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Preface

Cyber Physical Systems are characterized by their ability to adapt and to learn. They an-
alyze their environment, learn patterns, and they are able to generate predictions. Typical
applications are condition monitoring, predictive maintenance, image processing and di-
agnosis. Machine Learning is the key technology for these developments.

The fifth conference on Machine Learning for Cyber-Physical-Systems and Industry 4.0 -
ML4CPS - was held at the Fraunhofer Forum in Berlin, on March 22th - 23th 2020. The
aim of the conference is to provide a forum to present new approaches, discuss experiences
and to develop visions in the area of data analysis for cyber-physical systems. This book
provides the proceedings of selected contributions presented at the ML4CPS 2020.

The editors would like to thank all contributors that led to a pleasant and rewarding confer-
ence. Additionally, the editors would like to thank all reviewers for sharing their time and
expertise with the authors. It is hoped that these proceedings will form a valuable addition
to the scientific and developmental knowledge in the research fields of machine learning,
information fusion, system technologies and industry 4.0.

Prof. Dr.-Ing. Jürgen Beyerer
Dr. Alexander Maier
Prof. Dr. Oliver Niggemann
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Energy Profile Prediction of Milling Processes Using 
Machine Learning Techniques 

Matthias Mühlbauer, Hubert Würschinger, Dominik Polzer and Prof. Dr.-Ing. Nico 
Hanenkamp 

University, Erlangen-Nuremberg, Germany 
Department of Mechanical Engineering 

Institute of Resource and Energy Efficient Production Systems 
matthias.muehlbauer@fau.de 

Abstract. The prediction of the power consumption increases the transparency 
and the understanding of a cutting process, this delivers various potentials. Beside 
the planning and optimization of manufacturing processes, there are application 
areas in different kinds of deviation detection and condition monitoring. Due to 
the complicated stochastic processes during the cutting processes, analytical ap-
proaches quickly reach their limits. Since the 1980s, approaches for predicting 
the time or energy consumption use empirical models. Nevertheless, most of the 
existing models regard only static snapshots and are not able to picture the dy-
namic load fluctuations during the entire milling process. This paper describes a 
data-driven way for a more detailed prediction of the power consumption for a 
milling process using Machine Learning techniques. To increase the accuracy we 
used separate models and machine learning algorithms for different operations of 
the milling machine to predict the required time and energy. The merger of the 
individual models allows finally the accurate forecast of the load profile of the 
milling process for a specific machine tool. The following method introduces the 
whole pipeline from the data acquisition, over the preprocessing and the model 
building to the validation.  

Keywords: energy prediction, time prediction, power load prediction, milling 
process, machine learning, regression 

1 Einleitung 

Der industrielle Sektor ist in Deutschland mit 28,9 % am Gesamtenergieverbrauch 
(Stand: 2016, [1]) beteiligt, wobei ein wesentlicher Teil direkt auf zerspanende Pro-
zesse zurückzuführen ist. Zunehmender politischer Druck, strengere Regulierungen 
und steigende Strompreise drängen die Hersteller zu immer nachhaltigeren, energieef-
fizienteren Produktionsprozessen. So führt ein Ausschussteil am Ende der Prozesskette 
einer spanenden Produktion zu einem Energieverlust von 60 bis 80 MJ pro Kilogramm 
Bauteilmasse [2]. Um schon vor Produktionsbeginn den Energiebedarf eines Bearbei-
tungsvorgangs, beispielsweise hinsichtlich der Reduktion von Lastspitzen, optimieren 
zu können, muss der Produktionsprozess transparent gemacht werden. Weiter trägt eine 

© The Author(s) 2021
J. Beyerer et al. (Hrsg.), Machine Learning for Cyber Physical
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geschaffene Transparenz zur Identifikation von Anomalien im Bearbeitungsprozess 
bei, welche ggf. zu Ausschuss führen können. Beides ist über die Prognose des Ener-
giebedarfs und dem folgenden Abgleich von Soll- und Ist-Werten bzw. der Optimie-
rung von Parametereinstellungen möglich. Analytische Verfahren zur Prognose des 
Energiebedarfs, Ansätze, die auf den physikalischen Gesetzen der Fertigungsverfahren 
beruhen, stoßen im Bereich der Zerspanung schnell an Grenzen und werden heute kaum 
noch eingesetzt [3]. Diese Modelle haben das grundsätzliche Problem, dass sie die kom-
plizierten stochastischen Prozessmechanismen während der Bearbeitung nicht ausrei-
chend abbilden [4]. 

Eine weitere Möglichkeit ist die Modellierung des Energiebedarfs durch empirische 
Ansätze. Durch den vereinfachten Datenzugriff bei automatisierten Prozessen bieten 
Maschinelle Lernverfahren die Möglichkeit der Erstellung dynamischer Prognosemo-
delle. Erste Ansätze, die solche Verfahren für die Energieprognose verwenden, wurden 
in den vergangenen Jahren publiziert. Kant et al. nutzt Neuronale Netze zur Vorhersage 
des Energiebedarfs von einfachen Fräs- [5] als auch erster Drehprozesse [6]. In weite-
ren Veröffentlichungen nutzt der Autor u.a. klassische Techniken des Maschinellen 
Lernens wie die Support Vector Regression [7]. Während sich Kant in seinen Arbeiten 
auf die Datenaufnahme einfacher, statischer Prozesse fokussiert, betrachtet Park [8] 
unterschiedliche Fertigungsarten (wie z.B. Bohren und diverse Fräsverfahren) und 
nutzt dafür die Gaußprozess Regression. 

Park und Kant konzentrieren sich in ihren Untersuchungen nur auf die Prognose des 
Energiebedarfs zerspanender Bearbeitungsschritte, abgeleitet aus Numerical Control 
(NC)-Datensätzen. Neben diesen Prognosemethoden des Energiebedarfs wurden noch 
Methoden zur Prognose des Zeit- und Wegbedarfs von Zerspanungsprozessen entwi-
ckelt. Hier lassen sich unterschiedliche Herangehensweisen unter Anwendung des Ma-
schinellen Lernens identifizieren. Saric et al. [9] entwickelte in diesem Kontext ein Mo-
dell für die Zeitprognose, mit Hilfe Neuronaler Netze. Gopalakrishnan et al. [10] erläu-
tert die Vorhersage der Werkzeugweglänge beim Taschenfräsen durch Neuronale 
Netze. Diese dient wiederum als Variable für die Abschätzung der Bearbeitungszeit 
und der entstehenden Kosten. 

Die im Rahmen dieser Veröffentlichung dargestellte Methode geht einen Schritt 
weiter als bisher bekannte Ansätze und erhöht den Detailgrad der Prognose so, dass 
eine Abbildung des gesamten Funktionsumfangs der Bearbeitungsmaschine sowie der 
Einzelaktionen über die Zeit ermöglicht werden. Dies erfolgt durch getrennte Modelle, 
die die Prognose des Zeitbedarfs und des Energiebedarfs für verschiedene Aktions-
schritte der Maschine repräsentieren. Dabei lassen sich einzelne Aktionen, wie z.B. die 
Drehzahländerungen der Spindel oder das Verfahren der Achsen, zu eigenständigen 
Prognosemodellen zusammenfassen. Über die Aggregation der Einzelmodelle lässt 
sich eine resultierende Leistungskurve erstellen, welche Aufschluss über die anliegende 
Last zu jedem Zeitpunkt gibt. Durch diese neue Methode kann ein detailliertes Abbild 
eines Zerspanprozesses auf Basis des Energiebedarfs über die Zeit erstellt werden, 
wodurch sich neue Möglichkeiten der Optimierung des Energiebedarfs sowie der Er-
kennung von Anomalien auf Ebene einzelner Maschinenaktionen ergeben. 
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2 Methode 

Anhand der folgenden Methode werden die Schritte von der Trainingsdatenerhebung 
über die Modellbildung sowie dessen Anwendung zur Prognose des Leistungsprofils 
beschrieben (vgl. Abb. 1). Die Vorgehensweise wird anhand einer Fräsbearbeitung auf-
gezeigt und validiert, jedoch ist die grundlegende Systematik auch auf weitere automa-
tisierte Prozesse übertragbar. Der Datenvorverarbeitungs- und Modellbildungsvorgang 
erfolgt automatisiert und ermöglicht ein direktes Abgreifen der erforderlichen Daten 
während des Bearbeitungsprozesses. Die aufbereiteten Rohdaten ermöglichen im Wei-
teren die Erstellung von Regressionsmodellen, welche für die Prognose des Zeit- und 
Energiebedarfs genutzt werden. Abschließend wird das vollständige Leistungsprofil 
durch das Zusammensetzen aus Zeit- und Energiebedarf erstellt. 

 

 
Abb. 1. Darstellung der entwickelten Methode 

Der NC-Code beinhaltet bereits Informationen über Drehzahl, Vorschub, Verfahrweg 
und das verwendete Werkzeug. Für eine Prognose des Energiebedarfs, sowohl im Leer-
lauf als auch während des Zerspanvorgangs, sind weitere Daten über Schnittgrößen wie 
etwa Schnitttiefe und Schnittbreite während der Bearbeitung erforderlich. Diese wer-
den mithilfe einer Simulation des Zerspanvorgangs ermittelt. Die relevanten Attribute, 
welche für die Durchführung der Modellbildung erforderlich sind, wurden im Vorfeld 
definiert. 

Um das Leistungsprofil in der nötigen Güte prognostizieren zu können ist es erfor-
derlich, die Prognose des Zerspanvorgangs in einzelne Elemente bzw. Einzelaktionen 
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Prognosegüte einzubeziehen. Sowohl bei Achsbewegung ohne Materialabtrag als auch 
bei Zerspanvorgängen selbst hat diese einen entscheidenden Einfluss auf den Zeitbe-
darf. Die Erstellung der Modelle auf Basis realer Datenaufzeichnungen der betrachteten 
Werkzeugmaschine ermöglicht eine genaue Abbildung dieser Einflussparameter. 

3 Datenerhebung und -aufbereitung 

Die Datenerhebung für die anschließende Modellbildung unterteilt sich in die Auf-
zeichnung der Zielwerte Energie- und Zeitbedarf und die Gewinnung der entsprechen-
den Werte der Einflussparameter. Als Datenquellen dienen hier NC-Befehlssätze, Si-
mulation und Werkzeugmaschine. Um aufwendige Datenaufbereitungsvorgänge zu 
umgehen, werden für die Prognose des Leistungsverlaufs möglichst vorhandene Infor-
mationen aus den NC-Befehlssätzen genutzt. Fehlende Informationen zu Zerspanungs-
größen, wie etwa die Schnittbreite und Schnitttiefe während des Bearbeitungsvorgan-
ges, werden durch die Simulationssoftware Vericut berechnet und ausgeleitet. Dies er-
möglicht eine Extraktion sämtlicher relevanter Inputparameter aus der Erstellung und 
Simulation des Zerspanungsvorgangs. Die Daten der Zielvariablen Energie- und Zeit-
bedarf werden durch Versuche an der Maschine aufgezeichnet und durch Schnittstellen 
extrahiert. 

3.1 Gewinnung der Zielwerte Energie- und Zeitbedarf 

Das im Rahmen dieser Arbeit betrachtete Bearbeitungszentrum (Doosan DNM 500 
II) ermöglicht die Aufzeichnung der Leistungsaufnahme der einzelnen Verbraucher 
über eine Siemens Numerik Steuerung (Sinumerik 828D). Diese Leistungsaufzeich-
nungen dienen als Grundlage für die nachfolgende Modellbildung. Um die erforderli-
che Datenbasis für die Modellbildung zu schaffen, wurden bei insgesamt 32 Planfräs-
prozessen, 186 Verfahrvorgänge der Achsen und 30 Drehzahländerungsvorgänge die 
Wirkleistungsverläufe der wesentlichen Verbraucher, der drei Achsen und der Spindel, 
aufgezeichnet. Es wurde eine Routine entwickelt, um die Daten automatisiert aufzube-
reiten und vorzuverarbeiten. Während der Aufbereitung der Daten werden die Energie- 
und Zeitbedarfe der einzelnen Bearbeitungsschritte berechnet und die Werte der Ein-
gangs- und Zielvariablen in den entsprechenden Datensätzen für das Anlernen der ein-
zelnen Modelle abgespeichert. 

3.2 Gewinnung der Inputparameter für die Regressionsmodelle 

Um den Energiebedarf auch bei einem Werkzeugeingriff ausreichend genau abbil-
den zu können, sind neben den Daten aus den NC-Befehlen Informationen zu den 
Spanungsgrößen erforderlich. Für die Gewinnung der für die Prognose relevanten Da-
ten wird die Simulationssoftware Vericut verwendet. Diese ermöglicht eine Simulation 
der Werkzeugwege und der Materialabtragsprozesse. Die hierbei berechneten 
Spanungsgrößen können zusammen mit den NC-Datensätzen aus dem Programm aus-
geleitet werden und bilden die Basis für die Erstellung der Regressionsmodelle. Für die 
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anschließende Prognose des Leistungsverlaufs eines betrachteten Zerspanungsprozes-
ses wird ebenso verfahren. Die Zerspanungsprozesse werden in der Regel mit Hilfe 
einer CAM-Software simuliert. Eine zusätzliche Überführung des Bearbeitungspro-
grammes in Vericut liefert weitere Inputparameter, welche für die Energie- und Zeit-
prognose erforderlich sind. 

3.3 Feature Engineering 

Im Falle der Energieprognose gilt es, über Feature Engineering, die Einflussparame-
ter zu identifizieren, die Auswirkung auf den Energiebedarf haben und in ihrer Gesamt-
heit somit eine möglichst genaue Prognose ermöglichen. Anhaltspunkte hierfür geben 
die Literatur, Domänenwissen und die bereits bestehenden Modelle zur Berechnung der 
Schnittkraft. Kühn et al. [11] nennt zehn Einflussgrößen, die sich auf die Schnittkraft 

 und somit direkt auf die benötigte Leistung auswirken: Werkstoff, Vorschub bzw. 
Spanungsdicke, Schnitttiefe bzw. Spanungsbreite, Spanungsverhältnis (Schnitt-
tiefe/Vorschub), Spanwinkel, Einstellwinkel, Schnittgeschwindigkeit, Schneidstoff, 
Kühlung und Schmierung und Werkzeugverschleiß.  

4 Modellbildung 

Da mit dieser Methode der Energiebedarf des gesamten Funktionsumfanges der Be-
arbeitungsmaschine, repräsentiert durch unterschiedliche Verbraucher, abgedeckt wer-
den soll und sich die Einflussparameter auf den Energiebedarf je nach Aktionsschritt 
stark unterscheiden, erfolgt die Modellbildung auf Einzelaktionsebene, siehe Abb. 2.  

 

 
Abb. 2. Regressionsmodelle der Einzelaktionen des Bearbeitungsprozesses 
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Die Aufteilung in verschiedene Einzelaktionen bzw. Modelle erfolgte mit der Prämisse 
der Maximierung der Leistungsfähigkeit der Einzelmodelle und somit der Prognose-
genauigkeit unter der Berücksichtigung einer noch vertretbaren Anzahl sich ergebender 
Modelle. Die erstellten Einzelmodelle werden abschließend in einem Gesamtmodell 
aggregiert, welches die Prognose des Leistungsprofils ermöglicht. 

Konnte eine definierte Einzelaktion nicht ausreichend durch ein Modell abgebildet 
werden, erfolgte eine detailliertere Untersuchung der zugrundeliegenden Datenstruktur. 
Beispielweise wurde beim Zeitbedarf für das Verfahren der Achsen im Eilgang eine 
Knickstelle bei der Analyse der Daten festgestellt. Durch diese spezielle Datenstruktur 
ist eine separate Modellbildung links und rechts der Knickstelle sinnvoll, siehe Abb. 3. 
Weder die Gaußprozess Regression noch die Polynomiale Regression können die voll-
ständigen Daten richtig annähern. Durch die Aufteilung in zwei Modelle gelingt eine 
verbesserte Annäherung. 

 

 
Abb. 3. Verbesserung der Prognosegüte durch Modellierung von zwei Teilmodellen 

Während des Modellbildungsprozesses wurden für die einzelnen Datensätze der de-
finierten Aktionen unterschiedliche Regressionsverfahren mit Hilfe der Kreuzvalidie-
rung (Leave-One-Out) evaluiert. Betrachtet wurde dabei die Leistungsfähigkeit der Li-
nearen, Polynomialen, Gaußprozess und Random Forest Regression über die Evaluati-



    Energy Profile Prediction of Milling Processes Using Machine Learning Techniques    7 

onsmetrik Mittlere Quadratische Abweichung (MSE) und die Mittlere Absolute Ab-
weichung (MAE). Über eine Routine konnten die Hyperparameter der Verfahren auto-
matisch variiert und bewertet werden. Das Gütemaß MSE diente hierbei als Optimie-
rungsgröße. In Tabelle 1 werden die Unterschiede der Regressionsverfahren am Bei-
spiel der Aktion Drehzahländerung verdeutlicht. Je Einzelaktion wurde das Regressi-
onsverfahren bestimmt, welches die geringste Abweichung (MSE) aufweist und somit 
die jeweilige Aktion am besten annähert. Das finale Gesamtmodell zur Prognose des 
Leistungsverlaufs setzt sich dementsprechend aus den elf gewählten Teilmodellen zu-
sammen.  

Tab. 1. Vergleich der Regressionsverfahren zur Prognose des Energiebedarfs der Aktion 
Drehzahländerung 

Regressionsverfahren Hyperparameter MAE [kJ] MSE [kJ²] 
Lineare Regression  3,21 13,30 
Polynomiale Regression Polynomgrad=2 0,55 0,69 
Random Forest Bäume=10; max. Tiefe=10 2,62 9,29 
Gaußprozess Regression Kernel = RBF 0,81 1,05 

5 Ergebnisse und Validierung 

Sämtliche Regressionsmodelle sind speziell auf die betrachtete Bearbeitungsma-
schine abgestimmt und bilden somit Maschinenspezifika mit ab. Dies ermöglicht hohe 
Prognosegenauigkeiten. 

Tab. 2. Teilregressionsmodelle für den Energiebedarf von Zerspanungsprozessen 

Regressi-
onsverfah-
ren 

Hyperparameter Attribute R2 MSE 
[kJ²]  

Energiemodell: Achsenverfahren im Eilgang   
Polynomiale 
Regression 

Polynomgrad=4 Verfahrweg (und Richtung) 
[mm], Achse [x=1, y=2, z=3] 

0,986 2,07 * 
10-4 

Energiemodell: Achsenverfahren mit eingestelltem Vorschub  
Polynomiale 
Regression 

Polynomgrad=4 Verfahrweg (und Richtung) 
[mm], Achse [x=1, y=2, z=3], 
Vorschub f [mm/min] 

0,982 1,72 * 
10-4 

Energiemodell: Drehzahländerung  
Polynomiale 
Regression 

Polynomgrad=2 Ausgangsdrehzahl [1/min], End-
drehzahl [1/min] 

0,992 0,26 

Energiemodell: Werkzeug (Schaftfräser) im Eingriff  
Polynomiale 
Regression 

Polynomgrad=2 Verfahrweg [mm], Vorschub 
[mm/min], Drehzahl [1/min], 
Schnitttiefe [mm], Schnittbreite 
[mm] 

0,980 0,22 

Energiemodell: konstanter Spindelbetrieb  
Random Fo-
rest 

Bäume=10; 
Max. Tiefe=20 

Drehzahl n [1/min] 0,604 0,11 
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Die weitere Evaluation der Modelle erfolgte auf Basis eines Testdatensatzes. Tabelle 
2 zeigt die für die Energieprognose verwendeten Regressionsverfahren, die relevanten 
Hyperparametereinstellungen, die Merkmale der Modelle und die Evaluationsergeb-
nisse anhand des Bestimmtheitsmaßes (R²) und der mittleren quadratischen Abwei-
chung (MSE). 

Das Bestimmtheitsmaß nimmt bei den meisten Modellen einen Wert über 0,9 ein. 
Die Ausnahme bildet hier das Modell für die Prognose des Energiebedarfs bei konstan-
tem Spindelbetrieb. Es wird angenommen, dass der verwendete Datensatz mit lediglich 
sieben Instanzen ursächlich für die geringere Modellgüte ist. Die Ergebnisse der mitt-
leren quadratischen Abweichungen (MSE) der Prognosewerte spiegeln diese Ergeb-
nisse wieder. 

Hiermit konnte gezeigt werden, dass eine Prognose des Energiebedarfs auf Einzel-
aktionsebene durch die gewählten Verfahren und Attribute mit hoher Genauigkeit mög-
lich ist. Gleichwertige Ergebnisse konnten für die Prognose des Zeitbedarfs erzielt wer-
den (vgl. Tabelle 3). Die Modelle für den Zeitbedarf erreichen durchgehend ein Be-
stimmtheitsmaß über 0,9. 

Tab. 3. Teilregressionsmodelle für den Zeitbedarf von Zerspanungsprozessen 

Regressi-
onsverfah-
ren 

Hyperparameter Attribute R2 MSE 
[s²]  

Zeitmodell: Achsenverfahren im Eilgang (in positive Koordinatenrichtung)  
Polynomiale 
Regression 

Polynomgrad=4 Verfahrweg (und Richtung) [mm], 
Achse [x=1, y=2, z=3] 

0,935 1,16 * 
10-3 

Zeitmodell: Achsenverfahren im Eilgang (in negative Koordinatenrichtung)  
Polynomiale 
Regression 

Polynomgrad=4 Verfahrweg (und Richtung) [mm], 
Achse [x=1, y=2, z=3] 

0,982 3,19 * 
10-4 

Zeitmodell: Achsenverfahren mit eingestelltem Vorschub  
Polynomiale 
Regression 

Bäume=20; 
Max. Tiefe=20 

Verfahrweg (und Richtung) [mm], 
Achse [x=1, y=2, z=3], Vorschub 
f [mm/min] 

0,994 1,85 * 
10-2 

Zeitmodell: Drehzahländerung  
Gauß-Pro-
zess 
Regression 

Rational Quadratic 
Kernel; Alpha=0,1; 
Varianz=1,0; 
Lenghtscale=1,0 

Ausgangsdrehzahl [1/min], End-
drehzahl [1/min] 

0,942 6,37 * 
10-3 

 
Die Prognosewerte werden im Weiteren zur Berechnung und Darstellung des gesamten 
Leistungsverlaufs genutzt. Auf Basis der prognostizierten Zeitbedarfe für die Einzelak-
tionen und der Berücksichtigung, ob diese parallel bzw. seriell stattfinden, ergibt sich 
die geplante Dauer der Einzelaktion und des gesamten Bearbeitungsvorgangs. Die 
prognostizierten Energiebedarfe werden den entsprechenden Zeitbedarfen zugeordnet, 
wodurch der Leistungsverlauf ausgeprägt wird und folgend die Ermittlung des Gesam-
tenergiebedarfs durch Integration ermöglicht. Abb. 4 stellt die reale Leistungsaufzeich-
nung während eines Planfräsprozesses und die der Prognose gegenüber. Die prognos-
tizierte Leistungskurve spiegelt den realen Verlauf erkennbar wider. Weiter decken sich 
die prognostizierten und realen Energiebedarfswerte für die definierten Aktionen. Die 
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absolute Abweichung (MAE) des Beispielprozesses eines Planfräsvorgangs beträgt 
1,02 kJ, was einer Abweichung von unter 4 % entspricht. 
 

