you need to test the app using a real web server running your backend stuff.

To run your app in the simulator, fill the URL of your application in the text entry box and click
the Add Hosted App button.

Adding a hosted app to the App Manager

After clicking the button, the manifest is verified and if it is correct the application will be added
and the App Manager.

Running your app

To run your application click the Start Simulator button. After that you will be able to select
which of the installed Simulator you want to run.

Once you have a Simulator running you can click the Update button inside your application
listing and it will install the app on the running Simulator.

The application icon will appear at the home screen of the Simulator once the installation is
complete. You can just click it to run.

The App Manager 50

Updating your app

Every time you change some of your files and want to test again on the Simulator you need to
press the Update button to update the installation of your app on the running Simulator.

Debugging

After the application is added to a running Simulator we’re able to debug it by clicking the
Debug button in the application listing. This will launch the your app on the running Simulator
and open a JavaScript Console connected to your app.

What button to press

After pressing this button you will see a screen like this:

The App Manager 51

Developer Tools connected to the app running on the simulator

With the tools connected to your app you can test your JavaScript, debug your DOM, edit styles,
etc. Like those startup guys like to say: pivot until your app is good.

Once your app is running well on the simulator it’s time to test on a real device.

Testing apps on a real device

Nothing replaces testing on a real device. On the simulator, you test things by using a mouse and
clicking on a computer screen; while on a real device you use your fingers on a touchscreen and
by using physical buttons. Its a very different user and development experience.

As an example why this type of testing matters, let me tell you a brief story: Some years ago,
Raphael Eckhardt (the designer who created the cover of this book) and I were building a puzzle
game not that disimilar to Bejeweled. Our game involved dragging and dropping some pieces on
a board and was working pretty well on the simulator.

When we then tested the game on an actual phone we realized our game components were not
touch friendly at all. When placing a hand over the screen the board would vanish behind the
hand. Even worst, the pieces the users were supposed to drag were smaller than the user’s finger
tip, so the user couldn’t see what they were doing! In summary, our UX sucked very badly. That

The App Manager 52

happened because we kept trying things only on the simulator using a mouse that had a tiny
cursor. When we decided to try with our fatter-than-a-cursor fingers we realized that we need
to rework our UI.

To avoid having a similarly frustrating experience, always test on a real device… or two, or more
if you can get your hands on multiple devices. Test often with simple prototypes. Otherwise, you
can waste valuable time and money having to recreate assets.

Connecting with a Firefox OS device

If you have a Firefox OS device (and have any needed drivers installed) then you can push apps
directly from the App Manager to the device if the device is connected to your computer. When
the App Manager detects that you plugged a Firefox OS phone, it will display the id of the phone
on the bottom next to the Start Simulator button.

Device Connected!

If you press that button. The phone will ask for permission to establish a debugging connection
with the App Manager, you need to grant that. Once that connection is made you will be able to
use the Update and Debug buttons on your app listing to install and debug your application on
the connected device just like you did with the running Simulator.

Summary

In summary, the App Manager is fantastic. Its much better than the old Firefox OS 1.1 Simulator
Extension since it has better developer tools and can run multiple Firefox OS versions. We can
envision the App Manager getting better and better with its built-in manifest editor and more.

Besides feeling awesome and empowered, by this point in the book you hopefully have a good
grasp of the workflow for building apps for Firefox OS.

The App Manager 53

In the next chapter we’ll talk about the old Firefox OS 1.1 Simulator Extension. This is the only
way to connect to devices running Firefox OS 1.1. The chapter is really similar to this one.
Actually its the same content but adapted for the different UI.

After the Simulator chapter, we’ll talk about distributing your application.

The Firefox OS Simulator

Firefox OS Simulator Dashboard

Attention: This chapter is here for compatibility with devices running Firefox OS 1.1.
The current method for testing and debugging apps is the App Manager which we
talked about in the previous chapter. The content of this chapter is just for people testing
stuff on Firefox OS version 1.1.

The Firefox OS Simulator 55

Attention: If you’re running Firefox 29 or newer and you have a device running
Firefox OS 1.1 or earlier then you will need another version of the Firefox OS 1.1
Simulator that is not currently listed on the add-ons marketplace. This version is
BETA but its the best we’ve got right now. You can fetch it for Mac OS X⁸⁵, Linux⁸⁶ or
Windows⁸⁷. Just drop the xpi file on Firefox and follow the installation instructions. If
you want to follow up on the quest of making the Firefox OS 1.1 simulator work on
Firefox 29 then check out bug request #1001590 it⁸⁸.

