

GNU Emacs Manual
Table of Contents
	The Emacs Editor
	Distribution
	Introduction
	1. The Organization of the Screen
	

	1.1. Point
	1.2. The Echo Area
	1.3. The Mode Line
	1.4. The Menu Bar

2. Kinds of User Input3. Keys4. Keys and Commands5. Entering Emacs6. Exiting Emacs7. Basic Editing Commands	7.1. Inserting Text
	7.2. Changing the Location of Point
	7.3. Erasing Text
	7.4. Undoing Changes
	7.5. Files
	7.6. Help
	7.7. Blank Lines
	7.8. Continuation Lines
	7.9. Cursor Position Information
	7.10. Numeric Arguments
	7.11. Repeating a Command

8. The Minibuffer	8.1. Minibuffers for File Names
	8.2. Editing in the Minibuffer
	8.3. Completion
	

	8.3.1. Completion Example
	8.3.2. Completion Commands
	8.3.3. Completion Exit
	8.3.4. How Completion Alternatives Are Chosen
	8.3.5. Completion Options

8.4. Minibuffer History8.5. Repeating Minibuffer Commands8.6. Entering passwords9. Running Commands by Name10. Help	10.1. Help Summary
	10.2. Documentation for a Key
	10.3. Help by Command or Variable Name
	10.4. Apropos
	10.5. Help Mode Commands
	10.6. Keyword Search for Packages
	10.7. Help for International Language Support
	10.8. Other Help Commands
	10.9. Help Files
	10.10. Help on Active Text and Tooltips

11. The Mark and the Region	11.1. Setting the Mark
	11.2. Commands to Mark Textual Objects
	11.3. Operating on the Region
	11.4. The Mark Ring
	11.5. The Global Mark Ring
	11.6. Shift Selection
	11.7. Disabling Transient Mark Mode

12. Killing and Moving Text	12.1. Deletion and Killing
	

	12.1.1. Deletion
	12.1.2. Killing by Lines
	12.1.3. Other Kill Commands
	12.1.4. Options for Killing

12.2. Yanking	12.2.1. The Kill Ring
	12.2.2. Yanking Earlier Kills
	12.2.3. Appending Kills

12.3. “Cut and Paste” Operations on Graphical Displays	12.3.1. Using the Clipboard
	12.3.2. Cut and Paste with Other Window Applications
	12.3.3. Secondary Selection

12.4. Accumulating Text12.5. Rectangles12.6. CUA Bindings13. Registers	13.1. Saving Positions in Registers
	13.2. Saving Text in Registers
	13.3. Saving Rectangles in Registers
	13.4. Saving Window Configurations in Registers
	13.5. Keeping Numbers in Registers
	13.6. Keeping File Names in Registers
	13.7. Bookmarks

14. Controlling the Display	14.1. Scrolling
	14.2. Recentering
	14.3. Automatic Scrolling
	14.4. Horizontal Scrolling
	14.5. Narrowing
	14.6. View Mode
	14.7. Follow Mode
	14.8. Text Faces
	14.9. Colors for Faces
	14.10. Standard Faces
	14.11. Text Scale
	14.12. Font Lock mode
	14.13. Interactive Highlighting
	14.14. Window Fringes
	14.15. Displaying Boundaries
	14.16. Useless Whitespace
	14.17. Selective Display
	14.18. Optional Mode Line Features
	14.19. How Text Is Displayed
	14.20. Displaying the Cursor
	14.21. Line Truncation
	14.22. Visual Line Mode
	14.23. Customization of Display

15. Searching and Replacement	15.1. Incremental Search
	

	15.1.1. Basics of Incremental Search
	15.1.2. Repeating Incremental Search
	15.1.3. Errors in Incremental Search
	15.1.4. Special Input for Incremental Search
	15.1.5. Isearch Yanking
	15.1.6. Scrolling During Incremental Search
	15.1.7. Searching the Minibuffer

15.2. Nonincremental Search15.3. Word Search15.4. Regular Expression Search15.5. Syntax of Regular Expressions15.6. Backslash in Regular Expressions15.7. Regular Expression Example15.8. Searching and Case15.9. Replacement Commands	15.9.1. Unconditional Replacement
	15.9.2. Regexp Replacement
	15.9.3. Replace Commands and Case
	15.9.4. Query Replace

15.10. Other Search-and-Loop Commands16. Commands for Fixing Typos	16.1. Undo
	16.2. Transposing Text
	16.3. Case Conversion
	16.4. Checking and Correcting Spelling

17. Keyboard Macros	17.1. Basic Use
	17.2. The Keyboard Macro Ring
	17.3. The Keyboard Macro Counter
	17.4. Executing Macros with Variations
	17.5. Naming and Saving Keyboard Macros
	17.6. Editing a Keyboard Macro
	17.7. Stepwise Editing a Keyboard Macro

18. File Handling	18.1. File Names
	18.2. Visiting Files
	18.3. Saving Files
	

	18.3.1. Commands for Saving Files
	18.3.2. Backup Files
	18.3.3. Customizing Saving of Files
	18.3.4. Protection against Simultaneous Editing
	18.3.5. Shadowing Files
	18.3.6. Updating Time Stamps Automatically

18.4. Reverting a Buffer18.5. Auto Reverting Non-File Buffers	18.5.1. Auto Reverting the Buffer Menu
	18.5.2. Auto Reverting Dired buffers
	18.5.3. Adding Support for Auto-Reverting additional Buffers.

18.6. Auto-Saving: Protection Against Disasters	18.6.1. Auto-Save Files
	18.6.2. Controlling Auto-Saving
	18.6.3. Recovering Data from Auto-Saves

18.7. File Name Aliases18.8. File Directories18.9. Comparing Files18.10. Diff Mode18.11. Miscellaneous File Operations18.12. Accessing Compressed Files18.13. File Archives18.14. Remote Files18.15. Quoted File Names18.16. File Name Cache18.17. Convenience Features for Finding Files18.18. Filesets19. Using Multiple Buffers	19.1. Creating and Selecting Buffers
	19.2. Listing Existing Buffers
	19.3. Miscellaneous Buffer Operations
	19.4. Killing Buffers
	19.5. Operating on Several Buffers
	19.6. Indirect Buffers
	19.7. Convenience Features and Customization of Buffer Handling
	

	19.7.1. Making Buffer Names Unique
	19.7.2. Switching Between Buffers using Substrings
	19.7.3. Customizing Buffer Menus

20. Multiple Windows	20.1. Concepts of Emacs Windows
	20.2. Splitting Windows
	20.3. Using Other Windows
	20.4. Displaying in Another Window
	20.5. Deleting and Rearranging Windows
	20.6. Displaying a Buffer in a Window
	

	20.6.1. How display-buffer works

20.7. Convenience Features for Window Handling21. Frames and Graphical Displays	21.1. Mouse Commands for Editing
	21.2. Mouse Commands for Words and Lines
	21.3. Following References with the Mouse
	21.4. Mouse Clicks for Menus
	21.5. Mode Line Mouse Commands
	21.6. Creating Frames
	21.7. Frame Commands
	21.8. Fonts
	21.9. Speedbar Frames
	21.10. Multiple Displays
	21.11. Frame Parameters
	21.12. Scroll Bars
	21.13. Drag and Drop
	21.14. Menu Bars
	21.15. Tool Bars
	21.16. Using Dialog Boxes
	21.17. Tooltips
	21.18. Mouse Avoidance
	21.19. Non-Window Terminals
	21.20. Using a Mouse in Text Terminals

22. International Character Set Support	22.1. Introduction to International Character Sets
	22.2. Disabling Multibyte Characters
	22.3. Language Environments
	22.4. Input Methods
	22.5. Selecting an Input Method
	22.6. Coding Systems
	22.7. Recognizing Coding Systems
	22.8. Specifying a File's Coding System
	22.9. Choosing Coding Systems for Output
	22.10. Specifying a Coding System for File Text
	22.11. Coding Systems for Interprocess Communication
	22.12. Coding Systems for File Names
	22.13. Coding Systems for Terminal I/O
	22.14. Fontsets
	22.15. Defining fontsets
	22.16. Modifying Fontsets
	22.17. Undisplayable Characters
	22.18. Unibyte Editing Mode
	22.19. Charsets
	22.20. Bidirectional Editing

23. Major and Minor Modes	23.1. Major Modes
	23.2. Minor Modes
	23.3. Choosing File Modes

24. Indentation	24.1. Indentation Commands
	24.2. Tab Stops
	24.3. Tabs vs. Spaces
	24.4. Convenience Features for Indentation

25. Commands for Human Languages	25.1. Words
	25.2. Sentences
	25.3. Paragraphs
	25.4. Pages
	25.5. Filling Text
	

	25.5.1. Auto Fill Mode
	25.5.2. Explicit Fill Commands
	25.5.3. The Fill Prefix
	25.5.4. Adaptive Filling

25.6. Case Conversion Commands25.7. Text Mode25.8. Outline Mode	25.8.1. Format of Outlines
	25.8.2. Outline Motion Commands
	25.8.3. Outline Visibility Commands
	25.8.4. Viewing One Outline in Multiple Views
	25.8.5. Folding Editing

25.9. Org Mode	25.9.1. Org as an organizer
	25.9.2. Org as an authoring system

25.10. TeX Mode	25.10.1. TeX Editing Commands
	25.10.2. LaTeX Editing Commands
	25.10.3. TeX Printing Commands
	25.10.4. TeX Mode Miscellany

25.11. SGML and HTML Modes25.12. Nroff Mode25.13. Enriched Text	25.13.1. Enriched Mode
	25.13.2. Hard and Soft Newlines
	25.13.3. Editing Format Information
	25.13.4. Faces in Enriched Text
	25.13.5. Indentation in Enriched Text
	25.13.6. Justification in Enriched Text
	25.13.7. Setting Other Text Properties

25.14. Editing Text-based Tables	25.14.1. What is a Text-based Table?
	25.14.2. Creating a Table
	25.14.3. Table Recognition
	25.14.4. Commands for Table Cells
	25.14.5. Cell Justification
	25.14.6. Table Rows and Columns
	25.14.7. Converting Between Plain Text and Tables
	25.14.8. Table Miscellany

25.15. Two-Column Editing26. Editing Programs	26.1. Major Modes for Programming Languages
	26.2. Top-Level Definitions, or Defuns
	

	26.2.1. Left Margin Convention
	26.2.2. Moving by Defuns
	26.2.3. Imenu
	26.2.4. Which Function Mode

26.3. Indentation for Programs	26.3.1. Basic Program Indentation Commands
	26.3.2. Indenting Several Lines
	26.3.3. Customizing Lisp Indentation
	26.3.4. Commands for C Indentation
	26.3.5. Customizing C Indentation

26.4. Commands for Editing with Parentheses	26.4.1. Expressions with Balanced Parentheses
	26.4.2. Moving in the Parenthesis Structure
	26.4.3. Matching Parentheses

26.5. Manipulating Comments	26.5.1. Comment Commands
	26.5.2. Multiple Lines of Comments
	26.5.3. Options Controlling Comments

26.6. Documentation Lookup	26.6.1. Info Documentation Lookup
	26.6.2. Man Page Lookup
	26.6.3. Emacs Lisp Documentation Lookup

26.7. Hideshow minor mode26.8. Completion for Symbol Names26.9. Glasses minor mode26.10. Semantic26.11. Other Features Useful for Editing Programs26.12. C and Related Modes	26.12.1. C Mode Motion Commands
	26.12.2. Electric C Characters
	26.12.3. Hungry Delete Feature in C
	26.12.4. Other Commands for C Mode

26.13. Asm Mode26.14. Fortran Mode	26.14.1. Motion Commands
	26.14.2. Fortran Indentation
	26.14.3. Fortran Comments
	26.14.4. Auto Fill in Fortran Mode
	26.14.5. Checking Columns in Fortran
	26.14.6. Fortran Keyword Abbrevs

27. Compiling and Testing Programs	27.1. Running Compilations under Emacs
	27.2. Compilation Mode
	27.3. Subshells for Compilation
	27.4. Searching with Grep under Emacs
	27.5. Finding Syntax Errors On The Fly
	27.6. Running Debuggers Under Emacs
	

	27.6.1. Starting GUD
	27.6.2. Debugger Operation
	27.6.3. Commands of GUD
	27.6.4. GUD Customization
	27.6.5. GDB Graphical Interface

27.7. Executing Lisp Expressions27.8. Libraries of Lisp Code for Emacs27.9. Evaluating Emacs Lisp Expressions27.10. Lisp Interaction Buffers27.11. Running an External Lisp28. Maintaining Large Programs	28.1. Version Control
	

	28.1.1. Introduction to Version Control
	28.1.2. Version Control and the Mode Line
	28.1.3. Basic Editing under Version Control
	28.1.4. Features of the Log Entry Buffer
	28.1.5. Registering a File for Version Control
	28.1.6. Examining And Comparing Old Revisions
	28.1.7. VC Change Log
	28.1.8. Undoing Version Control Actions
	28.1.9. VC Directory Mode
	28.1.10. Version Control Branches
	28.1.11. Miscellaneous Commands and Features of VC
	28.1.12. Customizing VC

28.2. Change Logs	28.2.1. Change Log Commands
	28.2.2. Format of ChangeLog

28.3. Tags Tables	28.3.1. Source File Tag Syntax
	28.3.2. Creating Tags Tables
	28.3.3. Etags Regexps
	28.3.4. Selecting a Tags Table
	28.3.5. Finding a Tag
	28.3.6. Searching and Replacing with Tags Tables
	28.3.7. Tags Table Inquiries

28.4. Emacs Development Environment28.5. Merging Files with Emerge	28.5.1. Overview of Emerge
	28.5.2. Submodes of Emerge
	28.5.3. State of a Difference
	28.5.4. Merge Commands
	28.5.5. Exiting Emerge
	28.5.6. Combining the Two Versions
	28.5.7. Fine Points of Emerge

29. Abbrevs	29.1. Abbrev Concepts
	29.2. Defining Abbrevs
	29.3. Controlling Abbrev Expansion
	29.4. Examining and Editing Abbrevs
	29.5. Saving Abbrevs
	29.6. Dynamic Abbrev Expansion
	29.7. Customizing Dynamic Abbreviation

30. Dired, the Directory Editor	30.1. Entering Dired
	30.2. Navigation in the Dired Buffer
	30.3. Deleting Files with Dired
	30.4. Flagging Many Files at Once
	30.5. Visiting Files in Dired
	30.6. Dired Marks vs. Flags
	30.7. Operating on Files
	30.8. Shell Commands in Dired
	30.9. Transforming File Names in Dired
	30.10. File Comparison with Dired
	30.11. Subdirectories in Dired
	30.12. Subdirectory Switches in Dired
	30.13. Moving Over Subdirectories
	30.14. Hiding Subdirectories
	30.15. Updating the Dired Buffer
	30.16. Dired and find
	30.17. Editing the Dired Buffer
	30.18. Viewing Image Thumbnails in Dired
	30.19. Other Dired Features

31. The Calendar and the Diary	31.1. Movement in the Calendar
	

	31.1.1. Motion by Standard Lengths of Time
	31.1.2. Beginning or End of Week, Month or Year
	31.1.3. Specified Dates

31.2. Scrolling in the Calendar31.3. Counting Days31.4. Miscellaneous Calendar Commands31.5. Writing Calendar Files31.6. Holidays31.7. Times of Sunrise and Sunset31.8. Phases of the Moon31.9. Conversion To and From Other Calendars	31.9.1. Supported Calendar Systems
	31.9.2. Converting To Other Calendars
	31.9.3. Converting From Other Calendars
	31.9.4. Converting from the Mayan Calendar

31.10. The Diary	31.10.1. Displaying the Diary
	31.10.2. The Diary File
	31.10.3. Date Formats
	31.10.4. Commands to Add to the Diary
	31.10.5. Special Diary Entries

31.11. Appointments31.12. Importing and Exporting Diary Entries31.13. Daylight Saving Time31.14. Summing Time Intervals31.15. Customizing the Calendar and Diary	31.15.1. Customizing the Calendar
	31.15.2. Customizing the Holidays
	31.15.3. Date Display Format
	31.15.4. Time Display Format
	31.15.5. Customizing the Diary
	31.15.6. Diary Entries Using non-Gregorian Calendars
	31.15.7. Diary Display
	31.15.8. Fancy Diary Display
	31.15.9. Sexp Entries and the Fancy Diary Display

32. Sending Mail	32.1. The Format of the Mail Buffer
	32.2. Mail Header Fields
	32.3. Mail Aliases
	32.4. Mail Commands
	

	32.4.1. Mail Sending
	32.4.2. Mail Header Editing
	32.4.3. Citing Mail
	32.4.4. Mail Miscellany

32.5. Mail Signature32.6. Mail Amusements32.7. Mail-Composition Methods33. Reading Mail with Rmail	33.1. Basic Concepts of Rmail
	33.2. Scrolling Within a Message
	33.3. Moving Among Messages
	33.4. Deleting Messages
	33.5. Rmail Files and Inboxes
	33.6. Multiple Rmail Files
	33.7. Copying Messages Out to Files
	33.8. Labels
	33.9. Rmail Attributes
	33.10. Sending Replies
	33.11. Summaries
	

	33.11.1. Making Summaries
	33.11.2. Editing in Summaries

33.12. Sorting the Rmail File33.13. Display of Messages33.14. Rmail and Coding Systems33.15. Editing Within a Message33.16. Digest Messages33.17. Reading Rot13 Messages33.18. movemail program33.19. Retrieving Mail from Remote Mailboxes33.20. Retrieving Mail from Local Mailboxes in Various Formats34. Gnus	34.1. Gnus Buffers
	34.2. When Gnus Starts Up
	34.3. Using the Gnus Group Buffer
	34.4. Using the Gnus Summary Buffer

35. Document Viewing	35.1. DocView Navigation
	35.2. DocView Searching
	35.3. DocView Slicing
	35.4. DocView Conversion

36. Running Shell Commands from Emacs	36.1. Single Shell Commands
	36.2. Interactive Subshell
	36.3. Shell Mode
	36.4. Shell Prompts
	36.5. Shell Command History
	

	36.5.1. Shell History Ring
	36.5.2. Shell History Copying
	36.5.3. Shell History References

36.6. Directory Tracking36.7. Shell Mode Options36.8. Emacs Terminal Emulator36.9. Term Mode36.10. Remote Host Shell36.11. Serial Terminal37. Using Emacs as a Server	37.1. Invoking emacsclient
	37.2. emacsclient Options

38. Printing Hard Copies	38.1. PostScript Hardcopy
	38.2. Variables for PostScript Hardcopy
	38.3. Printing Package

39. Sorting Text40. Editing Pictures	40.1. Basic Editing in Picture Mode
	40.2. Controlling Motion after Insert
	40.3. Picture Mode Tabs
	40.4. Picture Mode Rectangle Commands

41. Editing Binary Files42. Saving Emacs Sessions43. Recursive Editing Levels44. Emulation45. Hyperlinking and Navigation Features	45.1. Following URLs
	45.2. Activating URLs
	45.3. Finding Files and URLs at Point

46. Other Amusements47. Emacs Lisp Packages	47.1. The Package Menu Buffer
	47.2. Package Installation
	47.3. Package Files and Directory Layout

48. Customization	48.1. Easy Customization Interface
	

	48.1.1. Customization Groups
	48.1.2. Browsing and Searching for Settings
	48.1.3. Changing a Variable
	48.1.4. Saving Customizations
	48.1.5. Customizing Faces
	48.1.6. Customizing Specific Items
	48.1.7. Custom Themes
	48.1.8. Creating Custom Themes

48.2. Variables	48.2.1. Examining and Setting Variables
	48.2.2. Hooks
	48.2.3. Local Variables
	48.2.4. Local Variables in Files
	48.2.5. Per-Directory Local Variables

48.3. Customizing Key Bindings	48.3.1. Keymaps
	48.3.2. Prefix Keymaps
	48.3.3. Local Keymaps
	48.3.4. Minibuffer Keymaps
	48.3.5. Changing Key Bindings Interactively
	48.3.6. Rebinding Keys in Your Init File
	48.3.7. Modifier Keys
	48.3.8. Rebinding Function Keys
	48.3.9. Named ASCII Control Characters
	48.3.10. Rebinding Mouse Buttons
	48.3.11. Disabling Commands

48.4. The Emacs Initialization File	48.4.1. Init File Syntax
	48.4.2. Init File Examples
	48.4.3. Terminal-specific Initialization
	48.4.4. How Emacs Finds Your Init File
	48.4.5. Non-ASCII Characters in Init Files

49. Quitting and Aborting50. Dealing with Emacs Trouble	50.1. If DEL Fails to Delete
	50.2. Recursive Editing Levels
	50.3. Garbage on the Screen
	50.4. Garbage in the Text
	50.5. Running out of Memory
	50.6. Recovery After a Crash
	50.7. Emergency Escape

51. Reporting Bugs	51.1. Reading Existing Bug Reports and Known Problems
	51.2. When Is There a Bug
	51.3. Understanding Bug Reporting
	51.4. Checklist for Bug Reports
	51.5. Sending Patches for GNU Emacs

52. Contributing to Emacs Development53. How To Get Help with GNU EmacsA. GNU GENERAL PUBLIC LICENSEB. GNU Free Documentation LicenseC. Command Line Arguments for Emacs Invocation	Action Arguments
	Initial Options
	Command Argument Example
	Environment Variables
	

	General Variables
	Miscellaneous Variables
	The MS-Windows System Registry

Specifying the Display NameFont Specification OptionsWindow Color OptionsOptions for Window Size and PositionInternal and External BordersFrame TitlesIconsOther Display OptionsD. X Options and Resources	X Resources
	Table of X Resources for Emacs
	Lucid Menu And Dialog X Resources
	LessTif Menu X Resources
	GTK resources
	

	GTK Resource Basics
	GTK widget names
	GTK Widget Names in Emacs
	GTK styles

E. Emacs 23 AntinewsF. Emacs and Mac OS / GNUstep	Basic Emacs usage under Mac OS and GNUstep
	

	Grabbing environment variables

Mac / GNUstep Customization	Font and Color Panels
	Customization options specific to Mac OS / GNUstep

Windowing System Events under Mac OS / GNUstepGNUstep SupportG. Emacs and Microsoft Windows/MS-DOS	How to Start Emacs on MS-Windows
	Text Files and Binary Files
	File Names on MS-Windows
	Emulation of ls on MS-Windows
	HOME and Startup Directories on MS-Windows
	Keyboard Usage on MS-Windows
	Mouse Usage on MS-Windows
	Subprocesses on Windows 9X/ME and Windows NT/2K/XP
	Printing and MS-Windows
	Specifying Fonts on MS-Windows
	Miscellaneous Windows-specific features
	Emacs and MS-DOS
	

	Keyboard Usage on MS-DOS
	Mouse Usage on MS-DOS
	Display on MS-DOS
	File Names on MS-DOS
	Printing and MS-DOS
	International Support on MS-DOS
	Subprocesses on MS-DOS

The GNU Manifesto	What's GNU? Gnu's Not Unix!
	Why I Must Write GNU
	Why GNU Will Be Compatible with Unix
	How GNU Will Be Available
	Why Many Other Programmers Want to Help
	How You Can Contribute
	Why All Computer Users Will Benefit
	Some Easily Rebutted Objections to GNU's Goals

GlossaryAcknowledgmentsKey (Character) Index	Index

Command-Line Options Index	Index

Command and Function Index	Index

Variable Index	Index

Concept Index	Index

GNU Emacs Manual

This is the GNU Emacs Manual,
updated for Emacs version 24.1.
Copyright © 1985-1987, 1993-2012 Free Software Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being “The GNU Manifesto,” “Distribution” and
“GNU GENERAL PUBLIC LICENSE,” with the Front-Cover texts being “A GNU
Manual,” and with the Back-Cover Texts as in (a) below. A copy of the
license is included in the section entitled “GNU Free Documentation
License.”
(a) The FSF's Back-Cover Text is: “You have the freedom to copy and
modify this GNU manual. Buying copies from the FSF supports it in
developing GNU and promoting software freedom.”

Chapter . The Emacs Editor

Emacs is the extensible, customizable, self-documenting real-time
display editor. This Info file describes how to edit with Emacs and
some of the ways to customize it; it corresponds to GNU Emacs version
24.1.
For information on extending Emacs, see See section ``Top'' in The Emacs Lisp Reference Manual.
This is the GNU Emacs Manual,
updated for Emacs version 24.1.
Copyright © 1985-1987, 1993-2012 Free Software Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being “The GNU Manifesto,” “Distribution” and
“GNU GENERAL PUBLIC LICENSE,” with the Front-Cover texts being “A GNU
Manual,” and with the Back-Cover Texts as in (a) below. A copy of the
license is included in the section entitled “GNU Free Documentation
License.”
(a) The FSF's Back-Cover Text is: “You have the freedom to copy and
modify this GNU manual. Buying copies from the FSF supports it in
developing GNU and promoting software freedom.”

Chapter . Distribution

GNU Emacs is free software; this means that everyone is free to
use it and free to redistribute it under certain conditions. GNU Emacs
is not in the public domain; it is copyrighted and there are
restrictions on its distribution, but these restrictions are designed
to permit everything that a good cooperating citizen would want to do.
What is not allowed is to try to prevent others from further sharing
any version of GNU Emacs that they might get from you. The precise
conditions are found in the GNU General Public License that comes with
Emacs and also appears in this manual[1].
See Appendix A, GNU GENERAL PUBLIC LICENSE.
One way to get a copy of GNU Emacs is from someone else who has it.
You need not ask for our permission to do so, or tell any one else;
just copy it. If you have access to the Internet, you can get the
latest distribution version of GNU Emacs by anonymous FTP; see
http://www.gnu.org/software/emacs on our website for more
information.
You may also receive GNU Emacs when you buy a computer. Computer
manufacturers are free to distribute copies on the same terms that apply to
everyone else. These terms require them to give you the full sources,
including whatever changes they may have made, and to permit you to
redistribute the GNU Emacs received from them under the usual terms of the
General Public License. In other words, the program must be free for you
when you get it, not just free for the manufacturer.
If you find GNU Emacs useful, please send a donation to the
Free Software Foundation to support our work. Donations to the Free
Software Foundation are tax deductible in the US. If you use GNU Emacs
at your workplace, please suggest that the company make a donation.
For more information on how you can help, see
http://www.gnu.org/help/help.html.
We also sell hardcopy versions of this manual and An
Introduction to Programming in Emacs Lisp, by Robert J. Chassell.
You can visit our online store at http://shop.fsf.org/.
The income from sales goes to support the foundation's purpose: the
development of new free software, and improvements to our existing
programs including GNU Emacs.
If you need to contact the Free Software Foundation, see
http://www.fsf.org/about/contact/, or write to

Free Software Foundation

51 Franklin Street, Fifth Floor

Boston, MA 02110-1301

USA

[1] This manual is itself
covered by the GNU Free Documentation License. This license is
similar in spirit to the General Public License, but is more suitable
for documentation. See Appendix B, GNU Free Documentation License.

Chapter . Introduction

You are reading about GNU Emacs, the GNU incarnation of the
advanced, self-documenting, customizable, extensible editor Emacs.
(The `G' in `GNU' is not silent.)
We call Emacs advanced because it can do much more than simple
insertion and deletion of text. It can control subprocesses, indent
programs automatically, show multiple files at once, and more.
Emacs editing commands operate in terms of characters, words, lines,
sentences, paragraphs, and pages, as well as expressions and comments
in various programming languages.
Self-documenting means that at any time you can use special
commands, known as help commands, to find out what your options
are, or to find out what any command does, or to find all the
commands that pertain to a given topic. See Chapter 10, Help.
Customizable means that you can easily alter the behavior of
Emacs commands in simple ways. For instance, if you use a programming
language in which comments start with ‘<**’ and end with
‘**>’, you can tell the Emacs comment manipulation commands to
use those strings (see the section called “Manipulating Comments”). To take another example, you
can rebind the basic cursor motion commands (up, down, left and right)
to any keys on the keyboard that you find comfortable.
See Chapter 48, Customization.
Extensible means that you can go beyond simple customization
and create entirely new commands. New commands are simply programs
written in the Lisp language, which are run by Emacs's own Lisp
interpreter. Existing commands can even be redefined in the middle of
an editing session, without having to restart Emacs. Most of the
editing commands in Emacs are written in Lisp; the few exceptions
could have been written in Lisp but use C instead for efficiency.
Writing an extension is programming, but non-programmers can use it
afterwards. See See section ``Preface'' in An Introduction to Programming in Emacs Lisp, if you want to learn Emacs
Lisp programming.

Chapter 1. The Organization of the Screen

 On a graphical display, such as on GNU/Linux using the X Window
System, Emacs occupies a “graphical window”. On a text terminal,
Emacs occupies the entire terminal screen. We will use the term
frame to mean a graphical window or terminal screen occupied by
Emacs. Emacs behaves very similarly on both kinds of frames. It
normally starts out with just one frame, but you can create additional
frames if you wish (see Chapter 21, Frames and Graphical Displays).
Each frame consists of several distinct regions. At the top of the
frame is a menu bar, which allows you to access commands via a
series of menus. On a graphical display, directly below the menu bar
is a tool bar, a row of icons that perform editing commands if
you click on them. At the very bottom of the frame is an echo
area, where informative messages are displayed and where you enter
information when Emacs asks for it.
The main area of the frame, below the tool bar (if one exists) and
above the echo area, is called the window. Henceforth in this
manual, we will use the word “window” in this sense. Graphical
display systems commonly use the word “window” with a different
meaning; but, as stated above, we refer to those “graphical windows”
as “frames”.
An Emacs window is where the buffer—the text you are
editing—is displayed. On a graphical display, the window possesses
a scroll bar on one side, which can be used to scroll through
the buffer. The last line of the window is a mode line. This
displays various information about what is going on in the buffer,
such as whether there are unsaved changes, the editing modes that are
in use, the current line number, and so forth.
When you start Emacs, there is normally only one window in the
frame. However, you can subdivide this window horizontally or
vertically to create multiple windows, each of which can independently
display a buffer (see Chapter 20, Multiple Windows).
At any time, one window is the selected window. On a
graphical display, the selected window shows a more prominent cursor
(usually solid and blinking); other windows show a less prominent
cursor (usually a hollow box). On a text terminal, there is only one
cursor, which is shown in the selected window. The buffer displayed
in the selected window is called the current buffer, and it is
where editing happens. Most Emacs commands implicitly apply to the
current buffer; the text displayed in unselected windows is mostly
visible for reference. If you use multiple frames on a graphical
display, selecting a particular frame selects a window in that frame.
Point

 The cursor in the selected window shows the location where most
editing commands take effect, which is called point[2]. Many Emacs commands move point
to different places in the buffer; for example, you can place point by
clicking mouse button 1 (normally the left button) at the desired
location.
By default, the cursor in the selected window is drawn as a solid
block and appears to be on a character, but you should think of
point as between two characters; it is situated before
the character under the cursor. For example, if your text looks like
‘frob’ with the cursor over the ‘b’, then point is between
the ‘o’ and the ‘b’. If you insert the character ‘!’
at that position, the result is ‘fro!b’, with point between the
‘!’ and the ‘b’. Thus, the cursor remains over the
‘b’, as before.
If you are editing several files in Emacs, each in its own buffer,
each buffer has its own value of point. A buffer that is not
currently displayed remembers its value of point if you later display
it again. Furthermore, if a buffer is displayed in multiple windows,
each of those windows has its own value of point.
See the section called “Displaying the Cursor”, for options that control how Emacs displays
the cursor.

[2] The
term “point” comes from the character ‘.’, which was the
command in TECO (the language in which the original Emacs was written)
for accessing the editing position.

The Echo Area

 The line at the very bottom of the frame is the echo area. It
is used to display small amounts of text for various purposes.
 The echo area is so-named because one of the things it is used for
is echoing, which means displaying the characters of a
multi-character command as you type. Single-character commands are
not echoed. Multi-character commands (see Chapter 3, Keys) are echoed if you
pause for more than a second in the middle of a command. Emacs then
echoes all the characters of the command so far, to prompt you for the
rest. Once echoing has started, the rest of the command echoes
immediately as you type it. This behavior is designed to give
confident users fast response, while giving hesitant users maximum
feedback.
 The echo area is also used to display an error message when a
command cannot do its job. Error messages may be accompanied by
beeping or by flashing the screen.
Some commands display informative messages in the echo area to tell
you what the command has done, or to provide you with some specific
information. These informative messages, unlike error messages,
are not accompanied with a beep or flash. For example, C-x =
(hold down CTRL and type x, then let go of CTRL and
type =) displays a message describing the character at point,
its position in the buffer, and its current column in the window.
Commands that take a long time often display messages ending in
‘...’ while they are working (sometimes also indicating how much
progress has been made, as a percentage), and add ‘done’ when
they are finished.
 Informative echo area messages are saved in a special buffer named
Messages. (We have not explained buffers yet; see
Chapter 19, Using Multiple Buffers, for more information about them.) If you miss a
message that appeared briefly on the screen, you can switch to the
Messages buffer to see it again. The *Messages*
buffer is limited to a certain number of lines, specified by the
variable message-log-max. (We have not explained variables
either; see the section called “Variables”, for more information about them.) Beyond
this limit, one line is deleted from the beginning whenever a new
message line is added at the end.
See the section called “Customization of Display”, for options that control how Emacs uses the
echo area.
 The echo area is also used to display the minibuffer, a
special window where you can input arguments to commands, such as the
name of a file to be edited. When the minibuffer is in use, the text
displayed in the echo area begins with a prompt string, and the
active cursor appears within the minibuffer, which is temporarily
considered the selected window. You can always get out of the
minibuffer by typing C-g. See Chapter 8, The Minibuffer.

The Mode Line

 At the bottom of each window is a mode line, which describes
what is going on in the current buffer. When there is only one
window, the mode line appears right above the echo area; it is the
next-to-last line in the frame. On a graphical display, the mode line
is drawn with a 3D box appearance. Emacs also usually draws the mode
line of the selected window with a different color than that of
unselected windows, in order to make it stand out.
The text displayed in the mode line has the following format:

 cs:ch-fr buf pos line (major minor)

On a text terminal, this text is followed by a series of dashes
extending to the right edge of the window. These dashes are omitted
on a graphical display.
The cs string and the colon character after it describe the
character set and newline convention used for the current buffer.
Normally, Emacs automatically handles these settings for you, but it
is sometimes useful to have this information.
cs describes the character set of the text in the buffer
(see the section called “Coding Systems”). If it is a dash (‘-’), that indicates
no special character set handling (with the possible exception of
end-of-line conventions, described in the next paragraph). ‘=’
means no conversion whatsoever, and is usually used for files
containing non-textual data. Other characters represent various
coding systems—for example, ‘1’ represents ISO Latin-1.
On a text terminal, cs is preceded by two additional
characters that describe the coding systems for keyboard input and
terminal output. Furthermore, if you are using an input method,
cs is preceded by a string that identifies the input method
(see the section called “Input Methods”).
 The character after cs is usually a colon. If a different
string is displayed, that indicates a nontrivial end-of-line
convention for encoding a file. Usually, lines of text are separated
by newline characters in a file, but two other conventions are
sometimes used. The MS-DOS convention uses a “carriage-return”
character followed by a “linefeed” character; when editing such
files, the colon changes to either a backslash (‘\’) or
‘(DOS)’, depending on the operating system. Another convention,
employed by older Macintosh systems, uses a “carriage-return”
character instead of a newline; when editing such files, the colon
changes to either a forward slash (‘/’) or ‘(Mac)’. On some
systems, Emacs displays ‘(Unix)’ instead of the colon for files
that use newline as the line separator.
The next element on the mode line is the string indicated by
ch. This shows two dashes (‘--’) if the buffer displayed
in the window has the same contents as the corresponding file on the
disk; i.e., if the buffer is “unmodified”. If the buffer is
modified, it shows two stars (‘**’). For a read-only buffer, it
shows ‘%*’ if the buffer is modified, and ‘%%’ otherwise.
The character after ch is normally a dash (‘-’).
However, if the default-directory for the current buffer is on a
remote machine, ‘@’ is displayed instead (see the section called “File Names”).
fr gives the selected frame name (see Chapter 21, Frames and Graphical Displays). It appears
only on text terminals. The initial frame's name is ‘F1’.
buf is the name of the buffer displayed in the window.
Usually, this is the same as the name of a file you are editing.
See Chapter 19, Using Multiple Buffers.
pos tells you whether there is additional text above the top
of the window, or below the bottom. If your buffer is small and all
of it is visible in the window, pos is ‘All’. Otherwise,
it is ‘Top’ if you are looking at the beginning of the buffer,
‘Bot’ if you are looking at the end of the buffer, or
‘nn%’, where nn is the percentage of the buffer above
the top of the window. With Size Indication mode, you can display the
size of the buffer as well. See the section called “Optional Mode Line Features”.
line is the character ‘L’ followed by the line number at
point. (You can display the current column number too, by turning on
Column Number mode. See the section called “Optional Mode Line Features”.)
major is the name of the major mode used in the buffer.
A major mode is a principal editing mode for the buffer, such as Text
mode, Lisp mode, C mode, and so forth. See the section called “Major Modes”. Some
major modes display additional information after the major mode name.
For example, Compilation buffers and Shell buffers display the status
of the subprocess.
minor is a list of some of the enabled minor modes,
which are optional editing modes that provide additional features on
top of the major mode. See the section called “Minor Modes”.
Some features are listed together with the minor modes whenever they
are turned on, even though they are not really minor modes.
‘Narrow’ means that the buffer being displayed has editing
restricted to only a portion of its text (see the section called “Narrowing”).
‘Def’ means that a keyboard macro is currently being defined
(see Chapter 17, Keyboard Macros).
In addition, if Emacs is inside a recursive editing level, square
brackets (‘[…]’) appear around the parentheses that
surround the modes. If Emacs is in one recursive editing level within
another, double square brackets appear, and so on. Since recursive
editing levels affect Emacs globally, such square brackets appear in
the mode line of every window. See Chapter 43, Recursive Editing Levels.
You can change the appearance of the mode line as well as the format
of its contents. See the section called “Optional Mode Line Features”. In addition, the mode
line is mouse-sensitive; clicking on different parts of the mode line
performs various commands. See the section called “Mode Line Mouse Commands”.

The Menu Bar

 Each Emacs frame normally has a menu bar at the top which you
can use to perform common operations. There's no need to list them
here, as you can more easily see them yourself.
 On a graphical display, you can use the mouse to choose a command
from the menu bar. An arrow on the right edge of a menu item means it
leads to a subsidiary menu, or submenu. A ‘...’ at the end
of a menu item means that the command will prompt you for further
input before it actually does anything.
Some of the commands in the menu bar have ordinary key bindings as
well; if so, a key binding is shown in parentheses after the item
itself. To view the full command name and documentation for a menu
item, type C-h k, and then select the menu bar with the mouse in
the usual way (see the section called “Documentation for a Key”).
Instead of using the mouse, you can also invoke the first menu bar
item by pressing F10 (to run the command menu-bar-open).
You can then navigate the menus with the arrow keys. To activate a
selected menu item, press RET; to cancel menu navigation, press
ESC.
On a text terminal, you can use the menu bar by typing M-` or
F10 (these run the command tmm-menubar). This lets you
select a menu item with the keyboard. A provisional choice appears in
the echo area. You can use the up and down arrow keys to move through
the menu to different items, and then you can type RET to select
the item. Each menu item is also designated by a letter or digit
(usually the initial of some word in the item's name). This letter or
digit is separated from the item name by ‘=>’. You can type the
item's letter or digit to select the item.

Chapter 2. Kinds of User Input

 GNU Emacs is primarily designed for use with the keyboard. While it
is possible to use the mouse to issue editing commands through the
menu bar and tool bar, that is not as efficient as using the keyboard.
Therefore, this manual mainly documents how to edit with the keyboard.
 Keyboard input into Emacs is based on a heavily-extended version of
ASCII. Simple characters, like ‘a’, ‘B’,
‘3’, ‘=’, and the space character (denoted as SPC),
are entered by typing the corresponding key. Control
characters, such as RET, TAB, DEL, ESC,
F1, Home, and left, are also entered this way, as
are certain characters found on non-English keyboards
(see Chapter 22, International Character Set Support).
 Emacs also recognizes control characters that are entered using
modifier keys. Two commonly-used modifier keys are
Control (usually labeled Ctrl), and Meta (usually
labeled Alt)[3]. For example, Control-a is entered by
holding down the Ctrl key while pressing a; we will refer
to this as C-a for short. Similarly Meta-a, or M-a
for short, is entered by holding down the Alt key and pressing
a. Modifier keys can also be applied to non-alphanumerical
characters, e.g. C-F1 or M-left.
 You can also type Meta characters using two-character sequences
starting with ESC. Thus, you can enter M-a by typing
ESC a. You can enter C-M-a by typing ESC
C-a. Unlike Meta, ESC is entered as a separate
character. You don't hold down ESC while typing the next
character; instead, press ESC and release it, then enter the
next character. This feature is useful on certain text terminals
where the Meta key does not function reliably.
 On graphical displays, the window manager might block some keyboard
inputs, including M-TAB, M-SPC, C-M-d
and C-M-l. If you have this problem, you can either customize
your window manager to not block those keys, or “rebind” the
affected Emacs commands (see Chapter 48, Customization).
 Simple characters and control characters, as well as certain
non-keyboard inputs such as mouse clicks, are collectively referred to
as input events. For details about how Emacs internally handles
input events, see See section ``Input Events'' in The Emacs Lisp Reference Manual.

[3] We refer to Alt as Meta for
historical reasons.

Chapter 3. Keys

Some Emacs commands are invoked by just one input event; for
example, C-f moves forward one character in the buffer. Other
commands take two or more input events to invoke, such as C-x
C-f and C-x 4 C-f.
 A key sequence, or key for short, is a sequence of one
or more input events that is meaningful as a unit. If a key sequence
invokes a command, we call it a complete key; for example,
C-f, C-x C-f and C-x 4 C-f are all complete keys.
If a key sequence isn't long enough to invoke a command, we call it a
prefix key; from the preceding example, we see that C-x
and C-x 4 are prefix keys. Every key sequence is either a
complete key or a prefix key.
A prefix key combines with the following input event to make a
longer key sequence. For example, C-x is a prefix key, so
typing C-x alone does not invoke a command; instead, Emacs waits
for further input (if you pause for longer than a second, it echoes
the C-x key to prompt for that input; see the section called “The Echo Area”).
C-x combines with the next input event to make a two-event key
sequence, which could itself be a prefix key (such as C-x 4), or
a complete key (such as C-x C-f). There is no limit to the
length of key sequences, but in practice they are seldom longer than
three or four input events.
You can't add input events onto a complete key. For example,
because C-f is a complete key, the two-event sequence C-f
C-k is two key sequences, not one.
By default, the prefix keys in Emacs are C-c, C-h,
C-x, C-x RET, C-x @, C-x a, C-x
n, C-x r, C-x v, C-x 4, C-x 5, C-x 6,
ESC, M-g, and M-o. (F1 and F2 are
aliases for C-h and C-x 6.) This list is not cast in
stone; if you customize Emacs, you can make new prefix keys. You
could even eliminate some of the standard ones, though this is not
recommended for most users; for example, if you remove the prefix
definition of C-x 4, then C-x 4 C-f becomes an invalid key
sequence. See the section called “Customizing Key Bindings”.
Typing the help character (C-h or F1) after a prefix key
displays a list of the commands starting with that prefix. The sole
exception to this rule is ESC: ESC C-h is equivalent
to C-M-h, which does something else entirely. You can, however,
use F1 to display a list of commands starting with ESC.

Chapter 4. Keys and Commands

 This manual is full of passages that tell you what particular keys
do. But Emacs does not assign meanings to keys directly. Instead,
Emacs assigns meanings to named commands, and then gives keys
their meanings by binding them to commands.
Every command has a name chosen by a programmer. The name is
usually made of a few English words separated by dashes; for example,
next-line or forward-word. Internally, each command is
a special type of Lisp function, and the actions associated with
the command are performed by running the function. See See section ``What Is a Function'' in The Emacs Lisp Reference Manual.
The bindings between keys and commands are recorded in tables called
keymaps. See the section called “Keymaps”.
When we say that “C-n moves down vertically one line” we are
glossing over a subtle distinction that is irrelevant in ordinary use,
but vital for Emacs customization. The command next-line does
a vertical move downward. C-n has this effect because it
is bound to next-line. If you rebind C-n to the command
forward-word, C-n will move forward one word instead.
In this manual, we will often speak of keys like C-n as
commands, even though strictly speaking the key is bound to a command.
Usually we state the name of the command which really does the work in
parentheses after mentioning the key that runs it. For example, we
will say that “The command C-n (next-line) moves point
vertically down”, meaning that the command next-line moves
vertically down, and the key C-n is normally bound to it.
Since we are discussing customization, we should tell you about
variables. Often the description of a command will say, “To
change this, set the variable mumble-foo.” A variable is a
name used to store a value. Most of the variables documented in this
manual are meant for customization: some command or other part of
Emacs examines the variable and behaves differently according to the
value that you set. You can ignore the information about variables
until you are interested in customizing them. Then read the basic
information on variables (see the section called “Variables”) and the information about
specific variables will make sense.

Chapter 5. Entering Emacs

 The usual way to invoke Emacs is with the shell command
emacs. From a terminal window running in the X Window
System, you can run Emacs in the background with emacs &;
this way, Emacs won't tie up the terminal window, so you can use it to
run other shell commands.
 When Emacs starts up, the initial frame displays a special buffer
named ‘*GNU Emacs*’. This startup screen contains
information about Emacs and links to common tasks that are
useful for beginning users. For instance, activating the ‘Emacs
Tutorial’ link opens the Emacs tutorial; this does the same thing as
the command C-h t (help-with-tutorial). To activate a
link, either move point onto it and type RET, or click on
it with mouse-1 (the left mouse button).
Using a command line argument, you can tell Emacs to visit one or
more files as soon as it starts up. For example, emacs
foo.txt starts Emacs with a buffer displaying the contents of the
file ‘foo.txt’. This feature exists mainly for compatibility
with other editors, which are designed to be launched from the shell
for short editing sessions. If you call Emacs this way, the initial
frame is split into two windows—one showing the specified file, and
the other showing the startup screen. See Chapter 20, Multiple Windows.
Generally, it is unnecessary and wasteful to start Emacs afresh each
time you want to edit a file. The recommended way to use Emacs is to
start it just once, just after you log in, and do all your editing in
the same Emacs session. See Chapter 18, File Handling, for information on visiting
more than one file. If you use Emacs this way, the Emacs session
accumulates valuable context, such as the kill ring, registers, undo
history, and mark ring data, which together make editing more
convenient. These features are described later in the manual.
To edit a file from another program while Emacs is running, you can
use the emacsclient helper program to open a file in the
existing Emacs session. See Chapter 37, Using Emacs as a Server.
Emacs accepts other command line arguments that tell it to load
certain Lisp files, where to put the initial frame, and so forth.
See Appendix C, Command Line Arguments for Emacs Invocation.
 If the variable inhibit-startup-screen is non-nil,
Emacs does not display the startup screen. In that case, if one or
more files were specified on the command line, Emacs simply displays
those files; otherwise, it displays a buffer named *scratch*,
which can be used to evaluate Emacs Lisp expressions interactively.
See the section called “Lisp Interaction Buffers”. You can set the variable
inhibit-startup-screen using the Customize facility
(see the section called “Easy Customization Interface”), or by editing your initialization file
(see the section called “The Emacs Initialization File”).[4]
You can also force Emacs to display a file or directory at startup
by setting the variable initial-buffer-choice to a
non-nil value. (In that case, even if you specify one or more
files on the command line, Emacs opens but does not display them.)
The value of initial-buffer-choice should be the name of
the desired file or directory.

[4] Setting inhibit-startup-screen in
site-start.el doesn't work, because the startup screen is set
up before reading site-start.el. See the section called “The Emacs Initialization File”, for
information about site-start.el.

Chapter 6. Exiting Emacs

	C-x C-c
	Kill Emacs (save-buffers-kill-terminal).

	C-z
	On a text terminal, suspend Emacs; on a graphical display,
“minimize” the selected frame (suspend-emacs).

 Killing Emacs means terminating the Emacs program. To do
this, type C-x C-c (save-buffers-kill-terminal). A
two-character key sequence is used to make it harder to type by
accident. If there are any modified file-visiting buffers when you
type C-x C-c, Emacs first offers to save these buffers. If you
do not save them all, it asks for confirmation again, since the
unsaved changes will be lost. Emacs also asks for confirmation if any
subprocesses are still running, since killing Emacs will also kill the
subprocesses (see Chapter 36, Running Shell Commands from Emacs).
C-x C-c behaves specially if you are using Emacs as a server.
If you type it from a “client frame”, it closes the client
connection. See Chapter 37, Using Emacs as a Server.
Emacs can, optionally, record certain session information when you
kill it, such as the files you were visiting at the time. This
information is then available the next time you start Emacs.
See Chapter 42, Saving Emacs Sessions.
 If the value of the variable confirm-kill-emacs is
non-nil, C-x C-c assumes that its value is a predicate
function, and calls that function. If the result of the function call
is non-nil, the session is killed, otherwise Emacs continues to
run. One convenient function to use as the value of
confirm-kill-emacs is the function yes-or-no-p. The
default value of confirm-kill-emacs is nil.
 To kill Emacs without being prompted about saving, type M-x
kill-emacs.
 C-z runs the command suspend-frame. On a graphical
display, this command minimizes (or iconifies) the
selected Emacs frame, hiding it in a way that lets you bring it back
later (exactly how this hiding occurs depends on the window system).
On a text terminal, the C-z command suspends Emacs,
stopping the program temporarily and returning control to the parent
process (usually a shell); in most shells, you can resume Emacs after
suspending it with the shell command %emacs.
Text terminals usually listen for certain special characters whose
meaning is to kill or suspend the program you are running. This
terminal feature is turned off while you are in Emacs. The meanings
of C-z and C-x C-c as keys in Emacs were inspired by the
use of C-z and C-c on several operating systems as the
characters for stopping or killing a program, but that is their only
relationship with the operating system. You can customize these keys
to run any commands of your choice (see the section called “Keymaps”).

Chapter 7. Basic Editing Commands

 Here we explain the basics of how to enter text, make corrections,
and save the text in a file. If this material is new to you, we
suggest you first run the Emacs learn-by-doing tutorial, by typing
C-h t (help-with-tutorial).
Inserting Text

 You can insert an ordinary graphic character (e.g., ‘a’,
‘B’, ‘3’, and ‘=’) by typing the associated key. This
adds the character to the buffer at point. Insertion moves point
forward, so that point remains just after the inserted text.
See the section called “Point”.
 To end a line and start a new one, type RET (newline).
(The RET key may be labeled Return or Enter on your
keyboard, but we refer to it as RET in this manual.) This
command inserts a newline character into the buffer. If point is at
the end of the line, the effect is to create a new blank line after
it; if point is in the middle of a line, the line is split at that
position.
As we explain later in this manual, you can change the way Emacs
handles text insertion by turning on minor modes. For instance,
the minor mode called Auto Fill mode splits lines automatically when
they get too long (see the section called “Filling Text”). The minor mode called Overwrite
mode causes inserted characters to replace (overwrite) existing text,
instead of shoving it to the right. See the section called “Minor Modes”.
 Only graphic characters can be inserted by typing the associated
key; other keys act as editing commands and do not insert themselves.
For instance, DEL runs the command delete-backward-char
by default (some modes bind it to a different command); it does not
insert a literal ‘DEL’ character (ASCII character code
127).
To insert a non-graphic character, or a character that your keyboard
does not support, first quote it by typing C-q
(quoted-insert). There are two ways to use C-q:
	C-q followed by any non-graphic character (even C-g)
inserts that character. For instance, C-q DEL inserts a
literal ‘DEL’ character.

	C-q followed by a sequence of octal digits inserts the character
with the specified octal character code. You can use any number of
octal digits; any non-digit terminates the sequence. If the
terminating character is RET, that RET serves only to
terminate the sequence. Any other non-digit terminates the sequence
and then acts as normal input—thus, C-q 1 0 1 B inserts
‘AB’.
The use of octal sequences is disabled in ordinary non-binary
Overwrite mode, to give you a convenient way to insert a digit instead
of overwriting with it.

To use decimal or hexadecimal instead of octal, set the variable
read-quoted-char-radix to 10 or 16. If the radix is 16,
the letters a to f serve as part of a character code,
just like digits. Case is ignored.
 Instead of C-q, you can use the command C-x 8 RET
(ucs-insert). This prompts for the Unicode name or code-point
of a character, using the minibuffer. If you enter a name, the
command provides completion (see the section called “Completion”). If you enter a
code-point, it should be a hexadecimal number (which is the convention
for Unicode). The command then inserts the corresponding character
into the buffer. For example, both of the following insert the
infinity sign (Unicode code-point U+221E):

C-x 8 RET infinity RET
C-x 8 RET 221e RET

A numeric argument to either C-q or C-x 8 RET
specifies how many copies of the character to insert
(see the section called “Numeric Arguments”).

Changing the Location of Point

 To do more than insert characters, you have to know how to move
point (see the section called “Point”). The keyboard commands C-f, C-b,
C-n, and C-p move point to the right, left, down, and up,
respectively. You can also move point using the arrow keys
present on most keyboards: right, left,
down, and up; however, many Emacs users find
that it is slower to use the arrow keys than the control keys, because
you need to move your hand to the area of the keyboard where those
keys are located.
You can also click the left mouse button to move point to the
position clicked. Emacs also provides a variety of additional
keyboard commands that move point in more sophisticated ways.
	C-f
	Move forward one character (forward-char).

	right
	This command (right-char) behaves like C-f, with one
exception: when editing right-to-left scripts such as Arabic, it
instead moves backward if the current paragraph is a
right-to-left paragraph. See the section called “Bidirectional Editing”.

	C-b
	Move backward one character (backward-char).

	left
	This command (left-char) behaves like C-b, except it
moves forward if the current paragraph is right-to-left.
See the section called “Bidirectional Editing”.

	C-n, down
	Move down one screen line (next-line). This command attempts
to keep the horizontal position unchanged, so if you start in the
middle of one line, you move to the middle of the next.

	C-p, up
	Move up one screen line (previous-line). This command
preserves position within the line, like C-n.

	C-a, Home
	Move to the beginning of the line (move-beginning-of-line).

	C-e, End
	Move to the end of the line (move-end-of-line).

	M-f
	Move forward one word (forward-word).

	C-right, M-right
	This command (right-word) behaves like M-f, except it
moves backward by one word if the current paragraph is
right-to-left. See the section called “Bidirectional Editing”.

	M-b
	Move backward one word (backward-word).

	C-left, M-left
	This command (left-word) behaves like M-f, except it
moves forward by one word if the current paragraph is
right-to-left. See the section called “Bidirectional Editing”.

	M-r
	Without moving the text on the screen, reposition point on the left
margin of the center-most text line of the window; on subsequent
consecutive invocations, move point to the left margin of the top-most
line, the bottom-most line, and so forth, in cyclic order
(move-to-window-line-top-bottom).
A numeric argument says which screen line to place point on, counting
downward from the top of the window (zero means the top line). A
negative argument counts lines up from the bottom (−1 means the
bottom line). See the section called “Numeric Arguments”, for more information on numeric
arguments.

	M-<
	Move to the top of the buffer (beginning-of-buffer). With
numeric argument n, move to n/10 of the way from the top.

	M->
	Move to the end of the buffer (end-of-buffer).

	C-v, PageDown, next
	Scroll the display one screen forward, and move point onscreen if
necessary (scroll-up-command). See the section called “Scrolling”.

	M-v, PageUp, prior
	Scroll one screen backward, and move point onscreen if necessary
(scroll-down-command). See the section called “Scrolling”.

	M-x goto-char
	Read a number n and move point to buffer position n.
Position 1 is the beginning of the buffer.

	M-g M-g, M-g g
	Read a number n and move point to the beginning of line number
n (goto-line). Line 1 is the beginning of the buffer. If
point is on or just after a number in the buffer, that is the default
for n. Just type RET in the minibuffer to use it. You can
also specify n by giving M-g M-g a numeric prefix argument.
See the section called “Creating and Selecting Buffers”, for the behavior of M-g M-g when you give it
a plain prefix argument.

	C-x C-n
	Use the current column of point as the semipermanent goal column
for C-n and C-p (set-goal-column). When a
semipermanent goal column is in effect, those commands always try to
move to this column, or as close as possible to it, after moving
vertically. The goal column remains in effect until canceled.

	C-u C-x C-n
	Cancel the goal column. Henceforth, C-n and C-p try to
preserve the horizontal position, as usual.

 When a line of text in the buffer is longer than the width of the
window, Emacs usually displays it on two or more screen lines.
For convenience, C-n and C-p move point by screen lines,
as do the equivalent keys down and up. You
can force these commands to move according to logical lines
(i.e., according to the text lines in the buffer) by setting the
variable line-move-visual to nil; if a logical line
occupies multiple screen lines, the cursor then skips over the
additional screen lines. For details, see the section called “Continuation Lines”.
See the section called “Variables”, for how to set variables such as
line-move-visual.
Unlike C-n and C-p, most of the Emacs commands that work
on lines work on logical lines. For instance, C-a
(move-beginning-of-line) and C-e
(move-end-of-line) respectively move to the beginning and end
of the logical line. Whenever we encounter commands that work on
screen lines, such as C-n and C-p, we will point these
out.
 When line-move-visual is nil, you can also set the
variable track-eol to a non-nil value. Then C-n
and C-p, when starting at the end of the logical line, move to
the end of the next logical line. Normally, track-eol is
nil.
 C-n normally stops at the end of the buffer when you use it on
the last line in the buffer. However, if you set the variable
next-line-add-newlines to a non-nil value, C-n on
the last line of a buffer creates an additional line at the end and
moves down into it.

Erasing Text

	DEL, Backspace
	Delete the character before point, or the region if it is active
(delete-backward-char).

	Delete
	Delete the character after point, or the region if it is active
(delete-forward-char).

	C-d
	Delete the character after point (delete-char).

	C-k
	Kill to the end of the line (kill-line).

	M-d
	Kill forward to the end of the next word (kill-word).

	M-DEL
	Kill back to the beginning of the previous word
(backward-kill-word).

The DEL (delete-backward-char) command removes
the character before point, moving the cursor and the characters after
it backwards. If point was at the beginning of a line, this deletes
the preceding newline, joining this line to the previous one.
If, however, the region is active, DEL instead deletes
the text in the region. See Chapter 11, The Mark and the Region, for a description of the region.
On most keyboards, DEL is labeled Backspace, but we
refer to it as DEL in this manual. (Do not confuse DEL
with the Delete key; we will discuss Delete momentarily.)
On some text terminals, Emacs may not recognize the DEL key
properly. See the section called “If DEL Fails to Delete”, if you encounter this problem.
The delete (delete-forward-char) command deletes in the
“opposite direction”: it deletes the character after point, i.e. the
character under the cursor. If point was at the end of a line, this
joins the following line onto this one. Like DEL, it
deletes the text in the region if the region is active (see Chapter 11, The Mark and the Region).
C-d (delete-char) deletes the character after point,
similar to delete, but regardless of whether the region is
active.
See the section called “Deletion”, for more detailed information about the above
deletion commands.
C-k (kill-line) erases (kills) a line at a time. If
you type C-k at the beginning or middle of a line, it kills all
the text up to the end of the line. If you type C-k at the end
of a line, it joins that line with the following line.
See Chapter 12, Killing and Moving Text, for more information about C-k and related
commands.

Undoing Changes

	C-/
	Undo one entry of the undo records—usually, one command worth
(undo).

	C-x u, C-_
	The same.

Emacs records a list of changes made in the buffer text, so you can
undo recent changes. This is done using the undo command,
which is bound to C-/ (as well as C-x u and C-_).
Normally, this command undoes the last change, moving point back to
where it was before the change. The undo command applies only to
changes in the buffer; you can't use it to undo cursor motion.
Although each editing command usually makes a separate entry in the
undo records, very simple commands may be grouped together.
Sometimes, an entry may cover just part of a complex command.
If you repeat C-/ (or its aliases), each repetition undoes
another, earlier change, back to the limit of the undo information
available. If all recorded changes have already been undone, the undo
command displays an error message and does nothing.
To learn more about the undo command, see the section called “Undo”.

Files

Text that you insert in an Emacs buffer lasts only as long as the
Emacs session. To keep any text permanently, you must put it in a
file.
Suppose there is a file named test.emacs in your home
directory. To begin editing this file in Emacs, type

C-x C-f test.emacs RET

Here the file name is given as an argument to the command C-x
C-f (find-file). That command uses the minibuffer to
read the argument, and you type RET to terminate the argument
(see Chapter 8, The Minibuffer).
Emacs obeys this command by visiting the file: it creates a
buffer, copies the contents of the file into the buffer, and then
displays the buffer for editing. If you alter the text, you can
save the new text in the file by typing C-x C-s
(save-buffer). This copies the altered buffer contents back
into the file test.emacs, making them permanent. Until you
save, the changed text exists only inside Emacs, and the file
test.emacs is unaltered.
To create a file, just visit it with C-x C-f as if it already
existed. This creates an empty buffer, in which you can insert the
text you want to put in the file. Emacs actually creates the file the
first time you save this buffer with C-x C-s.
To learn more about using files in Emacs, see Chapter 18, File Handling.

Help

 If you forget what a key does, you can find out by typing C-h
k (describe-key), followed by the key of interest; for
example, C-h k C-n tells you what C-n does.
The prefix key C-h stands for “help”. The key F1
serves as an alias for C-h. Apart from C-h k, there are
many other help commands providing different kinds of help.
See Chapter 10, Help, for details.

Blank Lines

 Here are special commands and techniques for inserting and deleting
blank lines.
	C-o
	Insert a blank line after the cursor (open-line).

	C-x C-o
	Delete all but one of many consecutive blank lines
(delete-blank-lines).

 We have seen how RET (newline) starts a new line
of text. However, it may be easier to see what you are doing if you
first make a blank line and then insert the desired text into it.
This is easy to do using the key C-o (open-line), which
inserts a newline after point but leaves point in front of the
newline. After C-o, type the text for the new line.
You can make several blank lines by typing C-o several times, or
by giving it a numeric argument specifying how many blank lines to make.
See the section called “Numeric Arguments”, for how. If you have a fill prefix, the C-o
command inserts the fill prefix on the new line, if typed at the
beginning of a line. See the section called “The Fill Prefix”.
The easy way to get rid of extra blank lines is with the command
C-x C-o (delete-blank-lines). If point lies within a run
of several blank lines, C-x C-o deletes all but one of them. If
point is on a single blank line, C-x C-o deletes it. If point
is on a nonblank line, C-x C-o deletes all following blank
lines, if any exists.

Continuation Lines

 Sometimes, a line of text in the buffer—a logical line—is
too long to fit in the window, and Emacs displays it as two or more
screen lines. This is called line wrapping or
continuation, and the long logical line is called a
continued line. On a graphical display, Emacs indicates line
wrapping with small bent arrows in the left and right window fringes.
On a text terminal, Emacs indicates line wrapping by displaying a
‘\’ character at the right margin.
Most commands that act on lines act on logical lines, not screen
lines. For instance, C-k kills a logical line. As described
earlier, C-n (next-line) and C-p
(previous-line) are special exceptions: they move point down
and up, respectively, by one screen line (see the section called “Changing the Location of Point”).
 Emacs can optionally truncate long logical lines instead of
continuing them. This means that every logical line occupies a single
screen line; if it is longer than the width of the window, the rest of
the line is not displayed. On a graphical display, a truncated line
is indicated by a small straight arrow in the right fringe; on a text
terminal, it is indicated by a ‘$’ character in the right margin.
See the section called “Line Truncation”.
By default, continued lines are wrapped at the right window edge.
Since the wrapping may occur in the middle of a word, continued lines
can be difficult to read. The usual solution is to break your lines
before they get too long, by inserting newlines. If you prefer, you
can make Emacs insert a newline automatically when a line gets too
long, by using Auto Fill mode. See the section called “Filling Text”.
 Sometimes, you may need to edit files containing many long logical
lines, and it may not be practical to break them all up by adding
newlines. In that case, you can use Visual Line mode, which enables
word wrapping: instead of wrapping long lines exactly at the
right window edge, Emacs wraps them at the word boundaries (i.e.,
space or tab characters) nearest to the right window edge. Visual
Line mode also redefines editing commands such as C-a,
C-n, and C-k to operate on screen lines rather than
logical lines. See the section called “Visual Line Mode”.

Cursor Position Information

Here are commands to get information about the size and position of
parts of the buffer, and to count words and lines.
	M-x what-line
	Display the line number of point.

	M-x line-number-mode, M-x column-number-mode
	Toggle automatic display of the current line number or column number.
See the section called “Optional Mode Line Features”.

	M-=
	Display the number of lines, words, and characters that are present in
the region (count-words-region). See Chapter 11, The Mark and the Region, for information
about the region.

	M-x count-words
	Display the number of lines, words, and characters that are present in
the buffer. If the region is active (see Chapter 11, The Mark and the Region), display the
numbers for the region instead.

	C-x =
	Display the character code of character after point, character position of
point, and column of point (what-cursor-position).

	M-x hl-line-mode
	Enable or disable highlighting of the current line. See the section called “Displaying the Cursor”.

	M-x size-indication-mode
	Toggle automatic display of the size of the buffer.
See the section called “Optional Mode Line Features”.

 M-x what-line displays the current line number in the echo
area. This command is usually redundant, because the current line
number is shown in the mode line (see the section called “The Mode Line”). However, if you
narrow the buffer, the mode line shows the line number relative to
the accessible portion (see the section called “Narrowing”). By contrast,
what-line displays both the line number relative to the
narrowed region and the line number relative to the whole buffer.
 M-= (count-words-region) displays a message reporting
the number of lines, words, and characters in the region. M-x
count-words displays a similar message for the entire buffer, or for
the region if the region is active. See Chapter 11, The Mark and the Region, for an
explanation of the region.
 The command C-x = (what-cursor-position) shows
information about the current cursor position and the buffer contents
at that position. It displays a line in the echo area that looks like
this:

Char: c (99, #o143, #x63) point=28062 of 36168 (78%) column=53

After ‘Char:’, this shows the character in the buffer at point.
The text inside the parenthesis shows the corresponding decimal, octal
and hex character codes; for more information about how C-x =
displays character information, see the section called “Introduction to International Character Sets”. After
‘point=’ is the position of point as a character count (the first
character in the buffer is position 1, the second character is
position 2, and so on). The number after that is the total number of
characters in the buffer, and the number in parenthesis expresses the
position as a percentage of the total. After ‘column=’ is the
horizontal position of point, in columns counting from the left edge
of the window.
If the buffer has been narrowed, making some of the text at the
beginning and the end temporarily inaccessible, C-x = displays
additional text describing the currently accessible range. For
example, it might display this:

Char: C (67, #o103, #x43) point=252 of 889 (28%) <231-599> column=0

where the two extra numbers give the smallest and largest character
position that point is allowed to assume. The characters between
those two positions are the accessible ones. See the section called “Narrowing”.

Numeric Arguments

 In the terminology of mathematics and computing, argument
means “data provided to a function or operation”. You can give any
Emacs command a numeric argument (also called a prefix
argument). Some commands interpret the argument as a repetition
count. For example, giving C-f an argument of ten causes it to
move point forward by ten characters instead of one. With these
commands, no argument is equivalent to an argument of one, and
negative arguments cause them to move or act in the opposite
direction.
 The easiest way to specify a numeric argument is to type a digit
and/or a minus sign while holding down the META key. For
example,

M-5 C-n

moves down five lines. The keys M-1, M-2, and so on, as
well as M–, are bound to commands (digit-argument and
negative-argument) that set up an argument for the next
command. Meta– without digits normally means −1.
If you enter more than one digit, you need not hold down the
META key for the second and subsequent digits. Thus, to move
down fifty lines, type

M-5 0 C-n

Note that this does not insert five copies of ‘0’ and move
down one line, as you might expect—the ‘0’ is treated as part
of the prefix argument.
(What if you do want to insert five copies of ‘0’? Type M-5
C-u 0. Here, C-u “terminates” the prefix argument, so that
the next keystroke begins the command that you want to execute. Note
that this meaning of C-u applies only to this case. For the
usual role of C-u, see below.)
 Instead of typing M-1, M-2, and so on, another way to
specify a numeric argument is to type C-u
(universal-argument) followed by some digits, or (for a
negative argument) a minus sign followed by digits. A minus sign
without digits normally means −1.
C-u alone has the special meaning of “four times”: it
multiplies the argument for the next command by four. C-u C-u
multiplies it by sixteen. Thus, C-u C-u C-f moves forward
sixteen characters. Other useful combinations are C-u C-n,
C-u C-u C-n (move down a good fraction of a screen), C-u
C-u C-o (make “a lot” of blank lines), and C-u C-k (kill four
lines).
You can use a numeric argument before a self-inserting character to
insert multiple copies of it. This is straightforward when the
character is not a digit; for example, C-u 6 4 a inserts 64
copies of the character ‘a’. But this does not work for
inserting digits; C-u 6 4 1 specifies an argument of 641. You
can separate the argument from the digit to insert with another
C-u; for example, C-u 6 4 C-u 1 does insert 64 copies of
the character ‘1’.
Some commands care whether there is an argument, but ignore its
value. For example, the command M-q (fill-paragraph)
fills text; with an argument, it justifies the text as well.
(See the section called “Filling Text”, for more information on M-q.) For these
commands, it is enough to the argument with a single C-u.
Some commands use the value of the argument as a repeat count, but
do something special when there is no argument. For example, the
command C-k (kill-line) with argument n kills
n lines, including their terminating newlines. But C-k
with no argument is special: it kills the text up to the next newline,
or, if point is right at the end of the line, it kills the newline
itself. Thus, two C-k commands with no arguments can kill a
nonblank line, just like C-k with an argument of one.
(See Chapter 12, Killing and Moving Text, for more information on C-k.)
A few commands treat a plain C-u differently from an ordinary
argument. A few others may treat an argument of just a minus sign
differently from an argument of −1. These unusual cases are
described when they come up; they exist to make an individual command
more convenient, and they are documented in that command's
documentation string.
We use the term “prefix argument” as well as “numeric argument”,
to emphasize that you type these argument before the command, and to
distinguish them from minibuffer arguments that come after the
command.

Repeating a Command

 Many simple commands, such as those invoked with a single key or
with M-x command-name RET, can be repeated by
invoking them with a numeric argument that serves as a repeat count
(see the section called “Numeric Arguments”). However, if the command you want to repeat
prompts for input, or uses a numeric argument in another way, that
method won't work.
 The command C-x z (repeat) provides another way to repeat
an Emacs command many times. This command repeats the previous Emacs
command, whatever that was. Repeating a command uses the same arguments
that were used before; it does not read new arguments each time.
To repeat the command more than once, type additional z's: each
z repeats the command one more time. Repetition ends when you
type a character other than z, or press a mouse button.
For example, suppose you type C-u 2 0 C-d to delete 20
characters. You can repeat that command (including its argument) three
additional times, to delete a total of 80 characters, by typing C-x
z z z. The first C-x z repeats the command once, and each
subsequent z repeats it once again.

Chapter 8. The Minibuffer

 The minibuffer is where Emacs commands read complicated
arguments, such as file names, buffer names, Emacs command names, or
Lisp expressions. We call it the “minibuffer” because it's a
special-purpose buffer with a small amount of screen space. You can
use the usual Emacs editing commands in the minibuffer to edit the
argument text.
 When the minibuffer is in use, it appears in the echo area, with a
cursor. The minibuffer starts with a prompt in a distinct
color, usually ending with a colon. The prompt states what kind of
input is expected, and how it will be used.
The simplest way to enter a minibuffer argument is to type the text,
then RET to submit the argument and exit the minibuffer. You
can cancel the minibuffer, and the command that wants the argument, by
typing C-g.
 Sometimes, a default argument appears in the prompt, inside
parentheses before the colon. This default will be used as the
argument if you just type RET. For example, commands that read
buffer names usually show a buffer name as the default; you can type
RET to operate on that default buffer.
Since the minibuffer appears in the echo area, it can conflict with
other uses of the echo area. If an error message or an informative
message is emitted while the minibuffer is active, the message hides
the minibuffer for a few seconds, or until you type something; then
the minibuffer comes back. While the minibuffer is in use, keystrokes
do not echo.
Minibuffers for File Names

 Commands such as C-x C-f (find-file) use the minibuffer
to read a file name argument (see the section called “Files”). When the
minibuffer is used to read a file name, it typically starts out with
some initial text ending in a slash. This is the default
directory. For example, it may start out like this:

Find file: /u2/emacs/src/

Here, ‘Find file: ’ is the prompt and ‘/u2/emacs/src/’ is
the default directory. If you now type buffer.c as input, that
specifies the file /u2/emacs/src/buffer.c. See the section called “File Names”,
for information about the default directory.
You can specify the parent directory with ..:
/a/b/../foo.el is equivalent to /a/foo.el.
Alternatively, you can use M-DEL to kill directory names
backwards (see the section called “Words”).
To specify a file in a completely different directory, you can kill
the entire default with C-a C-k (see the section called “Editing in the Minibuffer”).
Alternatively, you can ignore the default, and enter an absolute file
name starting with a slash or a tilde after the default directory.
For example, you can specify /etc/termcap as follows:

Find file: /u2/emacs/src//etc/termcap

Emacs interprets a double slash as “ignore everything before the
second slash in the pair”. In the example above,
/u2/emacs/src/ is ignored, so the argument you supplied is
/etc/termcap. The ignored part of the file name is dimmed if
the terminal allows it. (To disable this dimming, turn off File Name
Shadow mode with the command M-x file-name-shadow-mode.)
 Emacs interprets ~/ as your home directory. Thus,
~/foo/bar.txt specifies a file named bar.txt, inside a
directory named foo, which is in turn located in your home
directory. In addition, ~user-id/ means the home
directory of a user whose login name is user-id. Any leading
directory name in front of the ~ is ignored: thus,
/u2/emacs/~/foo/bar.txt is equivalent to ~/foo/bar.txt.
On MS-Windows and MS-DOS systems, where a user doesn't always have a
home directory, Emacs uses several alternatives. For MS-Windows, see
the section called “HOME and Startup Directories on MS-Windows”; for MS-DOS, see
the section called “File Names on MS-DOS”.
On these systems, the ~user-id/ construct is supported
only for the current user, i.e., only if user-id is the current
user's login name.
 To prevent Emacs from inserting the default directory when reading
file names, change the variable insert-default-directory to
nil. In that case, the minibuffer starts out empty.
Nonetheless, relative file name arguments are still interpreted based
on the same default directory.
You can also enter remote file names in the minibuffer.
See the section called “Remote Files”.

Editing in the Minibuffer

The minibuffer is an Emacs buffer, albeit a peculiar one, and the
usual Emacs commands are available for editing the argument text.
(The prompt, however, is read-only, and cannot be changed.)
Since RET in the minibuffer submits the argument, you can't
use it to insert a newline. You can do that with C-q C-j, which
inserts a C-j control character, which is formally equivalent to
a newline character (see the section called “Inserting Text”). Alternatively, you can
use the C-o (open-line) command (see the section called “Blank Lines”).
Inside a minibuffer, the keys TAB, SPC, and ? are
often bound to completion commands, which allow you to easily
fill in the desired text without typing all of it. See the section called “Completion”.
As with RET, you can use C-q to insert a TAB,
SPC, or ‘?’ character.
For convenience, C-a (move-beginning-of-line) in a
minibuffer moves point to the beginning of the argument text, not the
beginning of the prompt. For example, this allows you to erase the
entire argument with C-a C-k.
 When the minibuffer is active, the echo area is treated much like an
ordinary Emacs window. For instance, you can switch to another window
(with C-x o), edit text there, then return to the minibuffer
window to finish the argument. You can even kill text in another
window, return to the minibuffer window, and yank the text into the
argument. There are some restrictions on the minibuffer window,
however: for instance, you cannot split it. See Chapter 20, Multiple Windows.
 Normally, the minibuffer window occupies a single screen line.
However, if you add two or more lines' worth of text into the
minibuffer, it expands automatically to accommodate the text. The
variable resize-mini-windows controls the resizing of the
minibuffer. The default value is grow-only, which means the
behavior we have just described. If the value is t, the
minibuffer window will also shrink automatically if you remove some
lines of text from the minibuffer, down to a minimum of one screen
line. If the value is nil, the minibuffer window never changes
size automatically, but you can use the usual window-resizing commands
on it (see Chapter 20, Multiple Windows).
 The variable max-mini-window-height controls the maximum
height for resizing the minibuffer window. A floating-point number
specifies a fraction of the frame's height; an integer specifies the
maximum number of lines; nil means do not resize the minibuffer
window automatically. The default value is 0.25.
The C-M-v command in the minibuffer scrolls the help text from
commands that display help text of any sort in another window. You
can also scroll the help text with M-prior and
M-next (or, equivalently, M-PageUp and
M-PageDown). This is especially useful with long lists of
possible completions. See the section called “Using Other Windows”.
 Emacs normally disallows most commands that use the minibuffer while
the minibuffer is active. To allow such commands in the minibuffer,
set the variable enable-recursive-minibuffers to t.
 When not active, the minibuffer is in minibuffer-inactive-mode,
and clicking Mouse-1 there shows the *Messages* buffer.
If you use a dedicated frame for minibuffers, Emacs also recognizes
certain keys there, for example n to make a new frame.

Completion

 You can often use a feature called completion to help enter
arguments. This means that after you type part of the argument, Emacs
can fill in the rest, or some of it, based on what was typed so far.
 When completion is available, certain keys (usually TAB,
RET, and SPC) are rebound in the minibuffer to special
completion commands (see the section called “Completion Commands”). These commands
attempt to complete the text in the minibuffer, based on a set of
completion alternatives provided by the command that requested
the argument. You can usually type ? to see a list of
completion alternatives.
Although completion is usually done in the minibuffer, the feature
is sometimes available in ordinary buffers too. See the section called “Completion for Symbol Names”.
Completion Example

 A simple example may help here. M-x uses the minibuffer to
read the name of a command, so completion works by matching the
minibuffer text against the names of existing Emacs commands. Suppose
you wish to run the command auto-fill-mode. You can do that by
typing M-x auto-fill-mode RET, but it is easier to use
completion.
If you type M-x a u TAB, the TAB looks for
completion alternatives (in this case, command names) that start with
‘au’. There are several, including auto-fill-mode and
autoconf-mode, but they all begin with auto, so the
‘au’ in the minibuffer completes to ‘auto’. (More commands
may be defined in your Emacs session. For example, if a command
called authorize-me was defined, Emacs could only complete
as far as ‘aut’.)
If you type TAB again immediately, it cannot determine the
next character; it could be ‘-’, ‘a’, or ‘c’. So it
does not add any characters; instead, TAB displays a list of all
possible completions in another window.
Next, type -f. The minibuffer now contains ‘auto-f’, and
the only command name that starts with this is auto-fill-mode.
If you now type TAB, completion fills in the rest of the
argument ‘auto-fill-mode’ into the minibuffer.
Hence, typing just a u TAB - f TAB allows you to
enter ‘auto-fill-mode’.

Completion Commands

Here is a list of the completion commands defined in the minibuffer
when completion is allowed.
	TAB
	Complete the text in the minibuffer as much as possible; if unable to
complete, display a list of possible completions
(minibuffer-complete).

	SPC
	Complete up to one word from the minibuffer text before point
(minibuffer-complete-word). This command is not available for
arguments that often include spaces, such as file names.

	RET
	Submit the text in the minibuffer as the argument, possibly completing
first (minibuffer-complete-and-exit). See the section called “Completion Exit”.

	?
	Display a list of completions (minibuffer-completion-help).

 TAB (minibuffer-complete) is the most fundamental
completion command. It searches for all possible completions that
match the existing minibuffer text, and attempts to complete as much
as it can. See the section called “How Completion Alternatives Are Chosen”, for how completion alternatives
are chosen.
 SPC (minibuffer-complete-word) completes like
TAB, but only up to the next hyphen or space. If you have
‘auto-f’ in the minibuffer and type SPC, it finds that the
completion is ‘auto-fill-mode’, but it only inserts ‘ill-’,
giving ‘auto-fill-’. Another SPC at this point completes
all the way to ‘auto-fill-mode’.
 If TAB or SPC is unable to complete, it displays a list
of matching completion alternatives (if there are any) in another
window. You can display the same list with ?
(minibuffer-completion-help). The following commands can be
used with the completion list:

	Mouse-1, Mouse-2
	Clicking mouse button 1 or 2 on a completion alternative chooses it
(mouse-choose-completion).

	M-v, PageUp, prior
	Typing M-v, while in the minibuffer, selects the window showing
the completion list (switch-to-completions). This paves the
way for using the commands below. PageUp or prior does
the same. You can also select the window in other ways
(see Chapter 20, Multiple Windows).

	RET
	While in the completion list buffer, this chooses the completion at
point (choose-completion).

	Right
	While in the completion list buffer, this moves point to the following
completion alternative (next-completion).

	Left
	While in the completion list buffer, this moves point to the previous
completion alternative (previous-completion).

Completion Exit

 When a command reads an argument using the minibuffer with
completion, it also controls what happens when you type RET
(minibuffer-complete-and-exit) to submit the argument. There
are four types of behavior:
	Strict completion accepts only exact completion matches. Typing
RET exits the minibuffer only if the minibuffer text is an exact
match, or completes to one. Otherwise, Emacs refuses to exit the
minibuffer; instead it tries to complete, and if no completion can be
done it momentarily displays ‘[No match]’ after the minibuffer
text. (You can still leave the minibuffer by typing C-g to
cancel the command.)
An example of a command that uses this behavior is M-x, since it
is meaningless for it to accept a non-existent command name.

	Cautious completion is like strict completion, except RET
exits only if the text is already an exact match. If the text
completes to an exact match, RET performs that completion but
does not exit yet; you must type a second RET to exit.
Cautious completion is used for reading file names for files that must
already exist, for example.

	Permissive completion allows any input; the completion
candidates are just suggestions. Typing RET does not complete,
it just submits the argument as you have entered it.

	Permissive completion with confirmation is like permissive
completion, with an exception: if you typed TAB and this
completed the text up to some intermediate state (i.e., one that is not
yet an exact completion match), typing RET right afterward does
not submit the argument. Instead, Emacs asks for confirmation by
momentarily displaying ‘[Confirm]’ after the text; type RET
again to confirm and submit the text. This catches a common mistake,
in which one types RET before realizing that TAB did not
complete as far as desired.
You can tweak the confirmation behavior by customizing the variable
confirm-nonexistent-file-or-buffer. The default value,
after-completion, gives the behavior we have just described.
If you change it to nil, Emacs does not ask for confirmation,
falling back on permissive completion. If you change it to any other
non-nil value, Emacs asks for confirmation whether or not the
preceding command was TAB.
This behavior is used by most commands that read file names, like
C-x C-f, and commands that read buffer names, like C-x b.

How Completion Alternatives Are Chosen

 Completion commands work by narrowing a large list of possible
completion alternatives to a smaller subset that “matches” what you
have typed in the minibuffer. In the section called “Completion Example”, we gave a
simple example of such matching. The procedure of determining what
constitutes a “match” is quite intricate. Emacs attempts to offer
plausible completions under most circumstances.
Emacs performs completion using one or more completion
styles—sets of criteria for matching minibuffer text to completion
alternatives. During completion, Emacs tries each completion style in
turn. If a style yields one or more matches, that is used as the list
of completion alternatives. If a style produces no matches, Emacs
falls back on the next style.
 The list variable completion-styles specifies the completion
styles to use. Each list element is the name of a completion style (a
Lisp symbol). The default completion styles are (in order):
	basic
	A matching completion alternative must have the same beginning as the
text in the minibuffer before point. Furthermore, if there is any
text in the minibuffer after point, the rest of the completion
alternative must contain that text as a substring.

	partial-completion
	This aggressive completion style divides the minibuffer text into
words separated by hyphens or spaces, and completes each word
separately. (For example, when completing command names,
‘em-l-m’ completes to ‘emacs-lisp-mode’.)
Furthermore, a ‘*’ in the minibuffer text is treated as a
wildcard—it matches any character at the corresponding
position in the completion alternative.

	emacs22
	This completion style is similar to basic, except that it
ignores the text in the minibuffer after point. It is so-named
because it corresponds to the completion behavior in Emacs 22.

