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Foreword

The conference “Innovations in Insurance, Risk- and Asset Management”

was held on the campus of Technical University of Munich in Garching-

Hochbrück (Munich) from April 5th until April 7th, 2017. Thanks to

the great efforts of the organizers, the scientific committee, the keynote

speakers, contributors, and all other participants, the conference was a

huge success, bringing together academics and practitioners. More than

200 participants had many fruitful discussions and exchanges during three

days of talks.

The conference and this book are part of an initiative that was

founded in 2012 as a cooperation between the Chair of Mathematical

Finance at the Technical University of Munich and KPMG AG Wirtschaft-

sprüfungsgesellschaft. This cooperation was based on three pillars: first,

strengthening a scientifically challenging education of students that at the

same time addresses real world topics, second, supporting research with

particular focus on young researchers, and third, bringing together aca-

demic researchers with practitioners from the financial industry in order to

develop trendsetting and viable improvements in the effective management

of financial risks.

The topic of financial risk management is a subject of great importance

for banks, insurance companies, and asset managers alike. It has been

of even greater attention ever since the financial crisis of 2008 and still

is today in the light of difficult market circumstances such as low inter-

est rates, regulatory requirements, and ongoing technological evolvements.

The conference brought together risk management practitioners from insur-

ance, banking and asset management and academics conducting research

in these fields to present and discuss state-of-the-art research in financial

mathematics as well as current trends and innovations. Overall, the topics

presented during the conference covered a large spectrum, ranging from

developments in financial theory, new applications to actuarial and capital

models to practical trends and challenges in risk management.

We would like to thank everyone who contributed to make this event

a great success. In particular, we express our gratitude to the scientific

v
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committee, namely Kathrin Glau, Daniël Linders, Aleksey Min, Matthias

Scherer, Lorenz Schneider, and Rudi Zagst, the organization team led by

Bettina Haas, the key note speakers, the invited professional experts, all

speakers of invited and contributed talks, and all participants that attended

the conference.

Finally, we would like to thank Rudi Zagst and Matthias Scherer for

many great years of cooperation and for making this third large conference

of the KPMG Center of Excellence in Risk Management possible.

We are convinced that this book will help you to gain insights about

state-of-the-art research in the areas of risk management and mathematical

finance.

Franz Lorenz, Dr. Matthias Mayer and Dr. Daniel Sommer,

KPMG AG Wirtschaftsprüfungsgesellschaft
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Preface

The third international conference organized by the KPMG Center of

Excellence in Risk Management took place in April 5–7, 2017 in Garching–

Hochbrück and attracted more than 200 participants from academia and

the financial industry. The conference was titled Innovations in Insurance,

Risk- and Asset Management, reflecting the dynamic growth of these indus-

try segments in the wider Munich area on the one hand, and the scientific

interests of our research group, i.e. the Chair of Mathematical Finance

at Technical University of Munich (TUM) and its many collaborators, on

the other hand. In charge of the scientific organization of the event, and

responsible for editing the proceedings volume, were Kathrin Glau, Daniël

Linders, Aleksey Min, Matthias Scherer, Lorenz Schneider, and Rudi Zagst.

Responsible for the splendid local organization was a team, led by Bettina

Haas, consisting of Maria Dech Pons, Susanne Deuke, Andrea Grant, and

Annette Wenninger.

We were very proud to host as keynote speakers Hansjörg Albrecher

(HEC Lausanne), Daniel Bauer (Georgia State University), Damiano

Brigo (Imperial College London), Damir Filipović (Ecole Polytechnique

Fédérale de Lausanne and Swiss Finance Institute), Ralf Korn (TU Kaiser-

slautern), Steven Kou (National University of Singapore), Stéphane Loisel

(Ecole ISFA — Université Lyon), Alfred Müller (Universität Siegen),

Johanna Nešlehová (McGill University, Montréal), Giovanni Puccetti (Uni-

versity of Milano), Bruno Remillard (HEC Montréal), David Saunders

(University of Waterloo), and Josef Teichmann (ETH Zürich). These

renowned researchers were complemented by our invited industry experts

Christian Bluhm (CRO, UBS), Iain Clark (Efficient Frontier Consult-

ing Ltd), Bernhard Kaufmann (CRO, Munich Re), and Frank Schiller

(Head Actuarial & Pricing, Munich Re). Invited talks were provided

by Nicole Bäuerle (Karlsruher Institut für Technologie), Carole Bernard

(Grenoble Ecole de Management), Philippe Bertrand (Aix-Marseille Uni-

versité), Francesca Biagini (LMU München), Sam Cohen (University of

Oxford), Claudia Czado (TUM), Ernst Eberlein (Universität Freiburg),

Walter Farkas (University of Zurich and ETH Zürich), Massimo Fornasier

vii
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(TUM), Peter Hieber (Universität Ulm), Monique Jeanblanc (Université

d’Evry), Martin Keller-Ressel (TU Dresden), Jan-Frederik Mai (TUM),

Thilo Meyer-Brandis (LMU München), Peter Ott (KPMG), Luis Seco (Uni-

versity of Toronto), Stefan Weber (Leibniz Universität Hannover), and Ralf

Werner (Universität Augsburg). Moreover, as many as 26 contributed talks

were offered. After the conference, we kindly asked all speakers to submit

a manuscript to this proceedings volume. All submissions undergone a

peer-review process to guarantee good academic standards. We thank all

reviewers for their time and expertise.

Besides the academic program, our guests enjoyed a traditional Bavarian

dinner at the castle Schleißheim and a visit to the Flugwerft Schleißheim,

where a guided tour to the aviation history on the historic airfield was

offered.

The Chair of Mathematical Finance at Technical University Munich

would like to express its deepest thankfulness to KPMG AG Wirtschaft-

sprüfungsgesellschaft for five years of continuing support via the KPMG

Center of Excellence in Risk Management, which enabled us to signifi-

cantly improve the quality of our research and education and, last but not

least, host conferences like the one we are documenting with this proceed-

ings volume. In particular, we would like to thank Franz Lorenz, Matthias

Mayer, and Daniel Sommer for their huge personal commitment to our joint

project.

Best regards,

Matthias Scherer and Rudi Zagst

March 2018, Munich D
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Innovations in Risk Management
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Chapter 1

Behavioral Value Adjustments for Mortgage Valuation

M. Bissiri∗ and R. Cogo

Cassa Depositi e Prestiti S.p.A.

Rome, Italy
∗matteo.bissiri1@gmail.com

Behavioral risk affects the pricing of assets and liabilities with embedded pre-

payment/extension options whenever the option holder does not act purely on
the strength of financial convenience but follows an uncertain and sub-optimal

exercise strategy, if seen from the viewpoint of the option seller. Such behavior

is particularly relevant for mortgage valuation, since mortgage prepayments
are clearly influenced by exogenous and individual factors besides financial

reasons. In this paper we apply the general framework, proposed by Bissiri

and Cogo, for modeling behavioral risk to the particular case of the valuation
of a fixed-rate mortgage portfolio. We also extend the formulas by consider-

ing a pool of heterogeneous mortgagors, leading to the introduction of specific
behavioral risk adjustments (βVA) in the pricing formulas.

Keywords: behavioral risk, prepayment, mortgage, MBS, RMBS, XVA,

embedded option, OAS.

1. Introduction

Many financial instruments are characterized by the presence of embedded

options, which allow one of the counterparts to terminate the contract be-

fore maturity or modify contractual conditions, according to clauses spec-

ified at the inception. We do not refer here to the so-called automatic

options, such as a cap or floor on an interest rate, but rather to options

that require a decision to be taken by the option holder, such as prepayment

or switch options.

On the asset side, the most typical example are mortgage loans, whose

valuation is the focus of this paper. In many countries mortgagors are al-

lowed to cancel a debt at any time by paying back the outstanding notional

without any penalty (see, e.g., Davidson and Levin [1]). Prepayments also

influence the pricing of mortgage backed securities (MBS), callable bonds,

retail loans, loan commitments, etc. Liabilities can also embed explicit or

implicit options, like in the case of puttable bonds or non-maturity deposits,

which can be withdrawn by the investor at any time (see, e.g., Castagna

Open Access chapter published by World Scientific Publishing Company and distributed

under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives
(CC BY-NC 4.0) License.
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and Fede [2] for a review of these instruments). Insurance policies may also

incorporate complex prepayment features.

Due to the presence of behavioral risk, the valuation of instruments with

embedded options can be an extremely challenging task. This occurs when-

ever the option holder does not act purely on the strength of financial con-

venience but follows a sub-optimal and uncertain exercise strategy, if seen

from the perspective of the option seller. Various reasons can be invoked

to explain this behavior, such as a different valuation and/or modeling of

the underlying contract, no financial interest in early exercise, regulatory

constraints, the presence of large transaction costs, the impact of exoge-

nous factors or, as in the case of retail customers, the lack of information or

sophistication. According to a more rigorous and quantitative definition,

provided by Bissiri and Cogo [3], behavioral risk can be identified with

the additional source of uncertainty in the time and amount of future cash

flows that an option seller faces, due to the unpredictable exercise strategy

followed by the option holder.

In this paper we reconsider the impact of prepayment features ion the

valuation of a mortgage portfolio from the lender’s viewpoint. For this

purpose, we apply the general pricing approach for contracts affected by

behavioral risk, which was recently developed by Bissiri and Cogo [4]. In

particular, we examine the pricing of a basket of fixed-rate mortgages, is-

sued at different times and with different contractual rates. We also extend

pricing formulas to the case of a heterogeneous pool of mortgagors, with dif-

ferent creditworthiness and prepayment behavior. The aim is to develop a

coherent and flexible enough framework, that can be tailored and calibrated

to specific instruments depending on available data.

Clearly, mortgage valuation depends also on credit risk (i.e. the bor-

rower is unable to repay the loan), although mitigated by the underlying

asset acting as collateral (e.g. the house property). For instance, the recent

sub-prime crisis in the US market was caused by large-scale mortgagor de-

faults. However, a detailed modeling of default risk is out of scope of the

present paper.

Nonetheless, the approach used to model mortgage prepayments takes

advantage of a full parallel with credit risk modeling and combines the

features of option-based and intensity models reported in literature. A par-

ticular emphasis is placed on the calibration of the risk premium. Since

exercise decisions taken by irrational option holders are influenced at the

same time by financial, exogenous and individual reasons, behavioral risk

clearly has a hybrid nature. However, whilst it is possible to implement a
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replicating strategy to hedge (or significantly reduce) portfolio sensitivity to

financial risk factors, exogenous or idiosyncratic risk can only be diversified

in a large portfolio. Therefore, a mixed approach seems the most appro-

priate choice for pricing purposes. A market risk premium for all financial

risk factors is inferred from the quotes of liquid traded instruments, which

could be used to set up a replicating strategy. In contrast, a traditional

risk charge is calculated in order to compensate for unexpected losses aris-

ing from other sources of risk, leading to the definition of behavioral value

adjustment (βVA).

The paper is divided into three sections: (i) Firstly, the literature about

mortgage valuation is summarized briefly; (ii) Secondly, the general pricing

framework proposed by Bissiri and Cogo [4] and its underlying hypotheses

are described in more detail; (iii) Finally, a pricing formula for a basket of

fixed-rate mortgages is derived.

2. Literature review

The valuation of baskets of mortgages has been studied since early 1980s

and several pricing approaches have been proposed.

Econometric models assume that prepayment rates are dependent vari-

ables, and functions of a set of explanatory variables. Although they poten-

tially allow a detailed description of a debtor’s behavior by means of a large

set of regressors, econometric models are less practical for pricing purposes,

since risk-neutral dynamics have to be specified for all risk factors.

Option-based models were introduced along with the development of

the no-arbitrage pricing theory for derivatives. In order to account for de-

viations from rationality, exercise constraints or transaction costs are intro-

duced as in the models of Dunn and McConnell [5], Stanton [6], Longstaff

[7], Kalotay et al. [8], Davidson and Levin [9]. Conditionally to a specific

market scenario, the strategy followed by the option holder is still determin-

istic but sub-optimal, if seen by the option seller. Although option-based

models permit valuations that are theoretically consistent with prepayment

scenarios, their use seems to be a more natural choice only if prepayments

are almost rational from a financial standpoint.

Intensity-based models have been proposed as a valid alternative by

several authors, such as Schwartz and Torous [10], Deng et al. [11], Kau

et al. [12], Kwok et al. [13], Consalvi and Scotto di Freca [14] and Cher-

nov et al. [15]. They exploit the similar methodology widely applied in

credit risk modeling. Like default probabilities, prepayment probabilities
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are stochastic variables, depending on a set of risk drivers. Intensity models

naturally incorporate exogenous sources of risk, accounting for the resid-

ual variability in prepayment rates not determined by financial reasons.

Our understanding is that intensity-based models are particularly suitable

for those situations where early prepayments mainly depend on exogenous

factors rather than on financial variables.

Finally, hybrid models have recently been proposed by combining the

features of different approaches, such as in the works of Goncharov [16],

Castagna and Fede [2], Kolbe and Zagst [17], [18]. For instance, Kolbe

and Zagst [17] have generalized the traditional proportional hazard ap-

proach by developing and calibrating an extended hybrid model. Mortgage

prepayment rates are explained in terms of a combination of market and

non-financial drivers, like, e.g., gross-domestic-product (GDP).

All models reported in literature have to be calibrated with histori-

cal data. It is important to stress that mortgage prepayments are a very

complex phenomenon. Despite the model family and regardless of its com-

plexity, there are always some latent risk factors not captured by the model,

as demonstrated by the fit residuals, which result after the calibration pro-

cess. A similar issue is found when comparing theoretical model prices to

the market quotes of liquid RMBS. Typically, an option-adjusted-spread

has to be applied to discount factors in order to obtain a perfect match

(see, e.g., Davidson and Levin [1] or Gabaix et al. [19]). Such residual

dispersion cannot be neglected, since it may contribute significantly to the

variability in the future cash flows of a mortgage portfolio. In this paper we

model it as an exogenous error process, leading to a prudential correction

in the pricing formula. In our opinion, such an approach is particularly

suitable for calibrating the risk premium in the absence of liquid market

benchmarks.

3. A general framework for modeling behavioral risk

In this section we summarize the general framework recently proposed by

Bissiri and Cogo [4] for the pricing of financial products with embedded

options in the presence of behavioral risk. The approach is intended to

be general and adaptable to model the behavior of different categories of

investors and to price different types of financial instruments.

It takes advantage of the similarities with credit risk modeling. For

a review of interest and credit models see e.g. the books of Brigo and

Mercurio [20] or Schönbucher [21].
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3.1. Defining behavioral risk

Although there is no unanimous consensus about a single definition, be-

havioral risk, as well as all sources of risk, can always be identified as the

additional source of uncertainty in the future cash flows of a contract that

it generates. More precisely, it can be identified with the additional source

of uncertainty in the time and amount of future cash flows that an op-

tion seller faces, due to the unpredictable exercise strategy followed by the

option holder, see Bissiri and Cogo [3], [4].

In a world where all investors are fully rational from a financial stand-

point and agree on a no-arbitrage model for market factors, the optimal

exercise strategy for the prepayment option is uniquely determined.

In the particular case of a mortgage with no prepayment penalties, the

optimal exercise time, which maximizes the return for the option holder,

occurs whenever the redemption value (i.e. the outstanding balance of the

loan) falls below the so-called continuation value (i.e. the present value

of all future installments).1 Conditional to a specific market scenario of

mortgage rates, cash flows are completely deterministic.

In contrast, only a probability for option exercise can be estimated under

the presence of behavioral risk. More importantly, cash flows are uncertain

and cannot be predicted purely on the strength of financial convenience.

Historical aggregate prepayment rates relative to baskets of mortgages im-

ply that some debtors prepay when this is not convenient and some others

do not prepay even if this is convenient. Typically, a S-shaped dependence

from the rate shift2 is observed (see, e.g., Peristiani [22]).

Thus, empirical evidence demonstrates that prepayments must be in-

fluenced by exogenous and/or individual reasons besides financial factors.

Such behavior results in an additional variability in the future cash flows,

even subject to a particular market scenario. More precisely, behavioral

risk can be associated with the conditional variance which arises whenever

the option holder does not follow an optimal exercise strategy as seen from

the option seller’s perspective.

1In practice, such condition is met as soon as mortgage rates prevailing in the market
decrease so that it is possible to refinance the debt at lower cost.
2The rate shift can be defined as the difference between the mortgage contractual rate

and the new rate prevailing in the market at a point in time.
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3.2. A general framework in parallel with credit risk

Exercise probabilities, Qi(t), like default probabilities, are modeled as

stochastic variables, depending on both market X(t) and exogenous fac-

tors Z(t).

ln [Qi(t)] = Ri (t,X(t), Z(t); θ(t)) (1)

where Ri is a generic response function of the i-th mortgagor and θ(t) is a

set of model parameters.

Potentially, the responsiveness to changing market conditions of two

different debtors may vary significantly. It is well known that heterogeneity

plays a crucial role in determining the aggregate prepayment rate of a basket

of mortgages and can be responsible, at least to some extent, for the so-

called burnout effect, namely, the tendency of prepayment rates to decline

over the lifetime of a contract.

Financial factors, X, include all market variables that impact on con-

tractual payments and are required for the valuation of the full rational

cost of the option. For instance, in the case of mortgages, interest rates

and credit spreads (or default probabilities) should be taken into account.

In principle, a large set of economic or individual observables can be

selected in order to explain exercise rates besides financial factors, such as

gross-domestic-product, unemployment rate, personal income, age, etc. By

adopting a reduced-form approach, we introduce generic exogenous drivers,

Z, orthogonal to the financial ones and characterized by a systemic com-

ponent (i.e. common to all investors) and a purely idiosyncratic one.

Conditional independence is also assumed. Subject to the realization of

a scenario of all risk factors {X,Z}, prepayment decisions are taken inde-

pendently by each single mortgagor. In addition, if a debtor holds several

positions, the exercise decisions of options embedded in different contracts

are independent from each other, subject to the same risk scenario.3

Mathematically,

V
[
I(τ ip > tk), I(τ jq > th)

∣∣X,Z] = 0 for i 6= j or p 6= q (2)

3For example, let us consider a borrower holding two distinct mortgages A e B with
contractual fixed rates of 1% and 5%, respectively, when prevailing market rates are

around 3%. The exercise probability of two loans will satisfy the inequality QA << QB ,

if computed through a reasonable specification of (1). However, subject to that particular
scenario, exercise decisions are taken independently. It is worth noting that in typical

residential mortgage portfolios most mortgagors hold a single contract.
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A further hypothesis consists in assuming that exogenous factors follow

a mean-reverting process, so that their effect tends to vanish over a long

period of time. Without loss of generality, we can reformulate the problem

by taking advantage of conditional probabilities and set

Ri (t,X(t), Z(t); θ(t)) = φt (X(t); θ(t)) + ηt (Z(t)|X(t); θ(t)) (3)

The function ηt can be interpreted as a sort of error process which quantifies

the variability in option exercise frequencies around the historical average,

φt, conditionally to a particular scenario of market factors.

Since we expect that such deviations tend to cancel out over a long

observation period, we impose that ηt follows a mean-reverting process

with an asymptotic distribution with zero mean and finite variance.{
EPZ [η∞|X] = 0

VPZ [η∞|X] ≈ s2
∞(X)

(4)

where variance s2
∞ is the empirical conditional variance.4 Refer to the paper

by Bissiri and Cogo [4] for more details.

3.3. Behavioral risk adjustments

A mixed-approach has been proposed by Bissiri and Cogo [4] for computing

behavioral risk premium in the absence of a market benchmark.

On the one hand, risk-neutral dynamics (Q) are calibrated for all rel-

evant market factors affecting contractual cash flows and, to some extent,

option exercise decisions. A market risk premium is implied from the prices

of actively-traded and liquid hedging instruments.

On the other hand, exogenous or individual risk factors cannot easily

be hedged but rather diversified away in a large portfolio. In this case,

the traditional risk-adjusted pricing, followed, for example, by insurance

companies, seems more appropriate. Firstly, the return of an instrument or

portfolio is simulated under the physical measure (P ). Secondly, the expec-

tation of future discounted cash flows is computed. Thirdly, a prudential

risk charge is applied. Typically, this is equal to the remuneration on the

risky capital which has to be set apart as a compensation for unexpected

losses. Capital absorption is computed by means of a coherent risk measure

and the premium is proportional to a hurdle rate for shareholders.

4A similar issue characterizes credit modeling, where we distinguish between default

probabilities estimated at a particular time (“point-in-time” perspective) from their his-
torical averages (“through-the-cycle” perspective). A data-set spanning over a long in-

terval of time is needed to perform a robust calibration.
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In practice, we proceed as follows: (i) we select a specific market sce-

nario X; (ii) we apply the risk charge approach to the conditional cash flow

distribution; (iii) finally, we average across all possible market scenarios.

Summing up, the price of a generic contract V (t) with embedded options

can be expressed by the following general formula

V (t) = VE(t)− VU (t) (5)

VE(t) = EQX
[
EPZ,τ [Ψ|X]

]
(6)

VU (t) = k · EQX
[
ΦPZ,τ [Ψ; q|X]

]
(7)

where Φ is a coherent risk measure, q is a target quantile and k is the

unitary cost of capital.

The first term, VE(t), corresponds to the expectation of discounted cash

flows, Ψ, under a risk-neutral probability measure, where behavioral risk is

costless (k = 0) or completely diversified (ΦP = 0).

The second term, VU (t), is the premium required by a risk averse in-

vestor to bear behavioral risk. It can also be interpreted as the potential

extra-cost necessary to compensate for unavoidable hedging errors of a repli-

cating strategy based on instruments, whose price is affected by market risk

factors only.

In line with XVA methodology, it is possible to introduce the concept

of behavioral value adjustment βVA. For a review of the most widespread

value adjustments refer, e.g., to Brigo et al. [23].

From the option seller’s viewpoint, the price of a contract with embed-

ded options can be written in the general form

V (t) = EQX,Z,τ [Ψ] = VH(t)−OVA(t) + βVA(t) (8)

where

• VH(t) is the price of the host instrument, i.e. the contract without

any prepayment option;

• OVA(t) is the option value adjustment corresponding to the full

rational cost of the option;

• βVA(t) is the behavioral value adjustment quantifying the potential

benefit for the option seller that the option holder does not take

advantage of.
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Behavioral risk adjustments βVA can be split as follows:

βVA(t) = βVAE(t)− βVAU (t) (9)

βVAE(t) = EQX
[
EPZ,τ [Ψ|X]

]
− VH(t) + OVA(t) (10)

βVAU (t) = k · EQX
[
ΦPZ,τ [Ψ; q|X]

]
(11)

The two components, βVAE(t) and βVAU (t), quantify the expected gain

and the potential unexpected losses due to the uncertain sub-optimal exer-

cise strategy followed by the option holder, respectively.

Finally, an appropriate and coherent risk measure, ΦP , in (7) has to

be chosen. Typically, one can select expected shortfall (ES) relative to the

present value of future cash flows through the entire life of the contract.

Unfortunately, this may require time-consuming Monte Carlo simulations

of all risk factors.

In order to improve analytical tractability and speed up calculations, if

the distribution is not excessively skewed, we can adopt an analytical risk

measure, linked to the conditional standard deviation.

ΦP (Ψ|X) = χq ·
√
VPZ,τ [Ψ|X] (12)

where χq is a scaling factor which depends on the shape of the distribution

and a quantile q. As a result, formula (5) can be rewritten as

V (t) = EQX
[
EPZ,τ [Ψ]− k · χq ·

√
VPZ,τ [Ψ]

∣∣∣X] (13)

3.4. A general formula for portfolio valuation

The discounted payoff of a single mortgage can be expressed by the following

formula5

Ψ =

T∑
k=1

Dk · Ck · I(τ > tk) +

T∑
k=1

Dk · Ek · I(τ = tk) (14)

where τ is the exercise time and, for each date k,

• Dk is the aleatory discount factor

• Ck is the contractual cash flow if the option is not exercised

• Ek is the prepayment amount

5For the sake of simplicity and consistent with standard numerical pricing algorithms,
we assume that early exercise can occur at a discrete set of dates, like in Bermudan-style

prepayment options.
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In the case of level payment mortgages without prepayment penalties,

Ck is constant and equal to the installment amount, while Ek coincides

with the outstanding balance of the loan. As a consequence, D and τ are

the only aleatory variables. The former depends on market factors only,

while the latter is also affected by exogenous factors.

The payoff can be rewritten in terms of survival indicator functions with

simple passages:

Ψ =

T∑
k=0

Dk ·Mk · I(τ > tk) (15)

where
M0 = E1 ·D1 with D0 = 1, I(τ > t0) = 1

MT = CT − ET
Mk = Ck − Ek + Ek+1 ·Dk+1/Dk for 0 < k < T

(16)

We consider now a portfolio of mortgages, issued continually at different

times and with different contractual conditions. Let us define:

• N , the total number of mortgage debtors

• M , the number of mortgage contract types (i.e. same issue time,

maturity, coupon rate and frequency, etc.)

• Np, the number of contracts of type p

• N ip, the number of contracts of type p closed with the i -th debtor

(
∑N
i=1N

ip = Np).

The discounted payoff of the portfolio can be written as

Ψ =

N∑
i=1

M∑
p=1

N ip ·

(
T∑
k=0

Dk ·Mp
k · I(τ

ip > tk)

)
(17)

By applying (13) and the law of total variance

V [Ψ(x, y)] = Vx [Ey [Ψ|x]] + Ex [Vy [Ψ|x]] (18)

we can derive a general pricing formula for the portfolio

V (0) = EQX
[
Π0(X)− k · χq ·

√
Π1(X) + Π2(X)

]
(19)
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with

Π0(X) = EPZ

[
EPτ

[
N∑
i=1

M∑
p=1

T∑
k=0

Ψip
k

∣∣∣X,Z]∣∣∣∣∣X
]

(20)

Π1(X) = EPZ

[
VPτ

[
N∑
i=1

M∑
p=1

T∑
k=0

Ψip
k

∣∣∣X,Z]∣∣∣∣∣X
]

(21)

Π2(X) = VPZ

[
EPτ

[
N∑
i=1

M∑
p=1

T∑
k=0

Ψip
k

∣∣∣X,Z]∣∣∣∣∣X
]

(22)

where we have defined

Ψip
k = N ip ·Dk ·Mp

k · I(τ
ip > tk) (23)

The first term, Π0(X), is the revised expectation of discounted cash

flows, conditionally to a particular market scenario and including the im-

pact of exogenous factors. It quantifies the expected benefit for the option

seller due to the sub-optimal exercise strategy followed by the option holder.

The second term, Π1(X), can be interpreted as a sort of granularity

adjustment. It reflects the variability of future cash flows, since the option

exercise time τ is not uniquely determined by the market scenario but it can

occur potentially at any time. However, in the limit of a granular portfolio6

it tends to vanish and can be disregarded.

The third term, Π2(X), quantifies the additional uncertainty induced

by exogenous factors, which alter exercise probabilities for the same market

scenario. It becomes negligible in a large portfolio only if exogenous factors

are purely idiosyncratic (no system component).

By applying condition (2), we obtain:

Π0(X) =

N∑
i=1

M∑
p=1

T∑
k=0

Lipk · Γ
0
k,i,p (24)

Π1(X) =

N∑
i=1

M∑
p=1

T∑
k,h=0

Lipk L
ip
h · Γ

1
i,kh,p (25)

Π2(X) =

N∑
i,j=1

M∑
p,q=1

T∑
k,h=0

Lipk L
jq
h · Γ

2
ij,kh,pq (26)

6A granular portfolio is characterized by a large number of positions with different coun-

terparts and almost equal sizes.
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where we have defined

Lipk = N ip ·Dk ·Mp
k (27)

Γ0
i,k,p = EPZ

[
Sipk

∣∣∣X] (28)

Γ1
i,kh,p = EPZ

[
Sipmax(k,h)

∣∣∣X]− EPZ
[
Sipk S

ip
h

∣∣∣X] (29)

Γ2
ij,kh,pq = VPZ

[
Sipk , S

jq
h

∣∣∣X] (30)

and Sipk are survival probabilities, conditionally to a risk scenario {X,Z}.
For each borrower, contract and possible exercise date

Sipk (X,Z)

{
= E

[
I
(
τ ip > tk

)∣∣X,Z ] ∀k > 0

= 1 if k = 0
(31)

It is worth noting that the price depends only on the specification of the

dynamics of both market and exogenous factors, as well as their functional

dependence with survival probabilities Sipk (X,Z).

4. Mortgage portfolio valuation with BIX model

In this section, we apply the general pricing framework described above to

the valuation of a portfolio of mortgages, issued at different times and with

different contractual rates, by Bissiri and Cogo [4], by extending pricing

formulas to the case of a heterogeneous pool of mortgagors.

From the previous section we recognize that a particular model choice

consists in: (i) characterizing mortgagor creditworthiness and behavioral

attitude to early prepayment; (ii) selecting all market and exogenous fac-

tors {X(t), Z(t)}; (iii) specifying their dynamics; (iv) assuming a marginal

probability response function, R, as defined in (1).

4.1. Heterogeneity and granularity

Firstly, heterogeneity in the pool is taken into account by dividing mort-

gagors into C distinct clusters, with homogeneous degree of creditworthi-

ness and prepayment attitude.7

We denote with N c the number of mortgagors in cluster c and similarly

with N cp the number of contracts of type p owned by borrowers belonging

7We implicitly assume that the issuer has a good knowledge of the characteristics of all

counterparts.
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to cluster c. Clearly,

N∑
i=1

I(i ∈ c) = N c
C∑
c=1

N c = N (32)

N∑
i=1

I(i ∈ c) ·N ip = N cp
C∑
c=1

N cp = Np (33)

4.2. Market factors

Mortgage valuation is affected by interest and credit risk, besides behavioral

risk. A sound and realistic model should capture the joint evolution of

market interest rates and credits spread for all debtors. Several approaches

can be chosen with increasing complexity.8

In this paper, for the sake of simplicity, we select a standard two-factor

Gaussian model, belonging to the so-called family of intensity-based models,

whose risk neutral dynamics is described by the stochastic processes{
dX1(t) = −α1 · dX1(t) · dt+ σ1 · dW1(t)

dX2(t) = −α2 · dX2(t) · dt+ σ2 · dW2(t)
(34)

EQ [dW1(t) · dW2(t)] = ρX · dt (35)

The first risk factor models essentially interest rates, while the second one

accounts for default intensities for all mortgagors in the portfolio. Con-

ditional to a specific risk factor scenario, defaults occur independently. A

correlation between factors, ρX , is also introduced. See e.g. Brigo and

Mercurio [20] or Schönbucher [21] for more details.

Due to the affine properties of the Gaussian models, interest rates and

credit spreads, Y (t), can be computed analytically

Y (t) = a+ b ·X1(t) + c ·X2(t) (36)

In particular, discount factors for cash flows of mortgages held by any

debtor i belonging to cluster c are stochastic variables, expressed by

Di
k = Dc

k = exp

{
−ψck −

∫ tk

0

X1(u)du−
∫ tk

0

X2(u)du

}
∀i ∈ c (37)

where ψck are deterministic shifts that account for the initial term structure

of interest rates and credit spread for each cluster of borrowers.

8Credit spreads depend both on default probabilities and recovery rates. A full detailed
model of mortgagor creditworthiness as well as the impact of collateral on recovery rates

is beyond the scope of the present paper.
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4.3. Exogenous factors

We adopt a micro-structural (reduced-form) approach, by assigning a single

(synthetic) exogenous factor to each single debtor in the portfolio. In order

to capture additional correlation besides financial convenience, we assume

that each factor can be split into a systemic component, ξ0
k, and a purely

idiosyncratic one, ξik.

Zik = Zi(tk) = ρZ · ξ0
k +

√
1− ρ2

Z · ξ
i
k (38)

where ρZ is the weight of the systemic component, ρZ ∈ [0, 1].9

In order to mimic fluctuations of observed prepayment rates around

their historical mean, we also model the dynamics of each exogenous factor

by means of an auto-regressive process, AR(1), with common parameters

(α, β), so that

ξik = α · ξik−1 + β · εik (39)

EPZ
[
εik
]

= 0; EPZ
[
εikε

j
h

]
= δkhδij ∀ i, j ≥ 1, k, h > 0 (40)

We also assume that εi0 = 0 ∀ i > 0, while ε0
0 is a model parameter.

It is easy to compute that

ξik = λk,0 · εi0 +

k∑
h=1

λk,h · εih (41)

λk,0 = αk; λk,h = αk−h · β (42)

The exogenous process has to satisfy conditions (4) on the asymptotic

distribution. When applied to the logarithm of Q(t), model parameters are

subject to the following constraints:

EPZ [ξ∞|X] = 0 ⇒ |α| < 1 (43)

VPZ [ξ∞|X] = 1 ⇒ β =
√

1− α2 (44)

4.4. Marginal exercise probabilities

Finally, we need to specify the dependence of marginal exercise probabil-

ities on market and exogenous factors. In principle, a different response

function Qipk can be calibrated for each mortgage with respect to contract

type, loan age and mortgagor cluster. However, a large historical data-set

9A similar approach can be found in the Vasicek model, which is at the foundation for

Basel standardized approach to credit risk measurement.
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would be needed to achieve a robust calibration. In practice, a simplified

parametrization is more appropriate in most situations.

In the BIX model [4], Qipk at time tk for i -th owner of contract of type

p has the general form

ln
[
1−Qipk

]
= Aipk (X) +Bipk (X) · Zik (45)

where A and B are generic functions. By taking cluster homogeneity into

account, the following conditions hold

Aip = Acp, Bip = Bcp ∀i ∈ c (46)

All response functions (45) have to be calibrated with historical prepay-

ment data. For this purpose, it is convenient to select some representative

market observables, Y (t), such as interest rates and credit spreads. Thanks

to the analytical properties of Gaussian models, their exact expression as

a function of X can easily be derived, so that

Y (t) = {Y1(t,X(t)), Y2(t,X(t)), ...} (47)

Aipk (X)→ Aipk [Y (X)] Bipk (X)→ Bipk [Y (X)] (48)

In order to capture the S-shaped dependence of prepayment rates on the

market scenario X, A can be selected among the family of logit-like func-

tions, with a set of shape parameters for calibration. In contrast, B can be

assumed, to a first approximation, constant and independent on X.

4.5. Hints for calibration

In this paragraph we provide some hints for model calibration. Further

details can be found in Bissiri and Cogo [4].

Undoubtedly, it is worth pointing out that a crucial role is played by the

extent of the available data-set with time-series of historical prepayments.

In practice, we follow a three-step procedure:

• We assume that risk neutral Q-dynamics for all market factors

can be calibrated with the prices of quoted instruments. Such an

assumption is quite reasonable when interest rate risk is concerned,

but rather questionable for credit risk, since hedging instruments

are not often liquid or traded.10 Nonetheless, because this paper

10Indeed, interest rate dynamics can be calibrated with the quotes of several liquid
instruments such as deposits, swaps, swaptions, etc. In contrast, only a few single-

name CDS are actively traded so that risk-neutral default probabilities cannot easily be
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focuses on behavioral risk, we assume that a term structure of

interest rates and credit spreads is available for all borrowers and

used to calibrate ψck in formula (37) for each cluster.

• Formula (45), as a particular case of (3), has a financial interpre-

tation. Function A represents the long-term mean of prepayment

rates subject to market scenario X, whilst function B accounts for

the amplitude of deviations induced by (unitary) exogenous factors.

If aggregate prepayment rates of mortgage baskets are observed for

a long enough period of time, the impact of exogenous factors tends

to cancel out on average. Thus A and be B can be estimated by

fitting historical prepayments as a function of market regressors.

Basically, A corresponds to the best fit line, while B accounts for

the residual variance. Typically, A can be chosen among the family

of logit or sigmoid functions of the rate shift in order to reproduce

quite accurately the average S-shaped observed in historical data,

see, e.g., prepayment rates reported in Davidson and Levin [1] or

Peristiani [22]. The size of residuals is given by function B.

• Fit residuals can be explained in terms of latent exogenous risk

factors, besides financial reasons. The time-evolution of Zt can

be deduced by inverting formula (45). Model parameters in (39)

can be calibrated by means of a maximum-likelihood-estimation

algorithm (see, e.g., Hamilton [24]). A similar approach can be

found in Kolbe and Zagst [17].

4.6. Survival exercise probabilities

It is also useful to derive an analytical expression for survival probabilities.

For each mortgagor belonging to cluster c and holding a contract of type p

we can write

Sipk (X,Z) =

k∏
h=1

[
1−Qiph (X,Z)

]
= eW

ip
k (X,Z) (49)

where, according to (45) and (46),

W ip
k (X,Z) =

k∑
h=1

Acph (X) +

k∑
h=1

Bcph (X) · Zih (50)

inferred from the market. This is even more obvious when dealing with retail mortgagors.
However, it is worth noting that in several cases, like residential mortgages, credit risk

is remarkably mitigated by the presence of a collateral, i.e. the house property.
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With simple passages

W ip
k (X,Z) =

k∑
h=1

Acph (X) +

k∑
h=1

Bcph (X) · Zih

=

k∑
h=1

Acph (X) +

k∑
h=1

Bcph (X) · ρ ·

(
λh,0 · ε0

0 +

h∑
l=1

λh,l · ε0
l

)

+

k∑
h=1

Bcph (X) ·
√

1− ρ2 ·

(
h∑
l=1

λh,l · εil

)
(51)

Summing up, we obtain

W ip
k (X,Z) =

k∑
h=1

F cph (X) +

k∑
h=1

Gcph,k(X) ·
(
ρ · ε0

h +
√

1− ρ2 · εih
)

(52)

where

F cph (X) = Acph (X) +Bcph (X) · ρ · λh,0 · ε0
0 (53)

Gcph,k(X) =

k∑
l=h

Bcpl (X) · λl,h (54)

For each i ∈ c and conditionally to a market scenario, W ip
k are normal

variables with mean and variance

µipk (X) = µcpk (X) = EPZ
[
W ip
k

∣∣∣X] =

k∑
h=1

F cph (X) (55)

σipk
2
(X) = σcpk

2
(X) = VPZ

[
W ip
k

∣∣∣X] =

k∑
h=1

Gcph,k
2
(X) (56)

4.7. Portfolio pricing

The price, V (0), can be computed by using formulas derived in Section 3.4.

We need to compute the three quantities in (24), (25) and (26):

Π0(X) =

N∑
i=1

M∑
p=1

T∑
k=0

Lipk · E
P
Z

[
Sipk

∣∣∣X] (57)

Π1(X) =

N∑
i=1

M∑
p=1

T∑
k,h=0

Lipk L
ip
h · E

P
Z

[
Sipmax(k,h) − S

ip
k S

ip
h

∣∣∣X] (58)

Π2(X) =

N∑
i,j=1

M∑
p,q=1

T∑
k,h=0

Lipk L
jq
h · V

P
Z

[
Sipk , S

jq
h

∣∣∣X] (59)
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where

Lipk = Lipk (X) = N ip ·Di
k ·M

p
k (60)

Given the sub-portfolio of mortgages of type p held by borrowers in clus-

ter c, let us define Lcpk (X) as the aggregate discounted cash flows exchanged

at time tk

Lcpk = Lcpk (X) =
∑
i∈c

N ip ·Dc
k ·M

p
k = N cp ·Dc

k ·M
p
k (61)

and Hcp as the Herfindahl-Hirschman Index (HHI)11

Hcp =
∑
i∈c

(
N ip

N cp

)2

(62)

4.7.1. Expression for Π0(X)

By using (55) and (56), the conditional expectation Π0(X) can be computed

as

Π0(X) =

M∑
p=1

C∑
c=1

∑
i∈c

T∑
k=0

Lipk · E
P
Z

[
eW

ip
k

∣∣∣X]

=

M∑
p=1

C∑
c=1

[
Lcp0 +

T∑
k=1

Lcpk · e
µcp
k + 1

2 (σcp
k )2

]
(63)

4.7.2. Expression for Π1(X)

The second term Π1(X) is also linear with respect to the number of con-

tracts and investors.

Π1(X) =
M∑
p=1

N∑
i=1

T∑
k,h=0

Lipk L
ip
h · E

P
Z

[
e
W ip

max(k,h) − eW
ip
k +W ip

h

∣∣∣X]

=

M∑
p=1

C∑
c=1

Hcp ·
T∑
k=0

Lcpk · I
cp
k · e

µcp
k + 1

2 (σcp
k )2

(64)

11HHI is a widespread indicator of the granularity of a portfolio, see e.g. Gordy [25].
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where Icpk is approximated by12

Icpk = Icpk (X) ≈ Lcpk ·
(

1− eµ
cp
k + 3

2 (σcp
k )2

)
+2 ·

k−1∑
h=0

Lcph ·
(

1− eµ
cp
h + 1

2 (σcp
h )2+σcp

k σcp
h

)
(65)

It is worth noting that Hcp is usually vanishingly small in the granular-

ity limit and, in turn, Π1(X) can be disregarded in large and equal-sized

portfolios.

4.7.3. Expression for Π2(X)

Finally, the computation for Π2(X) is less straightforward and more time-

consuming, due to the double loop on the number of contracts. Since it

arises from conditional survival probability covariances, it becomes negligi-

ble only in the unrealistic case that exogenous risk is fully idiosyncratic.

Therefore, a different approach has to be followed with some suitable

but accurate enough approximations.

• Firstly, we observe that Π2(X) is the variance of a sum of log-

normal variables. Although an analytical expression for the result-

ing distribution is not available, we can apply one of the several

approximations that have been derived in order to calculate ana-

lytically the first moments.13

• Secondly, the formula can be further simplified by assuming that

the number of mortgagors with more than one position is relatively

small if compared to the entire portfolio.

In this paper we adopt Gentle’s approximation [26] by replacing the

arithmetic weighted average with the geometric one,14 so that we can

12It can be shown that the following condition holds for vhk = V [Wk +Wh|X]. If
h < k, L1 < vhk < L2 where L1 = σ2

k + 3σ2
h and L2 = 3σ2

k + σ2
h. As a proxy, we take

the geometric mean so that vhk ≈ σ2
k + σ2

h + 2σkσh. The impact of approximation has
negligible impact especially if µ << σ2 or σ is almost constant as a function of time.
13For instance, this is the typical mathematical problem that one encounters in the

pricing of equity Asian options in a Black-Scholes framework.
14Although several alternative and even more refined approximations have been devel-
oped, Gentle’s approach is accurate enough as reported in the extensive literature about
the pricing of Asian options.
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rewrite the expression for Π2(X) in the following way

Π2(X) = VPZ

[
M∑
p=1

N∑
i=1

T∑
k=1

Lipk (X) · Sipk (X,Z)

∣∣∣∣∣X
]

(66)

≈ VPZ

[
M∏
p=1

N∏
i=1

T∏
k=1

eL
ip
k (X)·W ip

k (X,Z)

∣∣∣∣∣X
]

= VPZ
[
eΩ(X,Z)

∣∣∣X]
where Ω(X,Z) is a normal random variable, with mean MΩ(X) and vari-

ance Σ2
Ω(X), respectively (see the Appendix (Section 6) for their analytical

expressions). Thus, Π2(X) can be approximated with

Π2(X) ≈ e2·MΩ(X)+Σ2
Ω(X) ·

(
eΣ2

Ω(X) − 1
)

(67)

4.8. Simulation

Portfolio evaluation can be performed by means of Montecarlo simulations

as in the full rational case. The only difference lies in the fact that, subject

to a market scenario, cash flows are uniquely determined only if the option

holder follows an optimal exercise strategy. In contrast, under the presence

of behavioral risk, we need to compute the first two moments of the condi-

tional distribution for each simulated path of market factors. However, we

can rely on analytical formulas (63), (64), (67). Since all formulas essen-

tially depend on linear sums over the number of contracts and the number

of dates, the additional computational burden is usually limited.

5. Conclusion

In conclusion, we have described a coherent and flexible framework for

accounting the impact of behavioral risk on the valuation of a basket of

mortgages. The approach consists in a prepayment model based on finan-

cial observables, which is needed to reproduce sub-optimal early prepay-

ments in line with other models reported in the literature. At the same

time, it introduces a pricing correction which accounts for the residuals

that are observed when fitting historical data, as a consequence of the ef-

fect of exogenous factors. Due to their non-financial nature of these sources

of risk, an additional adjustment is added to the pricing formula by adopt-

ing the traditional risk charge approach. We believe that our methodology

is a valid and more transparent alternative to the practice of applying an

option-adjusted-spread (OAS) to the discount factors in order to account

for risk factors not capture by the financial prepayment model.
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6. Appendix

In this paragraph we derive an expression for the random variable Ω(X,Z),

defined in (66), and we provide an analytical formula for its two conditional

moments, MΩ(X) and Σ2
Ω(X).

Ω(X,Z) =

M∑
p=1

T∑
k=1

N∑
i=1

Lipk (X) ·W ip
k (X,Z) (68)

=

T∑
k=1

M∑
p=1

C∑
c=1

[
Jcpk (X) +Kcp

k (X) ·

(
ρZ · ε0

k +
√

1− ρ2
Z ·
∑
i∈c

(
N ip

N cp

)
εik

)]

where

Jcpk (X) = Lcpk (X) ·
k∑
h=1

F cph (X) (69)

Kcp
k (X) =

T∑
h=k

Lcph (X) ·Gcpk,h(X) (70)

We can easily compute the conditional mean and variance of Ω(X,Z) as

MΩ(X) = EPZ [Ω|X] =

T∑
k=1

M∑
p=1

C∑
c=1

Jcpk (X) (71)

Σ2
Ω(X) = VPZ [Ω|X] =

T∑
k=1

[
ρ2
Z · U1

k (X) +
(
1− ρ2

Z

)
· U2

k (X)
]

(72)

where

U1
k (X) =

(
M∑
p=1

C∑
c=1

Kcp
k (X)

)2

(73)

U2
k (X) =

C∑
c=1

∑
i∈c

(
M∑
p=1

N ip

N cp
·Kcp

k (X)

)2

(74)

The expression can be further simplified in the quite realistic case where

most mortgagors own a single contract, but contracts of a given type p are

owned by various mortgagors.

U2
k =

M∑
p=1

C∑
c=1

HcpKcp
k

2
(75)
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Σ2
Ω =

T∑
k=1

ρ2
Z

(
M∑
p=1

Kp
k

)2

+
(
1− ρ2

Z

) M∑
p=1

C∑
c=1

HcpKcp
k

2

 (76)
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We examine credit value adjustment (CVA) estimation under wrong-way risk

(WWR) by computing the expected positive exposure (EPE) under an equiva-
lent measure as suggested in [1], adjusting the drift of the underlying for default

risk. We apply this technique to European put and call options and derive the

analytic formulas for EPE under WWR obtained with various approximations
of the drift adjustment. We give the results of numerical experiments based

on 4 parameter sets, and supply figures of the CVA based on both of the sug-

gested proxys, comparing with CVA based on a 2D-Monte Carlo scheme and
Gaussian Copula resampling. We also show the CVA obtained by the formulas

from Basel III. We observe that the Basel III formula does not account for

the credit-market correlation, while the Gaussian Copula resampling method
estimates a too large impact of this correlation. The two proxies account for

the credit-market correlation, and give results that are mostly similar to the

2D-Monte Carlo results.

Keywords: counterparty risk, CVA, wrong-way risk, change of measure, drift
adjustment, wrong way measure, put and call options.

1. Introduction

In this paper we aim at computing the credit valuation adjustment (CVA)

expressions of European calls and puts under the Black-Scholes-Merton-Cox

Open Access chapter published by World Scientific Publishing Company and distributed

under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives
(CC BY-NC 4.0) License.
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model, that is when the underlying stock follows GBM dynamics and the

default is governed by a totally inaccessible stopping time corresponding

to the first jump time of a Cox process. Specifically, we assume that the

default intensity follows a CIR-process.

Let us consider a portfolio with maturity T and whose discounted price

process is Ṽ . The CVA associated to such a portfolio traded with a coun-

terparty whose recovery rate is R and default time is τ with survival (risk-

neutral) probability curve G(t) := Q(τ > t) is given by

CVA = −(1−R)

∫ T

0

EQ
[
Ṽs

+
∣∣∣ τ = s

]
dG(s) , (1)

where x+ := max(x, 0). It has been shown in [1] that when the default time

is modeled as the first jump’s time of a Cox process, the “τ = s” condition

in the expectation in Eq. (1) — associated to market-credit dependency

that is, to wrong-way risk — can be absorbed in the drift of the portfolio

price process:

CVA = −(1−R)

∫ T

0

EQCs
[
Ṽ +
s

]
dG(s) .

Here, Ct is a rolling numéraire corresponding to the default leg of a CDS

offering protection in a small interval around t, and is not to be confused

with the call option price at t, noted Ct. We refer the reader to [1] for more

details about this technique.

We define the expected positive exposure (EPE) without taking wrong-

way risk into account as the expectation in Eq. (1) without the condition.

Thus the no-WWR EPE is simply the function EPE⊥(s) := EQ
[
Ṽ +
s

]
for

s ∈ [0, T ]. The EPE under wrong-way risk (referred to as the WWR EPE)

is defined as

EPE(s) = EQ
[
Ṽ +
s

∣∣∣ τ = s
]

= EQCs
[
Ṽ +
s

]
.

From Girsanov theorem, a Q-Brownian motion on [0, s] will become,

under QCs , a Brownian motion plus a drift. In particular, we note θs·
the drift associated to the Q-Brownian motion driving the exposure. Its

analytical expression is derived explicitly in [1]. We now show that when

this (stochastic) drift is approximated by a deterministic function θ(·, s), the

quantity EQCs
[
Ṽ +
s

]
is available in closed form for calls and puts, leading

to an analytical approximation for the CVA under wrong-way risk, and

compare the effect on CVA of two approximations of this drift to the Monte

Carlo setup.
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2. Call and put risk-neutral dynamics

We assume GBM dynamics for the stock under the risk-neutral measure Q,

with constant risk-free rate r and volatility σ > 0. Hence, denote by W a

Q-Brownian motion,

dSt = rStdt+ σStdWt ,

whose solution is

St = S0e
(r−σ22 )t+σWt .

Let us note C the price process of a European call option on the stock

S with maturity T and strike K. Hence, using the Theta-Delta-Gamma

relationship,

dCt = Θtdt+ ∆tdSt +
1

2
Γtd〈S〉t = rCtdt+ σSt∆tdWt ,

and it is well-known that

Ct = StΦ(d(T − t))−Ke−r(T−t)Φ
(
d(T − t)− σ

√
T − t

)
,

∆t = Φ(d(T − t)) ,

d(s) :=
1

σ
√
s

(
ln
St
K

+

(
r +

σ2

2

)
s

)
.

Let us note the time-t discounted value of any process X = (Xt)t≥0 as

X̃t := Xte
−rt. The discounted call price process C̃ can be written in terms

of the discounted stock price process S̃:

C̃t = S̃tΦ (d(t, T ))−Ke−rTΦ
(
d(t, T )− σ

√
T − t

)
,

d(t, T ) =
1

σ
√
T − t

(
ln
S̃t
K

+ rT +
σ2

2
(T − t)

)
,

where we have used that lnSt = ln S̃t + rt. Using Wt
(Q)∼
√
tZ where

Z
(Q)∼ N (0, 1), one obtains

S̃t = S0e
−σ22 t+σWt ∼ S0e

−σ22 t+σ
√
tZ ,

∆t = Φ

(
1

σ
√
T − t

(
ln
S0

K
+

(
r +

σ2

2

)
T − σ2t

)
+

Wt√
T − t

)
∼ Φ

(
1

σ
√
T − t

(
ln
S0

K
+

(
r +

σ2

2

)
T − σ2t

)
︸ ︷︷ ︸

:=α(t)

+

√
t√

T − t︸ ︷︷ ︸
:=β(t)

Z

)
,
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so that

C̃t = S0e
−σ22 t+σWtΦ

(
α(t) +Wt/

√
T − t

)
−Ke−rTΦ

(
α(t)− σ

√
T − t+Wt/

√
T − t

)
∼ S0e

−σ22 t+σ
√
tZΦ (α(t) + β(t)Z)

−Ke−rTΦ
(
α(t)− σ

√
T − t+ β(t)Z

)
.

A similar development yields the dynamics and the marginal distributions

of the corresponding put

P̃t = Ke−rTΦ
(
σ
√
T − t− α(t)−Wt/

√
T − t

)
−S0e

−σ22 t+σWtΦ
(
−α(t)−Wt/

√
T − t

)
∼ Ke−rTΦ

(
σ
√
T − t− α(t)− β(t)Z

)
−S0e

−σ22 t+σ
√
tZΦ (−α(t)− β(t)Z) .

3. Expected positive exposures under no WWR

As C̃ ≥ 0 and P̃ ≥ 0, the expected (discounted) exposure corresponds to

the expected positive (discounted) exposure. Hence,

EQ
[
C̃t

]
= S0e

−σ22 tEQ
[
eσ
√
tZΦ (α(t) + β(t)Z)

]
−Ke−rTEQ

[
Φ
(
α(t)− σ

√
T − t+ β(t)Z

)]
= S0Φ

(
α(t) + β(t)σ

√
t√

1 + β2(t)

)
−Ke−rTΦ

(
α(t)− σ

√
T − t√

1 + β2(t)

)
,

EQ
[
P̃t

]
= Ke−rTEQ

[
Φ
(
σ
√
T − t− α(t)− β(t)Z

)]
−S0e

−σ22 tEQ
[
e−σ
√
tZΦ (−α(t)− β(t)Z)

]
= Ke−rTΦ

(
σ
√
T − t− α(t)√
1 + β2(t)

)
− S0Φ

(
−α(t)− β(t)σ

√
t√

1 + β2(t)

)
,

where we have used

EQ [eηZΦ (µ+ σZ)
]

= e
η2

2 Φ

(
µ+ ση√
1 + σ2

)
.

It can be checked that EQ
[
C̃t

]
= C0 and EQ

[
P̃t

]
= P0 for all t ∈ [0, T ] as

expected from the martingale property of discounted price processes under
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Q. Nevertheless, because of the drift-adjustment, those expressions will

become time-dependent as soon as WWR will enter the picture.

4. Expected positive exposures under WWR

Under no WWR (risk-neutral measure Q), C̃ is a martingale,

dC̃t = σS̃t∆tdWt ,

whose solution is given by the standard Black-Scholes-Merton equation in

Sec. 3. As discussed above, Girsanov theorem yields

dWt = dW s
t + θstdt ,

where W s is a QCs-Brownian motion on [0, s]. We assume that under Q,

the default intensity λ is governed by a CIR process with volatility η, i.e.

dλt = κ(θ − λt)dt+ η
√
λtdW

λ
t ,

where Wλ
t is a Q-Brownian motion whose correlation with W is ρ. A non-

zero value for ρ introduces a dependency between S and λ that controls

wrong-way risk. The drift adjustment is given by [1]

θst = θst (λt) = ρη
√
λt

(
Aλ(t, s)Bλs (t, s)

Aλ(t, s)Bλs (t, s)λt −Aλs (t, s)
−Bλ(t, s)

)
, (2)

where Aλ, Bλ are known zero-coupon bond functions in affine models [2]:

EQ
[
e−

∫ s
t
λudu

∣∣∣Ft] = Aλ(t, s)e−B
λ(t,s)λt .

The subscripts refer to the variable with respect to which we compute the

derivatives of Aλ and Bλ.

Let us now look at the dynamics of the call for t ∈ [0, s] under QCs . First,

observe that we can write C̃ as a deterministic function of the variables

(t,Wt) (instead of the usual (t, St) couple):

C̃t = v(t,Wt) ,

with

v(s, x) := S0e
−σ22 s+σxΦ

(
α(s) + x/

√
T − s

)
−Ke−rTΦ

(
α(s) + x/

√
T − s− σ

√
T − s

)
.

Applying Ito’s lemma,

dC̃t =

(
vt(t,Wt) +

1

2
vxx(t,Wt)

)
dt+ vx(t,Wt)dWt ,
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and we have, for all (s, x) where s ∈ [0, T ] and x ∈ R the following rela-

tionships for the partial derivatives of v:

vt(s, x) +
1

2
vxx(s, x) = 0 (3)

vx(s, x) = σS0e
−σ22 s+σxΦ

(
α(s) + x/

√
T − s

)
. (4)

Now let us look at the dynamics of the call as a function of the QCs -
Brownian motion W s on t ∈ [0, s]:

C̃t := v

(
t,W s

t +

∫ t

0

θsudu

)
.

Using Ito’s lemma and the relationships between vt, vx and vxx in

Eqs. (3) and (4), we have

dC̃t =

(
vt

(
t,W s

t +

∫ t

0

θsudu

)
+

1

2
vxx

(
t,W s

t +

∫ t

0

θsudu

))
dt

+vx

(
t,W s

t +

∫ t

0

θsudu

)
(dW s

t + θstdt)

= vx

(
t,W s

t +

∫ t

0

θsudu

)
θstdt+ vx

(
t,W s

t +

∫ t

0

θsudu

)
dW s

t .

Defining now

Ŝt := S̃te
σ
∫ t
0
θsudu ,

∆̂t := Φ
(
d̂(t, T )

)
,

d̂(t, T ) :=
1

σ
√
T − t

(
ln
Ŝt
K

+ rT +
σ2

2
(T − t)

)
,

one gets

dC̃t = σS̃te
σ
∫ t
0
θsudu∆̂tθ

s
tdt+ σS̃te

σ
∫ t
0
θsudu∆̂tdW

s
t

= σŜt∆̂tθ
s
tdt+ σŜt∆̂tdW

s
t . (5)

Clearly, C̃ is a Q-martingale. This is no longer true under the new measure:

it features a drift. Moreover, the martingale part is impacted by the drift

as well as Ŝ features θ.

Let us consider the deterministic approximation θst ≈ θ(t, s) where λt is

replaced by a deterministic proxy λ(t). By replacing λt with λ(t) in Eq. (2),

we have

θ(t, s) := ρη
√
λ(t)

(
Aλ(t, s)Bλs (t, s)

Aλ(t, s)Bλs (t, s)λ(t)−Aλs (t, s)
−Bλ(t, s)

)
. (6)
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Then, the WWR EPE expression EPE(s) = EQCs
[
C̃s

]
is known analyti-

cally. To compute EPE(t), the WWR EPE at time t, we need to evaluate

the expectation of C̃t under QCt . We thus set s = t and define

Θ(t) :=

∫ t

0

θ(u, t)du ,

α̂(t) := α(t) +
Θ(t)√
T − t

,

Zt
(QCt )∼ N (0, 1) .

This yields (up to the approximation of the stochastic drift by its de-

terministic expression)

C̃t = v
(
t,W t

t + Θ(t)
)

= S0e
−σ22 t+σΘ(t)+σW t

t Φ
(
α̂(t) +W t

t /
√
T − t

)
−Ke−rTΦ

(
α̂(t)− σ

√
T − t+W t

t /
√
T − t

)
∼ S0e

−σ22 t+σΘ(t)+σ
√
tZtΦ

(
α̂(t) + β(t)Zt

)
−Ke−rTΦ

(
α̂(t)− σ

√
T − t+ β(t)Zt

)
,

showing that the WWR EPE takes a similar form as the No-WWR EPE:

EQCt
[
C̃t

]
≈ S0e

σΘ(t)Φ

(
α̂(t) + β(t)σ

√
t√

1 + β2(t)

)
−Ke−rTΦ

(
α̂(t)− σ

√
T − t√

1 + β2(t)

)
,

where the approximation results from the fact that we have replaced the

random variable
∫ t

0
θtudu by the deterministic quantity

∫ t
0
θ(u, t)du. As

regards to the WWR EPE of the put, one easily gets

EQCt
[
P̃t

]
≈ Ke−rTΦ

(
σ
√
T − t− α̂(t)√
1 + β2(t)

)
−S0e

σΘ(t)Φ

(
−α̂(t)− β(t)σ

√
t√

1 + β2(t)

)
.

5. Proxys of θs
t

Here we use two different proxys for θst . As presented in [1], we consider a

proxy where the Q-expectation of λt is used in the formula for the drift ad-

justment (6). However, here we also present an alternative proxy, by using

an approximation of the QCT -expectation of λt and compare the impact on

CVA in Sec. 7.
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5.1. Q-expectation

Here we use θ(t, s) = θst (λ̄t), where λ̄t := EQ[λt]. One strength for this

proxy is that we have an analytic formula for λ̄t and the proxy θ(t, s)

is straight-forward to obtain. The disadvantage is that we are ‘operating’

under other measures than Q. Specifically when estimating the WWR EPE

at time t, we have changed measure to QCt . This changes the dynamics of

λ, but it is ignored in this approach.

5.2. Approximation of QCT -expectation

In order to improve the deterministic approximation of θst , we aim to obtain

an approximation for the QCT -expectation of λt. Remark that we use the

measure for the maturity of the contract for all t ∈ [0, T ]. A possible

weakness of this proxy is that for calculating WWR EPE at time t we

should use the QCt-dynamics not the (terminal) QCT -dynamics. However,

using the terminal measure is a more convenient choice, since it is just

necessary to obtain one ‘term structure’ of λt, t ∈ [0, T ], whereas using the

QCt-dynamics for the WWR EPE at time t will have the effect that it is

necessary to compute separate values for λu, u ∈ [0, t], corresponding to

each t ∈ [0, T ]. This may be computationally heavy, and thus we assume

the simpler version with the benefit that only one term structure has to

be computed while the effect of the drift-adjustment in λ from the change

of measure may be accounted for. A closed-form expectation of λt under

QCT can however not be readily found, but in the following we present an

approximation of this expectation.

One further remark is that the QCT -dynamics of λ is completely inde-

pendent of the correlation between the underlying stock and λ, but is solely

determined by the parameters of the Q-dynamics of λ as well as the matu-

rity of the contract. This allows for computed λ’s to be used for calculating

CVA on several contracts with the same counterparty, since the dynamics

of the contract and its correlation with the default intensity does not enter

any of the expressions.

Firstly, consider the QCT -dynamics of λt for t ∈ [0, T ]:

dλt = κ(θ − λt)dt+ η
√
λt

(
dWT

t + η
√
λtθ̃

T
t (λt)dt

)
, (7)

θ̃Tt (x) :=
a(t, T )

a(t, T )x− b(t, T )
− c(t, T ),

where

a(t, T ) := Aλ(t, s)Bλs (t, s) , b(t, T ) := Aλs (t, s) and c(t, T ) := Bλ(t, s) .
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Hence, integrating both sides of the above SDE in Eq. (7),

λt = λ0 + κθt− κ
∫ t

0

λsds+ η2

∫ t

0

λsθ̃
T
s (λs)ds+ η

∫ t

0

√
λsdW

T
s

and using Tonelli’s theorem,

EQCT
[λt] = λ0 + κθt− κ

∫ t

0

EQCT
[λs]ds+ η2

∫ t

0

EQCT
[
λsθ̃

T
s (λs)

]
ds , (8)

where the Ito integral has zero expectation, and thus has vanished. We

want to simplify the term that includes

λsθ̃
T
s (λs) =

a(t, T )λs
a(t, T )λs − b(t, T )

− c(t, T )λs ,

and therefore we use a first-order Taylor-expansion of the function

a(t, T )x/(a(t, T )x− b(t, T )) around some point x(t) > 0. We use a positive

function since QCT is an equivalent measure to Q and thus the expectation

of λt is always positive. Expanding the function around zero also turns out

to be an undesirable choice that leads to unstable estimates of the expec-

tation close to maturity, as a(t, T )/b(t, T ) diverges for t → T . We choose

to make the expansion around the Q-expectation of λt, since this is indeed

a positive function, and the Q-expectation may give some reasonable input

to the QCT -expectation. The Taylor expansion looks as follows

a(t, T )x

a(t, T )x− b(t, T )
=

a(t, T )x(t)

a(t, T )x(t)− b(t, T )

− a(t, T )b(t, T )

(a(t, T )x(t)− b(t, T ))2
(x− x(t)) + o(x)

=

(
a(t, T )x(t)

a(t, T )x(t)− b(t, T )

)2

− a(t, T )b(t, T )

(a(t, T )x(t)− b(t, T ))2
x

+o(x) .

Setting g(t) := EQCT [λt] we have

g(t) ≈ λ0 + κθt− κ
∫ t

0

g(s)ds

−η2

∫ t

0

(
a(s, T )b(s, T )

(a(s, T )x(s)− b(s, T ))2
+ c(s, T )

)
g(s)ds

+η2

∫ t

0

(
a(s, T )x(s)

a(s, T )x(s)− b(s, T )

)2

ds .
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Differentiating both sides we obtain a first-order linear inhomogeneous ODE

g′(t) ≈ κθ + η2

(
a(t, T )x(t)

a(t, T )x(t)− b(t, T )

)2

− h(t, T )g(t) ,

where

h(t, T ) := κ+ η2

(
a(t, T )b(t, T )

(a(t, T )x(t)− b(t, T ))2
+ c(t, T )

)
.

Disregarding the drift approximation the solution to this SDE is

g(t) = e−H(t,T )

(
g(0) +

∫ t

0

(
κθ + η2G(s, T )

)
eH(s,T )ds

)
,

where in this context, g(0) = λ0, and

H(s, T ) :=

∫ s

0

h(u, T )du ,

G(s, T ) :=

(
a(s, T )x(s)

a(s, T )x(s)− b(s, T )

)2

.

6. Potential future exposures (PFE)

We would like to compare the risk-neutral CVA (CVA computed with

market-implied default probabilities and WWR EPE) with actuarial CVA,

computed with PFE (e.g. 99% quantile of exposures) and historical default

probabilities.

From above, the time-t call price takes the form Ct = f(t,Wt) where

f(t, x) = S0e
(r−σ22 )t+σxΦ

(
α(t) + x/

√
T − t

)
−Ke−r(T−t)Φ

(
α(t)− σ

√
T − t+ x/

√
T − t

)
is a continuous increasing function. Under the risk-neutral measure, the k-

PFE is defined as the profile of the exposure’s quantile at level k: Functions

f being continuous and strictly increasing wrt x, this means that

q(t) = f
(
t,Φ−1(k)

√
t
)
.

A similar expression holds for WWR PFE : one just needs to account for the

measure change. This can be achieved by inserting the drift adjustment,

replacing f(t, x) by f(t, x+ Θ(t)) so that q(t) = f
(
t,Φ−1(k)

√
t+ Θ(t)

)
.

The move from “risk-neutral” to “historical” PFEs can be handled in

a similar way. Clearly, Ct is a deterministic function of St, so that the
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historical distribution of Ct is obtained by using µ (instead of r) as rate

of return of S on the period [0, t). Because St is a deterministic function

of Wt and Wt = W̃t + µ−r
σ t where W̃ is a Brownian motion under the

physical measure, the “historical quantile” is obtained by evaluating the

“risk-neural” function f at a shifted point compared to the Normal quantile:

q(t) = f
(
t,Φ−1(k)

√
t+ µ−r

σ t
)
, and similarly for the WWR case.

Notice that in the previous sections — when dealing with CVA based on

EPE — we assume that the specified CIR-process is the true risk-neutral

dynamics of the default intensities. Thus we do not consider fitting the

survival probability curve to any exogenously given CDS quotes and to

obtain the CVA from Eq. (1) we apply G(t) = PCIR(0, t) where PCIR is the

CIR-bond price.

This approach needs adjustment to obtain the actuarial CVA part. Here

we assign a rating and a flat equivalent spread (or hazard rate) γ to each pair

of maturity and parameter set. We apply a historical survival probability

curve based on the rating: G(t) = exp{−γt}. To ensure that we can recover

the historical probability curve when applying the intensities process we use

the CIR++ model, see e.g. [2], and apply deterministic shifts φ(t) such that

the shifted intensity process yt = λt + φ(t) is inline with the flat hazard

rate γ. The survival probabilities implied by the shifted intensity process

are found by

P y(t, s) := EQ
[
e−

∫ s
t
yudu

]
= e−

∫ s
t
φ(u)duPCIR(t, s) , s ≥ t.

In the approximation of the actuarial CVA based on the drift adjust-

ments, the shifted intensities yt replace λt in Eq. (2). Further we

choose φ(0) = 0 such that y0 = λ0 and replace A(t, s) by A∗(t, s) =

exp{−
∫ s
t
φ(u)du}A(t, s), while B(t, s) remains.

7. Numerical experiments

We use the four parameter sets for the CIR-process of λ used in [1]. Thus

in the forthcoming we will regard parameters in Table 1 as set 1–4. Further

we use S0 = K = 15, r = 1%, µ = 3% and σ = 30%, and call options with

a time to maturity of 1 year and 5 years, respectively. For simplicity we

assume that there is no recovery upon default, i.e. R = 0 in Eq. (1). The

corresponding CVA figures are given in Figs. 1 and 2, and are compared

with a 2D Monte Carlo scheme as well as the Gaussian Copula resampling

approach (for more details about this approach, see e.g. [3], [4] or [5]).
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Table 1. Parameter sets for the dynamics of λ in the numerical

experiments.

Rating used for

λ0 (bps) κ θ (bps) η actuarial CVA

Set 1 300 02% 1610 8% B
Set 2 350 35% 450 15% B

Set 3 100 80% 200 20% B

Set 4 300 50% 500 50% B

We also consider the actuarial CVA; CVA calculated from the 99% PFE,

which is described in Sec. 6, and on historical rather than risk-neutral de-

fault probabilities. We use the default rates from [6], and we consider all

parameter sets to have rating B , which ensures that all shifts are posi-

tive and thus the shifted default intensity is ensured to be non-negative.

Specifically the flat hazard rates used for B rating are 458.8 bps for 1 year

contracts and 507.6 bps for 5 year contracts. The actuarial CVA is shown

in Figs. 3 and 4.

In the following, we use the terms QCT -proxy and Q-proxy for the proxys

of θst using the λ expectation under QCT and Q, respectively.

Consider the CVA on 1 year contracts in Fig. 1. We observe a pattern

that for negative correlations, we tend to estimate a higher CVA compared

to the 2D Monte Carlo scheme. Generally this overestimation of CVA is

stronger for the QCT -proxy than for the Q-proxy. The exception is param-

eter set 4, where the Q-proxy which estimates a slightly lower CVA. For

positive correlations — when we experience WWR on the call — we observe

a very good fit of the QCT -proxy and the Monte Carlo CVAs parameter set

1–3, while the Q-proxy also tends to overestimate the CVA on this end.

Comparing the results for the two proxys, we observe that the Q-proxy

tends to suggest a larger WWR-effect, giving a larger compensation than

the QCT -proxy for positive correlations, while it suggests a lower compen-

sation in the case of negative correlations. Thus the Q-proxy suggests a

higher impact of the “market-credit correlation”.

Consider now the CVA on the 5 year contract in Fig. 2. Firstly, we

observe that even for one million sample paths and a time step of 0.01, the

Monte Carlo simulations of the CVA does include some bias, since the zero-

correlation case does not completely correspond with the analytic formula.

This is especially pronounced for parameter set 4. Here we experience a

weakness of the 2D Monte Carlo approach; it is computationally heavy, but

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
0.

17
.2

16
.2

46
 o

n 
01

/1
6/

21
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 9, 2018 13:1 Innovations in Insurance, Risk- and Asset Management 9in x 6in b3285-ch02 page 39

Wrong-Way Risk Adjusted Exposure: Analytical Approximations for Options 39

(a) Set 1 (b) Set 2

(c) Set 3 (d) Set 4

Fig. 1. 1 year call CVA profiles for the four parameter sets using a 2D Monte Carlo
scheme (line with circles) with 106 paths and a time step of 0.01, compared with the
analytic approximation using the Q-expectation (black) and QCT -approximation (grey).

CVA based on the Gaussian Copula resampling approach (line with squares) and the
analytic CVA with zero-correlation (vertical dashed grey line) are included. The Basel
no-WWR CVA is indicated by the line with triangles and the WWR CVA using α = 1.4

is indicated by grey dots.
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(a) Set 1 (b) Set 2

(c) Set 3 (d) Set 4

Fig. 2. 5 year call CVA profiles for the four parameter sets using a 2D Monte Carlo
scheme (line with circles) with 106 paths and a time step of 0.01, compared with the
analytic approximation using the Q-expectation (black) and QCT -approximation (grey).

CVA based on the Gaussian Copula resampling approach (line with squares) and the
analytic CVA with zero-correlation (dashed grey line) are included. The Basel no-WWR
CVA is indicated by line with triangles and the WWR CVA using α = 1.4 is indicated

by grey dots.
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moreover includes a bias with a very small time-step and large number of

paths. Comparing the CVA of the two proxys, we observe similar behavior

as in the 1 year case.

For both 1 and 5 year CVA — and for all parameter sets — we observe

that the resampling approach is highly sensitive to the market-credit cor-

relation. This allows to model very strong WWR impact. The problem

however is that it is unclear how the value of the dependence parameter

(the correlation between τ and the exposure Vti at any given point in time

ti) has to be chosen.

Further, we provide the CVA under Basel, based on [7], [8]. In this

context (T being the contract maturity, where we consider 1 and 5 years),

the No-WWR figure is given by

CVAbasel = (1−G(T ))
EPE⊥(0) + EPE⊥(T )

2
,

where EPE⊥(t) is the (No-WWR) EPE at time t, which is constant and

equal to C̃0 for the call and P̃0 for the put. The WWR CVA is given by

CVAbasel
α = (1−G(T ))αEPE⊥(T/2) , (9)

where αEPE⊥(T/2) is called the “exposure at default” (EAD) and the

scaling coefficient α is typically set to 1.4. The corresponding levels are

indicated on Figs. 1 and 2.

The Basel III parameter α cannot be considered as a way to represent

market-credit correlation, but in fact capture the “market-credit covari-

ance”. This is a crucial point, that complicates drastically the choice of a

reasonable value for α. In order for the Basel type formula to be a decent

approach to account for WWR, α has to be chosen not only with regards to

dependence between portfolio and credit, but also according to both market

and credit volatilities. This observation suggests that it is a bit naive to

hope that a kind of “universal constant” would be able to account for this

effect. The approximation proposed in [1] is therefore, from this perspec-

tive, a significant improvement to Basel type formulae. Table 2 show the

values of α that make the CVA in the Basel type formulae agree with the

ones obtained from Monte Carlo simulation for 1 year contracts. Across

parameter sets the value changes quite significantly. Obviously α ≈ 1 for

zero-correlation, and the values are larger (smaller) for positive (negative)

correlations. Thus the Basel approach cannot capture right-way risk, which

is experienced when the correlation is negative, while the performance of

the method is highly dependent both on the correlation and the parameter

set used.
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Table 2. The values of α for which Eq. (9) agrees with the

2D-MC results for 1 year call options.

ρ -0.9 -0.6 -0.3 0 0.3 0.6 0.9

Set 1 0.75 0.83 0.92 1.01 1.10 1.20 1.30

Set 2 0.63 0.74 0.87 1.01 1.16 1.31 1.48
Set 3 0.42 0.58 0.78 1.01 1.28 1.59 1.95

Set 4 0.29 0.45 0.70 1.03 1.44 1.95 2.57

The interpretation of the actuarial CVA in Figs. 3 and 4 are similar to

the interpretation of the risk-neutral CVA results. We generally observe a

larger impact of the correlation on the CVA when using the Q-proxy than

what suggested by the QCT -proxy.

8. Conclusion

From the change-of-measure approach suggested in [1], we have examined

the CVA on put and call options under WWR. In the Basel III framework,

WWR is treated by a multiplier. But it should not be based on “market-

credit correlation”, but rather on “market-credit covariance”. We find that

the Basel III approach is a naive way of estimating the CVA that does

not recognize right-way risk and cannot capture the wrong-way risk in a

desirable way. However, using the set-up in this paper, one can obtain

CVA on put and call options, and capture the effect of the market-credit

correlation by analytic formulas. Specifically, we present the formulas for

two proxys of the drift-adjustment process, using each proxy, the CVA can

be obtained analytically. Further the actuarial CVA based on PFE also has

an analytic expression, based on the formulas in the paper.

In the numerical experiments, we examine the estimated CVA — both

the risk-neutral and actuarial CVA — from the formulas supplied in the pa-

per, compared with joint (exposure-credit) Monte Carlo simulations, Gaus-

sian Copula resampling and Basel III figures. We observe that the Gaussian

Copula resampling approach is very sensitive to the correlation, leading to

too high CVA estimates when experiencing WWR. We do not find 2D

Monte Carlo to be a desirable method, since it is computationally heavy,

and in some cases includes a bias, even for a small time-step and large

number of sample paths.

On the other hand, we get very encouraging results from the CVA based

on the two proxys, both when calculating the risk-neutral CVA and the

actuarial CVA. The simple Q-proxy is performing quite reasonably and
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Fig. 3. 1 year actuarial call CVA profiles for the four parameter sets using the analytic
approximation with the Q-expectation (solid line) and QCT -approximation (dashed line).
The dashed grey line shows the analytic CVA with zero-correlation is included.
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Fig. 4. 5 year actuarial call CVA profiles for the four parameter sets using the analytic
approximation with the Q-expectation (solid line) and QCT -approximation (dashed line).
The dashed grey line shows the analytic CVA with zero-correlation is included.
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captures the general behavior of the CVA. This proxy is very easy to im-

plement and fast to compute since all formulas are analytic (up to the de-

terministic approximation of the drift adjustment). Using the QCT -proxy

requires an additional approximation (to compute the corresponding expec-

tation of λt), but gives a slightly more realistic (considering the MC-results

to be the true CVA) CVA when experiencing WWR.
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Chapter 3

Consistent Iterated Simulation of Multivariate Defaults:

Markov Indicators, Lack of Memory, Extreme-Value Copulas,
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A current market-practice to incorporate multivariate defaults in global risk-
factor simulations is the iteration of (multiplicative) i.i.d. survival indicator in-

crements along a given time-grid, where the indicator distribution is based on a

copula ansatz. The underlying assumption is that the behavior of the resulting
iterated default distribution is similar to the one-shot distribution. It is shown

that in most cases this assumption is not fulfilled and furthermore numerical

analysis is presented that shows sizable differences in probabilities assigned
to both “survival-of-all” and “mixed default/survival” events. Moreover, the

classes of distributions for which probabilities from the “terminal one-shot”

and “terminal iterated” distribution coincide are derived for problems consid-
ering “survival-of-all” events as well as “mixed default/survival” events. For
the former problem, distributions must fulfill a lack-of-memory type property,
which is, e.g., fulfilled by min-stable multivariate exponential distributions.
These correspond in a copula-framework to exponential margins coupled via

extreme-value copulas. For the latter problem, while looping default inspired
multivariate Freund distributions and more generally multivariate phase-type

Open Access chapter published by World Scientific Publishing Company and distributed

under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives
(CC BY-NC 4.0) License.
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distributions could be a solution, under practically relevant and reasonable
additional assumptions on portfolio rebalancing and nested distributions, the

unique solution is the Marshall–Olkin class.

Keywords: stepwise default simulation, default dependence, extreme-value cop-
ulas, Marshall–Olkin distribution, nested margining, Freund distribution, loop-

ing default models, multivariate phase-type distribution.

1. Introduction

The increasingly global nature of financial products and risks calls for ad-

equately complex stochastic models and simulation procedures. These are

required for valuation purposes as well as for risk analysis and often involve

thousands of risk factors that can be different in nature. Investment banks

and financial service companies are devoting a sizable effort to design soft-

ware and hardware architectures that support such global simulations effec-

tively, see, e.g. [1]. The path-dependent nature of many risks and the neces-

sity to analyze risks at different time horizons lead to an iterated simulation

of all risk factors across time steps. The consistent statistical representation

of default-times of multiple entities and their inter-dependence-structure is

the main motivation for this paper. For the simulation of default-times, up

to a final horizon, two possible approaches are considered:

(i) Simulate the default-times, at the beginning, once and for all in each

given scenario. The resulting values are stored and the other risk factors

are simulated iteratively up to the final time horizon.

(ii) Alternatively, one simulates in each given scenario for every time-period

a “default/no default” indicator of all non-defaulted entities conditional

on the default history — i.e. the survival of non-defaulted entities up to

the beginning of this period and the default-times of already defaulted

entities.

We anticipate that we will be concerned with the consistency of the two

approaches above under a number of additional specifications. The basic

question is:

When is an iterated default simulation, often done by sampling a given

type of multivariate distribution, equivalent to a one-shot simulation under

essentially the same distribution?

Although this appears to be a simple question, it is in fact rather nuanced.

For this question to fully make sense we need to be a little more precise on
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our definitions and on our problem specification, and it is indeed one of the

main purposes of this paper to fully clarify this question, its implications,

and some possible answers. It is worth putting this pre-question in the

open now, and we would like to mention that the first named author has

witnessed cases in the industry where the two procedures were assumed to

be equivalent when they were not, and this both in the valuation/hedging

space and in the risk measurement space. While the author is not allowed

to provide details on such cases for confidentiality issues, we will see some

numerical examples clarifying this discrepancy in the course of the paper.

Going back to our introduction, the dependence between default-times

and other risk factors has to be introduced on the whole risk factor evolu-

tion in approach (i) and on the period steps in approach (ii), respectively.

In this formulation both approaches are mathematically equivalent — how-

ever, this equivalence is based on conditional probabilities, which can be

arbitrarily complex.1 Consider, for example, the case of wrong way risk for

credit valuation adjustments for credit default swap (CDS) trades under

collateralization in [2], where the first approach is used: even with just

three default times involved, the CDS and the two trading parties, the for-

mulas become very involved and cumbersome. Thus, generally, one either

has a model for the default-times in approach (i) with complex conditional

probabilities, or one has a model for the indicator increment process in

approach (ii) with unknown “terminal iterated” dependence. The mathe-

matical underpinning — if any — for company-wide, global simulation of

defaults is often, or can be translated into, a copula-based ansatz. Such

a model originates from the statistical literature and renders approach (i)

more natural from the company-default perspective. However, when deal-

ing with large portfolios, the literature on financial risk management mostly

prefers models relying on a repeated evolution of risk factors on common

time grids. Approach (ii) is more consistent with this way of thinking and

therefore more desirable both from a theoretical and practical point of view,

for the following reasons:

• Software consistency with “Brownian-driven” asset classes:

Consider a bank that runs a global simulation on a large portfolio, in-

cluding complex products and defaults, in order to obtain a risk measure.

1Contrary to the univariate case, where sampling from conditional probability distribu-

tions can be handled using the distributional transform, even if we can calculate the
probabilities, conditional multivariate probability distributions can be very difficult to

sample from.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
0.

17
.2

16
.2

46
 o

n 
01

/1
6/

21
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 9, 2018 13:1 Innovations in Insurance, Risk- and Asset Management 9in x 6in b3285-ch03 page 50

50 Innovations in Insurance, Risk- and Asset Management

One example would be computing the value-at-risk or the expected short-

fall of CVA, a task that is numerically very intensive, see, e.g. [3]. In

this context, there is need to evolve risk factors according to controlled

time steps that are common to all factors, to have all required variables

at each step of the simulation. While this is relatively natural for asset

models that are driven by Brownian-type processes and even extensions

with jumps, it becomes harder when trying to include defaults of under-

lying entities or counterparties. The reason for this is that default-times,

typically represented through intensity models, should be simulated just

once, being static random variables as opposed to stochastic processes.

Once simulated, there would be nothing left to iterate. However, the

consistency of the global simulation and the desire to have all variables

simulated at every step is prompting the design of iterated survival or

default flags across the time steps that are already used in the simulation

of more traditional assets.

• Basel III requirement for risk horizons: A further motivation for

iterating the global simulation across standard time steps is coming from

the Basel III framework when trying to address liquidity risk. The Bank

of International Settlements (BIS) suggests the following solution, see [4].

“The Committee has agreed that the differentiation of market liquidity

across the trading book will be based on the concept of liquidity hori-

zons. It proposes that banks’ trading book exposures be assigned to a small

number of liquidity horizon categories: [10 days, 1 month, 3 months, 6

months, 1 year]. The shortest liquidity horizon (most liquid exposures)

is in line with the current 10-day VaR treatment in the trading book.

The longest liquidity horizon (least liquid exposures) matches the banking

book horizon at one year. The Committee believes that such a frame-

work will deliver a more graduated treatment of risks across the balance

sheet. Among other benefits, this should also serve to reduce arbitrage

opportunities between the banking and trading books.”

It is clear then that a bank will need to simulate the risk factors of the

portfolio across a grid including the standardized holding periods above.

In this sense it will be practical to simulate all variables, including de-

faults and survivals, in common time steps. Software architecture and the

possibility to effectively decompose the simulation across steps, prompt

to the possibility to iterate the default simulation rather than trying to

simulate random default-times just once.

• General need for dependence modeling in the context of the cur-

rent counterparty credit risk debate: As an example, the current
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debate on valuation adjustments (as the partly overlapping credit CVA,

debit DVA, and funding FVA adjustments, see, e.g., [3]), is forcing fi-

nancial institutions to run global simulations over very large portfolios.

By nature, CVA is an option on a very large portfolio containing the

most disparate risk factors. A key quantity in valuing this option is

the dependence between the default of a counterparty and the value of

the underlying portfolio that is traded with that counterparty. When

such dependence is adverse for the agent making the calculation we have

wrong way risk (WWR), a risk that is at the center of the agenda of the

Bank of International Settlements in reforming current regulation. Mod-

eling the dynamics of dependence is not only essential for the current

emergencies of the industry, such as CVA/DVA/FVA and risk measures

on these quantities, but it is also necessary for the management of pure

credit products, such as, e.g., Collateralized Debt or Loan Obligations

(CDO, CLO).

Before shifting the focus solely to default-times, it is important to consider

not only the distribution of default-times but also the dependence on other

risk factors:

(a) In reality, default risk is correlated with other risk-factors. These can

be risk-factors belonging to other asset classes, e.g. equity, or even

macro-economic risk factors. These dependencies, however, are usually

not considered in model building for the following reasons: It might be

easy to reject the independence-assumption between a default-time and

some other risk-factor with qualitative arguments or statistical tests,

but the determination of a good model for this dependence (or directly

for the joint distribution) is usually far from trivial. Even if one can

formulate a satisfying model for other risk-factors and default-times

— or the survival-indicator increments — the additional complexity

can lead to computational problems (as explained in the following).

Furthermore, the design of such a global model, including dependence

between risk-factor classes, would require different departments of the

financial institution to work together. For most institutions this is

infeasible as business is often separated into different sections, of which

each models their relevant risk factors to their own appropriate level of

complexity.

(b) The computation of transition probabilities, or sampling from these

transition-distributions, for the risk-factor evolution will be very
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difficult and non-trivial in most cases. In particular, if there are

no closed-form expressions, one usually has to rely on numerical-

integration techniques — if available — which becomes time-consuming

and is difficult to implement.

(c) Dependency information requires additional storage — especially if the

dependency is conditional on the full histories of risk-factors, which is

even challenging in low, but especially in high dimensions.

Focussing on the (discrete) survival-indicator process, there are more prob-

lems which have to be considered:

(d) Assume that there are d entities and N simulation steps up to the final

time-horizon. In the worst case of full default-evolution-dependence this

leads to
∑N−1
k=0 (k + 2)d transition-probabilities. In the case of simple

time-dependence, we have N ·3d transition-probabilities. In the case of

complete time-homogeneity, one “only” has 3d transition-probabilities.

For a large number of entities d or/and a large number of simulation

steps N the issue of over-parameterization becomes apparent.

(e) Let T be the final time-horizon. Then the number of time-steps, and

subsequently the number of parameters, depends on the step-size ∆,

i.e. N = T/∆. This can lead to problems if different step-sizes have to

be simulated (e.g. days, weeks, months, ...) as all probabilities should

be consistent.

An additional problem is that the definition of all transition-probabilities

have to be re-assessed in case the composition of the defaultable portfolio

changes.

In summary, approach (i) appears more natural from the perspective of

default modeling itself, however, in a global risk factor model, approach (ii)

might be more desirable and is mostly used in the financial industry. Sum-

ming up, this involves the following questions:

(1) What are convenient conditions on the multivariate distribution of the

default-times such that approach (i) and approach (ii) are consistent

in the sense that if one knows the distribution of default-times for ap-

proach (i), one has a manageable “default/no default” indicator process

for approach (ii) yielding the same results, and vice versa.

(2) What can go wrong, if one uses some indicator evolution which is not

consistent in the sense of (1) — e.g. based on a Gaussian coupling of

exponential random variables?
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The consistency in question (1) can be weakened if the problem only con-

cerns “survival-of-all” events instead of “mixed default/survival” events.

The class of consistent distributions in the sense of question (1) might be

very large — as the requirement of understanding the distribution as a

model in approach (i) and approach (ii) can be fulfilled for many distri-

butions with enough time at hand. However, most of these distributions

are not feasible in practice, as we do not only need a model which is fully

understood, but also feasible for simulation in terms of memory usage and

sampling strategy. Therefore, a convenient assumption, which resolves — or

at least diminishes — problems (a)–(e) from above, is a (continuous-time)

time-homogeneous Markovian survival-indicator process. This is equivalent

to conditional probabilities being determined by the current set of defaulted

entities, but not on their specific default-times. The idea of using Marko-

vian survival-indicator processes (even possibly time-inhomogeneous and

only Markovian conditional on a set of intensity processes) is not new and

has been discussed in [5] and [6]. These papers focus on the issue of pricing

portfolio-credit derivatives. In the following we give a short overview on

the “survival-of-all” and “mixed default/survival” problems.

1.1. Problem one: “Survival-of-all” events

In this special case the underlying problem only concerns the

default/survival-of-all entities up to certain points in time. An example

for such a problem is the valuation of a first-to-default swap on a basket of

entities. Subsequently, one can demand a weaker version of consistency and

feasibility — namely that the “survival-of-all” event and the corresponding

indicator process are consistent and feasible. The class of consistent and

feasible distributions for this problem was first studied in [7] and is related

to a multivariate generalization of the univariate lack-of-memory property.

In particular, a subclass fulfilling this property are min-stable multivari-

ate exponential distributions. These are multivariate distributions with

exponential margins and an extreme-value copula. Fundamental examples

of this subclass, such as the Marshall–Olkin and the Gumbel–Hougaard

distribution, are presented in this paper.

1.2. Problem two: “Mixed default/survival” events

Problems which depend on “mixed default/survival” events — and thus

do not fall in the same category as problem one — require the original

strict version of consistency. This leads (under previously outlined feasibil-

ity conditions) to time-homogeneous Markovian survival-indicators. This
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general class is already known under the name multivariate phase-type dis-

tributions. This article analyzes further desirable theoretical and practical

conditions on the resulting simulation process and as a result focuses on

the subclasses of Marshall–Olkin distributions as well as a multivariate ex-

tension of the bivariate Freund distribution. In particular, the practically

important requirement of having the Markov property also for sub-vectors

of indicators leads to a new characterization of the Marshall–Olkin law

that has been first discussed in [8] and is recalled here in the context of the

present paper. Our general aim is to increase awareness of the fact that

the stepwise simulation of default indicators (approach (ii) above) is a hard

task in general, and in particular that the practical implementation is not

feasible without huge efforts (both theoretical and computational), and that

sizable errors and undesired effects may occur by iterating under the wrong

conditions.

1.3. Structure of the paper

In Sec. 2 the survival-indicator process is introduced. It is shown that

Markovianity of this process can be identified on a distributional level with

a lack-of-memory type property. Subsequently, multiple lack-of-memory

properties are presented and associated with certain classes of multivari-

ate probability distributions. In particular, the min-stable multivariate

exponential property (MSMVE) is introduced and is related to its charac-

terization via extreme-value copulas and exponential margins.

Section 3 addresses the “survival-of-all” problem. Therefore, the con-

cepts of self-chaining distributions and copulas, which were introduced in

[7], are revisited and advanced. In particular, it is shown that the MSMVE

characterization in terms of extreme-value copulas with exponential mar-

gins solves the problem. Then it is outlined that the widely used Gaussian-

coupled exponential distributions do not fulfill that property. Moreover,

choosing such a distribution for the step-innovations leads asymptotically

to independence of the default-times, completely destroying dependence in

the limit if the step size in time tends to zero.

In Sec. 4 the “mixed default/survival” problem is discussed, for looping

default models, Freund distributions, and multivariate phase-type distribu-

tions. A special focus lies on the Marshall–Olkin class, leveraging its new

characterization in terms of Markov property of vectors and subvectors of

indicators, as in [8], and different simulation strategies as well as a conve-

nient construction through Lévy-frailty models.
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The final section concludes the article.

2. Default-time distributions and survival-indicator

processes

Assume that (Ω,F ,P) is a probability space on which all random objects of

this section are defined. Throughout this article, let τ = (τ1, . . . , τd)
′ be a

(non-negative) random vector of default-times2 for d entities with joint- and

marginal survival function(s) F̄ and F̄i, i ∈ [d] := {1, . . . , d}, respectively3

and Z = Z(t) be the corresponding survival indicator process which is

defined by

Zi(t) := 1{τi>t}, i ∈ [d], t ≥ 0.

In light of the introduction — and particularly as our questions of inter-

est rely on iterating the survival-indicator process over periods with fixed

length ∆ — it may seem more appropriate (and also simpler) to work with

the discretized version of Z, hereby denoted by Z(∆) and defined by

Z
(∆)
i (j) := Zi(j∆), j ∈ {0, . . . , N}, i ∈ [d].

As outlined in the introduction, there are various arguments why it is con-

venient to assume that the underlying continuous-time process Z is also

time-homogeneous Markovian. In the following another technical and a

model building argument for this assumption are presented:

(a) Technical argument: The period-length, ∆ > 0, is usually an externally

given quantity — e.g. set by the regulator as liquidity horizon or it is

implicitly given from the existing IT-infrastructure. Hence, a model

which can only be used consistently and feasible for very specific ∆ is

not desirable, as any (externally driven) change in ∆ might destroy the

models usability.

(b) Model building argument: From a model building perspective it is rea-

sonable to assume that Z(∆) has a representation with an underly-

ing continuous-time process Z. A deviation from the Markovian as-

sumption above implies that the process Z either violates the time-

homogeneity or the Markovian assumption entirely. However, if one

2For consistency, these “event”-times are referred to as default-times throughout this

article, however, other notions such as fatality-, inter-arrival-, or inter-failure-times are
equally applicable.
3For τ and s, t ≥ 0, the multivariate survival function is defined by F̄ (s) := P(τ > s)

and the ith marginal survival function by F̄i(t) := P(τi > t).
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assumes that the time-homogeneous Markovian property of Z(∆) is a

tolerable deviation from reality — one should avoid choosing a model

which violates those very properties on the continuous-time scale.

In summary, one can conclude that assuming an implied continuous-

time, time-homogeneous Markovian survival-indicator process Z is a rea-

sonable assumption, if one wants a feasible and consistent approach. In

particular, this assumption is desirable from a technical aspect and also

from a model building view if the underlying entities do note make the

time-homogeneity assumption in itself unusable. Therefore, it is assumed

throughout this article that, as a feasibility condition, Z is a continuous-

time, time-homogeneous Markovian survival-indicator process.

2.1. Markovian survival indicator-processes

Let I = {0, 1}d and define the auxiliary function h to establish a bijection

between the power set of [d], denoted by P([d]), and I by

h : P([d])→ I, I 7→ (1{1∈I}, . . . , 1{d∈I})
′.

A survival-indicator process is a stochastic process Z = Z(t) on I fulfilling

for all s, t ≥ 0 and J ( I ⊆ [d]

P(Z(t+ s) = h(I) | Z(t) = h(J)) = 0.

This process is Markovian if for all I, J ⊆ [d], A ∈ σ(Z(v) : v ≤ t), and

s, t ≥ 0

P(Z(t+ s) = h(I) | Z(t) = h(J), A)

= P(Z(s+ t) = h(I) | Z(t) = h(J)).

It is furthermore called time-homogeneous if additionally for all s, t, v ≥ 0

P(Z(t+ s+ v) = h(I) | Z(t+ v) = h(J))

= P(Z(t+ s) = h(I) | Z(t) = h(J)).

A time-homogeneous Markovian process satisfies

P(Z(t+ s) = h(I) | Z(t) = h(J)) = (~eh̃(J))
′ exp{Qs}~eh̃(I),

where h̃ : P([d])→ {0, 1}2d is an arbitrary bijection between the power set

of [d] and the set {1, . . . , 2d}, which fulfills h̃(I) < h̃(J) ⇔ |I| > |J | for all

I, J ⊆ [d],4 ~ek, k ∈ [2d], is the canonical basis of R2d , and Q ∈ R2d×2d is an

4This property guarantees, that the resulting intensity matrix Q is an upper-triagonal

matrix.
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intensity matrix.5 As it is assumed that h̃ is chosen such that for two sets

with different cardinality, the one with more elements has the lower index,

the matrix Q is upper trigonal with non-negative off-diagonal values and

rows summing up to zero, i.e.

Q =

q1,1 ?
. . .