We’ve installed the Firefox OS Simulator in the chapter about preparing the environment and
we used it on the chapter about building our first app. Now we’re going to take a deeper look
into the simulator features and learn how to do the most common tasks.

To learn more about it, check out the Firefox OS Simulator documentation⁸⁹ on MDN.

Remember that if you are using a device running Firefox OS 1.2+ then you need to use the
App Manager with it and not the Firefox OS Simulator. The App Manager was described in the
previous chapter.

Adding Apps

You can add both hosted and packaged apps to the simulator. Lets see how to add each type of
app.

Adding packaged apps

You already saw how to add packaged apps to the simulator during our first app creation, but
we’re going to do a recap so I can show you what else is possible.

To add a new packaged application click theAddDirectory button on the Simulator Dashboard
as shown in the screenshot below.

⁸⁵http://ftp.mozilla.org/pub/mozilla.org/labs/r2d2b2g/r2d2b2g-5.0pre7-mac.xpi
⁸⁶http://ftp.mozilla.org/pub/mozilla.org/labs/r2d2b2g/r2d2b2g-5.0pre7-linux.xpi
⁸⁷http://ftp.mozilla.org/pub/mozilla.org/labs/r2d2b2g/r2d2b2g-5.0pre7-windows.xpi
⁸⁸https://bugzilla.mozilla.org/show_bug.cgi?id=1001590
⁸⁹https://developer.mozilla.org/en-US/docs/Tools/Firefox_OS_Simulator

http://ftp.mozilla.org/pub/mozilla.org/labs/r2d2b2g/r2d2b2g-5.0pre7-mac.xpi
http://ftp.mozilla.org/pub/mozilla.org/labs/r2d2b2g/r2d2b2g-5.0pre7-linux.xpi
http://ftp.mozilla.org/pub/mozilla.org/labs/r2d2b2g/r2d2b2g-5.0pre7-windows.xpi
https://bugzilla.mozilla.org/show_bug.cgi?id=1001590
https://developer.mozilla.org/en-US/docs/Tools/Firefox_OS_Simulator
http://ftp.mozilla.org/pub/mozilla.org/labs/r2d2b2g/r2d2b2g-5.0pre7-mac.xpi
http://ftp.mozilla.org/pub/mozilla.org/labs/r2d2b2g/r2d2b2g-5.0pre7-linux.xpi
http://ftp.mozilla.org/pub/mozilla.org/labs/r2d2b2g/r2d2b2g-5.0pre7-windows.xpi
https://bugzilla.mozilla.org/show_bug.cgi?id=1001590
https://developer.mozilla.org/en-US/docs/Tools/Firefox_OS_Simulator

The Firefox OS Simulator 56

Showing the Add Directory button that adds a packaged app to the simulator

When you click on the button highlighted on the image, Firefox opens a file selection dialog.
You should browse your hard drive and select the app manifest file for the application that you
want to add to the simulator. If there are no issues with your manifest and your start file is ok,
the application will be added and the simulator will launch with your app running. If there is
anything wrong with your manifest, or some other issue, then an error report will be shown on
the dashboard.

Example of an invalid manifest

Whenever you update your application you should click Refresh to update the version of the
app on the simulator (you can also press CMD/CTRL+R on the simulator window to refresh).

Adding hosted apps

If you’re building a hosted app then you should test it by using a web server. Do not try to use
the method described above for hosted apps because you may miss some errors that will only
happen on a hosted environment - such as serving the manifest with the wrongMIME type. Note
that the simulator won’t warn you about things like incorrect MIME types, but it’s important to
get such things right if you submit your app to the Mozilla Marketplace.

Most of the hosted apps are not applications built exclusively for Firefox OS but responsive design
based websites that are able to adapt themselves to different devices and resolutions. These web
apps usually have a complex backend that needs to be in-place for the application to work and
that’s why you need to test the app using a real web server running your backend stuff.

The Firefox OS Simulator 57

To run your app in the simulator, fill the URL of your application in the text entry box on the
top and click the Add URL button.

Adding a hosted app to the simulator

After clicking the button, the manifest is verified and if it is correct the application is added and
the simulator is launched with your application running. Like when we’re adding packaged apps,
if something wrong happens with in the manifest you will see a report (e.g. “app submission to
the marketplace needs at least an 128 icon”).