The following additional completion styles are also defined, and you
can add them to completion-styles if you wish
(see Chapter 48, Customization):
	substring
	A matching completion alternative must contain the text in the
minibuffer before point, and the text in the minibuffer after point,
as substrings (in that same order).
Thus, if the text in the minibuffer is ‘foobar’, with point
between ‘foo’ and ‘bar’, that matches
‘afoobbarc’, where a, b, and
c can be any string including the empty string.

	initials
	This very aggressive completion style attempts to complete acronyms
and initialisms. For example, when completing command names, it
matches ‘lch’ to ‘list-command-history’.

There is also a very simple completion style called emacs21.
In this style, if the text in the minibuffer is ‘foobar’,
only matches starting with ‘foobar’ are considered.
You can use different completion styles in different situations,
by setting the variable completion-category-overrides.
For example, the default setting says to use only basic
and substring completion for buffer names.

Completion Options

 Case is significant when completing case-sensitive arguments, such
as command names. For example, when completing command names,
‘AU’ does not complete to ‘auto-fill-mode’. Case
differences are ignored when completing arguments in which case does
not matter.
 When completing file names, case differences are ignored if the
variable read-file-name-completion-ignore-case is
non-nil. The default value is nil on systems that have
case-sensitive file-names, such as GNU/Linux; it is non-nil on
systems that have case-insensitive file-names, such as Microsoft
Windows. When completing buffer names, case differences are ignored
if the variable read-buffer-completion-ignore-case is
non-nil; the default is nil.
 When completing file names, Emacs usually omits certain alternatives
that are considered unlikely to be chosen, as determined by the list
variable completion-ignored-extensions. Each element in the
list should be a string; any file name ending in such a string is
ignored as a completion alternative. Any element ending in a slash
(/) represents a subdirectory name. The standard value of
completion-ignored-extensions has several elements including
".o", ".elc", and "~". For example, if a
directory contains ‘foo.c’ and ‘foo.elc’, ‘foo’
completes to ‘foo.c’. However, if all possible
completions end in “ignored” strings, they are not ignored: in the
previous example, ‘foo.e’ completes to ‘foo.elc’. Emacs
disregards completion-ignored-extensions when showing
completion alternatives in the completion list.
 If completion-auto-help is set to nil, the completion
commands never display the completion list buffer; you must type
? to display the list. If the value is lazy, Emacs only
shows the completion list buffer on the second attempt to complete.
In other words, if there is nothing to complete, the first TAB
echoes ‘Next char not unique’; the second TAB shows the
completion list buffer.
 If completion-cycle-threshold is non-nil, completion
commands can “cycle” through completion alternatives. Normally, if
there is more than one completion alternative for the text in the
minibuffer, a completion command completes up to the longest common
substring. If you change completion-cycle-threshold to
t, the completion command instead completes to the first of
those completion alternatives; each subsequent invocation of the
completion command replaces that with the next completion alternative,
in a cyclic manner. If you give completion-cycle-threshold a
numeric value n, completion commands switch to this cycling
behavior only when there are fewer than n alternatives.
 Icomplete mode presents a constantly-updated display that tells you
what completions are available for the text you've entered so far. The
command to enable or disable this minor mode is M-x
icomplete-mode.

Minibuffer History

 Every argument that you enter with the minibuffer is saved in a
minibuffer history list so you can easily use it again later.
You can use the following arguments to quickly fetch an earlier
argument into the minibuffer:
	M-p, Up
	Move to the previous item in the minibuffer history, an earlier
argument (previous-history-element).

	M-n, Down
	Move to the next item in the minibuffer history
(next-history-element).

	M-r regexp RET
	Move to an earlier item in the minibuffer history that
matches regexp (previous-matching-history-element).

	M-s regexp RET
	Move to a later item in the minibuffer history that matches
regexp (next-matching-history-element).

 While in the minibuffer, M-p or Up
(previous-history-element) moves through the minibuffer history
list, one item at a time. Each M-p fetches an earlier item from
the history list into the minibuffer, replacing its existing contents.
Typing M-n or Down (next-history-element) moves
through the minibuffer history list in the opposite direction,
fetching later entries into the minibuffer.
If you type M-n in the minibuffer when there are no later
entries in the minibuffer history (e.g., if you haven't previously
typed M-p), Emacs tries fetching from a list of default
arguments: values that you are likely to enter. You can think of this
as moving through the “future history” list.
If you edit the text inserted by the M-p or M-n
minibuffer history commands, this does not change its entry in the
history list. However, the edited argument does go at the end of the
history list when you submit it.
 You can use M-r (previous-matching-history-element) to
search through older elements in the history list, and M-s
(next-matching-history-element) to search through newer
entries. Each of these commands asks for a regular expression
as an argument, and fetches the first matching entry into the
minibuffer. See the section called “Syntax of Regular Expressions”, for an explanation of regular
expressions. A numeric prefix argument n means to fetch the
nth matching entry. These commands are unusual, in that they
use the minibuffer to read the regular expression argument, even
though they are invoked from the minibuffer. An upper-case letter in
the regular expression makes the search case-sensitive (see the section called “Searching and Case”).
You can also search through the history using an incremental search.
See the section called “Searching the Minibuffer”.
Emacs keeps separate history lists for several different kinds of
arguments. For example, there is a list for file names, used by all
the commands that read file names. Other history lists include buffer
names, command names (used by M-x), and command arguments (used
by commands like query-replace).
 The variable history-length specifies the maximum length of a
minibuffer history list; adding a new element deletes the oldest
element if the list gets too long. If the value is t, there is
no maximum length.
 The variable history-delete-duplicates specifies whether to
delete duplicates in history. If it is non-nil, adding a new
element deletes from the list all other elements that are equal to it.
The default is nil.

Repeating Minibuffer Commands

 Every command that uses the minibuffer once is recorded on a special
history list, the command history, together with the values of
its arguments, so that you can repeat the entire command. In
particular, every use of M-x is recorded there, since M-x
uses the minibuffer to read the command name.

	C-x ESC ESC
	Re-execute a recent minibuffer command from the command history
 (repeat-complex-command).

	M-x list-command-history
	Display the entire command history, showing all the commands
C-x ESC ESC can repeat, most recent first.

 C-x ESC ESC re-executes a recent command that used
the minibuffer. With no argument, it repeats the last such command.
A numeric argument specifies which command to repeat; 1 means the last
one, 2 the previous, and so on.
C-x ESC ESC works by turning the previous command
into a Lisp expression and then entering a minibuffer initialized with
the text for that expression. Even if you don't know Lisp, it will
probably be obvious which command is displayed for repetition. If you
type just RET, that repeats the command unchanged. You can also
change the command by editing the Lisp expression before you execute
it. The repeated command is added to the front of the command history
unless it is identical to the most recent item.
Once inside the minibuffer for C-x ESC ESC, you
can use the usual minibuffer history commands (see the section called “Minibuffer History”) to move through the history list. After finding the desired
previous command, you can edit its expression as usual and then repeat
it by typing RET.
 Incremental search does not, strictly speaking, use the minibuffer.
Therefore, although it behaves like a complex command, it normally
does not appear in the history list for C-x ESC ESC.
You can make incremental search commands appear in the history by
setting isearch-resume-in-command-history to a non-nil
value. See the section called “Incremental Search”.
 The list of previous minibuffer-using commands is stored as a Lisp
list in the variable command-history. Each element is a Lisp
expression that describes one command and its arguments. Lisp programs
can re-execute a command by calling eval with the
command-history element.

Entering passwords

Sometimes, you may need to enter a password into Emacs. For instance,
when you tell Emacs to visit a file on another machine via a network
protocol such as FTP, you often need to supply a password to gain
access to the machine (see the section called “Remote Files”).
Entering a password is similar to using a minibuffer. Emacs
displays a prompt in the echo area (such as ‘Password: ’); after
you type the required password, press RET to submit it. To
prevent others from seeing your password, every character you type is
displayed as a dot (‘.’) instead of its usual form.
Most of the features and commands associated with the minibuffer can
not be used when entering a password. There is no history or
completion, and you cannot change windows or perform any other action
with Emacs until you have submitted the password.
While you are typing the password, you may press DEL to delete
backwards, removing the last character entered. C-u deletes
everything you have typed so far. C-g quits the password prompt
(see Chapter 49, Quitting and Aborting). C-y inserts the current kill into the
password (see Chapter 12, Killing and Moving Text). You may type either RET or
ESC to submit the password. Any other self-inserting character
key inserts the associated character into the password, and all other
input is ignored.

Chapter 9. Running Commands by Name

Every Emacs command has a name that you can use to run it. For
convenience, many commands also have key bindings. You can run those
commands by typing the keys, or run them by name. Most Emacs commands
have no key bindings, so the only way to run them is by name.
(See the section called “Customizing Key Bindings”, for how to set up key bindings.)
By convention, a command name consists of one or more words,
separated by hyphens; for example, auto-fill-mode or
manual-entry. Command names mostly use complete English words
to make them easier to remember.
 To run a command by name, start with M-x, type the command
name, then terminate it with RET. M-x uses the minibuffer
to read the command name. The string ‘M-x’ appears at the
beginning of the minibuffer as a prompt to remind you to enter a
command name to be run. RET exits the minibuffer and runs the
command. See Chapter 8, The Minibuffer, for more information on the minibuffer.
You can use completion to enter the command name. For example,
to invoke the command forward-char, you can type

M-x forward-char RET

or

M-x forw TAB c RET

Note that forward-char is the same command that you invoke with
the key C-f. The existence of a key binding does not stop you
from running the command by name.
To cancel the M-x and not run a command, type C-g instead
of entering the command name. This takes you back to command level.
To pass a numeric argument to the command you are invoking with
M-x, specify the numeric argument before M-x. The
argument value appears in the prompt while the command name is being
read, and finally M-x passes the argument to that command.
 When the command you run with M-x has a key binding, Emacs
mentions this in the echo area after running the command. For
example, if you type M-x forward-word, the message says that you
can run the same command by typing M-f. You can turn off these
messages by setting the variable suggest-key-bindings to
nil.
In this manual, when we speak of running a command by name, we often
omit the RET that terminates the name. Thus we might say
M-x auto-fill-mode rather than M-x auto-fill-mode
RET. We mention the RET only for emphasis, such as when
the command is followed by arguments.
 M-x works by running the command
execute-extended-command, which is responsible for reading the
name of another command and invoking it.

Chapter 10. Help

 Emacs provides a wide variety of help commands, all accessible
through the prefix key C-h (or, equivalently, the function key
F1). These help commands are described in the following
sections. You can also type C-h C-h to view a list of help
commands (help-for-help). You can scroll the list with
SPC and DEL, then type the help command you want. To
cancel, type C-g.
Many help commands display their information in a special help
buffer. In this buffer, you can type SPC and DEL to
scroll and type RET to follow hyperlinks. See the section called “Help Mode Commands”.
 If you are looking for a certain feature, but don't know what it is
called or where to look, we recommend three methods. First, try an
apropos command, then try searching the manual index, then look in the
FAQ and the package keywords.
	C-h a topics RET
	This searches for commands whose names match the argument
topics. The argument can be a keyword, a list of keywords, or a
regular expression (see the section called “Syntax of Regular Expressions”). See the section called “Apropos”.

	C-h i d m emacs RET i topic RET
	This searches for topic in the indices of the Emacs Info manual,
displaying the first match found. Press , to see subsequent
matches. You can use a regular expression as topic.

	C-h i d m emacs RET s topic RET
	Similar, but searches the text of the manual rather than the
indices.

	C-h C-f
	This displays the Emacs FAQ, using Info.

	C-h p
	This displays the available Emacs packages based on keywords.
See the section called “Keyword Search for Packages”.

C-h or F1 means “help” in various other contexts as
well. For instance, you can type them after a prefix key to view a
list of the keys that can follow the prefix key. (A few prefix keys
don't support C-h in this way, because they define other
meanings for it, but they all support F1 for help.)
Help Summary

Here is a summary of help commands for accessing the built-in
documentation. Most of these are described in more detail in the
following sections.
	C-h a topics RET
	Display a list of commands whose names match topics
(apropos-command).

	C-h b
	Display all active key bindings; minor mode bindings first, then those
of the major mode, then global bindings (describe-bindings).

	C-h c key
	Show the name of the command that the key sequence key is bound
to (describe-key-briefly). Here c stands for
“character”. For more extensive information on key, use
C-h k.

	C-h d topics RET
	Display the commands and variables whose documentation matches
topics (apropos-documentation).

	C-h e
	Display the *Messages* buffer
(view-echo-area-messages).

	C-h f function RET
	Display documentation on the Lisp function named function
(describe-function). Since commands are Lisp functions,
this works for commands too.

	C-h h
	Display the HELLO file, which shows examples of various character
sets.

	C-h i
	Run Info, the GNU documentation browser (info). The Emacs
manual is available in Info.

	C-h k key
	Display the name and documentation of the command that key runs
(describe-key).

	C-h l
	Display a description of your last 300 keystrokes
(view-lossage).

	C-h m
	Display documentation of the current major mode (describe-mode).

	C-h n
	Display news of recent Emacs changes (view-emacs-news).

	C-h p
	Find packages by topic keyword (finder-by-keyword). This lists
packages using a package menu buffer. See Chapter 47, Emacs Lisp Packages.

	C-h P package RET
	Display documentation about the package named package
(describe-package).

	C-h r
	Display the Emacs manual in Info (info-emacs-manual).

	C-h s
	Display the contents of the current syntax table
(describe-syntax). The syntax table says which characters are
opening delimiters, which are parts of words, and so on. See See section ``Syntax Tables'' in The Emacs Lisp Reference Manual, for
details.

	C-h t
	Enter the Emacs interactive tutorial (help-with-tutorial).

	C-h v var RET
	Display the documentation of the Lisp variable var
(describe-variable).

	C-h w command RET
	Show which keys run the command named command (where-is).

	C-h C coding RET
	Describe the coding system coding
(describe-coding-system).

	C-h C RET
	Describe the coding systems currently in use.

	C-h F command RET
	Enter Info and go to the node that documents the Emacs command
command (Info-goto-emacs-command-node).

	C-h I method RET
	Describe the input method method (describe-input-method).

	C-h K key
	Enter Info and go to the node that documents the key sequence
key (Info-goto-emacs-key-command-node).

	C-h L language-env RET
	Display information on the character sets, coding systems, and input
methods used in language environment language-env
(describe-language-environment).

	C-h S symbol RET
	Display the Info documentation on symbol symbol according to the
programming language you are editing (info-lookup-symbol).

	C-h .
	Display the help message for a special text area, if point is in one
(display-local-help). (These include, for example, links in
Help buffers.)

Documentation for a Key

 The help commands to get information about a key sequence are
C-h c (describe-key-briefly) and C-h k
(describe-key).
 C-h c key displays in the echo area the name of the
command that key is bound to. For example, C-h c C-f
displays ‘forward-char’.
 C-h k key is similar but gives more information: it
displays a help buffer containing the command's documentation
string, which describes exactly what the command does.
 C-h K key displays the section of the Emacs manual that
describes the command corresponding to key.
C-h c, C-h k and C-h K work for any sort of key
sequences, including function keys, menus, and mouse events. For
instance, after C-h k you can select a menu item from the menu
bar, to view the documentation string of the command it runs.
 C-h w command RET lists the keys that are bound to
command. It displays the list in the echo area. If it says the
command is not on any key, that means you must use M-x to run
it. C-h w runs the command where-is.

Help by Command or Variable Name

 C-h f function RET (describe-function)
displays the documentation of Lisp function function, in a
window. Since commands are Lisp functions, you can use this method to
view the documentation of any command whose name you know. For
example,

C-h f auto-fill-mode RET

displays the documentation of auto-fill-mode. This is the only
way to get the documentation of a command that is not bound to any key
(one which you would normally run using M-x).
C-h f is also useful for Lisp functions that you use in a Lisp
program. For example, if you have just written the expression
(make-vector len) and want to check that you are using
make-vector properly, type C-h f make-vector RET.
Because C-h f allows all function names, not just command names,
you may find that some of your favorite completion abbreviations that
work in M-x don't work in C-h f. An abbreviation that is
unique among command names may not be unique among all function names.
If you type C-h f RET, it describes the function called
by the innermost Lisp expression in the buffer around point,
provided that function name is a valid, defined Lisp function.
(That name appears as the default while you enter the argument.) For
example, if point is located following the text ‘(make-vector
(car x)’, the innermost list containing point is the one that starts
with ‘(make-vector’, so C-h f RET will describe the
function make-vector.
C-h f is also useful just to verify that you spelled a
function name correctly. If the minibuffer prompt for C-h f
shows the function name from the buffer as the default, it means that
name is defined as a Lisp function. Type C-g to cancel the
C-h f command if you don't really want to view the
documentation.
 C-h v (describe-variable) is like C-h f but
describes Lisp variables instead of Lisp functions. Its default is
the Lisp symbol around or before point, if that is the name of a
defined Lisp variable. See the section called “Variables”.
Help buffers that describe Emacs variables and functions normally
have hyperlinks to the corresponding source code, if you have the
source files installed (see Chapter 45, Hyperlinking and Navigation Features).
 To find a command's documentation in a manual, use C-h F
(Info-goto-emacs-command-node). This knows about various
manuals, not just the Emacs manual, and finds the right one.

Apropos

 The apropos commands answer questions like, “What are the
commands for working with files?” More precisely, you specify an
apropos pattern, which means either a word, a list of words, or
a regular expression.
Each of the following apropos commands reads an apropos pattern in
the minibuffer, searches for items that match the pattern, and
displays the results in a different window.
	C-h a
	Search for commands (apropos-command). With a prefix argument,
search for noninteractive functions too.

	M-x apropos
	Search for functions and variables. Both interactive functions
(commands) and noninteractive functions can be found by this.

	M-x apropos-variable
	Search for user-customizable variables. With a prefix argument,
search for non-customizable variables too.

	M-x apropos-value
	Search for variables whose values match the specified pattern. With a
prefix argument, search also for functions with definitions matching
the pattern, and Lisp symbols with properties matching the pattern.

	C-h d
	Search for functions and variables whose documentation strings match
the specified pattern (apropos-documentation).

The simplest kind of apropos pattern is one word. Anything
containing that word matches the pattern. Thus, to find commands that
work on files, type C-h a file RET. This displays a list
of all command names that contain ‘file’, including
copy-file, find-file, and so on. Each command name
comes with a brief description and a list of keys you can currently
invoke it with. In our example, it would say that you can invoke
find-file by typing C-x C-f.
For more information about a function definition, variable or symbol
property listed in an apropos buffer, you can click on it with
Mouse-1 or Mouse-2, or move there and type RET.
When you specify more than one word in the apropos pattern, a name
must contain at least two of the words in order to match. Thus, if
you are looking for commands to kill a chunk of text before point, you
could try C-h a kill back backward behind before RET. The
real command name kill-backward will match that; if there were
a command kill-text-before, it would also match, since it
contains two of the specified words.
For even greater flexibility, you can specify a regular expression
(see the section called “Syntax of Regular Expressions”). An apropos pattern is interpreted as a regular
expression if it contains any of the regular expression special
characters, ‘^$*+?.\[’.
Following the conventions for naming Emacs commands, here are some
words that you'll find useful in apropos patterns. By using them in
C-h a, you will also get a feel for the naming conventions.
char, line, word, sentence, paragraph, region, page, sexp, list, defun,
rect, buffer, frame, window, face, file, dir, register, mode, beginning, end,
forward, backward, next, previous, up, down, search, goto, kill, delete,
mark, insert, yank, fill, indent, case, change, set, what, list, find,
view, describe, default.

 If the variable apropos-do-all is non-nil, the apropos
commands always behave as if they had been given a prefix argument.
 By default, all apropos commands except apropos-documentation
list their results in alphabetical order. If the variable
apropos-sort-by-scores is non-nil, these commands
instead try to guess the relevance of each result, and display the
most relevant ones first. The apropos-documentation command
lists its results in order of relevance by default; to list them in
alphabetical order, change the variable
apropos-documentation-sort-by-scores to nil.

Help Mode Commands

Help buffers provide the same commands as View mode (see the section called “View Mode”); for instance, SPC scrolls forward, and DEL scrolls
backward. A few special commands are also provided:
	RET
	Follow a cross reference at point (help-follow).

	TAB
	Move point forward to the next hyperlink (forward-button).

	S-TAB
	Move point back to the previous hyperlink (backward-button).

	Mouse-1, Mouse-2
	Follow a hyperlink that you click on.

	C-c C-c
	Show all documentation about the symbol at point
(help-follow-symbol).

	C-c C-b
	Go back to the previous help topic (help-go-back).

 When a function name, variable name, or face name (see the section called “Text Faces”)
appears in the documentation in the help buffer, it is normally an
underlined hyperlink. To view the associated documentation,
move point there and type RET (help-follow), or click on
the hyperlink with Mouse-1 or Mouse-2. Doing so replaces
the contents of the help buffer; to retrace your steps, type C-c
C-b (help-go-back).
 A help buffer can also contain hyperlinks to Info manuals, source
code definitions, and URLs (web pages). The first two are opened in
Emacs, and the third using a web browser via the browse-url
command (see the section called “Following URLs”).
 In a help buffer, TAB (forward-button) moves point
forward to the next hyperlink, while S-TAB
(backward-button) point back to the previous hyperlink. These
commands act cyclically; for instance, typing TAB at the last
hyperlink moves back to the first hyperlink.
To view all documentation about any symbol in the text, move point
to there and type C-c C-c (help-follow-symbol). This
shows all available documentation about the symbol—as a variable,
function and/or face.

Keyword Search for Packages

Most optional features in Emacs are grouped into packages.
Emacs contains several hundred built-in packages, and more can be
installed over the network (see Chapter 47, Emacs Lisp Packages).
 To make it easier to find packages related to a topic, most packages
are associated with one or more keywords based on what they do.
Type C-h p (finder-by-keyword) to bring up a list of
package keywords, together with a description of what the keywords
mean. To view a list of packages for a given keyword, type RET
on that line; this displays the list of packages in a Package Menu
buffer (see the section called “The Package Menu Buffer”).
 C-h P (describe-package) prompts for the name of a
package, and displays a help buffer describing the attributes of the
package and the features that it implements.

Help for International Language Support

For information on a specific language environment (see the section called “Language Environments”), type C-h L
(describe-language-environment). This displays a help buffer
describing the languages supported by the language environment, and
listing the associated character sets, coding systems, and input
methods, as well as some sample text for that language environment.
The command C-h h (view-hello-file) displays the file
etc/HELLO, which demonstrates various character sets by showing
how to say “hello” in many languages.
The command C-h I (describe-input-method) describes an
input method—either a specified input method, or by default the
input method currently in use. See the section called “Input Methods”.
The command C-h C (describe-coding-system) describes
coding systems—either a specified coding system, or the ones
currently in use. See the section called “Coding Systems”.

Other Help Commands

 C-h i (info) runs the Info program, which browses
structured documentation files. The entire Emacs manual is available
within Info, along with many other manuals for the GNU system. Type
h after entering Info to run a tutorial on using Info.
 With a numeric argument n, C-h i selects the Info buffer
‘*info*<n>’. This is useful if you want to browse multiple
Info manuals simultaneously. If you specify just C-u as the
prefix argument, C-h i prompts for the name of a documentation
file, so you can browse a file which doesn't have an entry in the
top-level Info menu.
The help commands C-h F function RET and C-h
K key, described above, enter Info and go straight to the
documentation of function or key.
 When editing a program, if you have an Info version of the manual
for the programming language, you can use C-h S
(info-lookup-symbol) to find an entry for a symbol (keyword,
function or variable) in the proper manual. The details of how this
command works depend on the major mode.
 If something surprising happens, and you are not sure what you typed,
use C-h l (view-lossage). C-h l displays your last
300 input keystrokes. If you see commands that you don't know, you can
use C-h c to find out what they do.
 To review recent echo area messages, use C-h e
(view-echo-area-messages). This displays the buffer
Messages, where those messages are kept.
 Each Emacs major mode typically redefines a few keys and makes other
changes in how editing works. C-h m (describe-mode)
displays documentation on the current major mode, which normally
describes the commands and features that are changed in this mode.
 C-h b (describe-bindings) and C-h s
(describe-syntax) show other information about the current
environment within Emacs. C-h b displays a list of all the key
bindings now in effect: first the local bindings of the current minor
modes, then the local bindings defined by the current major mode, and
finally the global bindings (see the section called “Customizing Key Bindings”). C-h s
displays the contents of the syntax table, with explanations of each
character's syntax (see See section ``Syntax Tables'' in The Emacs Lisp Reference Manual).
 You can get a list of subcommands for a particular prefix key by
typing C-h (describe-prefix-bindings) after the prefix
key. (There are a few prefix keys for which this does not
work—those that provide their own bindings for C-h. One of
these is ESC, because ESC C-h is actually
C-M-h, which marks a defun.)

Help Files

Apart from the built-in documentation and manuals, Emacs contains
several other files describing topics like copying conditions, release
notes, instructions for debugging and reporting bugs, and so forth.
You can use the following commands to view these files. Apart from
C-h g, they all have the form C-h C-char.

	C-h C-c
	Display the rules under which you can copy and redistribute Emacs
(describe-copying).

	C-h C-d
	Display help for debugging Emacs (view-emacs-debugging).

	C-h C-e
	Display information about where to get external packages
(view-external-packages).

	C-h C-f
	Display the Emacs frequently-answered-questions list (view-emacs-FAQ).

	C-h g
	Display information about the GNU Project (describe-gnu-project).

	C-h C-m
	Display information about ordering printed copies of Emacs manuals
(view-order-manuals).

	C-h C-n
	Display the “news” file, which lists the new features in this
version of Emacs (view-emacs-news).

	C-h C-o
	Display how to order or download the latest version of
Emacs and other GNU software (describe-distribution).

	C-h C-p
	Display the list of known Emacs problems, sometimes with suggested
workarounds (view-emacs-problems).

	C-h C-t
	Display the Emacs to-do list (view-emacs-todo).

	C-h C-w
	Display the full details on the complete absence of warranty for GNU
Emacs (describe-no-warranty).

Help on Active Text and Tooltips

 In Emacs, stretches of “active text” (text that does something
special in response to mouse clicks or RET) often have
associated help text. This includes hyperlinks in Emacs buffers, as
well as parts of the mode line. On graphical displays, as well as
some text terminals which support mouse tracking, moving the mouse
over the active text displays the help text as a tooltip.
See the section called “Tooltips”.
 On terminals that don't support mouse-tracking, you can display the
help text for active buffer text at point by typing C-h .
(display-local-help). This shows the help text in the echo
area. To display help text automatically whenever it is available at
point, set the variable help-at-pt-display-when-idle to
t.

Chapter 11. The Mark and the Region

 Many Emacs commands operate on an arbitrary contiguous part of the
current buffer. To specify the text for such a command to operate on,
you set the mark at one end of it, and move point to the other
end. The text between point and the mark is called the region.
The region always extends between point and the mark, no matter which
one comes earlier in the text; each time you move point, the region
changes.
 Setting the mark at a position in the text also activates it.
When the mark is active, we say also that the region is active; Emacs
indicates its extent by highlighting the text within it, using the
region face (see the section called “Customizing Faces”).
After certain non-motion commands, including any command that
changes the text in the buffer, Emacs automatically deactivates
the mark; this turns off the highlighting. You can also explicitly
deactivate the mark at any time, by typing C-g
(see Chapter 49, Quitting and Aborting).
The above default behavior is known as Transient Mark mode.
Disabling Transient Mark mode switches Emacs to an alternative
behavior, in which the region is usually not highlighted.
See the section called “Disabling Transient Mark Mode”.
 Setting the mark in one buffer has no effect on the marks in other
buffers. When you return to a buffer with an active mark, the mark is
at the same place as before. When multiple windows show the same
buffer, they can have different values of point, and thus different
regions, but they all share one common mark position. See Chapter 20, Multiple Windows.
Ordinarily, only the selected window highlights its region; however,
if the variable highlight-nonselected-windows is
non-nil, each window highlights its own region.
Setting the Mark

Here are some commands for setting the mark:
	C-SPC
	Set the mark at point, and activate it (set-mark-command).

	C-@
	The same.

	C-x C-x
	Set the mark at point, and activate it; then move point where the mark
used to be (exchange-point-and-mark).

	Drag-Mouse-1
	Set point and the mark around the text you drag across.

	Mouse-3
	Set the mark at point, then move point to where you click
(mouse-save-then-kill).

	‘Shifted cursor motion keys’
	Set the mark at point if the mark is inactive, then move point.
See the section called “Shift Selection”.

 The most common way to set the mark is with C-SPC
(set-mark-command)[5]. This sets the mark where point is,
and activates it. You can then move point away, leaving the mark
behind.
For example, suppose you wish to convert part of the buffer to upper
case. To accomplish this, go to one end of the desired text, type
C-SPC, and move point until the desired portion of text is
highlighted. Now type C-x C-u (upcase-region). This
converts the text in the region to upper case, and then deactivates
the mark.
Whenever the mark is active, you can deactivate it by typing
C-g (see Chapter 49, Quitting and Aborting). Most commands that operate on the
region also automatically deactivate the mark, like C-x C-u in
the above example.
Instead of setting the mark in order to operate on a region, you can
also use it to “remember” a position in the buffer (by typing
C-SPC C-SPC), and later jump back there (by typing
C-u C-SPC). See the section called “The Mark Ring”, for details.
 The command C-x C-x (exchange-point-and-mark) exchanges
the positions of point and the mark. C-x C-x is useful when you
are satisfied with the position of point but want to move the other
end of the region (where the mark is). Using C-x C-x a second
time, if necessary, puts the mark at the new position with point back
at its original position. Normally, if the mark is inactive, this
command first reactivates the mark wherever it was last set, to ensure
that the region is left highlighted. However, if you call it with a
prefix argument, it leaves the mark inactive and the region
unhighlighted; you can use this to jump to the mark in a manner
similar to C-u C-SPC.
You can also set the mark with the mouse. If you press the left
mouse button (down-mouse-1) and drag the mouse across a range of
text, this sets the mark where you first pressed the mouse button and
puts point where you release it. Alternatively, clicking the right
mouse button (mouse-3) sets the mark at point and then moves
point to where you clicked. See the section called “Mouse Commands for Editing”, for a more
detailed description of these mouse commands.
 Finally, you can set the mark by holding down the shift key while
typing certain cursor motion commands (such as S-right,
S-C-f, S-C-n, etc.) This is called shift-selection.
It sets the mark at point before moving point, but only if there is no
active mark set via shift-selection. The mark set by mouse commands
and by shift-selection behaves slightly differently from the usual
mark: any subsequent unshifted cursor motion command deactivates it
automatically. For details, See the section called “Shift Selection”.
Many commands that insert text, such as C-y (yank), set
the mark at the other end of the inserted text, without activating it.
This lets you easily return to that position (see the section called “The Mark Ring”). You
can tell that a command does this when it shows ‘Mark set’ in the
echo area.
 Under X, every time the active region changes, Emacs saves the text
in the region to the primary selection. This lets you insert
that text into other X applications with mouse-2 clicks.
See the section called “Cut and Paste with Other Window Applications”.

[5] There is no C-SPC
character in ASCII; usually, typing C-SPC on a
text terminal gives the character C-@. This key is also bound
to set-mark-command, so unless you are unlucky enough to have
a text terminal that behaves differently, you might as well think of
C-@ as C-SPC.

Commands to Mark Textual Objects

 Here are commands for placing point and the mark around a textual
object such as a word, list, paragraph or page:
	M-@
	Set mark after end of next word (mark-word). This does not
move point.

	C-M-@
	Set mark after end of following balanced expression
(mark-sexp). This does not move point.

	M-h
	Move point to the beginning of the current paragraph, and set mark at
the end (mark-paragraph).

	C-M-h
	Move point to the beginning of the current defun, and set mark at the
end (mark-defun).

	C-x C-p
	Move point to the beginning of the current page, and set mark at the
end (mark-page).

	C-x h
	Move point to the beginning of the buffer, and set mark at the end
(mark-whole-buffer).

 M-@ (mark-word) sets the mark at the end of the next
word (see the section called “Words”, for information about words). Repeated
invocations of this command extend the region by advancing the mark
one word at a time. As an exception, if the mark is active and
located before point, M-@ moves the mark backwards from its
current position one word at a time.
This command also accepts a numeric argument n, which tells it
to advance the mark by n words. A negative argument moves the
mark back by n words.
 Similarly, C-M-@ (mark-sexp) puts the mark at the end
of the next balanced expression (see the section called “Expressions with Balanced Parentheses”). Repeated
invocations extend the region to subsequent expressions, while
positive or negative numeric arguments move the mark forward or
backward by the specified number of expressions.
The other commands in the above list set both point and mark, so as
to delimit an object in the buffer. M-h (mark-paragraph)
marks paragraphs (see the section called “Paragraphs”), C-M-h (mark-defun)
marks top-level definitions (see the section called “Moving by Defuns”), and C-x
C-p (mark-page) marks pages (see the section called “Pages”). Repeated
invocations again play the same role, extending the region to
consecutive objects; similarly, numeric arguments specify how many
objects to move the mark by.
 C-x h (mark-whole-buffer) sets up the entire buffer as
the region, by putting point at the beginning and the mark at the end.

Operating on the Region

 Once you have a region, here are some of the ways you can operate on
it:
	Kill it with C-w (see Chapter 12, Killing and Moving Text).

	Copy it to the kill ring with M-w (see the section called “Yanking”).

	Convert case with C-x C-l or C-x C-u (see the section called “Case Conversion Commands”).

	Undo changes within it using C-u C-/ (see the section called “Undo”).

	Replace text within it using M-% (see the section called “Query Replace”).

	Indent it with C-x TAB or C-M-\ (see Chapter 24, Indentation).

	Fill it as text with M-x fill-region (see the section called “Filling Text”).

	Check the spelling of words within it with M-$ (see the section called “Checking and Correcting Spelling”).

	Evaluate it as Lisp code with M-x eval-region (see the section called “Evaluating Emacs Lisp Expressions”).

	Save it in a register with C-x r s (see Chapter 13, Registers).

	Save it in a buffer or a file (see the section called “Accumulating Text”).

Some commands have a default behavior when the mark is inactive, but
operate on the region if the mark is active. For example, M-$
(ispell-word) normally checks the spelling of the word at
point, but it checks the text in the region if the mark is active
(see the section called “Checking and Correcting Spelling”). Normally, such commands use their default
behavior if the region is empty (i.e., if mark and point are at the
same position). If you want them to operate on the empty region,
change the variable use-empty-active-region to t.
 As described in the section called “Erasing Text”, the DEL
(backward-delete-char) and delete
(delete-forward-char) commands also act this way. If the mark
is active, they delete the text in the region. (As an exception, if
you supply a numeric argument n, where n is not one, these
commands delete n characters regardless of whether the mark is
active). If you change the variable delete-active-region to
nil, then these commands don't act differently when the mark is
active. If you change the value to kill, these commands
kill the region instead of deleting it (see Chapter 12, Killing and Moving Text).
 Other commands always operate on the region, and have no default
behavior. Such commands usually have the word region in their
names, like C-w (kill-region) and C-x C-u
(upcase-region). If the mark is inactive, they operate on the
“inactive region”—that is, on the text between point and the
position at which the mark was last set (see the section called “The Mark Ring”). To
disable this behavior, change the variable
mark-even-if-inactive to nil. Then these commands will
instead signal an error if the mark is inactive.
 By default, text insertion occurs normally even if the mark is
active—for example, typing a inserts the character ‘a’,
then deactivates the mark. If you enable Delete Selection mode, a
minor mode, then inserting text while the mark is active causes the
text in the region to be deleted first. To toggle Delete Selection
mode on or off, type M-x delete-selection-mode.

The Mark Ring

 Each buffer remembers previous locations of the mark, in the
mark ring. Commands that set the mark also push the old mark
onto this ring. One of the uses of the mark ring is to remember spots
that you may want to go back to.
	C-SPC C-SPC
	Set the mark, pushing it onto the mark ring, without activating it.

	C-u C-SPC
	Move point to where the mark was, and restore the mark from the ring
of former marks.

 The command C-SPC C-SPC is handy when you want to
use the mark to remember a position to which you may wish to return.
It pushes the current point onto the mark ring, without activating the
mark (which would cause Emacs to highlight the region). This is
actually two consecutive invocations of C-SPC
(set-mark-command); the first C-SPC sets the mark,
and the second C-SPC deactivates it. (When Transient Mark
mode is off, C-SPC C-SPC instead activates Transient
Mark mode temporarily; see the section called “Disabling Transient Mark Mode”.)
 To return to a marked position, use set-mark-command with a
prefix argument: C-u C-SPC. This moves point to where the
mark was, and deactivates the mark if it was active. Each subsequent
C-u C-SPC jumps to a prior position stored in the mark
ring. The positions you move through in this way are not lost; they
go to the end of the ring.
 If you set set-mark-command-repeat-pop to non-nil,
then immediately after you type C-u C-SPC, you can type
C-SPC instead of C-u C-SPC to cycle through
the mark ring. By default, set-mark-command-repeat-pop is
nil.
Each buffer has its own mark ring. All editing commands use the
current buffer's mark ring. In particular, C-u C-SPC
always stays in the same buffer.
 The variable mark-ring-max specifies the maximum number of
entries to keep in the mark ring. This defaults to 16 entries. If
that many entries exist and another one is pushed, the earliest one in
the list is discarded. Repeating C-u C-SPC cycles through
the positions currently in the ring.
If you want to move back to the same place over and over, the mark
ring may not be convenient enough. If so, you can record the position
in a register for later retrieval (see Saving Positions in Registers).

The Global Mark Ring

 In addition to the ordinary mark ring that belongs to each buffer,
Emacs has a single global mark ring. Each time you set a mark,
this is recorded in the global mark ring in addition to the current
buffer's own mark ring, if you have switched buffers since the
previous mark setting. Hence, the global mark ring records a sequence
of buffers that you have been in, and, for each buffer, a place where
you set the mark. The length of the global mark ring is controlled by
global-mark-ring-max, and is 16 by default.
 The command C-x C-SPC (pop-global-mark) jumps to
the buffer and position of the latest entry in the global ring. It also
rotates the ring, so that successive uses of C-x C-SPC take
you to earlier buffers and mark positions.

Shift Selection

 If you hold down the shift key while typing a cursor motion command,
this sets the mark before moving point, so that the region extends
from the original position of point to its new position. This feature
is referred to as shift-selection. It is similar to the way
text is selected in other editors.
The mark set via shift-selection behaves a little differently from
what we have described above. Firstly, in addition to the usual ways
of deactivating the mark (such as changing the buffer text or typing
C-g), the mark is deactivated by any unshifted cursor
motion command. Secondly, any subsequent shifted cursor motion
command avoids setting the mark anew. Therefore, a series of shifted
cursor motion commands will continuously adjust the region.
Shift-selection only works if the shifted cursor motion key is not
already bound to a separate command (see Chapter 48, Customization). For
example, if you bind S-C-f to another command, typing
S-C-f runs that command instead of performing a shift-selected
version of C-f (forward-char).
A mark set via mouse commands behaves the same as a mark set via
shift-selection (see the section called “Setting the Mark”). For example, if you specify a
region by dragging the mouse, you can continue to extend the region
using shifted cursor motion commands. In either case, any unshifted
cursor motion command deactivates the mark.
To turn off shift-selection, set shift-select-mode to
nil. Doing so does not disable setting the mark via mouse
commands.

Disabling Transient Mark Mode

 The default behavior of the mark and region, in which setting the
mark activates it and highlights the region, is called Transient Mark
mode. This is a minor mode that is enabled by default. It can be
toggled with M-x transient-mark-mode, or with the ‘Active
Region Highlighting’ menu item in the ‘Options’ menu. Turning it
off switches Emacs to an alternative mode of operation:
	Setting the mark, with commands like C-SPC or C-x
C-x, does not highlight the region. Therefore, you can't tell by
looking where the mark is located; you have to remember.
The usual solution to this problem is to set the mark and then use it
soon, before you forget where it is. You can also check where the
mark is by using C-x C-x, which exchanges the positions of the
point and the mark (see the section called “Setting the Mark”).

	Many commands that move point long distances, like M-< and
C-s, first set the mark where point was.

	Some commands, which ordinarily act on the region when the mark is
active, no longer do so. For example, normally M-%
(query-replace) performs replacements within the region, if the
mark is active. When Transient Mark mode is off, it always operates
from point to the end of the buffer. Commands that act this way are
identified in their own documentation.

While Transient Mark mode is off, you can activate it temporarily
using C-SPC C-SPC or C-u C-x C-x.
	C-SPC C-SPC
	Set the mark at point (like plain C-SPC) and enable
Transient Mark mode just once, until the mark is deactivated. (This
is not really a separate command; you are using the C-SPC
command twice.)

	C-u C-x C-x
	Activate the mark and enable Transient Mark mode temporarily, until
the mark is next deactivated. (This is the C-x C-x command,
exchange-point-and-mark, with a prefix argument.)

These commands set or activate the mark, and enable Transient Mark
mode only until the mark is deactivated. One reason you may want to
use them is that some commands operate on the entire buffer instead of
the region when Transient Mark mode is off. Enabling Transient Mark
mode momentarily gives you a way to use these commands on the region.
When you specify a region with the mouse (see the section called “Setting the Mark”), or
with shift-selection (see the section called “Shift Selection”), this likewise
activates Transient Mark mode temporarily and highlights the region.

Chapter 12. Killing and Moving Text

In Emacs, killing means erasing text and copying it into the
kill ring. Yanking means bringing text from the kill ring
back into the buffer. (Some applications use the terms “cutting”
and “pasting” for similar operations.) The kill ring is so-named
because it can be visualized as a set of blocks of text arranged in a
ring, which you can access in cyclic order. See the section called “The Kill Ring”.
Killing and yanking are the most common way to move or copy text
within Emacs. It is very versatile, because there are commands for
killing many different types of syntactic units.
Deletion and Killing

 Most commands which erase text from the buffer save it in the kill
ring. These are known as kill commands, and their names
normally contain the word ‘kill’ (e.g. kill-line). The
kill ring stores several recent kills, not just the last one, so
killing is a very safe operation: you don't have to worry much about
losing text that you previously killed. The kill ring is shared by
all buffers, so text that is killed in one buffer can be yanked into
another buffer.
When you use C-/ (undo) to undo a kill command
(see the section called “Undo”), that brings the killed text back into the buffer, but
does not remove it from the kill ring.
On graphical displays, killing text also copies it to the system
clipboard. See the section called ““Cut and Paste” Operations on Graphical Displays”.
Commands that erase text but do not save it in the kill ring are
known as delete commands; their names usually contain the word
‘delete’. These include C-d (delete-char) and
DEL (delete-backward-char), which delete only one
character at a time, and those commands that delete only spaces or
newlines. Commands that can erase significant amounts of nontrivial
data generally do a kill operation instead.
You can also use the mouse to kill and yank. See the section called ““Cut and Paste” Operations on Graphical Displays”.
Deletion

 Deletion means erasing text and not saving it in the kill ring. For
the most part, the Emacs commands that delete text are those that
erase just one character or only whitespace.
	DEL, Backspace
	Delete the previous character, or the text in the region if it is
active (delete-backward-char).

	Delete
	Delete the next character, or the text in the region if it is active
(delete-forward-char).

	C-d
	Delete the next character (delete-char).

	M-\
	Delete spaces and tabs around point (delete-horizontal-space).

	M-SPC
	Delete spaces and tabs around point, leaving one space
(just-one-space).

	C-x C-o
	Delete blank lines around the current line (delete-blank-lines).

	M-^
	Join two lines by deleting the intervening newline, along with any
indentation following it (delete-indentation).

We have already described the basic deletion commands DEL
(delete-backward-char), delete
(delete-forward-char), and C-d (delete-char).
See the section called “Erasing Text”. With a numeric argument, they delete the specified
number of characters. If the numeric argument is omitted or one, they
delete all the text in the region if it is active (see the section called “Operating on the Region”).
 The other delete commands are those that delete only whitespace
characters: spaces, tabs and newlines. M-\
(delete-horizontal-space) deletes all the spaces and tab
characters before and after point. With a prefix argument, this only
deletes spaces and tab characters before point. M-SPC
(just-one-space) does likewise but leaves a single space before
point, regardless of the number of spaces that existed previously
(even if there were none before). With a numeric argument n, it
leaves n spaces before point if n is positive; if n
is negative, it deletes newlines in addition to spaces and tabs,
leaving a single space before point.
C-x C-o (delete-blank-lines) deletes all blank lines
after the current line. If the current line is blank, it deletes all
blank lines preceding the current line as well (leaving one blank line,
the current line). On a solitary blank line, it deletes that line.
M-^ (delete-indentation) joins the current line and the
previous line, by deleting a newline and all surrounding spaces, usually
leaving a single space. See M-^.

Killing by Lines

	C-k
	Kill rest of line or one or more lines (kill-line).

	C-S-backspace
	Kill an entire line at once (kill-whole-line)

 The simplest kill command is C-k (kill-line). If used
at the end of a line, it kills the line-ending newline character,
merging the next line into the current one (thus, a blank line is
entirely removed). Otherwise, C-k kills all the text from point
up to the end of the line; if point was originally at the beginning of
the line, this leaves the line blank.
Spaces and tabs at the end of the line are ignored when deciding
which case applies. As long as point is after the last visible
character in the line, you can be sure that C-k will kill the
newline. To kill an entire non-blank line, go to the beginning and
type C-k twice.
In this context, “line” means a logical text line, not a screen
line (see the section called “Continuation Lines”).
When C-k is given a positive argument n, it kills
n lines and the newlines that follow them (text on the current
line before point is not killed). With a negative argument
−n, it kills n lines preceding the current line,
together with the text on the current line before point. C-k
with an argument of zero kills the text before point on the current
line.
 If the variable kill-whole-line is non-nil, C-k at
the very beginning of a line kills the entire line including the
following newline. This variable is normally nil.
 C-S-backspace (kill-whole-line) kills a whole line
including its newline, regardless of the position of point within the
line. Note that many text terminals will prevent you from typing the
key sequence C-S-backspace.

Other Kill Commands

	C-w
	Kill the region (kill-region).

	M-w
	Copy the region into the kill ring (kill-ring-save).

	M-d
	Kill the next word (kill-word). See the section called “Words”.

	M-DEL
	Kill one word backwards (backward-kill-word).

	C-x DEL
	Kill back to beginning of sentence (backward-kill-sentence).
See the section called “Sentences”.

	M-k
	Kill to the end of the sentence (kill-sentence).

	C-M-k
	Kill the following balanced expression (kill-sexp). See the section called “Expressions with Balanced Parentheses”.

	M-z char
	Kill through the next occurrence of char (zap-to-char).

 One of the commonly-used kill commands is C-w
(kill-region), which kills the text in the region
(see Chapter 11, The Mark and the Region). Similarly, M-w (kill-ring-save) copies
the text in the region into the kill ring without removing it from the
buffer. If the mark is inactive when you type C-w or M-w,
the command acts on the text between point and where you last set the
mark (see the section called “Operating on the Region”).
Emacs also provides commands to kill specific syntactic units:
words, with M-DEL and M-d (see the section called “Words”); balanced
expressions, with C-M-k (see the section called “Expressions with Balanced Parentheses”); and sentences,
with C-x DEL and M-k (see the section called “Sentences”).
 The command M-z (zap-to-char) combines killing with
searching: it reads a character and kills from point up to (and
including) the next occurrence of that character in the buffer. A
numeric argument acts as a repeat count; a negative argument means to
search backward and kill text before point.

Options for Killing

 Some specialized buffers contain read-only text, which cannot
be modified and therefore cannot be killed. The kill commands work
specially in a read-only buffer: they move over text and copy it to
the kill ring, without actually deleting it from the buffer.
Normally, they also beep and display an error message when this
happens. But if you set the variable kill-read-only-ok to a
non-nil value, they just print a message in the echo area to
explain why the text has not been erased.
 If you change the variable kill-do-not-save-duplicates to a
non-nil value, identical subsequent kills yield a single
kill-ring entry, without duplication.

Yanking

 Yanking means reinserting text previously killed. The usual
way to move or copy text is to kill it and then yank it elsewhere.
	C-y
	Yank the last kill into the buffer, at point (yank).

	M-y
	Replace the text just yanked with an earlier batch of killed text
(yank-pop). See the section called “Yanking Earlier Kills”.

	C-M-w
	Cause the following command, if it is a kill command, to append to the
previous kill (append-next-kill). See the section called “Appending Kills”.

 The basic yanking command is C-y (yank). It inserts
the most recent kill, leaving the cursor at the end of the inserted
text. It also sets the mark at the beginning of the inserted text,
without activating the mark; this lets you jump easily to that
position, if you wish, with C-u C-SPC (see the section called “The Mark Ring”).
With a plain prefix argument (C-u C-y), the command instead
leaves the cursor in front of the inserted text, and sets the mark at
the end. Using any other prefix argument specifies an earlier kill;
e.g. C-u 4 C-y reinserts the fourth most recent kill.
See the section called “Yanking Earlier Kills”.
On graphical displays, C-y first checks if another application
has placed any text in the system clipboard more recently than the
last Emacs kill. If so, it inserts the text in the clipboard instead.
Thus, Emacs effectively treats “cut” or “copy” clipboard
operations performed in other applications like Emacs kills, except
that they are not recorded in the kill ring. See the section called ““Cut and Paste” Operations on Graphical Displays”,
for details.
The Kill Ring

The kill ring is a list of blocks of text that were previously
killed. There is only one kill ring, shared by all buffers, so you
can kill text in one buffer and yank it in another buffer. This is
the usual way to move text from one buffer to another. (There are
several other methods: for instance, you could store the text in a
register; see Chapter 13, Registers. See the section called “Accumulating Text”, for some
other ways to move text around.)
 The maximum number of entries in the kill ring is controlled by the
variable kill-ring-max. The default is 60. If you make a new
kill when this limit has been reached, Emacs makes room by deleting
the oldest entry in the kill ring.
 The actual contents of the kill ring are stored in a variable named
kill-ring; you can view the entire contents of the kill ring
with C-h v kill-ring.

Yanking Earlier Kills

 As explained in the section called “Yanking”, you can use a numeric argument to
C-y to yank text that is no longer the most recent kill. This
is useful if you remember which kill ring entry you want. If you
don't, you can use the M-y (yank-pop) command to cycle
through the possibilities.
 If the previous command was a yank command, M-y takes the text
that was yanked and replaces it with the text from an earlier kill.
So, to recover the text of the next-to-the-last kill, first use
C-y to yank the last kill, and then use M-y to replace it
with the previous kill. M-y is allowed only after a C-y
or another M-y.
You can understand M-y in terms of a “last yank” pointer which
points at an entry in the kill ring. Each time you kill, the “last
yank” pointer moves to the newly made entry at the front of the ring.
C-y yanks the entry which the “last yank” pointer points to.
M-y moves the “last yank” pointer to a different entry, and the
text in the buffer changes to match. Enough M-y commands can move
the pointer to any entry in the ring, so you can get any entry into the
buffer. Eventually the pointer reaches the end of the ring; the next
M-y loops back around to the first entry again.
M-y moves the “last yank” pointer around the ring, but it does
not change the order of the entries in the ring, which always runs from
the most recent kill at the front to the oldest one still remembered.
M-y can take a numeric argument, which tells it how many entries
to advance the “last yank” pointer by. A negative argument moves the
pointer toward the front of the ring; from the front of the ring, it
moves “around” to the last entry and continues forward from there.
Once the text you are looking for is brought into the buffer, you can
stop doing M-y commands and it will stay there. It's just a copy
of the kill ring entry, so editing it in the buffer does not change
what's in the ring. As long as no new killing is done, the “last
yank” pointer remains at the same place in the kill ring, so repeating
C-y will yank another copy of the same previous kill.
When you call C-y with a numeric argument, that also sets the
“last yank” pointer to the entry that it yanks.

Appending Kills

 Normally, each kill command pushes a new entry onto the kill ring.
However, two or more kill commands in a row combine their text into a
single entry, so that a single C-y yanks all the text as a unit,
just as it was before it was killed.
Thus, if you want to yank text as a unit, you need not kill all of it
with one command; you can keep killing line after line, or word after
word, until you have killed it all, and you can still get it all back at
once.
Commands that kill forward from point add onto the end of the previous
killed text. Commands that kill backward from point add text onto the
beginning. This way, any sequence of mixed forward and backward kill
commands puts all the killed text into one entry without rearrangement.
Numeric arguments do not break the sequence of appending kills. For
example, suppose the buffer contains this text:

This is a line -!-of sample text.

with point shown by -!-. If you type M-d M-DEL M-d
M-DEL, killing alternately forward and backward, you end up with
‘a line of sample’ as one entry in the kill ring, and ‘This
is text.’ in the buffer. (Note the double space between ‘is’
and ‘text’, which you can clean up with M-SPC or
M-q.)
Another way to kill the same text is to move back two words with
M-b M-b, then kill all four words forward with C-u M-d.
This produces exactly the same results in the buffer and in the kill
ring. M-f M-f C-u M-DEL kills the same text, all going
backward; once again, the result is the same. The text in the kill ring
entry always has the same order that it had in the buffer before you
killed it.
 If a kill command is separated from the last kill command by other
commands (not just numeric arguments), it starts a new entry on the kill
ring. But you can force it to append by first typing the command
C-M-w (append-next-kill) right before it. The C-M-w
tells the following command, if it is a kill command, to append the text
it kills to the last killed text, instead of starting a new entry. With
C-M-w, you can kill several separated pieces of text and
accumulate them to be yanked back in one place.
A kill command following M-w (kill-ring-save) does not
append to the text that M-w copied into the kill ring.

“Cut and Paste” Operations on Graphical Displays

 In most graphical desktop environments, you can transfer data
(usually text) between different applications using a system facility
called the clipboard. On X, two other similar facilities are
available: the primary selection and the secondary selection. When
Emacs is run on a graphical display, its kill and yank commands
integrate with these facilities, so that you can easily transfer text
between Emacs and other graphical applications.
By default, Emacs uses UTF-8 as the coding system for inter-program
text transfers. If you find that the pasted text is not what you
expected, you can specify another coding system by typing C-x
RET x or C-x RET X. You can also request a
different data type by customizing x-select-request-type.
See the section called “Coding Systems for Interprocess Communication”.
Using the Clipboard

 The clipboard is the facility that most graphical applications
use for “cutting and pasting”. When the clipboard exists, the kill
and yank commands in Emacs make use of it.
When you kill some text with a command such as C-w
(kill-region), or copy it to the kill ring with a command such
as M-w (kill-ring-save), that text is also put in the
clipboard.
 When an Emacs kill command puts text in the clipboard, the existing
clipboard contents are normally lost. Optionally, you can change
save-interprogram-paste-before-kill to t. Then Emacs
will first save the clipboard to its kill ring, preventing you from
losing the old clipboard data—at the risk of high memory consumption
if that data turns out to be large.
Yank commands, such as C-y (yank), also use the
clipboard. If another application “owns” the clipboard—i.e., if
you cut or copied text there more recently than your last kill command
in Emacs—then Emacs yanks from the clipboard instead of the kill
ring.
 Normally, rotating the kill ring with M-y (yank-pop)
does not alter the clipboard. However, if you change
yank-pop-change-selection to t, then M-y saves the
new yank to the clipboard.
 To prevent kill and yank commands from accessing the clipboard,
change the variable x-select-enable-clipboard to nil.
 Many X desktop environments support a feature called the
clipboard manager. If you exit Emacs while it is the current
“owner” of the clipboard data, and there is a clipboard manager
running, Emacs transfers the clipboard data to the clipboard manager
so that it is not lost. In some circumstances, this may cause a delay
when exiting Emacs; if you wish to prevent Emacs from transferring
data to the clipboard manager, change the variable
x-select-enable-clipboard-manager to nil.
 Prior to Emacs 24, the kill and yank commands used the primary
selection (see the section called “Cut and Paste with Other Window Applications”), not the clipboard. If you
prefer this behavior, change x-select-enable-clipboard to
nil, x-select-enable-primary to t, and
mouse-drag-copy-region to t. In this case, you can use
the following commands to act explicitly on the clipboard:
clipboard-kill-region kills the region and saves it to the
clipboard; clipboard-kill-ring-save copies the region to the
kill ring and saves it to the clipboard; and clipboard-yank
yanks the contents of the clipboard at point.

Cut and Paste with Other Window Applications

 Under the X Window System, there exists a primary selection
containing the last stretch of text selected in an X application
(usually by dragging the mouse). Typically, this text can be inserted
into other X applications by mouse-2 clicks. The primary
selection is separate from the clipboard. Its contents are more
“fragile”; they are overwritten each time you select text with the
mouse, whereas the clipboard is only overwritten by explicit “cut”
or “copy” commands.
Under X, whenever the region is active (see Chapter 11, The Mark and the Region), the text in
the region is saved in the primary selection. This applies regardless
of whether the region was made by dragging or clicking the mouse
(see the section called “Mouse Commands for Editing”), or by keyboard commands (e.g. by typing
C-SPC and moving point; see the section called “Setting the Mark”).
 If you change the variable select-active-regions to
only, Emacs saves only temporarily active regions to the
primary selection, i.e. those made with the mouse or with shift
selection (see the section called “Shift Selection”). If you change
select-active-regions to nil, Emacs avoids saving active
regions to the primary selection entirely.
To insert the primary selection into an Emacs buffer, click
mouse-2 (mouse-yank-primary) where you want to insert it.
See the section called “Mouse Commands for Editing”.
 MS-Windows provides no primary selection, but Emacs emulates it
within a single Emacs session by storing the selected text internally.
Therefore, all the features and commands related to the primary
selection work on Windows as they do on X, for cutting and pasting
within the same session, but not across Emacs sessions or with other
applications.

Secondary Selection

 In addition to the primary selection, the X Window System provides a
second similar facility known as the secondary selection.
Nowadays, few X applications make use of the secondary selection, but
you can access it using the following Emacs commands:

	M-Drag-Mouse-1
	Set the secondary selection, with one end at the place where you press
down the button, and the other end at the place where you release it
(mouse-set-secondary). The selected text is highlighted, using
the secondary-selection face, as you drag. The window scrolls
automatically if you drag the mouse off the top or bottom of the
window, just like mouse-set-region (see the section called “Mouse Commands for Editing”).
This command does not alter the kill ring.

	M-Mouse-1
	Set one endpoint for the secondary selection
(mouse-start-secondary).

	M-Mouse-3
	Set the secondary selection, with one end at the position clicked and
the other at the position specified with M-Mouse-1
(mouse-secondary-save-then-kill). This also puts the selected
text in the kill ring. A second M-Mouse-3 at the same place
kills the secondary selection just made.

	M-Mouse-2
	Insert the secondary selection where you click, placing point at the
end of the yanked text (mouse-yank-secondary).

Double or triple clicking of M-Mouse-1 operates on words and
lines, much like Mouse-1.
If mouse-yank-at-point is non-nil, M-Mouse-2 yanks
at point. Then it does not matter precisely where you click, or even
which of the frame's windows you click on. See the section called “Mouse Commands for Editing”.

Accumulating Text

 Usually we copy or move text by killing it and yanking it, but there
are other convenient methods for copying one block of text in many
places, or for copying many scattered blocks of text into one place.
Here we describe the commands to accumulate scattered pieces of text
into a buffer or into a file.
	M-x append-to-buffer
	Append region to the contents of a specified buffer.

	M-x prepend-to-buffer
	Prepend region to the contents of a specified buffer.

	M-x copy-to-buffer
	Copy region into a specified buffer, deleting that buffer's old contents.

	M-x insert-buffer
	Insert the contents of a specified buffer into current buffer at point.

	M-x append-to-file
	Append region to the contents of a specified file, at the end.

To accumulate text into a buffer, use M-x append-to-buffer.
This reads a buffer name, then inserts a copy of the region into the
buffer specified. If you specify a nonexistent buffer,
append-to-buffer creates the buffer. The text is inserted
wherever point is in that buffer. If you have been using the buffer for
editing, the copied text goes into the middle of the text of the buffer,
starting from wherever point happens to be at that moment.
Point in that buffer is left at the end of the copied text, so
successive uses of append-to-buffer accumulate the text in the
specified buffer in the same order as they were copied. Strictly
speaking, append-to-buffer does not always append to the text
already in the buffer—it appends only if point in that buffer is at
the end. However, if append-to-buffer is the only command you
use to alter a buffer, then point is always at the end.
M-x prepend-to-buffer is just like append-to-buffer
except that point in the other buffer is left before the copied text, so
successive prependings add text in reverse order. M-x
copy-to-buffer is similar, except that any existing text in the other
buffer is deleted, so the buffer is left containing just the text newly
copied into it.
The command M-x insert-buffer can be used to retrieve the
accumulated text from another buffer. This prompts for the name of a
buffer, and inserts a copy of all the text in that buffer into the
current buffer at point, leaving point at the beginning of the
inserted text. It also adds the position of the end of the inserted
text to the mark ring, without activating the mark. See Chapter 19, Using Multiple Buffers,
for background information on buffers.
Instead of accumulating text in a buffer, you can append text
directly into a file with M-x append-to-file. This prompts for
a filename, and adds the text of the region to the end of the
specified file. The file is changed immediately on disk.
You should use append-to-file only with files that are
not being visited in Emacs. Using it on a file that you are
editing in Emacs would change the file behind Emacs's back, which
can lead to losing some of your editing.
Another way to move text around is to store it in a register.
See Chapter 13, Registers.

Rectangles

 Rectangle commands operate on rectangular areas of the text:
all the characters between a certain pair of columns, in a certain
range of lines. Emacs has commands to kill rectangles, yank killed
rectangles, clear them out, fill them with blanks or text, or delete
them. Rectangle commands are useful with text in multicolumn formats,
and for changing text into or out of such formats.
 To specify a rectangle for a command to work on, set the mark at one
corner and point at the opposite corner. The rectangle thus specified
is called the region-rectangle. If point and the mark are in
the same column, the region-rectangle is empty. If they are in the
same line, the region-rectangle is one line high.
The region-rectangle is controlled in much the same way as the
region is controlled. But remember that a given combination of point
and mark values can be interpreted either as a region or as a
rectangle, depending on the command that uses them.
	C-x r k
	Kill the text of the region-rectangle, saving its contents as the
“last killed rectangle” (kill-rectangle).

	C-x r d
	Delete the text of the region-rectangle (delete-rectangle).

	C-x r y
	Yank the last killed rectangle with its upper left corner at point
(yank-rectangle).

	C-x r o
	Insert blank space to fill the space of the region-rectangle
(open-rectangle). This pushes the previous contents of the
region-rectangle to the right.

	C-x r N
	Insert line numbers along the left edge of the region-rectangle
(rectangle-number-lines). This pushes the previous contents of
the region-rectangle to the right.

	C-x r c
	Clear the region-rectangle by replacing all of its contents with spaces
(clear-rectangle).

	M-x delete-whitespace-rectangle
	Delete whitespace in each of the lines on the specified rectangle,
starting from the left edge column of the rectangle.

	C-x r t string RET
	Replace rectangle contents with string on each line
(string-rectangle).

	M-x string-insert-rectangle RET string RET
	Insert string on each line of the rectangle.

The rectangle operations fall into two classes: commands to erase or
insert rectangles, and commands to make blank rectangles.
 There are two ways to erase the text in a rectangle: C-x r d
(delete-rectangle) to delete the text outright, or C-x r
k (kill-rectangle) to remove the text and save it as the
last killed rectangle. In both cases, erasing the
region-rectangle is like erasing the specified text on each line of
the rectangle; if there is any following text on the line, it moves
backwards to fill the gap.
“Killing” a rectangle is not killing in the usual sense; the
rectangle is not stored in the kill ring, but in a special place that
only records the most recent rectangle killed. This is because
yanking a rectangle is so different from yanking linear text that
different yank commands have to be used. Yank-popping is not defined
for rectangles.
 To yank the last killed rectangle, type C-x r y
(yank-rectangle). The rectangle's first line is inserted at
point, the rectangle's second line is inserted at the same horizontal
position one line vertically below, and so on. The number of lines
affected is determined by the height of the saved rectangle.
For example, you can convert two single-column lists into a
double-column list by killing one of the single-column lists as a
rectangle, and then yanking it beside the other list.
You can also copy rectangles into and out of registers with C-x r
r r and C-x r i r. See the section called “Saving Rectangles in Registers”.
 There are two commands you can use for making blank rectangles:
C-x r c (clear-rectangle) blanks out existing text in the
region-rectangle, and C-x r o (open-rectangle) inserts a
blank rectangle.
 M-x delete-whitespace-rectangle deletes horizontal whitespace
starting from a particular column. This applies to each of the lines
in the rectangle, and the column is specified by the left edge of the
rectangle. The right edge of the rectangle does not make any
difference to this command.
 The command C-x r N (rectangle-number-lines) inserts
line numbers along the left edge of the region-rectangle. Normally,
the numbering begins from 1 (for the first line of the rectangle).
With a prefix argument, the command prompts for a number to begin
from, and for a format string with which to print the numbers
(see See section ``Formatting Strings'' in The Emacs Lisp Reference Manual).
 The command C-x r t (string-rectangle) replaces the
contents of a region-rectangle with a string on each line. The
string's width need not be the same as the width of the rectangle. If
the string's width is less, the text after the rectangle shifts left;
if the string is wider than the rectangle, the text after the
rectangle shifts right.
 The command M-x string-insert-rectangle is similar to
string-rectangle, but inserts the string on each line,
shifting the original text to the right.

CUA Bindings

 The command M-x cua-mode sets up key bindings that are
compatible with the Common User Access (CUA) system used in many other
applications.
When CUA mode is enabled, the keys C-x, C-c, C-v,
and C-z invoke commands that cut (kill), copy, paste (yank), and
undo respectively. The C-x and C-c keys perform cut and
copy only if the region is active. Otherwise, they still act as
prefix keys, so that standard Emacs commands like C-x C-c still
work. Note that this means the variable mark-even-if-inactive
has no effect for C-x and C-c (see the section called “Operating on the Region”).
To enter an Emacs command like C-x C-f while the mark is
active, use one of the following methods: either hold Shift
together with the prefix key, e.g. S-C-x C-f, or quickly type
the prefix key twice, e.g. C-x C-x C-f.
To disable the overriding of standard Emacs binding by CUA mode,
while retaining the other features of CUA mode described below, set
the variable cua-enable-cua-keys to nil.
In CUA mode, typed text replaces the active region as in
Delete-Selection mode (see the section called “Mouse Commands for Editing”).
 CUA mode provides enhanced rectangle support with visible
rectangle highlighting. Use C-RET to start a rectangle,
extend it using the movement commands, and cut or copy it using
C-x or C-c. RET moves the cursor to the next
(clockwise) corner of the rectangle, so you can easily expand it in
any direction. Normal text you type is inserted to the left or right
of each line in the rectangle (on the same side as the cursor).
With CUA you can easily copy text and rectangles into and out of
registers by providing a one-digit numeric prefix to the kill, copy,
and yank commands, e.g. C-1 C-c copies the region into register
1, and C-2 C-v yanks the contents of register 2.
 CUA mode also has a global mark feature which allows easy moving and
copying of text between buffers. Use C-S-SPC to toggle the
global mark on and off. When the global mark is on, all text that you
kill or copy is automatically inserted at the global mark, and text
you type is inserted at the global mark rather than at the current
position.
For example, to copy words from various buffers into a word list in
a given buffer, set the global mark in the target buffer, then
navigate to each of the words you want in the list, mark it (e.g. with
S-M-f), copy it to the list with C-c or M-w, and
insert a newline after the word in the target list by pressing
RET.

Chapter 13. Registers

 Emacs registers are compartments where you can save text,
rectangles, positions, and other things for later use. Once you save
text or a rectangle in a register, you can copy it into the buffer
once, or many times; once you save a position in a register, you can
jump back to that position once, or many times.
Each register has a name that consists of a single character, which
we will denote by r; r can be a letter (such as ‘a’)
or a number (such as ‘1’); case matters, so register ‘a’ is
not the same as register ‘A’.
 A register can store a position, a piece of text, a rectangle, a
number, a window configuration, or a file name, but only one thing at
any given time. Whatever you store in a register remains there until
you store something else in that register. To see what register
r contains, use M-x view-register:
	M-x view-register RET r
	Display a description of what register r contains.

Bookmarks record files and positions in them, so you can
return to those positions when you look at the file again. Bookmarks
are similar in spirit to registers, so they are also documented in
this chapter.
Saving Positions in Registers

	C-x r SPC r
	Record the position of point and the current buffer in register
r (point-to-register).

	C-x r j r
	Jump to the position and buffer saved in register r
(jump-to-register).

 Typing C-x r SPC (point-to-register), followed by
a character r, saves both the position of point and the
current buffer in register r. The register retains this
information until you store something else in it.
 The command C-x r j r switches to the buffer recorded in
register r, and moves point to the recorded position. The
contents of the register are not changed, so you can jump to the saved
position any number of times.
If you use C-x r j to go to a saved position, but the buffer it
was saved from has been killed, C-x r j tries to create the buffer
again by visiting the same file. Of course, this works only for buffers
that were visiting files.

Saving Text in Registers

 When you want to insert a copy of the same piece of text several
times, it may be inconvenient to yank it from the kill ring, since each
subsequent kill moves that entry further down the ring. An alternative
is to store the text in a register and later retrieve it.
	C-x r s r
	Copy region into register r (copy-to-register).

	C-x r i r
	Insert text from register r (insert-register).

	M-x append-to-register RET r
	Append region to text in register r.

	M-x prepend-to-register RET r
	Prepend region to text in register r.

 C-x r s r stores a copy of the text of the region into
the register named r. If the mark is inactive, Emacs first
reactivates the mark where it was last set. The mark is deactivated
at the end of this command. See Chapter 11, The Mark and the Region. C-u C-x r s r,
the same command with a prefix argument, copies the text into register
r and deletes the text from the buffer as well; you can think of
this as “moving” the region text into the register.
 M-x append-to-register RET r appends the copy of
the text in the region to the text already stored in the register
named r. If invoked with a prefix argument, it deletes the
region after appending it to the register. The command
prepend-to-register is similar, except that it prepends
the region text to the text in the register instead of
appending it.
 C-x r i r inserts in the buffer the text from register
r. Normally it leaves point before the text and sets the mark
after, without activating it. With a numeric argument, it instead
puts point after the text and the mark before.

Saving Rectangles in Registers

 A register can contain a rectangle instead of linear text.
See the section called “Rectangles”, for basic information on how to specify a rectangle
in the buffer.

	C-x r r r
	Copy the region-rectangle into register r
(copy-rectangle-to-register). With numeric argument, delete it as
well.

	C-x r i r
	Insert the rectangle stored in register r (if it contains a
rectangle) (insert-register).

The C-x r i r (insert-register) command,
previously documented in the section called “Saving Text in Registers”, inserts a rectangle
rather than a text string, if the register contains a rectangle.

Saving Window Configurations in Registers

 You can save the window configuration of the selected frame in a
register, or even the configuration of all windows in all frames, and
restore the configuration later. See Chapter 20, Multiple Windows, for information
about window configurations.
	C-x r w r
	Save the state of the selected frame's windows in register r
(window-configuration-to-register).

	C-x r f r
	Save the state of all frames, including all their windows, in register
r (frame-configuration-to-register).

Use C-x r j r to restore a window or frame configuration.
This is the same command used to restore a cursor position. When you
restore a frame configuration, any existing frames not included in the
configuration become invisible. If you wish to delete these frames
instead, use C-u C-x r j r.

Keeping Numbers in Registers

 There are commands to store a number in a register, to insert
the number in the buffer in decimal, and to increment it. These commands
can be useful in keyboard macros (see Chapter 17, Keyboard Macros).
	C-u number C-x r n r
	Store number into register r (number-to-register).

	C-u number C-x r + r
	Increment the number in register r by number
(increment-register).

	C-x r i r
	Insert the number from register r into the buffer.

C-x r i is the same command used to insert any other sort of
register contents into the buffer. C-x r + with no numeric
argument increments the register value by 1; C-x r n with no
numeric argument stores zero in the register.

Keeping File Names in Registers

 If you visit certain file names frequently, you can visit them more
conveniently if you put their names in registers. Here's the Lisp code
used to put a file name in a register:

(set-register ?r '(file . name))

For example,

(set-register ?z '(file . "/gd/gnu/emacs/19.0/src/ChangeLog"))

puts the file name shown in register ‘z’.
To visit the file whose name is in register r, type C-x r j
r. (This is the same command used to jump to a position or
restore a frame configuration.)

Bookmarks

 Bookmarks are somewhat like registers in that they record
positions you can jump to. Unlike registers, they have long names, and
they persist automatically from one Emacs session to the next. The
prototypical use of bookmarks is to record “where you were reading” in
various files.
	C-x r m RET
	Set the bookmark for the visited file, at point.

	C-x r m bookmark RET
	Set the bookmark named bookmark at point (bookmark-set).

	C-x r b bookmark RET
	Jump to the bookmark named bookmark (bookmark-jump).

	C-x r l
	List all bookmarks (list-bookmarks).

	M-x bookmark-save
	Save all the current bookmark values in the default bookmark file.

 The prototypical use for bookmarks is to record one current position
in each of several files. So the command C-x r m, which sets a
bookmark, uses the visited file name as the default for the bookmark
name. If you name each bookmark after the file it points to, then you
can conveniently revisit any of those files with C-x r b, and move
to the position of the bookmark at the same time.
 To display a list of all your bookmarks in a separate buffer, type
C-x r l (list-bookmarks). If you switch to that buffer,
you can use it to edit your bookmark definitions or annotate the
bookmarks. Type C-h m in the bookmark buffer for more
information about its special editing commands.
When you kill Emacs, Emacs saves your bookmarks, if
you have changed any bookmark values. You can also save the bookmarks
at any time with the M-x bookmark-save command. Bookmarks are
saved to the file ~/.emacs.d/bookmarks (for compatibility with
older versions of Emacs, if you have a file named ~/.emacs.bmk,
that is used instead). The bookmark commands load your default
bookmark file automatically. This saving and loading is how bookmarks
persist from one Emacs session to the next.
 If you set the variable bookmark-save-flag to 1, each command
that sets a bookmark will also save your bookmarks; this way, you
don't lose any bookmark values even if Emacs crashes. The value, if
a number, says how many bookmark modifications should go by between
saving. If you set this variable to nil, Emacs only
saves bookmarks if you explicitly use M-x bookmark-save.
 Bookmark position values are saved with surrounding context, so that
bookmark-jump can find the proper position even if the file is
modified slightly. The variable bookmark-search-size says how
many characters of context to record on each side of the bookmark's
position.
Here are some additional commands for working with bookmarks:
	M-x bookmark-load RET filename RET
	Load a file named filename that contains a list of bookmark
values. You can use this command, as well as bookmark-write, to
work with other files of bookmark values in addition to your default
bookmark file.

	M-x bookmark-write RET filename RET
	Save all the current bookmark values in the file filename.

	M-x bookmark-delete RET bookmark RET
	Delete the bookmark named bookmark.

	M-x bookmark-insert-location RET bookmark RET
	Insert in the buffer the name of the file that bookmark bookmark
points to.

	M-x bookmark-insert RET bookmark RET
	Insert in the buffer the contents of the file that bookmark
bookmark points to.

Chapter 14. Controlling the Display

Since only part of a large buffer fits in the window, Emacs has to
show only a part of it. This chapter describes commands and variables
that let you specify which part of the text you want to see, and how
the text is displayed.
Scrolling

 If a window is too small to display all the text in its buffer, it
displays only a portion of it. Scrolling commands change which
portion of the buffer is displayed.
Scrolling “forward” or “up” advances the portion of the buffer
displayed in the window; equivalently, it moves the buffer text
upwards relative to the window. Scrolling “backward” or “down”
displays an earlier portion of the buffer, and moves the text
downwards relative to the window.
In Emacs, scrolling “up” or “down” refers to the direction that
the text moves in the window, not the direction that the window
moves relative to the text. This terminology was adopted by Emacs
before the modern meaning of “scrolling up” and “scrolling down”
became widespread. Hence, the strange result that PageDown
scrolls “up” in the Emacs sense.
The portion of a buffer displayed in a window always contains point.
If you move point past the bottom or top of the window, scrolling
occurs automatically to bring it back onscreen (see the section called “Automatic Scrolling”). You can also scroll explicitly with these commands:
	C-v, next, PageDown
	Scroll forward by nearly a full window (scroll-up-command).

	M-v, prior, PageUp
	Scroll backward (scroll-down-command).

 C-v (scroll-up-command) scrolls forward by nearly the
whole window height. The effect is to take the two lines at the
bottom of the window and put them at the top, followed by lines that
were not previously visible. If point was in the text that scrolled
off the top, it ends up on the window's new topmost line. The
next (or PageDown) key is equivalent to C-v.
M-v (scroll-down-command) scrolls backward in a similar
way. The prior (or PageUp) key is equivalent to
M-v.
 The number of lines of overlap left by these scroll commands is
controlled by the variable next-screen-context-lines, whose
default value is 2. You can supply the commands with a numeric prefix
argument, n, to scroll by n lines; Emacs attempts to leave
point unchanged, so that the text and point move up or down together.
C-v with a negative argument is like M-v and vice versa.
 By default, these commands signal an error (by beeping or flashing
the screen) if no more scrolling is possible, because the window has
reached the beginning or end of the buffer. If you change the
variable scroll-error-top-bottom to t, the command moves
point to the farthest possible position. If point is already there,
the command signals an error.
 Some users like scroll commands to keep point at the same screen
position, so that scrolling back to the same screen conveniently
returns point to its original position. You can enable this behavior
via the variable scroll-preserve-screen-position. If the value
is t, Emacs adjusts point to keep the cursor at the same screen
position whenever a scroll command moves it off-window, rather than
moving it to the topmost or bottommost line. With any other
non-nil value, Emacs adjusts point this way even if the scroll
command leaves point in the window. This variable affects all the
scroll commands documented in this section, as well as scrolling with
the mouse wheel (see the section called “Mouse Commands for Editing”); in general, it affects any
command that has a non-nil scroll-command property.
See See section ``Property Lists'' in The Emacs Lisp Reference Manual.
 The commands M-x scroll-up and M-x scroll-down behave
similarly to scroll-up-command and scroll-down-command,
except they do not obey scroll-error-top-bottom. Prior to
Emacs 24, these were the default commands for scrolling up and down.
The commands M-x scroll-up-line and M-x scroll-down-line
scroll the current window by one line at a time. If you intend to use
any of these commands, you might want to give them key bindings
(see the section called “Rebinding Keys in Your Init File”).

Recentering

	C-l
	Scroll the selected window so the current line is the center-most text
line; on subsequent consecutive invocations, make the current line the
top line, the bottom line, and so on in cyclic order. Possibly
redisplay the screen too (recenter-top-bottom).

	M-x recenter
	Scroll the selected window so the current line is the center-most text
line. Possibly redisplay the screen too.

	C-M-l
	Scroll heuristically to bring useful information onto the screen
(reposition-window).

 The C-l (recenter-top-bottom) command recenters
the selected window, scrolling it so that the current screen line is
exactly in the center of the window, or as close to the center as
possible.
Typing C-l twice in a row (C-l C-l) scrolls the window
so that point is on the topmost screen line. Typing a third C-l
scrolls the window so that point is on the bottom-most screen line.
Each successive C-l cycles through these three positions.
 You can change the cycling order by customizing the list variable
recenter-positions. Each list element should be the symbol
top, middle, or bottom, or a number; an integer
means to move the line to the specified screen line, while a
floating-point number between 0.0 and 1.0 specifies a percentage of
the screen space from the top of the window. The default,
(middle top bottom), is the cycling order described above.
Furthermore, if you change the variable scroll-margin to a
non-zero value n, C-l always leaves at least n
screen lines between point and the top or bottom of the window
(see the section called “Automatic Scrolling”).
You can also give C-l a prefix argument. A plain prefix
argument, C-u C-l, simply recenters point. A positive argument
n puts point n lines down from the top of the window. An
argument of zero puts point on the topmost line. A negative argument
-n puts point n lines from the bottom of the window. When
given an argument, C-l does not clear the screen or cycle
through different screen positions.
 If the variable recenter-redisplay has a non-nil
value, each invocation of C-l also clears and redisplays the
screen; the special value tty (the default) says to do this on
text-terminal frames only. Redisplaying is useful in case the screen
becomes garbled for any reason (see the section called “Garbage on the Screen”).
 The more primitive command M-x recenter behaves like
recenter-top-bottom, but does not cycle among screen positions.
 C-M-l (reposition-window) scrolls the current window
heuristically in a way designed to get useful information onto the
screen. For example, in a Lisp file, this command tries to get the
entire current defun onto the screen if possible.

Automatic Scrolling

Emacs performs automatic scrolling when point moves out of the
visible portion of the text.
 Normally, this centers point vertically within the window. However,
if you set scroll-conservatively to a small number n,
then if you move point just a little off the screen (less than n
lines), Emacs scrolls the text just far enough to bring point back on
screen. By default, scroll-conservatively is 0. If you
set scroll-conservatively to a large number (larger than 100),
Emacs will never center point as result of scrolling, even if point
moves far away from the text previously displayed in the window. With
such a large value, Emacs will always scroll text just enough for
bringing point into view, so point will end up at the top or bottom of
the window, depending on the scroll direction.
 The variable scroll-step determines how many lines to scroll
the window when point moves off the screen. If moving by that number
of lines fails to bring point back into view, point is centered
instead. The default value is zero, which causes point to always be
centered after scrolling.
 When the window does scroll by a distance longer than
scroll-step, you can control how aggressively it scrolls by
setting the variables scroll-up-aggressively and
scroll-down-aggressively. The value of
scroll-up-aggressively should be either nil, or a
fraction f between 0 and 1. A fraction specifies where on the
screen to put point when scrolling upward, i.e. forward. When point
goes off the window end, the new start position is chosen to put point
f parts of the window height from the bottom margin. Thus,
larger f means more aggressive scrolling: more new text is
brought into view. The default value, nil, is equivalent to
0.5.
Likewise, scroll-down-aggressively is used for scrolling
down, i.e. backward. The value specifies how far point should be
placed from the top margin of the window; thus, as with
scroll-up-aggressively, a larger value is more aggressive.
These two variables are ignored if either scroll-step or
scroll-conservatively are set to a non-zero value.
 The variable scroll-margin restricts how close point can come
to the top or bottom of a window (even if aggressive scrolling
specifies a fraction f that is larger than the window portion
between the top and the bottom margins). Its value is a number of screen
lines; if point comes within that many lines of the top or bottom of
the window, Emacs performs automatic scrolling. By default,
scroll-margin is 0.

Horizontal Scrolling

 Horizontal scrolling means shifting all the lines sideways
within a window, so that some of the text near the left margin is not
displayed. When the text in a window is scrolled horizontally, text
lines are truncated rather than continued (see the section called “Line Truncation”).
If a window shows truncated lines, Emacs performs automatic horizontal
scrolling whenever point moves off the left or right edge of the
screen. To disable automatic horizontal scrolling, set the variable
auto-hscroll-mode to nil. Note that when the automatic
horizontal scrolling is turned off, if point moves off the edge of the
screen, the cursor disappears to indicate that. (On text terminals,
the cursor is left at the edge instead.)
 The variable hscroll-margin controls how close point can get
to the window's edges before automatic scrolling occurs. It is
measured in columns. For example, if the value is 5, then moving
point within 5 columns of an edge causes horizontal scrolling away
from that edge.
 The variable hscroll-step determines how many columns to
scroll the window when point gets too close to the edge. Zero, the
default value, means to center point horizontally within the window.
A positive integer value specifies the number of columns to scroll by.
A floating-point number specifies the fraction of the window's width
to scroll by.
You can also perform explicit horizontal scrolling with the
following commands:
	C-x <
	Scroll text in current window to the left (scroll-left).

	C-x >
	Scroll to the right (scroll-right).