0 qd,d

 .

Remark 2.1 (Intensities of a Markovian Process). Let Q ∈ Rn×n
be a (not necessarily upper trigonal) intensity matrix for n states S —

w.l.o.g. assume S = [n]. Then, one can construct a continuous-time, time-

homogeneous Markovian process Z as follows (see [9]):

(i) Let X0 be the (possibly random) initial state, i.e. define Z(0) := X0.

(ii) For k ∈ N0 define the kth jump time of Z by Tk (for k = 0 let T0 := 0).

Furthermore, assume that Z(Tk) = i ∈ S.

(a) Let Ek+1 ∼ Exp(−qii) be an exponential random variable with rate

−qii which is, conditional on Z(Tk), independent of σ({El, Tl, l ≤
k}).

(b) Define Tk+1 := Tk + Ek+1 and define Z(t) = i ∀t ∈ (Tk, Tk+1).

(c) Let Xk+1 be a discrete random variable on S\{i} with probabilities

proportional to the ith row, i.e. P(Xk+1 = j) = −qij/qii. Moreover,

assume that Xk+1 is independent of σ({El, Tl, l ≤ k}) as well as

independent of Tk+1.

(d) Let Z(Tk+1) = Xk+1.

(iii) Repeat (ii) either infinitely often or until an absorbing state is reached,

i.e. a state i with qii = 0. Note that for practical application the algo-

rithm stops if Tk+1 > T for some terminal time-horizon T > 0.

It is useful to know that a time-homogeneous Markovian survival-

indicator process is uniquely defined if for every non-zero transition, i.e.

h(J) → h(I), I ⊆ J , the transition probability for an arbitrary posi-

tive transition-time is known. This will be shown in the sequel. Let

τ be a default-vector with corresponding time-homogeneous Markovian

survival-process Z and intensity-matrix Q. Furthermore, let 1 ≤ K ≤ d,

5For a thorough introduction to continuous-time Markovian processes and a reference

for this result, see [9], Ch. 8 and 9.
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I = {i1, . . . , iK} ⊆ [d], tI ≥ 0, π ∈ Sd be a permutation6 with π([K]) = I

and tπ(1) ≥ . . . ≥ tπ(K), and define Aπ,K as the finite set

Aπ,K := {(I1, . . . , IK) : π([k]) ⊆ Ik, Ik ⊆ Ik+1 ∀k = 1, . . . ,K} ,

where tπ(K+1) = 0 and IK+1 = [d]. Then

P(τ I > tI) =
∑

(I1,...,IK)∈Aπ,K

K∏
k=1

(~eh̃(Ik+1))
′ exp

{
(tπ(k) − tπ(k+1))Q

}
~eh̃(Ik).

The assumption that the survival-indicator process is time-homogeneous

Markovian has an important implication: Let s = (s1, . . . , sd)
′ ≥ 0 be a

deterministic vector of non-negative times and let π ∈ Sd be a permutation

such that sπ(1) ≥ . . . ≥ sπ(d). Then for t ≥ 0, v = s+ t, and vπ(d+1) = 0 as

well as Id+1 = [d]

P(τ > s+ t) =
∑

(I1,...,IK)∈Aπ,d

d∏
k=1

(~eh̃(Ik+1))
′ exp

{
(vπ(k) − vπ(k+1))Q

}
~eh̃(Ik)

= (~eh̃([d]))
′ exp{tQ}~eh̃([d])

×
∑

(I1,...,IK)∈Aπ,d

d∏
k=1

(~eh̃(Ik+1))
′ exp

{
(sπ(k) − sπ(k+1))Q

}
~eh̃(Ik)

= P(τ > s)P(τ > t).

This is equivalent to

P(τ > s+ t | τ > t) = P(τ > s). (1)

Analogously, one can derive for some ∅ 6= I ⊆ J ⊆ [d], and t, v ≥ 0, that

P(τ I > sI + t+ v | τ J > t+ v, τ[d]\J ≤ t+ v)

= P(τ I > sI + t | τ J > t, τ[d]\J ≤ t).

2.2. Lack-of-memory properties

It is not a coincidence that Eq. (1) collapses in the univariate case to the

well-known univariate lack-of-memory property — also known as Cauchy’s

6A permutation on [d] is a bijection from [d] to [d]; the set of all permutations on [d] is

denoted by Sd.
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functional equation — as in that case the time-homogeneity of the survival-

indicator process implies exactly that the probability of a survival-time big-

ger than s+t conditional on a survival-time bigger than s is stationary with

respect to t, i.e.

P(τ > s+ t | τ > t) = P(τ > s). (2)

It is a well-known fact that the class of non-negative distributions ful-

filling Eq. (2) and having at least one continuity point7 are exponential

distributions — see, e.g., [10], p. 190. This property implies a very conve-

nient simulation scheme if one is interested in the exponentially distributed

survival-time of some entity:

1{τ>j∆}
d
=

j∏
k=1

1{τ(k)>∆},

where τ (k) ∼ τ are i.i.d. copies of τ and
d
= denotes equality in distribution.

The univariate lack-of-memory property, Eq. (2), can be extended to a

multivariate property in multiple ways. In the following, a few of these are

presented. Therefore, let τ be a vector of non-negative random default-

times and assume that the following conditions hold for all ∅ 6= I ⊆ [d] and

sI , tI , cI , s, t ≥ 0.

• Multivariate independent exponential lack-of-memory (MIELOM):

P(τ I > sI + tI | τ I > tI) = P(τ I > sI). (3)

• Multivariate Marshall–Olkin lack-of-memory (MMOLOM):

P(τ I > sI + t | τ I > t) = P(τ I > sI). (4)

• Min-stable multivariate exponential lack-of-memory (MSMVE):

P(τ I > cI(s+ t) | τ I > cIt) = P(τ I > cIs). (5)

• Exponential-minima lack-of-memory (EM):

P(τ I > s+ t | τ I > t) = P(τ I > s). (6)

7This condition can be weakened in this context.
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It was shown in [11] that (MIELOM) is equivalent to τ having indepen-

dent exponential components and (MMOLOM) is equivalent to τ having

a Marshall–Olkin distribution, i.e. there exist λI ≥ 0, ∅ 6= I ⊆ [d], with∑
I:i∈I λI > 0 for all i ∈ [d], such that for all t ≥ 0

P(τ > t) = exp

− ∑
I:∅6=I⊆[d]

λI max
i∈I

ti

 . (7)

Furthermore, the authors provided the following stochastic model: Let

EI , ∅ 6= I ⊆ [d], be exponential random variables with rates λI , ∅ 6= I ⊆ [d],

as above. Then the random vector τ has the survival function in Eq. (7),

where τ is defined by

τi := min{EI : i ∈ I}, i ∈ [d]. (8)

Marshall–Olkin distributions and continuous-time, time-homogeneous

Markovian survival-indicator processes are deeply connected. In [8] it

was shown that τ has a Marshall–Olkin distribution if and only if for ev-

ery non-empty subset I the marginal survival-indicator process ZI(t) :=

(1{τi>t}, i ∈ I)′ is time-homogeneous Markovian. The following theorem

shows that every continuous-time, time-homogeneous Markovian survival-

indicator process can be constructed using a finite sequence of Marshall–

Olkin distributed random vectors.

Theorem 2.1. Let Q be an intensity matrix of a time-homogeneous Marko-

vian survival-indicator process. Consider the process Z, which is con-

structed as follows:

(i) Define Z(0) = h([d]) = (1, . . . , 1)′ (All entities are alive at time 0).

(ii) Assume that Z jumped k ∈ N0 times and define the time of the

kth jump by Tk (for k = 0 let T0 := 0). Furthermore, assume that

h−1(Z(Tk)) = I ⊆ [d].

(a) For ∅ 6= J ⊆ I, let EJk+1 ∼ Exp(qh(I),h(I\J)) be independent expo-

nential random variables with rates qh(I),h(I\J), which are, condi-

tional on Z(Tk), also independent of all previously used random

variables.

(b) Define

Tk+1 := Tk + min∅6=J⊆I E
J
k+1 and Dk+1 := argmin∅6=J⊆I E

J
k+1.

Furthermore, define Z(t) := h(I) ∀t ∈ (Tk, Tk+1) and Z(Tk+1) :=

h(I\Dk+1).
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The resulting process Z is time-homogeneous Markovian with intensity ma-

trix Q. Note how the minimum operation in (b) is related to the Marshall–

Olkin fatal shock model.

Proof. The statement follows directly from Thm. A.1.

It is a well-known fact, see e.g. [12], p. 174, that the class of MSMVE

distributions is characterized by having exponential margins and a survival

copula of extreme-value kind, i.e. a copula Ĉ that satisfies

Ĉ(ut) = Ĉ(u)t, ∀u ∈ [0, 1]d, t ≥ 0. (9)

Furthermore, it holds that (see, e.g., [13])

MIELOM ( MMOLOM ( MSMVE ( EM.

For the purpose of this article, we also define weaker versions of these

properties, where the respective property only has to be fulfilled for I = [d],

and these are then referred to as weak versions of the respective properties,

e.g., weak exponential minima property (WEM).

3. Problem one: Iterating “survival-of-all”

This section addresses problem one, for which only “survival-of-all” events

are relevant. Let the vector of default-times be denoted by τ = (τ1, . . . , τd)
′.

A “survival-of-all” event (similarly for a “first-to-default” event) has the

form {
min
i∈[d]

τi > s

}
, for some s > 0.

In practical applications, one has the options of either directly model-

ing the joint minimum of all default-times, or modeling the vector of all

default-times and considering its minimum. Note that these approaches

are sometimes called top-down- and bottom-up approach, respectively, not

to be confused with the related but different top-down and bottom-up ap-

proaches for collateralized debt or loan obligations, see for example [14].

The top-down approach has the appealing advantage that everything be-

comes simpler and more advanced models, e.g. with stochastic intensity,

become feasible. On the contrary, the bottom-up approach has the advan-

tage that the default-times themselves are more “natural,” compared to

their joint minimum, as a model. This means in particular that in bottom-

up models:
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• There is usually good knowledge on the single default-times τi through

historic data or CDS-quotes.

• On the contrary, there is comparably little understanding of the “first-

to-default”-time that, barring heroic assumptions on pool homogeneity,

granularity, and dependence, is usually accessed through brute force sim-

ulation methods.

• The dependence of other risk factors, e.g. equity, to the default-times is

usually less complex than their dependence to the “first-to-default” time.

• A dependence-structure between default-times can be found, e.g., by

mixtures of expert-judgment and model calibration to portfolio credit

derivative data (e.g. CDO’s), even though at the moment these markets

are much less liquid than before the 2007-2008 crisis.

For the rest of this section the second option of modeling the default-times

vector, namely the bottom up option, is considered.

The assumption of a continuous-time, time-homogeneous Markovian

survival-indicator process has been motivated with the need to understand

the increment- as well as the “terminal iterated”-distribution and to limit

the data which has to be stored for simulation. For this very problem we can

weaken these requirements by simply asking that the survival-indicator pro-

cess has a time-homogeneous probability to stay in the “no default”-state.

In other words, for this particular problem, the distribution of default-times

is feasible if it fulfills the weak exponential minima (WEM) property:

P(τ > s+ t | τ > t) = P(τ > s). (10)

Another formulation of this class, fulfilling Eq. (10), is the following:

“terminal one-shot survival probability up to t1 + . . .+ tN”

= P(τ > t1 + . . .+ tN ) = P(τ (1) > t1) · . . . · P(τ (N) > tN )

= “terminal iterated survival probability with steps t1, . . . , tN ,”

where τ (k), k ∈ [d], are i.i.d. copies of τ . The class of distributions fulfilling

the WEM-property is potentially large, as the following examples show, and

to the best knowledge of the authors it is not characterized in any other

way.

Example 3.1. Let τ have a bivariate survival function corresponding to an

independence survival-copula and the marginal survival functions F̄1(t) =

(t+1) exp{−t} and F̄2(t) = (1+t)−1, respectively. The functions F̄i, i ∈ [2],

are both proper survival functions as they are decreasing, continuous, and

tend to zero and one for t → 0 and t → ∞, respectively. Then the joint
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minimum, mini∈[2] τi, is exponential, and in particular τ fulfills the WEM-

property, but neither τ1 nor τ2 are exponential,

P
(

min
i∈[2]

τi > t

)
= (t+ 1) exp{−t} · (1 + t)−1 = exp{−t}.

Example 3.2. Let η be a (d−1)-dimensional non-negative random vector,

E an exponential random variable with rate λ > 0, and Π a random variable

on the set of permutations on [d]. Define τ̃ := (E,E + η′)′ and τ by

τ := (τ̃Π(1), . . . , τ̃Π(d))
′.

Then τ has the WEM-property, as by construction mini∈[d] τi = E.

The rest of this section has two purposes:

• The assumption of a time-homogeneous Markovian first-default survival

indicator has strong links to multivariate lack-of-memory properties. It is

shown that, in particular, all MSMVE distributions fulfill this property.

As a well-known representative of this class, the Gumbel–Hougaard cop-

ula and the corresponding Gumbel–Hougaard exponential distribution8

are introduced as an example.

• Showing that the popular approach of (independent in time) Gaussian-

coupled exponential increments does not fulfill the WEM-property. Fur-

thermore, it is shown that this approach kills dependence asymptotically

for N → ∞ — meaning the “terminal iterated” dependence is approxi-

mately that of independent-coupled exponential random variables.

3.1. Lack-of-memory properties revisited

Let ∆ be the period step-size, T the final horizon, and N the number of

periods up to T , i.e. T = N∆.

In [7], in the context of the problem of “survival-of-all”, the authors

tried to bridge the gap between the question

8The Gumbel–Hougaard distribution is the multivariate extension defined later in
Eq. (12). This was originally introduced in [15] for the bivariate case. It is not to

be confused with the two other bivariate exponential distributions introduced in that
very paper that are also named after Emil J. Gumbel. One of those, with the survival

function exp{−λ1t1−λ2t2−θt1t2}, is characterized by a lack-of-memory property called

bivariate remaining life constancy, see, e.g., [16], [17], which has the interpretation that,
conditional on the survival of the respective other component up to an arbitrary time,

both variables are exponential, cf. [18].
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Which distributions have equal “terminal one-shot” and “terminal

iterated” survival probabilities for common step-size ∆?

and properties of survival copulas corresponding to multivariate exponen-

tial distributions. This leads to the definition of so called self-chaining

copulas — or self-chaining distributions.

In the following, this approach will be (broadly) outlined, advanced

and generalized, exploring the full lack-of-memory implications and char-

acterization for the extreme-value copula with exponential margin solution

obtained initially in [7]. We will confirm also the special solutions found in

[7], namely the Gumbel–Hougaard copula and the Marshall–Olkin copula,

further specifying the properties of these solutions, although we will not

address the bivariate Pickands functions solution here. For further details

on Pickands functions see, for example, [19] or [20].

Definition 3.1. The distribution of τ has the weak common ∆-period ex-

ponential minima (WCPEM(∆))-property if for every two natural numbers

j, k ∈ N

P(τ > (j + k)∆ | τ > j∆) = P(τ > k∆).

It has the common ∆-period exponential minima (CPEM (∆))-property if

for all non-empty I ⊆ [d] the vector τ I has the (WCPEM(∆))-property.

It can be easily shown that this property can be rewritten as follows:

Definition 3.2. A random vector τ is ∆-periodic self-chaining if for all

j ∈ N

P(τ > j∆) = P(τ > ∆)j .

For a ∆-periodic self-chaining distribution, the corresponding survival-

copula Ĉ is called N-self-chaining in the point (F̄1(∆), . . . , F̄d(∆))′.

From Def. 3.1 it is visible that a distribution fulfilling the

(W)CPEM(∆)-property for all ∆ > 0 fulfills the (W)EM-property and

vice versa. Therefore, in light of Def. 3.2, the following definition follows.

Definition 3.3. A random vector τ is self-chaining if for all t > 0

P(τ > t) = P(τ > 1)t.

For a self-chaining distribution, the corresponding survival-copula Ĉ is

called R-self-chaining (or self-chaining) in the point (F̄1(1), . . . , F̄d(1))′.
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Let τ have exponential margins and define u := (F̄1(1), . . . , F̄d(1))′.

Then τ is self-chaining if and only if the survival-copula Ĉ fulfills (for the

specific u)

Ĉ(ut) = Ĉ(u)t, ∀t > 0. (11)

Equation (11) is well-known from extreme-value theory, as the class of copu-

las fulfilling Eq. (11) for all u ∈ [0, 1]d, cf. Eq. (9), is that of extreme-value

copulas (EVCs) and furthermore, that the class of min-stable multivari-

ate exponential distributions, cf. Eq. (5), is characterized by a coupling of

EVC’s and exponential margins, see [12], p. 174.

A self-chaining survival-copula in the point u ∈ [0, 1]d can only be

coupled with exponential margins with rates λi = − lnui, i ∈ [d], to a self-

chaining distribution, while an extreme-value copula can be coupled with

any exponential margin to a self-chaining distribution. In general, it should

be noted that almost all lack-of-memory properties get lost if the underlying

survival-copula is re-coupled with different marginal distributions — even

if one stays in the exponential class.

An example for a (survival-)copula which is self-chaining in arbitrary

points u ∈ [0, 1]d is the Gumbel–Hougaard copula, see [15],[16],[21],[22],

which is implicitly defined by the following multivariate exponential distri-

bution (λ > 0, θ ≥ 1)

P(τ > s) = exp

−
(

d∑
i=1

(λisi)
θ

) 1
θ

 , s ≥ 0. (12)

In [22], it was proven that the class of Gumbel–Hougaard copulas are the

only copulas which are both extreme-value- and Archimedean copulas, see

also [7] for an alternative proof.

An example for a distribution with exponential minima, which is not

min-stable multivariate exponential, with a recipe from [13] for the bivariate

case.

(1) Let E
(k)
I be independent exponential random variables with rates

λ
(k)
I , k ∈ [2], ∅ 6= I ⊆ [2].

(2) Let τ̃ (k) = (τ̃
(k)
1 , τ̃

(k)
2 )′, k ∈ [2], be defined by

τ̃
(k)
i := min{E(k)

{i}, E
(k)
[2] }, i, k ∈ [2],

i.e. both τ̃ (1) and τ̃ (2) are Marshall–Olkin distributed.
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(3) Let τ for p ∈ (0, 1) and a
(k)
i , i, k ∈ [2], be defined by

τi = Xa
(1)
i τ̃

(1)
i + (1−X)a

(2)
i τ̃

(2)
i , i ∈ [2],

where X is a Bernoulli variable with “success probability” p.

Choose λ
(1)
{1} = 1/2, λ

(1)
{2} = 1, λ

(1)
[2] = 2, λ

(2)
{1} = 2/3, λ

(2)
{2} = 1/2, λ

(2)
[2] = 1 as

well as a
(1)
1 = 1/2, a

(1)
2 = 1, a

(2)
1 = 1/3, and a

(2)
2 = 1/2; then the attained

distribution has EM but is not MSMVE. The attained distribution is a

mixture of MO-coupled, i.e. having a copula from a Marshall–Olkin survival

copula, exponential random variables. The key for the EM-property to hold

is to make sure that the mixed MO-coupled exponential distributions have

equal diagonal-functions for all margins. This concept can be extended to

arbitrary dimensions for the creation of distributions with EM.

In more basic terms, this discussion highlights a tension between the full

Marshall–Olkin law and the Marshall–Olkin copula with possibly different

exponential margins. The initial results in [7] include the solution given

by the Marshall–Olkin copula with possibly re-scaled exponential margins,

leading to a multivariate distribution that is different from a fully consistent

Marshall–Olkin law. In more intuitive terms, we can say that re-scaling

the margins with new exponentials breaks the natural consistency between

margins and dependence that is a key property of the Marshall–Olkin law.

In general, arbitrarily decoupling the margins and the dependence structure

may result in paradoxical results when analyzing wrong way risk in CDS

trades, see, for example, the low dimensional examples in [23], [3], [2], and

[24].

For the construction of high-dimensional models it might be convenient

to know that there is another recent approach for the generation of (ex-

tendible) EM-distributed random vectors via first hitting times of matrix-

mixtures of subordinators which are weakly infinitely divisible with respect

to time over random exponential barriers, see [25], [26].

3.2. Change in dependence when iterating non-self

chaining copulas

In the following, a standard approach which is widely used in the financial

industry is critically analyzed: The discretely iterated Gaussian-coupled

exponential margins survival-indicator process. Let, as before, T > 0,

N ∈ N, and ∆ := T/N and define for j ∈ N

Z(∆)(j + 1) | {Z(∆)(j) = 1} := 1{ζj+1>∆},
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for independent and identically distributed ζj+1 ∼ CΦ(ρ) ⊕ (F̄1, . . . , F̄d),

where CΦ(ρ) is the Gaussian copula with equi-correlation ρ > 0 and F̄i, i ∈
[d], are exponential survival functions.

Assume first that ζj , j ∈ [N ], are constructed with an arbitrary copula

coupled with exponential margins; then the “terminal iterated” probability

for the “survival-of-all” event is

P
(
Z(T/N)(N) = 1

)
=

(
P
(
ζ >

T

N

))N
. (13)

From multivariate extreme-value theory it is known that for N → ∞ the

expression in Eq. (13) either converges to a min-stable multivariate expo-

nential distribution9 or does not converge at all, see [12].

Definition 3.4. Let Ĉ be an extreme-value copula. Every copula ĈF with

lim
n→∞

ĈF (u1/n)n = Ĉ(u), ∀u ∈ [0, 1]d,

is said to be in the domain of attraction of Ĉ.

Theorem 3.1. Let d = 2, then the Clayton copula, Frank copula, and the

Gaussian copula for ρ < 1 are in the domain of attraction of the indepen-

dence copula.

Proof. See [12],[27]–[29].

This implies in particular for d = 2 and large N that the distribution of τ is

approximately that of independent exponential random variables. Hence,

and this is a word of warning, for large N the Gaussian-coupling kills the

correlation of the “terminal iterated” law.

Remark 3.1. The asymptotic “terminal iterated” dependence can be in-

ferred if the survival-copula of the iterated law lies in the domain of at-

traction of some extreme-value copula, e.g. in Thm. 3.1, it was shown that

the bivariate non-comonotonic Gaussian-, Clayton-, and Frank copulas are

in the domain of attraction of the independence copula, see [12], p. 141

and also [29] for an early account on asymptotic independence of the Gaus-

sian copula. The bivariate exchangeable t-copula lies in the domain of

attraction of the t-EV copula, which is for finite degrees of freedom not the

independence copula and depends on the degrees of freedom as well as the

correlation parameter, see [30]. Furthermore, if ĈF lies in the domain of

9A vector of independent exponentially distributed random variables is also MSMVE.
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attraction of Ĉ, then their upper-tail-dependence coefficient coincides —

in particular, if a copula ĈF incorporates asymptotic independence and

lies in the domain of attraction of an extreme-value copula Ĉ, then Ĉ is

the independence copula, see e.g. [30], pp. 587–588. Moreover, if ĈF is a

d-dimensional copula which lies in the domain of attraction of Ĉ and in-

corporates pairwise asymptotic independence, then Ĉ is the independence

copula, see, e.g., [30], p. 591. This implies in particular that also the d-

dimensional exchangeable Gaussian-copula with ρ < 1 lies in the domain

of attraction of the independence copula.

In the following example, this effect is analyzed numerically for bivariate

Gaussian-coupled exponential distributions with rates λIG = 1% and λSG =

4.5%, corresponding to an investment grade (IG) or speculative grade (SG)

entity. The “terminal one-shot” and “terminal iterated” probability for the

“survival-of-all” event is denoted by

pT := P(ζ > T ) or pN∆ := P(ζ > ∆)N = P(τ > T ).

In Tables 1 and 2, the result of this analysis for two different settings

with different final time-horizons as well as different numbers of iterations

can be observed. The results illustrate the statement from Thm. 3.1, i.e.

that Gaussian-coupled exponential distributions with ρ < 1 do not have

the WEM-property. Moreover, the relative error is sizable and becomes

larger for higher marginal rates and higher correlation, which is especially

undesirable.

Table 1. Comparison of “terminal one-shot”

and “terminal iterated” survival probabilities for

T = 5y and N = 1000.

λ1 λ2 ρ pT pN∆ % Diff.

0.010 0.010 0.25 0.9084 0.9049 0.38%
0.010 0.010 0.50 0.9142 0.9057 0.95%

0.010 0.010 0.75 0.9238 0.9103 1.48%

0.010 0.045 0.25 0.7679 0.7598 1.07%
0.010 0.045 0.50 0.7785 0.7614 2.24%
0.010 0.045 0.75 0.7908 0.7698 2.73%

0.045 0.045 0.25 0.6592 0.6382 3.29%
0.045 0.045 0.50 0.6851 0.6421 6.7%
0.045 0.045 0.75 0.7187 0.6605 8.81%

In Fig. 1, the relative error is visualized for four additional survival-

copulas, i.e. the t-, Clayton-, Frank-, and Gumbel-copula, and multiple
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Table 2. Comparison of “terminal one-shot”

and “terminal iterated” survival probabilities for

T = 30y and N = 1000.

λ1 λ2 ρ pT pN∆ % Diff.

0.010 0.010 0.25 0.5765 0.5496 4.91%
0.010 0.010 0.50 0.6084 0.5545 9.71%

0.010 0.010 0.75 0.6483 0.5766 12.43%

0.010 0.045 0.25 0.2169 0.1929 12.47%
0.010 0.045 0.50 0.2389 0.1974 21.01%

0.010 0.045 0.75 0.2553 0.2142 19.2%

0.045 0.045 0.25 0.0949 0.0682 39.17%
0.045 0.045 0.50 0.1268 0.0728 74.09%

0.045 0.045 0.75 0.1667 0.0899 85.38%

Kendall’s τ , denoted by τK , where the underlying copula parameters are

calibrated such that a certain τK is achieved. One can see that the error

is strongly dependent on the chosen rank correlation. Furthermore, the

Gaussian coupling seems to have the largest errors for τK ≤ 75%, while the

error for the t-coupling is rather small in comparison. An explanation for

the latter observation could be that the bivariate t-copula converges for a

low degree of freedoms comparably fast, see [27], and the t-EV copula still

incorporates information on ν and τK .

In conclusion, these calculations show that a coupling with the

Gaussian-, Frank-, or Clayton copula can lead to sizable differences in the

terminal probabilities. This is not a surprising result, as it was already

shown theoretically that the terminal probabilities can only match if the

iterated distribution has the WEM-property (e.g. an MSMVE-distribution)

and that the iteration of Gaussian-copulas leads asymptotically to indepen-

dence; however, this analysis underscores the severity of the mismatch.

4. Problem two: “Mixed default/survival” events

So far, the problem of finding conditions under which the “survival-of-all”

simulation can be iterated (feasible) in a way that makes it consistent to

a single step simulation was addressed. However, while the “survival-of-

all” may be of interest in situations where one wishes to exclude even a

single default, or for the valuation of a first-to-default CDS, it is more in-

teresting to look at the general problem of iterating in presence of “mixed-

default/survival”-states. This problem, “problem two,” is the topic of the

present section and conditions for the feasible and consistent simulation

of “mixed-default/survival”-indicators up to a terminal time are analyzed.
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0%

5%

10%

0% 25% 50% 75% 100%

Clayton

Frank

Gumbel

Normal

t

Fig. 1. Relative deviation of pT and pN∆ in % vs. Kendalls’s τ for T = 5y, λi = 4.5%, i =

1, 2, N = 10, and 3 degrees of freedom for the t-distribution, see [28].

Finally, examples such as the Marshall–Olkin distribution and a multivari-

ate extension of the Freund distribution are presented.

4.1. The looping default model and the Freund distribution

One of the most intuitive models for contagion effects in portfolio-credit risk

is the so-called “looping default”-model, the terminology being introduced

in one of the first works on counterparty credit risk pricing, see [31]. In the

bivariate case, the model can easily be explained: Let C1 and C2 be two

companies with respective default intensities for t ≥ 0

λ̃1(t) = λ1 + 1{τ2≤t}(η1 − λ1),

λ̃2(t) = λ2 + 1{τ1≤t}(η2 − λ2),

where λ1, λ2, η1, η2 > 0. Loosely speaking, this means that

the default/survival-probabilities of company C1 depend on the de-

fault/survival of company C2 and vice versa. This explains the notion

of a “looping-default” model, as the influence of companies on each-others

default/survival-probabilities can be depicted as a loop. This model formu-

lation can easily be generalized to non-linear or stochastic hazard functions.

Constructing a well-defined probability space, however, supporting such a

multivariate distribution is non-trivial. Therefore, it was initially assumed
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that the set of companies can be divided into two classes A and B, such

that the default of a company from set A can influence the default of a

company from B, but not vice versa. As a consequence the model can be

formulated recursively in the spirit of a classical intensity-based model, see

[31]. The problem of constructing the distribution in the general model

(with hazard-rate functions which are deterministic functions of time and

default history) on a well-defined probability space has been investigated

in subsequent articles and finally was resolved in [32], where the “looping-

default” model is defined using the so-called “total hazard construction,”

which originates from the statistical literature, see [33] and [34]. The total

hazard construction defines a d-dimensional random vector τ of default-

times as a function of d independent unit exponential random variables

E1, . . . , Ed, such that the corresponding default intensities satisfy certain

relations that are specified a priori. This construction algorithm is, how-

ever, rather complicated to implement in practice, and in particular has no

natural coherence with stepwise simulation — rendering it inconvenient for

our purpose. As a first example of the total hazard construction, [32] recon-

siders the “looping default” of [31] in a two-dimensional setup. In [6] and

[5], it was shown that the “looping default” model falls into the class of

default models whose survival indicator process is a Markov chain, which

provides an alternative stochastic construction being naturally consistent

with stepwise simulation. Interestingly, in the bivariate case the probability

law of τ = (τ1, τ2)′ is well-known in the statistical literature as well.

Remark 4.1 (Looping default model/Freund distribution). The

bivariate distribution which is derived in [32] coincides precisely with the so-

called bivariate Freund distribution, which is an “old friend” from reliability

theory, see [35]. In other words, the looping default has incidentally been

known for many years in the statistical literature by the name “Freund

distribution.” The fact that both distributions coincide can be observed by

comparing the bivariate densities derived in [32] and [35], respectively. The

details are provided below.

In the sequel, a new construction for the Freund distribution based on

continuous-time, time-homogeneous Markovian processes is presented. This

construction provides an alternative access to this probability law, which

is in particular based on a stepwise-simulation ansatz. Moreover, it can be

easily generalized to dimensions d > 2 and to extensions with simultaneous

defaults.
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Consider two companies’ default-times τ = (τ1, τ2)′. We construct

the associated survival indicator process Z(t) := (1{τ1>t}, 1{τ2>t})
′ as a

continuous-time, time-homogeneous Markov chain. This process is fully

described by its intensity matrix Q. Let the four states (1, 1), (0, 1), (1, 0),

and (0, 0) be indexed by the numbers 1, 2, 3, and 4 and define the intensity

matrix Q ∈ R4×4 by

Q =


−(λ1 + λ2) λ1 λ2 0

0 −η2 0 η2

0 0 −η1 η1

0 0 0 0

 ,

where the “initial intensities” λi > 0, i ∈ [2], and the “intensities conditional

on second-party default” ηi > 0, i ∈ [2], are positive real numbers. It is easy

to verify that in case the condition ηi 6= λ1+λ2, i ∈ [2], is fulfilled the matrix

Q is diagonalizable,10 i.e. we can find a matrix M such that

M−1QM = diag(−(λ1 + λ2),−η2,−η1, 0),

where the transformation-matrix M has the eigenvectors of Q as column

vectors, i.e.

M =


1 λ1

λ1+λ2−η2
λ2

λ1+λ2−η1 1

0 1 0 1

0 0 1 1

0 0 0 1

 .

This intensity matrix Q can be interpreted as follows (cf. Thm. 2.1):

Being in a certain state corresponds to a certain row of the matrix — e.g.

the process starts in state (1, 1) corresponding to row 1. For each other

state (0, 1), (1, 0), and (0, 0) there are independent latent exponential ran-

dom variables with rates Q(1,1),(0,1), Q(1,1),(1,0), and Q(1,1),(0,0). The process

Z reacts only on the smallest of these random variables and moves to the

corresponding target state. A rate of zero corresponds to the correspond-

ing random variable being “degenerate,” i.e. almost surely equal to infinity.

Therefore, the chain cannot go directly from no default (1, 1) to joint de-

fault (0, 0). Finally, as Q has vanishing row sums, the ith diagonal entry

corresponds to the negative rate of the minimum of all latent exponential

random variables for transition out of i. The same logic applies to the other

rows of Q. In particular, after the default of one company, the hazard rate

10The case ηi = λ1 +λ2 for some i ∈ [2] is still a valid model. However, as the matrix Q
is not diagonalizable, the analytical calculation of probabilities becomes more involved.
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of the remaining company changes from λi to ηi, and the bottom row of

Q is zero because the state of two defaults is an absorbing state. Using

diagonalization, one can show that for t > 0 the entries of the transition

matrix

P [t] := etQ = M−1 exp{tMQM−1}M

are given by

P(1,1),(1,1)[t] = e−(λ1+λ2) t,

P(1,1),(0,1)[t] =
λ1

λ1 + λ2 − η2

(
e−η2 t − e−(λ1+λ2) t

)
,

P(1,1),(1,0)[t] =
λ2

λ1 + λ2 − η1

(
e−η1 t − e−(λ1+λ2) t

)
,

P(1,1),(0,0)[t] = − λ1

λ1 + λ2 − η2
e−η2 t − λ2

λ1 + λ2 − η1
e−η1 t

+ 1 +
( λ1

λ1 + λ2 − η2
+

λ2

λ1 + λ2 − η1
− 1
)
e−(λ1+λ2) t,

P(0,1),(0,1)[t] = e−η2 t, P(0,1),(0,0)(t) = 1− e−η2 t,
P(1,0),(1,0)[t] = e−η1 t, P(1,0),(0,0)(t) = 1− e−η1 t,

and all other entries of P being zero. In particular, we calculate

P(τ1 > t1, τ2 > t2)

=

{
P(1,1),(1,1)(t1)

(
P(1,1),(1,1)(t2 − t1) + P(1,1),(0,1)(t2 − t1)

)
, t2 ≥ t1

P(1,1),(1,1)(t2)
(
P(1,1),(1,1)(t1 − t2) + P(1,1),(1,0)(t1 − t2)

)
, t1 > t2

=

{
λ2−η2

λ1+λ2−η2 e
−(λ1+λ2) t2 + λ1

λ1+λ2−η2 e
−η2 t2−(λ1+λ2−η2) t1 , t2 ≥ t1

λ1−η1
λ1+λ2−η1 e

−(λ1+λ2) t1 + λ2

λ1+λ2−η1 e
−η1 t1−(λ1+λ2−η1) t2 , t1 > t2.

The latter distribution is precisely the Freund distribution, which can be

seen by comparing it to Eq. (47.26) in [16], p. 356. Note additionally, that

the so-called ACBVE(η̃1, η̃2, η̃12)-distribution, defined in [36], arises as the

three-parametric subfamily of the Freund distribution, obtained from the

parameters

λ1 = η̃1 +
η̃12η̃1

η̃1 + η̃2
, λ2 = η̃2 +

η̃12η̃2

η̃1 + η̃2
, η1 = η̃1 + η̃12, η2 = η̃2 + η̃12.

Multivariate extensions of the described Markov chain construction,

leading to the Freund distribution, are now clearly straightforward. One

can simply define the intensity matrix Q as follows: For each set I ⊆ [d] one

has to define exponential rates ηJ for all subsets J ⊆ I with |J | = |I|−1, i.e.

corresponding to exactly one additional default scenario, and write them in
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the respective entry Qh(I),h(J). All other off-diagonal entries of Q are set to

zero, and then the diagonal elements are computed as the negative of the

sum over all previously defined row entries. Similarly, one can generalize

the model to allow for multiple defaults and also assign positive exponential

rates to subsets J ⊆ I with |J | =|I| − k, k ≥ 1.

For stepwise simulation along the ∆-grid, one only requires the matrix

P [∆] = exp{∆Q}, which can be computed easily if Q is diagonalizable or

otherwise numerically (e.g. expm in MATLAB or Matrix::expm in R).

Remark 4.2. The class of distributions attained in continuous-time, time-

homogeneous Markovian survival-indicator processes coincides with the

class of multivariate phase-type distributions which were introduced in [37],

see also [38]. Multivariate phase-type distributed random vectors τ are de-

fined implicitly through a continuous-time, time-homogeneous Markovian

process Z and absorbing sets Ai, i ∈ [d], such that
⋂
i∈dAi is absorbing and

τi := inf{t > 0 : Z(t) ∈ Ai}, i ∈ [d].

In particular, it follows that all resulting marginal distributions of τ are

univariate phase-type distributions.

4.2. Marshall–Olkin distributions

Throughout this section, we denote by ZI the I-margin of the survival-

indicator process Z which only consists of the components indexed by I ⊆
[d]. This section starts with summarizing the findings and results of [8], in

which it is emphasized that for practical applications even the assumption of

a continuous-time, time-homogeneous Markovian survival-indicator process

has serious drawbacks if the corresponding default-times vector τ does not

have a Marshall–Olkin distribution. The findings are:

(a) In general, even if Z is time-homogeneous Markovian the survival-

indicator ZI , corresponding to a subportfolio ∅ 6= I ( [d], might not

fulfill this property. As a result, even if a certain study involves only

the default-times τ I one has to simulate the full survival-indicator pro-

cess Z. This is undesirable for two reasons: Firstly, simulations only

considering subportfolios cannot be performed more efficiently than via

the full portfolio simulation. Second, every restructuring of the credit

portfolio requires a careful adjustment and possibly a reevaluation of

the whole default model (see (b) for a detailed account).

(b) If the underlying credit portfolio is subject to restructuring, the Marko-

vian survival-indicator model is, in general, problematic. This is best
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explained in the case where an additional entity d + 1 is added to the

credit portfolio. Then, each state L splits into two separate states L

and L̃ := L∪ {d+ 1}, and following this logic each “transition-rate” in

the intensity matrix has the interpretation

Ph(I),h(J)[∆] = P
(
Z((k + 1)∆) ∈ h({J, J̃}) | Z(k∆) ∈ h({I, Ĩ})

)
,

with an extended version of h. Hence, to be consistent with the model

before restructuring, generally all transition probabilities have to be

carefully translated into a new model. Therefore, models which have

a “dimension-less” specification are very popular in the industry — an

example for such a model, which particularly does not correspond to a

Markovian survival-indicator, is the Gaussian one-factor model.

(c) A general drawback of all Markovian survival-indicator models is that

one-dimensional marginals are heavily dependent on the specification

of Q. Moreover, given an intensity-matrix Q, the construction of finite

state space Markovian processes, cf. Rmk. 2.1 or Thm. 2.1, gives a par-

ticular interpretation of the joint behavior, which is lost after applying

arbitrary marginal transformation. Finally, if there exists a positive

rate qh(I),h(J) for two sets with |J | ≤ |I| − 2, the default-time distri-

bution has a singular component, i.e. joint defaults are possible. As a

result, marginal transformation is even more difficult and can introduce

undesired effects if performed without care, see e.g. [39], Sec. 5.

A Markovian characterization of the Marshall–Olkin law

The problem described in (a) can easily be resolved by requiring that also

all marginal survival-indicator processes ZI have to be time-homogeneous

Markovian. The main result of [8] is the following theorem.

Theorem 4.1. (Markovian characterization of MO). The |I|-
dimensional survival indicator processes ZI are time-homogeneous Marko-

vian for all subsets ∅ 6= I ⊆ [d] if and only if τ = (τ1, . . . , τd)
′ has a

Marshall–Olkin distribution.

Simulation and Application

There are multiple stochastic models that produce Marshall–Olkin dis-

tributed random vectors, which can be used for model specification and

simulation. We will consider three models. The seminal interpretation is
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an exogenous shock model representation with 2d − 1 independent expo-

nential shock arrival-times, one for each subset of components, cf. Eq. (8),

see also [11]. An alternative model, in the following denoted as the Arnold

model, was introduced in [40] and is based on compound sums of expo-

nential random variables. The model can be summarized as follows: Let

{Ei}i∈N be an i.i.d. family of exponential random variables with a rate

c =
∑
∅6=I⊆[d] λI and {Xi}i∈N a discrete Markov-chain on {I : ∅ 6= I ⊆ [d]},

which has a probability of λI/c for a transition from an arbitrary state each

into I. Then, the random vector τ is defined by

τi := inf{t > 0 : i ∈ XN(t)},

where N(t) :=
∑∞
i=1 1{E1+...+Ei≤t}. The latter is closely linked to the clas-

sical model for the underlying Markovian survival-indicator as introduced

in the previous sections, which is the third model.

Remark 4.3 (Comparison of MO-models). All three models require a

full model specification, i.e. 2d−1 parameters, one for every non-empty set

of components. The original model has the advantage of being very simple

and easy to implement, however, for large dimensions d one has to sample

2d−1 exponential shocks — therefore the simulation of n independent sam-

ples has a runtime of the order O(n2d), see [41]. The Arnold-model is a

little more difficult to implement efficiently, see [41], Alg. 3.3 and Alg. 3.4

for details, however the sampling of n independent samples has an expected

runtime of the order O(2d + nd3). The classical Markov simulation is

very similar to the Arnold model, with two important differences, which

make this approach either more or less desirable. The Arnold model has

the property that the distributions of waiting times to the next “event” as

well as the random set-variable of “killed” components corresponding to

that event are i.i.d. However, if all set-components have already defaulted

nothing happens. In the classical Markovian setup the exponential-rates of

the waiting times as well as the (random) new state depend on the current

state. As a result the initial setup and storage for transition probabilities of

the Arnold model is less costly. The price to pay is that not every “event”

corresponds to an action. In summary, which of these models is most ap-

propriate depends on the dimension d, the number of simulations n, and

the computational capabilities.

A possible way to reduce the number of model parameters as well as the

computational effort for simulation (with all models) is to assume that all,

but a few selected shock-rates equal zero: In [42] the shock model is defined
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using only idiosyncratic shocks, a global shock, and a few additional shocks

which are chosen on some classification, e.g. industry segment, country,

etc., see also [43] for a similar approach.

Considering default modeling, the dynamic properties of the aggregated

default counting process and the related loss process have been studied in

[44] and [45] under pool homogeneity assumptions and time-inhomogeneous

cluster default-intensities11 in dimensions up to d = 125. These authors

build on the framework of [43], one of the few frameworks allowing for an

explicit joint bottom-up and top-down approach, where a Marshall–Olkin

bottom up setting corresponds to a generalized Poisson process top-down

setup. The GPL model in [44] is one of the first pre-crisis arbitrage-free

aggregate loss model to be consistently calibrated to the whole panel of

different CDO tranches and maturities for the iTraxx (or CDX) portfolio,

including a discussion on tranchelets. For a summary of related models

and a calibration study ranging from 2005 to 2009 iTraxx tranches data

see [14]. For an example of the calibration of a (time-inhomogeneous)

Markovian model to market data, see [46] and [47].

Marshall–Olkin one-factor models

While survival-indicator processes defined on a latent Marshall–Olkin dis-

tribution solve the problem described in (a), it is still a model with a large

number of parameters, which is in general inefficient to sample. Further-

more, the problem described in (b) is not resolved, as a Marshall–Olkin

distributed vector τ attained with the classical shock model representation

as a model tied to a specific dimension d, and certain objects indexed by

{1, . . . , d}. Assume, that a d + 1 dimensional Marshall–Olkin distribution

τ̃ exists with τ̃ [d]
d
= τ . Then, for i ∈ [d], it holds that (cf. Eq. (8))

τ̃i = min{ẼI : i ∈ I}

= min{min{ẼI , ẼI∪{d+1}} : i ∈ I ⊆ [d]},

where ẼI , ∅ 6= I ⊆ [d+ 1], are the independent exponential random shocks

from the shock model representation of τ̃ . In particular, it follows for the

rates of τ that

λI = λ̃I + λ̃I∪{d+1}, ∅ 6= I ⊆ [d],

11In this model, all defaults are triggered by independent, time-inhomogeneous Poisson

processes for subsets (clusters) of entities.
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which shows that there are infinitely many possibilities to embed a

Marshall–Olkin distribution into a higher dimensional Marshall–Olkin dis-

tribution. Summarizing, one can conclude that, in general, for large d the

Marshall–Olkin distribution has too many parameters and has no direct

intuition for the extension into higher dimensions.

The simplest way to circumvent this issue is to assume that there exists

an exchangeable sequence τ̃i, i ∈ N, such that for every finite ∅ 6= I ⊆ N the

random vector τ̃ I := (τ̃i)i∈I has a Marshall–Olkin distribution. Random

vectors τ which have such a construction are said to have an extendible

Marshall–Olkin distribution. A thorough treatment of these distributions

can be found in [20], which also shows that an extendible Marshall–Olkin

distribution can be characterized and constructed by a Lévy-subordinator

Λ.

Theorem 4.2 (Lévy-frailty construction). Let {τi}i∈N be an ex-

changeable sequence on some probability space, such that each finite margin

has a Marshall–Olkin distribution. Denote by H =
⋂
n≥1 σ(τn, τn+1, . . .)

the tail-σ-field of {τi}i∈N.

(a) The stochastic process Λ(t) := − logP(τ1 > t | H), t ≥ 0, is a (possibly

killed) Lévy subordinator.

(b) There exists a sequence of i.i.d. unit exponential random variables

{Ei}i∈N, independent of Λ, such that almost surely

τi = inf{t > 0 : Λ(t) > Ei}, i ∈ N.

(c) Denote by x 7→ ψ(x) the associated Bernstein function,12 i.e.

exp{−tψ(x)} = E[exp{−xΛ(t)}], then

P(τ > t) =

d∏
i=1

e−tπ(i)(ψ(i)−ψ(i−1))

for each d ≥ 1 and τ = (τ1, . . . , τd)
′, t ∈ Rd+ and a permutation π on

[d] with tπ(1) ≥ . . . ≥ tπ(d).

Proof. By De Finetti’s Theorem, conditional on H the sequence {τi}i∈N
is i.i.d., with distribution function 1− exp{−Λ(t)} for Λ(t) := − logP(τ1 >

t | H), see [50]. The claim on the variables {Ei}i∈N can be established

12A Bernstein function ψ is characterized by a Lévy-triplet (a, b, ν) for a, b ≥ 0 and a
Lévy-measure ν on (0,∞) fulfilling the integrability condition

∫
(0,∞) 1 ∧ vν(dv) < ∞,

where ψ(x) = a1(0,∞)(x) + bx+
∫
(0,∞)(1− e−xv)ν(dv), x ≥ 0, see [48], [49].
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with a modified distribution function, see [51], Prop. 2.1. Furthermore,

the law of {Λ(t)}t≥0 is almost surely uniquely determined by H, and by

[41], Chapter 3.3, it is a (possibly killed) Lévy subordinator with the claimed

properties.

The alternative stochastic model of extendible Marshall–Olkin distribu-

tions via the so-called Lévy-frailty construction in Thm. 4.2 has the advan-

tage of being a De Finetti model for extendible sequences, which renders

the approach independent of the dimension d. This solves not only the

problem described in (b), but also provides an alternative simulation strat-

egy, see [8] for a detailed account. The alternative simulation strategy has

the advantage that its runtime scales linearly with increasing dimension,

which makes it particularly interesting for large d. The approach comes

with the drawback that a simulation bias is introduced as we can only sam-

ple the random walk corresponding to some embedding of Λ on a discrete

time-grid. This bias, however, can be controlled through the step size of

the discrete time-grid.

In the following we present five examples of Lévy-subordinators which

can be used to define parametric one-factor Marshall–Olkin distributions.

Example 4.1 (Linear drift). Let Λ(t) = bt, t ≥ 0 for some b > 0, then

τ corresponds to d independent exponentially distributed random variables

with common rate b. A simple extension can be attained assuming a “global

shock” E ∼ Exp(a), a > 0, which “kills” all entities. This corresponds to a

(killed) Lévy-subordinator Λ(t) = bt+∞· 1{E≤t}, t ≥ 0 with the convention

0 ·∞ = 0. The corresponding Bernstein-function is ψ(x) = a1(0,∞)(x)+bx.

This model is, e.g., implicitly used in [52]. A “global shock” can anal-

ogously be introduced in every Lévy-frailty model by assuming that Λ is

“killed” — that is, sent to the absorbing state ∞ — at a rate a > 0, i.e.

there exists an independent exponential random variable E with rate a and

we assume that Λ(t) = ∞ for t > E. The corresponding new Bernstein-

function can be attained by adding the term a1(0,∞)(x) to the old one.

Example 4.2 (Compound Poisson subordinator). Let Λ(t) = bt +∑N(t)
k=1 Jk for independent N and {Jk}k∈N, where the former is a clas-

sical Poisson-process with rate λ > 0 and the latter an i.i.d. family

of random variables on (0,∞). The corresponding Bernstein-function is

ψ(x) = bx + λ(1 − L(x; J1)), where L(x; J1) is the Laplace-transformation

corresponding to J1.
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For a compound Poisson subordinator, defined as above, the number

of jumps in the time-intervals (0, t1], (t1, t2], . . . are independent and

Poi(λ(tk − tk−1)) distributed on N0, respectively, and the jth jump-size

is Jj .

Example 4.3 (Gamma subordinator). Let Λ have a Bernstein func-

tion of the form ψ(x) = α ln(1 + x/β) for α, β > 0. The corresponding

increments Λ(s) − Λ(t) are Gamma-distributed and can easily be sampled,

see e.g. [41], Alg. 6.5 and Alg. 6.6, pp. 242–243.

Example 4.4 (Inverse-Gaussian subordinator). Let Λ have a Bern-

stein function of the form ψ(x) = β(
√

2x+ η2 − η) for β, η > 0. The

corresponding increments Λ(s)−Λ(t) are Inverse-Gaussian distributed and

can easily be sampled, see e.g. [41], Alg. 6.10, p. 245.

Example 4.5 (Stable subordinator). Let Λ have a Bernstein function

of the form ψ(x) = xα for some 1 ≥ α > 0. Then the increments Λ(s) −
Λ(t) belong to the class of stable distributions and can be sampled, see e.g.

[41], Alg. 6.11, p. 246.

Marshall–Olkin multi-factor models

The Lévy-frailty model has the serious drawback of being a one-factor

model. This implies not only homogeneity with respect to marginal dis-

tributions, but also an exchangeable dependence structure. However, we

can exploit that independent Lévy subordinators form a cone and we can

consider the extended Lévy-frailty model, where τ is defined by

τi := inf{t > 0 : Λi(t) > Ei}, i ∈ [d], (14)

where Λi, i ∈ [d], are Lévy subordinators from the cone spanned from in-

dependent Lévy subordinators Υ1, . . . ,Υn and E1, . . . , Ed are i.i.d. unit

exponentials, which are independent thereof. In the following, a result of

[26] regarding this model is presented. Assume that Υ is an n-dimensional

vector of independent Lévy subordinators corresponding to Bernstein func-

tions ψ̂1, . . . , ψ̂n and Θ = (θ1, . . . ,θd) ∈ Rn×d+ is a matrix with non-negative

entries. Define the process Λ by Λi := θ′iΥ, i ∈ [d].

Theorem 4.3. Let t ≥ 0 and π ∈ Sd be a permutation with tπ(1) ≥ . . . ≥
tπ(d) and let τ be defined as in Eq. (14). Then

P(τ > t) = exp

−
d∑
i=1

tπ(i)

n∑
k=1

ψ̂k

 i∑
j=1

Θk,π(j)

− ψ̂k
i−1∑
j=1

Θk,π(j)

 .
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Furthermore, τ has a Marshall–Olkin distribution.

Proof. See [26].

A slightly simplified extension with n = 1 has the interpretation of allowing

inhomogeneous trigger rates in the original Lévy-frailty model, cf. [53].

Furthermore, a useful alternative representation of the vector in Thm. 4.3

can be attained as follows, cf. [41], Sec. 3.3.4: Let τ (k) be independent

random vectors corresponding to Lévy-frailty models with inhomogeneous

trigger rates θk and trigger processes ψ̂k for k = 1, . . . , n. Then τ has the

survival function in Thm. 4.3, where τ is defined by

τi := min{τ (k)
i : k ∈ [n]}, i ∈ [d].

Remark 4.4 (Constructing the full Marshall–Olkin class). The

multi-factor Lévy-frailty construction is general enough to comprise the

full family of Marshall–Olkin distributions. To this end, we use m = 2d −
1 independent killed subordinators Υ(I)(t) := ∞1{EI≤t} and Λ(k)(t) :=∑
I:k∈I Λ̂(I)(t), which is basically just a complicated way of writing the

original Marshall–Olkin shock model, cf. Eq. (8). This construction is not

unique in the class of Lévy-frailty models and provides an alternative proof

of [54], Thm. 4.2.

Closely related, a hierarchical and h-extendible Marshall–Olkin law is

constructed in [55] and [56]. The idea is to group the components according

to some (economic) criterion (e.g., geographic region, industry segment,

etc.). In the simplest case one has only one classification criterion, say for

illustration purposes the industry segment, and each component is affected

by a global and an industry specific factor. With respect to the factor model

described in Thm. 4.3, assume that the components can be separated into

J industry segments. Let Υ1, . . . ,ΥJ be independent Lévy subordinators,

each corresponding to a specific segment. Furthermore, let Υ0 be another

independent Lévy subordinator corresponding to a global factor affecting

all components. For component i ∈ [d] which is in segment k, an individual

trigger-processes Λi is defined using the weights θi which are for α, βk > 0

defined by

θi = (α, 0, . . . , 0︸ ︷︷ ︸
k−1 times

, βk, 0, . . . , 0︸ ︷︷ ︸
(J−k) times

)′ ∈ RJ+1
+
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and by

Λi = θ′iΥ =

n∑
k=0

Θk,iΥk.

This model is said to be h-extendible with two levels of hierarchy —

meaning that there exists a σ-algebra G0 such that, conditional on this G0,

the vector of default-times separates into independent groups and there

exist group specific σ-algebras Gk such that the marginal group vectors of

default-times are conditionally i.i.d., see [56]. For more levels of hierar-

chy, say one wants an additional regional classification, the model can be

extended easily.

This model specification solves the problems (a), (b), and partially also

(c), which were described at the beginning of this section:

(a) As shown in the previous paragraph, Marshall–Olkin distributions have

the unique property that all marginal survival indicators are time-

homogeneous Markovian. Therefore, simulation-studies on subport-

folios can be performed efficiently using lower dimensional Markovian

processes.

(b) The hierarchical construction gives an intuitive way to deal with portfo-

lio restructuring. In case of a downsize, we can simply use the reduced

model as each of the factors should be chosen in a way that they are

(mostly) independent of the portfolio. If an additional component has

to be modeled, one only has to specify factor-loadings corresponding to

the “risk” regarding to each factor.

(c) Even though this model setup is not a copula ansatz, the factor ap-

proach offers a schematic picture of the inner- and outer-group depen-

dence between components. In particular, it follows that the depen-

dence, measured with the upper-tail dependence coefficient, between

two components of the same group is higher than that of two compo-

nents of different groups, see [55] for a similar result with temporal-,

instead of spatial scaling of the underlying subordinators. However,

the complete dependence structure, in form of the underlying copula,

as well as the marginal distributions, are influenced by the specific

weights. If only marginal distributions should be altered, this is pos-

sible by using a component specific factor. However, the choice of the

marginal is restricted to the class of exponential distributions (as oth-

erwise the Markov property is lost) and the minimal marginal rate is

determined by the remaining weights.
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In default modeling, the historical data is rarely substantial enough

to perform goodness-of-fit tests for the chosen copula. Therefore, a good

qualitative understanding of the schematic dependence is crucial. A slight

modification of this model, which then partially solves (c), can be specified,

if the loadings are assumed to be constant, e.g. αi = βi = 1, and the group-

components of the resulting vector are scaled with group specific scalar

values to attain a group specific exponential-rate.

In Fig. 2, most of the distributional classes discussed in this paper are

summarized in a schematic picture.

WEM

Multivariate phase-type

EM

MSMVE

MO (≡ 2d − 1-factor LFM)

k-factor LFM
(k < 2d − 1)

1-factor LFM

Ind.
exp.

Multivariate
Freund

Fig. 2. Venn-diagram of (selected) multivariate exponential, Phase-type distributions,
and distributions fulfilling the WEM-property. See Chap. 2.2 as well as [41], [37], [35],
[13] for details.
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4.3. Case study: Iteration bias for selected multivariate

distributions

In Thm. 3.1 it was highlighted that iterating bivariate (non-comonotonic)

Gaussian-, Clayton-, or Frank-coupled exponential margins “kills” depen-

dence asymptotically. In the first numerical case study, cf. Sec. 3.2, it was

demonstrated that probabilities for “survival-of-all” events can divert sig-

nificantly if “terminal one-shot” are compared to “terminal iterated” laws.

Only distributions fulfilling the weak exponential minima property have the

property that “survival-of-all” events have the same probability under the

“terminal one-shot” and “terminal iterated” law.

In Thm. 4.1 it was shown that the “terminal one-shot” and the “terminal

iterated” law are equal if and only if it is a Marshall–Olkin distribution.

The purpose of this section is to underscore this statement with a second

numerical case study.

The model

Before numerical results are presented, it is specified mathematically what

was referred to loosely as the “terminal one-shot” and “terminal iterated”

law. It is assumed that the multivariate probability and survival distri-

bution of “mixed default/survival” events are replaced by corresponding

events using discretely iterated survival indicators, i.e. instead of

P

(⋂
i∈I
{τi > ki∆}

)
∩

⋂
i 6∈I

{τi ≤ ki∆}


we consider the probabilities

P

(⋂
i∈I
{Z̃(∆)

i (ki) = 1}

)
∩

⋂
i 6∈I

{Z̃(∆)
i (ki) = 0}

 ,

where Z̃
(∆)

is a (discrete-time) Markov-chain with i.i.d. multiplicative in-

crements that are fully determined by

Z̃
(∆)

(1)
d
= (1{τ1>∆}, . . . , 1{τd>∆})

′.

This approach corresponds to the widespread industry-practice of defin-

ing a default distribution and iterating (multiplicative) i.i.d. increments of

the corresponding survival-indicator for the step-size ∆ through a discrete

time grid up to the final horizon T = N∆.
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The case study

It is assumed that ∆ = 1, k1 = 10, and k2 ∈ {5, 10} for the event {τ1 >
k1∆, τ2 > k2∆} and the following distributions with common marginal rate

λ > 0 are considered:

• Marshall–Olkin: A bivariate exchangeable Marshall–Olkin distribution

with copula-parameter αMO ∈ [0, 1], in the exchangeable Cuadras-Augé

parameterization.

• Gumbel: A bivariate Gumbel distribution with parameter θGu ∈ [1,∞].

• Clayton: An exchangeable Clayton-coupled exponential distribution with

parameter θCl ≥ −1.

• Frank: An exchangeable Frank-coupled exponential distribution with pa-

rameter θFr ∈ R.

• Gaussian: An exchangeable Gaussian-coupled exponential distribution

with parameter ρGa ∈ [−1, 1].

• t: An exchangeable t-coupled exponential distribution for ν = 3 degrees

of freedom, parameter ρt ∈ [−1, 1].

The marginal rates are assumed to be λSG = 4.5% (speculative grade) and

the copula parameters are calibrated such that Kendall’s τ equals 50%,

see [30], pp. 260–261 for an overview on the Gumbel, Clayton, and Frank

copula. Additionally, the following distributions are considered:

• Freund: An exchangeable Freund distribution with rates λ1 = λ2 = λSG
and η1 = η2 = 3λSG. The corresponding marginal distributions are not

exponential and the resulting Kendall’s τ is not set up to equal 50%.

• Independent: Two independent exponential random variables with com-

mon marginal rate λSG > 0. The independence copula is contained in

all previously mentioned copulas families and is included as a reference

point in this analysis.

In Tables 3 and 4 the results for both events can be observed. As

expected, apart from Marshall–Olkin, Gumbel, Freund, and the indepen-

dence copula, all copulas yield sizable differences for the “survival-of-all”

event. For the “mixed default/survival” event only the Marshall–Olkin dis-

tribution and the independence copula yield equal “terminal one-shot” and

“terminal iterated” probabilities. The effect is particularly strong for the

Clayton- and Frank copula, where the “terminal iterated” probabilities are

almost at the level of the independence copula.
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Table 3. Comparison of “terminal one-shot” and “ter-

minal iterated” survival probabilities for k1 = 10,

k2 = 10, and ∆ = 1y (survival-of-all case).

Copula Exact law Iterated law %Diff

Marshall–Olkin 0.5488 0.5488 0%
Gumbel 0.5292 0.5292 0%

Clayton 0.5051 0.4220 19.71%

Frank 0.5299 0.4388 20.77%
Gaussian 0.5205 0.4788 8.72%

t 0.5219 0.5053 3.28%

Independent 0.4066 0.4066 0%
Freund 0.4066 0.4066 0%

Table 4. Comparison “terminal one-shot” and “termi-

nal iterated” survival probabilities for k1 = 10, k2 = 5,

and ∆ = 1y (mixed default-survival case).

Copula Exact law Iterated law %Diff

Marshall–Olkin 0.5916 0.5916 0%

Gumbel 0.6046 0.5809 4.09%

Clayton 0.5747 0.5187 10.79%
Frank 0.5965 0.5289 12.77%

Gaussian 0.5956 0.5525 7.8%

t 0.5956 0.5676 4.93%
Independent 0.5092 0.5092 0%

Freund 0.4885 0.5042 −3.13%

5. Conclusions

The problem of simulating the survival-indicator process on a discrete time-

grid along with the remaining risk-factors has been investigated. It has been

argued that, especially for high dimensions, good candidates for consis-

tent and feasible joint simulations are continuous-time, time-homogeneous

Markovian survival-indicators processes. In particular, the market practice

of modeling the survival-indicator process as a discrete-time Markov chain

with i.i.d. multiplicative increments, corresponding to a step distribution

which is based on a copula-based ansatz, has been analyzed, criticized, and

rectified. It has been shown theoretically and demonstrated with numeri-

cal examples that if we are concerned only with the “survival-of-all” event,

then in order for “terminal one-shot” and “terminal iterated” probabilities

to coincide, the multivariate default times distribution must fulfill the weak

exponential minima property. In particular, this property is fulfilled for
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exponential margins with a survival copula of extreme-value kind. If we are

concerned with more general “mixed default/survival” events, this consis-

tency is only achieved by Marshall–Olkin distributions. A special emphasis

is on warning practitioners who are iterating Gaussian-coupled exponential

distributions, which fulfill neither the weak exponential minima property

nor do they belong to the class of Marshall–Olkin distributions. Indeed,

since these distributions lie in the domain of attraction of the independence

copula, iterating them completely “kills” dependence asymptotically, when

the number of iterations increases.

Appendix A. Alternative construction of Markovian processes

An alternative construction of continuous-time, time-homogeneous Marko-

vian processes on finite state spaces is presented. The construction is a

variation of the classical construction, where (state specifically) jumps are

constructed with exponential waiting times and independent new (random)

states, cf. Rmk. 2.1.

Theorem A.1. Let Q be an intensity matrix of a continuous-time, time-

homogeneous Markovian process on a finite state space S (which is w.l.o.g.

assumed to be {1, . . . , |S|}). Consider a process Z which is constructed as

follows:

(i) Let X0 be the (possibly random) initial state, i.e. define Z(0) := X0.

(ii) Assume that Z jumped k ∈ N0 times and define the time of the kth

jump by Tk (for k = 0 we define T0 := 0). Furthermore, assume that

Z(Tk) = i ∈ S.

(a) For j ∈ S\{i} let Ejk+1 ∼ Exp(qij) be independent exponential

random variables and define Eik+1 := ∞. Assume additionally

that Ek+1, conditional on Z(Tk), is independent of {El : l ≤ k},
Ek+1 := (E1

k+1, . . . , E
d
k+1)′.

(b) Define Tk+1 := Tk + minj∈S E
j
k+1 and Z(t) := i ∀t ∈ (Tk, Tk+1).

(c) Define Z(Tk+1) := argminj∈S E
j
k+1.

(iii) Repeat (ii) either infinitely often or until an absorbing state is reached.

Then the process Z is time-homogeneous Markovian with intensity-matrix

Q.

Proof. For k ≥ 0 and i ∈ S define Pk(·) = P(· | Z(Tk) = i). It suffices to

show that for every k ≥ 0 and i ∈ S the following three conditions hold, as

this implies the classical construction:
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(I) Pk(minj∈S E
j
k+1 > t) = exp{qiit} ∀t > 0.

(II) Pk(argminj∈S\{i}E
j
k+1 = j?) = −qij?/qii ∀j? ∈ S\{i}.

(III) The random variables minj∈S E
j
k+1 and argminj∈S\{i}E

j
k+1 are inde-

pendent conditional on {Z(Tk) = i}.

Condition (I) holds as the minimum of independent exponential random

variables is again exponential with the rate corresponding the sum of all

rates. In this particular case this implies, conditional on {Z(Tk) = i},
minj∈S E

j
k+1 is exponential with rate∑

j∈S\{i}

qij
(?)
= −qii,

where (?) follows because Q is an intensity matrix.

The following calculation shows that condition (II) hold:

Pk

(
argmin
j∈S\{i}

Ejk+1 = j?

)
= Pk

(
Ej

?

k+1 < min
j∈S\{i,j?}

Ejk+1

)
(?)
= Ek

exp

−Ej?k+1

∑
j∈S\{i,j?}

qij




(†)
=

qij?

qij? +
∑
j∈S\{i,j?} qij

(‡)
= −qij

?

qii
,

where (?) follows using the tower property conditioning on Ej
?

k+1, (†) follows

with the Laplace-transform of the exponential distribution, and (‡) follows

using that Q has vanishing row sums.

Finally, the following calculate proves that condition (III) holds:

Pk

(
min

j∈S\{i}
Ejk+1 > t, argmin

j∈S\{i}
Ejk+1 = j?

)

(?)
= Ek

1{Ej?k+1>t}
exp

−Ej?k+1

∑
j∈S\{i,j?}

qij




(†)
= −qij

?

qii
exp{qiit},

where (?) follows using the tower property conditioning on Ej
?

k+1 and (†)
follows using that for an exponential random variable E with rate η > 0
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one has for t, x > 0

E
[
1{E>t} exp{−xE}

]
=

∫ ∞
t

η exp{−(x+ η)v}dv

=
η

η + x
exp{−(x+ η)t}.
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Chapter 4
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When calculating Credit Valuation Adjustment (CVA), the interaction between
the portfolio’s exposure and the counterparty’s credit worthiness is referred to
as Wrong-Way Risk (WWR). Making the assumption that the Brownian mo-
tions driving both the market (exposure) and the (counterparty) credit risk-
factors dynamics are correlated represents the simplest way of modeling the
dependence structure between these two components. For many practical ap-
plications, however, such an approach may fail to account for the right amount
of WWR, thus resulting in misestimates of the portfolio’s CVA. We present a
modeling framework where a further — and indeed stronger — source of mar-
ket/credit dependence is introduced through devaluation jumps on the market
risk–factors’ dynamics. Such jumps happen upon the counterparty’s default
and are a particularly realistic feature to include in case of sovereign or system-
ically important counterparties. Moreover, we show that, in the special case
where the focus is on FX/credit WWR, devaluation jumps provide an effective
way of incorporating market information coming from quanto Credit Default
Swap (CDS) basis spreads and we derive the corresponding CVA pricing equa-
tions as a system of coupled PDEs.

Keywords: credit default swaps, liquidity spread, liquidity premium, credit liq-
uidity correlation, liquidity pricing, intensity models, reduced form models,
capital asset pricing model, credit crisis, liquidity crisis.
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1. Introduction

Credit Valuation Adjustment (CVA) is a risk adjustment to the fair value of
a portfolio of derivative contracts that reflects the credit risk of the common
counterparty with which such contracts have been agreed. It accounts for
the potential losses incurred due to the default of the counterparty before
the contracts’ expiries, and, as such, it heavily depends on the correct
modeling of the credit risk factors, the market risk factors, and of the
interaction between them. One of the main challenges in calculating CVA
is indeed constituted by the lack of liquid market data to be used to infer
risk-neutral credit/market joint distributions.

The calibration and approximation techniques showed in this paper can
be used, for example, to connect currency devaluation with multi-currency
Credit Default Swap (CDS) par-spreads (see [1] for more details) and that,
in turn, allows to calculate CVA more accurately. The resulting FX/credit
cross modeling improvement is crucial where the interaction between the
counterparty credit and the FX is strong, i.e. with emerging market credits
and systemically relevant counterparties where the right/wrong wayness is
more relevant.

Throughout this work, we will often refer to the interaction between
market and credit risk factors as Wrong-Way Risk (WWR).

1.1. Overview of the modeling framework

In this work, we will be using unilateral, as opposed to bilateral, CVA
to illustrate the impact of WWR modeling. ‘Unilateral’ in this context
means that we will be assuming only the counterparty to be a defaultable
entity, while we neglect our own default risk. This assumption effectively
amounts to considering ourselves as a default–free entity. On the one hand,
the assumptions made in a bilateral framework are more realistic (both
counterparties are subject to default risk), but, on the other hand, they
introduce additional complexity in the form of the default time/default time
interaction that, we think, might obfuscate the main points with respect
to WWR modeling that this article wants to illustrate. We will use a
probability space (Ω,F ,Q, (Ft, t ≥ 0)) satisfying the usual hypotheses. In
particular (Ft, t ≥ 0) is a filtration under which the dynamics of the risk
factors are adapted and under which the default time of the reference entity
is a stopping–time.
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In the setting just described, CVA can be represented through the fol-
lowing formula:

CVAt = Et
[(
φ(τ,X(0)

τ , . . . , X(N)
τ )

)+ Bt
Bτ

1{τ≤T}

]
(1)

where

• Et [·] = E
[
·|Ft

]
is the expected value calculated with respect to the

filtration Ft;
• (t, x0, . . . , xN ) 7→ φ(t, x0, . . . , xN ) is the value of the portfolio at
time t and for a realization x0, . . . , xN of the market risk–factors;
• τ is the counterparty’s default time;
• (Bt, t ≥ 0) is the numeraire associated to the pricing measure.

For the same reason, and given that the main examples shown through-
out this work focus on equity/credit WWR and FX/credit WWR, we will
neglect the randomness in interest rates and just assume deterministic in-
terest rate term–structures. We will generically refer to the FX and equity
related risk–factors as the market risk–factors.

The plan of the work is the following: in Section 2 we will present a
PDE approach based on reduced-form framework for credit risk modeling.
We will show how to handle the case where the market risk–factor is a
jump-diffusion process and how to link the jump times to the default time
of the counterparty. In Section 4 we will show how this approach is able to
provide a more effective way to model WWR.

For the equity case, in Section 3 we will present an alternative credit
modeling framework called AT1P and we will show how it naturally links
equity and credit risk factors. In Section 4 we will compare this approach
to the jump-diffusion approach in reduced-form framework.

We refer to [2] and [3] for a general overview on CVA modeling with
applications to multiple asset classes. In [2], both unilateral and bilateral
CVA calculation frameworks are described. Techniques for calculations of
extreme CVA values, in the context of bilateral CVA modeling, have been
recently shown in [4].

2. A PDE approach for both FX-driven and equity-driven
WWR

In this section we present a modeling approach to handle the case where the
counterparty’s hazard rate is stochastic and where one additional market
risk-factor is modeled as a jump-diffusion process whose only jump occurs
upon the counterparty’s default.
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This approach can be effectively applied to both the case where the
market risk-factor is an FX rate and to the case where the market risk-
factor is an equity asset or index. Test cases with respect to both the
examples are presented in Section 4.

2.1. FX

Let us consider the existence of multiple risk-neutral pricing measures, each
of them linked to a specific currency. In this context, we will denote by
(B(t), t ≥ 0) the money market account denominated in the (arbitrarily
chosen) domestic currency, while we will denote by (B̂(t), t ≥ 0) the money
market account denominated in another foreign currency. Both of them are
assumed deterministic. Furthermore, we will denote by Zt the spot FX rate
expressing the cost of one unit of foreign currency in the domestic currency
and we will be using (Dt, t ≥ 0) for the default process:

Dt = 1{τ≤t}, t ≥ 0. (2)

Let us consider the following specification for the dynamics of (Zt, t ≥ 0)
and of the counterparty’s hazard rate, (λt, t ≥ 0):

dYt = a(b− Yt) dt+ σY dWY
t , t ≥ 0, (3)

Y0 = y, (4)
dZt = µZZt dt+ σZZt dWZ

t + γZZt− dDt, t ≥ 0, (5)
Z0 = z, (6)

d 〈WY ,WZ〉t = ρ dt, t ≥ 0, (7)
λt = eYt , t ≥ 0. (8)

An application of the generalized Itô formula (see [5]) allows us to write
the Q–dynamics of (CVAt, t ≥ 0). Using f(t, Zt, Yt, Dt) = CVAt:

df = ∂tf dt+ ∂zf
(
µZz dt+ σZz dWZ

t + γZz dDt

)
+ ∂yf

(
a(b− Yt) dt+ σY dWY

t

)
+ 1

2

(
σZz

)2
∂zzf d [Z,Z]t

+ 1
2

(
σY
)2
∂yyf d [Y, Y ]t + ρσZσY z∂zyf d [Z, Y ]t

+ ∆f∆Dt − ∂zf∆Zt (9)

where, with some abuse of notation, we have defined the jump-to-default
term as

∆f := f(t, Zt− + ∆Zt, Yt, Dt− + ∆Dt)− f(t, Zt−, Yt, Dt−). (10)

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
0.

17
.2

16
.2

46
 o

n 
01

/1
6/

21
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 9, 2018 13:2 Innovations in Insurance, Risk- and Asset Management 9in x 6in b3285-ch04 page 99

Examples of Wrong-Way Risk in CVA Induced by Devaluations 99

Definition of ∆f . ∆f depends on the jumps of (Zt, t ≥ 0) and (Dt, t ≥ 0).
The two jump components, however, are driven by a common jump driver
((Dt, t ≥ 0) itself, see Eq. (5)), and the jumps in the FX rate dynamics are
given by

∆Zt = γZZt−∆Dt. (11)

It must be noted that (Dt, t ≥ 0) starts at 0 and jumps to 1 at a single
time, τ , upon default. This means, in particular, that Dt− + ∆Dt takes
a value different from zero only upon default, and that, for all the times
previous to that, the following equation holds:

Dt = 0, t < τ. (12)

The first term in Eq. (10) can then be rewritten as

f(t, Zt− + ∆Zt, Yt, Dt− + ∆Dt) = f(t, Zt− + ∆Zt, Yt,∆Dt) (13)

and, considering also Eq. (11), the equation for ∆f can be written as

∆f = f(t, (1 + γZ)Zt−, Yt, 1)− f(t, Zt−, Yt, 0). (14)

Compensated martingale for (Dt, t ≥ 0). A compensator for (Dt, t ≥
0) in the measure Q is defined as the process (At, t ≥ 0) such that Dt−At is
a Q–martingale with respect to (Ft, t ≥ 0). The compensator for (Dt, t ≥ 0)
is given by (see Lemma 7.4.1.3 in [5])

dAt = 1{τ>t}λt dt. (15)

We define the resulting martingale as (Mt, t ≥ 0), where

Mt = Dt −At. (16)

Consequently, the compensator of the term ∆f∆Dt in Eq. (9) can be writ-
ten as

(1−Dt)eYt∆f dt, (17)

which, conditional on Ft, Dt = d, Zt− = z, and Yt = y, is equal to

(1− d)ey
(
f(t, z(1 + γZ), y, 1)− f(t, z, y, 0)

)
dt. (18)
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2.1.1. No–arbitrage drift for the market risk–factor (FX)

Any specification of the FX rate dynamics is subject to arbitrage con-
straints. One way to formulate them is by requiring that the Radon–
Nikodym derivative defined by

Lt = ZtB̂t
Z0Bt

, L0 = 1. (19)

is a martingale. The drift specification that satisfies such condition is pro-
vided by

µZ = r(t)− r̂(t)− λtγZ1{τ>t} = r(t)− r̂(t)− λtγZ(1−Dt), (20)

where r(t) and r̂(t) are the — assumed deterministic — domestic and for-
eign short rates, respectively.

FX symmetry. Each FX rate links two risk-neutral pricing measures and,
in deciding how to set its no-arbitrage drift, we arbitrarily started from one
of them. We could as well have started from the other risk-neutral pricing
measure. An argument equivalent to the one discussed in the previous
paragraph would lead, in this case, to set a drift condition for the process
(Xt, t ≥ 0) defined asXt = 1

Zt
. When the FX rate is specified as a geometric

Brownian motion, it does not matter if we start from one measure or from
the other one, as the two approaches lead to consistent results.

Despite the introduction of the jump in the FX rate dynamics, the
consistency between (Xt, t ≥ 0) and (Zt, t ≥ 0) is maintained. This is
stated in the next proposition.

Prop 2.1 (FX symmetry and devaluation jumps). Let us consider
an FX rate process whose dynamics in the domestic risk-neutral measure
Q is specified by Eq. (5) and whose drift is given by Eq. (20). Then the dy-
namics of the process (Xt, t ≥ 0) where Xt = 1/Zt in the foreign risk–neutral
measure Q̂ is given by

dXt = (r̂ − r)Xt dt− σZXt dŴZ
t +Xt−γ

X dM̂t, (21)

X0 = 1
z
,

where the devaluation rate for (Xt, t ≥ 0) is given by

γX = − γZ

1 + γZ
(22)
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and where (M̂t, t ≥ 0) is the martingale defined in Eq. (16) expressed in Q̂.
In particular, (21) is such that the Radon–Nikodym derivative (L̂t, t ≥ 0)
defined by

L̂t = Bt

B̂t

Xt

X0
, L̂0 = 1. (23)

is a Q̂-martingale.

A proof of this proposition is presented in [1].
It is now possible to write a Feynman–Kac PDE to compute the value of

CVAt(T ). Indeed, (CV At, t ≥ 0) is a Q–price and, as such, it must locally
grow at the rate r. Therefore, its drift must satisfy the following equation:

∂tf +
(
r − r̂ − λtγZ(1− d)

)
z∂zf + a(b− Yt)∂yf

+ 1
2

(
σZz

)2
∂zzf + 1

2

(
σY
)2
∂yyf + ρσZσY z∂zyf

+ ey(1− d)∆f = rf dt,

where the explicit dependence of f on the state variables (x, y, t, d) has been
omitted for clarity of reading. It is worth noting that, if it wasn’t for the last
term, this would be the typical PDE for default-free payoffs. Incidentally,
this jump-to-default term is also the only term of the equation where the
two default-specific components f(t, (1 + γZ)z, y, 1) and f(t, z, y, 0) appear
together. In fact, by conditioning first on d = 1 and then on d = 0 we can
decouple the two functions

u(t, z, y) := f(t, (1 + γZ)z, y, 1) (24)
v(t, z, y) := f(t, z, y, 0) (25)

and calculate them by solving iteratively two separate — lower dimension —
PDE problems. We first solve for u, as for d = 1 the last term does not
appear in the equation, and, once u has been calculated, we use it to solve
for v.

Remark 2.1 (Interpretation of u and v). The functions u and v ac-
count for the post-default and pre-default values respectively of a derivative
with payoff φ(x, y, d). The price of this derivative can be written as

Vt = 1{τ>t−}Et
[
φ(XT , YT , DT )|Xt = x, Yt = y,Dt = d

]
, (26)

where, due to the strong Markov property of the processes (Xt, t ≥ 0),
(Yt, t ≥ 0), and (Dt, t ≥ 0), the expected value on the right-hand side
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can be written as

f(t, x, y, d) = Et
[
φ(XT , YT , DT )|Xt = x, Yt = y,Dt = d

]
. (27)

This can be decomposed as f(t, x, y, d) = 1{d=1}u(t, x, y) + 1{d=0}v(t, x, y)
where

v(t, x, y) := Et
[
φ(XT , YT , DT )|Xt = x, Yt = y,Dt = 0

]
, (28)

u(t, x, y) := Et
[
φ(XT , YT , DT )|Xt = x, Yt = y,Dt = 1

]
, (29)

in fact

f(t, x, y, d) = Et
[
φ(XT , YT , DT )|Xt = x, Yt = y,Dt = d

]
= 1{τ>t}Et

[
φ(XT , YT , DT )|Xt = x, Yt = y,Dt = 0

]
+ 1{τ≤t}Et

[
φ(XT , YT , DT )|Xt = x, Yt = y,Dt = 1

]
= 1{τ>t}v(t, x, y) + 1{τ≤t}u(t, x, y) (30)

as both 1{τ>t} and 1{τ≤t} are measurable in the Ft filtration. The derivative
price can then be written as

Vt = 1{τ>t}v(t,Xt, Yt) + ∆Dtu(t,Xt, Yt), (31)

where we defined

∆Dt := 1{τ>t} − 1{τ>t−}. (32)

2.1.2. Final conditions — CVA payoff

The final conditions for functions u and v depend on the portfolio for which
the CVA is going to be calculated. For the sake of explanation, let us con-
sider a stylized portfolio where we expect to receive a single — deterministic
and constant in time — cash-flow payment from our counterparty at ma-
turity T > 0. The payment will be settled in a different currency from the
one used to determine the risk-neutral pricing measure. Furthermore, we
consider null interest rates. Under these assumptions, the CVA is given by:

CVA0 = E0

[
Zτ1{τ≤T}

]
. (33)

The final conditions for the two functions can be written as:

u(T, z, y) = f(T, (1 + γZ)z, y, 1) = (1 + γZ)z, (34)
v(T, z, y) = f(T, z, y, 0) = 0. (35)
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Remark 2.2 (Terminal condition for u). In order to get a better un-
derstanding of the conditions set above, it might be useful to write the ter-
minal condition for u in terms of conditioned expected values:

u(T, z, y) = f(T, (1 + γZ)z, y, 1)

= E
[
Zτ1{τ≤T}

∣∣∣FT , τ ≤ T] = Zτ . (36)

It is also worth recalling that u(t, z, y) is only needed in solving v in the
term representing the jump-on-default component ∆f , that is, the change
in value given to a default happening at t (see Remark 2.1).

The PDE problem that must be solved to obtain u is then given by

∂tu = −(r − r̂)z∂zu− a(b− y)∂yu−
1
2

(
σZx

)2
∂zzu

− 1
2

(
σY
)2
∂yyu− ρσZσY z∂zyu, (37a)

u(T, z, y) = (1 + γZ)z. (37b)

Once the solution to this problem has been calculated, it can be used to
solve the PDE for v, which is then given by

∂tv = −(r − r̂)z∂zv − a(b− y)∂yv −
1
2

(
σZz

)2
∂zzv

− 1
2

(
σY
)2
∂yyv − ρσZσY z∂zyv

+ ey (v − u− γZz∂zv), (38a)
v(T, z, y) = 0. (38b)

Remark 2.3. From the PDE system (38) above it is clear why it makes
sense to define u(t, z, y) := f(t, (1 + γZ)z, y, 1) rather than u(t, z, y) :=
f(t, z, y, 1) as we need the term in ∆f .

2.2. Equity

We can use the same modeling approach presented in Section 2.1 to cal-
culate the CVA of an equity portfolio. Similarly to the previous case,
we consider an exponential Ornstein–Uhlenbeck process for the stochastic
hazard rate and a geometric Brownian motion with a deterministic rela-
tive jump occurring upon the counterparty’s default for the other relevant
risk-factor — in this case, equity, rather than FX.
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We specify the model as:

dSt = µSSt dt+ σSSt dWS
t + γSSt− dDt, (39)

S0 = s0, (40)
dYt = a(b− Yt) dt+ σY dWY

t , (41)
Y0 = y0, (42)

d 〈WS ,WY 〉t = ρdt, (43)

where the stochastic intensity of default (λt, t ≥ 0) is given — as in the
FX/credit case — by

λt = eYt . (44)

2.2.1. No-arbitrage drift for the market risk-factor (equity)

The no-arbitrage condition on (St, t ≥ 0)’s drift is given by requiring that
its discounted price is a martingale. In formulas:

Et
[
ST
BT

]
= St
Bt
. (45)

Under the assumption of deterministic interest rates, that translates into

µS = r(t)− γS(1−Dt)λt. (46)

2.2.2. Final conditions — CVA payoff

In this case, the prototype portfolio we are interested in studying is made
of a single put option and it can be written as

Vt = (1−R)Et
[
(K − Sτ )+

1{τ≤T}

]
. (47)

This is a classic example of a position carrying a high level of WWR,
and therefore highly sensitive to correlation assumptions. In order to get
some intuition about the correlation effect in this type of trade, it might
be useful to consider the limit case where the equity option’s underlying
is the counterparty’s stock. In case of, for example, financial problems
of the reference entity, these will be reflected in their balance account,
and, arguably, in their stock price (that will decrease) and in their credit
quality (that will decrease). Both these changes will affect the CVA of the
position in the same direction (it will increase) and, moreover, they can
reinforce each other. Therefore, taking in account their joint effect can
have a dramatic effect on our calculations.
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Given the strong Markov property of all the processes involved, the CVA
can be assumed to be a function of their values at valuation time:

f(t, s, y, d) := (1−R)Et
[
(K − Sτ )+

1{τ≤T}

]
. (48)

The PDE system that must be solved to calculate the value above can be
deduced using the same techniques showed in Section 2.1 in the FX/credit
case. Let us then define the conditioned on default and on survival values
of f

u(t, s, y) := f(t, s(1 + γS), y, 1), (49)
v(t, s, y) := f(t, s, y, 0), (50)

so that the final conditions on the newly defined functions are given by

u(T, s, y) := f(T, s, y, 1) = (1−R)(K − s), (51)
v(T, s, y) := f(T, s, y, 0) = 0. (52)

The same equations can therefore be used, with two important differ-
ences to take into account:

i) the no-arbitrage drift of the market risk-factor (equity in this case,
rather than FX) is given by Eq. (46) rather than Eq. (20)

ii) the terminal conditions are given by Equations (51) and (52).

The resulting PDE system is then given by:

∂tu = −rs∂su− a(b− y)∂yu−
1
2

(
σSx

)2
∂ssu

− 1
2

(
σY
)2
∂yyu− ρσSσY s∂syu (53a)

u(T, s, y) = (1−R)(K − s). (53b)

Once the solution to this problem has been calculated, it can be used to
solve the PDE for v, which is then given by

∂tv = −(r)s∂sv − a(b− y)∂yv −
1
2

(
σSs

)2
∂ssv

− 1
2

(
σY
)2
∂yyv − ρσSσY s∂syv

+ ey (v − u− γSs∂sv) (54a)
v(T, s, y) = 0. (54b)
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3. A structural approach for equity/credit WWR

In contrast to the reduced-form approach presented in Section 2.2, the
model that we show in this section is based on a structural approach to
credit modeling. Structural models seem a particularly good candidate to
model WWR in equity as they naturally link credit risk and stock prices
through their knowledge of balance account quantities. Furthermore, in the
equity case, differently from the FX rate case, we don’t have the constraint
provided by the existence of quanto CDS basis. On the one hand, this
means that we have more freedom on modeling the underlying process
dynamics. For the sake of illustration, we will be using a simple Geometric
Brownian Motion (GBM) to do that. On the other hand, by doing that
we lose one “correlation” parameter (the devaluation-on-default parameter
γ), thus delegating the whole WWR effect to the instantaneous correlation
between the equity process and the credit process. The effects on WWR of
this modeling choice are compared with reduced-form based models both in
a purely diffusive case and in a jump-diffusion setting in Section 4 showing
that, from a WWR perspective, a structural approach lies in between the
other two modeling approaches.

3.1. AT1P

We will be using a model based on Analytically Tractable First-Passage
(AT1P) to model the dependence between equity and credit in this section.
AT1P was first presented in [6] where the authors extended the original
Merton and Black Cox setting in two important ways:

i) by considering a deterministic non-flat barrier (see Eq. (57) below);
ii) by allowing for a time–dependent volatility for the firm value process

(see Eq. (56) below).

τ = inf{t ≥ 0 : Vt ≤ H(t)}, inf ∅ := +∞. (55)

This approach has been used by [7] for pricing Lehman equity swaps taking
into account counterparty risk. In that work, the use of a random default
barrier associated with misreporting and risk of fraud was also considered.
Here we use the first version of the model, having deterministic non-flat
barriers.

The reason for imposing a particular shape for the barrier and for con-
sidering different maturities for the outstanding debt of the firm is to make
the calibration and pricing processes as feasible and practical as possible,
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as, under these assumptions, the survival probabilities of the firm can be
recovered using closed form formulas. Indeed, the main achievement of the
AT1P generalization relies in the possibility of calibrating the model to
the whole CDS term structure of the firm, as illustrated for Parmalat and
Lehman in [6], [7].

In addition to those works, we refer to [8] for the deduction of results
on the pricing formulas for one-touch barriers in AT1P and to [9] for an
application of AT1P to Contingent Conversion (CoCo) bond pricing, where
a technique to calibrate AT1P to the spot stock price, the entity Tier-1
Capital Ratio, and the CDS spreads is introduced.

We present here a formulation of the model in the simplified setting
where — in addition to the debt barrier being deterministic — the dividends
and the risk free short rate are constant. The firm-value process is specified
by the following SDE:

dVt = (r − q)Vt dt+ σ(t)Vt dWV
t , V0 = v, (56)

while a time-dependent barrier is parameterized as

Ĥ(t) = He
(r−q)t−B

∫ t
0
σ2(s) ds

, Ĥ(0) = H0. (57)

Next, we look separately at how this model can be used to model both
the credit risk and the equity component when calculating CVA for an
equity trade.

3.1.1. Credit risk

Survival probabilities are given in closed-form expression as

Q(τ > T ) = Φ (d1)−
(
H

V0

)2B−1
Φ (d2) , (58)

where τ is defined in (55) and where

d1 :=
log V0

H + 2B−1
2
∫ T

0 σ(s)2 ds(∫ T
0 σ(s)2 ds

)1/2 ,

d2 := d1 −
2 log V0

H(∫ T
0 σ(s)2 ds

)1/2 .

Closed-form formulas for survival probabilities are sufficient for CDS cali-
bration in a single-currency framework and when credit is assumed to be
independent of interest rates.
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3.1.2. Equity price

In AT1P an entity can default at any time and not only at its debt maturity.
If we assume that the debt still has a clear single final maturity T and that
early default is given by safety covenants, it is not unreasonable to model
equity as an option on the firm value with maturity T that is killed if the
default barrier is reached before T (see also [2], Chapter 8). We calculate
the stock price Et (in this framework) as a down-and-out European call
option, that is

Et = B(t)Et


(
VT − Ĥ(T )

)+
1{τ>T}

B(T )

 = f(t, Vt). (59)

This equation can be used both to calculate the stock price both inside a
simulation of an equity-dependent payoff and in the calibration procedure.

A closed form solution for the price of the option is given for example
in [8], see also the Equity chapter in [2]. The formula is as follows:

f = B(t)
B(T )

(
Vte

∫ T
t

(v(s)+σ(s)2
2 ) ds (1− Φ(d3)

)
− Ĥ(T )

(
1− Φ(d4)

)
− Ĥ(t)

(
Ĥ(t)
Vt

)2B

e

∫ T
t

(v(s)+σ(s)2
2 ) ds (1− Φ(d5)

)
+ Ĥ(T )

(
Ĥ(t)
Vt

)2B−1 (
1− Φ(d6)

))
,

(60)

where

v(t) = r − q − σ(t)2

2 ,

d3 =

(
log Ĥ(T )

H

)+
−log Vt

H −
∫ T
t

(v(s)+σ(s)2) ds(∫ T
t
σ(s)2 ds

)1/2 ,

d4 =

(
log Ĥ(T )

H

)+
−log Vt

H −
∫ T
t

(v(s)) ds(∫ T
t
σ(s)2 ds

)1/2 ,
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d5 =

(
log Ĥ(T )

H

)+
−log Ĥ(t)2

HVt
−
∫ T
t

(v(s)+σ(s)2) ds(∫ T
t
σ(s)2 ds

)1/2 ,

d6 =

(
log Ĥ(T )

H

)+
−log Ĥ(t)2

HVt
−
∫ T
t

(v(s)) ds(∫ T
t
σ(s)2 ds

)1/2 .

3.2. Introducing WWR

We introduce WWR in AT1P by allowing the option’s underlying process,
(St, t ≥ 0), to be correlated to the firm’s stock price process. Similarly to
the case analysed in Section 2.2 — but with the crucial difference that in
this case we don’t assume a jump-to-default component — the dynamics of
the option’s underlying process is specified as a geometric Brownian motion:

dSt = rSt dt+ σSSt dWS
t , St = S0. (61)

The instantaneous correlation between processes (St, t ≥ 0) and (Vt, t ≥ 0)
is in principle difficult to estimate, because it mixes together information
of fundamentally different nature: a stock price S, that is observable and
traded, and a firm-value V , that is not traded, and that is only observable
at most quarterly or at any planned balance account public disclosure. The
link provided by firm-value and stock price in AT1P Eq. (60), however,
proves useful in this respect, because it allows, as a first approximation,
to use the empirical correlation between the firm’s stock price and the
underlying equity process as a firm-value/underlying equity’s correlation
estimate. In formulas, we will be assuming that:

d 〈WS ,WV 〉 = d 〈WS ,WE〉. (62)

4. Results

In this section, we show results produced by all the models described in the
previous sections and we compare the different “WWR power” that each
model is able to provide. From an asset class perspective, we will present
tests on FX/credit interaction and on equity/credit interaction. From a
modeling perspective, we will test impact on WWR of instantaneous corre-
lation in both reduced–form model and in structural model (the latter only
in equity case). We will also test the devaluation jump impact on WWR.
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We will use acronyms to refer to models. We will use exponential Ornstein–
Uhlenbeck (expOU) for the reduced-form models, and we will denote by a
(+J) the addition of jumps to default on the market risk factor. We will use
AT1P for the structural model. A test/asset class summary is presented in
Table 1.

Table 1. Summary of the models tested in Section 4.

Test case Reduced-form model Structural model

expOU expOU+J AT1P

FX X X
Equity X X X

4.1. Models calibrations

For the tests presented in this section we considered a dummy set of market
data. Specifically, we used

• a flat term-structure or CDS par-spreads (200 bps);
• a flat term-structure of zero rates (100 bps);
• we fixed the lognormal volatility of both equity and FX rate to
20%;
• in the reduced-form approach, we fixed the the normal volatility of
the OU process driving the stochastic hazard rate to 50% and its
speed of mean reversion speed to 0.001.

For the AT1P calibration, we refer to [7], [6] for further discussions and
examples around calibration. We also refer to [9] for a more recent example
and for a detailed description on how to use balance account information
to fix the barrier level H0 (see Eq. (57)).

For the expOU model calibration, we refer in particular to [1] where cal-
ibration is discussed extensively and where 3 year daily calibration outputs
relying on quanto CDS spreads are presented.

4.2. Equity WWR: Correlation impact

In Figure 1 we present the correlation impact on CVA calculation of a
portfolio consisting of a single trade: an ATM put option with expiry 1
year.
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(a) AT1P
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(b) expOU

Fig. 1. Correlation impact in the structural AT1P approach versus the reduced-form
expOU approach. The CVA values obtained in case of credit-market independence (high-
lighted in both plots) are the same.

The agreement between the expOU and AT1P graphs on the zero corre-
lation case provides a good safety check on the two model implementations.

It is worth highlighting that we used a common x-axis for the two charts,
as indeed both the CVA calculated using expOU and using AT1P depend
on a correlation parameter. The correlation parameter, however, has a
very different interpretation in the two cases. As discussed in Section 3.2,
in AT1P a possible proxy for it is provided by the equity/equity correlation
between the counterparty and the option’s underlying. In expOU, instead,
the correlation to be used is the one between the counterparty’s credit and
the option’s underlying. Unsurprisingly, the two parameters have oppo-
site impact on CVA. Given the fact that the stochastic factor driving the
asset value in AT1P is more directly linked to the counterparty’s default
time (through Eq. (55)) than the stochastic hazard rate in expOU, AT1P’s
correlation parameter has a stronger impact than expOU’s correlation
on WWR.

4.3. Equity WWR: Devaluation impact

The impact of the devaluation factor γS on the CVA of a portfolio consti-
tuted of a single 1-year expiry at-the-money equity put option is showed in
Figure 2. The maximum CVA values that could be produced through cor-
relation both in this reduced–form framework (for negative equity/credit
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correlation) and in AT1P (for positive equity/equity correlation) have been
highlighted in Figure 2.