 
Abb. 4. Vergleich der Prognose und des aufgezeichneten Leistungsverlaufs während eines Zer-
spanungsprozesses (Beispiel: Planfräsvorgang mit einem 12 mm Schaftfräser, Drehzahl: 7000 

1/min, Vorschub: 560 mm/min, Schnitttiefe: 6 mm, Schnittbreite: 9 mm) 

6 Diskussion und Ausblick 

Die vorgestellte Methode demonstriert die Prognose des Leistungsprofils bzw. des 
Energiebedarfs eines Bearbeitungszentrums mit hoher Genauigkeit auf Einzelaktions-
ebene. Hierdurch ergeben sich Potentiale im Hinblick auf diverse Optimierungsmaß-
nahmen. Diese ergeben sich durch die Optimierung von Prozessparametern hinsichtlich 
der Minimierung des Zeit- oder Energiebedarfs des Zerspanvorgangs, dem Mikro-Last-
management bzw. der Vermeidung von Lastspitzen bei der Berücksichtigung von meh-
reren parallellaufenden Prozessen und auch im Bereich der Anomaliedetektion durch 
einen Vergleich von Soll- und Ist-Werten. 

Obwohl die beschriebene Methode schon weitestgehend automatisiert wurde, ist 
eine weitere Automatisierung der Vorgehensweise anzustreben. Insbesondere die Er-
hebung von maschinenspezifischen Trainingsdaten gestaltet sich noch aufwändig. Hier 
ist ein einfach implementierbares Edge-Device mit den erforderlichen Schnittstellen 
zur Datenerhebung an der Maschine und mit der Möglichkeit zur Datenvorverarbeitung 
denkbar. Um die genannten Potentiale zur Anomalieerkennung ausschöpfen zu können, 
ist zudem ein Abgleich von Soll- und Ist-Werten in Echtzeit erforderlich. 

 
 

prognos tizierte Spindelleis tung
Aufzeichnung der Spindelwirkleis tung

1. Spindelbeschleunigung
W 

ist  = 23,23 kJ
W 

prognose  = 22.86 kJ

1 2 3

4

2. Planfräsvorgang
W 

ist  = 21,24 kJ
W 

prognose  = 20,98 kJ

3. Verfahrbewegung der X-Achse
W 

is t  = 0,058 kJ
W 

prognose  = 0,069 kJ

4. Spindelabbremsung
W 

ist  = -18,83 kJ
W 

prognose  = -19,23 kJ
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Abstract. Against the backdrop of the economically and ecologically optimal 
management of electrical energy systems, accurate predictions of consumption 
load profiles play an important role. On this basis, it is possible to plan and im-
plement the use of controllable energy generation and storage systems as well as 
energy procurement with the required lead-time, taking into account the technical 
and contractual boundary conditions. 

The recorded electrical load profiles will increase considerably in the course 
of the digitization of the energy industry. In order to make the most accurate pre-
dictions possible, it is necessary to develop and investigate models that take ac-
count of the growing quantity structure and, due to the significantly higher num-
ber of observations, improve the forecasting quality as far as possible.  

Artificial neural networks (ANN) are increasingly being used to solve non-
linear problems for a growing amount of data that is affected by human and other 
unpredictable influences. Consequently, the model approach of an ANN is cho-
sen for predicting load profiles. Aim of the thesis is the simulative investigation 
and the evaluation of the quality and optimality of a prediction model based on 
an ANN for electrical load profiles. 

Keywords: Artificial Neural Network, Electrical Load Prediction, Machine 
Learning. 

1 Introduction 

Accurate forecasts of future events are crucial for the optimal operation of electrical 
energy systems. Due to the digitization of the energy industry, the number of recorded 
electrical load profiles and also the number of observations per time series will increase 
significantly. In order to analyze the growing amount of data, corresponding systems 
and models are needed that are able to recognize structures and patterns from complex 
information. 

© The Author(s) 2021
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Machine learning methods offer an efficient alternative to the manual extraction of 
the knowledge contained in the data and the derivation of rules. They are used to ex-
tracting correlations and insights from large amounts of data in order to make predic-
tions about future events. [1,2] 

ANN are among the nonlinear dynamic models. The input and output behavior is 
represented by observations of the process, whereby the connections are represented by 
internal structures. In recent years, advances in research and technology, especially in 
computing power and algorithms, have led to better procedures through neural net-
works. By processing large amounts of data and nonlinear relationships, ANN are very 
successful, for example in speech recognition. [3-5] 

2 Analysis of the load profiles 

The power consumption data is available in the form of annual load profiles. The load 
curve shows the time course of the electrical power drawn. The time resolution is 15 
minutes. Accordingly, 4 measured values are available per hour and 96 measured val-
ues on one day. Consequently, the annual load curve is mapped with 35040 data points. 

2.1 Primary data preparation and plausibility check  

The first step before modelling is the preparation of the primary data. The time series 
are checked for possible measurement errors, outliers and for completeness. In the case 
of individual missing measured values or obvious measurement errors, these substitute 
values are interpolated. Due to the normalization of the time series, the values of the 
load profiles are between zero and one. In the course of the plausibility check, any zero 
values that occur are set from zero to a low value due to the normalization in the load 
profile. Otherwise, this data would not represent any relevant information in the neural 
network and would be weighted with zero. An actual value of zero can only be expected 
in the event of a power failure, which is not relevant for the load curve forecast. 

2.2 Data analysis and creation load profile classes 

To study the model approach, five load profiles are used, which were examined and 
classified for selected statistical parameters and show a typical load curve for house-
holds. This can be seen from the morning and evening peaks during the day and the 
weekly rhythm. 

2.3 Parameter estimation 

After defining the model approach, the network parameters are estimated in the course 
of modeling. The estimation of the parameters, i.e. the edge weights and threshold val-
ues, is achieved by training the net. In order to be able to train the network in the best 
possible way, an appropriate input assignment is coordinated and adapted. Furthermore, 
data sets are divided into training and test data. 
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The selection of the additional historical values was determined using the autocor-
relation coefficient (ACF) and the partial autocorrelation coefficient (PACF) with re-
gard to the relevant information content for the forecast. The aim is to reduce the com-
plexity of the ANN in terms of computing power and time. 

Table 1 lists six historical depths that are used as input variables for the model. 

Table 1. Autocorrelation coefficients for the historical values 

Historical values relation ACF PACF 
x(k-1) quarter hour before 0,9957 0,9957 
x(k-2) half hour before 0,9855 -0,6986 
x(k-3)  0,9698 -0,2954 
x(k-96) day before 0,8391 -0,2386 
x(k-97)  0,8357 -0,2330 
x(k-673) week before 0,9365 -0,2252 

2.4 Splitting the data sets 

The time series are divided into two subsets for the analysis of the ANN. The time series 
were divided 2/3 to 1/3 into training and test data. Therefore the neural network is 
trained with eight months of the time series. The remaining four months of the year 
(11615 measured values) are forecasted using the trained network, compared with the 
test data and evaluated. 

3 Artificial neural network as prediction model 

An artificial neural network is an information processing system with analogies to the 
human brain. The basic idea is based on the reproduction of biological nerve cells and 
the associated neuronal connections, which can be used to reproduce complex pro-
cesses. The advantage of ANN is their ability to learn. They are able to adapt to chang-
ing conditions and to learn further on the basis of additional data. This makes it possible 
to continuously improve the network and increase the forecasting quality. [6] 

The ANN for the prediction model is constructed as a feedforward network due to 
abstraction and is illustrated in Fig. 1. There are various state-of-the-art ANN methods 
for similar tasks, such as recurrent neural networks, that exhibit time-dynamic behavior 
through an internal memory. 

 The information is transmitted between the nodes, via the connection. The connec-
tion weighting varies the data transfer and passes it on to the next layer. 
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Fig. 1.  Exemplary ANN set up as feedforward network for electric load profiles prediction 

Between the input and output layer there can be a number of hidden layers. The system 
learns by changing the connection weights. The sum of the inputs is weighted in the 
nodes and transferred to the transfer function when a threshold value is exceeded. The 
result serves as input for the next layer.  

The neural network structure is trained using a backpropagation algorithm. For that 
the net weights and threshold values are corrected by means of the gradient descent 
procedure to minimize errors. The prediction of electrical load profiles is carried out by 
the trained ANN by applying n historical values in the input layer. Hereupon the trained 
net is used to map the forecast value in the output layer. This model approach serves as 
starting point for the following investigations. 

3.1 Research studies 

The investigation of the prediction model based on an ANN to forecast electrical load 
profiles are the subject of a current research project at the department. In that respect 
the model structure of the ANN is mapped and simulated in Matlab and Python. The 
present paper examines different network structures and hyperparameters to find the 
optimal network configuration to forecast electrical load profiles. The investigation 
should show if and what advantage (deep) neural networks have in forecasting of elec-
trical load profiles. 

 
The focal points of the investigation related to the prediction quality are: 
• Influence of the number of network nodes  
• Training of the ANN with unstructured/ structured Data 
• Influence of the data quantity 
• Selection of historical values/depth of historical values 

The research focuses on how large amounts of data can be integrated into the model. 
The investigations aim to the influence of the data quantity related with variation of the 
network structure and node number and the stability of the forecast. As a result, state-
ments can be made about quality and optimality of the model approach. 
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3.2 Basic specifications of the model 

As input variable x(t) a sliding time window with n historical values is applied over the 
electrical annual load curve. Fig. 2 illustrates the electrical load profile of a household 
customer as input for the prediction model. 

kT

k0

x(t) load curve

presentpast forecast

x(k-1)

x(k-2)

input 
layer

hidden 
layer

output 
layer

x(k+1)x(k-3)

x(k-n)

 

Fig. 2. Example of the prediction model for electrical load profiles form n historical data 

The chosen model approach of the ANN has the following basic structure: 
• 6 input nodes 
• 1 hidden layer  
• 10 knots in the hidden layer 
• 1 output node 
• Sigmoid activation function  
• Fully meshed network 

Starting from this network, the parameter estimates and the simulative investigation are 
carried out. In order to obtain precise conclusions on the mode of operation and the 
change in the quality of the forecast, the structure of the network is modified in further 
investigation steps. 
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3.3 Investigation scenarios 

In the training phase, the neural network learns to deduce the output variables from the 
given input variables. The forecast model is trained on the prediction horizon x(k+96). 
During the training the connections of the nodes are weighted and determined. The 
training will continue until the performance goal is reached. Derived from the main 
points of investigation in Chapter 3.1, the structure of the network is modified on the 
basis of the basic model.  

 
The following changes made for the analysis of the model behavior: 
• Increase of the data quantity with further time series 
• Increase of the number of network nodes in the hidden layer 
• Increase of the output assignment 

For each change in the structure of the neural network, a scenario is created (Table 2). 
The individual changes are also combined with each other. 

Table 2. Investigation scenarios with the respective network configuration 

Scenario Timeseries 
Notes 

Input Hidden Layer Output 
Variant 1: Simultaneous connection of time series 

1 1 6 10 1 
2 1 6 50 1 
3 5 30 10 1 
4 5 30 10 5 
5 5 30 50 1 
6 5 30 50 5 

Variant 2: Continuous connection of the time series 
7 5 6 10 1 
8 5 6 50 1 

4 Simulation and evaluation of the results 

After training the ANN, the simulation is based on the test data that was not used for 
the training. The forecast generated by the model is then compared with the recorded 
measured values. 

For the validation and evaluation of the results, the residuals, i.e. the error between 
prognosis and observations, are used. The average forecast error and the mean absolute 
error (mae) can be calculated on this basis. 

 mae =  (1) 

The advantage of the mae over the mean error is the investigation of the absolute devi-
ations between forecast and observation. 
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The quality of the forecast is also evaluated from the error measures and makes a 
statement about how well the forecast value corresponds to the real value. 

 quality =  (2) 

In addition, r is calculated, resulting in the linear relationship between forecast and ob-
servation. 

 r =  (3) 

Table 3 compares the results for the 8 scenarios examined (cf. Table 2) for the forecast 
of the value with the prediction horizon x(k+96). 

Table 3. Results by scenarios for prediction horizon x(k+96) 

Scenario  mae quality r 

1 -0,0156 0,0733 0,8596 0,8926 
2 -0,0142 0,0755 0,8554 0,8887 
3 -0,0400 0,0623 0,8742 0,9279 
4 -0,0279 0,0595 0,8896 0,9507 
5 -0,0326 0,0625 0,8737 0,9243 
6 -0,0290 0,0557 0,8899 0,9415 
7  0,0030 0,0719 0,8672 0,8897 
8  0,0015 0,0719 0,8678 0,8916 

Due to the increase in input occupancy by adding further time series from the corre-
sponding time series class, the quality of the forecast could be improved. Furthermore, 
an increase in the output occupancy, with a simultaneous increase in the number of 
network nodes, leads to a further increase in forecast quality. This relationship is also 
expressed in a reduction of the mean absolute error and the increase of the correlation 
coefficient. 
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Fig. 3. Forecast load profile for scenario 1 and scenario 6 for prediction horizon x(k+96) 
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The time series of the forecasts for scenarios 1 and 6 are compared with the real data in 
Fig. 3. The improvement in prediction quality is the result of the structural changes in 
the neural network. Based on a larger amount of data and as a result a more complex 
network structure, the ANN can better deduce the required output variables from the 
given input variables during training. 

5 Conclusion and Outlook 

 
The predictive quality of electrical load profiles was examined using an ANN. As 

an example, the model was designed for the prediction horizon x(k+96). After the var-
ious scenarios have been taught and tested, an improvement in quality can be observed 
with increasing data volume, accompanied by a smaller error. The increase of the num-
ber of network nodes in the hidden layer, as well as the output occupancy have a sup-
porting effect. The variation and increase of the parameters are limited with regard to 
the complexity and computing power of the ANN. Another aspect of the study is the 
consideration of the complete period for the next 24 h in a model, based on the repre-
sentative consideration of the value for the time after 24 h 

Furthermore, the results form the starting point for further investigations with regard 
to deep learning procedures. These represent ANNs with an extensive network struc-
ture, which are able to continue learning from incoming data while application is run-
ning. [1-3] 

In addition, the comparison of the forecast results by ANN with state-space models 
is recommended. For example, exponential smoothing  and autoregressive moving av-
erage models can be considered. 
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Abstract. Long underwater operations with autonomous battery charg-
ing and data transmission require an Autonomous Underwater Vehicle
(AUV) with docking capability, which in turn presume the detection and
localization of the docking station. Object detection and localization in
sonar images is a very difficult task due to acoustic image problems such
as, non-homogeneous resolution, non-uniform intensity, speckle noise,
acoustic shadowing, acoustic reverberation and multipath problems. As
for detection methods which are invariant to rotations, scale and shifts,
the Generalized Fuzzy Hough Transform (GFHT) has proven to be a
very powerful tool for arbitrary template detection in a noisy, blurred
or even a distorted image, but it is associated with a practical draw-
back in computation time due to sliding window approach, especially if
rotation and scaling invariance is taken into account. In this paper we
use the fact that the docking station is made out of aluminum profiles
which can easily be isolated using segmentation and classified by a Sup-
port Vector Machine (SVM) to enable selective search for the GFHT.
After identification of the profile locations, GFHT is applied selectively
at these locations for template matching producing the heading and po-
sition of the docking station. Further, this paper describes in detail the
experiments that validate the methodology.

Keywords: Object detection and localization � Classifier � Generalized
fuzzy Hough Transform � Selective search.

1 Introduction

Extended underwater applications such as the inspection and maintenance of
underwater structures require an autonomous underwater vehicle(AUV) with
autonomous docking capability for battery charging and data transmission. Un-
derwater docking is a complex process and is composed of several sub-tasks, i.e.,
detection and localization, homing, physically attach to recharge AUV batteries
and to establish a communication link, to wait in a low power state for a new
mission, and to undock. In this paper we will focus on the detection and localiza-
tion part of the docking process. It is assumed that the AUV is equipped with a
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forward looking imaging sonar (FLS) as the perception system. Although sonars
are not limited by turbidity, their data have some characteristics that make it
difficult to process and extract valuable information. These characteristics are
given in [1], and include non-homogeneous resolution, non-uniform intensity,
speckle noise, acoustic shadowing and reverberation and multipath problem. In
addition, the data are often only cross sections of the objects. In literature,
some works which propose strategies to identify objects in acoustic images can
be found, e.g. [1, 2]. Santos et al., developed a special system which uses acoustic
images acquired by FLS to create a semantic map of a scene [1].

Acoustic images require preprocessing. Therefore, many works have been car-
ried out for filtering and enhancement of acoustic images. Very important is the
insonification described in [3, 4] where a sonar insonification pattern (SIP) ob-
tained from averaging a large number of acoustic images taken from the same
position is applied to each acoustic image reducing the effects of the non-uniform
insonification and the overlapping problem of acoustic beams. Other artifacts
such as speckle noise can thereafter be removed by Lee filtering [7]. Image
enhancement intensifies the features of images. In [3], a method specifically
developed for enhancing underwater images known as mixed Contrast Limited
Adaptive Histogram Equalization (CLAHE) was discussed. Its results show less
mean square error and high peak signal to noise ratio (PSNR) than other meth-
ods. Another technique for enhancement of acoustic images is using Dynamic
Stochastic Resonance (DSR) technique. It has been used for enhancement of
dark low contrast images in [5].

In image classification tasks, having proposal of the locations of potential
objects tends to increase classification accuracy. Modern methods are based on a
way to selectively search images for potential object locations by using a variety
of segmentation techniques to come up with potential object hypotheses. For
example, thresholding technique is used to group pixels in which input gray
scale image is converted into binary image based on some threshold value [6].
Machado et al. proposed a method specifically for acoustic images [4], where the
regions of interest are extracted by a linear search finding pixels with intensities
higher than a certain value.

As for the detection methods, which are invariant to rotations, shifts and
scale changes of objects, the Generalized Hough Transform (GHT), a geometric
hashing, and variations on these methods have been proposed so far. However,
the major weakness of GHT is that the scale and rotation of the object is handled
in a brute-force approach which requires a four-dimensional parameter space and
high computational cost.

In this paper, a method is provided which detect and recognize a docking
station in a scene. The captured acoustic image is segmented, and the shape of
each segment is described geometrically. Each shape is then classified into two
main classes (aluprofile, and obstacles) using the well-known Support Vector
Machine (SVM) algorithm. After identification of the aluprofile locations, GFHT
is applied at these locations for template matching producing the heading and
position of the docking station.
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2 Methodology

The task is to find the location of the docking station in an acoustic image which
is rather noisy by optical imaging standards. Therefore, the proposed method il-
lustrated in Fig. 1 has six steps which include data collection, image filtering and
enhancement, segmentation, segment description, classification and localization.
In the first step, four different filters, each of which aims to revise a special defect

Fig. 1. Proposed methodology pipeline

are applied to the acoustic images. In the second step an automatic segmentation
process of the images based on intensity peak analysis is conducted. In the third
step the segments are converted to Gaussians that are easily described by shape
descriptors such as the width, height, inertia ratio, area, hull area, convexity
and pixel intensities information. The shape descriptors form the feature vectors
which are applied in the pre-last step where a Support Vector Machine is trained
to recognize the aluminum profiles of the docking station and finally GFHT [8]
is applied to localize the complete docking station. In the following sections the
methods applied in all steps will be discussed.

Step 1: Image denoising and enhancement . The acoustic image runs through
a filtering pipeline to mitigate sonar defects starting from the non-uniform in-
tensity problem through speckle removal and finally image enhancement using
dynamic stochastic resonance. The first processing stage is about blurring the
homogeneous regions keeping edges unharmed. Therefore, in this step we apply
an image correction process to mitigate the non-uniform intensity problem and
speckle noise. Typically this problem can be reduced by a mechanism to com-
pensate the signal loss according to the distance traveled. However, the intensity
variations can also have other causes, e.g., by changing the sonar tilt angle. As in
[3, 4], we first compute the sonar insonification pattern by averaging a significant
number of images captured by the sonar at the same spot. The insonification
pattern is applied to each acoustic image reducing the defects. Now, having a
pattern-free image, the remaining speckle noise and acoustic reverberation and
multipath problem can be reduced in the next steps. Several filters for eliminat-
ing speckle based upon diverse mathematical models of the phenomenon exist.
Speckle elimination in wavelet domain is very popular, but has some drawbacks,
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e.g., the selection of appropriate threshold is very difficult. Another method, the
adaptive speckle filtering include the Lee filtering technique [7] which is based
on minimum mean square error with preserving edges and the Lee filter has a
special property that it converts the multiplicative model into an additive one,
thereby reducing the problem of dealing with speckle noise to a known tractable
case. Principally, the Lee filter works the same as the Kalman filter. During
speckle elimination, the value of pixel in filtered image is determined by the gain
factor (k(i,j)). It is assumed that the noise in image is unity mean multiplicative
noise. If the captured noisy image is z, true image is x and noise is n, then the
noisy image model can be expressed as

Z(i,j) = x(i,j) · n(i,j) (1)

where the x̄ is local mean, the speckle free pixel value is calculated by

x̂(i,j) = x̄+ k(i,j)(z(i,j) − x̄). (2)

The Lee filter tries to minimize MSE between x(i,j) and x̂(i,j) ∗ k(i,j) and the
gain factor k(i,j) is calculated by Eq. 3.

k(i,j) = V ar(x)/(x̄2σ2
n + V ar(x)) (3)

where, V ar(x) is the local variance. The coefficient of variation, σn gives the
knowledge of ratio of standard deviation to mean i.e. σz/Z̄ over homogeneous
areas of noisy image.

Another phenomenon in acoustic images is the acoustic reverberation and
multipath problem which generate effects such as ghost objects. In this work,
the received signal is analyzed and the homomorphic deconvolution method is
applied as a means of combating the multipath problems. Followingly, the image
captured by the FLS g(x, y) is decomposed into the reflectance function r(x, y)
and the illumination intensity i(x, y) using g(x, y) = i(x, y).r(x, y). Using the log
of the image, the components of illumination and reflectance can be separated.
The log-image is Fourier transformed and High-pass filtered using the H modified
Gaussian filter to Eq. 4.

G(wx, wy) = H(wx, wy) · I(wx, wy) +H(wx, wy) ·R(wx, wy) (4)

Inverse Fourier transform is applied to return into the spatial domain to get the
filtered image.

All the filters applied up to now blurs the acoustic image. Therefore, it is
important to apply some mechanism for image enhancement to strengthen some
features. In this paper we tested two methods DSR and CLAHE. The CLAHE
method has been described fully in [3] and therefore we refer to this article for
further details. These methods have proven to be suitable for enhancing both
the grayscale and colored images. The principle of the DSR is described in [5]
that if optimum noise is added with the weak input signal it boosts the signal
considerably and gives better signal to noise ratio (SNR).
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Step 2: Sonar image segmentation, feature extraction and annotation . As objects
suspended in water reflect acoustic waves more than the water environment,
they are characterized by high-intensity regions on the images. Therefore, the
approach for segmentation is to distinguish and separate the objects from the
background [1, 4]. Due to this fact, an approach based on the acoustic image
formation to detect peaks of intensity is adopted as in Santos et al. [1]. Briefly,
a sonar image is composed of beams B and bins. Therefore, every acoustic beam
of the acoustic image is analyzed individually for every bin. The average intensity
Ī(b, B) is calculated for each bin b of a given beam B by Eq. 5.

Ī(b, B) = 1/(winsz)
b∑

(i=b−winsz)

I(i, B) (5)

where winsz is the window size, in number of bins, admitted in the averaging;
b and i are bin identifiers; I(i, B) is the intensity of ith-bin of Bth beam. The
intensity Ipeak(b, B) is an offset of Ī(b, B) as shown in Eq. 6

Ipeak(b, B) = Ī(b, B) + hpeak (6)

where hpeak determines the minimum height of a peak of intensity. A sequence
of bins with an intensity I(b, B) greater than Ipeak(b, B) are considered part of
a peak and are not considered on the Ī(b, B) computation.

Along the beam B, the bin bpeak with the greater intensity I(bpeak, B) is
adopted to build the segmentation parameters. Fig. 2b shows in red values of
Ī(b, B), in blue values of I(b, B) and in green values of Ipeak(b, B) of all bins of
a single beam B. The peaks detected bpeak are represented by colored circles.
After the detection of all peaks, a neighboring search for connected pixels is
performed for each peak. The 8-way neighborhood criterion is adopted by the
BFS algorithm. All the connected pixels are visited if I(i, j) > Ī(bpeak, B).