 C-x < (scroll-left) scrolls text in the selected window
to the left by the full width of the window, less two columns. (In
other words, the text in the window moves left relative to the
window.) With a numeric argument n, it scrolls by n
columns.
If the text is scrolled to the left, and point moves off the left
edge of the window, the cursor will freeze at the left edge of the
window, until point moves back to the displayed portion of the text.
This is independent of the current setting of
auto-hscroll-mode, which, for text scrolled to the left, only
affects the behavior at the right edge of the window.
C-x > (scroll-right) scrolls similarly to the right.
The window cannot be scrolled any farther to the right once it is
displayed normally, with each line starting at the window's left
margin; attempting to do so has no effect. This means that you don't
have to calculate the argument precisely for C-x >; any
sufficiently large argument will restore the normal display.
If you use those commands to scroll a window horizontally, that sets
a lower bound for automatic horizontal scrolling. Automatic scrolling
will continue to scroll the window, but never farther to the right
than the amount you previously set by scroll-left.

Narrowing

 Narrowing means focusing in on some portion of the buffer,
making the rest temporarily inaccessible. The portion which you can
still get to is called the accessible portion. Canceling the
narrowing, which makes the entire buffer once again accessible, is
called widening. The bounds of narrowing in effect in a buffer
are called the buffer's restriction.
Narrowing can make it easier to concentrate on a single subroutine or
paragraph by eliminating clutter. It can also be used to limit the
range of operation of a replace command or repeating keyboard macro.
	C-x n n
	Narrow down to between point and mark (narrow-to-region).

	C-x n w
	Widen to make the entire buffer accessible again (widen).

	C-x n p
	Narrow down to the current page (narrow-to-page).

	C-x n d
	Narrow down to the current defun (narrow-to-defun).

When you have narrowed down to a part of the buffer, that part appears
to be all there is. You can't see the rest, you can't move into it
(motion commands won't go outside the accessible part), you can't change
it in any way. However, it is not gone, and if you save the file all
the inaccessible text will be saved. The word ‘Narrow’ appears in
the mode line whenever narrowing is in effect.
 The primary narrowing command is C-x n n (narrow-to-region).
It sets the current buffer's restrictions so that the text in the current
region remains accessible, but all text before the region or after the
region is inaccessible. Point and mark do not change.
 Alternatively, use C-x n p (narrow-to-page) to narrow
down to the current page. See the section called “Pages”, for the definition of a page.
C-x n d (narrow-to-defun) narrows down to the defun
containing point (see the section called “Top-Level Definitions, or Defuns”).
 The way to cancel narrowing is to widen with C-x n w
(widen). This makes all text in the buffer accessible again.
You can get information on what part of the buffer you are narrowed down
to using the C-x = command. See the section called “Cursor Position Information”.
Because narrowing can easily confuse users who do not understand it,
narrow-to-region is normally a disabled command. Attempting to use
this command asks for confirmation and gives you the option of enabling it;
if you enable the command, confirmation will no longer be required for
it. See the section called “Disabling Commands”.

View Mode

 View mode is a minor mode that lets you scan a buffer by sequential
screenfuls. It provides commands for scrolling through the buffer
conveniently but not for changing it. Apart from the usual Emacs
cursor motion commands, you can type SPC to scroll forward one
windowful, DEL to scroll backward, and s to start an
incremental search.
 Typing q (View-quit) disables View mode, and switches
back to the buffer and position before View mode was enabled. Typing
e (View-exit) disables View mode, keeping the current
buffer and position.
 M-x view-buffer prompts for an existing Emacs buffer, switches
to it, and enables View mode. M-x view-file prompts for a file
and visits it with View mode enabled.

Follow Mode

 Follow mode is a minor mode that makes two windows, both
showing the same buffer, scroll as a single tall “virtual window”.
To use Follow mode, go to a frame with just one window, split it into
two side-by-side windows using C-x 3, and then type M-x
follow-mode. From then on, you can edit the buffer in either of the
two windows, or scroll either one; the other window follows it.
In Follow mode, if you move point outside the portion visible in one
window and into the portion visible in the other window, that selects
the other window—again, treating the two as if they were parts of
one large window.
To turn off Follow mode, type M-x follow-mode a second time.

Text Faces

 Emacs can display text in several different styles, called
faces. Each face can specify various face attributes,
such as the font, height, weight, slant, foreground and background
color, and underlining or overlining. Most major modes assign faces
to the text automatically, via Font Lock mode. See the section called “Font Lock mode”, for
more information about how these faces are assigned.
 To see what faces are currently defined, and what they look like,
type M-x list-faces-display. With a prefix argument, this
prompts for a regular expression, and displays only faces with names
matching that regular expression (see the section called “Syntax of Regular Expressions”).
It's possible for a given face to look different in different
frames. For instance, some text terminals do not support all face
attributes, particularly font, height, and width, and some support a
limited range of colors.
 You can customize a face to alter its appearance, and save those
changes for future Emacs sessions. See the section called “Customizing Faces”. A face
does not have to specify every single attribute; often it inherits
most attributes from another face. Any ultimately unspecified
attribute is taken from the face named default.
The default face is the default for displaying text, and all
of its attributes are specified. Its background color is also used as
the frame's background color. See the section called “Colors for Faces”.
 Another special face is the cursor face. On graphical
displays, the background color of this face is used to draw the text
cursor. None of the other attributes of this face have any effect;
the foreground color for text under the cursor is taken from the
background color of the underlying text. On text terminals, the
appearance of the text cursor is determined by the terminal, not by
the cursor face.
You can also use X resources to specify attributes of any particular
face. See the section called “X Resources”.
Emacs can display variable-width fonts, but some Emacs commands,
particularly indentation commands, do not account for variable
character display widths. Therefore, we recommend not using
variable-width fonts for most faces, particularly those assigned by
Font Lock mode.

Colors for Faces

 Faces can have various foreground and background colors. When you
specify a color for a face—for instance, when customizing the face
(see the section called “Customizing Faces”)—you can use either a color name
or an RGB triplet.
 A color name is a pre-defined name, such as ‘dark orange’ or
‘medium sea green’. To view a list of color names, type M-x
list-colors-display. To control the order in which colors are shown,
customize list-colors-sort. If you run this command on a
graphical display, it shows the full range of color names known to
Emacs (these are the standard X11 color names, defined in X's
rgb.txt file). If you run the command on a text terminal, it
shows only a small subset of colors that can be safely displayed on
such terminals. However, Emacs understands X11 color names even on
text terminals; if a face is given a color specified by an X11 color
name, it is displayed using the closest-matching terminal color.
An RGB triplet is a string of the form ‘#RRGGBB’. Each of the
R, G, and B components is a hexadecimal number specifying the
component's relative intensity, one to four digits long (usually two
digits are used). The components must have the same number of digits.
For hexadecimal values A to F, either upper or lower case are
acceptable.
The M-x list-colors-display command also shows the equivalent
RGB triplet for each named color. For instance, ‘medium sea
green’ is equivalent to ‘#3CB371’.
 You can change the foreground and background colors of a face with
M-x set-face-foreground and M-x set-face-background.
These commands prompt in the minibuffer for a face name and a color,
with completion, and then set that face to use the specified color.
They affect the face colors on all frames, but their effects do not
persist for future Emacs sessions, unlike using the customization
buffer or X resources. You can also use frame parameters to set
foreground and background colors for a specific frame; See the section called “Frame Parameters”.

Standard Faces

Here are the standard faces for specifying text appearance. You can
apply them to specific text when you want the effects they produce.
	default
	This face is used for ordinary text that doesn't specify any face.
Its background color is used as the frame's background color.

	bold
	This face uses a bold variant of the default font.

	italic
	This face uses an italic variant of the default font.

	bold-italic
	This face uses a bold italic variant of the default font.

	underline
	This face underlines text.

	fixed-pitch
	This face forces use of a fixed-width font. It's reasonable to
customize this face to use a different fixed-width font, if you like,
but you should not make it a variable-width font.

	variable-pitch
	This face forces use of a variable-width font.

	shadow
	This face is used for making the text less noticeable than the surrounding
ordinary text. Usually this can be achieved by using shades of gray in
contrast with either black or white default foreground color.

Here's an incomplete list of faces used to highlight parts of the
text temporarily for specific purposes. (Many other modes define
their own faces for this purpose.)
	highlight
	This face is used for text highlighting in various contexts, such as
when the mouse cursor is moved over a hyperlink.

	isearch
	This face is used to highlight the current Isearch match
(see the section called “Incremental Search”).

	query-replace
	This face is used to highlight the current Query Replace match
(see the section called “Replacement Commands”).

	lazy-highlight
	This face is used to highlight “lazy matches” for Isearch and Query
Replace (matches other than the current one).

	region
	This face is used for displaying an active region (see Chapter 11, The Mark and the Region).
When Emacs is built with GTK support, its colors are taken from the
current GTK theme.

	secondary-selection
	This face is used for displaying a secondary X selection (see the section called “Secondary Selection”).

	trailing-whitespace
	The face for highlighting excess spaces and tabs at the end of a line
when show-trailing-whitespace is non-nil (see the section called “Useless Whitespace”).

	escape-glyph
	The face for displaying control characters and escape sequences
(see the section called “How Text Is Displayed”).

	nobreak-space
	The face for displaying “no-break” space characters (see the section called “How Text Is Displayed”).

The following faces control the appearance of parts of the Emacs
frame:
	mode-line
	This face is used for the mode line of the currently selected window,
and for menu bars when toolkit menus are not used. By default, it's
drawn with shadows for a “raised” effect on graphical displays, and
drawn as the inverse of the default face on non-windowed terminals.

	mode-line-inactive
	Like mode-line, but used for mode lines of the windows other
than the selected one (if mode-line-in-non-selected-windows is
non-nil). This face inherits from mode-line, so changes
in that face affect mode lines in all windows.

	mode-line-highlight
	Like highlight, but used for portions of text on mode lines.

	mode-line-buffer-id
	This face is used for buffer identification parts in the mode line.

	header-line
	Similar to mode-line for a window's header line, which appears
at the top of a window just as the mode line appears at the bottom.
Most windows do not have a header line—only some special modes, such
Info mode, create one.

	vertical-border
	This face is used for the vertical divider between windows on text
terminals.

	minibuffer-prompt
	This face is used for the prompt strings displayed in the minibuffer.
By default, Emacs automatically adds this face to the value of
minibuffer-prompt-properties, which is a list of text
properties used to display the prompt text. (This variable takes
effect when you enter the minibuffer.)

	fringe
	The face for the fringes to the left and right of windows on graphic
displays. (The fringes are the narrow portions of the Emacs frame
between the text area and the window's right and left borders.)
See the section called “Window Fringes”.

	cursor
	The :background attribute of this face specifies the color of
the text cursor. See the section called “Displaying the Cursor”.

	tooltip
	This face is used for tooltip text. By default, if Emacs is built
with GTK support, tooltips are drawn via GTK and this face has no
effect. See the section called “Tooltips”.

	mouse
	This face determines the color of the mouse pointer.

The following faces likewise control the appearance of parts of the
Emacs frame, but only on text terminals, or when Emacs is built on X
with no toolkit support. (For all other cases, the appearance of the
respective frame elements is determined by system-wide settings.)
	scroll-bar
	This face determines the visual appearance of the scroll bar.
See the section called “Scroll Bars”.

	tool-bar
	This face determines the color of tool bar icons. See the section called “Tool Bars”.

	menu
	This face determines the colors and font of Emacs's menus. See the section called “Menu Bars”.

Text Scale

 To increase the height of the default face in the current buffer,
type C-x C-+ or C-x C-=. To decrease it, type C-x
C–. To restore the default (global) face height, type C-x
C-0. These keys are all bound to the same command,
text-scale-adjust, which looks at the last key typed to
determine which action to take.
The final key of these commands may be repeated without the leading
C-x. For instance, C-x C-= C-= C-= increases the face
height by three steps. Each step scales the text height by a factor
of 1.2; to change this factor, customize the variable
text-scale-mode-step. As an exception, a numeric argument of 0
to the text-scale-adjust command restores the default height,
similar to typing C-x C-0.
 The commands text-scale-increase and
text-scale-decrease increase or decrease the height of the
default face, just like C-x C-+ and C-x C– respectively.
You may find it convenient to bind to these commands, rather than
text-scale-adjust.
 The command text-scale-set scales the height of the default
face in the current buffer to an absolute level specified by its
prefix argument.
 The above commands automatically enable the minor mode
text-scale-mode if the current font scaling is other than 1,
and disable it otherwise.

Font Lock mode

 Font Lock mode is a minor mode, always local to a particular buffer,
which assigns faces to (or fontifies) the text in the buffer.
Each buffer's major mode tells Font Lock mode which text to fontify;
for instance, programming language modes fontify syntactically
relevant constructs like comments, strings, and function names.
 Font Lock mode is enabled by default. To toggle it in the current
buffer, type M-x font-lock-mode. A positive numeric argument
unconditionally enables Font Lock mode, and a negative or zero
argument disables it.
 To toggle Font Lock mode in all buffers, type M-x
global-font-lock-mode. To impose this setting for future Emacs
sessions, customize the variable global-font-lock-mode
(see the section called “Easy Customization Interface”), or add the following line to your init
file:

(global-font-lock-mode 0)

If you have disabled Global Font Lock mode, you can still enable Font
Lock for specific major modes by adding the function
font-lock-mode to the mode hooks (see the section called “Hooks”). For example,
to enable Font Lock mode for editing C files, you can do this:

(add-hook 'c-mode-hook 'font-lock-mode)

Font Lock mode uses several specifically named faces to do its job,
including font-lock-string-face, font-lock-comment-face,
and others. The easiest way to find them all is to use M-x
customize-group RET font-lock-faces RET. You can then
use that customization buffer to customize the appearance of these
faces. See the section called “Customizing Faces”.
 You can customize the variable font-lock-maximum-decoration
to alter the amount of fontification applied by Font Lock mode, for
major modes that support this feature. The value should be a number
(with 1 representing a minimal amount of fontification; some modes
support levels as high as 3); or t, meaning “as high as
possible” (the default). You can also specify different numbers for
particular major modes; for example, to use level 1 for C/C++ modes,
and the default level otherwise, use the value

'((c-mode . 1) (c++-mode . 1)))

 Comment and string fontification (or “syntactic” fontification)
relies on analysis of the syntactic structure of the buffer text. For
the sake of speed, some modes, including Lisp mode, rely on a special
convention: an open-parenthesis or open-brace in the leftmost column
always defines the beginning of a defun, and is thus always outside
any string or comment. Therefore, you should avoid placing an
open-parenthesis or open-brace in the leftmost column, if it is inside
a string or comment. See the section called “Left Margin Convention”, for details.
 The variable font-lock-beginning-of-syntax-function, which is
always buffer-local, specifies how Font Lock mode can find a position
guaranteed to be outside any comment or string. In modes which use
the leftmost column parenthesis convention, the default value of the
variable is beginning-of-defun—that tells Font Lock mode to
use the convention. If you set this variable to nil, Font Lock
no longer relies on the convention. This avoids incorrect results,
but the price is that, in some cases, fontification for a changed text
must rescan buffer text from the beginning of the buffer. This can
considerably slow down redisplay while scrolling, particularly if you
are close to the end of a large buffer.
 Font Lock highlighting patterns already exist for most modes, but
you may want to fontify additional patterns. You can use the function
font-lock-add-keywords, to add your own highlighting patterns
for a particular mode. For example, to highlight ‘FIXME:’ words
in C comments, use this:

(add-hook 'c-mode-hook
 (lambda ()
 (font-lock-add-keywords nil
 '(("\\<\\(FIXME\\):" 1
 font-lock-warning-face t)))))

To remove keywords from the font-lock highlighting patterns, use the
function font-lock-remove-keywords. See See section ``Search-based Fontification'' in The Emacs Lisp Reference Manual.
 Fontifying large buffers can take a long time. To avoid large
delays when a file is visited, Emacs initially fontifies only the
visible portion of a buffer. As you scroll through the buffer, each
portion that becomes visible is fontified as soon as it is displayed;
this type of Font Lock is called Just-In-Time (or JIT)
Lock. You can control how JIT Lock behaves, including telling it to
perform fontification while idle, by customizing variables in the
customization group ‘jit-lock’. See the section called “Customizing Specific Items”.

Interactive Highlighting

Highlight Changes mode is a minor mode that highlights the parts
of the buffer that were changed most recently, by giving that text a
different face. To enable or disable Highlight Changes mode, use
M-x highlight-changes-mode.
 Hi Lock mode is a minor mode that highlights text that matches
regular expressions you specify. For example, you can use it to
highlight all the references to a certain variable in a program source
file, highlight certain parts in a voluminous output of some program,
or highlight certain names in an article. To enable or disable Hi
Lock mode, use the command M-x hi-lock-mode. To enable Hi Lock
mode for all buffers, use M-x global-hi-lock-mode or place
(global-hi-lock-mode 1) in your .emacs file.
Hi Lock mode works like Font Lock mode (see the section called “Font Lock mode”), except
that you specify explicitly the regular expressions to highlight. You
control them with these commands:
	C-x w h regexp RET face RET
	Highlight text that matches regexp using face face
(highlight-regexp). The highlighting will remain as long as
the buffer is loaded. For example, to highlight all occurrences of
the word “whim” using the default face (a yellow background)
C-x w h whim RET RET. Any face can be used for
highlighting, Hi Lock provides several of its own and these are
pre-loaded into a list of default values. While being prompted
for a face use M-n and M-p to cycle through them.
You can use this command multiple times, specifying various regular
expressions to highlight in different ways.

	C-x w r regexp RET
	Unhighlight regexp (unhighlight-regexp).
If you invoke this from the menu, you select the expression to
unhighlight from a list. If you invoke this from the keyboard, you
use the minibuffer. It will show the most recently added regular
expression; use M-p to show the next older expression and
M-n to select the next newer expression. (You can also type the
expression by hand, with completion.) When the expression you want to
unhighlight appears in the minibuffer, press RET to exit
the minibuffer and unhighlight it.

	C-x w l regexp RET face RET
	Highlight entire lines containing a match for regexp, using face
face (highlight-lines-matching-regexp).

	C-x w b
	Insert all the current highlighting regexp/face pairs into the buffer
at point, with comment delimiters to prevent them from changing your
program. (This key binding runs the
hi-lock-write-interactive-patterns command.)
These patterns are extracted from the comments, if appropriate, if you
invoke M-x hi-lock-find-patterns, or if you visit the file while
Hi Lock mode is enabled (since that runs hi-lock-find-patterns).

	C-x w i
	Extract regexp/face pairs from comments in the current buffer
(hi-lock-find-patterns). Thus, you can enter patterns
interactively with highlight-regexp, store them into the file
with hi-lock-write-interactive-patterns, edit them (perhaps
including different faces for different parenthesized parts of the
match), and finally use this command (hi-lock-find-patterns) to
have Hi Lock highlight the edited patterns.
The variable hi-lock-file-patterns-policy controls whether Hi
Lock mode should automatically extract and highlight patterns found in a
file when it is visited. Its value can be nil (never highlight),
ask (query the user), or a function. If it is a function,
hi-lock-find-patterns calls it with the patterns as argument; if
the function returns non-nil, the patterns are used. The default
is ask. Note that patterns are always highlighted if you call
hi-lock-find-patterns directly, regardless of the value of this
variable.
Also, hi-lock-find-patterns does nothing if the current major
mode's symbol is a member of the list hi-lock-exclude-modes.

Window Fringes

 On graphical displays, each Emacs window normally has narrow
fringes on the left and right edges. The fringes are used to
display symbols that provide information about the text in the window.
You can type M-x fringe-mode to disable the fringes, or modify
their width. This command affects fringes in all frames; to modify
fringes on the selected frame only, use M-x set-fringe-style.
The most common use of the fringes is to indicate a continuation
line (see the section called “Continuation Lines”). When one line of text is split
into multiple screen lines, the left fringe shows a curving arrow for
each screen line except the first, indicating that “this is not the
real beginning”. The right fringe shows a curving arrow for each
screen line except the last, indicating that “this is not the real
end”. If the line's direction is right-to-left (see the section called “Bidirectional Editing”), the meanings of the curving arrows in the fringes are
swapped.
The fringes indicate line truncation with short horizontal arrows
meaning “there's more text on this line which is scrolled
horizontally out of view”. Clicking the mouse on one of the arrows
scrolls the display horizontally in the direction of the arrow.
The fringes can also indicate other things, such as buffer
boundaries (see the section called “Displaying Boundaries”), and where a program you
are debugging is executing (see the section called “Running Debuggers Under Emacs”).
 The fringe is also used for drawing the cursor, if the current line
is exactly as wide as the window and point is at the end of the line.
To disable this, change the variable
overflow-newline-into-fringe to nil; this causes Emacs
to continue or truncate lines that are exactly as wide as the window.

Displaying Boundaries

 On graphical displays, Emacs can indicate the buffer boundaries in
the fringes. If you enable this feature, the first line and the last
line are marked with angle images in the fringes. This can be
combined with up and down arrow images which say whether it is
possible to scroll the window.
The buffer-local variable indicate-buffer-boundaries controls
how the buffer boundaries and window scrolling is indicated in the
fringes. If the value is left or right, both angle and
arrow bitmaps are displayed in the left or right fringe, respectively.
If value is an alist, each element (indicator .
position) specifies the position of one of the indicators.
The indicator must be one of top, bottom,
up, down, or t which specifies the default
position for the indicators not present in the alist.
The position is one of left, right, or nil
which specifies not to show this indicator.
For example, ((top . left) (t . right)) places the top angle
bitmap in left fringe, the bottom angle bitmap in right fringe, and
both arrow bitmaps in right fringe. To show just the angle bitmaps in
the left fringe, but no arrow bitmaps, use ((top . left)
(bottom . left)).

Useless Whitespace

 It is easy to leave unnecessary spaces at the end of a line, or
empty lines at the end of a file, without realizing it. In most
cases, this trailing whitespace has no effect, but there are
special circumstances where it matters, and it can be a nuisance.
You can make trailing whitespace at the end of a line visible by
setting the buffer-local variable show-trailing-whitespace to
t. Then Emacs displays trailing whitespace, using the face
trailing-whitespace.
This feature does not apply when point is at the end of the line
containing the whitespace. Strictly speaking, that is “trailing
whitespace” nonetheless, but displaying it specially in that case
looks ugly while you are typing in new text. In this special case,
the location of point is enough to show you that the spaces are
present.
 Type M-x delete-trailing-whitespace to delete all trailing
whitespace within the buffer. If the region is active, it deletes all
trailing whitespace in the region instead.
 On graphical displays, Emacs can indicate unused lines at the end of
the window with a small image in the left fringe (see the section called “Window Fringes”).
The image appears for screen lines that do not correspond to any
buffer text, so blank lines at the end of the buffer stand out because
they lack this image. To enable this feature, set the buffer-local
variable indicate-empty-lines to a non-nil value. You
can enable or disable this feature for all new buffers by setting the
default value of this variable, e.g. (setq-default
indicate-empty-lines t).
 Whitespace mode is a buffer-local minor mode that lets you
“visualize” many kinds of whitespace in the buffer, by either
drawing the whitespace characters with a special face or displaying
them as special glyphs. To toggle this mode, type M-x
whitespace-mode. The kinds of whitespace visualized are determined
by the list variable whitespace-style. Here is a partial list
of possible elements (see the variable's documentation for the full
list):
	face
	Enable all visualizations which use special faces. This element has a
special meaning: if it is absent from the list, none of the other
visualizations take effect except space-mark, tab-mark,
and newline-mark.

	trailing
	Highlight trailing whitespace.

	tabs
	Highlight tab characters.

	spaces
	Highlight space and non-breaking space characters.

	lines
	Highlight lines longer than 80 lines. To change the column limit,
customize the variable whitespace-line-column.

	newline
	Highlight newlines.

	empty
	Highlight empty lines.

	space-mark
	Draw space and non-breaking characters with a special glyph.

	tab-mark
	Draw tab characters with a special glyph.

	newline-mark
	Draw newline characters with a special glyph.

Selective Display

 Emacs has the ability to hide lines indented more than a given
number of columns. You can use this to get an overview of a part of a
program.
To hide lines in the current buffer, type C-x $
(set-selective-display) with a numeric argument n. Then
lines with at least n columns of indentation disappear from the
screen. The only indication of their presence is that three dots
(‘…’) appear at the end of each visible line that is
followed by one or more hidden ones.
The commands C-n and C-p move across the hidden lines as
if they were not there.
The hidden lines are still present in the buffer, and most editing
commands see them as usual, so you may find point in the middle of the
hidden text. When this happens, the cursor appears at the end of the
previous line, after the three dots. If point is at the end of the
visible line, before the newline that ends it, the cursor appears before
the three dots.
To make all lines visible again, type C-x $ with no argument.
 If you set the variable selective-display-ellipses to
nil, the three dots do not appear at the end of a line that
precedes hidden lines. Then there is no visible indication of the
hidden lines. This variable becomes local automatically when set.
See also the section called “Outline Mode” for another way to hide part of
the text in a buffer.

Optional Mode Line Features

 The buffer percentage pos indicates the percentage of the
buffer above the top of the window. You can additionally display the
size of the buffer by typing M-x size-indication-mode to turn on
Size Indication mode. The size will be displayed immediately
following the buffer percentage like this:

POS of SIZE

Here SIZE is the human readable representation of the number of
characters in the buffer, which means that ‘k’ for 10^3, ‘M’
for 10^6, ‘G’ for 10^9, etc., are used to abbreviate.
 The current line number of point appears in the mode line when Line
Number mode is enabled. Use the command M-x line-number-mode to
turn this mode on and off; normally it is on. The line number appears
after the buffer percentage pos, with the letter ‘L’ to
indicate what it is.
 Similarly, you can display the current column number by turning on
Column number mode with M-x column-number-mode. The column
number is indicated by the letter ‘C’. However, when both of
these modes are enabled, the line and column numbers are displayed in
parentheses, the line number first, rather than with ‘L’ and
‘C’. For example: ‘(561,2)’. See the section called “Minor Modes”, for more
information about minor modes and about how to use these commands.
 If you have narrowed the buffer (see the section called “Narrowing”), the displayed
line number is relative to the accessible portion of the buffer.
Thus, it isn't suitable as an argument to goto-line. (Use
what-line command to see the line number relative to the whole
file.)
 If the buffer is very large (larger than the value of
line-number-display-limit), Emacs won't compute the line
number, because that would be too slow; therefore, the line number
won't appear on the mode-line. To remove this limit, set
line-number-display-limit to nil.
 Line-number computation can also be slow if the lines in the buffer
are too long. For this reason, Emacs doesn't display line numbers if
the average width, in characters, of lines near point is larger than
the value of line-number-display-limit-width. The default
value is 200 characters.
 Emacs can optionally display the time and system load in all mode
lines. To enable this feature, type M-x display-time or customize
the option display-time-mode. The information added to the mode
line looks like this:

hh:mmpm l.ll

Here hh and mm are the hour and minute, followed always by
‘am’ or ‘pm’. l.ll is the average number, collected
for the last few minutes, of processes in the whole system that were
either running or ready to run (i.e. were waiting for an available
processor). (Some fields may be missing if your operating system
cannot support them.) If you prefer time display in 24-hour format,
set the variable display-time-24hr-format to t.
 The word ‘Mail’ appears after the load level if there is mail
for you that you have not read yet. On graphical displays, you can
use an icon instead of ‘Mail’ by customizing
display-time-use-mail-icon; this may save some space on the
mode line. You can customize display-time-mail-face to make
the mail indicator prominent. Use display-time-mail-file to
specify the mail file to check, or set
display-time-mail-directory to specify the directory to check
for incoming mail (any nonempty regular file in the directory is
considered as “newly arrived mail”).
 When running Emacs on a laptop computer, you can display the battery
charge on the mode-line, by using the command
display-battery-mode or customizing the variable
display-battery-mode. The variable
battery-mode-line-format determines the way the battery charge
is displayed; the exact mode-line message depends on the operating
system, and it usually shows the current battery charge as a
percentage of the total charge.
 On graphical displays, the mode line is drawn as a 3D box. If you
don't like this effect, you can disable it by customizing the
mode-line face and setting its box attribute to
nil. See the section called “Customizing Faces”.
 By default, the mode line of nonselected windows is displayed in a
different face, called mode-line-inactive. Only the selected
window is displayed in the mode-line face. This helps show
which window is selected. When the minibuffer is selected, since
it has no mode line, the window from which you activated the minibuffer
has its mode line displayed using mode-line; as a result,
ordinary entry to the minibuffer does not change any mode lines.
 You can disable use of mode-line-inactive by setting variable
mode-line-in-non-selected-windows to nil; then all mode
lines are displayed in the mode-line face.
 You can customize the mode line display for each of the end-of-line
formats by setting each of the variables eol-mnemonic-unix,
eol-mnemonic-dos, eol-mnemonic-mac, and
eol-mnemonic-undecided to the strings you prefer.

How Text Is Displayed

 Most characters are printing characters: when they appear in a
buffer, they are displayed literally on the screen. Printing
characters include ASCII numbers, letters, and punctuation
characters, as well as many non-ASCII characters.
 The ASCII character set contains non-printing control
characters. Two of these are displayed specially: the newline
character (Unicode code point U+000A) is displayed by starting
a new line, while the tab character (U+0009) is displayed as a
space that extends to the next tab stop column (normally every 8
columns). The number of spaces per tab is controlled by the
buffer-local variable tab-width, which must have an integer
value between 1 and 1000, inclusive. Note that how the tab character
in the buffer is displayed has nothing to do with the definition of
TAB as a command.
Other ASCII control characters, whose codes are below
U+0020 (octal 40, decimal 32), are displayed as a caret
(‘^’) followed by the non-control version of the character, with
the escape-glyph face. For instance, the ‘control-A’
character, U+0001, is displayed as ‘^A’.
 The raw bytes with codes U+0080 (octal 200) through
U+009F (octal 237) are displayed as octal escape
sequences, with the escape-glyph face. For instance,
character code U+0098 (octal 230) is displayed as ‘\230’.
If you change the buffer-local variable ctl-arrow to
nil, the ASCII control characters are also displayed
as octal escape sequences instead of caret escape sequences.
 Some non-ASCII characters have the same appearance as an
ASCII space or hyphen (minus) character. Such characters
can cause problems if they are entered into a buffer without your
realization, e.g. by yanking; for instance, source code compilers
typically do not treat non-ASCII spaces as whitespace
characters. To deal with this problem, Emacs displays such characters
specially: it displays U+00A0 (no-break space) with the
nobreak-space face, and it displays U+00AD (soft
hyphen), U+2010 (hyphen), and U+2011 (non-breaking
hyphen) with the escape-glyph face. To disable this, change
the variable nobreak-char-display to nil. If you give
this variable a non-nil and non-t value, Emacs instead
displays such characters as a highlighted backslash followed by a
space or hyphen.
You can customize the way any particular character code is displayed
by means of a display table. See See section ``Display Tables'' in The Emacs Lisp Reference Manual.
 On graphical displays, some characters may have no glyphs in any of
the fonts available to Emacs. These glyphless characters are
normally displayed as boxes containing the hexadecimal character code.
Similarly, on text terminals, characters that cannot be displayed
using the terminal encoding (see the section called “Coding Systems for Terminal I/O”) are normally
displayed as question signs. You can control the display method by
customizing the variable glyphless-char-display-control.
See See section ``Glyphless Character Display'' in The Emacs Lisp Reference Manual, for details.

Displaying the Cursor

 On a text terminal, the cursor's appearance is controlled by the
terminal, largely out of the control of Emacs. Some terminals offer
two different cursors: a “visible” static cursor, and a “very
visible” blinking cursor. By default, Emacs uses the very visible
cursor, and switches to it when you start or resume Emacs. If the
variable visible-cursor is nil when Emacs starts or
resumes, it uses the normal cursor.
 On a graphical display, many more properties of the text cursor can
be altered. To customize its color, change the :background
attribute of the face named cursor (see the section called “Customizing Faces”). (The other attributes of this face have no effect;
the text shown under the cursor is drawn using the frame's background
color.) To change its shape, customize the buffer-local variable
cursor-type; possible values are box (the default),
hollow (a hollow box), bar (a vertical bar), (bar
. n) (a vertical bar n pixels wide), hbar (a
horizontal bar), (hbar . n) (a horizontal bar n
pixels tall), or nil (no cursor at all).
 To disable cursor blinking, change the variable
blink-cursor-mode to nil (see the section called “Easy Customization Interface”),
or add the line (blink-cursor-mode 0) to your init file.
Alternatively, you can change how the cursor looks when it “blinks
off” by customizing the list variable blink-cursor-alist.
Each element in the list should have the form (on-type
. off-type); this means that if the cursor is displayed as
on-type when it blinks on (where on-type is one of the
cursor types described above), then it is displayed as off-type
when it blinks off.
 Some characters, such as tab characters, are “extra wide”. When
the cursor is positioned over such a character, it is normally drawn
with the default character width. You can make the cursor stretch to
cover wide characters, by changing the variable
x-stretch-cursor to a non-nil value.
 The cursor normally appears in non-selected windows as a
non-blinking hollow box. (For a bar cursor, it instead appears as a
thinner bar.) To turn off cursors in non-selected windows, change the
variable cursor-in-non-selected-windows to nil.
 To make the cursor even more visible, you can use HL Line mode, a
minor mode that highlights the line containing point. Use M-x
hl-line-mode to enable or disable it in the current buffer. M-x
global-hl-line-mode enables or disables the same mode globally.

Line Truncation

 As an alternative to continuation (see the section called “Continuation Lines”),
Emacs can display long lines by truncation. This means that all
the characters that do not fit in the width of the screen or window do
not appear at all. On graphical displays, a small straight arrow in
the fringe indicates truncation at either end of the line. On text
terminals, this is indicated with ‘$’ signs in the leftmost
and/or rightmost columns.
 Horizontal scrolling automatically causes line truncation
(see the section called “Horizontal Scrolling”). You can explicitly enable line
truncation for a particular buffer with the command M-x
toggle-truncate-lines. This works by locally changing the variable
truncate-lines. If that variable is non-nil, long lines
are truncated; if it is nil, they are continued onto multiple
screen lines. Setting the variable truncate-lines in any way
makes it local to the current buffer; until that time, the default
value, which is normally nil, is in effect.
 If a split window becomes too narrow, Emacs may automatically enable
line truncation. See the section called “Splitting Windows”, for the variable
truncate-partial-width-windows which controls this.

Visual Line Mode

 Another alternative to ordinary line continuation is to use
word wrap. Here, each long logical line is divided into two or
more screen lines, like in ordinary line continuation. However, Emacs
attempts to wrap the line at word boundaries near the right window
edge. This makes the text easier to read, as wrapping does not occur
in the middle of words.
 Word wrap is enabled by Visual Line mode, an optional minor mode.
To turn on Visual Line mode in the current buffer, type M-x
visual-line-mode; repeating this command turns it off. You can also
turn on Visual Line mode using the menu bar: in the Options menu,
select the ‘Line Wrapping in this Buffer’ submenu, followed by
the ‘Word Wrap (Visual Line Mode)’ menu item. While Visual Line
mode is enabled, the mode-line shows the string ‘wrap’ in the
mode display. The command M-x global-visual-line-mode toggles
Visual Line mode in all buffers.
 In Visual Line mode, some editing commands work on screen lines
instead of logical lines: C-a (beginning-of-visual-line)
moves to the beginning of the screen line, C-e
(end-of-visual-line) moves to the end of the screen line, and
C-k (kill-visual-line) kills text to the end of the
screen line.
To move by logical lines, use the commands M-x
next-logical-line and M-x previous-logical-line. These move
point to the next logical line and the previous logical line
respectively, regardless of whether Visual Line mode is enabled. If
you use these commands frequently, it may be convenient to assign key
bindings to them. See the section called “Rebinding Keys in Your Init File”.
By default, word-wrapped lines do not display fringe indicators.
Visual Line mode is often used to edit files that contain many long
logical lines, so having a fringe indicator for each wrapped line
would be visually distracting. You can change this by customizing the
variable visual-line-fringe-indicators.

Customization of Display

This section describes variables that control miscellaneous aspects
of the appearance of the Emacs screen. Beginning users can skip it.
 If the variable visible-bell is non-nil, Emacs attempts
to make the whole screen blink when it would normally make an audible bell
sound. This variable has no effect if your terminal does not have a way
to make the screen blink.
 The variable echo-keystrokes controls the echoing of multi-character
keys; its value is the number of seconds of pause required to cause echoing
to start, or zero, meaning don't echo at all. The value takes effect when
there is something to echo. See the section called “The Echo Area”.
 On graphical displays, Emacs displays the mouse pointer as an
hourglass if Emacs is busy. To disable this feature, set the variable
display-hourglass to nil. The variable
hourglass-delay determines the number of seconds of “busy
time” before the hourglass is shown; the default is 1.
 If the mouse pointer lies inside an Emacs frame, Emacs makes it
invisible each time you type a character to insert text, to prevent it
from obscuring the text. (To be precise, the hiding occurs when you
type a “self-inserting” character. See the section called “Inserting Text”.) Moving
the mouse pointer makes it visible again. To disable this feature,
set the variable make-pointer-invisible to nil.
 On graphical displays, the variable underline-minimum-offset
determines the minimum distance between the baseline and underline, in
pixels, for underlined text. By default, the value is 1; increasing
it may improve the legibility of underlined text for certain fonts.
(However, Emacs will never draw the underline below the current line
area.) The variable x-underline-at-descent-line determines how
to draw underlined text. The default is nil, which means to
draw it at the baseline level of the font; if you change it to
nil, Emacs draws the underline at the same height as the font's
descent line.
 The variable overline-margin specifies the vertical position
of an overline above the text, including the height of the overline
itself, in pixels; the default is 2.
 On some text terminals, bold face and inverse video together result
in text that is hard to read. Call the function
tty-suppress-bold-inverse-default-colors with a non-nil
argument to suppress the effect of bold-face in this case.

Chapter 15. Searching and Replacement

 Like other editors, Emacs has commands to search for occurrences of
a string. Emacs also has commands to replace occurrences of a string
with a different string. There are also commands that do the same
thing, but search for patterns instead of fixed strings.
You can also search multiple files under the control of a tags table
(see the section called “Searching and Replacing with Tags Tables”) or through the Dired A command
(see the section called “Operating on Files”), or ask the grep program to do it
(see the section called “Searching with Grep under Emacs”).
Incremental Search

 The principal search command in Emacs is incremental: it
begins searching as soon as you type the first character of the search
string. As you type in the search string, Emacs shows you where the
string (as you have typed it so far) would be found. When you have
typed enough characters to identify the place you want, you can stop.
Depending on what you plan to do next, you may or may not need to
terminate the search explicitly with RET.
	C-s
	Incremental search forward (isearch-forward).

	C-r
	Incremental search backward (isearch-backward).

Basics of Incremental Search

	C-s
	Begin incremental search (isearch-forward).

	C-r
	Begin reverse incremental search (isearch-backward).

 C-s (isearch-forward) starts a forward incremental
search. It reads characters from the keyboard, and moves point just
past the end of the next occurrence of those characters in the buffer.
For instance, if you type C-s and then F, that puts the
cursor after the first ‘F’ that occurs in the buffer after the
starting point. Then if you then type O, the cursor moves to
just after the first ‘FO’; the ‘F’ in that ‘FO’ might
not be the first ‘F’ previously found. After another O,
the cursor moves to just after the first ‘FOO’.
 At each step, Emacs highlights the current match—the buffer
text that matches the search string—using the isearch face
(see the section called “Text Faces”). The current search string is also displayed in the
echo area.
If you make a mistake typing the search string, type DEL.
Each DEL cancels the last character of the search string.
When you are satisfied with the place you have reached, type
RET. This stops searching, leaving the cursor where the search
brought it. Also, any command not specially meaningful in searches
stops the searching and is then executed. Thus, typing C-a
exits the search and then moves to the beginning of the line.
RET is necessary only if the next command you want to type is a
printing character, DEL, RET, or another character that is
special within searches (C-q, C-w, C-r, C-s,
C-y, M-y, M-r, M-c, M-e, and some others
described below).
As a special exception, entering RET when the search string is
empty launches nonincremental search (see the section called “Nonincremental Search”).
When you exit the incremental search, it adds the original value of
point to the mark ring, without activating the mark; you can thus use
C-u C-SPC to return to where you were before beginning the
search. See the section called “The Mark Ring”. It only does this if the mark was not
already active.
 To search backwards, use C-r (isearch-backward) instead
of C-s to start the search. A backward search finds matches
that end before the starting point, just as a forward search finds
matches that begin after it.

Repeating Incremental Search

Suppose you search forward for ‘FOO’ and find a match, but not
the one you expected to find: the ‘FOO’ you were aiming for
occurs later in the buffer. In this event, type another C-s to
move to the next occurrence of the search string. You can repeat this
any number of times. If you overshoot, you can cancel some C-s
characters with DEL. Similarly, each C-r in a backward
incremental search repeats the backward search.
 If you pause for a little while during incremental search, Emacs
highlights all the other possible matches for the search string that
are present on the screen. This helps you anticipate where you can
get to by typing C-s or C-r to repeat the search. The
other matches are highlighted differently from the current match,
using the customizable face lazy-highlight (see the section called “Text Faces”). If
you don't like this feature, you can disable it by setting
isearch-lazy-highlight to nil.
After exiting a search, you can search for the same string again by
typing just C-s C-s. The first C-s is the key that
invokes incremental search, and the second C-s means “search
again”. Similarly, C-r C-r searches backward for the last
search string. In determining the last search string, it doesn't
matter whether the string was searched for with C-s or
C-r.
If you are searching forward but you realize you were looking for
something before the starting point, type C-r to switch to a
backward search, leaving the search string unchanged. Similarly,
C-s in a backward search switches to a forward search.
If a search is failing and you ask to repeat it by typing another
C-s, it starts again from the beginning of the buffer.
Repeating a failing reverse search with C-r starts again from
the end. This is called wrapping around, and ‘Wrapped’
appears in the search prompt once this has happened. If you keep on
going past the original starting point of the search, it changes to
‘Overwrapped’, which means that you are revisiting matches that
you have already seen.
 To reuse earlier search strings, use the search ring. The
commands M-p and M-n move through the ring to pick a
search string to reuse. These commands leave the selected search ring
element in the minibuffer, where you can edit it.
 To edit the current search string in the minibuffer without
replacing it with items from the search ring, type M-e. Type
C-s or C-r to finish editing the string and search for it.

Errors in Incremental Search

If your string is not found at all, the echo area says ‘Failing
I-Search’, and the cursor moves past the place where Emacs found as
much of your string as it could. Thus, if you search for ‘FOOT’,
and there is no ‘FOOT’, you might see the cursor after the
‘FOO’ in ‘FOOL’. In the echo area, the part of the search
string that failed to match is highlighted using the face
isearch-fail.
At this point, there are several things you can do. If your string
was mistyped, you can use DEL to erase some of it and correct
it. If you like the place you have found, you can type RET to
remain there. Or you can type C-g, which removes from the
search string the characters that could not be found (the ‘T’ in
‘FOOT’), leaving those that were found (the ‘FOO’ in
‘FOOT’). A second C-g at that point cancels the search
entirely, returning point to where it was when the search started.
 The quit command, C-g, does special things during searches;
just what it does depends on the status of the search. If the search
has found what you specified and is waiting for input, C-g
cancels the entire search, moving the cursor back to where you started
the search. If C-g is typed when there are characters in the
search string that have not been found—because Emacs is still
searching for them, or because it has failed to find them—then the
search string characters which have not been found are discarded from
the search string. With them gone, the search is now successful and
waiting for more input, so a second C-g will cancel the entire
search.

Special Input for Incremental Search

Some of the characters you type during incremental search have
special effects.
If the search string you entered contains only lower-case letters,
the search is case-insensitive; as long as an upper-case letter exists
in the search string, the search becomes case-sensitive. If you
delete the upper-case character from the search string, it ceases to
have this effect. See the section called “Searching and Case”.
To search for a newline character, type C-j.
To search for other control characters, such as control-S,
quote it by typing C-q first (see the section called “Inserting Text”). To
search for non-ASCII characters, you can either use
C-q and enter its octal code, or use an input method
(see the section called “Input Methods”). If an input method is enabled in the current
buffer when you start the search, you can use it in the search string
also. While typing the search string, you can toggle the input method
with the command C-\ (isearch-toggle-input-method). You
can also turn on a non-default input method with C-^
(isearch-toggle-specified-input-method), which prompts for the
name of the input method. When an input method is active during
incremental search, the search prompt includes the input method
mnemonic, like this:

I-search [im]:

where im is the mnemonic of the active input method. Any input
method you enable during incremental search remains enabled in the
current buffer afterwards.
 Typing M-% in incremental search invokes query-replace
or query-replace-regexp (depending on search mode) with the
current search string used as the string to replace. See the section called “Query Replace”.
 Typing M-TAB in incremental search invokes
isearch-complete, which attempts to complete the search string
using the search ring as a list of completion alternatives.
See the section called “Completion”. In many operating systems, the M-TAB
key sequence is captured by the window manager; you then need to
rebind isearch-complete to another key sequence if you want to
use it (see the section called “Changing Key Bindings Interactively”).
 When incremental search is active, you can type C-h C-h to
access interactive help options, including a list of special key
bindings. These key bindings are part of the keymap
isearch-mode-map (see the section called “Keymaps”).

Isearch Yanking

 Within incremental search, C-y (isearch-yank-kill)
appends the current kill to the search string. M-y
(isearch-yank-pop), if called after C-y, replaces that
appended text with an earlier kill, similar to the usual M-y
(yank-pop) command (see the section called “Yanking”). Mouse-2 appends
the current X selection (see the section called “Cut and Paste with Other Window Applications”).
 C-w (isearch-yank-word-or-char) appends the next
character or word at point to the search string. This is an easy way
to search for another occurrence of the text at point. (The decision
of whether to copy a character or a word is heuristic.)
 Similarly, M-s C-e (isearch-yank-line) appends the rest
of the current line to the search string. If point is already at the
end of a line, it appends the next line.
If the search is currently case-insensitive, both C-w and
M-s C-e convert the text they copy to lower case, so that the
search remains case-insensitive.
 C-M-w (isearch-del-char) deletes the last character
from the search string, and C-M-y (isearch-yank-char)
appends the character after point to the search string. An
alternative method to add the character after point is to enter the
minibuffer with M-e (see the section called “Repeating Incremental Search”) and type C-f
at the end of the search string in the minibuffer.

Scrolling During Incremental Search

 Normally, scrolling commands exit incremental search. If you change
the variable isearch-allow-scroll to a non-nil value,
that enables the use of the scroll-bar, as well as keyboard scrolling
commands like C-v, M-v, and C-l (see the section called “Scrolling”).
This applies only to calling these commands via their bound key
sequences—typing M-x will still exit the search. You can give
prefix arguments to these commands in the usual way. This feature
won't let you scroll the current match out of visibility, however.
The isearch-allow-scroll feature also affects some other
commands, such as C-x 2 (split-window-below) and C-x
^ (enlarge-window), which don't exactly scroll but do affect
where the text appears on the screen. It applies to any command whose
name has a non-nil isearch-scroll property. So you can
control which commands are affected by changing these properties.
For example, to make C-h l usable within an incremental search
in all future Emacs sessions, use C-h c to find what command it
runs (see the section called “Documentation for a Key”), which is view-lossage. Then you can
put the following line in your init file (see the section called “The Emacs Initialization File”):

(put 'view-lossage 'isearch-scroll t)

This feature can be applied to any command that doesn't permanently
change point, the buffer contents, the match data, the current buffer,
or the selected window and frame. The command must not itself attempt
an incremental search.

Searching the Minibuffer

If you start an incremental search while the minibuffer is active,
Emacs searches the contents of the minibuffer. Unlike searching an
ordinary buffer, the search string is not shown in the echo area,
because that is used to display the minibuffer.
If an incremental search fails in the minibuffer, it tries searching
the minibuffer history. See the section called “Minibuffer History”. You can visualize
the minibuffer and its history as a series of “pages”, with the
earliest history element on the first page and the current minibuffer
on the last page. A forward search, C-s, searches forward to
later pages; a reverse search, C-r, searches backwards to
earlier pages. Like in ordinary buffer search, a failing search can
wrap around, going from the last page to the first page or vice versa.
When the current match is on a history element, that history element
is pulled into the minibuffer. If you exit the incremental search
normally (e.g. by typing RET), it remains in the minibuffer
afterwards. Canceling the search, with C-g, restores the
contents of the minibuffer when you began the search.

Nonincremental Search

 Emacs also has conventional nonincremental search commands, which require
you to type the entire search string before searching begins.
	C-s RET string RET
	Search for string.

	C-r RET string RET
	Search backward for string.

To start a nonincremental search, first type C-s RET.
This enters the minibuffer to read the search string; terminate the
string with RET, and then the search takes place. If the string
is not found, the search command signals an error.
 When you type C-s RET, the C-s invokes incremental
search as usual. That command is specially programmed to invoke the
command for nonincremental search, search-forward, if the
string you specify is empty. (Such an empty argument would otherwise
be useless.) C-r RET does likewise, invoking the command
search-backward.

Word Search

 A word search finds a sequence of words without regard to the
type of punctuation between them. For instance, if you enter a search
string that consists of two words separated by a single space, the
search matches any sequence of those two words separated by one or
more spaces, newlines, or other punctuation characters. This is
particularly useful for searching text documents, because you don't
have to worry whether the words you are looking for are separated by
newlines or spaces.
	M-s w
	If incremental search is active, toggle word search mode
(isearch-toggle-word); otherwise, begin an incremental forward
word search (isearch-forward-word).

	M-s w RET words RET
	Search for words, using a forward nonincremental word search.

	M-s w C-r RET words RET
	Search backward for words, using a nonincremental word search.

 To begin a forward incremental word search, type M-s w. If
incremental search is not already active, this runs the command
isearch-forward-word. If incremental search is already active
(whether a forward or backward search), M-s w switches to a word
search while keeping the direction of the search and the current
search string unchanged. You can toggle word search back off by
typing M-s w again.
 To begin a nonincremental word search, type M-s w RET
for a forward search, or M-s w C-r RET for a backward search.
These run the commands word-search-forward and
word-search-backward respectively.
Incremental and nonincremental word searches differ slightly in the
way they find a match. In a nonincremental word search, the last word
in the search string must exactly match a whole word. In an
incremental word search, the matching is more lax: the last word in
the search string can match part of a word, so that the matching
proceeds incrementally as you type. This additional laxity does not
apply to the lazy highlight, which always matches whole words.

Regular Expression Search

 A regular expression (or regexp for short) is a pattern
that denotes a class of alternative strings to match. Emacs
provides both incremental and nonincremental ways to search for a
match for a regexp. The syntax of regular expressions is explained in
the next section.
	C-M-s
	Begin incremental regexp search (isearch-forward-regexp).

	C-M-r
	Begin reverse incremental regexp search (isearch-backward-regexp).

 Incremental search for a regexp is done by typing C-M-s
(isearch-forward-regexp), by invoking C-s with a
prefix argument (whose value does not matter), or by typing M-r
within a forward incremental search. This command reads a
search string incrementally just like C-s, but it treats the
search string as a regexp rather than looking for an exact match
against the text in the buffer. Each time you add text to the search
string, you make the regexp longer, and the new regexp is searched
for. To search backward for a regexp, use C-M-r
(isearch-backward-regexp), C-r with a prefix argument,
or M-r within a backward incremental search.
All of the special key sequences in an ordinary incremental search
do similar things in an incremental regexp search. For instance,
typing C-s immediately after starting the search retrieves the
last incremental search regexp used and searches forward for it.
Incremental regexp and non-regexp searches have independent defaults.
They also have separate search rings, which you can access with
M-p and M-n.
 If you type SPC in incremental regexp search, it matches any
sequence of whitespace characters, including newlines. If you want to
match just a space, type C-q SPC. You can control what a
bare space matches by setting the variable
search-whitespace-regexp to the desired regexp.
In some cases, adding characters to the regexp in an incremental
regexp search can make the cursor move back and start again. For
example, if you have searched for ‘foo’ and you add ‘\|bar’,
the cursor backs up in case the first ‘bar’ precedes the first
‘foo’. See the section called “Syntax of Regular Expressions”.
Forward and backward regexp search are not symmetrical, because
regexp matching in Emacs always operates forward, starting with the
beginning of the regexp. Thus, forward regexp search scans forward,
trying a forward match at each possible starting position. Backward
regexp search scans backward, trying a forward match at each possible
starting position. These search methods are not mirror images.
 Nonincremental search for a regexp is done with the commands
re-search-forward and re-search-backward. You can
invoke these with M-x, or by way of incremental regexp search
with C-M-s RET and C-M-r RET.
If you use the incremental regexp search commands with a prefix
argument, they perform ordinary string search, like
isearch-forward and isearch-backward. See the section called “Incremental Search”.

Syntax of Regular Expressions

 This manual describes regular expression features that users
typically use. See See section ``Regular Expressions'' in The Emacs Lisp Reference Manual, for additional features used mainly in Lisp
programs.
Regular expressions have a syntax in which a few characters are
special constructs and the rest are ordinary. An ordinary
character matches that same character and nothing else. The special
characters are ‘$^.*+?[\’. The character ‘]’ is special if
it ends a character alternative (see later). The character ‘-’
is special inside a character alternative. Any other character
appearing in a regular expression is ordinary, unless a ‘\’
precedes it. (When you use regular expressions in a Lisp program,
each ‘\’ must be doubled, see the example near the end of this
section.)
For example, ‘f’ is not a special character, so it is ordinary, and
therefore ‘f’ is a regular expression that matches the string
‘f’ and no other string. (It does not match the string
‘ff’.) Likewise, ‘o’ is a regular expression that matches
only ‘o’. (When case distinctions are being ignored, these regexps
also match ‘F’ and ‘O’, but we consider this a generalization
of “the same string”, rather than an exception.)
Any two regular expressions a and b can be concatenated.
The result is a regular expression which matches a string if a
matches some amount of the beginning of that string and b
matches the rest of the string. For example, concatenating the
regular expressions ‘f’ and ‘o’ gives the regular expression
‘fo’, which matches only the string ‘fo’. Still trivial.
To do something nontrivial, you need to use one of the special
characters. Here is a list of them.
	. (Period)
	is a special character that matches any single character except a
newline. For example, the regular expressions ‘a.b’ matches any
three-character string that begins with ‘a’ and ends with
‘b’.

	*
	is not a construct by itself; it is a postfix operator that means to
match the preceding regular expression repetitively any number of
times, as many times as possible. Thus, ‘o*’ matches any number
of ‘o’s, including no ‘o’s.
‘*’ always applies to the smallest possible preceding
expression. Thus, ‘fo*’ has a repeating ‘o’, not a repeating
‘fo’. It matches ‘f’, ‘fo’, ‘foo’, and so on.
The matcher processes a ‘*’ construct by matching, immediately,
as many repetitions as can be found. Then it continues with the rest
of the pattern. If that fails, backtracking occurs, discarding some
of the matches of the ‘*’-modified construct in case that makes
it possible to match the rest of the pattern. For example, in matching
‘ca*ar’ against the string ‘caaar’, the ‘a*’ first
tries to match all three ‘a’s; but the rest of the pattern is
‘ar’ and there is only ‘r’ left to match, so this try fails.
The next alternative is for ‘a*’ to match only two ‘a’s.
With this choice, the rest of the regexp matches successfully.

	+
	is a postfix operator, similar to ‘*’ except that it must match
the preceding expression at least once. Thus, ‘ca+r’ matches the
strings ‘car’ and ‘caaaar’ but not the string ‘cr’,
whereas ‘ca*r’ matches all three strings.

	?
	is a postfix operator, similar to ‘*’ except that it can match
the preceding expression either once or not at all. Thus, ‘ca?r’
matches ‘car’ or ‘cr’, and nothing else.

	*?, +?, ??
	are non-greedy variants of the operators above. The normal
operators ‘*’, ‘+’, ‘?’ match as much as they can, as
long as the overall regexp can still match. With a following
‘?’, they will match as little as possible.
Thus, both ‘ab*’ and ‘ab*?’ can match the string ‘a’
and the string ‘abbbb’; but if you try to match them both against
the text ‘abbb’, ‘ab*’ will match it all (the longest valid
match), while ‘ab*?’ will match just ‘a’ (the shortest
valid match).
Non-greedy operators match the shortest possible string starting at a
given starting point; in a forward search, though, the earliest
possible starting point for match is always the one chosen. Thus, if
you search for ‘a.*?$’ against the text ‘abbab’ followed by
a newline, it matches the whole string. Since it can match
starting at the first ‘a’, it does.

	\{n\}
	is a postfix operator specifying n repetitions—that is, the
preceding regular expression must match exactly n times in a
row. For example, ‘x\{4\}’ matches the string ‘xxxx’ and
nothing else.

	\{n,m\}
	is a postfix operator specifying between n and m
repetitions—that is, the preceding regular expression must match at
least n times, but no more than m times. If m is
omitted, then there is no upper limit, but the preceding regular
expression must match at least n times. ‘\{0,1\}’ is
equivalent to ‘?’. ‘\{0,\}’ is equivalent to
‘*’. ‘\{1,\}’ is equivalent to ‘+’.

	[…]
	is a character set, beginning with ‘[’ and terminated by
‘]’.
In the simplest case, the characters between the two brackets are what
this set can match. Thus, ‘[ad]’ matches either one ‘a’ or
one ‘d’, and ‘[ad]*’ matches any string composed of just
‘a’s and ‘d’s (including the empty string). It follows that
‘c[ad]*r’ matches ‘cr’, ‘car’, ‘cdr’,
‘caddaar’, etc.
You can also include character ranges in a character set, by writing the
starting and ending characters with a ‘-’ between them. Thus,
‘[a-z]’ matches any lower-case ASCII letter. Ranges may be
intermixed freely with individual characters, as in ‘[a-z$%.]’,
which matches any lower-case ASCII letter or ‘$’, ‘%’ or
period.
You can also include certain special character classes in a
character set. A ‘[:’ and balancing ‘:]’ enclose a
character class inside a character alternative. For instance,
‘[[:alnum:]]’ matches any letter or digit. See See section ``Char Classes'' in The Emacs Lisp Reference Manual, for a list of character
classes.
To include a ‘]’ in a character set, you must make it the first
character. For example, ‘[]a]’ matches ‘]’ or ‘a’. To
include a ‘-’, write ‘-’ as the first or last character of the
set, or put it after a range. Thus, ‘[]-]’ matches both ‘]’
and ‘-’.
To include ‘^’ in a set, put it anywhere but at the beginning of
the set. (At the beginning, it complements the set—see below.)
When you use a range in case-insensitive search, you should write both
ends of the range in upper case, or both in lower case, or both should
be non-letters. The behavior of a mixed-case range such as ‘A-z’
is somewhat ill-defined, and it may change in future Emacs versions.

	[^ …]
	
‘
 [^’ begins a complemented character set, which matches any
character except the ones specified. Thus, ‘[^a-z0-9A-Z]’ matches
all characters except ASCII letters and digits.
‘^’ is not special in a character set unless it is the first
character. The character following the ‘^’ is treated as if it
were first (in other words, ‘-’ and ‘]’ are not special there).
A complemented character set can match a newline, unless newline is
mentioned as one of the characters not to match. This is in contrast to
the handling of regexps in programs such as grep.

	^
	is a special character that matches the empty string, but only at the
beginning of a line in the text being matched. Otherwise it fails to
match anything. Thus, ‘^foo’ matches a ‘foo’ that occurs at
the beginning of a line.
For historical compatibility reasons, ‘^’ can be used with this
meaning only at the beginning of the regular expression, or after
‘\(’ or ‘\|’.

	$
	is similar to ‘^’ but matches only at the end of a line. Thus,
‘x+$’ matches a string of one ‘x’ or more at the end of a line.
For historical compatibility reasons, ‘$’ can be used with this
meaning only at the end of the regular expression, or before ‘\)’
or ‘\|’.

	\
	has two functions: it quotes the special characters (including
‘\’), and it introduces additional special constructs.
Because ‘\’ quotes special characters, ‘\$’ is a regular
expression that matches only ‘$’, and ‘\[’ is a regular
expression that matches only ‘[’, and so on.
See the following section for the special constructs that begin
with ‘\’.

Note: for historical compatibility, special characters are treated as
ordinary ones if they are in contexts where their special meanings make no
sense. For example, ‘*foo’ treats ‘*’ as ordinary since there is
no preceding expression on which the ‘*’ can act. It is poor practice
to depend on this behavior; it is better to quote the special character anyway,
regardless of where it appears.
As a ‘\’ is not special inside a character alternative, it can
never remove the special meaning of ‘-’ or ‘]’. So you
should not quote these characters when they have no special meaning
either. This would not clarify anything, since backslashes can
legitimately precede these characters where they have special
meaning, as in ‘[^\]’ ("[^\\]" for Lisp string syntax),
which matches any single character except a backslash.

Backslash in Regular Expressions

For the most part, ‘\’ followed by any character matches only
that character. However, there are several exceptions: two-character
sequences starting with ‘\’ that have special meanings. The
second character in the sequence is always an ordinary character when
used on its own. Here is a table of ‘\’ constructs.
	\|
	specifies an alternative. Two regular expressions a and b
with ‘\|’ in between form an expression that matches some text if
either a matches it or b matches it. It works by trying to
match a, and if that fails, by trying to match b.
Thus, ‘foo\|bar’ matches either ‘foo’ or ‘bar’
but no other string.
‘\|’ applies to the largest possible surrounding expressions. Only a
surrounding ‘\(… \)’ grouping can limit the grouping power of
‘\|’.
Full backtracking capability exists to handle multiple uses of ‘\|’.

	\(… \)
	is a grouping construct that serves three purposes:
	To enclose a set of ‘\|’ alternatives for other operations.
Thus, ‘\(foo\|bar\)x’ matches either ‘foox’ or ‘barx’.

	To enclose a complicated expression for the postfix operators ‘*’,
‘+’ and ‘?’ to operate on. Thus, ‘ba\(na\)*’ matches
‘bananana’, etc., with any (zero or more) number of ‘na’
strings.

	To record a matched substring for future reference.

This last application is not a consequence of the idea of a
parenthetical grouping; it is a separate feature that is assigned as a
second meaning to the same ‘\(… \)’ construct. In practice
there is usually no conflict between the two meanings; when there is
a conflict, you can use a “shy” group.

	\(?: … \)
	specifies a “shy” group that does not record the matched substring;
you can't refer back to it with ‘\d’. This is useful
in mechanically combining regular expressions, so that you
can add groups for syntactic purposes without interfering with
the numbering of the groups that are meant to be referred to.

	\d
	matches the same text that matched the dth occurrence of a
‘\(… \)’ construct. This is called a back
reference.
After the end of a ‘\(… \)’ construct, the matcher remembers
the beginning and end of the text matched by that construct. Then,
later on in the regular expression, you can use ‘\’ followed by the
digit d to mean “match the same text matched the dth time
by the ‘\(… \)’ construct”.
The strings matching the first nine ‘\(… \)’ constructs
appearing in a regular expression are assigned numbers 1 through 9 in
the order that the open-parentheses appear in the regular expression.
So you can use ‘\1’ through ‘\9’ to refer to the text matched
by the corresponding ‘\(… \)’ constructs.
For example, ‘\(.*\)\1’ matches any newline-free string that is
composed of two identical halves. The ‘\(.*\)’ matches the first
half, which may be anything, but the ‘\1’ that follows must match
the same exact text.
If a particular ‘\(… \)’ construct matches more than once
(which can easily happen if it is followed by ‘*’), only the last
match is recorded.

	\`
	matches the empty string, but only at the beginning of the string or
buffer (or its accessible portion) being matched against.

	\'
	matches the empty string, but only at the end of the string or buffer
(or its accessible portion) being matched against.

	\=
	matches the empty string, but only at point.

	\b
	matches the empty string, but only at the beginning or
end of a word. Thus, ‘\bfoo\b’ matches any occurrence of
‘foo’ as a separate word. ‘\bballs?\b’ matches
‘ball’ or ‘balls’ as a separate word.
‘\b’ matches at the beginning or end of the buffer
regardless of what text appears next to it.

	\B
	matches the empty string, but not at the beginning or
end of a word.

	\<
	matches the empty string, but only at the beginning of a word.
‘\<’ matches at the beginning of the buffer only if a
word-constituent character follows.

	\>
	matches the empty string, but only at the end of a word. ‘\>’
matches at the end of the buffer only if the contents end with a
word-constituent character.

	\w
	matches any word-constituent character. The syntax table determines
which characters these are. See See section ``Syntax Tables'' in The Emacs Lisp Reference Manual.

	\W
	matches any character that is not a word-constituent.

	_<
	matches the empty string, but only at the beginning of a symbol.
A symbol is a sequence of one or more symbol-constituent characters.
A symbol-constituent character is a character whose syntax is either
‘w’ or ‘_’. ‘_<’ matches at the beginning of the
buffer only if a symbol-constituent character follows.

	_>
	matches the empty string, but only at the end of a symbol. ‘_>’
matches at the end of the buffer only if the contents end with a
symbol-constituent character.

	\sc
	matches any character whose syntax is c. Here c is a
character that designates a particular syntax class: thus, ‘w’
for word constituent, ‘-’ or ‘ ’ for whitespace, ‘.’
for ordinary punctuation, etc. See See section ``Syntax Tables'' in The Emacs Lisp Reference Manual.

	\Sc
	matches any character whose syntax is not c.

	\cc
	matches any character that belongs to the category c. For
example, ‘\cc’ matches Chinese characters, ‘\cg’ matches
Greek characters, etc. For the description of the known categories,
type M-x describe-categories RET.

	\Cc
	matches any character that does not belong to category
c.

The constructs that pertain to words and syntax are controlled by
the setting of the syntax table. See See section ``Syntax Tables'' in The Emacs Lisp Reference Manual.

Regular Expression Example

Here is an example of a regexp—similar to the regexp that Emacs
uses, by default, to recognize the end of a sentence, not including
the following space (i.e., the variable sentence-end-base):

[.?!][]\"')}]*

This contains two parts in succession: a character set matching
period, ‘?’, or ‘!’, and a character set matching
close-brackets, quotes, or parentheses, repeated zero or more times.

Searching and Case

Searches in Emacs normally ignore the case of the text they are
searching through, if you specify the text in lower case. Thus, if
you specify searching for ‘foo’, then ‘Foo’ and ‘foo’
also match. Regexps, and in particular character sets, behave
likewise: ‘[ab]’ matches ‘a’ or ‘A’ or ‘b’ or
‘B’.
An upper-case letter anywhere in the incremental search string makes
the search case-sensitive. Thus, searching for ‘Foo’ does not find
‘foo’ or ‘FOO’. This applies to regular expression search as
well as to string search. The effect ceases if you delete the
upper-case letter from the search string.
Typing M-c within an incremental search toggles the case
sensitivity of that search. The effect does not extend beyond the
current incremental search to the next one, but it does override the
effect of adding or removing an upper-case letter in the current
search.
 If you set the variable case-fold-search to nil, then
all letters must match exactly, including case. This is a per-buffer
variable; altering the variable normally affects only the current buffer,
unless you change its default value. See the section called “Local Variables”.
This variable applies to nonincremental searches also, including those
performed by the replace commands (see the section called “Replacement Commands”) and the minibuffer
history matching commands (see the section called “Minibuffer History”).
Several related variables control case-sensitivity of searching and
matching for specific commands or activities. For instance,
tags-case-fold-search controls case sensitivity for
find-tag. To find these variables, do M-x
apropos-variable RET case-fold-search RET.

Replacement Commands

 Emacs provides several commands for performing search-and-replace
operations. In addition to the simple M-x replace-string
command, there is M-% (query-replace), which presents
each occurrence of the pattern and asks you whether to replace it.
The replace commands normally operate on the text from point to the
end of the buffer. When the region is active, they operate on it
instead (see Chapter 11, The Mark and the Region). The basic replace commands replace one
search string (or regexp) with one replacement string. It
is possible to perform several replacements in parallel, using the
command expand-region-abbrevs (see the section called “Controlling Abbrev Expansion”).
Unconditional Replacement

	M-x replace-string RET string RET newstring RET
	Replace every occurrence of string with newstring.

To replace every instance of ‘foo’ after point with ‘bar’,
use the command M-x replace-string with the two arguments
‘foo’ and ‘bar’. Replacement happens only in the text after
point, so if you want to cover the whole buffer you must go to the
beginning first. All occurrences up to the end of the buffer are
replaced; to limit replacement to part of the buffer, activate the
region around that part. When the region is active, replacement is
limited to the region (see Chapter 11, The Mark and the Region).
When replace-string exits, it leaves point at the last
occurrence replaced. It adds the prior position of point (where the
replace-string command was issued) to the mark ring, without
activating the mark; use C-u C-SPC to move back there.
See the section called “The Mark Ring”.
A prefix argument restricts replacement to matches that are
surrounded by word boundaries.
See the section called “Replace Commands and Case”, for details about case-sensitivity in
replace commands.

Regexp Replacement

 The M-x replace-string command replaces exact matches for a
single string. The similar command M-x replace-regexp replaces
any match for a specified pattern.
	M-x replace-regexp RET regexp RET newstring RET
	Replace every match for regexp with newstring.

 In replace-regexp, the newstring need not be constant:
it can refer to all or part of what is matched by the regexp.
‘\&’ in newstring stands for the entire match being
replaced. ‘\d’ in newstring, where d is a
digit, stands for whatever matched the dth parenthesized
grouping in regexp. (This is called a “back reference”.)
‘\#’ refers to the count of replacements already made in this
command, as a decimal number. In the first replacement, ‘\#’
stands for ‘0’; in the second, for ‘1’; and so on. For
example,

M-x replace-regexp RET c[ad]+r RET \&-safe RET

replaces (for example) ‘cadr’ with ‘cadr-safe’ and ‘cddr’
with ‘cddr-safe’.

M-x replace-regexp RET \(c[ad]+r\)-safe RET \1 RET

performs the inverse transformation. To include a ‘\’ in the
text to replace with, you must enter ‘\\’.
If you want to enter part of the replacement string by hand each
time, use ‘\?’ in the replacement string. Each replacement will
ask you to edit the replacement string in the minibuffer, putting
point where the ‘\?’ was.
The remainder of this subsection is intended for specialized tasks
and requires knowledge of Lisp. Most readers can skip it.
You can use Lisp expressions to calculate parts of the
replacement string. To do this, write ‘\,’ followed by the
expression in the replacement string. Each replacement calculates the
value of the expression and converts it to text without quoting (if
it's a string, this means using the string's contents), and uses it in
the replacement string in place of the expression itself. If the
expression is a symbol, one space in the replacement string after the
symbol name goes with the symbol name, so the value replaces them
both.
Inside such an expression, you can use some special sequences.
‘\&’ and ‘\n’ refer here, as usual, to the entire
match as a string, and to a submatch as a string. n may be
multiple digits, and the value of ‘\n’ is nil if
subexpression n did not match. You can also use ‘\#&’ and
‘\#n’ to refer to those matches as numbers (this is valid
when the match or submatch has the form of a numeral). ‘\#’ here
too stands for the number of already-completed replacements.
Repeating our example to exchange ‘x’ and ‘y’, we can thus
do it also this way:

M-x replace-regexp RET \(x\)\|y RET
\,(if \1 "y" "x") RET

For computing replacement strings for ‘\,’, the format
function is often useful (see See section ``Formatting Strings'' in The Emacs Lisp Reference Manual). For example, to add consecutively numbered
strings like ‘ABC00042’ to columns 73 to 80 (unless they are
already occupied), you can use

M-x replace-regexp RET ^.\{0,72\}$ RET
\,(format "%-72sABC%05d" \& \#) RET

Replace Commands and Case

If the first argument of a replace command is all lower case, the
command ignores case while searching for occurrences to
replace—provided case-fold-search is non-nil. If
case-fold-search is set to nil, case is always significant
in all searches.
 In addition, when the newstring argument is all or partly lower
case, replacement commands try to preserve the case pattern of each
occurrence. Thus, the command

M-x replace-string RET foo RET bar RET

replaces a lower case ‘foo’ with a lower case ‘bar’, an
all-caps ‘FOO’ with ‘BAR’, and a capitalized ‘Foo’ with
‘Bar’. (These three alternatives—lower case, all caps, and
capitalized, are the only ones that replace-string can
distinguish.)
If upper-case letters are used in the replacement string, they remain
upper case every time that text is inserted. If upper-case letters are
used in the first argument, the second argument is always substituted
exactly as given, with no case conversion. Likewise, if either
case-replace or case-fold-search is set to nil,
replacement is done without case conversion.

Query Replace

	M-% string RET newstring RET
	Replace some occurrences of string with newstring.

	C-M-% regexp RET newstring RET
	Replace some matches for regexp with newstring.

 If you want to change only some of the occurrences of ‘foo’ to
‘bar’, not all of them, use M-% (query-replace).
This command finds occurrences of ‘foo’ one by one, displays each
occurrence and asks you whether to replace it. Aside from querying,
query-replace works just like replace-string
(see the section called “Unconditional Replacement”). In particular, it preserves case
provided case-replace is non-nil, as it normally is
(see the section called “Replace Commands and Case”). A numeric argument means to consider
only occurrences that are bounded by word-delimiter characters.
 C-M-% performs regexp search and replace (query-replace-regexp).
It works like replace-regexp except that it queries
like query-replace.
 These commands highlight the current match using the face
query-replace. They highlight other matches using
lazy-highlight just like incremental search (see the section called “Incremental Search”). By default, query-replace-regexp will show the
substituted replacement string for the current match in the
minibuffer. If you want to keep special sequences ‘\&’ and
‘\n’ unexpanded, customize
query-replace-show-replacement variable.
The characters you can type when you are shown a match for the string
or regexp are:
	SPC
	to replace the occurrence with newstring.

	DEL
	to skip to the next occurrence without replacing this one.

	, (Comma)
	to replace this occurrence and display the result. You are then asked
for another input character to say what to do next. Since the
replacement has already been made, DEL and SPC are
equivalent in this situation; both move to the next occurrence.
You can type C-r at this point (see below) to alter the replaced
text. You can also type C-x u to undo the replacement; this exits
the query-replace, so if you want to do further replacement you
must use C-x ESC ESC RET to restart
(see the section called “Repeating Minibuffer Commands”).

	RET
	to exit without doing any more replacements.

	. (Period)
	to replace this occurrence and then exit without searching for more
occurrences.

	!
	to replace all remaining occurrences without asking again.

	^
	to go back to the position of the previous occurrence (or what used to
be an occurrence), in case you changed it by mistake or want to
reexamine it.

	C-r
	to enter a recursive editing level, in case the occurrence needs to be
edited rather than just replaced with newstring. When you are
done, exit the recursive editing level with C-M-c to proceed to
the next occurrence. See Chapter 43, Recursive Editing Levels.

	C-w
	to delete the occurrence, and then enter a recursive editing level as in
C-r. Use the recursive edit to insert text to replace the deleted
occurrence of string. When done, exit the recursive editing level
with C-M-c to proceed to the next occurrence.

	e
	to edit the replacement string in the minibuffer. When you exit the
minibuffer by typing RET, the minibuffer contents replace the
current occurrence of the pattern. They also become the new
replacement string for any further occurrences.

	C-l
	to redisplay the screen. Then you must type another character to
specify what to do with this occurrence.

	C-h
	to display a message summarizing these options. Then you must type
another character to specify what to do with this occurrence.

Some other characters are aliases for the ones listed above: y,
n and q are equivalent to SPC, DEL and
RET.
Aside from this, any other character exits the query-replace,
and is then reread as part of a key sequence. Thus, if you type
C-k, it exits the query-replace and then kills to end of
line.
To restart a query-replace once it is exited, use C-x
ESC ESC, which repeats the query-replace because it
used the minibuffer to read its arguments. See C-x ESC ESC.
See the section called “Operating on Files”, for the Dired Q command which
performs query replace on selected files. See also the section called “Transforming File Names in Dired”, for Dired commands to rename, copy, or link files by
replacing regexp matches in file names.

Other Search-and-Loop Commands

Here are some other commands that find matches for a regular
expression. They all ignore case in matching, if the pattern contains
no upper-case letters and case-fold-search is non-nil.
Aside from occur and its variants, all operate on the text from
point to the end of the buffer, or on the region if it is active.

	M-x multi-isearch-buffers
	Prompt for one or more buffer names, ending with RET; then,
begin a multi-buffer incremental search in those buffers. (If the
search fails in one buffer, the next C-s tries searching the
next specified buffer, and so forth.) With a prefix argument, prompt
for a regexp and begin a multi-buffer incremental search in buffers
matching that regexp.

	M-x multi-isearch-buffers-regexp
	This command is just like multi-isearch-buffers, except it
performs an incremental regexp search.

	M-x occur
	Prompt for a regexp, and display a list showing each line in the
buffer that contains a match for it. To limit the search to part of
the buffer, narrow to that part (see the section called “Narrowing”). A numeric
argument n specifies that n lines of context are to be
displayed before and after each matching line.
In the *Occur* buffer, you can click on each entry, or move
point there and type RET, to visit the corresponding position in
the buffer that was searched. o and C-o display the match
in another window; C-o does not select it. Alternatively, you
can use the C-x ` (next-error) command to visit the
occurrences one by one (see the section called “Compilation Mode”).
Typing e in the *Occur* buffer switches to Occur Edit
mode, in which edits made to the entries are also applied to the text
in the originating buffer. Type C-c C-c to return to Occur
mode.
The command M-x list-matching-lines is a synonym for M-x
occur.

	M-s o
	Run occur using the search string of the last incremental
string search. You can also run M-s o when an incremental
search is active; this uses the current search string.

	M-x multi-occur
	This command is just like occur, except it is able to search
through multiple buffers. It asks you to specify the buffer names one
by one.

	M-x multi-occur-in-matching-buffers
	This command is similar to multi-occur, except the buffers to
search are specified by a regular expression that matches visited file
names. With a prefix argument, it uses the regular expression to
match buffer names instead.

	M-x how-many
	Prompt for a regexp, and print the number of matches for it in the
buffer after point. If the region is active, this operates on the
region instead.

	M-x flush-lines
	Prompt for a regexp, and delete each line that contains a match for
it, operating on the text after point. This command deletes the
current line if it contains a match starting after point. If the
region is active, it operates on the region instead; if a line
partially contained in the region contains a match entirely contained
in the region, it is deleted.
If a match is split across lines, flush-lines deletes all those
lines. It deletes the lines before starting to look for the next
match; hence, it ignores a match starting on the same line at which
another match ended.

	M-x keep-lines
	Prompt for a regexp, and delete each line that does not contain
a match for it, operating on the text after point. If point is not at
the beginning of a line, this command always keeps the current line.
If the region is active, the command operates on the region instead;
it never deletes lines that are only partially contained in the region
(a newline that ends a line counts as part of that line).
If a match is split across lines, this command keeps all those lines.

Chapter 16. Commands for Fixing Typos

 In this chapter we describe commands that are useful when you catch
a mistake while editing. The most fundamental of these commands is
the undo command C-/ (also bound to C-x u and C-_).
This undoes a single command, or a
part of a command (as in the case of query-replace), or several
consecutive character insertions. Consecutive repetitions of
C-/ undo earlier and earlier changes, back to the limit of the
undo information available.
Aside from the commands described here, you can erase text using
deletion commands such as DEL (delete-backward-char).
These were described earlier in this manual. See the section called “Erasing Text”.
Undo

 The undo command reverses recent changes in the buffer's text.
Each buffer records changes individually, and the undo command always
applies to the current buffer. You can undo all the changes in a
buffer for as far as back its records go. Usually, each editing
command makes a separate entry in the undo records, but some commands
such as query-replace divide their changes into multiple
entries for flexibility in undoing. Consecutive character insertion
commands are usually grouped together into a single undo record, to
make undoing less tedious.
	C-/, C-x u, C-_
	Undo one entry in the current buffer's undo records (undo).

 To begin to undo, type C-/ (or its aliases, C-_ or
C-x u)[6]. This undoes the most recent change in the buffer,
and moves point back to where it was before that change.
 Consecutive repetitions of C-/ (or its aliases) undo earlier
and earlier changes in the current buffer. If all the recorded
changes have already been undone, the undo command signals an error.
 Any command other than an undo command breaks the sequence of undo
commands. Starting from that moment, the entire sequence of undo
commands that you have just performed are themselves placed into the
undo record, as a single set of changes. Therefore, to re-apply
changes you have undone, type C-f or any other command that
harmlessly breaks the sequence of undoing; then type C-/ to undo
the undo command.
Alternatively, if you want to resume undoing, without redoing
previous undo commands, use M-x undo-only. This is like
undo, but will not redo changes you have just undone.
If you notice that a buffer has been modified accidentally, the
easiest way to recover is to type C-/ repeatedly until the stars
disappear from the front of the mode line (see the section called “The Mode Line”).
Whenever an undo command makes the stars disappear from the mode line,
it means that the buffer contents are the same as they were when the
file was last read in or saved. If you do not remember whether you
changed the buffer deliberately, type C-/ once. When you see
the last change you made undone, you will see whether it was an
intentional change. If it was an accident, leave it undone. If it
was deliberate, redo the change as described above.
 When there is an active region, any use of undo performs
selective undo: it undoes the most recent change within the
region, instead of the entire buffer. However, when Transient Mark
mode is off (see the section called “Disabling Transient Mark Mode”), C-/ always
operates on the entire buffer, ignoring the region. In this case, you
can perform selective undo by supplying a prefix argument to the
undo command: C-u C-/. To undo further changes in the
same region, repeat the undo command (no prefix argument is
needed).
Some specialized buffers do not make undo records. Buffers whose
names start with spaces never do; these buffers are used internally by
Emacs to hold text that users don't normally look at or edit.
 When the undo records for a buffer becomes too large, Emacs discards
the oldest undo records from time to time (during garbage
collection). You can specify how much undo records to keep by
setting the variables undo-limit, undo-strong-limit, and
undo-outer-limit. Their values are expressed in bytes.
The variable undo-limit sets a soft limit: Emacs keeps undo
data for enough commands to reach this size, and perhaps exceed it,
but does not keep data for any earlier commands beyond that. Its
default value is 80000. The variable undo-strong-limit sets a
stricter limit: any previous command (though not the most recent one)
that pushes the size past this amount is forgotten. The default value
of undo-strong-limit is 120000.
Regardless of the values of those variables, the most recent change
is never discarded unless it gets bigger than undo-outer-limit
(normally 12,000,000). At that point, Emacs discards the undo data and
warns you about it. This is the only situation in which you cannot
undo the last command. If this happens, you can increase the value of
undo-outer-limit to make it even less likely to happen in the
future. But if you didn't expect the command to create such large
undo data, then it is probably a bug and you should report it.
See Reporting Bugs.

[6] Aside from C-/, the undo command is
also bound to C-x u because that is more straightforward for
beginners to remember: ‘u’ stands for “undo”. It is also bound
to C-_ because typing C-/ on some text terminals actually
enters C-_.

Transposing Text

	C-t
	Transpose two characters (transpose-chars).

	M-t
	Transpose two words (transpose-words).

	C-M-t
	Transpose two balanced expressions (transpose-sexps).

	C-x C-t
	Transpose two lines (transpose-lines).

 The common error of transposing two characters can be fixed, when they
are adjacent, with the C-t command (transpose-chars). Normally,
C-t transposes the two characters on either side of point. When
given at the end of a line, rather than transposing the last character of
the line with the newline, which would be useless, C-t transposes the
last two characters on the line. So, if you catch your transposition error
right away, you can fix it with just a C-t. If you don't catch it so
fast, you must move the cursor back between the two transposed
characters before you type C-t. If you transposed a space with
the last character of the word before it, the word motion commands are
a good way of getting there. Otherwise, a reverse search (C-r)
is often the best way. See Chapter 15, Searching and Replacement.