Figure 2 illustrates an unsurprising behavior of CVA — and that applies
to credit modeling in general: the more a parameter is directly linked to
the default time definition, the higher its impact in terms of WWR. This
phenomenon is akin to tranche pricing, where correlation on stochastic
hazard rate turns up being a much less effective mechanism to price CDO
tranche than a copula approach (see, for example, [10]).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2
0

0.5

1

1.5

2 ·10−2

max AT1P (ρ = 1)
max expOU (ρ = −1)

γS

C
VA

Fig. 2. Devaluation jump impact in reduced-form (BK) approach.

4.4. FX WWR: FX Vega

In this section, we show a less intuitive, yet of high practical importance, ef-
fect that correlation has on CVA pricing. For this example, we considered
a portfolio constituted of a single cash payment that is settled in a cur-
rency different from the one in which the numeraire is denominated (like
in Eq. (33)). We used a reduced-form approach to calculate the CVA with
no devaluation jumps on the FX rate. The correlation impact on FX vega
is plotted on Figure 3, showing that, when FX and credit are independent,
the CVA has no FX Vega. This is not the case when instead we intro-
duce correlation between FX and credit. The practical impact of having or
not having correlation/dependence is in this case quite relevant as it would
drastically change the hedging strategy to be used to hedge the CVA risk.
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−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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−2

0

2
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No FX vega

ρ

FX
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Fig. 3. Correlation impact on FX vega in a reduced–form model (BK).

We can explain the results above in formulas: when FX and credit are
independent — and considering zero interest rates for simplicity — the
CVA from Eq. (33) can be written as:

CVA0 = E0

[
Xτ1{τ≤T}

]
=
∫ T

0
E0 [Xs]Q(s ≤ τ < s+ ds)

= X0Q(τ ≤ T ) (63)

showing in fact no dependence on (Xt, t ≥ 0) dynamics. It is worth nothing
that the same would happen also for more complicated derivatives as far
as their only dependence on the FX rate is given by a mismatch in the
pricing/payment currencies. Let us consider a derivative paying off an
amount φ(YT ) at T if the counterparty has not defaulted before T , where
(Yt, t ≥ 0) is a non-FX market risk factor. CVA can be written in this case
as:

CVA0 = E0

[
φ(YT )Xτ1{τ≤T}

]
=
∫ T

0
E0
[
φ(Ys)Xs

]
Q(s ≤ τ < s+ ds)

= X0

∫ T

0
Ê0
[
φ(Ys)

]
Q(s ≤ τ < s+ ds) (64)

where we denoted as Ê0 [·] the expected value calculated in the payment
currency pricing measure. The formula shows, again, no dependence on
(Xt, t ≥ 0) dynamics.
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5. Conclusions

In the present work, we investigated different modeling approaches to ac-
count for the credit/market dependence in CVA pricing. We focused on two
distinct cases, one where the only market risk-factor was the FX rate and
one where the only market risk-factor was the equity asset. In both cases,
we showed how to calculate CVA in a PDE framework using a reduced-
form approach for credit modeling and we investigated the impact that the
inclusion of a default-driven devaluation jump to the market risk-factor dy-
namics has on WWR. Furthermore, in the equity case, we showed how a
structural approach can also be effectively used to model the WWR.

Consistently with our intuition, the more directly a given modeling ap-
proach links the credit risk component to the market risk component, the
higher is the variation in WWR that can be achieved by adopting it. In
particular, delegating the whole credit/market dependence to instantaneous
correlation provides the smallest range of WWR variation, while the inclu-
sion of a jump-to-default effect on the market risk factor provides the largest
one, with the structural approach — in the equity case — lying somewhere
in between these two extreme cases.

In future works, we plan to include testing with more realistic portfolios,
where impacts coming from variations on moneyness can be studied and,
possibly, we will introduce a modeling approach that could consistently
account for the observed skew in the market risk factor.
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In the 12 months from the middle of June 2016 to the middle of June 2017,

a number of events occurred in a relatively short period of time, all of which

either had, or had the potential to have, a considerably volatile impact upon
financial markets.

The events referred to here are the Brexit referendum (23 June 2016), the
US election (8 November 2016), the 2017 French elections (23 April and 7 May

2017) and the surprise 2017 UK parliamentary election (8 June 2017).

All of these events — the Brexit referendum and the Trump election in partic-
ular — were notable both for their impact upon financial markets after the event

and the degree to which the markets failed to anticipate these events. A natu-

ral question to ask is whether these could have been predicted, given information
freely available in the financial markets beforehand. In this paper, we focus on

market expectations for price action around Brexit and the Trump election, based

on information available in the traded foreign exchange options market.

Keywords: Brexit, Trump, foreign exchange options, implied distributions,
forecasting, event risk.

1. Introduction

The year 2016 was notable for two major events in financial markets and

world politics: Brexit and Trump. By these, we mean the UK referendum

held on 23 June 2016 as to whether the UK should remain in the European

Open Access chapter published by World Scientific Publishing Company and distributed

under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives
(CC BY-NC 4.0) License.
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Union [EU] or leave it, and the US election on 8 November 2016 in which

Donald Trump, once a relative outsider for the office of the President, won

the election as Republican Party presidential nominee against the Demo-

cratic candidate Hillary Clinton.

These events share certain factors: they were both originally viewed as

very unlikely from the viewpoint of mainstream political and economic com-

mentary, but in the period of time before the UK referendum and the US

election, both campaigns (for Brexit and for Trump) managed to marshal

enough popular sentiment to achieve the result they sought.

After these two surprise results, commentators naturally turned their

attention to two questions. Firstly, potentially using information available

in financial markets or betting markets, could these results have been bet-

ter predicted? Secondly, could similar techniques be used to assess the

probability of similar unlikely but potentially very market-sensitive events

occurring in 2017?

One natural possibility to analyse in the second quarter of 2017, as a po-

tential consequence of the continuation of Brexit/Trump populism spread-

ing to the Eurozone, was the possibility of the election of Marine Le Pen in

the French elections held in two rounds on 23 April and 7 May 2017, which

was won convincingly by Emmanuel Macron in the second round. A second

and unexpected opportunity for modeling political event risk arose on 18

April 2017, when Theresa May (UK Prime Minister since 13 July 2016, fol-

lowing the Brexit referendum) announced that a UK general election would

be held on 8 June 2017. It was generally felt beforehand that her position

was unassailable, however the result was a net loss of thirteen seats for

the Conservative Party, which was then no longer able to govern with an

outright majority and needed to form a minority government supported by

the Conservative-DUP agreement.

Our contribution to this volume seeks to empirically investigate the

implied probability distributions around these event dates. We have already

considered the case of Brexit [1] and we shall review our analysis herein,

and then extend the analysis to Trump and the 2017 elections mentioned

above.

2. Literature Review

We know from Breeden and Litzenberger [2] that if we know the price

of European options on a tradable asset at all strikes, for a specific time

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
0.

17
.2

16
.2

46
 o

n 
01

/1
6/

21
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 9, 2018 13:2 Innovations in Insurance, Risk- and Asset Management 9in x 6in b3285-ch05 page 119

Implied Distributions from Risk-Reversals and Brexit/Trump Predictions 119

to expiry T , then we can infer the future risk-neutral probability distri-

bution for that asset at the future time T . This is described with ref-

erence to foreign exchange [FX] markets in Malz [3]. An application of

this principle is made by the same author [4] in connection with the spe-

cific example of the British pound/Deutsche Mark exchange rate in the

European Exchange Rate Mechanism. More recently, in other works [5]–

[8], the case of EURCHF is considered, which between 6 September 2011

to 15 January 2015 had an effective floor maintained at 1.20 Swiss francs

per Euro due to Swiss National Bank policy and intervention in currency

markets.

As well as our own work [1], Dupire [9] and Hanke et al. [10] use sim-

ilar methods to model potential FX moves around the dates of the Brexit

referendum and the 2016 US election (specifically considering the FX ex-

ample of the Mexican peso quoted against the US dollar). Dupire [9] also

discusses the 2017 French elections, with respect to equity markets, which

have a traded market in volatility through the VIX [11].

It is therefore clear that there is a historical body of work that analyses

the short-dated volatility skew in FX markets in order to construct implied

distributions for currency exchange rates at various time horizons of inter-

est, aligned with real world events subject to political event risk on those

dates. This is the scope of this work.

3. Method

Historical spot and implied volatility quotes have been obtained from

Bloomberg (www.bloomberg.com) for various currency pairs (EURUSD,

GBPUSD, USDMXN) together with historical timeseries of bookmaker

quotes from the Oddschecker web site (www.oddschecker.com) for bets

on the event that the UK votes to leave the EU.

Spot market quotes are merely the price in units of domestic currency

of one unit of foreign currency. Volatility quotes, however, are more com-

plex. At-the-money straddles and 25-delta and 10-delta strangles and risk

reversals with expiries corresponding to the overnight maturity, 1, 2 and 3

weeks, and at 1, 2, 3, 6 and 12 months.

For each expiry Tj , we have five market quotes from the volatility

surface: σATM , σ25−d−SS , σ10−d−SS , σ25−d−RR and σ10−d−RR, where

σx−d−SS denotes the x-delta smile strangle and σx−d−RR denotes the x-

delta risk reversal, both expressed in units of volatility; see [12]. Conse-

quently, we have five implied volatilities σ10−d−P , σ25−d−P , σATM , σ25−d−C
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and σ10−d−C satisfying

σx−d−SS =
1

2
[σx−d−C + σx−d−P ]− σATM , (1a)

σx−d−RR = σx−d−C − σx−d−P , (1b)

where x ∈ {25, 10} and with the strikes K10−d−P , K25−d−P , KATM ,

K25−d−C and K10−d−C chosen such that

σimp(Ki) = σi, (2a)

∆(−1,Kx−d−P , T, σx−d−P ) = −x/100, (2b)

∆(+1,Kx−d−C , T, σx−d−C) = x/100, (2c)

∆(+1,KATM , T, σATM ) + ∆(−1,KATM , T, σATM ) = 0, (2d)

with ω = −1 for a put and ω = +1 for a call in

∆(ω,K, T, σ) =

{
ωN(ωd1), for GBPUSD,

ω K
F0,T

N(ωd2), for EURGBP.
(3)

As we have five implied volatilities available for each maturity we have suf-

ficiently many data points to interpolate between, or to calibrate a mixture

model to the market.

Premium adjusted deltas are used for EURGBP and USDMXN but not

for GBPUSD or EURUSD in (3), following usual FX market conventions

[12]. In all cases we solve numerically for Ki to obtain a strike based repre-

sentation for the volatility surface which we then extend to a full volatility

surface σimp(K,T ) using flat forward volatility interpolation in the tem-

poral dimension, and polynomial in delta interpolation in the moneyness

dimension, to account for smile. For flat forward volatility interpolation

in time, for interpolating volatility at time t in between two prespecified

tenors t1 and t2, we use

σ(t) =

√
t2(t− t1)

t(t2 − t1)
σ2(t2) +

t1(t2 − t)
t(t2 − t1)

σ2(t1). (4)

For polynomial in delta interpolation we use an expression of the form

σX(K) = exp(f(ln(F0,T /K))) (5a)

with

f(x) =

4∑
i=0

ci[δ(x)]i (5b)
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where F0,T is the T -forward, σ0 = exp(c0) and

δ(x) = N(x/(σ0
√
T )). (5c)

Note that we first interpolate in time, for each of the five points on the smile,

and then we interpolate in strike, thereby obtaining a volatility surface

σ(K,T ), which immediately gives call prices for all strikes K and tenors T

C(K,T ) = S0e
−rfTN(d1)−Ke−rdTN(d2) (6a)

using

d1,2 =
ln
(

F0,T

K

)
± 1

2 [σ(K,T )]2T

σ(K,T )
√
T

. (6b)

Once we have this, we can employ Breeden-Litzenberger [2] to obtain the

implied distribution for the terminal FX spot rate ST in the (domestic)

risk-neutral measure

fdST
(K) = er

dT ∂
2C(K,T )

∂K2
. (7)

Note that the risk-free rate rd is determined separately for each maturity

given the underlying yield curve, rather than being presumed constant.

As well as the empirical approach based around the Breeden-

Litzenberger analysis above, we construct a mixture model, as described

in [1] and references therein, which has a specific probability PE of a risk

event (such as a vote for Brexit, Trump, Le Pen or a vote against a Theresa

May majority government) on the referendum/election date which we ex-

pect the market could well be sensitive to, and thereby associated with an

event risk potentially likely to cause a jump in FX rates. We let T ∗ de-

note the time to that referendum/election date and use PNE to denote the

probability of no such risk event happening (clearly PE + PNE = 1).

In the case of a vote for a risk event (such as one of the above), we model

this with a post-event exchange rate ST∗ by integrating the stochastic pro-

cess dSt = µEStdt+σEStdWt from 0 to T ∗, with drift and volatility terms

µE and σE . If, however, the risk event does not come to pass, we model

the distribution for ST∗ using Black-Scholes dSt = µNEStdt + σNEStdWt

with a compensated drift µNE and a “no risk event” volatility σNE (both

σE and σNE are annualized volatilities).

By risk-neutrality, we require

F0,T∗ = Ed[ST∗ ] = (1− PE)S0 exp(µNET
∗) + PES0 exp(µET

∗), (8)
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so the “no risk event” scenario has a terminal distribution for ST∗ equal to

that of a Black-Scholes model with compensated risk-neutral drift term

µNE =
1

T ∗ ln

(
F0,T∗ − PES0 exp(µLT

∗)

S0(1− PE)

)
. (9)

We write the terminal distribution of the FX rate under the mixture model

ST∗ =

{
S0 exp

(
(µNE − 1

2σ
2
NE)T ∗ + σNEWT∗

)
, with probability 1− PE ,

S0 exp
(
(µE − 1

2σ
2
E)T ∗ + σEWT∗

)
, with probability PE .

(10)

Valuation of any European option with strike K is simply obtained by

taking a weighted sum of the two Black-Scholes prices corresponding to

integration of the payout function over the two density kernels.

Integrating the expression in the second case of (10) yields

ST∗,E = SE exp

((
σEξ
√
T ∗ − 1

2
σ2
ET

∗
))

, (11)

where SE = S0 exp(µET
∗) denotes the point estimate for the FX rate under

the “risk event” scenario and ξ∼N(0, 1), i.e. ξ is normally distributed.

We use market volatility surfaces as described earlier to estimate risk

event probabilities PE based on the observed skew. Since we have five

implied volatilities at each time slice, we conduct a least squares calibra-

tion of the parameter set {PE , SE , σE , σNE} using Levenberg-Marquardt

optimization.

4. Results

4.1. 2016 Brexit referendum

As already presented elsewhere in the literature [1], Figures 1 and 2 show

implied densities for GBPUSD and EURGBP respectively from 1 May 2015

to 23 June 2016 for options expiring the day after the Brexit referendum

date, and also the implied density as seen on Friday 24 June 2016 for the

FX rate one business day later. These results suggest probability mass for

GBPUSD between 1.10 and 1.30, and for EURGBP between 0.825 and 0.95

at the referendum date.

Nothing in the above provides directional support for making the claim

that a “leave” vote in the Brexit referendum need be associated with the

lower mode for the GBPUSD distribution, of course. In order to make a

case for this, we have collected information from betting markets from the

Oddschecker web site (www.oddschecker.com), an odds comparison web
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site where prices for digital bets on certain political events are published

(and tradable). The raw data, expressed as betting odds, is transformed

into an implied probability for “leave”.

By considering the historical behavior of moves in FX spot relative to

absolute changes in the betting market implied odds of a “leave” vote,

displayed in Figure 3, we see that a 1% increase in the probability of a

“leave” vote is correlated with a 0.16% decrease in GBPUSD. This we

contend suggests that the probability mass for GBPUSD between 1.10 and

1.30 (and for EURGBP between 0.825 and 0.95) can be associated with

the regime in which the actual Brexit vote is for “leave” on the referendum

date.

In Tables 1 and 2 we see the parameters for the calibrated mixture

model for each analysis date, where we show the implied probability PE

of a “leave” vote and the point estimate SE for the FX spot price in the

event of a Brexit “leave” vote, together with the expected GBP percentage

appreciation SE/S0 − 1 (negative numbers, indicating devaluation in the

event of a Brexit “leave” vote) and a 95% confidence interval for the realized

post-referendum FX spot rate for GBPUSD in the event of a “leave vote”,

together with “remain” and “leave” volatilities σNE and σE respectively

(corresponding to no risk event and risk event respectively).

In Figure 4 we show the “leave” point estimate SE and the “remain”

point estimate SNE together with the GBPUSD FX spot rate S0 on each

trading day, from 24 February to 22 June 2016, and in Figure 5 we show

the mixture model implied “leave” probability PE together with the two

volatilities σE and σNE , also from 24 February to 22 June 2016.

We can see in these two figures that the implied “leave” probability

varied between 15.3% and 45.3% during the period of analysis, with an

average level of 30.6%, with a considerable amount of uncertainty from late

April 2016 onwards (reflecting the market confusion during the approach

to the referendum). From 25 June 2016 onwards, i.e. a month before the

referendum date, we see a clear upward trend in both “leave” and “remain”

volatilities σE and σNE , and an increasing separation between the point

estimates SE and SNE for the “leave” and “remain” states. While there is

some parameter uncertainty, perhaps not surprisingly given the uncertainty

in the market, the average value of the estimate SL over the two weeks (ten

business days) before the referendum was 1.3727, very consistent indeed

with the actual FX spot level decline from 1.4877 to 1.3622 which was

realized after the announcement of the “leave” vote.
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Fig. 1. GBPUSD implied densities for the Brexit referendum date from 1 May 2015 to

23 June 2016, sampled monthly from 1 May 2015 to 1 June 2016, then sampled daily,
and for the next business day on 24 June 2016 (Source: [1]).
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Fig. 2. EURGBP implied densities for the Brexit referendum date from 1 May 2015 to
23 June 2016, sampled monthly from 1 May 2015 to 1 June 2016, then sampled daily,

and for the next business day on 24 June 2016 (Source: [1]).
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Table 1. Calibrated mixture model parameters for GBPUSD from 24 February to

26 April 2016 (Source: [1]).

Date S0 PE SE SE/S0 − 1 95% CI for ST∗,E σNE σE

24 Feb 2016 1.3927 30.8% 1.3250 −4.9% 1.0316 1.6184 8.8% 18.6%

25 Feb 2016 1.3962 31.5% 1.3319 −4.6% 1.0390 1.6247 8.4% 18.6%
26 Feb 2016 1.3871 32.0% 1.3252 −4.5% 1.0383 1.6120 8.3% 18.4%

29 Feb 2016 1.3917 32.6% 1.3340 −4.1% 1.0553 1.6128 8.2% 18.1%
01 Mar 2016 1.3952 32.5% 1.3378 −4.1% 1.0656 1.6100 8.1% 17.7%

02 Mar 2016 1.4078 32.4% 1.3541 −3.8% 1.0824 1.6258 7.9% 17.6%

03 Mar 2016 1.4178 33.4% 1.3666 −3.6% 1.0982 1.6349 7.9% 17.3%
04 Mar 2016 1.4229 33.0% 1.3711 −3.6% 1.1072 1.6351 7.7% 17.0%

07 Mar 2016 1.4265 33.5% 1.3773 −3.4% 1.1209 1.6337 7.7% 16.7%

08 Mar 2016 1.4215 33.3% 1.3737 −3.4% 1.1211 1.6262 7.6% 16.6%
09 Mar 2016 1.4217 33.5% 1.3753 −3.3% 1.1255 1.6252 7.5% 16.5%

10 Mar 2016 1.4281 33.7% 1.3830 −3.2% 1.1322 1.6339 7.6% 16.6%

11 Mar 2016 1.4382 32.7% 1.3936 −3.1% 1.1534 1.6337 7.1% 15.8%
14 Mar 2016 1.4302 33.5% 1.3885 −2.9% 1.1602 1.6167 7.0% 15.4%

15 Mar 2016 1.4151 33.5% 1.3701 −3.2% 1.1405 1.5998 7.3% 15.7%

16 Mar 2016 1.4259 34.1% 1.3800 −3.2% 1.1483 1.6117 7.4% 15.8%
17 Mar 2016 1.4482 33.9% 1.4011 −3.3% 1.1691 1.6331 7.5% 15.7%

18 Mar 2016 1.4476 34.5% 1.4015 −3.2% 1.1702 1.6328 7.6% 15.7%
21 Mar 2016 1.4369 34.7% 1.3902 −3.3% 1.1690 1.6113 7.7% 15.4%

22 Mar 2016 1.4208 35.6% 1.3751 −3.2% 1.1413 1.6089 8.2% 16.5%

23 Mar 2016 1.4117 27.9% 1.3189 −6.6% 1.0065 1.6314 9.5% 22.3%
24 Mar 2016 1.4153 27.4% 1.3159 −7.0% 1.0107 1.6210 9.5% 21.9%

25 Mar 2016 1.4132 27.7% 1.3156 −6.9% 1.0099 1.6212 9.6% 22.0%

28 Mar 2016 1.4254 30.6% 1.3471 −5.5% 1.0402 1.6540 9.6% 22.3%
29 Mar 2016 1.4384 27.2% 1.3403 −6.8% 1.0542 1.6264 9.4% 20.7%

30 Mar 2016 1.4378 26.6% 1.3394 −6.8% 1.0519 1.6269 9.4% 21.0%

31 Mar 2016 1.4360 27.9% 1.3453 −6.3% 1.0555 1.6350 9.5% 21.3%
01 Apr 2016 1.4227 27.8% 1.3326 −6.3% 1.0490 1.6161 9.5% 21.1%

04 Apr 2016 1.4264 27.6% 1.3383 −6.2% 1.0718 1.6048 9.2% 20.2%

05 Apr 2016 1.4161 28.5% 1.3349 −5.7% 1.0632 1.6067 9.5% 20.8%
06 Apr 2016 1.4123 27.8% 1.3246 −6.2% 1.0629 1.5864 9.8% 20.3%

07 Apr 2016 1.4056 28.8% 1.3222 −5.9% 1.0596 1.5849 9.9% 20.6%

08 Apr 2016 1.4128 30.4% 1.3377 −5.3% 1.0779 1.5975 9.6% 20.4%
11 Apr 2016 1.4239 30.2% 1.3520 −5.1% 1.1070 1.5970 9.4% 19.4%

12 Apr 2016 1.4275 31.3% 1.3611 −4.7% 1.1158 1.6064 9.4% 19.5%
13 Apr 2016 1.4204 31.1% 1.3552 −4.6% 1.1200 1.5904 9.4% 19.0%

14 Apr 2016 1.4155 32.4% 1.3566 −4.2% 1.1203 1.5929 9.5% 19.2%
15 Apr 2016 1.4202 30.6% 1.3590 −4.3% 1.1322 1.5858 9.4% 18.5%
18 Apr 2016 1.4278 33.0% 1.3801 −3.3% 1.1684 1.5918 9.0% 17.6%

19 Apr 2016 1.4398 37.5% 1.4026 −2.6% 1.2009 1.6043 8.4% 16.7%
20 Apr 2016 1.4332 37.7% 1.3991 −2.4% 1.2071 1.5911 8.1% 16.1%
21 Apr 2016 1.4323 37.8% 1.3993 −2.3% 1.2120 1.5866 8.1% 15.9%

22 Apr 2016 1.4403 39.5% 1.4118 −2.0% 1.2282 1.5955 7.9% 15.6%

25 Apr 2016 1.4482 42.8% 1.4305 −1.2% 1.2643 1.5968 7.6% 14.4%
26 Apr 2016 1.4582 22.6% 1.3546 −7.1% 1.1698 1.5394 9.3% 16.0%
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Fig. 3. Percentage change in GBPUSD FX spot rates [y-axis] vs. the change in the

leave probability from betting markets [x-axis] (12 January to 23 June 2016).

4.2. 2016 US election – Trump

Figure 6 shows implied distributions for USDMXN (the Mexican peso

equivalent of one US dollar) based on FX options expiring on Wednes-

day 9 November 2016, i.e. the day after the 2016 US election. We see a

notable skew in the distribution, suggesting the possibility of a devaluation

in the Mexican peso in accordance with a move in USDMXN to above 20,

in the event of a Trump victory — a move in FX which indeed came to

pass after the election result became known.

Calibrating the mixture model to the observed FX volatility surfaces for

USDMXN, we obtain the results shown in Table 3, which similarly suggest

a “risk event” move upwards in USDMXN of around 5% from prevailing FX

spot levels below 19.5 up towards the region of 20, which indeed happened

after the Trump victory. We also see a mixture model implied probability of

a Trump victory between 23.7% and 55.0% during the period shown in Table

3, with an average level of 38.6% — while these parameters seem unstable,

it is worth remembering that many different factors were influencing the

markets at this time, so we would not expect too much stability.
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Fig. 4. Mixture model implied point estimates for SE and SNE (corresponding to

“leave” and “remain” states of the world resp.) together with FX spot S0 (24 February
to 22 June 2016).

4.3. 2017 French elections

In Figures 7 and 8 we apply the same technique to obtain implied distri-

butions for EURUSD for the day after the first round and second round

respectively. We see downside risk for the Euro, though not as extreme an

FX risk as for the Brexit and Trump events of 2016, with potential decline

in the Euro to around 1.05, which we would expect to be associated with a

victory for Marine Le Pen. However, this sequence of events did not happen

thanks to Emmanuel Macron’s success in the election. We note for the first

round of the French election, that the probability of very large downside

moves in EURUSD is higher, compared with the second round, presumably

reflecting the greater uncertainty at the first round stage.

We attempted to calibrate the mixture model to FX EURUSD volatili-

ties but found that the calibration scheme experienced numerical problems

when detecting any bimodality, perhaps not surprisingly given the relatively

small levels of FX skew compared with the earlier levels seen for Brexit

and Trump scenarios. This manifests as degeneracy in the parameter set

(due to SE ≈ SNE) and parameter instability. It would be interesting to

conduct an analysis of the skew dependency of the mixture model, with
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Fig. 5. Mixture model implied “leave” probability PE together with σE and σNE for

Brexit under “leave” and “remain” states of the world (24 February to 22 June 2016).

a view to improving the small skew behavior. This is an area we hope

to revisit.

4.4. 2017 UK general election

A final and unexpected opportunity to investigate empirically implied FX

distributions in relation to contemporary political events arose on 18 April

2017, and we can therefore present implied distributions for the GBPUSD

currency pair for Friday 9 June 2017, the day on which the election results

would be known. We see in Figure 9 some probability mass in the range

1.25 to 1.275, which we would have expected to be realized if Theresa

May had unexpectedly lost the election or proceeded to a hung parliament,

and in contrast a decisive Conservative Party victory would be likely to

be slightly stronger for the British pound. The result in June 2017, with

Theresa May’s Conservative government losing the majority in the House

of Commons after a net loss of 13 seats, was accompanied by a sudden fall

in GBPUSD from levels around 1.29 to a levels around 1.275, very much in

line with our expectations based on implied distributions.
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Table 2. Calibrated mixture model parameters for GBPUSD from 27 April to 22 June

2016 (Source: [1]).

Date S0 PE SE SE/S0 − 1 95% CI for ST∗,E σNE σE

27 Apr 2016 1.4543 23.2% 1.3549 −6.8% 1.1727 1.5371 9.2% 16.0%

28 Apr 2016 1.4609 23.3% 1.3620 −6.8% 1.1818 1.5423 9.2% 15.9%
29 Apr 2016 1.4612 23.7% 1.3684 −6.3% 1.1856 1.5512 9.2% 16.2%

02 May 2016 1.4673 23.2% 1.3737 −6.4% 1.2001 1.5472 9.4% 15.8%
03 May 2016 1.4535 23.7% 1.3639 −6.2% 1.1845 1.5432 9.6% 16.6%

04 May 2016 1.4496 25.0% 1.3650 −5.8% 1.1768 1.5533 9.8% 17.6%

05 May 2016 1.4485 26.9% 1.3732 −5.2% 1.1839 1.5625 9.5% 17.9%
06 May 2016 1.4427 23.1% 1.3495 −6.5% 1.1766 1.5223 9.5% 16.6%

09 May 2016 1.4407 25.0% 1.3604 −5.6% 1.1875 1.5332 9.5% 17.2%

10 May 2016 1.4442 23.7% 1.3580 −6.0% 1.1915 1.5245 9.7% 16.7%
11 May 2016 1.4448 26.0% 1.3682 −5.3% 1.2027 1.5337 9.4% 16.7%

12 May 2016 1.4451 25.0% 1.3677 −5.4% 1.2038 1.5316 9.5% 16.8%

13 May 2016 1.4365 22.8% 1.3439 −6.4% 1.1860 1.5018 10.0% 16.4%
16 May 2016 1.4402 24.9% 1.3649 −5.2% 1.2061 1.5236 9.8% 17.1%

17 May 2016 1.4463 24.7% 1.3737 −5.0% 1.2286 1.5188 9.2% 15.8%

18 May 2016 1.4599 31.8% 1.4141 −3.1% 1.2637 1.5645 8.3% 16.4%
19 May 2016 1.4611 33.2% 1.4203 −2.8% 1.2744 1.5662 8.3% 16.1%

20 May 2016 1.4502 32.0% 1.4089 −2.8% 1.2700 1.5479 8.3% 15.7%
23 May 2016 1.4484 41.5% 1.4266 −1.5% 1.2974 1.5557 8.3% 15.2%

24 May 2016 1.4636 42.7% 1.4464 −1.2% 1.3241 1.5686 8.2% 14.5%

25 May 2016 1.4697 43.0% 1.4536 −1.1% 1.3325 1.5747 8.2% 14.5%
26 May 2016 1.4670 26.2% 1.3841 −5.6% 1.2358 1.5324 9.2% 18.1%

27 May 2016 1.4623 22.6% 1.3784 −5.7% 1.2207 1.5362 10.0% 19.7%

30 May 2016 1.4640 26.7% 1.4060 −4.0% 1.2592 1.5528 9.8% 19.4%
31 May 2016 1.4483 32.3% 1.4006 −3.3% 1.2511 1.5500 10.8% 20.3%

01 Jun 2016 1.4416 39.2% 1.4067 −2.4% 1.2538 1.5596 11.3% 21.3%

02 Jun 2016 1.4423 39.7% 1.4130 −2.0% 1.2740 1.5520 10.6% 19.8%
03 Jun 2016 1.4518 31.9% 1.3676 −5.8% 1.2025 1.5328 13.4% 23.9%

06 Jun 2016 1.4442 25.8% 1.3600 −5.8% 1.2081 1.5118 14.4% 23.8%

07 Jun 2016 1.4545 28.1% 1.3825 −4.9% 1.2359 1.5292 13.3% 23.5%
08 Jun 2016 1.4504 27.5% 1.3865 −4.4% 1.2511 1.5218 13.2% 22.4%

09 Jun 2016 1.4458 32.1% 1.4002 −3.2% 1.2742 1.5263 12.7% 21.6%

10 Jun 2016 1.4257 29.2% 1.3461 −5.6% 1.1033 1.5889 18.8% 43.6%
13 Jun 2016 1.4270 31.2% 1.3497 −5.4% 1.1287 1.5708 22.4% 44.5%

14 Jun 2016 1.4114 29.9% 1.3369 −5.3% 1.1417 1.5321 22.4% 41.6%
15 Jun 2016 1.4204 35.7% 1.3769 −3.1% 1.2023 1.5515 18.8% 38.9%

16 Jun 2016 1.4203 39.1% 1.3914 −2.0% 1.2319 1.5510 18.3% 37.5%
17 Jun 2016 1.4358 15.3% 1.2900 −10.2% 1.0893 1.4906 35.3% 49.7%
20 Jun 2016 1.4698 18.0% 1.3779 −6.3% 1.2308 1.5249 26.1% 46.0%

21 Jun 2016 1.4652 26.1% 1.4198 −3.1% 1.2588 1.5809 22.9% 57.3%
22 Jun 2016 1.4707 45.3% 1.4378 −2.2% 1.3323 1.5434 26.7% 44.2%

5. Conclusions

In this contribution we have surveyed the literature employing option

pricing theory to analyse information embedded in the volatility surfaces
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Fig. 6. USDMXN implied densities for the day after the 2016 US election date (11

October to 3 November 2016).

pertaining to political event risk over the decade so far (2010–2017). We

have cited several works that model the Swiss National Bank’s defense level

for the Swiss franc and the floor on EURCHF thereby imposed. We men-

tion our own analysis of Brexit, with reference to GBPUSD and EURGBP,

and we obtain implied distributions for USDMXN at the date of the US

election, thereby describing the potential collapse in the Mexican peso to

levels of 20 or more to the US dollar (a scenario which came to pass). Fi-

nally, we construct implied distributions for the 2017 French presidential

and UK general elections, finding currency rate distributions which we at-

tempt to ascribe to potential outcomes in the election. In the case of the

French elections, no particular event risk analogous to Brexit came to pass,

whereas the surprise factor of the Conservative Party’s poor result in the

June 2017 UK general election is consistent with our expectations based on

implied distributions.

It would be of interest to extend and strengthen this analysis by utilizing

more quantitative methods such as the mixture model approach [1] and

including additional predictive information such as betting market odds

and polls data [10], which would allow us to strengthen the analysis, both

in terms of describing market regimes and apportioning them to potential
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Table 3. Calibrated mixture model parameters for USDMXN from 3 October to 3

November 2016.

Date S0 PE SE SE/S0 − 1 95% CI for ST∗,E σNE σE

03 Oct 2016 19.3007 52.0% 19.9551 2.7% 17.2743 22.6360 12.2% 19.9%

04 Oct 2016 19.3255 46.9% 19.8175 2.7% 17.4099 22.2251 12.8% 19.6%

05 Oct 2016 19.2087 53.6% 19.8480 2.2% 17.5032 22.1928 11.4% 18.1%
06 Oct 2016 19.2361 41.9% 19.6346 4.8% 17.5119 21.7574 13.2% 20.5%

07 Oct 2016 19.2980 41.6% 20.1660 5.0% 17.7925 22.5396 13.5% 21.0%

10 Oct 2016 18.9274 49.4% 20.2575 4.3% 17.8513 22.6637 12.5% 20.9%
11 Oct 2016 18.9143 45.7% 19.7422 4.4% 17.5051 21.9792 14.4% 21.7%

12 Oct 2016 18.9151 35.4% 19.7560 5.4% 17.4737 22.0382 14.3% 19.5%

13 Oct 2016 18.9267 39.6% 19.9271 4.5% 17.9097 21.9445 12.9% 18.7%
14 Oct 2016 18.9914 40.0% 19.7775 4.0% 17.8697 21.6853 11.6% 17.4%

17 Oct 2016 18.8745 41.4% 19.7597 3.2% 18.0105 21.5090 10.8% 15.4%
18 Oct 2016 18.6130 31.0% 19.4787 3.9% 18.0344 20.9230 11.0% 13.3%

19 Oct 2016 18.5225 42.6% 19.3428 2.6% 18.1400 20.5457 10.2% 13.3%

20 Oct 2016 18.6182 55.0% 19.0058 1.3% 17.8360 20.1756 9.9% 14.1%
21 Oct 2016 18.6182 55.0% 18.8651 1.3% 17.6488 20.0814 9.8% 13.9%

24 Oct 2016 18.5507 25.3% 18.8645 3.7% 17.6939 20.0350 10.0% 14.4%

25 Oct 2016 18.5507 23.7% 19.2417 3.6% 18.1321 20.3512 9.7% 13.1%
26 Oct 2016 18.6858 26.1% 19.2106 5.4% 18.2321 20.1892 13.7% 25.8%

27 Oct 2016 18.8390 26.1% 19.7031 5.4% 17.8192 21.5870 14.5% 26.2%

28 Oct 2016 18.9923 28.1% 19.8471 5.5% 17.9833 21.7110 14.6% 30.5%
31 Oct 2016 18.8611 26.8% 20.0413 4.5% 17.9416 22.1410 13.8% 27.2%

01 Nov 2016 19.1948 25.7% 19.7114 4.3% 18.0891 21.3336 14.8% 26.1%

02 Nov 2016 19.3732 38.1% 20.0187 6.0% 18.5177 21.5198 29.2% 52.5%
03 Nov 2016 19.1728 36.2% 20.5365 5.5% 17.6777 23.3953 27.8% 48.1%

political outcomes; for now, we present this empirical study as a topical

and timely contribution to the conference “Innovations in Insurance, Risk-

and Asset Management”.
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Fig. 7. EURUSD implied densities from 13 March to 21 April 2017 for the day (Monday

24 April 2017) after the first round French presidential election.
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Fig. 8. EURUSD implied densities from 24 April to 5 May 2017 for the day (Monday

8 May 2017) after the second round French presidential election.
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Fig. 9. GBPUSD implied densities from 28 April to 8 June 2017 for the day (Friday 9

June 2017) after the 2017 UK general election.
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Chapter 6

Data and Uncertainty in Extreme Risks: A Nonlinear

Expectations Approach

Samuel N. Cohen
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Estimation of tail quantities, such as expected shortfall or Value at Risk, is
a difficult problem. We show how the theory of nonlinear expectations, in

particular the Data-robust expectation introduced in [1], can assist in the

quantification of statistical uncertainty for these problems. However, when
we are in a heavy-tailed context (in particular when our data are described

by a Pareto distribution, as is common in much of extreme value theory),
the theory of [1] is insufficient, and requires an additional regularization step

which we introduce. By asking whether this regularization is possible, we

obtain a qualitative requirement for reliable estimation of tail quantities and
risk measures, in a Pareto setting.

Keywords: nonlinear expectation, extreme value theory, risk measure, uncer-

tainty quantification.

1. Introduction

Statistics is, in part, the art of combining data and probabilistic models to

predict the unknown. This necessarily results in uncertainty, not only as

described by the estimated probabilistic model,1 but also in the correctness

of the model itself. In many situations, it is important to describe this

uncertainty, and to incorporate it in our decision making.

One area where these issues are particularly prominent is when con-

sidering extreme outcomes. By their very nature, this involves looking at

unlikely events, often beyond the range of available data. Justifying this ex-

trapolation from observations is a key purpose of ‘extreme value theory’. In

particular, the Fisher–Tippett–Gnedenko and Pickands–Balkema–de Haan

theorems tell us that, assuming they exist, the possible distributions of

1Since the work of Knight [2], uncertainty that is described by a probabilistic model is
sometimes called ‘risk’, while lack of knowledge of the model is called ‘uncertainty’.
Open Access chapter published by World Scientific Publishing Company and distributed
under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives

(CC BY-NC 4.0) License.

135

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
0.

17
.2

16
.2

46
 o

n 
01

/1
6/

21
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 9, 2018 13:2 Innovations in Insurance, Risk- and Asset Management 9in x 6in b3285-ch06 page 136

136 Innovations in Insurance, Risk- and Asset Management

renormalized extremes are in a small class, allowing asymptotic approxima-

tion methods to be used. Nevertheless, one must still estimate parameters

of these distributions, and intuition suggests that there remains a significant

level of uncertainty when working with these models.

The question of how to incorporate uncertainty in decision making has

a long history. Bayesian approaches to statistics do this by placing a distri-

bution over the unknown quantities, conditioning on observations, and then

integrating over the possible unknowns. This effectively forces all uncer-

tainty to be treated ‘linearly’, and one cannot describe an agent’s aversion

to uncertainty separately to their aversion to risk (i.e. to the random-

ness which is included within the model). Conversely, classical methods

in statistics allow for uncertainty in parameters (for example, through the

use of confidence sets), but these are frequently used with relatively limited

axiomatic decision-theoretic support.

One approach, building from an axiomatic approach to valuations of

outcomes, is ‘nonlinear expectations’. These are mathematical generaliza-

tions of the classical expected value, allowing for risk and uncertainty to be

represented in a rigorous and precise manner. Nonlinear expectations can

be seen as generalizations of worst-case valuation, considered in a statistical

context by Wald [3], but with an increased focus on making valuations of

multiple random outcomes, rather than on minimizing a particular fixed

risk. In finance, nonlinear expectations have played a particular role in the

theory of convex risk measures, see for example Föllmer and Schied [4].

In a recent paper [1], a method of connecting these nonlinear expectations

with statistical estimation was introduced.

In this paper, we shall look at some of the implications that this way of

thinking has on extreme value theory. In particular, we will consider how

quantifying our uncertainty leads to skepticism in extreme extrapolation,

and how different approaches to measuring the riskiness of a decision require

different quantities of data.

This paper proceeds as follows. Following an initial summary of the

theory of nonlinear expectations and their connection with estimation, we

will consider how to combine these expectations with measures of risk,

corresponding in some cases to extrapolation into the tail. We will then

look at methods of regularizing these nonlinear expectations, which are

often needed when considering unbounded outcomes. Finally, we will apply

this theory to a classic estimation problem with heavy tails, and draw

conclusions for the estimation of a variety of measures of risk.
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Remark 1.1. In their well known textbook on extreme value theory in

finance and insurance, Embrechts, Klüppelberg and Mikosch [5] consider

the challenges of extrapolation. In particular, they discuss their preference

for looking at only moderately high quantiles of distributions, rather than

estimating deeper into the tail. They state,

The reason why we are very reluctant to produce plots for high

quantiles like 0.9999 or more, is that we feel that such estimates

are to be treated with extreme care. [...] The statistical reliabil-

ity of these estimates becomes, as we have seen, very difficult to

judge in general. Though we can work out approximate confidence

intervals for these estimators, such constructions strongly rely on

mathematical assumptions which are unverifiable in practice.

— Embrechts, Klüppelberg and Mikosch, [5], p. 364

(emphasis in original)

In this paper, we give a partial attempt at a formal analysis supporting

this reticence. We shall see that the theory of nonlinear expectations gives

certain bounds (which depend on the amount of data at hand) beyond

which the uncertainties from estimation dominate the computation of high

quantiles (and similar quantities), hence statistical inference is problematic.

2. DR-expectations

Consider the following problem. Suppose we have a family {X}∪{Xi}i∈N of

real-valued random variables on the canonical space (Ω,F) = (RN,B(RN)),

where B(RN) denotes the Borel cylinder σ-algebra. We observe xN =

{Xn}Nn=1, and seek to draw conclusions about the likely values of φ(X),

where φ is some (known, Borel measurable) real function. Our aim, there-

fore, is to estimate the distribution of X, accounting for the uncertainty in

our estimation.

Beginning classically, we first propose a family Q of measures, assumed

equivalent on σ(xN ) for each N < ∞, corresponding to possible joint dis-

tributions of {X} ∪ {Xn}n∈N. For each of these distributions, we obtain

the log-likelihood

`(xN ;Q) = log
( dQ|σ(xN )

dQref |σ(xN )

)
(xN )
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(relative to some reference measure Qref on Ω). We can then define the

divergence, or negative log-likelihood ratio,

αQ|xN (Q) = −`(xN ;Q) + sup
Q∈Q

`(xN ;Q).

If we knew the ‘true’ measure Q, a natural estimate for φ(X) given

our observations xN would be the conditional expectation EQ[φ(X)|xN ].

Formally, as this is only defined for almost every observation xN , and we

have a possibly uncountable family of measures Q, this may cause technical

difficulties. As we are working with countably generated Borel spaces,2

simultaneously for every Q ∈ Q, we can define the regular conditional Q-

probability distribution of X given xN , that is, a probability kernel Q :

RN × B(R)→ [0, 1] such that

Q(xN (ω), A) = Q(X ∈ A|xN )(ω),

and so obtain a ‘regular’ conditional expectation

EQ[φ(X)|xN ] :=

∫
R
φ(x)Q(xN , dx).

We use this regular conditional expectation in what follows.

Remark 2.1. We shall focus our attention on the simpler case where {X}∪
{Xn}n∈N are iid under each Q ∈ Q. In this case, each measure in Q can be

described by the density fQ of X under Q, and we obtain the simplifications

`(xN ;Q) =
∑N
i=1 log fQ(Xi) and E[φ(X)|xN ] = E[φ(X)].

The key idea of [1] is to define the following operator.

Definition 2.1. For fixed constants k > 0, γ ∈ [1,∞], define the nonlinear

expectation

Ek,γQ|xN (φ(X)) = sup
Q∈Q

{
E[φ(X)|xN ]−

(1

k
αQ|xN (Q)

)γ}
,

where we write |x|∞ = 0 for |x| ≤ 1, and ∞ otherwise. We call this the

DR-expectation (with parameters k, γ). ‘DR’ is a deliberately ambiguous

acronym, and refers to either ‘divergence robust’ or ‘data-driven robust’.

We can see that Ek,γQ|xN is built from considering the expected values

under a range of models Q, penalized by how well each model fits the ob-

served data xN . This allows the DR-expectation to encode the uncertainty

inherent in statistical estimation.

2See, for example, Cohen and Elliott [6], Section 2.6 or Shiryaev [7], Section II.7 for

further details on the mathematics of this construction.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
0.

17
.2

16
.2

46
 o

n 
01

/1
6/

21
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 9, 2018 13:2 Innovations in Insurance, Risk- and Asset Management 9in x 6in b3285-ch06 page 139

Data and Uncertainty in Extreme Risks: A Nonlinear Expectations Approach 139

This nonlinear expectation has many elegant properties. From the per-

spective of the theory of nonlinear expectations, it is monotone, convex,

constant equivariant and assigns all constants their values. One can ob-

tain a risk measure, in the sense of Föllmer and Schied [4], Frittelli and

Rosazza-Gianin [8] and Artzner, Delbaen, Eber and Heath [9], by specify-

ing ρ(φ(X)) = Ek,γQ|xN (−φ(X)), or by treating φ(X) as ‘losses’. The nonlin-

ear expectation is coherent (in particular, it is positively homogeneous) if

γ =∞.

At the same time, unlike most risk measures in the literature, the DR-

expectation is directly built from the observed data to represent statistical

uncertainty. In order to perform classical statistical estimation, an agent

needs to specify a class of models Q to be considered (and in a Bayesian

analysis, a prior distribution over models); the only remaining inputs to the

problem are the observations xN . In the DR-expectation framework, one

additionally needs the uncertainty aversion parameter k and the curvature

parameter γ. Rather than separating statistical inference from the valua-

tion of outcomes, the DR-expectation combines the two, as the likelihood

is part of the definition of the expectation. Observations xN do not sim-

ply affect our expectation through conditioning (as in a Bayesian analysis),

they also determine which models Q ∈ Q are ‘good’, in the sense of fitting

our past observations well.

Remark 2.2. A key advantage of this approach is that we define the DR-

expectation for every function φ. This allows the comparison of different φ

to be consistently carried out, and the impact of statistical uncertainty on

different φ may vary. While we have assumed above that X is real-valued,

there is no issue if X is taken to be Rd-valued (or more generally, Borel

measurable and valued in some separable Banach space), which allows a

great deal of flexibility in modeling.

In the setting where {X}∪ {Xn}n∈N are iid, and under some regularity

assumptions on Q detailed in [1], one can show that the DR-expectation is

a consistent estimator of the expected value of φ(X), that is,

Ek,γQ|xN (φ(X))→P EP [φ(X)] as N →∞, for every P ∈ Q,

for any value of k > 0 and γ ∈ [1,∞]. It is also clear that the case γ =∞
is closely related to the Neyman–Pearson lemma from hypothesis testing,

as it considers models where the negative log-likelihood-ratio αQ|xN (Q) is

sufficiently small.
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In order to give precise asymptotic statements, the following definition

will prove useful. Here P ∗ is the outer measure associated with P , to deal

with any potential lack of measurability.

Definition 2.2. Consider sequences f = {fn}n∈N and g = {gn}n∈N of

functions Ω→ R.

(i) We write f = OP (g) whenever fn/gn is stochastically bounded, that

is, P ∗(|fn/gn| > M)→ 0 as M →∞ for each n,

(ii) We write f = oP (g) whenever limn→∞ P ∗(|fn/gn| > ε) = 0 for all

ε > 0.

Note that this depends on the choice of measure P .

Remark 2.3. In [1], a range of large-sample asymptotic results were ob-

tained, for iid observations and X, under varying assumptions on the family

Q. Suppose that Q is a subset of a ‘nice’ exponential family parametrized

by θ ∈ Θ (in particular, Assumption 3.1, as detailed below, holds) and the

maximum likelihood estimator based on a sample of size N , denoted θ̂N ,

is well defined. For bounded φ, the following large sample approximations

were obtained:

Ek,1Q|xN (φ(X)) = Eθ̂N [φ(X)] +
k

2N
V (φ, θ̂N ) +OP (N−3/2),

Ek,∞Q|xN (φ(X)) = Eθ̂N [φ(X)] +

√
2k

N
V (φ, θ̂N ) +OP (N−3/4),

for every P ∈ Q, where V (φ, θ̂N ) is the ‘local variance’ at the MLE, defined

by

V (φ, θ̂) :=
(∂Eθ[φ(X)]

∂θ

∣∣∣
θ̂

)>
(I−1

θ̂
)
(∂Eθ[φ(X)]

∂θ

∣∣∣
θ̂

)
,

for Iθ̂N the observed information matrix (the Hessian of the negative log-

likelihood) at θ̂N .

Remark 2.4. The results in [1] focus on the case where {X}∪{Xn}n∈N are

iid under every model in Q. This is clearly restrictive from a modeling per-

spective. However, it is clear from the definition that the DR-expectation

depends on the set Q only through the conditional expectation and the

log-likelihood, evaluated at the observed data xN . Therefore, provided our

models are ‘close’ to an iid setting, in the sense that our expectations and

likelihoods are similar to those from an iid model (possibly after some trans-

formation of the space), the asymptotic behavior of the DR-expectation

should not be significantly affected.
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Remark 2.5. The DR-expectation is particularly designed to highlight

statistical uncertainty, rather than an individual’s risk aversion. In partic-

ular, the above results (particularly when combined with the classic analysis

of White [10]) show that as the sample size N →∞, in the iid case,

Ek,γQ|xN (φ(X)) ≈ −Ek,γQ|xN (−φ(X)) ≈ EP [φ(X)],

where P is the measure in Q which is closest to the empirical distribution

of the data. In this way, an individual’s preferences can be seen not to

play any role in the DR-expectation when samples are large (that is, when

statistical uncertainty is low).

2.1. Data-robust risk measures

To focus attention on extreme events, or to include an individual’s risk

aversion, we may wish to extend our focus from the DR-expectation. Clas-

sically, when we ignore statistical uncertainty (so the DR-expectation would

be replaced by the expectation with respect to the known distribution), a

standard approach would be to take X to denote losses and φ to be a

utility function. In our setting, following this approach would lead to a

version of expected utility theory where the expectation is replaced with

the DR-expectation.

Further interesting cases can be obtained by directly combining the

DR-expectation with a risk assessment depending directly on the law of

the random outcome. As we shall see, many common risk assessments are

of this type, for example the value at risk and expected shortfall, as well

as classical statistics such as the expectation and variance. WritingM1 for

the space of probability measures on R, we consider a map R : M1 → R
which represents the ‘riskiness’ of a gamble with specified distribution. We

can then combine the risk aversion of R (which treats the law of X as fixed)

with the uncertainty aversion of the DR-expectation (which considers our

uncertainty in this law). We formalize this construction in the following

definition.

Definition 2.3. WriteM1 for the space of probability measures on R and

LQ(ξ|x) for the (regular conditional) law of a random variable ξ under

the measure Q (given observations x). Let R : M1 → R be a map with

R(LQ(ξ|x)) representing the risk of our position ξ assuming Q ∈ Q is a

‘true’ model. We combine Ek,γQ|x and R through the definition

(Ek,γQ|x ◦ R)(ξ) := sup
Q∈Q

{
R(LQ(ξ|x))−

(1

k
αQ|x(Q)

)γ}
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Remark 2.6. For the sake of simplicity, we will identify this construction

by adding a prefix ‘DR-’. For example, combining the DR-expectation and

the expected shortfall, as in the example below, we obtain the ‘DR-expected

shortfall’, similarly the ‘DR-Value at Risk’.

Example 2.1. Consider the risk assessment given by the (upper) expected

shortfall at level ε (also called the conditional value at risk, tail value at

risk or average value at risk, by various authors). For a model P such that

ξ has a continuous distribution, this can be written

R(LP (ξ)) = EP [ξ|ξ ≥ F−1
P (1− ε)] = ESε(ξ)

where FP is the cdf of X under the measure P . This is a coherent risk

measure (or nonlinear expectation), and can also be written (see Föllmer

and Schied [4] or further discussion in McNeil, Frey and Embrechts [11])

ESε(ξ) = sup
P ′∼P

{
EP ′ [ξ]− α̃(P ′;P )

}
where

α̃(P ′;P ) =

{
0 if ‖dP ′/dP‖∞ < ε−1,

∞ otherwise.

In the special case where R corresponds to a convex expectation (based

on a reference measure), this construction can simplify in a natural way.

Proposition 2.1. Suppose that, for each measure P ∈ Q, our risk assess-

ment R has representation

R(LP (ξ|x)) = sup
P ′∈Q̃

{EP ′ [ξ|x]− α̃(P ′;P )},

where Q̃ is a collection of probability measures on Ω with Q ⊆ Q̃ and

α̃ : Q̃ × Q̃ → R is an arbitrary penalty function. The composition of Ek,γQ|x
and R is a nonlinear expectation, and has representation

(Ek,γQ|x ◦ R)(ξ) = sup
P ′∈Q̃

{
EP ′ [ξ|x]− α∗(P ′)

}
where α∗ is the inf-sum (cf. the inf-convolution in Barrieu and El Karoui

[12])

α∗(P ′) = inf
Q∈Q

{(1

k
αQ|x(Q)

)γ
+ α̃(P ′;Q)

}
.
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Proof. To obtain the representation, simply expand

(Ek,γQ|x ◦ R)(ξ) = sup
Q∈Q

{
R(LQ(ξ|x))−

(1

k
αQ|x(Q)

)γ}
= sup
Q∈Q,P ′∈Q̃

{
EP ′ [ξ|x]−

(1

k
αQ|x(Q)

)γ
− α̃(P ′;Q)

}
= sup
P ′∈Q̃

{
EP ′ [ξ|x]− α∗(P ′)

}
This defines a nonlinear expectation by duality, as in Föllmer and Schied

[4].

3. Regularization from data

The above approach, based on simply penalizing with the divergence, often

fails to give bounded values when considering unbounded random variables.

In some sense, this is because of the difficulty in using data to determine the

probabilities of extreme outcomes. To motivate our discussion, we consider

the following simple example.

Example 3.1. Consider the case where ξ = φ(X) = βX, and {X} ∪
{Xn}n∈N are iid N(µ, σ2) distributed random variables, with µ ∈ R and

σ2 > 0 unknown. Writing X̄ = N−1
∑N
i=1Xi and σ̂2 = N−1

∑
i(Xi − X̄)2

for the MLE estimates of µ and σ2, it is straightforward to calculate (see

[1] for details)

Ek,1Q|xN (βX) = sup
µ,σ2

{
βµ− N

2k

(
log(σ2/σ̂2) +

1
N

∑N
n=1(Xn − µ)2

σ2
− 1
)}

= sup
µ,σ2

{
βµ− N

2kσ2
(X̄ − µ)2 − N

2k

(
log(σ2/σ̂2) +

σ̂2

σ2
− 1
)}

= βX̄ + sup
σ2

{β2k

2N
σ2 − N

2k

(
log(σ2/σ̂2)− 1 +

σ̂2

σ2

)}
.

(1)

This is problematic, as for any finite N , the growth of σ2 will dominate the

term in braces as σ2 →∞, which implies Ek,1Q|xN (βX) =∞.

However, the function to be optimized is increasing near zero, and we

can find a local minimum value of the derivative at σ2 = 2σ̂2, where

∂

∂σ2

(
β2k

2N
σ2 − N

2k

(
log(σ2/σ̂2)− 1 +

σ̂2

σ2

))∣∣∣∣
σ2=2σ̂2

=
β2k

2N
− N

2k

1

4σ̂2
.
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Provided this quantity is negative, that is, σ̂2 > (βk/2N)2, we know that

the derivative has changed sign at least once on the interval σ2 ∈ (0, 2σ̂2),

so we can be sure that the function will have a local maximum, and (we

shall see that) this occurs near σ2 ≈ σ̂2.

This example leads us to consider further ways of restricting our at-

tention, to ensure that it is a local maximum which is chosen in the DR-

expectation, as this corresponds to a value close to the MLE, and avoids the

explosion of the expectation caused by considering the implausible model

σ2 →∞.

The following are some natural approaches to preventing this explosion:

• We could place a prior probability on σ2, with density f , which col-

lapses sufficiently quickly when σ2 → ∞, and then incorporate this

prior into the penalty. This would result in a penalty given by the

negative log-posterior density,

αQ|xN (Q) = −`(xN ;Q)− log f(σ2
Q) + normalization term

where the normalizing term is constant with respect to Q, and ensures

infQ∈Q αQ|xN (Q) = 0. In order to ensure Ek,1Q|xN (βX) < ∞ for large

N , we require f(σ2)eaσ
2 → 0 as σ2 →∞, for some a > 0, which is not

the case for the classical (inverse Gamma) conjugate prior. This also

seems a rather ad hoc fix, and raises the concern that the conclusions

drawn, no matter how much data is available, depends principally on

the choice of prior distribution f(σ2).

• We could a priori truncate σ2 away from∞ (i.e. set a maximum value

σ̄2 which will be considered). This is equivalent to a uniform prior

f(·) ∝ I[0,σ̄2] for σ2, and will result in the local maximum being chosen

whenever N is sufficiently large. However this has the drawback that

it requires us to posit a maximum value of σ2 independently of the

data, and again our conclusions will depend on the choice of this upper

bound, for all finite values of N .

• We could restrict to the case γ = ∞, and thus only consider a like-

lihood interval of values for σ2. This has the implication that our

DR-expectation is then positively homogeneous, and we ‘flatten out’

the interaction between the choice of model and the variable being

considered. (In particular, the penalty term only takes the values 0

and ∞ — models are either excluded or are considered as reasonable

as the best-fitting model, with no middle ground.)
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The final of these options has the particular, advantage that the conclu-

sions are purely based on the data, rather than our prior assumptions. At

the same time, the flattening of our expectation may be undesirable, as it

makes it difficult to see how different models will be chosen when evaluating

different random variables. For this reason, we propose an alternative reg-

ularization technique, combining the γ < ∞ and γ = ∞ cases. To achieve

this, we define the following transformation of the divergence.

Definition 3.1. The δ-truncation of the divergence, based on a sample of

size N , is given by

α
(δ)
Q|xN (Q) =

{
αQ|xN (Q) if αQ|xN (Q) ≤ Nδ,

∞ otherwise.

The corresponding DR-risk-assessment is defined by

(Ek,γ,δQ|xN ◦ R)(ξ) = sup
Q∈Q

{
R(LQ(ξ)|xN )−

(1

k
α

(δ)
Q|xN (Q)

)γ}
. (2)

Remark 3.1. For bounded random variables ξ, taking R(LQ(ξ|x)) =

EQ[ξ|xN ], the optimization step in calculating the DR-expectation implies

that only those measures in {Q : αQ|xN (Q) < ‖ξ‖∞} need be considered.

Therefore, provided Nδ > ‖ξ‖∞, we have Ek,γ,δQ|xN (ξ) = Ek,γQ|xN (ξ).

Remark 3.2. SupposeQ is sufficiently regular andN sufficiently large that

Wilks’ theorem holds.3 Then the set of measures {Q : αQ|xN (Q) < N δ}
corresponds to a confidence set with confidence level F−1

χ2
d

(2Nδ), for d the

dimension of (a parametrization of) Q, where F−1
χ2
d

is the inverse cdf of the

χ2
d distribution. In this case, we observe that the δ truncation corresponds

to considering only those measures in a confidence set around the MLE

(and then penalizing further using their divergences based on the data).

However, the confidence level of this set will grow quickly with N (when

d = 1, already for Nδ ≈ 2 we are considering a 95% confidence set).

We now consider the behavior of a sequence {RN}N∈N of risk assess-

ments, which may vary with our sample size N .

Definition 3.2. We say that (Ek,γ,δQ|xN ◦RN )(ξ) is regular whenever the supre-

mum in its definition is finite and attained at a point where αQ|xN (Q) < Nδ.

3This classical theorem states that αQ|xN (P ) has an asymptotic χ2
d distribution under

P , where d is the dimension of a parameter space representing Q. Conditions under
which this holds (which can be interpreted as requirements on the family Q) can be
found in Lehmann and Casella [13].
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This definition gives us a criterion, which can be evaluated for a particular

set of observations, to determine whether the estimation of our truncated

DR-risk assessment is reliable. If our DR-risk assessment is not regular,

then our estimate is based on parameters on the boundary of the admissible

region {Q : αQ|xN (Q) < Nδ}. This suggests our estimate depends criti-

cally on the choice of truncation parameter δ. On the other hand, when

our DR-risk assessment is regular, we know that we have chosen a local

maximum within the admissible region, which suggests that the variation

in the truncation parameter δ has no marginal impact on our estimates.

The fact that Definition 3.2 depends on the particular observations xN is

important, as it provides us with a qualitative criterion to assess reliability

of estimates which can be calculated from our observations. At the same

time, it is interesting to know whether there exists a choice of truncation

parameter δ which will typically result in a regular DR-risk assessment.

Definition 3.3. We say (Ek,γQ|xN ◦ RN )(ξ) is (Q-)regularizable if, for some

δ > 0, for all P ∈ Q, with P -probability tending to 1, as N →∞, we have

that (Ek,γ,δQ|xN ◦ RN )(ξ) is regular.

Remark 3.3. Typically, the divergence will grow like O(N) outside of any

neighborhood of the MLE. Therefore, regularizing with δ < 1 is sufficient

to guarantee that only points in a neighborhood of the MLE are considered

in the optimization. The question is then whether, for risk assessments

RN , we can choose δ sufficiently large that the local maximum is strictly

in the interior of the restricted neighborhood. If this can be done, then

the problem is regularizable. This leads to a delicate interplay between the

class of risk assessments, the sample size, and the estimation problem itself.

Example 3.2. In the normal example above, Ek,1,δQ|xN (βX) is regular when-

ever β = o(N (δ+1)/2) and δ < 1 (for large N , with P -probability approach-

ing 1 for every P ∈ Q). Consequently, Ek,1Q|xN (βX) is regularizable for any

fixed β. This is suggested by the following sketch argument (and will be

rigorously proven later).

As δ < 1, we are restricting to a neighborhood of the MLE, so we can

be confident that we will select a local extremum. We need only to verify

that this occurs at a point with penalty αQ|xN (µ∗, σ
2
∗) < Nδ. For large

N , we approximate αQ|xN by a quadratic in (µ, σ2). This gives us the

approximate optimization problem

Ek,1,δQ|xN (βX) ≈ sup
µ,σ2

{
βµ−

{
N

2kσ2
(X̄ − µ)2 +

(N
4k

)(σ2

σ̂2
− 1
)2
}}

.
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The extremum of this approximation is attained by

µ∗ = X̄ +
k

N
βσ2, σ2

∗ = σ̂2
(

1 +
β2k2

N2
σ̂2
)
.

We now substitute back into the quadratic approximation, to obtain

αQ|xN (µ∗, σ
2
∗) ≈

kβ2

2N
σ̂2
(

1 +
β2k2

N2
σ̂2
)

+
(N

4k

)(β2k2

N2
σ̂2
)2

= OP (N−1β2 +N−3β4).

Provided β = o(N (δ+1)/2), this guarantees αQ|xN (µ∗, σ
2
∗) = oP (Nδ), so our

DR-expectation is regular.

For fixed β (or more generally β = o(N1−η) for some η > 0), we can find

a δ satisfying these conditions. Therefore, with P -probability approaching

one for every P ∈ Q, as N →∞, the DR-expectation is regular. Therefore,

the DR-expectation is regularizable.

To make the argument above rigorous and more generally applicable,

we proceed under the following assumption on our observations.

Assumption 3.1. Assume that

(i) The family Q is parametrized by an open set Θ ⊆ Rd.

(ii) Under each Q ∈ Q, the observations {X} ∪ {Xn}n∈N are iid with

density of the form

f(x;Q) = h(x) exp
{
〈θ, T (x)〉 −A(θ)

}
.

(in other words, Q is an exponential family with its natural

parametrization), where T and A are fixed functions (called respec-

tively the sufficient statistic and the log-partition function).

(iii) The variable of interest is ξ = φ(X), for some Borel function φ.

(iv) The Hessian Iθ = ∂2A(θ) (commonly known as the information ma-

trix) is strictly positive definite at every point of Θ.

(v) The Q-MLE exists and is consistent, with probability tending to 1 as

N → ∞ (that is, for every P ∈ Q, a maximizer Q̂N of the likelihood

in Q exists with P -probability approaching 1 and θ̂N = θQ̂N →P θP ).

The above assumption leads to the following estimate, which gives us a

good understanding of the asymptotic behavior of αQ|xN . For simplicity of

notation, we shall write αQ|xN (θ) for αQ|xN (Qθ), where Qθ is the measure

parametrized by θ ∈ Θ.
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Lemma 3.1. Suppose Assumption 3.1 holds. Then for every P ∈ Q, there

exists a constant C > 0 depending on P but independent of N , such that

we have the uniform bound

P
(
αQ|xN (θ) ≥ N

C
‖θ − θ̂N‖(1 ∧ ‖θ − θ̂N‖) for all θ

)
→ 1.

Proof. This follows from the proof of Lemma 3 in [1].

The following abstract approximation result will be useful.

Theorem 3.1. Consider the maximization of the general function

fN (ψ) := gN (ψ)− 1

k
αQ|xN (θ̂ + ψ)

Suppose that αQ|xN arises from a setting where the result of Lemma 3.1

can be applied and, for some ε ∈ ]0, 1/2], for every P ∈ Q, for every N

the function gN is C3 and satisfies, for B a ball of constant radius around

ψ = 0,

(i) gN (0) = 0,

(ii) ‖g′N (ψ)‖ = oP (N1−ε) uniformly on B,

(iii) ‖g′′N (0)‖ = oP (N),

(iv) ‖g′′′N (ψ)‖ = OP (N) uniformly on B.

Then defining

δ = 1− 2ε

there exists a point ψ∗N such that, for each P ∈ Q, with P -probability ap-

proaching 1 as N →∞, we know that ψ∗N maximizes the value of fN on the

set {ψ : αQ|xN (θ̂ + ψ) ≤ Nδ} and, furthermore, αQ|xN (θ̂ + ψ∗N ) = oP (Nδ).

Proof. See Appendix.

Example 3.3. In the normal setting considered in Example 3.2, we are

seeking to maximize

βµ− 1

k
αQ|x(µ, σ2) = βX̄ +

{
βψµ −

1

k
αQ|x(ψ)

}
where ψ = (ψµ, ψσ2) = (µ − X̄, σ2 − σ̂2). Provided β = o(N1−η) for some

η > 0, we can take g(ψ) = βψµ, which satisfies the conditions of Theorem

3.1. By application of the theorem, it follows that the DR-expectation is

regularizable in this case, giving a rigorous proof of the condition obtained

by quadratic approximation in Example 3.2.
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In the above example, we have considered the case γ = 1. We can also

obtain a sufficient condition for the case γ > 1 using an extension of this

method, assuming that ε = 1/2.

Lemma 3.2. Suppose that, in the case γ = 1, our truncated optimiza-

tion problem (2) has a maximizer Q∗1 where αQ|xN (Q∗1) < 1, when taking

a truncation parameter δ ≥ 0. Then the truncated problem in the case

γ ≥ 1 certainly has a maximizer Q∗γ with αQ|xN (Q∗γ) < 1, using the same

truncation parameter.

Proof. This is immediate from the fact that |x|γ < |x| for |x| < 1 and

|x|γ > |x| for |x| > 1.

Example 3.4. In the normal setting, we see that if β = o(N1/2) then

Theorem 3.1 yields the regularization parameter δ = 1 − 2ε = 0. In other

words, we truncate to a set αQ|xN < oP (1). By Lemma 3.2, this implies

that the same regularization will be sufficient for all choices of γ <∞.

This argument suggests that β = o(N1/2) is a fundamental requirement

for reliable statistical estimation of E[βX] from N observations, under the

assumption that X and our observations are iid normal with unknown mean

and variance. Comparing with the case γ =∞, where the DR-expectation

is the upper bound of a confidence interval, we would need β = o(N1/2) to

ensure that ∣∣Ek,∞Q|xN (βX)− EQ̂[βX]
∣∣ ≈ √2k

|β|√
N
σ̂ → 0,

where Q̂ is the MLE.

Remark 3.4. The example above shows that there is a close asymptotic

relationship between regularity and the convergence of confidence intervals.

However, the concept of regularity has the advantage that it can be applied

for a given sample (of fixed size), rather than only being meaningful in

an asymptotic sense. In particular, for a given sample, we can evaluate

(for fixed δ ≥ 0) whether our truncated DR-expectation is regular, which

allows us to qualitatively assess the statistical reliability of our estimates

based on the data at hand, and for the variables of interest. In particular,

if the function to be maximized when calculating (Ek,γQ|xN ◦ R)(ξ) does not

have a local maximum near the MLE, then we know that the DR-risk

assessment is not regular for any δ. This is unlike a confidence interval,

which will generally not give a qualitative assessment of reliability for any

fixed sample.
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If we find that our problem is not regular, then we know that the ob-

served data are insufficient to guide our calculation of DR-expectations —

our choice of regularization has an overriding impact on our conclusions.

4. Heavy tails

The example given in the previous section shows us that, in a Gaussian

setting, provided β is not too large relative to N (in particular β = o(N1−η)

for some η > 0), the DR-expectation Ek,1Q|xN (βX) is regularizable. This

suggests asymptotic bounds on the size of random variables we are willing

to consider, if we wish to account for our statistical uncertainty. In what

follows, we shall seek to show that a similar relationship exists in a heavy

tailed setting, when we calculate expected shortfall and related quantities.

We shall focus our attention on the following special case.

Assumption 4.1. The family of measures Q describes models under which

our observations {X} ∪ {Xn}n∈N are iid from a Pareto distribution (with

known minimal value 1), that is, for a model parametrized by θ, we have

the density

f(x; θ) = θx−(1+θ);x > 1.

The possible values of θ will be assumed to satisfy one of two cases:

(i) Q corresponds to all θ > 0 (which implies a valid probability distribu-

tion for X, but no integrability),

(ii) Q corresponds to all θ > 1 (which implies X is integrable).

We should note that this is an exponential family of distributions, so the

above approximation results (in particular Lemma 3.1) can be applied.

Clearly Assumption 4.1(ii) is stronger than Assumption 4.1(i).

It is an easy exercise to show the following:

Proposition 4.1. In the setting of Assumption 4.1, the MLE is given by

θ̂ =
N∑

i log(xi)

and the divergence by

αQ|xN (θ) = N

(
− log

(θ
θ̂

)
− 1 +

θ

θ̂

)
.

Remark 4.1. This is a significantly simplified version of a standard ex-

treme value estimation problem. In particular, consider a model for excesses
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over a threshold u. By the Pickands–Balkema–de Haan theorem (see for

example Embrechts, Klüppelberg and Mikosch [5]), we know that for large

u, the probability distribution in such a setting is typically approximated

by the generalized Pareto distribution

P (X − u ≤ y|X > u) ≈

1−
(

1 + ky
σ

)−1/k

if k 6= 0,

1− e−y/σ if k = 0.

If we assume that this is the correct distribution family (so we are in the

limiting regime), the scale variable σ is known (for simplicity) and k > 0

(so our distribution is unbounded and not exponential), then estimating k

is equivalent to estimating θ in the above (classical) Pareto setting (after

reparametrization).

Of course, in practice, the estimation of σ and the choice of cut-off value

u are significant issues in their own right. What we shall see is that, even

without these additional concerns, the estimation error associated with k

(equivalently θ) is sufficient to restrict which risk assessments can be reliably

estimated.

In what follows, we shall give relationships, for a variety of common

risk assessment methods, between the growth of a parameter β (which will

describe the ‘extremity’ of our risk assessment) and the sample size N ,

such that the DR-risk assessment is regularizable. This gives a method

of assessing the reliability of our statistical estimates. We should point

out that, if this were to be used in the context of fitting the excesses over

a threshold, our sample size N would refer exclusively to the number of

excesses we observe, and any probabilities would be conditional on being

over the threshold point.

4.1. Expected shortfall

The first example we shall consider is the DR-expected shortfall, as defined

in Example 2.1. As expected shortfall is a convex expectation, we know

that the DR-expected shortfall is also a convex expectation. Given the

expected shortfall is only defined for integrable random variables, we shall

work under Assumption 4.1(ii).

Lemma 4.1. Without truncation, under Assumption 4.1(ii), the DR-

expected shortfall is infinite for all N , and all probability levels β, that is

(Ek,γQ|xN ◦ ESβ)(X) =∞

for every set of observations xN and all choices of k, γ <∞.
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Proof. Under Assumption 4.1, for a given θ > 1, we can calculate the

Expected shortfall with tail probability β,

ESβ = E[X|X > F−1
θ (1− β)] =

θ

θ − 1
β−1/θ.

As θ ↓ 1, we observe that ESβ → ∞, but αQ|xN (θ) 6→ ∞. Therefore, for

every γ <∞, it is easy to see that (Ek,γQ|xN ◦ ESβ)(X) =∞.

Remark 4.2. In the case γ =∞, by monotonicity we will have

(Ek,γQ|xN ◦ ESβ)(X) =
θ∗

θ∗ − 1
β−1/θ∗ ,

where θ∗ is the smallest value4 such that αQ|xN (θ) ≤ k. This condition is

the same for all N – in particular, using only a single observation, we give

a finite estimate of the expected shortfall at any level β ≈ 0 (i.e. arbitrarily

far into the tail), which is intuitively unreasonable. This is the ‘confidence

interval’ bound discussed in Embrechts, Klüppelberg and Mikosch [5].

This problem can be treated through regularization techniques, giving

qualitatively different conclusions.

Theorem 4.1. Under Assumption 4.1(ii), in the case γ = 1, the DR-

expected shortfall with tail probability β is regularizable whenever β−1 =

o(N1−η), for some η > 0.

Proof. As the MLE is consistent, we know that for large N , θ̂ > 1 with

P -probability approaching 1, for every P ∈ Q. In what follows, we assume

this is the case.

The quantity to be (locally) maximized when calculating (2) is

θ

θ − 1
β−1/θ − N

k

(
log(θ̂/θ)− 1 + θ/θ̂

)
.

To apply Theorem 3.1, as we are interested in small values of β, we calculate

the derivatives

d

dθ

( θ

θ − 1
β−1/θ

)
= β−1/θ

( log β

θ(θ − 1)
− 1

(θ − 1)2

)
,

d2

dθ2

( θ

θ − 1
β−1/θ

)
= β−1/θ

( 2

(θ − 1)3
− 2 log β

θ(θ − 1)2
+

(log β)2

θ3(θ − 1)

)
,

d3

dθ3

( θ

θ − 1
β−1/θ

)
= O(β−1/θ(log β)3) uniformly near θ > 1.

4This assumes θ∗ > 1, otherwise our risk assessment takes the value ∞.
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For N large, uniformly in a neighborhood of θ̂ > 1, taking

gN (ψ) =
θ̂ + ψ

θ̂ + ψ − 1
β−1/(θ̂+ψ) − θ̂

θ̂ − 1
β−1/θ̂

the requirements of Theorem 3.1 are guaranteed by the simple condition

1

β
= oP (N θ̂−η) for some η > 0, for all P ∈ Q.

As θ̂ > 1 with P -probability approaching 1 for P ∈ Q (by consistency of

the MLE), we obtain the deterministic bound desired.

Remark 4.3. This result places a qualitative bound on the extremity of

the expected shortfall that can be reliably estimated, when we measure

uncertainty through the DR-expected shortfall with γ = 1. Given N ob-

servations, for Pareto distributed models assuming only integrability, we

cannot generally claim to estimate expected shortfalls for probabilities be-

low c/N , where c is some constant. In particular, estimating extreme tails

from small numbers of observations is shown to be unreliable.

Corollary 4.1. Under Assumption 4.1(ii), in the case γ < ∞, the DR-

expected shortfall with tail probability β is regularizable whenever β−1 =

oP (N1/2−η), in particular when β−1 = o(N1/2−η), for some η > 0.

Proof. By assumption, we know that β−1 = oP (N θ̂/2−η), we can apply

Theorem 3.1 with ε = 1/2. This gives us a regularization parameter δ = 0,

and from Lemma 3.2 we observe regularity for all γ <∞.

Remark 4.4. In practice, this is still a very optimistic requirement for

reliable estimation, as we have assumed that our simple Pareto model is

correct (and no further parameters need to be estimated). In this sense,

these results give ‘best-case’ bounds on how far into the tail we can look be-

fore losing reliability of expected shortfall estimation using a Pareto model.

4.2. Value at risk

The Value at Risk (with tail probability β) is not a convex risk measure,

so it is not generally true that Ek,γQ|xN ◦VaRβ is a convex expectation. Nev-

ertheless, we can calculate

VaRβ(X) = F−1
θ (1− β) = β−1/θ.

Given this is well defined (and finite) for every distribution, we shall proceed

under Assumption 4.1(i).
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Lemma 4.2. Without truncation, under Assumption 4.1(i), the DR-value

at risk is infinite for all N , and all probability levels β < 1, that is

(Ek,γQ|xN ◦VaRβ)(X) =∞

for every set of observations xN and all choices of k, γ <∞.

Proof. As in the Expected Shortfall case, we observe that β−1/θ →∞ as

θ ↓ 0, but αQ|xN (θ) 6→ ∞ as θ → 0. The result follows.

Remark 4.5. If we assumed Assumption 4.1(ii), then for β → 0 and fi-

nite N , we would obtain (Ek,γQ|xN ◦ VaRβ)(X) ≈ 1/β, independently of the

observed values. Clearly this is not reliable statistically, as it is the as-

sumption of integrability, rather than the observations, which is leading to

finiteness of the estimate.

Theorem 4.2. Under Assumption 4.1(i), for all γ < ∞, the DR-Value

at Risk with tail probability β is regularizable whenever β−1 = O(1) (as

N →∞), for some η > 0.

Proof. As in the Expected Shortfall case, we see that

dn

dθn

(
β−1/θ

)
= O(β−1/θ((log β)n + 1)).

Applying Theorem 3.1 leads to the proposed condition for regularizability

(in the case γ = 1)

1

β
= oP (N θ̂−η) for some η > 0, for all P ∈ Q.

Again, using Lemma 3.2, for regularizability of the γ > 1 case, we obtain

the condition β−1 = oP (N θ̂/2−η) for some η > 0. Consistency of the MLE

(and the assumption θ > 0 for all P ), shows that this is guaranteed when

β−1 = O(1) as N →∞.

Remark 4.6. The requirement β−1 = O(1) is quite restrictive, but comes

from the fact we are assuming nothing beyond Assumption 4.1(i), i.e. that

our distribution is well defined. Strengthening Assumption 4.1(i) to restrict

to θ > θ̃ for some θ̃ > 0, we have regularizability whenever β−1 = o(N θ̃/2−η)

for some η > 0.
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4.3. Probability of loss

The probability of a loss exceeding a level β is given by (under Assumption

4.1(i)

PLβ(X) = P (X > β) = 1− Fθ(β) = β−θ.

This is not a convex expectation, however we can equivalently express it as

P (X > β) = E[IX>β ], and then consider the regularity of

(Ek,γQ|xN ◦ PLβ)(X) = Ek,γQ|xN (IX>β).

Theorem 4.3. The DR-probability of a loss is regular, for all N , γ and β.

Proof. As IX>β is bounded, this is well behaved without regularization,

no matter what the choice of β.

Remark 4.7. The asymptotic behavior of the DR-probability of loss (and

other bounded random variables) is described by [1], Section 3.2.

4.4. Integrated tail and Cramér–Lundberg failure probability

From an insurance perspective, it is sometimes of interest to look at the

integrated tail, which under Assumption 4.1(ii) is given by

ITβ(X) := E[(X − β)+] =

∫ ∞
β

(1− Fθ(x))dx =

∫ ∞
β

x−θdx =
β1−θ

θ − 1
.

Remark 4.8. For β ≥ 1, this a convex map, but not translation invari-

ant, so the DR-integrated tail, (Ek,γQ|xN ◦ ITβ)(·), is not generally a convex

expectation.

As in the previous cases, without truncation, the DR-integrated tail poses

some problems.

Lemma 4.3. Without truncation, under Assumption 4.1(ii), the DR-

integrated tail is infinite for all N , and all β ≥ 1, that is

(Ek,γQ|xN ◦ ITβ)(X) =∞

for every set of observations x and all choices of k, γ <∞.

Proof. By direct calculation, considering θ ↓ 1,

(Ek,γQ|xN ◦ ITβ)(X) = sup
θ

{ β1−θ

θ − 1
− N

k

(
log(θ̂/θ)− 1 + θ/θ̂

)}
=∞.
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The surprising result is that, while we need to truncate to avoid infinite

values, the DR-integrated tail is always regularizable.

Theorem 4.4. Under Assumption 4.1(ii), for all γ < ∞, the DR-

integrated tail is regularizable for all choices of β ≥ 1 (with any desired

dependence on N).

Proof. For all P ∈ Q, as in the earlier settings, we calculate

dn

dθn

( β1−θ

θ − 1

)
= O

(
β1−θ((log β)n + 1)

)
.

However, for β ≥ 1, θ > 1, the right hand side is o(1) with respect to

β, in particular (by consistency of the MLE) it is oP (1) for every P ∈ Q.

Therefore, the integrated tail is regularizable with no restriction on the

value of β, for every value of γ <∞.

A closely related quantity is the related failure probability under a

Cramér–Lundberg model, given by (under Assumption 4.1(ii))

CLβ(X) =
ITβ
E[X]

=
β1−θ

θ
.

Theorem 4.5. For all choices of β ≥ 1, under Assumption 4.1(ii), the

DR-Cramér–Lundberg failure probability is regularizable.

Proof. We calculate

(Ek,γQ|xN ◦ CLβ)(X) = sup
θ

{β1−θ

θ
− N

k

(
log(θ̂/θ)− 1 + θ/θ̂

)}
.

For β ≥ 1, we know β1−θ

θ is (uniformly) bounded for all θ > 1. Therefore,

from the consistency of the MLE and Theorem 3.1, (Ek,γQ|xN ◦ CLβ)(X) is

regularizable.

4.5. Distortion risk

As a final example, we consider a distortion based nonlinear expectation.

This is given by taking a convex increasing bijective map λ : [0, 1]→ [0, 1],

then calculating the expectation with the transformed cdf Fλ(x) = λ(F (x)).

As λ is convex, it is differentiable almost everywhere, and we can calculate

the transformed density under Assumption 4.1,

fλ(x) = λ′(F (x))f(x) = λ′(1− x−θ)θx−(1+θ).
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so the distortion risk is given by

Dλ(X) =

∫ ∞
1

λ′(1− x−θ)θx−θdx. (3)

Lemma 4.4. The distortion risk is finite whenever there exists ζ > 1/θ

such that

λ′(y) = O((1− y)−1+ζ) as y → 1.

Proof. In order for Dλ to be finite, as θ > 0, for large x we require λ′(1−
x−θ) not to be too large, else we lose integrability in (3). As we know

x−(1+ζ) is integrable on [1,∞[, the result follows by dominated convergence.

As λ is increasing and convex, for any y < 1, we know that {λ′(x)}x<y is

bounded, so it is the behavior of λ′ near 1 which is of interest. For this

reason, we will focus our attention on the following example.

Definition 4.1. We say λ is the ‘minmaxvar’ transform (with parameter

β ∈ (0, 1]) if λ(x) = λβ(x) := 1− (1− x)β .

This case is interesting from our perspective, as it describes the critical

growth of λ near the boundary x = 1. Other classic examples, for example

the Wang transform λ(x) = Φ(Φ−1(x)− β), where Φ is the normal cdf, are

also of interest in some settings, but do not have this critical growth. This

is closely related to the ‘minmaxvar’ risk measure considered by Cherny

and Madan [14].

Lemma 4.5. Without truncation, under Assumption 4.1(ii), the DR-

minmaxvar risk is infinite for all N , and all β ∈ (0, 1), that is

(Ek,γQ|xN ◦Dλβ )(X) =∞

for every set of observations xN and all choices of k, γ <∞.

Proof. We know λ′β(x) = β(1− x)β−1, so

Dλβ =

∫ ∞
1

λ′β(1− x−θ)θx−θdx =

∫ ∞
1

β(x−θ)β−1θx−θdx =
βθ

βθ − 1

provided β > 1/θ, and is otherwise infinite. As αQ|x(1/β) < ∞ for all

β ∈ (0, 1), our DR-minmaxvar risk will be infinite.
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Theorem 4.6. Under Assumption 4.1(ii), the DR-minmaxvar risk is not

regularizable for any β < 1. However, under the stronger assumption that

we restrict our models to those where θ > θ̃ for some θ̃ > 1, then the

DR-minmaxvar risk is regularizable whenever

β ≥ 1

θ̃
+

1

|O(Nη)|
.

where η = 1/4 in the case γ = 1, and η < 1/4 in the case γ <∞.

Proof. For any fixed β < 1, Assumption 4.1(ii), is insufficient to guarantee

that the MLE θ̂ > 1/β (as θ̂ may be arbitrarily close to 1). As this is the

condition for finiteness of Dλβ and the MLE satisfies αQ|xN (θ̂) ≡ 0, the

non-regularizability follows.

Under our stronger assumption, to determine conditions on β such that

the DR-minmaxvar risk is regularizable, we proceed as before. We can

calculate

(Ek,1Q|xN ◦Dλβ )(X) = sup
θ

{ βθ

βθ − 1
−
(N
k

(
log(θ̂/θ)− 1 + θ/θ̂

))γ}
.

We have the derivatives
d

dθ

( βθ

βθ − 1

)
=

−β
(βθ − 1)2

,

d2

dθ2

( βθ

βθ − 1

)
=

2β2

(βθ − 1)3
,

d3

dθ3

( βθ

βθ − 1

)
=

−6β3

(βθ − 1)4
.

With gN (ψ) = β(θ̂+ψ)

β(θ̂+ψ)−1
− βθ̂

βθ̂−1
, Theorem 3.1 is satisfied by assuming

(θ̂β − 1)−4 = OP (N), or equivalently,

β ≥ 1

θ̂
+

1

|OP (N1/4)|
.

Using the consistency of the MLE we know θ̂ > θ̃, and the result follows.

If we make the further assumption that β = θ̃−1 + 1/|O(Nη)| for η < 1/4,

we can take ε = 1/2 in Theorem 3.1, to obtain regularizability for all

γ <∞.

Remark 4.9. Many further cases can also be considered, using this general

approach. It would be interesting also to apply DR-regularization in a more

general estimation problem, where we do not assume simply that we have a

Pareto distribution, but must use a generalized extreme value or generalized

Pareto model, with the associated estimation difficulties.
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Appendix

To prove our key approximation result (Theorem 3.1) we begin with the

following lemma.

Lemma A.1. Consider a C3 function f : RN → R, with negative definite

Hessian at zero H. Suppose we wish to find a local maximum in a small ball

Bδ of radius δ around 0. Let cδ = supx∈Bδ ‖f
′′′(x)‖. If a local maximum

exists in the interior of the ball, then it has position

x∗ = −H−1f ′(0) + cδ‖H−1‖O(δ2).

Proof. By Taylor’s theorem, we can write the expansion

f(x) = f(0) + x>f ′(0) +
1

2
x>Hx+R(x)

where R is some remainder term with |R(x)| ≤ (cδ/6)‖x‖3 and derivative

‖R′(x)‖ ≤ (cδ/2)‖x‖2 = cδO(δ2) on our ball. To find a local extremum x∗,

we differentiate to obtain the vector equation

0 = f ′(0) +Hx∗ +R′(x∗)

which rearranges to give the approximation (which is true for every interior

local extremum)

x∗ = −H−1f ′(0)−H−1R′(x∗).

For an extremum within the ball, we have the desired approximation

x∗ = −H−1f ′(0) + cδ‖H−1‖O(δ2).

We now combine Lemma A.1 and Lemma 3.1 to give a proof of Theorem

3.1, which we repeat here for the ease of the reader.

Theorem A.1. Consider the maximization of the general function

fN (ψ) := gN (ψ)− 1

k
αQ|xN (θ̂ + ψ)

Suppose that αQ|xN arises from a setting where the result of Lemma 3.1

can be applied and, for some ε ∈ ]0, 1/2], for every P ∈ Q, for every N

the function gN is C3 and satisfies, for B a ball of constant radius around

ψ = 0,

(i) gN (0) = 0,

(ii) ‖g′N (ψ)‖ = oP (N1−ε) uniformly on B,
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(iii) ‖g′′N (0)‖ = oP (N),

(iv) ‖g′′′N (ψ)‖ = OP (N) uniformly on B.

Then there exists a point ψ∗N such that, for each P ∈ Q, with P -probability

approaching 1 as N →∞, we know that ψ∗N maximizes the value of fN on

the set {ψ : αQ|xN (θ̂ + ψ) ≤ N1−2ε} and, furthermore, αQ|xN (θ̂ + ψ∗N ) =

oP (N1−2ε).

Proof. By Lemma 3.1, for all N sufficiently large, with arbitrarily high

P -probability, for ψ in a neighborhood of zero of fixed radius, there exists

a constant C > 0 (depending on P ) such that

αQ|xN (θ̂ + ψ) >
N

C
‖ψ‖2

and outside this neighborhood αQ|xN (θ̂ + ψ) ≥ O(N). In all that follows,

we restrict our attention to this constant radius ball.

Omitting subscript N for simplicity, from our assumptions on g we know

g(ψ) = oP (N1−ε)‖ψ‖.

Consequently, except possibly on a ball of radius OP (N−ε) around zero, we

know that

αQ|xN (θ̂ + ψ) >
N

C
‖ψ‖2 > oP (N1−ε)‖ψ‖ = |g(ψ)|.

It follows that, for all ψ outside a ball of radius OP (N−ε), we know that

f(ψ) < 0. As f(0) = 0, there must exist a local maximum within the ball

of radius OP (N−ε).

We know that,

f ′(0) = g′(0) = oP (N1−ε)

‖f ′′(0)−1‖ ≤ ‖(g′′(0)−N/C)−1‖ = OP (N−1)

f ′′′(ψ) = g′′′(ψ) + α′′′Q|xN (θ̂ + ψ) = OP (N).

Applying Lemma A.1, we know that any local maximum of f within a ball

of radius oP (N−ε/2) will be at a point satisfying

ψ∗ = −f ′′(0)−1f ′(0) +OP (N)‖f ′′(0)−1‖oP (N−ε) = oP (N−ε).

Therefore, all local maxima within the ball of radius oP (N−ε/2) will be

within the ball of radius oP (N−ε).
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Taking a Taylor approximation of the C3 function αQ|xN we see that,

within the ball of radius oP (N−ε),

αQ|xN (θ̂ + ψ) = Nψ>(Iθ̂ +OP (‖ψ‖))ψ = ‖Iθ̂‖oP (N1−2ε) + oP (N1−3ε)

= oP (N1−2ε).

Conversely, outside the ball of radius oP (N−ε/2), we know that

αQ|xN (θ̂ + ψ) > N1−ε/C for some C > 0. Therefore, we can be cer-

tain that a point ψ∗ = oP (N−ε) will be the maximizer within the region

{ψ : αQ|xN (θ̂ + ψ) < N1−2ε}, as desired.
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Monetary risk measures classify a financial position by the minimal amount of

external capital that must be added to the position to make it acceptable.
We propose a new concept: intrinsic risk measures. The definition via external

capital is avoided and only internal resources appear. An intrinsic risk measure

is defined by the smallest percentage of the currently held financial position
which has to be sold and reinvested in an eligible asset such that the resulting

position becomes acceptable.
We show that this approach requires less nominal investment in the eligible

asset to reach acceptability. It provides a more direct path from unacceptable

positions towards the acceptance set and implements desired properties such
as monotonicity and quasi-convexity solely through the structure of the accept-

ance set. We derive a representation on cones and a dual representation on

convex acceptance sets and we detail the connections of intrinsic risk measures
to their monetary counterparts.

Keywords: intrinsic risk measures, monetary risk measures, acceptance sets,

coherence, conicity, quasi-convexity, value-at-risk.

1. Introduction

Risk measures associated with acceptance criteria as introduced by

P. Artzner, F. Delbaen, J. Eber, and D. Heath [1] are maps ρA,r from

a function space X ⊆ RΩ to R of the form

ρA,r(XT ) = inf {m ∈ R |XT +mr1Ω ∈ A} . (1)

Open Access chapter published by World Scientific Publishing Company and distributed
under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives

(CC BY-NC 4.0) License.
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These maps are means to measure the ‘risk’ of a financial position XT ∈ X
with respect to certain acceptability criteria and a risk-free investment. The

latter are specified as a subset A ⊂ X , the acceptance set, and the risk-free

return rate r > 0, respectively. Geometrically,1 the risk of an unacceptable

position XT ∈ X \ A in Equation (1) is defined as a scalar ‘distance’ to

the acceptance set in direction r1Ω. Such risk measures are known as cash-

additive risk measures. Evidently, the acceptance set forms the primary

object, whereas the risk-free asset contributes only a constant factor. More

recent research has revisited the original idea using eligible assets with

random return rates r : Ω → R>0, as for example P. Artzner, F. Delbaen,

and P. Koch-Medina [2] and D. Konstantinides and C. Kountzakis [3].

W. Farkas, P. Koch-Medina, and C. Munari [4], [5] focus on general eligible

assets r : Ω → R≥0, revealing significant shortcomings of the simplified

constant approach. They point out that an appropriate interplay between

eligible assets and acceptance sets is crucial for a consistent and successful

risk measurement. They incorporate eligible assets as traded assets S =

(S0, ST ) with initial unitary price S0 ∈ R>0 and random payoff ST : Ω →
R≥0, and replace r1Ω in Equation (1) by the random return ST /S0. This

alteration yields the extended definition

ρA,S(XT ) = inf
{
m ∈ R

∣∣XT + m
S0
ST ∈ A

}
. (2)

Beside the geometric interpretation of m
S0
ST as a ‘vector’ it is economically

interpreted as the payoff of m
S0

units of asset S.

The more general definition in (2) can be consistently reduced to (1) if

ST is bounded away from zero, this means if ST ≥ ε, for some ε > 0.2

This constitutes the basis for the simplified approach with constant return.

However, payoffs of relevant financial instruments such as defaultable bonds

and options do not satisfy this condition, and thus, the generalization to

S-additive risk measures in (2) is justified.

Referring to eligible assets, P. Artzner, F. Delbaen, J. Eber, and D. Heath

suggest in [1], Section 2.1, p. 205 that

‘The current cost of getting enough of this or these [commonly ac-

cepted] instrument(s) is a good candidate for a measure of risk of

the initially unacceptable position.’

1See Figure 1(a) for a visual example.
2See [4], Section 1, p. 146ff. for a detailed discussion.
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Both cash-additive and S-additive risk measures are conceptually in line

with this suggestion, and we broadly refer to them as monetary risk meas-

ures.3 This is a suitable name as these risk measures are defined as actual

money which can be used to buy the eligible asset. Hence, they can be inter-

preted as more than just measurement tools. Referring to cash-additivity

(or Axiom T), P. Artzner, F. Delbaen, J. Eber, and D. Heath claim in

[1], Remark 2.7, p. 209 that

‘By insisting on references to cash and to time, [...] our approach

goes much further than the interpretation [...] that “the main func-

tion of a risk measure is to properly rank risks.”’

The application of this approach requires to raise the monetary amount

ρA,S(XT ) and carry it in the eligible asset S. However, the possible acquis-

ition of additional capital is not completely accounted for by monetary risk

measures. This raises the questions as to what effect this has on the risk

measure and to which extent this method is applicable in reality.

Another approach is to restructure the portfolio and directly raise capital

from the current position to invest it in the eligible asset, as was already

mentioned in [1], Section 2.1, p. 205:

‘For an unacceptable risk [...] one remedy may be to alter the pos-

ition.’

The aim of this article is to reflect about this thought and develop it towards

a new class of risk measures, which we will call intrinsic risk measures.

For great adaptability, we develop our approach based on acceptance sets

A ⊂ X as primary objects and the extended framework of general eligible

assets S = (S0, ST ) ∈ R>0 ×A.

In the ‘future wealth’ approach described in [1], p. 205, it is not possible to

change the current financial position, representing the principle of ‘bygones

are bygones’. The authors argue that the knowledge of the initial value of

the position is not needed. So the risk measure is only used to determine the

size of the buffer with respect to the eligible asset which sufficiently absorbs

losses of this fixed position. However, we believe that a reconstruction of

the financial position is possible and beneficial, since losses are not absorbed

but essentially reduced as the eligible asset becomes part of the position.