Fig. 2. a) Peak analysis of a single beam and (b) beam intensity profile

To be able to apply SVM, features need to be extracted from the segments.
So after segmentation, a Gaussian probabilistic function is applied and shape
descriptors for each segment are calculated (see Fig. 3a). Using the Singular
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Value Decomposition (SVD), the eigenvalues and eigenvectors of the covariance
matrix are computed, from which the largest eigenvalue and the second largest
eigenvalue are used to define the width and the height, respectively. In addition,
other shape descriptors can be calculated starting with the segments area which
is computed using the Green’s theorem, the convex hull area and the perime-
ter, the inertia ratio, the convexity, the mean and the standard deviation of
the acoustic intensity of each segment. Almost all data are geometrical informa-
tion, however the mean and the standard deviation of the intensities represents
the acoustic data. After the Gaussians are automatically calculated, a manual
segment annotation process is conducted (Fig. 3b).

Fig. 3. a)Acoustic image gaussians and b) annotated acoustic image

Step 3: Segment classification using supervised learning . After the description
and the annotation of the segments, they are now ready for classification. Well-
known supervised classifiers such as Support Vector Machine, Random Trees and
K-Nearest Neighbors can be used for this purpose. The OpenCV implementa-
tion of the supervised classifiers were used on this work. Four classes of objects
available in our dataset (aluprofile, obstacles(1-3)) were adopted for learning.

Step 4: Generalized Fuzzy Hough Transform . After finding all the possible posi-
tions of the aluprofiles, the next step is to use GFHT for localizing the docking
station in the acoustic images using its template. For detailed description of
GFHT we refer to Suetake et al. [8]. In GFHT, the fuzzy concept is introduced
to the voting process. Therefore we consider the area Ck containing the feature
points, with radius Rc (pixel) from the point (xc, yc) in question. In order to
consider the effect of the neighboring feature points on (xc, yc) in the area Ck,
membership value is given to each point in the area Ck, according to the distance
from (xc, yc). The following is the vote value in the voting process of the GFHT:
Vote value =

∑
membership value of the feature point in Ck. This means that

the effects of the feature points around (xc, yc) are counted up in voting.

3 Experimental results

The experimental results were obtained using real acoustic images collected from
a test basin in which the docking station was installed. A video was taken using
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a 2D Forward looking sonar mounted on an AUV. From the video, 16-bits gray
scale images with a resolution of 1429x768 were generated. The AUV dives to
the level of the underwater docking station starting from different position of
the test basin, left, right, center and moves towards the docking station while
recording data.

Using the pipeline described in Fig. 1, the images went through filtering and
enhancement, segmentation and finally manual annotation. The training data
comprises a total of 627 segments over 33 acoustic frames manually classified into
mainly two classes (aluminum profile = 330 and obstacle). The obstacle class
is divided in to three categories according to their shapes to cover everything
which is not an aluminum profile (Obst1=33, Obst2 = 165 and Obst3 = 99). The
shape of the segment is the most distinctive feature for recognition. Therefore,
the annotation for the classes was performed accordingly, the class obstacle 1 are
the largest segments; the class obstacle 3 are the smallest segments and the alu-
minum profiles are small and the most convex segments. Overfitting is avoided
by choosing the supervised classifier parameters (C, gamma for the SVM) us-
ing 5-folds cross validation. The folds are applied repeatedly and the average
accuracy is used to choose the best parameters. Furthermore, normalization is
required so that all the inputs are at a comparable range. For segmentation,
the parameters such as the separation distance allowed between segments were
defined empirically in several trials.

The best result was obtained using the SVM classifier with radial basis func-
tion kernel and ν = 1.442 and C = 11.739. This Classifier reaches a hit rate of
98% and 93% for training and validation, respectively. In Fig. 4a, the ellipses in
red are automatically detected by the segmentation algorithm, and the yellow la-
bels have been manually defined. After running the classifier training, the labels
in magenta, red (incorrect) or green (correct) appear to represent the classifi-
cation assigned by the classifier. The magenta labels indicate segments without
annotation to compare. The performance of the detection and localization sys-
tem using GFHT is measured using the detection rate, i.e., the total number of
detections compared to the actual docking station position in all images and the
localization accuracy, i.e., the correct location detection of the docking station
compared to its actual location in an image for all 674 images. The detection
rate is quite high for all images with docking data achieved above 80% detec-
tion rate. Further, the system is able to localize the docking station on all sonar
images quite accurately with an average position error = 3cm and average 2D
orientation error = 3.9◦.

4 Conclusions and future work

A method to automatically detect and localize a docking station in acoustic im-
ages is proposed. The acoustic image is automatically segmented and the shape
of each segment is described geometrically and argumented by its acoustic in-
tensity reflected by the object. The object classification is performed by SVM
classifier. The image segments are manually annotated for training. The results
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Fig. 4. a) Example results of classification and b) docking station localized by GFHT

show that it is possible to identify and classify objects such as aluprofiles in real
underwater environments. With the known positions of the aluprofiles, GFHT
can be performed much faster for template matching of the real docking station.
From the GFHT, the 2D position and orientation of the docking station is ob-
tained and can be used by the homing algorithm. Future works will be focused
on exploring and make comparisons with end-to-end deep learning.
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1. Santos, M., Drews, P, Núñez, P., Botelho, S.: Object Recognition and Semantic
Mapping for Underwater Vehicles Using Sonar Data, Journal of Intelligent and
Robotic Systems, volume 91(2) pp 279–289. (2018)

2. Cho, H., Pyo, J., Gu, J., Jeo, H., Yu, S.C.: Experimental results of rapid underwater
object search based on forward-looking imaging sonar. In: Underwater Technology
(UT), 2015 IEEE, pp. 1–5 (2015).

3. Hitam, M. S., Yussof, W., Awalludin, E. A. and Bachok Z.: Mixture contrast limited
adaptive histogram equalization for underwater image enhancement. IEEE, (2013).

4. Machado, M., Ballester, P., Zaffari, G., Drews-Jr P., and Botelho S.S.C.: topolog-
ical descriptor of acoustic images for navigation and mapping in IEEE 12th Latin
American Robotics Symposium LARS, pp. 1–6. (2015)

5. Deole M.T., Hingway S.P., Suresh S.S. Dynamic stochastic resonance for low con-
trast image enhancement. IOSR JVSP. 4 1–5.(2014)

6. Evelin S. G., Lakshmi Y.V.S., Wiselin J.G.: MRI Brain Image Segmentation based
on Thresholding, Int. Journal of Advanced Computer Research 3 (8). (2013)

7. Lee, J. S.: Digital image enhacement and noise filtering by use of local statistics.
IEEE Trans. PAMI; PAMI 2(2) 165–168. (1980)

8. Suetake, N., Uchino, E., Hirata, K.: Generalized Fuzzy Hough Transform for Detect-
ing Arbitrary Shapes in a Vague and Noisy Image. Soft Computing. 10. 1161–1168.
(2006)



Detection and localization of an underwater docking station 31

Open  Access This chapter is licensed under the terms of the Creative Commons Attri-
bution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which 
permits use, sharing, adaptation, distribution and reproduction in any medium or for-
mat, as long as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons license and indicate if changes were made.

 The images or other third party material in this chapter are included in the 
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the chapter’s Creative Commons license and 
your intended use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright holder.



 

Deployment architecture for the local delivery of ML-
Models to the industrial shop floor 

Andreas Backhaus, Andreas Herzog,  Simon Adler and Daniel Jachmann 

Fraunhofer Institute for Factory Operation and Automation, IFF 
Magdeburg, Germany 

andreas.backhaus@iff.fraunhofer.de 

Abstract. Information processing systems with some form of machine-learned 
component are making their way into the industrial application and offer high 
potentials for increasing productivity and machine utilization. However, the sys-
tematic engineering approach to integrate and manage these machine-learned 
components is still not standardized and no reference architecture exist. In this 
paper we will present the building block of such an architecture which is devel-
oped with the ML4P project by Fraunhofer IFF. 

1 Introduction 

The current industrial revolution challenges companies to optimize production to 
face scarcity resources and climate change. Initiatives like “Industrie 4.0” should ac-
celerate the required technological innovations and already deepened the understanding 
about the value of data. Schnieder et al. [1] have written in 1999 that data is a required 
production resource. Nowadays, data becomes also part of the production result that 
can be used during operation.  

Using data is currently a challenge during production. Even if the companies have 
identified the potentials of data [2], it is challenging to gain the added values. One rea-
son is that IT-knowledge is in most cases not a key competence of companies in indus-
trial production. To achieve benefits from data-driven machine learning (ML) it is re-
quired to analyse the data to gain information e.g. about optimizable parameters or as-
pects for predictive maintenance. There are multiple algorithms for ML that differ in 
their requirements, weaknesses and strength and experts were required to utilize ML. 
Currently there are increasingly software libraries, tools, and frameworks available 
which hide complex numerical processing, required in ML. Even though most systems 
try to provide easy access to ML, the outnumbering set requires some overview about 
the systems and expert knowledge, too. Additionally, there is currently a disagreement 
regarding data security. Some Frameworks allow the use of cloud-based services but 
this requires a continuous data-stream to the cloud. Some companies prefer to keep 
their data local to avoid knowledge transfer and a theoretical possible exposition of the 
production system. 
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2 Aim of the presented work 

We present a deployment architecture for the local delivery of ML to the industrial 
shop floor. The architecture is already used during operation in the industry but is still 
work in progress. 

The architecture allows to perform ML locally and without the requirement to de-
liver data via public domain, even if it also could be used as cloud-service or together 
with cloud-services. The architecture consists of a server locally to the production unit. 
It manages the connectivity to the machines programmable logic controller (PLC), col-
lects signals and bypasses signals to the ML-Module. Input signals are verified, and the 
ML Model is monitored; thus, it can be guaranteed that invalid results are detected. 
Additional server connectors provide access to available knowledge systems (e.g. ERP, 
PDM, PLM) and the web-based client. It provides an assistance system for workers, so 
they can query and collect data during daily routine. ML analytics requires that the 
digital information model is up to date. The web client gives workers the possibility to 
keep the information model up to date during their work process. 

Using ML during production requires not only the collection of data for training and 
analysis.  Production has additional requirements that are practically motivated or re-
quired by law. We therefor present and discuss the requirements raised up during con-
ception and implementation of the presented architecture. 

3 Related Work 

As the ML paradigm has moved from a scientific exercise to a tool for industrial 
data processing, the need has arisen to export or describe ML-models independent of 
their initial creation framework. All large frameworks, some of them not in existents 
only a couple of years ago, now offer a model description format as well as runtimes 
for scoring the descripted model. A model is basically described as graph of computing 
steps to arrive at an output value from an input value while the training process deter-
mined the free parameters of the model in order to minimize a set loss function. As field 
progresses, the framework provider for training the ML model not necessarily needs to 
be the provider of the runtime system for scoring the model in production nowadays 
also referred as ‘model serving’. Examples for model descriptions are xml-based file 
formats like PMML [3] or binary formats like ONNX [4] or Tensorflow Graphs [5]. 

In industrial production the company must document their machine configurations, 
so they can prove the operation conditions at any time. Changes during maintenance 
are documented with version and revision. If ML is influencing industrial production, 
they must be documented in a comprehensible representation, too. The advantage of 
model descriptions is that components of a numerical system can be described in a form 
that is independent of the model version of a particular learning framework. It further-
more increases the readability and transparency of a numerical model since all compu-
ting steps are described (comprehensible).  

However, due to fast moving nature of the field of machine learning, not one stand-
ardized way of describing models has established yet, even when efforts are being made 
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[6].  Furthermore, the modules of numerical processing systems are increasingly built 
by a number of different participants with their favourite frameworks. Due to this fact, 
we argue for a generalized model serving description that can integrate numerical trans-
formation descriptions from different sources. 

4 Architecture 

ML is currently discussed as integrated part of controllers from technical systems, 
to dynamically adapt technical systems to unknown production conditions. ML-models 
that decide about operation parameters due to analysed data, yield to technical problems 
and law-relevant questions about responsibilities. These problems can be avoided, if 
the operator remains responsible for the technical system but is utilizing ML as part of 
an assistance system. The assistance system has a server and a client part. The server is 
a communication hub, which connects to different knowledge bases. Each connection 
translates between an internal protocol and the proprietary protocol of the connected 
knowledge base.  

 

 
Figure 1: Simplified Structure. The assistance server is a communication hub, unifying proto-
cols. Signals provided by plc are stored a connected database and can be analysed online. ML-

models are provided as part of the machine documentation by a connected PDM system. 
 

The machines plc provides the signal data (sensor, actor, states) and is one 
knowledge base. Like MES, the assistance server monitors the signal data and stores 
the data into internal databases, but can intercept signal-streams for online analyses. 
The resultant values are stored as additional soft sensor. While simplest implementa-
tions of such an interception are thresholds or equations, ML methods allow evaluating 
signal values against trained models.  

The machines signals will change their behaviour over time e.g. of wear and tear. 
Therefore, the models must adapt and may only be conditionally valid. It is very likely 
that during failure, signals arise that never were trained and are not part of the model. 
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Even if ML-models can extrapolate, they lose accuracy. Especially during critical op-
erational states (unplanned failure) the machines operator must understand the trust-
worthiness of the models results.  

Therefore, the ML-models requires monitoring on different levels. On the first level, 
the range and statistical parameters of input and output signals must be checked indi-
vidually. If an input signal is out of range, because of sensor or connection fault, the 
system must warn and switch to a save mode. The save mode can be an alternative ML-
model, which does not considers the input value; a more robust model, which persevere 
a single sensor failure, or if no more options exist, a controlled machine stop. On output 
side, the ML-model does not know the limits of the machine actuators (linear axis, 
motors, oven, etc.). To prevent the actuators from being destroyed, output signals must 
be verified too.  

On second level, we consider that the training of ML-models consists only a part of 
the possible combinations of input values. All input combinations outside the training 
vectors may result in undefined model output. A one-class classifier [Pimentel2014] 
can be used to detect such an input.  

The third level controls the stability in the current working point of the ML-model. 
To estimate the stability a small variation to the current input value (working point) is 
added and the model output is processed. Depend on the calculation speed, this can be 
done in time multiplex or on parallel ML-models. If the output variation exceeds a pre-
defined range, the model can be classified as unstable.  

All monitoring components added to the plain ML-model result in an industrial 
runtime with parameters described in an overall model description. 

5 Data connectivity and collection 

The assistance server collects signal data from connected plc. It can provide parts of 
the functionality of a manufacturing execution system (MES) but allows also analysing 
the signals data online.  

Connection and signal collection may be difficult. PLC have the major task to exe-
cute the programmed logic. Sending (push) actively data from the PLC is a low priority 
task and is not executed if the plc logic requires resources. Alternatively, the assistance 
server can scan (pull) the PLCs memory for changes. No changes are required in the 
PLC, but the update frequency must be higher than the Nyquist frequency of the fastest 
signal monitored. Besides the signals used to operate all machine part, both approaches 
have the benefit that internal flags and error codes can be monitored additionally. 

For larger machines, a bus-logger can mirror signals from the communication bus 
and sends signal values if they pass the bus. Because signals are not taken from the 
PLC, one must be aware that only control required signals are detected. Error signals 
are only send to the connected HMI, but not distributed over the communication bus. 
For ML analysis, it is important to know which signals are related to malfunctions or 
regular operation states. Using bus mirrors requires therefore querying data from mul-
tiple sources and synchronization strategies. 
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For small and medium enterprises, pulling signals can be the easiest and cheapest 
way to collect operational data. The number of monitored signals can be limited, if 
expert knowledge is considered. Experts can select relevant sensors. The number of 
signals can be reduced if dependencies between the signals are detected using ML. Re-
ducing the number of signals allows a higher scan rate to pull sensor data. Additionally, 
it should be questioned which sensor values are relevant to describe the process. Data 
analysis provides information to influence some kind of reduced if dependencies be-
tween the signals are detected using ML. Reducing the number of signals allows a 
higher scan rate to pull sensor data. Additionally, it should be questioned which sensor 
values are relevant to describe the process. Data analysis provides information to influ-
ence some kind of process. Controlling a robotic system is a high frequency process 
while a logistic process is even slower and allows a lower update rate.  

This is not true in general. Even in slow processes, high frequency events can be an 
indicator for important effects, but experts are most likely aware of this and can adjust 
signal capture strategies. 

6 ML-Model Serving 

For a reliable integration of machine learning models into the industrial application, 
a model description must be generated from the training framework and contain a de-
scription of all necessary numerical processing steps. Therefore, a general model de-
scription and a model-serving component is needed. In Figure 2 the classical ML-model 
description (a) is extended to incorporate the ideas and building blocks described be-
low.  

 
Figure 2: In its current form, a machine learned model is described as a single pipeline of pre-
processing, model inference and subsequent post-processing (a); for industrial deployment, this 
pipeline must be generalized into a graph of transforms which describe the model deployment 
as a combination of the prediction model combined with monitoring and fallback models as 



38     Backhaus et al. 

 

well as a number of transform for example for pre- and post-processing (b); each transform is 
stored with a unit test in order to check at runtime whether the runtime implementation is cor-
rectly calculating the transformation steps. 

 
We can formulate the following requirements for this description: 
 
a. Constancy: The implementation of a model serving should not change when a 

new model is deployed. Patching and updating of at machine serving component needs 
to be avoided. Saving parameters only is not sufficient, because a full description of the 
transformation function in the model description is required. 

 
b. Flexibility: Along the machine-learning pipeline developed in ML4P, different 

participant should be given a number of supported modelling frameworks to describe 
the base models (or base transforms) in the serving structure, since one will not find 
one description or framework that will provide all functionality. Furthermore, core 
transformation descriptions should be exchangeable since the market of machine learn-
ing frameworks is in constant movement. 

 
c. Data Interpretability: The serving description must incorporate Meta infor-

mation about the expected input and output data. Each base model needs a Meta de-
scription too, since different partners along the ML4P pipeline generate them. 

 
d. Transform Testability: No transformation is allowed into serving without pass-

ing a unit test with attached I/O test data, per transform. 

7 Monitoring Strategies 

The basic principal of machine learning is to model a system behaviour by observing 
the system and fitting a generic mathematical model to the observed data by means of 
numerical optimization. In comparison to a physical model, a machine learning model 
is only valid within the boundaries of the dataset it was trained on. A physical model is 
valid everywhere the laws of physics apply. This arises to the need to monitor the input 
and output data of an ML-model as well as to observe its behaviour. Figure 3 shows 
monitoring strategies. Monitoring is performed by one-class models that act as anomaly 
/ novelty detectors [8]. 
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Figure 3: Several monitoring strategies, which can be deployed to check whether a model is still 
working in a valid data environment. 
 

1. Monitoring single inputs: A model input can originate from different 
sources, which should be modelled for their valid behaviour separately. This 
strategy is for spotting abnormalities in sensor inputs. A similar control system 
can monitor the model output to prevent actuator damages.  

2. Monitoring multiple inputs: A monitoring model is checking the validity of 
the complete input vector in order to determine whether the input data is still 
within the boundary of the training data. 

3. Fall-back Model: In case of an abnormality, a fall-back model is added to the 
model description in order to continue operations. A fall-back model could be 
a physical model, or a more transparent less parameter machine learning 
model. 

4. Parallel Model: The input is processed with a parallel copy of the prediction 
model. The input is varied with in magnitude of the signal noise and used to 
measure the prediction model stability at the model’s working point. 

8 Lifecycle Management 

ML Models are stored related to the structure of the technical system. A technical 
system has different types of bill of materials (BOM) that depict structure how parts of 
the technical system are connected in a specific view. In manufacturing the engineering 
and service BOM are motivated by spatial view, because they have their origin during 
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engineering.  A BOM is a very common type of an ontology how parts of a technical 
system are related. 

ML is used to analyse the behaviour of a technical system, but behaviour dependen-
cies are currently not formalized very often. Therefor additional ontologies like SysML 
[9] may become a higher importance in the future.  

Maintenance is the process to keep a technical system alive and may require replac-
ing parts during the product life cycle. The replacement is most likely not identical to 
the original part. It maybe new and without wear and tear, a newer version, from a 
different distributor, or a completely new setup. What does that mean for a trained ML 
model? 

After replacement the operation of a ML model must be considered as on trial. Using 
the monitoring, the ML model can provide a confidence value how much the operator 
may trust the values. This also allows reusing older models if models adapt during op-
eration. After replacement with an identical part, the current ML model and an older 
version, which was used in the beginning of the parts life cycle, can be benchmarked 
against each other.  

For a larger machine, multiple ML models may be used to for different functionali-
ties of the machine. The operator requires some overview where he can trust the data 
driven decision support using ML. This requires that it is documented which signals of 
which parts are used as input and which parts, assemblies, or modules are influenced 
by the ML model result. As an example: Consider that there are cameras that monitor 
the heating of a material. The cameras maybe part of an assembly but the material is in 
a heater assigned to a different assembly. The ML model is using the image data to 
monitor the heating process. If a camera is replaced it may influence the utilized image 
data. From a technical point of view, the model is using data of the camera’s assembly, 
but the effects will influence the decision making of the material heating. 

The ML-model is associated with the parts from which it uses signal values. If a part 
is changed during maintenance, every model can be identified that may be compro-
mised. Additionally, the association to all influenced parts is required, to inform the 
operator automatically for which part and function the derived result is temporarily in-
valid. 

9 Discussion 

Using ML to optimize production requires interdisciplinary work between ML ex-
perts and experts from industry. A sustainable integration of ML models requires the 
integration of models in the product life cycle and their maintenance. Operational per-
sonal must be able to understand not only results of the online analyses but also their 
dependencies and their trustworthiness.  

We established the corner stones of a deployment architecture for data-driven mod-
els acquired by machine learning in an industrial machine environment. While products 
like personal assistants that incorporate some form of machine learned component are 
now distributed widely, not much standardization on the engineering process of deploy-
ing and managing machine learning models has been formulized. Here, the Fraunhofer 
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project “Machine Learning for Production (ML4P)” will serves as a testing ground for 
implementing the deployment methodology laid out in this paper. 
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Abstract. To demonstrate how deep learning can be applied to indus-
trial applications with limited training data, deep learning methodologies
are used in three different applications. In this paper, we perform un-
supervised deep learning utilizing variational autoencoders and demon-
strate that federated learning is a communication efficient concept for
machine learning that protects data privacy. As an example, variational
autoencoders are utilized to cluster and visualize data from a microelec-
tromechanical systems foundry. Federated learning is used in a predictive
maintenance scenario using the C-MAPSS dataset.

Keywords: Variational Autoencoders � Federated Learning � Unsuper-
vised Learning � Predictive Maintenance

1 Introduction

Usually, deep learning methods are in need of a lot of labeled training data and
computing resources to exploit their full potential. In most industrial applica-
tions, labeled training data is very expensive and time-consuming to collect.
With the ongoing trend of bringing artificial intelligence (AI) on edge and em-
bedded devices, also known as edge AI, the computational power is limited too.
In this paper, methodologies that counteract the scarcity of labeled data are
presented and exemplified by selected applications from production industry.
These methods are variational autoencoders and federated learning [3], which
are applied to the following applications:

1. Clustering and visualization of wafermap patterns
2. Anomaly detection for sensor data of a furnace
3. Predictive maintenance using federated learning

In the first two applications unsupervised learning is employed, which is a classi-
cal methodology to detect patterns in data without the need of labeling the data.
In the latter application, federated learning is used to demonstrate its use in the
case of edge AI. All of these applications are used as examples, to demonstrate
the usage of aforementioned techniques.
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2 Methods & Related Work

In this section, variational autoencoders and federated learning are introduced.