As with packaged apps, whenever you update your application you should click Refresh to
update the version of the app on the simulator (you can also press CMD/CTRL+R on the simulator
window).

Debugging

After the application is added to the simulator we’re able to debug it by clicking the Connect
button next to the application listing on the dashboard. This will launch the simulator with your
application running and the JavaScript Console open and connected to your app.

What button to press

After pressing this button you will see a screen like this:

The Firefox OS Simulator 58

Developer Tools connected to the app running on the simulator

With the tools connected to your app you can test your JavaScript, debug your DOM, edit styles,
etc. Like those startup guys like to say: pivot until your app is good.

Once your app is running well on the simulator it’s time to test on a real device.

Testing apps on a real device

Nothing replaces testing on a real device. On the simulator, you test things by using a mouse and
clicking on a computer screen; while on a real device you use your fingers on a touchscreen and
by using physical buttons. Its a very different user and development experience.

As an example why this type of testing matters, let me tell you a brief story: Some years ago,
Raphael Eckhardt (the designer who created the cover of this book) and I were building a puzzle
game not that disimilar to Bejeweled. Our game involved dragging and dropping some pieces on
a board and was working pretty well on the simulator.

When we then tested the game on an actual phone we realized our game components were not
touch friendly at all: when placing a hand over the screen the board would vanish behind the
hand. Even worst, the pieces the users were supposed to drag were smaller than the user’s finger
tip, so the user couldn’t see what they were doing! In summary, our UX sucked very badly. That
happened because we’re kept trying things only on the simulator with a mouse that used a tiny

The Firefox OS Simulator 59

cursor. When we decided to try with our fatter-than-a-cursor fingers we realized that we need
to rework our UI.

To avoid having a similarly depressing experience, always test on a real device… or two, or more
if you can get your hands on some. And test often with simple prototypes: otherwise, you can
waste valuable time and money having to recreate assets.

You can buy a developer preview phone running Firefox OS from the Geeksphone Shop⁹⁰. I
recommend using a Geeksphone Keon⁹¹ because this device has similar specs to the devices that
are being launched by Mozilla’s partners.

You can also buy a device targeted at consumers if you happen to live in one of the countries
where they are already available. A third way is that you can replace Android with Firefox OS
on some devices (some specific devices only, chance of bricking, don’t blame me!) - but I don’t
recommend this unless you’re a power user and like to spend a lot of time hacking.

Connecting with a Firefox OS device

If you have a Firefox OS device (and have any needed drivers installed) then you can push apps
directly from the simulator to the device if the device is connected to your computer. When the
simulator detects that you plugged a Firefox OS phone, it will display a notice saying Device
Connected.

Device Connected!

If your phone is connected (and detected) the simulator will add a new button next to Refresh
and Connect called Push. When you press this button, a permission request dialog appears on
the device screen asking for confirmation to install the pushed app.

⁹⁰http://shop.geeksphone.com/en/
⁹¹http://www.geeksphone.com/

http://shop.geeksphone.com/en/
http://www.geeksphone.com/
http://shop.geeksphone.com/en/
http://www.geeksphone.com/

The Firefox OS Simulator 60

Which button to press to push apps to the connected device

And below we can see the permission request screen.

Not the best picture in the world but shows the permission screen (sorry for the face it was 4:25 AM)

With the application running on the device you can use remote debugging to connect a JavaScript
console and debug the app.

Summary

In summary, the Firefox OS Simulator is awesome for building Firefox OS specific apps - but
has some limitations if you are trying to build for a range of devices (e.g. currently, you can’t
emulate what Firefox OS would feel like on a tablet).

Besides feeling awesome and empowered, by this point in the book you hopefully have a good
grasp of the workflow for building apps for Firefox OS.

In the next chapter we’ll talk about the new app manager which is the new system that Mozilla
is building to debug apps. It has more features than using just the Firefox OS Simulator.

Distributing Your Apps
Now that our application is ready we need to figure out a way to get it to our users. In the
introduction chapter I mentioned that, unlike Apple, Mozilla does not force you to use their
distribution channels - we’re free to spread our creations as we wish. In this chapter we’re going
to learn how to distribute our app outside the Firefox Marketplace⁹².

In my humble opinion, distributing your application outside the Mozilla Marketplace makes
sense in the following two situations.