The intention to sell part of the current position requires the knowledge

3A definition is given in Section 2.2.
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of the initial value. So while monetary risk measures are defined on X ,

intrinsic risk measures take the initial value X0 ∈ R>0 into account and

are defined on R>0×X . For financial positions X = (X0, XT ) the intrinsic

risk measure is given by

RA,S(X) = inf
{
λ ∈ [0, 1]

∣∣ (1− λ)XT + λX0

S0
ST ∈ A

}
. (3)

In words, we search for the smallest λ ∈ [0, 1] such that selling the frac-

tion λ of our initial position and investing the monetary amount λX0 in

the eligible asset S yields an acceptable position. Using the convex com-

bination (1 − λ)XT + λX0

S0
ST , λ ∈ [0, 1], instead of XT + m

S0
ST , m ∈ R,

changes the form of risk measures and suggests a new way to shift un-

acceptable positions towards the acceptance set.4 Furthermore, standard

properties such as monotonicity and, in contrast to monetary risk meas-

ures, also quasi-convexity are imposed solely through the structure of the

underlying acceptance set.

The subsequent work has grown from the master’s thesis of A. Smirnow [6].

We will introduce acceptance sets and traditional risk measures, give eco-

nomic motivation, and review important properties in Section 2 to build a

foundation for comparison. In Section 3, we define the new class of intrinsic

risk measures and we derive basic properties. We derive an alternative

representation on cones and show that intrinsic risk measures require less

investment in the eligible asset to yield acceptable positions. Finally, we

study a dual representation of intrinsic risk measures on convex acceptance

sets.

2. Terminology and preliminaries

In this section, we establish the foundations on which we can build our

framework. Common terminology such as acceptance sets and traditional

risk measures are introduced and discussed.

Throughout this chapter we work on an atomless probability space

(Ω,F ,P). For the sake of exposition we consider financial positions on the

space of essentially bounded random variables X = L∞(Ω,F ,P) endowed

with the P-almost sure order and the P-essential supremum norm. The

majority of our results can be stated on arbitrary ordered real topological

vector spaces.

4See Figure 1(b).
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2.1. Acceptance sets

In the financial world, it is a central task to hold positions that satisfy

certain acceptability criteria, may they represent own preferences or be

of regulatory nature. These criteria can be brought into a mathematical

framework via what is known as acceptance sets.

Definition 2.1. A subset A ⊂ X is called an acceptance set if it satisfies

1. Non-triviality : A 6= ∅ and A  X , and

2. Monotonicity : XT ∈ A, YT ∈ X , and YT ≥ XT imply YT ∈ A.

An element XT ∈ A is called A-acceptable, or just acceptable if the reference

to A is clear. Similarly, we say XT /∈ A is (A-)unacceptable.

Non-triviality is mathematically important and also representative of real

world requirements, as generally not every situation is acceptable and any

event requires near-term reactions. Monotonicity implements the idea that

any financial position dominating an acceptable position must be accept-

able. These two axioms constitute the basis for acceptance sets and reflect

the ‘minimal’ human rationale.

Depending on the context, it is often necessary to impose further structure

and we recall three relevant properties.

Definition 2.2. An acceptance set A ⊂ X is called

• a cone or conic if XT ∈ A implies for all λ > 0 : λXT ∈ A,

• convex if XT , YT ∈ A implies for all λ ∈ [0, 1] : λXT + (1− λ)YT ∈ A,

• closed if A = Ā.

The cone property allows for arbitrary scaling of financial positions in-

variant of their acceptability status. Convexity represents the principle of

diversification: given two acceptable positions, any convex combination of

these will be acceptable. In Section 2.2, we will see how these two properties

translate to monetary risk measures. Finally, closedness is of mathematical

importance when considering limits of sequences of acceptable positions.

Apart from this, it is economically motivated as it prohibits arbitrarily

small perturbations to make unacceptable positions acceptable.

The next lemma summarizes some useful properties of acceptance sets,

which will be used in subsequent sections.

Lemma 2.1. Let A ⊂ X be an acceptance set. Then
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1. A contains sufficiently large constants but no sufficiently small constants.

2. ST ∈ int(A) if and only if there exists an ε > 0 such that ST − ε1Ω ∈ A.

3. The interior int(A) and the closure Ā are both acceptance sets, and

int(A) = int(Ā).

4. If A is a cone, then int(A) and Ā are cones, and 0 /∈ int(A) and 0 ∈ Ā.

Proof. 1. Since A is a nonempty, proper subset of X , the first assertion

follows from monotonicity of A.

2. The second assertion also follows directly from monotonicity of A.

3. The proof of the third assertion goes along the lines of the proof of

Lemma 2.3 in [5], p. 60 and is omitted here.

4. Given ST ∈ int(A), Assertion 2 together with the cone property imply

λ(ST − ε1Ω) ∈ A, for some ε > 0 and all λ > 0. The other direction

of Assertion 2 implies λST ∈ int(A). Given ST ∈ Ā, take a sequence

{SnT }n∈N ⊂ A with limit ST . Then conicity implies {λSnT }n∈N ⊂ A, for any

λ > 0, and we conclude that λST belongs to Ā. The last two claims follow

by similar arguments.

We conclude this section with the well-known example of the Value-at-Risk

acceptance set.

Example 2.1 (Value-at-Risk acceptance). For any probability level

α ∈
(
0, 1

2

)
the set

Aα = {XT ∈ X |P[XT < 0] ≤ α}

defines a closed, conic acceptance set which, in general, is not convex.

Indeed, a few calculations show that Aα is a conic acceptance set. For

closedness in L∞(P) consider a sequence {Xn
T }n∈N ⊂ Aα converging to

some XT . For any δ > 0 and any n ∈ N the following inequality holds,

P[XT < −δ] = P[XT < −δ ,Xn
T < − δ2 ] + P[XT < −δ ,Xn

T ≥ − δ2 ]

≤ α+ P[|Xn
T −XT | > δ

2 ] .

Since norm convergence implies convergence in probability, letting n → ∞
we get P[XT < −δ] ≤ α. It follows P[XT < 0] = limδ→0 P[XT < −δ] ≤ α.

To show that Aα is not convex, we use its conicity to reduce the problem

to finding XT , YT ∈ Aα such that XT + YT /∈ Aα. For two disjoint subsets

A,B ∈ F with P[A] = P[B] = α the choices XT = −1A and YT = −1B
yield the desired inequality.
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2.2. Traditional risk measures

Traditional risk measures, commonly known as just risk measures, are in-

struments to measure risk in the financial world. Acceptance sets determ-

ine the meaning of ‘good’ and ‘bad’, acceptable or not. Traditional risk

measures refine this differentiation and allow us to rank financial positions

with respect to their distance to the acceptance set. To clearly distinguish

between these risk measures and intrinsic risk measures, we define the broad

class of traditional risk measures following [1], Definition 2.1, p. 207.

Definition 2.3. A traditional risk measure is a map from X to R.

In Section 3, we will see that intrinsic risk measures are defined on R>0×X .

In what follows we recall some well-known traditional risk measures. For

the remainder of this section, let XT , YT , ZT and r = r1Ω be elements of

X , and let ρ denote a traditional risk measure.

2.2.1. Coherent risk measures

Coherent risk measures form the historical foundation of modern risk meas-

ure theory. P. Artzner, F. Delbaen, J. Eber, and D. Heath define them in

[1], Definition 2.4, p. 210 by the following set of axioms. A traditional risk

measure is called coherent if it satisfies

• Decreasing Monotonicity : XT ≥ YT implies ρ(XT ) ≤ ρ(YT ),

• Cash-additivity : for m ∈ R we have ρ(XT +mr) = ρ(XT )−m,

• Positive Homogeneity : for λ ≥ 0 we have ρ(λXT ) = λρ(XT ), and

• Subadditivity : ρ(XT + YT ) ≤ ρ(XT ) + ρ(YT ).

Monotonicity allows us to rank financial positions according to their risk.

It is cash-additivity that constitutes the basis for the interpretation of a

risk measure as an additionally required amount of capital. Adding this

capital to the financial position, its risk becomes 0, since by cash-additivity,

ρ(XT + ρ(XT )r) = 0. These assumptions seem natural in the context of

capital requirements and they are truly characterized by the term monetary

risk measures, as coined by H. Föllmer and A. Schied in [7], Definition

4.1, p. 153.

2.2.2. Convex risk measures

Positive homogeneity, however, may not be satisfied, as risk can behave

in non-linear ways. A possible variation is the following property around
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which H. Föllmer and A. Schied [7] base their discussion of risk measures.

• Convexity : for all λ ∈ [0, 1] we have

ρ(λXT + (1− λ)YT ) ≤ λρ(XT ) + (1− λ)ρ(YT ).

A short calculation reveals that under positive homogeneity, subadditivity

and convexity are equivalent. H. Föllmer and A. Schied decide in [7], Defin-

ition 4.4, p. 154 to drop the homogeneity axiom and replace subadditivity

by convexity, and call the result a convex measure of risk — a convex mon-

etary risk measure.

The axioms we have seen so far form a canonical connection to our accept-

ance sets.

Proposition 2.1. Any monetary risk measure ρ : X → R defines via

Aρ = {XT ∈ X | ρ(XT ) ≤ 0} (4)

an acceptance set. Moreover, if ρ is positive homogeneous, then Aρ is a

cone, and if ρ is convex, then Aρ is convex.

On the other hand, each acceptance set A defines a monetary risk measure

ρA(XT ) = inf{m ∈ R |XT +mr ∈ A}. (5)

Similarly, if A is a cone, then ρA is positive homogeneous, and if A is

convex, then ρA is convex.

In particular, this means ρAρ = ρ and A ⊆ AρA , with equality A = AρA if

the acceptance set is closed.

Proof. The proof goes along the lines of the proofs of Proposition 4.6 and

Proposition 4.7 in [7], p. 155f. for bounded measurable functions on (Ω,F),

and is omitted here.

Proposition 2.1 allows us to define acceptance sets via known risk measures

and vice versa. Example 2.2 illustrates how properties can be inferred. A

more general version of Proposition 2.1 is stated in Proposition 2.2.

Example 2.2 (Value at Risk acceptance). For a given probability

level α ∈
(
0, 1

2

)
we define the risk measure Value-at-Risk (VaRα) for all

random variables on (Ω,F) by

VaRα(XT ) = inf{m ∈ R |P[XT +m < 0] ≤ α},
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the negative of the α-quantile of XT . Corresponding to Proposition 2.1, the

VaRα-acceptance set is given by

AVaRα = {XT ∈ X |VaRα(XT ) ≤ 0}.

Recalling the closed, conic set Aα = {XT ∈ X |P[XT < 0] ≤ α} from

Example 2.1, we find that it defines the Value-at-Risk via Equation (5).

So with Proposition 2.1 we conclude that Aα = AVaRα and that VaRα is

a positive homogeneous monetary risk measure which, in general, is not

convex, and thus, not coherent.

Convexity also allows for an alternative treatment of risk measures. The

rich literature on convex functional analysis finds convenient application in

the theory of risk measures. And risk measures are enriched with a dual

representation and more possibilities of interpretation.

We recall two important results for completeness and for the comparison

to the intrinsic dual representation in Section 3.4. The first one is given in

[7], Theorem 4.31, p. 172.

Theorem 2.1. Let Mσ(P) = Mσ(Ω,F ,P) be the set of all σ-additive

probability measures on F which are absolutely continuous with respect to

P. Let A ⊂ X be a convex, σ(L∞, L1)-closed (weak∗-closed) acceptance set.

Let ρA be defined as in Equation (5) with r = 1Ω. The risk measure has

the representation

ρA(XT ) = sup
Q∈Mσ(P)

{
EQ[−XT ]− αmin(Q,A)

}
, (6)

with the minimal penalty function αmin defined for all Q ∈Mσ(P) by

αmin(Q,A) = sup
XT∈A

EQ[−XT ]. (7)

Theorem 2.1 can now be directly applied to coherent risk measures, which

of course are convex and positive homogeneous. But one can additionally

show that with positive homogeneity we can restrict the supremum to a

subset M ⊂ Mσ(P) on which αmin( · ,A) = 0. For further details see

[7], Corollary 4.18 and Corollary 4.34, p. 165 and p. 175.

Corollary 2.1. Let A be a conic, convex, σ(L∞, L1)-closed acceptance set.

Define the subset M = {Q ∈ Mσ(P) |αmin(Q,A) = 0}. Then the coherent

risk measure ρA : X → R can be written as

ρA(XT ) = sup
Q∈M

EQ[−XT ].
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2.2.3. Cash-subadditivity and quasi-convexity of risk measures

N. El Karoui and C. Ravanelli [8] point out that in presence of stochastic

interest rates a financial position must be discounted before a cash-additive

risk measure is applied. Consequently, the axiom of cash-additivity relies on

the assumption that the discounting process does not carry additional risk.

To relax this restriction they suggest the property of cash-subadditivity,

where the equality in the cash-additivity condition is changed to the in-

equality ‘≥’. However, S. Cerreia-Vioglio, F. Maccheroni, M. Marinacci

and L. Montrucchio [9] explain that under cash-subadditivity, convexity is

not a rigorous representative of the diversification principle, which trans-

lates into the following requirement for risk measures.

• Diversification Principle: if ρ(XT ), ρ(YT ) ≤ ρ(ZT ) is satisfied, then

for all λ ∈ [0, 1] : ρ(λXT + (1− λ)YT ) ≤ ρ(ZT ).

Substituting ρ(ZT ) by max{ρ(XT ), ρ(YT )} yields the equivalent and re-

cently importance gaining property of

• Quasi-convexity : for all λ ∈ [0, 1] we have

ρ(λXT + (1− λ)YT ) ≤ max{ρ(XT ), ρ(YT )} .

Interestingly, quasi-convexity is equivalent to convexity under cash-

additivity. Indeed, for any two positions with ρ(XT ) ≤ ρ(YT ) we find

an m ∈ R≥0 such that ρ(XT −mr) = ρ(YT ) so that for any λ ∈ [0, 1] we

get

ρ(λXT + (1− λ)YT ) + λm ≤ max{ρ(XT −mr), ρ(YT )}
= λρ(XT ) + (1− λ)ρ(YT ) + λm .

This equivalence does not hold under cash-subadditivity as shown in [6], Ex-

ample 2.10, p. 12, resulting in the necessity to explicitly implement the

diversification principle and thus, in the introduction of cash-subadditive,

quasi-convex risk measures.

2.2.4. General monetary risk measures

Stochastic interest rates can also be directly addressed through risk meas-

ures of the form

ρA,S(XT ) = inf
{
m ∈ R

∣∣XT + m
S0
ST ∈ A

}
, (8)
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as introduced in [4] and [5]. This approach avoids implicit discounting,

since the stochastic eligible asset is now part of the risk measure. C. Munari

provides a broad discussion of the discounting argument, revealing funda-

mental issues with discounting in the context of acceptance sets in [10], Sec-

tion 1.3, p. 26.

Equation (8) defines a generalized monetary risk measure which satisfies

the following property for its defining eligible asset S = (S0, ST ),

• S-additivity : for m ∈ R we have ρA,S(XT +mST ) = ρA,S(XT )−mS0.

This general setup also yields the equivalence of quasi-convexity and con-

vexity, and it exhibits a similar correspondence between acceptance sets and

risk measures. The following result extends Proposition 2.1 to stochastic

eligible assets.

Proposition 2.2. Proposition 2.1 holds true if we replace L∞(Ω,F ,P) by

any real ordered topological vector space, cash-additivity by S-additivity, and

Equation (5) by Equation (8), for any eligible asset S = (S0, ST ) ∈ R>0×A.

Proof. See the proofs of propositions 3.2.3, 3.2.4, 3.2.5, and 3.2.8 in

[10], p. 87f. The second claim in Proposition 2.1 follows from two short

calculations.

3. Intrinsic risk measures

The risk measures in the previous section all yield the same proced-

ure to make an unacceptable position XT acceptable — raise the re-

quired ‘minimal’ capital ρA,S(XT ) and get the acceptable position Xρ
T :=

XT +
ρA,S(XT )

S0
ST . A procedure to acquire the required capital-level and

the risk of failing to obtain it are not addressed by these risk measures. But

what if we do not use external capital?

3.1. Fundamental concepts

In this section, we explore a different procedure to obtain acceptable posi-

tions. We suggest to sell part of the risky position and invest the acquired

capital in the acceptable eligible asset. Hereby, the distance to the accept-

ance set is directly reduced and therefore also the risk.

In order to sell our original position we require the knowledge of the initial

value X0 ∈ R>0. Following the definition of general eligible assets S =

(S0, ST ) ∈ R>0 × A in Section 2.2.4, we consider financial positions X =
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(X0, XT ) on the product space R>0×X . The main object in this approach

is the net worth of the convex combination of the risky position and a

multiple of the eligible asset

Xλ,S
T := (1− λ)XT + λX0

S0
ST ∈ X , λ ∈ [0, 1].

The notation Xλ,S
T is convenient and we extend it to the whole position

X ∈ R>0 ×X as

Xλ,S := (X0, X
λ,S
T ) ∈ R>0 ×X .

Hence, Xλ,S describes a position with initial value X0 which is split in

(1 − λ)X0 and λX0 and is then invested to get (1 − λ)XT and λX0

S0
ST ,

respectively. We aim to find the smallest λ such that Xλ,S
T is acceptable,

this defines the intrinsic risk measure.

Definition 3.1 (Intrinsic Risk Measure). For an acceptance set A ⊂
X and an eligible asset S ∈ R>0 × A the intrinsic risk measure is a map

RA,S : R>0 ×X → [0, 1] defined by

RA,S(X) = inf
{
λ ∈ [0, 1]

∣∣Xλ,S
T ∈ A

}
. (9)

For well-definedness two short considerations yield that the acceptance set

must either be a cone or that 0 must be contained in it.5 In both cases,

λX0

S0
ST is acceptable for λ ∈ (0, 1], or λ ∈ [0, 1] if A is closed. This means

selling all of the original position leaves us always with an acceptable net

worth X0

S0
ST .

A brief comparison of the intrinsic approach and the traditional monetary

approach is provided below. Consider the conceptual Figure 1 and imagine

that A is an arbitrary closed acceptance set.

While the monetary approach, illustrated in Figure 1(a), yields the position

Xρ
T := XT +

ρA,S(XT )
S0

ST , the intrinsic approach, illustrated in Figure 1(b),

gives us

X
RA,S(X),S
T := (1−RA,S(X))XT +RA,S(X)X0

S0
ST ,

which we abbreviate with XR,S
T if the reference to A, S, and X is clear.

5The assumption 0 ∈ A is widely used in the financial literature, as for example the
equivalent Axiom 2.1 in [1], p. 206 or, if A is closed, the normalization property ρ(0) = 0

in [7], above Remark 4.2, p. 154.
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(a) Traditional approach (b) Intrinsic approach

Figure 1. The payoff of the eligible asset (D) is used to make the unacceptable position

(2) acceptable (#).

1. We notice that, since A is closed, both risk measures are strictly pos-

itive if and only if XT /∈ A. In this case, and if ST ∈ int(A), both

altered positions Xρ
T and XR,S

T lie on the boundary of the acceptance

set. Moreover, if A is either a cone or convex with 0 ∈ A, then the set

{Xλ,S
T |λ ∈ [RA,S(X), 1]} belongs to A. A similar result holds true for

monetary risk measures.

2. If we assume a conic acceptance set as in Figure 1, we intuit that XR,S
T

must be a multiple of Xρ
T . And indeed, in Corollary 3.3 we will derive the

relation

X
RA,S(X),S
T = (1−RA,S(X))Xρ

T . (10)

3. By Definition 3.1, it is apparent that intrinsic risk measures cannot at-

tain infinite values as opposed to traditional risk measures. W. Farkas,

P. Koch-Medina, and C. Munari have shown in [5], Theorem 3.3 and Co-

rollary 3.4, p. 62 that on closed, conic acceptance sets

ρA,S is finite if and only if ST ∈ int(A).

For a graphical illustration imagine that in Figure 1, ST ∈ ∂A. Then

in Figure 1(a), a possible Xρ
T would move along a line ‘parallel’ to the

boundary, thus it would never reach A. Consequently, ρA,S(XT ) = +∞
and Xρ

T is actually not defined.

In contrast, one can show6 that on closed, conic acceptance sets

RA,S < 1 on R>0 ×X \ A if and only if ST ∈ int(A) .

6For a direct proof one can use Lemma 2.1 and the fact that XR,S
T ∈ A. For a proof via

monetary risk measures consider Theorem 3.1 and Corollary 3.1 below.
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Hence, if ST ∈ ∂A in Figure 1(b), then XR,S
T and X0

S0
ST coincide on the

boundary with RA,S(X) = 1.

Having established a basic intuition for this approach, we will now take a

deeper look at some of its properties. For this we introduce the notions of

monotonicity and convexity on R>0 ×X .

1. The monotonicity of A should be reflected by the corresponding intrinsic

risk measure. So we need to extend the ordering on X to R>0 × X . Two

possible orderings are element-wise and return-wise defined respectively by

X >el Y if X0 ≥ Y0 and XT ≥ YT , and

X >re Y if
XT

X0
≥ YT
Y0
.

2. On R>0 ×X , we think of convex combinations element-wise as

αX + (1− α)Y := (αX0 + (1− α)Y0 , αXT + (1− α)YT ) ∈ R>0 ×X .

We can now show monotonicity and quasi-convexity of intrinsic risk meas-

ures with respect to these rules.

Proposition 3.1 (Monotonicity, Quasi-convexity). Let A be an ac-

ceptance set containing 0, let S ∈ R>0 × A be an eligible asset and let

X,Y ∈ R>0 ×X .

1. The orders X >el Y and, on conic acceptance sets, X >re Y , imply

RA,S(X) ≤ RA,S(Y ).

2. Let A be additionally convex. Then RA,S is quasi-convex, that means

for all α ∈ [0, 1], and any X,Y ∈ R>0 ×X

RA,S(αX + (1− α)Y ) ≤ max{RA,S(X), RA,S(Y )}.

Proof. 1. If X >el Y , then Xλ,S
T ≥ Y λ,ST and thus, by monotonicity of the

acceptance set, RA,S(X) ≤ RA,S(Y ). Similarly, X >re Y implies Xλ,S
T ≥

X0

Y0
Y λ,ST . By conicity we have X0

Y0
Y
R(Y ),S
T ∈ A and again by monotonicity

we get Xλ,S
T ∈ A.

2. Assume without loss of generality RA,S(X) ≤ RA,S(Y ). As mentioned

above, since A is convex, {Xλ,S
T |λ ∈ [RA,S(X), 1]} ⊂ A. Hence, if λ ∈

[RA,S(Y ), 1], then the convex combinations Y λ,ST , Xλ,S
T lie in A and also

their convex combinations αXλ,S
T + (1−α)Y λ,ST ∈ A, for all α ∈ [0, 1]. But
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these convex combinations commutate so that

RA,S(αX + (1− α)Y ) = inf
{
λ ∈ [0, 1]

∣∣αXλ,S
T + (1− α)Y λ,ST ∈ A

}
≤ RA,S(Y ) = max

{
RA,S(X), RA,S(Y )

}
,

showing quasi-convexity of the intrinsic risk measure.

So while monotonicity of A is passed on to underlying intrinsic risk meas-

ures, convexity of the acceptance set implies quasi-convexity and not con-

vexity of the measures as we have seen in Proposition 2.1 for monetary risk

measures. A counter-example to convexity can be constructed with the

transition property for unacceptable X and α ∈ [0, RA,S(X)],

RA,S(Xα,S) =
RA,S(X)− α

1− α
,

which can be derived using the bijection [0, 1]→ [α, 1] with λ 7→ (1−λ)α+λ,

and the fact that (1 − β)X + βXα,S = Xαβ,S . With help of Example 2.1

it can be shown that convexity of A is necessary for quasi-convexity of the

intrinsic risk measure. Finally, a similar argument yields quasi-convexity

with respect to eligible assets S1, S2 ∈ R>0 × A with same initial price

S1
0 = S2

0 ,

RA,αS1+(1−α)S2(X) ≤ max{RA,S1(X), RA,S2(X)} .

3.2. Representation on conic acceptance sets

In this section, we will use cash- or S-additivity of monetary risk measures

to derive an alternative representation of intrinsic risk measures on cones.

This representation allows us to apply important results from monetary to

intrinsic risk measures.

Theorem 3.1 (Representation on cones). Let ρA,S : X → R be a

monetary risk measure defined by a closed, conic acceptance set A and

an eligible asset S ∈ R>0×A. Then the intrinsic risk measure with respect

to A and S can be written as

RA,S(X) =
(ρA,S(XT ))+

X0 + ρA,S(XT )
. (11)

Proof. Since A is closed, we can use Proposition 2.2 to write

RA,S(X) = inf{λ ∈ [0, 1] |Xλ,S
T ∈ A} = inf{λ ∈ [0, 1] | ρA,S(Xλ,S

T ) ≤ 0}.
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But ρA,S is S-additive and positive homogeneous, so that we have

RA,S(X) = inf
{
λ ∈ [0, 1] | ρA,S(XT ) ≤ λ

(
X0 + ρA,S(XT )

)}
.

If ρA,S(XT ) > 0, then we can solve for λ to get the form in Equation (11).

If ρA,S(XT ) ≤ 0, then XT ∈ A and therefore RA,S(X) = 0. We abbreviate

these two cases with (ρA,S(XT ))+ in the numerator.

Example 3.1. For continuous XT and constant eligible assets ST =

rS01Ω > 0 we can directly derive the representation in Equation (11) on the

conic Value-at-Risk acceptance set Aα = {XT ∈ X |P[XT < 0] ≤ α} from

Example 2.2. Let FX be the continuous cumulative distribution function

of XT with inverse F−1
X . For XT /∈ Aα, this means F−1

X (α) < 0, we get

RAα,S(X) = inf
{
λ ∈ (0, 1) |P[Xλ,S

T < 0] ≤ α
}

= inf
{
λ ∈ (0, 1) |FX(−(1− λ)−1λrX0) ≤ α

}
=

F−1
X (α)

F−1
X (α)− rX0

=
VaRα(XT )

rX0 + VaRα(XT )
,

an expression similar to Equation (11). Of course, while we use the constant

eligible asset ST = rS01Ω, the Value-at-Risk is of the form ρAα(X) =

inf{m ∈ R |XT +m1Ω ∈ Aα} with r = 1.

In our opinion, Theorem 3.1 is a very convenient result that allows us to

draw connections to traditional risk measures. This is true for all conic

acceptance sets, including the commonly used Value-at-Risk and Expec-

ted Shortfall acceptance sets. In particular, some important results from

traditional risk measures can be directly applied to intrinsic risk measures.

Corollary 3.1. Let A be a closed, conic acceptance set.

1. RA,S < 1 on R>0 ×X \ A if and only if ST ∈ int(A).

2. If ST ∈ int(X+), then RA,S is continuous on R>0 ×X .

3. If A is additionally convex, then ST ∈ int(A) implies continuity of RA,S.

4. RA,S is scale-invariant, meaning RA,S(αX) = RA,S(X), for α > 0.

Proof. 1. With the representation in Theorem 3.1 and the finiteness result

in [5], Theorem 3.3, p. 62 the assertion follows directly.

2. By [4], Proposition 3.1, p. 154, if ST ∈ int(X+), then ρA,S is continuous.

The map f : (x0, x) 7→ x+

x0+x is jointly continuous on R>0 × R. Therefore,

as the composition of two continuous maps the intrinsic risk measures is

continuous on R>0 ×X .

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
0.

17
.2

16
.2

46
 o

n 
01

/1
6/

21
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



9th August 2018 13:2 Innovations in Insurance, Risk- and Asset Management 9in x 6in b3285-ch07 page 179

Intrinsic Risk Measures 179

3. In this case, [4], Theorem 3.16, p. 159 gives us continuity of ρA,S . The

assertion follows as in the second part.

4. If XT ∈ A, then so is αXT and thus, RA,S(αX) = RA,S(X) = 0.

If XT /∈ A, then ρA,S(XT ) > 0 and the assertion follows from positive

homogeneity of ρA,S and Theorem 3.1.

Another version of Theorem 3.1 is the representation of monetary risk meas-

ures on X \ A in terms of intrinsic risk measures.

Corollary 3.2. Let A be a closed, conic acceptance set, S ∈ R>0 × int(A)

and X = (X0, XT ) ∈ R>0 ×X \ A. Then

ρA,S(XT ) =
X0RA,S(X)

1−RA,S(X)
. (12)

Proof. We have ρA,S(XT ) > 0 on X \A and by Corollary 3.1, ST ∈ int(A)

implies RA,S < 1 on R>0 ×X \ A. Setting X = (X0, XT ), for any X0 > 0,

and rearranging Equation (11) yields the assertion.

With this representation we confirm our claim that Xρ
T = XT +

ρA,S(XT )
S0

ST

is a multiple of XR,S
T .

Corollary 3.3. In the setting of Corollary 3.2, we have

X
RA,S(X),S
T = (1−RA,S(X))Xρ

T . (13)

Proof. Dividing XR,S
T by 1−RA,S(X) and using Equation (12) yields the

desired relation.

The representation in (11) does not hold for convex, non-conic acceptance

sets. However, it does give us an upper bound.

Proposition 3.2. Let A be a closed, convex acceptance set containing 0,

which is not a cone. Then the following inequality holds,

RA,S(X) ≤ (ρA,S(XT ))+

X0 + ρA,S(XT )
. (14)

Proof. Using Proposition 2.2, we establish with S-additivity, and then

convexity and the fact that ρA,S(0) ≤ 0 the inequality

ρA,S(Xλ,S
T ) = ρA,S((1− λ)XT )− λX0 ≤ (1− λ)ρA,S(XT )− λX0.

With this we arrive at the inclusion

{λ ∈ [0, 1] | (1− λ)ρA,S(XT )− λX0 ≤ 0} ⊆ {λ ∈ [0, 1] | ρA,S(Xλ,S
T ) ≤ 0},

which implies (14).
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3.3. Efficiency of the intrinsic approach

In the previous section, we have derived all necessary results to compare

the intrinsic and the traditional approach on a monetary basis. We find

that on conic or convex acceptance sets the intrinsic approach requires less

investment in eligible assets. But on cones it yields positions with the same

performance.

Corollary 3.4. Let A be a closed acceptance set, either conic or convex.

For an unacceptable position X = (X0, XT ) and an eligible asset S we have

X0RA,S(X) ≤ ρA,S(XT ).

Proof. With Theorem 3.1 for conic acceptance sets, and Proposition 3.2

for the convex case we establish X0RA,S(X) ≤ X0
ρA,S(XT )

X0+ρA,S(XT ) . For unac-

ceptable XT the inequality X0
ρA,S(XT )

X0+ρA,S(XT ) ≤ ρA,S(XT ) holds true, proving

the assertion.

So while the magnitude of the initial value X0 controls the required mon-

etary amount, Corollary 3.4 shows that the amount X0RA,S(X) is always

less than ρA,S(XT ). This means using the intrinsic approach, less capital

is transitioned to the eligible asset.

But since less money is invested in the eligible asset, one could think that

the intrinsic approach yields worse acceptable positions compared to the

traditional approach. However, comparing the resulting positions in terms

of returns, for example with the (revised) Sharpe ratio, shows otherwise.

Given a financial position X = (X0, XT ), a monetary risk measure yields

the acceptable position Xρ
T = XT +

ρA,S(XT )
S0

ST . This means that at incep-

tion, the initial value must be Xρ
0 := X0 + ρA,S(XT ). On the other hand,

an intrinsic risk measure does not change the initial value X0 to get the

acceptable position XR,S
T . Interestingly, the returns of these positions are

equal on cones.

Corollary 3.5. Let A be a closed, conic acceptance set, X an unacceptable

position, and S an eligible asset. The returns of the positions (X0, X
R(X),S
T )

and (Xρ
0 , X

ρ
T ) are equal.

Proof. Dividing both sides of Equation (13) byX0 and using Equation (11)

yield the assertion.
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3.4. Dual representations on convex acceptance sets

Referring to duality results of convex and coherent risk measures stated in

Section 2.2.2, we derive a dual representation of intrinsic risk measures. The

derivation is based on a representation of convex acceptance sets byMσ(P),

the set of σ-additive, absolutely continuous probability measures Q � P,

similar to that of S. Drapeau and M. Kupper in [11], Lemma 2, p. 52.

Lemma 3.1. Let A be a σ(L∞, L1)-closed, convex acceptance set. Then

XT ∈ A if and only if for all probability measures Q ∈Mσ(P)

inf
YT∈A

EQ[YT ] ≤ EQ[XT ].

Proof. The ‘only if’ implication is evidently true. We outline the proof of

the ‘if’ direction. Using a version of the Hahn-Banach Separation Theorem,

see for example N. Dunford and J. T. Schwartz [12], Theorem V.2.10, p. 417,

one shows that for any XT ∈ X \ A there is a linear functional ` in the

topological dual space X ∗ such that infy∈A `(y) > `(x). The structure of A
implies that ` is positive on the positive cone {XT ∈ X |XT ≥ 0}. Under

the weak∗-topology σ(L∞, L1), using the Radon-Nikodým Theorem, as for

example stated in [12], Theorem III.10.2, p. 176, these linear functionals

can be identified with expectations with respect to σ-additive, absolutely

continuous probability measures Q� P in Mσ(P).

Using this result we can now derive a dual representation for intrinsic risk

measures.

Theorem 3.2 (Dual representation). Let A be a σ(L∞, L1)-closed,

convex acceptance set containing 0 and let S be an eligible asset. For

Q ∈ Mσ(P) define the penalty function7 α(Q,A) = infXT∈A EQ[XT ]. The

intrinsic risk measure can be written as

RA,S(X) = sup
Q∈Mσ(P)

(α(Q,A)− EQ[XT ])+

X0

S0
EQ[ST ]− EQ[XT ]

. (15)

Proof. By Lemma 3.1, we have the equivalence Xλ,S
T ∈ A if and only if

for all Q ∈Mσ(P) : EQ
[
Xλ,S
T

]
≥ α(Q,A), or rewritten,

λEQ
[
X0

S0
ST −XT

]
≥ α(Q,A)− EQ[XT ].

For XT ∈ A, Lemma 3.1 directly implies that the infimum over λ is equal

to 0, for all Q ∈ Mσ(P). For XT /∈ A, Lemma 3.1 gives the inequality

7The negative of the minimal penalty function αmin in Equation (7).
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EQ[X0

S0
ST ] − EQ[XT ] ≥ α(Q,A) − EQ[XT ] > 0 so that we can solve for λ

and get

RA,S(X) = inf

{
λ ∈ [0, 1]

∣∣∣∀Q ∈Mσ(P) : λ ≥ α(Q,A)− EQ[XT ]
X0

S0
EQ[ST ]− EQ[XT ]

}

= sup
Q∈Mσ(P)

α(Q,A)− EQ[XT ]
X0

S0
EQ[ST ]− EQ[XT ]

.

From here the representation in (15) follows.

It is interesting to find the same terms in the numerator in Equation (15)

and the expression in Equation (6). But here, the numerator is normalized

by an expected distance between financial position and eligible asset before

the supremum over Mσ(P) is taken.

In case of a conic acceptance set and a constant eligible asset, we can

link Theorem 3.2 via the dual representation of coherent risk measures in

Corollary 2.1 to Theorem 3.1.

Corollary 3.6. Let A be a σ(L∞, L1)-closed, convex cone and ST = S01Ω.

Then we recover the representation in Equation (11).

Proof. A short calculation confirms that on cones, α(Q,A) = λα(Q,A) is

satisfied for all λ > 0, and thus, α(Q,A) ∈ {0,±∞}. Using Theorem 3.2,

but taking the supremum over M = {Q ∈Mσ(P) |α(Q,A) = 0}, yields

RA,S(X) = sup
Q∈M

(EQ[−XT ])+

X0 + EQ[−XT ]
.

But for any constant c > 0 the map x 7→ x
c+x is increasing on R≥0 and

therefore, we can split the supremum and then use the dual representation

of coherent risk measures from Corollary 2.1 to get

RA,S(X) =
supQ∈M(EQ[−XT ])+

X0 + supQ∈M EQ[−XT ]
=

(ρA,S(XT ))+

X0 + ρA,S(XT )
,

the representation of intrinsic risk measures on cones from Theorem 3.1.

4. Conclusion

In this article, we have extended the methodology of risk measurement with

a new type of risk measure: the intrinsic risk measure. We argued that since

traditional risk measures are defined via hypothetical external capital, it

is natural to consider risk measures that only allow the usage of internal

capital contained in the financial position.
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We discussed basic properties of intrinsic risk measures and provided some

examples. We derived an alternative representation on conic acceptance

sets, such as the ones associated with Value-at-Risk and Expected Shortfall.

With this we showed that the intrinsic approach requires less investment in

the eligible asset, and at the same time yields acceptable positions with the

same performance. As the representation on cones does not hold on convex

acceptance sets, we established a dual representation in terms of σ-additive

probability measures.

Finally, we mention two ideas for further studies. First of all, the extension

to general ordered topological vector spaces is necessary to provide greater

adaptivity. The setting with multiple financial positions and multiple eli-

gible assets should be studied in the context of portfolio rearrangement and

how the intrinsic risk measure could help the process of optimization.
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Chapter 8

Pathwise Construction of Affine Processes
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Based on the theory of multivariate time changes for Markov processes, we show
how to identify affine processes as solutions of certain time change equations.
The result is a strong version of a theorem presented by J. Kallsen in [1]
which provides a representation in law of an affine process as a time–change
transformation of a family of independent Lévy processes. This also leads to a
new perspective on strong approximations for affine processes.

Keywords: affine processes, Lamperti transform, time–change.
MSC[2010]: 60G99, 91B70

1. Introduction

During the last decades, many alternatives to the Black-Scholes model have
been proposed in the literature to overcome its deficiencies. Possible ex-
tensions include jumps, stochastic volatility and/or other high dimensional
models. Among the most popular ones, we recall the exponential Lévy
models, which generalize the Black-Scholes model by introducing jumps.
They allow to generate implied volatility smiles and skews similar to the
ones observed in the markets. However, in some occasions, independence
of increments is too big a restriction. Stochastic volatility models give a
way to overcome this problem: when we model the variance parameter in
the Black–Scholes model by a CIR model, we get the Heston model, see [2].
The Heston model can be extended by adding jumps in the return com-
ponent, as in the Bates model (see [3]), and also in the stochastic variance

∗Both authors are grateful to the reviewer and the editors of this volume for numerous
important suggestions to improve this article. Both authors acknowledge support by
ETH foundation and SNF project 144130.
Open Access chapter published by World Scientific Publishing Company and distributed
under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives
(CC BY-NC 4.0) License.
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component, as in the Barndorff–Nielsen and Shephard model (see [4]). The
class of affine processes includes all the above mentioned examples.
Affine processes are a class of time homogeneous Markov processes X =
(X(t))t≥0 taking values in a state space D ⊂ Rd characterized by the fact
that, for all (t, x) ∈ R≥0×D, their characteristic function has the following
exponential affine form

Ex
[
e〈u,X(t)〉

]
= eϕ(t,u)+〈x,ψ(t,u)〉, u ∈ iRd ,

where ϕ and ψ are two functions taking values in C and Cd, respectively.
The theory of affine processes is dominated by weak characterizations, since
affine processes are characterized by a property of their marginal distribu-
tions. The functions ϕ and ψ in the specification of the affine property,
solve a system of ODEs, also known in the literature with the name of
generalized Riccati equations. These equations arise from the regularity
property of affine processes. More precisely, in [5] it has been proved that,
even on a general state space, stochastically continuous processes having
the aforementioned affine property admit a version with càdlàg trajectories.
The path regularity implies that the process is a semimartingale with dif-
ferentiable characteristics up to its lifetime. From this characterization it
is possible to conclude differentiability with respect to time of the Fourier–
Laplace transform. This property, also called regularity property, is crucial
to relate the marginal laws of affine processes with a solution of a system
generalized Riccati equations.

This paper is devoted to a pathwise construction of affine processes, when
the state space is specified by Rm≥0 × Rn. The representation proposed in
this paper is a multivariate generalization of the Lamperti transformation
of Lévy processes in R with no negative jump. When D = R≥0, it has
been proved that there exists a one-to-one correspondence between affine
processes taking values in D and Lévy processes, see [6]. More precisely,
let Z(1) = (Z(1)(t))t≥0 be a Lévy process starting from 0 taking values in
R, whose Lévy measure has support R≥0 and let Z(0) be an independent
subordinator. In [6], Theorem 2 shows that there exists a solution of the
following time–change equation

X(t) = x+ Z(0)(t) + Z(1)
(∫ t

0
X(s)ds

)
for all (t, x) ∈ R≥0 × R≥0. Moreover, it is proved that the solution is
a time homogeneous Markov process, taking values in R≥0 starting from
x, characterized by the property that the logarithm of the characteristic
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function of the transition semigroup is given by an affine function of the
initial state x. Hence, by definition, it is an affine process taking values in
R≥0.
In this paper we aim to obtain the analogous result in the multivariate case.
In [1] it has been proved that — in distribution — affine processes can be
represented by means of d+ 1 independent Lévy processes taking values in
Rd. Under some assumptions on the Lévy triplets, the time change equation

X(t) = x+ Z(0)(t) +
d∑
i=1

Z(i)
(∫ t

0
Xi(s)ds

)
, t ≥ 0 , (1)

admits a weak solution. Existence of a solution for (1) (also in distribution)
holds only under some conditions on the Lévy triplet.
In [1] the following problem is left unsolved: is X a strong solution of the
time change equation (1)? In this paper we address this problem using an
approximation of the underlying Lévy processes. Recently, an alternative
time change construction of affine processes has been presented in [7]. The
exposition is organized as follows. In Chapter 2 we provide an overview
of some basic results for affine processes. Chapter 3 contains the core of
the proof of existence of a strong solution of (1). We show how to path-
wisely construct affine processes on the positive orthant solving a family of
deterministic ODEs. Then, using the results from Chapter 3, we will see
how to construct a solution X of (1) which lives on the same probability
space where the Lévy processes are defined. In Chapter 4 we show that,
starting from a family of Lévy processes {Z(k)}k=0,1,...,d specified by some
restrictions on their Lévy triplets, the solution time–change equation (1) is
a time homogeneous Markov process having the affine property. Observe
that, this new existence proof of affine processes gives, as straightforward
consequence, the càdlàg property for affine processes.

2. Preliminaries

2.1. Notation

Henceforth D denotes the subset Rm≥0 × Rn of Rd. The canonical basis of
Rd is denoted by {ei}i=1,...,d. Given ∆ /∈ D define D∆ = D∪{∆}. The set
B(D) is the space of measurable function on D, while B(D) is the space of
measurable bounded function on D.
In order to simplify the notation, we introduce the sets of indices I and J

defined as

I = {1, . . . ,m} and J = {m+ 1, . . . , d}.
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Moreover, given a set H ⊆ {1, . . . , d}, the map πH is the projection of Rd
on the lower dimensional subspace with indices in H.

Comment. In particular

πI : Rm≥0 × Rn → Rm≥0

x 7→ πIx := (xi)i∈I

and

πJ : Rm≥0 × Rn → Rn

x 7→ πJx := (xj)j∈J .

Due to the geometry of the state space, the function

fu(x) := e〈x,u〉 , x ∈ D (2)

is bounded if and only if u is an element in

U := Cm≤0 × iRn , (3)

where Cm≤0 = {w ∈ Cm such that Re(w) ∈ Rm≤0}. The notation 〈·, ·〉 with
input variables in Rd denotes the usual scalar product. The same notation
is used also when the scalar product is considered in the space Rd+ iRd. In
this case we mean the extension of 〈·, ·〉 in Rd + iRd without conjugation.
Unless differently specified, the notation Ex[·] indicates that the expectation
is taken under the probability measure Px .
Fix N ∈ N and let s ∈ RN≥0. Whenever we are going to consider s as a
time parameter, we emphasize its multidimensionality by writing s. When
s = (s1, . . . , sN ) is a multivariate time parameter and X is a stochastic
process in RN , we use the notation

X(s) := (X1(s1), . . . , XN (sN )) ∈ RN .

2.2. Affine processes

In line with the literature, we introduce the affine processes as a class
of time homogeneous Markov processes characterized by two additional
properties. The first one being stochastic continuity, the second one a
condition which characterizes the Fourier–Laplace transform of the one time
marginal distributions. This introduction of affine processes is taken from
[8], [5] and [9].
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Definition 2.1. Let

(Ω, (X(t))t≥0, (F(t))t≥0, (p(t))t≥0, (Px)x∈D)

be a time homogeneous Markov process. In particular we assume that

• Ω is a probability space,
• (X(t))t≥0 is a stochastic process taking values in D∆,

• F(t) = σ({X(s) , s ≤ t}) is the filtration generated by canonical
coordinates,
• (p(t))t≥0 is a semigroup of transition functions on (D∆,B(D∆)),
• (Px)x∈D∆ is a probability measures on (Ω,F), with F =

∨
t≥0 F(t),

satisfying

Ex
[
f(X(t+s))

∣∣F(t)
]

= EX(t)
[
f(X(s))

]
, Px-a.s. for all f ∈ B(D∆). (4)

The process X is said to be an affine process if it satisfies the following
properties:

• for every t ≥ 0 and x ∈ D, lims→t p(s)(x, ·) = p(t)(x, ·) weakly,
• there exist functions ϕ : R≥0×U → C and ψ : R≥0×U → Cd such

that

Ex
[
e〈u,X(t)〉

]
=
∫
D

e〈u,ξ〉p(t)(x, dξ) = eϕ(t,u)+〈x,ψ(t,u)〉, (5)

for all x ∈ D and (t, u) ∈ R≥0 × U .

Regularity is a key feature for an affine process. It gives differentiability of
the Fourier–Laplace transform with respect to time.

Definition 2.2. An affine process X is called regular if, for every u ∈ U ,
the derivatives

F (u) := ∂tϕ(t, u)
∣∣∣
t=0

, R(u) := ∂tψ(t, u)
∣∣∣
t=0

, (6)

exist for all u ∈ U and are continuous in

Um =
{
u ∈ Cd | sup

x∈D
Re(〈u, x〉) ≤ m

}
,

for all m ≥ 1.

Regularity has been proved in [5]. The proof is based on the fact that affine
processes always admit a version which has càdlàg paths. From this path
regularity it is possible to conclude differentiability of the Fourier–Laplace
transform. We summarize here the main results.
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Theorem 2.1 (Theorem 6.4 in [5]). Every affine process is regular.
On the set R≥0 × U , the functions ϕ and ψ satisfy the following system
of generalized Riccati equations:

∂tϕ(t, u) = F (ψ(t, u)), ϕ(0, u) = 0 ,
∂tψ(t, u) = R(ψ(t, u)), ψ(0, u) = u,

(7)

with

F (u) = 〈b, u〉+ 1
2 〈u, au〉 − c

+
∫
D\{0}

(
e〈u,ξ〉 − 1− 〈πJu, πJh(ξ)〉

)
m(dξ), (8)

Rk(u) = 〈βk, u〉+ 1
2 〈u, αku〉 − γk

+
∫
D\{0}

(
e〈u,ξ〉 − 1−

〈
πJ∪{k}u, πJ∪{k}h(ξ)

〉)
Mk(dξ) , (9)

for k = 1, . . . , d where here we take as truncation function h(x) = x1{|x|≤1}.
The set of parameters

(b, β, a, α, c, γ,m,M) (10)
is specified by

• b, βi ∈ Rd for i = 1, . . . , d,
• a, αi ∈ Sd+ for i = 1, . . . , d, where Sd+ denotes the cones of positive

semidefinite d× d matrices,
• c, γi ∈ R≥0 for i = 1, . . . , d,
• m,Mi for i = 1, . . . , d are Lévy measures.

This set of parameters is called admissible if the previous conditions are
satisfied. The set of admissible parameters fully characterizes an affine
process in D.

Remark 2.1. If, additionally, the semigroup of transition functions
(p(t))t≥0 is homogeneous in the space variable, meaning that, for all
x ∈ D and B ∈ B(D)

p(t)(x,B) = p(t)(0, B − x) ,
then necessarily R = 0 and it holds

Ex
[
e〈u,X(t)〉

]
=
∫
e〈u,ξ〉p(t)(x, dξ) = etF (u)+〈x,u〉 ,

for all (t, x) ∈ R≥0 × D and u ∈ U . Hence X is a (possibly killed) Lévy
process with Lévy exponent F starting from x.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
0.

17
.2

16
.2

46
 o

n 
01

/1
6/

21
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



9th August 2018 13:2 Innovations in Insurance, Risk- and Asset Management 9in x 6in b3285-ch08 page 191

Pathwise Construction of Affine Processes 191

2.3. Towards the multivariate Lamperti transform

When D = R≥0, it has been proved that there exists a one-to-one corres-
pondence between affine processes taking values in D and Lévy processes,
see [6].

Comment. More precisely, let Z(1) = (Z(1)(t))t≥0 be a Lévy process start-
ing from 0 taking values in R whose Lévy measure has support R≥0. This
implies that there exists a function R : iR→ C such that

E0
[
euZ

(1)(s)
]

= esR(u) ,

for all (s, u) ∈ R≥0 × iR. Due to the restrictions on the jump measure, the
function R takes the form

R(u) = βu+ 1
2α

2u2 − γ +
∫
R≥0

(
euξ − 1− uξ1{|ξ|≤1}

)
M(dξ) ,

where u ∈ iR, α, β ∈ R and M is a measure on R≥0 which satisfies∫
(1 ∧ |ξ|2)M(dξ) <∞ .

Moreover, let Z(0) be an independent subordinator with

E0
[
euZ

(0)(s)
]

= esF (u) ,

for all (s, u) ∈ R≥0×iR. Since Z(0) is a subordinator, there exists a constant
b ∈ R≥0 and a measure m in R≥0 satisfying∫

(1 ∧ |ξ|)m(dξ) <∞ ,

such that, for all u ∈ iR,

F (u) = bu+
∫
R≥0

(
euξ − 1

)
m(dξ) .

Theorem 2 in [6] shows that there exists a solution of the following time–
change equation

X(t) = x+ Z(0)(t) + Z(1)
(∫ t

0
X(s)ds

)
for all (t, x) ∈ R≥0 × R≥0.
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The theorem therein shows that the solution of the one-dimensional time
change equation is a time homogeneous Markov process, taking values in
R≥0 starting from x, such that the logarithm of the characteristic function
of the transition semigroup is given by an affine function of the initial state
x. Hence, by definition, it is an affine process taking values in R≥0.
Here we are interested in the multivariate generalization of this result,
whose weak version is already known in the literature:

Theorem 2.2 (Theorem 3.4 in [1]). Let X be an affine process with ad-
missible parameter satisfying∫

{|ξ|≥1}
|ξk|Mi(dξ) <∞ and c = 0 , γi = 0, for 1 ≤ i, k ≤ m.

On a possibly enlarged probability space, there exist d+ 1 independent Lévy
processes Z(k) such that

X(t) d= x+ Z(0)(t) +
d∑
k=1

Z(k)
(∫ t

0
Xk(s)ds

)
t ≥ 0 . (11)

This result has to be understood in distributional sense, because, without
any additional assumptions, it is not clear how to conclude that the pro-
cess X is adapted with respect to the (properly time–changed) filtration
generated by the Lévy processes.
In this paper we provide a strong solution of (11) defined on the probability
space (Ω,G,P) which carries Z(0), . . . , Z(d).

Remark 2.2. Note that Theorem 2.2 makes use of the theory of martin-
gale problems related to the generator of affine processes to derive a time
change representation in law. In this paper, the proof is based on a path-
wise approximation and solution, respectively, of the time change equation.
Hence, measurability of the solution with respect to the filtration generated
by the Lévy process is obtained by construction.

2.4. Affine processes of Heston type

Comment. In this section, we are going to specify a particular subclass
of affine processes, which we will call affine processes of Heston type. They
are characterized by more restrictive admissible parameters but, at the
same time, they constitute a canonical family, in the sense that every affine
process can be obtained as a pathwise transformation of a canonical one.
Instead of stating directly the conditions, we work through an example,
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where we point the main motivations and reasonings for the forthcoming
Assumptions 2.1–2.3.
Let X be an affine process taking values in D and denote by
(b, β, a, α, c, γ,m,M) its set of admissible parameters. The next condition
implies that the function ϕ in the definition of affine property is identically
zero.

Assumption 2.1. The condition Am is satisfied if (b, a, c,m) = (0, 0, 0, 0).

The next assumption implies that the process is homogeneous in the last n
variables.

Assumption 2.2. The condition AH is satisfied if, for all i, j ∈ J it holds
(βi)j = 0.

Finally, to ensure that a solution of the system exists for all t ≥ 0, we
introduce this last set of conditions.

Assumption 2.3. The condition Å is satisfied if, for all i ∈ I it holds
c = 0 , γi = 0 and∫ (

|πIξ| ∧ |πIξ|2
)
Mi(dξ), for all i ∈ I .

Definition 2.3. We call an affine process with admissible parameters
(b, β, a, α, c, γ,m,M) satisfying Am, AH and Å an affine process of Heston
type.

Among the previous assumptions, only Assumption 2.3 is a real restriction
on the structure on the admissible parameters. As observed also in [1]
(also compare with [8], Lemma 9.2) Assumption 2.3 guarantees that the
solution process does not explode in finite time and hence the time–change
process is always well defined. Up to an enlargement of the state space and
a pathwise transformation, there is no loss of generality in assuming that
both Assumption 2.1 and Assumption 2.2 hold.
In the following proposition we present all steps which allow us to reduce
a general affine process into an affine process of Heston type.

3. Existence of the solution of the time–change equation

3.1. The setting

Let Z(1), . . . , Z(d) be d independent càdlàg Rd-valued Lévy processes, each
of them with Lévy triplet (βk, αk,Mk), k = 1, . . . , d, defined on the same
probability space.
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Now we consider the process Z = (Z(1), . . . , Z(d)) ∈ Rd2 on the product
space (Ω,G, P ) .
We fix x ∈ D and consider the functions

fk(y) := xk +
d∑
i=1

y
(i)
k for k = 1, . . . , d, y ∈ Rd

2
. (12)

In the next section it will be essential to construct the solution of a system
of time–change equations of type

Y
(k)
i (t) := Z

(k)
i

(∫ t

0
fk(Y (s))ds

)
, k, i = 1, . . . , d , and , t ≥ 0 , (13)

with Y = (Y (1)
1 , . . . , Y

(1)
d , . . . , Y

(d)
1 , . . . , Y

(d)
d ) .

Introduce

τk(t) :=
∫ t

0
fk(Y (s))ds, for k = 1 . . . , d and t ≥ 0 , (14)

and define

τ(t) := (τ1(t), . . . , τd(t)) . (15)

Existence of a solution of (13) is equivalent to the existence of a solution
of the following system of ODEs{

τ̇k(t) = fk (Z(τ(t)) , for all k = 1, . . . , d , t ≥ 0 ,
τk(0) = 0 ,

(16)

where

Z(τ(t)) :=
(
Z(1)(τ1(t)), . . . , Z(k)(τk(t)), . . . , Z(d)(τd(t))

)
.

3.2. The core of the proof

We start studying the time–change representation of affine processes in
Rm≥0. Under the assumption that n = 0, (11) reads

X(t) d= x+
m∑
i=1

Z(i)
(∫ t

0
Xi(s)ds

)
t ≥ 0, (17)

where Z(1), . . . , Z(m) are m independent Lévy processes on Rm, each of
them with Lévy triplets (βi, αi,Mi), i = 1 . . . ,m, satisfying

(αi)kl = 0 for all k, l ∈ I such that (k, l) 6= (i, i) ,
(βi)k ≥ 0 for all i ∈ I and k ∈ I \ {i} .
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Suppose that we can show existence of the solution of the following problem{
τ̇k(t) = xk + Zk(τ(t)), k = 1, . . . ,m , t ≥ 0 ,
τk(0) = 0 ,

(18)

where

Z : s 7→
m∑
i=1

Z(i)(si) . (19)

Then, we can construct X as

Xt = x+
m∑
i=1

Z(i)(τi) , t ≥ 0 .

Observe that (18) in vector notation reads{
τ̇(t) = x+ Z(τ(t)) , t ≥ 0 ,
τ(0) = 0 .

(20)

3.2.1. Approximation of the vector field

In order to construct a solution for (20), we seek for a decomposition of
type

Z =
∼
Z +

�
Z

such that the system {
τ̇(t) = (x+

∼
Z )(τ(t)) , t ≥ 0

τ(0) = 0 ,
(21)

reduces to a decoupled system of m one dimensional problems and
�
Z :=

Z −
∼
Z .

The Lévy–Itô decomposition, together with the canonical form of the ad-
missible parameters, gives

Z(i)(t) =βit+ σiB
(i)(t) +

∫ t

0

∫
ξ1{|ξ|>1}J (i)(dξ, ds)

+
∫ t

0

∫
ξ1{|ξ|≤1}(J (i)(dξ, ds)−Mi(dξ)ds)

where σi =
√

(αi)ii, B(i) is a process in Rm which evolves only along the
i-th coordinate as Brownian motion and J (i) is the jump measure of the
process Z(i).
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Now, from the assumption on the set of admissible parameter,

πI\{i}βi ∈ Rm−1
≥0 and πiβi ∈ R .

Decompose

Z(i) =:
∼
Z

(i) +
�
Z

(i)

where
∼
Z

(i) and
�
Z

(i) are two stochastic processes on Rm defined by
∼
Z

(i)
k (t) := 0 , for k 6= i ,
∼
Z

(i)
i (t) := σiB

(i)
i (t) + πiβit+

∫ t
0
∫
ξi1|ξ|>1J (i)(dξ, ds) ,

+
∫ t

0
∫
ξi1|ξ|≤1(J (i)(dξ, ds)−Mi(dξ)ds) ,

�
Z

(i)(t) :=
�
βit+

∫ t
0
∫

(ξ − ξiei)1{|ξ|>1}J (i)(dξ, ds) ,
+
∫ t

0
∫

(ξ − ξiei)1{|ξ|≤1}(J (i)(dξ, ds)−Mi(dξ)ds) ,
where

�
βi = βi − eiπiβi .

Remark 3.1. It is worth noticing that the proposed decomposition stems
from the Lévy–Itô decomposition but there is a different separation among
the infinite variation jump component and the finite variation part. Indeed,
due to the restriction on the admissible parameters, for every i = 1, . . . ,m
the Lévy measureMi generates jumps of finite variation on all directions but
the i-th. We decompose each Lévy process Z(i) as a spectrally positive Lévy
process evolving along the i-th direction (we call it Z̃(i)

i ) and a correlated
Lévy process of finite variation (the one we call

�
Z
i).

The following lemma, which is an obvious consequence of the restrictions
on the admissible parameters, collects some path properties of the processes
∼
Z

(i) and
�
Z

(i). We would like to remark that both càdlàg property and this
special structure of the paths are essential ingredients of our proof.

Lemma 3.1. For all i = 1, . . . ,m it holds

(1)
∼
Z

(i) is a Lévy process with no negative jumps,
(2)

�
Z

(i) is a process with increasing paths.

Introduce, for all s ∈ Rm≥0,
∼
Z (s) :=

∑m
i=1
∼
Z

(i)(si),
�
Z (s) :=

∑m
i=1

�
Z

(i)(si) .
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We will consider separately the initial value problems with vector fields

x+
∼
Z and

�
Z .

The next result shows that it is possible to find a unique solution for the
initial value problem{

τ̇ ((t0, τ0, x); t) = (x+
∼
Z )(τ ((t0, τ0, x); t)) ,

τ ((t0, τ0, x); t0) = τ0 .

Later, we will show how to construct a solution of the general problem.

Proposition 3.1. There exists a unique solution of{
τ̇((t0, τ0, x); t) = (x+

∼
Z )(τ((t0, τ0, x); t)),

τ((t0, τ0, x); t0) = τ0 ,
(22)

with τ0 ∈ Rm≥0 and t ≥ 0.

Proof. Observe that (22) is a decoupled system of m equations of type{
τ̇i((t0, τ0, x); t) = (xi +

∼
Z

(i)
i )(τi((t0, τ0, x); t)), i = 1, . . . ,m ,

τi((t0, τ0, x); t0) = π{i}τ0 .
(23)

where each
∼
Z

(i)
i is a Lévy process with no negative jumps. The existence

of a unique solution of (23) follows from [10], Section 6.1. �

For the proof of the general result, we will need to approximate
�
Z with

piecewise constant functions. Fix M ∈ N and consider the partition

TM :=
{

k

2M , k ≥ 0
}
.

Define the following approximations on the partition TM :

↑
�
Z

(i,M)(t) :=
∑∞
k=0

�
Z

(i)
k/2M1[ k

2M , k+1
2M )(t) ,

↓
�
Z

(i,M)(t) :=
∑∞
k=0

�
Z

(i)
(k+1)/2M1[ k

2M , k+1
2M )(t) .

Introduce, for s ∈ Rm≥0, the processes ↑
�
Z(M)(s) and ↓

�
Z(M)(s) obtained by

taking the sums of ↑
�
Z

(i,M)
si

and ↓
�
Z

(i,M)
si

respectively.
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Notation 3.1. Let

Σ :=
m⋃
i=1
{s ≥ 0 | ∆

�
Z

(i)(s) > 0}

and augment the partition T with ΣM . Denote the family obtained in this
way by T Σ

M .

We will first construct a solution for the equation (20) when
�
Z is replaced

by ↑
�
Z(M).

Hereafter, given x, y ∈ Rm, we write x ≤ y if xi ≤ yi, for all i =
1, . . . ,m .

3.2.2. The algorithm

Let
∼
Z and ↑

�
Z(M) be defined as above.

Input: Start by defining the random variables

←−σ (ω) := (0, . . . , 0), (24)
−→σ (ω) := (σ(1,M)

1 (ω), . . . , σ(m,M)
1 (ω)), (25)

where each σ
(i,M)
1 (ω) is the first jump in the path t 7→ ↑

�
Z

(i,M)(t)(ω).
Step 1: Let τ((t0, τ0, x); t) be the solution of the system (22) starting from

t0 = 0, τ0 = (0, . . . , 0) and x ∈ Rm≥0.

Consider the solution of (22) for all times t such that

τ((t0, τ0, x); t) < −→σ . (†)

Let t∗ be the first time such that (†) does not hold anymore. Stop the
solution τ((t0, τ0, x); ·) at time t∗. Observe that the condition (†) is
violated if there exists an index i∗ ∈ {1, . . . ,m} such that

τi∗((t0, τ0, x); t∗) = σ
(i∗,M)
1 .

Notice here that there might be more than one i∗, where the above
equality is valid, however, for the sake of convenience, we assume that
there exists only one index for the moment. We will deal with the
general case in the proof of Theorem 3.1.
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Step 2: Update
←−σ := (0, . . . , σ(i∗,M)

1 , . . . , 0), (26)
−→σ := (σ(1,M)

1 , . . . , σ
(i∗,M)
2 , . . . , σ

(m,M)
1 ), (27)

x := x+ ∆↑
�
Z(M)(←−σ ), (28)

where σ(i∗,M)
2 (ω) is the second jump in the path t 7→ ↑

�
Z

(i∗,M)(t)(ω).
Step 3: Let τ((t1, τ1, x1); t) be the solution of the system (22) starting

from the updated values

t1 = t∗, τ1 = τ((t0, τ0, x0); t∗) and x1 = x ∈ Rm≥0 .

As before, we let τ((t1, τ1, x1); ·) evolve until

τ((t1, τ1, x1); t∗) < −→σ (29)

holds. As soon as this condition does not hold anymore, we stop again
the solution.

End: Do iteratively Step 2 and Step 3.

The above algorithm describes the guiding principle for the proof of the
next result:

Theorem 3.1. There exists a solution of{
τ̇ (M)((0, 0, x); t) = (x+

∼
Z + ↑

�
Z(M))(τ (M)((0, 0, x); t)),

τ (M)((0, 0, x); 0) = 0 .
(30)

Proof. We already did all the main steps for the proof of this result. Let
TM and Σ be the sets defined in Notation 3.1. Recall that T Σ

M is a countable
family. Enumerate the elements in T Σ

M such that σ(i)
k denotes the k-th jump

of ↑
�
Z

(i,M). Fix x ∈ D and set

(t0, τ0, x) := (0, 0, x)

and
←−σ := (0, . . . , 0),
−→σ := (σ(1,M)

1 , . . . , σ
(i,M)
1 , . . . , σ

(m,M)
1 ) ,

where σ
(i,M)
k denotes the k-th jump in the path t 7→ ↑

�
Z

(i,M)(t) for all
i = 1, . . . ,m. By definition ↑

�
Z(M)(s) = 0 for all s < −→σ . Proposition 3.1
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gives the existence of the solution of (22) with this set of input parameters.
Denote it by τ((t0, τ0, x); t). As soon as the solution τ((t0, τ0, x); t) reaches
a jump time for ↑

�
Z(M), the vector field in the equation (30) changes. Pre-

cisely, denote by

t1 := sup{t > 0 | τ((t0, τ0, x); t) < −→σ } .

Again there might be one or more indices i∗, where the condition fails.
Collect them in a set I∗ ⊆ {1, . . . ,m}. Update the values

πI∗
←−σ := πI∗

−→σ ,
πI∗
−→σ := πI∗

−→σ ++,
(31)

where −→σ ++ contains the next jumps of ↑
�
Z

(i,M) for all i ∈ I∗ after −→σ i.
Then define

τ1 := τ((t0, τ0, x); t1) ,

x1 := x+ ∆↑
�
Z(M)(←−σ ).

Now, consider again the solution of (22), but this time with parameters
(t1, τ1, x1). Denote it by τ((t1, τ1, x1); t) and observe that it is well defined
until all the coordinates of τ((t1, τ1, x1); t) stay below the next jump times
of ↑

�
Z(M). We obtain the solution of (22) by pasting a finite amount of solu-

tions obtained in the time subintervals defined by T Σ
M . Define iteratively,

for all n ≥ 1,

tn+1 := sup{t > tn | τ((tn, τn, xn); tn) < −→σ }, (32)
τn+1 := τ((tn, τn, xn); tn+1), (33)

xn+1 := xn + ∆↑
�
Z(M)(←−σ ), (34)

where, at each step, ←−σ and −→σ are updated using the prescription in (31).
Continuity follows by construction. �

Now that we have found a solution for the approximated problems, we
would like to show convergence to the solution of (20).
The following results focus on monotonicity and convergence of (30).

Lemma 3.2. Let i = 1, . . . ,m and M ∈ N be fixed. Then, for all t ≥ 0 it
holds

↑�Z
(i,M)(t) ≤

�
Z

(i)(t) ≤ ↓
�
Z

(i,M)(t) almost surely.
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Moreover, for each ω ∈ Ω, the sequences {↑
�
Z

(i,M)(ω)}M∈N and
{↓
�
Z

(i,M)(ω)}M∈N are monotone in the sense that, for all t ≥ 0,
↑�Z

(i,M + 1)(t)(ω) ≥ ↑
�
Z

(i,M)(t)(ω)
and

↓�Z
(i,M + 1)(t)(ω) ≤ ↓

�
Z

(i,M)(t)(ω) .

Proof. By Lemma 3.1 it holds
�
Z

(i)(t) ≥
�
Z

(i)
k/2M =↑

�
Z

(i,M)(t), a.s. for all t ∈
[
k

2M ,
k + 1
2M

)
.

For the same reason,
�
Z

(i)(t) ≤
�
Z

(i)
(k+1)/2M = ↓

�
Z

(i,M)(t), a.s. for all t ∈
[
k

2M ,
k + 1
2M

)
.

Now, since for every M ∈ N the partition TM+1 is obtained by halving all
the subintervals in the partition TM , it clearly holds

↑�Z
(i,M + 1)(t)(ω) =


↑
�
Z

(i,M)(t)(ω), for all t ∈
[ 2k

2M+1 ,
2k+1
2M+1

)
,

�
Z

(i)
(2k+1)/2M+1(ω), for all t ∈

[
2k+1
2M+1 ,

2(k+1)
2M+1

)
.

Using again the increasing property of the paths of
�
Z

(i) we conclude that
↑�Z

(i,M)(t) ≥
�
Z

(i)(t), a.s.
because

�
Z

(i)
(2k+1)/2M+1 ≥

�
Z

(i)
2k/2M+1 =

�
Z

(i)
k/2M .

The case with ↓
�
Z

(i,M) goes analogously. �

Proposition 3.2. Let M ∈ N be fixed and denote by τ (M)((0, 0, x); t) the
solution of (30) constructed in Theorem 3.1. Then, for all t ≥ 0 and
x ∈ Rm≥0 it holds

τ (M)((0, 0, x); t) ≤ τ (M+1)((0, 0, x); t), almost surely .

Proof. This follows by construction using the monotonicity proved in
Lemma 3.2. Indeed, denote by T Σ

M := {σ(M)
k }k∈N and T Σ

M+1 :=
{σ(M+1)

k }k∈N the set of jump times for ↑
�
Z

(M) and ↑
�
Z

(M + 1) respectively. By
construction T Σ

M ⊂ T Σ
M+1 in the sense that, for each σ(M)

k ∈ T Σ
M there exists
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h ∈ N such that σ(M)
k = σ

(M+1)
h ∈ T Σ

M+1. Denote by {σ(M+1)
kh

}h∈N the jump
times of ↑

�
Z(M + 1) occurring on the subinterval [σ(M)

k , σ
(M)
k+1 ]. By construc-

tion, there is only one jump inside this interval. Write {σ(M+1)
kh

}h=1,...,3

with σ
(M+1)
k1

= σ
(M)
k and σ

(M+1)
k3

= σ
(M)
k+1 . Then τ (M+1) is obtained

by pasting a finite number of solutions of initial value problems with
piecewise linear vector field. For each h = 1, 2, 3, ↑

�
Z

(M + 1)(σ(M+1)
kh

) ≥
↑
�
Z

(M)(σ(M)
k ). Therefore, on each subinterval [σ(M)

k , σ
(M)
k+1 ], the solution

τ (M+1)((tk, τk, xk); t) is constructed by pasting a finite number of solutions
of type τ((tk,h, τk,h, xk,h); t) where xk,h is increasing sequence in h. Hence
we conclude that, for all k ∈ N and for t ∈ [σ(M)

k , σ
(M)
k+1 ] it holds

τ (M+1)((tk, τk, xk); t) ≥ τ (M)((tk, τk, xk);σ(M)
k ) .

�

The last monotonicity argument follows directly from the definition of the
ODEs:

Lemma 3.3. Let M, t0, τ0 be fixed and x ≤ y. Consider the systems{
τ̇ (M)((t0, τ0, x); t) = (x+

∼
Z + ↑

�
Z(M))(τ (M)((t0, τ0, x); t)),

τ (M)((t0, τ0, x); t0) = τ0 .{
τ̇ (M)((t0, τ0, y); t) = (y +

∼
Z + ↑

�
Z(M))(τ (M)((t0, τ0, y); t)),

τ (M)((t0, τ0, y); t0) = τ0 .

Then, for all t ≥ t0 it holds

τ (M)((t0, τ0, x); t) ≤ τ (M)((t0, τ0, y); t), almost surely .

Finally, due to monotonicity, we know that the sequence τ (M) admits a
limit. With the next result we show that the limit is actually finite and, by
monotone convergence, it coincides with a solution of (20), which are by
law unique.

Proposition 3.3. For all t ≥ 0 and x ∈ Rm≥0 the sequence τ (M)((0, 0, x); t)
converges

lim
M→∞

τ (M)((0, 0, x); t) = τ (∗)((0, 0, x); t)

and the limit can be identified with a solution of (20) almost surely, whose
law, however, is unique.
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Proof. Let τ (∗)((0, 0, x); ·) be the limit of the sequence
{τ (M)((0, 0, x); ·)}M≥0. Since the sequence is a monotone sequence and
the limit is continuous, the convergence is actually uniform by Dini’s the-
orem. Observe that the same holds for the limit of the sequence of solutions
of the system (30) when ↑

�
Z(M) is replaced by ↓

�
Z(M). Applying the dom-

inated convergence theorem it follows that τ (∗)((0, 0, x); t) coincides with a
solution of (20). �

Remark 3.2. We do believe that solutions of Equation (20) are actually
unique but we do not need it here and we therefore do not prove this result.
It will follow by methods similar to [11], where weak uniqueness leads
to pathwise uniqueness. Notice, however, that our time change setting is
different from the classical setting.

4. Pathwise construction of affine processes with
time–change

In this section we apply the previous results for the pathwise construction
of affine processes in Rm≥0. Note that this class is also known in the liter-
ature under the name of multitype continuous-state branching process with
immigration. In particular we are going to show that the process construc-
ted in (17) is adapted with respect to the filtration of the underlying Lévy
processes. Then, we will see how to generalize the result for affine processes
in Rm≥0 × Rn with n > 1.
We start introducing the notion of multivariate filtration and multivariate
stopping time taken from [10].
For all s = (s1, . . . , sm2) ∈ Rm2

≥0 , define the σ-algebra

Gs := σ
(
{Z(h)(th), th ≤ sh, for h = 1, . . . ,m2}

)
, (35)

where, with an abuse of notation, we denote with Z(h) the h-th coordinate
of the process obtained by indexing Z as follows:

Z := (Z(1)
1 , . . . , Z(1)

m , . . . , Z
(m)
1 , . . . , Z(m)

m ) .

Then, we complete the σ-algebra by

Gs =
⋂
n∈N
Gs(n) ∨ σ(N ), (36)

where N is the collection of sets in G with P -probability zero and s(n) is
the sequence defined by s(n)

k = sk + 1/n.
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Definition 4.1. A random variable τ = (τ1, . . . , τm2) ∈ Rm2

≥0 is a (Gs)-
stopping time if

{τ ≤ s} := {τ1 ≤ s1, . . . , τm2 ≤ sm2} ∈ Gs, for all s ∈ Rm
2

≥0 .

If τ is a stopping time,

Gτ := {B ∈ G | B ∩ {τ ≤ s} ∈ Gs for all s ∈ Rm
2

≥0} .

Now that we have introduced the necessary notation, we are ready to prove
the following result.

Theorem 4.1. Let τ be a solution of (20).

(1) The time–change equation

X(t) = x+
m∑
i=1

Z(i)(θi(t)), with θi(t) =
∫ t

0
Xi(r)dr , (37)

admits a solution.
(ii) Define

θx(t) := (θ1(t), . . . , θ1(t)︸ ︷︷ ︸
m times

, . . . , θm(t), . . . , θm(t)︸ ︷︷ ︸
m times

) ∈ Rm
2
.

The random variable θx(t) is a Gs stopping time for all t ≥ 0. Hence
the time–change filtration

Gθx(t) := {A | A ∩ {θx(t) ≤ s} ∈ Gs, for all s ∈ Rm
2

≥0} ,

is well defined.
(iii) Let R be the function defined as in (9). The solution of (37) is an

affine process with functional characteristics (0, R) with respect to the
time–changed filtration (Gθx(t))t≥0. In particular the solution of (37) is
unique in law.

Proof. Let Y ∈ Rm2 be the process obtained by casting the solutions of
(13) as

Y := (Y (1)
1 , . . . , Y (1)

m , . . . , Y
(m)
1 , . . . , Y (m)

m ) .

Then

X = x+
m∑
k=1

Y (k)
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is a solution of time-change equation (37). Indeed, if Z(k)
j denotes the j-th

coordinate of the k-th Lévy process,

Z
(k)
j

(∫ t

0
f

(k)
j (Y (s))ds

)
= Z

(k)
j

(∫ t

0
xj +

m∑
k=1

Y
(k)
j (s)ds

)
= Z

(k)
j

(∫ t

0
Xk(s)ds

)
and

Xj(t) = xj +
m∑
k=1

Y
(k)
j (t)

= xj +
m∑
k=1

Z
(k)
j

(∫ t

0
Xk(s)ds

)
.

Now we move on the measurability of the time–change process. Observe
τ := (τ1, . . . , τ1︸ ︷︷ ︸

m times

, . . . , τm, . . . , τm︸ ︷︷ ︸
m times

) ∈ Rm
2
.

where

τk(t) =
∫ t

0
fk(Y (s))ds

is a Gs stopping time for all t ≥ 0. This follows from [10], Theorem VI.2.2..
From the affine relationship between X and Y we conclude that θ(t) is a
Gs stopping time and therefore the time–changed filtration is well defined.
Now, we need to check that X is a homogeneous Markov process with
respect to (Gθx(t))t≥0. Applying [12], Proposition I.6 at each component
Z(k), k = 1, . . . , d we get that (Z(θx(t+ h)) − Z(θx(t)))h≥0 has the same
law as Z(θx(h))h≥0 and it is independent of Gθx(t) .

Therefore
Xx
t+h = Xx(t) +N

(
Z(θx(t+ h))− Z(θx(t))

)
=: S(t)(Z(θx(t+ h))− Z(θx(t)), Xx(t)),

with

S(t) : (Rm
2
,

m∏
i=1

(Gθx(t)))× (Rm,Gθx(t))→ (Rm,Gθx(t))

(Z,X)→ X +
m∑
i=1

Z(i).

Therefore, we conclude that the conditional law of Xx
t+h, given Gθx(t), is

Xx(t) measurable. Markov property translates into
Xx
t+h = S0(Z(θyh), y)|y=Xx(t) .
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Additionally the time–change process is absolutely continuous with
d

dt
θ

(k)
i (t) = Xk(t−), for all k, i = 1, . . . ,m .

The characteristics of the time–changed semimartingale can be computed
using the formulas in [13], Theorem 8.4. Then we conclude that the process
(S0(Z(θx(t)), x))t≥0 has characteristics (β(X−), α(X−),M(X−)), where

β(x) = x1β1 + . . .+ xmβm ,

α(x) = x1α1 + . . .+ xmαm ,

M(x,B) = x1M1(B) + . . .+ xmMm(B), B ∈ B(D) .
�

The result can be extended very easily for processes in Rm≥0×Rn under the
assumption that the d Lévy processes additionally satisfy

(A1) for all k = 1, . . . ,m Z
(k)
j (t) is a deterministic process for all j =

m+ 1, . . . , d ,
(A2) for all k = m + 1, . . . , d Z(k)

j is constantly equal to zero for all j =
1, . . . , d.

Indeed, if τ(t) = (τ1(t), . . . , τm(t)) denotes as before the solution of (16)
restricted to πIZ(k) for all k = 1, . . . ,m, then{

τ̇k(t) = fk(Z(τ(t))) , t ≥ 0 ,
τk(0) = 0 ,

(38)

admits a solution for all k = 1, . . . , d. To show this, it suffices to check that
for each k = 1, . . . , d , it holds

τk(t) =
∫ t

0

(
xk +

d∑
i=1

Y
(i)
k (s)

)
ds

=
∫ t

0

(
xk +

d∑
i=1

Z
(i)
k (τi(s))

)
ds .

In particular, if we have a solution for the system

τk(t) =
∫ t

0

(
xk +

m∑
i=1

Z
(i)
k (τi(s))

)
ds for all k = 1, . . . ,m ,

then, for all t ≥ 0 and j = m+ 1, . . . , d, we can compute

τj(t) =
∫ t

0

(
xj +

m∑
i=1

Z
(i)
j (τi(s))

)
ds .
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Observe that the right hand side of the last equation does not depend
anymore on the left hand side.

Comment. Before to show how to deal with the most general case, we
clarify the main steps by means of an easy two dimensional example with
n = m = 1.

Example 4.1. Suppose that m = n = 1. If we have a solution for the time
change equation

Y
(k)
i (t) := Z

(k)
i (τk) = Z

(k)
i

(∫ t

0
fk(Y (s))ds

)
, for k, i = 1, 2 and t ≥ 0.

Inserting the definitions of the Y (k)
i , it is clear that X satisfies

(
X1
X2

)
=
(
x1
x2

)
+
(
Z

(1)
1 (
∫ ·

0 X1(s)ds) + Z
(2)
1 (
∫ ·

0 X2(s)ds)
Z

(1)
2 (
∫ ·

0 X1(s)ds) + Z
(2)
2 (
∫ ·

0 X2(s)ds)

)
.

In vector notation, we can write

X = x+
2∑
i=1

Z(i)
(∫ ·

0
Xi(s)ds

)
which is indeed the formulation in Theorem 2.2.

However, the previous argument shows that the existence of a solution τ

can be generalized in a straightforward way in Rd only under the additional
condition (A1) and (A2). Observe that (A1) is not really a restriction
because it follows by the conditions on the admissible parameters. The
next proposition shows that, up to a pathwise transformation, also (A2) is
not a real restriction. Moreover we show that, up to an enlargement of the
state space, any affine process with non zero F can be viewed as an affine
process with no state-independent component up to an enlargement of the
state space.

Proposition 4.1. Let X be a conservative affine process taking values on
Rm≥0 × Rn. On a possibly enlarged probability space, there exists a process
Xm such that

(1) Xm is an affine process taking values in Rm+1
≥0 × Rn satisfying the fol-

lowing property: there exists a function ψm : Cm+1
≤0 × iRn → Cd+1 such

that for all (t, xm) ∈ R≥0 × (Rm+1
≥0 × Rn) it holds

Ex
m
[
e〈u,X

m〉
]

= e〈x
m,ψm(t,u)〉
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for u ∈ Cm+1
≤0 × iRn,

(2) for all u = (u1, u2) ∈ Cm+1
≤0 × iRn it holds

π{m+2,...,d+1}ψ
m(t, u1, u2) = u2 ,

for all t ≥ 0,
(3) the set of admissible parameters for Xm satisfies

• (b, a, c,m) = (0, 0, 0, 0),
• for all i, j ∈ J it holds πj(βi) = 0,
• for all i ∈ I it holds∫ (

|πIξ| ∧ |πIξ|2
)
Mi(dξ), for all i ∈ I ,

• for all k = 1, . . . ,m+ 1, the matrix αk has the form

αk =



0
...
0

0 . . . 0 (αk)kk 0 . . . 0 0 . . . 0
0
...
0
0
... αJk
0



,

with (αk)kk ≥ 0 and αJk ∈ S+
n .

(4) for all (t, x) ∈ R≥0 ×D and u ∈ U , define xm = (1, x) and v = (0, u).
It holds

Ex
[
e〈u,X(t)〉

]
= Ex

m
[
e〈v,X

m(t)〉
]
.

Proof. Given two indices i, j = 1, . . . , d+ 1 with i < j denote by

[i : j] := {i, i+ 1, . . . , j − 1, j} .

We start using [14], Proposition 1.23. Fix x0 ∈ R≥0 and define

xm := (x0, x) ∈ Rm+1
≥0 × Rn , (39)

Um := Cm+1
≤0 × iRn , (40)

ψm(t, u0, u1, . . . , ud) :=
(
ϕ(t, u1, . . . , ud) + u0
ψ(t, u1, . . . , ud)

)
. (41)

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
0.

17
.2

16
.2

46
 o

n 
01

/1
6/

21
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



9th August 2018 13:2 Innovations in Insurance, Risk- and Asset Management 9in x 6in b3285-ch08 page 209

Pathwise Construction of Affine Processes 209

Due to regularity in t of ϕ(t, u) and ψ(t, u), we conclude that ψm(t, ·) is a
regular semiflow. Hence, from [8], Proposition 7.4, we conclude that there
exists an affine process Xm with state space Rm+1

≥0 × Rn satisfying

Ex
m
[
e〈u,X

m(t)〉
]

= e〈x
m,ψm(t,u)〉, u ∈ Um .

Now we can apply the method of moving frames (see [15], Theorem 5.1)
to the affine process Xm. Let (0, β, 0, α, 0, 0, 0,M) be its set of admissible
parameters. Denote by B the d×d matrix obtained by placing each βi, i =
1, . . . , d as a column

B =
(
BI 0
BIJ BJ

)
. (42)

Define the matrix

T =
(
I 0
0 B>J

)
∈ Rd×d

and the map

T : Xm 7→ Xm − T>
∫ ·

0
Xm(s)ds .

The process T Xm is an affine process with Fourier–Laplace transform given
by

Ex
m
[
e〈u,TX

m(t)〉
]

= e〈π[1:m+1]x
m,π[1:m+1]ψ

m(t,u)〉+〈π[m+2:d+1]x
m,π[m+2:d+1]u〉.

In particular, the first three conditions are satisfied. Now we move on the
structure of the matrices αk, k = 1, . . . ,m+1. Due to the restrictions on the
admissible parameters, α1 is already in the specified form with (α1)11 = 0.
The matrices αk, k = 1, . . . ,m+ 1 can be transformed simultaneously into
block diagonal form by means of a linear map. See [16]. Finally, if v = (0, u)
with u ∈ U

E(1,x)
[
e〈v,X

m(t)〉
]

= eϕ(t,u)+〈x,ψ(t,u)〉 = Ex
[
e〈u,X(t)〉

]
,

within

ψm(t, (0, u)) :=
(
ϕ(t, u)
ψ(t, u)

)
. (43)

�
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To summarize, only the equation determining πIX is a real time–change
equation. As soon as we provide a strong solution for the system of time–
change equations describing the positive components, we automatically find
a solution for the components taking values in Rn.
We illustrate the previous proposition with an example

Example 4.2. Let us start by writing (11) componentwise. Denote by
Z

(k)
j the j-th coordinate of the k-Lévy process. Then (11) reads

X1(t) = x1 + Z
(0)
1 (t) +

d∑
k=1

Z
(k)
1

(∫ t

0
Xk(s)ds

)
, t ≥ 0

...

Xd(t) = xd + Z
(0)
d (t) +

d∑
k=1

Z
(k)
d

(∫ t

0
Xk(s)ds

)
, t ≥ 0 .

(44)

Due to the drift conditions, we conclude that, for k = m+ 1, . . . , d, Z(k) is
a Lévy process with triplet (βk, 0, 0) with πIβk identically zero. Therefore
we can write

X1(t) = x1 + Z
(0)
1 (t) +

m∑
k=1

Z
(k)
1

(∫ t

0
Xk(s)ds

)
, t ≥ 0

...

Xd(t) = xd + Z
(0)
d (t) +

m∑
k=1

Z
(k)
d

(∫ t

0
Xk(s)ds

)

+
d∑

k=m+1
πdβk

(∫ t

0
Xk(s)ds

)
, t ≥ 0 .

We first transform the process into another affine process with functional
characteristic F = 0. Just for simplicity assume that n = m = 1. Augment
the process X = (X1, X2) by considering

X = (X0, X1, X2) := (1, X1, X2) .

Moreover define, for k = 0, 1, 2,

(Z(0)
k , Z

(1)
k , Z

(2)
k ) := (0, Z(1)

k , Z
(2)
k ) .

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
0.

17
.2

16
.2

46
 o

n 
01

/1
6/

21
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



9th August 2018 13:2 Innovations in Insurance, Risk- and Asset Management 9in x 6in b3285-ch08 page 211

Pathwise Construction of Affine Processes 211

Then we can writeX0(t)
X1(t)
X2(t)

 =

 1
x1
x2

+ Z
(0)
(∫ t

0
X0(s)ds

)
+ Z

(1)
(∫ t

0
X1(s)ds

)

+Z
(2)
(∫ t

0
X2(s)ds

)
, t ≥ 0 .

Observe that the process X takes values in R2
≥0×R. Hence, up to a change

of the state space, we are led to consider solutions of

X1(t) = x1 +
m∑
k=1

Z
(k)
1

(∫ t

0
Xk(s)ds

)
, t ≥ 0

...

Xd(t) = xd +
m∑
k=1

Z
(k)
d

(∫ t

0
Xk(s)ds

)
+

d∑
k=m+1

πdβk

(∫ t

0
Xk(s)ds

)
, t ≥ 0.

The second pathspace transformation additionally simplifies the system and
allows us to work only with affine processes with admissible parameters
satisfying the additional property πkβj = 0 for all j, k ∈ J . This means
that the Lévy processes Z(k) with k = m+1, . . . , d are not only deterministic
but actually identically equal to zero (as required by the assumption (A2)).
This transformation has been introduced in [15] and it is based on the
method of the moving frames. Here we focus on the case n = m = 1.
Let X = (X1, X2) be an affine process in R≥0 × R. Consider the process
Y = (Y1, Y2) with Y0 = x and

Y1(t) := X1(t)−
∫ t

0
X1(s)ds , t ≥ 0

Y2(t) := X2(t)− (β2)2

∫ t

0
X2(s)ds , t ≥ 0 .

From [15], Theorem 5.1 guarantees that Y is again an affine process in
R≥0×R with admissible parameter βY2 = (0, 0). Moreover this transforma-
tion can be inverted. Hence, when n = m = 1, up to an invertible pathspace
transformation, we can restrict ourselves to the solution of a system of type

X1(t) = x1 + Z
(1)
1

(∫ t

0
X1(s)ds

)
, t ≥ 0

X2(t) = x2 + Z
(1)
2

(∫ t

0
X1(s)ds

)
, t ≥ 0 ,
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or more generally

X1(t) = x1 +
m∑
k=1

Z
(k)
1

(∫ t

0
Xk(s)ds

)
, t ≥ 0

...

Xd(t) = xd +
m∑
k=1

Z
(k)
d

(∫ t

0
Xk(s)ds

)
, t ≥ 0 .
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15. M. Keller-Ressel, W. Schachermayer and J. Teichmann, Affine pro-

cesses are regular, Probab. Theory Related Fields 151, 591–611 (2011).
16. D. Filipovic and E. Mayerhofer, Affine diffusion processes: Theory and

applications, Advanced Financial Modelling 8, 1–40 (2009).

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
0.

17
.2

16
.2

46
 o

n 
01

/1
6/

21
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



b2530  International Strategic Relations and China’s National Security: World at the Crossroads

b2530_FM.indd   6 01-Sep-16   11:03:06 AM

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
0.

17
.2

16
.2

46
 o

n 
01

/1
6/

21
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 9, 2018 13:3 Innovations in Insurance, Risk- and Asset Management 9in x 6in b3285-ch09 page 215

Part II

Innovations in Insurance and Asset Management
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Chapter 9

Fixed-Income Returns from Hedge Funds with Negative Fee Structures:
Valuation and Risk Analysis
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The traditional fixed-income asset class has generated very low returns in recent years. Fur-
thermore, due to long-term market trends it is arguably perceived by investors to be riskier
and less diversifying than it has ever been. This has led to the emergence of new products
that are designed to appeal to institutional investors in their quest for finding complemen-
tary return streams, particularly for liability driven investment (LDI). These bond-like prod-
ucts are often augmented with equity-like positions in investors’ portfolios in an attempt to
mitigate risk and generate attractive returns. In this paper, we analyze fee structures that
have emerged in the hedge fund industry. In particular, we study structures with ‘negative
fees,’ which give hedge fund investments risk-return profiles that more closely resemble
traditional fixed-income investments. We analyze the value and risk-return profiles of these
investments, and study the incentives that the fee structures create for fund managers. In
this paper we discuss how the employment of judicious fee structures in combination with
suitable trading strategies can assist in accommodating the appetite of a wide range of in-
vestors. We will present a spectrum of fee structures where investors can pinpoint a region
of interest which fulfills their desired payoff profile.
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Open Access chapter published by World Scientific Publishing Company and distributed under
the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives (CC BY-NC 4.0)
License.
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1. Introduction

According to FitchRatings, the total of sovereign debt with negative yields in-
creased to $11.7 trillion as of June 27, 2016, up $1.3 trillion from the total at the
end of May.a Major institutional investors have approximately 30% to 50% of
their assets allocated to fixed income, which makes them increasingly vulnerable
to the interest rate environment (OECD 12 ). The low-rate environment has also
impacted the manner in which hedge fund managers are compensated. Investors
accept paying the traditional fees to hedge fund managers only if the underlying
trading strategy generates superior returns (or alpha). However, the lukewarm per-
formance of hedge funds in recent years has pressured the fees as investors need
to maintain an acceptable share of gross returns to meet their investment thresh-
olds. The low-rate environment has significantly trimmed the short rebates that
managers used to receive on their short book resulting in lower performance of
trading strategies in general. This has further undermined the acceptability of tra-
ditional 2&20 fee structures (see Bloomberg 2 ) and has encouraged investors to
seek innovative fee methodologies.b

Investors’ demand for yield, combined with the difficult market environment
and the challenges faced by many hedge fund managers in raising assets, has led
institutional investors and fund managers to embrace new fee structures featuring
an element of downside protection. In these fee structures, commonly referred to
as ‘first-loss’ or ‘shared-loss’ structures, the fund manager insures a portion of the
investor’s losses.

There are many variations on the basic framework of the first-loss fee struc-
ture, all of which share the following principle: the fund manager provides down-
side protection by taking the first tranche of losses, and in return the manager
receives a higher percentage of upside participation (higher than the standard per-
formance fee in traditional fee structures). For example, a manager may absorb
losses up to 10% and in return may be entitled to a 50% monthly performance
fee as opposed to a 20% annual performance fee. Investors gain exposure to the
hedge fund investment, with the manager taking the first tranche of losses. He
and Kou 9 analyze the first-loss fee structure, examining the incentives that it cre-
ates for hedge fund managers, as well as its impact on the utility of both investors
and managers. They conclude that for some parameter values, the first-loss fee
structure can increase the utility of both the investor and the manager, and result
in a less risky investment portfolio. However, at the levels of the performance

ahttps://www.fitchratings.com/site/pr/1008156.
bThe traditional 2&20 fee structure consists of a flat fee of 2% of assets under management together
with a performance fee of 20% of net profits.
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fee commonly charged in the industry, they find a significant reduction in investor
utility.c Djerroud et al. 3 analyzed the first-loss fee structure using an option-
pricing perspective, providing a value of the guarantee offered by the manager to
the investor, and compared its value to the performance fee offered by the investor
to the manager, providing a way of assessing ‘fairness,’ which can be used as a
benchmark for negotiation of the terms of the fee structure between investor and
manager.

In this paper we extend the concept of First Loss by considering a guarantee
not just against losses but providing a minimum return guarantee from the man-
ager to the investor. In this regard, the investment starts to look to the investor like
a bond with a coupon payment that contains two parts: a fixed one, coming from
the return guarantee offered by the hedge fund, and a variable one, arising from
the performance of the hedge fund investment net of performance fees. Figure 1
illustrates a spectrum of fee structures from the traditional to the first-loss family
of structures and beyond. In the traditional fee structure, also known as ‘2&20’,
the investor return varies with the performance of the hedge fund strategy; the
investor can experience periods of losses as seen in the leftmost bar in the figure.
A simple first-loss structure involves a higher share of the strategy performance
allocated to the manager in return for downside protection for the investor. The
investor will be less likely to experience periods of losses under this structure;
however, the investor return could be zero. A first variant of the first-loss fee
structure is the one in which the investor requires a minimum return coupled with
a smaller share of the strategy performance in exchange for a higher performance
fee paid to the manager. The rightmost bar illustrates a first-loss structure in which
the investor ‘swaps’ the performance of the strategy on its capital for a promised
fixed ‘coupon’. We refer to these two last structures as a ‘negative fee structure’.
From left to right, the upside to the investor is gradually reduced in exchange for
downside protection, provided by the fund manager. In addition, the investor is
more certain to receive a higher minimum return or a larger ‘coupon’. It should be
noted that the performance fees on the horizontal axis are for illustration purposes
only, and the size of the fixed coupon is dependent on the underlying strategy.

The remainder of the paper is structured as follows. The second section dis-
cusses hedge fund fee structures. The third section analyzes negative fee struc-
tures from an option pricing perspective under a regime-switching model using

cIt should be noted that investor capital brings further benefits to a hedge fund, beyond simply the fees
accrued, such as the reputational benefit of having more assets under management.
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Fig. 1. Schematic representation of hedge fund fee structures from traditional to first-loss fee struc-
tures.

risk-neutral valuation. The fourth section analyzes the risks of the investor’s re-
turns under a negative fee structure, now using the real-world measure. The fifth
section concludes.

2. Hedge fund fee structures: From traditional fee structures to
negative fees

2.1. Traditional fee structures

Traditionally, a hedge fund manager charges two types of fees to the fund in-
vestors:

• A fixed management fee, usually ranging from 1% to 2% of net asset
values.
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• A performance fee, most commonly equal to 20% of net profits obtained
by the fund.

In this paper we assume a single investor and a single share issued by the fund.
The extension to the case of multiple investors and multiple shares is straightfor-
ward. Although fees are paid according to a determined schedule (usually monthly
or quarterly for management fees and annually for performance fees) we will as-
sume a single payment at the end of a fixed term T .

The initial fund supplied by the investor is denoted by X0. The hedge fund
manager then invests the fund assets to create the future gross values Xt , for t > 0.
The gross fund value Xt is split between the investor’s share It (the net asset value)
and the manager’s fee Mt :

Xt = It +Mt .