2.1 Variational Autoencoder

Autoencoders belong to the family of unsupervised machine learning meth-
ods and are used for dimensionality reduction. An autoencoder encodes high-
dimensional input data to a lower dimensional latent space and then decodes
this back to its original dimension to restore the input data. A variational au-
toencoder (VAE) encodes the input to corresponding mean and variance, which
means that the input data is assumed to come from (or) generated from a sta-
tistical process [2]. These mean and variance are used to reconstruct the input
during training. Doing this, forces the encoding of the latent space to be mean-
ingful everywhere. For both methods, the lower dimensional latent space is used
to e.g. analyse or visualize the original data distribution.

2.2 Federated Learning

The AI market is dominated by tech giants like Google, Amazon and Microsoft,
which provide cloud solutions and APIs (application programming interface)
for AI. This monopolization of data, develops mistrust, especially in small and
medium-sized companies to make their data available for AI or to use it them-
selves. Instead of collecting data and sharing it in a data center, the data should
be kept on the embedded devices where it is collected. To be able to use AI in
this scenario, McMahan et al. [3] introduced a learning algorithm in 2017 that
allows any number of clients with local training to improve the model param-
eters of a global model shared with all other devices. This algorithm is called
federated learning that follows the approach of “bringing code to data instead of
data to code”.

Imagine a production chain in which several motors and heating elements
are in operation. In order to avoid production downtimes, the machines are
equipped with sensors that allow to do condition monitoring. Predictive main-
tenance algorithms estimate the next maintenance date based on the results of
this monitoring. It is evident that such sensitive production data should not
leave “the house”. To prevent this from happening, the machine learning model
is trained with the locally kept data in the company and only the model param-
eter changes are forwarded to the server. The server collects the parameters of
each production line and aggregates them by the federated averaging algorithm.
The updated model is then redistributed to all clients.
The use of federated learning in the application case of mechanical manufacturers
has some differences compared to the original intended application by Google.
The main difference is the number of clients and therefore less possibility to
compensate for outliers.
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3 Results

3.1 Clustering and Visualization of Wafermap Patterns

(a) Input (b) Reconstruction

Fig. 1: Comparison of input wafermap image with reconstructed wafermap image.

Production of chips from silicon wafer requires optimum performance checks
for each chip, which are typically electrical measurements. The electrical mea-
surements for all chips of a wafer results in a wafermap (see Fig. 1). A wafermap
visualizes the measured values of one electrical measurement as color-coded val-
ues. Wafermaps produced in a production process, may contain patterns that
are result of production and material changes over a time horizon. The observed
patterns can be utilized to gain insight into their cause of production.
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Fig. 2: Structure of encoder and decoder section of wafermap VAE.

The wafermaps studied in this paper come from the microelectromechanical
systems (MEMS) foundry at Hahn-Schickard. A diverse range of patterns are
available in these wafermaps. This requires identification of patterns on all of
the available wafermaps. To avoid to have to go through all of the wafermaps
manually and keep track of all the patterns along with adding labels, we chose
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unsupervised learning techniques to help cluster all wafermaps with similar pat-
terns in the same cluster.

Fig. 3: Visualization of representations for the learned latent space.

Following [4] and [6], it was chosen to use a variational autoencoder to learn a
lower dimensional latent space for the wafermaps of the available wafers. A two
dimensional latent space representation was utilized, to make the encodings more
human interpretable. This lack in dimensionality led to a bias in reconstruction
of the wafermaps. This bias can be seen in Fig. 1b. But this wafer reconstruction
did not change the patterns appearing in the wafermaps. The architecture of
encoder and decoder subsection of the variational autoencoder is shown in Fig. 2a
and Fig. 2b, respectively. One can view the latent space based reconstructions
produced by trained variational autoencoder for wafermaps in Fig. 3.

Fig. 4: Clustering of encodings formed in the latent space using k-means clus-
tering and visualization of wafermaps that are representative for their clusters
(best viewed in color).

Once the encodings are generated, they are utilized to perform clustering of
patterns available in wafermaps. A k-means clustering method was utilized to
identify the clusters in the given latent space as seen in Fig. 4. From Fig. 4 one can
see how many different patterns there are and how often each pattern appears.
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With this information, one can deal with the most frequent patterns and try to
identify the processes that produce these patterns, to avoid the patterns in the
future.

3.2 Anomaly Detection for Sensor Data of a Furnace

Fig. 5: Raw visualization of latent space encodings.

Fig. 6: Visualization of latent space encodings with fitted Bayesian distribution.

Measurements of various sensors (eight temperature sensors, a couple of
gaseous concentrations, timestamps, etc.) were recorded during the manufac-
turing process in a furnace. Proper detection of anomalies in this recorded high
dimensional space of timeseries data is difficult and error prone. To deal with
this, unsupervised deep learning was used for dimensionality reduction.

The data of such a process has to be processed properly, as it is time depen-
dent. First, a difference between all of the consecutive datapoints of all measure-
ments (including time) is calculated and is appended to the state as input too.
Then all data is normalized.

In this paper, a variational autoencoder was utilized to reduce the multi-
dimensional process parameters to a two dimensional latent space as shown in
Fig. 5. The architecture of encoder and decoder section of the VAE can be seen
in Fig. 7a and Fig. 7b, respectively. Once the network is trained, one can see
cluster of points for all process steps, such as heating up, processing and cooling
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Fig. 7: Structure of encoder and decoder section of VAE for sensor data of fur-
nace.

down. If one sees the need, then the encoder network can be further tuned to
separate the clusters even more by means of labeled process information.

Once the final latent encodings for all different process steps are produced,
one can fit them into individual bayesian mixture distributions, see Fig. 6. Then,
distance from the observed distribution is used to detect anomalies. Fig. 8 shows
a well performing batch, which can be observed via the distance from observed
distribution.

Fig. 8: Visualization of a well performing batch for the process.

3.3 Predictive Maintenance using Federated Learning on Edge
Devices

With the use of federated learning, a use case is presented with a machine man-
ufacturer offering a predictive maintenance service to its customers. Each cus-
tomer updates a machine learning model using the data of its machine and sends
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the model update back to the machine manufacturer. The developed network ar-

Path of weight 
updates

Path of global 
model
P
m

(a) Federated learning architecture (b) Comparison of learning results

Fig. 9: Architecture for federated learning; Comparison of learning results for
federated learning, one big centralized dataset and one worker standalone, re-
spectively.

chitecture is shown in Fig. 9a. The architecture can consist of a large number of
workers and one server. Workers are edge devices at different performance lev-
els, which are installed at the different customer locations, where they remotely
train neural networks on the respective data. Here Nvidia Jetson Nano, Rasp-
berry Pi 4 and Intel NUC were used as workers and Raspberry Pi 3 as server.
All workers consist of a neural network model and a transmitter/receiver unit
that controls the transmission and reception of shared data. The server consists
of an aggregator part that combines the individual weights in a global model
and a sender/receiver which connects the server to the network.
MQTT is commonly used as network protocol in the field of internet of things
(IoT) due to several reasons. Among others it has small overhead, it can be
scaled easily, it is easy to implement and preserves privacy, thus it is used in this
federated learning scenario as well.
Till date, we have tested federated learning in a network with four to 30 workers
on predictive maintenance datasets. As a result, each subdataset of the well-
known C-MAPSS dataset [5] was distributed unevenly among these workers. To
improve the federated learning results on each subdataset, the learning rate of
the optimizer was adjusted as well as the number of learning epochs on the
customer data. Taking the training on a centralized storage as benchmark with
the complete training dataset stored at one place, the federated averaging (Fe-
dAvg) [1] algorithm performs very well. Fig. 9b shows losses from training of
centralized model and the single worker model over the learning epochs. The
loss incurred for federated learning is shown above the “communication rounds”
axis. A single “communication round” contains the four steps: (1) Distribution
of the model from server to workers, (2) Training of models on worker’s data for
several epochs, (3) Sending weight updates from workers to the server, and (4)
Aggregating weight updates by federated averaging into a new global model.

Fig. 9a shows that learning on distributed datasets achieves almost the same
accuracy as learning centralized. This comparison is made only to assess the
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performance in terms of prediction. Centralized learning can only be seen as a
benchmark, not as a real alternative as privacy preservation is not sufficient. The
learning results of federated learning, when compared with results attained by
a single worker (without connection to federated learning), are better, because
one single worker operates on less amount of data. The amount of data available
to one single worker, was often not sufficient to achieve clean convergence.

4 Conclusion

In this paper, it was shown that deep learning can be used for industrial pro-
cesses, where data is scarce and data privacy is important. Mainly, unsupervised
learning methods such as variational autoencoders can be used to cluster and
visualize high-dimensional data as was shown with clustering of wafermaps and
visualization of process data of a furnace. For a sequential and fixed duration
process, one can use such clustering of encodings for monitoring the undergoing
process. Also, for monitoring the final production of any process, latent space
encoding of samples can give insight into issues and opportunities for the pro-
cess.
Furthermore, the basic ideas of federated learning were introduced, which make
them predestined for industrial use cases. It was shown that the accuracy of the
predictions from a federated learning model is in a similar range to the predic-
tion results of centralised training, based on same inputs. In federated learning,
any increase (with required data privacy) in the data volume should thus lead
to an increase in the quality of predictions. The customer of a machine with
a predictive maintenance model, that is optimized via federated learning, will
benefit by reducing production downtime through intelligent algorithms.
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Abstract. Batch runs corresponding to the same recipe usually have
different duration. The data collected by the sensors that equip batch
production lines reflects this fact: time series with different lengths and
unsynchronized events. Dynamic Time Warping (DTW) is an algorithm
successfully used, in batch monitoring too, to synchronize and map to
a standard time axis two series, an action called alignment. The online
alignment of running batches, although interesting, gives no information
on the remaining time frame of the batch, such as its total runtime, or
time-to-end. We notice that this problem is similar to the one addressed
by Survival Analysis (SA), a statistical technique of standard use in
clinical studies to model time-to-event data. Machine Learning (ML) al-
gorithms adapted to survival data exist, with increased predictive perfor-
mance with respect to classical formulations. We apply a SA-ML-based
system to the problem of predicting the time-to-end of a running batch,
and show a new application of DTW. The information returned by open-
ended DTW can be used to select relevant data samples for the SA-ML
system, without negatively affecting the predictive performance and de-
creasing the computational cost with respect to the same SA-ML system
that uses all the data available. We tested the system on a real-world
dataset coming from a chemical plant.

Keywords: Batch Process Monitoring � Dynamic TimeWarping � Time-
to-end Prediction � Survival Analysis

1 Introduction

Batch production is a common manufacturing technique for chemical, pharma-
ceutical and food industries where a given product is realized in a stage-wise
manner following a given formula or recipe. Such recipe defines rigorously the
sequence of steps that each batch run follows. Nonetheless, it is quite common
that distinct batch runs for the same recipe differ in several aspects, some of
them time-related. For example, total duration or duration of the individual sub-
phases can vary and, even in synchronized phases, significant events or alarms
can happen at different relative positions in time. The magnitude of such varia-
tions requires advanced process monitoring techniques to ensure the consistency
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and the quality of the product, to improve the safety levels of the plant, and to
better understand and control the process [16]. This monitoring is, in turn, ben-
eficial to the process operations, planning and can lead to overall improvements.
A particular branch of process monitoring is statistical process monitoring: these
techniques rely on mathematical tools that help to identify and control varia-
tions in the production process, analyzing data coming from the reactors. This
data, collected from a large number of sensors, comes with some peculiar char-
acteristics as a consequence of the temporal variability stated above, affecting
the analysis performed. Many established statistical techniques for process mon-
itoring, such as Multiway Principal Component Analysis (MPCA), require that
the input data have equal length, that for a batch process is its duration. As
stated above, even in case of the same duration, significant events could be asyn-
chronous, leading to problems during the analysis, such as comparing different
but synchronous events. These issues are not unique to batch data: Dynamic
Time Warping (DTW), originated in signal processing [19], is a widely success-
ful and often adopted technique to homogenize data with a different time frame
to a standard duration and synchronization of characteristics. An adoption to
batch data is given, for example, in [9].

There exist different versions of DTW. In batch monitoring, standard DTW
is used to align two completed batches, mainly during offline analysis when
completed batches are available. The open-ended version is useful in online sce-
narios, where a running, and therefore incomplete, batch is aligned to a prefix
of a completed batch. As such, a comparison between the running batch and
a historical one is straightforward. Unfortunately, such alignment does not give
any information on the remaining time frame; for example, the time left before
completion of the batch, the focus of our work. This specific issue can be seen
as a time-to-event modeling problem, addressed by techniques such as Survival
Analysis (SA). SA is a standard adopted technique in clinical studies to model
the time until the occurrence of an event of interest, usually linked to the course
of an illness. Many machine learning (ML) algorithms, like the ones described in
[6], have been adapted to handle survival data, resulting in improved predictive
performance over more standard techniques.

In this work, we propose a system combining DTW and SA that aims at
predicting the total duration of a running batch given historical information on
the process. We first check the feasibility of using SA in the context of batch
monitoring. Then we investigate if by applying DTW, it is possible to obtain
any improvement regarding the predictive performance or the computational
cost. As described in Section 5, we apply DTW, not as a time normalization
technique or to compute a distance measure, but as a data-selection tool: we use
the mapping information contained in the warping path, one of the algorithm’s
output, to select only a fraction of the data available. This data is used to train a
SA-ML-based algorithm that, followed by a standard regression model, returns
an estimate of the time-to-end of a running batch. We show that the same SA
model trained only on the fraction of data selected via DTW performs as good



Prediction of Batch Processes Runtime 55

as the same model trained on all the data available, sometimes even better. A
significant improvement is observable in the computational cost of the approach.

The rest of the paper is organized as follows. Section 2 and 3 expose some
useful facts about Dynamic Time Warping and Survival analysis, respectively.
Section 4 briefly describes the batch data used in evaluating the system proposed,
and some data preprocessing realized. Section 5 describes in detail the proposed
system, while Section 6 shows an evaluation of the results obtained. Finally,
Section 7 concludes the paper.

2 Dynamic Time Warping

Dynamic Time Warping (DTW) is the name of a class of algorithms used to
compare two series of values with possibly different length; the main applications
regard time series. The idea behind this technique is to stretch and compress
the two series to make one resemble the other as much as possible. This warping
accounts for non-linear fluctuations of the time axis.

Once warped, the two series have the same length, and similar patterns are
aligned. These are the time-normalization and event synchronization effects, re-
spectively.

The main objects of interest are two: the warping path and the DTW dis-
tance. The warping path is a mapping between the time indexes of the two series.
We can interpret multiple correspondences between one index on a series and
multiple ones on the other as the stretches and compressions mentioned above.
The warping path is the optimal mapping that minimizes the distance between
the warped series: this minimal distance is the so-called DTW distance.

Usually, when using DTW, we identify a reference series and a query one.
The usual set-up is to select only one reference Y to which we align several
queries Xi, i ∈ {1, . . . , I}.

The standard version of DTW aligns the two series in their entirety, mapping
the end-points of the two series to each other. Formally, if

Y = (y1, . . . , yN ) X = (x1, . . . , xM )

then the standard alignment satisfies the following condition for the end-points

x1 −→ y1 xM −→ yN

On the other hand, the open-ended version aligns a query to a reference’s prefix:

x1 −→ y1 xM −→ yn, 1 ≤ n ≤ N (1)

In this work, we mainly use the open-ended version, that is suited for online
applications, being able to align an incomplete batch to a reference one.

DTW has been applied for time series classification, clustering, in various do-
mains. References to such applications can be found in [5]. In these applications,
the quantity of interest is mainly the DTW distance.
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First applications of DTW to batch process monitoring can be found in [17,9].
The emphasis of these works is on the alignment of batch data, but only offline
(completed batches). Online applications of DTW are present in the literature,
for example in [4], mainly in conjunction with more advanced monitoring tech-
niques as MPCA. In this work we use open-ended DTW as a data-selection tool:
we use the index n in Equation 1 to select the points xi

Ni
of the historical batches

that were mapped to the same point. We suppose that these points are the ones
containing most of the relevant information to the time-to-end prediction at the
given time on the running batch.

3 Survival Analysis

Survival Analysis (SA) is a sub-field of statistics where the goal is to analyze
and model the data where the outcome is the time until the occurrence of an
event of interest [20]. The main feature of SA is the ability to deal with censored
data, that is when the event could be unobserved in the time-frame considered
in an experiment. Standard approaches to SA allow to model the time to the
event of interest and obtain an estimate of it. The statistical modeling is the
focus of classical approaches, while their predictive performance is limited. More
recent developments focus on machine learning approaches to SA [6], adapting
loss functions of known algorithms to the specific problem of SA, time until the
event of interest. For survival models that do not rely on Cox’s proportional
hazards assumption [3], the predictions are risk scores of arbitrary scale and not
the actual time-to-event. If samples are ordered according to their predicted risk
score (in ascending order), one obtains the sequence of events, as predicted by
the model [2]. In this work, we use one of these algorithms, Gradient Boosting
Survival Analysis [6,1]; we apply a standard regression algorithm to convert the
predicted risk to an actual time-to-event estimate.

4 Data

The data used to test the proposed system comes from a chemical batch pro-
duction line. The data consists of 383 batches, spanning three years (2015-2017)
of measurements, with a duration between 146 and 960 minutes. We represent
each batch as a multivariate time series: each dimension is a process variable
(PV), with a standard sampling rate of 1 value per minute for every batch and
every PV. The PVs come from different sensors that equip the production line:
they can represent engineering variables, control variables, or state variable. The
exact nature of the PVs is confidential.

Data normalization. The application of DTW requires the data to be nor-
malized to avoid artifacts due to different scales of the values. When applying
DTW, we have to select a batch as reference, to which we align every other
batch. To have a coherent online normalization, we decided to use a Min-Max
scaling approach, and as the normalizing interval, we chose the range of values
of each PV in the reference batch. This choice makes the normalization of the
data coming from the running batch straightforward.
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Reference batch and significant features. For every set of batches consid-
ered during the experiments, we had to select one batch as reference, considered
the typical one. Following domain expert’s advice, we chose the batch with me-
dian duration. Since constant variables have no warping information, we disre-
garded PVs with a constant trend in the reference, removing them from the rest
of the batches too.

5 Proposed System

The system proposed in this work, which we call SA+DTW-system, is schemat-
ically represented in Figure 1. It has two phases: offline and online.

Fig. 1: Overview of the proposed system

During the offline phase, the historical data about previous batches is aligned
to the selected reference batch using open-ended DTW on every prefix of the
batches, storing the information about DTW distance and alignment. The re-
sulting dataset contains the following information:

– The current time index on the running batch
– The index n of Equation 1. It’s the end point of the reference’s prefix to

which the running batch has been aligned
– The DTW distance between the query batch and the reference’s prefix
– The value of every PV of the query batch at the given time
– The time-to-end of the batch. This quantity is the target variable of the

model

During the online phase, the running batch is aligned to the same reference
as in the offline phase via open-ended DTW. From this alignment, we get two
pieces of information: the index n of the mapped prefix on the reference and the
DTW distance. n is used to filter the dataset obtained offline: only the entries
mapped to the same n are selected and kept for the next step. This step consists
of training a SA-ML-based model to learn the risk score based on the features
mentioned above. The model is then able to assign a risk score to the running
batch. This risk score is then converted to an actual time-to-end estimate by
a regression model (Random Forest) trained on the risk scores assigned to the
filtered dataset.
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Table 1: SA-system stats
Year 2015 2016 2017

Training dataset size
[rows × columns]

39431×28 77989×34 79833×34

Training time
[minutes]

34 126 134

Single prediction time
[seconds]

∼ 0.6 ∼ 1.1 ∼ 1.1

Table 2: SA+DTW-system stats
Year 2015 2016 2017

Average dataset size
[rows × columns]

149×28 180×34 131×34

Single prediction time
[seconds]

< 1 < 1 < 1

Software used We used the Python [18] programming language to develop the
whole system. The python packages we used are: Numpy [11], Scikit-learn [12],
SciPy [8], Matplotlib [7], Pandas [10], Scikit-survival [14,15,13]

6 Results

The data set had distinct characteristics in each year. Thus we split the overall
data set into three parts and considered them on their own. For each year we
considered approximately the first 2/3 of the batches as historical data, and
the remaining 1/3 of the batches was used to test the system. In particular, we
have for the three years considered the following historical/test batches: 80/40,
101/50, 75/37.

The focus of this work is on the improvements that can be obtained select-
ing the data via DTW, in particular before applying SA. We compared three
methods to this end. The first method uses the average duration of the batches
longer than the running batch as an estimate for the total duration of the run-
ning batch. This method uses only historical information, and it is considered as
a minimum performance to be reached by any system to be considered useful.
The second method, the SA-system, uses all the historical data at once as train-
ing data for a SA-ML based algorithm, followed by a regression model (Random
Forest) for the conversion of the risk score to time-to-end estimate. All the pre-
dictions obtained by this method come from the same model. The third method
is the system proposed, the SA+DTW-system described in Section 5. Figure 2
shows the results for the 2017 data. The results of the other two years show no
significant differences from this one.
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Fig. 2: Comparison of the performance (mean absolute error) of the three
models tested (2017 data). The SA+DTW-system shows a comparable

performance to the SA-system

7 Conclusion

The results from last section show two main facts. Firstly, Survival Analysis is
suited to be used in batch process monitoring. The information contained in the
process variables can be used to model the time-to-end of a batch process, at
least for this type of process, with a sufficiently good performance, as judged by
some domain experts to which the results were shown. Secondly, the mapping
between running and reference batch performed by Dynamic Time Warping is
an effective tool to select relevant data from the historical one. The consistent
performance between the SA and the SA+DTW system can be interpreted as a
good action of the DTW mapping in reducing the noise contained in the data:
the relevant information to model the time-to-end is retained when cutting out,
on average, more than 99% of the samples available.

These results represent only a first approach to this problem. We think that
many improvements could be obtained with careful tuning of the system. Firstly,
we used non-optimized parameters for the SA-ML algorithm: the definition of a
global performance metric could help in choosing optimal parameters for a given
process. Then, the DTWmapping has been performed using the standard version
of DTW, but more sophisticated approaches are already present in literature,
such as shape-DTW [21]. We think that the performance on the data-selection
side could improve given more stable alignment since the version of the algorithm
used is susceptible to the noise in the process variables. We think that taking
into account this noise is an effective way to stabilize the online alignment and
possibly remove the need to aggregate successive predictions of the system to
stabilize them.
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Abstract. The rise of artificial intelligence (AI) promises productivity gains in 
industrial practice. While IT technology offers a variety of technological ad-
vances, plant owners strive for stability and robustness of the production process. 
To overcome this tension field, we propose a set of 16 requirements for the de-
velopment of industrial AI solutions to foster i) the adaptation process, ii) support 
the solution engineering and iii) ease the embedding into the existing system 
landscape while respecting iv) safety aspects to build up v) trust into industrial 
AI solutions. The proposed requirements can guide industrial stakeholders to fo-
cus on the right solution approach for specific production challenges and support 
them in voicing their own needs towards novel AI solutions. This will help AI 
developers to speed up time-to-market as well as to increase market acceptance 
of industrial AI solutions. Overall, specifying requirements on industrial AI will 
foster the acceptance and utilization rates of AI solutions in industrial practice. 

Keywords: Artificial intelligence, AI, industrial AI, industrial production, re-
quirements, digital twin, autonomy, manufacturing, Industrie 4.0, Industry 4.0, 
use-case. 

1 Introduction 

The introduction of software methods into industrial automation is currently a key 
source of innovation. E.g., the announced fourth industrial revolution (Industrie 4.0) 
aims for the introduction of internet technology into production and promises produc-
tivity gains across all phases of an industrial plant [1]. While IT technology promises a 
variety of possibilities or opportunities, plant owners aim for stability and robustness 
of the plant, requiring reliability and proven technology. This is a field of tension be-
tween feasibility and stability and related industrial requirements have been formulated 
[2].  