 M-t transposes the word before point with the word after point
(transpose-words). It moves point forward over a word,
dragging the word preceding or containing point forward as well. The
punctuation characters between the words do not move. For example,
‘FOO, BAR’ transposes into ‘BAR, FOO’ rather than
‘BAR FOO,’.
C-M-t (transpose-sexps) is a similar command for
transposing two expressions (see the section called “Expressions with Balanced Parentheses”), and C-x C-t
(transpose-lines) exchanges lines. They work like M-t
except as regards what units of text they transpose.
A numeric argument to a transpose command serves as a repeat count: it
tells the transpose command to move the character (word, expression, line)
before or containing point across several other characters (words,
expressions, lines). For example, C-u 3 C-t moves the character before
point forward across three other characters. It would change
‘f-!-oobar’ into ‘oobf-!-ar’. This is equivalent to
repeating C-t three times. C-u - 4 M-t moves the word
before point backward across four words. C-u - C-M-t would cancel
the effect of plain C-M-t.
A numeric argument of zero is assigned a special meaning (because
otherwise a command with a repeat count of zero would do nothing): to
transpose the character (word, expression, line) ending after point
with the one ending after the mark.

Case Conversion

	M– M-l
	Convert last word to lower case. Note Meta– is Meta-minus.

	M– M-u
	Convert last word to all upper case.

	M– M-c
	Convert last word to lower case with capital initial.

 A very common error is to type words in the wrong case. Because of this,
the word case-conversion commands M-l, M-u and M-c have a
special feature when used with a negative argument: they do not move the
cursor. As soon as you see you have mistyped the last word, you can simply
case-convert it and go on typing. See the section called “Case Conversion Commands”.

Checking and Correcting Spelling

 This section describes the commands to check the spelling of a
single word or of a portion of a buffer. These commands only work if
the spelling checker program Aspell, Ispell or Hunspell is installed.
These programs are not part of Emacs, but one of them is usually
installed in GNU/Linux and other free operating systems.
See See section ``Top'' in The Aspell Manual.
	M-$
	Check and correct spelling of the word at point (ispell-word).
If the region is active, do it for all words in the region instead.

	M-x ispell
	Check and correct spelling of all words in the buffer. If the region
is active, do it for all words in the region instead.

	M-x ispell-buffer
	Check and correct spelling in the buffer.

	M-x ispell-region
	Check and correct spelling in the region.

	M-x ispell-message
	Check and correct spelling in a draft mail message, excluding cited
material.

	M-x ispell-change-dictionary RET dict RET
	Restart the Aspell/Ispell/Hunspell process, using dict as the dictionary.

	M-x ispell-kill-ispell
	Kill the Aspell/Ispell/Hunspell subprocess.

	M-TAB, ESC TAB
	Complete the word before point based on the spelling dictionary
(ispell-complete-word).

	M-x flyspell-mode
	Enable Flyspell mode, which highlights all misspelled words.

	M-x flyspell-prog-mode
	Enable Flyspell mode for comments and strings only.

 To check the spelling of the word around or before point, and
optionally correct it as well, type M-$ (ispell-word).
If a region is active, M-$ checks the spelling of all words
within the region. See Chapter 11, The Mark and the Region. (When Transient Mark mode is off,
M-$ always acts on the word around or before point, ignoring the
region; see the section called “Disabling Transient Mark Mode”.)
 Similarly, the command M-x ispell performs spell-checking in
the region if one is active, or in the entire buffer otherwise. The
commands M-x ispell-buffer and M-x ispell-region
explicitly perform spell-checking on the entire buffer or the region
respectively. To check spelling in an email message you are writing,
use M-x ispell-message; that command checks the whole buffer,
except for material that is indented or appears to be cited from other
messages. See Chapter 32, Sending Mail.
When one of these commands encounters what appears to be an
incorrect word, it asks you what to do. It usually displays a list of
numbered “near-misses”—words that are close to the incorrect word.
Then you must type a single-character response. Here are the valid
responses:
	digit
	Replace the word, just this time, with one of the displayed
near-misses. Each near-miss is listed with a digit; type that digit
to select it.

	SPC
	Skip this word—continue to consider it incorrect, but don't change it
here.

	r new RET
	Replace the word, just this time, with new. (The replacement
string will be rescanned for more spelling errors.)

	R new RET
	Replace the word with new, and do a query-replace so you
can replace it elsewhere in the buffer if you wish. (The replacements
will be rescanned for more spelling errors.)

	a
	Accept the incorrect word—treat it as correct, but only in this
editing session.

	A
	Accept the incorrect word—treat it as correct, but only in this
editing session and for this buffer.

	i
	Insert this word in your private dictionary file so that Aspell or Ispell
or Hunspell will consider it correct from now on, even in future sessions.

	m
	Like i, but you can also specify dictionary completion
information.

	u
	Insert the lower-case version of this word in your private dictionary
file.

	l word RET
	Look in the dictionary for words that match word. These words
become the new list of “near-misses”; you can select one of them as
the replacement by typing a digit. You can use ‘*’ in word as a
wildcard.

	C-g, X
	Quit interactive spell checking, leaving point at the word that was
being checked. You can restart checking again afterward with C-u
M-$.

	x
	Quit interactive spell checking and move point back to where it was
when you started spell checking.

	q
	Quit interactive spell checking and kill the spell-checker subprocess.

	?
	Show the list of options.

 In Text mode and related modes, M-TAB
(ispell-complete-word) performs in-buffer completion based on
spelling correction. Insert the beginning of a word, and then type
M-TAB; this shows a list of completions. (If your
window manager intercepts M-TAB, type ESC
TAB or C-M-i.) Each completion is listed with a digit or
character; type that digit or character to choose it.
 Once started, the Aspell or Ispell or Hunspell subprocess continues
to run, waiting for something to do, so that subsequent spell checking
commands complete more quickly. If you want to get rid of the
process, use M-x ispell-kill-ispell. This is not usually
necessary, since the process uses no processor time except when you do
spelling correction.
 Ispell, Aspell and Hunspell look up spelling in two dictionaries:
the standard dictionary and your personal dictionary. The standard
dictionary is specified by the variable ispell-local-dictionary
or, if that is nil, by the variable ispell-dictionary.
If both are nil, the spelling program's default dictionary is
used. The command M-x ispell-change-dictionary sets the
standard dictionary for the buffer and then restarts the subprocess,
so that it will use a different standard dictionary. Your personal
dictionary is specified by the variable
ispell-personal-dictionary. If that is nil, the
spelling program looks for a personal dictionary in a default
location.
 A separate dictionary is used for word completion. The variable
ispell-complete-word-dict specifies the file name of this
dictionary. The completion dictionary must be different because it
cannot use root and affix information. For some languages, there
is a spell checking dictionary but no word completion dictionary.
 Flyspell mode is a minor mode that performs automatic spell checking
as you type. When it finds a word that it does not recognize, it
highlights that word. Type M-x flyspell-mode to toggle Flyspell
mode in the current buffer. To enable Flyspell mode in all text mode
buffers, add flyspell-mode to text-mode-hook.
See the section called “Hooks”.
When Flyspell mode highlights a word as misspelled, you can click on
it with Mouse-2 to display a menu of possible corrections and
actions. You can also correct the word by editing it manually in any
way you like.
 Flyspell Prog mode works just like ordinary Flyspell mode, except
that it only checks words in comments and string constants. This
feature is useful for editing programs. Type M-x
flyspell-prog-mode to enable or disable this mode in the current
buffer. To enable this mode in all programming mode buffers, add
flyspell-prog-mode to prog-mode-hook (see the section called “Hooks”).

Chapter 17. Keyboard Macros

 In this chapter we describe how to record a sequence of editing
commands so you can repeat it conveniently later.
A keyboard macro is a command defined by an Emacs user to stand for
another sequence of keys. For example, if you discover that you are
about to type C-n M-d C-d forty times, you can speed your work by
defining a keyboard macro to do C-n M-d C-d, and then executing
it 39 more times.
You define a keyboard macro by executing and recording the commands
which are its definition. Put differently, as you define a keyboard
macro, the definition is being executed for the first time. This way,
you can see the effects of your commands, so that you don't have to
figure them out in your head. When you close the definition, the
keyboard macro is defined and also has been, in effect, executed once.
You can then do the whole thing over again by invoking the macro.
Keyboard macros differ from ordinary Emacs commands in that they are
written in the Emacs command language rather than in Lisp. This makes it
easier for the novice to write them, and makes them more convenient as
temporary hacks. However, the Emacs command language is not powerful
enough as a programming language to be useful for writing anything
intelligent or general. For such things, Lisp must be used.
Basic Use

	F3
	Start defining a keyboard macro
(kmacro-start-macro-or-insert-counter).

	F4
	If a keyboard macro is being defined, end the definition; otherwise,
execute the most recent keyboard macro
(kmacro-end-or-call-macro).

	C-u F3
	Re-execute last keyboard macro, then append keys to its definition.

	C-u C-u F3
	Append keys to the last keyboard macro without re-executing it.

	C-x C-k r
	Run the last keyboard macro on each line that begins in the region
(apply-macro-to-region-lines).

 To start defining a keyboard macro, type F3. From then on,
your keys continue to be executed, but also become part of the
definition of the macro. ‘Def’ appears in the mode line to
remind you of what is going on. When you are finished, type F4
(kmacro-end-or-call-macro) to terminate the definition. For
example,
F3 M-f foo F4

defines a macro to move forward a word and then insert ‘foo’.
Note that F3 and F4 do not become part of the macro.
After defining the macro, you can call it with F4. For the
above example, this has the same effect as typing M-f foo again.
(Note the two roles of the F4 command: it ends the macro if you
are in the process of defining one, or calls the last macro
otherwise.) You can also supply F4 with a numeric prefix
argument ‘n’, which means to invoke the macro ‘n’ times. An
argument of zero repeats the macro indefinitely, until it gets an
error or you type C-g (or, on MS-DOS, C-BREAK).
The above example demonstrates a handy trick that you can employ
with keyboard macros: if you wish to repeat an operation at regularly
spaced places in the text, include a motion command as part of the
macro. In this case, repeating the macro inserts the string
‘foo’ after each successive word.
After terminating the definition of a keyboard macro, you can append
more keystrokes to its definition by typing C-u F3. This
is equivalent to plain F3 followed by retyping the whole
definition so far. As a consequence, it re-executes the macro as
previously defined. If you change the variable
kmacro-execute-before-append to nil, the existing macro
will not be re-executed before appending to it (the default is
t). You can also add to the end of the definition of the last
keyboard macro without re-executing it by typing C-u C-u
F3.
When a command reads an argument with the minibuffer, your
minibuffer input becomes part of the macro along with the command. So
when you replay the macro, the command gets the same argument as when
you entered the macro. For example,

F3 C-a C-k C-x b foo RET C-y C-x b RET F4

defines a macro that kills the current line, yanks it into the buffer
‘foo’, then returns to the original buffer.
Most keyboard commands work as usual in a keyboard macro definition,
with some exceptions. Typing C-g (keyboard-quit) quits
the keyboard macro definition. Typing C-M-c
(exit-recursive-edit) can be unreliable: it works as you'd
expect if exiting a recursive edit that started within the macro, but
if it exits a recursive edit that started before you invoked the
keyboard macro, it also necessarily exits the keyboard macro too.
Mouse events are also unreliable, even though you can use them in a
keyboard macro: when the macro replays the mouse event, it uses the
original mouse position of that event, the position that the mouse had
while you were defining the macro. The effect of this may be hard to
predict.
 The command C-x C-k r (apply-macro-to-region-lines)
repeats the last defined keyboard macro on each line that begins in
the region. It does this line by line, by moving point to the
beginning of the line and then executing the macro.
 In addition to the F3 and F4 commands described above,
Emacs also supports an older set of key bindings for defining and
executing keyboard macros. To begin a macro definition, type C-x
((kmacro-start-macro); as with F3, a prefix argument
appends this definition to the last keyboard macro. To end a macro
definition, type C-x) (kmacro-end-macro). To execute
the most recent macro, type C-x e
(kmacro-end-and-call-macro). If you enter C-x e while
defining a macro, the macro is terminated and executed immediately.
Immediately after typing C-x e, you can type e repeatedly
to immediately repeat the macro one or more times. You can also give
C-x e a repeat argument, just like F4.
C-x) can be given a repeat count as an argument. This means
to repeat the macro right after defining it. The macro definition
itself counts as the first repetition, since it is executed as you
define it, so C-u 4 C-x) executes the macro immediately 3
additional times.

The Keyboard Macro Ring

All defined keyboard macros are recorded in the keyboard macro
ring. There is only one keyboard macro ring, shared by all buffers.
	C-x C-k C-k
	Execute the keyboard macro at the head of the ring (kmacro-end-or-call-macro-repeat).

	C-x C-k C-n
	Rotate the keyboard macro ring to the next macro (defined earlier)
(kmacro-cycle-ring-next).

	C-x C-k C-p
	Rotate the keyboard macro ring to the previous macro (defined later)
(kmacro-cycle-ring-previous).

All commands which operate on the keyboard macro ring use the
same C-x C-k prefix. Most of these commands can be executed and
repeated immediately after each other without repeating the C-x
C-k prefix. For example,

C-x C-k C-p C-p C-k C-k C-k C-n C-n C-k C-p C-k C-d

will rotate the keyboard macro ring to the “second previous” macro,
execute the resulting head macro three times, rotate back to the
original head macro, execute that once, rotate to the “previous”
macro, execute that, and finally delete it from the macro ring.
 The command C-x C-k C-k (kmacro-end-or-call-macro-repeat)
executes the keyboard macro at the head of the macro ring. You can
repeat the macro immediately by typing another C-k, or you can
rotate the macro ring immediately by typing C-n or C-p.
When a keyboard macro is being defined, C-x C-k C-k behaves
like F4 except that, immediately afterward, you can use most key
bindings of this section without the C-x C-k prefix. For
instance, another C-k will re-execute the macro.
 The commands C-x C-k C-n (kmacro-cycle-ring-next) and
C-x C-k C-p (kmacro-cycle-ring-previous) rotate the
macro ring, bringing the next or previous keyboard macro to the head
of the macro ring. The definition of the new head macro is displayed
in the echo area. You can continue to rotate the macro ring
immediately by repeating just C-n and C-p until the
desired macro is at the head of the ring. To execute the new macro
ring head immediately, just type C-k.
Note that Emacs treats the head of the macro ring as the “last
defined keyboard macro”. For instance, F4 will execute that
macro, and C-x C-k n will give it a name.
 The maximum number of macros stored in the keyboard macro ring is
determined by the customizable variable kmacro-ring-max.

The Keyboard Macro Counter

Each keyboard macro has an associated counter, which is initialized
to 0 when you start defining the macro. This counter allows you to
insert a number into the buffer that depends on the number of times
the macro has been called. The counter is incremented each time its
value is inserted into the buffer.
	F3
	In a keyboard macro definition, insert the keyboard macro counter
value in the buffer (kmacro-start-macro-or-insert-counter).

	C-x C-k C-i
	Insert the keyboard macro counter value in the buffer
(kmacro-insert-counter).

	C-x C-k C-c
	Set the keyboard macro counter (kmacro-set-counter).

	C-x C-k C-a
	Add the prefix arg to the keyboard macro counter (kmacro-add-counter).

	C-x C-k C-f
	Specify the format for inserting the keyboard macro counter
(kmacro-set-format).

 When you are defining a keyboard macro, the command F3
(kmacro-start-macro-or-insert-counter) inserts the current
value of the keyboard macro's counter into the buffer, and increments
the counter by 1. (If you are not defining a macro, F3 begins a
macro definition instead. See the section called “Basic Use”.) You can use
a numeric prefix argument to specify a different increment. If you
just specify a C-u prefix, that is the same as an increment of
zero: it inserts the current counter value without changing it.
As an example, let us show how the keyboard macro counter can be
used to build a numbered list. Consider the following key sequence:

F3 C-a F3 . SPC F4

As part of this keyboard macro definition, the string ‘0. ’ was
inserted into the beginning of the current line. If you now move
somewhere else in the buffer and type F4 to invoke the macro,
the string ‘1. ’ is inserted at the beginning of that line.
Subsequent invocations insert ‘2. ’, ‘3. ’, and so forth.
The command C-x C-k C-i (kmacro-insert-counter) does
the same thing as F3, but it can be used outside a keyboard
macro definition. When no keyboard macro is being defined or
executed, it inserts and increments the counter of the macro at the
head of the keyboard macro ring.
 The command C-x C-k C-c (kmacro-set-counter) sets the
current macro counter to the value of the numeric argument. If you use
it inside the macro, it operates on each repetition of the macro. If
you specify just C-u as the prefix, while executing the macro,
that resets the counter to the value it had at the beginning of the
current repetition of the macro (undoing any increments so far in this
repetition).
 The command C-x C-k C-a (kmacro-add-counter) adds the
prefix argument to the current macro counter. With just C-u as
argument, it resets the counter to the last value inserted by any
keyboard macro. (Normally, when you use this, the last insertion
will be in the same macro and it will be the same counter.)
 The command C-x C-k C-f (kmacro-set-format) prompts for
the format to use when inserting the macro counter. The default
format is ‘%d’, which means to insert the number in decimal
without any padding. You can exit with empty minibuffer to reset the
format to this default. You can specify any format string that the
format function accepts and that makes sense with a single
integer extra argument (see See section ``Formatting Strings'' in The Emacs Lisp Reference Manual). Do not put the format string inside double
quotes when you insert it in the minibuffer.
If you use this command while no keyboard macro is being defined or
executed, the new format affects all subsequent macro definitions.
Existing macros continue to use the format in effect when they were
defined. If you set the format while defining a keyboard macro, this
affects the macro being defined from that point on, but it does not
affect subsequent macros. Execution of the macro will, at each step,
use the format in effect at that step during its definition. Changes
to the macro format during execution of a macro, like the
corresponding changes during its definition, have no effect on
subsequent macros.
The format set by C-x C-k C-f does not affect insertion of
numbers stored in registers.
If you use a register as a counter, incrementing it on each
repetition of the macro, that accomplishes the same thing as a
keyboard macro counter. See the section called “Keeping Numbers in Registers”. For most purposes,
it is simpler to use a keyboard macro counter.

Executing Macros with Variations

In a keyboard macro, you can create an effect similar to that of
query-replace, in that the macro asks you each time around
whether to make a change.
	C-x q
	When this point is reached during macro execution, ask for confirmation
(kbd-macro-query).

 While defining the macro, type C-x q at the point where you
want the query to occur. During macro definition, the C-x q
does nothing, but when you run the macro later, C-x q asks you
interactively whether to continue.
The valid responses when C-x q asks are:
	SPC (or y)
	Continue executing the keyboard macro.

	DEL (or n)
	Skip the remainder of this repetition of the macro, and start right
away with the next repetition.

	RET (or q)
	Skip the remainder of this repetition and cancel further repetitions.

	C-r
	Enter a recursive editing level, in which you can perform editing
which is not part of the macro. When you exit the recursive edit
using C-M-c, you are asked again how to continue with the
keyboard macro. If you type a SPC at this time, the rest of the
macro definition is executed. It is up to you to leave point and the
text in a state such that the rest of the macro will do what you want.

C-u C-x q, which is C-x q with a numeric argument,
performs a completely different function. It enters a recursive edit
reading input from the keyboard, both when you type it during the
definition of the macro, and when it is executed from the macro. During
definition, the editing you do inside the recursive edit does not become
part of the macro. During macro execution, the recursive edit gives you
a chance to do some particularized editing on each repetition.
See Chapter 43, Recursive Editing Levels.

Naming and Saving Keyboard Macros

	C-x C-k n
	Give a command name (for the duration of the Emacs session) to the most
recently defined keyboard macro (kmacro-name-last-macro).

	C-x C-k b
	Bind the most recently defined keyboard macro to a key sequence (for
the duration of the session) (kmacro-bind-to-key).

	M-x insert-kbd-macro
	Insert in the buffer a keyboard macro's definition, as Lisp code.

 If you wish to save a keyboard macro for later use, you can give it
a name using C-x C-k n (kmacro-name-last-macro).
This reads a name as an argument using the minibuffer and defines that
name to execute the last keyboard macro, in its current form. (If you
later add to the definition of this macro, that does not alter the
name's definition as a macro.) The macro name is a Lisp symbol, and
defining it in this way makes it a valid command name for calling with
M-x or for binding a key to with global-set-key
(see the section called “Keymaps”). If you specify a name that has a prior definition
other than a keyboard macro, an error message is shown and nothing is
changed.
 You can also bind the last keyboard macro (in its current form) to a
key, using C-x C-k b (kmacro-bind-to-key) followed by the
key sequence you want to bind. You can bind to any key sequence in
the global keymap, but since most key sequences already have other
bindings, you should select the key sequence carefully. If you try to
bind to a key sequence with an existing binding (in any keymap), this
command asks you for confirmation before replacing the existing binding.
To avoid problems caused by overriding existing bindings, the key
sequences C-x C-k 0 through C-x C-k 9 and C-x C-k A
through C-x C-k Z are reserved for your own keyboard macro
bindings. In fact, to bind to one of these key sequences, you only
need to type the digit or letter rather than the whole key sequences.
For example,

C-x C-k b 4

will bind the last keyboard macro to the key sequence C-x C-k 4.
 Once a macro has a command name, you can save its definition in a file.
Then it can be used in another editing session. First, visit the file
you want to save the definition in. Then use this command:

M-x insert-kbd-macro RET macroname RET

This inserts some Lisp code that, when executed later, will define the
same macro with the same definition it has now. (You need not
understand Lisp code to do this, because insert-kbd-macro writes
the Lisp code for you.) Then save the file. You can load the file
later with load-file (see the section called “Libraries of Lisp Code for Emacs”). If the file you
save in is your init file ~/.emacs (see the section called “The Emacs Initialization File”) then the
macro will be defined each time you run Emacs.
If you give insert-kbd-macro a numeric argument, it makes
additional Lisp code to record the keys (if any) that you have bound
to macroname, so that the macro will be reassigned the same keys
when you load the file.

Editing a Keyboard Macro

	C-x C-k C-e
	Edit the last defined keyboard macro (kmacro-edit-macro).

	C-x C-k e name RET
	Edit a previously defined keyboard macro name (edit-kbd-macro).

	C-x C-k l
	Edit the last 300 keystrokes as a keyboard macro
(kmacro-edit-lossage).

 You can edit the last keyboard macro by typing C-x C-k C-e or
C-x C-k RET (kmacro-edit-macro). This formats the macro
definition in a buffer and enters a specialized major mode for editing
it. Type C-h m once in that buffer to display details of how to
edit the macro. When you are finished editing, type C-c C-c.
 You can edit a named keyboard macro or a macro bound to a key by typing
C-x C-k e (edit-kbd-macro). Follow that with the
keyboard input that you would use to invoke the macro—C-x e or
M-x name or some other key sequence.
 You can edit the last 300 keystrokes as a macro by typing
C-x C-k l (kmacro-edit-lossage).

Stepwise Editing a Keyboard Macro

 You can interactively replay and edit the last keyboard
macro, one command at a time, by typing C-x C-k SPC
(kmacro-step-edit-macro). Unless you quit the macro using
q or C-g, the edited macro replaces the last macro on the
macro ring.
This macro editing feature shows the last macro in the minibuffer
together with the first (or next) command to be executed, and prompts
you for an action. You can enter ? to get a summary of your
options. These actions are available:
	SPC and y execute the current command, and advance to the
next command in the keyboard macro.

	n, d, and DEL skip and delete the current command.

	f skips the current command in this execution of the keyboard
macro, but doesn't delete it from the macro.

	TAB executes the current command, as well as all similar
commands immediately following the current command; for example, TAB
may be used to insert a sequence of characters (corresponding to a
sequence of self-insert-command commands).

	c continues execution (without further editing) until the end of
the keyboard macro. If execution terminates normally, the edited
macro replaces the original keyboard macro.

	C-k skips and deletes the rest of the keyboard macro,
terminates step-editing, and replaces the original keyboard macro
with the edited macro.

	q and C-g cancels the step-editing of the keyboard macro;
discarding any changes made to the keyboard macro.

	i KEY... C-j reads and executes a series of key sequences (not
including the final C-j), and inserts them before the current
command in the keyboard macro, without advancing over the current
command.

	I KEY... reads one key sequence, executes it, and inserts it
before the current command in the keyboard macro, without advancing
over the current command.

	r KEY... C-j reads and executes a series of key sequences (not
including the final C-j), and replaces the current command in
the keyboard macro with them, advancing over the inserted key
sequences.

	R KEY... reads one key sequence, executes it, and replaces the
current command in the keyboard macro with that key sequence,
advancing over the inserted key sequence.

	a KEY... C-j executes the current command, then reads and
executes a series of key sequences (not including the final
C-j), and inserts them after the current command in the keyboard
macro; it then advances over the current command and the inserted key
sequences.

	A KEY... C-j executes the rest of the commands in the keyboard
macro, then reads and executes a series of key sequences (not
including the final C-j), and appends them at the end of the
keyboard macro; it then terminates the step-editing and replaces the
original keyboard macro with the edited macro.

Chapter 18. File Handling

 The operating system stores data permanently in named files, so
most of the text you edit with Emacs comes from a file and is ultimately
stored in a file.
To edit a file, you must tell Emacs to read the file and prepare a
buffer containing a copy of the file's text. This is called
visiting the file. Editing commands apply directly to text in the
buffer; that is, to the copy inside Emacs. Your changes appear in the
file itself only when you save the buffer back into the file.
In addition to visiting and saving files, Emacs can delete, copy,
rename, and append to files, keep multiple versions of them, and operate
on file directories.
File Names

 Many Emacs commands that operate on a file require you to specify
the file name, using the minibuffer (see the section called “Minibuffers for File Names”).
While in the minibuffer, you can use the usual completion and
history commands (see Chapter 8, The Minibuffer). Note that file name completion
ignores file names whose extensions appear in the variable
completion-ignored-extensions (see the section called “Completion Options”).
Note also that most commands use “permissive completion with
confirmation” for reading file names: you are allowed to submit a
nonexistent file name, but if you type RET immediately after
completing up to a nonexistent file name, Emacs prints
‘[Confirm]’ and you must type a second RET to confirm.
See the section called “Completion Exit”, for details.
 Each buffer has a default directory, stored in the
buffer-local variable default-directory. Whenever Emacs reads
a file name using the minibuffer, it usually inserts the default
directory into the minibuffer as the initial contents. You can
inhibit this insertion by changing the variable
insert-default-directory to nil (see the section called “Minibuffers for File Names”). Regardless, Emacs always assumes that any relative file name
is relative to the default directory, e.g. entering a file name
without a directory specifies a file in the default directory.
 When you visit a file, Emacs sets default-directory in the
visiting buffer to the directory of its file. When you create a new
buffer that is not visiting a file, via a command like C-x b,
its default directory is usually copied from the buffer that was
current at the time (see the section called “Creating and Selecting Buffers”). You can use the command
M-x pwd to see the value of default-directory in the
current buffer. The command M-x cd prompts for a directory
name, and sets the buffer's default-directory to that directory
(doing this does not change the buffer's file name, if any).
As an example, when you visit the file /u/rms/gnu/gnu.tasks,
the default directory is set to /u/rms/gnu/. If you invoke a
command that reads a file name, entering just ‘foo’ in the
minibuffer, with a directory omitted, specifies the file
/u/rms/gnu/foo; entering ‘../.login’ specifies
/u/rms/.login; and entering ‘new/foo’ specifies
/u/rms/gnu/new/foo.
When typing a file name into the minibuffer, you can make use of a
couple of shortcuts: a double slash is interpreted as “ignore
everything before the second slash in the pair”, and ‘~/’ is
interpreted as your home directory. See the section called “Minibuffers for File Names”.
 The character ‘$’ is used to
substitute an environment variable into a file name. The name of the
environment variable consists of all the alphanumeric characters after
the ‘$’; alternatively, it can be enclosed in braces after the
‘$’. For example, if you have used the shell command
export FOO=rms/hacks to set up an environment variable named
FOO, then both /u/$FOO/test.c and
/u/${FOO}/test.c are abbreviations for
/u/rms/hacks/test.c. If the environment variable is not
defined, no substitution occurs, so that the character ‘$’ stands
for itself. Note that environment variables affect Emacs only if they
are applied before Emacs is started.
To access a file with ‘$’ in its name, if the ‘$’ causes
expansion, type ‘$$’. This pair is converted to a single
‘$’ at the same time that variable substitution is performed for
a single ‘$’. Alternatively, quote the whole file name with
‘/:’ (see the section called “Quoted File Names”). File names which begin with a
literal ‘~’ should also be quoted with ‘/:’.
You can include non-ASCII characters in file names.
See the section called “Coding Systems for File Names”.

Visiting Files

	C-x C-f
	Visit a file (find-file).

	C-x C-r
	Visit a file for viewing, without allowing changes to it
(find-file-read-only).

	C-x C-v
	Visit a different file instead of the one visited last
(find-alternate-file).

	C-x 4 f
	Visit a file, in another window (find-file-other-window). Don't
alter what is displayed in the selected window.

	C-x 5 f
	Visit a file, in a new frame (find-file-other-frame). Don't
alter what is displayed in the selected frame.

	M-x find-file-literally
	Visit a file with no conversion of the contents.

 Visiting a file means reading its contents into an Emacs
buffer so you can edit them. Emacs makes a new buffer for each file
that you visit.
 To visit a file, type C-x C-f (find-file) and use the
minibuffer to enter the name of the desired file. While in the
minibuffer, you can abort the command by typing C-g. See the section called “File Names”, for details about entering file names into minibuffers.
If the specified file exists but the system does not allow you to
read it, an error message is displayed in the echo area. Otherwise,
you can tell that C-x C-f has completed successfully by the
appearance of new text on the screen, and by the buffer name shown in
the mode line (see the section called “The Mode Line”). Emacs normally constructs the
buffer name from the file name, omitting the directory name. For
example, a file named /usr/rms/emacs.tex is visited in a buffer
named ‘emacs.tex’. If there is already a buffer with that name,
Emacs constructs a unique name; the normal method is to append
‘<2>’, ‘<3>’, and so on, but you can select other methods.
See the section called “Making Buffer Names Unique”.
 To create a new file, just visit it using the same command, C-x
C-f. Emacs displays ‘(New file)’ in the echo area, but in other
respects behaves as if you had visited an existing empty file.
 After visiting a file, the changes you make with editing commands are
made in the Emacs buffer. They do not take effect in the visited
file, until you save the buffer (see the section called “Saving Files”). If a buffer
contains changes that have not been saved, we say the buffer is
modified. This implies that some changes will be lost if the
buffer is not saved. The mode line displays two stars near the left
margin to indicate that the buffer is modified.
If you visit a file that is already in Emacs, C-x C-f switches
to the existing buffer instead of making another copy. Before doing
so, it checks whether the file has changed since you last visited or
saved it. If the file has changed, Emacs offers to reread it.
 If you try to visit a file larger than
large-file-warning-threshold (the default is 10000000, which is
about 10 megabytes), Emacs asks you for confirmation first. You can
answer y to proceed with visiting the file. Note, however, that
Emacs cannot visit files that are larger than the maximum Emacs buffer
size, which is limited by the amount of memory Emacs can allocate and
by the integers that Emacs can represent (see Chapter 19, Using Multiple Buffers). If you
try, Emacs displays an error message saying that the maximum buffer
size has been exceeded.
 If the file name you specify contains shell-style wildcard
characters, Emacs visits all the files that match it. (On
case-insensitive filesystems, Emacs matches the wildcards disregarding
the letter case.) Wildcards include ‘?’, ‘*’, and
‘[…]’ sequences. To enter the wild card ‘?’ in a file
name in the minibuffer, you need to type C-q ?. See the section called “Quoted File Names”, for information on how to visit a file whose name
actually contains wildcard characters. You can disable the wildcard
feature by customizing find-file-wildcards.
 If you visit the wrong file unintentionally by typing its name
incorrectly, type C-x C-v (find-alternate-file) to visit
the file you really wanted. C-x C-v is similar to C-x
C-f, but it kills the current buffer (after first offering to save it
if it is modified). When C-x C-v reads the file name to visit,
it inserts the entire default file name in the buffer, with point just
after the directory part; this is convenient if you made a slight
error in typing the name.
 If you “visit” a file that is actually a directory, Emacs invokes
Dired, the Emacs directory browser. See Chapter 30, Dired, the Directory Editor. You can disable
this behavior by setting the variable find-file-run-dired to
nil; in that case, it is an error to try to visit a directory.
Files which are actually collections of other files, or file
archives, are visited in special modes which invoke a Dired-like
environment to allow operations on archive members. See the section called “File Archives”, for more about these features.
If you visit a file that the operating system won't let you modify,
or that is marked read-only, Emacs makes the buffer read-only too, so
that you won't go ahead and make changes that you'll have trouble
saving afterward. You can make the buffer writable with C-x C-q
(toggle-read-only). See the section called “Miscellaneous Buffer Operations”.
 If you want to visit a file as read-only in order to protect
yourself from entering changes accidentally, visit it with the command
C-x C-r (find-file-read-only) instead of C-x C-f.
 C-x 4 f (find-file-other-window) is like C-x C-f
except that the buffer containing the specified file is selected in another
window. The window that was selected before C-x 4 f continues to
show the same buffer it was already showing. If this command is used when
only one window is being displayed, that window is split in two, with one
window showing the same buffer as before, and the other one showing the
newly requested file. See Chapter 20, Multiple Windows.
 C-x 5 f (find-file-other-frame) is similar, but opens a
new frame, or selects any existing frame showing the specified file.
See Chapter 21, Frames and Graphical Displays.
 On graphical displays, there are two additional methods for visiting
files. Firstly, when Emacs is built with a suitable GUI toolkit,
commands invoked with the mouse (by clicking on the menu bar or tool
bar) use the toolkit's standard “File Selection” dialog instead of
prompting for the file name in the minibuffer. On GNU/Linux and Unix
platforms, Emacs does this when built with GTK, LessTif, and Motif
toolkits; on MS-Windows and Mac, the GUI version does that by default.
For information on how to customize this, see the section called “Using Dialog Boxes”.
Secondly, Emacs supports “drag and drop”: dropping a file into an
ordinary Emacs window visits the file using that window. As an
exception, dropping a file into a window displaying a Dired buffer
moves or copies the file into the displayed directory. For details,
see the section called “Drag and Drop”, and the section called “Other Dired Features”.
Each time you visit a file, Emacs automatically scans its contents
to detect what character encoding and end-of-line convention it uses,
and converts these to Emacs's internal encoding and end-of-line
convention within the buffer. When you save the buffer, Emacs
performs the inverse conversion, writing the file to disk with its
original encoding and end-of-line convention. See the section called “Coding Systems”.
 If you wish to edit a file as a sequence of ASCII
characters with no special encoding or conversion, use the M-x
find-file-literally command. This visits a file, like C-x C-f,
but does not do format conversion (see See section ``Format Conversion'' in the Emacs Lisp Reference Manual), character code
conversion (see the section called “Coding Systems”), or automatic uncompression
(see the section called “Accessing Compressed Files”), and does not add a final newline because
of require-final-newline (see the section called “Customizing Saving of Files”). If you have
already visited the same file in the usual (non-literal) manner, this
command asks you whether to visit it literally instead.
 Two special hook variables allow extensions to modify the operation
of visiting files. Visiting a file that does not exist runs the
functions in find-file-not-found-functions; this variable holds
a list of functions, which are called one by one (with no arguments)
until one of them returns non-nil. This is not a normal hook,
and the name ends in ‘-functions’ rather than ‘-hook’ to
indicate that fact.
Successful visiting of any file, whether existing or not, calls the
functions in find-file-hook, with no arguments. This variable
is a normal hook. In the case of a nonexistent file, the
find-file-not-found-functions are run first. See the section called “Hooks”.
There are several ways to specify automatically the major mode for
editing the file (see the section called “Choosing File Modes”), and to specify local
variables defined for that file (see the section called “Local Variables in Files”).

Saving Files

Saving a buffer in Emacs means writing its contents back into the file
that was visited in the buffer.
Commands for Saving Files

These are the commands that relate to saving and writing files.
	C-x C-s
	Save the current buffer to its file (save-buffer).

	C-x s
	Save any or all buffers to their files (save-some-buffers).

	M-~
	Forget that the current buffer has been changed (not-modified).
With prefix argument (C-u), mark the current buffer as changed.

	C-x C-w
	Save the current buffer with a specified file name (write-file).

	M-x set-visited-file-name
	Change the file name under which the current buffer will be saved.

 When you wish to save the file and make your changes permanent, type
C-x C-s (save-buffer). After saving is finished, C-x C-s
displays a message like this:

Wrote /u/rms/gnu/gnu.tasks

If the current buffer is not modified (no changes have been made in it
since the buffer was created or last saved), saving is not really
done, because it would have no effect. Instead, C-x C-s
displays a message like this in the echo area:

(No changes need to be saved)

With a prefix argument, C-u C-x C-s, Emacs also marks the buffer
to be backed up when the next save is done. See the section called “Backup Files”.
 The command C-x s (save-some-buffers) offers to save any
or all modified buffers. It asks you what to do with each buffer. The
possible responses are analogous to those of query-replace:
	y
	Save this buffer and ask about the rest of the buffers.

	n
	Don't save this buffer, but ask about the rest of the buffers.

	!
	Save this buffer and all the rest with no more questions.

	RET
	Terminate save-some-buffers without any more saving.

	.
	Save this buffer, then exit save-some-buffers without even asking
about other buffers.

	C-r
	View the buffer that you are currently being asked about. When you exit
View mode, you get back to save-some-buffers, which asks the
question again.

	d
	Diff the buffer against its corresponding file, so you can see what
changes you would be saving. This calls the command
diff-buffer-with-file (see the section called “Comparing Files”).

	C-h
	Display a help message about these options.

C-x C-c, the key sequence to exit Emacs, invokes
save-some-buffers and therefore asks the same questions.
 If you have changed a buffer but do not wish to save the changes,
you should take some action to prevent it. Otherwise, each time you
use C-x s or C-x C-c, you are liable to save this buffer
by mistake. One thing you can do is type M-~
(not-modified), which clears out the indication that the buffer
is modified. If you do this, none of the save commands will believe
that the buffer needs to be saved. (‘~’ is often used as a
mathematical symbol for `not'; thus M-~ is `not', metafied.)
Alternatively, you can cancel all the changes made since the file was
visited or saved, by reading the text from the file again. This is
called reverting. See the section called “Reverting a Buffer”. (You could also undo all
the changes by repeating the undo command C-x u until you have
undone all the changes; but reverting is easier.)
 M-x set-visited-file-name alters the name of the file that the
current buffer is visiting. It reads the new file name using the
minibuffer. Then it marks the buffer as visiting that file name, and
changes the buffer name correspondingly. set-visited-file-name
does not save the buffer in the newly visited file; it just alters the
records inside Emacs in case you do save later. It also marks the
buffer as “modified” so that C-x C-s in that buffer
will save.
 If you wish to mark the buffer as visiting a different file and save
it right away, use C-x C-w (write-file). This is
equivalent to set-visited-file-name followed by C-x C-s,
except that C-x C-w asks for confirmation if the file exists.
C-x C-s used on a buffer that is not visiting a file has the
same effect as C-x C-w; that is, it reads a file name, marks the
buffer as visiting that file, and saves it there. The default file
name in a buffer that is not visiting a file is made by combining the
buffer name with the buffer's default directory (see the section called “File Names”).
If the new file name implies a major mode, then C-x C-w switches
to that major mode, in most cases. The command
set-visited-file-name also does this. See the section called “Choosing File Modes”.
If Emacs is about to save a file and sees that the date of the latest
version on disk does not match what Emacs last read or wrote, Emacs
notifies you of this fact, because it probably indicates a problem caused
by simultaneous editing and requires your immediate attention.
See Simultaneous Editing.

Backup Files

 On most operating systems, rewriting a file automatically destroys all
record of what the file used to contain. Thus, saving a file from Emacs
throws away the old contents of the file—or it would, except that
Emacs carefully copies the old contents to another file, called the
backup file, before actually saving.
Emacs makes a backup for a file only the first time the file is
saved from a buffer. No matter how many times you subsequently save
the file, its backup remains unchanged. However, if you kill the
buffer and then visit the file again, a new backup file will be made.
For most files, the variable make-backup-files determines
whether to make backup files. On most operating systems, its default
value is t, so that Emacs does write backup files.
For files managed by a version control system (see the section called “Version Control”), the variable vc-make-backup-files determines whether
to make backup files. By default it is nil, since backup files
are redundant when you store all the previous versions in a version
control system.
See the section called “General Options”.
At your option, Emacs can keep either a single backup for each file,
or make a series of numbered backup files for each file that you edit.
See the section called “Single or Numbered Backups”.
 The default value of the backup-enable-predicate variable
prevents backup files being written for files in the directories used
for temporary files, specified by temporary-file-directory or
small-temporary-file-directory.
You can explicitly tell Emacs to make another backup file from a
buffer, even though that buffer has been saved before. If you save
the buffer with C-u C-x C-s, the version thus saved will be made
into a backup file if you save the buffer again. C-u C-u C-x
C-s saves the buffer, but first makes the previous file contents into
a new backup file. C-u C-u C-u C-x C-s does both things: it
makes a backup from the previous contents, and arranges to make
another from the newly saved contents if you save again.
Single or Numbered Backups

When Emacs makes a backup file, its name is normally constructed by
appending ‘~’ to the file name being edited; thus, the backup
file for eval.c would be eval.c~.
If access control stops Emacs from writing backup files under the
usual names, it writes the backup file as ~/.emacs.d/%backup%~.
Only one such file can exist, so only the most recently made such
backup is available.
Emacs can also make numbered backup files. Numbered backup
file names contain ‘.~’, the number, and another ‘~’ after
the original file name. Thus, the backup files of eval.c would
be called eval.c.~1~, eval.c.~2~, and so on, all the way
through names like eval.c.~259~ and beyond.
 The variable version-control determines whether to make
single backup files or multiple numbered backup files. Its possible
values are:
	nil
	Make numbered backups for files that have numbered backups already.
Otherwise, make single backups. This is the default.

	t
	Make numbered backups.

	never
	Never make numbered backups; always make single backups.

The usual way to set this variable is globally, through your init file
or the customization buffer. However, you can set
version-control locally in an individual buffer to control the
making of backups for that buffer's file (see the section called “Local Variables”). You can
have Emacs set version-control locally whenever you visit a
given file (see the section called “Local Variables in Files”). Some modes, such as Rmail mode,
set this variable.
 If you set the environment variable VERSION_CONTROL, to tell
various GNU utilities what to do with backup files, Emacs also obeys the
environment variable by setting the Lisp variable version-control
accordingly at startup. If the environment variable's value is ‘t’
or ‘numbered’, then version-control becomes t; if the
value is ‘nil’ or ‘existing’, then version-control
becomes nil; if it is ‘never’ or ‘simple’, then
version-control becomes never.
 You can customize the variable backup-directory-alist to
specify that files matching certain patterns should be backed up in
specific directories. This variable applies to both single and
numbered backups. A typical use is to add an element ("."
. dir) to make all backups in the directory with absolute name
dir; Emacs modifies the backup file names to avoid clashes
between files with the same names originating in different
directories. Alternatively, adding, ("." . ".~") would make
backups in the invisible subdirectory .~ of the original file's
directory. Emacs creates the directory, if necessary, to make the
backup.
 If you define the variable make-backup-file-name-function to
a suitable Lisp function, that overrides the usual way Emacs
constructs backup file names.

Automatic Deletion of Backups

To prevent excessive consumption of disk space, Emacs can delete numbered
backup versions automatically. Generally Emacs keeps the first few backups
and the latest few backups, deleting any in between. This happens every
time a new backup is made.
 The two variables kept-old-versions and
kept-new-versions control this deletion. Their values are,
respectively, the number of oldest (lowest-numbered) backups to keep
and the number of newest (highest-numbered) ones to keep, each time a
new backup is made. The backups in the middle (excluding those oldest
and newest) are the excess middle versions—those backups are
deleted. These variables' values are used when it is time to delete
excess versions, just after a new backup version is made; the newly
made backup is included in the count in kept-new-versions. By
default, both variables are 2.
 If delete-old-versions is t, Emacs deletes the excess
backup files silently. If it is nil, the default, Emacs asks
you whether it should delete the excess backup versions. If it has
any other value, then Emacs never automatically deletes backups.
Dired's . (Period) command can also be used to delete old versions.
See the section called “Deleting Files with Dired”.

Copying vs. Renaming

Backup files can be made by copying the old file or by renaming it.
This makes a difference when the old file has multiple names (hard
links). If the old file is renamed into the backup file, then the
alternate names become names for the backup file. If the old file is
copied instead, then the alternate names remain names for the file
that you are editing, and the contents accessed by those names will be
the new contents.
The method of making a backup file may also affect the file's owner
and group. If copying is used, these do not change. If renaming is used,
you become the file's owner, and the file's group becomes the default
(different operating systems have different defaults for the group).
 The choice of renaming or copying is made as follows:
	If the variable backup-by-copying is non-nil (the
default is nil), use copying.

	Otherwise, if the variable backup-by-copying-when-linked is
non-nil (the default is nil), and the file has multiple
names, use copying.

	Otherwise, if the variable backup-by-copying-when-mismatch is
non-nil (the default is t), and renaming would change
the file's owner or group, use copying.
If you change backup-by-copying-when-mismatch to nil,
Emacs checks the numeric user-id of the file's owner. If this is
higher than backup-by-copying-when-privileged-mismatch, then it
behaves as though backup-by-copying-when-mismatch is
non-nil anyway.

	Otherwise, renaming is the default choice.

When a file is managed with a version control system (see the section called “Version Control”), Emacs does not normally make backups in the usual way for
that file. But check-in and check-out are similar in some ways to
making backups. One unfortunate similarity is that these operations
typically break hard links, disconnecting the file name you visited from
any alternate names for the same file. This has nothing to do with
Emacs—the version control system does it.

Customizing Saving of Files

 If the value of the variable require-final-newline is
t, saving or writing a file silently puts a newline at the end
if there isn't already one there. If the value is visit, Emacs
adds a newline at the end of any file that doesn't have one, just
after it visits the file. (This marks the buffer as modified, and you
can undo it.) If the value is visit-save, Emacs adds such
newlines both on visiting and on saving. If the value is nil,
Emacs leaves the end of the file unchanged; any other non-nil
value means to asks you whether to add a newline. The default is
nil.
 Some major modes are designed for specific kinds of files that are
always supposed to end in newlines. Such major modes set the variable
require-final-newline to the value of
mode-require-final-newline, which defaults to t. By
setting the latter variable, you can control how these modes handle
final newlines.
 When Emacs saves a file, it invokes the fsync system call to
force the data immediately out to disk. This is important for safety
if the system crashes or in case of power outage. However, it can be
disruptive on laptops using power saving, as it may force a disk
spin-up each time you save a file. If you accept an increased risk of
data loss, you can set write-region-inhibit-fsync to a
non-nil value to disable the synchronization.

Protection against Simultaneous Editing

 Simultaneous editing occurs when two users visit the same file, both
make changes, and then both save them. If nobody is informed that
this is happening, whichever user saves first would later find that
his changes were lost.
On some systems, Emacs notices immediately when the second user starts
to change the file, and issues an immediate warning. On all systems,
Emacs checks when you save the file, and warns if you are about to
overwrite another user's changes. You can prevent loss of the other
user's work by taking the proper corrective action instead of saving the
file.
 When you make the first modification in an Emacs buffer that is
visiting a file, Emacs records that the file is locked by you.
(It does this by creating a specially-named symbolic link in the same
directory.) Emacs removes the lock when you save the changes. The
idea is that the file is locked whenever an Emacs buffer visiting it
has unsaved changes.
 If you begin to modify the buffer while the visited file is locked by
someone else, this constitutes a collision. When Emacs detects a
collision, it asks you what to do, by calling the Lisp function
ask-user-about-lock. You can redefine this function for the sake
of customization. The standard definition of this function asks you a
question and accepts three possible answers:
	s
	Steal the lock. Whoever was already changing the file loses the lock,
and you gain the lock.

	p
	Proceed. Go ahead and edit the file despite its being locked by someone else.

	q
	Quit. This causes an error (file-locked), and the buffer
contents remain unchanged—the modification you were trying to make
does not actually take place.

If Emacs or the operating system crashes, this may leave behind lock
files which are stale, so you may occasionally get warnings about
spurious collisions. When you determine that the collision is
spurious, just use p to tell Emacs to go ahead anyway.
Note that locking works on the basis of a file name; if a file has
multiple names, Emacs does not prevent two users from editing it
simultaneously under different names.
A lock file cannot be written in some circumstances, e.g. if Emacs
lacks the system permissions or the system does not support symbolic
links. In these cases, Emacs can still detect the collision when you
try to save a file, by checking the file's last-modification date. If
the file has changed since the last time Emacs visited or saved it,
that implies that changes have been made in some other way, and will
be lost if Emacs proceeds with saving. Emacs then displays a warning
message and asks for confirmation before saving; answer yes to
save, and no or C-g cancel the save.
If you are notified that simultaneous editing has already taken
place, one way to compare the buffer to its file is the M-x
diff-buffer-with-file command. See the section called “Comparing Files”.

Shadowing Files

	M-x shadow-initialize
	Set up file shadowing.

	M-x shadow-define-literal-group
	Declare a single file to be shared between sites.

	M-x shadow-define-regexp-group
	Make all files that match each of a group of files be shared between hosts.

	M-x shadow-define-cluster RET name RET
	Define a shadow file cluster name.

	M-x shadow-copy-files
	Copy all pending shadow files.

	M-x shadow-cancel
	Cancel the instruction to shadow some files.

You can arrange to keep identical shadow copies of certain files
in more than one place—possibly on different machines. To do this,
first you must set up a shadow file group, which is a set of
identically-named files shared between a list of sites. The file
group is permanent and applies to further Emacs sessions as well as
the current one. Once the group is set up, every time you exit Emacs,
it will copy the file you edited to the other files in its group. You
can also do the copying without exiting Emacs, by typing M-x
shadow-copy-files.
To set up a shadow file group, use M-x
shadow-define-literal-group or M-x shadow-define-regexp-group.
See their documentation strings for further information.
Before copying a file to its shadows, Emacs asks for confirmation.
You can answer “no” to bypass copying of this file, this time. If
you want to cancel the shadowing permanently for a certain file, use
M-x shadow-cancel to eliminate or change the shadow file group.
A shadow cluster is a group of hosts that share directories, so
that copying to or from one of them is sufficient to update the file
on all of them. Each shadow cluster has a name, and specifies the
network address of a primary host (the one we copy files to), and a
regular expression that matches the host names of all the other hosts
in the cluster. You can define a shadow cluster with M-x
shadow-define-cluster.

Updating Time Stamps Automatically

You can arrange to put a time stamp in a file, so that it is updated
automatically each time you edit and save the file. The time stamp
must be in the first eight lines of the file, and you should insert it
like this:

Time-stamp: <>

or like this:

Time-stamp: " "

 Then add the function time-stamp to the hook
before-save-hook (see the section called “Hooks”). When you save the file, this
function then automatically updates the time stamp with the current
date and time. You can also use the command M-x time-stamp to
update the time stamp manually. For other customizations, see the
Custom group time-stamp. Note that the time stamp is formatted
according to your locale setting (see the section called “Environment Variables”).

Reverting a Buffer

 If you have made extensive changes to a file-visiting buffer and
then change your mind, you can revert the changes and go back to
the saved version of the file. To do this, type M-x
revert-buffer. Since reverting unintentionally could lose a lot of
work, Emacs asks for confirmation first.
The revert-buffer command tries to position point in such a
way that, if the file was edited only slightly, you will be at
approximately the same part of the text as before. But if you have
made major changes, point may end up in a totally different location.
Reverting marks the buffer as “not modified”. It also clears the
buffer's undo history (see the section called “Undo”). Thus, the reversion cannot be
undone—if you change your mind yet again, you can't use the undo
commands to bring the reverted changes back.
Some kinds of buffers that are not associated with files, such as
Dired buffers, can also be reverted. For them, reverting means
recalculating their contents. Buffers created explicitly with
C-x b cannot be reverted; revert-buffer reports an error
if you try.
 When you edit a file that changes automatically and frequently—for
example, a log of output from a process that continues to run—it may
be useful for Emacs to revert the file without querying you. To
request this behavior, set the variable revert-without-query to
a list of regular expressions. When a file name matches one of these
regular expressions, find-file and revert-buffer will
revert it automatically if it has changed—provided the buffer itself
is not modified. (If you have edited the text, it would be wrong to
discard your changes.)
 You can also tell Emacs to revert buffers periodically. To do this
for a specific buffer, enable the minor mode Auto-Revert mode by
typing M-x auto-revert-mode. This automatically reverts the
current buffer every five seconds; you can change the interval through
the variable auto-revert-interval. To do the same for all file
buffers, type M-x global-auto-revert-mode to enable Global
Auto-Revert mode. These minor modes do not check or revert remote
files, because that is usually too slow.
One use of Auto-Revert mode is to “tail” a file such as a system
log, so that changes made to that file by other programs are
continuously displayed. To do this, just move the point to the end of
the buffer, and it will stay there as the file contents change.
However, if you are sure that the file will only change by growing at
the end, use Auto-Revert Tail mode instead
(auto-revert-tail-mode). It is more efficient for this.
Auto-Revert Tail mode works also for remote files.
See the section called “Undoing Version Control Actions”, for commands to revert to earlier versions of files
under version control. See the section called “Version Control and the Mode Line”, for Auto Revert
peculiarities when visiting files under version control.

Auto Reverting Non-File Buffers

Global Auto Revert Mode normally only reverts file buffers. There are
two ways to auto-revert certain non-file buffers: by enabling Auto
Revert Mode in those buffers (using M-x auto-revert-mode); and
by setting global-auto-revert-non-file-buffers to a
non-nil value. The latter enables Auto Reverting for all types
of buffers for which it is implemented (listed in the menu below).
Like file buffers, non-file buffers should normally not revert while
you are working on them, or while they contain information that might
get lost after reverting. Therefore, they do not revert if they are
“modified”. This can get tricky, because deciding when a non-file
buffer should be marked modified is usually more difficult than for
file buffers.
Another tricky detail is that, for efficiency reasons, Auto Revert
often does not try to detect all possible changes in the buffer, only
changes that are “major” or easy to detect. Hence, enabling
auto-reverting for a non-file buffer does not always guarantee that
all information in the buffer is up-to-date, and does not necessarily
make manual reverts useless.
At the other extreme, certain buffers automatically revert every
auto-revert-interval seconds. (This currently only applies to
the Buffer Menu.) In this case, Auto Revert does not print any
messages while reverting, even when auto-revert-verbose is
non-nil.
The details depend on the particular types of buffers and are
explained in the corresponding sections.
Auto Reverting the Buffer Menu

If auto-reverting of non-file buffers is enabled, the Buffer Menu
automatically reverts every auto-revert-interval seconds,
whether there is a need for it or not. (It would probably take longer
to check whether there is a need than to actually revert.)
If the Buffer Menu inappropriately gets marked modified, just revert
it manually using g and auto-reverting will resume. However, if
you marked certain buffers to get deleted or to be displayed, you have
to be careful, because reverting erases all marks. The fact that
adding marks sets the buffer's modified flag prevents Auto Revert from
automatically erasing the marks.

Auto Reverting Dired buffers

Auto-reverting Dired buffers currently works on GNU or Unix style
operating systems. It may not work satisfactorily on some other
systems.
Dired buffers only auto-revert when the file list of the buffer's main
directory changes (e.g. when a new file is added). They do not
auto-revert when information about a particular file changes
(e.g. when the size changes) or when inserted subdirectories change.
To be sure that all listed information is up to date, you have
to manually revert using g, even if auto-reverting is
enabled in the Dired buffer. Sometimes, you might get the impression
that modifying or saving files listed in the main directory actually
does cause auto-reverting. This is because making changes to a file,
or saving it, very often causes changes in the directory itself; for
instance, through backup files or auto-save files. However, this is
not guaranteed.
If the Dired buffer is marked modified and there are no changes you
want to protect, then most of the time you can make auto-reverting
resume by manually reverting the buffer using g. There is one
exception. If you flag or mark files, you can safely revert the
buffer. This will not erase the flags or marks (unless the marked
file has been deleted, of course). However, the buffer will stay
modified, even after reverting, and auto-reverting will not resume.
This is because, if you flag or mark files, you may be working on the
buffer and you might not want the buffer to change without warning.
If you want auto-reverting to resume in the presence of marks and
flags, mark the buffer non-modified using M-~. However, adding,
deleting or changing marks or flags will mark it modified again.
Remote Dired buffers are not auto-reverted (because it may be slow).
Neither are Dired buffers for which you used shell wildcards or file
arguments to list only some of the files. *Find* and
Locate buffers do not auto-revert either.

Adding Support for Auto-Reverting additional Buffers.

This section is intended for Elisp programmers who would like to add
support for auto-reverting new types of buffers.
To support auto-reverting the buffer must first of all have a
revert-buffer-function. See See section ``Reverting'' in the Emacs Lisp Reference Manual.
In addition, it must have a buffer-stale-function.
buffer-stale-function
The value of this variable is a function to check whether a non-file
buffer needs reverting. This should be a function with one optional
argument noconfirm. The function should return non-nil
if the buffer should be reverted. The buffer is current when this
function is called.
While this function is mainly intended for use in auto-reverting, it
could be used for other purposes as well. For instance, if
auto-reverting is not enabled, it could be used to warn the user that
the buffer needs reverting. The idea behind the noconfirm
argument is that it should be t if the buffer is going to be
reverted without asking the user and nil if the function is
just going to be used to warn the user that the buffer is out of date.
In particular, for use in auto-reverting, noconfirm is t.
If the function is only going to be used for auto-reverting, you can
ignore the noconfirm argument.
If you just want to automatically auto-revert every
auto-revert-interval seconds (like the Buffer Menu), use:

(set (make-local-variable 'buffer-stale-function)
 #'(lambda (&optional noconfirm) 'fast))

in the buffer's mode function.
The special return value ‘fast’ tells the caller that the need
for reverting was not checked, but that reverting the buffer is fast.
It also tells Auto Revert not to print any revert messages, even if
auto-revert-verbose is non-nil. This is important, as
getting revert messages every auto-revert-interval seconds can
be very annoying. The information provided by this return value could
also be useful if the function is consulted for purposes other than
auto-reverting.

Once the buffer has a revert-buffer-function and a
buffer-stale-function, several problems usually remain.
The buffer will only auto-revert if it is marked unmodified. Hence,
you will have to make sure that various functions mark the buffer
modified if and only if either the buffer contains information that
might be lost by reverting, or there is reason to believe that the user
might be inconvenienced by auto-reverting, because he is actively
working on the buffer. The user can always override this by manually
adjusting the modified status of the buffer. To support this, calling
the revert-buffer-function on a buffer that is marked
unmodified should always keep the buffer marked unmodified.
It is important to assure that point does not continuously jump around
as a consequence of auto-reverting. Of course, moving point might be
inevitable if the buffer radically changes.
You should make sure that the revert-buffer-function does not
print messages that unnecessarily duplicate Auto Revert's own messages,
displayed if auto-revert-verbose is t, and effectively
override a nil value for auto-revert-verbose. Hence,
adapting a mode for auto-reverting often involves getting rid of such
messages. This is especially important for buffers that automatically
revert every auto-revert-interval seconds.
If the new auto-reverting is part of Emacs, you should mention it
in the documentation string of global-auto-revert-non-file-buffers.
Similarly, you should add a section to this chapter. This section
should at the very least make clear whether enabling auto-reverting
for the buffer reliably assures that all information in the buffer is
completely up to date (or will be after auto-revert-interval
seconds).

Auto-Saving: Protection Against Disasters

 From time to time, Emacs automatically saves each visited file in a
separate file, without altering the file you actually use. This is
called auto-saving. It prevents you from losing more than a
limited amount of work if the system crashes.
When Emacs determines that it is time for auto-saving, it considers
each buffer, and each is auto-saved if auto-saving is enabled for it
and it has been changed since the last time it was auto-saved. The
message ‘Auto-saving...’ is displayed in the echo area during
auto-saving, if any files are actually auto-saved. Errors occurring
during auto-saving are caught so that they do not interfere with the
execution of commands you have been typing.
Auto-Save Files

Auto-saving does not normally save in the files that you visited,
because it can be very undesirable to save a change that you did not
want to make permanent. Instead, auto-saving is done in a different
file called the auto-save file, and the visited file is changed
only when you request saving explicitly (such as with C-x C-s).
Normally, the auto-save file name is made by appending ‘#’ to the
front and rear of the visited file name. Thus, a buffer visiting file
foo.c is auto-saved in a file #foo.c#. Most buffers that
are not visiting files are auto-saved only if you request it explicitly;
when they are auto-saved, the auto-save file name is made by appending
‘#’ to the front and rear of buffer name, then
adding digits and letters at the end for uniqueness. For
example, the *mail* buffer in which you compose messages to be
sent might be auto-saved in a file named #*mail*#704juu. Auto-save file
names are made this way unless you reprogram parts of Emacs to do
something different (the functions make-auto-save-file-name and
auto-save-file-name-p). The file name to be used for auto-saving
in a buffer is calculated when auto-saving is turned on in that buffer.
 The variable auto-save-file-name-transforms allows a degree
of control over the auto-save file name. It lets you specify a series
of regular expressions and replacements to transform the auto save
file name. The default value puts the auto-save files for remote
files (see the section called “Remote Files”) into the temporary file directory on the
local machine.
When you delete a substantial part of the text in a large buffer, auto
save turns off temporarily in that buffer. This is because if you
deleted the text unintentionally, you might find the auto-save file more
useful if it contains the deleted text. To reenable auto-saving after
this happens, save the buffer with C-x C-s, or use C-u 1 M-x
auto-save-mode.
 If you want auto-saving to be done in the visited file rather than
in a separate auto-save file, set the variable
auto-save-visited-file-name to a non-nil value. In this
mode, there is no real difference between auto-saving and explicit
saving.
 A buffer's auto-save file is deleted when you save the buffer in its
visited file. (You can inhibit this by setting the variable
delete-auto-save-files to nil.) Changing the visited
file name with C-x C-w or set-visited-file-name renames
any auto-save file to go with the new visited name.

Controlling Auto-Saving

 Each time you visit a file, auto-saving is turned on for that file's
buffer if the variable auto-save-default is non-nil (but
not in batch mode; see the section called “Initial Options”). The default for this
variable is t, so auto-saving is the usual practice for
file-visiting buffers. To toggle auto-saving in the current buffer,
type M-x auto-save-mode. Auto Save mode acts as a buffer-local
minor mode (see the section called “Minor Modes”).
 Emacs auto-saves periodically based on how many characters you have
typed since the last auto-save. The variable
auto-save-interval specifies how many characters there are
between auto-saves. By default, it is 300. Emacs doesn't accept
values that are too small: if you customize auto-save-interval
to a value less than 20, Emacs will behave as if the value is 20.
 Auto-saving also takes place when you stop typing for a while. By
default, it does this after 30 seconds of idleness (at this time,
Emacs may also perform garbage collection; see See section ``Garbage Collection'' in The Emacs Lisp Reference Manual). To change
this interval, customize the variable auto-save-timeout. The
actual time period is longer if the current buffer is long; this is a
heuristic which aims to keep out of your way when you are editing long
buffers, in which auto-save takes an appreciable amount of time.
Auto-saving during idle periods accomplishes two things: first, it
makes sure all your work is saved if you go away from the terminal for
a while; second, it may avoid some auto-saving while you are actually
typing.
Emacs also does auto-saving whenever it gets a fatal error. This
includes killing the Emacs job with a shell command such as ‘kill
%emacs’, or disconnecting a phone line or network connection.
 You can perform an auto-save explicitly with the command M-x
do-auto-save.

Recovering Data from Auto-Saves

 You can use the contents of an auto-save file to recover from a loss
of data with the command M-x recover-file RET file
RET. This visits file and then (after your confirmation)
restores the contents from its auto-save file #file#.
You can then save with C-x C-s to put the recovered text into
file itself. For example, to recover file foo.c from its
auto-save file #foo.c#, do:

M-x recover-file RET foo.c RET
yes RET
C-x C-s

Before asking for confirmation, M-x recover-file displays a
directory listing describing the specified file and the auto-save file,
so you can compare their sizes and dates. If the auto-save file
is older, M-x recover-file does not offer to read it.
 If Emacs or the computer crashes, you can recover all the files you
were editing from their auto save files with the command M-x
recover-session. This first shows you a list of recorded interrupted
sessions. Move point to the one you choose, and type C-c C-c.
Then recover-session asks about each of the files that were
being edited during that session, asking whether to recover that file.
If you answer y, it calls recover-file, which works in its
normal fashion. It shows the dates of the original file and its
auto-save file, and asks once again whether to recover that file.
When recover-session is done, the files you've chosen to
recover are present in Emacs buffers. You should then save them. Only
this—saving them—updates the files themselves.
 Emacs records information about interrupted sessions for later
recovery in files named .saves-pid-hostname in the
directory ~/.emacs.d/auto-save-list/. This directory is
determined by the variable auto-save-list-file-prefix. If you
set auto-save-list-file-prefix to nil, sessions are not
recorded for recovery.

File Name Aliases

 Symbolic links and hard links both make it possible for several file
names to refer to the same file. Hard links are alternate names that
refer directly to the file; all the names are equally valid, and no one
of them is preferred. By contrast, a symbolic link is a kind of defined
alias: when foo is a symbolic link to bar, you can use
either name to refer to the file, but bar is the real name, while
foo is just an alias. More complex cases occur when symbolic
links point to directories.
 Normally, if you visit a file which Emacs is already visiting under
a different name, Emacs displays a message in the echo area and uses
the existing buffer visiting that file. This can happen on systems
that support hard or symbolic links, or if you use a long file name on
a system that truncates long file names, or on a case-insensitive file
system. You can suppress the message by setting the variable
find-file-suppress-same-file-warnings to a non-nil
value. You can disable this feature entirely by setting the variable
find-file-existing-other-name to nil: then if you visit
the same file under two different names, you get a separate buffer for
each file name.
 If the variable find-file-visit-truename is non-nil,
then the file name recorded for a buffer is the file's truename
(made by replacing all symbolic links with their target names), rather
than the name you specify. Setting find-file-visit-truename also
implies the effect of find-file-existing-other-name.
 Sometimes, a directory is ordinarily accessed through a symbolic
link, and you may want Emacs to preferentially show its “linked”
name. To do this, customize directory-abbrev-alist. Each
element in this list should have the form (from
. to), which means to replace from with to whenever
from appears in a directory name. The from string is a
regular expression (see the section called “Syntax of Regular Expressions”). It is matched against directory
names anchored at the first character, and should start with ‘\`’
(to support directory names with embedded newlines, which would defeat
‘^’). The to string should be an ordinary absolute
directory name pointing to the same directory. Do not use ‘~’ to
stand for a home directory in the to string; Emacs performs
these substitutions separately. Here's an example, from a system on
which /home/fsf is normally accessed through a symbolic link
named /fsf:

(("\\`/home/fsf" . "/fsf"))

File Directories

 The file system groups files into directories. A directory
listing is a list of all the files in a directory. Emacs provides
commands to create and delete directories, and to make directory
listings in brief format (file names only) and verbose format (sizes,
dates, and authors included). Emacs also includes a directory browser
feature called Dired; see Chapter 30, Dired, the Directory Editor.
	C-x C-d dir-or-pattern RET
	Display a brief directory listing (list-directory).

	C-u C-x C-d dir-or-pattern RET
	Display a verbose directory listing.

	M-x make-directory RET dirname RET
	Create a new directory named dirname.

	M-x delete-directory RET dirname RET
	Delete the directory named dirname. If it isn't empty,
you will be asked whether you want to delete it recursively.

 The command to display a directory listing is C-x C-d
(list-directory). It reads using the minibuffer a file name
which is either a directory to be listed or a wildcard-containing
pattern for the files to be listed. For example,

C-x C-d /u2/emacs/etc RET

lists all the files in directory /u2/emacs/etc. Here is an
example of specifying a file name pattern:

C-x C-d /u2/emacs/src/*.c RET

Normally, C-x C-d displays a brief directory listing containing
just file names. A numeric argument (regardless of value) tells it to
make a verbose listing including sizes, dates, and owners (like
‘ls -l’).
 The text of a directory listing is mostly obtained by running
ls in an inferior process. Two Emacs variables control the
switches passed to ls: list-directory-brief-switches is
a string giving the switches to use in brief listings ("-CF" by
default), and list-directory-verbose-switches is a string
giving the switches to use in a verbose listing ("-l" by
default).
 In verbose directory listings, Emacs adds information about the
amount of free space on the disk that contains the directory. To do
this, it runs the program specified by
directory-free-space-program with arguments
directory-free-space-args.
The command M-x delete-directory prompts for a directory name
using the minibuffer, and deletes the directory if it is empty. If
the directory is not empty, you will be asked whether you want to
delete it recursively. On systems that have a “Trash” (or “Recycle
Bin”) feature, you can make this command move the specified directory
to the Trash instead of deleting it outright, by changing the variable
delete-by-moving-to-trash to t. See the section called “Miscellaneous File Operations”,
for more information about using the Trash.

Comparing Files

 The command M-x diff prompts for two file names, using the
minibuffer, and displays the differences between the two files in a
buffer named *diff*. This works by running the diff
program, using options taken from the variable diff-switches.
The value of diff-switches should be a string; the default is
"-c" to specify a context diff. See See section ``Diff'' in Comparing and Merging Files, for more information about the
diff program.
The output of the diff command is shown using a major mode
called Diff mode. See the section called “Diff Mode”.
 The command M-x diff-backup compares a specified file with its
most recent backup. If you specify the name of a backup file,
diff-backup compares it with the source file that it is a
backup of. In all other respects, this behaves like M-x diff.
 The command M-x diff-buffer-with-file compares a specified
buffer with its corresponding file. This shows you what changes you
would make to the file if you save the buffer.
 The command M-x compare-windows compares the text in the
current window with that in the next window. (For more information
about windows in Emacs, Chapter 20, Multiple Windows.) Comparison starts at point in
each window, after pushing each initial point value on the mark ring
in its respective buffer. Then it moves point forward in each window,
one character at a time, until it reaches characters that don't match.
Then the command exits.
If point in the two windows is followed by non-matching text when
the command starts, M-x compare-windows tries heuristically to
advance up to matching text in the two windows, and then exits. So if
you use M-x compare-windows repeatedly, each time it either
skips one matching range or finds the start of another.
 With a numeric argument, compare-windows ignores changes in
whitespace. If the variable compare-ignore-case is
non-nil, the comparison ignores differences in case as well.
If the variable compare-ignore-whitespace is non-nil,
compare-windows normally ignores changes in whitespace, and a
prefix argument turns that off.
 You can use M-x smerge-mode to turn on Smerge mode, a minor
mode for editing output from the diff3 program. This is
typically the result of a failed merge from a version control system
“update” outside VC, due to conflicting changes to a file. Smerge
mode provides commands to resolve conflicts by selecting specific
changes.
See the section called “Merging Files with Emerge”,
for the Emerge facility, which provides a powerful interface for
merging files.

Diff Mode

 Diff mode is a major mode used for the output of M-x diff and
other similar commands. This kind of output is called a patch,
because it can be passed to the patch command to
automatically apply the specified changes. To select Diff mode
manually, type M-x diff-mode.
 The changes specified in a patch are grouped into hunks, which
are contiguous chunks of text that contain one or more changed lines.
Hunks can also include unchanged lines to provide context for the
changes. Each hunk is preceded by a hunk header, which
specifies the old and new line numbers at which the hunk occurs. Diff
mode highlights each hunk header, to distinguish it from the actual
contents of the hunk.
 You can edit a Diff mode buffer like any other buffer. (If it is
read-only, you need to make it writable first. See the section called “Miscellaneous Buffer Operations”.)
Whenever you change a hunk, Diff mode attempts to automatically
correct the line numbers in the hunk headers, to ensure that the diff
remains “correct”. To disable automatic line number correction,
change the variable diff-update-on-the-fly to nil.
Diff mode treats each hunk as an “error message”, similar to
Compilation mode. Thus, you can use commands such as C-x ' to
visit the corresponding source locations. See the section called “Compilation Mode”.
In addition, Diff mode provides the following commands to navigate,
manipulate and apply parts of patches:
	M-n
	Move to the next hunk-start (diff-hunk-next).
This command has a side effect: it refines the hunk you move to,
highlighting its changes with better granularity. To disable this
feature, type M-x diff-auto-refine-mode to toggle off the minor
mode Diff Auto-Refine mode. To disable Diff Auto Refine mode by
default, add this to your init file (see the section called “Hooks”):

(add-hook 'diff-mode-hook
 (lambda () (diff-auto-refine-mode -1)))

	M-p
	Move to the previous hunk-start (diff-hunk-prev). Like
M-n, this has the side-effect of refining the hunk you move to,
unless you disable Diff Auto-Refine mode.

	M-}
	Move to the next file-start, in a multi-file patch
(diff-file-next).

	M-{
	Move to the previous file-start, in a multi-file patch
(diff-file-prev).

	M-k
	Kill the hunk at point (diff-hunk-kill).

	M-K
	In a multi-file patch, kill the current file part.
(diff-file-kill).

	C-c C-a
	Apply this hunk to its target file (diff-apply-hunk). With a
prefix argument of C-u, revert this hunk.

	C-c C-b
	Highlight the changes of the hunk at point with a finer granularity
(diff-refine-hunk). This allows you to see exactly which parts
of each changed line were actually changed.

	C-c C-c
	Go to the source file and line corresponding to this hunk
(diff-goto-source).

	C-c C-e
	Start an Ediff session with the patch (diff-ediff-patch).
See See section ``Ediff'' in The Ediff Manual.

	C-c C-n
	Restrict the view to the current hunk (diff-restrict-view).
See the section called “Narrowing”. With a prefix argument of C-u, restrict the
view to the current file of a multiple-file patch. To widen again,
use C-x n w (widen).

	C-c C-r
	Reverse the direction of comparison for the entire buffer
(diff-reverse-direction).

	C-c C-s
	Split the hunk at point (diff-split-hunk). This is for
manually editing patches, and only works with the unified diff
format produced by the -u or --unified options to
the diff program. If you need to split a hunk in the
context diff format produced by the -c or
--context options to diff, first convert the buffer
to the unified diff format with C-c C-u.

	C-c C-d
	Convert the entire buffer to the context diff format
(diff-unified->context). With a prefix argument, convert only
the text within the region.

	C-c C-u
	Convert the entire buffer to unified diff format
(diff-context->unified). With a prefix argument, convert
unified format to context format. When the mark is active, convert
only the text within the region.

	C-c C-w
	Refine the current hunk so that it disregards changes in whitespace
(diff-refine-hunk).

	C-x 4 A
	Generate a ChangeLog entry, like C-x 4 a does (see the section called “Change Logs”), for each one of the hunks
(diff-add-change-log-entries-other-window). This creates a
skeleton of the log of changes that you can later fill with the actual
descriptions of the changes. C-x 4 a itself in Diff mode
operates on behalf of the current hunk's file, but gets the function
name from the patch itself. This is useful for making log entries for
functions that are deleted by the patch.

By default, Diff mode highlights trailing whitespace on modified
lines, so that they are more obvious. This is done by enabling
Whitespace mode in the Diff buffer (see the section called “Useless Whitespace”). Diff
mode buffers are set up so that Whitespace mode avoids highlighting
trailing whitespace occurring in the diff context.

Miscellaneous File Operations

Emacs has commands for performing many other operations on files.
All operate on one file; they do not accept wildcard file names.
 M-x delete-file prompts for a file and deletes it. If you are
deleting many files in one directory, it may be more convenient to use
Dired rather than delete-file. See the section called “Deleting Files with Dired”.
 M-x move-file-to-trash moves a file into the system
Trash (or Recycle Bin). This is a facility available on
most operating systems; files that are moved into the Trash can be
brought back later if you change your mind.
 By default, Emacs deletion commands do not use the Trash. To
use the Trash (when it is available) for common deletion commands,
change the variable delete-by-moving-to-trash to t.
This affects the commands M-x delete-file and M-x
delete-directory (see the section called “File Directories”), as well as the deletion
commands in Dired (see the section called “Deleting Files with Dired”). Supplying a prefix
argument to M-x delete-file or M-x delete-directory makes
them delete outright, instead of using the Trash, regardless of
delete-by-moving-to-trash.
If a file is under version control (see the section called “Version Control”), you
should delete it using M-x vc-delete-file instead of M-x
delete-file. See the section called “Deleting and Renaming Version-Controlled Files”.
 M-x copy-file reads the file old and writes a new file
named new with the same contents.
 M-x copy-directory copies directories, similar to the
cp -r shell command. It prompts for a directory old
and a destination new. If new is an existing directory,
it creates a copy of the old directory and puts it in new.
If new is not an existing directory, it copies all the contents
of old into a new directory named new.
 M-x rename-file reads two file names old and new
using the minibuffer, then renames file old as new. If
the file name new already exists, you must confirm with
yes or renaming is not done; this is because renaming causes the
old meaning of the name new to be lost. If old and
new are on different file systems, the file old is copied
and deleted. If the argument new is just a directory name, the
real new name is in that directory, with the same non-directory
component as old. For example, M-x rename-file RET ~/foo
RET /tmp RET renames ~/foo to /tmp/foo. The same rule
applies to all the remaining commands in this section. All of them
ask for confirmation when the new file name already exists, too.
If a file is under version control (see the section called “Version Control”), you
should rename it using M-x vc-rename-file instead of M-x
rename-file. See the section called “Deleting and Renaming Version-Controlled Files”.
 M-x add-name-to-file adds an additional name to an existing
file without removing its old name. The new name is created as a
“hard link” to the existing file. The new name must belong on the
same file system that the file is on. On MS-Windows, this command
works only if the file resides in an NTFS file system. On MS-DOS, it
works by copying the file.
 M-x make-symbolic-link reads two file names target and
linkname, then creates a symbolic link named linkname,
which points at target. The effect is that future attempts to
open file linkname will refer to whatever file is named
target at the time the opening is done, or will get an error if
the name target is nonexistent at that time. This command does
not expand the argument target, so that it allows you to specify
a relative name as the target of the link. Not all systems support
symbolic links; on systems that don't support them, this command is
not defined.
 M-x insert-file (also C-x i) inserts a copy of the
contents of the specified file into the current buffer at point,
leaving point unchanged before the contents. The position after the
inserted contents is added to the mark ring, without activating the
mark (see the section called “The Mark Ring”).
 M-x insert-file-literally is like M-x insert-file,
except the file is inserted “literally”: it is treated as a sequence
of ASCII characters with no special encoding or conversion,
similar to the M-x find-file-literally command
(see the section called “Visiting Files”).
 M-x write-region is the inverse of M-x insert-file; it
copies the contents of the region into the specified file. M-x
append-to-file adds the text of the region to the end of the
specified file. See the section called “Accumulating Text”. The variable
write-region-inhibit-fsync applies to these commands, as well
as saving files; see the section called “Customizing Saving of Files”.
 M-x set-file-modes reads a file name followed by a file
mode, and applies that file mode to the specified file. File modes,
also called file permissions, determine whether a file can be
read, written to, or executed, and by whom. This command reads file
modes using the same symbolic or octal format accepted by the
chmod command; for instance, ‘u+x’ means to add
execution permission for the user who owns the file. It has no effect
on operating systems that do not support file modes. chmod is a
convenience alias for this function.

Accessing Compressed Files

 Emacs automatically uncompresses compressed files when you visit
them, and automatically recompresses them if you alter them and save
them. Emacs recognizes compressed files by their file names. File
names ending in ‘.gz’ indicate a file compressed with
gzip. Other endings indicate other compression programs.
Automatic uncompression and compression apply to all the operations in
which Emacs uses the contents of a file. This includes visiting it,
saving it, inserting its contents into a buffer, loading it, and byte
compiling it.
 To disable this feature, type the command M-x
auto-compression-mode. You can disable it permanently by
customizing the variable auto-compression-mode.

File Archives

 A file whose name ends in ‘.tar’ is normally an archive
made by the tar program. Emacs views these files in a special
mode called Tar mode which provides a Dired-like list of the contents
(see Chapter 30, Dired, the Directory Editor). You can move around through the list just as you
would in Dired, and visit the subfiles contained in the archive.
However, not all Dired commands are available in Tar mode.
If Auto Compression mode is enabled (see the section called “Accessing Compressed Files”), then
Tar mode is used also for compressed archives—files with extensions
‘.tgz’, .tar.Z and .tar.gz.
The keys e, f and RET all extract a component file
into its own buffer. You can edit it there, and if you save the
buffer, the edited version will replace the version in the Tar buffer.
Clicking with the mouse on the file name in the Tar buffer does
likewise. v extracts a file into a buffer in View mode
(see the section called “View Mode”). o extracts the file and displays it in
another window, so you could edit the file and operate on the archive
simultaneously.
d marks a file for deletion when you later use x, and
u unmarks a file, as in Dired. C copies a file from the
archive to disk and R renames a file within the archive.
g reverts the buffer from the archive on disk. The keys
M, G, and O change the file's permission bits,
group, and owner, respectively.
Saving the Tar buffer writes a new version of the archive to disk with
the changes you made to the components.
You don't need the tar program to use Tar mode—Emacs reads
the archives directly. However, accessing compressed archives
requires the appropriate uncompression program.
 A separate but similar Archive mode is used for arc,
jar, lzh, zip, rar, 7z, and
zoo archives, as well as exe files that are
self-extracting executables.
The key bindings of Archive mode are similar to those in Tar mode,
with the addition of the m key which marks a file for subsequent
operations, and M-DEL which unmarks all the marked files.
Also, the a key toggles the display of detailed file
information, for those archive types where it won't fit in a single
line. Operations such as renaming a subfile, or changing its mode or
owner, are supported only for some of the archive formats.
Unlike Tar mode, Archive mode runs the archiving programs to unpack
and repack archives. However, you don't need these programs to look
at the archive table of contents, only to extract or manipulate the
subfiles in the archive. Details of the program names and their
options can be set in the ‘Archive’ Customize group.

Remote Files

 You can refer to files on other machines using a special file name
syntax:

/host:filename
/user@host:filename
/user@host#port:filename
/method:user@host:filename
/method:user@host#port:filename

To carry out this request, Emacs uses a remote-login program such as
ftp, ssh, rlogin, or telnet.
You can always specify in the file name which method to use—for
example, /ftp:user@host:filename uses FTP,
whereas /ssh:user@host:filename uses
ssh. When you don't specify a method in the file name,
Emacs chooses the method as follows:
	If the host name starts with ‘ftp.’ (with dot), Emacs uses FTP.

	If the user name is ‘ftp’ or ‘anonymous’, Emacs uses FTP.

	If the variable tramp-default-method is set to ‘ftp’,
Emacs uses FTP.

	If ssh-agent is running, Emacs uses scp.

	Otherwise, Emacs uses ssh.

You can entirely turn off the remote file name feature by setting the
variable tramp-mode to nil. You can turn off the
feature in individual cases by quoting the file name with ‘/:’
(see the section called “Quoted File Names”).
 Remote file access through FTP is handled by the Ange-FTP package, which
is documented in the following. Remote file access through the other
methods is handled by the Tramp package, which has its own manual.
See See section ``Top'' in The Tramp Manual.
 When the Ange-FTP package is used, Emacs logs in through FTP using
the name user, if that is specified in the remote file name. If
user is unspecified, Emacs logs in using your user name on the
local system; but if you set the variable ange-ftp-default-user
to a string, that string is used instead. When logging in, Emacs may
also ask for a password.
 For performance reasons, Emacs does not make backup files for files
accessed via FTP by default. To make it do so, change the variable
ange-ftp-make-backup-files to a non-nil value.
By default, auto-save files for remote files are made in the
temporary file directory on the local machine, as specified by the
variable auto-save-file-name-transforms. See the section called “Auto-Save Files”.
 To visit files accessible by anonymous FTP, you use special user
names ‘anonymous’ or ‘ftp’. Passwords for these user names
are handled specially. The variable
ange-ftp-generate-anonymous-password controls what happens: if
the value of this variable is a string, then that string is used as
the password; if non-nil (the default), then the value of
user-mail-address is used; if nil, then Emacs prompts
you for a password as usual (see the section called “Entering passwords”).
 Sometimes you may be unable to access files on a remote machine
because a firewall in between blocks the connection for security
reasons. If you can log in on a gateway machine from which the
target files are accessible, and whose FTP server supports
gatewaying features, you can still use remote file names; all you have
to do is specify the name of the gateway machine by setting the
variable ange-ftp-gateway-host, and set
ange-ftp-smart-gateway to t. Otherwise you may be able
to make remote file names work, but the procedure is complex. You can
read the instructions by typing M-x finder-commentary RET
ange-ftp RET.