At time 0, I0 = X0 and M0 = 0.
There are countless variations on the basic framework, including hurdles,

clawbacks, etc. (for more details on first-loss arrangements see Banzaca 1 ). We
will ignore these and assume the commonly used version of a management fee
equal to m ·X0 (m represents a fixed percentage of the initial investment by the in-
vestor), and a performance fee of α ·(XT − (1+m)X0))+ , so that the performance
fee is payable only when the investor’s return is positive, and is zero when it is
negative. Hence, the manager’s payoff due to fees is:

MT = m ·X0 +α · (XT − (1+m)X0)+

In other words, while the management fee is a fixed future liability to the in-
vestor, the performance fee is a contingent claim on the part of the manager. As a
consequence, we will be pricing the management fee simply as a fixed guaranteed
fee with a predetermined future cash value, and we will be valuing the perfor-
mance fee as the value of a certain call option. In our setting, we will assume
a regime-switching process for the invested assets Xt , which allows us to value
the performance fee using known results. It is worth mentioning that hedge fund
managers can speculate on volatility, credit risks, etc. and in contrast to traditional
money managers, they can go long and short. The diversity in investment styles
and the different levels of gross and net exposure that they can employ could result
in leptokurtic returns, for example through frequent large negative returns in the
left tail of the return distribution. Generalization of the current framework to other
models of hedge fund returns, for example using stochastic volatility by employ-
ing generalized autoregressive conditional heteroskedasticity (GARCH) models,
could be a subject for future research.
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From a business perspective, it is important to note that the investor has a
say in the fees paid to the fund manager: sometimes, as in the case of managed
account investments, through a direct negotiation of the fees, at other times, such
as in a normal fund structure, through the right not to invest in the fund in the
first place. However, when it comes to the choice of the portfolio, the manager
has full discretion, within the limits existing in the offering memorandum, without
seeking investors’ permission or input. This consideration will play a role when
we try to extrapolate the results of this article to real investment situations.

2.2. From first-loss to negative first-loss fee structure

While the first-loss fee structure protects investors from downside moves in the
market, if the manager does not generate returns the investor does not make any
profits. A negative fee structure results from modifying the first-loss structure
to provide a fixed level of promised return to investors, while maintaining some
level of downside protection. The cost of this bond-like return for investors is the
increase of the performance fee it pays the manager; we refer to this framework as
the ‘High-yield bond like’ framework. In the limit, the investor has a guaranteed
return and pays 100% of the performance beyond the guarantee to the manager. As
such, the return profile provided to the investor resembles that of an investor in an
asset-backed security, with the underlying portfolio being the assets of the hedge
fund; we refer to this framework as the ‘swap’ framework. In the swap framework,
at the end of each period, all returns generated by the strategy are allocated to the
investor up to the ‘return hurdle’ which is negotiated with the hedge fund manager.
The remaining returns above the return hurdle are fully allocated to the manager as
a performance fee. If the fund return is less than the return hurdle, the manager’s
deposit is used to make up the difference. In subsequent periods, profits are first
used to replenish the manager’s deposit, before either the investor’s return or the
performance fee is paid.

A close look at the negative fee structure reveals that the positions of the in-
vestor and the hedge fund manager can be formulated as portfolios of options.
The first-loss fee structure was analyzed from an option-pricing perspective using
the Black–Scholes model in Djerroud et al. 3 . In the next section, we extend that
analysis to the negative fee structure under a regime-switching model. Given the
bond-like payoff of the negative fee structure, this setting is very similar to the
classical Merton model for credit risk (see Merton 11 ), with the difference coming
from the additional downside protection provided to investors by the hedge fund
manager.
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Denoting the return threshold by H, the payoff functions of the investor and
the manager at the terminal time T are respectively:

IT =

{
X0(1+H) when (XT −HX0)≥ (1− c)X0

XT + cX0 when (XT −HX0)< (1− c)X0

MT =

{
XT −X0(1+H) when (XT −H X0)≥ (1− c)X0

−cX0 when (XT −H X0)< (1− c)X0

Writing these payoff functions more compactly, we obtain:

IT = X0(1+H)− ((1− c)X0−XT +H X0)+

MT = XT −X0(1+H)+((1− c)X0−XT +H X0)+ . (1)

From the above formulas, we see that the investor (manager) has a short (long)
position in a put option on the fund assets, with strike price (1− c)X0 +H X0.
Risk-neutral valuation can be applied to derive the price of the positions.d

In particular, the value of the investor’s position is:

VI(0) = exp(−rT )X0(1+H)−P(X0,T,(1− c)X0 +H X0,r)

where P(X ,T,K,r) is the price of a put option on a non-dividend paying asset with
current value of the underlying X , time to expiration T , strike price K, and where
the risk-free interest rate is r. The above framework can be easily extended to the
case in which the investor receives a portion of the excess return above the return
threshold H.

3. Pricing the payoffs

We assume.a regime-switching model, in which the coefficients of a diffusion
process for the value of the hedge funds assets themselves follow continuous-time
Markov chains. Regime-switching models have found many applications in fi-
nance since the seminal work of Hamilton.7 They are able to reproduce many fea-
tures of real-world return distributions, including skewness, volatility clustering,
and fat tails. For applications of regime-switching models to insurance products
with investment guarantees, similar in sprit to the hedge-fund guarantees con-
sidered in this paper, see Hardy,8 For many other financial applications, see the
papers in the volumes Mamon and Elliottt,10 and Zeng and Wu.13

dIt should be noted that, similarly to Merton, 11 some of the assumptions used to justify arbitrage-free
pricing methods do not hold in practice in the context in which we are applying the model here. In
particular, it is typically not possible for the investor to trade in (or even directly observe) the hedge
fund assets Xt .
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We assume the regime is governed by a finite state continuous-time Markov
chain ε(t) with state space S = {1,2}, where state 1 represents the ‘normal’
regime and state 2 represents the ‘stress’ regime. The generator of ε(t) is the
matrix:

Q =

[
−λ1 λ1

λ2 −λ2

]
,

where λ1 and λ2 are the transition rates of leaving states 1 and 2 respectively. The
value of the hedge fund assets Xt follows a geometric Brownian motion, except
that the coefficients of Xt change with the regime:

dXt = µε(t)Xtdt +σε(t)XtdZt

where Zt is a standard Brownian motion, independent of ε(t), and µε(t) and σε(t)
are constants in each state. For simplicity, when ε(t) = 1,2, we use µ1,µ2 and
σ1,σ2 to denote the growth rates and volatilities in each regime. Finally, the
risk-free asset B satisfies Bt = ert . The value of the investor’s position can be
determined using an expectation under a risk-neutral measure (see Elliott et al. 4 )
to be:

V i
I = EQ[I(T )|ε(0) = i]. (2)

Then, we have

V i
I = exp−rT (1+H)−Pi(X0,T,(1− c)X0 +H X0,r) (3)

where Pi(X ,T,K,r) = EQ[e−rT (K− ST )+|ε(0) = i], i = 1,2 is the European put
option price under the Markov-modulated geometric Brownian motion model.
Moreover, from Guo 6 and Fuh et al.,5 we obtain:

Pi(X ,T,K,r) = EQ[e−rT (K−ST )+|ε(0) = i]

= e−rT
∫ K−1

0

∫ T

0

y
K− y

φ(ln(K− y),m(t),v(t) fi(t,T )dtdy (4)

where:

m(t) = ln(X)+(rT − 1
2

v(t)),

v(t) = (σ2
1 −σ

2
2 )t +σ

2
1 T,

f1(t,T ) = e−λ1T
δ0(T − t)+ e−λ2(T−t)−λ1t [λ1I0(2(λ1λ2t(T − t))1/2)

+(
λ1λ2t
T − t

)1/2I1(2(λ1λ2t(T − t))1/2)],

f2(t,T ) = e−λ2T
δ0(t)+ e−λ2(T−t)−λ1t [λ2I0(2(λ1λ2t(T − t))1/2)

+(
λ1λ2(T − t)

t
)1/2I1(2(λ1λ2t(T − t))1/2)].
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where φ(x,m(t),v(t) is the normal density function with mean m(t) and variance
v(t), I0 and I1 are the modified Bessel functions,

Ia(z) = (
z
2
)a

∞

∑
k=0

(a/2)2k

k!Γ(k+a+1)
. (5)

and δ0 is a delta function with a mass at 0.
Figures 2, 3 and 4 illustrate the sensitivity of the value of the investor’s payoff

to the model parameters. Figure 2 is generated assuming that the market is initially
in the normal state (ε(0) = 1). Figure 3 repeats the analysis assuming that the
market is initially in the stressed state (ε(0) = 2). Finally, Figure 4 assumes that
ε(0) is random, generated according to the stationary distribution of the Markov
chain ε(t), i.e., ε(0) = 1 with probability π1 = λ2/(λ1 +λ2), and ε(0) = 2 with
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Fig. 2. Sensitivity of the value of the investor’s payoff to various parameters, given that the market
is initially in the normal state (ε(0) = 1). Benchmark parameter values are T = 1

12 (the investment
horizon is one month), c = 10% (the manager deposit), r = 1% (annual risk-free interest rate), σ1 =
10% (the annual volatility in normal market), σ2 = 20% (the annual volatility in a stressed market),
λ1 = 1 (the transition rate in a normal market), λ2 = 12 (the transition rate in a stressed market), X0 = 1
(the initial investment), and H = 4% (the annual return threshold).
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Fig. 3. Sensitivity of the value of the investor’s payoff to various parameters, given that the market
is initially in the stressed state( ε(0) = 2). Benchmark parameter values are T = 1

12 (the investment
horizon is one month), c = 10% (the manager deposit), r = 1% (annual risk-free interest rate), σ1 =
10% (the annual volatility in a normal market), σ2 = 20% (the annual volatility in a stressed market),
λ1 = 1 (the transition rate in a normal market), λ2 = 12 (the transition rate in a stressed market), X0 = 1
(the initial investment), and H = 4% (the annual return threshold).

probability π2 = 1−π1. The parameters are set to T = 1
12 (the investment horizon

is one month), c = 10% (the manager deposit), r = 1% (annual risk-free interest
rate), X0 = $1 (the initial investment), and H = 4% (annual return threshold). The
volatility and transition rate in a normal market are σ1 = 10% and λ1 = 1, while
the corresponding parameters in a stressed market are σ2 = 20% and λ2 = 12.

The same basic patterns emerge when looking at the three sets of figures. The
volatility sub-figures show that the value of the investor’s position is generally a
decreasing function of the volatility parameters of the underlying fund. As the
volatility becomes very large, the value of the investor’s position starts to decline
steeply as the hedge fund’s put option (in which the investor has a short position)
becomes more valuable. The deposit sub-figures (varying c) illustrate that, as ex-
pected, the value of the investor’s position is an increasing function of the deposit
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Fig. 4. Sensitivity of the value of the investor’s payoff to various parameters, given that ε(0) is chosen
randomly from its stationary distribution. Benchmark parameter values are T = 1

12 (the investment
horizon is one month), c = 10% (the manager deposit), r = 1% (annual risk-free interest rate), σ1 =
10% (the annual volatility in a normal market), σ2 = 20% (the annual volatility in a stressed market),
λ1 = 1 (the transition rate in a normal market), λ2 = 12 (the transition rate in a stressed market), X0 = 1
(the initial investment), and H = 4% (the annual return threshold).

level. The return threshold sub-figures show the intuitive monotonic relationship
between the value of the investor’s position and the return threshold. The value
of the investor’s position is also a decreasing function of the risk-free rate r, in
accord with the bond-like nature of the investor’s payoff.

The value of the investor’s payoff is lower in a stressed market than in a nor-
mal market. The stressed market starts with a higher volatility (σ2 > σ1), thus
increasing the value of the put option in which the investor has a short posi-
tion. It is further important to note that given the short time horizon (T = 1/12),
there is a significant probability that the market will remain in the high volatil-
ity, stressed regime over the entire life of the contract. For longer-lived contracts,
the discrepancy between the investor’s values given that the market is in either
the stressed or normal state will be less pronounced. Finally, we note that the
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figures for when the initial market state is random with distribution equal to the
stationary distribution of ε(t) are close to those for which the market is started in
the normal state. This is due to the fact that with our benchmark parameters, the
stationary distribution places a high probability of the market being in a normal
state (π1 = 12/13 ≈ 92.3%), as is common in financial applications of regime-
switching models (see the references cited above).

For each figure, one can look for the point where the curve crosses the value
1.0 (if it exists). This allows us to identify the parameter values for which the
contract (in terms of risk-neutral valuation in the regime-switching model) favors
either the investor or the manager. Parameter values for which the curve is above
1.0 show that the contract favors the investor, while for parameter values where
the curve is below 1.0 the contract favors the manager. The point at which the
curve crosses 1.0 is the break-even, or indifference, point.

4. Risk analysis of the investor’s position as a bond

As noted above, the position of the investor is analogous to a bond, with a
promised return of H (received if the hedge fund assets perform sufficiently well).
In the event of default, there is a random amount of recovery (again determined
by the level of the hedge fund assets). In this section, we examine the properties
of the investor’s payoff from the perspective of this analogy with a fixed income
investment. In particular, we compute default probabilities and expected recovery
rates.

In this section, we consider the manager’s and investor’s expected payoff un-
der real world measure. In order to obtain numerical results, one can discretize
the Markov-modulated geometric Brownian motion process as follows:

Xt+∆t = Xt +µε̃(t)Xt∆t +σε̃t Xt
√

∆t ·ηt

Rt :=
Xt+∆t

Xt
−1 = µε̃(t)∆t +σε̃(t)

√
∆t ·ηt

where the ηt are i.i.d. standard normal random variables, and ε̃(t) is a discretized
version of the continuous time Markov chain ε(t), with transition matrix:

P =

[
1− p p

q 1−q

]
.

where p is the probability of transitioning from state 1 to state 2, and q is the
probability of transitioning from state 2 to state 1. The stationary distribution for
this Markov chain is π0 = q(p+q)−1, π1 = p(p+q)−1.
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We simulated 5000 scenarios of the returns of the hedge fund using the above
model with an annual time horizon and daily time steps. Recall that the payoffs to
the hedge fund manager (M̃) and investor (Ĩ) for the traditional fee structure are:

M̃(T ) =
{

α(XT −X0), XT ≥ X0,

0, XT < X0.

Ĩ(T ) =
{

X0 +(1−α)(XT −X0), XT ≥ X0,

XT , XT < X0.

and the payoffs for the negative loss structure are:

M(T ) =
{

XT −X0(1+H), XT ≥ (1− c+H)X0,

−cX0, XT < (1− c+H)X0.

I(T ) =
{

X0(1+H), XT ≥ (1− c+H)X0,

XT + cX0, XT < (1− c+H)X0.

Table 1 presents simulated expected returns and standard deviations (with
standard errors of the estimates in parentheses) for both the traditional fee struc-
ture and the negative fee structure. The volatility in normal markets is set to
σ1 = 0.1, while in stressed markets it is σ2 = 0.2. We consider two different pos-
sible growth rates for each state, µ1 = 0.1,0.15 and µ2 =−0.05,0.0. The proba-
bility p is set to 0.01, while q is set to 0.05, indicating a high level of persistence in
both states, and a stationary distribution of ( 5

6 ,
1
6 )

T . In this section, we assume that
the initial state of the Markov chain is 1 (normal market). We see that for investors,

Table 1. Expected payoffs (and standard deviations in parentheses) for the traditional fee struc-
ture and negative fee structure. X0 = 1,T = 1,α = 20%, p = 0.01,q = 0.05,σ1 = 0.1,σ2 = 0.2,
Nsim = 5000,H = 0.04, and c = 0.1.

(µ0,µ1) EP[M̃(T )] EP[Ĩ(T )] EP[M(T )] EP[I(T )]

µ0 = 0.1, µ1 =−0.05 0.0209 (0.0003) 1.0641 (0.0016) 0.0526(0.0017) 1.0323(0.0003)

µ0 = 0.15, µ1 =−0.05 0.0296 (0.0004) 1.1077 (0.0017) 0.097 (0.0019) 1.036 (0.0003)

µ0 = 0.1, µ1 = 0 0.0218 (0.0003) 1.069 (0.0016) 0.063 (0.0017) 1.034 (0.0003)

µ0 = 0.15, µ1 = 0 0.0308 (0.0003) 1.1142 (0.0016) 0.1081 (0.0019) 1.0369(0.0002)

S.D. of M̃(T ) S.D. of Ĩ(T ) S.D. of M(T ) S.D. of I(T )

µ0 = 0.1, µ1 =−0.05 0.0215 (0.0003) 0.1121 (0.0013) 0.1202 (0.0013) 0.0269 (0.0009)

µ0 = 0.15, µ1 =−0.05 0.0251 (0.0003) 0.1167 (0.0012) 0.1345 (0.0014) 0.0178 (0.0008)

µ0 = 0.1, µ1 = 0 0.0218 (0.0002) 0.1118 (0.0011) 0.1216 (0.0012) 0.0244(0.0009)

µ0 = 0.15, µ1 = 0 0.0247 (0.0003) 0.1131 (0.0012) 0.1312 (0.0013) 0.0169(0.0009)
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expected payoffs are slightly higher for the traditional fee structure, but standard
deviations are also significantly higher in this case. This is consistent with the
analogy that the negative fee structure more closely resembles a fixed income in-
vestment, while the traditional fee structure gives a more ‘equity-like’ payoff. In
contrast, the manager’s expected payoff and standard deviation are higher under
the negative fee structure, and lower under the traditional fee structure. As is to
be anticipated, expected payoffs are larger when the growth parameters are larger;
the standard deviations of payoffs do not change significantly when the µi’s are
varied.

Tables 2 and 3 repeat the analysis with p= 0.1,q= 0.05, and p= 0.01,q= 0.1
respectively. Comparing to the figures in Table 1, Table 2 was generated assuming
a significantly higher (by a factor of 10) probability of transitioning from the nor-
mal state to the stressed state, and Table 3 was generated assuming a significantly
higher (by a factor of 2) probability of transitioning from the stressed state to the
normal state. The stationary distribution for the simulation in Table 2 is ( 1

3 ,
2
3 )

T

(so that the ‘stressed’ state is more prevalent), while the stationary distribution for
the simulation in Table 3 is ( 10

11 ,
1
11 )

T . The expected returns and standard devi-
ations of the different payoff structures appear to be relatively insensitive to the
choices of the parameters p,q.

Given the similarity of the investor’s payoff to the payoff of a fixed income in-
vestment, it is interesting to examine the probability of default (i.e. the probability
that the investor’s return will be lower than the promised hurdle rate H), and the

Table 2. Expected payoffs (and standard deviations in parentheses) for the traditional fee struc-
ture and negative fee structure. X0 = 1,T = 1,α = 20%, p = 0.1,q = 0.05,σ1 = 0.1,σ2 = 0.2,
Nsim = 5000,H = 0.04, and c = 0.1.

(µ0,µ1) EP[M̃(T )] EP[Ĩ(T )] EP[M(T )] EP[I(T )]

µ0 = 0.1, µ1 =−0.05 0.0163(0.0004) 1.0057(0.0022) 0.0164(0.0020) 1.0056(0.0009)

µ0 = 0.15, µ1 =−0.05 0.0181(0.0004) 1.0201(0.0022) 0.0277(0.0021) 1.0104 (0.0009)

µ0 = 0.1, µ1 = 0 0.0197(0.0004) 1.0294(0.0023) 0.0374(0.0021) 1.0117(0.0008)

µ0 = 0.15, µ1 = 0 0.0223(0.0004) 1.0452(0.0023) 0.0520(0.0023) 1.0155(0.0008)

S.D. of M̃(T ) S.D. of Ĩ(T ) S.D. of M(T ) S.D. of I(T )

µ0 = 0.1, µ1 =−0.05 0.0248 (0.0004) 0.1576 (0.0017) 0.1426 (0.0021) 0.0633 (0.0011)

µ0 = 0.15, µ1 =−0.05 0.0258 (0.0004) 0.1575 (0.0017) 0.1467 (0.0020) 0.0602 (0.0012)

µ0 = 0.1, µ1 = 0 0.0266 (0.0004) 0.1597 (0.0016) 0.1507 (0.0020) 0.0581(0.0011)

µ0 = 0.15, µ1 = 0 0.0289 (0.0004) 0.1643 (0.0017) 0.1615 (0.0021) 0.0549 (0.0012)
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Table 3. Expected payoffs (and standard deviations in parentheses) for the traditional fee struc-
ture and negative fee structure. X0 = 1,T = 1,α = 20%, p = 0.01,q = 0.1,σ1 = 0.1,σ2 = 0.2,
Nsim = 5000,H = 0.04, and c = 0.1.

(µ0,µ1) EP[M̃(T )] EP[Ĩ(T )] EP[M(T )] EP[I(T )]

µ0 = 0.1, µ1 =−0.05 0.0227(0.0003) 1.0771(0.0015) 0.0645 (0.0017) 1.0354(0.0003)

µ0 = 0.15, µ1 =−0.05 0.0308(0.0003) 1.1169(0.0015) 0.1095 (0.0018) 1.0382(0.0002)

µ0 = 0.1, µ1 = 0 0.0225(0.0003) 1.0768(0.0015) 0.0637 (0.0017) 1.0356(0.0003)

µ0 = 0.15, µ1 = 0 0.0324(0.0003) 1.1235(0.0015) 0.1179 (0.0018) 1.0381(0.0002)

S.D. of M̃(T ) S.D. of Ĩ(T ) S.D. of M(T ) S.D. of I(T )

µ0 = 0.1, µ1 =−0.05 0.0214 (0.0002) 0.1049 (0.0011) 0.1178 (0.0012) 0.0187 (0.0008)

µ0 = 0.1, µ1 =−0.05 0.0235 (0.0002) 0.1048 (0.0011) 0.1245 (0.0013) 0.0107 (0.0007)

µ0 = 0.1, µ1 = 0 0.0212 (0.0002) 0.1042 (0.0011) 0.1172 (0.0012) 0.0192 (0.0009)

µ0 = 0.15, µ1 = 0 0.0244 (0.0003) 0.1084 (0.0012) 0.1288 (0.0014) 0.0117 (0.0008)

Table 4. Probabilities of default under different parameter assumptions for the
regime-switching model. X0 = 1,T = 1,α = 20%,σ1 = 0.1,σ2 = 0.2,Nsim = 5000, H = 0.04,
and c = 0.1.

Probability of Default

(µ0,µ1) p = 0.01,q = 0.05 p = 0.1,q = 0.05 p = 0.01,q = 0.1

µ0 = 0.1, µ1 =−0.05 0.1338 (0.0048) 0.3544 (0.0067) 0.0962 (0.0042)

µ0 = 0.15, µ1 =−0.05 0.0736 (0.0037) 0.3116 (0.0065) 0.0414 (0.0028)

µ0 = 0.1, µ1 = 0 0.1248 (0.0047) 0.2968 (0.0065) 0.0914 (0.0041)

µ0 = 0.15, µ1 = 0 0.0586 (0.0033) 0.2604 (0.0062) 0.0430 (0.0029)

recovery rate (i.e. the fraction of the promised amount X0(1+H) that is expected
to be recovered conditional upon default having occurred). Simulation results un-
der the regime-switching model for these quantities are provided in Tables 4 and
5 (with standard errors of the estimates in parentheses). Probabilities of default
are quite high, ranging from 18% under the best parameter combination to nearly
30% under the worst parameter set. However, these high probabilities of default
are mitigated by very high expected recovery rates, in the range of 95-96%.

4.1. Impact of the manager’s deposit c

A key parameter for first-loss and negative loss fee structures is the manager’s
deposit c, as it determines the amount of downside protection provided to the
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Table 5. Expected recovery rates under different parameter assumptions for the
regime-switching model. X0 = 1,T = 1,α = 20%,σ1 = 0.1,σ2 = 0.2,Nsim = 5000,H = 0.04,
and c = 0.1.

Recovery Rate

(µ0,µ1) p = 0.01,q = 0.05 p = 0.1,q = 0.05 p = 0.01,q = 0.1

µ0 = 0.1, µ1 =−0.05 0.9825 (0.0507) 0.9429 (0.0722) 0.9922 (0.0399)

µ0 = 0.15, µ1 =−0.05 0.9888 (0.0432) 0.9452 (0.0737) 0.9975 (0.0328)

µ0 = 0.1, µ1 = 0 0.9844 (0.0455) 0.9447 (0.0707) 0.9919 (0.0439)

µ0 = 0.15, µ1 = 0 0.9866 (0.0469) 0.9460 (0.0713) 0.9964 (0.0374)
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Fig. 5. Investor’s expected payoff as a function of the manager’s deposit c. X0 = 1,T = 1,α =
20%, p = 0.01,q = 0.05,σ1 = 0.1,σ2 = 0.2,Nsim = 5000,H = 0.04.

investor by the fund manager (see Djerroud et al. 3 ). In this section, we investi-
gate the impact of this parameter on the payoffs for the fund investor and manager.
Figures 5 and 6 present the expected payoffs of the investor and manager respec-
tively, as the parameter c varies, under the benchmark parameter set used to gen-
erate Table 1. We see that for large levels of downside protection, the investor’s
return quickly approaches the promised value H. For lower levels of insurance,
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Fig. 6. Manager’s expected payoff as a function of the manager’s deposit c. X0 = 1,T = 1,α =
20%, p = 0.01,q = 0.05,µ1 = 0.1,µ2 =−0.05,σ1 = 0.1,σ2 = 0.2,Nsim = 5000,H = 0.04.

the investor’s expected return becomes negative. The manager’s expected pay-
off follows the opposite pattern. Expected payoffs are high for low levels of c,
but decrease rapidly as c increases. Similarly, as illustrated in Figures 7 and 8,
the volatility of the investor’s payoff decreases quickly as the level of downside
protection c increases, and the volatility of the manager’s payoff increases accord-
ingly. The investor’s Sharpe Ratio as a function of c is given in Figure 9 (the
risk-free interest rate is set at r = 1%). For very high levels of protection c, the
Sharpe ratio grows very quickly (as H > r and a very large level of downside
protection virtually guarantees that the investor will receive the return H).

As with many collateralized products, the default and credit risk are intimately
related to the market risk and loss quantile of the reference portfolio. In the pre-
ceding analysis, we have measured risk using the standard deviations of payoffs
and returns. While this is appropriate for normal distributions, the payoffs of the
hedge fund manager and investor are non-normal, especially in the context of the
regime-switching framework. As a consequence, it is important to consider the tail
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Fig. 7. Standard deviation of the investor’s payoff as a function of the manager’s deposit c. X0 =
1,T = 1,α = 20%, p = 0.01,q = 0.05,µ1 = 0.1,µ2 = −0.05,σ1 = 0.1,σ2 = 0.2,Nsim = 5000,H =

0.04.

risks faced by the investor. We will do this by considering the investor’s expected
shortfall (also known as conditional Value-at-Risk, or conditional tail expecta-
tion), the expectation of losses given that the losses are below a given confidence
level of their distribution.

Let

LI =−(I(T )−X0),

so that we have ‘positive’ loss. Define

ESβ (L
I) = E[LI |LI ≥VaRβ (L

I)]

Note that we have a probability mass at the point −HX0. The estimator for ex-
pected shortfall is:

ÊSβ (L
I) = w

∑
N
i=1 I{LI

i>V̂aRβ (LI)}L
I
i

∑
N
i=1 I{LI

i>V̂aRβ (LI)}
+(1−w)V̂aRβ (L

I)
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Fig. 8. Standard deviation of the manager’s payoff as a function of the manager’s deposit c. X0 =
1,T = 1,α = 20%, p = 0.01,q = 0.05,µ1 = 0.1,µ2 = −0.05,σ1 = 0.1,σ2 = 0.2,Nsim = 5000,H =

0.04.

where

w =
∑

N
i=1 I{LI

i>V̂aRβ (LI)}

N · (1−β )

We increase the number of scenarios in the simulation to 1,000,000 in order to
have more scenarios in the tail and a more accurate estimate of expected shortfall.
Figure 10 shows the investor’s expected shortfall as a function of the manager’s
deposit c for β = 0.95,0.99. As expected, lower levels of the manager’s deposit
are associated with higher levels of risk. In particular, for manager deposits near
our benchmark level of c = 10%, expected shortfall can exceed 20% of the initial
investment, indicating significant losses for investors under extreme scenarios.
Because of the large number of scenarios used, the confidence intervals for the
estimates are quite small (the lengths of the confidence intervals are around 1.5%
of the estimated values).
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Fig. 9. Sharpe Ratio of the investor’s payoff as a function of the manager’s deposit c. X0 = 1,T =
1,α = 20%, p = 0.01,q = 0.05,µ1 = 0.1,µ2 =−0.05,σ1 = 0.1,σ2 = 0.2,Nsim = 5000,H = 0.04.

5. Conclusion

Recently, market pressures have led to the introduction of innovative hedge fund
fee structures, in which the fund manager receives higher performance fees in
return for providing downside protection to fund investors. These arrangements
are referred to by the general name of first-loss fee structures. An extreme version
is the negative fee structure, in which the manager receives all profits above a
pre-defined hurdle rate, and for which the investor’s position resembles that of an
investment in an asset-backed security, with the underlying assets being the hedge
fund’s portfolio. In this paper we analyzed the negative fee structure in a regime-
switching model, both by pricing it using risk-neutral valuation, and performing
a risk analysis under the real-world measure (including examining the probability
of default and expected recovery rate).

There are a number of important questions that could be considered for future
research. The fee structure could be analyzed under other mathematical mod-
els, including those that allow more general stochastic behavior of volatility. The
incentives of both the manager, in terms of the structuring of the hedge fund port-
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Fig. 10. Expected shortfall of the investor’s losses as a function of the manager’s deposit c.
X0 = 1,T = 1,α = 20%, p = 0.01,q = 0.05,µ1 = 0.1,µ2 = −0.05,σ1 = 0.1,σ2 = 0.2,Nsim =
1,000,000,H = 0.04.

folio, and the investor, in terms of the decision to withdraw from the fund, could
both be studied, either in isolation (as a stochastic control problem and an optimal
stopping problem respectively), or together (in a stochastic game of control and
stopping). Finally, the limitations of the assumptions underlying risk-neutral val-
uation (particularly the ability to observe the value of, and dynamically trade in,
the underlying assets of the hedge fund) could be investigated, perhaps through
models that more realistically represent the bargaining process between principal
(investor) and agent (manager) that we have discussed this paper.
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Chapter 10

Static Versus Adapted Optimal Execution Strategies

in Two Benchmark Trading Models
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We consider the optimal solutions to the trade execution problem in the two
different classes of i) fully adapted or adaptive and ii) deterministic or static

strategies, comparing them. We do this in two different benchmark models.

The first model is a discrete time framework with an information flow process,
dealing with both permanent and temporary impact, minimizing the expected

cost of the trade. The second model is a continuous time framework where

the objective function is the sum of the expected cost and a value at risk (or
expected shortfall) type risk criterion. Optimal adapted solutions are known

in both frameworks from the original works of Bertsimas and Lo (1998) and
Gatheral and Schied (2011). In this paper we derive the optimal static strate-

gies for both benchmark models and we study quantitatively the improvement

in optimality when moving from static strategies to fully adapted ones. We
conclude that, in the benchmark models we study, the difference is not relevant,

except for extreme unrealistic cases for the model or impact parameters.

Keywords: optimal trade execution, optimal scheduling, algorithmic trading,

calculus of variations, risk measures, value at risk, market impact, perma-
nent impact, temporary impact, static solutions, adapted solutions, dynamic

programming.

1. Introduction

A basic stylized fact of trade execution is that when a trader buys or sells a

large amount of stock in a restricted amount of time, the market naturally

tends to move in the opposite direction. If one assumes an unaffected

price dynamics for the traded asset, trading activity will impact this price

and lead to an affected price. Supply and demand based analysis says

that if a trader begins to buy large amounts, other traders will notice and

the affected price will tend to increase. Similarly, if one begins to sell

large amounts, the affected price will tend to decrease. This is particularly

important when the market is highly illiquid, since in that case no trade

Open Access chapter published by World Scientific Publishing Company and distributed

under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives
(CC BY-NC 4.0) License.
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goes unnoticed. The goal of optimal execution, or more properly optimal

scheduling, is to find how to execute the order in a way such that the

expected profit or cost is the best possible, taking into account the impact

of the trade on the affected price.

As far as we are concerned in this paper, there are two main categories

of trading strategies: deterministic, also called static in the execution litera-

ture jargon, and adapted, or adaptive. We will use static/deterministic and

adapted/adaptive interchangeably. Deterministic strategies are set before

the execution, so that they are independent of the actual path taken by the

price. They only rely on information known initially. Adapted strategies

are not known before the execution. The amount executed at each time de-

pends on all information known up to this time. Clearly market operators,

in reality, will monitor market prices and trade based on their evolution,

so that the adapted strategy is the more natural one. However, in some

models it is much harder to find an optimal trading strategy in the class of

adapted strategies than in the class of static ones.

In 1998, Bertsimas and Lo [6] have defined the best execution as the

strategy that minimizes the expected cost of trading over a fixed period of

time. They derive the optimal strategy by using dynamic programming,

which means that they go backwards in time. The optimal solution is

therefore sought in the class of adapted strategies, as is natural from back-

ward induction, but is found to be deterministic anyway. However, once

an information process is added, influencing the affected price, the opti-

mal solutions are adapted and no longer static. This approach minimizes

the expected trade cost only, without including any risk in the criterion to

be optimized. In particular, the criterion does not take into account the

variance of the cost function.

Two years later, Almgren and Chriss [2] consider the minimization of

an objective function that is the sum of the expected execution cost and

of a cost-variance risk criterion. Unlike the previous model, this setting

includes in the criterion the possibility to penalize large variability in the

trading cost. To solve the resulting mean-variance optimization, Almgren

and Chriss assume the solution to be deterministic from the start. This

allows them to obtain a closed-form solution. This solution, however, is

only the best solution in the class of static strategies, and not in the broader

and more natural class of adapted ones.

Gatheral and Schied [13] later solve a similar problem, the main dif-

ference being that they assume a more realistic model for the unaffected
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price. Gatheral and Schied derive an adapted solution by using an alter-

native risk criterion, the time-averaged value-at-risk function. They obtain

closed-form expressions for the strategy and the optimal cost. The solution

is not static. However, this does not seem to lead to a solution that is very

different, qualitatively, from the static one. Indeed, Brigo and Di Graziano

(2014), adding a displaced diffusion dynamics, find that in many situations

only the rough statistics of the signal matter in the class of simple regular

diffusion models [7]. In this paper we will compare the static and fully

adapted solutions in detail.

Since the solutions obtained in the setting of Almgren and Chriss [2] are

deterministic, they may be sub-optimal in the set of fully adapted solutions

under a cost-variance risk criterion, so several papers have attempted to

find adapted solutions by changing the framework slightly. This allows one

to take the new price information into account during the execution, and to

have more precise models. For example, in 2012 Almgren [5] assumes that

the volatility and liquidity are random. He numerically obtains adapted

results under these assumptions. Almgren and Lorenz [4] obtain adapted

solutions by using an appropriate dynamic programming technique.

Similarly, in this paper we will focus on what one gains from adopting

a more general adapted strategy over a simple deterministic strategy in

the classic discrete time setting of Bertsimas and Lo [6] with information

flow and in the continuous time setting of Gatheral and Schied with time-

averaged value-at-risk criterion [13].

The paper is structured as follows. In Section 2 we will introduce the

discrete time model by Bertsimas and Lo, looking at the case of permanent

market impact on the unaffected price, and including the solution for the

case where the price is also affected by an information flow process. We

will derive and study the optimal static and fully adapted solutions and

compare them, quantifying in a few numerical examples how much one

gains from going fully adapted.

In Section 3 we will introduce the continuous time model as in Gatheral

and Schied, allowing for both temporary and permanent impact and for

a risk criterion based on value at risk. We will report the optimal fully

adapted solution as derived in [13] and we will derive the optimal static

solution using a calculus of variation technique, similar for example to the

calculations in [11]. We will compare the two solutions and optimal criteria

in a few numerical examples, to see again how much one gains from going

fully adapted.
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Section 4 concludes the paper, summarizing its findings, and points to

possible future research directions.

2. Discrete time trading with information flow

2.1. Model formulation with cost based criterion

Let Xt be the number of units left to execute at time t, such that X0 = X

is the initial amount and XT = 0 at the final time T . In this section we

consider a buy order, so that the purpose of the strategy is to buy an amount

X of asset by time T , minimizing the expected cost of the trade. The

amount to be executed during the time interval [t, t+1) is ∆Vt := Xt−Xt+1.

We expect ∆Vt to be non-negative, since we would like to implement a pure

buy program. However we do not impose a constraint of positivity on ∆V ,

so that the optimal solution, in principle, might consider a mixed buy/sell

optimal strategy. We denote Et() the conditional expectation given the

information Ft at time t. We assume that Xt is adapted to the filtration,

i.e. Xt is Ft measurable. Here Ft models the market information that is

accessible at time t.

Since the problem is in discrete time, it is only updated every period so

we will assume that the price does not change between two update times.

With that in mind, we assume that the unaffected mid-price process S̃

is given by

S̃t = S̃t−1 + γYt + σS̃0∆Wt−1, (1)

Yt = ρYt−1 + σY ∆Zt−1, (2)

where the information coefficient γ, and the volatilities σ and σY are

positive constants, W and Z are independent standard Brownian mo-

tions and the parameter ρ is in (−1, 1). We define ∆Wt = Wt+1 − Wt,

∆Zt = Zt+1 − Zt.
S̃ would be the price if there were no impact from our executions. It

follows an arithmetic Brownian motion (ABM) to which an information

component Y has been added. The information process Y is an AR(1)

process. It could be for example the return of the S&P500 index, or some

information specific to the security being traded. γ represents the relevance

of that information, that is how much it impacts the price.

Remark 2.1. The ABM is adopted here for tractability. Even though the

prices can theoretically become negative, one can keep the probability of

negative asset values under control by computing it and monitoring it.
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There are two dynamics that we will consider for the real price S, de-

pending on whether the market impact is assumed to be permanent or

temporary. We will explain what those terms mean when defining the price

dynamics below. We assume that the market impact is linear in both set-

tings, which means that the market reacts proportionally to the amount

executed.

In the case of permanent market impact the mid-price dynamics are

changed by each execution. This means that when we compute the trade

cost, the unaffected price S̃ is replaced, during the execution, by the im-

pacted or affected price S:

St = St−1 + θ∆Vt−1 + γYt + σS0∆Wt−1, S0 = S̃0, (3)

where the permanent impact parameter θ is a positive constant.

In the case of temporary market impact each execution only changes

the price for the current time period. The mid-price S̃ is still given by (1),

and the effective price S is derived from S̃ each period. S has the following

dynamics:

St = S̃t + η∆Vt−1, S0 = S̃0, (4)

where the temporary impact parameter η is a positive constant.

Remark 2.2. Since one case assumes that the impact lasts for the whole

trade, and the other assumes that the impact is instantaneous and affects

only an order at the time it is done, both are limit cases of a more general

impact pattern that is more progressive, see for example Obizhaeva and

Wang [18].

We will keep the two more stylized impact cases and analyze them sep-

arately. The problem in both cases is to minimize the expected cost of

execution. Since we are considering a buy order, Xt is the number of units

left to buy. Hence the optimal expected execution cost at time 0 is

C∗(X0, S0) := min
{∆V }

C(X0, S0, {∆V }) = min
{∆V }

E0

[
T−1∑
t=0

St+1∆Vt

]
, (5)

subject to X0 = X, XT = 0.

Remark 2.3. As we mentioned earlier, we do not enforce any constraint

on the sign of ∆V , which means that we are allowed to sell in our buy

order.
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We now present some calculations deriving the optimal solution of prob-

lem (5) in the cases of permanent impact.1 Our calculations in the general

setting follow essentially Bertsimas and Lo [6] but with a slightly different

notation, as done initially in Bonart, Brigo and Di Graziano [9] and Kulak

[16]. We further derive the optimal solution in the static class, using a more

straightforward method.

2.2. Permanent market impact: Optimal adapted solution

In this section, we solve problem (5) reproducing the solution of Bertsimas

and Lo [6], assuming that the market impact is permanent, which means

that the affected price follows (3). In the adapted setting, the problem is

solved recursively. At any time t, we consider the problem as if t was the

initial time, and the execution was optimal from time t+ 1. We only have

to make a decision for the period t, ignoring the past and having already

solved the future.

For any t, the execution cost from time t onward is the sum of the cost

at time t and the cost from time t+ 1 onward. Taking the minimum of the

expectation, this can be written as the Bellman equation:

C∗t (Xt, St) = min
∆V

Et
[
St+1∆Vt + C∗t+1(Xt+1, St+1)

]
. (6)

Since the execution should be finished by time T (XT = 0), all the remain-

ing shares must be executed during the last period :

∆V ∗T−1 = XT−1.

Substituting this value into the Bellman equation (6) taken at t = T − 1

gives us the optimal expected cost at time T − 1:

C∗T−1(XT−1, ST−1) = min
∆V

ET−1[ST∆VT−1]

= ET−1[STXT−1]

= ET−1[(ST−1 + θXT−1 + γYT + σS0∆WT−1)XT−1]

= ST−1XT−1 + θX2
T−1 + ργXT−1YT−1,

where we used the fact that YT−1, XT−1 and ST−1 are known at time T−1,

as well as the null expectation of standard Brownian motion increments.

1The case of temporary impact is similar and can be found in the online version of this

paper [8].
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We now move one step backward to obtain the optimal strategy at time

T − 2, plugging the expression above in (6) taken at t = T − 2 and noting

that XT−1 = XT−2 −∆VT−2.

C∗T−2(XT−2, ST−2) = min
∆V

ET−2[ST−1∆VT−2 + C∗T−1(XT−1, ST−1)]

= min
∆V

[ST−2XT−2 + γρYT−2XT−2(1 + ρ)

− (γρ2YT−2 + θXT−2)∆VT−2 + θX2
T−2 + θ∆V 2

T−2].

In order to find the minimum of this expression, we set to zero its derivative

with respect to ∆VT−2:

∂CT−2(XT−2, ST−2)

∂∆VT−2
= −θXT−2 − γρ2YT−2 + 2θ∆VT−2 = 0.

The solution of this equation is the optimal amount to execute at time

T − 2:

∆V ∗T−2 =
XT−2

2
+
γρ2YT−2

2θ
.

The optimal expected cost at time T − 2 is

C∗T−2(XT−2, ST−2) = ST−2XT−2 +
3θ

4
X2
T−2 + γρ(1 +

ρ

2
)XT−2YT−2

− γ2ρ4

4θ
Y 2
T−2.

More generally, we can see a pattern emerging from the two previous opti-

mal strategies and expected costs results, which can be proven formally by

induction.

Theorem 2.1 (Optimal execution strategy). For any i ≥ 1 the opti-

mal execution strategy at time T − i, subject to X0 = X, is

X∗t =
T − t
T

X −
t−1∑
k=0

T − t
T − k − 1

aT−kYk

with ai =
γρ2

iθ(1− ρ)2
(ρi − iρ+ i− 1) for i ≥ 1.
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Theorem 2.2 (Optimal expected cost). For any i ≥ 1, the minimum

expected cost at time T − i is

C∗ad(XT−i, ST−i) = ST−iXT−i +
i+ 1

2i
θX2

T−i +
(i+ 1)θai+1

iρ
XT−iYT−i

− biY 2
T−i − (

i−1∑
k=2

bk)σ2
Y

with bi =
γ2ρ4

2θ(1− ρ)3

(
1− ρ2i

1 + ρ
− (1− ρi)2

i(1− ρ)

)
for i ≥ 2.

Corollary 2.1. In particular, the optimal expected cost at time 0 is

C∗ad(X0, S0) = S0X+
T + 1

2T
θX2 +

(T + 1)θaT+1

Tρ
XY0−bTY 2

0 − (
T−1∑
k=2

bk)σ2
Y .

(7)

Remark 2.4. Although this strategy is adapted, it does not take into ac-

count the price, but only the information process. This makes sense because

if there was no information, the optimal strategy would be deterministic as

shown by Bertsimas and Lo [6].

2.3. Permanent market impact: Optimal deterministic

solution

We will now constrain the solutions of (5) to be deterministic, so that the

strategy is known at time 0 and can be executed with no further calcula-

tions, independently of the path taken by the price.

Theorem 2.3 (Optimal deterministic execution strategy). When

we restrict the solutions to the subset of deterministic strategies, the op-

timal strategy is

X∗t =
T − t
T

X +
γY0ρ

2

θ(1− ρ)2

[
ρt − 1 + (1− ρT )

t

T

]
. (8)

Proof. To solve (5), we will simply assume that every Xt is known at time

0 and compute the expected cost at time 0:

C(X0, S0, {∆V })

= E0

[
T−1∑
t=0

St+1∆Vt

]

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
0.

17
.2

16
.2

46
 o

n 
01

/1
6/

21
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 9, 2018 13:3 Innovations in Insurance, Risk- and Asset Management 9in x 6in b3285-ch10 page 247

Static vs Adapted Optimal Execution Strategies in Two Benchmark Trading Models 247

=

T−1∑
t=0

∆VtE0[St+1] since ∆Vt = Xt −Xt+1 is deterministic

=

T−1∑
t=0

∆Vt (E0[St] + θ∆Vt + γE0[Yt+1])

=

T−1∑
t=0

∆Vt

(
S0 + θ

t∑
i=0

∆Vi + γY0

t+1∑
i=1

ρi

)
by induction

= S0X0 +

T−1∑
t=0

(Xt −Xt+1)

(
θ

t∑
i=0

(Xi −Xi+1) + γY0ρ
1− ρt+1

1− ρ

)

= S0X0 + θ

T−1∑
t=0

(Xt −Xt+1)(X0 −Xt+1)

+γY0ρ

T−1∑
t=0

1− ρt+1

1− ρ
(Xt −Xt+1).

Problem (5) can be rewritten as

C∗(X0, S0) = min
x
C(x).

To find the minimum, we set to zero the partial derivatives of the expected

cost with respect to X1, ..., XT−1. For t = 1, ..., T − 1 it gives us

∂C

∂Xt
= θ(X0 −Xt+1)− θ(X0 −Xt)− θ(Xt−1 −Xt)

+ γρY0

(
1− ρt+1

1− ρ
− 1− ρt

1− ρ

)
= 0.

We obtain the difference equation

Xt+1 − 2Xt +Xt−1 =
γY0

θ
ρt+1, (9)

with boundary conditions X0 = X and XT = 0.

The solution of (9) is of the form A + Bt + Cρt for some constants A,

B and C. Plugging this expression back in the equation yields

A+B(t+ 1) + Cρt+1 − 2(A+Bt+ Cρt) +A+B(t− 1) + Cρt−1

=
γY0

θ
ρt+1
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Cρt(ρ− 2 + ρ−1) =
γY0

θ
ρt+1

C =
γY0ρ

2

θ(1− ρ)2
.

From the boundary conditions we have

X0 = A+ C = X, A = X − γY0ρ
2

θ(1− ρ)2
,

and

XT = A+BT + CρT = 0, B = −X
T

+
γY0ρ

2(1− ρT )

θ(1− ρ)2T
.

Combining those, we obtain the closed-form formula of the optimal deter-

ministic strategy.

Remark 2.5. If Y0 = 0 (no initial information), ρ = 0 (information is just

noise) or γ = 0 (information is irrelevant), the strategy consists in splitting

the execution in orders of equal amounts over the period T . This is a partic-

ular case of the strategy more generally known as VWAP (volume-weighted

average price), and is the strategy obtained when there is no information.

Theorem 2.4 (Expected cost associated with the deterministic

strategy). The expected cost at time 0 associated with the optimal de-

terministic strategy is

C∗det(X0, S0) = S0X +
T + 1

2T
θX2 +

γY0ρX

T (1− ρ)

(
T − ρ1− ρT

1− ρ

)
− bTY 2

0

(10)

Proof. For lighter calculations, we set

C =
γY0ρ

2

θ(1− ρ)2
.

The optimal expected cost at time 0 is

C∗(X0, S0) = S0X0 + θ

T−1∑
t=0

(X∗t −X∗t+1)(X0 −X∗t+1)

+ γY0ρ

T−1∑
t=0

1− ρt+1

1− ρ
(X∗t −X∗t+1). (11)
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We compute the two sums in (11) separately for clarity:

C∗(X0, S0) = S0X0 + θS1 + γY0ρS2.

The second sum is

S2 =

T−1∑
t=0

1− ρt+1

1− ρ

(
X

T
+ C

(
ρt(1− ρ) +

ρT − 1

T

))
=

X

T (1− ρ)

(
T − ρ1− ρT

1− ρ

)
+

C

1− ρ

(
1− ρT

1− ρ
(1− ρ) + ρT − 1− ρ1− ρ2T

1− ρ2
(1− ρ) + ρ

(1− ρT )2

T (1− ρ)

)
=

X

T (1− ρ)

(
T − ρ1− ρT

1− ρ

)
− Cρ(1− ρ2T )

1− ρ2
+
Cρ(1− ρT )2

T (1− ρ)2
.

The first sum is

S1 =

T−1∑
t=0

(
X

T
+ C

(
ρt(1− ρ) +

ρT − 1

T

))
×
(
t+ 1

T
X − C(ρt+1 − 1 + (1− ρT )

t+ 1

T
)

)
=

T−1∑
t=0

t+ 1

T 2
X2 +

T−1∑
t=0

CX

T

(
1− ρt+1 + (ρT − 1)

t+ 1

T

)

+

T−1∑
t=0

t+ 1

T
CX

(
ρt(1− ρ) +

ρT − 1

T

)

+

T−1∑
t=0

C2

(
ρt(1− ρ) +

ρT − 1

T

)(
1− ρt+1 + (ρT − 1)

t+ 1

T

)

=
T (T + 1)

2T 2
X2 +

T−1∑
t=0

CX

T

(
−(t+ 2)ρt+1 + (t+ 1)ρt + 2(t+ 1)

ρT − 1

T
+ 1

)

+ C2
T−1∑
t=0

(
ρt(1− ρ− ρt+1 + ρt+2) +

(
(t+ 1)ρt − (t+ 2)ρt+1 + 1

) ρT − 1

T

)

+ C2
T−1∑
t=0

(t+ 1)
(ρT − 1)2

T 2

S1 =
CX

T

(
−(T − 1)ρT+2 + TρT+1 − ρ2

(1− ρ)2
− 2

ρ− ρT+1

1− ρ

+
TρT+1 − (T + 1)ρT + 1

(1− ρ)2

)
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+
CX

T

(
(T + 1)ρT − 1

)
+ C2

T−1∑
t=0

(
ρ2t+1(ρ− 1) +

(1− ρ)(ρT − 1)

T
tρt
)

+ C2
T−1∑
t=0

(
1− ρ+

ρT − 1

T
(−2ρ+ 1)

)
ρt +

(ρT − 1)2

T 2
(t+ 1)

+
ρT − 1

T
+
T + 1

2T
X2

=
CX

T

(−T − 1)ρT+2 + 2(T + 1)ρT+1 + ρ2 − (T + 1)ρT + 1− 2ρ

(1− ρ)2

+
CX

T

((T + 1)ρT − 1)(1 + ρ2 − 2ρ)

(1− ρ)2

+ C2

(
ρ2T − 1

1 + ρ
ρ+

ρT − 1

T
ρ

(T − 1)ρT − TρT−1 + 1

1− ρ

)
+ C2

(
T − Tρ+ (1− 2ρ)(ρT − 1)

T

1− ρT

1− ρ
+
T + 1

2T
(ρT − 1)2 + ρT − 1

)
+
T + 1

2T
X2

=
C2

T (1− ρ2)

((
1− T

2
ρ2 + Tρ+

−T − 1

2

)
ρ2T − ρT+2 + ρT +

T + 1

2
ρ2

)
+

C2

T (1− ρ2)

(
−Tρ+

T − 1

2

)
+
T + 1

2T
X2

=
C2(1− ρ)(1− ρ2T )

2(1 + ρ)
− C2(1− ρT )2

2T
+
T + 1

2T
X2.

Substituting those results in (11), we obtain

C∗(X0, S0)

= S0X + θ

(
C2(1− ρ)(1− ρ2T )

2(1 + ρ)
− C2(1− ρT )2

2T
+
T + 1

2T
X2

)
+ γY0ρ

(
X

T (1− ρ)

(
T − ρ1− ρT

1− ρ

)
− Cρ(1− ρ2T )

1− ρ2
+
Cρ(1− ρT )2

T (1− ρ)2

)
= S0X +

γ2Y 2
0 ρ

4(1− ρ2T )

2(1 + ρ)θ(1− ρ)3
− γ2Y 2

0 ρ
4(1− ρT )2

2Tθ(1− ρ)4
+
T + 1

2T
θX2

+
γY0ρX

T (1− ρ)

(
T − ρ1− ρT

1− ρ

)
− γ2Y 2

0 ρ
4(1− ρ2T )

(1− ρ2)θ(1− ρ)2
+
γ2Y 2

0 ρ
4(1− ρT )2

T (1− ρ)4θ
.
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2.4. Permanent market impact: Adapted vs

deterministic solution

We will now quantify the difference between the two strategies obtained

above. First, we define the difference.

Definition 2.1 (Absolute difference). The absolute difference between

the deterministic and the adapted optimal expected cost at time 0 is

εabs := C∗det(X0, S0)− C∗ad(X0, S0).

Proposition 2.1 (Value of the absolute difference). The value of the

absolute difference is

εabs = (
T−1∑
k=2

bk)σ2
Y . (12)

Proof. For a detailed proof, please refer to the full paper [8].

Corollary 2.2. The two strategies have the same expected cost when the

information process is not random (σY = 0).

Corollary 2.3. As expected, the adapted strategy is always better than the

deterministic one.

Definition 2.2 (Relative difference). The relative difference between

the deterministic and the adapted optimal expected cost at time 0 is

εrel :=
εabs

C∗det(X0, S0)
.

We now quantify the difference between the deterministic and the

adapted strategies through a few numerical examples. The amount of shares

to execute X is set at 106, big enough to have an impact on the market.

The initial price of the stock is S0 = $100, making it intuitive to take the

percentage volatility. The number of periods is T = 14 so that there is

around one execution every 30 minutes over a trading day for example.

The market impact θ = 10−5 is chosen to increase the expected price by a

total of 10% over the execution, as done in Bertsimas and Lo [6]:

X(S0 + θX) = 1.1S0X.

The percentage standard deviation of the price over a time period σ =

0.51% is chosen such that the annual volatility is around 30%, or equiva-

lently the daily volatility is around 1.89%:

σ
√

14 = 1.89%.
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The information process is positively auto-correlated ρ = 0.5. Its impor-

tance γ = 1 is chosen arbitrarily. Its volatility σY = 0.44 is chosen such

that the standard deviation of the information component is of the same

order as that of the stock price:√
E[(γYt)2] ' γσY√

1− ρ2
= 0.51 for t large enough.

By default we assume that there is no initial information Y0 = 0.

The values described above are summarized in Table 1.

Table 1. Benchmark parameter values

X 106

S0 100

T 14

θ 10−5

σ 0.51%

ρ 0.5

γ 1

σY 0.44

Y0 0

Remark 2.6. In order to obtain an order of magnitude for the expected

cost, note that the best we can do is the cost of an instantaneous execution,

which is the cost without market impact, and this would be

S0X = 108.

To get an idea of the influence of the initial information on both strate-

gies, we give a few examples of unaffected and affected price paths obtained

with different values of Y0, and their associated strategies in Figures 1, 2

and 3.

The upper plot in Figure 1 represents the evolution of the price through-

out the execution. As we can see, the affected price S would be higher than

the unaffected price S̃ with both strategies since the market is reacting

against a buy order. The lower plot in Figure 1 represents the amount of

shares Xt left to be executed throughout the execution. The red curve is

the optimal fully adapted strategy. The blue curve is the optimal static or

deterministic strategy. Since Y0 = 0, the deterministic strategy is simply a

straight line going from the initial value X at time 0 to the final value 0

at time T : the execution is done evenly over the time horizon and this is

the well known VWAP strategy. The adapted strategy is roughly the same,
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Fig. 1. One path of a simulated strategy with benchmark parameters (Y0 = 0)

but it is less smooth since the strategy changes according to the path taken

by the price during the execution.

With the benchmark parameters, we find that C∗det(X0, S0) = 1.053 ×
108, C∗ad(X0, S0) = 1.0534 × 108 and εrel = 1.97 × 10−4. In particular,

the costs obtained with the path shown in Figure 1 are Cdet(X0, S0) =

1.0256× 108 and Cad(X0, S0) = 1.0257× 108 so the deterministic strategy

would have been better than the adapted one in retrospect.

Remark 2.7. The first step is always the same for both strategies since it

relies purely on information known at time 0.
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Fig. 2. One path of a simulated strategy with positive initial information (Y0 = 5)
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Since the information process is cumulative and positively auto-

correlated, a positive initial information suggests that the information term

will be increasing throughout the trade. To minimize the impact of the in-

formation, the trade is shifted towards the beginning of the time horizon:

we increase the rate at which we buy in a first part. We say that the

strategies are “aggressive in the money”.

With Y0 = 5, we find that the optimal costs for the static and adapted

cases are, respectively, C∗det(X0, S0) = 1.0967×108, C∗ad(X0, S0) = 1.0965×
108 and εrel = 1.89 × 10−4. In particular, the costs obtained in the single

path shown in Figure 2 are Cdet(X0, S0) = 1.1086× 108 and Cad(X0, S0) =

1.1082× 108.
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Fig. 3. One path of a simulated strategy with negative information Y0 = −5.

On the other hand, a negative initial information suggests that the

information term will be more and more negative throughout the term,

so its impact on the price will be to reduce it more and more. Hence we

want to begin buying as late as we can, even selling shares in a first part

to maximize the benefits from the price decrease. Indeed, with Y0 = −5,

we find that C∗det(X0, S0) = 1.0039× 108, C∗ad(X0, S0) = 1.0037× 108 and

εrel = 2.06×10−4. In particular, the costs obtained in the single path shown

in Figure 3 are Cdet(X0, S0) = 9.8777×107 and Cad(X0, S0) = 9.8758×107.

Note that since we begin by selling shares, the effective price goes below

the unaffected price at first.

Remark 2.8. In some situations it might be natural to impose a constraint

on the sign of ∆V , since one may not wish to sell during a buy order.
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Now that we have in mind the path taken by the price and by the

strategies for a few examples, we will study the influence of each param-

eter separately, analyzing in a few numerical examples the impact of the

parameters and inputs

X,T, θ, ρ, γ, σY .

In each numerical example, the parameters will be those of Table 1 except

for the one whose influence we study. This allows us to study one parameter

at a time.

Remark 2.9. Since σ does not appear in the formulas in either case, it

has no influence on the optimal expected cost.
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Fig. 4. Influence of X on the expected costs and relative difference

We begin by studying the influence of X. Figure 4 shows the evolution

of the expected costs and the relative difference when X varies from 105

to 107. The absolute difference does not depend on the amount of shares

to execute X, while the expected cost grows with X, so the relative error

decreases when X increases. This can be explained by the fact that the

market impact parameter θ has been calibrated for a certain X, and its

total permanent influence becomes considerable when X is very large. For

example, when X = 107 the permanent impact doubles the price over the

execution: the affected price at time T is roughly twice the unaffected

price. This is not really representative of the impact of X since θ should

be a function of X: the impact we have on the market should not grow

linearly with the amount executed, as opposed to our assumption.

We now consider the influence of T . The relative difference between the

two strategies increases linearly with the time horizon for T large enough.

This stems from the fact that the deterministic strategy is set at time 0, and
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does not benefit from the information that arrives after, while the adapted

strategy will do the best of what is given. Given a full trading week to

execute the order, the adapted strategy is almost 0.2% better than the

deterministic one.
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Fig. 5. Influence of θ on the expected costs and relative difference

We now turn to the influence of θ. As said in the study of the influence

of X, when θ increases, the impact we have on the market increases. More

and more of the expected cost is unavoidable so it becomes more and more

difficult to reduce the expected cost. Hence the relative difference decreases

as θ increases. Figure 5 shows the evolution of the expected costs and the

relative difference when θ varies from 10−8 to 10−4. For a total increase

of 1% of the price over the execution (θ = 10−6), the relative difference is

0.21%.

Remark 2.10. It would be interesting to study the joint influence of X

and θ, as they depend strongly on each other financially. For example, θ

could be taken as a function of X (one could start with a linear function).

We have an interesting pattern on the optimal expected cost when θ ↓ 0.

Proposition 2.2. As long as σY 6= 0, the optimal expected cost tends to

−∞ when θ tends to 0. When there is initial information (Y0 6= 0), the

expected cost associated with the best deterministic strategy tends to −∞
when θ tends to 0.

To understand the intuition behind this, we will look at a few examples of

strategies used for a small value of θ, and initial information. As we can see

in Figure 6, the strategies are extremely aggressive when the market impact

parameter is small, since we accelerate the execution when the price goes
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against us. There are strategies related to idealized round trips: due to the

cumulative effect of information on the trading price, we quickly buy way

more than needed, and sell back later, with a higher information-increased

price, until we reach our goal. Without market impact, it seems there is

no foreseeable punishment for massively leveraging the information benefit.

Note that it is impossible to do this in reality since there is a finite number

of shares and this would be prohibited as market manipulation.
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Fig. 6. One path of a simulated strategy with positive initial information (Y0 = 5) and
small market impact (θ = 10−8)
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Fig. 7. One path of a simulated strategy with negative initial information (Y0 = −5)

and small market impact (θ = 10−8)

As we can see in Figure 7, when there is negative initial information the

strategies are the opposite of the case of positive initial information, since
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now information will tend to decrease the price cumulatively in time. We

sell a lot of shares initially, since we know that the price will go down later

due to information, when we will be able to buy back at a much reduced

price.
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Fig. 8. Influence of ρ on the expected costs and relative difference

We consider now the influence of ρ. Figure 8 shows the evolution of the

expected costs and the relative difference when ρ varies from −0.9 to 0.9.

Although there is some noticeable difference in the expected costs for large

negative auto-correlations (ρ < −0.8), the relative difference is particularly

relevant when the information process is strongly positively auto-correlated

(ρ > 0.8). It then explodes, up to 8.7% when Y0 = −5 and ρ = 0.9, but

such a huge value does not seem realistic for ρ.
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Fig. 9. Influence of γ on the expected costs and relative difference

As concerns the influence of γ, we have the following results. The rela-

tive difference grows with γ, which is intuitive since the more relevant the

information is, the more important it is to update our strategy when we
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receive new information. This seems especially true when the initial infor-

mation is negative. Figure 9 shows the evolution of the expected costs and

the relative difference when γ varies from 1 to 10.

0 0.5 1 1.5 2 2.5 3 3.5 4

Volatility of Y

1.036

1.038

1.04

1.042

1.044

1.046

1.048

1.05

1.052

1.054

E
xp

ec
te

d 
co

st

#108

deterministic
adapted

0 0.5 1 1.5 2 2.5 3 3.5 4

Volatility of Y

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

R
el

at
iv

e 
di

ffe
re

nc
e

Y0=-5
Y0=0
Y0=5

Fig. 10. Influence of σY on the expected costs and relative difference

We finally study the influence of σY . Figure 10 shows the evolution

of the expected costs and the relative difference when σY varies from 0

to 4. The volatility of the information process has no influence on the

deterministic expected cost, while the adapted expected cost decreases with

σY . Hence the relative difference increases with σY .

The solutions derived and their analysis are similar when assuming a

temporary market impact. Please refer to the full paper [8].

This concludes our analysis of the discrete time case. We now move to

the continuous time case.

3. Continuous time trading with risk function

3.1. Model formulation with cost and risk based criterion

In this section we will recall the framework used by Gatheral and Schied

[13], with slightly modified notations. Let xt be the stochastic process for

the number of units left to be executed at time t, such that x0 = X and

xT = 0. In the static case x will be a deterministic function of time. We

assume t 7→ xt to have absolutely continuous paths and to be adapted. The

unaffected price S̃, namely the unaffected price one would observe in the

market without our trades, is assumed to follow a geometric Brownian mo-

tion (GBM). Hence the unaffected and impacted/affected asset mid-prices
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are respectively given by

dS̃t = σS̃tdWt, S̃0 = S0, (13)

St = S̃t + ηẋt + γ(xt − x0), (14)

where the volatility σ, the temporary impact parameter η and the per-

manent impact parameter γ are positive constants and W is a standard

Brownian motion.

The term ηẋt is the temporary impact. As in the discrete time case, it

only affects the current execution. The term γ(xt − x0) is the permanent

impact. As in the discrete time case, it has a permanent effect on the price.

Indeed, the effect is proportional to the total amount of shares executed up

to the current time.

Remark 3.1. Since the unaffected price is a GBM, it can not become

negative. This is an improvement compared to the ABM of Bertsimas and

Lo. However, we have seen in the examples given by Brigo and Di Graziano

[7], where a displaced diffusion is also considered, that this may not make

a big difference in practice.

In this setting we will consider a sell order, which means that xt is the

amount of shares left to be sold at time t. At time t, we instantly sell a

quantity −ẋtdt at price St. Hence the total execution cost associated with

the strategy xt is

C(x) :=

∫ T

0

Stẋtdt =

∫ T

0

[
S̃t + η ẋt + γ(xt − x0)

]
ẋtdt

= −XS0 −
∫ T

0

xtdS̃t + η

∫ T

0

ẋ2
tdt+

γ

2
X2.

The problem is to minimize an objective function that consists in both

the expected cost and a risk criterion.

The risk term chosen by Gatheral and Schied is

E0

[
λ̃

∫ T

0

xtŜtdt

]
,

where Ŝt = S̃t+γxt and the risk aversion parameter λ̃ is a positive constant.

We choose to use Ŝ instead of S̃ because we want to take into account the

effect of the permanent impact on the mid-price. Gatheral and Schied also

consider the simpler case where S̃t enters the risk criterion, instead of Ŝt,

see also [7] for the displaced diffusion case.
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Remark 3.2. This risk measure can be seen as a Value at Risk (VaR) or

an expected shortfall, as shown below.

Proof. Let St be a GBM

dSt = σStdWt, S0.

Let να,t,h be the VaR measure computed at time t, for the position, for a

given confidence level α over a time horizon h.

P{x(t)(St − St+h) ≤ να,t,h|Ft} = α.

If at t we have x(t) shares with price St, the time t VaR measure for a risk

horizon h under DD dynamics at confidence level α would be

νt[x(t)(St − St+h)] = x(t)νt[(St − St+h)]

= x(t)νt[St(1− exp(−σ2h/2 + σ(Wt+h −Wt)))]

= x(t)Stqα[1− exp(−σ2h/2 + σ
√
hε)]

= x(t)St[1− exp(−σ2h/2 + σ
√
hq1−α(ε))]

=: λ̃αx(t)St,

where ε is a standard normal, where we have used the homogeneity of VaR,

and where qα(X) is the α quantile of the distribution of X. This is the

VaR measure for the instantaneous position at time t. If we average VaR

over the life of the strategy we obtain the risk criterion

RVaRα(x) := λ̃

∫ T

0

x(t)(St −K)dt.

The expected shortfall risk criteria is the same with different λ.

The objective function to minimize is then

E0[C(x)] + λ̃E0

[∫ T

0

xtŜtdt

]
= −S0X +

γ

2
X2+

E0

[
η

∫ T

0

ẋ2
tdt−

∫ T

0

xtdS̃t + λ̃

∫ T

0

xtŜtdt

]
.

(15)

We can simplify the problem easily by taking out the constants. Setting

λ = λ̃/η, we now consider the problem

min
x

E0

[∫ T

0

(ẋ2
t + λxtŜt)dt

]
. (16)
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3.2. Optimal adapted solution under temporary and

permanent impact

We will briefly recall the general (adapted) solutions of problem (16) since

they have already been obtained by Gatheral and Schied [13], Theorem 3.2,

page 9. Let κ :=
√
λγ.

Theorem 3.1 (Optimal execution strategy). The unique optimal

strategy is

x∗t = sinh(κ(T − t))

(
X

sinh(κT )
− λ

2κ

∫ t

0

S̃s
1 + cosh(κ(T − s))

ds

)
. (17)

Theorem 3.2 (Value of the minimization problem). The value of

the minimization problem is

E0

[∫ T

0

((ẋ∗t )
2 + λx∗t Ŝ

∗
t )dt

]
= κX2 coth(κT ) +

λXS0

κ
tanh

(
κT

2

)

− λ2S2
0e
σ2T

4κ2

∫ T

0

tanh2

(
κt

2

)
e−σ

2tdt.

(18)

3.3. Optimal static solution under temporary and

permanent impact

We will now solve problem (16) restricted to the set of deterministic strate-

gies.

Theorem 3.3 (Optimal deterministic execution strategy). The op-

timal deterministic strategy is

x∗t =
sinh(κ(T − t))

sinh(κT )
X +

sinh(κ(T − t)) + sinh(κt)− sinh(κT )

sinh(κT )

S0

2γ
. (19)

Proof. To solve problem (16), we will assume that the strategy x is fully

known at time 0. The function we want to minimize is

E0

[∫ T

0

(ẋ2
t + λxtŜt)dt

]
=

∫ T

0

(ẋ2
t + λxtE0[Ŝt])dt since xt is deterministic

=

∫ T

0

(ẋ2
t + λxt(S0 + γxt))dt.
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To find the optimal strategy x∗ that minimizes this function, we consider

the standard perturbations of the processes x and ẋ (see for example [11]):

xεt = x(t) + εht,

ẋεt = ẋt + εḣt,

where the perturbation process h is an arbitrary function satisfying h0 =

hT = 0 and ε is a constant. Substituting the perturbed path into the

previous formula we obtain

H(ε) =

∫ T

0

(ẋt + εḣt)
2 + λ(xt + εht) (S0 + γ(xt + εht)) dt.

The first derivative of H with respect to ε is

H ′(ε) =

∫ T

0

2ḣt(ẋt + εḣt) + λ(xt + εht) (γht) + λht (S0 + γ(xt + εht)) dt.

Evaluating the previous expression at ε = 0 gives

H ′(0) =

∫ T

0

2ḣtẋt + λxtγht + λht (S0 + γxt) dt

= 2 (hT ẋT − h0ẋ0)−
∫ T

0

2htẍtdt+

∫ T

0

λht (2γxt + S0) dt

=

∫ T

0

ht (−2ẍt + 2λγxt + λS0) dt.

The optimal path is obtained by setting H ′(0) = 0. Since h is an arbitrary

function, the following differential equation must be satisfied for all t ∈
[0, T ]:

ẍt − κ2xt =
λS0

2
, (20)

where we set κ :=
√
λγ as in the adapted case.

Since λ is positive (the rational trader is risk-averse) and γ is positive

(the market reacts against our execution), the roots of the characteristic

equation are real. Hence the solution of this differential equation is of the

form A cosh(κt)+B sinh(κt)+C for some constants A, B and C. Substitute

in (20):

κ2A cosh(κt) + κ2B sinh(κt)

−κ2 (A cosh(κt) +B sinh(κt) + C) =
λS0

2
, C = −S0

2γ
.
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From the boundary conditions we have:

x0 = A+ C = X, A = X +
S0

2γ

and

xT = A cosh(κT ) +B sinh(κT ) + C = 0,

B =
−X cosh(κT )

sinh(κT )
+
S0

2γ

(1− cosh(κT ))

sinh(κT )
.

The solution of (20) is

x∗t = (X − C) cosh(κt)− (X − C) cosh(κT ) + C

sinh(κT )
sinh(κt) + C

= (X − C)

(
cosh(κt) sinh(κT )− cosh(κT ) sinh(κt)

sinh(κT )

)
+ C

(
1− sinh(κt)

sinh(κT )

)
.

Remark 3.3. When λ ↓ 0 (no risk in criterion), the deterministic strategy

tends to a VWAP.

Theorem 3.4. (Value of the minimization problem with the deter-

ministic strategy). The value of the minimization problem in the deter-

ministic framework is

E0

[∫ T

0

((ẋ∗t )
2 + λx∗t Ŝ

∗
t )dt

]
=κX2 coth(κT ) +

κS0

γ

(
X +

S0

2γ

)
tanh

(
κT

2

)
− λTS2

0

4γ
.

(21)

Proof. The value of the minimization problem obtained when following

the deterministic strategy of equation 19 is
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E0

[∫ T

0
((ẋ∗t )

2 + λx∗t Ŝ
∗
t )dt

]

=

∫ T

0

(
−κ cosh(κ(T − t))

sinh(κT )
X +

κ cosh(κt)− κ cosh(κ(T − t))

sinh(κT )

S0

2γ

)2

dt

+λS0

∫ T

0

(
sinh(κ(T − t))

sinh(κT )
X +

sinh(κ(T − t)) + sinh(κt)− sinh(κT )

sinh(κT )

S0

2γ

)
dt

+κ2
∫ T

0

(
sinh(κ(T − t))

sinh(κT )
X +

sinh(κ(T − t)) + sinh(κt)− sinh(κT )

sinh(κT )

S0

2γ

)2

dt

= κ2
∫ T

0

(
cosh2(κ(T − t))

sinh2(κT )
X2
)
dt

+κ2
∫ T

0

(
cosh2(κt) + cosh2(κ(T − t))− 2 cosh(κt) cosh(κ(T − t))

sinh2(κT )

S2
0

4γ2

)
dt

+2κ2
∫ T

0

(
cosh2(κ(T − t))− cosh(κ(T − t)) cosh(κt)

sinh2(κT )

S0X

2γ

)
dt

+κ2
∫ T

0

(
sinh(κ(T − t))

sinh(κT )

S0X

γ
+

sinh(κ(T − t)) + sinh(κt)− sinh(κT )

sinh(κT )

S2
0

2γ2

)
dt

+κ2
∫ T

0

(
sinh2(κ(T−t))
sinh2(κT )

X2 +
(sinh(κ(T − t))+ sinh(κt)− sinh(κT ))2

sinh2(κT )

S2
0

4γ2

)
dt

+κ2
∫ T

0

(
2
sinh(κ(T − t))

sinh(κT )

sinh(κ(T − t)) + sinh(κt)− sinh(κT )

sinh(κT )

S0X

2γ

)
dt

= κ2X2
∫ T

0

cosh(2κ(T − t))

sinh2(κT )
dt

+κ2 S
2
0

4γ2

∫ T

0

(
cosh(2κt) + cosh(2κ(T − t))− 2 cosh(κ(T − 2t))

sinh2(κT )
− 1

)
dt

+κ2 S0X

γ

∫ T

0

cosh(2κ(T − t))− cosh(κ(T − 2t))

sinh2(κT )
dt

= κ2X2 sinh(2κT )

2κ sinh2(κT )
+ κ2 S

2
0

4γ2

2 sinh(2κT )− 4 sinh(κT )

2κ sinh2(κT )
− κ2 S

2
0T

4γ2

+κ2 S0X

γ

sinh(2κT )− 2 sinh(κT )

2κ sinh2(κT )

= κX2 cosh(κT )

sinh(κT )
+ κ

S2
0

4γ2

2 cosh(κT )− 2

sinh(κT )
− κ2 S

2
0T

4γ2
+ κ

S0X

2γ

2 cosh(κT )− 2

sinh(κT )
.
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3.4. Comparison of optimal static and adapted solutions

We will now numerically attempt to quantify the differences in the mini-

mum objective function obtained by the deterministic and by the adapted

strategies.

Since we operated a linear transformation from (15) to (16), we will

multiply the value of the minimization problems (18) and (21) by η and add

back the term −S0X + γ
2X

2 to obtain the value of the objective functions

along the optimal solution. We will denote them respectively J∗ad for the

fully adapted case and J∗det for the deterministic/static case.

Corollary 3.1 (Minimum of the objective function). The minimum

value of the objective function is

J∗ad(X0, S0) = −S0X +
γ

2
X2 + η

(
κX2 coth(κT ) +

λXS0

κ
tanh

(
κT

2

)
− λ2S2

0e
σ2T

4κ2

∫ T

0

tanh2

(
κt

2

)
e−σ

2tdt

)
,

and the value of the objective function obtained when using the optimal

deterministic strategy is

J∗det(X0, S0) = −S0X +
γ

2
X2+

η

(
κX2 coth(κT ) +

κS0

γ

(
X +

S0

2γ

)
tanh

(
κT

2

)
− λTS2

0

4γ

)
.

Similarly to the cases with no risk criterion, we define the absolute and

relative differences.

Definition 3.1 (Absolute difference).

εabs := J∗det(X0, S0)− J∗ad(X0, S0)

= η

(
κS2

0

2γ2
tanh

(
κT

2

)
− λTS2

0

4γ
+
λ2S2

0e
σ2T

4κ2

∫ T

0

tanh2

(
κt

2

)
e−σ

2tdt

)
.

Proposition 3.1. Both strategies have the same expected cost when there is

no randomness. Hence deciding the strategy entirely before the execution is

equivalent to assuming that there is no randomness in the price movements,

as in the discrete setting studied in the previous section.

Proof. For a detailed proof, please refer to the full paper [8].

Proposition 3.2 (Sign of the absolute difference). As expected, the

adapted strategy is always better than the deterministic one, in that it results
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in expected risk-adjusted costs that are smaller or equal to the deterministic

ones.

Proof. For a detailed proof, please refer to the full paper [8].

Definition 3.2 (Relative difference).

εrel :=
εabs

|J∗det(X0, S0)|
.

For the numerical applications we will consider a single stock with cur-

rent price S0 = 100, making the use of percentage volatility intuitive. We

want to sell X = 106 shares in T = 1 day. The stock has a percentage daily

volatility σ = 1.89%, as in the discrete-time cases. γ = 2× 10−6 is chosen

such that the permanent impact is around 10%, assuming there is no risk

aversion. The temporary market impact parameter η = 2× 10−6 is chosen

such that the impact of an instantaneous execution is 2$ per share. The

risk aversion factor λ̃ = 0.05 is taken so that the risk term in the objective

function is of the same order as the market impacts.

The values described above are summarized in Table 2.

Table 2. Benchmark parameter values

X 106

S0 100

T 1

σ 1.89%

γ 2 × 10−6

η 2 × 10−6

λ̃ 0.05

Remark 3.4. Since this is a sell order, the expected costs should be neg-

ative (assuming the trader has no incentive to sell at a loss).

To get an idea of the influence of the risk aversion factor on the strate-

gies, we give a few examples of paths obtained with different values of λ̃

in Figures 11, 12 and 13. With the benchmark parameters, we find that

J∗det = −9.4736× 107, J∗ad = −9.4736× 107 and εrel = 2.45× 10−7.

With λ̃ = 10−10, we find that J∗det = −9.7000×107, J∗ad = −9.7000×107

and εrel = 0. Both strategies are straight lines, which means that they

practically follow a VWAP. This is consistent with the fact that with very

small λ we are close to not having risk in the criterion, leading to the

VWAP solution. With λ̃ = 10, we find that J∗det = −5.0391 × 109, J∗ad =

−5.0385× 109 and εrel = 1.14× 10−4.
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Fig. 11. One path of a simulated strategy with benchmark parameters (λ̃ = 0.05)
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Fig. 12. One path of a simulated strategy with small risk aversion (λ̃ = 10−10)

With λ̃ = 103, we find that J∗det = −1.1678×1012, J∗ad = −1.1680×1012

and εrel = 1.68× 10−4.

The last plots are interesting because they illustrate the fact that when

the risk aversion factor is big, as in Figures 13 and 14, we tend to execute

everything very fast, even exceeding the amounts we are supposed to exe-

cute. At the end of the period we buy back what we need to get back to our

objective. The larger the risk factor, the steeper the execution. When λ is

very small, the strategies tend to a VWAP. A reasonable value for λ̃ would

be something in-between, as in the slightly curved line of Figure 11. Note

however that the risk aversion factor is completely arbitrary, and depends

only on the trader so any value of λ̃ is possible.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
0.

17
.2

16
.2

46
 o

n 
01

/1
6/

21
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 9, 2018 13:3 Innovations in Insurance, Risk- and Asset Management 9in x 6in b3285-ch10 page 269

Static vs Adapted Optimal Execution Strategies in Two Benchmark Trading Models 269

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time

96

98

100

102

S
to

ck
 p

ric
e

Price evolution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time

-15

-10

-5

0

5

R
em

ai
ni

ng
 s

ha
re

s

#106 Optimal strategies

deterministic
adapted

Fig. 13. One path of a simulated strategy with large risk aversion (λ̃ = 10)
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Fig. 14. One path of a simulated strategy with huge risk aversion (λ̃ = 103)

To get a more precise idea of the difference between the fully adapted

and static optimal strategies, we study the influence of each parameter on

the minimized objective functions and their relative difference. In each

numerical example, the parameters will be those of Table 2 except for the

one whose influence we study. We will consider parameters and inputs

X,T, σ, γ, η, λ̃.

Here we only consider the influence of σ and λ̃, as the relative error is

smaller for all other parameters, and the plots are similar to those obtained

in the setting of Bertsimas and Lo. For a study of every parameter, please

refer to the full paper [8].
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Fig. 15. Influence of σ on the expected costs and relative difference

As regards the influence of σ, Figure 15 shows the evolution of the ex-

pected costs and the relative difference when σ varies from 0 to 100%. When

σ increases, the importance of using up to speed price information during

the strategy increases, since there is more uncertainty on what the new in-

formation will be. The adapted strategy takes incoming price information

into account, unlike the deterministic one. Hence the relative difference in-

creases as σ increases. However, even when σ = 1, which is equivalent to a

gigantic annual volatility of 1588%, the relative difference between the two

strategies is not even 0.1%. This seems to suggest that with this particular

model the optimality does not change much when reducing the strategy

class from adapted to deterministic.
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Fig. 16. Influence of λ̃ on the expected costs and relative difference

Finally, we look at the influence of the risk aversion parameter λ̃. Figure

16 shows the evolution of the expected costs and the relative difference when

λ̃ varies from 10−5 to 10. The relative difference increases logarithmically

with the risk aversion factor. When λ̃ = 10, which is big as we have seen

in Figure 13, the relative difference is 1.1× 10−4.
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4. Conclusions and further research

We derived the optimal solutions to the trade execution problem in the

two different classes of fully adapted trading strategies and deterministic

ones, trying to assess how much optimality was lost when moving from the

larger adapted class to the narrow static class. We did this in two different

frameworks. The first was the discrete time framework of Bertsimas and

Lo with an information flow process, dealing with both cases of permanent

and temporary impact. The second framework was the continuous time

framework of Gatheral and Schied, where the objective function is the sum

of the expected cost and a value at risk (or expected shortfall) risk crite-

rion. Optimal adapted solutions were known in both frameworks from the

original works of these authors, [6] and [13]. We derived the optimal static

solutions for both approaches. We used those to study quantitatively the

advantage gained by adapting our strategy instead of setting it entirely at

time 0. Our conclusion is that in our numerical examples there seems to be

no sensible difference, except for extreme cases that do not seem realistic.

This seems to point in the following direction. As long as we use simple

models such as the benchmark models proposed here under reasonable pa-

rameters, it does not seem to make much difference to search the solution in

the larger adapted class, compared with the narrow static / deterministic

class. This indirectly points in the direction where in the similar framework

of Almgren and Chriss [2] one may be fine starting from a static solution,

which happens to be more tractable, as is indeed done in that paper. While

at the moment we can claim a negligible difference only for the numerical

examples and the benchmark models we presented, we should investigate

the claim more generally in further work.

In terms of further research, we might consider more recent models

incorporating jumps, as in [1], or considering daily cycles as in [3]. It may

happen that in those cases the difference between the optimal fully adapted

solution and the static one is more sizable.
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Chapter 11

Liability Driven Investments with a Link to Behavioral Finance

Ludwig Brummer, Markus Wahl and Rudi Zagst∗

Chair of Mathematical Finance, Technical University of Munich,

Parkring 11, 85748 Garching, Germany
∗zagst@tum.de

Liability driven investment (LDI) strategies that take stochastic liabilities into

account have become increasingly important for insurance companies and pen-
sion funds due to market developments such as low interest rates, high volatility

and changes in regulatory requirements. We consider stochastic liabilities in a
portfolio optimization framework and include aspects from behavioral finance,

in particular cumulative prospect theory (CPT). We study LDI strategies with

extended preference structures and probability distortion and derive analytical
solutions for a CPT portfolio optimization problem in an LDI context. Within

a case study, we compare the optimal investment strategies to existing LDI

approaches within traditional frameworks such as the partial surplus optimiza-
tion presented in [1] and the funding ratio optimization in an expected utility

framework as introduced in [2].

Keywords: asset liability management, liability driven investments, cumulative

prospect theory.

1. Introduction

In the literature on intertemporal portfolio choice, the optimization of the

utility of terminal wealth and consumption as firstly presented in [3] is

a widely accepted standard. However, according to regulatory standards,

insurance companies and pension funds, e.g., have to consider the level of

wealth relative to the value of the liabilities. Consequently, liabilities were

included in several different ways into portfolio optimization frameworks in

discrete and continuous time. In [1], the authors provide an extension of the

mean-variance approach for a one-period setting. The authors of [4] extend

the mean-variance framework by considering the downside risk inherent in

the liabilities in form of an exchange option and [5] provide a continuous-

time version of the surplus management approach from [1]. In a continuous-

time model, [6], [7] and [8] consider generalizations of CPPI strategies with

a stochastic floor that can be interpreted as stochastic liabilities. In [2], the

Open Access chapter published by World Scientific Publishing Company and distributed

under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives
(CC BY-NC 4.0) License.
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author argues that what matters is the relative wealth of the asset portfolio

with respect to the value of the liabilities and optimizes the terminal wealth

of the funding ratio. He develops optimal strategies for a model in which

both, the assets and the liabilities, are modeled as geometric Brownian mo-

tions. With the recent international accounting standards IFRS (especially

IAS 19) for pension funds and the European regulatory requirements Sol-

vency II for insurance companies, the importance of investment strategies

that are adapted to stochastic liabilities, has increased. However, this short

overview illustrates that no widely accepted scientific standard exists how

liabilities should be included in the portfolio optimization.

For the market model from [2], we generalize previous results by embedding

funding ratio optimization in a cumulative prospect theory (CPT) frame-

work. The CPT framework provides two further enrichments. Firstly, a

probability distortion is included. Within the CPT framework, distortions

are used to create subjective probabilities of events. However, distortions

can also be used to model heavy-tailed portfolio returns. Secondly, the

utility function is extended and assumes risk-seeking behavior in case of

underfunding. This extension also contributes to the literature that espe-

cially considers underfunded plans, e.g. [9] deal with underfunded plans in

a discrete setting.

The article is structured as follows: In Section 2, we introduce the model

for assets and liabilities. Optimal investment strategies for the funding

ratio are described in Section 3 for an expected utility framework. In Sec-

tion 4, we consider the optimization of the funding ratio within cumulative

prospect theory. This approach is compared to the approach from Sec-

tion 3 and an application of the approach described in [1] in Section 5. A

conclusion is provided in Section 6.

2. A model for assets and liabilities

We introduce a market model on a filtered probability space (Ω,A,P,F)

with F = {Ft; t ≥ 0} being the filtration generated by the n-dimensional

standard Brownian motion W̃ := (W 1, · · · ,Wn)′, satisfying the usual con-

ditions. Following [2], we use W := (W 1, · · · ,Wn−1)′ to model the as-

sets and W ε := Wn to model the part of the liability risk that cannot

be hedged. That means we have n − 1 risky assets with price processes

P = (P 1, ...Pn−1)′ and one risk-free asset with price process P 0. The as-

sets are assumed to follow a geometric Brownian motion with

dP it = P it (µidt+ σidWt) , i ∈ {1, 2, ..., n− 1},
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P i0 = 1, i ∈ {1, 2, ..., n − 1} and dP 0
t = P 0

t rdt, P
0
0 = 1 . The volatility

matrix σ with rows σi, i ∈ {1, ..., n− 1} is assumed to be positive definite.

With 1 = (1, 1, ...1)′ ∈ Rn−1, the market price of risk is then given by

θ := σ−1(µ− r1).

We consider Ft-progressively-measurable, self-financing investment strate-

gies (ϕ0
t , ϕt)t∈[0,T ] with ϕt = (ϕ1

t , ..., ϕ
n−1
t )′, ϕit being the fraction of wealth

invested in asset i at time t satisfying∫ T

0

(Aϕt )2‖ϕt‖2dt <∞ P− a.s.,

and Aϕt denoting the wealth process associated with (ϕ0
t , ϕt)t∈[0,T ]. Its

dynamics are given by

dAϕt = Aϕt [(r + ϕ′t(µ− r1))dt+ ϕ′tσdWt] .

The initial wealth A0 is assumed to be non-negative. By Λ(t, v), we denote

the set of all admissible investment strategies on [t, T ] with Aϕt = v and

such that E [U(AϕT )|Ft] is well-defined. Furthermore, let Λ := Λ(0, v). The

performance seeking portfolio (growth optimal portfolio) is known from

portfolio optimization without liabilities and logarithmic utility and is de-

fined as

ϕPS := (σσ′)−1(µ− r1). (1)

As in [10] and [2], we model the liability process Lε as a geometric Brownian

motion following the dynamics

dLεt = Lεt (µLdt+ σLdWt + σεdW
ε
t ) , L0 = 1,

with drift µL, hedgeable risks related to W and non-hedgeable risks related

to W ε, independent of W . In the context of an insurance company or

pension fund, the non-hedgeable risks could be, e.g., actuarial risks like

longevity risk or underwriting risk. If we have σε = 0, all the liability risks

emerge from W and the liabilities can be hedged. The liability hedging

portfolio as introduced in [2] is then given by

ϕLH := (σ′)−1σ′L. (2)

In Section 3, we assume σε ≥ 0 to show that in the expected utility frame-

work, the optimal strategy is independent of the non-hedgeable risks. This

observation provides the reasoning for the assumption σε = 0 which we
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need in Section 4. Instead of considering the absolute wealth Aϕt , we con-

sider the funding ratio defined as the relative wealth with respect to the

value of the liabilities

Xϕ
t :=

Aϕt
Lεt

, t ∈ [0, T ]

for a corresponding portfolio process ϕ. By an application of Ito’s formula,

we get the mean return and volatility of the funding ratio

µϕX(t) =r + ϕ′t(µ− r1)− µL + σLσ
′
L + σ2

ε − σLσ′ϕt,

σϕX(t) =
(

(ϕ′tσ − σL) (ϕ′tσ − σL)
′
+ σ2

ε

) 1
2

.

We define a one-dimensional Brownian Motion W̄t, such that

σϕX(t)W̄t = (ϕ′tσ − σL)Wt − σεW ε
t .

The funding ratio thus follows the SDE

dXϕ
t = Xϕ

t

[
µϕX(t)dt+ σϕX(t)dW̄t

]
, t ∈ [0, T ]

or equivalently

dXϕ
t = Xϕ

t [µϕX(t)dt+ (ϕ′tσ − σL) dWt − σεdW ε
t ] t ∈ [0, T ].

It is visible in this representation that the liability hedging portfolio ϕLH is

the portfolio that hedges the liabilities best in the sense that the volatility

of the funding ratio is minimized. Let σε = 0 for the rest of the section

and L = L0 denote the corresponding liability process. Then, there exists

a unique risk-neutral measure Q equivalent to P, defined by the Radon-

Nikodym derivative (see e.g. [11], Chapter 5)

dQ
dP
|Ft = exp(−1

2
θ′θt− θ′Wt)

and
Aϕt
P 0
t

is a Q-martingale. The Pricing Kernel is then given by

Z̃t := (P 0
t )−1 dQ

dP
|Ft = exp

(
−rt− θ′Wt −

1

2
θ′θt

)
.

We change the numéraire from the risk-free asset to the liability process

L. To do this, let QL be the risk-neutral measure under the numéraire L.

Then, Xϕ
t =

Aϕt
Lt

is a QL-martingale and the new pricing kernel is given by

ZLt :=
dQ
dP

dQL

dQ
|Ft =

Lt
L0P 0

t

dQ
dP
|Ft = exp

(
−1

2
‖σL − θ′‖2t+ (σL − θ′)Wt

)
.

(3)
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Since we only work with this pricing kernel, we set Zt := ZLt and Z := ZLT .

The distribution function of Z is given by

FZ(z) = N

(
ln z + 1

2‖σ
′
L − θ‖2T

‖σ′L − θ‖
√
T

)
(4)

and its quantile function by

F←Z (p) = exp

(
−1

2
‖σL − θ′‖2T + ‖σL − θ′‖

√
TN←(p)

)
,

with N and N← denoting the distribution function and the quantile of the

standard normal distribution.

3. Expected utility framework

3.1. The optimization problem

In this section, we go back to the case of possible non-hedgeable risks,

so we assume σε ≥ 0 and find an investment strategy ϕ that solves the

optimization problem

sup
ϕ∈Λ

E [U (Xϕ
T )]

for a strictly increasing, strictly concave and twice continuously differen-

tiable utility function satisfying

lim
x↓0

U ′(x) =∞, lim
x→∞

U ′(x) = 0,

where we will mainly use the power utility function of the form

U(x) =
xγ

γ
, γ ∈ (−∞, 0) ∪ (0, 1).

The value function is defined as

Φ(t, v) := sup
ϕ∈Λ(t,v)

E[U(Xϕ
T )|Ft]. (5)

The following result, which can be found in [2], states an optimal investment

strategy for the introduced funding ratio optimization problem.
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Theorem 3.1 (Three-Fund Separation, Expected Utility Theory).

The optimal investment strategy ϕ∗ is given by

ϕ∗(t,Xϕ
t ) =

(
1− λEU (t,Xϕ

t )
)
ϕLH + λEU (t,Xϕ

t )ϕPS

with λEU (t,Xϕ
t ) being the inverse of the Arrow-Pratt measure of relative

risk aversion (relative risk tolerance) of Φ(t,Xϕ
t )

λEU (t,Xϕ
t ) := −

∂
∂Xϕt

Φ(t,Xϕ
t )

Xϕ
t

∂2

∂2Xϕt
Φ(t,Xϕ

t )
,

the liability hedging portfolio as in (2) and the performance seeking portfolio

from (1). The remaining fraction of wealth 1 − ϕ∗(t,Xϕ
t )′1 is invested in

the risk-free asset.

Proof. The Hamilton-Jacobi-Bellman (HJB) equation associated with (5)

can be written as:

∂

∂t
Φ(t, v) + sup

ϕ∈Λ(t,v)

[
µϕX(t)v

∂

∂v
Φ(t, v) +

1

2
(σϕX(t))2v2 ∂

2

∂2v
Φ(t, v)

]
= 0,

with terminal condition Φ(T, v) = U(v), v ∈ (0,∞). If there exists a

solution to the HJB equation, the optimal strategy can be obtained by

calculating the supremum in the HJB equation. For general Φ(t, v), we

obtain the optimal strategy by maximizing the help function

M(c) := µcX(t) · v · ∂
∂v

Φ(t, v) +
1

2
· (σcX(t))2 · v2 · ∂

2

∂2v
Φ(t, v).

The first order condition reads

((µ− r1)− σσ′L) v
∂

∂v
Φ(t, v) + (σσ′c− σσ′L)v2 ∂

2

∂v2
Φ(t, v) = 0

and holds for

c∗ = (1− λEU (t, v))(σ′)−1σL + λEU (t, v)(σ′)−1θ

and thus, the optimal investment strategy is given by

ϕ∗(t,Xϕ
t ) =

(
1− λEU (t,Xϕ

t )
)
ϕLH + λEU (t,Xϕ

t )ϕPS .

As in [2], we get a three-fund separation theorem, with the funds being

the performance seeking portfolio, liability hedging portfolio and risk-free

asset.
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Corollary 3.1 (Three-Fund Separation, Power Utility). For

the power utility, we get

λEU (t,Xϕ
t ) =

1

1− γ
.

Proof. The statement directly follows with Theorem 3.1 and

Appendix A.

We see that the optimal strategy does not depend on the non-hedgeable

risks associated with σε for the power utility. To cover these risks, an addi-

tional capital buffer has to be used. Therefore, we assume in the following

that a certain part of the wealth is used for this purpose and we only deal

with the hedgeable risks here, i.e. σε = 0 in the following section.

4. Extension to cumulative prospect theory

4.1. The optimization problem

The funding ratio optimization can be extended further to Cumulative

Prospect Theory (CPT) using the quantile optimization approach by [12].

As it requires a complete market, we set σε = 0 in this section.

Cumulative Prospect Theory is an extension of traditional Expected Util-

ity Theory introduced in [13] and [14]. Its key innovations are a separate

treatment of gains and losses with respect to utility and the introduction

of a probability distortion function.

Experiments presented in [13] show that people are risk averse with re-

spect to gains and risk friendly when confronted with losses where gains

and losses are separated by a reference point. Hence, in case of losses, a

convex utility function is used which implies a risk-seeking behavior of the

investor. For a pension plan, this could be the case when it is underfunded

and aims to eliminate the deficit. In this currently serious situation, the

company might be willing to take more risk than in a situation in which

the plan is overfunded and the company does not want to put the good

funding status at risk.