The same now applies with the introduction of artificial intelligence (AI) into pro-
duction. Not everything that is possible with mainstream AI is applicable in industry. 
Therefore, the authors propose a set of industrial requirements for AI solutions as a 
basic guideline for industrial AI developers and vendors. 
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a)                                                                 b) 

Fig. 1. a) Ingredients comprising Industrial AI. b) Topics of discussion around indus-
trial AI. 

 

1.1 Usage of AI in Industrial Production 

The application of AI technologies in industrial is not a new topic and has been sub-
ject to scientific investigations also during previous periods of AI research, e.g. [3,4]. 
More recently, research focused on the application of AI techniques in fault diagnosis 
and predictive maintenance [5-12] as well as decision support systems [5,13]. Current 
academic investigations aim at the coordination of the introduction of AI into all layers 
of production systems [14] as well as production-wide maintenance processes [15]. 

 
1.2 Industrial AI 

Besides existing definitions of Industrial AI [16,17], we define Industrial Artificial 
Intelligence for this study as the combination of sensors & IIoT, (big) data, algorithms 
and processing power (Fig. 1a). However, the discussions about Industrial AI, as the 
authors experience them in daily practice, are not limited to technological aspects of 
AI, but rather mix questions about technology, industrial applications, value creation, 
human-AI-interaction, regulatory aspect as well as ethics (Fig. 1b). These broader un-
derstanding of Industrial AI bring up additional requirements from an industrial per-
spective, which need to be addressed for Industrial AI to unfold its full (positive) impact 
on an industrial production. 

 

2 Requirements on industrial AI 

The presented requirements were collected during the years 2017 and 2018 in an 
unstructured fashion during several industrial research projects and end-customer dis-
cussions in the field of AI-enabled production systems. The collected requirements can 
be sorted in five categories (Tab 1), which build upon another (Fig. 2). 

 
 
 
 



Proposal for requirements on industrial AI solutions     65 

 
Fig. 2. Interdependence of requirements on Industrial AI. 

2.1 Adaption of Industrial AI systems 

The introduction of novel technology into production environments brings some spe-
cific requirements with it, as we deal mostly with existing production facilities, so-
called brownfield environments. Brownfield environments are characterized by a zoo 
of existing IT and OT systems, as well as experienced employees running the produc-
tion. 

1) Stepwise introduction. Industrial AI should be introduced step by step so that it can 
initially validate itself in the context of production. A parallel operation with conven-
tional automation technologies is desirable in terms of confidence generation. The 
power of decision should be gradually transferred from the conventional automation 
technology to the industrial AI, similar to the gradual increase of autonomy of the sys-
tem [18]. It is to be noted though that for safety and reliability reasons, some critical 
functionality may remain in a conventional automation system. The Industrial AI sys-
tem will thus be operating under the supervision of the safety governing system. 

2) Human in the loop / system autonomy. During the introduction phase of Industrial 
AI in production systems, human should remain in control of all decisions, i.e. the In-
dustrial AI may only serve as expert system or decision support system, corresponding 
to lower levels of autonomy [18]. Only by time, the autonomy of the Industrial AI may 
increase. 

3) Data availability. AI systems usually require massive amounts of data. In industrial 
settings we usually struggle far more with the data quality [15], including the amount 
of relevant information contained in large amounts of machine data [19-21]. Further-
more, data from heterogeneous OT and IT systems needs to be accessed, usually 
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bringing legal, contractual, cultural, commercial, technical and security topics on the 
table [21]. 

Table 1. Overview of proposed requirements on Industrial AI solutions. 

Area Requirement 
Adaption 1. Stepwise introduction 

2. Human in the loop 
3. Data availability 
 

Engineering 4. Virtual learning 
5. Adaptation 
6. Simplicity (hiding of complexity) 
 

Embedding 7. Stacking of AI decisions 
8. Trust space and borders 
9. Knowledge distribution 
 

Safety / Security 10. Safety 
11. Robust against adversarial inputs 
 

Trust 12. Traceability and transparency of decisions 
13. Bias-free 
14. Confidence measure 
15. Trust / quality classification 
16. Proof of capabilities 

  
 

2.2 Engineering of Industrial AI systems 

Once general problems with the introduction of Industrial AI systems are overcome, 
the engineering of such novel systems requires special attention. 

4) Simplicity / hiding of complexity. Industrial AI solutions may not be designed a 
way such that the adaptation to new production lines or customer settings requires em-
inent engineering efforts, as this would counter a main advantage of AI-based solutions. 
The user of AI-based production systems will most-likely not have a mathematical or 
computer science education and thus also the usage and operation of industrial AI sys-
tems shall be simple and hide all otherwise required technical complexity. A more sim-
plistic design of Industrial AI solution will also lead to greater robustness of the system 
[23]. 



Proposal for requirements on industrial AI solutions     67 

5) Virtual learning. Industrial AI should learn over time and the learning should not 
be limited to physical tests but should additionally be executed in virtual environments 
as much as possible, e.g. utilizing digital twin concepts [24-26]. In the result, e.g. a 
robot can optimize its path virtually.  

6) Adaptation. Industrial AI should continuously adapt its capabilities to a changing 
production environment. Environmental changes (e.g. position drift) need to be de-
tected and handled correctly.  

2.3 Embedding of Industrial AI system in existing production system 
landscape 

Industrial AI systems independent of their embedding in either greenfield or brownfield 
environments will interact with several other OT and IT systems in the production fa-
cility and beyond. Besides well-known technical requirements of the interfaces between 
such systems, further requirements will come up in light of the broader capabilities of 
Industrial AI systems. 

7) Trust space and trust borders. In case that industrial AI provides functionality, 
which cannot be achieved with traditional automation technology (e.g. gripping of 
loose parts in box) and hence no classic system backup is possible, a dedicated check-
point is required which allows a human to prove the plausibility of taken decisions. 

8) Knowledge distribution. Industrial AI should be able to distribute its knowledge 
and learnings to other industrial AIs, either directly or via superior systems or commu-
nication networks.  

9) Stacking of AI decisions. Industrial AI should initially not base its conclusions on 
data that have themselves been created by another AI.  

2.4 Safety and Security of Industrial AI systems 

Safety and security are both in the OT and IT world hard requirements, although fail-
ures in production systems such as chemical processes or power plants can cause far 
bigger damage than compromised mainstream AI applications. The individual require-
ments regarding safety and security may fill complete studies by their own. At this, we 
would like to only highlight two requirements exemplarily. 

10) Safety. Vendors and providers of industrial AI-enabled machines or production 
systems need to ensure that the they work safe according to the EU Machinery Directive 
2006/42/EC [27] as well as categorized according to IEC61508 Safety Integrity Levels 
(SIL), i.e. the industrial AI may not pose a danger to humans in any possible operation 
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condition and the risk of failure should be made transparent according to the IEC reach-
ing a best possible SIL. Industrial AI solution should in the future also be able to prove 
that they are safe even under recursive self-improvement [28]. 

11) Robustness against adversarial inputs. Industrial AI needs to be robust against 
accidental and intended adversarial inputs to ensure a maximum of protection of the 
production process.  

2.5 Trust in functionality of Industrial AI systems 

Production workers and managers fully trust today’s production systems. This trust 
needs to be carried over into AI-enabled production systems, especially in the light of 
prominent examples of failing mainstream AI [29]. 

12) Traceability and transparency of decisions. Industrial AI should be able to ex-
plain its decisions, e.g. by means of visualizations. Errors in the industrial AI’s assump-
tions shall be recognizable and correctable. Example: if a workpiece is recognized by 
industrial AI, the considered elements of the workpiece should be visualized. False as-
sumptions should be highlighted and correctable.  

13) Trust/quality classification. Industrial AI should be divided into trust/quality clas-
ses, which are backed by statistics. This is to express the probability of failure of the 
AI, e.g. determined by experiments or field tests. Industrial AI can be stacked if the 
underlying AI fulfills a sufficient trust category. 

14) Proof of capability. Industrial AI should allow to check its capabilities and limita-
tions in a determined and safe space, e.g. in a virtual environment or a test run.  

15) Bias-free. Industrial AI needs to be constructed free of bias, e.g. treating equipment 
of all vendors in the same manner. Besides still feeling superior to machines in the 
consumer world when looking at failing AI [29], Industrial AI may never suffer from 
bias in data leading to a negative impact on production. As such Industrial AI systems 
need to be thoroughly tested before the usage in a productive environment, e.g. in the 
virtual layer of a CPS. 

16) Confidence measure. Expectation on Industrial AI system higher than on indus-
trial worker or consumer AI solution. Especially in European countries Industrial AI 
system are expected to have 100% solution rate and 0% error rate. This of course cannot 
be achieved, neither by a technical system nor by a human expert. It is therefore re-
quired that Industrial AI system provide a confidence measure together with decision 
making or action recommendations. 
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3 Discussion  

The aim of the presented study is to trigger further discussions about requirements on 
the introduction of AI into industrial production environments. The presented list of 
requirements may not be conclusive but covers many aspects specific to Industrial AI 
solutions. Further requirements left out in the presented list may cover topics such as 
data / analytics privacy [30], ethical implication [31], potential malicious use of AI [32] 
as well as AI-vendor lock-in [23].  

The term of “Industrial AI” has previously been defined differently to the definition 
presented in the introduction of this paper [16,17]. Our definition is however not con-
tradicting the previous definitions, but rather sharpens the understanding of Industrial 
AI in the context of the present study. Previously, the definition of Industrial AI also 
included application requirements [17] or Industrial AI was thought to “function as a 
bridge connecting academic research outcomes in AI to industry practitioners” [16], 
which both fit to the topics surrounding Industrial AI (Fig 1b), from our perspective. 

It is interesting to note that some of the presented requirements correspond with 
identified requirements on Industrial AI correspond to research fields recently identi-
fied for Scientific Machine Learning [33]. We foresee future developments of Industrial 
AI in the areas of i) production system autonomy [18], ii) product life cycle manage-
ment [15], especially because AI life cycles will become more complex to manage [23], 
iii) virtual industrial assistants [34], iv) explainable AI [35] and v) the seamless fusion 
of different data pools in production sites.  

4 Conclusion  

The introduction of Industrial AI brings up a tension field between plant owners striv-
ing for reliability and stability of the production and AI technologies entering the pro-
duction systems. We proposed a set of 16 requirements in five categories as guide-
lines for Industrial AI developers as well as Industrial AI users to foster the adaptation 
of the new opportunities arising from AI in the industrial domain. 
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Abstract. In this paper, a new information model for machine learning appli-
cations is introduced, which allows for a consistent acquisition and semantic
annotation of process data, structural information and domain knowledge from
industrial productions systems. The proposed information model is based on In-
dustry 4.0 components and IEC 61360 component descriptions. To model sen-
sor data, components of the OGC SensorThings model such as data streams and
observations have been incorporated in this approach. Machine learning models
can be integrated into the information model in terms of existing model serving
frameworks like PMML or Tensorflowgraph. Based on the proposed information
model, a tool chain for automatic knowledge extraction is introduced and the
automatic classification of unstructured text is investigated as a particular appli-
cation case for the proposed tool chain.

Keywords: machine learning, information modeling, model serving, knowledge ex-
traction

1 Introduction

Data in industrial production systems is usually stored in a heterogeneous way, using
a large variety of data formats and semantics. The integration of these data sources,
which cover besides process data also structural information, domain knowledge and
process documents, is an essential prerequisite for the successful application of machine
learning and optimization methods in the context of industrial production. Therefore,
different data sources for machine learning applications (see Fig. 1) need to be fusioned
and semantically annotated with structural information and domain knowledge.
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Information model
for ML applications

structural information
(i.e. CAD-models)

domain knowledge
(i.e. experimental reports)

process data
(i.e. sensor measurements)

machine learning models
(i.e. neuronal networks)

Fig. 1. Knowledge needed about a production process when using machine-learning algorithms.
Fusioning all information leads to the proposed information model for ML applications.

This paper makes the following contributions to this objective:

– A unified information model for machine learning applications in production sys-
tems is proposed.

– Methods for the transformation of plant knowledge into the unified information
model are introduced.

The development of appropriate information models for industrial production systems
is an essential subject of the current research in the context of Industry 4.0 [4]. Ex-
amples are the reference architecture Industry 4.0 (RAMI4.0) [3], modeling languages,
which allow for a structured and component-based of production plants, such as Au-
tomationML [9], and industrial communications standards with information modeling
capabilities such as OPC-UA [6]. However, such general approaches are usually not tai-
lored to the specific requirements of machine learning approaches. In addition to these
approaches, specialized information models exist, e.g. models for the sensor data ac-
quisition like the OGC SensorThings model [1] or standardized XML-descriptions of
machine learning models such as PMML [10].

In this paper, an information model for machine learning applications in production
environments is proposed, which is build upon general I4.0 components and specialized
information models for process data and machine learning models. In addition, a tool
chain is introduced, which enables information to be automatically extracted from sen-
sor data and other information sources and to be stored in the form of a corresponding
information model. In particular, the extraction of features such as parallel automata
and the automatic classification of documents from production environments are con-
sidered.

The remaining part of this paper is structured as follows: The proposed information
model for machine learning applications is introduced in section 2. The tool chain for
knowledge extraction is described in detail in section 3. Finally, a conclusion is given
in section 4.
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2 Information modeling

The essential purpose of the proposed information model is to describe production
plants in such a way that machine learning applications can be straightforwardly ap-
plied to them. Figure 2 shows the complete entity relationship diagram of the proposed
information model. The information model is build upon Industry 4.0 components [5].
Following a hierarchical order, components can be arranged in a tree form using sub-
components, which are specified as attributes of the entity Component. The information
required to describe a production plant

Fig. 2. Proposed information model

for machine learning applications can be roughly divided into four classes, which de-
termine the structure of the proposed information model:

– Structural information: Machine learning approaches require information about
the construction of the production plant, e.g. about the positions of sensors and
actuators. Structural information of the production plant, which comes e.g. from
CAD models, is mainly stored in the component tree using the entity Component.
To store geospatial data for the individual components, the entity Location has been
adopted from the OGC SensorThings model [1].
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– Domain knowledge: In a production process, lots of domain knowledge is is avail-
able, which can be exploited for machine learning. This covers e.g. component
descriptions, experimental reports, log-files, thresholds for sensor signals or infor-
mation about maintenance cycles. The incorporation of such domain knowledge is
mainly implemented by means of the entities ComponentDescription, Feature and
Document. Information about the individual components (i.e. sensor replaced, sen-
sor cleaned, etc.) is stored in the entity ComponentDescription, where it is possible
to add e.g. the Industry 4.0 admin shell [5] and the IEC 61360 component descrip-
tions [2] but also domain specific component descriptions. The entity Feature is
used to add information to a Datastream (i.e. by adding labels, standard deviations,
mean values etc.). Text documents are integrated into the proposed information
model using the entity Document. In doing so, either links to the particular doc-
uments are used or the documents are made machine-readable by following the
approach described in section 3.

– Process data: The process data, which is acquired and fusioned from different data
sources, forms the basis for most of the existing machine learning approaches for
production plants. The information model has to provide detailed information on
the type and the usage of the measurements. For this purpose, the concept of data
streams has been taken from the OGC SensorThing model [1]. The entity Stream-
ingComponent is used to model components containing a Datastream. A Datas-
tream describes in detail what and how the component is measuring (i.e. the unit,
feature of interest, metadata). Hereby, it is worth noting that a streaming compo-
nent can also be an experimental protocol, a log-file or even the operator controlling
the process. To store the individual measurements, the entity Observation has been
incorporated into the information model, which is connected using a one to many
relationship to Datastream.

– Machine learning models: When using machine learning algorithms in a produc-
tion environment those algorithms need to be served correctly. This serving can be
in its simplest form the description of a numerical processing pipeline or in a more
complex way a graph, which is stored in an XML file. Machine learning models
are incorporated into the information model by using the entity MachineLearning-
Model. The proposed information model for ML applications has the possibility
to store those models in a standardized way using XML descriptions such as the
predictive markup model language (PMML) [10], Tensorflow or Pytorch, but it is
also possible to store the served model in terms in a tailor-made, non-standardized
format.

The information model covers in summary 10 entities. Details on the particular entities
are described in the appendix.

3 Tool chain for knowledge extraction

Machine learning methods used to optimize industrial production systems usually re-
quire the evaluation of huge and diverse data sets for successful operation. In such
application cases, the manual extraction of information is time consuming and error-
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prone. Hence, a tool chain has been developed in the present work, which allows for
automatic knowledge extraction using the proposed information model (see Fig. 2).

1 »Machine Learning for Production ML4P« 
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Fig. 3. Tool chain for knowledge extraction

The core of the tool chain consists of distinct ML and statistic methods, which ac-
complish automatic data extraction (e.g. the extraction of machine learning models such
as automata [11], or features such as correlation matrices, data clusters, characteristic
values, surveys, or scatter plots). Besides, different interfaces for data acquisition are
provided, particularly a client for the OGC SensorThingsAPI, a REST interface and
an interface for the offline import of CSV files. The extracted knowledge is integrated
in the proposed information model, particularly in the entities MachineLearningModel
and Feature, and can be used for plant optimization.

The proposed tool chain is also used for the automatic classification of unstructured
text. In this use case, a data pool with several types of text documents is available,
which contains e.g. operation manuals, shift books and repair instructions. In particu-
lar, documents from nine classes are available: operation manuals (MNL), glossaries
(GLS), tables of contents (CNT), labels (LBL), security instructions (SEC), indexes
(IDX), parts lists (PRT), technical data (DAT) and service notes (SRV). A document
classification is used to assign an appropriate document type to each document to allow
for structured access to the particular document. Based on the document type, the docu-
ments are automatically inserted into the Document entity of the proposed information
model.

Initial evaluations of the document classification have been conducted in [12]. In do-
ing so, K-Nearest-Neighbor classification [7] and Bayesian classification [8] have been
investigated for documents of the SmartFactoryOWL, an evaluation platform for cyber-
physical production systems (see Fig. 4). Altogether, each classifier has been learned
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Fig. 4. SmartFactoryOWL

from 194 documents. Evaluations have been conducted on 66 documents. In this pro-
cess, 65 of the 66 documents have been correctly classified for the k-NN classifier. For
Naive Bayes, only 38 documents have been correctly classified. Furthermore, the k-NN
classifier has been observed to significantly outperform the Naive Bayes classifier with
respect to computational complexity. The runtime of the k-NN classifier on 66 docu-
ments amounts to 11s, while the Naive Bayes classifier requires 70s for the same task.
Altogether, the k-NN classifier has been shown to be more suitable for the investigated
application case.

4 Conclusion

In this article, a new information model was introduced, which makes it possible to
record and present in a structured way the information relevant for the use of machine
learning methods in production environments. Furthermore, it was shown that parts
of the modeled information such as process models, features or document types can
be automatically extracted from the available data. In a next step it is planned to in-
stantiate the information model as well as the tool chain at a glass bending plant and
at the SmartFactoryOWL, a demonstration and evaluation platform for cyber-physical
production systems.
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Appendix: Entities of the proposed information model

In this section, the entities of the proposed information model (Figure 2) are described
in detail:
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– Component: In the information model, the entity Component represents an object
that can either be a single part or a composition of several other components (i.e.
tubes, motors, valves). A component can therefore be seen as a part of the overall
system. The attributes are (1) name: meaningful name and (2) description: detailed
description of the component; (3) metadata: additional information about the com-
ponent.

– Location: The entity Location describes the position of the component. This can
be a geo position, a postal address or a position of a component inside the pro-
duction system or somewhere else. The attributes are (1) name and (2) description:
meaningful name and description of the location; (3) encodingType: value code of
the location, i.e. GeoJSON (application/vnd.geo.json) oder plain text (text/plain)
(4) location: value of the location depending on value code.

– Document: This entity contains information about documents for a component.
The attributes are (1) name: meaningful name of the document; (2) documentType:
type of the document, e.g. hand book, service entry or part list (3) encodingType:
type of the encoding, e.g. PDF, and (4) content: storage path of the document.

– ComponentDescription: The component description contains information about
the component, e.g. units, permitted values or schemes for the data transfer in
streaming components. The attributes are (1) name, (2) description and (3) value,
giving a meaningful name and description to the corresponding value.

– IEC61360ComponentDescription: In this entity, component descriptions accord-
ing to the IEC 61360 norm [2] can be stored. For this, the entity inherits from
ComponentDescription and contains an additional code, which is used to identify
the corresponding IEC 61360 class. Further attributes can be added to the entity
according to the IEC 61360 norm.

– StreamingComponent: The entity StreamingComponent inherits from Component
and additionally contains the entity Datastream. The entity is in particular used to
model streaming components like sensors and actors, but it is also suitable for the
modeling of users or operators of the production processes.

– Feature: This entity is used for a data stream or a streaming component to add
further information like a mean value of a data stream, quartile distances or infor-
mation about the underlying probability distributions. The attributes are (1) name
and (2) description: meaningful and description of the feature; (3) encodingType:
value code of the feature like double for thresholds, or matrix of double values for
histograms; (4) value: value of the feature depending of the defined encodingType
and (5) content: path for a more detailed description of the feature.

– Datastream: This entity contains data streams, which are captured by a streaming
component. The attributes are (1) name and (2) description: meaningful name and
description of the data stream; (3) unitOfMeasurement: physical unit of the val-
ues being in the Observation entity; (4) label: type of the data stream, e.g. faulty
or error-free data (5) metadata: additional metadata containing further information
about the data stream (6) timeperiod: Time interval in which the observations take
place; (7) datatype: datatype of the observations depending on the value code (i.e.
double, boolean); (8) samplingPeriod: Used sampling period for the Observations.
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– Observation: The entity Observation contains the process data with the two at-
tributes (1) value: the current value and (2) timestamp: the timestamp of the mea-
surement.

– MachineLearningModel: This entity integrates machine learning models. The at-
tributes are (1) encodingType: the encoding determines how the model is stored ac-
cording to a defined value code (i.e. Predictive Model Markup Language "PMML")
and (2) model: the stored model.
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Abstract. Machine learning and deep learning are widely used in vari-
ous applications to assist or even replace human reasoning. For instance,
a machine learning based intrusion detection system (IDS) monitors a
network for malicious activity or specific policy violations. We propose
that IDSs should attach a sufficiently understandable report to each alert
to allow the operator to review them more efficiently. This work aims at
complementing an IDS by means of a framework to create explanations.
The explanations support the human operator in understanding alerts
and reveal potential false positives. The focus lies on counterfactual in-
stances and explanations based on locally faithful decision-boundaries.

Keywords: Intrusion Detection � Explainable Machine Learning � Coun-
terfactual Explanations

1 Introduction

Advances in machine learning models are associated with an increased complex-
ity of the models. These models appear to end users and even to their developers
as black boxes. The reasoning behind the model is often opaque. The research
field of explainable machine learning focuses on making models more accessi-
ble, transparent and comprehensible for users. Over the past years, there was
a surge in approaches for better explainability of the models. Explainable ap-
proaches are especially sought after in critical use cases like network-security,
medicine or finance. By enabling a lay system user to understand and reproduce
the fundamental workings of a machine learning model, trust can be built and
improved. In an IDS, explanations of the underlying model can help a system
operator to easily understand the model’s judgment and reveal potential false
positives. In a binary classification task (e.g., classifying suspicious vs. normal
behaviour), the concept of a counterfactual explanation is particularly helpful
for the human operator as it formalizes a common thought process: ”Why did
X happen and not Y?”. Counterfactual questions are a tool to expose flaws in
the underlying decision process. By revealing counterfactuals to the system op-
erator, this could clarify his mental model of a black box classifier and uncover
flaws in the model’s judgment. We focus on three aspects:

– Understandability : Explaining the classification of an instance, based on
some form of feature importance.
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– Actionability : Giving practical advice how to change the classification to-
wards the desired result.

– Simulatability : Outlining the decision process to allow a user to simulate the
behaviour of the model.