1. You’re developing an application for internal use within your company, or to a restrict-
ed/limited group of users. If you ship it to the marketplace then it will be available to
anyone and if you want to restrict the usage of the app to a group of people then you will
need some kind of authentication scheme with a server backend or something similar. For
example, when the Evernote application is launched for the first time, it asks the user to
log in their servers.

2. You already have a huge user-base that you can tap into for your app distribution. An
example of this would be a news paper, like the Financial Times, which can simply
distribute their app on their own website and reach most of their users. Remember that
you can distribute your application outside the marketplace and in the marketplace at the
same time, so if you already have your ownmarketing channel you can leverage that while
still using the marketplace for reaching new users outside your own channel.

The distribution process for hosted and packaged apps is similar, but it uses different functions.
Thats why I’m discussing them separately. Regardless if your app is hosted or packaged, the
workflow is usually the same: you provide a button or link on your own home page that says
something similar to Click to Install Our App, or you use a special URL that when launched
causes the installation routine to run. In both cases, a dialog is presented to the user asking him
or her to confirm that they want to install the given app.

Hosted Apps

⁹²http://marketplace.firefox.com

http://marketplace.firefox.com
http://marketplace.firefox.com

Distributing Your Apps 62

Code for hosted app installation

1 var installapp = navigator.mozApps.install(manifestURL);

2 installapp.onsuccess = function(data) {

3 // An App was installed.

4 };

5 installapp.onerror = function() {

6 // An App was not installed, more information at

7 // installapp.error.name

8 };

In the sample above manifestURL contains the address for the manifest file. When this code runs,
the system asks the user to confirm his desire to install the given application and depending on
the choice of the user it runs the success or the error callback.

To learn more about this API check the MDN page about application installation⁹³.

Packaged Apps

Packaged app installation is similar but instead of calling mozApps.install()we call mozApps.installPackage()
as shown in the sample code below.

Code for packaged app installation

1 // Absolute url to package:

2 var packageURL = "http://myapp.example.com/myapp.zip";

3 var installapp = navigator.mozApps.installPackage(packageURL);

Warning: I have the impression that packaged app installation outside of the market-
place is not possible on Firefox OS version 1.0.1. Even though the API is documented, I
have never tried it. Please if you try it, send me feedback so that I can update this book.

Summary

This chapter discussed options for distributing applications outside of the FirefoxMarketplace by
using the installation and management APIs for Open Web Apps. There are many other routines
available to do things such as checking if your application is installed (so that you can hide that
Click Here To Install button). To learn more about those APIs check out the MDN page about
application installation⁹⁴ (yes, gave you this link before - this time, click it! There is important
stuff there).

In the next chapter we’re going to learn how to distribute our apps through the Firefox
Marketplace.

⁹³https://developer.mozilla.org/docs/Apps/JavaScript_API
⁹⁴https://developer.mozilla.org/docs/Apps/JavaScript_API

https://developer.mozilla.org/docs/Apps/JavaScript_API
https://developer.mozilla.org/docs/Apps/JavaScript_API
https://developer.mozilla.org/docs/Apps/JavaScript_API
https://developer.mozilla.org/docs/Apps/JavaScript_API
https://developer.mozilla.org/docs/Apps/JavaScript_API

The Firefox Marketplace

Firefox Marketplace

The Firefox Marketplace⁹⁵ is the online shop where you can buy or download applications for
Firefox OS, Firefox, and Firefox For Android. This is the main channel for distributing Firefox
OS applications, but you’re not required to use it. If you want to distribute things outside the
marketplace, read the previous chapter.

To place your apps on the marketplace you need to be identified via Mozilla Persona⁹⁶. Just click
Sign Up and follow the instructions. Once you’re identified, you will be ready to submit apps to
the Firefox Marketplace.

⁹⁵http://marketplace.firefox.com
⁹⁶https://login.persona.org/about

http://marketplace.firefox.com
https://login.persona.org/about
http://marketplace.firefox.com
https://login.persona.org/about

The Firefox Marketplace 64

Checklist before even thinking about sending an app
to the marketplace

All applications that are submitted to the marketplace go through an approval process (less
scary than it sounds!). Hosted web applications go through a lighter process than privileged
apps because they use less sensitive APIs. Before sending your application to the marketplace
check out the marketplace review criteria⁹⁷. The most important parts are (IMHO):

• Firefox OS devices do not have a back button like Android and your desktop browser. If
the user navigates to a screen inside your app where there is no way for them to get back
to the previous place (i.e. the user gets stuck), your app will be rejected.