The probability distortion has two possible interpretations. The first in-

terpretation is the one normally seen for probability distortion functions

in a CPT framework. Here, the probability distortion functions are used

to model the observation that people overestimate small probabilities and

underestimate bigger probabilities. Thus probability distortion functions

model an investor-specific, irrational bias. Alternatively, the probability

distortion function can also be seen as a property of the asset portfolio
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rather than the investor. By distorting the probabilities, heavy tails in

the distribution of asset returns that are not modeled in a Black-Scholes

market can be included and the distortion parameters can thus be fitted

using market data. Technical conditions preclude the use of the classical

probability distortion functions in this context from [14] and [15]. The au-

thors of [12] introduce their own probability distortion function, however,

this distortion function has a large amount of parameters. To simplify the

fitting of the parameters and their interpretation, we present an extension

of the distortion function introduced in [16] that still allows us to use the

quantile optimization approach introduced in [12]. It is reverse-S shaped

and has only two parameters. We begin by introducing the optimization

approach following [12].

Wealth is considered relative to a reference point B, which we assume

to be constant in our application. A CPT utility function U : R → R is

defined by

U(x) := U+((x−B)+)1x≥B(x)− U−((x−B)−)1x<B(x)

where

(x)+ = max{x, 0}, (x)− = −min{x, 0}.

and U+, U− : R+
0 → R+

0 are utility functions as in the previously pre-

sented expected utility framework with U+(0) = U−(0) = 0 and ∀x ∈ R+ :

U ′−(x) > U ′+(x). The probability distortion functions w+, w− are required

to be twice differentiable, strictly increasing and satisfy:

w± : [0, 1]→ [0, 1], w±(0) = 0, w±(1) = 1, w′± > 0.

We set X := Xϕ
T . The reference point will be set in such a way that

it marks the point where the pension plan is considered to be adequately

funded. A natural reference point when optimizing the funding ratio is

where the plan is fully funded, i.e. for B = 1. We optimize the funding

ratio by performing a change of numéraire from the risk-free asset P 0
T to

LT . Thus we will use the pricing kernel from (3).

To be able to apply the approach from [12], we need to assume that the

following monotonicity condition holds:

F←Z (y)

w′+(y)
is non-decreasing for y ∈ (0, 1]. (M)

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
0.

17
.2

16
.2

46
 o

n 
01

/1
6/

21
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 9, 2018 13:4 Innovations in Insurance, Risk- and Asset Management 9in x 6in b3285-ch11 page 283

Liability Driven Investments with a Link to Behavioral Finance 283

In Section 4.2, we introduce and work with a distortion that fulfills (M).

This is shown explicitly in Lemma 4.1. Using the defined CPT-utility func-

tions and the probability distortion functions, the two value functions for

gains and losses are given by

V+(X̄) := E
[
U+(X̄)w′+(1− FX̄(X̄))

]
=

∫ ∞
0

w+(P(U+(X̄) > x))dx

and V−(X̄) := E
[
U−(X̄)w′−(1− FX̄(X̄))

]
=

∫ ∞
0

w−(P(U−(X̄) > y))dx,

where X̄ := X −B and FX̄ denotes the distribution function of X̄. Fitting

them together, we define the value function V as

V(X̄) := V+((X̄)+)− V−((X̄)−).

The optimization problem is then given by:

sup
X̄

V(X̄)

s.t. E[ZX̄] =
A0

L0
−B (OP)

X̄ is FT -measurable and lower-bounded.

To find an optimal solution for (OP), we separate (OP) into a Gains Prob-

lem and a Loss Problem depending on parameters c and v+ and then find

an optimal combination of those parameters in the so-called Gluing Prob-

lem. The optimal solution found by this approach is then equivalent to the

optimal solution of the Original Problem, as stated in Theorem 4.1. The

details of this optimization approach can be found in Appendix B.

Using this setup, the authors of [12] show a way to solve the optimization

problem explicitly in the case of power utility functions. We adapt their

results to an optimization of the funding ratio. In this section, we work

with power utility functions defined as

U+(x) = xγ , U−(x) = βxγ , γ ∈ (0, 1), β > 1.

We define

G(c) := E
[
Z

γ
γ−1w′+(FZ(Z))

1
1−γ 1Z≤c

]
,

and k(c) :=
βw−(1− FZ(c))

G(c)1−γE[Z1Z>c]γ
.
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The following result, adapted from [12], provides explicit solutions depend-

ing on the initial funding A0

L0
of the investor. We assume that the following

condition holds:

inf
c>0

k(c) ≥ 1. (K)

Theorem 4.1 (Optimal Payoffs, CPT). Let (M) and (K) be satisfied.

If we start at least funded, i.e. A0

L0
≥ B, then the following holds:

• The optimal solution X̄∗ to (OP) is given by

X̄∗ = (X̄∗)+ =
A0

L0
−B

G(∞)

(
Z

w′+(FZ(Z))

) 1
γ−1

and X∗ = X̄∗ +B.

If we start underfunded, i.e. A0

L0
< B, then the following holds:

• If infc>0 k(c) = 1, the supremum value of (OP) is 0 but not at-

tainable.

• If infc>0 k(c) > 1, the Problem (OP) admits an optimal solution if

and only if the problem

inf
0≤c<∞

(
βw−(1− FZ(c))

E[Z1Z>c]γ

) 1
1−γ

−G(c) (C)

admits an optimal solution c∗.

– If c∗ = 0 is the only solution to (C), then

X̄∗ =
A0

L0
−B

and X∗ = X̄∗ +B = A0

L0
.

– If c∗ > 0, the optimal solution to (OP) is given by

X̄∗ =(X̄∗)+ − (X̄∗)−

=
v∗+

G(c∗)

(
Z

w′+(FZ(Z))

) 1
γ−1

1Z≤c∗ −
v∗+ − A0

L0
+B

E[Z1Z>c∗ ]
1Z>c∗

with

v∗+ =
B − A0

L0

k(c∗)1/(1−γ) − 1

and X∗ = X̄∗ +B.
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Proof. The proof works along [12] with the wealth being replaced by the

funding ratio and the change of numéraire as described in Section 2.

To further specify the optimal solutions and the well-posedness of the op-

timization problem, probability distortion functions are introduced in the

following sections. Using the completeness of the market, we will also de-

rive replicating strategies for the optimal pay-offs.

4.2. Probability distortion function

While1

w̄(p) :=

∫ F←Z (p)

0

rfZ(r)dr = E
[
Z1Z≤F←Z (p)

]
= N

(
N←(p)− ‖σL − θ′‖

√
T
)

with fZ being the density function of Z, is by definition a probability

distortion function, it is not reverse-S-shaped but rather convex. The proof

can be found in Appendix C in Lemma C.1.

In order to get reverse S-shaped distortion functions, we introduce an

alteration and define the probability distortion function we will work with

as

w(p) := Nα
(
N←(p)− δ‖σL − θ′‖

√
T
)
,

where α ∈ (0, 1] and δ ∈ (0, 1] are parameters that can be chosen to adjust

the distortion behavior of w and Nα(·) := (N (·))α. We define furthermore

Zδ := exp

(
−1

2
δ2‖σL − θ′‖2T + δ(σL − θ′)WT

)
,

which has the cumulative distribution function

FZδ(z) = N
(

ln z + 1
2δ

2‖σL − θ′‖2T
δ‖σL − θ′‖

√
T

)
and denote its corresponding density by fZδ . The quantile function is given

by

F←Zδ(p) = exp

(
−1

2
δ2‖σL − θ′‖2T + δ‖σL − θ′‖

√
TN←(p)

)
1For ν ∈ R, c1, c2 ∈ R+ and Y ∼ LN (µ, σ2), it holds

E[Y ν1Y ∈(c1,c2)] = exp

(
νµ+

1

2
ν2σ2

)(
N

(
ln c2 − µ− νσ2

σ

)
−N

(
ln c1 − µ− νσ2

σ

))
.
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and we define

w̄δ(p) :=

∫ F←Zδ
(p)

0

rfZδ(r)dr

= E
[
Zδ1Zδ≤F←Zδ (p)

]
= N

(
N←(p)− δ‖σL − θ′‖

√
T
)
.

Thus, we have

w(p) = (w̄δ(p))
α
.

Lemma 4.1. For δ ∈ (0, 1] and α ∈ (0, 1], the distortion function w satis-

fies (M) and the first derivative is given by

w′(p) =αNα−1
(
N←(p)− δ‖σL − θ′‖

√
T
)
F←Z (p)

· exp

(
1

2
(1− δ2)‖σL − θ′‖2T + (δ − 1)‖σL − θ′‖

√
TN←(p)

)
.

Furthermore, w is reverse S-shaped for α ∈ (0, 1).

Proof. See Appendix C.

Figure 1 shows the probability distortion function for varying parameters.

From the definition of V+ and V−, we have for a random variable Y with

distribution function FY and density function fY

E
[
U+(Y )w′+(1− FY (y))

]
=

∫ ∞
−∞

U+(y)w′+(1− FY (y))fY (y)dy.

This can be interpreted as an expectation of U+(Y ) under a distorted prob-

ability measure with the distorted density function of Y given by

fwY (y) := w′+(1− FY (y))fY (y)

and the corresponding distribution function given by

FwY (y) :=

∫ y

−∞
fwY (s)ds = 1− w+(1− FY (y)).

Figure 2 shows a plot of fwY , with Y being standard normally distributed

for illustrative purposes. The influence of different parameter values can

be seen clearly: for a fixed α, different values for δ result in a simple shift.

When interpreting Y as the return of a portfolio or considering the funding

ratio X̄, an increase in δ leads to a heavier lower tail of the distribution

and can be interpreted as an increase of the downside risk. In case α = 1,

this corresponds to an increase in downside risk only. A decrease in the

parameter α then yields to an increase in the upper tail of the distribu-

tion. By combining both effects, the probability for events from both tails

is increased by the distortion. This is illustrated with the parameter set

α = 0.5, δ = 1.
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Figure 1. The probability distortion function w. Individual parameters are varied as
indicated in the legend.
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Figure 2. The density of a standard normal random variable that was distorted by
the probability distortion function. Individual parameters are varied as indicated in the

legend.
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Optimal Behavior in the Well-Funded Case

We now assume δ± ∈ (0, 1], α± ∈ (0, 1] as well as (K). Note that (M)

always holds due to Lemma 4.1 and that the distortion on the losses is

especially needed to ensure that the problem is well-posed. Then we derive

the optimal strategy in the well-funded case when using w from above.

Theorem 4.2 (Three-Fund Separation, CPT, A0

L0
≥ B). Let (K) be

satisfied and A0

L0
≥ B. The optimal terminal funding ratio is then given by

X∗ −B = X̄∗ =
A0

L0
−B

G(∞)

Z1−δ+ exp
(

1
2 (δ2

+ − δ+)‖σL − θ′‖2T
)

α+Nα+−1
(

lnZ+( 1
2−δ+)‖σL−θ′‖2T
‖σL−θ′‖

√
T

)
 1

γ−1

and the optimal investment strategy is given by

ϕ∗(t) = λCPT ((X̄∗)+(t, Zt), B)ϕPS +
(
1− λCPT ((X̄∗)+(t, Zt), B)

)
ϕLH ,

with

λCPT ((X̄∗)+(t, Zt), B) =
−Zt ∂∂z (X̄∗)+(t, Zt)

(X̄∗)+(t, Zt) +B
,

where the funding ratio at time t corresponding to (X̄∗)+ is denoted by

(X̄∗)+(t, Zt) := EQL
[
(X̄∗)+|Ft

]
and ∂

∂z (X̄∗)+(t, Zt) is the derivative of (X̄∗)+(t, Zt) with respect to the

second component.

Proof. Using Lemma 4.1, we have

w′+(FZ(Z))

= α+Nα+−1

(
lnZ + 1

2‖σL − θ
′‖2T

‖σL − θ′‖
√
T

− δ+‖σL − θ′‖
√
T

)
·

exp

(
−1

2
δ2
+‖σL − θ′‖2T + δ+‖σL − θ′‖

√
T

lnZ + 1
2‖σL − θ

′‖2T
‖σL − θ′‖

√
T

)
= α+Nα+−1

(
lnZ + ( 1

2 − δ+)‖σL − θ′‖2T
‖σL − θ′‖

√
T

)
·

exp

(
δ+ lnZ − 1

2
(δ2

+ − δ+)‖σL − θ′‖2T
)

= α+Nα+−1

(
lnZ + ( 1

2 − δ+)‖σL − θ′‖2T
‖σL − θ′‖

√
T

)
·

Zδ+ exp

(
−1

2
(δ2

+ − δ+)‖σL − θ′‖2T
)
.
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Hence, using Theorem 4.1 for the well-funded case, X∗ = (X̄∗)+ +B, with

(X̄∗)+ =
A0

L0
−B

G(∞)

(
Z

w′+(FZ(Z))

) 1
γ−1

=
A0

L0
−B

G(∞)

Z1−δ+ exp
(

1
2 (δ2

+ − δ+)‖σL − θ′‖2T
)

α+Nα+−1
(

lnZ+( 1
2−δ+)‖σL−θ′‖2T
‖σL−θ′‖

√
T

)
 1

γ−1

.

We use Appendix D with (X̄∗)−(t, Zt) = 0 to receive the optimal investment

strategy for X∗(t, Zt) = (X̄∗)+(t, Zt) +B:

ϕ∗(t) =
1

X∗(t, Zt)

(
Zt

∂

∂z
(X̄∗)+(t, Zt)(ϕ

LH − ϕPS) +
(

(X̄∗)+(t, Zt) +B
)
ϕLH

)
=
−Zt ∂∂z (X̄∗)+(t, Zt)

(X̄∗)+(t, Zt) +B
ϕPS +

(
1−
−Zt ∂∂z (X̄∗)+(t, Zt)

(X̄∗)+(t, Zt) +B

)
ϕLH .

Due to this optimal payoff with (X̄∗)− = 0, the funding ratio never falls

below B. We have again a three-fund separation. In order to get a more

explicit result for λCPT , we consider the case α+ = 1 in the following

corollary.

Corollary 4.1 (Three-Fund Separation, CPT, A0

L0
≥ B, α+ = 1).

Let (K) be satisfied, A0

L0
≥ B and α+ = 1. The optimal terminal fund-

ing ratio is then given by

X∗ −B = X̄∗ = (X̄∗)+

=

(
A0

L0
−B

)
exp

(
1

2

(1− δ+)(δ+ − γ)

(1− γ)2
‖σL − θ′‖2T

)
Z

1−δ+
γ−1

and the optimal investment strategy is given by

ϕ∗(t) = λCPT (Xϕ
t , B)ϕPS + (1− λCPT (Xϕ

t , B))ϕLH ,

with

λCPT (Xϕ
t , B) =

Xϕ
t −B
Xϕ
t

· 1− δ+
1− γ

.

Proof. For α+ = 1, we have with the proof of Theorem 4.2

w′+(FZ(Z)) = Zδ+ exp

(
−1

2
(δ2

+ − δ+)‖σL − θ′‖2T
)
.
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Thus, we have with Footnote 1 and with ν = δ+−γ
1−γ , c2 = c, and c1 = 0

G(c) =E
[
Z

γ
γ−1w′+(FZ(Z))

1
1−γ 1Z≤c

]
= exp

(
−1

2

δ2
+ − δ+
1− γ

‖σL − θ′‖2T
)
E
[
Z
δ+−γ
1−γ 1Z≤c

]
= exp

(
1

2

((
δ+ − γ
1− γ

)2

− δ+ − γ
1− γ

−
δ2
+ − δ+
1− γ

)
‖σL − θ′‖2T

)
·

N

(
ln c+ ( 1

2 −
δ+−γ
1−γ )‖σL − θ′‖2T

‖σL − θ′‖
√
T

)

= exp

(
1

2

(δ+− 1)2γ

(1− γ)2
‖σL− θ′‖2T

)
N

(
ln c+ ( 1

2 −
δ+−γ
1−γ )‖σL− θ′‖2T

‖σL − θ′‖
√
T

)
.

Hence, in the well-funded case, the optimal funding ratio is with

Theorem 4.2

(X̄∗)+ =
A0

L0
−B

G(∞)

(
Z1−δ+ exp

(
1

2
(δ2

+ − δ+)‖σL − θ′‖2T
)) 1

γ−1

=

(
A0

L0
−B

)
exp

(
−1

2

(δ+ − 1)2γ

(1− γ)2
‖σL − θ′‖2T

)
·

Z
1−δ+
γ−1 exp

(
1

2

δ2
+ − δ+
γ − 1

‖σL − θ′‖2T
)

=

(
A0

L0
−B

)
exp

(
1

2

(1− δ+)(δ+ − γ)

(1− γ)2
‖σL − θ′‖2T

)
Z

1−δ+
γ−1 .

We first compute the value of (X̄∗)+ at time t, denoted by (X̄∗)+(t, Zt)

using Footnote 1 with ν = 1−δ+
γ−1 , c2 =∞, and c1 = 0:

(X̄∗)+(t, Zt) =

(
A0

L0
−B

)
exp

(
1

2

(1− δ+)(δ+ − γ)

(1− γ)2
‖σL − θ′‖2T

)
Z

1−δ+
γ−1

t ·

exp

(
1

2

(
1− δ+
γ − 1

+ 1

)
1− δ+
γ − 1

‖σL − θ′‖2(T − t)
)

=

(
A0

L0
−B

)
Z

1−δ+
γ−1

t exp

(
−1

2

(
1− δ+
γ − 1

+ 1

)
1− δ+
γ − 1

‖σL− θ′‖2t
)
.

We know from Appendix D that the corresponding replicating strategy can

be written as

ϕ+(t) = ϕLH +
1− δ+
1− γ

(ϕPS − ϕLH)
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and since (X̄∗)−(t, Zt) = 0, the optimal investment strategy for

X∗(t, Zt) = (X̄∗)+(t, Zt) +B is given by

ϕ∗(t) =
1

(X̄∗)+(t, Zt) +B

(
(X̄∗)+(t, Zt)ϕ+(t) +BϕLH

)
=ϕLH +

(X̄∗)+(t, Zt)

(X̄∗)+(t, Zt) +B
· 1− δ+

1− γ
(ϕPS − ϕLH)

=ϕLH +
X∗(t, Zt)−B
X∗(t, Zt)

· 1− δ+
1− γ

(ϕPS − ϕLH).

The optimal strategy results again in the known separation into perfor-

mance seeking and liability hedging portfolio with the remaining amount

being invested in the risk-free asset. Note that the relative risk aversion of

the power utility function, 1− γ, is positive.

Therefore, we identify 1−δ+
1−γ as investor-specific pre-factor that can be seen

as a measure for the risk-appetite of the investor. An increasing δ+ shifts the

density to the left and therefore tempers the influence of the risk-preference

of the investor in the strategy, as it makes 1−δ+
1−γ smaller and thus the strat-

egy more cautious in general. In particular, the performance seeking part

of the optimal investment strategy corresponds to a CPPI-strategy with

multiplier m := 1−δ+
1−γ and this ensures that the funding ratio never falls

below B.

Optimal Behavior in the Underfunded Case

We turn to the underfunded case. If c∗ = 0 is the only solution to the op-

timization problem (C), then Theorem 4.1 states that the optimal funding

ratio is

X∗ =
A0

L0
.

Therefore, the optimal strategy is to hedge the liabilities perfectly with

ϕLH = (σ′)−1σ′L

to keep the funding ratio constant and thus to preserve the current level of

funding and not risk an even lower funding for potential profit. Remember

that Z ≤ c∗ ⇔ X∗ ≥ B. So if c∗ = 0, then

P(X∗ ≥ B) = P(Z ≤ 0) = 0.

This means that there is zero probability that we will achieve funded or

well-funded status and thus no reason to risk anything and try. Therefore,

we only consider the case c∗ > 0 in the following results.
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Proposition 4.1 (Optimal Payoff, CPT, A0

L0
< B). Let infc>0 k(c)>1

be satisfied and A0

L0
< 0. If (C) admits an optimal solution c∗ > 0, the

optimal terminal funding ratio is given by

X∗ −B = X̄∗ = (X̄∗)+ − (X̄∗)−,

with

(X̄∗)+ =
v∗+

G(c∗)

Z1−δ+ exp
(

1
2 (δ2

+ − δ+)‖σL − θ′‖2T
)

α+Nα+−1
(

lnZ+( 1
2−δ+)‖σL−θ′‖2T
‖σL−θ′‖

√
T

)
 1

γ−1

1Z≤c∗

(X̄∗)− =
v∗+ − A0

L0
+B

1−N
(

ln c∗− 1
2‖σL−θ′‖2T

‖σL−θ′‖
√
T

)1Z>c∗

and

v∗+ =
B − A0

L0

k(c∗)1/(1−γ) − 1
.

Proof. Proceeding as in the proof of Theorem 4.2, we find with Theorem

4.1

(X̄∗)+ =
v∗+

G(c∗)

(
Z

w′+(FZ(Z))

) 1
γ−1

1Z≤c∗

=
v∗+

G(c∗)

Z1−δ+ exp
(

1
2 (δ2

+ − δ+)‖σL − θ′‖2T
)

α+Nα+−1
(

lnZ+( 1
2−δ+)‖σL−θ′‖2T
‖σL−θ′‖

√
T

)
 1

γ−1

1Z≤c∗ .

The second pay-off is given by

(X̄∗)− =
v∗+ − A0

L0
+B

E[Z1Z>c∗ ]
1Z>c∗ =

v∗+ − A0

L0
+B

1−N
(

ln c∗− 1
2‖σL−θ′‖2T

‖σL−θ′‖
√
T

)1Z>c∗ .

In contrast to the well-funded case, in which the CPPI-part for the

performance seeking portfolio implies that there is no risk of falling below

the reference point B, the optimal strategy in the underfunded case corre-

sponds to a leveraged strategy and thus includes more risk. The reason for

this difference is that in the well-funded case, the risk-seeking area of the

convex utility function below the reference point is never reached, whereas
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this area has substantial influence in the case of initial underfunding. The

investor tries to achieve a terminal wealth above B by taking additional

risk. In case the market evolves in an advantageous way, in particular if

Z ≤ c∗, then the investor receives the payoff (X̄∗)+ + B. In the other

case, i.e. Z > c∗, the investor suffers a constant loss with terminal wealth

B − (X̄∗)− due to the additional risk. For α+ = 1, the following result

states the optimal investment strategy in closed form.

Theorem 4.3 (Three-Fund Separation, CPT, A0

L0
< B, α+ = 1). Let

infc>0 k(c) > 1 be satisfied, A0

L0
< 0 and α+ = 1. If (C) admits an optimal

solution c∗ > 0, the optimal funding ratio is given by

X∗ −B = X̄∗ = (X̄∗)+ − (X̄∗)−,

with

(X̄∗)+ =
v∗+

N
(

ln c∗+( 1
2−

δ+−γ
1−γ )‖σL−θ′‖2T

‖σL−θ′‖
√
T

) ·
exp

(
1

2

(1− δ+)(δ+ − γ)

(1− γ)2
‖σL − θ′‖2T

)
Z

1−δ+
γ−1 1Z≤c∗ ,

(X̄∗)− =
v∗+ − A0

L0
+ 1

1−N
(

ln c∗− 1
2‖σL−θ′‖2T

‖σL−θ′‖
√
T

)1Z>c∗

and

v∗+ =
B − A0

L0

k(c∗)1/(1−γ) − 1
.

The optimal investment strategy is given by

ϕ∗(t) = λCPT · ϕPS + (1− λCPT ) · ϕLH ,
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with

λCPT =
1

Xϕ
t

·
(
Xϕ

+(t) · λ+ −Xϕ
−(t) · λ−

)
λ+ =

1− δ+
1− γ

+
1

‖σL − θ′‖
√
T − t

·
N ′
(
d
(
c∗

Zt
, T − t, 1−δ+

γ−1

))
N
(
d
(
c∗

Zt
, T − t, 1−δ+

γ−1

))
 ,

λ− =
N ′
(
d
(
c∗

Zt
, T − t, 0

))
1−N

(
d
(
c∗

Zt
, T − t, 0

)) · 1

‖σ′L − θ‖
√
T − t

,

Xϕ
+(t) =

v∗+Z
1−δ+
γ−1

t · N
(
d
(
c∗

Zt
, T − t, 1−δ+

γ−1

))
N
(

ln c∗+(− 1
2 ·

1−δ+
γ−1 )‖σL−θ′‖2T

‖σL−θ′‖
√
T

)
· exp

(
−1

2

(
1− δ+
γ − 1

+ 1

)
· 1− δ+
γ − 1

‖σL − θ′‖2t
)
·

Xϕ
−(t) =

v∗+ − A0

L0
+B

1−N
(

ln c∗− 1
2‖σL−θ′‖2T

‖σL−θ′‖
√
T

) · (1−N
(
d

(
c∗

Zt
, T − t, 0

)))

and d(c, s, v) :=
ln(c)−(v+ 1

2 )‖σL−θ′‖2s
‖σL−θ′‖

√
s

.

Proof. From the proof of Corollary 4.1, we know that

G(c∗) = exp

(
1

2

(δ+ − 1)2γ

(1− γ)2
‖σL − θ′‖2T

)
· N

(
ln c∗ + ( 1

2 −
δ+−γ
1−γ )‖σL − θ′‖2T

‖σL − θ′‖
√
T

)
.

Applying Proposition 4.1 yields

(X̄∗)+ =
v∗+

G(c∗)

(
Z1−δ+ exp

(
1

2
(δ2

+ − δ+)‖σL − θ′‖2T
)) 1

γ−1

1Z≤c∗

=
v∗+

N
(

ln c∗+( 1
2−

δ+−γ
1−γ )‖σL−θ′‖2T

‖σL−θ′‖
√
T

) ·
exp

(
1

2

(1− δ+)(δ+ − γ)

(1− γ)2
‖σL − θ′‖2T

)
Z

1−δ+
γ−1 1Z≤c∗ .
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We can apply Appendix D to derive

(X̄∗)+(t, Zt) =
v∗+Z

1−δ+
γ−1

t

N
(

ln c∗+( 1
2−

δ+−γ
1−γ )‖σL−θ′‖2T

‖σL−θ′‖
√
T

)N (d( c∗
Zt
, T − t, 1− δ+

γ − 1

))
·

exp

(
−1

2

(
1− δ+
γ − 1

+ 1

)
1− δ+
γ − 1

‖σL − θ′‖2t
)

and the replicating strategy is

ϕ+(t) =ϕLH +

1− δ+
1− γ

+
1

‖σL − θ′‖
√
T − t

N ′
(
d
(
c∗

Zt
, T − t, 1−δ+

γ−1

))
N
(
d
(
c∗

Zt
, T − t, 1−δ+

γ−1

))


· (ϕPS − ϕLH).

The second pay-off is given by Proposition 4.1 and with Appendix D,

c2 =∞, c1 = c∗ and ν = 0, we have

(X̄∗)−(t, Zt) =
v∗+ − A0

L0
+B

1−N
(

ln c∗− 1
2‖σL−θ′‖2T

‖σL−θ′‖
√
T

) (1−N
(
d

(
c∗

Zt
, T − t, 0

)))
.

Moreover, the replicating strategy ϕ− of (X̄∗)− is

ϕ− = ϕLH −
N ′
(
d
(
c∗

Zt
, T − t, 0

))
1−N

(
d
(
c∗

Zt
, T − t, 0

)) 1

‖σ′L − θ‖
√
T − t

(ϕPS − ϕLH).

This allows us to compute the replicating strategy of the optimal funding

ratio as

ϕ∗(t) =
1

X∗(t, Zt)

(
(X̄∗)+(t, Zt)ϕ+(t)− (X̄∗)−(t, Zt)ϕ−(t) +BϕLH

)
and to represent it as in the statement of the theorem by rearranging the

terms and with X∗(t, Zt) = (X̄∗)+(t, Zt)− (X̄∗)−(t, Zt) +B.

5. Comparison

5.1. Partial surplus optimization

After the derivation of the optimal strategies, we now show that the CPT

approach is a generalization of the funding ratio optimization as well as

a continuous-time analogue of the partial surplus optimization. This also
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establishes the link between partial surplus optimization in discrete time

and funding ratio optimization in continuous time.2 The partial surplus in

[1] is defined as AϕT − kLT , k ∈ [0, 1] and the surplus return introduced as

SϕT :=
AϕT − kLT

A0
= rAϕ(T )− k L0

A0
rL(T ),

with rAϕ(T ) being the performance of the assets and rL(T ) being the per-

formance of the liabilities from t = 0 until t = T .

The authors of [1] apply a mean-variance utility to the partial surplus

max
ϕ

E[U(SϕT )] = max
ϕ

[E[SϕT ]− γMV V ar(S
ϕ
T )] ,

with risk aversion parameter γMV > 0. They show that this problem can

also be written as

max
ϕ

[
E [rϕA(T )]− γMV V ar [rϕA(T )] +

2γMV kL0

A0
Cov [rϕA(T ), rL(T )]

]
.

(MV)

We consider the logarithmic returns

rAϕ(T ) := ln

(
AϕT
A0

)
and rL(T ) := ln

(
LT
L0

)
.

For the market model from the previous sections, we calculate an optimal

static investment strategy without allowance for intertemporal portfolio

choice.

Theorem 5.1 (Three-Fund Separation, Mean-Variance Utility).

The optimal investment strategy for (MV) is given by

ϕ∗Sharpe = λSϕPS + (1− λS)
kL0

A0
ϕLH ,

with λS = 1
2γMV +1 . The remaining wealth 1 − 1′ϕ∗Sharpe is invested in the

risk-free asset.

Proof. Setting the gradient of the expected utility equal to zero with re-

spect to ϕ yields the optimal solution. It is a maximum as the Hessian with

respect to ϕ is negative definite due to γMV > 0.

2In contrast to this funding ratio optimization, the intertemporal surplus management
approach by [5] cannot be interpreted as a generalization of the funding ratio optimiza-

tion.
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5.2. Connection between CPT optimization, funding ratio

optimization and partial surplus optimization

After having obtained three-fund separations for the funding ratio optimiza-

tion in an expected utility framework and in a CPT framework as well as for

the partial surplus optimization, we compare the results from Corollary 3.1,

Corollary 4.1 and Theorem 5.1. While the optimal investment strategy de-

pends on the initial funding ratio for the static mean-variance approach, the

optimal investment strategy for the CPT approach with A0

L0
≥ B depends

dynamically on Xϕ
t and the solution for the expected utility approach with

power utility is independent of the funding ratio at any time. In Figure 3

and Figure 4, the wealth allocated in the performance seeking portfolio

and the liability hedging portfolio at t = 0 is illustrated. Unless otherwise

stated, the parameters chosen are γMV = 5, k = 0.9 and A0

L0
= 1.1 for the

mean-variance utility approach, γ = −10 for the expected utility approach

with power utility and B = 0.5, δ+ = 0.5 as well as also A0

L0
= 1.1 for the

CPT approach. Since we want to consider downside risk only, we set α = 1

0%

2%

4%

6%

8%

10%

0.5 0.75 1 1.25 1.5
Funding Ratio

Weights of the Performance Seeking Portfolio

Mean-Variance and Expected Utility - Power CPT

Figure 3. Weights of the performance seeking portfolio in the different settings.
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in the CPT example. If we set B = 0, the CPT approach for A0

L0
≥ B cor-

responds to a pure CPT funding ratio optimization. The optimal strategy

differs from the expected utility approach only by the factor 1− δ+ caused

by the probability distortion. Figures 5 and 6 show that the allocations

in the performance seeking portfolio and liability hedging portfolio for the

CPT approach converge to the optimal investment strategy in the expected

utility approach with power utility when B → 0 and δ+ → 0. Thus, the

CPT approach is a generalization of the presented expected utility theory

approach. On the other hand, CPT is also a generalization of the par-

tial surplus optimization. In the CPT context we optimize the utility of

X̄ = Xϕ
T −B =

AϕT
LT
−B and we have

AϕT
LT
−B ≥ 0 ⇔ AϕT ≥ BLT ⇔ AϕT −BLT ≥ 0.

Hence, the reference point B, indicating to which extent the liabilities are

considered, corresponds to k in the partial surplus optimization.

70%
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80%
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90%
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100%

0.5 0.75 1 1.25 1.5
Funding Ratio

Weights of the Liability Hedging Portfolio

Mean-Variance Utility Expected Utility - Power CPT

Figure 4. Weights of the liability hedging portfolio in the different settings.
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Figure 5. Weights of the performance seeking portfolio in the different settings.
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Figure 6. Weights of the liability hedging portfolio in the different settings.
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6. Conclusion

Using the market model from [2] for the assets and liabilities, we derive op-

timal investment strategies in a CPT funding ratio optimization framework

with S-shaped utility function and a distortion which has only few parame-

ters but still the desired properties. The optimal investment strategies with

initial funding level above and below the reference point differ, but can be

represented as a three-fund theorem in each of the two cases. We compare

the results from the CPT optimization to the results from [2] obtained for

the funding ratio optimization in an expected utility framework and to an

application of the partial surplus approach in [1] to our market model. We

conclude that the CPT approach can be considered as a generalization of

both, the partial surplus approach and the funding ratio optimization.
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Appendix A. Solution of the HJB equation

We use the well-known separation approach

Φ(t,Xϕ
t ) = U(Xϕ

t )∆(t), (A.1)

where ∆ : [0, T ] → R+. The function Φ is strictly concave in Xϕ
t as U

is strictly concave and thus we can find a unique maximizer ϕ∗. As the

relative risk aversion of U is constant 1− γ, the relative risk tolerance is

λEUP (Xϕ
t , t) =

1

1− γ
.

The resulting maximizer is

ϕ∗ =

(
1− 1

1− γ

)
ϕLH +

1

1− γ
ϕPS ,

the investment in the risk-free asset is ϕ∗0 = 1 − 1′ϕ∗. Using the optimal

strategy in µϕX(t) and σϕX(t) results in

µϕ
∗

X (t) =r + ϕ∗t
′(µ− r1)− µL + σLσ

′
L + σ2

ε − σLσ′ϕ∗t

=r − µL +
1

1− γ
σLσ

′
L + σ2

ε +
1

1− γ
θ′θ +

(
1− 2

1− γ

)
σLθ.
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and

σϕ
∗

X (t)2 =
(
ϕ∗t
′σ − σL

) (
ϕ∗t
′σ − σL

)′
+ σ2

ε

=
1

(1− γ)2
σLσ

′
L + 2

1

1− γ
(1− 1

1− γ
)σLθ +

1

(1− γ)2
θ′θ + σ2

ε .

The assumption on the form of the solution (A.1) and the above results

reduces the HJB equation to the ODE

0 =∆′(t) +

[
µX(ϕ∗, t)γ +

1

2
(σX(ϕ∗, t))2γ(1− γ)

]
∆(t).

Due to the terminal condition ∆(T ) = 1, it has the solution3

∆(t) = exp

([
µX(ϕ∗, t)γ +

1

2
(σX(ϕ∗, t))2γ(1− γ)

]
(T − t)

)
.

Appendix B. Quantile optimization approach

The optimization approach works by separating the Original Problem (OP)

into further optimization problems, one for the gains and one for the losses,

and a third one that glues them back together. To give an intuition, note

that for any feasible solution X̄ we have X̄ = (X̄)+− (X̄)− and (X̄)+ only

influences V+. In addition, it has a price E[Z(X̄)+] =: v+ and it only has

positive value on an implicitly defined set A := {X̄ ≥ 0}. We will call the

problem of optimizing (X̄)+ the Gains Problem (GP)

sup
X̄

V+((X̄)+)

s.t. E[Z(X̄)+] = v+, (GP)

X̄ is FT -measurable and lower-bounded.

The other part of the solution (X̄)− only influences V−, exists on the

complement Ac = {X̄ < 0} and has a price E[Z(X̄)−] := v+ −
(
A0

L0
−B

)
.

3It should be noted that this is a heuristic derivation. For mathematical rigorosity, a

verification theorem would have to be shown, which is beyond the scope of this paper.
However, for γ ∈ (0, 1), a verification theorem which is directly applicable can be found

in [17], Theorem 3.5.2.
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The corresponding Loss Problem (LP) is given by

inf
X̄

V−((X̄)−)

s.t. E[Z(X̄)−] = v+ −
(
A0

L0
−B

)
(LP)

X̄ is FT -measurable and upper-bounded.

The link between (GP) and (LP) is the so-called Gluing Problem. For

this, note that any solutions of both (GP) and (LP) depend on two com-

mon parameters: A and v+. If any solution depends on those parameters,

then so do the optimal solutions. Knowing that the optimal values of

the gains problem Φ+(v+, A) and loss problem Φ−(v+, A) depend on v+

and A, the Gluing Problem boils down to finding an optimal pair (v∗+, A
∗)

that maximizes Φ+(v+, A) − Φ−(v+, A). To simplify the Gluing Problem

even further, it turns out that an optimal set A∗ always has the form

A∗ = {Z ≤ c∗}, c ≥ 0 (see [12], Theorem 5.1). Hence, it is enough to

look at solutions of the form Φ±(v+, {Z ≤ c}) =: Φ±(v+, c). For an indica-

tion on why this is true, remember that FZ(Z) and consequently 1−FZ(Z)

are uniformly distributed on the unit interval and that A = {X̄ ≥ 0}. Then

we define

c := F←Z (P(A)) = F←Z (P(X̄ ≥ 0)) = F←Z (P(X ≥ B))

and see that4

Z ≤ c⇔ FZ(Z) ≤ P(X̄ ≥ 0)⇔ 1− FZ(Z) ≥ P(X̄ < 0) = FX̄(0)

⇔ X̄
d
= F←X̄ (1− FZ(Z)) ≥ 0.

This means that

P(X̄ ≥ 0) = P(Z ≤ c)

for all relevant X̄. The Gluing Problem (GLUE) is defined as

sup
(v+,c)

Φ+(v+, c)− Φ−(v+, c)

s.t. 0 ≤ c ≤ ∞. (GLUE)

After solving (GLUE), we know the optimal parameters c∗ and v∗+. It was

shown that Z ≤ c⇔ X̄ ≥ 0 in all relevant cases, and thus we have for the

4 d= indicates equivalence in distribution. Also note that X̄ is continuous.
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optimal solutions of the adjusted problems

(X̄∗)+ = X̄∗1X̄∗≥0 = X̄∗1Z≤c∗

and analogously

(X̄∗)− = −X̄∗1X̄∗<0 = −X̄∗1Z>c∗ .

This means that we can also change the optimization problems (GP) and

(LP) to the equivalent problems

sup
X̄

V+(X̄1Z≤c)

s.t. E[ZX̄1Z≤c] = v+, (GP’)

X̄1Z≤c ≥ 0

and

inf
X̄

V−(−X̄1Z>c)

s.t. E[−ZX̄1Z>c] = v+ −
(
A0

L0
−B

)
(LP’)

− X̄1Z>c ≥ 0.

Problems (GP’) and (LP’) can then be solved as described in [12].

Appendix C. Probability distortion

Lemma C.1. The function w̄δ : [0, 1]→ [0, 1] with

w̄δ(p) = N
(
N←(p)− δ‖σL − θ′‖

√
T
)
, δ > 0,

is convex.

Proof. We know with

w̄δ(p) =

∫ F←Zδ
(p)

0

rfZδ(r)dr =

∫ p

0

F←Zδ(q)dq

that

w̄′δ(p) = F←Zδ(p) = exp

(
−1

2
δ2‖σL − θ′‖2T + δ‖σL − θ′‖

√
TN←(p)

)
.

Thus we have

w̄′′δ (p) = w̄′δ(p)
δ‖σL − θ′‖

√
T

N ′ (N←(p))
≥ 0.
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The derivative of w(p) = (w̄δ(p))
α is given by:

w′(p) =α(w̄δ(p))
α−1F←Zδ(p)

=αNα−1
(
N←(p)− δ‖σL − θ′‖

√
T
)
·

exp

(
−1

2
δ2‖σL − θ′‖2T + δ‖σL − θ′‖

√
TN←(p)

)
=αNα−1

(
N←(p)− δ‖σL − θ′‖

√
T
)

exp

(
−1

2
‖σL − θ′‖2T + ‖σL − θ′‖

√
TN←(p)

)
·

exp

(
1

2
(1− δ2)‖σL − θ′‖2T + (δ − 1)‖σL − θ′‖

√
TN←(p)

)
=αNα−1

(
N←(p)− δ‖σL − θ′‖

√
T
)
F←Z (p)·

exp

(
1

2
(1− δ2)‖σL − θ′‖2T + (δ − 1)‖σL − θ′‖

√
TN←(p)

)
.

Lemma C.2. For δ ∈ (0, 1], α ∈ (0, 1], the probability distortion func-

tion w satisfies the monotonicity condition (M). Moreover, it is reverse-S

shaped if in addition α ∈ (0, 1).

Proof. To show that (M) holds, we have to examine

F←Z (p)

w′(p)
.

With

c := F←Z (p), I(c) :=
w′(p)

F←Z (p)

∣∣∣∣
p=FZ(c)

=
w′(FZ(c))

c
, H(c) := w(FZ(c)),

we get

I(c) =
H ′(c)

cF ′Z(c)

and subsequently

I ′(c) =
H ′′(c)cF ′Z(c)−H ′(c)cF ′′Z(c)−H ′Z(c)F ′Z(c)

(cF ′Z(c))2
≤ 0

⇔ j(c) :=
cH ′′(c))

H ′(c)
− cF ′′Z(c)

F ′Z(c)
= c

(
H ′′(c))

H ′(c)
− F ′′Z(c)

F ′Z(c)

)
≤ 1.
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Note that c > 0 since Z is log-normally distributed. The following state-

ments are equivalent since FZ is monotonically increasing:

F←Z (p)

w′(p)
is increasing ⇔ I(c) is decreasing ⇔ j(c) ≤ 1.

We have

H(c) = w(Fz(c)) = Nα

(
ln c+ ( 1

2 − δ)‖σL − θ
′‖2T

‖σL − θ′‖
√
T

)
.

Therefore,

H ′(c) =αNα−1

(
ln c+ ( 1

2 − δ)‖σL − θ
′‖2T

‖σL − θ′‖
√
T

)
N ′
(

ln c+ ( 1
2 − δ)‖σL − θ

′‖2T
‖σL − θ′‖

√
T

)
1

c‖σL − θ′‖
√
T
> 0

and

H ′′(c) =H ′(c)(α− 1)
N ′
(

ln c+( 1
2−δ)‖σL−θ

′‖2T
‖σL−θ′‖

√
T

)
N
(

ln c+( 1
2−δ)‖σL−θ′‖2T
‖σL−θ′‖

√
T

) 1

c‖σL − θ′‖
√
T

−H ′(c)
(

ln c+ ( 1
2 − δ)‖σL − θ

′‖2T
‖σL − θ′‖

√
T

)
1

c‖σL − θ′‖
√
T
−H ′(c)1

c
.

Thus,

cH ′′(c)

H ′(c)
=(α− 1)

N ′
(

ln c+( 1
2−δ)‖σL−θ

′‖2T
‖σL−θ′‖

√
T

)
N
(

ln c+( 1
2−δ)‖σL−θ′‖2T
‖σL−θ′‖

√
T

) 1

‖σL − θ′‖
√
T

−
(

ln c+ ( 1
2 − δ)‖σL − θ

′‖2T
‖σL − θ′‖

√
T

)
1

‖σL − θ′‖
√
T
− 1.

For the distribution of the kernel (see (4)), it holds

F ′Z(c) = N ′
(

ln c+ 1
2‖σL − θ

′‖2T
‖σL − θ′‖

√
T

)
1

c‖σL − θ′‖
√
T

and

F ′′Z(c) =N ′
(

ln c+ 1
2‖σL − θ

′‖2T
‖σL − θ′‖

√
T

)
·

1

c‖σL − θ′‖
√
T

(
−

ln c+ 1
2‖σL − θ

′‖2T
c‖σL − θ′‖2T

− 1

c

)
.
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Thus the second fraction in j is

cF ′′Z(c)

F ′Z(c)
= −

ln c+ 1
2‖σL − θ

′‖2T
‖σL − θ′‖2T

− 1.

Then the function j corresponding to w is

j(c) =
α− 1

‖σL − θ′‖
√
T

N ′
(

ln c+( 1
2−δ)‖σL−θ

′‖2T
‖σL−θ′‖

√
T

)
N
(

ln c+( 1
2−δ)‖σL−θ′‖2T
‖σL−θ′‖

√
T

) + δ

=
α− 1

‖σL − θ′‖
√
T

N ′ (d(c, T, δ − 1))

N (d(c, T, δ − 1))
+ δ,

with d(c, T, δ − 1) :=
ln c+( 1

2−δ)‖σL−θ
′‖2T

‖σL−θ′‖
√
T

. Its first term is not positive

because α ∈ (0, 1] and it goes to zero for c→∞. Thus we can confirm that

j(c) ≤ 1 ⇔ δ ≤ 1. This means that w satisfies the monotonicity condition

(M) if and only if δ ≤ 1.

Furthermore, we have

H ′(c) = w′(FZ(c))F ′Z(c)

and

H ′′(c) = w′′(FZ(c))F ′Z(c)2 + w′(FZ(c))F ′′Z(c)

= w′′(FZ(c))F ′Z(c)2 +
H ′(c)

F ′Z(c)
F ′′Z(c),

as well as

w(p) = H(F←Z (p)) = H(c),

and

w′′(FZ(c)) =
1

F ′Z(c)2

[
H ′′(c)− H ′(c)

F ′Z(c)
F ′′Z(c)

]
.

Finally,

w′′(FZ(c))

< 0⇔ H ′′(c)− H ′(c)

F ′Z(c)
F ′′Z(c) < 0⇔ c

(
H ′′(c))

H ′(c)
− F ′′Z(c)

F ′Z(c)

)
= j(c) < 0.

Hence, w is reverse-S shaped if and only if j is first negative and then

positive. For this, we assume that α ∈ (0, 1) and we note that

j(c) =(α− 1)c
∂

∂c
(ln (N (d(c, T, δ − 1)))) + δ

=δ +
α− 1

‖σL − θ′‖
√
T

∂

∂d
(ln (N (d))) |d=d(c,T,δ−1)
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and hence with

j(c) = j(d(c)), d(c) := d(c, T, δ − 1)

we have

j′(c) =
∂

∂d
j(d)|d=d(c) ·

∂

∂c
d(c)

=
α− 1

‖σL − θ′‖
√
T

∂2

∂d2
(ln (N (d))) |d=d(c) ·

∂

∂c
d(c, T, δ − 1).

The factor α−1
‖σL−θ′‖

√
T

is negative because α ∈ (0, 1). Furthermore,

∂
∂cd(c, T, δ−1) is positive. Thus it remains to be shown that ∂2

∂d2 (ln (N (d)))

is negative. The normal cumulative distribution function is a log-concave

function (see e.g. [18]) which means in this case that ln (N (d)) is concave.

It follows that its second derivative is negative and j is monotonically in-

creasing. Additionally we know

lim
c→∞

j(c) = δ

and

lim
c→0

j(c) = lim
d→−∞

α− 1

‖σL − θ′‖
√
T

N ′ (d)

N (d)
+ δ

= lim
d→−∞

1− α
‖σL − θ′‖

√
T
d+ δ = −∞.

For the second limit, we use the l’Hôpital rule and the fact that

N ′′ (d) = −dN ′ (d) .

Hence, j changes sign from negative to positive, i.e. w is reverse-S shaped,

if δ > 0.

Appendix D. Replicating strategies for selected pay-offs

We want to calculate replicating strategies for general funding ratios

X±(t, Zt) first. Using Itô’s Lemma and the fact that X±(t, Zt) is a QL-

martingale, we know that under the measure QL, the SDE has the form

dX±(t, Zt) = Zt
∂

∂z
X±(t, Zt)(σL − θ′)dWQL

t .

For the replication, we use the fact that under QL a funding ratio has the

form

dX±(t, Zt) = X±(t, Zt)(ϕ
′σ − σL)dWQL

t . (D.1)
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Thus we have to find a strategy ϕ that ensures that both SDEs are the

same, i.e.

X±(t, Zt)(ϕ(t)′σ − σL) = Zt
∂

∂z
X±(t, Zt)(σL − θ′).

If we solve this for ϕ, we find

ϕ(t) =
Zt

X±(t, Zt)

∂

∂z
X±(t, Zt)(σ

′)−1(σ′L − θ) + (σ′)−1σ′L

=
Zt

X±(t, Zt)

∂

∂z
X±(t, Zt)(ϕ

LH − ϕPS) + ϕLH . (D.2)

This allows us to calculate the replicating portfolios of (X̄∗)+ and (X̄∗)−

resulting from CPT optimization. The corresponding strategies will be

denoted by ϕ+ and ϕ− respectively. To discern the replicating portfolio

ϕ∗ of X∗, we need some further calculations as the hedging portfolio of

the optimal solution is not the sum of the hedging portfolios of the partial

optimal solutions. It rather holds

dX∗(t, Zt) = d(X̄∗(t, Zt) +B) = d((X̄∗)+(t, Zt))− d((X̄∗)−(t, Zt)),

since dB = 0. Using (D.1), this is the same as

X∗(t, Zt)(ϕ
′(t)σ − σL)dWQL

t =
(
(X̄∗)+(t, Zt)(ϕ

′
+(t)σ − σL)

− (X̄∗)−(t, Zt)(ϕ
′
−(t)σ − σL)

)
dWQL

t

or equivalently

X∗(t, Zt)ϕ
′(t)σdWQL

t

=
[
(X̄∗)+(t, Zt)ϕ

′
+(t)σ − (X̄∗)−(t, Zt)ϕ

′
−(t)σ

+(X∗(t, Zt)− ((X̄∗)+(t, Zt)− (X̄∗)−(t, Zt)))σL
]
dWQL

t .

Note that for all t ∈ [0, T ], it holds

X∗(t, Zt)− ((X̄∗)+(t, Zt)− (X̄∗)−(t, Zt)) = B.

Then the replicating portfolio for X∗ is given by

ϕ∗(t) =
1

X∗(t, Zt)

(
(X̄∗)+(t, Zt)ϕ+(t)− (X̄∗)−(t, Zt)ϕ−(t) +BϕLH

)
.

We use (D.2) for ϕ+ and ϕ− to state

ϕ∗(t) =
Zt

X∗(t, Zt)

(
∂

∂z
(X̄∗)+(t, Zt)−

∂

∂z
(X̄∗)−(t, Zt)

)
(ϕLH −ϕPS) + ϕLH.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
0.

17
.2

16
.2

46
 o

n 
01

/1
6/

21
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 9, 2018 13:4 Innovations in Insurance, Risk- and Asset Management 9in x 6in b3285-ch11 page 309

Liability Driven Investments with a Link to Behavioral Finance 309

In the well-funded case we have (X̄∗)− = 0. Thus the above formula

simplifies to

ϕ∗(t) =
Zt

∂
∂z (X̄∗)+(t, Zt)

X∗(t, Zt)
(ϕLH − ϕPS) + ϕLH .

If the funding ratio is of the form

X(T,ZT ) = ZνT1ZT∈(c1,c2),

with ν ∈ R, c1 ≥ 0, c2 > 0, we can derive the funding ratio at time t and

the replicating strategy explicitly. We have ZT = ZtZT−t. The funding

ratio can also be interpreted as the wealth process, discounted with the

liability process L. Thus, the funding ratio is a QL-martingale and we have

X(t, Zt) =EQL
[
ZνT1ZT∈(c1,c2)

∣∣Ft] = EQL
[
ZνT−tZ

ν
t 1ZtZT−t∈(c1,c2)

∣∣Ft]
=Zνt E

[
Zν+1
T−t1ZT−t∈( c1Zt ,

c2
Zt

)

∣∣∣Ft] .
Here we can use the results from Footnote 1 and get

X(t, Zt)

= Zνt exp

(
−1

2
(ν + 1)‖σ′L − θ‖2(T − t) +

1

2
(ν + 1)2‖σ′L − θ‖2(T − t)

)
·N

 ln
(
c2
Zt

)
+ 1

2‖σ
′
L − θ‖2(T − t)− (ν + 1)‖σ′L − θ‖2(T − t)

‖σ′L − θ‖
√
T − t


− N

 ln
(
c1
Zt

)
+ 1

2‖σ
′
L − θ‖2(T − t)− (ν + 1)‖σ′L − θ‖2(T − t)

‖σ′L − θ‖
√
T − t


= Zνt exp

(
1

2
(ν + 1)ν‖σ′L − θ‖2(T − t)

)
N

 ln
(
c2
Zt

)
− (ν + 1

2 )‖σ′L − θ‖2(T − t)

‖σ′L − θ‖
√
T − t


− N

 ln
(
c1
Zt

)
− (ν + 1

2 )‖σ′L − θ‖2(T − t)

‖σ′L − θ‖
√
T − t


= Zνt exp

(
1

2
(ν + 1)ν‖σ′L − θ‖2(T − t)

)
·(

N
(
d

(
c2
Zt
, T − t, ν

))
−N

(
d

(
c1
Zt
, T − t, ν

)))
,
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with d (c, s, ν) as in Appendix C. Thus all that is left to do is calculating the

derivative of the fair price and putting our results together. The derivative

is

∂

∂z
X(t, z) = exp

(
1

2
(ν + 1)ν‖σ′L − θ‖

2(T − t)
)
·(

νzν−1
(
N
(
d
(c2
z
, T − t, ν

))
−N

(
d
(c1
z
, T − t, ν

)))
−
(
N ′
(
d
(c2
z
, T − t, ν

))
−N ′

(
d
(c1
z
, T − t, ν

))) zν−1

‖σ′L − θ‖
√
T − t

)

=
ν

z
X(t, z)− exp

(
1

2
(ν + 1)ν‖σ′L − θ‖

2(T − t)
)
·(

N ′
(
d
(c2
z
, T − t, ν

))
−N ′

(
d
(c1
z
, T − t, ν

))) zν−1

‖σ′L − θ‖
√
T − t

.

Inserting this and the formula for X(t, Zt) in (D.2), we see that

ϕ(t) =ϕLH +

ν − exp
(

1
2 (ν + 1)ν‖σL − θ′‖2(T − t)

)
X(t, Zt)‖σL − θ′‖

√
T − t

·

(
N ′
(
d

(
c2
Zt
, T − t, ν

))
−N ′

(
d

(
c1
Zt
, T − t, ν

)))
Zνt

)
(ϕLH − ϕPS)

=ϕLH

+

ν − 1

‖σL − θ′‖
√
T − t

N ′
(
d
(
c2
Zt
, T − t, ν

))
−N ′

(
d
(
c1
Zt
, T − t, ν

))
N
(
d
(
c2
Zt
, T − t, ν

))
−N

(
d
(
c1
Zt
, T − t, ν

))
·

(ϕLH − ϕPS)

=ϕLH

+

−ν +
1

‖σL− θ′‖
√
T − t

N ′
(
d
(
c2
Zt
, T − t, ν

))
−N ′

(
d
(
c1
Zt
, T − t, ν

))
N
(
d
(
c2
Zt
, T − t, ν

))
−N

(
d
(
c1
Zt
, T − t, ν

))
·

(ϕPS − ϕLH).
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Chapter 12

Option Pricing and Hedging for Discrete Time Autoregressive

Hidden Markov Model

Massimo Caccia∗ and Bruno Rémillard†

Department of Decision Sciences, HEC Montréal,
Montréal (Québec), Canada H3T 2A7

∗massimo.caccia@hec.ca
†bruno.remillard@hec.ca

In this paper we solve the discrete time mean-variance hedging problem when

asset returns follow a multivariate autoregressive hidden Markov model. Time
dependent volatility and serial dependence are well established properties of

financial time series and our model covers both. To illustrate the relevance

of our recommended approach, we first compare the proposed model with
the well-known hidden Markov model via likelihood ratio tests and a novel

goodness-of-fit test on the S&P 500 daily returns. In addition, we present

out-of-sample hedging results on S&P 500 vanilla options as well as a trading
strategy based on the difference between theoretical and market prices. This

strategy is compared to simpler models including the classical Black-Scholes

delta-hedging approach.

Keywords: option pricing, dynamic hedging, regime-switching, goodness-of-fit,
auto-regressive hidden Markov models.

1. Introduction

The quest for the perfect option pricing model is an important topic in the

mathematical finance literature. [1] provided the following observation: if

a claim is priced by arbitrage in a world with one asset and one bond, then

its value can be found by first adapting the model so that the asset earns

the risk-free rate, and then computing the expected value of the claim. The

idea of finding a self-financing optimal investment strategy that replicates

the terminal payoff of the claim is now known as dynamic hedging.

One can model the underlying asset’s returns with the geometric Brow-

nian motion and retrieve a tractable and intuitive way of pricing and repli-

cating options. This is precisely what [2] proposed; it is now called the B&S

model. Unfortunately, financial markets are far too complex for a model

as simple as this one and this hedging protocol can lead to large hedging

errors, as it will be shown later in this paper. The main drawback of this

Open Access chapter published by World Scientific Publishing Company and distributed

under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives

(CC BY-NC 4.0) License.
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framework is the constant volatility assumption. Indeed, according to [3],

[4], volatility seems to vary over time, mainly for macroeconomic reasons.

Furthermore, the B&S model assumes serial independence for the returns,

which is also an hypothesis that is violated in general.

Optimal hedging was introduced later, and it consists in minimizing the

quadratic error of replication. Solutions were derived in continuous time in

[5] and later in discrete time in [6]. This methodology can be applied to

the B&S model, and more interestingly, to stochastic volatility models.

Hidden Markov models, popularized in [7], [8] were proven to be ex-

tremely useful for modeling economic and financial time series. They are

robust to time-varying volatility, serial correlation and higher-order mo-

ments, which are all well-established stylized facts of asset returns. The

premise for these models is that identifiable events can quickly change the

characteristics of an asset’s returns. This should be taken into account

when pricing a derivative. These events could be on a long horizon — fun-

damental changes in monetary, fiscal or income policies — or on a shorter

horizon — news related to the underlying stock or changes in the target

band for the federal funds rate. However, the classical implementation of

an HMM can’t account for multiple horizons.

Elliot’s work on energy finance and interest rate modeling, where mean-

reversion is a widely accepted feature, addresses this problem. [9] intro-

duced a way to parameterize a regime-switching mean-reverting model with

jumps. They found the calibration of the model to be difficult because of

the small amounts of jumps exhibited in the time series. [10] later intro-

duced a similar model with no jumps, and where the volatility is subject

to mean-reverting regime-switches. The basis was that volatility, being

driven by macroeconomic forces, was not to be modeled by price move-

ments. Hence the need to model it by a hidden Markov chain. Finally,

[11] investigated the valuation of European and American options under

another model where the volatility is subject to regime-switches, but this

time the Markov chain was assumed to be observable. This suggests that

it would be interesting to develop some methods to determine the optimal

number of states for the hidden Markov chain. This is precisely one of the

contributions of our paper.

In light of all the above, we decided to generalize the work of [12]: we

combine the regime-switching model with an autoregressive parameter to

account for trends and mean-reversions without having to change regime.

Autoregressive hidden Markov models (ARHMM) have been applied to

financial engineering and have shown promising results, see, e.g. [13]. Still,
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this model has never been used in conjunction with optimal hedging. We

derive the solution of the hedging strategy and obtain derivatives prices

under this class of models. It is also noteworthy to add that we will use

semi-exact techniques to compute expectations necessary for the optimal

hedging, instead of Monte Carlo techniques, which will greatly speed up

computations. For parameterization, we will implement the EM algorithm

of [14] to the ARHMM. This method is widely used in unsupervised machine

learning in order to find hidden structures, in our case, the regimes. In order

to choose the optimal number of regimes and to assess the suitability of the

model, we propose a new goodness-of-fit test based on [15] and [16]. It uses

the Rosenblatt transform and parametric bootstrap. Compared to Elliot’s

work, our model can exhibit mean-reversion but is not restricted to it. It

could thus be adequate for the modeling of a wide variety of assets.

In his famous study [17], Fama presented strong and voluminous evi-

dence in favor of the random walk hypothesis. He although suggested that

other tests — statistical or profit generating strategies — could either con-

firm or contradict his findings. In this paper, we will explore both avenues.

We will statistically show that the ARHMM is an adequate model for finan-

cial modeling using the goodness-of-fit test as well as likelihood ratio tests,

and we will show that it is possible to generate money by buying/selling

options and replicating them until maturity. To support our approach, we

will compare the trading strategy’s returns with different methodologies:

Black-Scholes delta-hedging and optimal hedging when assets follow a ge-

ometric random walk. We will also compare the hedging results with the

delta-hedging using the market’s implicit volatility.

First, we present likelihood ratio test results confirming the ARHMM

is a better fit than the classical HMM on S&P daily returns, in particular,

because our model has the capacity for mean-reversion. Secondly, empirical

pricing and hedging results suggest that our methodology is superior to its

counterparts by achieving the best mean-squared error in six out of eight

cases, as well as being the most profitable strategy.

The rest of the paper is organized as follows. Section 2 describes the

model and implements the EM algorithm for parameter estimation. In

addition, we will introduce the goodness-of-fit test and study its suitability

in the financial markets. Then, in Section 3, we will state the optimal

dynamic discrete time hedging model when assets follow a ARHMM. The

results of the implementation of the dynamic hedging strategies will be

presented in Section 4. Section 5 concludes.
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2. Regime-switching autoregressive models

The proposed models are quite intuitive. The regime process τ is a homo-

geneous Markov chain on {1, . . . , l}, with transition matrix Q. At period

t − 1, if τt−1 = i, and the return Yt−1 has value yt−1, then at time t,

τt = j with probability Qij , and the return Yt has conditional distribu-

tion fj(yt; yt−1); here lower case letters y1, . . . , yn are used to denote a

realization of Y1, . . . , Yn. From this construction it follows that (Yt, τt)

is a Markov process. For example, for j ∈ {1, . . . , l}, one could take

a Gaussian AR(1) model, meaning that given Yt−1 = yt−1 and τt = j,

Yt = µj + Φj(yt−1 − µj) + εt, with εt ∼ N(0, Aj); the conditional density

of Yt at yt ∈ Rd is

fj(yt|yt−1) =
e−

1
2{yt−µj−Φj(yt−1−µj)}>A−1

j {yt−µj−Φj(yt−1−µj)}

(2π)d/2|Aj |1/2
, (1)

where µj ∈ Rd, Φj is a d × d matrix such that Φnj → 0 as n → ∞,1 and

Aj is a d × d non-degenerate covariance matrix. The matrices Φ1, . . . ,Φl
are mean-reversion parameters. Let Bd be the set of d× d matrices B such

that Bn → 0 as n→∞ and let S+
d be the set of symmetric positive definite

d×d matrices. Note that Bd is the set of d×d matrices with spectral radius

smaller than 1, meaning that the eigenvalues are all in the unit complex ball

of radius 1; in particular, I −B is invertible for any B ∈ Bd. Note that the

so-called Hidden Markov Model is obtained by setting Φ1 = · · · = Φl = 0.

2.1. Regime prediction

Since the regimes are not observable, we have to find a way to predict them.

This will be of utmost importance for pricing and hedging derivatives.

In many applications, one has to predict an colorred a non-observable

signal by using observations Y1, . . . , Yt linked in a certain way to the signal.

This is known as a filtering problem; see, e.g., [18]. In our case, we need to

find at time t the conditional probability ηt(i) = P (τt = i|Y1 = y1, . . . , Yt =

yt). It is remarkable that for the present model, one can compute exactly

this conditional distribution, given a starting distribution η0. For more

details, see the extension of the Baum-Welch algorithm in Appendix A.

1This condition ensures that for any j ∈ {1, . . . , l}, the matrix Bj =
∑∞

k=0 Φk
jAj

(
Φk

j

)>
is well defined and satisfies Bj = ΦjBjΦ>j +Aj .
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2.1.1. Filtering algorithm

Choose an a priori probability distribution η0 for the regimes. Equiva-

lently, one can choose a positive vector q0 and set η0(i) = q0(i)/Z0, where

Z0 =
∑l
j=1 q0(j). The choice of q0 or η0 is not critical since its impact

on predictions decays in time and have virtually no impact on terminal

regime probabilities for any reasonable time series length. For simplicity,

we assume a uniform distribution, i.e. q0 ≡ 1/l.

For t ∈ {1, . . . , n}, define qt(i) = E
[
1(τt = i)

∏t
k=1 fτk(yk|yk−1)

]
, i ∈

{1, . . . , l}, and Zt =
∑l
j=1 qt(j). Note that the first observation of the

sequence is burn-in in order to compute fτ1(y1|y0). Hence, Zt is the joint

density f1:t(y1, . . . , yt) of Y1, . . . , Yt because

f1:t(y1, . . . , yt) = E

[
t∏

k=1

fτk(yk|yk−1)

]
=

l∑
j=1

qt(j) = Zt.

Then if q0 = η0, for any i ∈ {1, . . . , l}, and any t ≥ 1, we have

qt(i) = E

[
1(τt = i)

t∏
k=1

fτk(yk|yk−1)

]

= fi(yt|yt−1)

l∑
j=1

E

[
1(τt = i)1(τt−1 = j)

t−1∏
k=1

fτk(yk|yk−1)

]

= fi(yt|yt−1)

l∑
j=1

QjiE

[
1(τt−1 = j)

t−1∏
k=1

fτk(yk|yk−1)

]

= fi(yt|yt−1)

l∑
j=1

Qjiqt−1(j), (2)

and

ηt(i) = P (τt = i|Y1, . . . , Yt) =
qt(i)

Zt
. (3)

Having computed the conditional distribution ηt, one can estimate τt by

τt = arg max
i
ηt(i), (4)

i.e. as the most probable regime. In view of applications, it is preferable to

rewrite (3) only in terms of η, i.e.,

ηt(i) =
fi(yt|yt−1)

Zt|t−1

l∑
j=1

ηt−1(j)Qji,
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where Zt|t−1 = Zt
Zt−1

=
∑l
j=1

∑l
i=1 fi(yt|yt−1)ηt−1(j)Qji. As a result,

Zt|t−1 is the conditional density of Yt at yt, given Y1 = y1, . . . , Yt−1 = yt−1.

2.1.2. Conditional distribution

From the results of the previous section, the joint density f1:t of Y1, . . . , Yt
is Zt. Also, for any t ≥ 2, the conditional density ft|t−1 = Zt|t−1 of Yt given

Y1, . . . , Yt−1, can be expressed as a mixture, viz.

ft|t−1(yt|y1, . . . , yt−1) =

l∑
i=1

fi(yt|yt−1)

l∑
j=1

ηt−1(j)Qji

=

l∑
i=1

fi(yt|yt−1)Wt−1(i)

where Wt−1(i) =
∑l
j=1 ηt−1(j)Qji, i ∈ {1, . . . , l}. Note that for all t > 1,

Wt−1(i) = P (τt = i|Yt−1 = yt−1, . . . , Y1 = y1). As a result, it follows that

P (τt+k = i|Yt = yt, . . . , Y1 = y1) =

l∑
j=1

(Qk)jiηt(j), i ∈ {1, . . . , l}.

Next, the conditional law of Yt+1, . . . , Yt+m given Y1, . . . , Yt has density

ft+m|t(yt+1, . . . , yt+m|y1, . . . , yt) =

l∑
i0=1

l∑
i1=1

· · ·
l∑

im=1

ηt(i0)

×
m∏
k=1

Qik−1ikfik(yt+k|yt+k−1).

2.1.3. Stationary distribution in the Gaussian case

Suppose that the model specified by (1) holds, ergo the innovations are

Gaussian. If Yn converges in law to a stationary distribution for any given

starting point y0, then this distribution must be Gaussian, with mean µ and

covariance matrix A. Suppose the Markov chain is ergodic with stationary

distribution ν. Then with probability νi, i ∈ {1, . . . , l}, Y1 = (I − Φi)µi +

ΦiY0 + εi, where εi ∼ N(0, Ai) is independent of Y0 ∼ N(µ,A). It then

follows that

µ =

{
l∑
i=1

νi(I − Φi)

}−1{ l∑
i=1

νi{(I − Φi)µi

}
.
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Similarly, A must satisfies A = T (A), where

T (A) = B +

l∑
i=1

νiΦiAΦ>i , (5)

with B = −µµ> +
∑l
i=1 νi

[
(I − Φi)µi + Φiµ}{(I − Φi)µi + Φiµ}> +Ai

]
.

From the conditions on Φ1, . . . ,Φl, there is a norm ‖ · ‖ on the space of

matrices such that ‖Φi‖ < 1 for every i ∈ {1, . . . , l}.2 The operator T is

then a contraction since for any two matrices A0, A1, ‖T (A1) − T (A0)‖ ≤
‖A1−A0‖

∑l
i=1 νi‖Φi‖2 ≤ c‖A1−A0‖, with c = max1≤i≤l ‖Φi‖2 < 1. Also,

since T (A) is a covariance matrix whenever A is one, and B is positive

definite, it follows that there is a unique fixed point A of T , meaning that

A = T (A), and this unique fixed point A is a positive definite covariance

matrix. If fact, A is the limit of any sequence An = T (An−1), with A0 a

non-negative definite covariance matrix. For example, one could take even

take A0 = 0. This provides a way to approximate the limiting covariance

A by setting A ≈ An for n large enough.

2.2. Estimation of parameters

The EM algorithm of [14] is an efficient estimation procedure for incomplete

datasets. This is the case here since τ is unobservable. The algorithm

proceeds iteratively to converge to the maximum likelihood estimation of

parameters. Its implementation for ARHMM is detailed in Appendix A.1.

It seems that starting the parameter’s estimation of the ARHMM with the

HMM parameters’ estimate (obtained by setting Φ1 = · · · = Φd = 0) is

slightly more stable. The optimal number of regimes must be known a

priori, an issue we will discuss next.

2.3. Goodness-of-fit test and selection of the

number of regimes

To select the optimal number of regimes, one must test the adequacy of

fitted models with different number of regimes. This is generally done by

using a test based on likelihoods. However, according to [19], goodness-of-fit

tests based on likelihoods are not recommended for regime-switching mod-

els. We opt for a simpler approach based on a parametric bootstrapping. It

was shown to work on a large number of dynamic models, including hidden

2Recall that all norms are equivalent.
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Table 1. P-values (in percentage) for the nonparamet-

ric change point test using the Kolmogorov-Smirnov

statistic with N=10000 bootstrap samples.

Period P -value

2000’s recovery 39.8
2008-2009 Financial Crisis 0.4

2010’s recovery 9.7

Markov models. The test is built on the work of [20] and its implementation

is given in Appendix B.

2.3.1. Selecting the number of regimes

The goodness-of-fit test described in Appendix B produces P-values from

Cramér-von Mises type statistics, for a given number of regimes `. As

suggested in [21], it makes sense to choose the optimal number of regimes

`? as the smallest ` for which the P-value is larger than 5%. An illustration

of this methodology is given in Section 2.4.

2.4. Application to S&P 500 daily returns

To assess the relevance of our model on real data, we estimated the parame-

ters on the close-to-close log-returns of the daily price series of the S&P 500

Total Return. To find stationary estimation windows, we used a nonpara-

metric changepoint test for a univariate series using a Kolmogorov-Smirnov

type statistic, as in [18]. We focused on recent data, i.e. from early 2000

to the beginning of 2017. We found two stationary estimation windows:

from 05/01/2004 to 02/01/2008 and from 05/01/2010 to 20/01/2017. We

refer to the former as the 2000’s recovery and 2010’s recovery for the latter.

Results of the tests are presented in Table 1. We also studied the interest-

ing period in between, the 2008-2009 Financial Crisis, even though the null

hypothesis of stationarity has a P -value of 0.4%.

Next, we performed the goodness-of-fit test (GoF for short) described

in Appendix B for the ARHMM (AR(1)) as well as for the HMM (AR(0)),

as a mean of comparison. The results are presented in Tables 2, 4 and 6.

According to the selection method described in Section 2.3.1, we selected a

three-regime model for the 2000’s recovery, since 3 is the smallest number

of regimes for which the P -value is larger than 5%. This is also true for the

HMM model. Likewise, we chose a three-regime model for the 2008-2009

Financial Crisis, and a four-regime model for the 2010’s recovery. Note that

in the case of the 2010’s Bull markets, a four regime model for the HMM
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was not enough to get a P -value > 5%. Furthermore, to measure the signif-

icance of ARHMM over HMM, we performed a likelihood ratio test. This is

possible because the HMM is a special case of the ARHMM corresponding

to Φ1 = · · · = Φl = 0. The corresponding statistic is computed as follows:

D = −2 log

(
L(θ̂0|x)

L(θ̂1|x)

)
= −2 log

(
f1:n(y1, . . . , yn|θ̂0)

f1:n(y1, . . . , yn|θ̂1)

)
where θ̂0 are the model’s parameters estimated under the null hypothesis,

i.e. Φ1 = · · · = Φ` = 0, so the returns follow a Gaussian hidden Markov

model, and θ̂1 are the model’s parameters estimated under the alternative,

i.e. returns follow an autoregressive hidden Markov model. Under the null

hypothesis, the limiting distribution of this statistic is a chi-square distri-

bution with ` degrees of freedom, which is the number of extra parameters

in the alternative model. Hence, under the null hypothesis, D ∼ χ2(`).

The log-likelihoods of both models, the statistical test D and the χ
2

criti-

cal value at a significance level of 5% are also presented in Tables 2, 4 and

6. We clearly reject the null hypothesis for all models, proving we should

favor ARHMM over HMM for each dataset.

The estimated parameters for the three periods are presented in Tables

3, 5, and 7, where the mean and standard deviation of each AR(1) and

AR(0) Gaussian regime density fi are respectively denoted by µi and σi,

and are presented as annualized percentages values. The tables further

contain the stationary regime probabilities ν, together with the estimated

transition matrix Q. Regimes are ordered by increasing volatility σi, and

incidentally by decreasing mean µi.

Table 2. P-values (in percentage) for the proposed good-

ness-of-fit test using N=10000 bootstrap samples on the

S&P 500 daily returns for the 2000’s recovery, along with
the log-likelihood of the models and the P-values (in per-

centage) of the likelihood ratio test statistic D.

Number of regimes

1 2 3

GoF P -value (ARHMM) 0 0 26.51
GoF P -value (HMM) 0 0 25.12
Log-likelihood (ARHMM) 3479 3542 3559

Log-likelihood (HMM) 3475 3539 3552
P -value (D) 0.43 3.63 0.18

In the case of the 2000’s recovery, regime 1 is associated to Bull markets,

which are characterized by strong positive premium and low risk (µ1 =
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Table 3. Parameters estimation for the three-regime models on the S&P 500

Total Return daily returns for the 2000’s recovery.

AR(0) AR(1)
Parameter Regime Regime

1 2 3 1 2 3

µ 31.41 13.88 −17.23 34.89 6.99 −21.60

σ 2.18 10.09 18.02 3.34 11.03 18.95
Φ 0 0 0 −0.14 0.03 −0.19

ν 0.11 0.65 0.24 0.19 0.63 0.18

0 0.92 0.08 0 0.96 0.04

Q 0.17 0.83 0 0.32 0.68 0
0 0.03 0.97 0 0.04 0.96

Note: µ and σ are presented as annualized percentage.

Fig. 1. Most probable regimes for the three-regime AR(1) model fitted on the S&P
500 Total Return index from 05/01/2004 to 02/01/2008 together with the cumulative

performance of the index. Darker areas represent higher volatility states.

35.89 and σi = 3.34). It seems that this state is intermittent in the sense

that the Markov chain does not stay or has a very small probability of

staying in regime 1 since Q11 ≈ 0. However, this state is not due to outliers

since the percentage of time the Markov chain is in this state is 11% for the

HMM and 19% for the ARHMM. Regime 2 is an intermediate state. Lastly,

regime 3 is associated with bear markets or corrections, as highlighted by

the negative premium of −21.60 and the volatility of 18.95. The regimes

are less distinct in the HMM case. Also, the likelihood ratio test statistic

D = 15.04 informs us that ARHMM is a much better fit for the data.
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Fig. 2. Probability of the regimes, i.e. ηt, for the three-regime AR(1) model fitted on

the S&P 500 Total Return index from 05/01/2004 to 02/01/2008.

Indeed, we observe strong mean-reversion in regime 1 and 3 (Φ1 = −0.14

and Φ3 = −0.19). Figure 1 displays the filtered most probable regimes (as

defined in Section 2.1) for the whole time series. The regimes are depicted

by different shades of grey, ranging from dark for the high volatility regime

to white for the low volatility regime. The probabilities ηt of each regime

are displayed in Figure 2. Interestingly enough, the crisis in the subprime

mortgage market is adequately captured by the high risk regime.

Table 4. P-values (in percentage) for the proposed good-
ness-of-fit test using N=10000 bootstrap samples on the

S&P 500 daily returns for the 2008-2009 Financial Crisis,

along with the log-likelihood of the models and the P-values
(in percentage) of the likelihood ratio test statistic D.

Number of regimes
1 2 3

GoF P -value (ARHMM) 0 0 59.59

GoF P -value (HMM) 0 0 72
Log-likelihood (ARHMM) 1,209 1,323 1,334
Log-likelihood (HMM) 1,214 1,318 1.329

P -value (D) 0.19 0.95 2.59

The second period studied is quite interesting. For the 2008-2009 Finan-

cial Crisis, regimes are extremely polarized, with expected returns ranging
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Table 5. Parameters estimation for the three-regime models on the S&P 500

Total Return daily returns for the 2008-2009 Financial Crisis.

AR(0) AR(1)
Parameter Regime Regime

1 2 3 1 2 3

µ 74.97 −5.28 −66.87 72.22 −0.42 −64.73

σ 5.52 23.17 57.80 5.12 22.56 55.68
Φ 0 0 0 −0.03 −0.16 −0.15

ν 0.15 0.58 0.27 0.14 0.58 0.28

0 0.97 0.03 0 0.98 0.02

Q 0.25 0.75 0 0.23 0.77 0
0 0.01 0.99 0 0.01 0.99

Note: µ and σ are presented as annualized percentage.

Fig. 3. Most probable regimes for the three-regime AR(1) model fitted on the S&P
500 Total Return index from 03/01/2008 to 04/01/2010, together with the cumulative

performance of the index. Darker areas represent higher volatility states.

from 72.22 to −64.73. The bear market regime, i.e. regime 3, is exception-

ally persistent and volatile, as highlighted by Q3,3 = 0.99 and σ3 = 55.68.

Once more, we find two regimes exhibiting mean-reversion, i.e. Φ2 = −0.16

and Φ3 = −0.15. Figures 3 and 4 are analogous to Figures 1 and 2 respec-

tively. We can see that the Markov chain switched to the high risk regime

right after the collapse of Lehman Brothers. Remarkably, it stayed in that

regime throughout almost all the Banking Crisis, even though we observe

numerous small upwards trends, meaning many thought we hit the bottom.
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Fig. 4. Probability of the regimes, i.e. ηt, for the three-regime AR(1) model fitted on

the S&P 500 Total Return index from 03/01/2008 to 04/01/2010.

Table 6. P-values (in percentage) for the
proposed goodness-of-fit test using N=10000 bootstrap samples

on the S&P 500 daily returns for the 2010’s recovery, along with
the log-likelihood of the models and the P-values (in percentage)

of the likelihood ratio test statistic D.

Number of regimes
1 2 3 4

GoF P -value (ARHMM) 0 0 0 1.56
GoF P -value (HMM) 0 0 0 5.83
Log-likelihood (ARHMM) 5,696 5,936 5,985 6,012
Log-likelihood (HMM) 5,694 5,931 5,981 6,006
P -value (D) 4.19 1.52 4.46 3.02

Table 7. Parameters estimation for the four-regime models on the S&P 500 Total

Return daily returns for the 2010’s recovery.

AR(0) AR(1)
Parameter Regime Regime

1 2 3 4 1 2 3 4

µ 29.41 303.07 −68.77 −28.25 32.04 365.83 −68.82 −27.50
σ 6.70 8.13 13.50 29.05 6.73 7.56 13.39 28.50
Φ 0 0 0 0 −0.04 0.14 −0.09 −0.08
ν 0.44 0.09 0.33 0.14 0.45 0.09 0.32 0.14

0.91 0 0.09 0 0.90 0 0.10 0
Q 0.47 0.07 0.45 0 0.53 0.06 0.41 0

0 0.23 0.76 0.01 0 0.23 0.76 0.01
0 0.03 0 0.97 0 0.03 0 0.97

Note: µ and σ are presented as annualized percentage.

For the last period, we chose a model with four regimes. As noted

previously, the four-regime HMM did not pass the goodness-of-fit test. We

still present the estimated parameters in Table 7 as a mean of comparison.
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Fig. 5. Most probable regimes for the four-regime AR(1) model fitted on the S&P

500 Total Return index from 05/01/2010 to 20/01/2017, together with the cumulative
performance of the index. Darker areas represent higher volatility states.
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Fig. 6. Probability of the regimes, i.e. ηt, for the four-regime AR(1) model fitted on
the S&P 500 Total Return index from 05/01/2010 to 20/01/2017.

The calibration for this period is less intuitive than the previous ones. The

inverse correlation between risk and expected premium is not as strong.

Also, both models have a non-persistent regime with huge expected returns,
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(i.e. regime 2). Nevertheless, we still find modest mean-reversion for two

regimes (i.e. regimes 3 and 4), and the high-risk regime is highly persistent,

as highlighted by Q4,4 = 0.97, as it was in the two previous cases. The most

probable regimes are displayed in Figure 5, while the probabilities of each

regime are presented in Figure 6. Interestingly enough, the crisis in the

subprime mortgage market is adequately captured by the high risk regime.

The final part of 2011 was marked by fear of the European sovereign debt

crisis spreading to Italy and Spain. Once again, the ARHMM isolated the

stock markets fall quite accurately. We also estimated the ARHMM on

the returns from 01/04/1999 to 01/20/2017. This long period is far from

stationary, but it is still interesting to see how the model performs through

recessions and recoveries. We chose a four-regime model, as indicated by the

goodness-of-fit tests. We can see on Figure 7 that the 2000’s bubble burst

and the recent financial meltdown (2008-2009) are both correctly captured

by the high risk regimes.

Fig. 7. Most probable regimes for the four-regime AR(1) model fitted on the S&P

500 Total Return index from 01/04/1999 to 01/20/2017, together with the cumulative
performance of the index. Darker areas represent higher volatility states.

3. Optimal discrete time hedging

In what follows, we use the notations and results from [22]. Denote the price

process by S, i.e., St is the value of d underlying assets at period t and let

F = {Ft, t = 0, . . . , n} a filtration under which S is adapted. Further
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assume that S is square integrable. Set ∆t = βtSt − βt−1St−1, where the

discounting factors βt = e−rt are deterministic for t = 1, . . . , n. We are

interested in the optimal initial investment amount V0 and the optimal

predictable investment strategy ~ϕ = (ϕt)
n
t=1 that minimize the expected

quadratic hedging error for a given payoff C at time n (e.g a call option).

Formally, the problem is stated as

inf
{V0,~ϕ}

E[{G(V0, ~ϕ)}2], (6)

where G = G(V0, ~ϕ) = βn(C − Vn) and Vt is the current value of the

replicating portfolio at time t. In other words, βtVt = V0 +
∑t
j=1 ϕ

>
j ∆j ,

for t = 0, . . . , n. To solve (6), set Pn+1 = 1, and define, for t = n, . . . , 1,

γt+1 = E(Pt+1|Ft),
at = E(∆t∆

>
t Pt+1|Ft−1) = E(∆t∆

>
t γt+1|Ft−1),

bt = E(∆tPt+1|Ft−1) = E(∆tγt+1|Ft−1),

ρt = a−1
t bt,

Pt =

n∏
j=t

(1− ρ>j ∆j),

We now state Theorem 1 of [22], which is a multivariate extension of [6].

Theorem 3.1. Suppose that E(Pt|Ft−1) 6= 0 P-a.s., for 1,. . . ,n. This con-

dition is always respected for regime-switching models. Then, the solution

(V0, ~ϕ) of the minimization problem (6) is V0 = E(βnCP1)/E(P1), and

ϕt = αt − V̌t−1ρt, t ∈ {1, . . . , n}. (7)

where

αt = a−1
t E(βnC∆tPt+1|Ft−1). (8)

and Š and V̌ are the present values of S and V .

Remark 3.1. V0 is chosen such that the expected hedging error, G, is zero.

[22] also showed that Ct(St, τt) given by

βtCt =
E(βnCPt+1|Ft)
E(Pt+1|Ft)

(9)

is the optimal investment at period t so that the value of the portfolio at

period n is as close as possible to C in terms of mean square error G, in

particular, V0 = C0. Ct can be interpreted as the option price at period

t. By increasing the number of hedging periods, Ct should tend to a price
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under a risk-neutral measure; see, e.g., [23]. For example, when there is

only one regime, the density is Gaussian and Φ1 fixed at 0, Ct tends to

the usual Black-Scholes price. The optimal hedging implementation for

ARHMM is described in [24]. It follows that

Čt−1 = βt−1Ct−1γt = E{(1− ρ>t ∆t)Čt|Ft−1), (10)

αt = a−1
t E(Čt∆t|Ft−1). (11)

To derive the optimal hedging algorithm, we also need the following result,

valid for a general ARHMM. First, write St = D(St−1)eYt , where eYt is

the vector with components e(Yt)j , and D(s) is the diagonal matrix with

diagonal elements (s)j , j ∈ {1, . . . , d}. The proof of the following theorem

is given in [24].

Theorem 3.2. For any t ∈ {1, . . . , n}, set

at = D(Št−1)at(Yt−1, τt−1)D(Št−1),

bt = D(Št−1)bt(Yt−1, τt−1),

ρt = D−1(Št−1)ht(Yt−1, τt−1),

γt = gt(Yt−1, τt−1),

with ht = a−1
t bt, where at, bt, and gt are deterministic functions given by

at(y, i) = E
{
ζtζ
>
t gt+1(Yt, τt)|Yt−1 = y, τt−1 = i

}
, (12)

bt(y, i) = E {ζtgt+1(Yt, τt)|Yt−1 = y, τt−1 = i} , (13)

gt(y, i) = E {gt+1(Yt, τt)|Yt−1 = y, τt−1 = i} (14)

−b>t (Yt−1, τt−1)ht(Yt−1, τt−1),

with ζt = eYt−rt − 1, and gn+1 ≡ 1.

If in addition βnC = Ψn(Šn), then Čt = Ψt(Št, Yt, τt), where

Ψt−1(s, y, i)

= E
[
Ψt

{
D(s)eYt−rt , Yt, τt

}{
1− ht(y, i)>ζt

}
|Yt−1 = y, τt−1 = i

]
, (15)

and

αt = D−1(Št−1)a−1
t (Yt−1, τt−1)At(Št−1, Yt−1, τt−1), (16)

where

At(s, y, i) = E
[
Ψt

{
D(s)eYt−rt , Yt, τt

}
ζt|Yt−1 = y, τt−1 = i

]
. (17)

For example, for a call option with strike K, Ψn(s) = max(0, s− βnK).
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3.1. Implementation issues

There are two main problems related to the implementation of the hedging

strategy: at, bt, gt, Ψt and At defined in expressions (12)-(17) must be

approximated and regimes must be predicted. We approximate at, bt gt for

values y on a finite grid and then use linear interpolation. In a similar man-

ner, we approximate Ψt and At for values s and y on a (product) grid and

then use interpolation. This way, the recursion formulas given by (15)-(17)

can be solved. This approach was proposed in [12], where stratified Monte

Carlo sampling was also used. Because the simulations are computation-

ally expensive and introduce variability, we propose a novel technique to

approximate these integrals using semi-exact calculations, inspired by [18]

Chapter 3. The details for the semi-exact calculations are presented in [24].

We also tested the Monte Carlo sampling procedure as a mean of com-

parison. Interestingly, we found that by simply rescaling the Monte Carlo

samples to the desired mean and volatility, we achieved results as accurate

as the semi-exact calculations, as pointed out in Section 3.3.

As for defining the points on the grids, previous literature suggest choos-

ing 103 equidistant points marginally covering at least 3 standard deviations

under the respective highest volatility regimes. Importantly, we found that

strategically choosing the points with respect to the percentiles of simulated

processes significantly reduces the number of points needed while keeping

the accuracy at a reasonable level.

Next, we need to predict τ1 based on R1, R0, τ0 and so on. The predicted

regime τ̂ is the one having the largest probability given the information on

prices up to time t, i.e. the most probable regime given by (4). Note

that this methodology introduces a bias. We also studied the less biased

approach of weighting the regimes proportionally to ηt, but since the results

were comparable and did not lead to any significant improvement, they are

omitted from the analysis. For more details on regime predictions, see

Section 2.1. Then, according to (7) and (16), the optimal hedging weights

ϕt for period [t− 1, t), for k = n, . . . , 1, are approximated by

ϕ̂t = αt(Št−1, Yt−1, τ̂t−1)−D−1(Št−1)V̌t−1ht(Yt−1, τ̂t−1). (18)

V0 is approximated by C0(S0, τ̂0, 0) while the remaining monies, V0− ϕ̂ᵀ
1S0,

are invested in the riskless asset. Next, as S1 is observed, one first com-

putes the actual portfolio value V1, then predicts the current regime τ1 and

finally approximates the optimal weights ϕ2. This process is iterated until

expiration of the option.
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3.1.1. Using regime predictions

Here, we obtain option prices and strategies that depend on the unob-

servable regimes τ , since (St, τt) is a Markov chain. However, [25] pro-

posed a very interesting approach: they showed that (St, ηt) is Markov, so

one can obtain prices and hedging strategies depending on (St, ηt) instead.

This makes sense financially. However, this new Markov chain lives in a

l + d − 1-dimensional space, because the values of ηt belong to the sim-

plex Sl = {(x1, . . . , xl); xi ≥ 0, x1 + · · ·+ xl = 1}. [25] considered only 2

regimes and one asset, so the real dimension is 2. When l > 3, this becomes

numerically intractable.

3.2. Optimal hedging vs delta-hedging

In optimal hedging, the strategy ϕ takes into account the hedging error at

each time period, as exemplified by equation (7), since it depends explicitly

on the previous value of the portfolio. For delta-hedging, this is not the

case since it is assumed that the hedging error is 0 at each period, so there

is no correction term depending on the value of the portfolio.

3.3. Simulated hedging errors

To assess the proposed strategy’s accuracy, we simulated 10000 trajectories

under ARHMM and we hedged identical options under different hedging

strategies. To be realistic, the parameters were taken from Table 3. The

hedging methodologies are the classical Black-Scholes delta-hedging (B&S)

and optimal hedging under ARHMM (OH-ARHMM), HMM (OH-HMM)

and Gaussian (OH-B&S) returns (i.e., considering only 1 regime). We also

compared semi-exact approximation to Monte-Carlo. The option in ques-

tion is a call with S0 and K equal to 100, risk-free rate r = 0.01, 3 month

maturity (63 days) with daily hedging. Hedging error statistics are given

in Table 8, while the estimated densities are displayed in Figure 8. OH-

ARHMM achieves a 33% reduction in RMSE compared to B&S and OH-

B&S and a 26% to OH-HMM. The latter is quite impressive, as it highlights

how big of an impact the autoregressive dynamic has.

4. Out-of-sample vanilla pricing and hedging

4.1. Methodology

To exhibit the behavior of the hedging protocols, we buy and sell vanilla

options on the S&P 500 depending on how the market prices compare with

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
0.

17
.2

16
.2

46
 o

n 
01

/1
6/

21
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 9, 2018 13:4 Innovations in Insurance, Risk- and Asset Management 9in x 6in b3285-ch12 page 332

332 Innovations in Insurance, Risk- and Asset Management

Table 8. Statistics for the hedging errors in an autoregressive hidden Markov

model, using 10000 simulated portfolios.

B&S OH-B&S HMM HMM MC ARHMM ARHMM MC

Average −0.105 −0.084 0.004 0.003 0.025 0.030
Median −0.236 −0.202 −0.085 −0.086 −0.019 −0.019
Volatility 0.611 0.626 0.559 0.559 0.411 0.412
Skewness 1.715 1.948 1.639 1.629 4.644 4.738
Kurtosis 7.737 9.558 9.464 9.356 71.834 78.219
Minimum −1.658 −1.658 −4.649 −4.633 −2.477 −2.413
VaR (1%) −1.110 −1.118 −1.087 −1.086 −0.749 −0.741
VaR (99%) 2.069 2.227 1.987 1.982 1.526 1.531
Maximum 4.886 6.725 6.538 6.520 12.958 14.266
RMSE 0.620 0.632 0.559 0.559 0.411 0.413

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

B&S

OH-B&S
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OH-ARHMM

Fig. 8. Estimated densities for the hedging errors in an autoregressive hidden Markov

model, using 50000 portfolios. Only the semi-exact densities are shown, as they were
indiscernible from the Monte Carlo ones.

our theoretical prices. Then, we hedge the positions until expiration. We

then assess the impact of model specification on the delta-hedging strategy

by examining the statistical properties of the hedging error and of the

strategy’s returns. All hedging portfolios are re-balanced on a daily basis,

as is often assumed in the volatility timing literature; see e.g., [26]. The

market price of an option is defined as the last (i.e. as 4:15 PM EST)

midpoint between the bid and the ask. The price of the underlying is its

listed close value. For simplicity, we neglect issues related to time-varying

discount rates by assuming constant continually compounded daily rates.

Risk-free rates, r, are linearly interpolated for a given maturity, n, from the

zero-coupon U.S. yield curve.
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Remark 4.1. For the implementation, we chose to present only the results

using the most probable regime for the computation of the hedging strategy.

These results are a little bit better than those obtained by weighting the

hedging strategy according to ηt(1), . . . , ηt(l) at period t.

4.1.1. The underlying asset

We make the reasonable assumption that the spot S&P 500 is investable and

tradable at a minimal cost. The forward rate is retrieved for the maturities

of interest directly from the option data at hand, as proposed by [27]. From

put-call parity, the option implied forward value at n, Fn, is

Fn = (C̃(K̃, n)− P̃ (K̃, n))ernn + K̃,

where C(K̃, T ) and P (K̃, T ) are respectively the call and put market val-

ues expiring at T with strike K and K̃ is the at-the-money strike value

minimizing |C(K̃, T )−P (K̃, T )| for all strikes offered by the exchange. We

use at-the-money options because they are the most liquid and are thus

less likely to provide cash-and-carry type arbitrage opportunities. We then

compute the daily forward rate as fn =
1

n
log(Fn/S0) and the associated

daily discounting factor β = e−fn , which reflects the current risk-free return

on capital net of the implied continuous dividend yield.

4.1.2. Option dataset

Exchange-traded options on the S&P 500 are European, heavily traded and

have a high number of strikes and maturities. To assess the accuracy of

our model, we will analyze two periods with very different characteristics:

the 2008 Financial Crisis, and a chunk of the recent recovery. Dates range

from 09/24/2007 to 09/20/2009 and from 09/23/2013 to 07/08/2015, re-

spectively. This will help us discern the impact on hedging and pricing

when a dramatic regime change occurs, in the former, and when it does

not, in the latter. In order to minimize the effect of varying maturities,

we built the dataset of options having a maturity of about 1 year, more

precisely from 231 to 273 trading days till expiration. Also, because in-

the-money and out-of-the-money are less liquid, we only included options

where moneyness (strike value divided by the underlying value) is between

0.9 and 1.1. So we were left with a total of 180 options for the first period,

and 478 options for the second period. Note that at a given date, more

than one option can meet these criteria.
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4.1.3. Backtesting

We applied the AR(1) regime-switching optimal hedging methodology with

3 regimes (ARHMM). We chose 3 regimes because it is the number of

regimes that seemed the best given the time windows studied, which we

will describe in the next paragraph. We compared it to the case with 1

regime and Φ fixed at 0, corresponding to the optimal hedging under the

B&S model (OH-B&S).

For each option in the dataset, we estimated the ARHMM parameters

on the S&P 500 log-returns with a 500 and 2000 day trailing window.

We chose to backtest the methods using 2 estimation windows in order

to have a more in-depth understanding of model specifications on pricing

and hedging. The 2000 day trailing window always included the previous

financial meltdown, i.e., dot-com bubble for our first analysis, and the 2008

financial crisis for the second one. The 500 day trailing window didn’t.

Similarly, we applied this methodology to all the hedging protocols included

in the analysis, which will be introduced below.

From [28], for a given moneyness, the value of an option is homogeneous

of degree one with respect to the underlying value. Thus, for each inception

date, we normalize the option prices, the strike values and the underlying

path at an initial S&P 500 value of 100. Results can thus be aggregated

through time and interpreted as a percentage of S&P 500. Note that for

each inception date, the hedging protocols are applied out-of-sample until

maturity. To ensure comparability, OH-B&S assumes the stationary dis-

tribution of the ARHMM when the autoregressive parameter Φ = 0. The

OH-B&S optimal hedging exposure is derived from an algorithm similar

to the one presented in Section 3. Optimal hedging under unconditional

distributions is presented in [18]. Both strategies minimize the expected

quadratic hedging error under their respective null hypothesis, namely that

the returns follow an autoregressive regime-switching model (ARHMM),

and a Gaussian model (OH-B&S).