Quoted File Names

 You can quote an absolute file name to prevent special
characters and syntax in it from having their special effects.
The way to do this is to add ‘/:’ at the beginning.
For example, you can quote a local file name which appears remote, to
prevent it from being treated as a remote file name. Thus, if you have
a directory named /foo: and a file named bar in it, you
can refer to that file in Emacs as ‘/:/foo:/bar’.
‘/:’ can also prevent ‘~’ from being treated as a special
character for a user's home directory. For example, /:/tmp/~hack
refers to a file whose name is ~hack in directory /tmp.
Quoting with ‘/:’ is also a way to enter in the minibuffer a
file name that contains ‘$’. In order for this to work, the
‘/:’ must be at the beginning of the minibuffer contents. (You
can also double each ‘$’; see ???.)
You can also quote wildcard characters with ‘/:’, for visiting.
For example, /:/tmp/foo*bar visits the file
/tmp/foo*bar.
Another method of getting the same result is to enter
/tmp/foo[*]bar, which is a wildcard specification that matches
only /tmp/foo*bar. However, in many cases there is no need to
quote the wildcard characters because even unquoted they give the
right result. For example, if the only file name in /tmp that
starts with ‘foo’ and ends with ‘bar’ is foo*bar,
then specifying /tmp/foo*bar will visit only
/tmp/foo*bar.

File Name Cache

 You can use the file name cache to make it easy to locate a
file by name, without having to remember exactly where it is located.
When typing a file name in the minibuffer, C-tab
(file-cache-minibuffer-complete) completes it using the file
name cache. If you repeat C-tab, that cycles through the
possible completions of what you had originally typed. (However, note
that the C-tab character cannot be typed on most text
terminals.)
The file name cache does not fill up automatically. Instead, you
load file names into the cache using these commands:

	M-x file-cache-add-directory RET directory RET
	Add each file name in directory to the file name cache.

	M-x file-cache-add-directory-using-find RET directory RET
	Add each file name in directory and all of its nested
subdirectories to the file name cache.

	M-x file-cache-add-directory-using-locate RET directory RET
	Add each file name in directory and all of its nested
subdirectories to the file name cache, using locate to find
them all.

	M-x file-cache-add-directory-list RET variable RET
	Add each file name in each directory listed in variable to the
file name cache. variable should be a Lisp variable whose value
is a list of directory names, like load-path.

	M-x file-cache-clear-cache RET
	Clear the cache; that is, remove all file names from it.

The file name cache is not persistent: it is kept and maintained
only for the duration of the Emacs session. You can view the contents
of the cache with the file-cache-display command.

Convenience Features for Finding Files

In this section, we introduce some convenient facilities for finding
recently-opened files, reading file names from a buffer, and viewing
image files.
 If you enable Recentf mode, with M-x recentf-mode, the
‘File’ menu includes a submenu containing a list of recently
opened files. M-x recentf-save-list saves the current
recent-file-list to a file, and M-x recentf-edit-list
edits it.
The M-x ffap command generalizes find-file with more
powerful heuristic defaults (see the section called “Finding Files and URLs at Point”), often based on the text at
point. Partial Completion mode offers other features extending
find-file, which can be used with ffap.
See the section called “Completion Options”.
 Visiting image files automatically selects Image mode. In this
major mode, you can type C-c C-c (image-toggle-display)
to toggle between displaying the file as an image in the Emacs buffer,
and displaying its underlying text (or raw byte) representation.
Displaying the file as an image works only if Emacs is compiled with
support for displaying such images. If the displayed image is wider
or taller than the frame, the usual point motion keys (C-f,
C-p, and so forth) cause different parts of the image to be
displayed. If the image can be animated, the command RET
(image-toggle-animation) starts or stops the animation.
Animation plays once, unless the option image-animate-loop is
non-nil. Currently, Emacs only supports animation in GIF
files.
 If your Emacs was compiled with ImageMagick support, it is possible
to view a much wider variety of image types in Image mode, by
rendering the images via ImageMagick. However, this feature is
currently disabled by default. To enable it, add the following line
to your init file:

(imagemagick-register-types)

 The Image-Dired package can also be used to view images as
thumbnails. See the section called “Viewing Image Thumbnails in Dired”.

Filesets

 If you regularly edit a certain group of files, you can define them
as a fileset. This lets you perform certain operations, such as
visiting, query-replace, and shell commands on all the files at
once. To make use of filesets, you must first add the expression
(filesets-init) to your init file (see the section called “The Emacs Initialization File”). This
adds a ‘Filesets’ menu to the menu bar.
 The simplest way to define a fileset is by adding files to it one at
a time. To add a file to fileset name, visit the file and type
M-x filesets-add-buffer RET name RET. If
there is no fileset name, this creates a new one, which
initially contains only the current file. The command M-x
filesets-remove-buffer removes the current file from a fileset.
You can also edit the list of filesets directly, with M-x
filesets-edit (or by choosing ‘Edit Filesets’ from the
‘Filesets’ menu). The editing is performed in a Customize buffer
(see the section called “Easy Customization Interface”). Normally, a fileset is a simple list of
files, but you can also define a fileset as a regular expression
matching file names. Some examples of these more complicated filesets
are shown in the Customize buffer. Remember to select ‘Save for
future sessions’ if you want to use the same filesets in future Emacs
sessions.
You can use the command M-x filesets-open to visit all the
files in a fileset, and M-x filesets-close to close them. Use
M-x filesets-run-cmd to run a shell command on all the files in
a fileset. These commands are also available from the ‘Filesets’
menu, where each existing fileset is represented by a submenu.
See the section called “Version Control”, for a different concept of “filesets”:
groups of files bundled together for version control operations.
Filesets of that type are unnamed, and do not persist across Emacs
sessions.

Chapter 19. Using Multiple Buffers

 The text you are editing in Emacs resides in an object called a
buffer. Each time you visit a file, a buffer is used to hold
the file's text. Each time you invoke Dired, a buffer is used to hold
the directory listing. If you send a message with C-x m, a
buffer is used to hold the text of the message. When you ask for a
command's documentation, that appears in a buffer named *Help*.
Each buffer has a unique name, which can be of any length. When a
buffer is displayed in a window, its name is shown in the mode line
(see the section called “The Mode Line”). The distinction between upper and lower case
matters in buffer names. Most buffers are made by visiting files, and
their names are derived from the files' names; however, you can also
create an empty buffer with any name you want. A newly started Emacs
has several buffers, including one named *scratch*, which can
be used for evaluating Lisp expressions and is not associated with any
file (see the section called “Lisp Interaction Buffers”).
 At any time, one and only one buffer is selected; we call it
the current buffer. We sometimes say that a command operates on
“the buffer”; this really means that it operates on the current
buffer. When there is only one Emacs window, the buffer displayed in
that window is current. When there are multiple windows, the buffer
displayed in the selected window is current. See Chapter 20, Multiple Windows.
Aside from its textual contents, each buffer records several pieces
of information, such as what file it is visiting (if any), whether it
is modified, and what major mode and minor modes are in effect
(see Chapter 23, Major and Minor Modes). These are stored in buffer-local
variables—variables that can have a different value in each buffer.
See the section called “Local Variables”.
 A buffer's size cannot be larger than some maximum, which is defined
by the largest buffer position representable by Emacs integers.
This is because Emacs tracks buffer positions using that data type.
For typical 64-bit machines, this maximum buffer size is 2^61 -
2 bytes, or about 2 EiB. For typical 32-bit machines, the maximum is
usually 2^29 - 2 bytes, or about 512 MiB. Buffer sizes are
also limited by the amount of memory in the system.
Creating and Selecting Buffers

	C-x b buffer RET
	Select or create a buffer named buffer (switch-to-buffer).

	C-x 4 b buffer RET
	Similar, but select buffer in another window
(switch-to-buffer-other-window).

	C-x 5 b buffer RET
	Similar, but select buffer in a separate frame
(switch-to-buffer-other-frame).

	C-x LEFT
	Select the previous buffer in the buffer list (previous-buffer).

	C-x RIGHT
	Select the next buffer in the buffer list (next-buffer).

	C-u M-g M-g, C-u M-g g
	Read a number n and move to line n in the most recently
selected buffer other than the current buffer.

 The C-x b (switch-to-buffer) command reads a buffer
name using the minibuffer. Then it makes that buffer current, and
displays it in the currently-selected window. An empty input
specifies the buffer that was current most recently among those not
now displayed in any window.
While entering the buffer name, you can use the usual completion and
history commands (see Chapter 8, The Minibuffer). Note that C-x b, and
related commands, use “permissive completion with confirmation” for
minibuffer completion: if you type RET immediately after
completing up to a nonexistent buffer name, Emacs prints
‘[Confirm]’ and you must type a second RET to submit that
buffer name. See the section called “Completion Exit”, for details.
If you specify a buffer that does not exist, C-x b creates a
new, empty buffer that is not visiting any file, and selects it for
editing. The default value of the variable major-mode
determines the new buffer's major mode; the default value is
Fundamental mode. See the section called “Major Modes”. One reason to create a new
buffer is to use it for making temporary notes. If you try to save
it, Emacs asks for the file name to use, and the buffer's major mode
is re-established taking that file name into account (see the section called “Choosing File Modes”).
 For conveniently switching between a few buffers, use the commands
C-x LEFT and C-x RIGHT. C-x LEFT
(previous-buffer) selects the previous buffer (following the
order of most recent selection in the current frame), while C-x
RIGHT (next-buffer) moves through buffers in the reverse
direction.
 To select a buffer in a window other than the current one, type
C-x 4 b (switch-to-buffer-other-window). This prompts
for a buffer name using the minibuffer, displays that buffer in
another window, and selects that window.
 Similarly, C-x 5 b (switch-to-buffer-other-frame)
prompts for a buffer name, displays that buffer in another frame, and
selects that frame. If the buffer is already being shown in a window
on another frame, Emacs selects that window and frame instead of
creating a new frame.
See the section called “Displaying a Buffer in a Window”, for how the C-x 4 b and C-x 5
b commands get the window and/or frame to display in.
In addition, C-x C-f, and any other command for visiting a
file, can also be used to switch to an existing file-visiting buffer.
See the section called “Visiting Files”.
 C-u M-g M-g, that is goto-line with a plain prefix
argument, reads a number n using the minibuffer, selects the
most recently selected buffer other than the current buffer in another
window, and then moves point to the beginning of line number n
in that buffer. This is mainly useful in a buffer that refers to line
numbers in another buffer: if point is on or just after a number,
goto-line uses that number as the default for n. Note
that prefix arguments other than just C-u behave differently.
C-u 4 M-g M-g goes to line 4 in the current buffer,
without reading a number from the minibuffer. (Remember that M-g
M-g without prefix argument reads a number n and then moves to
line number n in the current buffer. See the section called “Changing the Location of Point”.)
Emacs uses buffer names that start with a space for internal purposes.
It treats these buffers specially in minor ways—for example, by
default they do not record undo information. It is best to avoid using
such buffer names yourself.

Listing Existing Buffers

	C-x C-b
	List the existing buffers (list-buffers).

 To display a list of existing buffers, type C-x C-b. Each
line in the list shows one buffer's name, major mode and visited file.
The buffers are listed in the order that they were current; the
buffers that were current most recently come first.
‘.’ in the first field of a line indicates that the buffer is
current. ‘%’ indicates a read-only buffer. ‘*’ indicates
that the buffer is “modified”. If several buffers are modified, it
may be time to save some with C-x s (see the section called “Commands for Saving Files”).
Here is an example of a buffer list:

CRM Buffer Size Mode File
. * .emacs 3294 Emacs-Lisp ~/.emacs
 % *Help* 101 Help
 search.c 86055 C ~/cvs/emacs/src/search.c
 % src 20959 Dired by name ~/cvs/emacs/src/
 * *mail* 42 Mail
 % HELLO 1607 Fundamental ~/cvs/emacs/etc/HELLO
 % NEWS 481184 Outline ~/cvs/emacs/etc/NEWS
 scratch 191 Lisp Interaction
 * *Messages* 1554 Fundamental

The buffer *Help* was made by a help request (see Chapter 10, Help); it
is not visiting any file. The buffer src was made by Dired on
the directory ~/cvs/emacs/src/. You can list only buffers that
are visiting files by giving the command a prefix argument, as in
C-u C-x C-b.
list-buffers omits buffers whose names begin with a space,
unless they visit files: such buffers are used internally by Emacs.

Miscellaneous Buffer Operations

	C-x C-q
	Toggle read-only status of buffer (toggle-read-only).

	M-x rename-buffer RET name RET
	Change the name of the current buffer.

	M-x rename-uniquely
	Rename the current buffer by adding ‘<number>’ to the end.

	M-x view-buffer RET buffer RET
	Scroll through buffer buffer. See the section called “View Mode”.

 A buffer can be read-only, which means that commands to change
its contents are not allowed. The mode line indicates read-only
buffers with ‘%%’ or ‘%*’ near the left margin. Read-only
buffers are usually made by subsystems such as Dired and Rmail that
have special commands to operate on the text; also by visiting a file
whose access control says you cannot write it.
 The command C-x C-q (toggle-read-only) makes a read-only
buffer writable, and makes a writable buffer read-only. This works by
setting the variable buffer-read-only, which has a local value
in each buffer and makes the buffer read-only if its value is
non-nil.
 M-x rename-buffer changes the name of the current buffer. You
specify the new name as a minibuffer argument; there is no default.
If you specify a name that is in use for some other buffer, an error
happens and no renaming is done.
 M-x rename-uniquely renames the current buffer to a similar
name with a numeric suffix added to make it both different and unique.
This command does not need an argument. It is useful for creating
multiple shell buffers: if you rename the *shell* buffer, then
do M-x shell again, it makes a new shell buffer named
shell; meanwhile, the old shell buffer continues to exist
under its new name. This method is also good for mail buffers,
compilation buffers, and most Emacs features that create special
buffers with particular names. (With some of these features, such as
M-x compile, M-x grep, you need to switch to some other
buffer before using the command again, otherwise it will reuse the
current buffer despite the name change.)
The commands M-x append-to-buffer and M-x insert-buffer
can also be used to copy text from one buffer to another.
See the section called “Accumulating Text”.

Killing Buffers

 If you continue an Emacs session for a while, you may accumulate a
large number of buffers. You may then find it convenient to kill
the buffers you no longer need. On most operating systems, killing a
buffer releases its space back to the operating system so that other
programs can use it. Here are some commands for killing buffers:
	C-x k bufname RET
	Kill buffer bufname (kill-buffer).

	M-x kill-some-buffers
	Offer to kill each buffer, one by one.

	M-x kill-matching-buffers
	Offer to kill all buffers matching a regular expression.

 C-x k (kill-buffer) kills one buffer, whose name you
specify in the minibuffer. The default, used if you type just
RET in the minibuffer, is to kill the current buffer. If you
kill the current buffer, another buffer becomes current: one that was
current in the recent past but is not displayed in any window now. If
you ask to kill a file-visiting buffer that is modified, then you must
confirm with yes before the buffer is killed.
 The command M-x kill-some-buffers asks about each buffer, one
by one. An answer of y means to kill the buffer, just like
kill-buffer. This command ignores buffers whose names begin
with a space, which are used internally by Emacs.
 The command M-x kill-matching-buffers prompts for a regular
expression and kills all buffers whose names match that expression.
See the section called “Syntax of Regular Expressions”. Like kill-some-buffers, it asks for
confirmation before each kill. This command normally ignores buffers
whose names begin with a space, which are used internally by Emacs.
To kill internal buffers as well, call kill-matching-buffers
with a prefix argument.
The buffer menu feature is also convenient for killing various
buffers. See the section called “Operating on Several Buffers”.
 If you want to do something special every time a buffer is killed, you
can add hook functions to the hook kill-buffer-hook (see the section called “Hooks”).
 If you run one Emacs session for a period of days, as many people do,
it can fill up with buffers that you used several days ago. The command
M-x clean-buffer-list is a convenient way to purge them; it kills
all the unmodified buffers that you have not used for a long time. An
ordinary buffer is killed if it has not been displayed for three days;
however, you can specify certain buffers that should never be killed
automatically, and others that should be killed if they have been unused
for a mere hour.
 You can also have this buffer purging done for you, once a day,
by enabling Midnight mode. Midnight mode operates each day
at midnight; at that time, it runs clean-buffer-list, or
whichever functions you have placed in the normal hook
midnight-hook (see the section called “Hooks”). To enable Midnight mode, use
the Customization buffer to set the variable midnight-mode to
t. See the section called “Easy Customization Interface”.

Operating on Several Buffers

	M-x buffer-menu
	Begin editing a buffer listing all Emacs buffers.

	M-x buffer-menu-other-window.
	Similar, but do it in another window.

The buffer menu opened by C-x C-b (see the section called “Listing Existing Buffers”)
does not merely list buffers. It also allows you to perform various
operations on buffers, through an interface similar to Dired
(see Chapter 30, Dired, the Directory Editor). You can save buffers, kill them (here called
deleting them, for consistency with Dired), or display them.
 To use the buffer menu, type C-x C-b and switch to the window
displaying the *Buffer List* buffer. You can also type
M-x buffer-menu to open the buffer menu in the selected window.
Alternatively, the command M-x buffer-menu-other-window opens
the buffer menu in another window, and selects that window.
The buffer menu is a read-only buffer, and can be changed only
through the special commands described in this section. The usual
cursor motion commands can be used in this buffer. The
following commands apply to the buffer described on the current line:
	d
	Request to delete (kill) the buffer, then move down. The request
shows as a ‘D’ on the line, before the buffer name. Requested
deletions take place when you type the x command.

	C-d
	Like d but move up afterwards instead of down.

	s
	Request to save the buffer. The request shows as an ‘S’ on the
line. Requested saves take place when you type the x command.
You may request both saving and deletion for the same buffer.

	x
	Perform previously requested deletions and saves.

	u
	Remove any request made for the current line, and move down.

	DEL
	Move to previous line and remove any request made for that line.

The d, C-d, s and u commands to add or remove
flags also move down (or up) one line. They accept a numeric argument
as a repeat count.
These commands operate immediately on the buffer listed on the current
line:
	~
	Mark the buffer “unmodified”. The command ~ does this
immediately when you type it.

	%
	Toggle the buffer's read-only flag. The command % does
this immediately when you type it.

	t
	Visit the buffer as a tags table. See the section called “Selecting a Tags Table”.

There are also commands to select another buffer or buffers:
	q
	Quit the buffer menu—immediately display the most recent formerly
visible buffer in its place.

	RET, f
	Immediately select this line's buffer in place of the *Buffer
List* buffer.

	o
	Immediately select this line's buffer in another window as if by
C-x 4 b, leaving *Buffer List* visible.

	C-o
	Immediately display this line's buffer in another window, but don't
select the window.

	1
	Immediately select this line's buffer in a full-screen window.

	2
	Immediately set up two windows, with this line's buffer selected in
one, and the previously current buffer (aside from the buffer
Buffer List) displayed in the other.

	b
	Bury the buffer listed on this line.

	m
	Mark this line's buffer to be displayed in another window if you exit
with the v command. The request shows as a ‘>’ at the
beginning of the line. (A single buffer may not have both a delete
request and a display request.)

	v
	Immediately select this line's buffer, and also display in other windows
any buffers previously marked with the m command. If you have not
marked any buffers, this command is equivalent to 1.

There is also a command that affects the entire buffer list:
	T
	Delete, or reinsert, lines for non-file buffers. This command toggles
the inclusion of such buffers in the buffer list.

What buffer-menu actually does is create and switch to a
suitable buffer, and turn on Buffer Menu mode in it. Everything else
described above is implemented by the special commands provided in
Buffer Menu mode. One consequence of this is that you can switch from
the *Buffer List* buffer to another Emacs buffer, and edit
there. You can reselect the *Buffer List* buffer later, to
perform the operations already requested, or you can kill it, or pay
no further attention to it.
Normally, the buffer *Buffer List* is not updated
automatically when buffers are created and killed; its contents are
just text. If you have created, deleted or renamed buffers, the way
to update *Buffer List* to show what you have done is to type
g (revert-buffer). You can make this happen regularly
every auto-revert-interval seconds if you enable Auto Revert
mode in this buffer, as long as it is not marked modified. Global
Auto Revert mode applies to the *Buffer List* buffer only if
global-auto-revert-non-file-buffers is non-nil.
See global-auto-revert-non-file-buffers, for details.

Indirect Buffers

 An indirect buffer shares the text of some other buffer, which
is called the base buffer of the indirect buffer. In some ways it
is a buffer analogue of a symbolic link between files.

	M-x make-indirect-buffer RET base-buffer RET indirect-name RET
	Create an indirect buffer named indirect-name with base buffer
base-buffer.

	M-x clone-indirect-buffer RET
	Create an indirect buffer that is a twin copy of the current buffer.

	C-x 4 c
	Create an indirect buffer that is a twin copy of the current buffer, and
select it in another window (clone-indirect-buffer-other-window).

The text of the indirect buffer is always identical to the text of its
base buffer; changes made by editing either one are visible immediately
in the other. But in all other respects, the indirect buffer and its
base buffer are completely separate. They can have different names,
different values of point, different narrowing, different markers,
different major modes, and different local variables.
An indirect buffer cannot visit a file, but its base buffer can. If
you try to save the indirect buffer, that actually works by saving the
base buffer. Killing the base buffer effectively kills the indirect
buffer, but killing an indirect buffer has no effect on its base buffer.
One way to use indirect buffers is to display multiple views of an
outline. See the section called “Viewing One Outline in Multiple Views”.
 A quick and handy way to make an indirect buffer is with the command
M-x clone-indirect-buffer. It creates and selects an indirect
buffer whose base buffer is the current buffer. With a numeric
argument, it prompts for the name of the indirect buffer; otherwise it
uses the name of the current buffer, with a ‘<n>’ suffix
added. C-x 4 c (clone-indirect-buffer-other-window)
works like M-x clone-indirect-buffer, but it selects the new
buffer in another window. These functions run the hook
clone-indirect-buffer-hook after creating the indirect buffer.
The more general way to make an indirect buffer is with the command
M-x make-indirect-buffer. It creates an indirect buffer
named indirect-name from a buffer base-buffer, prompting for
both using the minibuffer.

Convenience Features and Customization of Buffer Handling

This section describes several modes and features that make it more
convenient to switch between buffers.
Making Buffer Names Unique

 When several buffers visit identically-named files, Emacs must give
the buffers distinct names. The usual method for making buffer names
unique adds ‘<2>’, ‘<3>’, etc. to the end of the buffer
names (all but one of them).
 Other methods work by adding parts of each file's directory to the
buffer name. To select one, load the library uniquify (e.g.
using (require 'uniquify)), and customize the variable
uniquify-buffer-name-style (see the section called “Easy Customization Interface”).
To begin with, the forward naming method includes part of the
file's directory name at the beginning of the buffer name; using this
method, buffers visiting the files /u/rms/tmp/Makefile and
/usr/projects/zaphod/Makefile would be named
‘tmp/Makefile’ and ‘zaphod/Makefile’, respectively (instead
of ‘Makefile’ and ‘Makefile<2>’).
In contrast, the post-forward naming method would call the
buffers ‘Makefile|tmp’ and ‘Makefile|zaphod’, and the
reverse naming method would call them ‘Makefile\tmp’ and
‘Makefile\zaphod’. The nontrivial difference between
post-forward and reverse occurs when just one directory
name is not enough to distinguish two files; then reverse puts
the directory names in reverse order, so that /top/middle/file
becomes ‘file\middle\top’, while post-forward puts them in
forward order after the file name, as in ‘file|top/middle’.
Which rule to follow for putting the directory names in the buffer
name is not very important if you are going to look at the
buffer names before you type one. But as an experienced user, if you
know the rule, you won't have to look. And then you may find that one
rule or another is easier for you to remember and apply quickly.

Switching Between Buffers using Substrings

 Iswitchb global minor mode provides convenient switching between
buffers using substrings of their names. It replaces the normal
definitions of C-x b, C-x 4 b, C-x 5 b, and C-x
4 C-o with alternative commands that are somewhat “smarter”.
When one of these commands prompts you for a buffer name, you can
type in just a substring of the name you want to choose. As you enter
the substring, Iswitchb mode continuously displays a list of buffers
that match the substring you have typed.
At any time, you can type RET to select the first buffer in
the list. So the way to select a particular buffer is to make it the
first in the list. There are two ways to do this. You can type more
of the buffer name and thus narrow down the list, excluding unwanted
buffers above the desired one. Alternatively, you can use C-s
and C-r to rotate the list until the desired buffer is first.
TAB while entering the buffer name performs completion on the
string you have entered, based on the displayed list of buffers.
To enable Iswitchb mode, type M-x iswitchb-mode, or customize
the variable iswitchb-mode to t (see the section called “Easy Customization Interface”).

Customizing Buffer Menus

	M-x bs-show
	Make a list of buffers similarly to M-x list-buffers but
customizable.

M-x bs-show pops up a buffer list similar to the one normally
displayed by C-x C-b but which you can customize. If you prefer
this to the usual buffer list, you can bind this command to C-x
C-b. To customize this buffer list, use the bs Custom group
(see the section called “Easy Customization Interface”).
 MSB global minor mode (“MSB” stands for “mouse select buffer”)
provides a different and customizable mouse buffer menu which you may
prefer. It replaces the bindings of mouse-buffer-menu,
normally on C-Down-Mouse-1, and the menu bar buffer menu. You
can customize the menu in the msb Custom group.

Chapter 20. Multiple Windows

 Emacs can split a frame into two or many windows. Multiple windows
can display parts of different buffers, or different parts of one
buffer. Multiple frames always imply multiple windows, because each
frame has its own set of windows. Each window belongs to one and only
one frame.
Concepts of Emacs Windows

Each Emacs window displays one Emacs buffer at any time. A single
buffer may appear in more than one window; if it does, any changes in
its text are displayed in all the windows where it appears. But these
windows can show different parts of the buffer, because each window
has its own value of point.
 At any time, one Emacs window is the selected window; the
buffer this window is displaying is the current buffer. On graphical
displays, the point is indicated by a solid blinking cursor in the
selected window, and by a hollow box in non-selected windows. On text
terminals, the cursor is drawn only in the selected window.
See the section called “Displaying the Cursor”.
Commands to move point affect the value of point for the selected
Emacs window only. They do not change the value of point in other
Emacs windows, even those showing the same buffer. The same is true
for buffer-switching commands such as C-x b; they do not affect
other windows at all. However, there are other commands such as
C-x 4 b that select a different window and switch buffers in it.
Also, all commands that display information in a window, including
(for example) C-h f (describe-function) and C-x C-b
(list-buffers), work by switching buffers in a nonselected
window without affecting the selected window.
When multiple windows show the same buffer, they can have different
regions, because they can have different values of point. However,
they all have the same value for the mark, because each buffer has
only one mark position.
Each window has its own mode line, which displays the buffer name,
modification status and major and minor modes of the buffer that is
displayed in the window. The selected window's mode line appears in a
different color. See the section called “The Mode Line”, for details.

Splitting Windows

	C-x 2
	Split the selected window into two windows, one above the other
(split-window-below).

	C-x 3
	Split the selected window into two windows, positioned side by side
(split-window-right).

	C-Mouse-2
	In the mode line of a window, split that window.

 C-x 2 (split-window-below) splits the selected window
into two windows, one above the other. After splitting, the selected
window is the upper one, and the newly split-off window is below.
Both windows have the same value of point as before, and display the
same portion of the buffer (or as close to it as possible). If
necessary, the windows are scrolled to keep point on-screen. By
default, the two windows each get half the height of the original
window. A positive numeric argument specifies how many lines to give
to the top window; a negative numeric argument specifies how many
lines to give to the bottom window.
 If you change the variable split-window-keep-point to
nil, C-x 2 instead adjusts the portion of the buffer
displayed by the two windows, as well as the value of point in each
window, in order to keep the text on the screen as close as possible
to what it was before; furthermore, if point was in the lower half of
the original window, the bottom window is selected instead of the
upper one.
 C-x 3 (split-window-right) splits the selected window
into two side-by-side windows. The left window is the selected one;
the right window displays the same portion of the same buffer, and has
the same value of point. A positive numeric argument specifies how
many columns to give the left window; a negative numeric argument
specifies how many columns to give the right window.
 When you split a window with C-x 3, each resulting window
occupies less than the full width of the frame. If it becomes too
narrow, the buffer may be difficult to read if continuation lines are
in use (see the section called “Continuation Lines”). Therefore, Emacs automatically
switches to line truncation if the window width becomes narrower than
50 columns. This truncation occurs regardless of the value of the
variable truncate-lines (see the section called “Line Truncation”); it is
instead controlled by the variable
truncate-partial-width-windows. If the value of this variable
is a positive integer (the default is 50), that specifies the minimum
width for a partial-width window before automatic line truncation
occurs; if the value is nil, automatic line truncation is
disabled; and for any other non-nil value, Emacs truncates
lines in every partial-width window regardless of its width.
On text terminals, side-by-side windows are separated by a vertical
divider which is drawn using the vertical-border face.
 If you click C-Mouse-2 in the mode line of a window, that
splits the window, putting a vertical divider where you click.
Depending on how Emacs is compiled, you can also split a window by
clicking C-Mouse-2 in the scroll bar, which puts a horizontal
divider where you click (this feature does not work when Emacs uses
GTK+ scroll bars).

Using Other Windows

	C-x o
	Select another window (other-window).

	C-M-v
	Scroll the next window (scroll-other-window).

	Mouse-1
	Mouse-1, in the text area of a window, selects the window and
moves point to the position clicked. Clicking in the mode line
selects the window without moving point in it.

With the keyboard, you can switch windows by typing C-x o
(other-window). That is an o, for “other”, not a zero.
When there are more than two windows, this command moves through all the
windows in a cyclic order, generally top to bottom and left to right.
After the rightmost and bottommost window, it goes back to the one at
the upper left corner. A numeric argument means to move several steps
in the cyclic order of windows. A negative argument moves around the
cycle in the opposite order. When the minibuffer is active, the
minibuffer is the last window in the cycle; you can switch from the
minibuffer window to one of the other windows, and later switch back and
finish supplying the minibuffer argument that is requested.
See the section called “Editing in the Minibuffer”.
 The usual scrolling commands (see Chapter 14, Controlling the Display) apply to the selected
window only, but there is one command to scroll the next window.
C-M-v (scroll-other-window) scrolls the window that
C-x o would select. It takes arguments, positive and negative,
like C-v. (In the minibuffer, C-M-v scrolls the help
window associated with the minibuffer, if any, rather than the next
window in the standard cyclic order; see the section called “Editing in the Minibuffer”.)
 If you set mouse-autoselect-window to a non-nil value,
moving the mouse over a different window selects that window. This
feature is off by default.

Displaying in Another Window

 C-x 4 is a prefix key for a variety of commands that switch to
a buffer in a different window—either another existing window, or a
new window created by splitting the selected window. See the section called “How display-buffer works”, for how Emacs picks or creates the window to use.

	C-x 4 b bufname RET
	Select buffer bufname in another window
(switch-to-buffer-other-window).

	C-x 4 C-o bufname RET
	Display buffer bufname in some window, without trying to select
it (display-buffer). See the section called “Displaying a Buffer in a Window”, for details
about how the window is chosen.

	C-x 4 f filename RET
	Visit file filename and select its buffer in another window
(find-file-other-window). See the section called “Visiting Files”.

	C-x 4 d directory RET
	Select a Dired buffer for directory directory in another window
(dired-other-window). See Chapter 30, Dired, the Directory Editor.

	C-x 4 m
	Start composing a mail message, similar to C-x m (see Chapter 32, Sending Mail), but in another window (mail-other-window).

	C-x 4 .
	Find a tag in the current tags table, similar to M-.
(see the section called “Tags Tables”), but in another window (find-tag-other-window).

	C-x 4 r filename RET
	Visit file filename read-only, and select its buffer in another
window (find-file-read-only-other-window). See the section called “Visiting Files”.

Deleting and Rearranging Windows

	C-x 0
	Delete the selected window (delete-window).

	C-x 1
	Delete all windows in the selected frame except the selected window
(delete-other-windows).

	C-x 4 0
	Delete the selected window and kill the buffer that was showing in it
(kill-buffer-and-window). The last character in this key
sequence is a zero.

	C-x ^
	Make selected window taller (enlarge-window).

	C-x }
	Make selected window wider (enlarge-window-horizontally).

	C-x {
	Make selected window narrower (shrink-window-horizontally).

	C-x -
	Shrink this window if its buffer doesn't need so many lines
(shrink-window-if-larger-than-buffer).

	C-x +
	Make all windows the same height (balance-windows).

 To delete the selected window, type C-x 0
(delete-window). (That is a zero.) Once a window is deleted,
the space that it occupied is given to an adjacent window (but not the
minibuffer window, even if that is active at the time). Deleting the
window has no effect on the buffer it used to display; the buffer
continues to exist, and you can still switch to with C-x b.
 C-x 4 0 (kill-buffer-and-window) is a stronger command
than C-x 0; it kills the current buffer and then deletes the
selected window.
 C-x 1 (delete-other-windows) deletes all the windows,
except the selected one; the selected window expands to use the
whole frame. (This command cannot be used while the minibuffer window
is active; attempting to do so signals an error.)
 The command C-x ^ (enlarge-window) makes the selected
window one line taller, taking space from a vertically adjacent window
without changing the height of the frame. With a positive numeric
argument, this command increases the window height by that many lines;
with a negative argument, it reduces the height by that many lines.
If there are no vertically adjacent windows (i.e. the window is at the
full frame height), that signals an error. The command also signals
an error if you attempt to reduce the height of any window below a
certain minimum number of lines, specified by the variable
window-min-height (the default is 4).
 Similarly, C-x } (enlarge-window-horizontally) makes
the selected window wider, and C-x {
(shrink-window-horizontally) makes it narrower. These commands
signal an error if you attempt to reduce the width of any window below
a certain minimum number of columns, specified by the variable
window-min-width (the default is 10).
 C-x - (shrink-window-if-larger-than-buffer) reduces the
height of the selected window, if it is taller than necessary to show
the whole text of the buffer it is displaying. It gives the extra
lines to other windows in the frame.
 You can also use C-x + (balance-windows) to even out the
heights of all the windows in the selected frame.
Mouse clicks on the mode line provide another way to change window
heights and to delete windows. See the section called “Mode Line Mouse Commands”.

Displaying a Buffer in a Window

It is a common Emacs operation to display or “pop up” some buffer
in response to a user command. There are several different ways in
which commands do this.
Many commands, like C-x C-f (find-file), display the
buffer by “taking over” the selected window, expecting that the
user's attention will be diverted to that buffer. These commands
usually work by calling switch-to-buffer internally
(see the section called “Creating and Selecting Buffers”).
 Some commands try to display “intelligently”, trying not to take
over the selected window, e.g. by splitting off a new window and
displaying the desired buffer there. Such commands, which include the
various help commands (see Chapter 10, Help), work by calling
display-buffer internally. See the section called “How display-buffer works”, for details.
Other commands do the same as display-buffer, and
additionally select the displaying window so that you can begin
editing its buffer. The command C-x ` (next-error) is
one example (see the section called “Compilation Mode”). Such commands work by calling
the function pop-to-buffer internally. See See section ``Switching to a Buffer in a Window'' in The Emacs Lisp Reference Manual.
Commands with names ending in -other-window behave like
display-buffer, except that they never display in the selected
window. Several of these commands are bound in the C-x 4 prefix
key (see the section called “Displaying in Another Window”).
Commands with names ending in -other-frame behave like
display-buffer, except that they (i) never display in the
selected window and (ii) prefer to create a new frame to display the
desired buffer instead of splitting a window—as though the variable
pop-up-frames is set to t (see the section called “How display-buffer works”).
Several of these commands are bound in the C-x 5 prefix key.
How display-buffer works

The display-buffer command (as well as commands that call it
internally) chooses a window to display by following the steps given
below. See See section ``Choosing a Window for Display'' in The Emacs Lisp Reference Manual, for details about how to alter this
sequence of steps.
	First, check if the buffer should be displayed in the selected window
regardless of other considerations. You can tell Emacs to do this by
adding the desired buffer's name to the list
same-window-buffer-names, or adding a matching regular
expression to the list same-window-regexps. By default, these
variables are nil, so this step is skipped.

	Otherwise, if the buffer is already displayed in an existing window,
“reuse” that window. Normally, only windows on the selected frame
are considered, but windows on other frames are also reusable if you
change display-buffer-reuse-frames to t, or if you
change pop-up-frames (see below) to t.

	Otherwise, if you specified that the buffer should be displayed in a
special frame by customizing special-display-buffer-names or
special-display-regexps, do so. See See section ``Choosing Window Options'' in The Emacs Lisp Reference Manual.

	Otherwise, optionally create a new frame and display the buffer there.
By default, this step is skipped. To enable it, change the variable
pop-up-frames to a non-nil value. The special value
graphic-only means to do this only on graphical displays.

	Otherwise, try to create a new window by splitting the selected
window, and display the buffer in that new window.
The split can be either vertical or horizontal, depending on the
variables split-height-threshold and
split-width-threshold. These variables should have integer
values. If split-height-threshold is smaller than the selected
window's height, the split puts the new window below. Otherwise, if
split-width-threshold is smaller than the window's width, the
split puts the new window on the right. If neither condition holds,
Emacs tries to split so that the new window is below—but only if the
window was not split before (to avoid excessive splitting).

	Otherwise, display the buffer in an existing window on the selected
frame.

	If all the above methods fail for whatever reason, create a new frame
and display the buffer there.

Convenience Features for Window Handling

 Winner mode is a global minor mode that records the changes in the
window configuration (i.e. how the frames are partitioned into
windows), so that you can “undo” them. You can toggle Winner mode
with M-x winner-mode, or by customizing the variable
winner-mode. When the mode is enabled, C-c left
(winner-undo) undoes the last window configuration change. If
you change your mind while undoing, you can redo the changes you had
undone using C-c right (M-x winner-redo).
Follow mode (M-x follow-mode) synchronizes several windows on
the same buffer so that they always display adjacent sections of that
buffer. See the section called “Follow Mode”.
 The Windmove package defines commands for moving directionally
between neighboring windows in a frame. M-x windmove-right
selects the window immediately to the right of the currently selected
one, and similarly for the “left”, “up”, and “down”
counterparts. M-x windmove-default-keybindings binds these
commands to S-right etc.; doing so disables shift selection for
those keys (see the section called “Shift Selection”).
The command M-x compare-windows lets you compare the text
shown in different windows. See the section called “Comparing Files”.
 Scroll All mode (M-x scroll-all-mode) is a global minor mode
that causes scrolling commands and point motion commands to apply to
every single window.

Chapter 21. Frames and Graphical Displays

 When Emacs is started on a graphical display, e.g. on the X Window
System, it occupies a graphical system-level “window”. In this
manual, we call this a frame, reserving the word “window” for
the part of the frame used for displaying a buffer. A frame initially
contains one window, but it can be subdivided into multiple windows
(see Chapter 20, Multiple Windows). A frame normally also contains a menu bar, tool
bar, and echo area.
You can also create additional frames (see the section called “Creating Frames”).
All frames created in the same Emacs session have access to the same
underlying buffers and other data. For instance, if a buffer is being
shown in more than one frame, any changes made to it in one frame show
up immediately in the other frames too.
Typing C-x C-c closes all the frames on the current display,
and ends the Emacs session if it has no frames open on any other
displays (see Chapter 6, Exiting Emacs). To close just the selected frame, type
C-x 5 0 (that is zero, not o).
This chapter describes Emacs features specific to graphical displays
(particularly mouse commands), and features for managing multiple
frames. On text terminals, many of these features are unavailable.
However, it is still possible to create multiple “frames” on text
terminals; such frames are displayed one at a time, filling the entire
terminal screen (see the section called “Non-Window Terminals”). It is also possible
to use the mouse on some text terminals (see the section called “Using a Mouse in Text Terminals”, for
doing so on GNU and Unix systems; and
see the section called “Mouse Usage on MS-DOS”,
for doing so on MS-DOS).
Mouse Commands for Editing

	Mouse-1
	Move point to where you click (mouse-set-point).

	Drag-Mouse-1
	Activate the region around the text selected by dragging, and copy it
to the kill ring (mouse-set-region).

	Mouse-2
	Yank the last killed text at the click position
(mouse-yank-at-click).

	Mouse-3
	If the region is active, move the nearer end of the region to the
click position; otherwise, set mark at the current value of point and
point at the click position. Save the resulting region in the kill
ring; on a second click, kill it (mouse-save-then-kill).

 The most basic mouse command is mouse-set-point, which is
invoked by clicking with the left mouse button, Mouse-1, in the
text area of a window. This moves point to the position where you
clicked. If that window was not the selected window, it becomes the
selected window.
 Normally, if the frame you clicked in was not the selected frame, it
is made the selected frame, in addition to selecting the window and
setting the cursor. On the X Window System, you can change this by
setting the variable x-mouse-click-focus-ignore-position to
t. In that case, the initial click on an unselected frame just
selects the frame, without doing anything else; clicking again selects
the window and sets the cursor position.
 Holding down Mouse-1 and “dragging” the mouse over a stretch
of text activates the region around that text
(mouse-set-region), placing the mark where you started holding
down the mouse button, and point where you release it (see Chapter 11, The Mark and the Region).
In addition, the text in the region becomes the primary selection
(see the section called “Cut and Paste with Other Window Applications”).
 If you change the variable mouse-drag-copy-region to a
non-nil value, dragging the mouse over a stretch of text also
adds the text to the kill ring. The default is nil.
 If you move the mouse off the top or bottom of the window while
dragging, the window scrolls at a steady rate until you move the mouse
back into the window. This way, you can select regions that don't fit
entirely on the screen. The number of lines scrolled per step depends
on how far away from the window edge the mouse has gone; the variable
mouse-scroll-min-lines specifies a minimum step size.
 Clicking with the middle mouse button, Mouse-2, moves point to
the position where you clicked and inserts the contents of the primary
selection (mouse-yank-primary). See the section called “Cut and Paste with Other Window Applications”.
This behavior is consistent with other X applications. Alternatively,
you can rebind Mouse-2 to mouse-yank-at-click, which
performs a yank at point.
 If you change the variable mouse-yank-at-point to a
non-nil value, Mouse-2 does not move point; it inserts
the text at point, regardless of where you clicked or even which of
the frame's windows you clicked on. This variable affects both
mouse-yank-primary and mouse-yank-at-click.
 Clicking with the right mouse button, Mouse-3, runs the
command mouse-save-then-kill. This performs several actions
depending on where you click and the status of the region:
	If no region is active, clicking Mouse-3 activates the region,
placing the mark where point was and point at the clicked position.

	If a region is active, clicking Mouse-3 adjusts the nearer end
of the region by moving it to the clicked position. The adjusted
region's text is copied to the kill ring; if the text in the original
region was already on the kill ring, it replaces it there.

	If you originally specified the region using a double or triple
Mouse-1, so that the region is defined to consist of entire
words or lines (see the section called “Mouse Commands for Words and Lines”), then adjusting the
region with Mouse-3 also proceeds by entire words or lines.

	If you use Mouse-3 a second time consecutively, at the same
place, that kills the region already selected. Thus, the simplest way
to kill text with the mouse is to click Mouse-1 at one end, then
click Mouse-3 twice at the other end. To copy the text into the
kill ring without deleting it from the buffer, press Mouse-3
just once—or just drag across the text with Mouse-1. Then you
can copy it elsewhere by yanking it.

The mouse-save-then-kill command also obeys the variable
mouse-drag-copy-region (described above). If the value is
non-nil, then whenever the command sets or adjusts the active
region, the text in the region is also added to the kill ring. If the
latest kill ring entry had been added the same way, that entry is
replaced rather than making a new entry.
Whenever you set the region using any of the mouse commands
described above, the mark will be deactivated by any subsequent
unshifted cursor motion command, in addition to the usual ways of
deactivating the mark. See the section called “Shift Selection”.
 Some mice have a “wheel” which can be used for scrolling. Emacs
supports scrolling windows with the mouse wheel, by default, on most
graphical displays. To toggle this feature, use M-x
mouse-wheel-mode. The variables mouse-wheel-follow-mouse and
mouse-wheel-scroll-amount determine where and by how much
buffers are scrolled. The variable
mouse-wheel-progressive-speed determines whether the scroll
speed is linked to how fast you move the wheel.

Mouse Commands for Words and Lines

These variants of Mouse-1 select entire words or lines at a
time. Emacs activates the region around the selected text, which is
also copied to the kill ring.
	Double-Mouse-1
	Select the text around the word which you click on.
Double-clicking on a character with “symbol” syntax (such as
underscore, in C mode) selects the symbol surrounding that character.
Double-clicking on a character with open- or close-parenthesis syntax
selects the parenthetical grouping which that character starts or
ends. Double-clicking on a character with string-delimiter syntax
(such as a single-quote or double-quote in C) selects the string
constant (Emacs uses heuristics to figure out whether that character
is the beginning or the end of it).

	Double-Drag-Mouse-1
	Select the text you drag across, in the form of whole words.

	Triple-Mouse-1
	Select the line you click on.

	Triple-Drag-Mouse-1
	Select the text you drag across, in the form of whole lines.

Following References with the Mouse

 Some Emacs buffers include buttons, or hyperlinks:
pieces of text that perform some action (e.g. following a reference)
when activated (e.g. by clicking on them). Usually, a button's text
is visually highlighted: it is underlined, or a box is drawn around
it. If you move the mouse over a button, the shape of the mouse
cursor changes and the button lights up. If you change the variable
mouse-highlight to nil, Emacs disables this
highlighting.
You can activate a button by moving point to it and typing
RET, or by clicking either Mouse-1 or Mouse-2 on the
button. For example, in a Dired buffer, each file name is a button;
activating it causes Emacs to visit that file (see Chapter 30, Dired, the Directory Editor). In a
Compilation buffer, each error message is a button, and
activating it visits the source code for that error
(see the section called “Running Compilations under Emacs”).
Although clicking Mouse-1 on a button usually activates the
button, if you hold the mouse button down for a period of time before
releasing it (specifically, for more than 450 milliseconds), then
Emacs moves point where you clicked, without activating the button.
In this way, you can use the mouse to move point over a button without
activating it. Dragging the mouse over or onto a button has its usual
behavior of setting the region, and does not activate the button.
You can change how Mouse-1 applies to buttons by customizing
the variable mouse-1-click-follows-link. If the value is a
positive integer, that determines how long you need to hold the mouse
button down for, in milliseconds, to cancel button activation; the
default is 450, as described in the previous paragraph. If the value
is nil, Mouse-1 just sets point where you clicked, and
does not activate buttons. If the value is double, double
clicks activate buttons but single clicks just set point.
 Normally, Mouse-1 on a button activates the button even if it
is in a non-selected window. If you change the variable
mouse-1-click-in-non-selected-windows to nil,
Mouse-1 on a button in an unselected window moves point to the
clicked position and selects that window, without activating the
button.

Mouse Clicks for Menus

Several mouse clicks with the CTRL and SHIFT modifiers
bring up menus.
	C-Mouse-1
	This menu is for selecting a buffer.
The MSB (“mouse select buffer”) global minor mode makes this
menu smarter and more customizable. See the section called “Customizing Buffer Menus”.

	C-Mouse-2
	This menu contains entries for examining faces and other text
properties, and well as for setting them (the latter is mainly useful
when editing enriched text; see the section called “Enriched Text”).

	C-Mouse-3
	This menu is mode-specific. For most modes if Menu-bar mode is on,
this menu has the same items as all the mode-specific menu-bar menus
put together. Some modes may specify a different menu for this
button. If Menu Bar mode is off, this menu contains all the items
which would be present in the menu bar—not just the mode-specific
ones—so that you can access them without having to display the menu
bar.

	S-Mouse-1
	This menu is for changing the default face within the window's buffer.
See the section called “Text Scale”.

Some graphical applications use Mouse-3 for a mode-specific
menu. If you prefer Mouse-3 in Emacs to bring up such a menu
instead of running the mouse-save-then-kill command, rebind
Mouse-3 by adding the following line to your init file
(see the section called “Rebinding Keys in Your Init File”):

(global-set-key [mouse-3] 'mouse-popup-menubar-stuff)

Mode Line Mouse Commands

 You can use mouse clicks on window mode lines to select and manipulate
windows.
Some areas of the mode line, such as the buffer name, and major and minor
mode names, have their own special mouse bindings. These areas are
highlighted when you hold the mouse over them, and information about
the special bindings will be displayed (see the section called “Tooltips”). This
section's commands do not apply in those areas.
	Mouse-1
	Mouse-1 on a mode line selects the window it belongs to. By
dragging Mouse-1 on the mode line, you can move it, thus
changing the height of the windows above and below. Changing heights
with the mouse in this way never deletes windows, it just refuses to
make any window smaller than the minimum height.

	Mouse-2
	Mouse-2 on a mode line expands that window to fill its frame.

	Mouse-3
	Mouse-3 on a mode line deletes the window it belongs to. If the
frame has only one window, it does nothing.

	C-Mouse-2
	C-Mouse-2 on a mode line splits that window, producing two
side-by-side windows with the boundary running through the click
position (see the section called “Splitting Windows”).

 Furthermore, by clicking and dragging Mouse-1 on the divider
between two side-by-side mode lines, you can move the vertical
boundary to the left or right.

Creating Frames

 The prefix key C-x 5 is analogous to C-x 4. Whereas
each C-x 4 command pops up a buffer in a different window in the
selected frame (see the section called “Displaying in Another Window”), the C-x 5 commands use a
different frame. If an existing visible or iconified (“minimized”)
frame already displays the requested buffer, that frame is raised and
deiconified (“un-minimized”); otherwise, a new frame is created on
the current display terminal.
The various C-x 5 commands differ in how they find or create the
buffer to select:
	C-x 5 2
	Create a new frame (make-frame-command).

	C-x 5 b bufname RET
	Select buffer bufname in another frame. This runs
switch-to-buffer-other-frame.

	C-x 5 f filename RET
	Visit file filename and select its buffer in another frame. This
runs find-file-other-frame. See the section called “Visiting Files”.

	C-x 5 d directory RET
	Select a Dired buffer for directory directory in another frame.
This runs dired-other-frame. See Chapter 30, Dired, the Directory Editor.

	C-x 5 m
	Start composing a mail message in another frame. This runs
mail-other-frame. It is the other-frame variant of C-x m.
See Chapter 32, Sending Mail.

	C-x 5 .
	Find a tag in the current tag table in another frame. This runs
find-tag-other-frame, the multiple-frame variant of M-..
See the section called “Tags Tables”.

	C-x 5 r filename RET
	Visit file filename read-only, and select its buffer in another
frame. This runs find-file-read-only-other-frame.
See the section called “Visiting Files”.

You can control the appearance and behavior of the newly-created
frames by specifying frame parameters. See the section called “Frame Parameters”.

Frame Commands

The following commands are used to delete and operate on frames:
	C-x 5 0
	Delete the selected frame (delete-frame). This signals an
error if there is only one frame.

	C-z
	Minimize (or “iconify) the selected Emacs frame
(suspend-frame). See Chapter 6, Exiting Emacs.

	C-x 5 o
	Select another frame, and raise it. If you repeat this command, it
cycles through all the frames on your terminal.

	C-x 5 1
	Delete all frames on the current terminal, except the selected one.

The C-x 5 0 (delete-frame) command deletes the selected
frame. However, it will refuse to delete the last frame in an Emacs
session, to prevent you from losing the ability to interact with the
Emacs session. Note that when Emacs is run as a daemon (see Chapter 37, Using Emacs as a Server), there is always a “virtual frame” that remains after all
the ordinary, interactive frames are deleted. In this case, C-x
5 0 can delete the last interactive frame; you can use
emacsclient to reconnect to the Emacs session.
The C-x 5 1 (delete-other-frames) command deletes all
other frames on the current terminal (this terminal refers to either a
graphical display, or a text terminal; see the section called “Non-Window Terminals”).
If the Emacs session has frames open on other graphical displays or
text terminals, those are not deleted.
 The C-x 5 o (other-frame) command selects the next
frame on the current terminal. If you are using Emacs on the X Window
System with a window manager that selects (or gives focus to)
whatever frame the mouse cursor is over, you have to change the
variable focus-follows-mouse to t in order for this
command to work properly. Then invoking C-x 5 o will also warp
the mouse cursor to the chosen frame.

Fonts

 By default, Emacs displays text on graphical displays using a
12-point monospace font. There are several different ways to specify
a different font:
	Click on ‘Set Default Font’ in the ‘Options’ menu. To save
this for future sessions, click on ‘Save Options’ in the
‘Options’ menu.

	Add a line to your init file, modifying the variable
default-frame-alist to specify the font parameter
(see the section called “Frame Parameters”), like this:

(add-to-list 'default-frame-alist '(font . "DejaVu Sans Mono-10"))

	Add an ‘emacs.font’ X resource setting to your X resource file,
like this:

emacs.font: DejaVu Sans Mono-12

You must restart X, or use the xrdb command, for the X
resources file to take effect. See the section called “X Resources”. Do not quote
font names in X resource files.

	If you are running Emacs on the GNOME desktop, you can tell Emacs to
use the default system font by setting the variable
font-use-system-font to t (the default is nil).
For this to work, Emacs must have been compiled with Gconf support.

	Use the command line option ‘-fn’ (or ‘--font’). See the section called “Font Specification Options”.

To check what font you're currently using, the C-u C-x =
command can be helpful. It describes the character at point, and
names the font that it's rendered in.
 On X, there are four different ways to express a “font name”. The
first is to use a Fontconfig pattern. Fontconfig patterns have
the following form:

fontname[-fontsize][:name1=values1][:name2=values2]...

Within this format, any of the elements in braces may be omitted.
Here, fontname is the family name of the font, such as
‘Monospace’ or ‘DejaVu Sans Mono’; fontsize is the
point size of the font (one printer's point is about 1/72
of an inch); and the ‘name=values’ entries specify
settings such as the slant and weight of the font. Each values
may be a single value, or a list of values separated by commas. In
addition, some property values are valid with only one kind of
property name, in which case the ‘name=’ part may be
omitted.
Here is a list of common font properties:
	‘slant’
	One of ‘italic’, ‘oblique’, or ‘roman’.

	‘weight’
	One of ‘light’, ‘medium’, ‘demibold’, ‘bold’ or
‘black’.

	‘style’
	Some fonts define special styles which are a combination of slant and
weight. For instance, ‘Dejavu Sans’ defines the ‘book’
style, which overrides the slant and weight properties.

	‘width’
	One of ‘condensed’, ‘normal’, or ‘expanded’.

	‘spacing’
	One of ‘monospace’, ‘proportional’, ‘dual-width’, or
‘charcell’.

Here are some examples of Fontconfig patterns:

Monospace
Monospace-12
Monospace-12:bold
DejaVu Sans Mono:bold:italic
Monospace-12:weight=bold:slant=italic

For a more detailed description of Fontconfig patterns, see the
Fontconfig manual, which is distributed with Fontconfig and available
online at http://fontconfig.org/fontconfig-user.html.
 The second way to specify a font is to use a GTK font pattern.
These have the syntax

fontname [properties] [fontsize]

where fontname is the family name, properties is a list of
property values separated by spaces, and fontsize is the point
size. The properties that you may specify for GTK font patterns are
as follows:
	Slant properties: ‘Italic’ or ‘Oblique’. If omitted, the
default (roman) slant is implied.

	Weight properties: ‘Bold’, ‘Book’, ‘Light’,
‘Medium’, ‘Semi-bold’, or ‘Ultra-light’. If omitted,
‘Medium’ weight is implied.

	Width properties: ‘Semi-Condensed’ or ‘Condensed’. If
omitted, a default width is used.

Here are some examples of GTK font patterns:

Monospace 12
Monospace Bold Italic 12

 The third way to specify a font is to use an XLFD (X
Logical Font Description). This is the traditional method for
specifying fonts under X. Each XLFD consists of fourteen words or
numbers, separated by dashes, like this:

-misc-fixed-medium-r-semicondensed--13-*-*-*-c-60-iso8859-1

A wildcard character (‘*’) in an XLFD matches any sequence of
characters (including none), and ‘?’ matches any single
character. However, matching is implementation-dependent, and can be
inaccurate when wildcards match dashes in a long name. For reliable
results, supply all 14 dashes and use wildcards only within a field.
Case is insignificant in an XLFD. The syntax for an XLFD is as
follows:

-maker-family-weight-slant-widthtype-style…
…-pixels-height-horiz-vert-spacing-width-registry-encoding

The entries have the following meanings:
	maker
	The name of the font manufacturer.

	family
	The name of the font family (e.g. ‘courier’).

	weight
	The font weight—normally either ‘bold’, ‘medium’ or
‘light’. Some font names support other values.

	slant
	The font slant—normally ‘r’ (roman), ‘i’ (italic),
‘o’ (oblique), ‘ri’ (reverse italic), or ‘ot’ (other).
Some font names support other values.

	widthtype
	The font width—normally ‘normal’, ‘condensed’,
‘semicondensed’, or ‘extended’. Some font names support
other values.

	style
	An optional additional style name. Usually it is empty—most XLFDs
have two hyphens in a row at this point.

	pixels
	The font height, in pixels.

	height
	The font height on the screen, measured in tenths of a printer's
point. This is the point size of the font, times ten. For a given
vertical resolution, height and pixels are proportional;
therefore, it is common to specify just one of them and use ‘*’
for the other.

	horiz
	The horizontal resolution, in pixels per inch, of the screen for which
the font is intended.

	vert
	The vertical resolution, in pixels per inch, of the screen for which
the font is intended. Normally the resolution of the fonts on your
system is the right value for your screen; therefore, you normally
specify ‘*’ for this and horiz.

	spacing
	This is ‘m’ (monospace), ‘p’ (proportional) or ‘c’
(character cell).

	width
	The average character width, in pixels, multiplied by ten.

	registry, encoding
	The X font character set that the font depicts. (X font character
sets are not the same as Emacs character sets, but they are similar.)
You can use the xfontsel program to check which choices you
have. Normally you should use ‘iso8859’ for registry and
‘1’ for encoding.

The fourth and final method of specifying a font is to use a “font
nickname”. Certain fonts have shorter nicknames, which you can use
instead of a normal font specification. For instance, ‘6x13’ is
equivalent to

-misc-fixed-medium-r-semicondensed--13-*-*-*-c-60-iso8859-1

 On X, Emacs recognizes two types of fonts: client-side fonts,
which are provided by the Xft and Fontconfig libraries, and
server-side fonts, which are provided by the X server itself.
Most client-side fonts support advanced font features such as
antialiasing and subpixel hinting, while server-side fonts do not.
Fontconfig and GTK patterns match only client-side fonts.
 You will probably want to use a fixed-width default font—that is,
a font in which all characters have the same width. For Xft and
Fontconfig fonts, you can use the fc-list command to list
the available fixed-width fonts, like this:

fc-list :spacing=mono fc-list :spacing=charcell

For server-side X fonts, you can use the xlsfonts program to
list the available fixed-width fonts, like this:

xlsfonts -fn '*x*' | egrep "^[0-9]+x[0-9]+"
xlsfonts -fn '*-*-*-*-*-*-*-*-*-*-*-m*'
xlsfonts -fn '*-*-*-*-*-*-*-*-*-*-*-c*'

Any font with ‘m’ or ‘c’ in the spacing field of the
XLFD is a fixed-width font. To see what a particular font looks like,
use the xfd command. For example:

xfd -fn 6x13

displays the entire font ‘6x13’.
While running Emacs, you can also set the font of a specific kind of
text (see the section called “Text Faces”), or a particular frame (see the section called “Frame Parameters”).

Speedbar Frames

 The speedbar is a special frame for conveniently navigating in
or operating on another frame. The speedbar, when it exists, is
always associated with a specific frame, called its attached
frame; all speedbar operations act on that frame.
Type M-x speedbar to create the speedbar and associate it with
the current frame. To dismiss the speedbar, type M-x speedbar
again, or select the speedbar and type q. (You can also delete
the speedbar frame like any other Emacs frame.) If you wish to
associate the speedbar with a different frame, dismiss it and call
M-x speedbar from that frame.
The speedbar can operate in various modes. Its default mode is
File Display mode, which shows the files in the current
directory of the selected window of the attached frame, one file per
line. Clicking on a file name visits that file in the selected window
of the attached frame, and clicking on a directory name shows that
directory in the speedbar (see the section called “Following References with the Mouse”). Each line also
has a box, ‘[+]’ or ‘<+>’, that you can click on to
expand the contents of that item. Expanding a directory adds
the contents of that directory to the speedbar display, underneath the
directory's own line. Expanding an ordinary file adds a list of the
tags in that file to the speedbar display; you can click on a tag name
to jump to that tag in the selected window of the attached frame.
When a file or directory is expanded, the ‘[+]’ changes to
‘[-]’; you can click on that box to contract the item,
hiding its contents.
You navigate through the speedbar using the keyboard, too. Typing
RET while point is on a line in the speedbar is equivalent to
clicking the item on the current line, and SPC expands or
contracts the item. U displays the parent directory of the
current directory. To copy, delete, or rename the file on the current
line, type C, D, and R respectively. To create a
new directory, type M.
Another general-purpose speedbar mode is Buffer Display mode;
in this mode, the speedbar displays a list of Emacs buffers. To
switch to this mode, type b in the speedbar. To return to File
Display mode, type f. You can also change the display mode by
clicking mouse-3 anywhere in the speedbar window (or
mouse-1 on the mode-line) and selecting ‘Displays’ in the
pop-up menu.
Some major modes, including Rmail mode, Info, and GUD, have
specialized ways of putting useful items into the speedbar for you to
select. For example, in Rmail mode, the speedbar shows a list of Rmail
files, and lets you move the current message to another Rmail file by
clicking on its ‘<M>’ box.
For more details on using and programming the speedbar, See See section ``Top'' in Speedbar Manual.

Multiple Displays

 A single Emacs can talk to more than one X display. Initially, Emacs
uses just one display—the one specified with the DISPLAY
environment variable or with the ‘--display’ option (see the section called “Initial Options”). To connect to another display, use the command
make-frame-on-display:

	M-x make-frame-on-display RET display RET
	Create a new frame on display display.

A single X server can handle more than one screen. When you open
frames on two screens belonging to one server, Emacs knows they share a
single keyboard, and it treats all the commands arriving from these
screens as a single stream of input.
When you open frames on different X servers, Emacs makes a separate
input stream for each server. Each server also has its own selected
frame. The commands you enter with a particular X server apply to
that server's selected frame.

Frame Parameters

 You can control the default appearance and behavior of all frames by
specifying a default list of frame parameters in the variable
default-frame-alist. Its value should be a list of entries,
each specifying a parameter name and a value for that parameter.
These entries take effect whenever Emacs creates a new frame,
including the initial frame.
 For example, you can add the following lines to your init file
(see the section called “The Emacs Initialization File”) to set the default frame width to 90 character
columns, the default frame height to 40 character rows, and the
default font to ‘Monospace-10’:

(add-to-list 'default-frame-alist '(width . 90))
(add-to-list 'default-frame-alist '(height . 40))
(add-to-list 'default-frame-alist '(font . "Monospace-10"))

For a list of frame parameters and their effects, see See section ``Frame Parameters'' in The Emacs Lisp Reference Manual.
 You can also specify a list of frame parameters which apply to just
the initial frame, by customizing the variable
initial-frame-alist.
If Emacs is compiled to use an X toolkit, frame parameters that
specify colors and fonts don't affect menus and the menu bar, since
those are drawn by the toolkit and not directly by Emacs.

Scroll Bars

 On graphical displays, there is a scroll bar on the side of
each Emacs window. Clicking Mouse-1 on the scroll bar's up and
down buttons scrolls the window by one line at a time. Clicking
Mouse-1 above or below the scroll bar's inner box scrolls the
window by nearly the entire height of the window, like M-v and
C-v respectively (see the section called “Changing the Location of Point”). Dragging the inner box
scrolls continuously.
If Emacs is compiled on the X Window System without X toolkit
support, the scroll bar behaves differently. Clicking Mouse-1
anywhere on the scroll bar scrolls forward like C-v, while
Mouse-3 scrolls backward like M-v. Clicking Mouse-2
in the scroll bar lets you drag the inner box up and down.
 To toggle the use of scroll bars, type M-x scroll-bar-mode.
This command applies to all frames, including frames yet to be
created. To toggle scroll bars for just the selected frame, use the
command M-x toggle-scroll-bar.
 To control the use of scroll bars at startup, customize the variable
scroll-bar-mode. Its value should be either right (put
scroll bars on the right side of windows), left (put them on
the left), or nil (disable scroll bars). By default, Emacs
puts scroll bars on the right if it was compiled with GTK+ support on
the X Window System, and on MS-Windows or Mac OS; Emacs puts scroll
bars on the left if compiled on the X Window System without GTK+
support (following the old convention for X applications).
 You can also use the X resource ‘verticalScrollBars’ to enable
or disable the scroll bars (see the section called “X Resources”). To control the scroll
bar width, change the scroll-bar-width frame parameter
(see See section ``Frame Parameters'' in The Emacs Lisp Reference Manual).

Drag and Drop

 In most graphical desktop environments, Emacs has basic support for
drag and drop operations. For instance, dropping text onto an
Emacs frame inserts the text where it is dropped. Dropping a file
onto an Emacs frame visits that file. As a special case, dropping the
file on a Dired buffer moves or copies the file (according to the
conventions of the application it came from) into the directory
displayed in that buffer.
 Dropping a file normally visits it in the window you drop it on. If
you prefer to visit the file in a new window in such cases, customize
the variable dnd-open-file-other-window.
The XDND and Motif drag and drop protocols, and the old KDE 1.x
protocol, are currently supported.

Menu Bars

 You can toggle the use of menu bars with M-x menu-bar-mode.
With no argument, this command toggles Menu Bar mode, a global minor
mode. With an argument, the command turns Menu Bar mode on if the
argument is positive, off if the argument is not positive. To control
the use of menu bars at startup, customize the variable
menu-bar-mode.
 Expert users often turn off the menu bar, especially on text
terminals, where this makes one additional line available for text.
If the menu bar is off, you can still pop up a menu of its contents
with C-Mouse-3 on a display which supports pop-up menus.
See the section called “Mouse Clicks for Menus”.
See the section called “The Menu Bar”, for information on how to invoke commands with the
menu bar. See Appendix D, X Options and Resources, for how to customize the menu bar
menus' visual appearance.

Tool Bars

 On graphical displays, Emacs puts a tool bar at the top of
each frame, just below the menu bar. This is a row of icons which you
can click on with the mouse to invoke various commands.
The global (default) tool bar contains general commands. Some major
modes define their own tool bars; whenever a buffer with such a major
mode is current, the mode's tool bar replaces the global tool bar.
 To toggle the use of tool bars, type M-x tool-bar-mode. This
command applies to all frames, including frames yet to be created. To
control the use of tool bars at startup, customize the variable
tool-bar-mode.
 When Emacs is compiled with GTK+ support, each tool bar item can
consist of an image, or a text label, or both. By default, Emacs
follows the Gnome desktop's tool bar style setting; if none is
defined, it displays tool bar items as just images. To impose a
specific tool bar style, customize the variable tool-bar-style.
 You can also control the placement of the tool bar for the GTK+ tool
bar with the frame parameter tool-bar-position. See See section ``Frame Parameters'' in The Emacs Lisp Reference Manual.

Using Dialog Boxes

 A dialog box is a special kind of menu for asking you a yes-or-no
question or some other special question. Many Emacs commands use a
dialog box to ask a yes-or-no question, if you used the mouse to
invoke the command that led to the question.
To disable the use of dialog boxes, change the variable
use-dialog-box to nil. In that case, Emacs always
performs yes-or-no prompts using the echo area and keyboard input.
This variable also controls whether to use file selection windows (but
those are not supported on all platforms).
 A file selection window is a special kind of dialog box for asking
for file names. You can customize the variable use-file-dialog
to suppress the use of file selection windows, even if you still want
other kinds of dialogs. This variable has no effect if you have
suppressed all dialog boxes with the variable use-dialog-box.
 When Emacs is compiled with GTK+ support, it uses the GTK+ “file
chooser” dialog. Emacs adds an additional toggle button to this
dialog, which you can use to enable or disable the display of hidden
files (files starting with a dot) in that dialog. If you want this
toggle to be activated by default, change the variable
x-gtk-show-hidden-files to t. In addition, Emacs adds
help text to the GTK+ file chooser dialog; to disable this help text,
change the variable x-gtk-file-dialog-help-text to nil.

Tooltips

 Tooltips are small windows that display text information at
the current mouse position. They activate when there is a pause in
mouse movement over some significant piece of text in a window, or the
mode line, or some other part of the Emacs frame such as a tool bar
button or menu item.
 You can toggle the use of tooltips with the command M-x
tooltip-mode. When Tooltip mode is disabled, the help text is
displayed in the echo area instead. To control the use of tooltips at
startup, customize the variable tooltip-mode.
 The variables tooltip-delay specifies how long Emacs should
wait before displaying a tooltip. For additional customization
options for displaying tooltips, use M-x customize-group
RET tooltip RET.
 If Emacs is built with GTK+ support, it displays tooltips via GTK+,
using the default appearance of GTK+ tooltips. To disable this,
change the variable x-gtk-use-system-tooltips to nil.
If you do this, or if Emacs is built without GTK+ support, most
attributes of the tooltip text are specified by the tooltip
face, and by X resources (see Appendix D, X Options and Resources).
GUD tooltips are special tooltips that show the values of
variables when debugging a program with GUD. See the section called “Debugger Operation”.

Mouse Avoidance

 On graphical terminals, the mouse pointer may obscure the text in
the Emacs frame. Emacs provides two methods to avoid this problem.
 Firstly, Emacs hides the mouse pointer each time you type a
self-inserting character, if the pointer lies inside an Emacs frame;
moving the mouse pointer makes it visible again. To disable this
feature, set the variable make-pointer-invisible to nil.
 Secondly, you can use Mouse Avoidance mode, a minor mode, to keep
the mouse pointer away from point. To use Mouse Avoidance mode,
customize the variable mouse-avoidance-mode. You can set this
to various values to move the mouse in several ways:
	banish
	Move the mouse to the upper-right corner on any key-press;

	exile
	Move the mouse to the corner only if the cursor gets too close,
and allow it to return once the cursor is out of the way;

	jump
	If the cursor gets too close to the mouse, displace the mouse
a random distance & direction;

	animate
	As jump, but shows steps along the way for illusion of motion;

	cat-and-mouse
	The same as animate;

	proteus
	As animate, but changes the shape of the mouse pointer too.

You can also use the command M-x mouse-avoidance-mode to enable
the mode. Whenever Mouse Avoidance mode moves the mouse, it also
raises the frame.

Non-Window Terminals

 On a text terminal, Emacs can display only one Emacs frame at a
time. However, you can still create multiple Emacs frames, and switch
between them. Switching frames on these terminals is much like
switching between different window configurations.
Use C-x 5 2 to create a new frame and switch to it; use C-x
5 o to cycle through the existing frames; use C-x 5 0 to delete
the current frame.
Each frame has a number to distinguish it. If your terminal can
display only one frame at a time, the selected frame's number n
appears near the beginning of the mode line, in the form
‘Fn’.
 ‘Fn’ is in fact the frame's initial name. You can give
frames more meaningful names if you wish, and you can select a frame
by its name. Use the command M-x set-frame-name RET
name RET to specify a new name for the selected frame,
and use M-x select-frame-by-name RET name RET
to select a frame according to its name. The name you specify appears
in the mode line when the frame is selected.

Using a Mouse in Text Terminals

Some text terminals support mouse clicks in the terminal window.
 In a terminal emulator which is compatible with xterm, you
can use M-x xterm-mouse-mode to give Emacs control over simple
uses of the mouse—basically, only non-modified single clicks are
supported. The normal xterm mouse functionality for such
clicks is still available by holding down the SHIFT key when you
press the mouse button. Xterm Mouse mode is a global minor mode
(see the section called “Minor Modes”). Repeating the command turns the mode off
again.
 In the console on GNU/Linux, you can use M-x gpm-mouse-mode to
enable mouse support. You must have the gpm server installed and
running on your system in order for this to work.
See the section called “Mouse Usage on MS-DOS”,
for information about mouse support on MS-DOS.

Chapter 22. International Character Set Support

 Emacs supports a wide variety of international character sets,
including European and Vietnamese variants of the Latin alphabet, as
well as Cyrillic, Devanagari (for Hindi and Marathi), Ethiopic, Greek,
Han (for Chinese and Japanese), Hangul (for Korean), Hebrew, IPA,
Kannada, Lao, Malayalam, Tamil, Thai, Tibetan, and Vietnamese scripts.
Emacs also supports various encodings of these characters that are used by
other internationalized software, such as word processors and mailers.
Emacs allows editing text with international characters by supporting
all the related activities:
	You can visit files with non-ASCII characters, save non-ASCII text, and
pass non-ASCII text between Emacs and programs it invokes (such as
compilers, spell-checkers, and mailers). Setting your language
environment (see the section called “Language Environments”) takes care of setting up the
coding systems and other options for a specific language or culture.
Alternatively, you can specify how Emacs should encode or decode text
for each command; see the section called “Specifying a Coding System for File Text”.

	You can display non-ASCII characters encoded by the various
scripts. This works by using appropriate fonts on graphics displays
(see the section called “Defining fontsets”), and by sending special codes to text
displays (see the section called “Coding Systems for Terminal I/O”). If some characters are displayed
incorrectly, refer to the section called “Undisplayable Characters”, which describes
possible problems and explains how to solve them.

	Characters from scripts whose natural ordering of text is from right
to left are reordered for display (see the section called “Bidirectional Editing”).
These scripts include Arabic, Hebrew, Syriac, Thaana, and a few
others.

	You can insert non-ASCII characters or search for them. To do that,
you can specify an input method (see the section called “Selecting an Input Method”) suitable
for your language, or use the default input method set up when you chose
your language environment. If
your keyboard can produce non-ASCII characters, you can select an
appropriate keyboard coding system (see the section called “Coding Systems for Terminal I/O”), and Emacs
will accept those characters. Latin-1 characters can also be input by
using the C-x 8 prefix, see the section called “Unibyte Editing Mode”.
With the X Window System, your locale should be set to an appropriate
value to make sure Emacs interprets keyboard input correctly; see
locales.

The rest of this chapter describes these issues in detail.
Introduction to International Character Sets

The users of international character sets and scripts have
established many more-or-less standard coding systems for storing
files. These coding systems are typically multibyte, meaning
that sequences of two or more bytes are used to represent individual
non-ASCII characters.
 Internally, Emacs uses its own multibyte character encoding, which
is a superset of the Unicode standard. This internal encoding
allows characters from almost every known script to be intermixed in a
single buffer or string. Emacs translates between the multibyte
character encoding and various other coding systems when reading and
writing files, and when exchanging data with subprocesses.
 The command C-h h (view-hello-file) displays the file
etc/HELLO, which illustrates various scripts by showing
how to say “hello” in many languages. If some characters can't be
displayed on your terminal, they appear as ‘?’ or as hollow boxes
(see the section called “Undisplayable Characters”).
Keyboards, even in the countries where these character sets are
used, generally don't have keys for all the characters in them. You
can insert characters that your keyboard does not support, using
C-q (quoted-insert) or C-x 8 RET
(ucs-insert). See the section called “Inserting Text”. Emacs also supports
various input methods, typically one for each script or
language, which make it easier to type characters in the script.
See the section called “Input Methods”.
 The prefix key C-x RET is used for commands that pertain
to multibyte characters, coding systems, and input methods.
 The command C-x = (what-cursor-position) shows
information about the character at point. In addition to the
character position, which was described in the section called “Cursor Position Information”, this
command displays how the character is encoded. For instance, it
displays the following line in the echo area for the character
‘c’:

Char: c (99, #o143, #x63) point=28062 of 36168 (78%) column=53

The four values after ‘Char:’ describe the character that
follows point, first by showing it and then by giving its character
code in decimal, octal and hex. For a non-ASCII multibyte
character, these are followed by ‘file’ and the character's
representation, in hex, in the buffer's coding system, if that coding
system encodes the character safely and with a single byte
(see the section called “Coding Systems”). If the character's encoding is longer than
one byte, Emacs shows ‘file ...’.
As a special case, if the character lies in the range 128 (0200
octal) through 159 (0237 octal), it stands for a “raw” byte that
does not correspond to any specific displayable character. Such a
“character” lies within the eight-bit-control character set,
and is displayed as an escaped octal character code. In this case,
C-x = shows ‘part of display ...’ instead of ‘file’.
 With a prefix argument (C-u C-x =), this command displays a
detailed description of the character in a window:
	The character set name, and the codes that identify the character
within that character set; ASCII characters are identified
as belonging to the ascii character set.

	The character's syntax and categories.

	The character's encodings, both internally in the buffer, and externally
if you were to save the file.

	What keys to type to input the character in the current input method
(if it supports the character).

	If you are running Emacs on a graphical display, the font name and
glyph code for the character. If you are running Emacs on a text
terminal, the code(s) sent to the terminal.

	The character's text properties (see See section ``Text Properties'' in the Emacs Lisp Reference Manual), including any non-default
faces used to display the character, and any overlays containing it
(see See section ``Overlays'' in the same manual).

Here's an example showing the Latin-1 character A with grave accent,
in a buffer whose coding system is utf-8-unix:

 position: 1 of 1 (0%), column: 0
 character: À (displayed as À) (codepoint 192, #o300, #xc0)
 preferred charset: unicode (Unicode (ISO10646))
code point in charset: 0xC0
 syntax: w which means: word
 category: .:Base, L:Left-to-right (strong),
 j:Japanese, l:Latin, v:Viet
 buffer code: #xC3 #x80
 file code: not encodable by coding system undecided-unix
 display: by this font (glyph code)
 xft:-unknown-DejaVu Sans Mono-normal-normal-
 normal-*-13-*-*-*-m-0-iso10646-1 (#x82)

Character code properties: customize what to show
 name: LATIN CAPITAL LETTER A WITH GRAVE
 old-name: LATIN CAPITAL LETTER A GRAVE
 general-category: Lu (Letter, Uppercase)
 decomposition: (65 768) ('A' '`')

Disabling Multibyte Characters

By default, Emacs starts in multibyte mode: it stores the contents
of buffers and strings using an internal encoding that represents
non-ASCII characters using multi-byte sequences. Multibyte
mode allows you to use all the supported languages and scripts without
limitations.
 Under very special circumstances, you may want to disable multibyte
character support, for a specific buffer.
When multibyte characters are disabled in a buffer, we call
that unibyte mode. In unibyte mode, each character in the
buffer has a character code ranging from 0 through 255 (0377 octal); 0
through 127 (0177 octal) represent ASCII characters, and 128
(0200 octal) through 255 (0377 octal) represent non-ASCII
characters.
To edit a particular file in unibyte representation, visit it using
find-file-literally. See the section called “Visiting Files”. You can convert a
multibyte buffer to unibyte by saving it to a file, killing the
buffer, and visiting the file again with find-file-literally.
Alternatively, you can use C-x RET c
(universal-coding-system-argument) and specify ‘raw-text’
as the coding system with which to visit or save a file. See the section called “Specifying a Coding System for File Text”. Unlike find-file-literally, finding a file as
‘raw-text’ doesn't disable format conversion, uncompression, or
auto mode selection.
 Emacs normally loads Lisp files as multibyte.
This includes the Emacs initialization
file, .emacs, and the initialization files of packages
such as Gnus. However, you can specify unibyte loading for a
particular Lisp file, by adding an entry ‘unibyte: t’ in a file
local variables section (see the section called “Local Variables in Files”). Then that file is
always loaded as unibyte text. Note that this does not represent a
real unibyte variable, rather it just acts as an indicator
to Emacs in the same way as coding does (see the section called “Specifying a File's Coding System”).
Note also that this feature only applies to loading Lisp files
for evaluation, not to visiting them for editing. You can also load a
Lisp file as unibyte, on any one occasion, by typing C-x
RET c raw-text RET immediately before loading it.
The buffer-local variable enable-multibyte-characters is
non-nil in multibyte buffers, and nil in unibyte ones.
The mode line also indicates whether a buffer is multibyte or not.
See the section called “The Mode Line”. With a graphical display, in a multibyte buffer,
the portion of the mode line that indicates the character set has a
tooltip that (amongst other things) says that the buffer is multibyte.
In a unibyte buffer, the character set indicator is absent. Thus, in
a unibyte buffer (when using a graphical display) there is normally
nothing before the indication of the visited file's end-of-line
convention (colon, backslash, etc.), unless you are using an input
method.
You can turn off multibyte support in a specific buffer by invoking the
command toggle-enable-multibyte-characters in that buffer.

Language Environments

 All supported character sets are supported in Emacs buffers whenever
multibyte characters are enabled; there is no need to select a
particular language in order to display its characters.
However, it is important to select a language
environment in order to set various defaults. Roughly speaking, the
language environment represents a choice of preferred script rather
than a choice of language.
The language environment controls which coding systems to recognize
when reading text (see the section called “Recognizing Coding Systems”). This applies to files,
incoming mail, and any other text you read into Emacs. It may also
specify the default coding system to use when you create a file. Each
language environment also specifies a default input method.
 To select a language environment, customize
current-language-environment or use the command M-x
set-language-environment. It makes no difference which buffer is
current when you use this command, because the effects apply globally
to the Emacs session. The supported language environments
(see the variable language-info-alist) include:

ASCII, Belarusian, Bengali, Brazilian Portuguese, Bulgarian, Cham,
Chinese-BIG5, Chinese-CNS, Chinese-EUC-TW, Chinese-GB, Chinese-GBK,
Chinese-GB18030, Croatian, Cyrillic-ALT, Cyrillic-ISO, Cyrillic-KOI8,
Czech, Devanagari, Dutch, English, Esperanto, Ethiopic, French,
Georgian, German, Greek, Gujarati, Hebrew, IPA, Italian, Japanese,
Kannada, Khmer, Korean, Lao, Latin-1, Latin-2, Latin-3, Latin-4,
Latin-5, Latin-6, Latin-7, Latin-8 (Celtic), Latin-9 (updated Latin-1
with the Euro sign), Latvian, Lithuanian, Malayalam, Oriya, Polish,
Punjabi, Romanian, Russian, Sinhala, Slovak, Slovenian, Spanish,
Swedish, TaiViet, Tajik, Tamil, Telugu, Thai, Tibetan, Turkish, UTF-8
(for a setup which prefers Unicode characters and files encoded in
UTF-8), Ukrainian, Vietnamese, Welsh, and Windows-1255 (for a setup
which prefers Cyrillic characters and files encoded in Windows-1255).

To display the script(s) used by your language environment on a
graphical display, you need to have suitable fonts.
See the section called “Fontsets”, for more details about setting up your fonts.
 Some operating systems let you specify the character-set locale you
are using by setting the locale environment variables LC_ALL,
LC_CTYPE, or LANG. (If more than one of these is
set, the first one that is nonempty specifies your locale for this
purpose.) During startup, Emacs looks up your character-set locale's
name in the system locale alias table, matches its canonical name
against entries in the value of the variables
locale-charset-language-names and locale-language-names
(the former overrides the latter),
and selects the corresponding language environment if a match is found.
It also adjusts the display
table and terminal coding system, the locale coding system, the
preferred coding system as needed for the locale, and—last but not
least—the way Emacs decodes non-ASCII characters sent by your keyboard.
If you modify the LC_ALL, LC_CTYPE, or LANG
environment variables while running Emacs (by using M-x setenv),
you may want to invoke the set-locale-environment
function afterwards to readjust the language environment from the new
locale.
 The set-locale-environment function normally uses the preferred
coding system established by the language environment to decode system
messages. But if your locale matches an entry in the variable
locale-preferred-coding-systems, Emacs uses the corresponding
coding system instead. For example, if the locale ‘ja_JP.PCK’
matches japanese-shift-jis in
locale-preferred-coding-systems, Emacs uses that encoding even
though it might normally use japanese-iso-8bit.
You can override the language environment chosen at startup with
explicit use of the command set-language-environment, or with
customization of current-language-environment in your init
file.
 To display information about the effects of a certain language
environment lang-env, use the command C-h L lang-env
RET (describe-language-environment). This tells you
which languages this language environment is useful for, and lists the
character sets, coding systems, and input methods that go with it. It
also shows some sample text to illustrate scripts used in this
language environment. If you give an empty input for lang-env,
this command describes the chosen language environment.
 You can customize any language environment with the normal hook
set-language-environment-hook. The command
set-language-environment runs that hook after setting up the new
language environment. The hook functions can test for a specific
language environment by checking the variable
current-language-environment. This hook is where you should
put non-default settings for specific language environments, such as
coding systems for keyboard input and terminal output, the default
input method, etc.
 Before it starts to set up the new language environment,
set-language-environment first runs the hook
exit-language-environment-hook. This hook is useful for undoing
customizations that were made with set-language-environment-hook.
For instance, if you set up a special key binding in a specific language
environment using set-language-environment-hook, you should set
up exit-language-environment-hook to restore the normal binding
for that key.