In the following, we first give some background of existing work and introduce
notations. In Section 3, we then generalize existing counterfactual approaches
into the five phases we consider essential for every counterfactual explanation. We
slightly adapt modules of existing work, which we evaluate on the IDS scenario.

2 Explanations for Intrusion Detection

We denote by f : X → [0, 1] a binary black-box classifier that we want to
explain. We assume that f is pre-trained as part of an IDS. Hence, f maps so-
called attack-vectors �x from a multidimensional feature-space X ⊆ R

n onto the
probability that they are malicious instances.

2.1 Surrogate Models

Surrogate models approximate black-box models either locally or globally in an
interpretable fashion. One of the best known methods to locally explain black
box models by training a surrogate is local model-agnostic explanations (LIME)
[1]. Since their work has been thoroughly explained, tested and used [2], we
will not elaborate on the specifics of the method. It suffices to note that the
idea of LIME is to train a surrogate model g that approximates the original
black box classifier f , g ∼ f , based on training data sampled in a neighborhood
around the instance of interest, �x0. LIME provides a set of feature attributions
(see Section 4) derived from the weights of the linear classifier g trained on the
sampled data set. These attributions tell the user, which features contributed
most significantly to the result.

2.2 Counterfactual Explanation

Laugel et al. [3] note, there is another approach to the local explanation prob-
lem, which yields a slightly different interpretation. Namely, what we propose
to call decision boundary centered explanations. While LIME illustrates which
features contribute to an instance, Local Adversarial Detection (LAD) [4] and
Local Surrogate [3] yield a feature attribution that is relevant at a local decision
boundary. To do so, it is required to find the decision boundary first and then
to train a surrogate on instances located around the decision boundary. Laugel
et al. find the decision boundary through random spherical sampling around the
instance �x0. Wachter et al. [5] introduced another solution based on counter-
factuals. A counterfactual of �x is an instance �x′, that yields the opposite clas-
sification. Thus, given �x and f we are searching for �x′ such that f̂(�x) �= f̂(�x′),
where f̂ : X → {0, 1}, f̂(�x) 	→ 
f(�x)�, is the binary classifier that yields the
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predicted class. Ideally, �x′ is close to �x in the feature space X , with respect to
some distance metric d(·, ·). This formalizes the intuition that the counterfactual
should be similar to the original instance. The major contribution from Wachter
et al. is to consider the search for a counterfactual as an optimization problem.
Formally, Watcher et al. propose to minimize a function

L(�x, �x′, y′, λ) = λ · (f(�x′)− y′)2 + [(1− λ) · d(�x, �x′)]× I(�x′) , (1)

where I(�x′) =

{
0, f̂(�x′) �= y′

1, f̂(�x′) = y′

with respect to �x′. With λ ∈ [0, 1], we control the effect of locality, y′ = 1 − y
denotes the opposite class of the classifier and I is an optional indicator function.
Since the classifier f is a black box, one has to optimize for �x′ using derivative
free methods (e.g., Nelder-Mead). We elaborate on the methods in Section 3.1.
In the following, we are concerned especially with the decision boundary cen-
tered explanations as they tend to yield more decisive results. We will see that
counterfactuals are in fact a by-product of the search for the decision boundary.

3 The Modular Phases of Explanations

We dissect the method of finding decision boundary centered explanations into
five distinct phases, containing the search for counterfactuals. Also, we present
existing approaches for the single phases to give a better intuition (see Figure 1
and Table 1). We start with a given instance �x0 of class A, an attack instance,

of which we want to explain the classification f̂(�x0). The goal is to explain why
f decided �x0 to be class A rather than B, a benign instance. This is the specific
setting of an IDS described above. The semantic goal of the explanation is to
allow the user to judge whether the decision was correct. A consideration that
we wanted to keep in mind during all phases is that inference of the model f , or
f̂ for that matter, might be very expensive. Thus, we aim to keep the number
of queries to the black-box small.

(a) Phase 1 (b) Phase 2 (c) Phase 3 (d) Phase 4 (e) Phase 5

Fig. 1: The five phases of explanations.
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Table 1: Overview of the various approaches for the phases 1 to 5, see Section
3.1-3.5

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

Derivate-Free
[5], Grow-
ing Spheres
[4], Random
Sampling [3]

Magnetic Sam-
pling, Random
Sampling

Linear Search,
Binary Search

Train on sam-
ple set, Train
on boundary
touchpoints

Explanation
with inter-
pretable model
(e.g., small
decision tree)

3.1 Phase 1: Finding the First Counterfactual

The first support point �x′
1, i.e., the first counterfactual, is an instance such

that f̂(�x0) �= f̂(�x′
1). As mentioned in Section 2.2, this can be formulated as an

optimization problem. Alternatively, we can use random approaches similar to [1]
or [4]. Randomly sampling instances in a neighbourhood of the instance �x0 can
be very expensive as the counterfactual might be far away in the feature space
of possible instances. Therefore, we use the optimization approach introduced in
[5] with minor adaptions. Particularly, we use the distance metric

dm(�x, �x′) =
1

n

n∑
i

|xi − x′
i|

MADi
,

that is robust to outliers. Here, n is the dimension of X , xi denotes the i-th
feature value of instance �x and MADi is the median absolute deviation of feature
i in the training dataset P according to

MADi = median�x∈P (xi − x̄i) ,

with x̄i = median�x∈P (xi). We normalize over the number of dimensions as our
framework aims to be agnostic. Next, (1) retrieves the counterfactuals through

φ(�x, y′, λ) = argmin
�x′

λ · (f(�x′)− y′)2 + dm(�x, �x′) . (2)

In our implementation, we minimize (2) with the Nelder-Mead simplex algo-
rithm [6], which is a derivative free method. The result of (2) is the first coun-
terfactual.

3.2 Phase 2: Finding Support Points

Given the first counterfactual �x′
1 ∈ X , we want to find a set S of instances, such

that all �x′
i ∈ S are counterfactuals. Literally speaking, they are located on the

“opposite side” of the decision boundary. The desired goal is to expand S in order
to get a good representation of the actual area where f classifies instances as
class B. The idea behind our approach named MagneticSampling is to expand
the area stepwise into all directions across the dimensions starting from the
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initial sample �x′
1 until the newly sampled instances are no longer classified as B.

For this purpose, we first determine the direction vector �d := �x′
1 − �x0 between

the original instance and the first counterfactual. We deterministically sample
support points �x′

i, i > 1, by rotating �d around �x0, i.e., taking points with distance

‖�d‖ from �x0 that are in the vicinity of �x′
1, with a fixed discretization step size.

This corresponds to taking the support points from the set

B(�x0, �x
′
1, a) = {�z ∈ X : ‖�z− �x0‖ = ‖�x′

1 − �x0‖ and ‖�z− �x′
1‖ ≤ a and f(�z) = y′} ,

with ‖.‖ being the Euclidean norm.
Considering only instances around �x′

1 ensures that we find one connected
decision boundary and not multiple patches. While possibly neglecting other
possible boundaries, this simplifies the explanation [7].

3.3 Phase 3: Finding Decision Boundary

Given the set S of support points or counterfactual points, we approximately
locate the decision boundary, which is somewhere on the line segment between
�x0 and any �x′

i ∈ S. We denote the segment by Li(v) := �x0 + v · (�x′
i − �x0)

with v ∈ [0, 1]. The result of this phase is some abstract representation of the
possibly sophisticated decision boundary in local proximity to �x0. To give an
intuition, this could mean a set of points B such that each �xb ∈ B is on the
decision boundary (a border touchpoint) [3], or it could be a polygon enclosing
the decision boundary in a given segment. Considering the way we sampled
our support points, we can assume that the value of f̂ develops monotonously
on the segment Li. Note that this does not have to be true for the prediction
probability f . Given this assumption we can use binary search on the segments
to approximately locate �xb = Li(v) for some v and thereby reduce the number
of queries to our black-box f from O(n) to O(log(n)).

3.4 Phase 4: Train Explainer on Sample Set

Using the representation of the local decision boundary from Phase 3 we sample
a set T of instances around the decision boundary. Given T we train a simple
model g, called surrogate, to approximate the decision boundary locally. Similar
to [1], we constrain the complexity Ω(g) of the model by imposing constraints
like maximum depth for decision trees or number of non-zero weights for linear
classifiers. Formally, we obtain g out of a class of models G (e.g. decision trees,
linear models, ...) through

ϕ(T, f, L′) = argmin
g∈G

∑
�x∈T

L′(f(�x), g(�x)) ,

where L′ is some loss function (e.g. Mean-Squared-Error loss).
The framework allows manually or automatically limiting the number of

features considered by the surrogate g. If no previous knowledge is available to
select features, Least-Angular Regression (LARS, [8]) can be used to determine
a restricted feature set.
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3.5 Phase 5: Present Explanation & Give Advice

Given the results of the previous phases we can now present various explanations.
The three major examples are

– Feature Importance: As Ribeiro et al. [1] verified, feature importance or
attribution, can be a useful way to understand a decision post-hoc.

– Relative Differences : We use counterfactual instances revealed in phase one
to provide actionable explanations for a user in form of relative differences.
See Sec. 4 for an example.

– Surrogate Visualization: For the aspect of simulability, it is desirable to show
a representation of the model to the user. Due to their computational sim-
plicity, decision trees are favorable for this task.

4 Experiment

In this chapter the fidelity of the surrogates and their configuration is evaluated
on different data sets . Furthermore, we exemplary present possible explanations
for the use case of an IDS. For the IDS2017 [9] and the KDD[10] we trained the
MLP classifier on the subset of Web and DOS attacks. The fidelity quantifies
how well the surrogate model mimics the behavior of the MLP. Fidelity is the
percentage of test examples on which the prediction made by the surrogate
matches with the prediction of the trained black box (MLP) [11].

The results for the different configuration by using 10-fold cross-validation
are displayed in Table 2 and Table 3. Looking at the results from Table 2 for
the IDS data set, we observe that the tree surrogate proposed by the framework
consistently outperforms linear approximations trained in LIME fashion and
according to our linear approach explained in Section 3. As shown in [12], decision
trees also far better in terms of human interpretability. In short, the decision tree
trained on the decision boundary (DB-tree) is both more accurate and more
interpretable. For the random configuration illustrated in Table 3 mostly LIME
outperforms DB-Linear and DB-tree. The results of Table 2 and 3 illustrate that
the systematic approach (Nelder Mead/Magnetic Sampling) is more effective
than LIME and the random approaches.

We continue with a visualization of the possible explanations of our frame-
work, but limit ourselves to the rather novel approaches of relative difference

Table 2: Fidelity for Nelder
Mead/Magnetic Sampling
Data set LIME DB-Linear DB-Tree

IDS [9] 0.85 0.87 0.97
KDD [10] 0.93 0.96 0.99
Heloc [13] 0.86 0.96 0.97
Credit [14] 0.95 0.99 0.99

Table 3: Fidelity for Random
Data set LIME DB-Linear DB-Tree

IDS [9] 0.84 0.91 0.85
KDD [10] 0.92 0.84 0.83
Heloc [13] 0.92 0.78 0.82
Credit [14] 0.96 0.87 0.92
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Fig. 2: Relative feature difference between instance and counterfactual (Data set:
IDS)

same_srv_rate <= -0.352
value = [7547, 11387]

src_bytes <= -0.026
value = [7172, 237]

True

hot <= 0.741
value = [375, 11150]

False

count <= 3.349
value = [7172, 3] value = [0, 234]

value = [7172, 0] value = [0, 3]

serror_rate <= 0.618
value = [210, 11125]

src_bytes <= -0.002
value = [165, 25]

value = [34, 11063] value = [176, 62] value = [0, 25] value = [165, 0]

Fig. 3: Decision Tree trained on the decision boundary (Accuracy 0.99) (Data
set: KDD)

and surrogate visualization for brevity. The feature attribution we can retrieve,
matches in its nature that of LIME and can help a user to understand a decision.
The Relative Difference method on the other hand, makes use of the counter-
factual to give actionable advice. Figure 2 shows the differences between the
instance and its counterfactual for the ten most significant features. It quickly
reveals that the high value of Init win bytes backward caused the erroneous
classification as an attack.

Surrogate visualization on the other hand helps the user to simulate the
decision process. For this task, the decision tree depiected in Fig. 3 is suited
best, as the effort for manually inferring a prediction is low [12].

5 Summary

In this paper, a theoretical framework for modular decision boundary focused
explanations was proposed. By distributing the training of an explainable sur-
rogate in different modules, flexibility and variety is introduced. The aspect
of generating decision boundary centered explanations allows easily generating
counterfactuals. Due to the increasing demand for explainable machine learning
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systems, various approaches should be pursued in parallel. With this work we
contribute to the field of model-agnostic analysis, for which many methods have
been proposed before [15]. Depending on the requirements of the application,
other approaches like those proposed by Pearl et al. [16] ought to be pursued in
parallel. By reviewing the literature on explainable machine learning, we have
encountered a confusing ambiguity when it comes to terminology. Clear research
directions and notation ought to be introduced. More user studies like [12] are
needed to gain more insights of how understanding and actionability really can
be obtained.
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Abstract. The manufacturing industry and, for this research, the auto-
motive manufacturing industry specifically, is always on the lookout for
opportunities to improve production throughput with a minimum of in-
vestment. Identifying these opportunities often requires the observation
of the current production process by experts. This paper is the continu-
ation of the previous work ’Automated, Nomenclature Based Data Point
Selection for Industrial Event Log Generation’. One of its aims is to pro-
vide strategies that can be used to pre-process an in-depth, slightly flawed
industrial equipment log to allow for further analysis. The pre-processing
is achieved by identifying the flaws, removing the non-value added events
and a heuristic methodology to cluster the log into individual sequences.
Expert knowledge then is encoded into engineering features to extend
the log matrix and prepare it for machine learning model generation for
identification of the complete cases. To derive value from the available
data, the sequences are plotted into Gantt charts, and eight hypotheses
are introduced that allow for automated annotations within this chart to
highlight potential areas of improvement. Application of the framework
to real life logs, obtained from stations considered bottlenecks within the
evaluated automotive body shop, lead to the discovery of improvement
potential between two and twelve seconds per cycle.

Keywords: Industrial Logs � Process Mining � Case Clustering

1 Introduction

This research aims to devise an automated framework that will, provided with
the code of the programmable logic controller (PLC), monitor the desired pro-
duction equipment and generate a Gantt chart of its actual sequence while high-
lighting areas of improvement. The proposed framework has been structured into
three distinct approaches.

© The Author(s) 2021
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Systems, Technologien für die intelligente Automation 13,
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The first function required is automated, nomenclature based data point se-
lection and equipment log generation, as described in detail in the authors’ pre-
vious publication [1]. Here the goal is the collection of start and end timestamps
for all motions within a production cell. The relevant tags to be monitored are,
based on their nomenclature, extracted from the PLC program and stored within
a SQL database. The monitoring is done with a centralized workstation utilizing
an Open Platform Communication (OPC) server. The necessary OPC groups
and items are automatically generated. Changes within the status of the PLC
tags will trigger an event which logs those changes in the database. In order
to evaluate the quality of the obtained data, a quality matrix was devised and
applied. The evaluation showed that the records’ completeness was above 96%
for real-life equipment data.

The second step is machine learning based pre-processing. The obstacle to
overcome is clustering the event log data into cases as the raw data do not con-
tain a reliable case identifier. Case clustering was achieved with the part present
status within the station and a heuristic approach that allows for the identifica-
tion of case-related setup, load/unload and reset events. Next, five hypotheses
were formulated to create additional features for the data set based on expert
knowledge. After tagging the trace classes manually, six different machine learn-
ing algorithms were applied with cross-validation. More details can be found in
paragraph 3.1.

In chapter 3.2, an expert knowledge-based, heuristic generation of improve-
ment suggestions is introduced. The eight hypotheses postulated were imple-
mented using Python and applied to event logs of four real-life framing re-spot
stations. A sequence chart for every style, based on the pre-processed event log
was plotted. The issues found were automatically annotated within the same
chart, and the findings for the four stations summed up.

2 Related Works

Plant floor systems, as described by Lee [2], were the first step towards the
autonomous observation of manufacturing processes. They are logging critical
parameters of the process which are used to create KPI (key points of inter-
est) charts and to highlight potential bottlenecks. Next cyber-physical systems
started to emerge. Their goal, to create a digital clone of the real-life produc-
tion equipment, which can be used to create simulations and derive predictions,
was also documented by Lee [3]. Jaber et al. [4] showed that predictions regard-
ing required maintenance could also be obtained by applying machine learning
techniques to vibration sensor data. The results could help to move the time
of preventive maintenance closer to the predicted time of failure thus realising
additional savings. Banerjee et al. [5] propose a similar approach. Instead of us-
ing vibration sensors, which normally are not an integral part of manufacturing
equipment, they are utilising the already available sensors for fault detection.

Processes can not only be found in manufacturing but also for business trans-
actions. Van der Aalst [6] started at the beginning of this century the develop-
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ment of the research field of Process Mining. The aim is to discover the under-
lying process model of such business transactions based on logged transaction
data. Hu et al. [7] realised that the proposed algorithms might also be benefi-
cial for the discovery of process models within ’flexible manufacturing systems’.
They proclaim that the derived model not only allows for validation of the actual
process against the design intent but also can be used for further process improve-
ments. These improvements were mainly focused upon the resources available.
The literature review did not reveal any additional attempts to apply Process
Mining algorithms to industrial equipment logs until 2014 when Son et al. [8]
presented their research into discovering process models for the product flow
from the first step of manufacturing to final shipment. Due to a lag of detailed
data, these models, however, cannot be used to enhance the performance of the
individual machines involved. Yahya’s research [9] was also focused on the path
of the product through manufacturing. He noted that the granularity needs to
be chosen and the process model customised to the analysis’ goal. Yang et al.
[10] propose the enhancement of such high-level production data with the help
of unstructured data like emails. Although the technical approach is presented
in detail, it remains unclear what added benefits such approach yields.

Farooqui et al. [11] realised that the implementation of additional code within
industrial robot programs allow them to record more details relating to their
work sequence. They are proposing to apply Process Mining algorithms to the
resulting log to discover a matching process model which is helpful for mainte-
nance work and also supports decision making. Brzychczy et al. [12] also see the
benefits of utilising low-level machine data for their research. They indicate that
one of the significant hurdles to overcome is the grouping of activities into cases.
According to their work, this is best achieved through knowledge-based identifi-
cation of the beginning and the end of a case. Nowaczyk et al. [13] are tapping
into the ’wisdom of the crowd’ by evaluating groups of peers. Deviates one of
the observed systems from the behaviour of the remaining, similar systems, it
can be concluded that maintenance is required.

3 Hypothesis

3.1 Log Pre-Processing

As shown in figure 1, a machine sequence can be split up into five distinct
sections. A part being present in the machine is a signal common to all man-
ufacturing equipment. Therefore the load event must be the event just before
the part is present. Analog the unloading activity is observed while the part no
longer is present in the machine. In cases where a machine manufactures mul-
tiple different parts, a setup, just prior to the load, might be required. If the
same events always happen before a load event for a given part type, then it can
be reasoned that those activities must be setup related. Finally, some machines
require some additional motions so that the part can be unloaded. In figure 1
this is shown as pin 1 returning. This event has to be reset before the next part
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is loaded. Therefore a reset event is present if the same activity can be found
after each unload event. Identifying the five sections described above allows for
case identification within the equipment log.

Several hypotheses were devised that allow conclusions regarding the com-
pleteness of a case within an event log for automated production equipment.
Within every cycle, there must be a load and an unload event. If a part is just
passing through a station, it is even possible that those two activities are the
only activities. Most non-robotic activities within the sequence have opposing
motions. A typical example in figure 1 would be the closing and opening of clamp
C01. If one of those two actions is missing, that could be an indicator for the
logs incompleteness. Although robotic events do not have opposing motions, it
is expected that a process follows the robots initiation and vice versa. Since log
completeness is expected to be at a high level, it can be assumed that the most
occurring trace class is complete. These knowledge-based rules can be used to
annotate the log, and after manually tagging example logs, a machine learning
model can be created which allows for the classification of the remaining cases.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

return dump 2

advance dump 1

skid load part

close C01 (V1)

close C02 (V1)

close C03 (V2)

init robot R01

init robot R02

R02 weld/repo

robot R01 weld

open C03 (V2)

robot R02 weld

open C01 (V1)

open C02 (V1)

return pin 1

skid unload part

advance pin 1

part present

a

b

c
d e

f

setup load part present unload reset
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3.2 Automated Improvement Potential Detection

Excessive manual cycles: During production, the equipment typically is in
automatic mode unless a problem occurs that requires manual intervention. The
machines within an automotive body shop often are specified to provide an up-
time of 80+%. If excessive manual cycles are recorded daily, it can be concluded
that there is a systematical problem which needs to be addressed.

Identical units: Several pneumatic cylinders are often connected to a single
solenoid. The grouped cylinders typically have the same bore and stroke and
therefore should require the same time to advance and return. Setup can impact
the synchronous movement of the units. This fact can be found in the event log.
An example is shown in figure 1 where cylinders C01 and C02 are attached to
the same valve, but their closing time is different. This improvement potential is
marked in red and labelled with (a). With ΔτSe being the duration of a station
event, ΔτSe′ being the duration of an equivalent event triggered by the same
solenoid and λτ(Seref ) the mean duration of an identical reference event, setup
problems are present if

ΔτSe �= ΔτSe′ ∨ ΔτSe �= λτ(Seref ) (1)

Opposing motions: If a motion in one direction takes longer than into the
opposing direction, a setup problem is present as well. A nomenclature based
algorithm can identify which activities are opposing motions. The open events
for C01 and C02 in figure 1 take longer than their corresponding closing events.
Therefore the potential improvement is labelled with (e). Let ΔτSe be the du-
ration of station event Se and ΔτSe the duration of the events opposing motion
then the setup is correct if:

ΔτSe = ΔτSe (2)

Double triggers: If there are programming errors, an equipment motion may
be started, interrupted and restarted again. Such behaviour causes increased
cycle time and is responsible for excessive mechanical wear. In the log, this
can be identified by an event which has a start timestamp but no complete
timestamp followed shortly after by another event for the same activity that has
both timestamps. Since events can happen twice within a case, the detection
algorithm has to consider that the opposing motion did not happen in between.
If the start timestamp of a station event Se is defined as τs(Sen), the complete
event as τc(Sen) and the opposing motion of that event as Sen then a double
trigger is present if

τs(Sen) �= ∅ ∧ τc(Sen) = ∅ (3)

is followed by an identical event with
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τs(Sen+x) �= ∅ ∧ τc(Sen+x) �= ∅ (4)

as long as

Sen+1 . . . Sen+(x−1) �= Sen (5)

Bouncing motions: The term ’bouncing motion’ was coined for a motion that
reaches its end position but, due to the mechanical setup, bounces back so that
it needs to be triggered once again to arrive at the stop position. In the event
log, this can be identified by an event with start and complete timestamps fol-
lowed shortly after by again the same event with start and complete timestamps
without the opposing motion being recorded in between. Double triggers and
bouncing motions manifest themselves in figure 1 similar to the opposing mo-
tion hypothesis mentioned previously (figure 1 (c)). However, the underlying
data allow the discovery of the actual root cause. Based on above definitions a
bouncing motion can be detected if

τs(Sen) �= ∅ ∧ τc(Sen) �= ∅ (6)

is followed by an identical event with

τs(Sen+x) �= ∅ ∧ τc(Sen+x) �= ∅ (7)

as long as

Sen+1 . . . Sen+(x−1) �= Sen (8)

Gaps: In the automotive body shop domain, there should be no period within
a sequence, where there is no motion occurring. Considering that for this ex-
periment, a variance of ∼100ms within the timestamps was found, it can be
concluded that any gap >200ms marks an area of possible improvement. Gaps
can be caused either by programming errors or by external circumstances which
are not recorded. A typical example of a gap is marked with the letter (d) within
figure 1. Gaps can be detected by splitting up the timeline t of a case into bins.
Then the number of events that fall within one such bin are counted and repre-
sented by ξt. Based on these definitions, a gap is present if

x+200ms∑
t=x

ξt = 0 (9)

with x being any value between the start timestamp τs(Sei) of the incoming
event Sei and the start timestamp τs(Seo) of the outgoing event Seo of a case.
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Station blocked: A particular case of the above described external circum-
stances, is the station being blocked. A blockage is caused by the next station
not being ready to receive the completed part. In that case, the event data will
show a gap before the unload event. A blocked condition has been highlighted
within figure 1 with the letter (f). Let Δτp(Seo) be the distance from the out-
going station even Seo to the second last event then a blocked condition exists
if

Δτp(Seo) > 0 (10)

Special Event - Robot Initiation: The duration of the robot initiation pro-
cess was found to be varying substantially. During this timeframe, the robot
receives its program number and a start signal which triggers it to move to a
pounce position. Typically this routine takes a maximum of two seconds what
leads to the assumption that a robot initiation lasting more than two seconds is
suspicious. Such a situation is shown in figure 1 with the letter (b). With ΔτRinit

being the duration of a robot initiation event a reason for suspicion is present if

ΔτRinit > 2sec. (11)

4 Evaluation

4.1 Log Pre-Processing

To prepare the log for further processing the activities stemming from a double
trigger or bouncing motion event, as described in chapter 3.2 were combined by
merging the start timestamp of the first with the end timestamp of the second
record. Next, the first activities, along with other, incomplete log items were
removed. Python algorithms were developed to identify the five sections defining
a case.