• Your app should have a 60x60 icon and clear descriptions.
• Your app should do what the description says. Saying one thing and providing something
else will get your app rejected.

• If your app asks for a given permission then you should use it somewhere in your code.
Flagging your application as a privileged app and not using any privileged app API will
cause your app to be rejected with a request that you submit again as a plain app.

• Your application needs to have a privacy policy in place.
• Manifest files should be served with the correct MIME type and come from the same
domain as the app for hosted apps.

There are other criteria discussed in the link above - and the rules can change without notice.
It will be worth your time to read that page. Getting your application rejected because of small
stuff that is easy to fix is a huge waste of time. Better get things right the first time (reviewers
love to approve good apps!).

Preparing your app for submission

The steps required to submit your application to the marketplace are different depending on
whether it’s a hosted or a packaged app. For a hosted app, it just needs to be accessible on the
Internet with the correct MIME type and manifest in place. Packaged apps need to be compressed
using zip and deserve some extra attention.

Many developers make the mistake of selecting the folder containing the application files and
zipping it. This causes the zip file to contain a folder and this folder to contain the app. This
is not the correct way to zip a Firefox OS application. The correct way is to zip the files and
folders needed so that the manifest is on the root level of the zip file. On Mac OS X and Linux
you can use the terminal to navigate to your application folder and use a command such as zip
-r myapp.zip * to compress things correctly as shown on the screenshot below.

⁹⁷https://developer.mozilla.org/en-US/docs/Web/Apps/Publishing/Marketplace_review_criteria

https://developer.mozilla.org/en-US/docs/Web/Apps/Publishing/Marketplace_review_criteria
https://developer.mozilla.org/en-US/docs/Web/Apps/Publishing/Marketplace_review_criteria

The Firefox Marketplace 65

Correctly zipping the files

This zip file is what we send to the marketplace.

Submitting your app to the marketplace

Now with your application ready, and with the firm knowledge that it meets the review criteria,
its time we send it to the marketplace. To do so browse toMy Submissions using the gear button
on the top of the marketplace page.

My Submissions

Inside the application management page, you need to click on Submit An App on the top menu.

Submit An App

This link will lead you to the form for submitting new apps, as seen in the screenshot below.

The Firefox Marketplace 66

Submit New App

On this screen you will select the following options:

• If the application is hosted or packaged.
• If it is free or paid (or uses in-app purchases).
• What type of devices it is available for (Firefox OS, Firefox Desktop, Firefox for Mobile on
phones, Firefox for Mobile on Tablets).

After making these choices you’re driven to the second screen. On this book we’re focusing on
packaged apps but hosted apps are similar.

In the remaining text of this chapter we’re assuming that we’re shipping a free Firefox OS
packaged app. In this case we need to upload the zip file we prepared on the previous section.

After uploading the file, it undergoes an automated process and a report is shown with many
options.

The Firefox Marketplace 67

After the zip upload

From the screen shot above we can see that the app I sent to the marketplace has no errors
but contains six warnings. Ignoring the warnings for the sake of this text, lets check what the
minimum requirements for this app are. In this case, the last option Smartphone-Sized Displays
(qHD) should be unchecked because our application adapts to any screen size.

The next step is called Step #3: Details and it is where you fill the information about your
application such as category, description, screen captures, etc.

The Firefox Marketplace 68

Filling details

After filling-in the details, the submission process is done. Now you just wait for the approval
from the marketplace reviewers. Congratulations you shipped a Firefox OS application!!!

On the Application Management page⁹⁸ you can check the status of your submissions and alter
details if needed.

To learn more about submitting applications to the Firefox Marketplace read this article on the
Firefox OS developer hub⁹⁹.

Summary

Congratulations!!! You have a new application on the Firefox Marketplace, you’re exploring a
brand new market!

I hope you enjoyed this quick guide. I plan to update and expand this guide often - so keep your
eyes open and register for the updates. If you downloaded this book from Leanpub then its all
good because you will receive emails about any updates. If you downloaded it from somewhere
else then please consider fetching it from the official page at Leanpub¹⁰⁰ and registering your
email. It’s free and, no, you won’t get any spam. Promise.