Input Methods

 An input method is a kind of character conversion designed
specifically for interactive input. In Emacs, typically each language
has its own input method; sometimes several languages that use the same
characters can share one input method. A few languages support several
input methods.
The simplest kind of input method works by mapping ASCII letters
into another alphabet; this allows you to use one other alphabet
instead of ASCII. The Greek and Russian input methods
work this way.
A more powerful technique is composition: converting sequences of
characters into one letter. Many European input methods use composition
to produce a single non-ASCII letter from a sequence that consists of a
letter followed by accent characters (or vice versa). For example, some
methods convert the sequence o ^ into a single accented letter.
These input methods have no special commands of their own; all they do
is compose sequences of printing characters.
The input methods for syllabic scripts typically use mapping followed
by composition. The input methods for Thai and Korean work this way.
First, letters are mapped into symbols for particular sounds or tone
marks; then, sequences of these that make up a whole syllable are
mapped into one syllable sign.
Chinese and Japanese require more complex methods. In Chinese input
methods, first you enter the phonetic spelling of a Chinese word (in
input method chinese-py, among others), or a sequence of
portions of the character (input methods chinese-4corner and
chinese-sw, and others). One input sequence typically
corresponds to many possible Chinese characters. You select the one
you mean using keys such as C-f, C-b, C-n,
C-p (or the arrow keys), and digits, which have special meanings
in this situation.
The possible characters are conceptually arranged in several rows,
with each row holding up to 10 alternatives. Normally, Emacs displays
just one row at a time, in the echo area; (i/j)
appears at the beginning, to indicate that this is the ith row
out of a total of j rows. Type C-n or C-p to
display the next row or the previous row.
Type C-f and C-b to move forward and backward among
the alternatives in the current row. As you do this, Emacs highlights
the current alternative with a special color; type C-SPC
to select the current alternative and use it as input. The
alternatives in the row are also numbered; the number appears before
the alternative. Typing a number selects the associated alternative
of the current row and uses it as input.
TAB in these Chinese input methods displays a buffer showing
all the possible characters at once; then clicking Mouse-2 on
one of them selects that alternative. The keys C-f, C-b,
C-n, C-p, and digits continue to work as usual, but they
do the highlighting in the buffer showing the possible characters,
rather than in the echo area.
In Japanese input methods, first you input a whole word using
phonetic spelling; then, after the word is in the buffer, Emacs
converts it into one or more characters using a large dictionary. One
phonetic spelling corresponds to a number of different Japanese words;
to select one of them, use C-n and C-p to cycle through
the alternatives.
Sometimes it is useful to cut off input method processing so that the
characters you have just entered will not combine with subsequent
characters. For example, in input method latin-1-postfix, the
sequence o ^ combines to form an ‘o’ with an accent. What if
you want to enter them as separate characters?
One way is to type the accent twice; this is a special feature for
entering the separate letter and accent. For example, o ^ ^ gives
you the two characters ‘o^’. Another way is to type another letter
after the o—something that won't combine with that—and
immediately delete it. For example, you could type o o DEL
^ to get separate ‘o’ and ‘^’.
Another method, more general but not quite as easy to type, is to use
C-\ C-\ between two characters to stop them from combining. This
is the command C-\ (toggle-input-method) used twice.
See the section called “Selecting an Input Method”.
 C-\ C-\ is especially useful inside an incremental search,
because it stops waiting for more characters to combine, and starts
searching for what you have already entered.
To find out how to input the character after point using the current
input method, type C-u C-x =. See the section called “Cursor Position Information”.
 The variables input-method-highlight-flag and
input-method-verbose-flag control how input methods explain
what is happening. If input-method-highlight-flag is
non-nil, the partial sequence is highlighted in the buffer (for
most input methods—some disable this feature). If
input-method-verbose-flag is non-nil, the list of
possible characters to type next is displayed in the echo area (but
not when you are in the minibuffer).
Another facility for typing characters not on your keyboard is by
using C-x 8 RET (ucs-insert) to insert a single
character based on its Unicode name or code-point; see the section called “Inserting Text”.

Selecting an Input Method

	C-\
	Enable or disable use of the selected input method (toggle-input-method).

	C-x RET C-\ method RET
	Select a new input method for the current buffer (set-input-method).

	C-h I method RET, C-h C-\ method RET
	Describe the input method method (describe-input-method).
By default, it describes the current input method (if any). This
description should give you the full details of how to use any
particular input method.

	M-x list-input-methods
	Display a list of all the supported input methods.

 To choose an input method for the current buffer, use C-x
RET C-\ (set-input-method). This command reads the
input method name from the minibuffer; the name normally starts with the
language environment that it is meant to be used with. The variable
current-input-method records which input method is selected.
 Input methods use various sequences of ASCII characters to
stand for non-ASCII characters. Sometimes it is useful to
turn off the input method temporarily. To do this, type C-\
(toggle-input-method). To reenable the input method, type
C-\ again.
If you type C-\ and you have not yet selected an input method,
it prompts you to specify one. This has the same effect as using
C-x RET C-\ to specify an input method.
When invoked with a numeric argument, as in C-u C-\,
toggle-input-method always prompts you for an input method,
suggesting the most recently selected one as the default.
 Selecting a language environment specifies a default input method for
use in various buffers. When you have a default input method, you can
select it in the current buffer by typing C-\. The variable
default-input-method specifies the default input method
(nil means there is none).
In some language environments, which support several different input
methods, you might want to use an input method different from the
default chosen by set-language-environment. You can instruct
Emacs to select a different default input method for a certain
language environment, if you wish, by using
set-language-environment-hook (see set-language-environment-hook). For example:

(defun my-chinese-setup ()
 "Set up my private Chinese environment."
 (if (equal current-language-environment "Chinese-GB")
 (setq default-input-method "chinese-tonepy")))
(add-hook 'set-language-environment-hook 'my-chinese-setup)

This sets the default input method to be chinese-tonepy
whenever you choose a Chinese-GB language environment.
You can instruct Emacs to activate a certain input method
automatically. For example:

(add-hook 'text-mode-hook
 (lambda () (set-input-method "german-prefix")))

This automatically activates the input method “german-prefix” in
Text mode.
 Some input methods for alphabetic scripts work by (in effect)
remapping the keyboard to emulate various keyboard layouts commonly used
for those scripts. How to do this remapping properly depends on your
actual keyboard layout. To specify which layout your keyboard has, use
the command M-x quail-set-keyboard-layout.
 You can use the command M-x quail-show-key to show what key (or
key sequence) to type in order to input the character following point,
using the selected keyboard layout. The command C-u C-x = also
shows that information, in addition to other information about the
character.
 M-x list-input-methods displays a list of all the supported
input methods. The list gives information about each input method,
including the string that stands for it in the mode line.

Coding Systems

 Users of various languages have established many more-or-less standard
coding systems for representing them. Emacs does not use these coding
systems internally; instead, it converts from various coding systems to
its own system when reading data, and converts the internal coding
system to other coding systems when writing data. Conversion is
possible in reading or writing files, in sending or receiving from the
terminal, and in exchanging data with subprocesses.
Emacs assigns a name to each coding system. Most coding systems are
used for one language, and the name of the coding system starts with
the language name. Some coding systems are used for several
languages; their names usually start with ‘iso’. There are also
special coding systems, such as no-conversion, raw-text,
and emacs-internal.
 A special class of coding systems, collectively known as
codepages, is designed to support text encoded by MS-Windows and
MS-DOS software. The names of these coding systems are
cpnnnn, where nnnn is a 3- or 4-digit number of the
codepage. You can use these encodings just like any other coding
system; for example, to visit a file encoded in codepage 850, type
C-x RET c cp850 RET C-x C-f filename
RET.
In addition to converting various representations of non-ASCII
characters, a coding system can perform end-of-line conversion. Emacs
handles three different conventions for how to separate lines in a file:
newline (“unix”), carriage-return linefeed (“dos”), and just
carriage-return (“mac”).
	C-h C coding RET
	Describe coding system coding (describe-coding-system).

	C-h C RET
	Describe the coding systems currently in use.

	M-x list-coding-systems
	Display a list of all the supported coding systems.

 The command C-h C (describe-coding-system) displays
information about particular coding systems, including the end-of-line
conversion specified by those coding systems. You can specify a coding
system name as the argument; alternatively, with an empty argument, it
describes the coding systems currently selected for various purposes,
both in the current buffer and as the defaults, and the priority list
for recognizing coding systems (see the section called “Recognizing Coding Systems”).
 To display a list of all the supported coding systems, type M-x
list-coding-systems. The list gives information about each coding
system, including the letter that stands for it in the mode line
(see the section called “The Mode Line”).
 Each of the coding systems that appear in this list—except for
no-conversion, which means no conversion of any kind—specifies
how and whether to convert printing characters, but leaves the choice of
end-of-line conversion to be decided based on the contents of each file.
For example, if the file appears to use the sequence carriage-return
linefeed to separate lines, DOS end-of-line conversion will be used.
Each of the listed coding systems has three variants, which specify
exactly what to do for end-of-line conversion:
	…-unix
	Don't do any end-of-line conversion; assume the file uses
newline to separate lines. (This is the convention normally used
on Unix and GNU systems, and Mac OS X.)

	…-dos
	Assume the file uses carriage-return linefeed to separate lines, and do
the appropriate conversion. (This is the convention normally used on
Microsoft systems.[7])

	…-mac
	Assume the file uses carriage-return to separate lines, and do the
appropriate conversion. (This was the convention used on the
Macintosh system prior to OS X.)

These variant coding systems are omitted from the
list-coding-systems display for brevity, since they are entirely
predictable. For example, the coding system iso-latin-1 has
variants iso-latin-1-unix, iso-latin-1-dos and
iso-latin-1-mac.
 The coding systems unix, dos, and mac are
aliases for undecided-unix, undecided-dos, and
undecided-mac, respectively. These coding systems specify only
the end-of-line conversion, and leave the character code conversion to
be deduced from the text itself.
 The coding system raw-text is good for a file which is mainly
ASCII text, but may contain byte values above 127 that are
not meant to encode non-ASCII characters. With
raw-text, Emacs copies those byte values unchanged, and sets
enable-multibyte-characters to nil in the current buffer
so that they will be interpreted properly. raw-text handles
end-of-line conversion in the usual way, based on the data
encountered, and has the usual three variants to specify the kind of
end-of-line conversion to use.
 In contrast, the coding system no-conversion specifies no
character code conversion at all—none for non-ASCII byte values and
none for end of line. This is useful for reading or writing binary
files, tar files, and other files that must be examined verbatim. It,
too, sets enable-multibyte-characters to nil.
The easiest way to edit a file with no conversion of any kind is with
the M-x find-file-literally command. This uses
no-conversion, and also suppresses other Emacs features that
might convert the file contents before you see them. See the section called “Visiting Files”.
 The coding system emacs-internal (or utf-8-emacs,
which is equivalent) means that the file contains non-ASCII
characters stored with the internal Emacs encoding. This coding
system handles end-of-line conversion based on the data encountered,
and has the usual three variants to specify the kind of end-of-line
conversion.

[7] It is also specified for MIME ‘text/*’
bodies and in other network transport contexts. It is different
from the SGML reference syntax record-start/record-end format, which
Emacs doesn't support directly.

Recognizing Coding Systems

Whenever Emacs reads a given piece of text, it tries to recognize
which coding system to use. This applies to files being read, output
from subprocesses, text from X selections, etc. Emacs can select the
right coding system automatically most of the time—once you have
specified your preferences.
Some coding systems can be recognized or distinguished by which byte
sequences appear in the data. However, there are coding systems that
cannot be distinguished, not even potentially. For example, there is no
way to distinguish between Latin-1 and Latin-2; they use the same byte
values with different meanings.
Emacs handles this situation by means of a priority list of coding
systems. Whenever Emacs reads a file, if you do not specify the coding
system to use, Emacs checks the data against each coding system,
starting with the first in priority and working down the list, until it
finds a coding system that fits the data. Then it converts the file
contents assuming that they are represented in this coding system.
The priority list of coding systems depends on the selected language
environment (see the section called “Language Environments”). For example, if you use
French, you probably want Emacs to prefer Latin-1 to Latin-2; if you use
Czech, you probably want Latin-2 to be preferred. This is one of the
reasons to specify a language environment.
 However, you can alter the coding system priority list in detail
with the command M-x prefer-coding-system. This command reads
the name of a coding system from the minibuffer, and adds it to the
front of the priority list, so that it is preferred to all others. If
you use this command several times, each use adds one element to the
front of the priority list.
If you use a coding system that specifies the end-of-line conversion
type, such as iso-8859-1-dos, what this means is that Emacs
should attempt to recognize iso-8859-1 with priority, and should
use DOS end-of-line conversion when it does recognize iso-8859-1.
 Sometimes a file name indicates which coding system to use for the
file. The variable file-coding-system-alist specifies this
correspondence. There is a special function
modify-coding-system-alist for adding elements to this list. For
example, to read and write all ‘.txt’ files using the coding system
chinese-iso-8bit, you can execute this Lisp expression:

(modify-coding-system-alist 'file "\\.txt\\'" 'chinese-iso-8bit)

The first argument should be file, the second argument should be
a regular expression that determines which files this applies to, and
the third argument says which coding system to use for these files.
 Emacs recognizes which kind of end-of-line conversion to use based on
the contents of the file: if it sees only carriage-returns, or only
carriage-return linefeed sequences, then it chooses the end-of-line
conversion accordingly. You can inhibit the automatic use of
end-of-line conversion by setting the variable inhibit-eol-conversion
to non-nil. If you do that, DOS-style files will be displayed
with the ‘^M’ characters visible in the buffer; some people
prefer this to the more subtle ‘(DOS)’ end-of-line type
indication near the left edge of the mode line (see eol-mnemonic).
 By default, the automatic detection of coding system is sensitive to
escape sequences. If Emacs sees a sequence of characters that begin
with an escape character, and the sequence is valid as an ISO-2022
code, that tells Emacs to use one of the ISO-2022 encodings to decode
the file.
However, there may be cases that you want to read escape sequences
in a file as is. In such a case, you can set the variable
inhibit-iso-escape-detection to non-nil. Then the code
detection ignores any escape sequences, and never uses an ISO-2022
encoding. The result is that all escape sequences become visible in
the buffer.
The default value of inhibit-iso-escape-detection is
nil. We recommend that you not change it permanently, only for
one specific operation. That's because some Emacs Lisp source files
in the Emacs distribution contain non-ASCII characters encoded in the
coding system iso-2022-7bit, and they won't be
decoded correctly when you visit those files if you suppress the
escape sequence detection.

 The variables auto-coding-alist and
auto-coding-regexp-alist are
the strongest way to specify the coding system for certain patterns of
file names, or for files containing certain patterns, respectively.
These variables even override ‘-*-coding:-*-’ tags in the file
itself (see the section called “Specifying a File's Coding System”). For example, Emacs
uses auto-coding-alist for tar and archive files, to prevent it
from being confused by a ‘-*-coding:-*-’ tag in a member of the
archive and thinking it applies to the archive file as a whole.
 Another way to specify a coding system is with the variable
auto-coding-functions. For example, one of the builtin
auto-coding-functions detects the encoding for XML files.
Unlike the previous two, this variable does not override any
‘-*-coding:-*-’ tag.
 When you get new mail in Rmail, each message is translated
automatically from the coding system it is written in, as if it were a
separate file. This uses the priority list of coding systems that you
have specified. If a MIME message specifies a character set, Rmail
obeys that specification. For reading and saving Rmail files
themselves, Emacs uses the coding system specified by the variable
rmail-file-coding-system. The default value is nil,
which means that Rmail files are not translated (they are read and
written in the Emacs internal character code).

Specifying a File's Coding System

If Emacs recognizes the encoding of a file incorrectly, you can
reread the file using the correct coding system with C-x
RET r (revert-buffer-with-coding-system). This command
prompts for the coding system to use. To see what coding system Emacs
actually used to decode the file, look at the coding system mnemonic
letter near the left edge of the mode line (see the section called “The Mode Line”), or
type C-h C (describe-coding-system).
 You can specify the coding system for a particular file in the file
itself, using the ‘-*-…-*-’ construct at the beginning,
or a local variables list at the end (see the section called “Local Variables in Files”). You do
this by defining a value for the “variable” named coding.
Emacs does not really have a variable coding; instead of
setting a variable, this uses the specified coding system for the
file. For example, ‘-*-mode: C; coding: latin-1;-*-’ specifies
use of the Latin-1 coding system, as well as C mode. When you specify
the coding explicitly in the file, that overrides
file-coding-system-alist.

Choosing Coding Systems for Output

 Once Emacs has chosen a coding system for a buffer, it stores that
coding system in buffer-file-coding-system. That makes it the
default for operations that write from this buffer into a file, such
as save-buffer and write-region. You can specify a
different coding system for further file output from the buffer using
set-buffer-file-coding-system (see the section called “Specifying a Coding System for File Text”).
You can insert any character Emacs supports into any Emacs buffer,
but most coding systems can only handle a subset of these characters.
Therefore, it's possible that the characters you insert cannot be
encoded with the coding system that will be used to save the buffer.
For example, you could visit a text file in Polish, encoded in
iso-8859-2, and add some Russian words to it. When you save
that buffer, Emacs cannot use the current value of
buffer-file-coding-system, because the characters you added
cannot be encoded by that coding system.
When that happens, Emacs tries the most-preferred coding system (set
by M-x prefer-coding-system or M-x
set-language-environment). If that coding system can safely encode
all of the characters in the buffer, Emacs uses it, and stores its
value in buffer-file-coding-system. Otherwise, Emacs displays
a list of coding systems suitable for encoding the buffer's contents,
and asks you to choose one of those coding systems.
If you insert the unsuitable characters in a mail message, Emacs
behaves a bit differently. It additionally checks whether the
most-preferred coding system is recommended for use in MIME messages;
if not, it informs you of this fact and prompts you for another coding
system. This is so you won't inadvertently send a message encoded in
a way that your recipient's mail software will have difficulty
decoding. (You can still use an unsuitable coding system if you enter
its name at the prompt.)
 When you send a mail message (see Chapter 32, Sending Mail),
Emacs has four different ways to determine the coding system to use
for encoding the message text. It tries the buffer's own value of
buffer-file-coding-system, if that is non-nil.
Otherwise, it uses the value of sendmail-coding-system, if that
is non-nil. The third way is to use the default coding system
for new files, which is controlled by your choice of language
environment, if that is non-nil. If all of these three values
are nil, Emacs encodes outgoing mail using the Latin-1 coding
system.

Specifying a Coding System for File Text

In cases where Emacs does not automatically choose the right coding
system for a file's contents, you can use these commands to specify
one:
	C-x RET f coding RET
	Use coding system coding to save or revisit the file in
the current buffer (set-buffer-file-coding-system).

	C-x RET c coding RET
	Specify coding system coding for the immediately following
command (universal-coding-system-argument).

	C-x RET r coding RET
	Revisit the current file using the coding system coding
(revert-buffer-with-coding-system).

	M-x recode-region RET right RET wrong RET
	Convert a region that was decoded using coding system wrong,
decoding it using coding system right instead.

 The command C-x RET f
(set-buffer-file-coding-system) sets the file coding system for
the current buffer—in other words, it says which coding system to
use when saving or reverting the visited file. You specify which
coding system using the minibuffer. If you specify a coding system
that cannot handle all of the characters in the buffer, Emacs warns
you about the troublesome characters when you actually save the
buffer.
 You can also use this command to specify the end-of-line conversion
(see end-of-line conversion) for encoding the
current buffer. For example, C-x RET f dos RET will
cause Emacs to save the current buffer's text with DOS-style
carriage-return linefeed line endings.
 Another way to specify the coding system for a file is when you visit
the file. First use the command C-x RET c
(universal-coding-system-argument); this command uses the
minibuffer to read a coding system name. After you exit the minibuffer,
the specified coding system is used for the immediately following
command.
So if the immediately following command is C-x C-f, for example,
it reads the file using that coding system (and records the coding
system for when you later save the file). Or if the immediately following
command is C-x C-w, it writes the file using that coding system.
When you specify the coding system for saving in this way, instead
of with C-x RET f, there is no warning if the buffer
contains characters that the coding system cannot handle.
Other file commands affected by a specified coding system include
C-x i and C-x C-v, as well as the other-window variants
of C-x C-f. C-x RET c also affects commands that
start subprocesses, including M-x shell (see Chapter 36, Running Shell Commands from Emacs). If the
immediately following command does not use the coding system, then
C-x RET c ultimately has no effect.
An easy way to visit a file with no conversion is with the M-x
find-file-literally command. See the section called “Visiting Files”.
The default value of the variable buffer-file-coding-system
specifies the choice of coding system to use when you create a new file.
It applies when you find a new file, and when you create a buffer and
then save it in a file. Selecting a language environment typically sets
this variable to a good choice of default coding system for that language
environment.
 If you visit a file with a wrong coding system, you can correct this
with C-x RET r (revert-buffer-with-coding-system).
This visits the current file again, using a coding system you specify.
 If a piece of text has already been inserted into a buffer using the
wrong coding system, you can redo the decoding of it using M-x
recode-region. This prompts you for the proper coding system, then
for the wrong coding system that was actually used, and does the
conversion. It first encodes the region using the wrong coding system,
then decodes it again using the proper coding system.

Coding Systems for Interprocess Communication

This section explains how to specify coding systems for use
in communication with other processes.
	C-x RET x coding RET
	Use coding system coding for transferring selections to and from
other window-based applications (set-selection-coding-system).

	C-x RET X coding RET
	Use coding system coding for transferring one
selection—the next one—to or from another window-based application
(set-next-selection-coding-system).

	C-x RET p input-coding RET output-coding RET
	Use coding systems input-coding and output-coding for
subprocess input and output in the current buffer
(set-buffer-process-coding-system).

 The command C-x RET x (set-selection-coding-system)
specifies the coding system for sending selected text to other windowing
applications, and for receiving the text of selections made in other
applications. This command applies to all subsequent selections, until
you override it by using the command again. The command C-x
RET X (set-next-selection-coding-system) specifies the
coding system for the next selection made in Emacs or read by Emacs.
 The variable x-select-request-type specifies the data type to
request from the X Window System for receiving text selections from
other applications. If the value is nil (the default), Emacs
tries UTF8_STRING and COMPOUND_TEXT, in this order, and
uses various heuristics to choose the more appropriate of the two
results; if none of these succeed, Emacs falls back on STRING.
If the value of x-select-request-type is one of the symbols
COMPOUND_TEXT, UTF8_STRING, STRING, or
TEXT, Emacs uses only that request type. If the value is a
list of some of these symbols, Emacs tries only the request types in
the list, in order, until one of them succeeds, or until the list is
exhausted.
 The command C-x RET p (set-buffer-process-coding-system)
specifies the coding system for input and output to a subprocess. This
command applies to the current buffer; normally, each subprocess has its
own buffer, and thus you can use this command to specify translation to
and from a particular subprocess by giving the command in the
corresponding buffer.
You can also use C-x RET c
(universal-coding-system-argument) just before the command that
runs or starts a subprocess, to specify the coding system for
communicating with that subprocess. See the section called “Specifying a Coding System for File Text”.
The default for translation of process input and output depends on the
current language environment.
 The variable locale-coding-system specifies a coding system
to use when encoding and decoding system strings such as system error
messages and format-time-string formats and time stamps. That
coding system is also used for decoding non-ASCII keyboard
input on the X Window System. You should choose a coding system that is compatible
with the underlying system's text representation, which is normally
specified by one of the environment variables LC_ALL,
LC_CTYPE, and LANG. (The first one, in the order
specified above, whose value is nonempty is the one that determines
the text representation.)

Coding Systems for File Names

	C-x RET F coding RET
	Use coding system coding for encoding and decoding file
names (set-file-name-coding-system).

 The command C-x RET F (set-file-name-coding-system)
specifies a coding system to use for encoding file names. It
has no effect on reading and writing the contents of files.
 In fact, all this command does is set the value of the variable
file-name-coding-system. If you set the variable to a coding
system name (as a Lisp symbol or a string), Emacs encodes file names
using that coding system for all file operations. This makes it
possible to use non-ASCII characters in file names—or, at
least, those non-ASCII characters that the specified coding
system can encode.
If file-name-coding-system is nil, Emacs uses a
default coding system determined by the selected language environment,
and stored in the default-file-name-coding-system variable.
In the default language environment, non-ASCII characters in
file names are not encoded specially; they appear in the file system
using the internal Emacs representation.
Warning: if you change file-name-coding-system (or the
language environment) in the middle of an Emacs session, problems can
result if you have already visited files whose names were encoded using
the earlier coding system and cannot be encoded (or are encoded
differently) under the new coding system. If you try to save one of
these buffers under the visited file name, saving may use the wrong file
name, or it may encounter an error. If such a problem happens, use C-x
C-w to specify a new file name for that buffer.
 If a mistake occurs when encoding a file name, use the command
M-x recode-file-name to change the file name's coding
system. This prompts for an existing file name, its old coding
system, and the coding system to which you wish to convert.

Coding Systems for Terminal I/O

	C-x RET t coding RET
	Use coding system coding for terminal output
(set-terminal-coding-system).

	C-x RET k coding RET
	Use coding system coding for keyboard input
(set-keyboard-coding-system).

 The command C-x RET t (set-terminal-coding-system)
specifies the coding system for terminal output. If you specify a
character code for terminal output, all characters output to the
terminal are translated into that coding system.
This feature is useful for certain character-only terminals built to
support specific languages or character sets—for example, European
terminals that support one of the ISO Latin character sets. You need to
specify the terminal coding system when using multibyte text, so that
Emacs knows which characters the terminal can actually handle.
By default, output to the terminal is not translated at all, unless
Emacs can deduce the proper coding system from your terminal type or
your locale specification (see the section called “Language Environments”).
 The command C-x RET k (set-keyboard-coding-system),
or the variable keyboard-coding-system, specifies the coding
system for keyboard input. Character-code translation of keyboard
input is useful for terminals with keys that send non-ASCII
graphic characters—for example, some terminals designed for ISO
Latin-1 or subsets of it.
By default, keyboard input is translated based on your system locale
setting. If your terminal does not really support the encoding
implied by your locale (for example, if you find it inserts a
non-ASCII character if you type M-i), you will need to set
keyboard-coding-system to nil to turn off encoding.
You can do this by putting

(set-keyboard-coding-system nil)

in your init file.
There is a similarity between using a coding system translation for
keyboard input, and using an input method: both define sequences of
keyboard input that translate into single characters. However, input
methods are designed to be convenient for interactive use by humans, and
the sequences that are translated are typically sequences of ASCII
printing characters. Coding systems typically translate sequences of
non-graphic characters.

Fontsets

 A font typically defines shapes for a single alphabet or script.
Therefore, displaying the entire range of scripts that Emacs supports
requires a collection of many fonts. In Emacs, such a collection is
called a fontset. A fontset is defined by a list of font specifications,
each assigned to handle a range of character codes, and may fall back
on another fontset for characters that are not covered by the fonts
it specifies.
 Each fontset has a name, like a font. However, while fonts are
stored in the system and the available font names are defined by the
system, fontsets are defined within Emacs itself. Once you have
defined a fontset, you can use it within Emacs by specifying its name,
anywhere that you could use a single font. Of course, Emacs fontsets
can use only the fonts that the system supports. If some characters
appear on the screen as empty boxes or hex codes, this means that the
fontset in use for them has no font for those characters. In this
case, or if the characters are shown, but not as well as you would
like, you may need to install extra fonts. Your operating system may
have optional fonts that you can install; or you can install the GNU
Intlfonts package, which includes fonts for most supported
scripts.[8]
Emacs creates three fontsets automatically: the standard
fontset, the startup fontset and the default fontset.

The default fontset is most likely to have fonts for a wide variety of
non-ASCII characters, and is the default fallback for the
other two fontsets, and if you set a default font rather than fontset.
However, it does not specify font family names, so results can be
somewhat random if you use it directly. You can specify use of a
particular fontset by starting Emacs with the ‘-fn’ option.
For example,

emacs -fn fontset-standard

You can also specify a fontset with the ‘Font’ resource (see Appendix D, X Options and Resources).
If no fontset is specified for use, then Emacs uses an
ASCII font, with ‘fontset-default’ as a fallback for
characters the font does not cover. The standard fontset is only used if
explicitly requested, despite its name.
A fontset does not necessarily specify a font for every character
code. If a fontset specifies no font for a certain character, or if
it specifies a font that does not exist on your system, then it cannot
display that character properly. It will display that character as a
hex code or thin space or an empty box instead. (See glyphless characters, for details.)

[8] If you run Emacs on X, you may need to inform the X
server about the location of the newly installed fonts with commands
such as:

 xset fp+ /usr/local/share/emacs/fonts
 xset fp rehash

Defining fontsets

 When running on X, Emacs creates a standard fontset automatically according to the value
of standard-fontset-spec. This fontset's name is

-*-fixed-medium-r-normal-*-16-*-*-*-*-*-fontset-standard

or just ‘fontset-standard’ for short.
On GNUstep and Mac OS X, the standard fontset is created using the value of
ns-standard-fontset-spec, and on MS Windows it is
created using the value of w32-standard-fontset-spec.
Bold, italic, and bold-italic variants of the standard fontset are
created automatically. Their names have ‘bold’ instead of
‘medium’, or ‘i’ instead of ‘r’, or both.
 Emacs generates a fontset automatically, based on any default
ASCII font that you specify with the ‘Font’ resource or
the ‘-fn’ argument, or the default font that Emacs found when it
started. This is the startup fontset and its name is
fontset-startup. It does this by replacing the
charset_registry field with ‘fontset’, and replacing
charset_encoding field with ‘startup’, then using the
resulting string to specify a fontset.
For instance, if you start Emacs with a font of this form,

emacs -fn "*courier-medium-r-normal--14-140-*-iso8859-1"

Emacs generates the following fontset and uses it for the initial X
window frame:

-*-courier-medium-r-normal-*-14-140-*-*-*-*-fontset-startup

The startup fontset will use the font that you specify, or a variant
with a different registry and encoding, for all the characters that
are supported by that font, and fallback on ‘fontset-default’ for
other characters.
With the X resource ‘Emacs.Font’, you can specify a fontset name
just like an actual font name. But be careful not to specify a fontset
name in a wildcard resource like ‘Emacs*Font’—that wildcard
specification matches various other resources, such as for menus, and
menus cannot handle fontsets. See Appendix D, X Options and Resources.
You can specify additional fontsets using X resources named
‘Fontset-n’, where n is an integer starting from 0.
The resource value should have this form:

fontpattern, [charset:font]…

fontpattern should have the form of a standard X font name (see
the previous fontset-startup example), except
for the last two fields. They should have the form
‘fontset-alias’.
The fontset has two names, one long and one short. The long name is
fontpattern. The short name is ‘fontset-alias’. You
can refer to the fontset by either name.
The construct ‘charset:font’ specifies which font to
use (in this fontset) for one particular character set. Here,
charset is the name of a character set, and font is the
font to use for that character set. You can use this construct any
number of times in defining one fontset.
For the other character sets, Emacs chooses a font based on
fontpattern. It replaces ‘fontset-alias’ with values
that describe the character set. For the ASCII character font,
‘fontset-alias’ is replaced with ‘ISO8859-1’.
In addition, when several consecutive fields are wildcards, Emacs
collapses them into a single wildcard. This is to prevent use of
auto-scaled fonts. Fonts made by scaling larger fonts are not usable
for editing, and scaling a smaller font is not also useful, because it is
better to use the smaller font in its own size, which is what Emacs
does.
Thus if fontpattern is this,

-*-fixed-medium-r-normal-*-24-*-*-*-*-*-fontset-24

the font specification for ASCII characters would be this:

-*-fixed-medium-r-normal-*-24-*-ISO8859-1

and the font specification for Chinese GB2312 characters would be this:

-*-fixed-medium-r-normal-*-24-*-gb2312*-*

You may not have any Chinese font matching the above font
specification. Most X distributions include only Chinese fonts that
have ‘song ti’ or ‘fangsong ti’ in the family field. In
such a case, ‘Fontset-n’ can be specified as:

Emacs.Fontset-0: -*-fixed-medium-r-normal-*-24-*-*-*-*-*-fontset-24,\
 chinese-gb2312:-*-*-medium-r-normal-*-24-*-gb2312*-*

Then, the font specifications for all but Chinese GB2312 characters have
‘fixed’ in the family field, and the font specification for
Chinese GB2312 characters has a wild card ‘*’ in the family
field.
 The function that processes the fontset resource value to create the
fontset is called create-fontset-from-fontset-spec. You can also
call this function explicitly to create a fontset.
See the section called “Fonts”, for more information about font naming.

Modifying Fontsets

 Fontsets do not always have to be created from scratch. If only
minor changes are required it may be easier to modify an existing
fontset. Modifying ‘fontset-default’ will also affect other
fontsets that use it as a fallback, so can be an effective way of
fixing problems with the fonts that Emacs chooses for a particular
script.
Fontsets can be modified using the function set-fontset-font,
specifying a character, a charset, a script, or a range of characters
to modify the font for, and a font specification for the font to be
used. Some examples are:

;; Use Liberation Mono for latin-3 charset.
(set-fontset-font "fontset-default" 'iso-8859-3
 "Liberation Mono")

;; Prefer a big5 font for han characters
(set-fontset-font "fontset-default"
 'han (font-spec :registry "big5")
 nil 'prepend)

;; Use DejaVu Sans Mono as a fallback in fontset-startup
;; before resorting to fontset-default.
(set-fontset-font "fontset-startup" nil "DejaVu Sans Mono"
 nil 'append)

;; Use MyPrivateFont for the Unicode private use area.
(set-fontset-font "fontset-default" '(#xe000 . #xf8ff)
 "MyPrivateFont")

Undisplayable Characters

There may be some non-ASCII characters that your
terminal cannot display. Most text terminals support just a single
character set (use the variable default-terminal-coding-system
to tell Emacs which one, the section called “Coding Systems for Terminal I/O”); characters that
can't be encoded in that coding system are displayed as ‘?’ by
default.
Graphical displays can display a broader range of characters, but
you may not have fonts installed for all of them; characters that have
no font appear as a hollow box.
If you use Latin-1 characters but your terminal can't display
Latin-1, you can arrange to display mnemonic ASCII sequences
instead, e.g. ‘"o’ for o-umlaut. Load the library
iso-ascii to do this.
 If your terminal can display Latin-1, you can display characters
from other European character sets using a mixture of equivalent
Latin-1 characters and ASCII mnemonics. Customize the variable
latin1-display to enable this. The mnemonic ASCII
sequences mostly correspond to those of the prefix input methods.

Unibyte Editing Mode

 The ISO 8859 Latin-n character sets define character codes in
the range 0240 to 0377 octal (160 to 255 decimal) to handle the
accented letters and punctuation needed by various European languages
(and some non-European ones). Note that Emacs considers bytes with
codes in this range as raw bytes, not as characters, even in a unibyte
buffer, i.e. if you disable multibyte characters. However, Emacs
can still handle these character codes as if they belonged to
one of the single-byte character sets at a time. To specify
which of these codes to use, invoke M-x
set-language-environment and specify a suitable language environment
such as ‘Latin-n’.
For more information about unibyte operation, see
the section called “Disabling Multibyte Characters”.
 Emacs can also display bytes in the range 160 to 255 as readable
characters, provided the terminal or font in use supports them. This
works automatically. On a graphical display, Emacs can also display
single-byte characters through fontsets, in effect by displaying the
equivalent multibyte characters according to the current language
environment. To request this, set the variable
unibyte-display-via-language-environment to a non-nil
value. Note that setting this only affects how these bytes are
displayed, but does not change the fundamental fact that Emacs treats
them as raw bytes, not as characters.
 If your terminal does not support display of the Latin-1 character
set, Emacs can display these characters as ASCII sequences which at
least give you a clear idea of what the characters are. To do this,
load the library iso-ascii. Similar libraries for other
Latin-n character sets could be implemented, but have not been
so far.
 Normally non-ISO-8859 characters (decimal codes between 128 and 159
inclusive) are displayed as octal escapes. You can change this for
non-standard “extended” versions of ISO-8859 character sets by using the
function standard-display-8bit in the disp-table library.
There are two ways to input single-byte non-ASCII
characters:
	You can use an input method for the selected language environment.
See the section called “Input Methods”. When you use an input method in a unibyte buffer,
the non-ASCII character you specify with it is converted to unibyte.

	If your keyboard can generate character codes 128 (decimal) and up,
representing non-ASCII characters, you can type those character codes
directly.
On a graphical display, you should not need to do anything special to
use these keys; they should simply work. On a text terminal, you
should use the command M-x set-keyboard-coding-system or customize the
variable keyboard-coding-system to specify which coding system
your keyboard uses (see the section called “Coding Systems for Terminal I/O”). Enabling this feature
will probably require you to use ESC to type Meta characters;
however, on a console terminal or in xterm, you can arrange for
Meta to be converted to ESC and still be able type 8-bit
characters present directly on the keyboard or using Compose or
AltGr keys. See Chapter 2, Kinds of User Input.

	For Latin-1 only, you can use the key C-x 8 as a “compose
character” prefix for entry of non-ASCII Latin-1 printing
characters. C-x 8 is good for insertion (in the minibuffer as
well as other buffers), for searching, and in any other context where
a key sequence is allowed.
C-x 8 works by loading the iso-transl library. Once that
library is loaded, the ALT modifier key, if the keyboard has
one, serves the same purpose as C-x 8: use ALT together
with an accent character to modify the following letter. In addition,
if the keyboard has keys for the Latin-1 “dead accent characters”,
they too are defined to compose with the following character, once
iso-transl is loaded.
Use C-x 8 C-h to list all the available C-x 8 translations.

Charsets

 In Emacs, charset is short for “character set”. Emacs
supports most popular charsets (such as ascii,
iso-8859-1, cp1250, big5, and unicode), in
addition to some charsets of its own (such as emacs,
unicode-bmp, and eight-bit). All supported characters
belong to one or more charsets.
Emacs normally “does the right thing” with respect to charsets, so
that you don't have to worry about them. However, it is sometimes
helpful to know some of the underlying details about charsets.
One example is font selection (see the section called “Fonts”). Each language
environment (see the section called “Language Environments”) defines a “priority
list” for the various charsets. When searching for a font, Emacs
initially attempts to find one that can display the highest-priority
charsets. For instance, in the Japanese language environment, the
charset japanese-jisx0208 has the highest priority, so Emacs
tries to use a font whose registry property is
‘JISX0208.1983-0’.
 There are two commands that can be used to obtain information about
charsets. The command M-x list-charset-chars prompts for a
charset name, and displays all the characters in that character set.
The command M-x describe-character-set prompts for a charset
name, and displays information about that charset, including its
internal representation within Emacs.
 M-x list-character-sets displays a list of all supported
charsets. The list gives the names of charsets and additional
information to identity each charset; see the
International Register of Coded Character Sets for more details. In this list,
charsets are divided into two categories: normal charsets are
listed first, followed by supplementary charsets. A
supplementary charset is one that is used to define another charset
(as a parent or a subset), or to provide backward-compatibility for
older Emacs versions.
To find out which charset a character in the buffer belongs to, put
point before it and type C-u C-x = (see the section called “Introduction to International Character Sets”).

Bidirectional Editing

 Emacs supports editing text written in scripts, such as Arabic and
Hebrew, whose natural ordering of horizontal text for display is from
right to left. However, digits and Latin text embedded in these
scripts are still displayed left to right. It is also not uncommon to
have small portions of text in Arabic or Hebrew embedded in an otherwise
Latin document; e.g., as comments and strings in a program source
file. For these reasons, text that uses these scripts is actually
bidirectional: a mixture of runs of left-to-right and
right-to-left characters.
This section describes the facilities and options provided by Emacs
for editing bidirectional text.
 Emacs stores right-to-left and bidirectional text in the so-called
logical (or reading) order: the buffer or string position
of the first character you read precedes that of the next character.
Reordering of bidirectional text into the visual order happens
at display time. As result, character positions no longer increase
monotonically with their positions on display. Emacs implements the
Unicode Bidirectional Algorithm described in the Unicode Standard
Annex #9, for reordering of bidirectional text for display.
 The buffer-local variable bidi-display-reordering controls
whether text in the buffer is reordered for display. If its value is
non-nil, Emacs reorders characters that have right-to-left
directionality when they are displayed. The default value is
t.
 Each paragraph of bidirectional text can have its own base
direction, either right-to-left or left-to-right. (Paragraph
boundaries are empty lines, i.e. lines consisting entirely of
whitespace characters.) Text in left-to-right paragraphs begins on
the screen at the left margin of the window and is truncated or
continued when it reaches the right margin. By contrast, text in
right-to-left paragraphs is displayed starting at the right margin and
is continued or truncated at the left margin.
 Emacs determines the base direction of each paragraph dynamically,
based on the text at the beginning of the paragraph. However,
sometimes a buffer may need to force a certain base direction for its
paragraphs. The variable bidi-paragraph-direction, if
non-nil, disables the dynamic determination of the base
direction, and instead forces all paragraphs in the buffer to have the
direction specified by its buffer-local value. The value can be either
right-to-left or left-to-right. Any other value is
interpreted as nil.
 Alternatively, you can control the base direction of a paragraph by
inserting special formatting characters in front of the paragraph.
The special character RIGHT-TO-LEFT MARK, or rlm, forces
the right-to-left direction on the following paragraph, while
LEFT-TO-RIGHT MARK, or lrm forces the left-to-right
direction. (You can use C-x 8 RET to insert these characters.)
In a GUI session, the lrm and rlm characters display as very
thin blank characters; on text terminals they display as blanks.
Because characters are reordered for display, Emacs commands that
operate in the logical order or on stretches of buffer positions may
produce unusual effects. For example, C-f and C-b
commands move point in the logical order, so the cursor will sometimes
jump when point traverses reordered bidirectional text. Similarly, a
highlighted region covering a contiguous range of character positions
may look discontinuous if the region spans reordered text. This is
normal and similar to the behavior of other programs that support
bidirectional text.

Chapter 23. Major and Minor Modes

Emacs contains many editing modes that alter its basic
behavior in useful ways. These are divided into major modes and
minor modes.
Major modes provide specialized facilities for working on a
particular file type, such as a C source file (see Chapter 26, Editing Programs), or a
particular type of non-file buffer, such as a shell buffer
(see Chapter 36, Running Shell Commands from Emacs). Major modes are mutually exclusive; each buffer has
one and only one major mode at any time.
Minor modes are optional features which you can turn on or off, not
necessarily specific to a type of file or buffer. For example, Auto
Fill mode is a minor mode in which SPC breaks lines between
words as you type (see the section called “Auto Fill Mode”). Minor modes are independent of
one another, and of the selected major mode.
Major Modes

 Every buffer possesses a major mode, which determines the editing
behavior of Emacs while that buffer is current. The mode line
normally shows the name of the current major mode, in parentheses
(see the section called “The Mode Line”).
The least specialized major mode is called Fundamental mode.
This mode has no mode-specific redefinitions or variable settings, so
that each Emacs command behaves in its most general manner, and each
user option variable is in its default state.
For editing text of a specific type that Emacs knows about, such as
Lisp code or English text, you typically use a more specialized major
mode, such as Lisp mode or Text mode. Most major modes fall into
three major groups. The first group contains modes for normal text,
either plain or with mark-up. It includes Text mode, HTML mode, SGML
mode, TeX mode and Outline mode. The second group contains modes
for specific programming languages. These include Lisp mode (which
has several variants), C mode, Fortran mode, and others. The third
group consists of major modes that are not associated directly with
files; they are used in buffers created for specific purposes by
Emacs, such as Dired mode for buffers made by Dired (see Chapter 30, Dired, the Directory Editor),
Message mode for buffers made by C-x m (see Chapter 32, Sending Mail),
and Shell mode for buffers used to communicate with an inferior shell
process (see the section called “Interactive Subshell”).
Usually, the major mode is automatically set by Emacs, when you
first visit a file or create a buffer (see the section called “Choosing File Modes”). You
can explicitly select a new major mode by using an M-x command.
Take the name of the mode and add -mode to get the name of the
command to select that mode (e.g., M-x lisp-mode enters Lisp mode).
 The value of the buffer-local variable major-mode is a symbol
with the same name as the major mode command (e.g. lisp-mode).
This variable is set automatically; you should not change it yourself.
The default value of major-mode determines the major mode to
use for files that do not specify a major mode, and for new buffers
created with C-x b. Normally, this default value is the symbol
fundamental-mode, which specifies Fundamental mode. You can
change this default value via the Customization interface (see the section called “Easy Customization Interface”), or by adding a line like this to your init file
(see the section called “The Emacs Initialization File”):

(setq-default major-mode 'text-mode)

If the default value of major-mode is nil, the major
mode is taken from the previously current buffer.
Specialized major modes often change the meanings of certain keys to
do something more suitable for the mode. For instance, programming
language modes bind TAB to indent the current line according to
the rules of the language (see Chapter 24, Indentation). The keys that are
commonly changed are TAB, DEL, and C-j. Many modes
also define special commands of their own, usually bound in the prefix
key C-c. Major modes can also alter user options and variables;
for instance, programming language modes typically set a buffer-local
value for the variable comment-start, which determines how
source code comments are delimited (see the section called “Manipulating Comments”).
 To view the documentation for the current major mode, including a
list of its key bindings, type C-h m (describe-mode).
 Every major mode, apart from Fundamental mode, defines a mode
hook, a customizable list of Lisp functions to run each time the mode
is enabled in a buffer. See the section called “Hooks”, for more information about
hooks. Each mode hook is named after its major mode, e.g. Fortran
mode has fortran-mode-hook. Furthermore, all text-based major
modes run text-mode-hook, and all programming language modes
run prog-mode-hook, prior to running their own mode hooks.
Hook functions can look at the value of the variable major-mode
to see which mode is actually being entered.
Mode hooks are commonly used to enable minor modes (see the section called “Minor Modes”). For example, you can put the following lines in your init
file to enable Flyspell minor mode in all text-based major modes
(see the section called “Checking and Correcting Spelling”), and Eldoc minor mode in Emacs Lisp mode
(see the section called “Emacs Lisp Documentation Lookup”):

(add-hook 'text-mode-hook 'flyspell-mode)
(add-hook 'emacs-lisp-mode-hook 'eldoc-mode)

Minor Modes

 A minor mode is an optional editing mode that alters the behavior of
Emacs in some well-defined way. Unlike major modes, any number of
minor modes can be in effect at any time. Some minor modes are
buffer-local, and can be turned on (enabled) in certain buffers
and off (disabled) in others. Other minor modes are global:
while enabled, they affect everything you do in the Emacs session, in
all buffers. Most minor modes are disabled by default, but a few are
enabled by default.
Most buffer-local minor modes say in the mode line when they are
enabled, just after the major mode indicator. For example,
‘Fill’ in the mode line means that Auto Fill mode is enabled.
See the section called “The Mode Line”.
 Like major modes, each minor mode is associated with a mode
command, whose name consists of the mode name followed by
‘-mode’. For instance, the mode command for Auto Fill mode is
auto-fill-mode. But unlike a major mode command, which simply
enables the mode, the mode command for a minor mode can either enable
or disable it:
	If you invoke the mode command directly with no prefix argument
(either via M-x, or by binding it to a key and typing that key;
see the section called “Customizing Key Bindings”), that toggles the minor mode. The minor
mode is turned on if it was off, and turned off if it was on.

	If you invoke the mode command with a prefix argument, the minor mode
is unconditionally turned off if that argument is zero or negative;
otherwise, it is unconditionally turned on.

	If the mode command is called via Lisp, the minor mode is
unconditionally turned on if the argument is omitted or nil.
This makes it easy to turn on a minor mode from a major mode's mode
hook (see the section called “Major Modes”). A non-nil argument is handled like
an interactive prefix argument, as described above.

Most minor modes also have a mode variable, with the same name
as the mode command. Its value is non-nil if the mode is
enabled, and nil if it is disabled. In general, you should not
try to enable or disable the mode by changing the value of the mode
variable directly in Lisp; you should run the mode command instead.
However, setting the mode variable through the Customize interface
(see the section called “Easy Customization Interface”) will always properly enable or disable
the mode, since Customize automatically runs the mode command for you.
The following is a list of some buffer-local minor modes:
	Abbrev mode automatically expands text based on pre-defined
abbreviation definitions. See Chapter 29, Abbrevs.

	Auto Fill mode inserts newlines as you type to prevent lines from
becoming too long. See the section called “Filling Text”.

	Auto Save mode saves the buffer contents periodically to reduce the
amount of work you can lose in case of a crash. See the section called “Auto-Saving: Protection Against Disasters”.

	Enriched mode enables editing and saving of formatted text.
See the section called “Enriched Text”.

	Flyspell mode automatically highlights misspelled words.
See the section called “Checking and Correcting Spelling”.

	Font-Lock mode automatically highlights certain textual units found in
programs. It is enabled globally by default, but you can disable it
in individual buffers. See the section called “Text Faces”.

	Linum mode displays each line's line number in the window's left margin.

	Outline minor mode provides similar facilities to the major mode
called Outline mode. See the section called “Outline Mode”.

	Overwrite mode causes ordinary printing characters to replace existing
text instead of shoving it to the right. For example, if point is in
front of the ‘B’ in ‘FOOBAR’, then in Overwrite mode typing
a G changes it to ‘FOOGAR’, instead of producing
‘FOOGBAR’ as usual. In Overwrite mode, the command C-q
inserts the next character whatever it may be, even if it is a
digit—this gives you a way to insert a character instead of
replacing an existing character. The mode command,
overwrite-mode, is bound to the Insert key.

	Binary Overwrite mode is a variant of Overwrite mode for editing
binary files; it treats newlines and tabs like other characters, so
that they overwrite other characters and can be overwritten by them.
In Binary Overwrite mode, digits after C-q specify an octal
character code, as usual.

	Visual Line mode performs “word wrapping”, causing long lines to be
wrapped at word boundaries. See the section called “Visual Line Mode”.

And here are some useful global minor modes:
	Column Number mode enables display of the current column number in the
mode line. See the section called “The Mode Line”.

	Delete Selection mode causes text insertion to first delete the text
in the region, if the region is active. See the section called “Operating on the Region”.

	Icomplete mode displays an indication of available completions when
you are in the minibuffer and completion is active. See the section called “Completion Options”.

	Line Number mode enables display of the current line number in the
mode line. It is enabled by default. See the section called “The Mode Line”.

	Menu Bar mode gives each frame a menu bar. It is enabled by default.
See the section called “Menu Bars”.

	Scroll Bar mode gives each window a scroll bar. It is enabled by
default, but the scroll bar is only displayed on graphical terminals.
See the section called “Scroll Bars”.

	Tool Bar mode gives each frame a tool bar. It is enabled by default,
but the tool bar is only displayed on graphical terminals. See the section called “Tool Bars”.

	Transient Mark mode highlights the region, and makes many Emacs
commands operate on the region when the mark is active. It is enabled
by default. See Chapter 11, The Mark and the Region.

Choosing File Modes

 When you visit a file, Emacs chooses a major mode automatically.
Normally, it makes the choice based on the file name—for example,
files whose names end in ‘.c’ are normally edited in C mode—but
sometimes it chooses the major mode based on special text in the file.
This special text can also be used to enable buffer-local minor modes.
Here is the exact procedure:
First, Emacs checks whether the file contains file-local mode
variables. See the section called “Local Variables in Files”. If there is a file-local variable
that specifies a major mode, then Emacs uses that major mode, ignoring
all other criteria. There are several methods to specify a major mode
using a file-local variable; the simplest is to put the mode name in
the first nonblank line, preceded and followed by ‘-*-’. Other
text may appear on the line as well. For example,

; -*-Lisp-*-

tells Emacs to use Lisp mode. Note how the semicolon is used to make
Lisp treat this line as a comment. You could equivalently write

; -*- mode: Lisp;-*-

You can also use file-local variables to specify buffer-local minor
modes, by using eval specifications. For example, this first
nonblank line puts the buffer in Lisp mode and enables Auto-Fill mode:

; -*- mode: Lisp; eval: (auto-fill-mode 1); -*-

Note, however, that it is usually inappropriate to enable minor modes
this way, since most minor modes represent individual user
preferences. If you personally want to use a minor mode for a
particular file type, it is better to enable the minor mode via a
major mode hook (see the section called “Major Modes”).
 Second, if there is no file variable specifying a major mode, Emacs
checks whether the file's contents begin with ‘#!’. If so, that
indicates that the file can serve as an executable shell command,
which works by running an interpreter named on the file's first line
(the rest of the file is used as input to the interpreter).
Therefore, Emacs tries to use the interpreter name to choose a mode.
For instance, a file that begins with ‘#!/usr/bin/perl’ is opened
in Perl mode. The variable interpreter-mode-alist specifies
the correspondence between interpreter program names and major modes.
When the first line starts with ‘#!’, you usually cannot use
the ‘-*-’ feature on the first line, because the system would get
confused when running the interpreter. So Emacs looks for ‘-*-’
on the second line in such files as well as on the first line. The
same is true for man pages which start with the magic string
‘'\"’ to specify a list of troff preprocessors.
 Third, Emacs tries to determine the major mode by looking at the
text at the start of the buffer, based on the variable
magic-mode-alist. By default, this variable is nil (an
empty list), so Emacs skips this step; however, you can customize it
in your init file (see the section called “The Emacs Initialization File”). The value should be a list of
elements of the form

(regexp . mode-function)

where regexp is a regular expression (see the section called “Syntax of Regular Expressions”), and
mode-function is a major mode command. If the text at the
beginning of the file matches regexp, Emacs chooses the major
mode specified by mode-function.
Alternatively, an element of magic-mode-alist may have the form

(match-function . mode-function)

where match-function is a Lisp function that is called at the
beginning of the buffer; if the function returns non-nil, Emacs
set the major mode with mode-function.
Fourth—if Emacs still hasn't found a suitable major mode—it
looks at the file's name. The correspondence between file names and
major modes is controlled by the variable auto-mode-alist. Its
value is a list in which each element has this form,

(regexp . mode-function)

or this form,

(regexp mode-function flag)

For example, one element normally found in the list has the form
("\\.c\\'" . c-mode), and it is responsible for selecting C
mode for files whose names end in .c. (Note that ‘\\’ is
needed in Lisp syntax to include a ‘\’ in the string, which must
be used to suppress the special meaning of ‘.’ in regexps.) If
the element has the form (regexp mode-function
flag) and flag is non-nil, then after calling
mode-function, Emacs discards the suffix that matched
regexp and searches the list again for another match.
 On GNU/Linux and other systems with case-sensitive file names, Emacs
performs a case-sensitive search through auto-mode-alist; if
this search fails, it performs a second case-insensitive search
through the alist. To suppress the second search, change the variable
auto-mode-case-fold to nil. On systems with
case-insensitive file names, such as Microsoft Windows, Emacs performs
a single case-insensitive search through auto-mode-alist.
 Finally, if Emacs still hasn't found a major mode to use, it
compares the text at the start of the buffer to the variable
magic-fallback-mode-alist. This variable works like
magic-mode-alist, described above, except that is consulted
only after auto-mode-alist. By default,
magic-fallback-mode-alist contains forms that check for image
files, HTML/XML/SGML files, and PostScript files.
 If you have changed the major mode of a buffer, you can return to
the major mode Emacs would have chosen automatically, by typing
M-x normal-mode. This is the same function that
find-file calls to choose the major mode. It also processes
the file's ‘-*-’ line or local variables list (if any).
See the section called “Local Variables in Files”.
 The commands C-x C-w and set-visited-file-name change to
a new major mode if the new file name implies a mode (see the section called “Saving Files”).
(C-x C-s does this too, if the buffer wasn't visiting a file.)
However, this does not happen if the buffer contents specify a major
mode, and certain “special” major modes do not allow the mode to
change. You can turn off this mode-changing feature by setting
change-major-mode-with-file-name to nil.

Chapter 24. Indentation

 Indentation refers to inserting or adjusting whitespace
characters (space and/or tab characters) at the beginning of a line
of text. This chapter documents indentation commands and options
which are common to Text mode and related modes, as well as
programming language modes. See the section called “Indentation for Programs”, for additional
documentation about indenting in programming modes.
 The simplest way to perform indentation is the TAB key. In
most major modes, this runs the command indent-for-tab-command.
(In C and related modes, TAB runs the command
c-indent-line-or-region, which behaves similarly).
	TAB
	Insert whitespace, or indent the current line, in a mode-appropriate
way (indent-for-tab-command). If the region is active, indent
all the lines within it.

The exact behavior of TAB depends on the major mode. In Text
mode and related major modes, TAB normally inserts some
combination of space and tab characters to advance point to the next
tab stop (see the section called “Tab Stops”). For this purpose, the position of the
first non-whitespace character on the preceding line is treated as an
additional tab stop, so you can use TAB to “align” point with
the preceding line. If the region is active (see the section called “Operating on the Region”),
TAB acts specially: it indents each line in the region so that
its first non-whitespace character is aligned with the preceding line.
In programming modes, TAB indents the current line of code in
a way that makes sense given the code in the preceding lines. If the
region is active, all the lines in the region are indented this way.
If point was initially within the current line's indentation, it is
repositioned to the first non-whitespace character on the line.
If you just want to insert a tab character in the buffer, type
C-q TAB (see the section called “Inserting Text”).
Indentation Commands

Apart from the TAB (indent-for-tab-command) command,
Emacs provides a variety of commands to perform indentation in other
ways.
	C-j
	Perform RET followed by TAB (newline-and-indent).

	C-M-o
	Split the current line at point (split-line). The text on the
line after point becomes a new line, indented to the same column where
point is located. This command first moves point forward over any
spaces and tabs. Afterward, point is positioned before the inserted
newline.

	M-m
	Move (forward or back) to the first non-whitespace character on the
current line (back-to-indentation). If there are no
non-whitespace characters on the line, move to the end of the line.

	M-i
	Indent whitespace at point, up to the next tab stop
(tab-to-tab-stop). See the section called “Tab Stops”.

	M-x indent-relative
	Insert whitespace at point, until point is aligned with the first
non-whitespace character on the previous line (actually, the last
non-blank line). If point is already farther right than that, run
tab-to-tab-stop instead—unless called with a numeric
argument, in which case do nothing.

	M-^
	Merge the previous and the current line (delete-indentation).
This “joins” the two lines cleanly, by replacing any indentation at
the front of the current line, together with the line boundary, with a
single space.
As a special case (useful for Lisp code), the single space is omitted
if the characters to be joined are consecutive opening and closing
parentheses, or if the junction follows another newline.
If there is a fill prefix, M-^ deletes the fill prefix if it
appears after the newline that is deleted. See the section called “The Fill Prefix”.

	C-M-\
	Indent all the lines in the region, as though you had typed TAB
at the beginning of each line (indent-region).
If a numeric argument is supplied, indent every line in the region to
that column number.

	C-x TAB
	Shift each line in the region by a fixed distance, to the right or
left (indent-rigidly). The distance to move is determined by
the numeric argument (positive to move rightward, negative to move
leftward).
This command can be used to remove all indentation from the lines in
the region, by invoking it with a large negative argument,
e.g. C-u -1000 C-x TAB.

Tab Stops

 Emacs defines certain column numbers to be tab stops. These
are used as stopping points by TAB when inserting whitespace in
Text mode and related modes (see Chapter 24, Indentation), and by commands
like M-i (see the section called “Indentation Commands”). By default, tab stops
are located every 8 columns. These positions are stored in the
variable tab-stop-list, whose value is a list of column numbers
in increasing order.
 Instead of customizing the variable tab-stop-list directly, a
convenient way to view and set tab stops is via the command M-x
edit-tab-stops. This switches to a buffer containing a description
of the tab stop settings, which looks like this:

 : : : : : :
0 1 2 3 4
0123456789012345678901234567890123456789012345678
To install changes, type C-c C-c

The first line contains a colon at each tab stop. The numbers on the
next two lines are present just to indicate where the colons are.
You can edit this buffer to specify different tab stops by placing
colons on the desired columns. The buffer uses Overwrite mode
(see the section called “Minor Modes”). When you are done, type C-c C-c to make
the new tab stops take effect. Normally, the new tab stop settings
apply to all buffers. However, if you have made the
tab-stop-list variable local to the buffer where you called
M-x edit-tab-stops (see the section called “Local Variables”), then the new tab stop
settings apply only to that buffer. To save the tab stop settings for
future Emacs sessions, use the Customize interface to save the value
of tab-stop-list (see the section called “Easy Customization Interface”).
Note that the tab stops discussed in this section have nothing to do
with how tab characters are displayed in the buffer. Tab characters
are always displayed as empty spaces extending to the next
display tab stop. See the section called “How Text Is Displayed”.

Tabs vs. Spaces

 Normally, indentation commands insert (or remove) an optimal mix of
space characters and tab characters to align to the desired column.
Tab characters are displayed as a stretch of empty space extending to
the next display tab stop. By default, there is one display tab
stop every tab-width columns (the default is 8). See the section called “How Text Is Displayed”.
 If you prefer, all indentation can be made from spaces only. To
request this, set the buffer-local variable indent-tabs-mode to
nil. See the section called “Local Variables”, for information about setting buffer-local
variables. Note, however, that C-q TAB always inserts a
tab character, regardless of the value of indent-tabs-mode.
One reason to set indent-tabs-mode to nil is that not
all editors display tab characters in the same way. Emacs users, too,
may have different customized values of tab-width. By using
spaces only, you can make sure that your file always looks the same.
If you only care about how it looks within Emacs, another way to
tackle this problem is to set the tab-width variable in a
file-local variable (see the section called “Local Variables in Files”).
 There are also commands to convert tabs to spaces or vice versa, always
preserving the columns of all non-whitespace text. M-x tabify scans the
region for sequences of spaces, and converts sequences of at least two
spaces to tabs if that can be done without changing indentation. M-x
untabify changes all tabs in the region to appropriate numbers of spaces.

Convenience Features for Indentation

 The variable tab-always-indent tweaks the behavior of the
TAB (indent-for-tab-command) command. The default value,
t, gives the behavior described in Chapter 24, Indentation. If you
change the value to the symbol complete, then TAB first
tries to indent the current line, and if the line was already
indented, it tries to complete the text at point (see the section called “Completion for Symbol Names”). If the value is nil, then TAB indents the
current line only if point is at the left margin or in the line's
indentation; otherwise, it inserts a tab character.
 Electric Indent mode is a global minor mode that automatically
indents the line after every RET you type. To toggle this minor
mode, type M-x electric-indent-mode.

Chapter 25. Commands for Human Languages

 This chapter describes Emacs commands that act on text, by
which we mean sequences of characters in a human language (as opposed
to, say, a computer programming language). These commands act in ways
that take into account the syntactic and stylistic conventions of
human languages: conventions involving words, sentences, paragraphs,
and capital letters. There are also commands for filling, which
means rearranging the lines of a paragraph to be approximately equal
in length. These commands, while intended primarily for editing text,
are also often useful for editing programs.
Emacs has several major modes for editing human-language text. If
the file contains ordinary text, use Text mode, which customizes Emacs
in small ways for the syntactic conventions of text. Outline mode
provides special commands for operating on text with an outline
structure. Org mode extends Outline mode and turn Emacs into a
full-fledged organizer: you can manage TODO lists, store notes and
publish them in many formats.
 Emacs has other major modes for text which contains “embedded”
commands, such as TeX and LaTeX (see the section called “TeX Mode”); HTML and
SGML (see the section called “SGML and HTML Modes”); XML
(see the nXML mode Info manual, which is distributed with Emacs);
and Groff and Nroff (see the section called “Nroff Mode”).
 If you need to edit pictures made out of text characters (commonly
referred to as “ASCII art”), use Picture mode, a special major mode
for editing such pictures.
See Chapter 40, Editing Pictures.
Words

 Emacs defines several commands for moving over or operating on
words:
	M-f
	Move forward over a word (forward-word).

	M-b
	Move backward over a word (backward-word).

	M-d
	Kill up to the end of a word (kill-word).

	M-DEL
	Kill back to the beginning of a word (backward-kill-word).

	M-@
	Mark the end of the next word (mark-word).

	M-t
	Transpose two words or drag a word across others
(transpose-words).

Notice how these keys form a series that parallels the character-based
C-f, C-b, C-d, DEL and C-t. M-@ is
cognate to C-@, which is an alias for C-SPC.
 The commands M-f (forward-word) and M-b
(backward-word) move forward and backward over words. These
Meta-based key sequences are analogous to the key sequences
C-f and C-b, which move over single characters. The
analogy extends to numeric arguments, which serve as repeat counts.
M-f with a negative argument moves backward, and M-b with
a negative argument moves forward. Forward motion stops right after
the last letter of the word, while backward motion stops right before
the first letter.
 M-d (kill-word) kills the word after point. To be
precise, it kills everything from point to the place M-f would
move to. Thus, if point is in the middle of a word, M-d kills
just the part after point. If some punctuation comes between point
and the next word, it is killed along with the word. (If you wish to
kill only the next word but not the punctuation before it, simply do
M-f to get the end, and kill the word backwards with
M-DEL.) M-d takes arguments just like M-f.
 M-DEL (backward-kill-word) kills the word before
point. It kills everything from point back to where M-b would
move to. For instance, if point is after the space in ‘FOO,
BAR’, it kills ‘FOO, ’. If you wish to kill just
‘FOO’, and not the comma and the space, use M-b M-d instead
of M-DEL.
M-t (transpose-words) exchanges the word before or
containing point with the following word. The delimiter characters between
the words do not move. For example, ‘FOO, BAR’ transposes into
‘BAR, FOO’ rather than ‘BAR FOO,’. See the section called “Transposing Text”, for
more on transposition.
 To operate on words with an operation which acts on the region, use
the command M-@ (mark-word). This command sets the mark
where M-f would move to. See the section called “Commands to Mark Textual Objects”, for more
information about this command.
The word commands' understanding of word boundaries is controlled by
the syntax table. Any character can, for example, be declared to be a
word delimiter. See See section ``Syntax Tables'' in The Emacs Lisp Reference Manual.
In addition, see the section called “Cursor Position Information” for the M-=
(count-words-region) and M-x count-words commands, which
count and report the number of words in the region or buffer.

Sentences

 The Emacs commands for manipulating sentences and paragraphs are
mostly on Meta keys, like the word-handling commands.
	M-a
	Move back to the beginning of the sentence (backward-sentence).

	M-e
	Move forward to the end of the sentence (forward-sentence).

	M-k
	Kill forward to the end of the sentence (kill-sentence).

	C-x DEL
	Kill back to the beginning of the sentence (backward-kill-sentence).

 The commands M-a (backward-sentence) and M-e
(forward-sentence) move to the beginning and end of the current
sentence, respectively. Their bindings were chosen to resemble
C-a and C-e, which move to the beginning and end of a
line. Unlike them, M-a and M-e move over successive
sentences if repeated.
Moving backward over a sentence places point just before the first
character of the sentence; moving forward places point right after the
punctuation that ends the sentence. Neither one moves over the
whitespace at the sentence boundary.
 Just as C-a and C-e have a kill command, C-k, to
go with them, M-a and M-e have a corresponding kill
command: M-k (kill-sentence) kills from point to the end
of the sentence. With a positive numeric argument n, it kills
the next n sentences; with a negative argument −n,
it kills back to the beginning of the nth preceding sentence.
 The C-x DEL (backward-kill-sentence) kills back
to the beginning of a sentence.
The sentence commands assume that you follow the American typist's
convention of putting two spaces at the end of a sentence. That is, a
sentence ends wherever there is a ‘.’, ‘?’ or ‘!’
followed by the end of a line or two spaces, with any number of
‘)’, ‘]’, ‘'’, or ‘"’ characters allowed in
between. A sentence also begins or ends wherever a paragraph begins
or ends. It is useful to follow this convention, because it allows
the Emacs sentence commands to distinguish between periods that end a
sentence and periods that indicate abbreviations.
 If you want to use just one space between sentences, you can set the
variable sentence-end-double-space to nil to make the
sentence commands stop for single spaces. However, this has a
drawback: there is no way to distinguish between periods that end
sentences and those that indicate abbreviations. For convenient and
reliable editing, we therefore recommend you follow the two-space
convention. The variable sentence-end-double-space also
affects filling (see the section called “Explicit Fill Commands”).
 The variable sentence-end controls how to recognize the end
of a sentence. If non-nil, its value should be a regular
expression, which is used to match the last few characters of a
sentence, together with the whitespace following the sentence
(see the section called “Syntax of Regular Expressions”). If the value is nil, the default, then
Emacs computes sentence ends according to various criteria such as the
value of sentence-end-double-space.
 Some languages, such as Thai, do not use periods to indicate the end
of a sentence. Set the variable sentence-end-without-period to
t in such cases.

Paragraphs

 The Emacs commands for manipulating paragraphs are also on Meta keys.
	M-{
	Move back to previous paragraph beginning (backward-paragraph).

	M-}
	Move forward to next paragraph end (forward-paragraph).

	M-h
	Put point and mark around this or next paragraph (mark-paragraph).

 M-{ (backward-paragraph) moves to the beginning of the
current or previous paragraph (see below for the definition of a
paragraph). M-} (forward-paragraph) moves to the end of
the current or next paragraph. If there is a blank line before the
paragraph, M-{ moves to the blank line.
 When you wish to operate on a paragraph, type M-h
(mark-paragraph) to set the region around it. For example,
M-h C-w kills the paragraph around or after point. M-h
puts point at the beginning and mark at the end of the paragraph point
was in. If point is between paragraphs (in a run of blank lines, or
at a boundary), M-h sets the region around the paragraph
following point. If there are blank lines preceding the first line of
the paragraph, one of these blank lines is included in the region. If
the region is already active, the command sets the mark without
changing point, and each subsequent M-h further advances the
mark by one paragraph.
The definition of a paragraph depends on the major mode. In
Fundamental mode, as well as Text mode and related modes, a paragraph
is separated each neighboring paragraph another by one or more
blank lines—lines that are either empty, or consist solely of
space, tab and/or formfeed characters. In programming language modes,
paragraphs are usually defined in a similar way, so that you can use
the paragraph commands even though there are no paragraphs as such in
a program.
Note that an indented line is not itself a paragraph break in
Text mode. If you want indented lines to separate paragraphs, use
Paragraph-Indent Text mode instead. See the section called “Text Mode”.
If you set a fill prefix, then paragraphs are delimited by all lines
which don't start with the fill prefix. See the section called “Filling Text”.
 The precise definition of a paragraph boundary is controlled by the
variables paragraph-separate and paragraph-start. The
value of paragraph-start is a regular expression that should
match lines that either start or separate paragraphs
(see the section called “Syntax of Regular Expressions”). The value of paragraph-separate is another
regular expression that should match lines that separate paragraphs
without being part of any paragraph (for example, blank lines). Lines
that start a new paragraph and are contained in it must match only
paragraph-start, not paragraph-separate. For example,
in Fundamental mode, paragraph-start is "\f\\|[
\t]*$", and paragraph-separate is "[\t\f]*$".

Pages

 Within some text files, text is divided into pages delimited
by the formfeed character (ASCII code 12, also denoted
as control-L), which is displayed in Emacs as the escape
sequence ‘^L’ (see the section called “How Text Is Displayed”). Traditionally, when such
text files are printed to hardcopy, each formfeed character forces a
page break. Most Emacs commands treat it just like any other
character, so you can insert it with C-q C-l, delete it with
DEL, etc. In addition, Emacs provides commands to move over
pages and operate on them.
	M-x what-page
	Display the page number of point, and the line number within that page.

	C-x [
	Move point to previous page boundary (backward-page).

	C-x]
	Move point to next page boundary (forward-page).

	C-x C-p
	Put point and mark around this page (or another page) (mark-page).

	C-x l
	Count the lines in this page (count-lines-page).

 M-x what-page counts pages from the beginning of the file, and
counts lines within the page, showing both numbers in the echo area.
 The C-x [(backward-page) command moves point to immediately
after the previous page delimiter. If point is already right after a page
delimiter, it skips that one and stops at the previous one. A numeric
argument serves as a repeat count. The C-x] (forward-page)
command moves forward past the next page delimiter.
 The C-x C-p command (mark-page) puts point at the
beginning of the current page (after that page delimiter at the
front), and the mark at the end of the page (after the page delimiter
at the end).
C-x C-p C-w is a handy way to kill a page to move it
elsewhere. If you move to another page delimiter with C-x [and
C-x], then yank the killed page, all the pages will be properly
delimited once again. The reason C-x C-p includes only the
following page delimiter in the region is to ensure that.
A numeric argument to C-x C-p specifies which page to go to,
relative to the current one. Zero means the current page, one
the next page, and −1 the previous one.
 The C-x l command (count-lines-page) is good for deciding
where to break a page in two. It displays in the echo area the total number
of lines in the current page, and then divides it up into those preceding
the current line and those following, as in

Page has 96 (72+25) lines

Notice that the sum is off by one; this is correct if point is not at the
beginning of a line.
 The variable page-delimiter controls where pages begin. Its
value is a regular expression that matches the beginning of a line
that separates pages (see the section called “Syntax of Regular Expressions”). The normal value of this
variable is "^\f", which matches a formfeed character at the
beginning of a line.

Filling Text

 Filling text means breaking it up into lines that fit a
specified width. Emacs does filling in two ways. In Auto Fill mode,
inserting text with self-inserting characters also automatically fills
it. There are also explicit fill commands that you can use when editing
text.
Auto Fill Mode

 Auto Fill mode is a buffer-local minor mode (see the section called “Minor Modes”) in which lines are broken automatically when they become too
wide. Breaking happens only when you type a SPC or RET.
	M-x auto-fill-mode
	Enable or disable Auto Fill mode.

	SPC, RET
	In Auto Fill mode, break lines when appropriate.

 The mode command M-x auto-fill-mode toggles Auto Fill mode in
the current buffer. With a positive numeric argument, it enables Auto
Fill mode, and with a negative argument it disables it. If
auto-fill-mode is called from Lisp with an omitted or
nil argument, it enables Auto Fill mode. To enable Auto Fill
mode automatically in certain major modes, add auto-fill-mode
to the mode hooks (see the section called “Major Modes”). When Auto Fill mode is
enabled, the mode indicator ‘Fill’ appears in the mode line
(see the section called “The Mode Line”).
Auto Fill mode breaks lines automatically at spaces whenever they
get longer than the desired width. This line breaking occurs only
when you type SPC or RET. If you wish to insert a space
or newline without permitting line-breaking, type C-q SPC
or C-q C-j respectively. Also, C-o inserts a newline
without line breaking.
When Auto Fill mode breaks a line, it tries to obey the
adaptive fill prefix: if a fill prefix can be deduced from the
first and/or second line of the current paragraph, it is inserted into
the new line (see the section called “Adaptive Filling”). Otherwise the new line is
indented, as though you had typed TAB on it
(see Chapter 24, Indentation). In a programming language mode, if a line is
broken in the middle of a comment, the comment is split by inserting
new comment delimiters as appropriate.
Auto Fill mode does not refill entire paragraphs; it breaks lines
but does not merge lines. Therefore, editing in the middle of a
paragraph can result in a paragraph that is not correctly filled. To
fill it, call the explicit fill commands
(see the section called “Explicit Fill Commands”).

Explicit Fill Commands

	M-q
	Fill current paragraph (fill-paragraph).

	C-x f
	Set the fill column (set-fill-column).

	M-x fill-region
	Fill each paragraph in the region (fill-region).

	M-x fill-region-as-paragraph
	Fill the region, considering it as one paragraph.

	M-o M-s
	Center a line.

 The command M-q (fill-paragraph) fills the
current paragraph. It redistributes the line breaks within the
paragraph, and deletes any excess space and tab characters occurring
within the paragraph, in such a way that the lines end up fitting
within a certain maximum width.
 Normally, M-q acts on the paragraph where point is, but if
point is between paragraphs, it acts on the paragraph after point. If
the region is active, it acts instead on the text in the region. You
can also call M-x fill-region to specifically fill the text in
the region.
 M-q and fill-region use the usual Emacs criteria for
finding paragraph boundaries (see the section called “Paragraphs”). For more control,
you can use M-x fill-region-as-paragraph, which refills
everything between point and mark as a single paragraph. This command
deletes any blank lines within the region, so separate blocks of text
end up combined into one block.
 A numeric argument to M-q tells it to justify the text
as well as filling it. This means that extra spaces are inserted to
make the right margin line up exactly at the fill column. To remove
the extra spaces, use M-q with no argument. (Likewise for
fill-region.)
 The maximum line width for filling is specified by the buffer-local
variable fill-column. The default value (see the section called “Local Variables”) is
70. The easiest way to set fill-column in the current buffer
is to use the command C-x f (set-fill-column). With a
numeric argument, it uses that as the new fill column. With just
C-u as argument, it sets fill-column to the current
horizontal position of point.
 The command M-o M-s (center-line) centers the current line
within the current fill column. With an argument n, it centers
n lines individually and moves past them. This binding is
made by Text mode and is available only in that and related modes
(see the section called “Text Mode”).
By default, Emacs considers a period followed by two spaces or by a
newline as the end of a sentence; a period followed by just one space
indicates an abbreviation, not the end of a sentence. Accordingly,
the fill commands will not break a line after a period followed by
just one space. If you set the variable
sentence-end-double-space to nil, the fill commands will
break a line after a period followed by one space, and put just one
space after each period. See the section called “Sentences”, for other effects and
possible drawbacks of this.
 If the variable colon-double-space is non-nil, the
fill commands put two spaces after a colon.
 To specify additional conditions where line-breaking is not allowed,
customize the abnormal hook variable fill-nobreak-predicate
(see the section called “Hooks”). Each function in this hook is called with no
arguments, with point positioned where Emacs is considering breaking a
line. If a function returns a non-nil value, Emacs will not
break the line there. Two functions you can use are
fill-single-word-nobreak-p (don't break after the first word of
a sentence or before the last) and fill-french-nobreak-p (don't
break after ‘(’ or before ‘)’, ‘:’ or ‘?’).

The Fill Prefix

 The fill prefix feature allows paragraphs to be filled so that
each line starts with a special string of characters (such as a
sequence of spaces, giving an indented paragraph). You can specify a
fill prefix explicitly; otherwise, Emacs tries to deduce one
automatically (see the section called “Adaptive Filling”).
	C-x .
	Set the fill prefix (set-fill-prefix).

	M-q
	Fill a paragraph using current fill prefix (fill-paragraph).

	M-x fill-individual-paragraphs
	Fill the region, considering each change of indentation as starting a
new paragraph.

	M-x fill-nonuniform-paragraphs
	Fill the region, considering only paragraph-separator lines as starting
a new paragraph.

 To specify a fill prefix for the current buffer, move to a line that
starts with the desired prefix, put point at the end of the prefix,
and type C-x . (set-fill-prefix). (That's a period
after the C-x.) To turn off the fill prefix, specify an empty
prefix: type C-x . with point at the beginning of a line.
When a fill prefix is in effect, the fill commands remove the fill
prefix from each line of the paragraph before filling, and insert it
on each line after filling. (The beginning of the first line of the
paragraph is left unchanged, since often that is intentionally
different.) Auto Fill mode also inserts the fill prefix automatically
when it makes a new line (see the section called “Auto Fill Mode”). The C-o command
inserts the fill prefix on new lines it creates, when you use it at
the beginning of a line (see the section called “Blank Lines”). Conversely, the
command M-^ deletes the prefix (if it occurs) after the newline
that it deletes (see Chapter 24, Indentation).
For example, if fill-column is 40 and you set the fill prefix
to ‘;; ’, then M-q in the following text

;; This is an
;; example of a paragraph
;; inside a Lisp-style comment.

produces this:

;; This is an example of a paragraph
;; inside a Lisp-style comment.

Lines that do not start with the fill prefix are considered to start
paragraphs, both in M-q and the paragraph commands; this gives
good results for paragraphs with hanging indentation (every line
indented except the first one). Lines which are blank or indented once
the prefix is removed also separate or start paragraphs; this is what
you want if you are writing multi-paragraph comments with a comment
delimiter on each line.
 You can use M-x fill-individual-paragraphs to set the fill
prefix for each paragraph automatically. This command divides the
region into paragraphs, treating every change in the amount of
indentation as the start of a new paragraph, and fills each of these
paragraphs. Thus, all the lines in one “paragraph” have the same
amount of indentation. That indentation serves as the fill prefix for
that paragraph.
 M-x fill-nonuniform-paragraphs is a similar command that divides
the region into paragraphs in a different way. It considers only
paragraph-separating lines (as defined by paragraph-separate) as
starting a new paragraph. Since this means that the lines of one
paragraph may have different amounts of indentation, the fill prefix
used is the smallest amount of indentation of any of the lines of the
paragraph. This gives good results with styles that indent a paragraph's
first line more or less that the rest of the paragraph.
 The fill prefix is stored in the variable fill-prefix. Its value
is a string, or nil when there is no fill prefix. This is a
per-buffer variable; altering the variable affects only the current buffer,
but there is a default value which you can change as well. See the section called “Local Variables”.
The indentation text property provides another way to control
the amount of indentation paragraphs receive. See the section called “Indentation in Enriched Text”.

Adaptive Filling

 The fill commands can deduce the proper fill prefix for a paragraph
automatically in certain cases: either whitespace or certain punctuation
characters at the beginning of a line are propagated to all lines of the
paragraph.
If the paragraph has two or more lines, the fill prefix is taken from
the paragraph's second line, but only if it appears on the first line as
well.
If a paragraph has just one line, fill commands may take a
prefix from that line. The decision is complicated because there are
three reasonable things to do in such a case:
	Use the first line's prefix on all the lines of the paragraph.

	Indent subsequent lines with whitespace, so that they line up under the
text that follows the prefix on the first line, but don't actually copy
the prefix from the first line.

	Don't do anything special with the second and following lines.

All three of these styles of formatting are commonly used. So the
fill commands try to determine what you would like, based on the prefix
that appears and on the major mode. Here is how.
 If the prefix found on the first line matches
adaptive-fill-first-line-regexp, or if it appears to be a
comment-starting sequence (this depends on the major mode), then the
prefix found is used for filling the paragraph, provided it would not
act as a paragraph starter on subsequent lines.
Otherwise, the prefix found is converted to an equivalent number of
spaces, and those spaces are used as the fill prefix for the rest of the
lines, provided they would not act as a paragraph starter on subsequent
lines.
In Text mode, and other modes where only blank lines and page
delimiters separate paragraphs, the prefix chosen by adaptive filling
never acts as a paragraph starter, so it can always be used for filling.
 The variable adaptive-fill-regexp determines what kinds of line
beginnings can serve as a fill prefix: any characters at the start of
the line that match this regular expression are used. If you set the
variable adaptive-fill-mode to nil, the fill prefix is
never chosen automatically.
 You can specify more complex ways of choosing a fill prefix
automatically by setting the variable adaptive-fill-function to a
function. This function is called with point after the left margin of a
line, and it should return the appropriate fill prefix based on that
line. If it returns nil, adaptive-fill-regexp gets
a chance to find a prefix.

Case Conversion Commands

 Emacs has commands for converting either a single word or any arbitrary
range of text to upper case or to lower case.
	M-l
	Convert following word to lower case (downcase-word).