OH-B&S methodology is not to be confused with the classical Black-

Scholes delta hedging protocol. Indeed, the terminology only reflects the

fact that we hedge and price under the Black-Scholes framework hypothesis,

namely that assets follow geometric Brownian motions. Even though the

OH-B&S prices converge to the usual Black-Scholes prices as the number of

hedging periods tends to infinity, the discrete time hedging strategies will

not necessarily be the same. For this reason, the classical Black-Scholes

delta-hedging methodology (B&S) is also considered. Similarly to OH-B&S,

the B&S volatility is calibrated to the stationary volatility of ARHMM.
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We added a final benchmark to our analysis, one that reflects how

well the market would hedge the same options, namely the delta-hedging

methodology where the volatility is calibrated to the implied volatility at

each hedging period (B&S-M). It informs us how well the models compare

to market’s intuition. The effect of using implied volatility was discussed

in [29]. However, his theoretical analysis cannot be performed here.

To recap, we buy and sell options depending on their market value

compared to the theoretical prices, and hedge the positions until maturity.

We analyze the P&L of the different methodologies, as well as the hedging

errors. Two periods are studied: the 2008 Financial Crisis and a chunk of

the following recovery spanning from mid-2013 to mid-2015.

4.2. Empirical results

We define the hedging error as the present value of the liability βnC mi-

nus the present value of terminal portfolio βnVn. The options’ maturity

being set to one year, the annualized root-mean-squared hedging error can

be computed by

√
Ê(βnVn − βnC)2. This realized risk is the empirical

counterpart of the quantity we minimized and as such, is the most relevant

metric for comparing the different models. Keep in mind that there is a lot

of overlap in our dataset, so the hedging error values are not independent,

nor identically distributed since the moneyness or other parameters are not

constant. Despite these inconveniences, the hedging errors are still useful

to compare the models.

Concerning the trading strategy, if the market is overvalued with re-

spect to the model, we sell the option and hedge our position. Thus, the

present value of the return is (C0 − V0)− (βnCn − βnVn). If the market is

undervalued, we buy the option and hedge our position. The return will be

the negative of the former.

4.2.1. 2008–2009 Financial Crisis

In this section, we will focus on options with inception dates from Septem-

ber 24th 2007 to September 20th 2009. This period is really interesting.

In the first part, the market experienced a huge increase in volatility and

decrease in returns. In the second part, it is the opposite.

We will first turn our attention to the 500 trailing window case. Table

9 and Figure 9 present the hedging error’s statistics and density approxi-

mation, while the results of the trading strategy, i.e., the cumulative value
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of a portfolio that traded the 90 options, are displayed in Figure 10. The

horizontal axis is the cumulative number of options traded in chronologi-

cal order. In this case, ARHMM is by far the superior methodology. It

achieved the best hedging error considering all the metrics for both calls

and puts. Furthermore, it is the best trading strategy for both type of

options, even though the hedging errors are almost entirely negative in the

calls case. Note that the “Bias” statistic refers to the difference between

the market price and the theoretical price. Therefore, it is always 0 for the

BS-M, since the implied volatility is used.

Note that according to Figure 4, around 2009, the asset spends a lot

of time in regime 3, which is characterized by a very large volatility and

a very large negative mean; see, e.g., Table 5. When volatility increases

and returns turn negative, the puts’ value increase and need to be hedged

accordingly. B&S and B&S-M failed to do so, resulting in huge hedging

errors and large negative P&L values. This explains the difference between

put and calls in Table 9.

Table 9. Hedging error statistics for the 90 calls and the 90 puts traded in the 2008-2009

Financial Crisis with 500 days trailing estimation window.

Calls Puts
B&S-M B&S OH-B&S ARHMM B&S-M B&S OH-B&S ARHMM

RMSE 3.87 5.27 4.53 0.61 39.95 42.52 4.53 0.98
Bias 0 −4.52 −4.37 −5.35 0 −1.05 −0.91 −1.87
VaR 1% −7.64 −12.02 −12.47 −3.17 −28.39 −33.24 −12.47 −3.18
Median 2.9 3.82 2.68 −1.65e-04 30.78 29.77 2.68 0.01
VaR 99% 9.16 8.61 7.57 −1.97e-09 72.9 77.22 7.57 4.75

Similar results are presented in Table 10 and Figures 11 and 12, although

the trailing estimation window, previously set to 500 days, is now 2000

days. This estimation window includes another financial crisis, the Dot-

com Bubble. The same conclusions as in the previous experience can be

drawn.

Table 10. Hedging error statistics for the 90 calls and the 90 puts traded in the
2008-2009 Financial Crisis with 2000 days trailing estimation window.

Calls Puts
B&S-M B&S OH-B&S ARHMM B&S-M B&S OH-B&S ARHMM

RMSE 3.87 4.26 3.15 0.33 39.95 40.87 3.15 1.25
Bias 0 −4.86 −4.69 −4.91 0 −1.4 −1.23 −1.44
VaR 1% −7.64 −4.76 −4.27 −1.43 −28.39 −28.68 −4.27 −1.4
Median 2.9 3.26 1.93 0.01 30.78 27.74 1.93 0.35
VaR 99% 9.16 8.93 7.62 0.33 72.9 74.76 7.62 4.83
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Fig. 9. Hedging error density approximation for the 90 calls (a) and 90 puts (b) traded
in the 2008-2009 Financial Crisis with 500 days trailing estimation window.

4.2.2. 2013–2015 Bull markets

Our second and last analysis focuses on a part of the recent recovery span-

ning from September 23th 2013 to August 7th 2015. This period is quite the

opposite of a financial crash, with the exception of periods spent in regime

3, which has a very large negative mean and a large volatility. This also

affects negatively the performance of hedging error statistics of the B&S

methods for the puts. Again, we start with the small estimation window.

The results are presented in Table 11 and Figures 13 and 14. Considering

the hedging errors, OH-B&S and ARHMM achieved the best and pretty

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
0.

17
.2

16
.2

46
 o

n 
01

/1
6/

21
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 9, 2018 13:4 Innovations in Insurance, Risk- and Asset Management 9in x 6in b3285-ch12 page 338

338 Innovations in Insurance, Risk- and Asset Management

(a)
0 50 100

Total number of trades

-200

0

200

400

600
P

ro
fit

 &
 L

os
s

B&S
OH-B&S
ARHMM

(b)
0 50 100

Total number of trades

-3000

-2000

-1000

0

1000

P
ro

fit
 &

 L
os

s

B&S
OH-B&S
ARHMM

Fig. 10. Profit & Loss of trading strategy for the 90 calls (a) and 90 puts (b) traded in

the 2008-2009 Financial Crisis with 500 days trailing estimation window.

similar statistics for both put and calls. Similarly to the previous experi-

ence in Section 4.2.1, B&S and B&S-M replicated poorly the put options.

Table 11. Hedging error statistics for the 239 calls and the 239 puts traded in the
2013-2015 Bull markets with 500 days trailing estimation window.

Calls Puts
B&S-M B&S OH-B&S ARHMM B&S-M B&S OH-B&S ARHMM

RMSE 1.09 1.64 0.84 0.99 18.12 11.6 0.84 0.99
Bias 0 0.12 0.22 0.59 0 −4.08 −3.98 −3.62
VaR 1% −2.63 −2.53 −1.45 −2.47 −41.63 −26.59 −1.45 −2.46
Median −0.2 0.14 −0.02 −0.01 −12.12 −8.6 −0.02 −0.01
VaR 99% 1.39 4.42 3.7 3.54 9.42 6.78 3.7 3.53

Finally, the results for the longer estimation window case are presented

in Table 12 and Figures 15 and 16. This is probably the worst environment

for the ARHMM, as the estimation window includes a financial crisis (i.e.

2008-2009 Financial Crisis) and the out-of-sample returns are slow and

steady. Because our trading strategy takes into account the actual hedging

error according to (7), the simpler models should perform better. In spite of

that, ARHMM managed to outperform B&S and B&-M for the put options.

The fact that pricing bias for the calls are strongly positive is noteworthy. In

theory, the pricing bias should be negative, to account for the risk premium.

In this case, it seems that the market was pretty confident about returns

and volatility staying low. In insight, it was right.

Lastly, we aggregated the P&L over all the experiences for B&S, OH-

B&S and ARHMM in Table 13. For a fair comparison, we normalized

the number of traded options in each cases to 100. Remember that the

option prices, strike prices and underlying paths are also normalized at an

initial S&P 500 value of 100. Impressively, ARHMM accomplished a 106%

increase in P&L compared to the second best, OH-B&S, for the 2-year
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Fig. 11. Hedging error density approximation for the 90 calls (a) and 90 puts (b) traded
in the 2008-2009 Financial Crisis with 2000 days trailing estimation window.

Table 12. Hedging error statistics for the 239 calls and the 239 puts traded in the

2013-2015 Bull markets with 2000 days trailing estimation window.

Calls Puts
B&S-M B&S OH-B&S ARHMM B&S-M B&S OH-B&S ARHMM

RMSE 1.09 5.32 4.84 8.57 18.12 14.75 4.84 8.6
Bias 0 4.71 4.54 4.18 0 0.52 0.34 −0.01
VaR 1% −2.63 −10 −8.93 −31.27 −41.63 −27.66 −8.93 −31.39
Median −0.2 −4.67 −4.09 −2.82 −12.12 −12.5 −4.09 −2.81
VaR 99% 1.39 −1.79 −1.76 −0.04 9.42 1.41 −1.76 −0.04

trailing window, and is only 9% behind the first for the 8-year case, which

is again OH-B&S.
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Fig. 12. Profit & Loss of trading strategy for the 90 calls (a) and 90 puts (b) traded in

the 2008-2009 Financial Crisis with 2000 days trailing estimation window.

Table 13. Total normalized P&L

Trailing window (years) B&S OH-B&S ARHMM

2 −1286.78 685.32 1409.54

8 −1761.77 594.56 546.38

Overall, by achieving the best Root Mean Square Error (RMSE) two

times out of four for both the 2-year and 8-year window, and by being the

most profitable strategy three times out of four for the 2-year window and

two times out of four for the 8-year window, the ARHMM is the superior

hedging protocol. However, practitioners should keep in mind that if the

ARHMM is estimated on a window including a financial crisis, they should

expect higher hedging errors than the simpler models if returns stay slow

and steady. From our results, we strongly suggest using a 2-year trailing

window as it consistently achieved an RMSE lower than 1, i.e., the ARHMM

can accurately hedge options in a financial crisis.

5. Conclusion

In this paper, we proposed an autoregressive hidden Markov model to fit fi-

nancial data, and we showed how to implement an optimal hedging strategy

when the underlying asset returns follow an autoregressive regime-switching

random walk. First, we presented estimation and filtering procedures for

the ARHMM. In order to determine the optimal number of regimes, we pro-

posed a novel goodness-of-fit test for univariate and multivariate ARHMM

based on the work of [30], [20] and [12].

To illustrate the proposed strategy, we modeled three daily return se-

ries of the S&P 500. Using likelihood test, we show that the ARHMM
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Fig. 13. Hedging error density approximation for the 239 calls (a) and 239 puts (b)

traded in the 2013-2015 Bull markets with 500 days trailing estimation window.

is a much better fit than the classical HMM, particularly because it has

the capacity to model mean-reversion. Moreover, we presented the imple-

mentation of the discrete-time optimal hedging algorithm minimizing the

mean-squared hedging error. Because it performs pricing, we implemented

a trading strategy consisting of selling overpriced and buying underpriced

options and hedging the position till maturity. Out of eight cases and

compared to three other hedging protocols, our strategy achieves the best

root-mean-squared hedging error four times and is the most profitable strat-

egy five times. Furthermore, it realized the best total P&L. Because of its
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Fig. 14. Profit & Loss of trading strategy for the 239 calls (a) and 239 puts (b) traded

in the 2013-2015 Bull markets with 500 days trailing estimation window.
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Fig. 15. Hedging error density approximation for the 239 calls (a) and 239 puts (b)
traded in the 2013-2015 Bull markets with 2000 days trailing estimation window.
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Fig. 16. Profit & Loss of trading strategy for the 239 calls (a) and 239 puts (b) traded
in the 2013-2015 Bull markets with 2000 days trailing estimation window.

ability to model regime switches as well as mean-reversion, it would be in-

teresting to see this model applied to multivariate time series. The hedging

algorithm can also be applied to multivariate or American options.
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Appendix A. Extension of Baum-Welch algorithm

For i ∈ {1, . . . , l} and t ∈ {1, . . . , n}, define

λt(i) = P (τt = i|Y1, . . . , Yn).

Also, for i, j ∈ {1, . . . , l} and t ∈ {1, . . . , n− 1}, define

Λt(i, j) = P (τt = i, τt+1 = j|Y1, . . . , Yn),

and let η̄t(i) be the conditional density of (Yt+1, . . . , Yn), given Yt and

τt = i. Further set η̄n ≡ 1. Note that λn(i) = ηn(i), and Λn(i, j) =

λn(i)Qij , for any i, j ∈ {1, . . . , l}. The proof of the following proposition is

given in [24].

Proposition A.1. For all i, j ∈ {1, . . . , l}, and any t ∈ {0, . . . , n− 1},

ηt+1(i) =
fi(Yt+1|Yt)

∑l
β=1 ηt(β)Qβi∑l

α=1

∑l
β=1 fα(Yt+1|Yt)ηt(β)Qβα

, , (A.1)

η̄t(i) =

l∑
β=1

Qiβ η̄t+1(β)fβ(Yt+1|Yt), (A.2)

λt(i) =
ηt(i)η̄t(i)∑l

α=1 ηt(α)η̄t(α)
, (A.3)

Λt(i, j) =
ηt(i)Qij η̄t+1(j)fj(Yt+1|Yt)∑l

α=1 ηt(α)η̄t(α)
. (A.4)

In particular,
∑l
β=1 Λt(i, β) = λt(i), for all t ∈ {0, . . . , n}.

Appendix A.1. Estimation of regime-switching models

To describe the EM algorithm for the estimation, suppose that at step

k ≥ 0, one has the parameters Q, µi, Φi, Ai, i ∈ {1, . . . , l}. Let wt(i) =

λt(i)
/∑n

k=1 λk(i), and set ȳi =
∑n
t=1 wt(i)yt and y

i
=
∑n
t=1 wt(i)yt−1,

i ∈ {1, . . . , l}, where λt and Λt are given in Proposition A.1. Then, at step

k + 1, for i, j ∈ {1, . . . , l}, one has

Q
(k+1)
ij =

∑n
t=1 Λt−1(i, j)∑l

β=1

∑n
t=1 Λt−1(i, β)

=

∑n
t=1 Λt−1(i, j)∑n
t=1 λt−1(i)

, (A.5)

µ
(k+1)
i =

(
I − Φ

(k+1)
i

)−1 (
ȳi − Φ

(k+1)
i y

i

)
, (A.6)
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Φ
(k+1)
i =

{
n∑
t=1

wt(i)
(
yt−1 − yi

)(
yt−1 − yi

)>}−1

(A.7)

×

{
n∑
t=1

wt(i) (yt − ȳi)
(
yt−1 − yi

)>}
,

A
(k+1)
i =

n∑
t=1

wt(i)etie
>
ti , (A.8)

where eti = yt − ȳi − Φ
(k+1)
i

(
yt−1 − yi

)
, t ∈ {1, . . . , n}.

For a proof of these formulas, see [24].

Appendix B. Goodness-of-fit test for ARHMM

Here, we state the main formulas needed to implement the goodness-of-

fit test, which can be performed to assess the suitability of a Gaussian

AR(1) regime-switching models as well as to select the optimal number of

regimes, l∗. The proposed test, based on the work of [31], [20] and [32],

uses the Rosenblatt’s transform. For conciseness, we detail the implemen-

tation for two dimensional Gaussian AR(1) regime-switching models, but

the approach can be easily generalized.

Appendix B.1. Rosenblatt’s transform

Let i ∈ {1, . . . , l} be fixed, and let Ri be a random vector with density

fi. For any q ∈ {1, . . . , d}, denote by fi,1:q the density of
(
R

(1)
i , . . . , R

(q)
i

)
,

and by fi,q the density of R
(q)
i given

(
R

(1)
i , . . . , R

(q−1)
i

)
. Further denote by

Fi,q the distribution function associated with density fi,q. By convention,

fi,1 denotes the unconditional density of R
(1)
i . Then, the Rosenblatt’s

transform x 7→ Ti(x) =
(
Fi,1(x(1)), Fi,2(x(1), x(2)), . . . , Fi,d(x

(1), . . . , x(d))
)ᵀ

is such that Ti(Ri) is uniformly distributed in [0, 1]d. For example, if fi is

the density of a bivariate Gaussian distribution with mean µi and covariance

Σi =

 v
(1)
i ρi

√
v

(1)
i v

(2)
i

ρi

√
v

(1)
i v

(2)
i v

(2)
i

 ,

fi,2 is the density of a Gaussian distribution with mean µ
(2)
i +βi

(
y

(1)
i −µ

(1)
i

)
and variance v

(2)
i (1− ρ2

i ), with βi = ρi

√
v

(2)
i /v

(1)
i . These results can easily

be extended to the Gaussian AR(1) distribution.
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However, for regime-switching random walks models, past returns must

also be included in the conditioning information set. For any x(1), . . . , x(d) ∈
R, the (d-dimensional) Rosenblatt’s transform Ψt corresponding to the den-

sity (5) conditional on x1, . . . , xt−1 ∈ Rd is given by

Ψ
(1)
t (x

(1)
t ) = Ψ

(1)
t

(
x1, . . . , xt−1, x

(1)
t ) =

l∑
i=1

Wt−1(i)Fi,1(x
(1)
t

)

and

Ψ
(q)
t

(
x

(1)
1 , . . . , x

(q)
t

)
= Ψ

(q)
t

(
x1, . . . , xt−1, x

(1)
t , . . . , x

(q)
t

)
=

∑
i = 1lWt−1(i)fi,1:q−1

(
x

(1)
t , . . . , x

(q−1)
t )Fi,q(x

(q)
t

)
∑l
i=1Wt−1(i)fi,1:q−1

(
x

(1)
t , . . . , x

(q−1)
t

) ,

for q ∈ {2, . . . , d}. Suppose R1, . . . , Rn is a sample of size n of d-dimensional

vectors drawn from a joint (continuous) distribution P . Also, let P be

the parametric family of Gaussian AR(1) regime-switching models with l

regimes. Formally, the hypothesis to be tested is

H0 : P ∈ P = {Pθ; θ ∈ Θ} vs H1 : P /∈ P.

Under H0, it follows that

U1 = Ψ1(R1, θ), U2 = Ψ2(R1, R2, θ), . . . , Un = Ψ(R1, . . . , Rn, θ)

are independent and uniformly distributed over [0, 1]d, where Ψ1(·, θ), . . .,
Ψn(·, θ) are the Rosenblatt’s transforms conditional on the set of parame-

ters θ ∈ Θ. Since θ is unknown, it must be estimated by some θn. Then,

the pseudo-observations,
(
Û1 = Ψ1(R1, θn), . . . , Ûn = Ψn(R1, . . . , Rn, θn)

)
are approximately uniformly distributed over [0, 1]d and approximately in-

dependent. We propose a test statistic based on these pseudo observations.

Appendix B.2. Test statistic

The test statistic is based on the empirical process Dn(u) =
1

n

∑n
t=1

∏d
q=1 I

(
Û

(q)
t ≤ u(q)

)
, u ≡ (u(1), . . . , u(d)) ∈ [0, 1]d.
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To test H0 against H1 we propose a Cramér-von Mises type statistic:

Sn ≡ Bn(Û1, . . . , Ûn) = n

∫
[0,1]d

{
Dn(u)−

d∏
q=1

u(q)

}2

du

=
1

n

n∑
t=1

n∑
k=1

d∏
q=1

{
1−max Û

(q)
t , Û

(q)
k

}
− 1

2d−1

n∑
t=1

d∏
q=1

(1− Û (q)2) +
n

3d
.

Since Ûi is almost uniformly distributed underH0, large values of Sn should

lead to rejection of H0. Unfortunately, the limiting distribution of the test

statistic depends on the unknown parameter θ. This is why we use the

parametric bootstrap to compute P -values. Its validity has been shown for

a wide range of assumptions in [20]. These results were recently extended

to dynamic models in [16], including regime-switching random walks.

Appendix B.3. Parametric bootstrap algorithm

(1) For a given number of regimes, estimate parameters with θn computed

from the EM algorithm applied to (R1, . . . , Rn).

(2) Compute the test statistic Sn = Bn(Û , . . . , Ûn), from the estimated

pseudo observations, Ûi = Ψi(R1, . . . , Ri, θn), for i ∈ {1, . . . , n}.
(3) For some large integer N (say 1000), repeat the following steps for every

k ∈ 1, . . . , N :

(a) Generate a random sample {Rk1 , . . . , Rkn, θkn} from distribution Pθn
(b) Compute θkn by applying the EM algorithm to the simulated sample,

Rk1 , . . . , R
k
n.

(c) Let Ûki = Ψi(R
k
1 , . . . , R

k
i , θ

k
n) for i ∈ 1, . . . , n, and finally compute

Skn = Bn

(
Ûk1 , . . . , Û

k
n

)
.

Then, the approximated P -value for the test based on the Cramér von

Mises statistic Sn is given by
1

N

∑N
k=1 I

(
Skn > Sn

)
.
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Chapter 13

Interest Rate Swap Valuation in the Chinese Market

Wei Cui

RMB Market Department, China Foreign Exchange Trade System &

National Interbank Funding Center, Shanghai 201203, China
cuiwei@chinamoney.com.cn

Min Dai∗, Steven Kou†, and Yaquan Zhang‡

Department of Mathematics and Risk Management Institute,
National University of Singapore, 119613 Singapore

∗matdm@nus.edu.sg
†matsteve@nus.edu.sg
‡rmizhya@nus.edu.sg

Chengxi Zhang§ and Xianhao Zhu¶

Risk Management Institute,

National University of Singapore, 119613 Singapore
§rmizcxi@nus.edu.sg
¶rmizx@nus.edu.sg

Following the 2008 financial crisis, the dual curve discounting method became
widely used in valuing interest rate swaps denominated in major currencies,

which implies the market consensus of accepting Overnight Indexed Swap rates

as new proxies of risk-free rates. However, in the Chinese market, the outdated
single curve discounting method is still widely used, because there is no con-

sensus on the choice of the risk-free rate proxy. We apply the dual curve

discounting method to the Chinese interest rate swap market and recommend
using the 7-day fixing repo rate, a benchmark interest rate of the Chinese repo

market, as the risk-free rate. Empirically, using the single curve discounting
method may significantly undervalue a swap contract to the fixed rate receiver.

Keywords: multi-curve models, short rate models, pricing of interest rate swaps,

the Chinese market, risk-free rate, repo rate.

1. Introduction

In financial markets, interest rate swaps have long been used as a tool of

investment and risk management. The most common type is the “plain

vanilla” interest rate swap. In this swap, one party periodically pays a cash

flow determined by a fixed swap rate and receives a cash flow determined

Open Access chapter published by World Scientific Publishing Company and distributed

under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives
(CC BY-NC 4.0) License.
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by a reference floating interest rate. This is the only type of interest rate

swap traded in the Chinese market, and the focus of this paper.

Pricing an interest rate swap has different meanings in different contexts.

In the market, only new contracts are frequently traded. These contracts

are quoted by the fixed swap rates such that the contracts are worth zero at

initiation. Therefore, to price a new interest rate swap means to determine

the swap rate. The other case is to price an existing swap contract with a

known swap rate. In this case, to price it usually means to calculate its net

present value, which is important for accounting, risk management or early

termination of the contract. In this paper, the swap valuation equations

are given to serve the second case. However, one can easily modify them

to get the swap rates of new contracts by rearranging the terms.

The benefit of having an appropriate swap valuation equation is not

limited to calculating swap prices correctly. Typically, interest rates, such

as Libor or Shibor, are only quoted with short maturities of up to 1 year,

whereas their swaps can have much longer maturities. Therefore, market

participants rely on the swap rates to derive interest rate term structures

in long tenors. This technique is known as bootstrapping, which is the

inverse of the swap valuation equation. Therefore, an appropriate valuation

equation is crucial for the market to derive term structures properly.

Internationally, before the 2008 financial crisis, to price interest rate

swaps, the industry practice was to regard Xibor rate1 as a risk-free rate,

and to project and discount the Xibor swap cash flows using the rate itself.

Since only the Xibor curve is involved in this procedure, this valuation

method is referred to as single curve discounting.

However, Xibor rate is not truly risk-free. It is an unsecured lending

rate among financial institutions. For example, Collin-Dufresne and Solnik

[1] argued that Libor has the same credit risk as AA rated financial institu-

tions. Before the 2008 financial crisis, the risk embedded in Xibor was not

significant in practice and the spreads between Xibor and the Overnight

Indexed Swap (OIS)2 curves were small. After the 2008 financial crisis, as

shown in Fig. 1, these spreads became increasingly significant. Hull and

1Xibor rate refers to the group of interbank offered rates. For the U.S. dollar (USD),
this rate is the London Interbank Offered Rate, or Libor. For the Euro (EUR), it refers
to the Euro Interbank Offered Rate, or Euribor. For onshore Chinese Yuan (CNY), it

refers to the Shanghai Interbank Offered Rate, or Shibor.
2OIS swaps refer to the swaps in which an overnight rate is chosen as the floating rate.
In USD-dominated OIS, the federal funds rate is the choice. In EUR-dominated OIS,

Euro Overnight Index Average, or Eonia, is the choice.
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White [2] pointed out that the spreads reflect the credit concerns of banks

about each other. This phenomenon makes the practice of discounting cash

flows with Xibor curves questionable.

To account for the risks embedded in Xibor, practitioners have switched

to a new valuation method known as dual curve discounting. Under this

framework, in the valuation of Xibor swaps, another choice of risk-free rate

curve is used in discounting the cash flows. Since the choice of the risk-

free rate curve is usually the OIS rate for major currencies, this method is

also known as OIS discounting, which has been documented by Grbac and

Runggaldier [3] and many others.

The over-the-counter trading of interest rate swaps in the onshore Chi-

nese market started in 2006. During the past decade, the Chinese swap

market has made considerable progress. In 2016, there were more than 87

thousand swap transactions with a notional value of 9.9 trillion CNY. The

popular benchmark floating rates are the 7-day interbank fixing repo rate

(7D Repo rate), which accounts for 86% of market share, and the 3-month

Shibor (3M Shibor), which accounts for 11% of market share.

Figure 1 shows the spread between the 3M Shibor and the 7D Repo

rate in the Chinese market. This spread is more significant than the spread

between the risky and risk-free rates observed in the U.S. market. This

spread needs to be taken into account to properly price swap contracts.

Despite the rapid growth of market size, the valuation methodology

used in the Chinese market lags behind. Market participants still price the

swaps on risky floating rates with the single curve method. The following

are some examples of using the single curve method in the Chinese market.

(1) China Foreign Exchange Trading System (CFETS) is a government

institution organizing and supervising the Chinese interest rate swap

market. It reports the forward rates of a few benchmark floating rates

on its website3 on a daily basis. These forward rates are obtained by

stripping the market swap rates using the single curve method.

(2) Other than reporting the forward rates, CFETS also provides the bilat-

eral early termination service of swap contracts. In this service, CFETS

calculates the values of the contracts to be terminated using the single

curve method.

(3) Bloomberg L.P. provides an interest rate swap valuation service through

its terminals. It offers the dual curve stripping of a range of major

3http://www.chinamoney.com.cn.
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Fig. 1. The dotted line shows the spread between the five-year swap rates of the 3M

Libor and the five-year OIS rate in the U.S. market. The solid line shows the spread

between the five-year swap rates of the 3M Shibor and the 7D Repo rate in the Chinese
market. The historical swap rate data in the Chinese market started in mid 2012.

currencies including USD and EUR, but not CNY. In the Bloomberg

valuation of CNY denominated swaps, the forward rates are stripped

using the single curve method.

The contribution of this paper is two-fold. Firstly, we compare a few

interest rates in the Chinese market. We suggest using the 7D Repo rate

as the risk-free rate for the valuation of swaps. Secondly, we test the dual

curve discounting method in the Chinese market. Our results show the

current single curve discounting method may significantly undervalue a

swap contract to the fixed rate receiver.

The rest of the paper is organized as follows. Section 2 revisits the

modeling framework and valuation equations of interest rate swaps, and

mathematically analyses how the change of valuation method affects the

valuation results. Section 3 discusses the choice of risk-free rate proxy in

the Chinese swap market. In Sec. 4, using data from the Chinese mar-

ket, we price a Shibor swap contract using both the single and the dual

curve discounting method and analyse the valuation difference. Lastly, we

conclude in Sec. 5.
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2. Pricing model

2.1. Dual curve discounting

For the completeness of later analysis, we first introduce the notations and

review the pricing formulas of interest rate swaps. There is abundant liter-

ature discussing post-crisis interest rate models. Some examples are Ame-

trano and Bianchetti [4], Filipovic and Trolle [5] and Grbac and Rung-

galdier [3]. Despite their results being very similar, their terminologies and

middle steps have subtle differences. In this paper, we generally follow the

logic of Grbac and Runggaldier [3], for its similarity to the pre-crisis single

curve settings.

The dual curve modeling framework starts from the prices of risk-free

zero coupon bonds, denoted by Drf(t, T ).4 The risk-free zero coupon bond

curve at time t refers to the function T → Drf(t, T ). Corresponding to

the zero coupon bonds, we define the continuously-compounded risk-free

instantaneous forward rates as frf(t, T ) := −∂T logDrf(t, T ), and define

the continuously-compounded risk-free short rate as rrf(t) = frf(t, t).

Let Q denote a risk-neutral measure, under which the numeraire is the

money market account Brf(0, t) = exp
(∫ t

0
rrf(u)du

)
. Under this measure,

a direct result of the fundamental theorem of asset pricing is that the risk-

free bond price is Drf(t, T ) = EQ
[
exp

{
−
∫ T
t
rrf(u)du

}
|Ft
]
. We further

define the forward measure QT using Drf(t, T ) as the numeraire.

In the market, there are (at least) two simple interest rates. Denote by

Rrf(ti, tj) the risk-free rate and Rrisky(ti, tj) the risky rate.5 Both rates are

fixed and take effect at ti, and mature at tj . Then Rrf(ti, tj) is the simple

interest rate over time [ti, tj ] of an investment of buying a risk-free bond

with maturity tj at ti, mathematically,

Rrf(ti, tj) =

(
1

Drf(ti, tj)
− 1

)
1

tj − ti
.

Sometimes, we simply use Rrf and Rrisky to refer to the interest rates when

the tenors are not important.

4In Grbac and Runggaldier [3], this term is referred to as OIS bonds, because OIS rates
are commonly used as the proxy of risk-free rate. In the Chinese market, there is no
consensus on the proxy choice yet. Therefore, in the modeling framework, we do not

link it to a specific interest rate in the market, though our analysis shows that the 7D
Repo rate seems to be the best available choice in the current Chinese market. In some
contexts, the zero coupon bond prices are also referred to as discount factors.
5In swap markets denominated in major currencies, Rrisky is usually taken to be Xibor.
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We denote the discretely compounded forward rates of Rrf and Rrisky

at time t < ti by Frf(t; ti, tj) and Frisky(t; ti, tj) respectively. In the rest

of this paper, they are referred to as forward rates. Following Grbac and

Runggaldier [3], they are defined as follows:

Frf(t; ti, tj) := EQtj
[Rrf(ti, tj)|Ft],

Frisky(t; ti, tj) := EQtj
[Rrisky(ti, tj)|Ft].

We denote a payment schedule by t0≤i≤n with ti = ti−1 + ∆, where

t0 is the start date and ∆ is a time interval of fixed length.6 The dual

curve interest rate swap valuation equations can be found in Grbac and

Runggaldier [3].7 More precisely, we refer to an interest rate swap with

floating rate Rrf or Rrisky as a Rrf swap or a Rrisky swap respectively. At

time t ≤ t1, the prices of a Rrf swap and a Rrisky swap to the fixed rate

receiver are as follows:

Vrf(t) = N

n−1∑
i=0

Drf(t, ti+1)∆[srf − Frf(t; ti, ti+1)],

Vrisky(t) = N

n−1∑
i=0

Drf(t, ti+1)∆[srisky − Frisky(t; ti, ti+1)]. (1)

where N is the notional amount, and srf and srisky are the respective swap

rates.

To use Eq. (1) to value a Rrisky swap, one needs to calibrate the discount

factors Drf by the interest rate curve of Rrf , and calibrate the forward rates

by the interest rate curve of Rrisky. Since two curves are involved in this

approach, it is named dual curve.

However, it is rare for simply compounded interest rates with long tenors

to be directly quoted in the market. For example, the longest maturities

6Some papers introduce two separate payment schedules, with one for fixed rate pay-

ments and one for floating rate payments. However, in the Chinese market, the payment
dates of the two legs of swaps usually coincide.
7Following Grbac and Runggaldier [3], in swap valuation, we assume the contracts are
free of counterparty credit risk. This assumption is valid because of the fact that almost
all swap contracts in the Chinese market were collateralized. In 2016, among the 9.9
trillion swap transactions, 9.8 trillion is fully collateralized, and the risk exposure is
marked to market on a daily basis. Johannes and Sundaresan [6] theoretically proved

that collateralized swaps are free of counterparty risk. Although in their proof, they
refer to the floating rate of the swap as Libor, the proof can be generally applied to
collateralized swaps with any floating rates.
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for both Libor and Shibor are 1 year. To obtain the whole interest rate

curves, the market practice is to use a method known as bootstrapping,

which is essentially the inverse of the swap valuation equations. The input

of this method is a series of market swap rates. Standardized swap con-

tracts with long tenors are traded frequently in the market. The output

of the method is a curve of discount factors or forward rates, which can

be then used to value non-standard or existing swap contracts. The reader

is referred to Ametrano and Bianchetti [4] for detailed implementations.

Note that, apart from swap rates, the bootstrapping procedures in Ame-

trano and Bianchetti [4] also use futures contracts as inputs. Since futures

on Shibor are not available in the Chinese market, we use only swap rates

in the implementation.

In the above derivation, we purposely ignore the subtle differences re-

sulting from day count conventions for the clarity of the notations. How-

ever, in implementation, we should take them into account to produce the

correct numerical results. For more details on day count conventions, see

Henrard [7].

2.2. Single curve discounting

As mentioned in the introduction, in the current Chinese market, the single

curve discounting method still prevails in pricing swaps. In order to analyse

the numerical difference of the two methods, we briefly introduce the single

curve approach.

The difference between the single and the dual curve discounting meth-

ods lies in the valuation of Rrisky swaps. Under the single curve modeling

framework, Rrisky is also regarded as risk-free, despite its riskiness. The

valuation equation is given by:

Vrisky(t) = N

n−1∑
i=0

Drisky(t, ti+1)∆[srisky − Frisky(t; ti, ti+1)], (2)

where Drisky(t, ti+1) is the discount factor calculated under the wrong as-

sumption that Rrisky is risk-free. See Brigo and Mercurio [8] for the deriva-

tion of the single curve valuation equation.

Using both Rrf and Rrisky as proxies for the risk-free rate is acceptable

in practice if the two interest rate curves are close. However, as shown

by Fig. 1, in the Chinese market, there is a dramatic spread between the

7D Repo rate and the 3M Shibor. Therefore, the single curve approach is

clearly problematic.
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Lastly, similar to the dual curve case, to implement Eq. (2), one needs

to first perform bootstrapping with swap rates of Rrisky swaps as inputs.

One can still refer to Ametrano and Bianchetti [4] for how bootstrapping

is performed under the single curve approach. Note that the bootstrapping

method relies on the swap valuation equation. Therefore, with the same

swap rates as inputs, changing the valuation equation leads to different

discount factors, forward rates and valuation results.

2.3. Valuation difference

In this part, we analyse the valuation difference resulting from switching

from the single to the dual curve method in valuing a Rrisky swap. We

attempt to empirically identify the drivers of this valuation difference.

Suppose initially we enter into a Rrisky swap contract from the fixed

rate receiver side. We denote the fixed rate of this contract by sfix
risky and

its value by Vrisky. After some time, we enter into a new contract with the

same reference floating rate as the fixed rate payer. The new contract is

designed to have identical maturity, payment dates and notional value as

the previous one. As a result, the future cash flows generated from the

floating legs of the two contracts will offset each other. Assume this new

contract is entered into at time t, with swap rate spar
risky, which is chosen so

that the value of this contract is zero at time t. Note that the swap rate of

this new contract is exactly the par rate of the old contract at t. Assume

further that both sfix
risky and spar

risky are taken from a liquid market so that

the values are independent of our choice of valuation method.

Consider the value of the portfolio consisting of the two swaps. Note

the second contact has zero value at t. Therefore, the value of the portfolio

is the same as the value of the old swap. Again, the cash flows generated

by the floating legs of these two swaps are canceled. The values of the

Rrisky swap under the dual and the single curve discounting approach are

respectively given by:

V dual
risky(t) = V dual

risky(t) + 0 = N
∑n−1
i=0 (sfix

risky − s
par
risky)Drf(t, ti+1)∆,

V single
risky (t) = V single

risky (t) + 0 = N
∑n−1
i=0 (sfix

risky − s
par
risky)Drisky(t, ti+1)∆,

where V dual
risky(t) and V single

risky (t) stand for the valuation derived from the dual

curve and single curve methods. Taking the difference of the two, then

the change in valuation resulting from switching valuation method is given
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precisely by

V dual
risky(t)−V single

risky (t) = N

n−1∑
i=0

(Drf(t, ti+1)−Drisky(t, ti+1))(sfix
risky− s

par
risky)∆.

Benefiting from this equation, we do not need to deal with untraceable

forward rates in our later analysis. It is now clear that the valuation differ-

ence has two drivers, namely the difference of the discount factors used in

the two methods, and the difference between the stipulated swap rate and

its par rate at the time of valuation.

The difference caused by the discount factors is determined by the

spread between the risky floating rate and the risk-free rate on the val-

uation date. Typically, this difference is positive. This is pretty intuitive.

Drisky is obtained from the risky interest rate with an implicit but wrong

assumption that the rate is risk-free. The market asks for a premium for

taking the risk and the corresponding discount factors are smaller.

We analyse the difference (sfix
risky − s

par
risky) from two aspects. Firstly, the

term structure of the swap rates in the market is usually upward sloping,

i.e. a swap rate with a long maturity is larger than a rate with short

maturity. Note that the par rate is effectively the swap rate of a new

swap with short maturity. If the interest rate market remains stable, the

stipulated fixed rate will be larger than the par rate at the time of valuation.

This is especially the case for contracts signed long before the valuation

time. Secondly, the difference will be affected by market fluctuations. Note

that the par rate is determined by the market condition at the time of

valuation. In particular, if the market rates continuously rise after the

swap contract was signed, the effect of the first aspect will be offset and the

valuation difference will not be material. In contrast, if the market rates

move downwards, the difference between the swap rate and par rate will be

correspondingly enlarged. In most cases, (sfix
risky − s

par
risky) is positive and it

is not unusual to observe a difference as large as a hundred basis points.

In summary, in most cases, using the single curve method tends to un-

dervalue interest rate swap contracts on the fixed rate receiver side. In

particular, the valuation bias is most significant for contracts that still

have a long time to maturity, and when the market rates have moved con-

tinuously downwards after inception of the contracts. This argument is

demonstrated using market data in later sections. However, we have to

stress that the above analysis is empirical. The actual difference depends

heavily on market conditions.
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3. Candidates for the risk-free rate in the

Chinese swap market

In valuation theory, the risk-free rate is an important building block. In

financial markets, however, there is hardly a perfect proxy of the risk-free

rate. All practitioners can do is to compare the available candidates in the

market and choose the one with the least disadvantage. For example, to

justify the effectiveness of the OIS rate in the U.S. market, Hull and White

[2] compared it against Libor, treasury and repo rate. Here, we will have

the same discussion to compare the 7D Repo rate with Chinese government

bond yields and other interest rates in the Chinese market. Some arguments

are borrowed from the U.S. market.

Chinese Government Bond Yields: Chinese government bonds are

frequently traded in the onshore Chinese market. These bonds are backed

by the Chinese government and are the safest investment in China. The

most recognized government bond yield curve is published by China Central

Depository & Clearing (CCDC), which is a government institution. The

yield curve is calculated daily using market prices and has tenors up to

50 years. The yield curve data set is available on the CCDC website.8

We denote the yield at time t with maturity t + δ by Y (t, t + δ). If the

government yields are the proxy of the risk-free rate, then the corresponding

zero coupon bond prices are given by

Dbond(t, t+ δ) =
1

(1 + Y (t, t+ δ))δ
, (3)

Government bond yields in China have similar drawbacks as U.S. trea-

sury rates. Firstly, the coupon payments of government bonds are non-

taxable. This tax benefit makes government bond yields artificially low.

Secondly, government bonds are often used as collaterals in repurchase

transactions. This extra demand also brings down the yield. Note that

these are also the reasons for not using U.S. treasury rates as risk-free rate

in the U.S. market; see Hull [9]. If government bond yields are used as a

risk-free rate proxy, the resulting discount factors will be artificially large.

For this reason, government bond yields may not be a good proxy for the

risk-free rate.

7D Repo Rate: In 2016, the total notional value of repo transactions

in the Chinese repo market was 831 trillion CNY, which is around 6 times

of total bond transactions. Among all the maturities, the overnight repo

8http://www.chinabond.com.cn.
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contracts are the most liquid, followed by 7-day contracts. As a benchmark

rate in the repo market, the interbank fixing repo rates are calculated and

published by CFETS each trading day. Since repo transactions are always

collateralized, the repo rate appears to be a good indicator of the risk-free

rate.

Of course, the 7D Repo rate is still not a perfect choice. Firstly, Hull

and White [2] observed that repo rates in the U.S. market have great cross-

sectional variation: repos secured by U.S. treasuries have lower rates than

repos secured by other debts. Although there has been no report of this

observation in the Chinese market so far, we should not totally ignore this

problem. Another potential problem is liquidity. 7-day repo transactions

are not as liquid as overnight transactions, which may be a better proxy of

the risk-free rate. However, in the current market, there is no interest rate

swap on the overnight repo rate and there is no way to determine a full

term structure.

Other Candidates: As an overnight interest rate, Overnight Shibor

appears to be a good proxy of the risk-free rate at first glance. There are

also Overnight Shibor swaps traded in the Chinese market. However, the

trading volume of Overnight Shibor swaps is very limited: they constitute

less than 3% of market share. Therefore, the resulting swap curves are not

supported by sufficient market information. Moreover, the longest maturity

of swaps on Overnight Shibor is only 3 years. There is no way to determine

the term structure at long tenors for this interest rate.

Another potential choice is the fixing depository-institutions repo rate.

This is a new benchmark rate of the repo market published by CFETS. As

the name suggests, this rate is calculated based on the repo transactions

among only the depository institutions. However, at the time of writing,

the historical data of this rate is still not sufficient to support any conclusive

analysis. We leave this new interest rate for future study.

To numerically compare government bond yields and the 7D Repo rate,

Table 1 gives the average discount factors assuming the corresponding mar-

ket rate is risk-free. More precisely, it reports the average discount factors

in the time interval [t, t+ δ] with t being the trading days from January 1,

2016 to December 31, 2016. δ is chosen to be 1 year, 3 years, 5 years, 7 years

and 10 years. The discount factors corresponding to the government bond

yields are calculated using Eq. (3) with yield curves published by CCDC.

The 7D Repo rate discount factors are calculated using the bootstrapping

method mentioned in Sec. 2.1.
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From Table 1, we can see that the discount factors corresponding to

government bond yields are universally larger than those of the 7D Repo

rate, which is consistent with previous analysis.

Table 1. The average discount factors in 2016 corre-
sponding to Chinese government bond yields and 7D

Repo rate respectively.

Average Discount Factors
δ

Government Bond Yield 7D Repo Rate

1 Year 0.978 0.975
3 Years 0.928 0.924

5 Years 0.876 0.867

7 Years 0.819 0.813
10 Years 0.752 0.736

4. Numerical test

In the Chinese market, the current market practice is to price 3M Shi-

bor swaps using the single curve valuation Eq. (2). To demonstrate the

possible magnitude of the valuation bias resulting from this practice, we

give valuation to a 3M Shibor interest rate swap contract. The contract

is chosen based on the criterion summarized in Sec. 2.3 so that the valua-

tion difference between the dual and the single curve discounting method

is significant.

On December 26, 2013, the 5-year 3M Shibor swap rate published by

CFETS was 5.6827%. This swap rate was calculated based on quotes from

major market participants and was a good representation of the market

condition at the time. After this day, the interest rates in the Chinese

market moved continuously downwards. At the beginning of 2016, the 5-

year 3M Shibor swap rate dropped to around 3%.

Suppose a 5-year 3M Shibor contract with notional value of 1 million

CNY is signed on December 26, 2013 with a swap rate of 5.6827%. Table 2

and Fig. 2 present the valuation results from 2014 to 2016. The contract

is priced using both the current single curve practice and the dual curve

valuation method. In the dual curve discounting, we choose the 7D Repo

rate and the government bond yield as the risk-free rate respectively. Since

the 7D Repo rate is recommended, the results corresponding to this rate

are used as the benchmark. All the valuation is performed from the fixed

rate receiver side.

DV01, or dollar value of one basis point, is obtained from the dual

curve discounting method using the 7D Repo rate as the risk-free rate. In
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practice, DV01 is calculated by shifting the input swap rate curve9 up and

down by x basis points. We denote the resulting valuation by Vup and

Vdown respectively, then

DV01 =
Vup − Vdown

2x
.

The choice of x is empirical. CFETS takes x = 5 (see Lai [10]) and

Bloomberg L.P. takes x = 10 (see Wu [11]). We follow the choice of

CFETS.

To measure the significance of the valuation difference, we also report

the value DV01 Difference. The unit of this value is basis point. A DV01

difference of x basis points has the following interpretation: if the valuation

discounted by the 7D Repo rate is correct, then using the corresponding

method leads to a valuation bias equivalent to shifting the input 3M Shibor

swap rate curve by x basis points.

There are a few interesting points about the valuation results. First of

all, the current Chinese market practice is to price 3M Shibor swaps using

the single curve discounting method. Both Bloomberg and CFETS will give

valuations close to the numbers shown in the columns under Single Curve10

of Table 2. Compared with the dual curve method with the 7D Repo rate,

the current single curve method may undervalue the 1 million swap contract

by up to 1.4 thousand CNY. In terms of DV01, the difference reached 4.37

basis points, which means the difference is equivalent to shifting the floating

rate curve by 4.37 basis points. In the 749 trading days from 2014 to 2016,

the average valuation difference and DV01 difference are respectively 701.47

CNY and 2.24 basis points. In comparison, from 2014 to 2016, the median

of daily absolute change of 5-year swap rate of the 3M Shibor was only

1.48 basis points. These results suggest that using the current single curve

method in the market may significantly undervalue swap contracts for fixed

rate receivers and bring great model risks to the market.

Secondly, as shown in Fig. 2, between the dual curve method with the

7D Repo rate and the single curve method, the valuation differences firstly

enlarged, then reached the maximum after the contract had been signed for

one and a half years, and dropped afterwards. This pattern is in line with

our previous analysis in Sec. 2.3. In the first one and a half years, the market

interest rates moved continuously downwards. As a result, (sfix
risky − s

par
risky)

9The swap rate curve is used in the bootstrapping method; see the last part of Sec. 2.1.
10The actual valuation given by Bloomberg or CFETS might be slightly different from

these results for reasons such as interpolation.
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Table 2. Valuation of the 3M Shibor swap contract using two methods, namely the single curve discounting method, and the dual curve

discounting method with 7D Repo rate. The contract is priced at the end of each quarter from 2014 to 2016. The units of valuation,
DV01 and valuation difference are CNY. To measure the significance of the difference, the valuation differences are also divided by DV01.
Between these two methods, the valuation difference achieves the maximum on April 28, 2015 (labeled with ∗).

Dual Curve: 7D Repo Rate Single Curve
Valuation Date

Valuation (CNY) DV01 (CNY) Valuation (CNY) Valuation Difference (CNY) DV01 Difference (basis points)
(1) (2) (3) (4) = (1) − (3) (5) = (4) / (2)

Mar 31, 2014 18755.07 401.6 18391.44 363.62 0.91
Jun 30, 2014 40525.02 385.99 39773.68 751.34 1.95
Sep 30, 2014 62715.31 369.24 61702.59 1012.72 2.74

Dec 31, 2014 54587.37 347.74 53654.2 933.17 2.68
Mar 31, 2015 44129.94 324.21 43379.73 750.2 2.31
Apr 28, 2015* 67460.15 331.49 66010.05 1450.1* 4.37

Jun 30, 2015 71114.23 308.99 69865.16 1249.07 4.04
Sep 30, 2015 69280.04 286.03 68258.7 1021.34 3.57
Dec 31, 2015 73364.5 263.83 72490.22 874.28 3.31
Mar 31, 2016 74964.68 240.67 74409.61 555.07 2.31
Jun 30, 2016 64186.53 216.59 63718.15 468.38 2.16

Sep 30, 2016 59563.74 192.9 59300.7 263.04 1.36
Dec 30, 2016 33366.13 167.89 33209.17 156.96 0.93
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enlarged and dominated the change of the valuation difference. Starting

from the second half year of 2015, the market gradually became stable and

so is (sfix
risky − s

par
risky). In this period, (Drf −Drisky) dominated the change.

As the remaining life of the swap contract reduced, (Drf −Drisky) became

smaller, which led to the decrease of the valuation difference.

Fig. 2. The left scale: The valuation difference between the dual curve method with

the 7D Repo rate and the single curve method, and the valuation difference between the
dual curve method with the 7D Repo rate and the dual curve method with government

bond yields. The right scale: Five-year swap rate of 3M Shibor swaps. These swap
rates represent the market movements. The vertical line is April 28, 2015, on which

the valuation difference between the dual curve method with the 7D Repo rate and the

single curve method achieved the maximum.

The final observation is that, as shown in figure Fig. 2, between the

dual curve method with the 7D Repo rate and the dual curve method

with government bond yield, the valuation differences are negative on most

trading days, which suggests using government bond yields as a risk-free

rate proxy overvalues the swap contracts for fixed rate receivers. This is
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consistent with the results in Table 1, as higher discount factors lead to

higher valuation results. In the 749 trading days, the largest valuation bias

in magnitude was 569.83 CNY, which is equivalent to a DV01 difference of

2.70 basis points.

5. Conclusion

In this paper, we first theoretically analysed the difference between the

valuation results of the single and the dual discounting methods. The

conclusion was then verified using data from the Chinese interest rate swap

market. We have shown that the single curve method tends to undervalue

swap contracts from the fixed rate receiver side. The bias is most significant

for old contracts that still have a long time to maturity and when the

market rates have moved continuously downwards. Our numerical test

showed that the size of the valuation bias can be as large as 3 times that of

typical daily movements in the Chinese swap market. Another important

discussion in the paper is the choice of the risk-free rate proxy for the

Chinese swap market. After comparing with the Chinese government bond

yields and other interest rates, we found that the 7D Repo rate appeared

to be the most appropriate choice to be used in dual curve discounting. We

hope these results bring some attention and insight to interest rate swap

valuation issues in the Chinese market.

This research can be extended in many ways. First of all, to choose a

proxy of the risk-free rate, we compared three different interest rates in the

market. In this comparison, we are aware that our supporting arguments

are empirical. A more systematic justification is required. Secondly, interest

rate swaps are not the only financial assets that need to be valued in the

dual curve framework. This method is also applicable to many other assets

such as cross currency swaps and swaptions. It will be interesting to look

at how the change of valuation method will affect the valuation of these

assets in the Chinese market.
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Chapter 14

On Consistency of the Omega Ratio with Stochastic
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Omega ratios have been introduced in [1] as a performance measure to compare
the performance of different investment opportunities. It does not have some

of the drawbacks of the famous Sharpe ratio. In particular, it is consistent with

first order stochastic dominance. Omega ratios also have an interesting rela-
tion to expectiles, which found increasing interest recently as risk measures.

There is some confusion in the literature about consistency with respect to

second order stochastic dominance. In this paper, we clarify this and extend
it to a consistency result with respect to stochastic dominance of order 1 + γ

recently introduced in [2] and generalizing the classical concepts of stochastic

dominance of first and second order. Several examples illustrate the usefulness
of this result. Finally, some consistency results for even more general stochas-

tic dominance rules are shown, including the concept of ε-almost stochastic
dominance introduced in [3].

Keywords: omega ratio, stochastic dominance, expectiles, integrated distribu-

tion function.

1. Introduction

There is an ongoing debate on how to compare the performance of differ-

ent investment opportunities. Very often one tries to use a performance

measure that can be interpreted as a return-risk ratio. The most famous

example is the Sharpe ratio, introduced in [4] to compare the performance

of funds. It works well under the assumption that returns are normally

distributed, but it has well known serious drawbacks if one dispenses from

that unrealistic assumption. One of the problems with the Sharpe ratio is

that it is not consistent with first order stochastic dominance (abbreviated

Open Access chapter published by World Scientific Publishing Company and distributed

under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives
(CC BY-NC 4.0) License.
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as FSD from now on). This implies that an investor maximizing the Sharpe

ratio may have a preference for an investment A over an investment B even

though its returns are smaller for sure. This is clearly irrational behavior.

As an alternative, [1] introduced the Omega ratio, a concept that has

been received with great interest. One of its advantages over the Sharpe

ratio is its consistency with FSD. There is a bit of confusion in the literature

whether or not it is also consistent with second order stochastic dominance

(SSD). Wrong claims that this holds for all benchmarks can be found e.g. in

[5] and [6]. An accurate statement showing that this depends on the used

benchmark was recently published in [7]. There is also some recent interest

in portfolio optimization problems using the Omega ratio. [8] introduce a

linear programming algorithm to find an optimal portfolio maximizing the

Omega ratio. [9] and [10] also discuss portfolio optimization problems using

Omega ratio as a performance measure. In [9] it is shown that for some

benchmarks this is an ill-posed problem in their setting, as the optimal

Omega ratio may be infinite.

The increasing interest in the Omega ratio is also related to the fact

that Omega ratios are strongly related to expectiles, which recently found a

lot of attention as risk measures after it was shown that they are the only

risk measures having the property of being coherent and elicitable at the

same time, see e.g. [11] and [12].

This inspired us to reconsider the problem of consistency of the Omega

ratio with stochastic dominance rules. In this contribution, we clarify the

consistency properties with FSD and SSD and show that indeed these results

can be unified and generalized by using the concept of fractional stochastic

dominance of order 1 + γ recently introduced in [2]. In Example 2.10 of

that paper, it was already observed that comparing a distribution with a

degenerate one with respect to stochastic dominance of order 1 + γ holds for

all γ larger than the Omega ratio. Therefore it is not surprising that we can

show a much more interesting result about consistency of Omega ratios with

respect to this kind of stochastic dominance in Theorem 2.3 below.

The rest of the paper is organized as follows. In Section 2, we first

introduce the main concepts used in this paper including the definition of

Omega ratio and expectiles and the formal definitions of stochastic domi-

nance rules. We then show our main result in Theorem 2.3 and illustrate

its usefulness by several examples. In Section 3, these results are extended

to more general combined convex and concave stochastic dominance rules,

which generalize the well known concept of ε-almost stochastic dominance

introduced in [3].
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2. Omega ratios and stochastic dominance

Let X be a real valued random variable with a finite mean EX, describing

the return of an asset. We denote by FX(t) = P (X ≤ t) its distribution

function, and by

φX(t) =

∫ t

−∞
FX(z) dz = E(X − t)−

the integrated distribution function of X, where here and in the following

we use the abbreviations x+ := max{x, 0} and x− := max{−x, 0} for the

positive and negative part of x. Note that x = x+ − x−.

It should be emphasized that

δ̄X = φX(EX) = E|X − EX|/2

is the absolute semideviation (from the mean). Its use as a risk measure is

examined in [13].

[1] introduced the Omega ratio with benchmark t as

ΩX(t) =
E (X − t)+
E (X − t)−

. (1)

The following properties are immediate. The function ΩX is strictly posi-

tive, continuous and strictly decreasing from infinity to zero on its domain

and ΩX(EX) = 1.

From

EX − t = E(X − t)+ − E(X − t)− (2)

we can derive the following representation using the integrated distribution

function:

ΩX(t) =
EX − t+ E(X − t)−

E(X − t)−
= 1 +

EX − t
φX(t)

. (3)

Therefore we can also derive the integrated distribution function from the

Omega ratio via

φX(t) =
EX − t

ΩX(t)− 1
, t 6= EX, (4)

which can be continuously extended in t = EX. This shows that the

Omega ratio determines the distribution. Taking the right derivative in (4)
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and taking into account that EX = Ω−1X (1) we get the following explicit

expression for the distribution function in terms of the Omega ratios:

FX(t) =
1− ΩX(t) + Ω′+X (t) · (t− Ω−1X (1))

(1− ΩX(t))2
, t 6= Ω−1X (1).

It is basically equivalent to a corresponding formula already mentioned

in [14] as Theorem 1 (iv), where a very similar formula is stated for con-

tinuously differentiable distribution functions in the context of expectiles.

Recall that the expectiles eX(α) of a random variable X ∈ L2 have been

defined by [14] as the minimizers of an asymmetric quadratic loss:

eX(α) = arg min
t∈R
{E`α(X − t)} , (5)

where

`α(x) =

{
αx2 if x ≥ 0,

(1− α)x2 if x < 0,

and α ∈ (0, 1). For X ∈ L1, Equation (5) has to be modified (see [14]) to

eX(α) = arg min
t∈R
{E [`α(X − t)− `α(X)]} . (6)

The minimizer in (5) or (6) is always unique and is identified by the

first order condition

αE (X − eX(α))+ = (1− α)E (X − eX(α))− . (7)

From this equation, the one-to-one relation between expectiles and Omega

ratios given below immediately follows, see [15]. It holds

eX(α) = Ω−1X

(
1− α
α

)
, ΩX(t) =

1− e−1X (t)

e−1X (t)
. (8)

Next we recall the basic definitions of stochastic dominance. The well

known concepts of first order stochastic dominance (FSD) and second order

stochastic dominance (SSD) are defined as follows. We say that X ≤FSD Y

if Eu(X) ≤ Eu(Y ) for all increasing utility functions u, i.e. if all rational

utility maximizers prefer Y to X. This holds if and only if FX(t) ≥ FY (t)

for all t. We say that X ≤SSD Y if Eu(X) ≤ Eu(Y ) for all increasing

and concave utility functions u, i.e. if all rational and risk averse utility

maximizers prefer Y to X. This holds if and only if φX(t) ≥ φY (t) for all t.

In the mathematical literature, FSD is also known under the name (usual)

stochastic order denoted by X ≤st Y , and SSD is known as increasing

concave order denoted by X ≤icv Y , see e.g. [16] or [17]. In this paper,
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we stick to the notation FSD and SSD as usually used in the literature on

finance and economics.

The following consistency result holds for the Omega ratio. We will give

a simple proof of a more general result below in Theorem 2.3.

Theorem 2.1. a) If X ≤FSD Y then ΩX(t) ≤ ΩY (t) for all t.

b) If X ≤SSD Y then ΩX(t) ≤ ΩY (t) for all t ≤ EY .

For t > EY the Omega ratio is not consistent with SSD. Indeed, if

EX = EY and X ≤SSD Y , then it follows immediately from (3) that

ΩX(t) ≥ ΩY (t) with strict inequality if φX(t) > φY (t).

[2] introduce a concept of generalized stochastic dominance with a real

valued parameter 1+γ interpolating between FSD (γ = 0) and SSD (γ = 1).

We repeat here the definitions and the main result.

Definition 2.1. For 0 ≤ γ ≤ 1 let Uγ be the class of continuously differ-

entiable functions u such that

0 ≤ γu′(y) ≤ u′(x) for all x ≤ y. (9)

Definition 2.2. For 0 ≤ γ ≤ 1 we say that Y dominates X by (1 + γ) -SD,

denoted X ≤(1+γ)−SD Y , if Eu(X) ≤ Eu(Y ) for all functions u ∈ Uγ .

Note that u ∈ U0 if and only if u is non-decreasing, and u ∈ U1 if and

only if u is increasing and concave. Thus, γ = 0 corresponds to FSD and

γ = 1 corresponds to SSD, with 0 < γ < 1 corresponding to preference

relations falling between FSD and SSD. The parameter γ provides a bound

on how much marginal utility u′(x) can decrease as x decreases, and its

reciprocal 1/γ gives a bound on how much marginal utility can increase as

x increases.

In Theorem 2.4 of [2], the following equivalence is shown, which yields

a method to check this kind of stochastic dominance.

Theorem 2.2. The following conditions are equivalent:

a) X ≤(1+γ)−SD Y ,

b)
∫ t
−∞(FY (z)−FX(z))+ dz ≤ γ

∫ t
−∞(FX(z)−FY (z))+ dz for all t ∈ R.

From this characterization we can deduce a condition for the comparison

of a random variable X with a constant random variable c, see Example

2.10 in [2].

Corollary 2.1. If ΩX(c) ≤ γ, then we have X ≤(1+γ)−SD c for the con-

stant random variable c.
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We can now show the following result generalizing Theorem 2.1.

Theorem 2.3. If X ≤(1+γ)−SD Y and ΩY (t) ≥ γ then ΩX(t) ≤ ΩY (t).

Proof. Assume ΩY (t) = δ ≥ γ. Then Y ≤(1+δ)−SD t follows from Corol-

lary 2.1. Since δ ≥ γ, we have Uδ ⊆ Uγ , and thus

X ≤(1+δ)−SD Y ≤(1+δ)−SD t.

By transitivity, X ≤(1+δ)−SD t, which implies ΩX(t) ≤ δ, i.e. ΩX(t) ≤
ΩY (t).

Notice that Theorem 2.1 is just a special case of Theorem 2.3. Part a)

of Theorem 2.1 follows by choosing γ = 0 and part b) by choosing γ = 1.

We will now give some illustrative examples showing the usefulness of

this result. We start with a comparison of a normal and an exponential dis-

tribution, where we can compute the Omega ratios as well as the conditions

for (1 + γ)-dominance explicitly.

Example 2.1. Consider a normally distributed random variable X with

mean µ and standard deviation σ, denoted from now on as X ∼ N
(
µ, σ2

)
,

and an exponential random variable Y with mean 1/λ, denoted as Y ∼
Exp(λ). The integrated distribution functions are given by

φX(t) = (t− µ)Φµ,σ2(t) + ϕµ,σ2(t), t ∈ R,
φY (t) = t− (1− exp(−λt))/λ, t > 0,

where Φµ,σ2 and ϕµ,σ2 denote the cumulative distribution function (cdf)

and density of X, respectively. Using (3), the pertaining Omega ratios can

be derived explicitly.

To be more specific, take X ∼ N
(
3/4, (3/2)2

)
and Y ∼ Exp(1). The

cdfs F and G of X and Y have two crossing points x1 = 0.633 and x2 =

3.692 with F (x) ≥ G(x) for x ≤ x1 and x ≥ x2 and F (x) ≤ G(x) for

x1 ≤ x ≤ x2. Setting x0 = −∞ and x3 =∞, the areas

Ai =

∫ xi

xi−1

(F (x)−G(x)) dx, i = 1, 2, 3,

are given by A1 = 0.378, A2 = −0.138, A3 = 0.0108. By Corollary B.1 in

[2], we have X ≤(1+γ)−SD Y if and only if

γ ≥ max

{
−A2

A1
,
−A2

A1 +A3

}
=
−A2

A1
= 0.367 = γmin.

Now, ΩY (t) ≥ γmin if t ≤ t0 = 1.418. Therefore, Theorem 2.3 yields

ΩX(t) ≤ ΩY (t) for t ≤ t0. Figure 1 shows the distribution functions and
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Fig. 1. Cdfs and Omega ratios of X ∼ N
(
3/4, (3/2)2

)
and Y ∼ Exp(1).

Omega ratios of X and Y . We will reconsider this example later in Exam-

ples 3.1 and 3.2 where we derive further related inequalities.

The example shows that ΩX(t) ≤ ΩY (t) for t ≤ t∗ does not necessarily

imply X ≤(1+γ∗)−SD Y , where γ∗ = ΩY (t∗). The situation is different

for the case of distributions from the same location-scale family that we

consider in the following. To this end, assume

F (x) = H

(
x− µ1

σ1

)
and G(x) = H

(
x− µ2

σ2

)
, (10)

where H is the continuous cdf of a random variable with mean zero and

standard deviation one. Then F and G have means µ1 and µ2 and standard

deviations σ1 and σ2. Let X ∼ F and Y ∼ G. A necessary and sufficient

condition for X ≤SSD Y is µ1 ≤ µ2 and σ1 ≥ σ2. The cdfs are single-

crossing at

x1 =
µ2σ1 − µ1σ2
σ1 − σ2

. (11)

If F single-crosses G from above, Corollary 2.5 in [2] shows that

X ≤(1+γ)−SD Y if and only if γA ≥ B, where

A =

∫ x1

−∞
(F (x)−G(x)) dx and B =

∫ ∞
x1

(G(x)− F (x)) dx. (12)
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We get the following result.

Theorem 2.4. Let X and Y be from the same location-scale family as

given in (10) with µ1 ≤ µ2 and σ1 ≥ σ2. Define γ∗ = ΩX(x1), where x1
is the single crossing point of the cdfs of X and Y given in (11). Then,

X ≤(1+γ∗)−SD Y . Furthermore, ΩX(t) ≤ ΩY (t) if and only if t ≤ x1.

Proof. First, we get

ΩX(x1) =
E(X − x1)+
E(X − x1)−

=

∫∞
x1

(1−H ((x− µ1)/σ1)) dx∫ x1

−∞H ((x− µ1)/σ1) dx

=
σ1
∫∞
x1−µ1
σ1

(1−H(z)) dz

σ1
∫ x1−µ1

σ1
−∞ H(z) dz

=:
σ1B̃

σ1Ã
.

Similarly,

ΩY (x1) =
σ2
∫∞
x1−µ2
σ2

(1−H(z)) dz

σ2
∫ x1−µ2

σ2
−∞ H(z) dz

=
σ2B̃

σ2Ã
,

since
x1 − µ1

σ1
=
x1 − µ2

σ2
=
µ2 − µ1

σ1 − σ2
.

Putting γ∗ = ΩX(x1) = ΩY (x1), we get for the areas A and B defined in

(12)

B

A
=
E(X − x1)+ − E(Y − x1)+
E(X − x1)− − E(Y − x1)−

=
(σ1 − σ2)B̃

(σ1 − σ2)Ã
= γ∗.

Hence, X ≤(1+γ∗)−SD Y by the remark preceding the theorem.

Now, assume t ≤ x1. Then, t1 = (t − µ1)/σ1 ≥ t2 = (t − µ2)/σ2 since

F (t) = H(t1) ≥ H(t2) = G(t). Then, the same considerations as above

yield ΩX(t) ≤ ΩY (t). The case t ≥ x1 follows by analogous reasoning.

Theorem 2.4 yields simple explicit expressions for the important case of

normally distributed random variables that is considered in the following

example.

Example 2.2. As an illustration of Theorem 2.4, Figure 2 shows the cdfs

and Omega ratios of X ∼ N(1, 1) and Y ∼ N
(
3/2, (1/4)2

)
. Here, x1 = 5/3,

and ΩX(5/3) = 0.185. Hence, according to Theorem 2.4, X ≤(1+γ)−SD Y

with γ = 0.185. Further, ΩX(t) ≤ ΩY (t) on (−∞, x1], and ΩX(t) ≥ ΩY (t)

on [x1,∞).
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Fig. 2. Cdfs and Omega ratios of X ∼ N(1, 1) and Y ∼ N
(
3/2, (1/4)2

)
.

We next consider an example where using the Sharpe ratio leads to

irrational behavior, as it is not consistent with FSD. This example is quite

realistic as it is simply obtained by comparing a normally distributed return

with a truncated one, which is obtained by selling a call option at a price

of zero. We also investigate in this case how the preference of selling such a

call option for a fixed price depends on the benchmark that we use for the

Omega ratio. The example shows that the chosen benchmark represents the

risk aversion of the decision maker in a similar way as does the parameter

γ in the generalized stochastic dominance rule.

Example 2.3. Consider an investment with an excess return over the risk

free rate X with X ∼ N(µ, σ) with µ = 2 and σ = 1. Assume that we

have the opportunity to sell a call option with strike price K = 3 for a

price C ≥ 0. If we give the call option away for free (C = 0) we get

as remaining return Y a normal random variable right-censored at 3. No

rational decision maker would do this, as Y ≤FSD X. If we consider the

Sharpe ratio, however, then it turns out that we should prefer Y to X:

expected value and variance of Y are given by (see, e.g. [18], p. 763)

EY = Φ(α)(µ+ σλ) + (1− Φ(α))K,

V (Y ) = σ2Φ(α)
((

1−
(
λ2 − λα

))
+ (α− λ)

2
(1− Φ(α))

)
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Fig. 3. Omega ratios of X,Y, and XC for C = 0.1, 0.3, 0.51.

where

α =
K − µ
σ

, λ = −ϕ(α)

Φ(α)
.

This yields EY = 1.917, σY = 0.867, and EY/σY = 2.212, whereas

EX/σX = 2.

If we sell the call option for a price C > 0 then we get a return XC =

Y + C. The distribution function of XC is given by

FXC (t) = FX(t− C), t < K + C, and FXC (t) = 1, t ≥ K + C,

where FX(t) = Φ((t− µ)/σ). Hence,

φXC (t) =

∫ t

−∞
FXC (x)dx =

{
φX(t− C), t < K + C,

φX(K) + t− (K + C), t ≥ K + C.

Figure 3 shows the Omega ratios of X,Y, and XC for C = 0.1, 0.3, 0.5.

We further obtain

ΩXC (1) ≥ ΩX(1) if and only if C ≥ 0.029,

ΩXC (2) ≥ ΩX(2) if and only if C ≥ 0.083,

ΩXC (3) ≥ ΩX(3) if and only if C ≥ 0.32,

ΩXC (4) ≥ ΩX(4) if and only if C ≥ 1.03.
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Note that EXC = EY +C. Hence, EX0.029 = 1.95, EX0.083 = 2, EX0.32 =

2.23, and EX1.03 = 2.94. Thus we see that for a small benchmark we may

accept an investment with a smaller mean than EX, and thus the decision

is not too different from what we get when using the Sharpe ratio, as has

been empirically observed by [19]. But in contrast to the Sharpe ratio

our decisions are always consistent with FSD. We are never willing to give

away an option for free. If we use a benchmark above the expected return

of the investment, however, then even SSD dominance is not sufficient to

choose XC . Then we need a stronger dominance than SSD, meaning that

our decisions are not consistent with SSD anymore.

We could also define a new stochastic dominance rule by requiring all

Omega ratios for all benchmarks to be larger, or equivalently all expectiles

to be larger. This concept is studied in detail in [15], where it is called

expectile ordering. There it is shown that this is a strictly weaker condition

than FSD and is not equivalent to any of the many known stochastic orders.

3. Omega ratios and combined concave and convex

stochastic dominance

In [2], the combined concave and convex stochastic dominance of order

(1 + γcv, 1 + γcx) is introduced, which generalizes the concept of (1 + γ)-

dominance and is defined as follows.

Definition 3.1. a) For 0 ≤ γcv, γcx ≤ 1 let Uγcv,γcx be the class of contin-

uously differentiable functions u such that

0 ≤ γcvu′(y) ≤ u′(x) ≤ 1

γcx
u′(y) for all x ≤ y.

If γcx = 0 this shall mean that the last inequality can be omitted.

b) For 0 ≤ γcv, γcx ≤ 1 we say that Y dominates X by

(1 + γcv, 1 + γcx) -SD, denoted

X ≤(1+γcv,1+γcx)−SD Y,

if Eu(X) ≤ Eu(Y ) for all functions u ∈ Uγcv,γcx .

Note that X ≤(1+γcv,1+γcx)−SD Y implies X ≤(1+γ̃cv,1+γ̃cx)−SD Y ,

where γcv ≤ γ̃cv ≤ 1, γcx ≤ γ̃cx ≤ 1. The case γcv = γ, γcx = 0 is con-

cave (1 + γ)-SD from Definition 2.2 and therefore we get a generalization

of that concept. In the following, we consider two other interesting special

cases:
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• The case γcv = 0, γcx = γ is convex (1 + γ)-SD, corresponding to

preference relations falling between FSD and convex (risk-seeking)

SSD (for the latter, see, e.g. [20], sec 3.11).

• The case γcv = γcx = γ = ε/(1−ε) is ε-almost first degree stochas-

tic dominance (ε-AFSD, [3]) with ε = γ/(1 + γ).

Theorem 4.3 in [2] provides an integral condition for (1+γcv, 1+γcx)-SD.

In particular, for γcv = 0, X ≤(1,1+γcx)−SD Y if and only if∫ ∞
t

(FY (z)− FX(z))+ dz ≤ γcx
∫ ∞
t

(FX(z)− FY (z))+ dz ∀ t ∈ R, (13)

and for γcv = γcx = γ, X ≤(1+γ,1+γ)−SD Y if and only if∫ ∞
−∞

(FY (z)− FX(z))+ dz ≤ γ
∫ ∞
−∞

(FX(z)− FY (z))+ dz. (14)

For convex (1 + γ)-SD, we have the following result.

Theorem 3.1. If X ≤(1,1+γcx)−SD Y and ΩX(t) ≤ 1/γcx then ΩX(t) ≤
ΩY (t).

Proof. First, note that X ≥(1,1+γcx)−SD c if and only if ΩX(c) ≥ 1/γcx
(see [2]). Now, assume ΩX(t) = 1/δcx ≤ 1/γcx. Then, X ≥(1,1+δcx)−SD t.

Since δcx ≥ γcx, we obtain

Y ≥(1,1+δcx)−SD X ≥(1,1+δcx)−SD t.

By transitivity, Y ≥(1,1+δcx)−SD t, which in turn implies ΩY (t) ≥ 1/δcx,

i.e. ΩY (t) ≥ ΩX(t).

If the cdf F of X single-crosses the cdf G of Y from above, condition

(13) entails that X dominates Y via convex (1 + γcx)-SD if and only if

B/A ≥ 1/γcx, where A and B are defined in (12). For this, it is necessary

that B − A = EX − EY ≥ 0. For location-scale families, we get the

following result, which can be proven similar as Theorem 2.4.

Theorem 3.2. Let X and Y be from the same location-scale family as

given in (10) with µ1 ≥ µ2 and σ1 ≥ σ2. Define γ∗ = 1/ΩX(x1), where

x1 is the single crossing point of the cdfs of X and Y given in (11). Then,

X ≥(1,1+γ∗)−SD Y . Furthermore, ΩX(t) ≥ ΩY (t) if and only if t ≥ x1.

The subsequent example considers distribution functions having two

crossing points.

Example 3.1. In Example 2.1, the cdfs F and G of X and Y have two

crossing points x1 and x2 with F (x) ≥ G(x) for x ≤ x1 and x ≥ x2 and
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F (x) ≤ G(x) for x1 ≤ x ≤ x2. Writing again

Ai =

∫ xi

xi−1

(F (x)−G(x)) dx, i = 1, 2, 3,

it is easy to see that X ≤(1,1+γcx)−SD Y if and only if

γ ≥ max

{
−A2

A3
,
−A2

A1 +A3

}
=
−A2

A3
= γmin

cx .

In Example 2.1, we get γmin
cx = 12.82. Now, ΩX(t) ≤ 1/γmin

cx = 0.078 if

t ≥ t1 = 2.99. Therefore, Theorem 3.1 yields ΩX(t) ≤ ΩY (t) for t ≥ t1.

Finally, we consider almost first degree stochastic dominance. If F

single-crosses G from above, Equation (14) shows that X ≤(1+γ,1+γ)−SD Y

if and only if γA ≥ B, which is the same condition as for concave (1+γ)-SD.

In particular, X ≤(1+γ,1+γ)−SD c if ΩX(c) ≤ γ. Using the same arguments

as in the proof of Theorem 2.3 provides the following strengthening of

Theorem 2.3.

Theorem 3.3. If X ≤(1+γ,1+γ)−SD Y and ΩY (t) ≥ γ then ΩX(t) ≤ ΩY (t).

Example 3.2. Again, we consider the situation of Example 2.1 with two

crossing points. With a view to Equation (14), X ≤(1+γ,1+γ)−SD Y if and

only if

γ ≥ −A2

A1 +A3
= γ̃min.

For the distributions used in Example 2.1, γ̃min = 0.356, and ΩY (t) ≥ γ̃min

if t ≤ t̃0 = 1.431. Therefore, Theorem 3.3 yields ΩX(t) ≤ ΩY (t) for t ≤ t̃0.

Thus we get a slightly better result in comparison to Example 2.1 as we

use a weaker stochastic dominance rule here.
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We survey the underlying scientific concepts and aspects of the implementation
of the classification of state-subsidized private German pension products into

five different chance-risk classes. The topics range from the choice and cali-

bration of the capital market model via simulation issues of various pension
products to specific research topics such as the behavior of chance-risk curves

or new valuation algorithms for cliquet-type options.

Keywords: chance-risk classification, pension products, Monte Carlo
simulation.

1. Introduction

The introduction of bonus schemes (such as the Riester Rente) or schemes

that lead to tax advantages (such as the Basis Rente) in Germany had

the clear intention to give the public an incentive to enter into private

pension contracts as a necessary add-on to their state pension. As under-

standing general pension products and judging their risk and return po-

tential usually requires deep actuarial knowledge, the German Ministry of

Finance introduced a new standardized information document (Produktin-

formationsblatt)1 for those products to help the customer in comparing the

1Similar to the KID in the European PRIIPS regulation.
Open Access chapter published by World Scientific Publishing Company and distributed
under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives

(CC BY-NC 4.0) License.
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products and finding a suitable choice. Besides some product and concept

descriptions, the leaflet has to contain two key figures

• a so-called chance-risk class ranging from 1 to 5 expressing the

character of the chances and risks associated with the product,

• the reduction in yield expressing that part of the potential yield of

the product that is lost due to costs charged by the issuing company

(such as administration costs, costs of sales and management, or

costs of capital or of investment).

It is required that the chance-risk classification has to be based on stochastic

simulations of the evolution of the contract value of a product up to the

end of the accumulation period. A chance-risk class of 1 is characterized

by a low risk and a low return potential of the product, i.e. the customer

should have a precise idea about the available money at the end of the

accumulation period. In addition, the contract value has to increase over

time, and there is a money-back-guarantee at the end of the accumulation

period. A product having been assigned the chance-risk class 5 shows a

high return potential, but also admits a high risk. Its capital at the end

of the accumulation period is not required to stay above a positive bound.

The classes 2, 3, 4 fill the space between 1 and 5 in increasing order of

return potential and riskiness. Of those, only chance-risk class 2 in addition

contains a money-back-guarantee. More details will be found in the sections

below.

We will in the following only consider aspects of the chance-risk classi-

fication and do not comment on the concept and the computation of the

reduction in yield.2

As the chance-risk classification has to be done by an independent or-

ganization, the Fraunhofer Institute for Industrial Mathematics ITWM in

Kaiserslautern was chosen as the result of a public competition. A sepa-

rate legal entity was formed, the Produktinformationsstelle Altersvorsorge

gGmbH which is responsible for the classification of the products. However,

all mathematical concepts underlying the whole classification process have

been developed by the Financial Mathematics Department of Fraunhofer

ITWM. These include suggestions for

• the form of the capital market model underlying the simulation of

the contract values at the end of the accumulation period,

2To learn more about the concept and the actual computation of the reduction in yield

see www.produktinformationsstelle.de/effektivkosten.html.
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• the choice of the risk measure and the chance measure that form

the basis for the chance-risk-classification of the pension products,

• the determination of the five different chance-risk classes,

• the simulation algorithms to obtain the contract value at the end

of the accumulation period for the different pension products,

• the algorithms for calculating the reduction in yield for the different

pension product types,

where the Ministry of Finance of Germany had the final say about accepting

these suggestions.

We will in the following present the main conceptual ideas behind this

project in general and will in particular concentrate on issues of financial

mathematics and simulation. Let us also state in this introductory section

that all the classifications have to be done for four different times until the

end of the accumulation phase T of the product in years with

T ∈ {12, 20, 30, 40} . (1)

This does not only result in an enormous simulation effort for just one prod-

uct, but also leads to the possibility that one product can have four different

chance-risk classes for the four different maturities. However, given that the

product parameters (in particular with regard to its assigned costs) do not

change dramatically with the maturities, the scenario of having different

classifications for different maturities is not very likely. The extreme case

of four different classes is extremely unlikely.

Of course, it would be desirable to be able to classify products of exactly

that form that is tailored to the customer’s personal needs. However, the

resulting variety of products and of needed simulation and classification

work cannot be delivered, at least not without exploding classification costs.

As a compromise, the classification is only done for a prototypical customer

who is assumed to pay a monthly contribution (before costs) of 100 Euros

(where state bonuses are assumed to be included when they are granted)

until the last month of the accumulation products, i.e. we assume 12 · T
payments. Further, we perform 10000 simulations of the wealth at the end

of the accumulation period with a monthly time discretization as the basis

for determining the chance and the risk measure.

We will in the following present

• the main types of private pension products offered in Germany,

• the concepts underlying the classification,
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• the capital market model underlying the simulation together with

some product specific issues,

• some scientific challenges that are a consequence of experiences

made in the first years of the classification.

2. Typical private pension products offered in Germany

The variety of offered private pension products greatly influences the classi-

fication effort, both from a conceptional point of view and from the purely

technical issue of coding the algorithms. We therefore give a short and

incomplete survey of the main types of private pension products offered at

the German market that are eligible for state bonuses or tax advantages.

In former times, the market for private pension products in Germany

was dominated by traditional life insurance contracts with surplus partici-

pation offering a high degree of safety and by unit-linked fund investments

offering a high return potential, but leaving the investment risk with the

policy holder. During recent years and particularly motivated by the cur-

rent low interest rate phase, the diversity of state subsidized private pension

products has enormously increased. Besides the above mentioned two stan-

dard types, there is nowadays a wide range of hybrid products that combine

fund investment with guarantee components, new forms of the participating

life insurance, savings plans, or index participations, just to name the main

families. Most of these products also have variants containing a money-back

guarantee, i.e. their contract value V (T ) at the end of the accumulation

period exceeds the sum of contributions paid in by the customer and po-

tential bonuses assigned by the state. This property is a strict requirement

for the products to fall in the range of the so-called Riester-Rente, the main

German bonus scheme for private pension products. All German employees

and their spouse are eligible for subsidy under the Riester-Rente scheme.

To give the reader a survey on the main characteristics of all those

product classes, we will roughly describe them below. While in the actual

simulation we are working on the basis of monthly premium payments by

the policy holder, it will here be beneficial for simplicity of the presentation

that we assume annual contributions by the policy holder only in this work.

In the following, B(t) denotes the annual premium that the policy holder

contributes at the beginning of year t until the end of the accumulation pe-

riod which can — again for simplicity — be identified with the beginning

of the retirement phase of the policy holder. We make the usual conven-

tion that the contract starts at t = 0 with the first contribution. We also
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introduce V (t) to be the policy value at time t, N(t) the net savings pre-

mium after deduction of initial costs C(t) from the contribution B(t), i.e.

N(t) = B(t)− C(t) .

Further costs that are annually deducted from the contract value are de-

noted by Ca(t). Note that the costs can also vary in their functional form

over time. A typical feature causing this is the so-called Zillmerung which

assigns the main parts of the compensation for the agent selling the product

to the first five years of the contract.

Traditional life insurance with surplus participation. We start with

the classical pension product where each initial contribution B(t) is de-

composed into costs C(t) and the net savings N(t). The complete contract

value is then invested in the actuarial reserve fund (ARF) of the insurer

which is a special fund made up of various asset classes. At the end of the

year, the contract value is assigned a surplus participation i(t) based on

the performance of the ARF (and of saved costs, mortality gains and fur-

ther reserves gained from earlier periods and/or the (assigned) differences

between market and book value of the assets in the ARF). This surplus

participation has to exceed the promised guarantee rate at the start of the

contract iG(0) which currently is 0, 9% in Germany, i.e. i(t) ≥ iG(0). The

contract value thus evolves according to

V (t) = (V (t− 1)− Ca (t)) (1 + i (t)) +N (t) , (2)

where bonuses R(t) from the state may also be granted. As they depend on

both the actual contribution B(t) and the personal situation of the policy

holder (married, children, income, ...), we omit them here for simplicity

(although this can be quite a rough simplification, it is in line with the

requirements for the simulation given by the German Ministry of Finance).

There also exist variants where the guarantee rate iG(0) is reduced,

sometimes even to zero. This variant is often called neo classic or capital

efficient classic. Further, there are variants where a part of the surplus is

invested into a fund.

However, the main challenge in the current interest rate environment —

independent of the product type — is the money-back guarantee

V (T ) ≥
T−1∑
t=0

B(t). (3)
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Index participations. Index participations allow the policy holder to

benefit from a positive evolution of a stock index although all the (net sav-

ings) contributions of the policy holder are invested into the ARF. However,

that part of the annual surplus that is not needed to ensure the money-

back guarantee can be used to buy an option on the annual performance

of an index. To obtain a significant chance for additional return, typically

an option with a high leverage is used. An example which is popular is a

so-called locally capped and globally floored cliquet-option with a payoff at

time t+ 1 of

Z (t+ 1;C) = Ṽ (t)

(
12∑
i=1

min

(
C,
S
(
t+ i

12

)
− S

(
t+ i−1

12

)
S
(
t+ i−1

12

) ))+

. (4)

Here, C is called the index cap and is determined by the money available

for buying the option. Ṽ (t) denotes the contract value at time t after all

costs are deduced, S(t) the value of the index at time t. At time t + 1

the payment Z(t+ 1) is added to the contract value. Variants using other

option types exist at the market.

The particular feature of option type payoffs as in Equation (4) is that

on the one hand they provide the possibility of high returns on the con-

tract value by leveraging the contract value (there have been annual returns

realized in practice of about 20%) while on the other hand the downside

risk is limited by the option price paid. Compare this to either a full (!)

investment of the contract value in the fund underlying the index which

can lead to a higher return but does not provide any guarantee, or to the

investment of the surplus in the index which can only generate a high re-

turn on the surplus and not (!) on the whole contract value. Of course, an

option payment of zero does also appear quite often.

Unit-linked life insurance. Here, the net savings contribution of the

policy holder is invested into a fund. The evolution of the contract value is

given by

V (t) = (V (t− 1)− Ca (t)) (1 + rF (t)) +N (t) (5)

with

1 + rF (t) =
F (t)− F (t− 1)

F (t− 1)
(6)

where F (t) denotes the value of the fund at time t. Typically, the invest-

ment risk stays with the customer. To highlight this feature, we have used a
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notation of the fund return that differs from i(t) which has been the return

in the traditional life insurance product with surplus participation.

There are also special variants of unit-linked products including guar-

antees. They are then summarized under the name hybrid products.

Hybrid products. The term hybrid product is assigned to those products

where money is allocated to both a guarantee component and to a pure in-

vestment component. Hybrid products mainly differ in the way how the

given guarantee (such as the money-back-guarantee or the guarantee of a

fixed percentage of all contributions) is generated. Typically, a life insurer

uses the ARF as the guarantee component. A fund provider instead has

to rely on the capital market and either uses a bond strategy, put options,

or a sophisticated portfolio strategy such as a CPPI-strategy (see e.g. [2],

[6]). Hybrid products are also distinguished according to the nature of their

investment strategy. There are so-called static hybrids where the allocation

of the net savings contribution to the guarantee and to the investment part

of the product stays constant over time. In dynamic hybrids this strategy

is state and time dependent. According to the funds used there exist two-

and three-fund hybrids. In the two-fund setting there typically exist a strict

guarantee part such as the ARF and a second fund that has a lower guar-

antee (a usual ingredient is a fund that guarantees 80% of its initial value

and which is typically hold for one month or one year). The three-fund

version in addition contains the possibility to invest in a fund that does not

promise any kind of guarantee.

Savings plans. A savings plan is typically offered by banks. Here, the

full contributions of the customer are added to the contract account. At

the end of the year a fixed, a variable, or a combined interest rate i(t) is

assigned to the contract value. This is often a market rate such as the rate

for 10 year bonds minus a predefined deduction. Thus, costs are introduced

in an indirect way. The evolution of the contract is thus given by

V (t) = V (t− 1) (1 + i (t)) +N (t) . (7)

Due to a possible non-negativity condition or to a bonus scheme, the de-

termination of the interest rate i(t) can also contain non-linearities.
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More products. There are many more different products which we do

not describe here as they do not constitute a significant part of the German

pension market. Of course, they still have to be simulated and classified.

As they often also have features such as e.g. a so-called intelligent volatility

control, a complicated fund investment strategy, separate treatment of state

bonuses and of contributions made by the policy holder, they often cause

a large effort with respect to the actual implementation of the simulation

procedure.

3. Aspects of chance-risk classification concepts

There are well-known relations between chance and risk as e.g. expressed

in a mean-variance or a mean-standard-deviation diagram for the return

of an asset. The use of those diagrams is a natural basis for setting up

chance-risk classes (CRC). However, we first have to decide about the form

of the measures that stand for chance/return and for risk.

As the prototypical customer pays the fixed contribution of 100 Euro

every months, the use of the (continuous) yield Y that is determined from

the mean of the 10000 simulated contract values at the end of the accu-

mulation period is the choice for the chance measure. We thus have to

solve

100 (1 + Y/12)
(1 + Y/12)

12T − 1

Y/12
=

1

10000

10000∑
i=1

V (i)(12T ) (8)

where V (i)(12T ) denotes the final contract value in the i th simulation run.

Note that we take the yield corresponding to the average of the simulated

realizations of the accumulated final contract value and not (!) the average

yield. The reason for this is that we are thus in line with the definition of

the yield of a zero bond and with the expected value of a stock.

As a surprisingly high return constitutes no risk at all for a pensioner,

we solely concentrate of the downside risk. A number which is based on the

philosophy of the expected short fall measure is obtained using the 2000

worst simulated final contract wealth and then calculate the corresponding

yield as in Equation (8) where of course, we have to divide by 2000 only.

We will call this solution X.

Having decided on the chance and on the risk measures, our next task

is to determine the five different chance-risk classes. For this we define

reference portfolios which mirror the intended behavior of the class. For

example, the reference portfolio attached to CRC 1 solely consists of AAA-

bonds which mature at the end of the accumulation period T . The portfolio
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attached to CRC 5 invests in our prototypical fund with a volatility of 20%.

The reference pairs of the chance measure and risk measure points are then

put into a diagram that displays the chance measure on the y-axis and the

(negative (!) of the) risk measure on the x-axis. This way of display ensures

that moving to the top (in terms of a higher chance) and moving to the

left (in terms of a lower risk) is desirable. Different product types and their

chance-risk pairs are plotted in Figure 1.

Fig. 1. Chance and risk pairs for classified products (12T = 30).

To separate the different CRC we draw lines with a slope of −1 lying

in the middle between the points that represent the reference portfolios.

The justification for the slope of −1 of the separating lines lies in the re-

lation between the reference portfolios and the actually offered products.

For the reference portfolios, the chance and the risk measure are calcu-

lated based on the simulated wealth at the end of the accumulation period

without considering any costs. Due to the similar, mainly linear form of

both the chance and the risk measure, the actual costs reduce them both

in a similar, typically parallel way for real-life pension products. Of course,

this parallelism is slightly disturbed when the money-back guarantee gets

binding.
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There is a clear criticism for this way of constructing the areas for the

chance-risk classification. Leaving aside the influence of the money-back

guarantee, it seems that a product can stay in the same chance-risk class

when the costs are arbitrarily increased. However, increasing costs will

lead to an increase in the reduction in yield, the second quantity besides

the chance-risk class that is shown to the customer. And of course, a high

reduction in yield will make a product unattractive to the customer. So,

the reduction in yield helps to force the product provider to offer products

with as few costs as possible.

Remark 3.1. Why are the values of the chance and the risk mea-

sure not shown to the customer?

As already mentioned, only the CRC of a product is shown to the customer

as the result of the simulation process. Thus, the customer does not get

the full information that is generated. However, there are good reasons for

that. The main reason is that the primary task of the whole simulation of

the performance of the products in the accumulation phase is the classifi-

cation in the different CRC. It is therefore the relative performance among

the different products that is sufficient. Although the real-life performance

should be mirrored as close as possible, an exact image cannot be created

due to e.g.

• differences in the time discretization between real-life and model

simulation (in the classification process, all calculations and simu-

lations have to based on a monthly scale why in real-life there are

many advanced products that use weekly or daily reallocation of

the portfolios),

• only approximate knowledge of the reallocation algorithm (as the

exact form of the allocation algorithm and in particular strate-

gic decision plans of the product providers are often proprietary

knowledge, we receive only simplified forms of both),

• the worst-case principle (i.e. using upper bounds) that has to be

applied with regard to variable costs and that does not allow to

consider the possibility of kick backs.

All these reasons might lead to an under performance of the products in

the simulation in absolute terms. In relative terms between the different

products, however, this is mainly not the case.

On the other hand, the way of calculation of the prices of options

that are ingredients of various products (such as e.g. index participations)
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assumes a liquid market. In real-life, those prices can be significantly higher

due to the fact that full liquidity and market efficiency for such option

types is not given. This might lead to significantly higher market prices

than model prices. Thus, those products might perform worse in the real

markets than in the simulations.

It has therefore been decided that the CRC and the reduction in yield

are the only informations passed on to the customer that are generated on

the basis of the stochastic market model.

4. Capital market model and simulation of important

product ingredients

The choice of the capital market model is crucial for both the simulation

effort and also for the realism of the classification. As for the majority

of existing pension contracts bonds are the most important investment as-

set and as the duration of the contract is long, we decided to choose a

two-factor Hull-White model stated in the so-called G2 − ++ formulation

(see [3]). The model has the advantage of being a well-tested and applied

model. Also, as a two factor model, it avoids the problem of perfect cor-

relation between short- and long-term interest rates. Further, as it admits

a normally distributed short-rate behavior, it has the potential to model

negative interest rates. And finally, it allows for a perfect initial calibration

to the bond market.

The model is given by the equations

dx (t) = −ax (t) dt+ σdW1 (t) , (9)

dy (t) = −bx (t) dt+ η
(
ρdW1 (t) +

√
1− ρ2dW2 (t)

)
, (10)

r∗ (t) = x (t) + y (t) + ζ (t) (11)

describing the dynamics of the short rate r(t)∗ under a risk-neutral mea-

sure Q. Wi(t) are independent one-dimensional Brownian motions. The

function

ζ (t) = fM (0, t) + σ2

2a2

(
1− e−at

)2
+

η2

2b2

(
1− e−bt

)2
+ ρσηab

(
1− e−at

) (
1− e−bt

)
(12)

contains the model parameters that are calibrated to market prices of swap-

tions, while the initial market forward rate curve fM (0, t) is obtained from

the Nelson-Siegel-Svensson curve of the Deutsche Bundesbank.
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As for the classification purposes we have to simulate all relevant pro-

cesses under a real-world measure P , we have to add a risk premium to

obtain the final short rate process

r (t) := r∗ (t) + λr(t). (13)

To determine it, we use the annual predictions by the OECD on the ex-

pected future development of the interest rate market. We here do not go

into further technical details.

On the stock side, we use a generalized Black-Scholes model given by

S (t) = s0 exp

 t∫
0

r (s) ds+
(
λS − 0.5σS

2
)
t+ σSW (t)

 (14)

for modeling the dynamics of a reference stock index. Here, the one-

dimensional Brownian motion W (t) can also be correlated to Wi(t).

Based on an analysis of the EuroStoxx 50, we have chosen the parame-

ters λ = 0.04 and σ = 0.2 to give S(t) comparable dynamics. If a product is

based on another index or stock, then we assume that it has the dynamics

as our basic index S(t), but with individual σ and a risk premium of λ

determined by

λ = λS
σ

σS
. (15)

Remark 4.1. Why not using a more general stock price model?

Of course, one can think about introducing jumps or even Lévy-type mod-

els for the evolution of the stock index. However, the choice of the market

model had to be a compromise between generality, stability of calibration

and the market standards. Note that for some products, we need option

prices, continuous-time approximations for discrete formulas and other fea-

tures where more complicated models do not offer stable or unique solutions

(think about e.g. option prices in incomplete markets!). Due to the long

running contracts and the dominance of bond investments in life insurance,

our preference was to consider (at least) a two-factor model for the short

rate and not to introduce a more complicated stock price model.