The five hypotheses introduced in section 3.1 created the basis for Python al-
gorithms that can add engineering features to an industrial log. For ’load/unload
present’, ’station in bypass’ and ’robot initiate & process present’ a binary value
of 0 or 1 was chosen. For the remaining features ’most occurring’ and ’opposing
motions present’ a percentage, expressed as value between 0 and 1, was used.
Manual tagging was performed for 500 random cases within the log available.
Various machine learning algorithms, included in the Python scikit-learn package
[14], were applied with cross-validation to the resulting matrix. Table 1 shows
that a simple decision tree classifier, after tuning the hyperparameters, already
achieves a 99% accuracy with +/-1% deviation. The associated confusion matrix,
shown in figure 2, also exhibits no false positives.

4.2 Automated Improvement Potential Detection

For evaluation purposes, reasoning based algorithms for all of the above hypothe-
ses (chapter 3.2) were implemented using Python and applied to event logs of



100 Koehler et al.

Table 1. Accuracy Of Classifier Models

accuracy
without hyper
parameter
tuning

accuracy with
hyper param-
eter tuning

gradient boosting
classifier

94% +/- 8% 99% +/- 1%

random forest
classifier

93% +/- 8% 99% +/- 1%

decision tree 93% +/- 8% 99% +/- 1%

gaussian naive bayes 87% +/- 5% 87% +/- 5%

support vector
classifier

91% +/- 8% 95% +/- 3%

logistic regression 91% +/- 12% 95% +/- 2%

k-nearest neighbors 90% +/- 7% 99% +/- 2%
Fig. 2. The Confusion Matrix

four real-life framing re-spot stations. The issues automatically discovered for
the four stations are summed up in the table 2.

Table 2. Evaluation Results For Four Body Shop Re-spot Stations

station 1 station 2 station 3 station 4

number of cycles recorded 1157 1181 1185 1184

excessive manual cycles < 0.5% < 0.5% < 0.5% < 0.5%

time differences for identical units 0 sec. 0.2 sec. 0.2 sec. 0 sec.

time differences for opposing motions 1 sec. 2.3 sec. 1.2 sec. 1.9 sec.

double triggers events (# of times) 7 (88) 13 (1033) 9 (203) 11 (2045)

bouncing motions events (# of times) 0 2 (104) 0 0

gaps 0.8 sec. 6.4 sec. 10.7 sec. 0.4 sec.

station blocked 0.3 sec. 5.5 sec. 0.4 sec. 0.2 sec.

difference typical to fastest variant 0 sec. 0 sec. 0 sec. 10 sec.

5 Conclusion And Future Works

In a typical automotive body shop, one can almost always find a few stations
which do not meet their expected throughput. This shortcoming might be due
to long cycle times or increased maintenance activities. These stations are hold-
ing back the output of the body shop and therefore are termed ’bottlenecks’.
Removing those few bottlenecks can increase the output of the body shop as a
whole.

In this paper, hypotheses were formulated that allow for the automated gen-
eration of equipment logs and the subsequent discovery of hidden manufacturing
potential. As proof, the prepositions were encoded and applied to real life equip-
ment logs taken from bottleneck stations within an automotive body shop. The
insight gained was automatically marked within Gantt charts. The results pre-
sented show that there is, for the evaluated stations, an improvement potential
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ranging from 2.1 seconds to 12.5 seconds. These findings lead to the conclusion
that the analysis effort is worthwhile, even if it is assumed, that the current
production process is well understood.

It is believed that more discoveries are possible. Therefore research will con-
tinue to focus on potential information gain based on more elaborate Process
Mining techniques initially developed for business process analysis.
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Abstract. Condition monitoring systems based on deep neural net-
works are used for system failure detection in cyber-physical production
systems. However, deep neural networks are vulnerable to attacks with
adversarial examples. Adversarial examples are manipulated inputs, e.g.
sensor signals, are able to mislead a deep neural network into misclas-
sification. A consequence of such an attack may be the manipulation of
the physical production process of a cyber-physical production system
without being recognized by the condition monitoring system. This can
result in a serious threat for production systems and employees. This
work introduces an approach named CyberProtect to prevent misclassi-
fication caused by adversarial example attacks. The approach generates
adversarial examples for retraining a deep neural network which results
in a hardened variant of the deep neural network. The hardened deep
neural network sustains a significant better classification rate (82% com-
pared to 20%) while under attack with adversarial examples, as shown
by empirical results.

1 Introduction

Cyber-physical production systems (CPPS) consist of hardware and software
components controlling physical processes. They are in the focus of initiatives
such as Germany’s Industrie 4.0 or the US Industrial Internet Consortium. CPPS
adapt efficiently to new products or product variants without extensive manual
engineering effort [1–3].

Figure 1 a) shows an example of a CPPS where material is moved and pro-
cessed between a storage module, a conveyer module, a heating module and a
pick-and-place module.

Condition monitoring systems (CMS) can be utilized to detect system failures
of CPPS (cf. figure 1 b), e.g. a broken heating module. Therefore, process data
from modules are analyzed with machine learning algorithms such as deep neural
networks (DNN) [4]. DNNs enable automatic generation of mathematical models
representing the normal behavior of a CPPS. The normal behavior is learned
using historical process data from production modules. As a representation of

© The Author(s) 2021
J. Beyerer et al. (Hrsg.), Machine Learning for Cyber Physical
Systems, Technologien für die intelligente Automation 13,
https://doi.org/10.1007/978-3-662-62746-4_11
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the learned normal behavior, the model is compared with the actual CPPS state
to classify its condition as normal behavior or anomaly. DNNs have successfully
been used to model physical manufacturing processes [5, 6].

However, DNNs are vulnerable to adversarial example attacks [7]. Exploiting
such attacks may result in a manipulation of the physical production process,
which can cause enormous damage to facilities, production systems and employ-
ees [8].

Module A Module D Module C

b) Condition Monitoring System (CMS)

(1) Data Aggregation (3) Classification(2) Deep Neural Network

…

a) Cyber-Physical Production System (CPPS)

Process data

Adversary

Module B

Fig. 1. Adversarial example attack against a condition monitoring system (b) results
in misclassification of the observed cyber-physical production system (a).

An adversarial example (AE) is a specially manipulated input with the ability
to mislead a DNN into misclassification [7]. It is generated from an undistorted
original input by intentionally applying worst-case perturbations [9]. This results
in an adversarial input being almost identical to the original one.

Fig. 1 shows an example of a condition monitored CPPS, where an adversary
gained access to the production system. One objective of the adversary may be
the manipulation of the production process without triggering an alert by the
CMS (false-negatives). Another objective may be the triggering of false alerts
(false-positives).

A successful attack may be achieved by the following steps: (i) process data
from production modules is collected, (ii) collected process data is used to gen-
erate AEs, (iii) AEs are exploited to manipulate the physical process.

A false-positive classification triggers an anomaly alarm by the CMS, al-
though the production process was actually correct. This may lead to unsched-
uled maintenance, which temporarily stops production. Likewise, the confidence
in the CMS may be reduced. Furthermore, a false-negative classification may
result in e.g. damaged products. A long-term operation in an insecure system
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state may even result in severe damage to the production system and pose a
threat to employees [8].

Our contribution is the introduction of an approach to prevent misclassi-
fication caused by adversarial example attacks on deep neural network based
condition monitoring systems, which detect system failures of cyber-physical
production systems. Empirical results show that our approach results in a hard-
ened deep neural network with a significant less misclassification rate despite
being attacked.

2 Related work

Szegedy et al. introduce AEs as an anomalous property of a DNN [7]. A DNN
can be formalized as a mathematical model F (x, θ) = Y . The DNN decides
whether a given input x ∈ R

n belongs to a learned class Y ∈ R
m, using a set of

internal parameters θ.
An AE x′ is defined as an incorrectly classified input, which deviates mini-

mally from the correctly classified original x. As shown in definition 1, an AE
is generated by applying perturbations Δx to the original input x, where Δx is
kept as small as possible.

find x′ = x+Δx (1)

s.t. F (x′, θ) = Y ′, Y ′ �= Y

A quality criterion for AEs is inconspicuousness and a minimal deviation from
its original. E.g. in image classification an objective of AEs is the perturbation to
the original, imperceptible to the human eye. For quantification of this property
the three distance metrics L0, L2 and L∞ are commonly used in literature [10].
The L0 metric corresponds to the number of input signals that have been altered
(e.g. pixels). The L2 metric measures the standard Euclidean (root-mean-square)
distance between x and x′. At last, the L∞ metric measures the maximum change
for any of the input signals.

Several approaches for generating AEs have been proposed, such as box-
constrained limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS), Fast
Gradient Sign Method (FGSM) and Projected Gradient Descent (PGD) [7,9,11].
By leveraging AE generating approaches, both Black-Box attacks and White-
Box attacks against machine learning classifiers can be performed [12].

Several defensive strategies have been proposed to harden a DNN model
against AE attacks, such as Adversarial Training, Defensive Distillation, feature
squeezing and PGD based Adversarial Training [7, 11, 13,14].

This work transfers AE generation and prevention into the field of industrial
automation, in contrast to presented approaches considering image processing
mainly. Our approach adapts the FGSM approach [9] for AE generation and
the adversarial training [7] for preventing misclassification. Both, FGSM and
adversarial training are suitable for the CPPS requirement of rapid adaptability.
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3 Solution

The objective of the CyberProtect approach is prevention of misclassification
caused by AE attacks and is achieved by the following steps: (i) A DNN is ex-
clusively trained on process data P in an initial training phase. (ii) The training
phase is extended by an a additional retraining phase, where P is used to gener-
ate an AE P ′ as described in the previous section. (iii) Both, the original P and
the manipulated P ′ serve as input to the DNN. Generating the required AEs
can be formalized as follows.

Process data of a CPPS is defined as P = (p0, ..., pm), where pi ∈ [0, 1] for
i ∈ {0, ...,m} is a sensor or actor value. P is input to the CMS utilizing a DNN.
As described in section 2, a DNN is a mathematical model F (P, θ) = Y , where
Y ∈ {0, 1} is the predicted class corresponding to normal or anomaly behavior
and θ is a set of parameters. The adversarial objective is reached by solving the
following search problem:

find P ′ = P +Δ (2a)

s.t. F (P, θ) = Y (2b)

F (P +Δ, θ) = Y ′ �= Y (2c)√√√√ m∑
i=0

|δi|2 ≤ ε, ε > 0 (2d)

A perturbationΔ = (δ0, ..., δm), where δi ∈ [−1, 1] for i ∈ {0, ...,m}, is added
to an original P to generate an adversarial example P ′ = (p0 + δ0, ..., pm +
δm). Due to constraint 2c, P ′ is not predicted as the original class 2b. The
constraint 2d increases the inconspicuousness of P ′ by limiting the euclidean
distance between P ′ and P to an upper bound.

By exploiting adversarial examples, the adversary can manipulate the pro-
duction process unrecognized within the specified constraints. This leads to false-
positive or false-negative results in classification by the condition monitoring
system.

3.1 Generation of Adversarial Examples Algorithm

This approach generates AEs by using the Fast Gradient Sign Method (FGSM)
[9]. Due to its low computational costs, FGSM is suitable for the CPPS require-
ment of rapid adaptability.

Generation of AEs is formally described by algorithm 1. The algorithm re-
quires inputs P, F (P, θ), Y, ε, s, where P describes process data, F (P, θ) de-
scribes the trained DNN, Y is the original class label, ε is a threshold parameter
and s is a precision parameter.

The algorithm performs the following steps: (1) A variable η is increased
by the precision parameter s specifying the growth of η between iterations.
(2) FGSM is used to generate a candidate for an AE P ′. FGSM requires F (P, θ)
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Algorithm 1: GenAE: Generation of Adversarial Example P ′ from orig-
inal Process Data P
Input: Process data P, DNN F (P, θ), class label Y , threshold parameter ε,

precision parameter s
Output: Adversarial example candidate P ′

1 η ← 0
// while misclassification Y ′ not found and euclidean distance

threshold ε not reached

2 while Y ′ = Y and ‖P ′ − P‖ ≤ ε do
// increase perturbation

3 η ← η + s
// use Fast Gradient Sign Method to generate an AE candidate

4 P ′ ← FGSM(F (P, θ), η)
// get class label

5 Y ′ ← F (P ′, θ)

6 return P ′

and the variable η and extracts the gradients from a previous trained DNN
F (P, θ). (3) The class Y ′ is predicted by the trained DNN, where the generated
candidate P ′ serves as input. These three steps are repeated until either the
euclidean distance between the candidate P ′ and the original process data P
exceeds the threshold parameter ε, or the new predicted class label Y ′ differs
from the original class label Y . In the case of differing classes, a valid AE is
found. The algorithm returns the last computed AE candidate P ′.

3.2 CyberProtect Algorithm

The CyberProtect algorithm 2 enables prevention of misclassification caused
by AE attacks. The algorithm requires a Pn, Y n, θ, ε, s as input. Input Pn de-
scribes n-dimensional historical process data P, Y n describes the corresponding
n-dimensional class labels, θ describes a DNN configuration, ε and s are config-
uration parameters to use GenAE algorithm described above.

The algorithm executes the following steps: (1) A DNN F (P, θ) is initialized
with the configuration parameters θ (cf. line 1 function initialize) for DNN
architecture, activation and cost function. (2) the DNN is trained with each
entry Pi and Yi (cf. line 2-3 function train) of the historical process data Pn

and the corresponding class labels Y n. (3) An empty set P ′n is defined (cf. line
4) after the first training phase. (4) The algorithm GenAE 1 is used to generate
and store AEs to P ′n (cf. line 5-7) for each process data entry Pi resulting in an
AE P ′

i. (5) A new DNN F̂ (P, θ) is initialized with the configuration parameters θ

(cf. line 8). (6) F̂ (P, θ) is trained with each entry Pi and P ′
i of both, the original

process data Pn and the generated AEs P ′n (cf. line 9-11) using the same class
label Yi for Pi and P ′

i. The algorithm returns the new trained DNN F̂ (P, θ)
hardened against AE attacks.
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Algorithm 2: CyberProtect

Input: Process data set Pn, set of class labels Y n, configuration parameter θ,
threshold parameter ε, precision parameter s

Output: Hardened Deep Neural Network F̂ (P, θ)
1 F (P, θ) ← initialize(θ)

// train DNN with process data set Pn

2 for i = 1 to n do
3 F (P, θ) ← train(Pi, Yi)

4 P ′n ← ∅
// calculate AE set from process data

5 for i = 1 to n do
// cf. section 3.1

6 P ′
i ← GenAE(Pi, F (P, θ), Yi, ε, s)

7 P ′n ∪ {P ′
i}

8 F̂ (P, θ) ← initialize(θ)
// train DNN with process data set Pn and AE set P ′n

9 for i = 1 to n do

10 F̂ (P, θ) ← train(Pi, Yi)

11 F̂ (P, θ) ← train(P ′
i, Yi)

12 return F̂ (P, θ)

4 Results

Emperical results were obtained with a reference CMS monitoring data from
the Secom dataset [15]. The Secom dataset was recorded from a semi-conductor
manufacturing process and consists of process data with 590 attributes collected
from sensor signals and variables during 1567 manufacturing cycles.

The reference CMS is implemented based on a DNN by using the python
framework tensorflow [16]. The applied DNN architecture consists of 590 input
neurons, 4 hidden layer with 590, 1180, 2360, 590 neurons each and one output
neuron representing the conditions normal or anomaly. As activation function
rectified linear unit (ReLU) is applied. Training the DNN was performed in a su-
pervised manner for 1000 epochs using the Adam optimizer [17] with parameters
β1 = 0.9, β2 = 0.999, ε = 10−8 and a learning rate of 0.01.

Our CyberProtect implementation extends the reference CMS and is based
on the Python library Cleverhans [18], an extension to the Tensorflow framework
[16].

The reference CMS was extended with the CyberProtect algorithm to obtain
results shown in Fig. 2.

The left column of Fig. 2 shows classification results from the CMS reference
excluding CyberProtect. The mean classification rate is equal to 82% with a
standard deviation of 7%, the best result is 95% and the worst result is 60%.
The middle column shows classification results of the same CMS reference under
AE attacks based on FGSM generation. The classification rate is reduced to a
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Fig. 2. Classification rate of a common CMS without AE attacks (left), with AE attacks
(middle) and a CMS using CyberProtect with AE attacks (right).

mean of 20% with a standard deviation of 7%, best result of 43% and worst
result of 7% . In the right column, results are shown of the extended reference
CMS utilizing the CyberProtect approach while being attacked with AEs. Here,
CyberProtect significantly increases the classification rate 80% with a standard
deviation of 9%, best result of 95% and worst result of 50%.

CyberProtect enables a DNN to nearly regain the classification rate despite
AE attacks, as demonstrated in carefully designed experiments.

5 Conclusion

This paper presents the CyberProtect approach to prevent misclassification
caused by adversarial example attacks on deep neural network based condition
monitoring systems in the domain of cyber-physical production. Adversarial ex-
ample attacks can result in a serious threat to production systems and employees,
due to their ability to manipulation the monitored production process unrecog-
nized.

This work formally defines generation of adversarial examples as a con-
strained search problem and uses adversarial examples to retrain a deep neural
network. Empirical results prove that a deep neural network hardened by Cy-
berProtect show a significant less misclassification rate despite being attacked.

In future work, prevention of misclassification caused by adversarial example
attacks will be explored for discrete manufacturing, in which time-dependent
machine learning approaches are utilized.
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6. S. Jeschke, C. Brecher, T. Meisen, D. Özdemir, and T. Eschert. Industrial internet
of things and cyber manufacturing systems, pages 3–19. Springer International
Publishing, 2017.

7. C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and
R. Fergus. Intriguing properties of neural networks. In Proc. of the 2nd Interna-
tional Conference on Learning Representations (ICLR), Banff, Canada, apr 2014.

8. K. Stouffer, J. Falco, and K. Scarfone. Guide to industrial control systems (ics)
security. NIST special publication, 800(82):16, 2011.

9. I. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial ex-
amples. In Proc. of the 3rd International Conference on Learning Representations
(ICLR), San Diego, USA, may 2015.

10. N. Carlini and D. Wagner. Towards evaluating the robustness of neural networks.
In Proc. of the 38th IEEE Symposium on Security and Privacy (SP), pages 39–57,
San Jose, USA, may 2017.

11. Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to adversarial attacks. arXiv
preprint arXiv:1706.06083, 2017.

12. N. Papernot, P. McDaniel, and I. Goodfellow. Transferability in machine learn-
ing: from phenomena to black-box attacks using adversarial samples. Computing
Research Repository (CoRR), abs/1605.07277, 2016.

13. N. Papernot and P. McDaniel. On the effectiveness of defensive distillation. Com-
puting Research Repository (CoRR), abs/1607.05113, 2016.

14. W. Xu, D. Evans, and Y. Qi. Feature squeezing: Detecting adversarial examples in
deep neural networks. Computing Research Repository (CoRR), abs/1704.01155,
2017.

15. M. McCann and A. Johnston. Uci ml repository secom dataset, 2008. [Online;
accessed 2018-02-05].

16. M. Abadi et al. Tensorflow: A system for large-scale machine learning. In Proc. of
the 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI), volume 16, pages 265–283, Savannah, USA, nov 2016.

17. DP. Kingma and J. Ba. Adam: A method for stochastic optimization. Computing
Research Repository (CoRR), abs/1412.6980, 2014.

18. I. Goodfellow, N. Papernot, and P. McDaniel. cleverhans v2.0.0.: an adversarial ma-
chine learning library. Computing Research Repository (CoRR), abs/1610.00768,
2016.



Hardening Deep Neural Networks in Condition Monitoring Systems 111

Open  Access This chapter is licensed under the terms of the Creative Commons Attri-
bution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which 
permits use, sharing, adaptation, distribution and reproduction in any medium or for-
mat, as long as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons license and indicate if changes were made.

 The images or other third party material in this chapter are included in the 
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the chapter’s Creative Commons license and 
your intended use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright holder.



First Approaches to Automatically Diagnose and
Reconfigure Hybrid Cyber-Physical Systems

Alexander Diedrich1[0000−0002−8674−6895], Kaja Balzereit1[0000−0001−9203−5902],
and Oliver Niggemann2

1 Fraunhofer IOSB-INA, Fraunhofer Center for Machine Learning, Lemgo, Germany
surname.name@iosb-ina.fraunhofer.de

2 Helmut-Schmidt University, Hamburg, Germany
oliver.niggemann@hsu-hh.de

Abstract. Maintaining modern production machinery requires a signif-
icant amount of time and money. Still, plants suffer from expensive pro-
duction stops and downtime due to faults within individual components.
Often, plants are too complex and generate too much data to make man-
ual analysis and diagnosis feasible. Instead, faults often occur unnoticed,
resulting in a production stop. It is then the task of highly-skilled engi-
neers to recognise and analyse symptoms and devise a diagnosis. Modern
algorithms are more effective and help to detect and isolate faults faster
and more precise, thus leading to increased plant availability and lower
operating costs.
In this paper we attempt to solve some of the described challenges.
We describe a concept for an automated framework for hybrid cyber-
physical production systems performing two distinct tasks: 1) fault diag-
nosis and 2) reconfiguration. For diagnosis, the inputs are connection and
behaviour models of the components contained within the system and a
model describing their causal dependencies. From this information the
framework is able to automatically derive a diagnosis provided a set of
known symptoms. Taking the output of the diagnosis as a foundation, the
reconfiguration part generates a new configuration, which, if applicable,
automatically recovers the plant from its faulty state and resumes pro-
duction. The described concept is based on predicate logic, specifically
Satisfiability-Modulo-Theory. The input models are transformed into log-
ical predicates. These predicates are the input to an implementation of
Reiter’s diagnosis algorithm, which identifies the minimum-cardinality
diagnosis. Taking this diagnosis, a reconfiguration algorithm determines
a possible, alternative control, if existing. Therefore the current system
structure described by the connection and component models is analysed
and alternative production plans are searched. If such an alternative plan
exists, it is transmitted to the control of the system. Otherwise, an error
that the system is not reconfigurable is returned.