	M-u
	Convert following word to upper case (upcase-word).

	M-c
	Capitalize the following word (capitalize-word).

	C-x C-l
	Convert region to lower case (downcase-region).

	C-x C-u
	Convert region to upper case (upcase-region).

 M-l (downcase-word) converts the word after point to
lower case, moving past it. Thus, repeating M-l converts
successive words. M-u (upcase-word) converts to all
capitals instead, while M-c (capitalize-word) puts the
first letter of the word into upper case and the rest into lower case.
All these commands convert several words at once if given an argument.
They are especially convenient for converting a large amount of text
from all upper case to mixed case, because you can move through the
text using M-l, M-u or M-c on each word as
appropriate, occasionally using M-f instead to skip a word.
When given a negative argument, the word case conversion commands apply
to the appropriate number of words before point, but do not move point.
This is convenient when you have just typed a word in the wrong case: you
can give the case conversion command and continue typing.
If a word case conversion command is given in the middle of a word,
it applies only to the part of the word which follows point. (This is
comparable to what M-d (kill-word) does.) With a
negative argument, case conversion applies only to the part of the
word before point.
 The other case conversion commands are C-x C-u
(upcase-region) and C-x C-l (downcase-region), which
convert everything between point and mark to the specified case. Point and
mark do not move.
The region case conversion commands upcase-region and
downcase-region are normally disabled. This means that they ask
for confirmation if you try to use them. When you confirm, you may
enable the command, which means it will not ask for confirmation again.
See the section called “Disabling Commands”.

Text Mode

 Text mode is a major mode for editing files of text in a human
language. Files which have names ending in the extension .txt
are usually opened in Text mode (see the section called “Choosing File Modes”). To
explicitly switch to Text mode, type M-x text-mode.
In Text mode, only blank lines and page delimiters separate
paragraphs. As a result, paragraphs can be indented, and adaptive
filling determines what indentation to use when filling a paragraph.
See the section called “Adaptive Filling”.
 In Text mode, the TAB (indent-for-tab-command) command
usually inserts whitespace up to the next tab stop, instead of
indenting the current line. See Chapter 24, Indentation, for details.
Text mode turns off the features concerned with comments except when
you explicitly invoke them. It changes the syntax table so that
single-quotes are considered part of words (e.g. ‘don't’ is
considered one word). However, if a word starts with a single-quote,
it is treated as a prefix for the purposes of capitalization
(e.g. M-c converts ‘'hello'’ into ‘'Hello'’, as
expected).
 If you indent the first lines of paragraphs, then you should use
Paragraph-Indent Text mode (M-x paragraph-indent-text-mode)
rather than Text mode. In that mode, you do not need to have blank
lines between paragraphs, because the first-line indentation is
sufficient to start a paragraph; however paragraphs in which every
line is indented are not supported. Use M-x
paragraph-indent-minor-mode to enable an equivalent minor mode for
situations where you shouldn't change the major mode—in mail
composition, for instance.
 Text mode binds M-TAB to ispell-complete-word.
This command performs completion of the partial word in the buffer
before point, using the spelling dictionary as the space of possible
words. See the section called “Checking and Correcting Spelling”. If your window manager defines
M-TAB to switch windows, you can type ESC
TAB or C-M-i instead.
 Entering Text mode runs the mode hook text-mode-hook
(see the section called “Major Modes”).
The following sections describe several major modes that are
derived from Text mode. These derivatives share most of the
features of Text mode described above. In particular, derivatives of
Text mode run text-mode-hook prior to running their own mode
hooks.

Outline Mode

 Outline mode is a major mode derived from Text mode, which is
specialized for editing outlines. It provides commands to navigate
between entries in the outline structure, and commands to make parts
of a buffer temporarily invisible, so that the outline structure may
be more easily viewed. Type M-x outline-mode to switch to
Outline mode. Entering Outline mode runs the hook
text-mode-hook followed by the hook outline-mode-hook
(see the section called “Hooks”).
When you use an Outline mode command to make a line invisible
(see the section called “Outline Visibility Commands”), the line disappears from the screen. An
ellipsis (three periods in a row) is displayed at the end of the
previous visible line, to indicate the hidden text. Multiple
consecutive invisible lines produce just one ellipsis.
Editing commands that operate on lines, such as C-n and
C-p, treat the text of the invisible line as part of the
previous visible line. Killing the ellipsis at the end of a visible
line really kills all the following invisible text associated with the
ellipsis.
Outline minor mode is a buffer-local minor mode which provides the
same commands as the major mode, Outline mode, but can be used in
conjunction with other major modes. You can type M-x
outline-minor-mode to toggle Outline minor mode in the current
buffer, or use a file-local variable setting to enable it in a
specific file (see the section called “Local Variables in Files”).
 The major mode, Outline mode, provides special key bindings on the
C-c prefix. Outline minor mode provides similar bindings with
C-c @ as the prefix; this is to reduce the conflicts with the
major mode's special commands. (The variable
outline-minor-mode-prefix controls the prefix used.)
Format of Outlines

 Outline mode assumes that the lines in the buffer are of two types:
heading lines and body lines. A heading line represents a
topic in the outline. Heading lines start with one or more asterisk
(‘*’) characters; the number of asterisks determines the depth of
the heading in the outline structure. Thus, a heading line with one
‘*’ is a major topic; all the heading lines with two ‘*’s
between it and the next one-‘*’ heading are its subtopics; and so
on. Any line that is not a heading line is a body line. Body lines
belong with the preceding heading line. Here is an example:

* Food
This is the body,
which says something about the topic of food.

** Delicious Food
This is the body of the second-level header.

** Distasteful Food
This could have
a body too, with
several lines.

*** Dormitory Food

* Shelter
Another first-level topic with its header line.

A heading line together with all following body lines is called
collectively an entry. A heading line together with all following
deeper heading lines and their body lines is called a subtree.
 You can customize the criterion for distinguishing heading lines by
setting the variable outline-regexp. (The recommended ways to
do this are in a major mode function or with a file local variable.)
Any line whose beginning has a match for this regexp is considered a
heading line. Matches that start within a line (not at the left
margin) do not count.
The length of the matching text determines the level of the heading;
longer matches make a more deeply nested level. Thus, for example, if
a text formatter has commands ‘@chapter’, ‘@section’ and
‘@subsection’ to divide the document into chapters and sections,
you could make those lines count as heading lines by setting
outline-regexp to ‘"@chap\\|@\\(sub\\)*section"’. Note
the trick: the two words ‘chapter’ and ‘section’ are equally
long, but by defining the regexp to match only ‘chap’ we ensure
that the length of the text matched on a chapter heading is shorter,
so that Outline mode will know that sections are contained in
chapters. This works as long as no other command starts with
‘@chap’.
 You can explicitly specify a rule for calculating the level of a
heading line by setting the variable outline-level. The value
of outline-level should be a function that takes no arguments
and returns the level of the current heading. The recommended ways to
set this variable are in a major mode command or with a file local
variable.

Outline Motion Commands

Outline mode provides special motion commands that move backward and
forward to heading lines.
	C-c C-n
	Move point to the next visible heading line
(outline-next-visible-heading).

	C-c C-p
	Move point to the previous visible heading line
(outline-previous-visible-heading).

	C-c C-f
	Move point to the next visible heading line at the same level
as the one point is on (outline-forward-same-level).

	C-c C-b
	Move point to the previous visible heading line at the same level
(outline-backward-same-level).

	C-c C-u
	Move point up to a lower-level (more inclusive) visible heading line
(outline-up-heading).

 C-c C-n (outline-next-visible-heading) moves down to
the next heading line. C-c C-p
(outline-previous-visible-heading) moves similarly backward.
Both accept numeric arguments as repeat counts.
 The commands C-c C-f (outline-forward-same-level) and
C-c C-b (outline-backward-same-level) move from one
heading line to another visible heading at the same depth in the
outline. C-c C-u (outline-up-heading) moves backward to
another heading that is less deeply nested.

Outline Visibility Commands

Outline mode provides several commands for temporarily hiding or
revealing parts of the buffer, based on the outline structure. These
commands are not undoable; their effects are simply not recorded by
the undo mechanism, so you can undo right past them (see the section called “Undo”).
Many of these commands act on the “current” heading line. If
point is on a heading line, that is the current heading line; if point
is on a body line, the current heading line is the nearest preceding
header line.
	C-c C-c
	Make the current heading line's body invisible (hide-entry).

	C-c C-e
	Make the current heading line's body visible (show-entry).

	C-c C-d
	Make everything under the current heading invisible, not including the
heading itself (hide-subtree).

	C-c C-s
	Make everything under the current heading visible, including body,
subheadings, and their bodies (show-subtree).

	C-c C-l
	Make the body of the current heading line, and of all its subheadings,
invisible (hide-leaves).

	C-c C-k
	Make all subheadings of the current heading line, at all levels,
visible (show-branches).

	C-c C-i
	Make immediate subheadings (one level down) of the current heading
line visible (show-children).

	C-c C-t
	Make all body lines in the buffer invisible (hide-body).

	C-c C-a
	Make all lines in the buffer visible (show-all).

	C-c C-q
	Hide everything except the top n levels of heading lines
(hide-sublevels).

	C-c C-o
	Hide everything except for the heading or body that point is in, plus
the headings leading up from there to the top level of the outline
(hide-other).

 The simplest of these commands are C-c C-c
(hide-entry), which hides the body lines directly following the
current heading line, and C-c C-e (show-entry), which
reveals them. Subheadings and their bodies are not affected.
 The commands C-c C-d (hide-subtree) and C-c C-s
(show-subtree) are more powerful. They apply to the current
heading line's subtree: its body, all of its subheadings, both
direct and indirect, and all of their bodies.
 The command C-c C-l (hide-leaves) hides the body of the
current heading line as well as all the bodies in its subtree; the
subheadings themselves are left visible. The command C-c C-k
(show-branches) reveals the subheadings, if they had previously
been hidden (e.g. by C-c C-d). The command C-c C-i
(show-children) is a weaker version of this; it reveals just
the direct subheadings, i.e. those one level down.
 The command C-c C-o (hide-other) hides everything
except the entry that point is in, plus its parents (the headers
leading up from there to top level in the outline) and the top level
headings.
 The remaining commands affect the whole buffer. C-c C-t
(hide-body) makes all body lines invisible, so that you see
just the outline structure (as a special exception, it will not hide
lines at the top of the file, preceding the first header line, even
though these are technically body lines). C-c C-a
(show-all) makes all lines visible. C-c C-q
(hide-sublevels) hides all but the top level headings; with a
numeric argument n, it hides everything except the top n
levels of heading lines.
 When incremental search finds text that is hidden by Outline mode,
it makes that part of the buffer visible. If you exit the search at
that position, the text remains visible. You can also automatically
make text visible as you navigate in it by using Reveal mode (M-x
reveal-mode), a buffer-local minor mode.

Viewing One Outline in Multiple Views

 You can display two views of a single outline at the same time, in
different windows. To do this, you must create an indirect buffer using
M-x make-indirect-buffer. The first argument of this command is
the existing outline buffer name, and its second argument is the name to
use for the new indirect buffer. See the section called “Indirect Buffers”.
Once the indirect buffer exists, you can display it in a window in the
normal fashion, with C-x 4 b or other Emacs commands. The Outline
mode commands to show and hide parts of the text operate on each buffer
independently; as a result, each buffer can have its own view. If you
want more than two views on the same outline, create additional indirect
buffers.

Folding Editing

 The Foldout package extends Outline mode and Outline minor mode with
“folding” commands. The idea of folding is that you zoom in on a
nested portion of the outline, while hiding its relatives at higher
levels.
Consider an Outline mode buffer with all the text and subheadings under
level-1 headings hidden. To look at what is hidden under one of these
headings, you could use C-c C-e (M-x show-entry) to expose
the body, or C-c C-i to expose the child (level-2) headings.
 With Foldout, you use C-c C-z (M-x foldout-zoom-subtree).
This exposes the body and child subheadings, and narrows the buffer so
that only the level-1 heading, the body and the level-2 headings are
visible. Now to look under one of the level-2 headings, position the
cursor on it and use C-c C-z again. This exposes the level-2 body
and its level-3 child subheadings and narrows the buffer again. Zooming
in on successive subheadings can be done as much as you like. A string
in the mode line shows how deep you've gone.
When zooming in on a heading, to see only the child subheadings specify
a numeric argument: C-u C-c C-z. The number of levels of children
can be specified too (compare M-x show-children), e.g. M-2
C-c C-z exposes two levels of child subheadings. Alternatively, the
body can be specified with a negative argument: M– C-c C-z. The
whole subtree can be expanded, similarly to C-c C-s (M-x
show-subtree), by specifying a zero argument: M-0 C-c C-z.
While you're zoomed in, you can still use Outline mode's exposure and
hiding functions without disturbing Foldout. Also, since the buffer is
narrowed, “global” editing actions will only affect text under the
zoomed-in heading. This is useful for restricting changes to a
particular chapter or section of your document.
 To unzoom (exit) a fold, use C-c C-x (M-x foldout-exit-fold).
This hides all the text and subheadings under the top-level heading and
returns you to the previous view of the buffer. Specifying a numeric
argument exits that many levels of folds. Specifying a zero argument
exits all folds.
To cancel the narrowing of a fold without hiding the text and
subheadings, specify a negative argument. For example, M–2 C-c
C-x exits two folds and leaves the text and subheadings exposed.
Foldout mode also provides mouse commands for entering and exiting
folds, and for showing and hiding text:
	C-M-Mouse-1 zooms in on the heading clicked on
		single click: expose body.

	double click: expose subheadings.

	triple click: expose body and subheadings.

	quad click: expose entire subtree.

	C-M-Mouse-2 exposes text under the heading clicked on
		single click: expose body.

	double click: expose subheadings.

	triple click: expose body and subheadings.

	quad click: expose entire subtree.

	C-M-Mouse-3 hides text under the heading clicked on or exits fold
		single click: hide subtree.

	double click: exit fold and hide text.

	triple click: exit fold without hiding text.

	quad click: exit all folds and hide text.

 You can specify different modifier keys (instead of
Control-Meta-) by setting foldout-mouse-modifiers; but if
you have already loaded the foldout.el library, you must reload
it in order for this to take effect.
To use the Foldout package, you can type M-x load-library
RET foldout RET; or you can arrange for to do that
automatically by putting the following in your init file:

(eval-after-load "outline" '(require 'foldout))

Org Mode

 Org mode is a variant of Outline mode for using Emacs as an
organizer and/or authoring system. Files with names ending in the
extension .org are opened in Org mode (see the section called “Choosing File Modes”).
To explicitly switch to Org mode, type M-x org-mode.
In Org mode, as in Outline mode, each entry has a heading line that
starts with one or more ‘*’ characters. See the section called “Format of Outlines”.
In addition, any line that begins with the ‘#’ character is
treated as a comment.
 Org mode provides commands for easily viewing and manipulating the
outline structure. The simplest of these commands is TAB
(org-cycle). If invoked on a heading line, it cycles through
the different visibility states of the subtree: (i) showing only that
heading line, (ii) showing only the heading line and the heading lines
of its direct children, if any, and (iii) showing the entire subtree.
If invoked in a body line, the global binding for TAB is
executed.
 Typing S-TAB (org-shifttab) anywhere in an Org mode
buffer cycles the visibility of the entire outline structure, between
(i) showing only top-level heading lines, (ii) showing all heading
lines but no body lines, and (iii) showing everything.
 You can move an entire entry up or down in the buffer, including its
body lines and subtree (if any), by typing M-<up>
(org-metaup) or M-<down> (org-metadown) on the
heading line. Similarly, you can promote or demote a heading line
with M-<left> (org-metaleft) and M-<right>
(org-metaright). These commands execute their global bindings
if invoked on a body line.
The following subsections give basic instructions for using Org mode
as an organizer and as an authoring system. For details, see See section ``Introduction'' in The Org Manual.
Org as an organizer

 You can tag an Org entry as a TODO item by typing C-c
C-t (org-todo) anywhere in the entry. This adds the keyword
‘TODO’ to the heading line. Typing C-c C-t again switches
the keyword to ‘DONE’; another C-c C-t removes the keyword
entirely, and so forth. You can customize the keywords used by
C-c C-t via the variable org-todo-keywords.
 Apart from marking an entry as TODO, you can attach a date to it, by
typing C-c C-s (org-schedule) in the entry. This prompts
for a date by popping up the Emacs Calendar (see Chapter 31, The Calendar and the Diary),
and then adds the tag ‘SCHEDULED’, together with the selected
date, beneath the heading line. The command C-c C-d
(org-deadline) has the same effect, except that it uses the tag
DEADLINE.
 Once you have some TODO items planned in an Org file, you can add
that file to the list of agenda files by typing C-c [
(org-agenda-file-to-front). Org mode is designed to let you
easily maintain multiple agenda files, e.g. for organizing different
aspects of your life. The list of agenda files is stored in the
variable org-agenda-files.
 To view items coming from your agenda files, type M-x
org-agenda. This command prompts for what you want to see: a list of
things to do this week, a list of TODO items with specific keywords,
etc.
See See section ``Agenda Views'' in The Org Manual, for details.

Org as an authoring system

 You may want to format your Org notes nicely and to prepare them for
export and publication. To export the current buffer, type C-c
C-e (org-export) anywhere in an Org buffer. This command
prompts for an export format; currently supported formats include
HTML, LaTeX, OpenDocument (.odt), and PDF. Some formats,
such as PDF, require certain system tools to be installed.
 To export several files at once to a specific directory, either
locally or over the network, you must define a list of projects
through the variable org-publish-project-alist. See its
documentation for details.
Org supports a simple markup scheme for applying text formatting to
exported documents:

- This text is /emphasized/
- This text is *in bold*
- This text is _underlined_
- This text uses =a teletype font=

#+begin_quote
``This is a quote.''
#+end_quote

#+begin_example
This is an example.
#+end_example

For further details, see See section ``Exporting'' in The Org Manual and
See section ``Publishing'' in The Org Manual.

TeX Mode

 Emacs provides special major modes for editing files written in
TeX and its related formats. TeX is a powerful text formatter
written by Donald Knuth; like GNU Emacs, it is free software.
LaTeX is a simplified input format for TeX, implemented using
TeX macros. DocTeX is a special file format in which the
LaTeX sources are written, combining sources with documentation.
SliTeX is an obsolete special form of LaTeX.[9]
 TeX mode has four variants: Plain TeX mode, LaTeX mode,
DocTeX mode, and SliTeX mode. These distinct major modes differ
only slightly, and are designed for editing the four different
formats. Emacs selects the appropriate mode by looking at the
contents of the buffer. (This is done by the tex-mode command,
which is normally called automatically when you visit a TeX-like
file. See the section called “Choosing File Modes”.) If the contents are insufficient to
determine this, Emacs chooses the mode specified by the variable
tex-default-mode; its default value is latex-mode. If
Emacs does not guess right, you can select the correct variant of
TeX mode using the command M-x plain-tex-mode, M-x
latex-mode, M-x slitex-mode, or doctex-mode.
The following sections document the features of TeX mode and its
variants. There are several other TeX-related Emacs packages,
which are not documented in this manual:
	BibTeX mode is a major mode for BibTeX files, which are commonly
used for keeping bibliographic references for LaTeX documents. For
more information, see the documentation string for the command
bibtex-mode.

	The RefTeX package provides a minor mode which can be used with
LaTeX mode to manage bibliographic references.
For more information, see the RefTeX Info manual, which is
distributed with Emacs.

	The AUCTeX package provides more advanced features for editing
TeX and its related formats, including the ability to preview
TeX equations within Emacs buffers. Unlike BibTeX mode and the
RefTeX package, AUCTeX is not distributed with Emacs by default.
It can be downloaded via the Package Menu (see Chapter 47, Emacs Lisp Packages); once
installed, see
the AUCTeX manual, which is included with the package.

TeX Editing Commands

	"
	Insert, according to context, either ‘``’ or ‘"’ or
‘''’ (tex-insert-quote).

	C-j
	Insert a paragraph break (two newlines) and check the previous
paragraph for unbalanced braces or dollar signs
(tex-terminate-paragraph).

	M-x tex-validate-region
	Check each paragraph in the region for unbalanced braces or dollar signs.

	C-c {
	Insert ‘{}’ and position point between them (tex-insert-braces).

	C-c }
	Move forward past the next unmatched close brace (up-list).

 In TeX, the character ‘"’ is not normally used; instead,
quotations begin with ‘``’ and end with ‘''’. TeX mode
therefore binds the " key to the tex-insert-quote
command. This inserts ‘``’ after whitespace or an open brace,
‘"’ after a backslash, and ‘''’ after any other character.
As a special exception, if you type " when the text before
point is either ‘``’ or ‘''’, Emacs replaces that preceding
text with a single ‘"’ character. You can therefore type
"" to insert ‘"’, should you ever need to do so. (You can
also use C-q " to insert this character.)
In TeX mode, ‘$’ has a special syntax code which attempts to
understand the way TeX math mode delimiters match. When you insert a
‘$’ that is meant to exit math mode, the position of the matching
‘$’ that entered math mode is displayed for a second. This is the
same feature that displays the open brace that matches a close brace that
is inserted. However, there is no way to tell whether a ‘$’ enters
math mode or leaves it; so when you insert a ‘$’ that enters math
mode, the previous ‘$’ position is shown as if it were a match, even
though they are actually unrelated.
 TeX uses braces as delimiters that must match. Some users prefer
to keep braces balanced at all times, rather than inserting them
singly. Use C-c { (tex-insert-braces) to insert a pair of
braces. It leaves point between the two braces so you can insert the
text that belongs inside. Afterward, use the command C-c }
(up-list) to move forward past the close brace.
 There are two commands for checking the matching of braces.
C-j (tex-terminate-paragraph) checks the paragraph before
point, and inserts two newlines to start a new paragraph. It outputs
a message in the echo area if any mismatch is found. M-x
tex-validate-region checks a region, paragraph by paragraph. The
errors are listed in an *Occur* buffer; you can use the usual
Occur mode commands in that buffer, such as C-c C-c, to visit a
particular mismatch (see the section called “Other Search-and-Loop Commands”).
Note that Emacs commands count square brackets and parentheses in
TeX mode, not just braces. This is not strictly correct for the
purpose of checking TeX syntax. However, parentheses and square
brackets are likely to be used in text as matching delimiters, and it
is useful for the various motion commands and automatic match display
to work with them.

LaTeX Editing Commands

LaTeX mode provides a few extra features not applicable to plain
TeX:
	C-c C-o
	Insert ‘\begin’ and ‘\end’ for LaTeX block and position
point on a line between them (tex-latex-block).

	C-c C-e
	Close the innermost LaTeX block not yet closed
(tex-close-latex-block).

 In LaTeX input, ‘\begin’ and ‘\end’ tags are used to
group blocks of text. To insert a block, type C-c C-o
(tex-latex-block). This prompts for a block type, and inserts
the appropriate matching ‘\begin’ and ‘\end’ tags, leaving a
blank line between the two and moving point there.
 When entering the block type argument to C-c C-o, you can use
the usual completion commands (see the section called “Completion”). The default
completion list contains the standard LaTeX block types. If you
want additional block types for completion, customize the list
variable latex-block-names.
 In LaTeX input, ‘\begin’ and ‘\end’ tags must balance.
You can use C-c C-e (tex-close-latex-block) to insert an
‘\end’ tag which matches the last unmatched ‘\begin’. It
also indents the ‘\end’ to match the corresponding ‘\begin’,
and inserts a newline after the ‘\end’ tag if point is at the
beginning of a line. The minor mode latex-electric-env-pair-mode
automatically inserts an ‘\end’ or ‘\begin’ tag for you
when you type the corresponding one.

TeX Printing Commands

You can invoke TeX as an subprocess of Emacs, supplying either
the entire contents of the buffer or just part of it (e.g. one
chapter of a larger document).
	C-c C-b
	Invoke TeX on the entire current buffer (tex-buffer).

	C-c C-r
	Invoke TeX on the current region, together with the buffer's header
(tex-region).

	C-c C-f
	Invoke TeX on the current file (tex-file).

	C-c C-v
	Preview the output from the last C-c C-r, C-c C-b, or C-c
C-f command (tex-view).

	C-c C-p
	Print the output from the last C-c C-b, C-c C-r, or
C-c C-f command (tex-print).

	C-c TAB
	Invoke BibTeX on the current file (tex-bibtex-file).

	C-c C-l
	Recenter the window showing output from TeX so that the last line
can be seen (tex-recenter-output-buffer).

	C-c C-k
	Kill the TeX subprocess (tex-kill-job).

	C-c C-c
	Invoke some other compilation command on the entire current buffer
(tex-compile).

 To pass the current buffer through TeX, type C-c C-b
(tex-buffer). The formatted output goes in a temporary file,
normally a .dvi file. Afterwards, you can type C-c C-v
(tex-view) to launch an external program, such as
xdvi, to view this output file. You can also type C-c
C-p (tex-print) to print a hardcopy of the output file.
 By default, C-c C-b runs TeX in the current directory. The
output of TeX also goes in this directory. To run TeX in a
different directory, change the variable tex-directory to the
desired directory name. If your environment variable TEXINPUTS
contains relative directory names, or if your files contains
‘\input’ commands with relative file names, then
tex-directory must be "." or you will get the
wrong results. Otherwise, it is safe to specify some other directory,
such as "/tmp".
 The buffer's TeX variant determines what shell command C-c
C-b actually runs. In Plain TeX mode, it is specified by the
variable tex-run-command, which defaults to "tex". In
LaTeX mode, it is specified by latex-run-command, which
defaults to "latex". The shell command that C-c C-v runs
to view the .dvi output is determined by the variable
tex-dvi-view-command, regardless of the TeX variant. The
shell command that C-c C-p runs to print the output is
determined by the variable tex-dvi-print-command.
Normally, Emacs automatically appends the output file name to the
shell command strings described in the preceding paragraph. For
example, if tex-dvi-view-command is "xdvi", C-c
C-v runs xdvi output-file-name. In some cases,
however, the file name needs to be embedded in the command, e.g. if
you need to provide the file name as an argument to one command whose
output is piped to another. You can specify where to put the file
name with ‘*’ in the command string. For example,

(setq tex-dvi-print-command "dvips -f * | lpr")

 The terminal output from TeX, including any error messages,
appears in a buffer called *tex-shell*. If TeX gets an
error, you can switch to this buffer and feed it input (this works as
in Shell mode; see the section called “Interactive Subshell”). Without switching to this
buffer you can scroll it so that its last line is visible by typing
C-c C-l.
Type C-c C-k (tex-kill-job) to kill the TeX process if
you see that its output is no longer useful. Using C-c C-b or
C-c C-r also kills any TeX process still running.
 You can also pass an arbitrary region through TeX by typing
C-c C-r (tex-region). This is tricky, however, because
most files of TeX input contain commands at the beginning to set
parameters and define macros, without which no later part of the file
will format correctly. To solve this problem, C-c C-r allows
you to designate a part of the file as containing essential commands;
it is included before the specified region as part of the input to
TeX. The designated part of the file is called the header.
 To indicate the bounds of the header in Plain TeX mode, you insert two
special strings in the file. Insert ‘%**start of header’ before the
header, and ‘%**end of header’ after it. Each string must appear
entirely on one line, but there may be other text on the line before or
after. The lines containing the two strings are included in the header.
If ‘%**start of header’ does not appear within the first 100 lines of
the buffer, C-c C-r assumes that there is no header.
In LaTeX mode, the header begins with ‘\documentclass’ or
‘\documentstyle’ and ends with ‘\begin{document}’. These
are commands that LaTeX requires you to use in any case, so nothing
special needs to be done to identify the header.
 The commands (tex-buffer) and (tex-region) do all of their
work in a temporary directory, and do not have available any of the auxiliary
files needed by TeX for cross-references; these commands are generally
not suitable for running the final copy in which all of the cross-references
need to be correct.
When you want the auxiliary files for cross references, use C-c
C-f (tex-file) which runs TeX on the current buffer's file,
in that file's directory. Before running TeX, it offers to save any
modified buffers. Generally, you need to use (tex-file) twice to
get the cross-references right.
 The value of the variable tex-start-options specifies
options for the TeX run.
 The value of the variable tex-start-commands specifies TeX
commands for starting TeX. The default value causes TeX to run
in nonstop mode. To run TeX interactively, set the variable to
"".
 Large TeX documents are often split into several files—one main
file, plus subfiles. Running TeX on a subfile typically does not
work; you have to run it on the main file. In order to make
tex-file useful when you are editing a subfile, you can set the
variable tex-main-file to the name of the main file. Then
tex-file runs TeX on that file.
The most convenient way to use tex-main-file is to specify it
in a local variable list in each of the subfiles. See the section called “Local Variables in Files”.
 For LaTeX files, you can use BibTeX to process the auxiliary
file for the current buffer's file. BibTeX looks up bibliographic
citations in a data base and prepares the cited references for the
bibliography section. The command C-c TAB
(tex-bibtex-file) runs the shell command
(tex-bibtex-command) to produce a ‘.bbl’ file for the
current buffer's file. Generally, you need to do C-c C-f
(tex-file) once to generate the ‘.aux’ file, then do
C-c TAB (tex-bibtex-file), and then repeat C-c C-f
(tex-file) twice more to get the cross-references correct.
 To invoke some other compilation program on the current TeX
buffer, type C-c C-c (tex-compile). This command knows
how to pass arguments to many common programs, including
pdflatex, yap, xdvi, and dvips. You can
select your desired compilation program using the standard completion
keys (see the section called “Completion”).

TeX Mode Miscellany

 Entering any variant of TeX mode runs the hooks
text-mode-hook and tex-mode-hook. Then it runs either
plain-tex-mode-hook, latex-mode-hook, or
slitex-mode-hook, whichever is appropriate. Starting the
TeX shell runs the hook tex-shell-hook. See the section called “Hooks”.
 The commands M-x iso-iso2tex, M-x iso-tex2iso, M-x
iso-iso2gtex and M-x iso-gtex2iso can be used to convert
between Latin-1 encoded files and TeX-encoded equivalents.

[9] It has
been replaced by the ‘slides’ document class, which comes with
LaTeX.

SGML and HTML Modes

 The major modes for SGML and HTML provide indentation support and
commands for operating on tags. HTML mode is a slightly customized
variant of SGML mode.
	C-c C-n
	Interactively specify a special character and insert the SGML
‘&’-command for that character (sgml-name-char).

	C-c C-t
	Interactively specify a tag and its attributes (sgml-tag).
This command asks you for a tag name and for the attribute values,
then inserts both the opening tag and the closing tag, leaving point
between them.
With a prefix argument n, the command puts the tag around the
n words already present in the buffer after point. Whenever a
region is active, it puts the tag around the region (when Transient
Mark mode is off, it does this when a numeric argument of −1 is
supplied.)

	C-c C-a
	Interactively insert attribute values for the current tag
(sgml-attributes).

	C-c C-f
	Skip across a balanced tag group (which extends from an opening tag
through its corresponding closing tag) (sgml-skip-tag-forward).
A numeric argument acts as a repeat count.

	C-c C-b
	Skip backward across a balanced tag group (which extends from an
opening tag through its corresponding closing tag)
(sgml-skip-tag-backward). A numeric argument acts as a repeat
count.

	C-c C-d
	Delete the tag at or after point, and delete the matching tag too
(sgml-delete-tag). If the tag at or after point is an opening
tag, delete the closing tag too; if it is a closing tag, delete the
opening tag too.

	C-c ? tag RET
	Display a description of the meaning of tag tag
(sgml-tag-help). If the argument tag is empty, describe
the tag at point.

	C-c /
	Insert a close tag for the innermost unterminated tag
(sgml-close-tag). If called within a tag or a comment,
close it instead of inserting a close tag.

	C-c 8
	Toggle a minor mode in which Latin-1 characters insert the
corresponding SGML commands that stand for them, instead of the
characters themselves (sgml-name-8bit-mode).

	C-c C-v
	Run a shell command (which you must specify) to validate the current
buffer as SGML (sgml-validate).

	C-c TAB
	Toggle the visibility of existing tags in the buffer. This can be
used as a cheap preview (sgml-tags-invisible).

 The major mode for editing XML documents is called nXML mode. This
is a powerful major mode that can recognize many existing XML schema
and use them to provide completion of XML elements via
C-RET or M-TAB, as well as “on-the-fly” XML
validation with error highlighting. To enable nXML mode in an
existing buffer, type M-x nxml-mode, or, equivalently, M-x
xml-mode. Emacs uses nXML mode for files which have the extension
.xml. For XHTML files, which have the extension .xhtml,
Emacs uses HTML mode by default; you can make it use nXML mode by
customizing the variable auto-mode-alist (see the section called “Choosing File Modes”).
nXML mode is described in an Info manual, which is distributed with
Emacs.
 You may choose to use the less powerful SGML mode for editing XML,
since XML is a strict subset of SGML. To enable SGML mode in an
existing buffer, type M-x sgml-mode. On enabling SGML mode,
Emacs examines the buffer to determine whether it is XML; if so, it
sets the variable sgml-xml-mode to a non-nil value.
This causes SGML mode's tag insertion commands, described above, to
always insert explicit closing tags as well.

Nroff Mode

 Nroff mode, a major mode derived from Text mode, is
specialized for editing nroff files (e.g. Unix man pages). Type
M-x nroff-mode to enter this mode. Entering Nroff mode runs the
hook text-mode-hook, then nroff-mode-hook
(see the section called “Hooks”).
In Nroff mode, nroff command lines are treated as paragraph
separators, pages are separated by ‘.bp’ commands, and comments
start with backslash-doublequote. It also defines these commands:

	M-n
	Move to the beginning of the next line that isn't an nroff command
(forward-text-line). An argument is a repeat count.

	M-p
	Like M-n but move up (backward-text-line).

	M-?
	Displays in the echo area the number of text lines (lines that are not
nroff commands) in the region (count-text-lines).

 Electric Nroff mode is a buffer-local minor mode that can be used
with Nroff mode. To toggle this minor mode, type M-x
electric-nroff-mode (see the section called “Minor Modes”). When the mode is on, each
time you type RET to end a line containing an nroff command that
opens a kind of grouping, the nroff command to close that grouping is
automatically inserted on the following line.
If you use Outline minor mode with Nroff mode (see the section called “Outline Mode”), heading lines are lines of the form ‘.H’ followed by a
number (the header level).

Enriched Text

 Enriched mode is a minor mode for editing formatted text files in a
WYSIWYG (“what you see is what you get”) fashion. When Enriched
mode is enabled, you can apply various formatting properties to the
text in the buffer, such as fonts and colors; upon saving the buffer,
those properties are saved together with the text, using the MIME
‘text/enriched’ file format.
Enriched mode is typically used with Text mode (see the section called “Text Mode”).
It is not compatible with Font Lock mode, which is used by many
major modes, including most programming language modes, for syntax
highlighting (see the section called “Font Lock mode”). Unlike Enriched mode, Font Lock
mode assigns text properties automatically, based on the current
buffer contents; those properties are not saved to disk.
The file etc/enriched.doc in the Emacs distribution serves as
an example of the features of Enriched mode.
Enriched Mode

Enriched mode is a buffer-local minor mode (see the section called “Minor Modes”).
When you visit a file that has been saved in the ‘text/enriched’
format, Emacs automatically enables Enriched mode, and applies the
formatting information in the file to the buffer text. When you save
a buffer with Enriched mode enabled, it is saved using the
‘text/enriched’ format, including the formatting information.
 To create a new file of formatted text, visit the nonexistent file
and type M-x enriched-mode. This command actually toggles
Enriched mode. With a prefix argument, it enables Enriched mode if
the argument is positive, and disables Enriched mode otherwise. If
you disable Enriched mode, Emacs no longer saves the buffer using the
‘text/enriched’ format; any formatting properties that have been
added to the buffer remain in the buffer, but they are not saved to
disk.
 Enriched mode does not save all Emacs text properties, only those
specified in the variable enriched-translations. These include
properties for fonts, colors, indentation, and justification.
 If you visit a file and Emacs fails to recognize that it is in the
‘text/enriched’ format, type M-x format-decode-buffer.
This command prompts for a file format, and re-reads the file in that
format. Specifying the ‘text/enriched’ format automatically
enables Enriched mode.
To view a ‘text/enriched’ file in raw form (as plain text with
markup tags rather than formatted text), use M-x
find-file-literally (see the section called “Visiting Files”).
See See section ``Format Conversion'' in the Emacs Lisp Reference Manual, for details of how Emacs recognizes and converts
file formats like ‘text/enriched’. See See section ``Text Properties'' in the Emacs Lisp Reference Manual, for more information about
text properties.

Hard and Soft Newlines

 In Enriched mode, Emacs distinguishes between two different kinds of
newlines, hard newlines and soft newlines. You can also
enable or disable this feature in other buffers, by typing M-x
use-hard-newlines.
Hard newlines are used to separate paragraphs, or anywhere there
needs to be a line break regardless of how the text is filled; soft
newlines are used for filling. The RET (newline) and
C-o (open-line) commands insert hard newlines. The fill
commands, including Auto Fill (see the section called “Auto Fill Mode”), insert only soft
newlines and delete only soft newlines, leaving hard newlines alone.
Thus, when editing with Enriched mode, you should not use RET
or C-o to break lines in the middle of filled paragraphs. Use
Auto Fill mode or explicit fill commands (see the section called “Explicit Fill Commands”)
instead. Use RET or C-o where line breaks should always
remain, such as in tables and lists. For such lines, you may also
want to set the justification style to unfilled
(see the section called “Justification in Enriched Text”).

Editing Format Information

The easiest way to alter properties is with the Text Properties
menu. You can get to this menu from the Edit menu in the menu bar
(see the section called “The Menu Bar”), or with C-Mouse-2 (see the section called “Mouse Clicks for Menus”). Some of the commands in the Text Properties menu are listed
below (you can also invoke them with M-x):

	Remove Face Properties
	Remove face properties from the region
(facemenu-remove-face-props).

	Remove Text Properties
	Remove all text properties from the region, including face properties
(facemenu-remove-all).

	Describe Properties
	List all text properties and other information about the character
following point (describe-text-properties).

	Display Faces
	Display a list of defined faces (list-faces-display).
See the section called “Text Faces”.

	Display Colors
	Display a list of defined colors (list-colors-display).
See the section called “Colors for Faces”.

The other menu entries are described in the following sections.

Faces in Enriched Text

The following commands can be used to add or remove faces
(see the section called “Text Faces”). Each applies to the text in the region if the mark
is active, and to the next self-inserting character if the mark is
inactive. With a prefix argument, each command applies to the next
self-inserting character even if the region is active.

	M-o d
	Remove all face properties (facemenu-set-default).

	M-o b
	Apply the bold face (facemenu-set-bold).

	M-o i
	Apply the italic face (facemenu-set-italic).

	M-o l
	Apply the bold-italic face (facemenu-set-bold-italic).

	M-o u
	Apply the underline face (facemenu-set-underline).

	M-o o face RET
	Apply the face face (facemenu-set-face).

	M-x facemenu-set-foreground
	Prompt for a color (see the section called “Colors for Faces”), and apply it as a foreground
color.

	M-x facemenu-set-background
	Prompt for a color, and apply it as a background color.

These command are also available via the Text Properties menu.
A self-inserting character normally inherits the face properties
(and most other text properties) from the preceding character in the
buffer. If you use one of the above commands to specify the face for
the next self-inserting character, that character will not inherit the
faces properties from the preceding character, but it will still
inherit other text properties.
Enriched mode defines two additional faces: excerpt and
fixed. These correspond to codes used in the text/enriched
file format. The excerpt face is intended for quotations; by
default, it appears the same as italic. The fixed face
specifies fixed-width text; by default, it appears the same as
bold.

Indentation in Enriched Text

In Enriched mode, you can specify different amounts of indentation
for the right or left margin of a paragraph or a part of a paragraph.
These margins also affect fill commands such as M-q
(see the section called “Filling Text”).
The Indentation submenu of Text Properties offers commands
for specifying indentation:

	Indent More
	Indent the region by 4 columns (increase-left-margin). In
Enriched mode, this command is also available on C-x TAB; if
you supply a numeric argument, that says how many columns to add to the
margin (a negative argument reduces the number of columns).

	Indent Less
	Remove 4 columns of indentation from the region.

	Indent Right More
	Make the text narrower by indenting 4 columns at the right margin.

	Indent Right Less
	Remove 4 columns of indentation from the right margin.

 The variable standard-indent specifies how many columns these
commands should add to or subtract from the indentation. The default
value is 4. The default right margin for Enriched mode is controlled
by the variable fill-column, as usual.
 You can also type C-c [(set-left-margin) and C-c
] (set-right-margin) to set the left and right margins. You
can specify the margin width with a numeric argument; otherwise these
commands prompt for a value via the minibuffer.
The fill prefix, if any, works in addition to the specified paragraph
indentation: C-x . does not include the specified indentation's
whitespace in the new value for the fill prefix, and the fill commands
look for the fill prefix after the indentation on each line. See the section called “The Fill Prefix”.

Justification in Enriched Text

In Enriched mode, you can use the following commands to specify
various justification styles for filling. These commands apply
to the paragraph containing point, or, if the region is active, to all
paragraphs overlapping the region.

	M-j l
	Align lines to the left margin (set-justification-left).

	M-j r
	Align lines to the right margin (set-justification-right).

	M-j b
	Align lines to both margins, inserting spaces in the middle of the
line to achieve this (set-justification-full).

	M-j c, M-S
	Center lines between the margins (set-justification-center).

	M-j u
	Turn off filling entirely (set-justification-none). The fill
commands do nothing on text with this setting. You can, however,
still indent the left margin.

 You can also specify justification styles using the Justification
submenu in the Text Properties menu.
 The default justification style is specified by the per-buffer
variable default-justification. Its value should be one of the
symbols left, right, full, center, or
none.

Setting Other Text Properties

The Special Properties submenu of Text Properties has entries for
adding or removing three other text properties: read-only,
(which disallows alteration of the text), invisible (which
hides text), and intangible (which disallows moving point
within the text). The ‘Remove Special’ menu item removes all of
these special properties from the text in the region.
The invisible and intangible properties are not saved
in the ‘text/enriched’ format.

Editing Text-based Tables

 The table package provides commands to easily edit text-based
tables. Here is an example of what such a table looks like:

+-----------------+--------------------------------+-----------------+
| Command | Description | Key Binding |
+-----------------+--------------------------------+-----------------+
forward-char	Move point right N characters	C-f
	(left if N is negative).	
+-----------------+--------------------------------+-----------------+		
backward-char	Move point left N characters	C-b
	(right if N is negative).	
+-----------------+--------------------------------+-----------------+

When Emacs recognizes such a stretch of text as a table
(see the section called “Table Recognition”), editing the contents of each table cell
will automatically resize the table, whenever the contents become too
large to fit in the cell. You can use the commands defined in the
following sections for navigating and editing the table layout.
 To toggle the automatic table resizing feature, type M-x
table-fixed-width-mode.
What is a Text-based Table?

 A table consists of a rectangular text area which is divided
into cells. Each cell must be at least one character wide and
one character high, not counting its border lines. A cell can be
subdivided into more cells, but they cannot overlap.
Cell border lines are drawn with three special characters, specified
by the following variables:

	table-cell-vertical-char
	The character used for vertical lines. The default is ‘|’.

	table-cell-horizontal-chars
	The characters used for horizontal lines. The default is ‘"-="’.

	table-cell-intersection-char
	The character used for the intersection of horizontal and vertical
lines. The default is ‘+’.

The following are examples of invalid tables:

 +-----+ +--+ +-++--+
 | | | | | || |
 | | | | | || |
 +--+ | +--+--+ +-++--+
 | | | | | | +-++--+
 | | | | | | | || |
 +--+--+ +--+--+ +-++--+
 a b c

From left to right:
	Overlapped cells or non-rectangular cells are not allowed.

	The border must be rectangular.

	Cells must have a minimum width/height of one character.

Creating a Table

 To create a text-based table from scratch, type M-x
table-insert. This command prompts for the number of table columns,
the number of table rows, cell width and cell height. The cell width
and cell height do not include the cell borders; each can be specified
as a single integer (which means each cell is given the same
width/height), or as a sequence of integers separated by spaces or
commas (which specify the width/height of the individual table
columns/rows, counting from left to right for table columns and from
top to bottom for table rows). The specified table is then inserted
at point.
The table inserted by M-x table-insert contains special text
properties, which tell Emacs to treat it specially as a text-based
table. If you save the buffer to a file and visit it again later,
those properties are lost, and the table appears to Emacs as an
ordinary piece of text. See the next section, for how to convert it
back into a table.

Table Recognition

 Existing text-based tables in a buffer, which lack the special text
properties applied by M-x table-insert, are not treated
specially as tables. To apply those text properties, type M-x
table-recognize. This command scans the current buffer,
recognizes valid table cells, and applies the relevant text
properties. Conversely, type M-x table-unrecognize to
unrecognize all tables in the current buffer, removing the
special text properties and converting tables back to plain text.
You can also use the following commands to selectively recognize or
unrecognize tables:

	M-x table-recognize-region
	Recognize tables within the current region.

	M-x table-unrecognize-region
	Unrecognize tables within the current region.

	M-x table-recognize-table
	Recognize the table at point and activate it.

	M-x table-unrecognize-table
	Deactivate the table at point.

	M-x table-recognize-cell
	Recognize the cell at point and activate it.

	M-x table-unrecognize-cell
	Deactivate the cell at point.

See the section called “Converting Between Plain Text and Tables”, for another way to recognize a table.

Commands for Table Cells

 The commands M-x table-forward-cell and M-x
table-backward-cell move point from the current cell to an adjacent
cell. The order is cyclic: when point is in the last cell of a table,
M-x table-forward-cell moves to the first cell. Likewise, when
point is on the first cell, M-x table-backward-cell moves to the
last cell.
 M-x table-span-cell prompts for a direction—right, left,
above, or below—and merges the current cell with the adjacent cell
in that direction. This command signals an error if the merge would
result in an illegitimate cell layout.
 M-x table-split-cell splits the current cell vertically or
horizontally, prompting for the direction with the minibuffer. The
commands M-x table-split-cell-vertically and M-x
table-split-cell-horizontally split in a specific direction. When
splitting vertically, the old cell contents are automatically split
between the two new cells. When splitting horizontally, you are
prompted for how to divide the cell contents, if the cell is
non-empty; the options are ‘split’ (divide the contents at
point), ‘left’ (put all the contents in the left cell), and
‘right’ (put all the contents in the right cell).
The following commands enlarge or shrink a cell. By default, they
resize by one row or column; if a numeric argument is supplied, that
specifies the number of rows or columns to resize by.

	M-x table-heighten-cell
	Enlarge the current cell vertically.

	M-x table-shorten-cell
	Shrink the current cell vertically.

	M-x table-widen-cell
	Enlarge the current cell horizontally.

	M-x table-narrow-cell
	Shrink the current cell horizontally.

Cell Justification

 The command M-x table-justify imposes justification on
one or more cells in a text-based table. Justification determines how
the text in the cell is aligned, relative to the edges of the cell.
Each cell in a table can be separately justified.
 M-x table-justify first prompts for what to justify; the
options are ‘cell’ (just the current cell), ‘column’ (all
cells in the current table column) and ‘row’ (all cells in the
current table row). The command then prompts for the justification
style; the options are left, center, right,
top, middle, bottom, or none (meaning no
vertical justification).
Horizontal and vertical justification styles are specified
independently, and both types can be in effect simultaneously; for
instance, you can call M-x table-justify twice, once to specify
right justification and once to specify bottom
justification, to align the contents of a cell to the bottom right.
 The justification style is stored in the buffer as a text property,
and is lost when you kill the buffer or exit Emacs. However, the
table recognition commands, such as M-x table-recognize
(see the section called “Table Recognition”), attempt to determine and re-apply each
cell's justification style, by examining its contents. To disable
this feature, change the variable table-detect-cell-alignment
to nil.

Table Rows and Columns

 M-x table-insert-row inserts a row of cells before the current
table row. The current row, together with point, is pushed down past
the new row. To insert a row after the last row at the bottom of a
table, invoke this command with point below the table, just below the
bottom edge. You can insert more than one row at a time by using a
numeric prefix argument.
 Similarly, M-x table-insert-column inserts a column of cells
to the left of the current table column. To insert a column to the
right side of the rightmost column, invoke this command with point to
the right of the rightmost column, outside the table. A numeric
prefix argument specifies the number of columns to insert.
 M-x table-delete-column deletes the column of cells at point.
Similarly, M-x table-delete-row deletes the row of cells at
point. A numeric prefix argument to either command specifies the
number of columns or rows to delete.

Converting Between Plain Text and Tables

 The command M-x table-capture captures plain text in a region
and turns it into a table. Unlike M-x table-recognize
(see the section called “Table Recognition”), the original text does not need to have a
table appearance; it only needs to have a logical table-like
structure.
For example, suppose we have the following numbers, which are
divided into three lines and separated horizontally by commas:

1, 2, 3, 4
5, 6, 7, 8
, 9, 10

Invoking M-x table-capture on that text produces this table:

+-----+-----+-----+-----+
|1 |2 |3 |4 |
+-----+-----+-----+-----+
|5 |6 |7 |8 |
+-----+-----+-----+-----+
| |9 |10 | |
+-----+-----+-----+-----+

 M-x table-release does the opposite: it converts a table back
to plain text, removing its cell borders.
One application of this pair of commands is to edit a text in
layout. Look at the following three paragraphs (the latter two are
indented with header lines):

table-capture is a powerful command.
Here are some things it can do:

Parse Cell Items Using row and column delimiter regexps,
 it parses the specified text area and
 extracts cell items into a table.

Applying table-capture to a region containing the above text,
with empty strings for the column and row delimiter regexps, creates a
table with a single cell like the following one.

+--+
|table-capture is a powerful command. |
|Here are some things it can do: |
| |
|Parse Cell Items Using row and column delimiter regexps,|
| it parses the specified text area and |
| extracts cell items into a table. |
+--+

We can then use the cell splitting commands (see the section called “Commands for Table Cells”) to
subdivide the table so that each paragraph occupies a cell:

+--+
|table-capture is a powerful command. |
|Here are some things it can do: |
+-----------------+--+
Parse Cell Items	Using row and column delimiter regexps,
	it parses the specified text area and
	extracts cell items into a table.
+-----------------+--+

Each cell can now be edited independently without affecting the layout
of other cells. When finished, we can invoke M-x table-release
to convert the table back to plain text.

Table Miscellany

 The command table-query-dimension reports the layout of the
table and table cell at point. Here is an example of its output:

Cell: (21w, 6h), Table: (67w, 16h), Dim: (2c, 3r), Total Cells: 5

This indicates that the current cell is 21 characters wide and 6 lines
high, the table is 67 characters wide and 16 lines high with 2 columns
and 3 rows, and a total of 5 cells.
 M-x table-insert-sequence inserts a string into each cell.
Each string is a part of a sequence i.e. a series of increasing
integer numbers.
 M-x table-generate-source generates a table formatted for a
specific markup language. It asks for a language (which must be one
of html, latex, or cals), a destination buffer in
which to put the result, and a table caption, and then inserts the
generated table into the specified buffer. The default destination
buffer is table.lang, where lang is the language
you specified.

Two-Column Editing

 Two-column mode lets you conveniently edit two side-by-side columns
of text. It uses two side-by-side windows, each showing its own
buffer. There are three ways to enter two-column mode:
	F2 2 or C-x 6 2
	Enter two-column mode with the current buffer on the left, and on the
right, a buffer whose name is based on the current buffer's name
(2C-two-columns). If the right-hand buffer doesn't already
exist, it starts out empty; the current buffer's contents are not
changed.
This command is appropriate when the current buffer is empty or contains
just one column and you want to add another column.

	F2 s or C-x 6 s
	Split the current buffer, which contains two-column text, into two
buffers, and display them side by side (2C-split). The current
buffer becomes the left-hand buffer, but the text in the right-hand
column is moved into the right-hand buffer. The current column
specifies the split point. Splitting starts with the current line and
continues to the end of the buffer.
This command is appropriate when you have a buffer that already contains
two-column text, and you wish to separate the columns temporarily.

	F2 b buffer RET, C-x 6 b buffer RET
	Enter two-column mode using the current buffer as the left-hand buffer,
and using buffer buffer as the right-hand buffer
(2C-associate-buffer).

F2 s or C-x 6 s looks for a column separator, which
is a string that appears on each line between the two columns. You can
specify the width of the separator with a numeric argument to
F2 s; that many characters, before point, constitute the
separator string. By default, the width is 1, so the column separator
is the character before point.
When a line has the separator at the proper place, F2 s
puts the text after the separator into the right-hand buffer, and
deletes the separator. Lines that don't have the column separator at
the proper place remain unsplit; they stay in the left-hand buffer, and
the right-hand buffer gets an empty line to correspond. (This is the
way to write a line that “spans both columns while in two-column
mode”: write it in the left-hand buffer, and put an empty line in the
right-hand buffer.)
 The command C-x 6 RET or F2 RET
(2C-newline) inserts a newline in each of the two buffers at
corresponding positions. This is the easiest way to add a new line to
the two-column text while editing it in split buffers.
 When you have edited both buffers as you wish, merge them with
F2 1 or C-x 6 1 (2C-merge). This copies the
text from the right-hand buffer as a second column in the other buffer.
To go back to two-column editing, use F2 s.
 Use F2 d or C-x 6 d to dissociate the two buffers,
leaving each as it stands (2C-dissociate). If the other buffer,
the one not current when you type F2 d, is empty,
F2 d kills it.

Chapter 26. Editing Programs

 This chapter describes Emacs features for facilitating editing
programs. Some of the things these features can do are:
	Find or move over top-level definitions (see the section called “Top-Level Definitions, or Defuns”).

	Apply the usual indentation conventions of the language
(see the section called “Indentation for Programs”).

	Balance parentheses (see the section called “Commands for Editing with Parentheses”).

	Insert, kill or align comments (see the section called “Manipulating Comments”).

	Highlight program syntax (see the section called “Font Lock mode”).

Major Modes for Programming Languages

 Emacs has specialized major modes (see the section called “Major Modes”) for many
programming languages. A programming language mode typically
specifies the syntax of expressions, the customary rules for
indentation, how to do syntax highlighting for the language, and how
to find the beginning or end of a function definition. It often has
features for compiling and debugging programs as well. The major mode
for each language is named after the language; for instance, the major
mode for the C programming language is c-mode.
 Emacs has programming language modes for Lisp, Scheme, the
Scheme-based DSSSL expression language, Ada, ASM, AWK, C, C++, Delphi,
Fortran, Icon, IDL (CORBA), IDLWAVE, Java, Javascript, Metafont
(TeX's companion for font creation), Modula2, Objective-C, Octave,
Pascal, Perl, Pike, PostScript, Prolog, Python, Ruby, Simula, Tcl, and
VHDL. An alternative mode for Perl is called CPerl mode. Modes are
also available for the scripting languages of the common GNU and Unix
shells, VMS DCL, and MS-DOS/MS-Windows ‘BAT’ files, and for
makefiles, DNS master files, and various sorts of configuration files.
Ideally, Emacs should have a major mode for each programming
language that you might want to edit. If it doesn't have a mode for
your favorite language, the mode might be implemented in a package not
distributed with Emacs (see Chapter 47, Emacs Lisp Packages); or you can contribute one.
 In most programming languages, indentation should vary from line to
line to illustrate the structure of the program. Therefore, in most
programming language modes, typing TAB updates the indentation
of the current line (see the section called “Indentation for Programs”). Furthermore, DEL
is usually bound to backward-delete-char-untabify, which
deletes backward treating each tab as if it were the equivalent number
of spaces, so that you can delete one column of indentation without
worrying whether the whitespace consists of spaces or tabs.
 Entering a programming language mode runs the custom Lisp functions
specified in the hook variable prog-mode-hook, followed by
those specified in the mode's own mode hook (see the section called “Major Modes”).
For instance, entering C mode runs the hooks prog-mode-hook and
c-mode-hook. See the section called “Hooks”, for information about hooks.
The Emacs distribution contains Info manuals for the major modes for
Ada, C/C++/Objective C/Java/Corba IDL/Pike/AWK, and IDLWAVE. For
Fortran mode, see See section ``Fortran'' in Specialized Emacs Features.

Top-Level Definitions, or Defuns

In Emacs, a major definition at the top level in the buffer, such as
a function, is called a defun. The name comes from Lisp, but in
Emacs we use it for all languages.
Left Margin Convention

 Many programming-language modes assume by default that any opening
delimiter found at the left margin is the start of a top-level
definition, or defun. Therefore, don't put an opening
delimiter at the left margin unless it should have that significance.
For instance, never put an open-parenthesis at the left margin in a
Lisp file unless it is the start of a top-level list.
The convention speeds up many Emacs operations, which would
otherwise have to scan back to the beginning of the buffer to analyze
the syntax of the code.
If you don't follow this convention, not only will you have trouble
when you explicitly use the commands for motion by defuns; other
features that use them will also give you trouble. This includes the
indentation commands (see the section called “Indentation for Programs”) and Font Lock mode
(see the section called “Font Lock mode”).
The most likely problem case is when you want an opening delimiter
at the start of a line inside a string. To avoid trouble, put an
escape character (‘\’, in C and Emacs Lisp, ‘/’ in some
other Lisp dialects) before the opening delimiter. This will not
affect the contents of the string, but will prevent that opening
delimiter from starting a defun. Here's an example:

 (insert "Foo:
\(bar)
")

To help you catch violations of this convention, Font Lock mode
highlights confusing opening delimiters (those that ought to be
quoted) in bold red.
 If you need to override this convention, you can do so by setting
the variable open-paren-in-column-0-is-defun-start.
If this user option is set to t (the default), opening
parentheses or braces at column zero always start defuns. When it is
nil, defuns are found by searching for parens or braces at the
outermost level.
Usually, you should leave this option at its default value of
t. If your buffer contains parentheses or braces in column
zero which don't start defuns, and it is somehow impractical to remove
these parentheses or braces, it might be helpful to set the option to
nil. Be aware that this might make scrolling and display in
large buffers quite sluggish. Furthermore, the parentheses and braces
must be correctly matched throughout the buffer for it to work
properly.

Moving by Defuns

 These commands move point or set up the region based on top-level
major definitions, also called defuns.
	C-M-a
	Move to beginning of current or preceding defun
(beginning-of-defun).

	C-M-e
	Move to end of current or following defun (end-of-defun).

	C-M-h
	Put region around whole current or following defun (mark-defun).

 The commands to move to the beginning and end of the current defun
are C-M-a (beginning-of-defun) and C-M-e
(end-of-defun). If you repeat one of these commands, or use a
positive numeric argument, each repetition moves to the next defun in
the direction of motion.
C-M-a with a negative argument −n moves forward
n times to the next beginning of a defun. This is not exactly
the same place that C-M-e with argument n would move to;
the end of this defun is not usually exactly the same place as the
beginning of the following defun. (Whitespace, comments, and perhaps
declarations can separate them.) Likewise, C-M-e with a
negative argument moves back to an end of a defun, which is not quite
the same as C-M-a with a positive argument.
 To operate on the current defun, use C-M-h
(mark-defun), which sets the mark at the end of the current
defun and puts point at its beginning. See the section called “Commands to Mark Textual Objects”. This
is the easiest way to get ready to kill the defun in order to move it
to a different place in the file. If you use the command while point
is between defuns, it uses the following defun. If you use the
command while the mark is already active, it sets the mark but does
not move point; furthermore, each successive use of C-M-h
extends the end of the region to include one more defun.
In C mode, C-M-h runs the function c-mark-function,
which is almost the same as mark-defun; the difference is that
it backs up over the argument declarations, function name and returned
data type so that the entire C function is inside the region. This is
an example of how major modes adjust the standard key bindings so that
they do their standard jobs in a way better fitting a particular
language. Other major modes may replace any or all of these key
bindings for that purpose.

Imenu

 The Imenu facility offers a way to find the major definitions in
a file by name. It is also useful in text formatter major modes,
where it treats each chapter, section, etc., as a definition.
(See the section called “Tags Tables”, for a more powerful feature that handles multiple files
together.)
 If you type M-x imenu, it reads the name of a definition using
the minibuffer, then moves point to that definition. You can use
completion to specify the name; the command always displays the whole
list of valid names.
 Alternatively, you can bind the command imenu to a mouse
click. Then it displays mouse menus for you to select a definition
name. You can also add the buffer's index to the menu bar by calling
imenu-add-menubar-index. If you want to have this menu bar
item available for all buffers in a certain major mode, you can do
this by adding imenu-add-menubar-index to its mode hook. But
if you have done that, you will have to wait a little while each time
you visit a file in that mode, while Emacs finds all the definitions
in that buffer.
 When you change the contents of a buffer, if you add or delete
definitions, you can update the buffer's index based on the
new contents by invoking the ‘*Rescan*’ item in the menu.
Rescanning happens automatically if you set imenu-auto-rescan to
a non-nil value. There is no need to rescan because of small
changes in the text.
 You can customize the way the menus are sorted by setting the
variable imenu-sort-function. By default, names are ordered as
they occur in the buffer; if you want alphabetic sorting, use the
symbol imenu--sort-by-name as the value. You can also
define your own comparison function by writing Lisp code.
Imenu provides the information to guide Which Function mode
(see the section called “Which Function Mode”).
The Speedbar can also use it (see the section called “Speedbar Frames”).

Which Function Mode

 Which Function mode is a global minor mode (see the section called “Minor Modes”)
which displays the current function name in the mode line, updating it
as you move around in a buffer.
 To either enable or disable Which Function mode, use the command
M-x which-function-mode. Although Which Function mode is a
global minor mode, it takes effect only in certain major modes: those
listed in the variable which-func-modes. If the value of
which-func-modes is t rather than a list of modes, then
Which Function mode applies to all major modes that know how to
support it—in other words, all the major modes that support Imenu.

Indentation for Programs

 The best way to keep a program properly indented is to use Emacs to
reindent it as you change it. Emacs has commands to indent either a
single line, a specified number of lines, or all of the lines inside a
single parenthetical grouping.
See Chapter 24, Indentation, for general information about indentation. This
section describes indentation features specific to programming
language modes.
 Emacs also provides a Lisp pretty-printer in the pp package,
which reformats Lisp objects with nice-looking indentation.
Basic Program Indentation Commands

	TAB
	Adjust indentation of current line (indent-for-tab-command).

	C-j
	Insert a newline, then adjust indentation of following line
(newline-and-indent).

 The basic indentation command is TAB
(indent-for-tab-command), which was documented in
Chapter 24, Indentation. In programming language modes, TAB indents
the current line, based on the indentation and syntactic content of
the preceding lines; if the region is active, TAB indents each
line within the region, not just the current line.
 The command C-j (newline-and-indent), which was
documented in the section called “Indentation Commands”, does the same as RET
followed by TAB: it inserts a new line, then adjusts the line's
indentation.
When indenting a line that starts within a parenthetical grouping,
Emacs usually places the start of the line under the preceding line
within the group, or under the text after the parenthesis. If you
manually give one of these lines a nonstandard indentation (e.g. for
aesthetic purposes), the lines below will follow it.
The indentation commands for most programming language modes assume
that a open-parenthesis, open-brace or other opening delimiter at the
left margin is the start of a function. If the code you are editing
violates this assumption—even if the delimiters occur in strings or
comments—you must set open-paren-in-column-0-is-defun-start
to nil for indentation to work properly. See the section called “Left Margin Convention”.

Indenting Several Lines

Sometimes, you may want to reindent several lines of code at a time.
One way to do this is to use the mark; when the mark is active and the
region is non-empty, TAB indents every line in the region.
Alternatively, the command C-M-\ (indent-region) indents
every line in the region, whether or not the mark is active
(see the section called “Indentation Commands”).
In addition, Emacs provides the following commands for indenting
large chunks of code:
	C-M-q
	Reindent all the lines within one parenthetical grouping.

	C-u TAB
	Shift an entire parenthetical grouping rigidly sideways so that its
first line is properly indented.

	M-x indent-code-rigidly
	Shift all the lines in the region rigidly sideways, but do not alter
lines that start inside comments and strings.

 To reindent the contents of a single parenthetical grouping,
position point before the beginning of the grouping and type
C-M-q. This changes the relative indentation within the
grouping, without affecting its overall indentation (i.e. the
indentation of the line where the grouping starts). The function that
C-M-q runs depends on the major mode; it is
indent-pp-sexp in Lisp mode, c-indent-exp in C mode,
etc. To correct the overall indentation as well, type TAB
first.
 If you like the relative indentation within a grouping but not the
indentation of its first line, move point to that first line and type
C-u TAB. In Lisp, C, and some other major modes,
TAB with a numeric argument reindents the current line as usual,
then reindents by the same amount all the lines in the parenthetical
grouping starting on the current line. It is clever, though, and does
not alter lines that start inside strings. Neither does it alter C
preprocessor lines when in C mode, but it does reindent any
continuation lines that may be attached to them.
 The command M-x indent-code-rigidly rigidly shifts all the
lines in the region sideways, like indent-rigidly does
(see the section called “Indentation Commands”). It doesn't alter the indentation of
lines that start inside a string, unless the region also starts inside
that string. The prefix arg specifies the number of columns to
indent.

Customizing Lisp Indentation

 The indentation pattern for a Lisp expression can depend on the function
called by the expression. For each Lisp function, you can choose among
several predefined patterns of indentation, or define an arbitrary one with
a Lisp program.
The standard pattern of indentation is as follows: the second line of the
expression is indented under the first argument, if that is on the same
line as the beginning of the expression; otherwise, the second line is
indented underneath the function name. Each following line is indented
under the previous line whose nesting depth is the same.
 If the variable lisp-indent-offset is non-nil, it overrides
the usual indentation pattern for the second line of an expression, so that
such lines are always indented lisp-indent-offset more columns than
the containing list.
 Certain functions override the standard pattern. Functions whose
names start with def treat the second lines as the start of
a body, by indenting the second line lisp-body-indent
additional columns beyond the open-parenthesis that starts the
expression.
 You can override the standard pattern in various ways for individual
functions, according to the lisp-indent-function property of
the function name. This is normally done for macro definitions, using
the declare construct. See See section ``Defining Macros'' in the Emacs Lisp Reference Manual.

Commands for C Indentation

Here are special features for indentation in C mode and related modes:
	C-c C-q
	Reindent the current top-level function definition or aggregate type
declaration (c-indent-defun).

	C-M-q
	Reindent each line in the balanced expression that follows point
(c-indent-exp). A prefix argument inhibits warning messages
about invalid syntax.

	TAB
	Reindent the current line, and/or in some cases insert a tab character
(c-indent-command).
If c-tab-always-indent is t, this command always reindents
the current line and does nothing else. This is the default.
If that variable is nil, this command reindents the current line
only if point is at the left margin or in the line's indentation;
otherwise, it inserts a tab (or the equivalent number of spaces,
if indent-tabs-mode is nil).
Any other value (not nil or t) means always reindent the
line, and also insert a tab if within a comment or a string.

To reindent the whole current buffer, type C-x h C-M-\. This
first selects the whole buffer as the region, then reindents that
region.
To reindent the current block, use C-M-u C-M-q. This moves
to the front of the block and then reindents it all.

Customizing C Indentation

 C mode and related modes use a flexible mechanism for customizing
indentation. C mode indents a source line in two steps: first it
classifies the line syntactically according to its contents and
context; second, it determines the indentation offset associated by
your selected style with the syntactic construct and adds this
onto the indentation of the anchor statement.
	C-c . RET style RET
	Select a predefined style style (c-set-style).

A style is a named collection of customizations that can be
used in C mode and the related modes. See section ``Styles'' in The CC Mode Manual, for a complete description. Emacs comes with several
predefined styles, including gnu, k&r, bsd,
stroustrup, linux, python, java,
whitesmith, ellemtel, and awk. Some of these
styles are primarily intended for one language, but any of them can be
used with any of the languages supported by these modes. To find out
what a style looks like, select it and reindent some code, e.g., by
typing C-M-q at the start of a function definition.
 To choose a style for the current buffer, use the command C-c
.. Specify a style name as an argument (case is not significant).
This command affects the current buffer only, and it affects only
future invocations of the indentation commands; it does not reindent
the code already in the buffer. To reindent the whole buffer in the
new style, you can type C-x h C-M-\.
 You can also set the variable c-default-style to specify the
default style for various major modes. Its value should be either the
style's name (a string) or an alist, in which each element specifies
one major mode and which indentation style to use for it. For
example,

(setq c-default-style
 '((java-mode . "java")
 (awk-mode . "awk")
 (other . "gnu")))

specifies explicit choices for Java and AWK modes, and the default
‘gnu’ style for the other C-like modes. (These settings are
actually the defaults.) This variable takes effect when you select
one of the C-like major modes; thus, if you specify a new default
style for Java mode, you can make it take effect in an existing Java
mode buffer by typing M-x java-mode there.
The gnu style specifies the formatting recommended by the GNU
Project for C; it is the default, so as to encourage use of our
recommended style.
See See section ``Indentation Engine Basics'' in the CC Mode Manual, and
See section ``Customizing Indentation'' in the CC Mode Manual, for more
information on customizing indentation for C and related modes,
including how to override parts of an existing style and how to define
your own styles.
 As an alternative to specifying a style, you can tell Emacs to guess
a style by typing M-x c-guess in a sample code buffer. You can
then apply the guessed style to other buffers with M-x
c-guess-install. See See section ``Guessing the Style'' in the CC Mode Manual, for details.

Commands for Editing with Parentheses

 This section describes the commands and features that take advantage
of the parenthesis structure in a program, or help you keep it
balanced.
When talking about these facilities, the term “parenthesis” also
includes braces, brackets, or whatever delimiters are defined to match
in pairs. The major mode controls which delimiters are significant,
through the syntax table (see See section ``Syntax Tables'' in The Emacs Lisp Reference Manual). In Lisp, only parentheses count;
in C, these commands apply to braces and brackets too.
You can use M-x check-parens to find any unbalanced
parentheses and unbalanced string quotes in the buffer.
Expressions with Balanced Parentheses

 Each programming language mode has its own definition of a
balanced expression. Balanced expressions typically include
individual symbols, numbers, and string constants, as well as pieces
of code enclosed in a matching pair of delimiters. The following
commands deal with balanced expressions (in Emacs, such expressions
are referred to internally as sexps[10]).
	C-M-f
	Move forward over a balanced expression (forward-sexp).

	C-M-b
	Move backward over a balanced expression (backward-sexp).

	C-M-k
	Kill balanced expression forward (kill-sexp).

	C-M-t
	Transpose expressions (transpose-sexps).

	C-M-@, C-M-SPC
	Put mark after following expression (mark-sexp).

 To move forward over a balanced expression, use C-M-f
(forward-sexp). If the first significant character after point
is an opening delimiter (e.g. ‘(’, ‘[’ or ‘{’ in C),
this command moves past the matching closing delimiter. If the
character begins a symbol, string, or number, the command moves over
that.
The command C-M-b (backward-sexp) moves backward over a
balanced expression—like C-M-f, but in the reverse direction.
If the expression is preceded by any prefix characters (single-quote,
backquote and comma, in Lisp), the command moves back over them as
well.
C-M-f or C-M-b with an argument repeats that operation
the specified number of times; with a negative argument means to move
in the opposite direction. In most modes, these two commands move
across comments as if they were whitespace. Note that their keys,
C-M-f and C-M-b, are analogous to C-f and C-b,
which move by characters (see the section called “Changing the Location of Point”), and M-f and
M-b, which move by words (see the section called “Words”).
 To kill a whole balanced expression, type C-M-k
(kill-sexp). This kills the text that C-M-f would move
over.
 C-M-t (transpose-sexps) switches the positions of the
previous balanced expression and the next one. It is analogous to the
C-t command, which transposes characters (see the section called “Transposing Text”).
An argument to C-M-t serves as a repeat count, moving the
previous expression over that many following ones. A negative
argument moves the previous balanced expression backwards across those
before it. An argument of zero, rather than doing nothing, transposes
the balanced expressions ending at or after point and the mark.
 To operate on balanced expressions with a command which acts on the
region, type C-M-SPC (mark-sexp). This sets the
mark where C-M-f would move to. While the mark is active, each
successive call to this command extends the region by shifting the
mark by one expression. Positive or negative numeric arguments move
the mark forward or backward by the specified number of expressions.
The alias C-M-@ is equivalent to C-M-SPC.
See the section called “Commands to Mark Textual Objects”, for more information about this and related
commands.
In languages that use infix operators, such as C, it is not possible
to recognize all balanced expressions because there can be multiple
possibilities at a given position. For example, C mode does not treat
‘foo + bar’ as a single expression, even though it is one
C expression; instead, it recognizes ‘foo’ as one expression and
‘bar’ as another, with the ‘+’ as punctuation between them.
However, C mode recognizes ‘(foo + bar)’ as a single expression,
because of the parentheses.

Moving in the Parenthesis Structure

 The following commands move over groupings delimited by parentheses
(or whatever else serves as delimiters in the language you are working
with). They ignore strings and comments, including any parentheses
within them, and also ignore parentheses that are “quoted” with an
escape character. These commands are mainly intended for editing
programs, but can be useful for editing any text containing
parentheses. They are referred to internally as “list” commands
because in Lisp these groupings are lists.
These commands assume that the starting point is not inside a string
or a comment. If you invoke them from inside a string or comment, the
results are unreliable.
	C-M-n
	Move forward over a parenthetical group (forward-list).

	C-M-p
	Move backward over a parenthetical group (backward-list).

	C-M-u
	Move up in parenthesis structure (backward-up-list).

	C-M-d
	Move down in parenthesis structure (down-list).

 The “list” commands C-M-n (forward-list) and
C-M-p (backward-list) move forward or backward over one
(or n) parenthetical groupings.
 C-M-n and C-M-p try to stay at the same level in the
parenthesis structure. To move up one (or n) levels, use
C-M-u (backward-up-list). C-M-u moves backward up
past one unmatched opening delimiter. A positive argument serves as a
repeat count; a negative argument reverses the direction of motion, so
that the command moves forward and up one or more levels.
 To move down in the parenthesis structure, use C-M-d
(down-list). In Lisp mode, where ‘(’ is the only opening
delimiter, this is nearly the same as searching for a ‘(’. An
argument specifies the number of levels to go down.

Matching Parentheses

 Emacs has a number of parenthesis matching features, which
make it easy to see how and whether parentheses (or other delimiters)
match up.
Whenever you type a self-inserting character that is a closing
delimiter, the cursor moves momentarily to the location of the
matching opening delimiter, provided that is on the screen. If it is
not on the screen, Emacs displays some of the text near it in the echo
area. Either way, you can tell which grouping you are closing off.
If the opening delimiter and closing delimiter are mismatched—such
as in ‘[x)’—a warning message is displayed in the echo area.
 Three variables control the display of matching parentheses:
	blink-matching-paren turns the feature on or off: nil
disables it, but the default is t to enable it.

	blink-matching-delay says how many seconds to leave the cursor
on the matching opening delimiter, before bringing it back to the real
location of point. This may be an integer or floating-point number;
the default is 1.

	blink-matching-paren-distance specifies how many characters
back to search to find the matching opening delimiter. If the match
is not found in that distance, Emacs stops scanning and nothing is
displayed. The default is 102400.

 Show Paren mode, a global minor mode, provides a more powerful kind
of automatic matching. Whenever point is before an opening delimiter
or after a closing delimiter, both that delimiter and its opposite
delimiter are highlighted. To toggle Show Paren mode, type M-x
show-paren-mode.
 Electric Pair mode, a global minor mode, provides a way to easily
insert matching delimiters. Whenever you insert an opening delimiter,
the matching closing delimiter is automatically inserted as well,
leaving point between the two. To toggle Electric Pair mode, type
M-x electric-pair-mode.

[10] The word “sexp”
is used to refer to an expression in Lisp.

Manipulating Comments

 Because comments are such an important part of programming, Emacs
provides special commands for editing and inserting comments. It can
also do spell checking on comments with Flyspell Prog mode
(see the section called “Checking and Correcting Spelling”).
Some major modes have special rules for indenting different kinds of
comments. For example, in Lisp code, comments starting with two
semicolons are indented as if they were lines of code, while those
starting with three semicolons are supposed to be aligned to the left
margin and are often used for sectioning purposes. Emacs understand
these conventions; for instance, typing TAB on a comment line
will indent the comment to the appropriate position.

;; This function is just an example.
;;; Here either two or three semicolons are appropriate.
(defun foo (x)
;;; And now, the first part of the function:
 ;; The following line adds one.
 (1+ x)) ; This line adds one.

Comment Commands

 The following commands operate on comments:
	M-;
	Insert or realign comment on current line; if the region is active,
comment or uncomment the region instead (comment-dwim).

	C-u M-;
	Kill comment on current line (comment-kill).

	C-x ;
	Set comment column (comment-set-column).

	C-M-j, M-j
	Like RET followed by inserting and aligning a comment
(comment-indent-new-line). See the section called “Multiple Lines of Comments”.

	M-x comment-region, C-c C-c (in C-like modes)
	Add comment delimiters to all the lines in the region.

 The command to create or align a comment is M-;
(comment-dwim). The word “dwim” is an acronym for “Do What
I Mean”; it indicates that this command can be used for many
different jobs relating to comments, depending on the situation where
you use it.
When a region is active (see Chapter 11, The Mark and the Region), M-; either adds
comment delimiters to the region, or removes them. If every line in
the region is already a comment, it “uncomments” each of those lines
by removing their comment delimiters. Otherwise, it adds comment
delimiters to enclose the text in the region.
If you supply a prefix argument to M-; when a region is
active, that specifies the number of comment delimiters to add or
delete. A positive argument n adds n delimiters, while a
negative argument -n removes n delimiters.
If the region is not active, and there is no existing comment on the
current line, M-; adds a new comment to the current line. If
the line is blank (i.e. empty or containing only whitespace
characters), the comment is indented to the same position where
TAB would indent to (see the section called “Basic Program Indentation Commands”). If the line is
non-blank, the comment is placed after the last non-whitespace
character on the line; normally, Emacs tries putting it at the column
specified by the variable comment-column (see the section called “Options Controlling Comments”), but if the line already extends past that column, it puts
the comment at some suitable position, usually separated from the
non-comment text by at least one space. In each case, Emacs places
point after the comment's starting delimiter, so that you can start
typing the comment text right away.
You can also use M-; to align an existing comment. If a line
already contains the comment-start string, M-; realigns it to
the conventional alignment and moves point after the comment's
starting delimiter. As an exception, comments starting in column 0
are not moved. Even when an existing comment is properly aligned,
M-; is still useful for moving directly to the start of the
comment text.
 C-u M-; (comment-dwim with a prefix argument) kills any
comment on the current line, along with the whitespace before it.
Since the comment is saved to the kill ring, you can reinsert it on
another line by moving to the end of that line, doing C-y, and
then M-; to realign the comment. You can achieve the same
effect as C-u M-; by typing M-x comment-kill
(comment-dwim actually calls comment-kill as a
subroutine when it is given a prefix argument).
 The command M-x comment-region is equivalent to calling
M-; on an active region, except that it always acts on the
region, even if the mark is inactive. In C mode and related modes,
this command is bound to C-c C-c. The command M-x
uncomment-region uncomments each line in the region; a numeric prefix
argument specifies the number of comment delimiters to remove
(negative arguments specify the number of comment to delimiters to
add).
For C-like modes, you can configure the exact effect of M-; by
setting the variables c-indent-comment-alist and
c-indent-comments-syntactically-p. For example, on a line
ending in a closing brace, M-; puts the comment one space after
the brace rather than at comment-column. For full details see
See section ``Comment Commands'' in The CC Mode Manual.

Multiple Lines of Comments

 If you are typing a comment and wish to continue it to another line,
type M-j or C-M-j (comment-indent-new-line). This
breaks the current line, and inserts the necessary comment delimiters
and indentation to continue the comment.
For languages with closing comment delimiters (e.g. ‘*/’ in
C), the exact behavior of M-j depends on the value of the
variable comment-multi-line. If the value is nil, the
command closes the comment on the old line and starts a new comment on
the new line. Otherwise, it opens a new line within the current
comment delimiters.
When Auto Fill mode is on, going past the fill column while typing a
comment also continues the comment, in the same way as an explicit
invocation of M-j.
To turn existing lines into comment lines, use M-; with the
region active, or use M-x comment-region
as described in the preceding section.
You can configure C Mode such that when you type a ‘/’ at the
start of a line in a multi-line block comment, this closes the
comment. Enable the comment-close-slash clean-up for this.
See See section ``Clean-ups'' in The CC Mode Manual.

Options Controlling Comments

 As mentioned in the section called “Comment Commands”, when the M-j command
adds a comment to a line, it tries to place the comment at the column
specified by the buffer-local variable comment-column. You can
set either the local value or the default value of this buffer-local
variable in the usual way (see the section called “Local Variables”). Alternatively, you can
type C-x ; (comment-set-column) to set the value of
comment-column in the current buffer to the column where point
is currently located. C-u C-x ; sets the comment column to
match the last comment before point in the buffer, and then does a
M-; to align the current line's comment under the previous one.
 The comment commands recognize comments based on the regular
expression that is the value of the variable comment-start-skip.
Make sure this regexp does not match the null string. It may match more
than the comment starting delimiter in the strictest sense of the word;
for example, in C mode the value of the variable is
"\\(//+\\|/*+\\)\\s *", which matches extra stars and
spaces after the ‘/*’ itself, and accepts C++ style comments
also. (Note that ‘\\’ is needed in Lisp syntax to include a
‘\’ in the string, which is needed to deny the first star its
special meaning in regexp syntax. See the section called “Backslash in Regular Expressions”.)
 When a comment command makes a new comment, it inserts the value of
comment-start as an opening comment delimiter. It also inserts
the value of comment-end after point, as a closing comment
delimiter. For example, in Lisp mode, comment-start is
‘";"’ and comment-end is "" (the empty string). In
C mode, comment-start is "/* " and comment-end is
" */".
 The variable comment-padding specifies a string that the
commenting commands should insert between the comment delimiter(s) and
the comment text. The default, ‘" "’, specifies a single space.
Alternatively, the value can be a number, which specifies that number
of spaces, or nil, which means no spaces at all.
The variable comment-multi-line controls how M-j and
Auto Fill mode continue comments over multiple lines.
See the section called “Multiple Lines of Comments”.
 The variable comment-indent-function should contain a function
that will be called to compute the alignment for a newly inserted
comment or for aligning an existing comment. It is set differently by
various major modes. The function is called with no arguments, but with
point at the beginning of the comment, or at the end of a line if a new
comment is to be inserted. It should return the column in which the
comment ought to start. For example, in Lisp mode, the indent hook
function bases its decision on how many semicolons begin an existing
comment, and on the code in the preceding lines.

Documentation Lookup

Emacs provides several features you can use to look up the
documentation of functions, variables and commands that you plan to
use in your program.
Info Documentation Lookup

 For major modes that apply to languages which have documentation in
Info, you can use C-h S (info-lookup-symbol) to view the
Info documentation for a symbol used in the program. You specify the
symbol with the minibuffer; the default is the symbol appearing in the
buffer at point. For example, in C mode this looks for the symbol in
the C Library Manual. The command only works if the appropriate
manual's Info files are installed.
The major mode determines where to look for documentation for the
symbol—which Info files to look in, and which indices to search.
You can also use M-x info-lookup-file to look for documentation
for a file name.
If you use C-h S in a major mode that does not support it,
it asks you to specify the “symbol help mode”. You should enter
a command such as c-mode that would select a major
mode which C-h S does support.