⁹⁸https://marketplace.firefox.com/developers/submissions
⁹⁹https://marketplace.firefox.com/developers/docs/submission
¹⁰⁰http://leanpub.com/quickguidefirefoxosdevelopment

https://marketplace.firefox.com/developers/submissions
https://marketplace.firefox.com/developers/docs/submission
https://marketplace.firefox.com/developers/docs/submission
http://leanpub.com/quickguidefirefoxosdevelopment
https://marketplace.firefox.com/developers/submissions
https://marketplace.firefox.com/developers/docs/submission
http://leanpub.com/quickguidefirefoxosdevelopment

The Firefox Marketplace 69

Please send me feedback. This book was written by pulling all-nights before a tech confer-
ence so you can infer how much I enjoy this project and want to see it succeed. I can be
reached for feedback on my Twitter account at @soapdog¹⁰¹ and over email at fxosquick-
guide@andregarzia.com¹⁰². My home page is at http://andregarzia.com¹⁰³.

Now that you’re a part of the group of Firefox OS app creators, come be a part of the greater
Mozilla community: Help keep the web free and open made by users for users. Join us at
http://www.mozilla.org/contribute/¹⁰⁴ and help Firefox OS grow!

¹⁰¹http://twitter.com/soapdog
¹⁰²mailto:fxosquickguide@andregarzia.com
¹⁰³http://andregarzia.com
¹⁰⁴http://www.mozilla.org/en-US/contribute/

http://twitter.com/soapdog
mailto:fxosquickguide@andregarzia.com
mailto:fxosquickguide@andregarzia.com
http://andregarzia.com
http://www.mozilla.org/en-US/contribute/
http://twitter.com/soapdog
mailto:fxosquickguide@andregarzia.com
http://andregarzia.com
http://www.mozilla.org/en-US/contribute/

Appendix 1: Useful links
• Mozilla¹⁰⁵
• Mozilla Brasil Community Page¹⁰⁶
• Firefox OS Developer Hub¹⁰⁷
• Mozilla Developers Network¹⁰⁸: Best documentation ever!
• Firefox OS¹⁰⁹
• WebAPI on Mozilla Wiki¹¹⁰

¹⁰⁵http://mozilla.org
¹⁰⁶http://mozillabrasi.org.br
¹⁰⁷http://marketplace.firefox.com/developers
¹⁰⁸http://developer.mozilla.org/
¹⁰⁹http://www.mozilla.org/pt-BR/firefox/os/
¹¹⁰http://wiki.mozilla.org/WebAPI

http://mozilla.org
http://mozillabrasi.org.br
http://marketplace.firefox.com/developers
http://developer.mozilla.org/
http://www.mozilla.org/pt-BR/firefox/os/
http://wiki.mozilla.org/WebAPI
http://mozilla.org
http://mozillabrasi.org.br
http://marketplace.firefox.com/developers
http://developer.mozilla.org/
http://www.mozilla.org/pt-BR/firefox/os/
http://wiki.mozilla.org/WebAPI

	Table of Contents
	Acknowledgments
	This book is in perpetual beta
	Me, myself, and I
	How this book came to be
	Staying up to date
	Donations
	How to contact the author
	Cover Illustration
	Who should read this book
	Best Practices vs Beginner Friendliness
	Feedback & Pull Requests
	Translations
	Version history
	Introduction
	Firefox OS
	The Platform That HTML5 Deserves
	Accessing The Hardware Using The WebAPI
	Freedom to Develop and Distribute
	Summary

	Setup For Firefox OS App Development
	The Gecko Engine
	What applications do you need?
	App Manager Setup
	Installing the Firefox OS Simulator
	Summary

	Basic Concepts
	The Application Manifest
	Types of Application
	Security Access Levels
	Mozilla's WebAPIs
	Summary

	Our First App
	Creating the app manifest
	Building the HTML
	Crafting the JavaScript code
	Testing the app with the App Manager
	Testing the app on the simulator
	Summary

	Developer Tools
	Introducing the Responsive Design View
	Developer tools
	Summary

	The App Manager
	Adding Apps
	Running your app
	Updating your app
	Debugging
	Testing apps on a real device
	Connecting with a Firefox OS device
	Summary

	The Firefox OS Simulator
	Adding Apps
	Debugging
	Testing apps on a real device
	Connecting with a Firefox OS device
	Summary

	Distributing Your Apps
	Hosted Apps
	Packaged Apps
	Summary

	The Firefox Marketplace
	Checklist before even thinking about sending an app to the marketplace
	Preparing your app for submission
	Submitting your app to the marketplace
	Summary

	Appendix 1: Useful links