Keywords: Model-based Diagnosis � Fault detection and isolation � Re-
configuration.
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1 Introduction

Modern production machinery shall act as autonomously as possible [1]. Au-
tonomous machines are characterized by the capability of making and imple-
menting their own decisions regarding resource use and utilization of compo-
nents. This also includes the capabilities of observing their own behaviour (self-
monitoring), diagnosing their faults (self-diagnosis), and restoring valid system
behaviour in case of faults (self-healing) [5].
However, there is still no holistic diagnosis and reconfiguration method which
can successfully deal with heterogeneous production plant data and the result-
ing complex models. Most available diagnosis and reconfiguration methods in-
stead tackle sub-problems, such as system modelling, diagnosis logical circuits,
or reconfiguration in narrow and controlled domains. Therefore, developing and
realising a robust method is still a research challenge.
Performing consistency-based diagnosis is the only known method to realistically
find faults in complex systems. Other approaches are heuristic or require every
possible system behaviour to be modelled exhaustively. Heuristic models model
behaviour against the flow of causality. Based on an input (the effect) they cal-
culate the likely cause of the fault. Models are created in a data-driven way and
require a sufficient amount of training examples for each possible output. This
amount of training data is often unavailable. Approaches that model every pos-
sible system behaviour exhaustively are often limited by real-world constraints
such as the unavailability of accurate enough models.
Consistency-based diagnosis brings the advantage that only the normal be-
haviour of a system needs to be modelled. Thus, no adversarial examples need
to be produced (as would be required for heuristic models) and engineers do
not need to think of and simulate all possibilities how components can fail. This
decreases modelling effort and avoids errors within the model. Additionally it
has an advantage over heuristic models as it reasons with the flow of causality
using a combination of deduction and abduction. Deduction propagates values
from the system input to the system output and shows normal system behaviour.
Through abduction deviations from this normal behaviour can be traced back to
sets of components which are likely to have caused the fault. Abduction is more
similar to the way humans diagnose systems. They analyse the faulty output
and then look through the system from the output back to the input until they
have identified components whose faulty behaviour might have caused the faulty
output.
Figure 1 shows the general concept of the diagnosis and reconfiguration frame-
work. The physical production plant generates process data from its sensors.
This process data is discretised in the form of symptoms. A symptom of a signal
shows the direction of deviation from normal behaviour (high, low, or normal).
Additionally, experts need to provide two kinds of models: a connection model
and individual component models. The component models numerically describe
the behaviour of each component. For example, a water tank would be modelled
by a difference equation. These component models need to be available for each
piece of diagnosable equipment within the plant. Further, a system description
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Fig. 1. Overview of the automated diagnosis and reconfiguration framework

in the form of a connection model needs to be provided. The connection model is
a directed graph showing the causal connections between the employed compo-
nents. A diagnosis algorithm [15], given the component and connection models
and a set of symptoms, computes the smallest amount of possible faulty com-
ponents that explain the symptoms. To obtain these models it is conceivable to
create a digital twin during inception and construction of the plant. The data
from the digital twin, such as simulation data, can be extracted and transformed
into predicate logic models.
The set of possible faulty components is the input to a reconfiguration algo-
rithm. For reconfiguration, the algorithm takes the structural and component
models into consideration [2]. The algorithm does not only search for a new
parametrization of the system but also looks for alternative paths that can be
used to bypass the faulty components. From these it generates alternative con-
trol sequences, which reconfigure plant parameters or use redundant components
to keep the plant operating.
We formulate the connection and component models through logical approaches
to perform consistency-based diagnosis. Given proper models, we assume the
set of symptoms as given. The symptoms can be generated through the use of
well-known machine-learning methods such as principal component analysis and
artificial neural networks. Diagnosis is realised through an implementation of
Reiter’s algorithm [15]. The reconfiguration method is based on a combination
of causal reasoning and numerical parametrization approaches.
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2 State of the Art

Struss [18] published a paper on the fundamentals of MBD of dynamic systems.
In this he described how hybrid systems can be modelled without resorting to a
complete simulation of the system under investigation. He proposed to capture
the temporal and dynamic behaviour of a hybrid system in a set of modes which
model the system. Each mode has distinct state and temporal constraints in
addition to so called Continuity, Integration, and Derivatives (CID) constraints
that affect all modes.
Daigle et al. [4] have adapted a discrete event approach to diagnose continu-
ous systems. They state that each fault that occurs in a continuous system has
a unique fault signature. A fault signature denotes a qualitative effect that a
fault occurs in an observation. Under the assumption that all fault signatures
and measurement orderings are known, they employ a diagnoser that traces the
states through a temporal causal graph based on measurements.
Roychoudhury et al. [16] have shown how to use hybrid bond graphs (HBG)
to diagnose hybrid systems. HBGs abstractly model the system by describing
causal, continuous relationships between components. Daigle et al. [4] have em-
ployed the developed HBGs to diagnose a spacecraft power distribution system.
Prakash et al. [13] have used an extended framework with HBGs to make im-
provements in diagnosing two-tank systems.
Grastien [8] used SMT for the diagnosis of hybrid systems. He discretizes values
in a hybrid system into a set of distinct states. Each observation < τ,A > is
understood as a behaviour A at time τ , where A is a partial assignment of the
variables in a state. Each variable is augmented with an indicator stating at
which time-step the variable expression is valid.
Fränzle et al. [7] have augmented SMT with probabilistic approaches in order to
analyse stochastic hybrid systems. By using bounded-model checking together
with probabilistic hybrid automata, piecewise deterministic Markov processes,
and stochastic differential equations they are able to create a fault analysis sys-
tem without the need to formulate intermediate finite-state abstractions as the
methods mentioned above do.
In another work, Khorasgani [10] describe a hybrid system model through hybrid
minimal structurally overdetermined sets (HMSOs). These are sets of differential
equations and (in-) equations which model the behaviour of a hybrid system.
Crow et al. [2] extended Reiter’s diagnosis algorithm so it is also capable of de-
termining the components that need to be reconfigured. The components that
need reconfiguration are determined in an analogous way as diagnosis is done.
Kobi et al. [11] presented an approach, how to identify and modify the process
input. In case of parameter variations, the control input to the system is adapted.
Hwang et al. [9] published a survey on existing fault detection and reconfigura-
tion methods: Most of the existing approaches rely on a quantitative analysis
of the system data. Therefore, the numerical values of the system are analyzed.
Structural information like a system topology are either not considered or im-
plemented statically into the method.
Fleischanderl et al. [6] and Sabin et al. [17] presented configuration approaches
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based on constraint satisfaction. The configuration problem, which is to find
an assembly of production tasks given product and production requirements,
is mapped onto a constraint satisfaction problem, which task is to find a valid
variable assignment subject to some given constraints.
In contrast to Struss [18] and Provan [14] we do not use automatons and mode
estimation to partition the system into different states. Instead, we only sample
the system at some suitable interval and use the obtained information directly to
model the states in the state-space representation. Unlike in space-craft, which
where analyzed by Daigle [3], fault signatures and measurement orderings are
unknown in industrial systems. This requires us to pursue a more uninformed
approach. Our approach is an alternative to hybrid bond graphs used by Roy-
choudhury [16], while they are at the same time an extension to the work of
Grastien [8] and Khorasgani [10]. In comparison to Grastien we do not singly
use satisfiability modulo theory, but instead capture system behaviour in a state-
space representation. We expect this to reduce the required computational effort.
We also make use of (in-) equations and differential equations as were used by
Khorasgani and Biswas, but augment these with the diagnostic reasoning of tra-
ditional model-based diagnosis. Compared to Fränzle, we do not make use of
stochastic SMT at this point to keep the system more explainable for users.

3 The multiple-tank model

For this work we will use the four tank system depicted in Figure 2 as a run-
ning example. The system consists of four water tanks t, seven electric valves v

t0

t1 t2

t3

v1 v2

v3

v4 v5

v6

v0

Fig. 2. The demonstration use case showing a four-tanks model



118 Diedrich et al.

with integrated flow sensors, an unlimited water source and an unlimited water
sink (not shown). Valve v0 controls water from the unlimited water source, for
example the public water mains, into tank t0. From there, three pipes with an
equal diameter divide the water flow. Finally, valve v6 drains tank t3 into the
unlimited water sink, for example a river or a processing facility.
Each tank has two binary sensors which indicate overflow and underflow, respec-
tively. There are no provisions to directly measure the water level. Each valve
has a switch which indicates whether or not the valve is open. In addition, each
valve has an associated flow sensor.

4 Diagnosing Hybrid Systems

Automatically diagnosing real hybrid systems is a hard task. So far, the only
known diagnosis method which can deal with this kind of complexity is consistency-
based. The method works by reasoning against the flow of causality, meaning
that it uses abduction to determine likely fault causes by evaluating observa-
tions. The drawback of this kind of diagnosis is its reliance on accurate models.
This diagnosis method requires the availability of three types of inputs. The com-
ponent models (CM), a connection model (CON), and observations (OBS). In
most plants component models are not available and must be obtained through
expert knowledge. In the four-tank model and within the process industry in
general, these components models are often differential equations or piece-wise
functions. The water level in tanks and other tank-like components can be mod-
elled through equations such as

Δh =
1

A
(Qi + Cda

√
2gh0) (1)

and discrete switching signals (f.e. from valves) can be modelled with piece-wise
functions such as

o(hi, τ
o
i ) =

{
0 if hi ≤ τoi
1 else

. (2)

The challenge is to obtain these models automatically. Often this can only be
done with data-driven models such as max-margin approaches, artificial neural
networks, or statistical methods.
The second kind of model is the connection model. CON is a directed graph. The
nodes are the individual components whose input and outputs are governed by
the component models. The edges of the directed graph show which component
input values are related to which component output values. The graph can be
obtained by fusing connection information automatically extracted from piping
and instrumentation diagrams (P&I) with the component models.
A consistency-based diagnosis algorithm uses the models to calculate the normal
system state and merges this information with the observations to perform fault
identification. To merge these disparate models they need to be transformed
into a suitable logical framework. For this, we have used Satisfiability Modulo
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Linear Arithmetic (SMT-LRA). The logic framework allows the formulation
of equations, in-equations, and logical predicates as rules and store them in a
knowledge base. Within each rule a component is identified through it’s health
state denoted as ok(ci). Given CON, an algorithm can determine what effects
the failure of a component can have on its surrounding components. Here we
focus on describing only normal behaviour. One logical rule for valve 2 in the
running example is

ok(v2) ∧ ok(t0) ∧ ok(t1) → ok(f2) (3)

where v2 is valve 2, t0, t1 are the adjacent tanks, and f2 is a flow sensor for v2. All
rules have ok-assumptions for components on the left-hand side and observations
on the right-hand side. Reading the rule from left to right uses deduction and
tells the algorithm the normal state of the system: ”if all components are ok, the
flow sensor will show ok readings”. For diagnosis the algorithm uses deduction:
”Given that the flow f2 is not ok, the components on the left-hand side are
likely candidates”. When the rules are created it must be ensured that rules
have overlapping sets of components. Otherwise single components cannot be
discriminated.
The transformation from the component model into ok-assumptions can be done
through standard machine learning algorithms or be integrated into the logical
framework itself. For example, the flow through valve 2 can either be calculated
using the equations governing the inflow and outflow of tank t0, or a simple
machine learning algorithm can be trained which outputs ok/nok.
We employ Reiter’s diagnosis algorithm [15] to evaluate the generated knowledge
base and discriminate faults to obtain a diagnosis that contains the smallest
amount of components (minimal cardinality diagnosis).

5 Reconfiguration after faults occurred

After a fault in the system is identified, a reconfiguration method is used to
restore valid system behaviour - if possible. So a reconfiguration method works
on a sophisticated level it needs to satisfy different requirements: First, the re-
configuration must be done in a short time with a minimal manual effort. Plant
downtimes and component failures need to be minimized so that the costs of
these errors are reduced. Additionally, the control software needs to adapt to
different product specifactions and production modes. Therefore, it must not be
static but needs to be able to adapt dynamically. It also needs to handle the com-
plexity of the production plant and therefore consider the system parametriza-
tion as well as the system topology simultaneously. A lot of research has been
done on the dynamic optimization of the numeric parameters of a system [12,
20, 19]. However, most of these methods only work for a static system configura-
tion and cannot adapt to varying demands. The here presented approach differs
from the state of the art since it considers both, the system parametrization
and the system topology simultaneously. Thus, complex systems and varying
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production demands can be handled by the reconfiguration method. A reconfig-
uration method also needs to be able to separate between valid and invalid plant
behaviour. In general, this information relies on expert knowledge: To separate
faulty from non-faulty system behaviour, models representing non-faulty system
behaviour are trained based on a set of non-faulty system data. This set has to
be determined by an expert. Non-faulty system behaviour may also be invalid,
if it does not lead to the required system goal. Thus, an expert has to define
the current system goal to make sure that the current configuration leads to this
goal.
A reconfiguration method takes a system description consisting of connection
model and component models, the current system’s state and a definition of the
system goal as input. The connection model and the component models are the
same as those used for diagnosis. The definition of the system goal is used to
determine which system behaviour leads to the correct system goal. For the tank
model, a possible system goal is to fill tank t3. Every system behaviour leading
to t3 not being filled is invalid. The goal of reconfiguration is to restore valid
system behaviour after a fault occurred.
For a reconfiguration the system’s properties like its modules and their inter-
connections are modelled as well as the system goal. The current system state
is checked. If it is valid, no action is necessary; the current system behaviour
leads to the required production goal. If the current system state is invalid, the
necessary system actions to restore valid system behaviour are determined.
Assuming that the pipe connecting t0 and t3 is broken and has been identified,
based on a diagnosis, as faulty component. The reconfiguration method now
returns the control instruction, that the pipe no longer should be used and pro-
poses the connections (v1, t1, v4) and (v2, t2, v5) as alternatives so that tank t3
is filled.

6 Conclusion and future work

The presented concept considers the automated diagnosis and reconfiguration of
hybrid cyber-physical systems. Based on the current system data, a connection
model representing the current structure of the system and component models,
which model the behaviour of every component, a diagnosis is executed. Thus a
set of possible root causes is determined.
After that a reconfiguration method is started: The task of reconfiguration is
to restore valid system behaviour after a fault occurred. Given a system goal,
the necessary actions for the recovery of the system are determined. Alternative
production paths and parametrizations are identified so that the specified sys-
tem goal still can be reached.
Our future work will be focussed on the automatic extraction of expert knowl-
edge from P&I diagrams and learning components models from data. Currently,
the connection model is extracted manually from the system structure. However,
this is time consuming and requires a lot of manual effort. To reduce this, the
needed information shall be extracted automatically. Creating component mod-
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els automatically requires even more research effort. The behaviour of physical
components is often governed by differential equations sometimes including non-
linearities. For accurate component models this behaviour needs to be learned
and accurately predicted by data-driven models. What models to use and how
to train them remains a research challenge.
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Abstract. Reconstruction of highly porous structures from FIB-SEM
image stacks is a difficult segmentation task. Supervised machine learning
approaches demand large amounts of labeled data for training, that are
hard to get in this case. A way to circumvent this problem is to train
on simulated images. Here, we report on segmentation results derived by
training a convolutional neural network solely on simulated FIB-SEM
image stacks of realizations of a variety of stochastic geometry models.

Keywords: U-net 3D, shine through artifacts, SEM simulation, Boolean
model, random packing, Altendorf-Jeulin model, Cox-Boolean model,
deep learning

1 Introduction

The micro-structure of materials influences their macroscopic properties deci-
sively. 3D images of the micro-structure yield deeper insight into the micro-
structure’s geometric features and can be used for numeric simulations of ma-
terials properties like mechanical strength, filtration properties or thermal con-
ductivity. Combined with stochastic geometry models [10, 16], they are the basis
for optimizing the micro-structure – so-called virtual material design.

Serial slicing by a focused ion beam (FIB) and subsequent imaging by scan-
ning electron microscopy (SEM) is a versatile source for high-quality 3D images
of materials structures at the scale of 3-200 nm. For highly porous structures
however, reconstruction of the 3D structure from the SEM image stack is ham-
pered by the solid structure from deeper layers being visible through the pores.
These so-called shine through artifacts [12] cause the typical tails visible in the
planes orthogonal to the SEM imaging plane, see Figure 1(c). These artifacts
featuring the same gray values as the true foreground in the current slice, thresh-
olding methods fail to segment the solid structure properly. Several algorithms
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(a) Volume rendering (b) Simulated BSE, xy-slice

(c) Side (xz) view of simulated FIB-SEM
stack

(d) Weight map corresponding to (b)

Fig. 1: Realization of a Boolean model of fibers and synthetic FIB-SEM image
stack generated from it. The SEM imaging plane is xy, z is the slicing direction.
The xz-view exhibits strong shine through effects.

have been devised to overcome this problem [7, 11, 13, 14, 19, 20]. Nevertheless,
being designed for particular structures and SEM modes, they are not gener-
ally applicable. Moreover, parameterization requires expert knowledge. Machine
learning methods are a popular and already widely used alternative to classical
image segmentation. A random forrest is applied to FIB-SEM segmentation in
[17]. Convolutional neural networks (CNN) are used with great success also for
3D image segmentation [4, 15]. However, in our particular setting of FIB-SEM



Deep learning for segmentation of FIB-SEM data 125

data of highly porous structures, the typical need of these methods for large
labeled data is nearly prohibitive. FIB-SEM is rather expensive and manual la-
beling is difficult to impossible as even the human eye is easily mislead by the
shine through artifacts.

Here, we therefore explore the option to train a CNN solely based on syn-
thetic images for which the correct segmentation is readily available. We use a
variety of stochastic geometry models [1, 8, 10] to create porous structures. Digi-
tizations into 3D images of the respective realizations yield the ground truth for
the training phase. The corresponding FIB-SEM stacks are generated based on
an analytic representation of the structures – lists of points in space and objects
like spheres or cylinders attached to them. These geometries are virtually inter-
sected and SEM images of each planar intersection are simulated as described
in [12]. The thus derived FIB-SEM stacks are then used to train the U-net 3D
architecture [4, 18].

Specially adapted data augmentation and weights as well as the use of ver-
satile structures result in very good segmentations for the synthetic data. Tests
on real data are promising, too, results will be reported in [5].

2 Network architecture and and training the model

We keep the U-net 3D architecture as specified in [4]. We also follow the original
U-net setup [18] in using weighted cross-entropy for measuring similarity of image
patches. [18] uses weight maps to assign higher weights to pixels in image regions
where objects touch, in order to separate them. We adapt this idea by assigning
a higher weight to surface pixels and their neighbors in order to force the network
to learn the structure’s surface particularly well.

The use of 3D patches causes them to be small (643 pixels) compared to
the total image sizes (about 5003 − 6003 pixels). Simple tiling results in strong
boundary artifacts. To avoid these effects, we therefore apply a sliding window
approach with up to 20 pixel wide overlapping regions, depending on local struc-
ture size.

In [18], data are augmented excessively by deforming the training images
elastically, to force the network to learn invariance to such formations. We com-
bine this approach with brightening and rotating the 3D patches using any of
the cube’s isometries similar to [4]. To ensure that the training data represent
various sizes of the local structures, the patches are chosen with a random crop
and resize approach, where the scale factor is variable too.

We trained the network on a Boolean model of fibers (cylinders) [21, 22]
as, compared to models consisting solely of spheres, the cylinders yield a wider
variety of local structures, e. g. both circular and very elongated elliptical cross-
sections. More precisely, we used a Boolean model of straight cylinders with
circular cross-section of diameters uniformly distributed in 60− 90 nm and with
lengths uniformly distributed in 300 − 660 nm. The orientations are uniformly
distributed on the upper half-sphere. That is, the model is isotropic. The solid
volume fraction is 35%. See Figure 1 for the model realization used.
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From the model realization, the FIB-SEM stack is simulated based on [9] as
described in [12]. Throughout, the back scattered electron (BSE) signal is used.
The solid component is assumed to be carbon, the primary electrons have an
energy of 5 keV as in [12], and the dwelling time is 1�s (see e. g. [6] for details on
SEM parameters). Both SEM image pixel size and slice distance are 3 nm. The
training lasted for 100 epochs, where one epoch equals 50 steps with a batch size
of 4. The initial learning rate of 0.0001 is halved after every 10 epochs.

3 Results

The network trained as described in the previous section is now used to segment
synthetic FIB-SEM image stacks of a variety of other structures. More precisely,
we segment images of Boolean models of spheres and a Cox Boolean model [8]
of small spheres nested in large ones (see Figure 2(a)). These are complemented
by packings of spheres by the force biased algorithm [2, 3], of straight circular
cylinders by random sequential adsorption (RSA), and of curved fibers by the
Altendorf-Jeulin method (AJ) [1].

We measure the quality of our results by the false negative rate (FNR, the
proportion of missed foreground pixels) and the Sørensen-Dice coefficient [23].
The latter is defined as

DICE(ŷ, y) =
2 ∗∑n

i=1 ŷ
i ∗ yi + ε∑n

i=1 ŷ
i +

∑n
i=1 y

i + ε
=

2 ∗ TP + ε

FN + 2 ∗ TP + FP + ε
,

where n is the total number of pixels in the volume, y represents the pixel-wise
ground truth, ŷ the predicted (segmented) image, and TP , TN , FP , FN are
counts of true positive, true negative, false positive and false negative pixels in
the prediction, respectively.

Due to the shine through effects described above and the typical coarser
sampling in slicing direction, structures reconstructed from FIB-SEM image data
tend to be anisotropic to an extent not explainable by the sample production
or preparation [14]. All structures considered here are isotropic by design. That
is, the distributions of the respective stochastic geometry models are invariant
under rotations. Isotropy of the reconstructed structures is therefore a measure
for their quality, too. It is by far not an easy task to test the realization of a
random closed set for isotropy. Here, we just check the proportion of the mean
chord lengths in x- and z-directions �̄x and �̄z as a rough indicator of artificial
anisotropy. The only suspicious case is the RSA cylinder packing. However, here
already the 3D ground truth image has a mean chord length ratio of �̄x/�̄z = 0.88.

All results are listed in Table 1 and visualized in Figure 2.

4 Conclusion

In this contribution, we show that a deep neural network – namely an adapted
U-Net 3D – trained solely on synthetic FIB-SEM image stacks, is capable to
reconstruct other highly porous structures from FIB-SEM images.



Deep learning for segmentation of FIB-SEM data 127

(a) Cox Boolean, xy (b) Cox Boolean, xz (c) Boolean spheres,
xy

(d) Boolean spheres,
xz

(e) RSA packing of
spheres, xy

(f) RSA,
xz

(g) AJ fiber pack-
ing, xy

(h) AJ fiber packing, xz

Fig. 2: Segmentation results visualized as overlays on the original FIB-SEM im-
ages. Green pixels are correctly segmented foreground pixels (true positive), pix-
els misclassified as being foreground (false positive) are represented in yellow,
and the ones that are misclassified as being background are colored red (false
negative).

Table 1: Results of the network trained using solely the Boolean cylinder model
as shown in Figure 1.

Data

Boolean Boolean RSA Cox Boolean Altendorf-Jeulin Forced biased
model model packing model fiber packing
of fibers of spheres of cylinders of spheres packing of spheres

DICE 0.95 0.95 0.96 0.96 0.95 0.99

FNR 0.01 0.01 0.05 0.07 0.05 0.01

�̄x/�̄z 0.98 1.02 0.80 0.94 0.99 0.91

More details on the stochastic geometry models, wider variation of the FIB-
SEM imaging parameters, and results on real data will be presented in [5].

The experiments leading to the results presented here highlighted the need for
sufficient diversity of local structures in the data used for training. As a caution-
ary example we show in Figure 3 a result obtained for a cylinder packing using
exactly the same network as described above, but trained solely on a Boolean
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model of spheres. Clearly, the thus “mis-trained” net tries to approximate the
foreground by spheres.

Fig. 3: Overlaid result for RSA fiber packing obtained with net trained on
Boolean model of spheres. Meaning of colors as in Figure 2 above.
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