Having specified the basic processes for our capital market, we now

have to come up with the simulation of some important components that

are crucial for many products. The most prominent of those components

is the ARF of an insurance company and — as a consequence of its annual

performance — the surplus declaration mechanism.
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How to simulate the surplus declaration in a participating life

insurance contract? Our modeling approach is based on the following

ideas: We assume an insurer to buy bonds of duration d at par every year.

Thus, the main risk is the re-investment risk when those bonds mature.

Otherwise, we know their annual coupons precisely in advance. Let, there-

fore be kd(t− i) be the coupon rate of a d-year bond bought at time t− i.
It will pay out those coupons at years t − i + 1, ..., t − i + d. Assuming a

stationary state of the insurance company in the sense that the number of

bonds hold are constant over the years, we arrive at a mean annual bond

return of

RB,d (t) =
1

d

d∑
i=1

kd (t− i).

Further, we assume a constant proportion investment strategy over time,

i.e. the insurer always rebalances the holdings at time t such that the

fraction invested in stocks (or a comparable fund) equals ψ ∈ [0, 1].

To model the smoothing algorithm for the surplus rates over time ap-

plied by a life insurance company, we assume that the geometric average

over the returns of the last three years (including the current one) is the

basis for the surplus declaration. It is given by

R (t) = 3

√∏2

i=0

(
ψ

F (t− i)
F (t− i− 1)

+ (1− ψ) (RB,d (t− i) + 1)

)
− 1.

Based on this, we assign the following surplus rate to the actuarial reserve

fund

g (t+ 1) = iG (0) + (0.9 ∗ (R (t)−K)− iG (0))
+
,

where iG(0) is the guarantee rate which has been valid when entering the

contract. Note that the second term on the right hand side contains the

minimal part (by law 90%) of the returns R(t) after capital costs K that the

insurer has to assign to the surplus rate, in case that this part is positive.

Our algorithm is a suggestion to capture the freedom of the insurer

to decide about direct assignments of gains to the individual contracts or

to a collective bonus account without (!) directly introducing this feature.

Introducing all kinds of accounts and legal aspects goes beyond the scope of

this paper. However, for a detailed treatment of the use of bonus accounts,

reserve accounts and liabilities, we refer to [5].
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How to generate guarantee mechanisms? Given the above relation

for the surplus rate, we can at least assume a return of iG(0) each year. It

is thus the classical tool for a life insurer to generate guarantees, simply by

contract agreement, not so much by the use of the capital market. There-

fore, the actuarial reserve fund is also used by insurers in hybrid products.

However, depending on the construction of the hybrid product, the hybrid

product will attain the full surplus or only a part of the surplus that the

holder of a classical product with participation receives.

If however the actuarial reserve fund can not be used (for e.g. contrac-

tual reasons) or if the provider of a pension product simply does not have

an actuarial reserve fund (think of a bank or an investment company) then

CPPI-type strategies using bonds or option based strategies are popular

alternatives.

How are de-risking strategies implemented? Reducing the invest-

ment risk with approaching end of the accumulation phase is a typical

strategy to avoid big losses when there is not a long time remaining to

correct them. While there are small differences in the ways this is imple-

mented in various products offered at the market, the main form consists

of a linear reduction of stock-type parts down to zero close to the end of

the accumulation phase.

5. Scientific challenges and outlook

Of course, the whole project of chance-risk classification of publicly avail-

able pension products is not a playground for scientific experiments. On

one hand, well established models and methods should be used while on

the other hand, it needs a very efficient implementation of the simulation

process of a wide range of diverse products. Thus, there is always room for

improvement, in particular as also new products will enter the scene.

The simulation of some products needs a particularly high computa-

tional effort. Given that we have to simulate 10000 paths of the evolution

of the contract value over 40 years, efficiency can be greatly improved if

regularly appearing tasks can be accelerated.

Improved Monte Carlo algorithms for pricing options in an index

participation. A prototypical example of both high computational effort

per simulation path and of accelerating regularly appearing tasks is the

calculation of the implied monthly cap on the index return in index partic-

ipation products. Here, we refer the reader to Korn, Temocin and Wenzel
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[8] where a completely new control variate approach for pricing cliquet-style

options is developed. It rests on the use of a control variate that has been

derived using the central limit theorem. More precisely, by identifying the

twelve capped monthly returns

Rc(i) = min

{
S(t+ i/12)− S(t+ (i− 1)/12)

S(t+ (i− 1)/12)
, c

}
, i = 1, 2, ..., 12,

in the cliquet option payment as independent and identically distributed

random variables in the Black-Scholes setting, we use the approximation(
12∑
i=1

Ri

)+

≈ X+

with X ∼ N(12E(Ri), 12V ar(Ri)). This is motivated by the central limit

theorem (although 12 might appear to be quite small for the use of an

asymptotic result). While the approximate option price E(exp(−r)X+)

(under the risk-neutral measure) can be obtained as an explicit analytical

formula and is surprisingly close to the exact option price, it is not close

enough to replace the option price fully as an approximation. However,

using this approximate price as a control variate delivers a great variance

reduction in the Monte Carlo simulation.

The resulting control variate method can numerically outperform the

standard semi-closed formula solution as given by Bernard and Li [1]. Even

more, it can be extended to more general model frameworks such as the

Heston model and also to other types of options used in index participations

such as the asymmetric participation option (see again [8]). The latter is

not dealt with by Bernard and Li [1].

The projection of general assets to the two basic asset classes.

Many investment positions hold by life insurance companies are no pure

bond or stock products. Examples are defaultable bonds, investment in

buildings, wind parks, just to name a few. They typically contain aspects

of a bond-type and also of a stock-type investment. Also, derivatives such

as stock options have a mixed character. The projection of such assets

in a suitable way to the two basic asset classes is an important issue for

the realistic simulation (and performance) of the actuarial reserve fund. A

corresponding decomposition algorithm that assigns an investment prod-

uct must be simple and also convincing from a conceptual point of view.

Therefore, the simulation model for official classifications has recently been

extended to allow for a more complex structure of the ARF.
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Effects in the evolution of the yield curve. The so-called yield curve

for zero bonds with maturity x is defined as the equivalent constant interest

rate y(x) that one receives when buying a zero bond now for the price of

P (0, x) and holding it until maturity x. The most popular forms of the

function y(x) are a normal yield-curve if it is increasing and concave, an

inverse yield curve if it is decreasing and convex, and a humped yield

curve if it contains exactly one interior maximum. Of course, further forms

of yield curves are possible, and some also have names.

Simple short rate models such as the one-factor Vasicek model have

a tendency to produce a higher fraction of inverse term structures with

ongoing time. The reason for this is based on the following two facts (see

e.g. [4]):

• For large values of x in the Vasicek model we have that y(x) con-

verges to a fixed value ȳ.

• The stationary distribution of the short rate r(t) has a median that

is bigger than ȳ.

Thus, due to the fact that the current value of the short rate determines the

form of the yield curve, we will asymptotically observe more than 50% of

inverse or humped yield curves in the Vasicek model. This follows from the

fact that for initial short rate values above y the yield curve in the Vasicek

model can only be inverse or humped (see again Chapter 8 in [4]).

The two-factor Hull-White variant that we are using has a similar be-

havior, but the relations are more subtle and in particular also depend very

much on the initial yield curve that we obtain from calibrating the model

to the yield curve of the Deutsche Bundesbank. Obtaining a simple rela-

tion between the starting yield curve and the distribution of future forms

of the yield curve at some fixed time point is therefore an obvious research

challenge.

The form of chance-risk curves. An effect that is at first sight surpris-

ing is the dependence of the form of the chance-risk curve on its ingredients.

Knowing the typical form of a classical mean-standard deviation diagram,

we would also expect a typical form for the chance-risk curve as in Figure

2. We have plotted the chance measure on the y-axis and have plotted the

risk measure on the x-axis, but in inverted order. This is done to have a

high risk on the right hand side of the figure (as in the usual risk-return

plots). One can however show that in a simple Black-Scholes setting for a

high risk premium of stock investment, for long time to maturity T or for
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- Risk measure 

Fig. 2. A form of a chance-risk-curve similar to a mean-standard-deviation curve.

a low volatility σ there can occur different forms. Thus, to obtain explicit

descriptions of the form of the chance-risk curve in dependence of the in-

put parameters and ingredients (such as the initial yield curve) is another

desirable goal.

More challenges. Due to the low interest rate environment, we expect

pension products to use even more complicated investment and guarantee

strategies in the future. Products that use a daily asset reallocation strategy

already exist. Other products contain a volatility control that uses the

volatility estimation on the basis of daily asset prices. Of course, for every

such product, it is a challenge to find approximation algorithms that are

based on our monthly discretization. Further challenges will appear with

every new generation of products.
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Chapter 16

Forward versus Spot Price Modeling

Jan-Frederik Mai

XAIA Investment,

Sonnenstraße 19, 80331 München, Germany
jan-frederik.mai@xaia.com

It is possible to base an equity derivatives pricing model on a stochastic driving

process for the share price (spot), or for the equity forward. While the former is

the classical approach pioneered by Black and Scholes [9], the latter approach
separates the modeling of exogenous random price fluctuations from the cost-

of-carry modeling of the stock, probably the first and most prominent example

of this technique being the paper by Black [8]. While the Black–Scholes spot
price approach and Black’s forward approach are equivalent, the present note

demonstrates that the introduction of local volatility and/ or level-dependent

default intensity into the stochastic driving process destroys this equivalence,
if applied carelessly. The advantages and disadvantages of both approaches are

discussed.

Keywords: equity forward, derivative pricing, dividend modeling, credit-equity
modeling, CEV model, JDCEV model.

1. Introduction

Today’s equity derivative pricing algorithms are based on stochastic mod-

eling of the underlying equity. The pioneering paper by Black and Scholes

[9] paved the road for dozens of different models with varying complexity,

which all have in common that the underlying share price process is mod-

eled exogenously by some more or less complex stochastic process. The

price of a derivative is then given as the expected value of the derivative’s

payoff function with respect to a so-called risk-neutral probability measure.

Due to arbitrage constraints the drift of the share price process under the

risk-neutral pricing measure is determined, in the sense that the stochas-

tic process which describes the discounted wealth from holding a portfolio

that is long one share becomes a (local) martingale.1 The incorporation

1This is roughly the statement of the so-called 1st fundamental theorem of asset pricing,
cf. [13], [14] for detailed background.
Open Access chapter published by World Scientific Publishing Company and distributed
under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives
(CC BY-NC 4.0) License.

399

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
0.

17
.2

16
.2

46
 o

n 
01

/1
6/

21
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 9, 2018 13:5 Innovations in Insurance, Risk- and Asset Management 9in x 6in b3285-ch16 page 400

400 Innovations in Insurance, Risk- and Asset Management

of a deterministic interest rate, a continuous rate accounting for proceeds

from holding the stock (e.g. due to dividends and/ or the possibility for

stock lending via repos2), or even discrete cash dividends into the stock

price model in general is a non-trivial, or at least inconvenient, task that

must be executed in accordance with these arbitrage constraints. Not much

later than the invention of the pioneering Black–Scholes model in 1973, in

1976 Black [8] already proposed a trick to circumvent this difficult task

by modeling the equity forward3 process exogenously (instead of the share

price). While the spot price St of an equity is the price at which one share

can be bought or sold at time t, the equity forward F (t, T ) is defined as

the market’s expectation at time t about the value of the spot at some

fixed future time T ≥ t. The difference between the share price (spot) and

its forward is the cost-of-carry between t and T , which consists precisely of

the components mentioned before: interest rates, repo rates, and dividends.

Consequently, the task of modeling the forward process {F (t, T )}t∈[0,T ] ex-

ogeneously is a task that is free from these considerations,4 and after having

modeled the forward process exogeneously as an arbitrary (local) martin-

gale, one may include interest rate, repo, and dividend considerations in a

separate step.

For the sake of a clear presentation, throughout the present paper we

assume that there is a deterministic, risk-free short rate r(.) used for dis-

counting cash flows, and a deterministic, continuous yield δ(.) accounting

for proceeds from stock possession, so that at time t the relation between

the share price St and the equity forward F (t, T ) with maturity T > t is

given by

St = e−
∫ T
t

(
r(s)−δ(s)

)
ds F (t, T ), 0 ≤ t ≤ T. (1)

In particular, for the sake of simplicity the model abstracts from the fact

that in reality dividends are paid at discrete time points, but we discuss

the possibility for the inclusion of discrete cash dividends in Section 5.

Furthermore, the inclusion of stochastic interest rates is no problem on a

generic level, but only disturbs from the main message we like to convey,

which is the sole reason why we assume interest rates to be deterministic

2By “repo” we mean a repurchasement agreement.
3Black [8] considers a commodity as underlying and distinguishes “spot” and “futures

price”, which in our equity setting and today’s terminology corresponds to “spot” and
“equity forward”.
4Except for the starting value F (0, T ), which depends on the current spot price S0 as

well as the market’s expected cost-of-carry between [0, T ], see Formula (1) for t = 0.
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throughout. Equation (1) shows that one of the two stochastic quantities

St and F (t, T ) is obtained from the other by multiplying it with a de-

terministic process under our assumptions. When it comes to stochastic

modeling, the only constraint from arbitrage pricing theory is that the pro-

cess {F (t, T )}t∈[0,T ] is a (local) martingale. For instance, if {F (t, T )}t∈[0,T ]

is modeled as a driftless diffusion, this implies that {St}t∈[0,T ] is a diffusion

with drift r(.)− δ(.). Consequently, one would guess that it makes no dif-

ference whether one models the spot process {St}t∈[0,T ] exogenously and

derives the forward process {F (t, T )}t∈[0,T ] from it, or vice versa. Indeed,

the classical Black–Scholes spot model defines {St}t∈[0,T ] as a geometric

Brownian motion, which is equivalent to the Black forward model that de-

fines the forward process {F (t, T )}t∈[0,T ] as a geometric Brownian motion,

with the same volatility but different drift. However, the present article

points out that this equivalence hinges upon the assumption of constant

volatility. When the driving geometric Brownian motion is replaced by

some more general diffusion process with state-dependent local volatility,

the parameters r(.) and δ(.) must be incorporated in a deliberate way into

the local volatility term in order for both approaches to be equivalent, see

the following example.

Example 1.1 (Drift effect on local volatility). Assume that the for-

ward process {F (t, T )}t∈[0,T ] follows a local volatility model of the form

dF (t, T ) = F (t, T )σF
(
F (t, T ), t

)
dWt, (2)

where {Wt} denotes a standard Brownian motion. According to (1), Itô

calculus implies that {St}t∈[0,T ] follows the diffusion

dSt = St

(
[r(t)− δ(t)] dt+ σS

(
St, t

)
dWt

)
, (3)

where the spot price local volatility σS is related to the forward local volatility

σF via

σS(St, t) := σF

(
St e

∫ T
t
r(s)−δ(s) ds, t

)
= σF

(
F (t, T ), t

)
. (4)

Consequently, apart from the differing drift terms in (2) and (3), that result

from no arbitrage considerations, also the forward local volatility functions

σF and σS must differ by the discount factor term in the middle expression

in (4) in order for (2) and (3) to become equivalent. If, instead of (3), we

model the share price dynamics as

dSt = St

(
[r(t)− δ(t)] dt+ σF

(
St, t

)
dWt

)
, (5)
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i.e. if we use the same driving process as in the forward model only with

different drift, we end up with a spot price model that in general is not

equivalent to the forward model (2), even though it is also a share price

model that is consistent with arbitrage pricing theory.

In Example 1.1 we purposely distinguish the spot local volatility σS(., .) and

the forward local volatility σF (., .), because they are different in general.

In practical modeling, in a first (purely stochastic, non-economic) step, one

typically decides for some diffusion model with drift µ(.) and a parametric

family of local volatility functions σ(., .), still without economic meaning.

The economic interpretation is attached to the model in a second step,

when one decides whether the diffusion represents the share price (in which

case one sets µ = r − δ) or the forward (in which case one sets µ(t) ≡ 0).

However, it is unusual to incorporate the parameters r(.) and δ(.) into

the local volatility model σ(., .). The present article’s purpose is to point

out that the decision between “spot modeling” and “forward modeling”

can have economic effects that one should keep in mind. Concretely, we

investigate the difference between the two different spot price dynamics (3)

and (5) of Example 1.1. Furthermore, in order to be even more general,

additional to the local volatility part we also include a state-dependent

default intensity into the model. For the state-dependence of the latter

default intensity there are similar constraints for the equivalence of spot

and forward model as in the case of the local volatility.

The remainder of the article is organized as follows. Section 2 introduces

both the spot model and the forward model based on a general defaultable

Markov diffusion as stochastic driving process. Section 3 provides an elab-

orate example for how different both modeling approaches can be, when

a so-called CEV driving diffusion is chosen. However, the example is still

rather theoretic with the sole purpose of clearly pointing out that the two

approaches are not the same. More practically oriented, Section 4 calibrates

the two different modeling approaches based on a so-called JDCEV driving

process to the same observed market data and discusses the resulting differ-

ences. With a solid understanding of the differences between forward and

spot modeling at hand, Section 5 discusses the basis for decision-making

between the two approaches. In particular, since the possibility to include

discrete cash dividends into the pricing model is one of the main advan-

tages of the forward modeling approach, the respective technique of [3] to

accomplish this task is reviewed and slightly enhanced as well in this sec-

tion. Finally, Section 6 concludes, and a technical appendix explains two
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important computations in the context of defaultable Markov diffusions for

the readers’ convenience.

2. Spot and forward model

As driving equity process for either share price (spot) or forward, we con-

sider a defaultable Markov diffusion model,5 which is based on a stochastic

process {Z(µ)
t }. The latter is given by

dZ
(µ)
t = Z

(µ)
t

([
µ(t) + λ

(
Z

(µ)
t

)]
dt+ σ

(
Z

(µ)
t

)
dWt

)
,

with starting value denoted by z0 := Z
(µ)
0 > 0, where µ : [0,∞)→ R is some

deterministic drift function, and λ, σ : R → (0,∞) are smooth enough for

the defining stochastic differential equation (SDE) to have a non-explosive

weak solution under the constraint that the state zero, if attainable at all,

is an absorbing boundary.6 For an exponential random variable ε with unit

mean, that is independent of the Brownian motion {Wt}, we further define

the random variable

τ (µ) := inf
{
t > 0 :

∫ t

0

λ
(
Z(µ)
s

)
ds > ε or Z

(µ)
t = 0

}
.

In the sequel, we use the stochastic process {Z(µ)
t 1{τ(µ)>t}} as a basis for

modeling either the share price process (µ = r − δ) or the equity forward

process (µ ≡ 0), and then study the difference between both approaches.

In particular, we are only interested in the diffusion process Z
(µ)
t until

time τ (µ), when we pin it to zero. Since the model is used for pricing

applications, it is defined directly under a risk-neutral probability measure.

It is well-known that the stochastic process

e−
∫ t
0
µ(s) ds Z

(µ)
t 1{τ(µ)>t}, t ≥ 0,

is a local martingale7 with respect to the filtration {Ft} that is generated

jointly by the Brownian motion {Wt} and the default indicator process

{1{τ(µ)>t}}. This filtration is used as market filtration. The random vari-

able τ (µ) is interpreted as the occurrence of a bankruptcy event, at which

the share price and the equity forward drop to zero and remain there.

The stochastic process {λ(Z
(µ)
t )} is called default intensity, and intuitively

5Such models are treated, e.g., in [1],[2],[4]–[7],[10]–[12].
6Concrete examples satisfying these demands are given in Sections 3 and 4 below.
7For the reader’s convenience, the Appendix provides a proof.
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represents the instantaneous bankruptcy probability according to the first

order approximation formula

P
(
τ (µ) ≤ t+ ∆ | τ (µ) > t

)
≈ λ

(
Z

(µ)
t

)
∆.

In light of this formula, the function λ(.) allows to model a reciprocal re-

lationship between the value of Z
(µ)
t and the bankruptcy likelihood. More-

over, the function σ(.) allows to model a local volatility component. For

the sake of generality, we do not further specify the functions λ(.) and σ(.)

here, but provide parametric examples later. Depending on the choice of

these model functions, the random variable τ (µ) may also be infinity, as

Example 2.1 below shows.

2.1. Spot model

The drift function µ(.) is interpreted as the difference between a risk-free

discounting rate r(.) and a continuous yield δ(.) ≥ 0 accounting for proceeds

from stock possession, i.e. µ := r−δ. Based on the model
(
{Z(r−δ)

t }, τ (r−δ)
)
,

the defaultable Markov diffusion model for the evolution of the share price

{St}t≥0 is the stochastic process defined as

St := Z
(r−δ)
t 1{τ(r−δ)>t}, t ∈ [0, T ], (6)

where T is a finite model horizon, and z0 := Z
(r−δ)
0 = S0. The model is in

accordance with arbitrage pricing theory in the sense that the process

e−
∫ t
0
r(s) ds e

∫ t
0
δ(s) ds St, t ∈ [0, T ],

which equals precisely the discounted wealth process from a portfolio that

is long the stock, is a (non-negative) local martingale with respect to the

market filtration {Ft}. In particular, for δ ≡ 0 the discounted share price

process is a local martingale and for δ(.) > 0 it is a supermartingale. Within

this share price model the equity forward process for 0 ≤ t ≤ T is given by

F (t, T ) = E
[
ST | Ft

]
= e

∫ T
t

(
r(s)−δ(s)

)
ds Z

(r−δ)
t 1{τ(r−δ)>t},

so that, in particular,

F (0, T ) = e
∫ T
0

(
r(s)−δ(s)

)
ds S0. (7)

Example 2.1 (Geometric Brownian motion). If λ(z) ≡ λ ≥ 0 and

σ(z) ≡ σ > 0 are both constant, then τ (r−δ) = ε/λ has an exponential
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distribution with mean 1/λ, which is independent of {Wt}. The unique

strong solution of the driving process SDE is given by

Z
(µ)
t = S0 e

∫ t
0

(
r(s)−δ(s)

)
ds+
(
λ−σ22

)
t+σWt , t ≥ 0,

so that log(Z
(µ)
t /S0) has a normal distribution with mean

∫ t
0

(
r(s) −

δ(s)
)

ds+
(
λ− σ2

2

)
t and variance σ2 t. The share price process is given by

St = S0 e
∫ t
0

(
r(s)−δ(s)

)
ds+
(
λ−σ22

)
t+σWt 1{ε>λ t}.

Finally, we’d like to remark that in the special case λ = 0 bankruptcy cannot

happen, i.e. τ (r−δ) = ∞, and the model boils down to the famous Black–

Scholes share price model, cf. [9].

2.2. Forward model

Instead of modeling the share price process exogenously and deriving the

equity forward process, one may instead choose to model the equity for-

ward process {F (t, T )}t∈[0,T ] exogenously and derive the share price pro-

cess {St}t∈[0,T ] from it via the relation (1). The main motivation for this

modeling approach is the separation of interest rate/ repo/ dividend model-

ing and stochastic modeling (captured in the model for F (t, T )), which are

multiplicatively separated in (1). There is no need to consider r(.) and δ(.)

when modeling F (t, T ), because it is already incorporated adequately into

the share price process according to Formula (1), one only needs to make

sure that {F (t, T )}t∈[0,T ] is a (local) martingale. The only thing which de-

pends on r(.) and δ(.) is the starting value F (0, T ) of the forward process.

Consequently, basing the stochastic modeling of the equity forward process

on the model
(
{Z(µ)

t }, τ (µ)
)
, it is natural to set µ ≡ 0 and define

F (t, T ) := Z
(0)
t 1{τ(0)>t}, t ∈ [0, T ], (8)

where z0 := Z
(0)
0 = exp

( ∫ T
0

(
r(s) − δ(s)

)
ds
)
S0 in accordance with (7).

This model for F (t, T ) depends on r(.) and δ(.) only through its starting

value z0. Summarizing, the resulting share price process in this approach

is given by

St := e−
∫ T
t

(
r(s)−δ(s)

)
ds Z

(0)
t 1{τ(0)>t}, t ∈ [0, T ].

Example 2.2 (Geometric Brownian motion, contd.). Like in Ex-

ample 2.1, assume that λ(z) ≡ λ ≥ 0 and σ(z) ≡ σ > 0 are both constant.
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Then we have

Z
(0)
t = S0 e

∫ T
0

(
r(s)−δ(s)

)
ds e

(
λ−σ22

)
t+σWt , 0 ≤ t ≤ T,

and τ (0) = ε/λ = τ (r−δ) is an exponential random variable with mean 1/λ,

independent of {Wt}. Consequently,

St = e−
∫ T
t

(
r(s)−δ(s)

)
ds Z

(0)
t 1{τ(0)>t}

= S0 e
∫ t
0

(
r(s)−δ(s)

)
ds+
(
λ−σ22

)
t+σWt 1{ε>λ t},

which coincides exactly with the share price model in Example 2.1. Hence,

for constant λ(.) and σ(.) the share price model approach and the forward

model approach are equivalent. Finally, we’d like to remark that in the

special case λ = 0 bankruptcy cannot happen, i.e. τ (0) =∞, and the model

for F (t, T ) boils down to the famous Black–model for the forward process,

cf. [8]. In particular, the Black–forward model and the Black–Scholes share

price model are equivalent.

2.2.1. Wealth process model

Modeling the forward process by (8) implies that the starting value of the

driving process z0 = F (0, T ) depends on the model horizon T . This is a

drawback compared with the spot model approach (6), where the starting

value of the driving process is simply the current share price z0 = S0,

independent of T . In particular, when derivatives with different maturities

have to be priced, the forward modeling approach has the disadvantage

that different forward processes, with different time horizons and starting

values, are required.

A third modeling approach, which shares with the forward model ap-

proach that the driving process is a (local) martingale, and which shares

with the spot model approach the independence of the driving process’

starting value of T , is to model the discounted wealth process {Vt}t∈[0,T ]

that arises from holding a portfolio which is long one share and continu-

ously rehypothecates all proceeds from stock possession into more shares,

given by

Vt := e−
∫ t
0

(
r(s)−δ(s)

)
ds St = e−

∫ T
0

(
r(s)−δ(s)

)
ds F (t, T ).

Like in the forward model approach, since {Vt} is a (local) martingale, a

natural definition based on the model
(
{Z(µ)

t }, τ (µ)
)

is to set µ ≡ 0 and

Vt := Z
(0)
t 1{τ(0)>t}, t ∈ [0, T ],
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where z0 := Z
(0)
0 = S0. Consequently, the share price in this setup is

derived from the discounted wealth process via

St = e
∫ t
0
r(s)−δ(s) ds Vt, t ∈ [0, T ].

Remark 2.1 (Wealth modeling ≡ forward modeling). As the wealth

process {Vt} equals the forward process {F (t, T )} up to a multiplicative con-

stant which is independent of time t, the wealth process approach and the

forward model approach are equivalent under the condition that the func-

tions λ(z) and σ(z) depend on their argument z only through the fraction

z/z0, i.e. default intensity and local volatility are independent of the start-

ing value z0 of the driving process. This is often satisfied in applications,

and in particular in all examples within the present article. Consequently,

we do not further distinguish between wealth process approach and forward

model approach in the remainder of this article.

3. First example: CEV model

As demonstrated in Example 2.2, the spot model approach is equivalent

to the forward model approach if the functions λ(.) and σ(.) are constant.

However, if they are not constant, both approaches imply different models,

which is illustrated in Figure 1 below.

Figure 1 depicts two simulated paths of {St}t∈[0,20], one simulated ac-

cording to the spot model approach, the other according to the forward

modeling approach. Both simulations are accomplished via an Euler scheme

based on exactly the same path of the underlying Brownian motion. It is

assumed that λ ≡ 0, but the local volatility component is modeled with a

constant elasticity of variance (CEV) term σ(z) = 0.6
√
z0/z, cf. Delbaen

and Shirakawa [15], who prove the existence of a non-explosive weak solu-

tion of the defining SDE, which also follows from the more general results in

[10]. It is obvious from Figure 1 that the two modeling approaches are not

equivalent. Most outstanding is the observation that the two paths have a

different bankruptcy time. This difference can also be observed analytically

as follows. For µ ≥ 0, the probability P(ST = 0) is computed explicitly by

Delbaen and Shirakawa [15]. In case of the spot modeling approach, it is

given by

P(ST = 0) = P
(
τ (µ) ≤ T

)
= exp

(
− µ

0.18
(
1− e−µT

)).
In particular, as the model horizon T tends to infinity, this probability

tends to the value exp(−µ/0.18), which is smaller than one for µ > 0. This
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Fig. 1. Share price process {St}t∈[0,20], once simulated from the spot model, and once
from the forward model. The parameters are chosen as µ(t) = r(t) − δ(t) ≡ 0.025,

S0 = 2, with λ(z) ≡ 0, and σ(z) = 0.6
√
z0/z.

means that there is a positive probability that bankruptcy never occurs.

In contrast, in case of the forward modeling approach, this probability is

independent of µ and given by

P(ST = 0) = P
(
F (T, T ) = 0

)
= P

(
τ (0) ≤ T

)
= exp

( −1

0.18T

)
,

which tends to one as the model horizon T tends to infinity. It is

intuitive that the difference between spot and forward approach increases

with increasing T , since the economic difference between spot and forward

increases as well. Figure 2 depicts the probabilities T 7→ P(ST = 0) in

dependence on T for the two different models.

4. Second example: JDCEV model

The CEV example of the previous section is rather academic in the following

sense: comparing spot modeling approach and forward modeling approach

with exactly the same parameters for their driving process is comparing
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Fig. 2. The function T 7→ P(ST = 0) for the spot model and the forward model, with

the same parameters as in Figure 1.

apples to oranges. In practice, either model is calibrated to one set of ob-

served price data, so that the resulting spot model parameters and forward

model parameters are typically different. In such a case, an investigation

of the difference between both calibrated models is more delicate and in-

teresting. In the sequel, we are going to carry out such a comparison for a

particular model.

One of the most popular models for the joint pricing of credit- and

equity-related derivatives is the so-called jump-to-default extended constant

elasticity of variance (JDCEV) model of Carr and Linetsky [10], see also

[1]. It extends the previously mentioned CEV model by a state-dependent

default intensity term. More specifically, we consider the following para-

metric specification of the JDCEV model in the sequel:

λ(z) := λ0

( z
z0

)2 β
, σ(z) := σ0

( z
z0

)β
,

with parameters λ0, σ0 > 0, and β < 0. The existence of a non-explosive

weak solution for the defining SDE is shown in [10], who also explain that
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the stopping time τ (µ) happens almost surely by the integrated default

intensity exceeding ε, and not via diffusion of {Z(µ)
t } through zero. No-

tice in particular that in our parameterization λ(z) and σ(z) depend on

their argument z only via the fraction z/z0, so that the forward and wealth

process modeling approaches are equivalent according to Remark 2.1. Fur-

thermore, the power 2β in the default intensity is twice the power β of the

local volatility, which is a deliberate choice making the model analytically

tractable. In particular, with an arbitrary8 function h : (0,∞) → R, it is

shown in [10], Lemma 5.4, that

E
[
h(Z

(µ)
T ) 1{τ(µ)>T}

]
= z0 E

[
h
(
e
∫ T
0
µ(s) ds

(
|β|
√
cX
) 1
|β|
)

(
|β|
√
cX
) 1
|β|

]
, (9)

where the auxiliary random variable X has a non-central χ2-distribution

with non-centrality parameter z
2 |β|
0 /(c β2) and 2λ0/(|β|σ2

0) + 1/|β| + 2

degrees of freedom, and

c = c(T, σ0, z0, β, µ) =
σ2
0

z2 β0

∫ T

0

e−2 |β|
∫ u
0
µ(s) ds du.

In particular, the default probability is computed from the last formula

with h ≡ 1 as

P
(
τ (µ) ≤ T

)
= 1− z0 E

[(
|β|
√
cX
)− 1
|β|
]
.

This default probability depends critically on the drift function µ(.), hence

on r(.)− δ(.), which directly carries over to the probability

P(ST = 0) = P
(
τ (µ) ≤ T

)
within the spot model approach. In contrast, for the forward model ap-

proach this default probability is independent of µ(.) (and hence indepen-

dent of both r(.) and δ(.)), since it is given by

P(ST = 0) = P
(
τ (0) ≤ T

)
.

Consequently, interest rate and repo/ dividend parameters have a direct

effect on default probabilities only within the spot price model.

We consider a credit default swap (CDS) par spread curve with ma-

turities ranging from one year to ten years, referring to a company XY.

We also consider European out-of-the-money (OTM) call and put options

8“Arbitrary” in the sense of a practitioner, of course, measurability issues swept under

the carpet.
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with maturity T ≈ 1.425 years on the stock of company XY. The current

stock price is S0 = 53.48 and the forward F (0, T ) ≈ 50.74, implying a con-

stant yield δ ≈ 3.32%, where at the same time the discount rate r(.) has

been bootstrapped in a piecewise constant manner from observed prices of

interest rate swaps with a 3-month tenor. This example is inspired by a

real-world case.

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

t

P
(τ

 <
 t)

 in
 %

 

 

stock model
forward model

Fig. 3. Default probabilities for the next ten years in spot and forward model, both
models being calibrated to the same CDS curve.

The JDCEV model parameters are fitted to the observed CDS quotes,

which results in a perfect and unambiguous9 model fit in both cases. More

precisely, the fitted parameters in spot (S) and forward (F) model10 are

9The observed CDS data already determines the model parameters uniquely.
10We actually use the wealth process modeling approach because we deal with differ-
ent maturities, but according to Remark 2.1 the wealth process modeling approach is

equivalent to the forward modeling approach.
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given by

βS = −0.8, σS = 0.30, λS = 0.0077091,

βF = −0.6, σF = 0.39, λF = 0.0077091.

Notice in particular that λS = λF , because this parameter can directly be

read off from the short end of the observed CDS par spread curve. Both

models calibrate perfectly to the observed CDS prices, which is illustrated

by Figure 3 that depicts induced default probabilities for the next ten years.

Notice that the CDS prices depend only on these probabilities, assuming

a constant recovery rate, as usual. It is observed that both models imply

almost perfectly the same default probabilities, hence CDS prices. Now

what about the option data?

The distribution function of ST has a jump at zero (corresponding to

the default probability P(ST = 0) > 0) and is continuously differentiable

on (0,∞). The top plot in Figure 4 shows the density function fS(.;T ) :=
∂
∂xP(ST ≤ x) for x > 0, which is derived from Formula (9) in the Appendix.

Whereas the expected value of ST , which is the forward F (0, T ), is identical

in both models, it is observed that the stock price has higher variance in

the forward model. Consequently, the option prices in the forward model

are higher than in the spot model, which is depicted in the bottom plot

of Figure 4. The observed market prices of the options in the current

example are perfectly in line with the option prices of the spot model, and

are overestimated by the forward model.

Finally, Figure 5 visualizes the sensitivities of CDS prices on changes in

the stock price with both considered JDCEV models. It is observed that

the CDS spreads are more sensitive with regards to changes in the stock

price within the stock price model, which is due to the fact that |βS | > |βF |.
Concluding, the two different models (spot and forward) differ signifi-

cantly in the present use case. They differ with respect to the computa-

tion of price sensitivities, and they also differ in their projections of equity

derivative prices from observed CDS prices, which is the most prominent

application of such credit-equity models.

5. Implications for modeling

As demonstrated in the previous paragraph, when volatility and/ or default

intensity in an equity model are allowed to depend on the current equity

level, it makes a difference whether we decide to model the share price

process (like in the Black–Scholes model), or instead we opt for modeling
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Fig. 4. Top: The risk-neutral density function fS(.;T ) of ST for T ≈ 1.425 in spot and

forward model. Bottom: Implied volatilities for European OTM calls and OTM puts
with maturity T ≈ 1.425 in spot and forward model.
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Fig. 5. Effect of stock price change on the shape of a CDS par spread curve (computed
with recovery rate 40% and running coupon 500 bps). Northwest: Stock price drops

80%. Northeast: Stock price drops 25%. Southwest: Stock price unchanged, current
CDS par spread curve. Southeast: Stock price rises 25%.

the forward equity process (like in the Black–model). Moreover, Example

2.2 shows that this difference is not present in the classical Black–Scholes

model with constant volatility (and zero default intensity), so it is an issue

emerging only in advanced equity models, for instance with local volatility

and/ or the possibility for a bankruptcy event sending the share price to

zero. Since both spot and forward approach imply arbitrage-consistent

pricing models, the decision between either one of them must be based on

one’s opinion regarding the economic interpretation. Within the cosmos

of defaultable Markov diffusion models considered in the present paper,

the important question that needs to be answered is: “Do we want the

dividend/ repo/ interest rate parameters to have influence on the default

probabilities and local volatility of the equity process?” If the answer is

“yes”, one prefers the spot model approach, if it is “no”, one prefers the

forward model approach. If one does not care, it is also possible to work
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with both models and prefer the one that fits observed price data better.

For example, in the real-world case of the previous paragraph the market

stock option data (which is not depicted in Figure 4) is explained better

within the spot model. But the author wishes to mention that he could

instead have easily presented another use case with the forward model being

closer to the market data as well.

One of the most important advantages of the forward model over the

spot model is the possibility to include discrete cash dividends in a simple

manner, as described by Bernhart and Mai [3]. In this case, neglecting pro-

ceeds from stock lending11 and focusing on proceeds from dividends only, a

continuous dividend yield δ(.) is not required, since dividends are modeled

by discrete cash payments. If we want to include discrete cash dividends

(which is straightforward in the forward model), but also want to make sure

that interest rate and dividends have an influence on default probabilities

(which requires the spot model), what can we do? We can use a hybrid

model, using aspects of both discrete cash dividend modeling and continu-

ous dividend modeling as follows. The discrete cash dividend model of [3]

specifies a dividend payment at time tk as a function Dtk = f
(
F (tk, T )

)
of

the forward at tk. The forward process {F (t, T )}t∈[0,T ] is the driving pro-

cess of the model, for instance being given by default intensity λ(.) and local

volatility σ(.) according to the defaultable Markov diffusion considered in

Section 4 of the present paper. The stock price is finally given by

St = F (t, T ) e−
∫ T
t
r(s) ds +

∑
t<tk≤T

e−
∫ tk
t r(s) ds E[Dtk | Ft], (10)

where the sum is taken over all dividend payment dates between t and T .

Using Equation (1) with t = 0 and different forward maturities, the observ-

able quantities S0 and {F (0, T̃ )}T̃∈[0,T ] may be used to extract a continuous

dividend yield parameter δ(.), for instance in a piecewise-constant manner

with jumps at a discrete set of observed forward maturities T̃ . This pa-

rameter δ(.) may now be incorporated into the model (10) at one or both

of the following two places:

11Only for the sake of a simplified notation. It is easily possible to keep a part of δ as
continuous yield from stock lending and only transform the remaining dividend part into

discrete payments.
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(i) In order to make Dtk dependent on both r(.) and δ(.), we may

change its definition to

Dtk := f
(
e
−

∫ T
tk
r(s)−δ(s) ds

F (tk, T )
)
.

(ii) In order to make interest rate and dividends affect default proba-

bilities and local volatility we change the default intensity and local

volatility of the driving forward process from λ(.) and σ(.) to

λF
(
F (t, T ), t

)
:= λ

(
e−

∫ T
t
r(s)−δ(s) ds F (t, T )

)
,

σF
(
F (t, T ), t

)
:= σ

(
e−

∫ T
t
r(s)−δ(s) ds F (t, T )

)
.

In particular, we introduce a dependence on the time t.

The inspiration for both adjustments (i) and (ii) above relies on the relation

St ≈ e−
∫ T
t
r(s)−δ(s) ds F (t, T ), 0 ≤ t ≤ T, (11)

which is no longer an equality in the presence of discrete cash dividends, but

now only an approximation of the discrete relationship (10). The discrete

payments cause jumps in the stock price process on the left-hand side of

(11), whereas the right-hand side of (11) only represents a continuous proxy

for the stock price (10), with the aforementioned definitions (i) and (ii)

being in place. Altering the model of [3] in this way, it features jumps

(of possibly random, state-dependent size) in the stock price process on

dividend dates tk, but there is also an effect of dividends and interest rates

on default probability and local volatility, which is modeled continuously

and non-random. In this sense, it is a hybrid model. The tractability of the

model, which relies heavily on the fact that the forward modeling approach

is chosen, is still huge, as can be seen from Equation (10): based on a

stochastic differential equation for the driving forward process, standard

finite difference techniques may be applied in a straightforward manner to

compute the value of equity derivatives on the share price. The interested

reader is referred to [3] for details.

6. Conclusion

We investigated the potential differences between basing an equity deriva-

tives pricing model on either the share price or the equity forward. It has

been demonstrated that it can be a crucial economic difference whether

default intensity and local volatility of the driving process is modeled de-

pendent on the spot-level or the forward-level. Since both approaches imply
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arbitrage-consistent pricing models, the choice between them depends on

the user’s preference and economic interpretation.

Appendix A. Martingale property of driving process

We write Zt := exp(−
∫ t
0
µ(s) ds)Z

(µ)
t and τ = τ (µ), i.e. in particular we

omit the superscript (µ) for notational simplicity. We furthermore intro-

duce the notation Yt := Zt 1{τ>t}, t ≥ 0, and aim to prove that {Yt} is a

local martingale with respect to the market filtration that is generated by

the Brownian motion and the observable default indicator. Fix T ≥ t ≥ 0.

We compute the dynamics of the process
{
Zu exp

(
−
∫ u
t
λ(Zs) ds

)}
u≥t

and observe

d
(
Zu e

−
∫ u
t
λ(Zs) ds

)
= e−

∫ u
t
λ(Zs) ds dZu − λ(Zu)Zu e

−
∫ u
t
λ(Zs) ds du

= e−
∫ u
t
λ(Zs) ds Zu σ(Zu) dWu.

Consequently, the latter process is driftless, showing that itself is a local

martingale with respect to the natural filtration {F (W )
t }t≥0 of the Brownian

motion W . Hence, there exists an increasing sequence of {F (W )
t }-stopping

times (Tn)n∈N, such that limn→∞ Tn = ∞ and the stopped processes are

martingales. Since F (W )
t ⊂ Ft, (Tn)n∈N is also a sequence of {Ft}-stopping

times. We denote by Y [Tn] := {YTn∧t}t≥0 the process Y stopped at Tn, and

show that Y [Tn] is a martingale for each n.

E
[
Y

[Tn]
T

∣∣Ft∧Tn] = E[ZT∧Tn 1{τ>T∧Tn} | Ft∧Tn ]

= 1{τ>t∧Tn} E[ZT∧Tn 1{τ>T∧Tn} | Ft∧Tn ]

= 1{τ>t∧Tn} E[ZT∧Tn E[1{τ>T∧Tn} | Ft∧Tn ∨ F
(W )
T ] | Ft∧Tn ]

= 1{τ>t∧Tn} E[ZT∧Tn E[1{
∫ T∧Tn
0

λ(Zs) ds<ε} | Ft∧Tn ∨ F
(W )
T ] | Ft∧Tn ]

(∗)
= 1{τ>t∧Tn} E[ZT∧Tn E[e−

∫ T∧Tn
t∧Tn

λ(Zs) ds | Ft∧Tn ∨ F
(W )
T ] | Ft∧Tn ]

= 1{τ>t∧Tn} E[ZT∧Tn e
−

∫ T∧Tn
t∧Tn

λ(Zs) ds | Ft∧Tn ]
(∗∗)
= 1{τ>t∧Tn} Zt∧Tn = Y

[Tn]
t ,

where Equality (∗) follows from the lack-of-memory property of the expo-

nential distribution

P(ε > b | ε > a) = P(ε > b− a), b ≥ a ≥ 0,

and (∗∗) follows from the fact that
{
Zu exp

(
−
∫ u
t
λ(Zs) ds

)}
u≥t

is a local

martingale.
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Appendix B. Density of ST in JDCEV model

We briefly demonstrate how to derive the probability law of ST from For-

mula (9). First of all, we consider the following bijection on (0,∞):

g(x) =
(
|β|
√
c x
) 1
|β| , g−1(s) = s2 |β|

1

c β2
, g

′
(x) =

1

2

√
c

x

(
|β|
√
c x
) 1
|β|−1.

Formula (9) states that

E
[
h(Z

(µ)
T ) 1{τ(µ)>T}

]
= z0 E

[h(e∫ T0 µ(s) ds g(X)
)

g(X)

]
,

where the random variable X has density fX of a certain non-central χ2-

distribution. Consequently, we observe with the change of variables u =

e
∫ T
0
µ(s) ds g(x) that

E
[
h(Z

(µ)
T ) 1{τ(µ)>T}

]
= z0

∫ ∞
0

h
(
e
∫ T
0
µ(s) ds g(x)

)
g(x)

fX(x) dx

= z0

∫ ∞
0

h(u) fX

(
g−1

(
u e−

∫ T
0
µ(s) ds

))
u g′
(
g−1

(
u e−

∫ T
0
µ(s) ds

)) du

=

∫ ∞
0

h(u)
2 z0 fX

((
u e−

∫T
0 µ(s) ds

)2 |β|
c β2

)
u c |β|

(
u e−

∫ T
0
µ(s) ds

)1−2 |β|
︸ ︷︷ ︸

=:fZ(u;T,µ)

du.

In the spot model we have St = Z
(µ)
t 1{τ(µ)>0}, hence

E
[
h(ST )

]
= E

[
h(ST ) 1{ST>0}

]
+ h(0)P(ST = 0)

= E
[
h(Z

(µ)
T ) 1{τ(µ)>T}

]
+ h(0)P(τ (µ) ≤ T )

=

∫ ∞
0

h(u) fZ(u;T, µ) du+ h(0)
(

1−
∫ ∞
0

fZ(u;T, µ) du
)
,

which shows that fZ(.;T, µ)/
∫∞
0
fZ(u;T, µ) du equals the density of ST

conditioned on the event {ST > 0}. The complementary event {ST =

0} has probability 1 −
∫∞
0
fZ(u;T, µ) du. In other words, fS(x;T ) :=

∂
∂xP(ST ≤ x) = fZ(x;T, µ) for x > 0.

In the wealth process model, which is equivalent to the forward model

by Remark 2.1, we have St = e
∫ t
0
r(s)−δ(s) ds Z

(0)
t 1{τ(0)>t}, hence the same
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computation as above shows

E
[
h(ST )

]
= E

[
h(ST ) 1{ST>0}

]
+ h(0)P(ST = 0)

= E
[
h
(
e
∫ T
0
r(s)−δ(s) ds Z

(0)
T

)
1{τ(0)>T}

]
+ h(0)P(τ (0) ≤ T )

=

∫ ∞
0

h
(
e
∫ T
0
r(s)−δ(s) ds u

)
fZ(u;T, 0) du+ h(0)

(
1−

∫ ∞
0

fZ(u;T, 0) du
)
.

Substituting x = e
∫ T
0
r(s)−δ(s) ds u, this implies for x > 0 that

fS(x;T ) =
∂

∂x
P(ST ≤ x) = e−

∫ T
0
r(s)−δ(s) ds fZ(e−

∫ T
0
r(s)−δ(s) ds x;T, 0).
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Chapter 17

Replication Methods for Financial Indexes
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In this paper, we first present a review of statistical tools that can be used in
asset management either to track financial indexes or to create synthetic ones.

More precisely, we look at two important replication methods: the strong repli-

cation, where a portfolio of very liquid assets is created and the goal is to track
an actual index with the portfolio, and weak replication, where a portfolio of

very liquid assets is created and used to either replicate the statistical proper-

ties of an existing index, or to replicate the statistical properties of a custom
asset. In addition, for weak replication, the target is not an index but a payoff,

and the replication amounts to hedge the portfolio so it is as close as possible
to the payoff at the end of each month. For strong replication, the main tools

are predictive tools, so filtering techniques and regression play an important

role. For weak replication, which is the main topic of this paper, in order to
determine the target payoff, the investor has to find or choose the distribution

function of the target index or custom index, as well as its dependence with

other assets, and use a hedging technique. Therefore, the main tools for weak
replication are modeling (estimation and goodness-of-fit) and optimal hedging.

For example, an investor could wish to obtain Gaussian returns that are inde-

pendent of some ETFs replicating the Nasdaq and S&P 500 indexes. In order
to determine the dependence of the target and a given number of indexes, we

introduce a new class of easily constructed models of conditional distributions

called B-vines. We also propose to use a flexible model to fit the distribution of
the assets composing the portfolio and then hedge the portfolio in an optimal

way. Examples are given to illustrate all the important steps required for the
implementation of this new asset management methodology.

Keywords: ETF, hedge funds, replication, smart beta, copulas, B-vines, HMM,
hedging.

1. Introduction

Historically, hedge funds have been an important class of alternative in-

vestment assets for diversifying portfolios. The early sales pitch was that

Open Access chapter published by World Scientific Publishing Company and distributed

under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives
(CC BY-NC 4.0) License.
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hedge funds offer superior returns, due to use of leverage, derivatives, short

sales and other non-traditional investment strategies. The new sales pitch is

that there are diversification benefits due to low correlation with traditional

assets classes. However, investors are still often rebutted in investing in

hedge funds, mainly because of high management and performance fees,

lack of liquidity and significant lock-up periods, and lack of transparency.

Mainly based on the work on [1], [2] and [3], major investors like finan-

cial institutions looked for more efficient and affordable methods to generate

the same kind of returns. This was mainly done by strong replication, i.e.,

by constructing portfolios of very liquid assets tracking a hedge fund index.

Nowadays, smart beta methods, a new brand name for replication tech-

niques, offer even more flexibility to small investors as well, through ETFs.

For example, Horizons HFF (hhf.to) is an ETF targeting the Morningstar

Broad Hedge Fund Index SM, while State Street SPDR ETF (spy) tracks

S&P 500 index.

In addition to strong replication, weak replication, based of the payoff

distribution model of [4], was proposed by [5] and extended by [6]. This

innovative approach consists in constructing a dynamic strategy to track a

payoff, in order to reproduce the statistical properties of hedge fund returns

together with their dependence with a selected investor portfolio. It can also

be used to construct synthetic indexes with tailor-made properties, which

is an advantage over strong replication since the latter can only replicate

an existing index.

In Section 2, we review the main statistical techniques to replicate in-

dexes, including a new “Smart Beta” approach that can be used to diversify

investors portfolios. In order to implement the proposed methodology, a

new family of conditional distributions called B-vines are introduced in Sec-

tion 3. The essential steps of modeling and hedging are discussed in Section

4. Examples of applications are then given in Section 5.

2. Replication methods

There are basically two replication approaches: strong replication, where

the target is the index (naive or imitative method, and factor-based

method), and weak replication, where the target is a payoff determined

by the distribution of an existing index or a custom index, also called syn-

thetic index. In both cases, the idea is to construct a portfolio of liquid

assets with end of the month values as close as possible to the target.

Strong replication is divided in two sub-groups. On one hand, there is

the “naive replication”, where the investor try to imitate the hedge fund
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manager investment strategy or the index composition. This is kind of

easy for indexes when their composition is known, but it is far from ob-

vious when the strategy or composition is unknown. For example, for a

Merger Arbitrage Fund index, the idea is to long (potential) sellers and

short (potential) buyers.

On the other hand, the factorial approach attempts to reproduce hedge

fund returns or indexes by investing in a portfolio of assets that provide

similar end of month returns. The implementation of the factorial approach

is described in Section 2.1, while the multi-asset extension of the weak

replication is discussed in Section 2.2.

Alternative beta funds based on the factorial approach have been

launched by several institutions including Goldman Sachs, JP Morgan,

Deutsche Bank, and Innocap, to name a few. According to [7], the short

version Verso of Innocap, based on filtering methods, performed best in the

turbulent period 2008–2009. Note also that [8] showed that factor-based

replicators produce independent returns over time, which might be inter-

esting from an investor’s perspective. Furthermore, an investor can easily

track the performance of a given replicator. However, in a recent study, [9]

found very high correlations between factor-based replicators and indexes

like S&P 500. This undesirable dependence show that these replicators

cannot really be used for diversification purposes, contrary to synthetic in-

dexes that can be built with weak replication techniques. An illustration

of this powerful technique is given in Section 5.4.

Before presenting the mathematical framework defining strong and weak

replication, we summarize in Table 1 the main differences between the two

approaches.

Table 1. Main differences between strong replication and weak replication.

Method Target Tracking Synthetic index Controlled dependence

Strong Index Yes No No
Weak Payoff Possible Possible Possible

Note: Tracking is possible for weak replication if the value of the payoff is

posted at the end of the month. In this case, the analog of the tracking error
is the RMSE (root mean square error) of the hedging error. This important
value appears in our examples of implementation in Section 5. For synthetic

indexes, it is possible to control the dependence.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
0.

17
.2

16
.2

46
 o

n 
01

/1
6/

21
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 9, 2018 13:5 Innovations in Insurance, Risk- and Asset Management 9in x 6in b3285-ch17 page 424

424 Innovations in Insurance, Risk- and Asset Management

2.1. Factorial approach for strong replication

To implement the factorial approach, one needs the returns1 R?t of the

target fund S? and one needs to select appropriate liquid assets (factors)

S =
(
S(1), . . . , S(p)

)
composing the replication portfolio. The returns of

S are denoted by Rt =
(
R

(1)
t , . . . , R

(p)
t

)
, and the associated weights are

denoted by βt = (βt,1, . . . , βt,p). The model is written in the linear form

R?t = β>t Rt + εt, (1)

where the εt’s are non-observable tracking error terms.

The unknown weights βt are then evaluated from a predictive method

using relation (1), e.g., by using a rolling-window regression over the last

24 months, or by using filtering methods. Note that for filtering, one must

also define the (Markovian) dynamics of the weights βt; see, e.g., [10].

To measure the performance of a replicating method, one uses the track-

ing error (TE), defined in the in-sample case by

TEin =

{
1

n

n∑
t=1

(
R?t − β̂>t Rt

)2
}1/2

,

while for the out-of-sample, it is defined by

TEout =

{
1

n

n∑
t=1

(
R?t − β̂>t−1Rt

)2
}1/2

,

where β̂t is the vector of predicted weights using returns (R?t ,Rt), (R?t−1,

Rt−1), . . .. The out-of-sample tracking error is a more realistic measure of

performance, since the error R?t −β̂>t−1Rt is the one monitored by investors.

As seen in the example below, filtering usually yields better results than

regression in terms of tracking error.

Example 2.1. This example is taken from [11], Chapter 10. The target

is HFRI Fund Weighted Composite Index, and the factors are S&P500

Index TR, Russel 2000 Index TR, Russell 1000 Index TR, Eurostoxx Index,

Topix, US 10-year Index, 1-month LIBOR.2 Here, two methods were used

to compute the dynamic weights β: a regression with a 24-month window,

and a Kalman filter, where the dynamics of the β’s is a random walk,

meaning that βt = βt−1 + ηt, where the innovations ηt are assumed to be

independent and identically distributed.

1Typically monthly returns, especially in the case of hedge fund indexes.
2Data, from April 1997 to October 2008, were provided by Innocap.
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Table 2. In-sample and out-of-sample statistics.

Portfolio TE Corr Mean Std Skew Excess kurt

In-sample statistics
Target — 1.00 8.12 7.72 −0.59 2.45

Regression 10.58 0.93 8.79 8.32 −0.69 2.22

Kalman 8.54 0.95 9.68 7.75 −0.59 2.53

Out-of-sample statistics

Target — 1.00 8.12 7.72 −0.59 2.45

Regression 19.27 0.83 9.30 9.86 −0.11 3.34

Kalman 14.71 0.86 9.97 8.20 −0.40 2.63

Note: Values are expressed in annual percentage. The excess kurtosis

of the Gaussian distribution is 0.

This is a very basic and unrealistic model, but it can be improved, e.g., by

adding dependence in the increments or adding constraints on the portfolio

compositions. In this case, the Kalman filter assumptions are no longer met,

and one should use for example a particle filter; see, e.g., [11], Chapter 9.

However, even with a simple model and the Kalman filter, the results are

surprisingly good, better than the rolling-window regression. In-sample and

out-of-sample statistics for our example are displayed in Table 2.

In general, the βt are much less variable in the Kalman filter case,

leading to less expensive transactions, in addition to being a better tracking

method. See, e.g., [11], Chapter 10.

Before ending this section, it is worth noting that one could also use

machine learning methods for tracking purposes. It would be interesting

to compare the performance of machine learning vs filtering. This will be

done in a forthcoming work.

2.2. Weak replication

Weak replication is an alternative replication method proposed by [5] and

later extended by [6] based on the payoff distribution model of [4]. The aim

was to replicate hedge fund returns or hedge fund indexes not by identifying

the return generating betas as in the factor-based approach, but by building

a trading strategy that can be used to generate the (statistical) distribution

of the hedge fund returns or indexes. The implementation proposed in [6] is

subject to several shortcomings and inconsistencies. Improvements of the

Kat-Palaro method were proposed in [12] for a start.

In view of applications to asset management, and mainly for diversifica-

tion purposes, it is desirable to generalize the Kat-Palaro approach (limited

to only one reference asset). To this end, it was suggested in [13] to con-

sider a multivariate asset S of p = d + 1 components, where S(1), . . . , S(d)
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represent the value of reference portfolios of the investor, and the so-called

reserve asset S(d+1).3 As before, S? is the index one seeks to replicate. The

aim is not to reproduce the monthly values of S?, which might not even

exists, but rather reproduce its statistical properties.

The steps required to implement the proposed weak replication method

are given next.

2.2.1. Implementation steps

(1) Determine the joint distribution of the (daily) returns Rk of Sk.

We suggest to use a Gaussian Hidden Markov Model (HMM). This

model is described in Section 4.1. However any dynamic model is per-

mitted, as long as it fits the data.

(2) Find a compatible distribution for the monthly returns R0,T . In

particular, find the marginal distributions F1, . . . , Fd of R
(ref)
0,T =(

R
(1)
0,T , . . . , R

(d)
0,T

)
, find the copula of R

(ref)
0,T , and find the conditional

distribution F(·,x) of R
(res)
0,T given R

(ref)
0,T =

(
R

(1)
0,T , . . . , R

(d)
0,T

)
= x.

This can be done by simulation from daily returns, as suggested in

Section 4.2. Again, we suggest to use a Gaussian HMM. We strongly

advise against using real monthly returns to complete this step since in

general the sample size for estimation purposes is not long enough, and

in addition, there is a lack of compatibility between the distribution of

the daily and monthly returns, thus creating a bias.

(3) Find or choose the distribution function F? of the return R?0,T of the

target index S?.

If the asset S? does not exists, i.e., we are creating a synthetic index,

then the investor must choose F?. Interesting choices of distributions

are the Gaussian, truncated Gaussian, and the Johnson SU distribu-

tion. Even if the index S? exists, one can try to fit these three distri-

butions.

3E.g., equal weighted portfolio of highly liquid futures contracts.
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(4) Find or choose the conditional distribution function H(·,x) of R?0,T

given R
(ref)
0,T = x, which can be expressed as

H(y,x) = C{F?(y),F(x)},

where F(x) = (F1(x1), . . . , Fd(xd)), and C(·,v) is the conditional dis-

tribution of U = F?(R
?
0,T ) given V = F

(
R

(ref)
0,T

)
= v.

If the index S? does not exists, then the investor must choose C. In any

case, we recommend to choose or try to fit a B-vine model, as defined

in Section 3. The importance of the choice of C is discussed in Section

2.2.3.

(5) Compute the return function g given by

g(x, y) = Q{F(y,x),x} , (2)

where Q(·,x) is the conditional quantile function, defined as the inverse

of H(·,x). For more details on copula-based conditional quantiles, see

the recent articles [16], [14]. The function g can also be expressed as

g(x, y) = F−1
?

[
C−1 {F(y,x),F(x))}

]
. (3)

The reason for defining g this way is that the joint distribu-

tion of
(
R?0,T ,R

(ref)
0,T

)
is the same as the joint distribution of(

g(R0,T ),R
(ref)
0,T

)
. This means that g(R0,T ) has distribution function

F?, and that the conditional distribution of g(R0,T ) given R
(ref)
0,T = x

is H(·,x). In particular the statistical properties of R?0,T are the same

as the statistical properties of g(R0,T ).

(6) Compute the payoff function G defined by

G (ST ) = 100 exp {g (R0,T )} .

The interpretation of the payoff function is the following: if one starts

by investing 100$, and one can replicate exactly this payoff with a hedg-

ing portfolio, then one would get the return g(R0,T ). In particular the

distribution function of the portfolio return is F?, and it is obtained

without investing in S?.

(7) Construct a dynamic portfolio {Vk(V0,ϕ)}nk=0 of the assets S, traded

daily, in order to generate the payoff G (ST ) at the end of the month.
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More precisely, letting βk = e−rkT/n be the discounting factors, the

discounted value of the portfolio at the end of the month is

βnVn = V0 +

n∑
k=1

ϕ>k (βkSk − βk−1Sk−1),

where ϕ
(j)
k is number of shares of asset S(j) invested during

((k − 1)T/n, kT/n], and ϕk may depend only on S0, . . . ,Sk−1. Ini-

tially, the portfolio initial value is V0.

This hedging problem is typical in financial engineering, where V0 can

be interpreted as the value of an option on S having payoff G at ma-

turity T , and one wants to replicate the payoff. Usually, we are more

interested in the price of the option, while here the emphasis is on the

hedging portfolio, which is the object of the investment.

For hedging, we suggest to use the discrete time hedging method defined

in Section 4.3. This strategy, adapted for a continuous time model, is

optimal with respect to minimizing the square hedging error.

2.2.2. K-P measure

If the goal is attained, i.e., Vn = G (ST ), the return of the portfolio is

log(Vn/V0) = log(100/V0) + g (R0,T ) ,

which has the same distribution as α + S?, where α = log(V0/100) can

be used to estimate manager’s alpha or the feasibility of the replication.

In the context of replicating hedge funds, it is suggested in [6] that the

initial amount V0 to be invested in the portfolio be viewed as a measure of

performance of the hedge fund manager. Here we prefer to use α which we

call the K-P measure. It can be interpreted as follows:

• If α = 0, i.e., V0 = 100, the strategy generates the same returns as S?

(in distribution);

• If α < 0, i.e., V0 < 100, it is worth replicating, generating superior

returns (in distribution), while if α > 0, i.e., V0 > 100, it may be not

worth replicating.

Note that centered moments like standard deviation, skewness, kurtosis,

are not affected by the value of the K-P measure α. However, the expected

value of the portfolio is α+ E(S?).

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
0.

17
.2

16
.2

46
 o

n 
01

/1
6/

21
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 9, 2018 13:5 Innovations in Insurance, Risk- and Asset Management 9in x 6in b3285-ch17 page 429

Replication Methods for Financial Indexes 429

Example 2.2. A simple example in risk management is an investor in-

terested in creating a portfolio S? with a specific distribution function F?,

which would be independent of several reference indexes, so that the return

of the hedging portfolio will not be affected by extreme behavior of the

reference indexes. In this case, g is given by

g(x, y) = F−1
? {F(y,x)} . (4)

An example of implementation of this model is given in Section 5.4.

Remark 2.1. It makes sense that α > 0, especially if the target distribu-

tion of S? is not realistic. For example, one could wish to generate Gaussian

returns with annual mean of 30% and a volatility of 1% that is independent

of S(1), but the real distribution would be Gaussian with mean .3 − 12α.

In fact, if the joint distribution of the monthly returns is Gaussian, with

annual means µ1, µ2, µ3, annual volatilities σ1, σ2, σ3 and correlations ρ12,

ρ13, then, according to Equation (2),

g(x, y) =
1

12

{
µ3 − r + σ3

(
x− µ1

σ1

)(
ρ13 − ρ12

√
1− ρ2

13

1− ρ2
12

)

+ σ3

(
y − µ2

σ2

)√
1− ρ2

13

1− ρ2
12

}
,

so using the Black-Scholes setting with associated risk neutral measure Q,

V0 = 100e−r/12EQ
{
e
g
(
R

(1)

0,1/12
,R

(2)

0,1/12

)}
= 100eα,

with

α =
µ3

12
− r

12
− 1

12

{
µ1
σ3

σ1
+ µ2

σ3

σ2

√
1− ρ2

13

1− ρ2
12

− σ2
3

2

}

+
1

12

{
σ3

σ1

(
r − σ2

1

2

)(
ρ13 − ρ12

√
1− ρ2

13

1− ρ2
12

)

+
σ3

σ2

(
r − σ2

2

2

)√
1− ρ2

13

1− ρ2
12

}
.

As a result, the genuine mean of the target is independent of µ3! For

example, if r = 1%, µ1 = 8%, µ2 = 6%, σ1 = 10%, σ2 = 8%, σ3 = 1%,

ρ12 = 0.25 and ρ13 = 0, then α = µ3

12 −
.02499

12 , and we would get a Gaussian

distribution with an annual mean of 2.499% and an annual volatility of

1% that is independent of S(1). It is interesting to look at the real annual

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
0.

17
.2

16
.2

46
 o

n 
01

/1
6/

21
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 9, 2018 13:5 Innovations in Insurance, Risk- and Asset Management 9in x 6in b3285-ch17 page 430

430 Innovations in Insurance, Risk- and Asset Management

mean of the portfolio (assuming perfect hedging) as a function of ρ13. This

is illustrated in Figure 1. Note that the maximum value 2.501% is attained

for ρ13 = −0.072.
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Fig. 1. Real annual mean in percent of the Gaussian distribution of the monthly return
R? as a function of the correlation ρ13 with monthly return R(1).

2.2.3. Choice of C

First, note that C is a function of the copula C of (U,V) viz.

C(u,v) =
∂v1 · · · ∂vdC(u, v1, . . . , vd)

cV(1, v1, . . . , vd)
, (u,v) ∈ (0, 1)1+d, (5)

where cV is the density of the copula CV(·) = C(1, ·). When d = 1, we

can take C(u, v) = ∂vC(u, v) for any copula C. However, if d ≥ 2, then the

copula of V matters. One cannot just take any d+1-dimensional copula C.

To solve this intricate problem, we propose to use a construction similar to

the one used for vine copulas. This new construction is described in Section

3, after we discuss why the choice of C matters.

To this end, let C̃ be an arbitrary conditional distribution function of

U given a d-dimensional random vector Ṽ associated with the copula C̃ of

(U, Ṽ), and define

g̃(x, y) = F−1
?

[
C̃−1 {F(y,x),F(x))}

]
.
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Setting Z = F
(
R

(res)
0,T ,R

(ref)
0,T

)
, one gets

P
[
g̃(R0,T ) ≤ y,R(ref)

0,T ≤ x
]

= P
[
Z ≤ C̃

{
F?(y),F

(
R

(ref)
0,T

)}
,R

(ref)
0,T ≤ x

]
= E

[
C̃ {F?(y),V} I (V ≤ F(x))

]
=

∫
(0,F(x)]

C̃ {F?(y),v} cV(v)dv,

since Z is uniformly distributed and is independent of R
(ref)
0,T , according to

[15]. So, in general, F̃?(y) = E
[
C̃ {F?(y),V}

]
is not the target distribution

function F?. However, F̃? = F? if C̃(1,v) = CV(v). This shows that one

then must be careful with the choice of C in order to have compatibility.

3. B-vines models

The aim of this section is to find a flexible way to construct a conditional

distribution of a random variable Y given a d-dimensional random vector

X. Using the representation of conditional distributions in terms of cop-

ulas, this problem amounts to constructing the conditional distribution C
of a uniform random variable U given a random vector V (with uniform

margins) that is coherent with the distribution function CV of V. Unfortu-

nately, the usual vines models for multivariate copulas cannot be used here,

because of this compatibility constraint. For more details on unconstrained

vine models applied to conditional distributions, see, e.g., [16].

As noted before, when d = 1, the compatibility condition is not a con-

straint at all since CV (v) = v, v ∈ [0, 1], and the solution is simply to take

C(u, v) = ∂vC(u, v), for a copula C that is smooth enough.

Next, in the case d = 2, if D1 and D2 are bivariate copulas, with

conditional distributions Dj(u, t) = ∂tDj(u, t), j ∈ {1, 2}, and CV is the

copula of V = (V1, V2), then

C(u,v) = D2 {D1(u, v1), ∂v1CV(v1, v2)} , v = (v1, v2) ∈ (0, 1)2, (6)

defines a conditional distribution for U given V = v, compatible with the

law of V. This construction is a particular case of a D-vine copula, as

defined in [17], [18].

Guided by formula (6), let Dj , j ∈ {1, . . . , d} be bivariate copulas and

let Dj(u, t) = ∂tDj(u, t) be the associated conditional distributions. For

j ∈ {1, . . . , d}, further let Rj−1(v1, . . . , vj) be the conditional distribution
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of Vj given V1 = v1, . . . , Vj−1 = vj−1, with R0(v1) = v1, and for (u,v) ∈
(0, 1)d+1, set C0(u) = u, and

Cj(u, v1, . . . , vj) = Dj {Cj−1(u, v1, . . . , vj−1),Rj−1(v1, . . . , vj)} . (7)

Note that E{Cj(u, v1, . . . , vj−1, Vj)|V1 = v1, . . . , Vj−1 = vj−1} is given by

∫ 1

0

Cj{u, v1, . . . ,Rj−1(v1, . . . , vj)}dRj−1(v1, . . . , vj)

=

∫ 1

0

Dj{Cj−1(u, v1, . . . , vj−1), t}dt

= Dj{Cj−1(u, v1, . . . , vj−1), 1}
= Cj−1(u, v1, . . . , vj−1).

It follows that Cj is the conditional distribution of U given V1, . . . , Vj . The

conditional quantile of U given V1, . . . , Vj is also easy to compute, satisfying

a recurrence relation similar to (7). In fact, if the conditional quantile of

Cj is denoted by Γj , then for any j ∈ {1, . . . , d}, and for any u, v1, . . . vd ∈
(0, 1),

Γj(u, v1, . . . , vj) = Γj−1

[
D−1
j {u,Rj−1(v1, . . . , vj)} , v1, . . . , vj−1

]
. (8)

In general, this construction does not lead to a proper vine copula since

all copulas involved are not bivariate copulas, the copula of V being given.

In fact, it is more general than the pair-copula construction method used

in vines models. Nevertheless, this type of model will be called B-vines

and its construction is illustrated below, where the underlined variables

(in red) mean that their distributions R0, . . . ,Rd−1 are known,4 and the

conditional copulas D1, . . . ,Dd have to be chosen, in order to determine

4R0, . . . ,Rd−1 are called the Rosenblatt’s transforms and are particularly important in

simulating copulas or for testing goodness-of-fit. See, e.g., [11].
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C1, . . . , Cd.

Level 1:

D1

C0
U |

R0

V1 =⇒ C1

Level 2:

D2

C1
U |V1 |

R1

V2|V1 =⇒ C2
... · · ·

. . .

Level j:

Dj
Cj−1

U |V1, . . . , Vj−1 |
Rj−1

Vj |V1, . . . , Vj−1 =⇒ Cj
... · · ·

. . .

Level d:

Dd
Cd−1

U |V1, . . . , Vd−1 |
Rd−1

Vj |V1, . . . , Vd−1, Vd =⇒ Cd

Note that B-vines can be particularly useful in conditional mean regres-

sion (OLS, GAM, GLM, etc,) and conditional quantile settings, where the

distribution of the covariates is often given; see, e.g., [14]. It can also be

used in our replication context when the target S? exists; in this case, we

could look at B-vines constructed from popular bivariate families like Clay-

ton, Gumbel, Frank, Gaussian and Student, and find the ones that fit best

the data, in the same spirit as the choice of vines for copula models in

the R packages CDVine or VineCopula. In a future work we will propose

goodness-of-fit tests for these models.

4. Modeling and hedging

In what follows, building on [12], we propose a model to fit the data and

deal with numerical problems arising from using a larger number of assets

for hedging.

To implement successfully the proposed replication approach, one needs

to model the distribution of the returns Rt and R0,T for steps (1) and (2) de-

scribed in Section 2.2.1. Once this is done, we will have as a by-product the

conditional distribution F and the Rosenblatt’s transforms R0, . . . ,Rd−1

used for computing the conditional distribution C, as in Section 3. For

replicating an existing asset S?, one further needs the joint distribution of(
R?0,T ,R

(ref)
0,T

)
. To do this, we propose to use Gaussian Hidden Markov

Models (HMM) as defined in [19]. This model is described next in Section
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4.1. Next, one needs to find a distribution of the monthly returns compat-

ible with the distribution of the daily returns. A solution to this problem

is proposed in Section 4.2. Finally, a replication method is suggested in

Section 4.3.

4.1. Gaussian HMM

Regime-switching models are quite intuitive. First, the regimes {1, . . . , l}
are not observable and are modeled by a finite Markov chain with transition

matrix Q. At period t, given that the previous regime τt−1 has value i,

the regime τt = j is chosen with probability Qij , and given τt = j, the

log-returns Rt have a Gaussian distribution with mean µj and covariance

matrix Bj .

The law of most financial time series can be modeled adequately by

a Gaussian HMM, provided the number of regimes is large enough. In-

deed, the serial dependence in regimes propagates to returns and captures

the observed autocorrelation in financial time series. Also, the conditional

distribution is time-varying, leading to conditional volatility, as well as con-

ditional asymmetry and kurtosis. Finally, the Black-Scholes framework is

a particular case of this model when the number of regimes is 1. Parame-

ters are quite easy to estimate and there is also an easy way to choose the

number of regimes, depending on the results of goodness-of-fit tests; see,

e.g., [19] for more details.

In the next section, we introduce the continuous time limit of a Gaussian

HMM, the main reason being that for this limiting process, one can show

that there exists an equivalent martingale measure that is optimal in the

sense of [20] and that can be used for pricing and hedging; see, e.g., [21].

4.1.1. Continuous time limiting process

Under weak conditions, the continuous time limit of a Gaussian HMM

is a regime-switching geometric Brownian motion (RSGBM). Using the

same notations as in [21], let T be a continuous time Markov chain on

{1, . . . , l}, with infinitesimal generator Λ. In particular, P (Tt = j|T0 =

i) = Pij(t), where the transition matrix P can be written as P(t) = etΛ,

t ≥ 0. Then, the (continuous) price process X modeled as a RSGBM

satisfies the stochastic differential equation

dXt = D(Xt)υ(Tt)dt+D(Xt)σ(Tt−)dWt, (9)
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where D(s) is the diagonal matrix with diagonal elements (sj)
d
j=1 and W

is a d-dimensional Brownian motion, independent of T . Note that the time

scale is in years, and we assume that a(j) = σ(j)σ(j)> is invertible for any

j ∈ {1, . . . , l}.

4.1.2. Relationship between discrete time and continuous

time parameters

The relationship between the continuous-time parameters (υ,a,Λ) of the

limiting RSGBM and the parameters of the Gaussian HMM is the following:

if the parameters µh,Bh,Qh of the discrete time model are obtained from

data sampled 1/h times a year, then υ(j) ≈
[
µh(j) + 1

2diag{Bh(j)}
]
/h,

where diag(B) is the vector of the diagonal elements of a matrix B, a(j) ≈
Bh(j)/h, and Λ ≈ (Qh − I)/h. For example, for daily data, one usually

takes h = 1/252.

Note that if we define Xh,t = Sbt/hc and Th,t = τbt/hc, where bac stands

for the integer part of a ∈ R, then the processes (Xh,t, Th,t) converge in law

to (X, T ). Note also that the optimal hedging strategy converges as well;

see, e.g., [22].

4.2. Monthly returns compatibility

Compatibility means that the distribution of the monthly returns R0,T is

the same as the distribution of the sum of typically n = 21 consecutive daily

returns. Since the hedging will be done under a continuous time RSGBM,

there is no compatibility problem. However, since we need the distribution

of log(XT ) to construct the payoff, and the latter is not known explicitly,

we propose to simulate a large number of monthly returns log(XT ), say

10000, which is impossible to get in practice, and then fit a Gaussian HMM

to these simulated data. The joint distribution of the monthly returns is

then approximated by a mixture of (multivariate) Gaussian distributions,

and the conditional distribution function F is also a (univariate) Gaussian

mixture. See, e.g., [19] for more details.

4.3. Discrete time hedging

Since we fitted a Gaussian HMM to the daily returns, an obvious solution of

the hedging problem would be to use the results of [23] for optimal hedging

in discrete time; see also [11]. However, implementing this methodology

requires interpolating functions on a (d + 1)-dimensional grid. Since we
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are aiming for applications with d ≥ 2, this approach leads to too much

imprecision. For example, a (too) small grid of 100 points for each asset

would require computing and storing 102(d+1) points, while a relatively

precise grid of 1000 points for each asset requires 103(d+1) points. Even

with d = 2, this means storing 109 points, which is way too much.

This is why we consider a continuous-time approximation, which does

not require any interpolation or grid construction and works in any dimen-

sion. It is easy to show, see, e.g., [22] that many interesting discrete time

models can be approximated by continuous time models. In particular, this

is true for the Gaussian HMM whose continuous time limit is the RSGBM.

Option pricing and optimal quadratic hedging have been studied recently

for this process in [21], and it turns out that the optimal hedging strategy

and option price can be deduced from an equivalent martingale measure.

Under this equivalent martingale measure, assets still follow a RSGBM,

with the additional feature that the distribution of the regimes is now an

inhomogeneous continuous time Markov time. Nevertheless, this model is

quite easy to simulate and does not require any calibration to option prices.

4.3.1. Continuous time approximation

Because we have possibly more than 2 risky assets, and based on the results

in [22], [21], we approximate ϕk by φ k−1
n T , where φ is the optimal hedging

strategy of the RSGBM obtained from [21], Lemma 4.1.

To get nearly optimal hedging strategies in discrete time, we first use

Monte Carlo methods by simulating the process X under the optimal mar-

tingale measure, as given by Equation (A.2), to obtain the values CkT/n(s, i)

and ∇sCkT/n(s, i) given by formulas (A.3) and (A.4). Then we simply dis-

cretize the continuous time optimal hedging values (A.5)–(A.6) to get, for

k ∈ {1, . . . , n},

ϕk = ∇sC(k−1)T/n(Sk−1, τ̂k−1) +Gk−1D
−1(Sk−1)ρ(τ̂k−1)/βk−1, (10)

Ṽk = Ṽk−1 +ϕ>k (βkSk − βk−1Sk−1) , (11)

Gk = βkCkT/n(Sk, τ̂k)− Ṽk, (12)

where Ṽ0 = V0 = C0(S0, τ̂0), G0 = 0, and Ṽk = βkVk are the discounted

portfolio values. In particular, ϕ1 = ∇sC0(S0, τ̂0).

Remark 4.1. One could replace CkT/n(Sk, τ̂k) by the weighted average
l∑

j=1

CkT/n(Sk, j)ηk(j), where ηk(j) is the predicted probability of τk = j,

given the past observations.
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We now have the necessary tools to tackle the implementation problem.

Two examples of application are presented next.

5. Examples of application

In this section, we provide some empirical evidence regarding the ability

of the model to replicate a synthetic index. In the implementation of the

replication model, we consider a 3-dimensional problem.

5.1. Assets

The first step is to select two reference portfolios P (1) and P (2) and the

reserve asset P (3). These 3 portfolios are dynamically traded on a daily

basis, so we choose very liquid instruments with low transaction costs.

We therefore restrict the components of the portfolios to be Futures con-

tracts. The cash rate is the BBA Libor 1-month rate. Log-returns on

futures are calculated from the reinvestment of a rolling strategy in the

front contract. The front contract is the nearest to maturity, on the

March/June/September/December schedule and is rolled on the first busi-

ness day of the maturity month at previous close prices. Each future con-

tract is fully collateralized, so that, the total return is the sum of the rolling

strategy returns and the cash rate.

The first investor portfolio is related to equities while the second is

related to bonds. The reserve asset is a diversified portfolio. The compo-

sition of these portfolios is detailed in Table 3. As in [13], we use daily

returns from 01/10/1999 to 30/04/2009 (115 months). Table 4 presents

some descriptive statistics of the daily returns R(1), R(2), R(3).

Table 3. Portfolios’ composition.

P (1) 60% S&P/TSE 60 IX future
40% S&P500 EMINI future

P (2) 100% CAN 10YR BOND future

P (3) 10% E-mini NASDAQ-100 futures
20% Russell 2000 TR
20% MSCI Emerging Markets TR

10% GOLD 100 OZ future

10% WTI CRUDE future
30% US 2YR NOTE (CBT)
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Table 4. Summary statistics for the 3 portfolios.

Statistics R(1) R(2) R(3)

Daily returns

Mean 0.0198 0.0209 0.0363
Volatility 0.1327 0.0592 0.1238

Skewness −0.6447 −0.3261 −0.4418

Excess kurtosis 8.5478 2.0583 5.1415

Note: Values are reported on an annual basis.

5.2. Modeling

As discussed in Section 4.1, we use a Gaussian HMM to model the joint

distribution of the returns of the 3 portfolios. The choice of the number of

regimes is done as suggested in [19]: we choose the lowest number of regimes

m so that the goodness-of-fit test for m regimes has a P -value larger than

5%. This leads to a selection of 6 regimes for the daily returns. The large

number of regimes for the daily returns is due to the fact that the sample

period contains the last financial crisis. Usually, for non-turbulent periods,

4 regimes are sufficient for fitting daily returns. The estimated parameters

are given in Table 5. The associated transition matrix for daily returns of

the Gaussian HMM is

Qdaily =



0.9608 0.0000 0.0181 0.0000 0.0000 0.0211

0.0160 0.1494 0.3384 0.0000 0.4962 0.0000

0.0000 0.0579 0.6746 0.0108 0.2567 0.0000

0.0000 0.0000 0.0000 0.9823 0.0177 0.0000

0.0176 0.0993 0.2753 0.0175 0.5882 0.0021

0.0599 0.0000 0.0000 0.0000 0.0071 0.9330


,

and the infinitesimal generator associated with the limiting RSGBM is

Λdaily =



−9.8765 0.0000 4.5658 0.0000 0.0000 5.3107

4.0402 −214.3435 85.2680 0.0000 125.0353 0.0000

0.0000 14.5863 −81.9990 2.7205 64.6922 0.0000

0.0000 0.0052 0.0004 −4.4624 4.4569 0.0000

4.4414 25.0201 69.3636 4.4157 −103.7633 0.5226

15.0866 0.0000 0.0000 0.0000 1.7858 −16.8724


.

Finally, for the last observation, corresponding to the beginning of the

hedging, the estimated probability of occurrence of each regime is

ηdaily = (0.9433, 0.0003, 0.0246, 0.0000, 0.0006, 0.0312).

Therefore, we will take for granted that at time t = 0, we are in regime 1.
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Table 5. Estimated parameters for the Gaussian

HMM fitted on daily returns.

Daily returns

Regime µj Bj

−0.0182 0.0250 −0.0026 0.0157

1 0.0409 −0.0026 0.0028 −0.0021
−0.1706 0.0157 −0.0021 0.0200

0.1709 0.0131 −0.0000 0.0114

2 −1.6439 −0.0000 0.0040 0.0009

0.1790 0.0114 0.0009 0.0170

0.6694 0.0050 0.0002 0.0018

3 0.0619 0.0002 0.0036 −0.0006
0.9667 0.0018 −0.0006 0.0040

0.1486 0.0042 −0.0002 0.0028

4 0.0286 −0.0002 0.0018 0.0000

0.2178 0.0028 0.0000 0.0047

−0.6934 0.0084 −0.0013 0.0049
5 0.2548 −0.0013 0.0023 −0.0009

−0.9222 0.0049 −0.0009 0.0067

−0.4565 0.1169 −0.0115 0.0788

6 0.0749 −0.0115 0.0099 −0.0110
−0.4082 0.0788 −0.0110 0.0889

Note: Values are expressed on an annual basis.

5.2.1. Monthly returns

As suggested in Section 4.2, we simulated 10 000 values of monthly returns

under the estimated RSGBM. We fitted a Gaussian HMM and found that 3

regimes were necessary, which is larger than usual, but we have to remember

that we are fitting 10 000 values. The estimated parameters are given in

Table 6, and the associated transition matrix is

Qmonthly =

 0.1209 0.6788 0.2003

0.1719 0.6184 0.2097

0.1926 0.5846 0.2229

 .

Finally, for the last observation, corresponding to the beginning of the hedg-

ing, the estimated probability of occurrence of each regime is ηmonthly =

(0.1796, 0.7635, 0.0569). In particular, it means that the probability πnext
of being in each regime next month is

πnext = ηmonthlyQmonthly = (0.1639, 0.6273, 0.2088). (13)

It then follows that the conditional distribution F(·,x) is mixture of 3

Gaussian distributions, with mean αj + β>j x and standard deviation σj ,

j ∈ {1, 2, 3}, and weights given by (13), where the values of the parameters
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Table 6. Estimated parameters for the Gaussian

HMM fitted on 10 000 simulated monthly returns un-

der RSGBM.

Regime µj Bj

0.0728 0.0085 −0.0006 0.0067

1 0.0320 −0.0006 0.0027 −0.0004

0.1081 0.0067 −0.0004 0.0096

−0.4201 0.0726 −0.0117 0.0396
2 0.0050 −0.0117 0.0067 −0.0067

−0.2813 0.0396 −0.0067 0.0421

−0.4201 0.0726 −0.0117 0.0396

3 0.0050 −0.0117 0.0067 −0.0067
−0.2813 0.0396 −0.0067 0.0421

Note: The values are expressed on an annual basis.

are given in Table 7. More precisely,

F(y,x) =

3∑
j=1

πnext(k)Φ

(
y − αj − β>j x

σj

)
, (y,x) ∈ R3, (14)

where Φ is the distribution function of the standard Gaussian.

Table 7. Parameters of the conditional distribution of R
(3)
0,T given(

R
(1)
0,T , R

(2)
0,T

)
.

Regime αj βj σj πj
1 0.0037 ( 0.6343 , −0.3353 ) 0.0463 0.1639
2 −0.0014 ( 0.6090 , −0.1828 ) 0.0296 0.6273

3 −0.0063 ( 0.6876 , 0.1661 ) 0.0231 0.2088

5.3. Target distribution function

For this example, the target distribution F? is a truncated Gaussian distri-

bution at −a, with (annual) parameters µ? and σ?, meaning that

F?(y) =


0, y ≤ −a;

Φ
(
y−µ?/12
σ?/
√

12

)
−Φ

(
−a−µ?/12
σ?/
√

12

)
Φ
(
a+µ?/12

σ?/
√

12

) , y ≥ −a.
(15)

Setting z = a+µ?/12

σ?/
√

12
and κ = Φ′ (z)

/
Φ (z), the mean of this distribution is

µ
12 + σ√

12
h, while the standard deviation is σ?√

12

√
1− h2 − 2hz. With a =

0.02, µ? = 0.08 and σ? = 0.05, one gets an annual mean of 0.0842, and an
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annual volatility of 0.0477. Note that F?(0) = 1− Φ
(

µ?√
12σ?

)
/Φ(z) = 0.3.

The density is displayed in Figure 2.

-0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05 0.06
0

5

10

15

20

25

30

Fig. 2. Target density for the monthly returns.

In the remaining of the section, we try to replicate the monthly returns

of a synthetic hedge fund having distribution F? given by (15). We will

rebalance the portfolio once a day, so n = 21. For simplicity, we take

S0 = (1, 1, 1) and r = 0.01. We will consider two models: the first one is

the independence model, meaning that C(u, v1, v2) = u, so that the return

function g is given by (4). This model is studied in Section 5.4. We

consider another model, called the Clayton model, define using the B-vines

representation by D1(u, t) =
[
max

{
0, u−θ + t−θ − 1

}]−1/θ
, which is the so-

called Clayton copula of parameter θ ∈ (−1, 1), with Kendall’s τ = θ
θ+2 , and

D2(u, t) = ut, the independence copula. For this case, we take θ = −2/3,

leading to a Kendall’s tau of −0.5. This means that we require a negative

dependence with asset P (1).

Finally, for each model, we simulated 1000 replication portfolios.

5.4. Synthetic index independent of the reference portfolios

The results of this first experiment are quite interesting, as can be seen from

the statistics displayed in Table 8, especially the tracking error given by the
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RMSE. Note also that the mean of the hedging error is significantly smaller

that 0, meaning that the portfolio is doing better on average than the target

payoff, even if the K-P measure α = 0.0078 is positive. The target distri-

bution is also quite well replicated. The distribution of the hedging errors

is also quite good, as can be seen from the estimated density displayed in

Figure 3. Finally, letting τ (1) and τ (2) represent the estimated Kendall’s

tau between the variable and the returns of portfolio P (1) and P (2) respec-

tively, one can see that the returns of the hedged portfolio are independent

of the returns of the reference portfolios, as measured by Kendall’s tau,

meaning that the synthetic asset has the desired properties.

Table 8. Descriptive statistics for the independence model.

Statistics HE G(S21) V21 g(R21) log(V21/V0) Target

Average −0.012 100.770 100.782 0.0076 −0.0001 0.0078

Median −0.012 100.741 100.760 0.0074 −0.0003 0.0073

Volatility 0.035 1.299 1.290 0.013 0.013 0.013
Skewness 0.431 0.201 0.192 0.172 0.162 0.267

Kurtosis 7.939 2.581 2.614 2.559 2.593 2.760

Minimum −0.145 98.083 98.013 −0.019 −0.028 −0.02
Maximum 0.241 104.987 104.926 0.049 0.040

RMSE 0.037

τ (1) 0.023 0.024 0

τ (2) −0.061 −0.060 0

Note: The hedging error HE is defined by HE = G(S21)−V21, and τ (j), j ∈ {1, 2},
is the estimated Kendall’s tau between the variable and the returns of portfolio
P (j). The results are based on 1000 repetitions. Here V0 = 100.645 and α =

logV0/100 = 0.0064. The statistics for the target distribution are also displayed

for sake of comparison. Note also that ϕ1 = (−26.464, 5.630, 42.050), showing
that we are short of the first asset at the beginning.

5.5. Synthetic index with Clayton level-1 dependence

The results of this second experiment are also quite interesting, but for

different reasons. As can be seen from the results displayed in Table 9, our

goal of replicating the distribution is not achieved. The tracking error given

by the RMSE is too large, the average gain of the portfolio is negative and

its volatility is too large to be interesting for an investor, even if the K-P

measure α = 0.0064 is smaller than in the independence model. This might

be due to the fact that initially, the weight of the assets in the portfolio

are quite large, since ϕ1 = (−724.845, 84.394, 648.811). Furthermore, the

distribution of the hedging errors is not good at all, as can be seen from

the estimated density displayed in Figure 4. The conclusion is that the
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Fig. 3. Estimated density of the hedging error G(S21)−V21 for the independence model

based on 1000 replications. Here V0 = 100.7864 and α = logV0/100 = 0.007833.

target distribution is not quite well replicated, and one should not invest in

this strategy. The only positive point is that the dependence between the

returns of the payoff and portfolio seems to match the theoretical one, as

measured by Kendall’s tau.

Table 9. Descriptive statistics for the Clayton model.

Statistics HE G(S21) V21 g(R21) log(V21/V0) Target

Average −1.152 100.689 101.842 0.00680 −0.0271 0.0078
Median 3.399 100.608 97.071 0.0061 −0.0362 0.0073
Volatility 27.739 1.235 28.917 0.0122 0.2784 0.0133

Skewness −0.772 0.268 0.753 0.240 0.077 0.267
Kurtosis 3.697 2.610 3.616 2.586 2.525 2.760
Minimum −140.008 98.126 48.336 −0.019 −0.733 −0.02

Maximum 50.675 104.836 244.844 0.047 0.889
RMSE 27.763

τ (1) −0.443 −0.461 −0.5

τ (2) 0.093 0.111

Note: HE = G(S21) − V21, and τ (j), j ∈ {1, 2}, is the estimated Kendall’s tau

between the variable and the returns of portfolio P (j). The results are based on
1000 repetitions. Here V0 = 100.645 and α = logV0/100 = 0.0064. The statistics for

the target distribution are also displayed for sake of comparison.

To conclude this section, we computed the K-P measure for Clayton

models as a function of Kendall’s τ . This is illustrated in Figure 5 and it is
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Fig. 4. Estimated density of the hedging error G(S21)−V21 for the Clayton model with
τ = −0.5 based on 1000 replications.

coherent with the fact that the conditional distribution D1,τ , with τ = θ
θ+2 ,

are ordered according to Lehmann’s order. It then follows from (3) that

the payoff are ordered as well, so the value of the option increases with τ .

-1 -0.5 0 0.5 1
τ

0.04610

0.04611

0.04612

0.04613

0.04614

0.04615

α

Fig. 5. Graph of the K-P measure α = log(V0/100) as a function of Kendall’s τ for the
Clayton model.
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5.6. Discussion

Before deciding to replicate an asset S?, we should always perform a Monte

Carlo experiment as we did in Sections 5.4–5.5. Using simulations, we can

decide in advance if an asset S? is worth replicating. For example, for

our data, it is worth using the independence model, but it is not worth

using the Clayton model. Simulations can also be useful in tracking a more

realistic P&L since transactions costs can be included in the Monte Carlo

experiment.

We notice that in all cases, the initial investment is more than 100,

meaning that the K-P measure is positive. This can be attributed to the

choice of the reserve asset. Indeed, [12] showed that the choice of the

reserve asset can affect the replication results especially the mean return,

which depends linearly on the K-P measure. Nevertheless, at least in the

case of the independence, we were able to achieve our goal.

It is also worth mentioning that due to (3), if two dependence models

C1 and C2 are ordered according to Lehmann’s order, i.e., for any v ∈
(0, 1)d, C1(u,v) ≤ C1(u,v), for all u ∈ [0, 1], then the K-P measures are

also ordered.

6. Conclusion

We looked at two important methods of replication of indexes: strong and

weak replication. For strong replication, the aim is to construct a portfolio

of liquid assets that is as close as possible to an existing index, so statistical

methods related to prediction like regression and filtering play an important

role. For weak replication, the aim is to construct a portfolio of liquid

assets that is as close as possible to a payoff constructed in such a way that

the portfolio returns have predetermined distributional properties, such as

the marginal distribution and the conditional distribution relative to some

reference assets entering in the construction of the portfolio.

We also introduced a new family of conditional distribution models

called B-vines that can be useful in many fields, not just weak replication

of indexes.

We showed how to implement weak replication in general framework,

and we showed that it is possible to construct efficiently a synthetic asset

that is independent of prescribed asset classes, with a predetermined distri-

bution. Using simulations, we can decide in advance if an asset S? is worth

replicating. For example, for our data, it is worth using the independence

model, but it is not worth using the Clayton model.
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For future work, we plan to investigate the performance of machine

learning methods compared to filtering methods for strong replication pur-

poses. We will also propose goodness-of-fit tests for the B-vines models

introduced in Section 3.
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Appendix A. Optimal hedging in continuous time

For j ∈ {1, . . . , l}, let m(j) = (υ(j) − r1), where 1 is the vector with all

components equaled to 1, ρ(j) = a(j)−1m(j), and set `j = ρ(j)>m(j) =

ρ(j)>a(j)ρ(j) ≥ 0. Further set γ(t) = e(T−t){Λ−D(`)}1. Next, define

(Λ̃t)ij = Λijγj(t)/γi(t), i 6= j, (Λ̃t)ii = −
∑
j 6=i

(Λ̃t)ij . (A.1)

Then Λ̃t, t ∈ [0, T ], is the infinitesimal generator of a time inhomogeneous

Markov chain.

In [21], it is shown that the optimal hedging problem is related to an

equivalent martingale measure Q, in the sense that under the risk neutral

measure Q, if the price process X satisfies

dXt = rD(Xt)dt+D(Xt)σ(Tt−)dWt, (A.2)

and T is a time inhomogeneous Markov chain with generator Λ̃t, then the

value of an option with payoff Φ at maturity T is given by

Ct(s, i) = e−r(T−t)EQ [Φ(XT )|Xt = s, Tt = i] . (A.3)

If the payoff is smooth enough so that it is differentiable almost everywhere,

then

∇sCt(s, i) = e−r(T−t)D−1(s)EQ [Φ′(XT )XT |Xt = s, Tt = i] , i ∈ {1, . . . , l}.
(A.4)

Since Ct and ∇sCt are related to expectations, one can use Monte Carlo

methods to obtain unbiased estimates of these values.

Next, setting αt(s, i) = ∇sCt(s, i) + Ct(s, i)D
−1(s)ρ(i), and Gt =

e−rtCt(Xt, Tt) − Vt, with G0 = 0, where Vt is the discounted value of the
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(continuous time) hedging portfolio at time t, then the optimal hedging

strategy is

φt = αt(Xt, Tt−)− ertVt−D−1(Xt)ρ(Tt−) (A.5)

= ∇sCt(Xt, Tt−) + ertGt−D−1(Xt)ρ(Tt−). (A.6)
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