Man Page Lookup

 On Unix, the main form of on-line documentation was the manual
page or man page. In the GNU operating system, we aim to
replace man pages with better-organized manuals that you can browse
with Info (see the section called “Other Help Commands”). This process is not finished, so it is
still useful to read manual pages.
 You can read the man page for an operating system command, library
function, or system call, with the M-x man command. This
prompts for a topic, with completion (see the section called “Completion”), and runs
the man program to format the corresponding man page. If
the system permits, it runs man asynchronously, so that you
can keep on editing while the page is being formatted. The result
goes in a buffer named *Man topic*. These buffers use a
special major mode, Man mode, that facilitates scrolling and jumping
to other manual pages. For details, type C-h m while in a Man
mode buffer.
 Each man page belongs to one of ten or more sections, each
named by a digit or by a digit and a letter. Sometimes there are man
pages with the same name in different sections. To read a man page
from a specific section, type ‘topic(section)’ or
‘section topic’ when M-x manual-entry prompts
for the topic. For example, the man page for the C library function
chmod is in section 2, but there is a shell command of the same
name, whose man page is in section 1; to view the former, type
M-x manual-entry RET chmod(2) RET.
 If you do not specify a section, M-x man normally displays
only the first man page found. On some systems, the man
program accepts a ‘-a’ command-line option, which tells it to
display all the man pages for the specified topic. To make use of
this, change the value of the variable Man-switches to
‘"-a"’. Then, in the Man mode buffer, you can type M-n and
M-p to switch between man pages in different sections. The mode
line shows how many manual pages are available.
 An alternative way of reading manual pages is the M-x woman
command. Unlike M-x man, it does not run any external programs
to format and display the man pages; the formatting is done by Emacs,
so it works on systems such as MS-Windows where the man
program may be unavailable. It prompts for a man page, and displays
it in a buffer named *WoMan section topic.
M-x woman computes the completion list for manpages the first
time you invoke the command. With a numeric argument, it recomputes
this list; this is useful if you add or delete manual pages.
If you type a name of a manual page and M-x woman finds that
several manual pages by the same name exist in different sections, it
pops up a window with possible candidates asking you to choose one of
them.
For more information about setting up and using M-x woman, see
the WoMan Info manual, which is distributed with Emacs.

Emacs Lisp Documentation Lookup

When editing Emacs Lisp code, you can use the commands C-h f
(describe-function) and C-h v (describe-variable)
to view the built-in documentation for the Lisp functions and
variables that you want to use. See the section called “Help by Command or Variable Name”.
 Eldoc is a buffer-local minor mode that helps with looking up Lisp
documention. When it is enabled, the echo area displays some useful
information whenever there is a Lisp function or variable at point;
for a function, it shows the argument list, and for a variable it
shows the first line of the variable's documentation string. To
toggle Eldoc mode, type M-x eldoc-mode. Eldoc mode can be used
with the Emacs Lisp and Lisp Interaction major modes.

Hideshow minor mode

 Hideshow mode is a buffer-local minor mode that allows you to
selectively display portions of a program, which are referred to as
blocks. Type M-x hs-minor-mode to toggle this minor mode
(see the section called “Minor Modes”).
When you use Hideshow mode to hide a block, the block disappears
from the screen, to be replaced by an ellipsis (three periods in a
row). Just what constitutes a block depends on the major mode. In C
mode and related modes, blocks are delimited by braces, while in Lisp
mode they are delimited by parentheses. Multi-line comments also
count as blocks.
Hideshow mode provides the following commands:

	C-c @ C-h
	Hide the current block (hs-hide-block).

	C-c @ C-s
	Show the current block (hs-show-block).

	C-c @ C-c
	Either hide or show the current block (hs-toggle-hiding).

	S-Mouse-2
	Toggle hiding for the block you click on (hs-mouse-toggle-hiding).

	C-c @ C-M-h
	Hide all top-level blocks (hs-hide-all).

	C-c @ C-M-s
	Show all blocks in the buffer (hs-show-all).

	C-c @ C-l
	Hide all blocks n levels below this block
(hs-hide-level).

 These variables can be used to customize Hideshow mode:
	hs-hide-comments-when-hiding-all
	If non-nil, C-c @ C-M-h (hs-hide-all) hides
comments too.

	hs-isearch-open
	This variable specifies the conditions under which incremental search
should unhide a hidden block when matching text occurs within the
block. Its value should be either code (unhide only code
blocks), comment (unhide only comments), t (unhide both
code blocks and comments), or nil (unhide neither code blocks
nor comments). The default value is code.

Completion for Symbol Names

 Completion is normally done in the minibuffer (see the section called “Completion”),
but you can also complete symbol names in ordinary Emacs buffers.
 In programming language modes, type C-M-i or M-TAB
to complete the partial symbol before point. On graphical displays,
the M-TAB key is usually reserved by the window manager
for switching graphical windows, so you should type C-M-i or
ESC TAB instead.
 In most programming language modes, C-M-i (or
M-TAB) invokes the command completion-at-point,
which generates its completion list in a flexible way. If Semantic
mode is enabled, it tries to use the Semantic parser data for
completion (see the section called “Semantic”). If Semantic mode is not enabled or
fails at performing completion, it tries to complete using the
selected tags table (see the section called “Tags Tables”). If in Emacs Lisp mode, it
performs completion using the function, variable, or property names
defined in the current Emacs session.
In all other respects, in-buffer symbol completion behaves like
minibuffer completion. For instance, if Emacs cannot complete to a
unique symbol, it displays a list of completion alternatives in
another window. See the section called “Completion”.
In Text mode and related modes, M-TAB completes words
based on the spell-checker's dictionary. See the section called “Checking and Correcting Spelling”.

Glasses minor mode

 Glasses mode is a buffer-local minor mode that makes it easier to
read mixed-case (or “CamelCase”) symbols like
‘unReadableSymbol’, by altering how they are displayed. By
default, it displays extra underscores between each lower-case letter
and the following capital letter. This does not alter the buffer
text, only how it is displayed.
To toggle Glasses mode, type M-x glasses-mode (see the section called “Minor Modes”). When Glasses mode is enabled, the minor mode indicator
‘o^o’ appears in the mode line. For more information about
Glasses mode, type C-h P glasses RET.

Semantic

Semantic is a package that provides language-aware editing commands
based on source code parsers. This section provides a brief
description of Semantic; for full details,
see See section ``Top'' in Semantic.
Most of the “language aware” features in Emacs, such as Font Lock
mode (see the section called “Font Lock mode”), rely on “rules of thumb”[11] that usually give good results but are
never completely exact. In contrast, the parsers used by Semantic
have an exact understanding of programming language syntax. This
allows Semantic to provide search, navigation, and completion commands
that are powerful and precise.
 To begin using Semantic, type M-x semantic-mode or click on
the menu item named ‘Source Code Parsers (Semantic)’ in the
‘Tools’ menu. This enables Semantic mode, a global minor mode.
When Semantic mode is enabled, Emacs automatically attempts to
parses each file you visit. Currently, Semantic understands C, C++,
Scheme, Javascript, Java, HTML, and Make. Within each parsed buffer,
the following commands are available:
	C-c , j
	Prompt for the name of a function defined in the current file, and
move point there (semantic-complete-jump-local).

	C-c , J
	Prompt for the name of a function defined in any file Emacs has
parsed, and move point there (semantic-complete-jump).

	C-c , SPC
	Display a list of possible completions for the symbol at point
(semantic-complete-analyze-inline). This also activates a set
of special key bindings for choosing a completion: RET accepts
the current completion, M-n and M-p cycle through possible
completions, TAB completes as far as possible and then cycles,
and C-g or any other key aborts completion.

	C-c , l
	Display a list of the possible completions of the symbol at point, in
another window (semantic-analyze-possible-completions).

In addition to the above commands, the Semantic package provides a
variety of other ways to make use of parser information. For
instance, you can use it to display a list of completions when Emacs
is idle.
See See section ``Top'' in Semantic, for details.

[11] Regular
expressions and syntax tables.

Other Features Useful for Editing Programs

Some Emacs commands that aren't designed specifically for editing
programs are useful for that nonetheless.
The Emacs commands that operate on words, sentences and paragraphs
are useful for editing code. Most symbols names contain words
(see the section called “Words”), while sentences can be found in strings and comments
(see the section called “Sentences”). As for paragraphs, they are defined in most
programming language modes to begin and end at blank lines
(see the section called “Paragraphs”). Therefore, judicious use of blank lines to make
the program clearer will also provide useful chunks of text for the
paragraph commands to work on. Auto Fill mode, if enabled in a
programming language major mode, indents the new lines which it
creates.
 Electric Layout mode (M-x electric-layout-mode) is a global
minor mode that automatically inserts newlines when you type certain
characters; for example, ‘{’, ‘}’ and ‘;’ in Javascript
mode.
Apart from Hideshow mode (see the section called “Hideshow minor mode”), another way to
selectively display parts of a program is to use the selective display
feature (see the section called “Selective Display”). Programming modes often also
support Outline minor mode (see the section called “Outline Mode”), which can be used
with the Foldout package (see the section called “Folding Editing”).

C and Related Modes

 This section gives a brief description of the special features
available in C, C++, Objective-C, Java, CORBA IDL, Pike and AWK modes.
(These are called “C mode and related modes”.)
For more details, see the CC mode Info manual, which is distributed
with Emacs.
C Mode Motion Commands

This section describes commands for moving point, in C mode and
related modes.
	C-M-a, C-M-e
	Move point to the beginning or end of the current function or
top-level definition. In languages with enclosing scopes (such as
C++'s classes) the current function is the immediate one,
possibly inside a scope. Otherwise it is the one defined by the least
enclosing braces. (By contrast, beginning-of-defun and
end-of-defun search for braces in column zero.) See the section called “Moving by Defuns”.

	C-c C-u
	Move point back to the containing preprocessor conditional, leaving the
mark behind. A prefix argument acts as a repeat count. With a negative
argument, move point forward to the end of the containing
preprocessor conditional.
‘#elif’ is equivalent to ‘#else’ followed by ‘#if’, so
the function will stop at a ‘#elif’ when going backward, but not
when going forward.

	C-c C-p
	Move point back over a preprocessor conditional, leaving the mark
behind. A prefix argument acts as a repeat count. With a negative
argument, move forward.

	C-c C-n
	Move point forward across a preprocessor conditional, leaving the mark
behind. A prefix argument acts as a repeat count. With a negative
argument, move backward.

	M-a
	Move point to the beginning of the innermost C statement
(c-beginning-of-statement). If point is already at the beginning
of a statement, move to the beginning of the preceding statement. With
prefix argument n, move back n − 1 statements.
In comments or in strings which span more than one line, this command
moves by sentences instead of statements.

	M-e
	Move point to the end of the innermost C statement or sentence; like
M-a except that it moves in the other direction
(c-end-of-statement).

Electric C Characters

In C mode and related modes, certain printing characters are
electric—in addition to inserting themselves, they also
reindent the current line, and optionally also insert newlines. The
“electric” characters are {, }, :, #,
;, ,, <, >, /, *, (, and
).
You might find electric indentation inconvenient if you are editing
chaotically indented code. If you are new to CC Mode, you might find
it disconcerting. You can toggle electric action with the command
C-c C-l; when it is enabled, ‘/l’ appears in the mode line
after the mode name:
	C-c C-l
	Toggle electric action (c-toggle-electric-state). With a
positive prefix argument, this command enables electric action, with a
negative one it disables it.

Electric characters insert newlines only when, in addition to the
electric state, the auto-newline feature is enabled (indicated
by ‘/la’ in the mode line after the mode name). You can turn
this feature on or off with the command C-c C-a:
	C-c C-a
	Toggle the auto-newline feature (c-toggle-auto-newline). With a
prefix argument, this command turns the auto-newline feature on if the
argument is positive, and off if it is negative.

Usually the CC Mode style configures the exact circumstances in
which Emacs inserts auto-newlines. You can also configure this
directly. See See section ``Custom Auto-newlines'' in The CC Mode Manual.

Hungry Delete Feature in C

 If you want to delete an entire block of whitespace at point, you
can use hungry deletion. This deletes all the contiguous
whitespace either before point or after point in a single operation.
Whitespace here includes tabs and newlines, but not comments or
preprocessor commands.
	C-c C-DEL, C-c DEL
	Delete the entire block of whitespace preceding point (c-hungry-delete-backwards).

	C-c C-d, C-c C-DELETE, C-c DELETE
	Delete the entire block of whitespace after point (c-hungry-delete-forward).

As an alternative to the above commands, you can enable hungry
delete mode. When this feature is enabled (indicated by ‘/h’ in
the mode line after the mode name), a single DEL deletes all
preceding whitespace, not just one space, and a single C-c C-d
(but not plain DELETE) deletes all following whitespace.
	M-x c-toggle-hungry-state
	Toggle the hungry-delete feature
(c-toggle-hungry-state). With a prefix argument,
this command turns the hungry-delete feature on if the argument is
positive, and off if it is negative.

 The variable c-hungry-delete-key controls whether the
hungry-delete feature is enabled.

Other Commands for C Mode

	C-c C-w, M-x subword-mode
	Enable (or disable) subword mode. In subword mode, Emacs's word
commands recognize upper case letters in
‘StudlyCapsIdentifiers’ as word boundaries. This is indicated by
the flag ‘/w’ on the mode line after the mode name
(e.g. ‘C/law’). You can even use M-x subword-mode in
non-CC Mode buffers.
In the GNU project, we recommend using underscores to separate words
within an identifier in C or C++, rather than using case distinctions.

	M-x c-context-line-break
	This command inserts a line break and indents the new line in a manner
appropriate to the context. In normal code, it does the work of
C-j (newline-and-indent), in a C preprocessor line it
additionally inserts a ‘\’ at the line break, and within comments
it's like M-j (c-indent-new-comment-line).
c-context-line-break isn't bound to a key by default, but it
needs a binding to be useful. The following code will bind it to
C-j. We use c-initialization-hook here to make sure
the keymap is loaded before we try to change it.

(defun my-bind-clb ()
 (define-key c-mode-base-map "\C-j" 'c-context-line-break))
(add-hook 'c-initialization-hook 'my-bind-clb)

	C-M-h
	Put mark at the end of a function definition, and put point at the
beginning (c-mark-function).

	M-q
	Fill a paragraph, handling C and C++ comments (c-fill-paragraph).
If any part of the current line is a comment or within a comment, this
command fills the comment or the paragraph of it that point is in,
preserving the comment indentation and comment delimiters.

	C-c C-e
	Run the C preprocessor on the text in the region, and show the result,
which includes the expansion of all the macro calls
(c-macro-expand). The buffer text before the region is also
included in preprocessing, for the sake of macros defined there, but the
output from this part isn't shown.
When you are debugging C code that uses macros, sometimes it is hard to
figure out precisely how the macros expand. With this command, you
don't have to figure it out; you can see the expansions.

	C-c C-\
	Insert or align ‘\’ characters at the ends of the lines of the
region (c-backslash-region). This is useful after writing or
editing a C macro definition.
If a line already ends in ‘\’, this command adjusts the amount of
whitespace before it. Otherwise, it inserts a new ‘\’. However,
the last line in the region is treated specially; no ‘\’ is
inserted on that line, and any ‘\’ there is deleted.

	M-x cpp-highlight-buffer
	Highlight parts of the text according to its preprocessor conditionals.
This command displays another buffer named *CPP Edit*, which
serves as a graphic menu for selecting how to display particular kinds
of conditionals and their contents. After changing various settings,
click on ‘[A]pply these settings’ (or go to that buffer and type
a) to rehighlight the C mode buffer accordingly.

	C-c C-s
	Display the syntactic information about the current source line
(c-show-syntactic-information). This information directs how
the line is indented.

	M-x cwarn-mode, M-x global-cwarn-mode
	CWarn minor mode highlights certain suspicious C and C++ constructions:
	Assignments inside expressions.

	Semicolon following immediately after ‘if’, ‘for’, and ‘while’
(except after a ‘do … while’ statement);

	C++ functions with reference parameters.

You can enable the mode for one buffer with the command M-x
cwarn-mode, or for all suitable buffers with the command M-x
global-cwarn-mode or by customizing the variable
global-cwarn-mode. You must also enable Font Lock mode to make
it work.

	M-x hide-ifdef-mode
	Hide-ifdef minor mode hides selected code within ‘#if’ and
‘#ifdef’ preprocessor blocks. If you change the variable
hide-ifdef-shadow to t, Hide-ifdef minor mode
“shadows” preprocessor blocks by displaying them with a less
prominent face, instead of hiding them entirely. See the
documentation string of hide-ifdef-mode for more information.

	M-x ff-find-related-file
	Find a file “related” in a special way to the file visited by the
current buffer. Typically this will be the header file corresponding
to a C/C++ source file, or vice versa. The variable
ff-related-file-alist specifies how to compute related file
names.

Asm Mode

Asm mode is a major mode for editing files of assembler code. It
defines these commands:
	TAB
	tab-to-tab-stop.

	C-j
	Insert a newline and then indent using tab-to-tab-stop.

	:
	Insert a colon and then remove the indentation from before the label
preceding colon. Then do tab-to-tab-stop.

	;
	Insert or align a comment.

The variable asm-comment-char specifies which character
starts comments in assembler syntax.

Fortran Mode

 Fortran mode is meant for editing “fixed form” (and also “tab
format”) source code (normally Fortran 77). For editing more modern
“free form” source code (Fortran 90, 95, 2003, 2008), use F90 mode
(f90-mode). Emacs normally uses Fortran mode for files with
extension ‘.f’, ‘.F’ or ‘.for’, and F90 mode for the
extensions ‘.f90’, ‘.f95’, ‘.f03’ and ‘.f08’.
Customize auto-mode-alist to add more extensions. GNU Fortran
supports both free and fixed form. This manual mainly documents Fortran
mode, but the corresponding F90 mode features are mentioned when
relevant.
Fortran mode provides special motion commands for Fortran statements
and subprograms, and indentation commands that understand Fortran
conventions of nesting, line numbers and continuation statements.
Fortran mode has support for Auto Fill mode that breaks long lines into
proper Fortran continuation lines. Fortran mode also supports Hideshow
minor mode
(see the section called “Hideshow minor mode”),
and Imenu
(see the section called “Imenu”).
Special commands for comments are provided because Fortran comments
are unlike those of other languages. Built-in abbrevs optionally save
typing when you insert Fortran keywords.
Use M-x fortran-mode to switch to this major mode. This
command runs the hook fortran-mode-hook.
See the section called “Hooks”.
Motion Commands

In addition to the normal commands for moving by and operating on
“defuns” (Fortran subprograms—functions and subroutines, as well
as modules for F90 mode, using the commands fortran-end-of-subprogram
and fortran-beginning-of-subprogram), Fortran mode provides
special commands to move by statements and other program units.

	C-c C-n
	Move to the beginning of the next statement
(fortran-next-statement/f90-next-statement).

	C-c C-p
	Move to the beginning of the previous statement
(fortran-previous-statement/f90-previous-statement).
If there is no previous statement (i.e. if called from the first
statement in the buffer), move to the start of the buffer.

	C-c C-e
	Move point forward to the start of the next code block, or the end of
the current one, whichever comes first (f90-next-block).
A code block is a subroutine, if–endif statement, and
so forth. This command exists for F90 mode only, not Fortran mode.
With a numeric argument, it moves forward that many blocks.

	C-c C-a
	Move point backward to the previous block
(f90-previous-block). This is like f90-next-block, but
moves backwards.

	C-M-n
	Move to the end of the current code block
(fortran-end-of-block/f90-end-of-block). With a numeric
argument, move forward that number of blocks. The mark is set before
moving point. The F90 mode version of this command checks for
consistency of block types and labels (if present), but it does not
check the outermost block since that may be incomplete.

	C-M-p
	Move to the start of the current code block
(fortran-beginning-of-block/f90-beginning-of-block). This
is like fortran-end-of-block, but moves backwards.

The commands fortran-beginning-of-subprogram and
fortran-end-of-subprogram move to the start or end of the
current subprogram, respectively. The commands fortran-mark-do
and fortran-mark-if mark the end of the current do or
if block, and move point to the start.

Fortran Indentation

Special commands and features are needed for indenting fixed (or tab)
form Fortran code in order to make sure various syntactic entities (line
numbers, comment line indicators and continuation line flags) appear in
the required columns.
Fortran Indentation and Filling Commands

	C-M-j
	Break the current line at point and set up a continuation line
(fortran-split-line).

	M-^
	Join this line to the previous line (fortran-join-line).

	C-M-q
	Indent all the lines of the subprogram that point is in
(fortran-indent-subprogram).

	M-q
	Fill a comment block or statement (using fortran-fill-paragraph
or fortran-fill-statement).

 The key C-M-q runs fortran-indent-subprogram, a command
to reindent all the lines of the Fortran subprogram (function or
subroutine) containing point.
 The key C-M-j runs fortran-split-line, which splits
a line in the appropriate fashion for Fortran. In a non-comment line,
the second half becomes a continuation line and is indented
accordingly. In a comment line, both halves become separate comment
lines.
 M-^ or C-c C-d runs the command fortran-join-line,
which joins a continuation line back to the previous line, roughly as
the inverse of fortran-split-line. The point must be on a
continuation line when this command is invoked.
M-q in Fortran mode fills the comment block or statement that
point is in. This removes any excess statement continuations.

Continuation Lines

 Most Fortran 77 compilers allow two ways of writing continuation lines.
If the first non-space character on a line is in column 5, then that
line is a continuation of the previous line. We call this fixed
form. (In GNU Emacs we always count columns from 0; but note that
the Fortran standard counts from 1.) The variable
fortran-continuation-string specifies what character to put in
column 5. A line that starts with a tab character followed by any digit
except ‘0’ is also a continuation line. We call this style of
continuation tab format. (Fortran 90 introduced “free form”,
with another style of continuation lines).
 Fortran mode can use either style of continuation line. When you
enter Fortran mode, it tries to deduce the proper continuation style
automatically from the buffer contents. It does this by scanning up to
fortran-analyze-depth (default 100) lines from the start of the
buffer. The first line that begins with either a tab character or six
spaces determines the choice. If the scan fails (for example, if the
buffer is new and therefore empty), the value of
fortran-tab-mode-default (nil for fixed form, and
non-nil for tab format) is used. ‘/t’
(fortran-tab-mode-string) in the mode line indicates tab format
is selected. Fortran mode sets the value of indent-tabs-mode
accordingly.
If the text on a line starts with the Fortran continuation marker
‘$’, or if it begins with any non-whitespace character in column
5, Fortran mode treats it as a continuation line. When you indent a
continuation line with TAB, it converts the line to the current
continuation style. When you split a Fortran statement with
C-M-j, the continuation marker on the newline is created according
to the continuation style.
The setting of continuation style affects several other aspects of
editing in Fortran mode. In fixed form mode, the minimum column
number for the body of a statement is 6. Lines inside of Fortran
blocks that are indented to larger column numbers must use only the
space character for whitespace. In tab format mode, the minimum
column number for the statement body is 8, and the whitespace before
column 8 must consist of one tab character.

Line Numbers

If a number is the first non-whitespace in the line, Fortran
indentation assumes it is a line number and moves it to columns 0
through 4. (Columns always count from 0 in Emacs.)
 Line numbers of four digits or less are normally indented one space.
The variable fortran-line-number-indent controls this; it
specifies the maximum indentation a line number can have. The default
value of the variable is 1. Fortran mode tries to prevent line number
digits passing column 4, reducing the indentation below the specified
maximum if necessary. If fortran-line-number-indent has the
value 5, line numbers are right-justified to end in column 4.
 Simply inserting a line number is enough to indent it according to
these rules. As each digit is inserted, the indentation is recomputed.
To turn off this feature, set the variable
fortran-electric-line-number to nil.

Syntactic Conventions

Fortran mode assumes that you follow certain conventions that simplify
the task of understanding a Fortran program well enough to indent it
properly:
	Two nested ‘do’ loops never share a ‘continue’ statement.

	Fortran keywords such as ‘if’, ‘else’, ‘then’, ‘do’
and others are written without embedded whitespace or line breaks.
Fortran compilers generally ignore whitespace outside of string
constants, but Fortran mode does not recognize these keywords if they
are not contiguous. Constructs such as ‘else if’ or ‘end do’
are acceptable, but the second word should be on the same line as the
first and not on a continuation line.

If you fail to follow these conventions, the indentation commands may
indent some lines unaesthetically. However, a correct Fortran program
retains its meaning when reindented even if the conventions are not
followed.

Variables for Fortran Indentation

 Several additional variables control how Fortran indentation works:
	fortran-do-indent
	Extra indentation within each level of ‘do’ statement (default 3).

	fortran-if-indent
	Extra indentation within each level of ‘if’, ‘select case’, or
‘where’ statements (default 3).

	fortran-structure-indent
	Extra indentation within each level of ‘structure’, ‘union’,
‘map’, or ‘interface’ statements (default 3).

	fortran-continuation-indent
	Extra indentation for bodies of continuation lines (default 5).

	fortran-check-all-num-for-matching-do
	In Fortran 77, a numbered ‘do’ statement is ended by any statement
with a matching line number. It is common (but not compulsory) to use a
‘continue’ statement for this purpose. If this variable has a
non-nil value, indenting any numbered statement must check for a
‘do’ that ends there. If you always end ‘do’ statements with
a ‘continue’ line (or if you use the more modern ‘enddo’),
then you can speed up indentation by setting this variable to
nil (the default).

	fortran-blink-matching-if
	If this is t, indenting an ‘endif’ (or ‘enddo’
statement moves the cursor momentarily to the matching ‘if’ (or
‘do’) statement to show where it is. The default is nil.

	fortran-minimum-statement-indent-fixed
	Minimum indentation for Fortran statements when using fixed form
continuation line style. Statement bodies are never indented by less than
this. The default is 6.

	fortran-minimum-statement-indent-tab
	Minimum indentation for Fortran statements for tab format continuation line
style. Statement bodies are never indented by less than this. The
default is 8.

The following section describes the variables controlling the
indentation of comments.

Fortran Comments

The usual Emacs comment commands assume that a comment can follow a
line of code. In Fortran 77, the standard comment syntax requires an
entire line to be just a comment. Therefore, Fortran mode replaces the
standard Emacs comment commands and defines some new variables.
 Fortran mode can also handle the Fortran 90 comment syntax where
comments start with ‘!’ and can follow other text. Because only
some Fortran 77 compilers accept this syntax, Fortran mode will not
insert such comments unless you have said in advance to do so. To do
this, set the variable fortran-comment-line-start to ‘"!"’.
If you use an unusual value, you may need to change
fortran-comment-line-start-skip.
	M-;
	Align comment or insert new comment (comment-dwim).

	C-x ;
	Applies to nonstandard ‘!’ comments only (comment-set-column).

	C-c ;
	Turn all lines of the region into comments, or (with argument) turn them back
into real code (fortran-comment-region).

M-; in Fortran mode runs the standard comment-dwim.
This recognizes any kind of existing comment and aligns its text
appropriately; if there is no existing comment, a comment is inserted
and aligned. Inserting and aligning comments are not the same in
Fortran mode as in other modes.
When a new comment must be inserted, if the current line is blank, a
full-line comment is inserted. On a non-blank line, a nonstandard ‘!’
comment is inserted if you have said you want to use them. Otherwise a
full-line comment is inserted on a new line before the current line.
Nonstandard ‘!’ comments are aligned like comments in other
languages, but full-line comments are different. In a standard full-line
comment, the comment delimiter itself must always appear in column zero.
What can be aligned is the text within the comment. You can choose from
three styles of alignment by setting the variable
fortran-comment-indent-style to one of these values:

	fixed
	Align the text at a fixed column, which is the sum of
fortran-comment-line-extra-indent and the minimum statement
indentation. This is the default.
The minimum indentation is
fortran-minimum-statement-indent-tab for tab format
continuation line style and fortran-minimum-statement-indent-fixed
for fixed form style.

	relative
	Align the text as if it were a line of code, but with an additional
fortran-comment-line-extra-indent columns of indentation.

	nil
	Don't move text in full-line comments automatically.

 In addition, you can specify the character to be used to indent within
full-line comments by setting the variable
fortran-comment-indent-char to the single-character string you want
to use.
 Compiler directive lines, or preprocessor lines, have much the same
appearance as comment lines. It is important, though, that such lines
never be indented at all, no matter what the value of
fortran-comment-indent-style. The variable
fortran-directive-re is a regular expression that specifies which
lines are directives. Matching lines are never indented, and receive
distinctive font-locking.
The normal Emacs comment command C-x ; (comment-set-column)
has not been redefined. If you use ‘!’ comments, this command
can be used with them. Otherwise it is useless in Fortran mode.
 The command C-c ; (fortran-comment-region) turns all the
lines of the region into comments by inserting the string ‘c$$$’ at
the front of each one. With a numeric argument, it turns the region
back into live code by deleting ‘c$$$’ from the front of each line
in it. The string used for these comments can be controlled by setting
the variable fortran-comment-region. Note that here we have an
example of a command and a variable with the same name; these two uses
of the name never conflict because in Lisp and in Emacs it is always
clear from the context which one is meant.

Auto Fill in Fortran Mode

Fortran mode has specialized support for Auto Fill mode, which is a
minor mode that automatically splits statements as you insert them
when they become too wide. Splitting a statement involves making
continuation lines using fortran-continuation-string
(see the section called “Continuation Lines”). This splitting happens when you type
SPC, RET, or TAB, and also in the Fortran
indentation commands. You activate Auto Fill in Fortran mode in the
normal way.
See the section called “Auto Fill Mode”.
 Auto Fill breaks lines at spaces or delimiters when the lines get
longer than the desired width (the value of fill-column). The
delimiters (besides whitespace) that Auto Fill can break at are
‘+’, ‘-’, ‘/’, ‘*’, ‘=’, ‘<’, ‘>’,
and ‘,’. The line break comes after the delimiter if the
variable fortran-break-before-delimiters is nil.
Otherwise (and by default), the break comes before the delimiter.
To enable Auto Fill in all Fortran buffers, add
auto-fill-mode to fortran-mode-hook.
See the section called “Hooks”.

Checking Columns in Fortran

In standard Fortran 77, anything beyond column 72 is ignored.
Most compilers provide an option to change this (for example,
‘-ffixed-line-length-N’ in gfortran). Customize the variable
fortran-line-length to change the line length in Fortran mode.
Anything beyond this point is font-locked as a comment. (Unless it is
inside a string: strings that extend beyond fortran-line-length
will confuse font-lock.)
	C-c C-r
	Display a “column ruler” momentarily above the current line
(fortran-column-ruler).

	C-c C-w
	Split the current window horizontally temporarily so that it is
fortran-line-length columns wide
(fortran-window-create-momentarily). This may help you avoid
making lines longer than the limit imposed by your Fortran compiler.

	C-u C-c C-w
	Split the current window horizontally so that it is
fortran-line-length columns wide (fortran-window-create).
You can then continue editing.

	M-x fortran-strip-sequence-nos
	Delete all text in column fortran-line-length and beyond.

 The command C-c C-r (fortran-column-ruler) shows a column
ruler momentarily above the current line. The comment ruler is two lines
of text that show you the locations of columns with special significance in
Fortran programs. Square brackets show the limits of the columns for line
numbers, and curly brackets show the limits of the columns for the
statement body. Column numbers appear above them.
Note that the column numbers count from zero, as always in GNU Emacs.
As a result, the numbers may be one less than those you are familiar
with; but the positions they indicate in the line are standard for
Fortran.
 The text used to display the column ruler depends on the value of the
variable indent-tabs-mode. If indent-tabs-mode is
nil, then the value of the variable
fortran-column-ruler-fixed is used as the column ruler.
Otherwise, the value of the variable fortran-column-ruler-tab is
displayed. By changing these variables, you can change the column ruler
display.
 C-c C-w (fortran-window-create-momentarily) temporarily
splits the current window horizontally, making a window
fortran-line-length columns wide, so you can see any lines that
are too long. Type a space to restore the normal width.
 You can also split the window horizontally and continue editing with
the split in place. To do this, use C-u C-c C-w (M-x
fortran-window-create). By editing in this window you can
immediately see when you make a line too wide to be correct Fortran.
 The command M-x fortran-strip-sequence-nos deletes all text in
column fortran-line-length and beyond, on all lines in the
current buffer. This is the easiest way to get rid of old sequence
numbers.

Fortran Keyword Abbrevs

Fortran mode provides many built-in abbrevs for common keywords and
declarations. These are the same sort of abbrev that you can define
yourself. To use them, you must turn on Abbrev mode.
See Chapter 29, Abbrevs.
The built-in abbrevs are unusual in one way: they all start with a
semicolon. For example, one built-in Fortran abbrev is ‘;c’ for
‘continue’. If you insert ‘;c’ and then insert a punctuation
character such as a space or a newline, the ‘;c’ expands automatically
to ‘continue’, provided Abbrev mode is enabled.
Type ‘;?’ or ‘;C-h’ to display a list of all the built-in
Fortran abbrevs and what they stand for.

Chapter 27. Compiling and Testing Programs

 The previous chapter discusses the Emacs commands that are useful
for making changes in programs. This chapter deals with commands that
assist in the process of compiling and testing programs.
Running Compilations under Emacs

 Emacs can run compilers for languages such as C and Fortran, feeding
the compilation log into an Emacs buffer. It can also parse the error
messages and show you where the errors occurred.
	M-x compile
	Run a compiler asynchronously under Emacs, with error messages going to
the *compilation* buffer.

	M-x recompile
	Invoke a compiler with the same command as in the last invocation of
M-x compile.

	M-x kill-compilation
	Kill the running compilation subprocess.

 To run make or another compilation command, type M-x
compile. This reads a shell command line using the minibuffer, and
then executes the command by running a shell as a subprocess (or
inferior process) of Emacs. The output is inserted in a buffer
named *compilation*. The current buffer's default directory is
used as the working directory for the execution of the command;
normally, therefore, compilation takes place in this directory.
 The default compilation command is ‘make -k’, which is usually
correct for programs compiled using the make utility (the
‘-k’ flag tells make to continue compiling as much as
possible after an error). See See section ``Make'' in GNU Make Manual.
If you have done M-x compile before, the command that you
specified is automatically stored in the variable
compile-command; this is used as the default the next time you
type M-x compile. A file can also specify a file-local value
for compile-command (see the section called “Local Variables in Files”).
Starting a compilation displays the *compilation* buffer in
another window but does not select it. While the compilation is
running, the word ‘run’ is shown in the major mode indicator for
the *compilation* buffer, and the word ‘Compiling’ appears
in all mode lines. You do not have to keep the *compilation*
buffer visible while compilation is running; it continues in any case.
When the compilation ends, for whatever reason, the mode line of the
compilation buffer changes to say ‘exit’ (followed by
the exit code: ‘[0]’ for a normal exit), or ‘signal’ (if a
signal terminated the process).
If you want to watch the compilation transcript as it appears,
switch to the *compilation* buffer and move point to the end of
the buffer. When point is at the end, new compilation output is
inserted above point, which remains at the end. Otherwise, point
remains fixed while compilation output is added at the end of the
buffer.
 If you change the variable compilation-scroll-output to a
non-nil value, the *compilation* buffer scrolls
automatically to follow the output. If the value is
first-error, scrolling stops when the first error appears,
leaving point at that error. For any other non-nil value,
scrolling continues until there is no more output.
 To rerun the last compilation with the same command, type M-x
recompile. This reuses the compilation command from the last
invocation of M-x compile. It also reuses the
compilation buffer and starts the compilation in its default
directory, which is the directory in which the previous compilation
was started.
 Starting a new compilation also kills any compilation already
running in *compilation*, as the buffer can only handle one
compilation at any time. However, M-x compile asks for
confirmation before actually killing a compilation that is running.
You can also kill the compilation process with M-x
kill-compilation.
To run two compilations at once, start the first one, then rename
the *compilation* buffer (perhaps using rename-uniquely;
see the section called “Miscellaneous Buffer Operations”), then switch buffers and start the other
compilation. This will create a new *compilation* buffer.
 You can control the environment passed to the compilation command
with the variable compilation-environment. Its value is a list
of environment variable settings; each element should be a string of
the form "envvarname=value". These environment
variable settings override the usual ones.

Compilation Mode

 The *compilation* buffer uses a major mode called Compilation
mode. Compilation mode turns each error message in the buffer into a
hyperlink; you can move point to it and type RET, or click on it
with the mouse (see the section called “Following References with the Mouse”), to visit the locus of
the error message in a separate window. The locus is the specific
position in a file where that error occurred.
 If you change the variable
compilation-auto-jump-to-first-error to a non-nil value,
Emacs automatically visits the locus of the first error message that
appears in the *compilation* buffer.
Compilation mode provides the following additional commands. These
commands can also be used in *grep* buffers, where the
hyperlinks are search matches rather than error messages (see the section called “Searching with Grep under Emacs”).
	M-g M-n, M-g n, C-x `
	Visit the locus of the next error message or match (next-error).

	M-g M-p, M-g p
	Visit the locus of the previous error message or match
(previous-error).

	M-n
	Move point to the next error message or match, without visiting its
locus (compilation-next-error).

	M-p
	Move point to the previous error message or match, without visiting
its locus (compilation-previous-error).

	M-}
	Move point to the next error message or match occurring in a different
file (compilation-next-file).

	M-{
	Move point to the previous error message or match occurring in a
different file (compilation-previous-file).

	C-c C-f
	Toggle Next Error Follow minor mode, which makes cursor motion in the
compilation buffer produce automatic source display.

 To visit errors sequentially, type C-x `
(next-error), or equivalently M-g M-n or M-g n.
This command can be invoked from any buffer, not just a Compilation
mode buffer. The first time you invoke it after a compilation, it
visits the locus of the first error message. Each subsequent
C-x ` visits the next error, in a similar fashion. If you
visit a specific error with RET or a mouse click in the
compilation buffer, subsequent C-x ` commands
advance from there. When C-x ` finds no more error messages
to visit, it signals an error. C-u C-x ` starts again from
the beginning of the compilation buffer, and visits the first locus.
M-g M-p or M-g p (previous-error) iterates
through errors in the opposite direction.
The next-error and previous-error commands don't just
act on the errors or matches listed in *compilation* and
grep buffers; they also know how to iterate through error or
match lists produced by other commands, such as M-x occur
(see the section called “Other Search-and-Loop Commands”). If you are already in a buffer
containing error messages or matches, those are the ones that are
iterated through; otherwise, Emacs looks for a buffer containing error
messages or matches amongst the windows of the selected frame, then
for one that next-error or previous-error previously
iterated through, and finally amongst all other buffers. If the
buffer chosen for iterating through is not currently displayed in a
window, it will be displayed.
 By default, the next-error and previous-error commands
skip less important messages. The variable
compilation-skip-threshold controls this. The default value,
1, means to skip anything less important than a warning. A value of 2
means to skip anything less important than an error, while 0 means not
to skip any messages.
When Emacs visits the locus of an error message, it momentarily
highlights the relevant source line. The duration of this highlight
is determined by the variable next-error-highlight.
 If the *compilation* buffer is shown in a window with a left
fringe (see the section called “Window Fringes”), the locus-visiting commands put an arrow in
the fringe, pointing to the current error message. If the window has
no left fringe, such as on a text terminal, these commands scroll the
window so that the current message is at the top of the window. If
you change the variable compilation-context-lines to an integer
value n, these commands scroll the window so that the current
error message is n lines from the top, whether or not there is a
fringe; the default value, nil, gives the behavior described
above.
 To parse messages from the compiler, Compilation mode uses the
variable compilation-error-regexp-alist which lists various
error message formats and tells Emacs how to extract the locus from
each. A similar variable, grep-regexp-alist, tells Emacs how
to parse output from a grep command (see the section called “Searching with Grep under Emacs”).
 Compilation mode also defines the keys SPC and DEL to
scroll by screenfuls; M-n (compilation-next-error) and
M-p (compilation-previous-error) to move to the next or
previous error message; and M-{ (compilation-next-file)
and M-} (compilation-previous-file) to move to the next
or previous error message for a different source file.
 You can type C-c C-f to toggle Next Error Follow mode. In
this minor mode, ordinary cursor motion in the compilation buffer
automatically updates the source buffer, i.e. moving the cursor over
an error message causes the locus of that error to be displayed.
The features of Compilation mode are also available in a minor mode
called Compilation Minor mode. This lets you parse error messages in
any buffer, not just a normal compilation output buffer. Type
M-x compilation-minor-mode to enable the minor mode. For
instance, in an Rlogin buffer (see the section called “Remote Host Shell”), Compilation minor
mode automatically accesses remote source files by FTP (see the section called “File Names”).

Subshells for Compilation

The M-x compile command uses a shell to run the compilation
command, but specifies the option for a noninteractive shell. This
means, in particular, that the shell should start with no prompt. If
you find your usual shell prompt making an unsightly appearance in the
compilation buffer, it means you have made a mistake in your
shell's init file by setting the prompt unconditionally. (This init
file may be named .bashrc, .profile, .cshrc,
.shrc, etc., depending on what shell you use.) The shell init
file should set the prompt only if there already is a prompt. Here's
how to do it in bash:

if ["${PS1+set}" = set]
then PS1=…
fi

And here's how to do it in csh:

if ($?prompt) set prompt = …

Emacs does not expect a compiler process to launch asynchronous
subprocesses; if it does, and they keep running after the main
compiler process has terminated, Emacs may kill them or their output
may not arrive in Emacs. To avoid this problem, make the main
compilation process wait for its subprocesses to finish. In a shell
script, you can do this using ‘$!’ and ‘wait’, like this:

(sleep 10; echo 2nd)& pid=$! # Record pid of subprocess
echo first message
wait $pid # Wait for subprocess

If the background process does not output to the compilation buffer,
so you only need to prevent it from being killed when the main
compilation process terminates, this is sufficient:

nohup command; sleep 1

On the MS-DOS “operating system”, asynchronous subprocesses are
not supported, so M-x compile runs the compilation command
synchronously (i.e. you must wait until the command finishes before
you can do anything else in Emacs). See the section called “Emacs and MS-DOS”.

Searching with Grep under Emacs

Just as you can run a compiler from Emacs and then visit the lines
with compilation errors, you can also run grep and then
visit the lines on which matches were found. This works by treating
the matches reported by grep as if they were “errors”.
The output buffer uses Grep mode, which is a variant of Compilation
mode (see the section called “Compilation Mode”).
	M-x grep, M-x lgrep
	Run grep asynchronously under Emacs, listing matching lines in
the buffer named *grep*.

	M-x grep-find, M-x find-grep, M-x rgrep
	Run grep via find, and collect output in the
grep buffer.

	M-x zrgrep
	Run zgrep and collect output in the *grep* buffer.

	M-x kill-grep
	Kill the running grep subprocess.

 To run grep, type M-x grep, then enter a command line
that specifies how to run grep. Use the same arguments you
would give grep when running it normally: a grep-style
regexp (usually in single-quotes to quote the shell's special
characters) followed by file names, which may use wildcards. If you
specify a prefix argument for M-x grep, it finds the tag
(see the section called “Tags Tables”) in the buffer around point, and puts that into the
default grep command.
Your command need not simply run grep; you can use any shell
command that produces output in the same format. For instance, you
can chain grep commands, like this:

grep -nH -e foo *.el | grep bar | grep toto

The output from grep goes in the *grep* buffer. You
can find the corresponding lines in the original files using C-x
`, RET, and so forth, just like compilation errors.
Some grep programs accept a ‘--color’ option to output special
markers around matches for the purpose of highlighting. You can make
use of this feature by setting grep-highlight-matches to
t. When displaying a match in the source buffer, the exact
match will be highlighted, instead of the entire source line.
 The command M-x grep-find (also available as M-x
find-grep) is similar to M-x grep, but it supplies a different
initial default for the command—one that runs both find and
grep, so as to search every file in a directory tree. See also
the find-grep-dired command, in the section called “Dired and find”.
 The commands M-x lgrep (local grep) and M-x rgrep
(recursive grep) are more user-friendly versions of grep and
grep-find, which prompt separately for the regular expression
to match, the files to search, and the base directory for the search.
Case sensitivity of the search is controlled by the current value of
case-fold-search. The command M-x zrgrep is similar to
M-x rgrep, but it calls zgrep instead of
grep to search the contents of gzipped files.
These commands build the shell commands based on the variables
grep-template (for lgrep) and grep-find-template
(for rgrep). The files to search can use aliases defined in
the variable grep-files-aliases.
 Directories listed in the variable
grep-find-ignored-directories are automatically skipped by
M-x rgrep. The default value includes the data directories used
by various version control systems.

Finding Syntax Errors On The Fly

 Flymake mode is a minor mode that performs on-the-fly syntax
checking for many programming and markup languages, including C, C++,
Perl, HTML, and TeX/LaTeX. It is somewhat analogous to Flyspell
mode, which performs spell checking for ordinary human languages in a
similar fashion (see the section called “Checking and Correcting Spelling”). As you edit a file, Flymake mode
runs an appropriate syntax checking tool in the background, using a
temporary copy of the buffer. It then parses the error and warning
messages, and highlights the erroneous lines in the buffer. The
syntax checking tool used depends on the language; for example, for
C/C++ files this is usually the C compiler. Flymake can also use
build tools such as make for checking complicated projects.
To enable Flymake mode, type M-x flymake-mode. You can jump to
the errors that it finds by using M-x
flymake-goto-next-error and M-x flymake-goto-prev-error.
Use the command M-x flymake-display-err-menu-for-current-line
to display any error messages associated with the current line.
For more details about using Flymake,
see See section ``Flymake'' in The Flymake Manual.

Running Debuggers Under Emacs

The GUD (Grand Unified Debugger) library provides an Emacs interface
to a wide variety of symbolic debuggers. It can run the GNU Debugger
(GDB), as well as DBX, SDB, XDB, Perl's debugging mode, the Python
debugger PDB, and the Java Debugger JDB.
Emacs provides a special interface to GDB, which uses extra Emacs
windows to display the state of the debugged program. See the section called “GDB Graphical Interface”.
Emacs also has a built-in debugger for Emacs Lisp programs.
See See section ``The Lisp Debugger'' in the Emacs Lisp Reference Manual.
Starting GUD

There are several commands for starting a debugger subprocess, each
corresponding to a particular debugger program.
	M-x gdb
	Run GDB as a subprocess, and interact with it via an IDE-like Emacs
interface. See the section called “GDB Graphical Interface”, for more information about
this command.

	M-x gud-gdb
	Run GDB, using a GUD interaction buffer for input and output to the
GDB subprocess (see the section called “Debugger Operation”). If such a buffer already
exists, switch to it; otherwise, create the buffer and switch to it.
The other commands in this list do the same, for other debugger
programs.

	M-x perldb
	Run the Perl interpreter in debug mode.

	M-x jdb
	Run the Java debugger.

	M-x pdb
	Run the Python debugger.

	M-x dbx
	Run the DBX debugger.

	M-x xdb
	Run the XDB debugger.

	M-x sdb
	Run the SDB debugger.

Each of these commands reads a command line to invoke the debugger,
using the minibuffer. The minibuffer's initial contents contain the
standard executable name and options for the debugger, and sometimes
also a guess for the name of the executable file you want to debug.
Shell wildcards and variables are not allowed in this command line.
Emacs assumes that the first command argument which does not start
with a ‘-’ is the executable file name.
 Tramp provides a facility for remote debugging, whereby both the
debugger and the program being debugged are on the same remote host.
See See section ``Running a debugger on a remote host'' in The Tramp Manual,
for details. This is separate from GDB's remote debugging feature,
where the program and the debugger run on different machines
(see See section ``Debugging Remote Programs'' in The GNU debugger).

Debugger Operation

 The GUD interaction buffer is an Emacs buffer which is used to
send text commands to a debugger subprocess, and record its output.
This is the basic interface for interacting with a debugger, used by
M-x gud-gdb and other commands listed in
the section called “Starting GUD”.
The M-x gdb command extends this interface with additional
specialized buffers for controlling breakpoints, stack frames, and
other aspects of the debugger state (see the section called “GDB Graphical Interface”).
The GUD interaction buffer uses a variant of Shell mode, so the
Emacs commands defined by Shell mode are available (see the section called “Shell Mode”). Completion is available for most debugger commands
(see the section called “Completion”), and you can use the usual Shell mode history
commands to repeat them.
See the section called “Commands of GUD”,
for special commands that can be used in the GUD interaction buffer.
As you debug a program, Emacs displays the relevant source files by
visiting them in Emacs buffers, with an arrow in the left fringe
indicating the current execution line. (On a text terminal, the arrow
appears as ‘=>’, overlaid on the first two text columns.) Moving
point in such a buffer does not move the arrow. You are free to edit
these source files, but note that inserting or deleting lines will
throw off the arrow's positioning, as Emacs has no way to figure out
which edited source line corresponds to the line reported by the
debugger subprocess. To update this information, you typically have
to recompile and restart the program.
 GUD Tooltip mode is a global minor mode that adds tooltip support to
GUD. To toggle this mode, type M-x gud-tooltip-mode. It is
disabled by default. If enabled, you can move the mouse cursor over a
variable to show its value in a tooltip (see the section called “Tooltips”); this takes
effect in the GUD interaction buffer, and in all source buffers with
major modes listed in the variable gud-tooltip-modes. If the
variable gud-tooltip-echo-area is non-nil, values are
shown in the echo area instead of a tooltip.
When using GUD Tooltip mode with M-x gud-gdb, you should note
that displaying an expression's value in GDB can sometimes expand a
macro, potentially causing side effects in the debugged program. If
you use the M-x gdb interface, this problem does not occur, as
there is special code to avoid side-effects; furthermore, you can
display macro definitions associated with an identifier when the
program is not executing.

Commands of GUD

GUD provides commands for setting and clearing breakpoints,
selecting stack frames, and stepping through the program.
	C-x SPC
	Set a breakpoint on the source line that point is on.

C-x SPC (gud-break), when called in a source
buffer, sets a debugger breakpoint on the current source line. This
command is available only after starting GUD. If you call it in a
buffer that is not associated with any debugger subprocess, it signals
a error.
 The following commands are available both in the GUD interaction
buffer and globally, but with different key bindings. The keys
starting with C-c are available only in the GUD interaction
buffer, while those starting with C-x C-a are available
globally. Some of these commands are also available via the tool bar;
some are not supported by certain debuggers.
	C-c C-l
	

	C-x C-a C-l
	Display, in another window, the last source line referred to in the
GUD interaction buffer (gud-refresh).

	C-c C-s
	

	C-x C-a C-s
	Execute the next single line of code (gud-step). If the line
contains a function call, execution stops after entering the called
function.

	C-c C-n
	

	C-x C-a C-n
	Execute the next single line of code, stepping across function calls
without stopping inside the functions (gud-next).

	C-c C-i
	

	C-x C-a C-i
	Execute a single machine instruction (gud-stepi).

	C-c C-p
	

	C-x C-a C-p
	Evaluate the expression at point (gud-print). If Emacs
does not print the exact expression that you want, mark it as a region
first.

	C-c C-r
	

	C-x C-a C-r
	Continue execution without specifying any stopping point. The program
will run until it hits a breakpoint, terminates, or gets a signal that
the debugger is checking for (gud-cont).

	C-c C-d
	

	C-x C-a C-d
	Delete the breakpoint(s) on the current source line, if any
(gud-remove). If you use this command in the GUD interaction
buffer, it applies to the line where the program last stopped.

	C-c C-t
	

	C-x C-a C-t
	Set a temporary breakpoint on the current source line, if any
(gud-tbreak). If you use this command in the GUD interaction
buffer, it applies to the line where the program last stopped.

	C-c <
	

	C-x C-a <
	Select the next enclosing stack frame (gud-up). This is
equivalent to the GDB command ‘up’.

	C-c >
	

	C-x C-a >
	Select the next inner stack frame (gud-down). This is
equivalent to the GDB command ‘down’.

	C-c C-u
	

	C-x C-a C-u
	Continue execution to the current line (gud-until). The
program will run until it hits a breakpoint, terminates, gets a signal
that the debugger is checking for, or reaches the line on which the
cursor currently sits.

	C-c C-f
	

	C-x C-a C-f
	Run the program until the selected stack frame returns or
stops for some other reason (gud-finish).

If you are using GDB, these additional key bindings are available:
	C-x C-a C-j
	Only useful in a source buffer, gud-jump transfers the
program's execution point to the current line. In other words, the
next line that the program executes will be the one where you gave the
command. If the new execution line is in a different function from
the previously one, GDB prompts for confirmation since the results may
be bizarre. See the GDB manual entry regarding jump for
details.

	TAB
	With GDB, complete a symbol name (gud-gdb-complete-command).
This key is available only in the GUD interaction buffer.

These commands interpret a numeric argument as a repeat count, when
that makes sense.
Because TAB serves as a completion command, you can't use it to
enter a tab as input to the program you are debugging with GDB.
Instead, type C-q TAB to enter a tab.

GUD Customization

 On startup, GUD runs one of the following hooks:
gdb-mode-hook, if you are using GDB; dbx-mode-hook, if
you are using DBX; sdb-mode-hook, if you are using SDB;
xdb-mode-hook, if you are using XDB; perldb-mode-hook,
for Perl debugging mode; pdb-mode-hook, for PDB;
jdb-mode-hook, for JDB. See the section called “Hooks”.
The gud-def Lisp macro (see See section ``Defining Macros'' in the Emacs Lisp Reference Manual) provides a convenient way to define an
Emacs command that sends a particular command string to the debugger,
and set up a key binding for in the GUD interaction buffer:

(gud-def function cmdstring binding docstring)

This defines a command named function which sends
cmdstring to the debugger process, and gives it the documentation
string docstring. You can then use the command function in any
buffer. If binding is non-nil, gud-def also binds
the command to C-c binding in the GUD buffer's mode and to
C-x C-a binding generally.
The command string cmdstring may contain certain
‘%’-sequences that stand for data to be filled in at the time
function is called:
	‘%f’
	The name of the current source file. If the current buffer is the GUD
buffer, then the “current source file” is the file that the program
stopped in.

	‘%l’
	The number of the current source line. If the current buffer is the GUD
buffer, then the “current source line” is the line that the program
stopped in.

	‘%e’
	In transient-mark-mode the text in the region, if it is active.
Otherwise the text of the C lvalue or function-call expression at or
adjacent to point.

	‘%a’
	The text of the hexadecimal address at or adjacent to point.

	‘%p’
	The numeric argument of the called function, as a decimal number. If
the command is used without a numeric argument, ‘%p’ stands for the
empty string.
If you don't use ‘%p’ in the command string, the command you define
ignores any numeric argument.

	‘%d’
	The name of the directory of the current source file.

	‘%c’
	Fully qualified class name derived from the expression surrounding point
(jdb only).

GDB Graphical Interface

The command M-x gdb starts GDB in an IDE-like interface, with
specialized buffers for controlling breakpoints, stack frames, and
other aspects of the debugger state. It also provides additional ways
to control the debugging session with the mouse, such as clicking in
the fringe of a source buffer to set a breakpoint there.
 To run GDB using just the GUD interaction buffer interface, without
these additional features, use M-x gud-gdb (see the section called “Starting GUD”). You must use this if you want to debug multiple programs
within one Emacs session, as that is currently unsupported by M-x
gdb.
Internally, M-x gdb informs GDB that its “screen size” is
unlimited; for correct operation, you must not change GDB's screen
height and width values during the debugging session.
GDB User Interface Layout

 If the variable gdb-many-windows is nil (the default),
M-x gdb normally displays only the GUD interaction buffer.
However, if the variable gdb-show-main is also non-nil,
it starts with two windows: one displaying the GUD interaction buffer,
and the other showing the source for the main function of the
program you are debugging.
If gdb-many-windows is non-nil, then M-x gdb
displays the following frame layout:

+--------------------------------+--------------------------------+
| GUD interaction buffer | Locals/Registers buffer |
|--------------------------------+--------------------------------+
| Primary Source buffer | I/O buffer for debugged pgm |
|--------------------------------+--------------------------------+
| Stack buffer | Breakpoints/Threads buffer |
+--------------------------------+--------------------------------+

However, if gdb-use-separate-io-buffer is nil, the I/O
buffer does not appear and the primary source buffer occupies the full
width of the frame.
 If you ever change the window layout, you can restore the “many
windows” layout by typing M-x gdb-restore-windows. To toggle
between the many windows layout and a simple layout with just the GUD
interaction buffer and a source file, type M-x gdb-many-windows.
You may also specify additional GDB-related buffers to display,
either in the same frame or a different one. Select the buffers you
want by typing M-x gdb-display-buffertype-buffer or
M-x gdb-frame-buffertype-buffer, where buffertype
is the relevant buffer type, such as ‘breakpoints’. You can do
the same with the menu bar, with the ‘GDB-Windows’ and
‘GDB-Frames’ sub-menus of the ‘GUD’ menu.
When you finish debugging, kill the GUD interaction buffer with
C-x k, which will also kill all the buffers associated with the
session. However you need not do this if, after editing and
re-compiling your source code within Emacs, you wish to continue
debugging. When you restart execution, GDB automatically finds the
new executable. Keeping the GUD interaction buffer has the advantage
of keeping the shell history as well as GDB's breakpoints. You do
need to check that the breakpoints in recently edited source files are
still in the right places.

Source Buffers

	Mouse-1 (in fringe)
	Set or clear a breakpoint on that line.

	C-Mouse-1 (in fringe)
	Enable or disable a breakpoint on that line.

	Mouse-3 (in fringe)
	Continue execution to that line.

	C-Mouse-3 (in fringe)
	Jump to that line.

On a graphical display, you can click Mouse-1 in the fringe of
a source buffer, to set a breakpoint on that line (see the section called “Window Fringes”).
A red dot appears in the fringe, where you clicked. If a breakpoint
already exists there, the click removes it. A C-Mouse-1 click
enables or disables an existing breakpoint; a breakpoint that is
disabled, but not unset, is indicated by a gray dot.
On a text terminal, or when fringes are disabled, enabled
breakpoints are indicated with a ‘B’ character in the left margin
of the window. Disabled breakpoints are indicated with ‘b’.
(The margin is only displayed if a breakpoint is present.)
A solid arrow in the left fringe of a source buffer indicates the
line of the innermost frame where the debugged program has stopped. A
hollow arrow indicates the current execution line of a higher-level
frame. If you drag the arrow in the fringe with Mouse-1, that
causes execution to advance to the line where you release the button.
Alternatively, you can click Mouse-3 in the fringe to advance to
that line. You can click C-Mouse-3 in the fringe to jump to
that line without executing the intermediate lines. This command
allows you to go backwards, which can be useful for running through
code that has already executed, in order to examine its execution in
more detail.

Breakpoints Buffer

The GDB Breakpoints buffer shows the breakpoints, watchpoints and
catchpoints in the debugger session. See See section ``Breakpoints'' in The GNU debugger. It provides the following commands, which mostly apply
to the current breakpoint (the breakpoint which point is on):
	SPC
	Enable/disable current breakpoint (gdb-toggle-breakpoint). On
a graphical display, this changes the color of the dot in the fringe
of the source buffer at that line. The dot is red when the breakpoint
is enabled, and gray when it is disabled.

	D
	Delete the current breakpoint (gdb-delete-breakpoint).

	RET
	Visit the source line for the current breakpoint
(gdb-goto-breakpoint).

	Mouse-2
	Visit the source line for the breakpoint you click on.

 When gdb-many-windows is non-nil, the GDB Breakpoints
buffer shares its window with the GDB Threads buffer. To switch from
one to the other click with Mouse-1 on the relevant button in
the header line. If gdb-show-threads-by-default is
non-nil, the GDB Threads buffer is the one shown by default.

Threads Buffer

 The GDB Threads buffer displays a summary of the threads in the
debugged program. See See section ``Debugging programs with multiple threads'' in The GNU debugger. To select a thread, move
point there and type RET (gdb-select-thread), or click on
it with Mouse-2. This also displays the associated source
buffer, and updates the contents of the other GDB buffers.
You can customize variables under gdb-buffers group to select
fields included in GDB Threads buffer.
	gdb-thread-buffer-verbose-names
	Show long thread names like ‘Thread 0x4e2ab70 (LWP 1983)’.

	gdb-thread-buffer-arguments
	Show arguments of thread top frames.

	gdb-thread-buffer-locations
	Show file information or library names.

	gdb-thread-buffer-addresses
	Show addresses for thread frames in threads buffer.

To view information for several threads simultaneously, use the
following commands from the GDB Threads buffer.
	d
	Display disassembly buffer for the thread at current line
(gdb-display-disassembly-for-thread).

	f
	Display the GDB Stack buffer for the thread at current line
(gdb-display-stack-for-thread).

	l
	Display the GDB Locals buffer for the thread at current line
(gdb-display-locals-for-thread).

	r
	Display the GDB Registers buffer for the thread at current line
(gdb-display-registers-for-thread).

Their upper-case counterparts, D, F ,L and R,
display the corresponding buffer in a new frame.
When you create a buffer showing information about some specific
thread, it becomes bound to that thread and keeps showing actual
information while you debug your program. The mode indicator for each
GDB buffer shows the number of thread it is showing information about.
The thread number is also included in the buffer name of bound
buffers.
Further commands are available in the GDB Threads buffer which
depend on the mode of GDB that is used for controlling execution of
your program. See the section called “Multithreaded Debugging”.

Stack Buffer

The GDB Stack buffer displays a call stack, with one line for
each of the nested subroutine calls (stack frames) in the
debugger session. See See section ``Backtraces'' in The GNU debugger.
 On graphical displays, the selected stack frame is indicated by an
arrow in the fringe. On text terminals, or when fringes are disabled,
the selected stack frame is displayed in reverse contrast. To select
a stack frame, move point in its line and type RET
(gdb-frames-select), or click Mouse-2 on it. Doing so
also updates the Locals buffer
(see the section called “Other GDB Buffers”).

Other GDB Buffers

	Locals Buffer
	This buffer displays the values of local variables of the current
frame for simple data types (see See section ``Information on a frame'' in The GNU debugger). Press RET or
click Mouse-2 on the value if you want to edit it.
Arrays and structures display their type only. With GDB 6.4 or later,
you can examine the value of the local variable at point by typing
RET, or with a Mouse-2 click. With earlier versions of
GDB, use RET or Mouse-2 on the type description
(‘[struct/union]’ or ‘[array]’). See the section called “Watch Expressions”.

	Registers Buffer
	This buffer displays the values held by the registers
(see See section ``Registers'' in The GNU debugger). Press RET or
click Mouse-2 on a register if you want to edit its value. With
GDB 6.4 or later, recently changed register values display with
font-lock-warning-face.

	Assembler Buffer
	The assembler buffer displays the current frame as machine code. An
arrow points to the current instruction, and you can set and remove
breakpoints as in a source buffer. Breakpoint icons also appear in
the fringe or margin.

	Memory Buffer
	The memory buffer lets you examine sections of program memory
(see See section ``Examining memory'' in The GNU debugger).
Click Mouse-1 on the appropriate part of the header line to
change the starting address or number of data items that the buffer
displays. Alternatively, use S or N respectively. Click
Mouse-3 on the header line to select the display format or unit
size for these data items.

When gdb-many-windows is non-nil, the locals buffer
shares its window with the registers buffer, just like breakpoints and
threads buffers. To switch from one to the other, click with
Mouse-1 on the relevant button in the header line.

Watch Expressions

 If you want to see how a variable changes each time your program
stops, move point into the variable name and click on the watch icon
in the tool bar (gud-watch) or type C-x C-a C-w. If you
specify a prefix argument, you can enter the variable name in the
minibuffer.
Each watch expression is displayed in the speedbar
(see the section called “Speedbar Frames”). Complex data types, such as arrays, structures
and unions are represented in a tree format. Leaves and simple data
types show the name of the expression and its value and, when the
speedbar frame is selected, display the type as a tooltip. Higher
levels show the name, type and address value for pointers and just the
name and type otherwise. Root expressions also display the frame
address as a tooltip to help identify the frame in which they were
defined.
To expand or contract a complex data type, click Mouse-2 or
press SPC on the tag to the left of the expression. Emacs asks
for confirmation before expanding the expression if its number of
immediate children exceeds the value of the variable
gdb-max-children.
 To delete a complex watch expression, move point to the root
expression in the speedbar and type D (gdb-var-delete).
 To edit a variable with a simple data type, or a simple element of a
complex data type, move point there in the speedbar and type RET
(gdb-edit-value). Or you can click Mouse-2 on a value to
edit it. Either way, this reads the new value using the minibuffer.
 If you set the variable gdb-show-changed-values to
non-nil (the default value), Emacs uses
font-lock-warning-face to highlight values that have recently
changed and shadow face to make variables which have gone out of
scope less noticeable. When a variable goes out of scope you can't
edit its value.
 If the variable gdb-delete-out-of-scope is non-nil
(the default value), Emacs automatically deletes watch expressions
which go out of scope. Sometimes, when re-entering the same function,
it may be useful to set this value to nil so that you don't
need to recreate the watch expression.
 If the variable gdb-use-colon-colon-notation is
non-nil, Emacs uses the ‘function::variable’
format. This allows the user to display watch expressions which share
the same variable name. The default value is nil.
To automatically raise the speedbar every time the display of watch
expressions updates, set gdb-speedbar-auto-raise to
non-nil. This can be useful if you are debugging with a full
screen Emacs frame.

Multithreaded Debugging

 In GDB's all-stop mode, whenever your program stops, all
execution threads stop. Likewise, whenever you restart the program,
all threads start executing. See See section ``All-Stop Mode'' in The GNU debugger. For some multi-threaded targets, GDB supports
a further mode of operation, called non-stop mode, in which you
can examine stopped program threads in the debugger while other
threads continue to execute freely. See See section ``Non-Stop Mode'' in The GNU debugger. Versions of GDB prior to 7.0 do not
support non-stop mode, and it does not work on all targets.
 The variable gdb-non-stop-setting determines whether Emacs
runs GDB in all-stop mode or non-stop mode. The default is t,
which means it tries to use non-stop mode if that is available. If
you change the value to nil, or if non-stop mode is
unavailable, Emacs runs GDB in all-stop mode. The variable takes
effect when Emacs begins a debugging session; if you change its value,
you should restart any active debugging session.
 When a thread stops in non-stop mode, Emacs usually switches to that
thread. If you don't want Emacs to do this switch if another stopped
thread is already selected, change the variable
gdb-switch-when-another-stopped to nil.
 Emacs can decide whether or not to switch to the stopped thread
depending on the reason which caused the stop. Customize the variable
gdb-switch-reasons to select the stop reasons which will cause
a thread switch.
 The variable gdb-stopped-hooks allows you to execute your
functions whenever some thread stops.
In non-stop mode, you can switch between different modes for GUD
execution control commands.

	Non-stop/A
	When gdb-gud-control-all-threads is t (the default
value), interruption and continuation commands apply to all threads,
so you can halt or continue all your threads with one command using
gud-stop-subjob and gud-cont, respectively. The
‘Go’ button is shown on the toolbar when at least one thread is
stopped, whereas ‘Stop’ button is shown when at least one thread
is running.

	Non-stop/T
	When gdb-gud-control-all-threads is nil, only the
current thread is stopped/continued. ‘Go’ and ‘Stop’
buttons on the GUD toolbar are shown depending on the state of current
thread.

You can change the current value of gdb-gud-control-all-threads
from the tool bar or from ‘GUD->GDB-MI’ menu.
Stepping commands always apply to the current thread.
In non-stop mode, you can interrupt/continue your threads without
selecting them. Hitting i in threads buffer interrupts thread
under point, c continues it, s steps through. More such
commands may be added in the future.
Note that when you interrupt a thread, it stops with the
‘signal received’ reason. If that reason is included in your
gdb-switch-reasons (it is by default), Emacs will switch to
that thread.

Executing Lisp Expressions

Emacs has major modes for several variants of Lisp. They use the
same editing commands as other programming language modes
(see Chapter 26, Editing Programs). In addition, they provide special commands for
executing Lisp expressions.
	Emacs Lisp mode
	The mode for editing Emacs Lisp source files. It defines C-M-x
to evaluate the current top-level Lisp expression. See the section called “Evaluating Emacs Lisp Expressions”.

	Lisp Interaction mode
	The mode for an interactive Emacs Lisp session. It defines C-j
to evaluate the expression before point and insert its value in the
buffer. See the section called “Lisp Interaction Buffers”.

	Lisp mode
	The mode for editing source files of programs that run in Lisps other
than Emacs Lisp. It defines C-M-x to evaluate the current
top-level expression in an external Lisp. See the section called “Running an External Lisp”.

	Inferior Lisp mode
	The mode for an interactive session with an external Lisp which is
being run as a subprocess (or inferior process) of Emacs.
See the section called “Running an External Lisp”.

	Scheme mode
	Like Lisp mode, but for Scheme programs.

	Inferior Scheme mode
	Like Inferior Lisp mode, but for Scheme.

Libraries of Lisp Code for Emacs

 Emacs Lisp code is stored in files whose names conventionally end in
.el. Such files are automatically visited in Emacs Lisp mode.
 Emacs Lisp code can be compiled into byte-code, which loads faster,
takes up less space, and executes faster. By convention, compiled
Emacs Lisp code goes in a separate file whose name ends in
‘.elc’. For example, the compiled code for foo.el goes in
foo.elc. See See section ``Byte Compilation'' in the Emacs Lisp Reference Manual.
 To load an Emacs Lisp file, type M-x load-file. This
command reads a file name using the minibuffer, and executes the
contents of that file as Emacs Lisp code. It is not necessary to
visit the file first; this command reads the file directly from disk,
not from an existing Emacs buffer.
 If an Emacs Lisp file is installed in the Emacs Lisp load path
(defined below), you can load it by typing M-x load-library,
instead of using M-x load-file. The M-x load-library
command prompts for a library name rather than a file name; it
searches through each directory in the Emacs Lisp load path, trying to
find a file matching that library name. If the library name is
‘foo’, it tries looking for files named
foo.elc, foo.el, and lastly just
foo; the first one found is loaded. This command prefers
.elc files over .el files because compiled files load
and run faster. If it finds that lib.el is newer than
lib.elc, it issues a warning, in case someone made
changes to the .el file and forgot to recompile it, but loads
the .elc file anyway. (Due to this behavior, you can save
unfinished edits to Emacs Lisp source files, and not recompile until
your changes are ready for use.)
Emacs Lisp programs usually load Emacs Lisp files using the
load function. This is similar to load-library, but is
lower-level and accepts additional arguments. See See section ``How Programs Do Loading'' in the Emacs Lisp Reference Manual.
 The Emacs Lisp load path is specified by the variable
load-path. Its value should be a list of directory names
(strings). These directories are searched, in the specified order, by
the M-x load-library command, the lower-level load
function, and other Emacs functions that find Emacs Lisp libraries. A
list entry in load-path can also have the special value
nil, which stands for the current default directory, but it is
almost always a bad idea to use this. (If you find yourself wishing
that nil were in the list, most likely what you really want is
to use M-x load-file.)
The default value of load-path is a list of directories where
the Lisp code for Emacs itself is stored. If you have libraries of
your own in another directory, you can add that directory to the load
path. Unlike most other variables described in this manual,
load-path cannot be changed via the Customize interface
(see the section called “Easy Customization Interface”), but you can add a directory to it by
putting a line like this in your init file (see the section called “The Emacs Initialization File”):

(add-to-list 'load-path "/path/to/my/lisp/library")

 Some commands are autoloaded: when you run them, Emacs
automatically loads the associated library first. For instance, the
M-x compile command (see the section called “Running Compilations under Emacs”) is autoloaded; if you
call it, Emacs automatically loads the compile library first.
In contrast, the command M-x recompile is not autoloaded, so it
is unavailable until you load the compile library.
 By default, Emacs refuses to load compiled Lisp files which were
compiled with XEmacs, a modified versions of Emacs—they can cause
Emacs to crash. Set the variable load-dangerous-libraries to
t if you want to try loading them.

Evaluating Emacs Lisp Expressions

 Emacs Lisp mode is the major mode for editing Emacs Lisp. Its mode
command is M-x emacs-lisp-mode.
Emacs provides several commands for evaluating Emacs Lisp
expressions. You can use these commands in Emacs Lisp mode, to test
your Emacs Lisp code as it is being written. For example, after
re-writing a function, you can evaluate the function definition to
make it take effect for subsequent function calls. These commands are
also available globally, and can be used outside Emacs Lisp mode.
	M-:
	Read a single Emacs Lisp expression in the minibuffer, evaluate it,
and print the value in the echo area (eval-expression).

	C-x C-e
	Evaluate the Emacs Lisp expression before point, and print the value
in the echo area (eval-last-sexp).

	C-M-x (in Emacs Lisp mode), M-x eval-defun
	Evaluate the defun containing or after point, and print the value in
the echo area (eval-defun).

	M-x eval-region
	Evaluate all the Emacs Lisp expressions in the region.

	M-x eval-buffer
	Evaluate all the Emacs Lisp expressions in the buffer.

 M-: (eval-expression) reads an expression using the
minibuffer, and evaluates it. (Before evaluating the expression, the
current buffer switches back to the buffer that was current when you
typed M-:, not the minibuffer into which you typed the
expression.)
 The command C-x C-e (eval-last-sexp) evaluates the
Emacs Lisp expression preceding point in the buffer, and displays the
value in the echo area. When the result of an evaluation is an
integer, you can type C-x C-e a second time to display the value
of the integer result in additional formats (octal, hexadecimal, and
character).
If M-: or C-x C-e is given a prefix argument, it inserts
the value into the current buffer at point, rather than displaying it
in the echo area. The argument's value does not matter.
 The eval-defun command is bound to C-M-x in Emacs Lisp
mode. It evaluates the top-level Lisp expression containing or
following point, and prints the value in the echo area. In this
context, a top-level expression is referred to as a “defun”, but it
need not be an actual defun (function definition). In
particular, this command treats defvar expressions specially.
Normally, evaluating a defvar expression does nothing if the
variable it defines already has a value. But this command
unconditionally resets the variable to the initial value specified by
the defvar; this is convenient for debugging Emacs Lisp
programs. defcustom and defface expressions are treated
similarly. Note that the other commands documented in this section do
not have this special feature.
With a prefix argument, C-M-x instruments the function
definition for Edebug, the Emacs Lisp Debugger. See See section ``Instrumenting'' in the Emacs Lisp Reference Manual.
 The command M-x eval-region parses the text of the region as
one or more Lisp expressions, evaluating them one by one. M-x
eval-buffer is similar but evaluates the entire buffer.
 The customizable variables eval-expression-print-level and
eval-expression-print-length control the maximum depth and
length of lists to print in the result of the evaluation commands
before abbreviating them. eval-expression-debug-on-error
controls whether evaluation errors invoke the debugger when these
commands are used; its default is t.

Lisp Interaction Buffers

 When Emacs starts up, it contains a buffer named *scratch*,
which is provided for evaluating Emacs Lisp expressions interactively.
Its major mode is Lisp Interaction mode. You can also enable Lisp
Interaction mode by typing M-x lisp-interaction-mode.
 In the *scratch* buffer, and other Lisp Interaction mode
buffers, C-j (eval-print-last-sexp) evaluates the Lisp
expression before point, and inserts the value at point. Thus, as you
type expressions into the buffer followed by C-j after each
expression, the buffer records a transcript of the evaluated
expressions and their values. All other commands in Lisp Interaction
mode are the same as in Emacs Lisp mode.
 At startup, the *scratch* buffer contains a short message, in
the form of a Lisp comment, that explains what it is for. This
message is controlled by the variable initial-scratch-message,
which should be either a string, or nil (which means to
suppress the message).
 An alternative way of evaluating Emacs Lisp expressions
interactively is to use Inferior Emacs Lisp mode, which provides an
interface rather like Shell mode (see the section called “Shell Mode”) for evaluating
Emacs Lisp expressions. Type M-x ielm to create an
ielm buffer which uses this mode. For more information, see
that command's documentation.

Running an External Lisp

 Lisp mode is the major mode for editing programs written in
general-purpose Lisp dialects, such as Common Lisp. Its mode command
is M-x lisp-mode. Emacs uses Lisp mode automatically for files
whose names end in .l, .lsp, or .lisp.
 You can run an external Lisp session as a subprocess or
inferior process of Emacs, and pass expressions to it to be
evaluated. To begin an external Lisp session, type M-x
run-lisp. This runs the program named lisp, and sets it up
so that both input and output go through an Emacs buffer named
inferior-lisp. To change the name of the Lisp program run by
M-x run-lisp, change the variable inferior-lisp-program.
The major mode for the *lisp* buffer is Inferior Lisp mode,
which combines the characteristics of Lisp mode and Shell mode
(see the section called “Shell Mode”). To send input to the Lisp session, go to the
end of the *lisp* buffer and type the input, followed by
RET. Terminal output from the Lisp session is automatically
inserted in the buffer.
 When you edit a Lisp program in Lisp mode, you can type C-M-x
(lisp-eval-defun) to send an expression from the Lisp mode
buffer to a Lisp session that you had started with M-x run-lisp.
The expression sent is the top-level Lisp expression at or following
point. The resulting value goes as usual into the
inferior-lisp buffer. Note that the effect of C-M-x in
Lisp mode is thus very similar to its effect in Emacs Lisp mode
(see the section called “Evaluating Emacs Lisp Expressions”), except that the expression is sent to a different
Lisp environment instead of being evaluated in Emacs.
 The facilities for editing Scheme code, and for sending expressions
to a Scheme subprocess, are very similar. Scheme source files are
edited in Scheme mode, which can be explicitly enabled with M-x
scheme-mode. You can initiate a Scheme session by typing M-x
run-scheme (the buffer for interacting with Scheme is named
scheme), and send expressions to it by typing C-M-x.

Chapter 28. Maintaining Large Programs

This chapter describes Emacs features for maintaining large
programs. If you are maintaining a large Lisp program, then in
addition to the features described here, you may find
the ERT (“Emacs Lisp Regression Testing”) library useful
(see See section ``ERT'' in Emacs Lisp Regression Testing).
Version Control

 A version control system is a program that can record multiple
versions of a source file, storing information such as the creation
time of each version, who made it, and a description of what was
changed.
The Emacs version control interface is called VC. VC commands
work with several different version control systems; currently, it
supports GNU Arch, Bazaar, CVS, Git, Mercurial, Monotone, RCS,
SCCS/CSSC, and Subversion. Of these, the GNU project distributes CVS,
Arch, RCS, and Bazaar.
VC is enabled automatically whenever you visit a file governed by a
version control system. To disable VC entirely, set the customizable
variable vc-handled-backends to nil
(see the section called “Customizing VC”).
Introduction to Version Control

VC allows you to use a version control system from within Emacs,
integrating the version control operations smoothly with editing. It
provides a uniform interface for common operations in many version
control operations.
Some uncommon or intricate version control operations, such as
altering repository settings, are not supported in VC. You should
perform such tasks outside Emacs, e.g. via the command line.
This section provides a general overview of version control, and
describes the version control systems that VC supports. You can skip
this section if you are already familiar with the version control system
you want to use.
Understanding the problems it addresses

Version control systems provide you with three important
capabilities:
	Reversibility: the ability to back up to a previous state if you
discover that some modification you did was a mistake or a bad idea.

	Concurrency: the ability to have many people modifying the same
collection of files knowing that conflicting modifications can be
detected and resolved.

	History: the ability to attach historical data to your data,
such as explanatory comments about the intention behind each change to
it. Even for a programmer working solo, change histories are an
important aid to memory; for a multi-person project, they are a
vitally important form of communication among developers.

Supported Version Control Systems

 VC currently works with many different version control systems,
which it refers to as back ends:
	SCCS was the first version control system ever built, and was long ago
superseded by more advanced ones. VC compensates for certain features
missing in SCCS (e.g. tag names for releases) by implementing them
itself. Other VC features, such as multiple branches, are simply
unavailable. Since SCCS is non-free, we recommend avoiding it.

	CSSC is a free replacement for SCCS. You should use CSSC only if, for
some reason, you cannot use a more recent and better-designed version
control system.

	RCS is the free version control system around which VC was initially
built. It is relatively primitive: it cannot be used over the
network, and works at the level of individual files. Almost
everything you can do with RCS can be done through VC.

	CVS is the free version control system that was, until recently (circa
2008), used by the majority of free software projects. Nowadays, it
is slowly being superseded by newer systems. CVS allows concurrent
multi-user development either locally or over the network. Unlike
newer systems, it lacks support for atomic commits and file
moving/renaming. VC supports all basic editing operations under CVS.

	Subversion (svn) is a free version control system designed to be
similar to CVS but without its problems (e.g., it supports atomic
commits of filesets, and versioning of directories, symbolic links,
meta-data, renames, copies, and deletes).

	GNU Arch is one of the earliest decentralized version control
systems (the other being Monotone). See the section called “Concepts of Version Control”, for a
description of decentralized version control systems. It is no longer
under active development, and has been deprecated in favor of Bazaar.

	Git is a decentralized version control system originally invented by
Linus Torvalds to support development of Linux (his kernel). VC
supports many common Git operations, but others, such as repository
syncing, must be done from the command line.

	Mercurial (hg) is a decentralized version control system broadly
resembling Git. VC supports most Mercurial commands, with the
exception of repository sync operations.

	Bazaar (bzr) is a decentralized version control system that supports
both repository-based and decentralized versioning. VC supports most
basic editing operations under Bazaar.

Concepts of Version Control

 When a file is under version control, we say that it is
registered in the version control system. The system has a
repository which stores both the file's present state and its
change history—enough to reconstruct the current version or any
earlier version. The repository also contains other information, such
as log entries that describe the changes made to each file.
 The copy of a version-controlled file that you actually edit is
called the work file. You can change each work file as you
would an ordinary file. After you are done with a set of changes, you
may commit (or check in) the changes; this records the
changes in the repository, along with a descriptive log entry.
 A directory tree of work files is called a working tree.
 Each commit creates a new revision in the repository. The
version control system keeps track of all past revisions and the
changes that were made in each revision. Each revision is named by a
revision ID, whose format depends on the version control system;
in the simplest case, it is just an integer.
To go beyond these basic concepts, you will need to understand three
aspects in which version control systems differ. As explained in the
next three sections, they can be lock-based or merge-based; file-based
or changeset-based; and centralized or decentralized. VC handles all
these modes of operation, but it cannot hide the differences.

Merge-based vs lock-based Version Control

A version control system typically has some mechanism to coordinate
between users who want to change the same file. There are two ways to
do this: merging and locking.
 In a version control system that uses merging, each user may modify
a work file at any time. The system lets you merge your work
file, which may contain changes that have not been committed, with the
latest changes that others have committed.
 Older version control systems use a locking scheme instead.
Here, work files are normally read-only. To edit a file, you ask the
version control system to make it writable for you by locking
it; only one user can lock a given file at any given time. This
procedure is analogous to, but different from, the locking that Emacs
uses to detect simultaneous editing of ordinary files
(see the section called “Protection against Simultaneous Editing”). When you commit your changes, that unlocks
the file, and the work file becomes read-only again. Other users may
then lock the file to make their own changes.
Both locking and merging systems can have problems when multiple
users try to modify the same file at the same time. Locking systems
have lock conflicts; a user may try to check a file out and be
unable to because it is locked. In merging systems, merge
conflicts happen when you commit a change to a file that conflicts
with a change committed by someone else after your checkout. Both
kinds of conflict have to be resolved by human judgment and
communication. Experience has shown that merging is superior to
locking, both in convenience to developers and in minimizing the
number and severity of conflicts that actually occur.
SCCS always uses locking. RCS is lock-based by default but can be
told to operate in a merging style. CVS and Subversion are
merge-based by default but can be told to operate in a locking mode.
Decentralized version control systems, such as GNU Arch, Git, and
Mercurial, are exclusively merging-based.
VC mode supports both locking and merging version control. The
terms “commit” and “update” are used in newer version control
systems; older lock-based systems use the terms “check in” and
“check out”. VC hides the differences between them as much as
possible.

Changeset-based vs File-based Version Control

 On SCCS, RCS, CVS, and other early version control systems, version
control operations are file-based: each file has its own comment
and revision history separate from that of all other files. Newer
systems, beginning with Subversion, are changeset-based: a
commit may include changes to several files, and the entire set of
changes is handled as a unit. Any comment associated with the change
does not belong to a single file, but to the changeset itself.
 Changeset-based version control is more flexible and powerful than
file-based version control; usually, when a change to multiple files
has to be reversed, it's good to be able to easily identify and remove
all of it.

Decentralized vs Centralized Repositories

 Early version control systems were designed around a
centralized model in which each project has only one repository
used by all developers. SCCS, RCS, CVS, and Subversion share this
kind of model. One of its drawbacks is that the repository is a choke
point for reliability and efficiency.
GNU Arch pioneered the concept of distributed or
decentralized version control, later implemented in Git,
Mercurial, and Bazaar. A project may have several different
repositories, and these systems support a sort of super-merge between
repositories that tries to reconcile their change histories. In
effect, there is one repository for each developer, and repository
merges take the place of commit operations.
VC helps you manage the traffic between your personal workfiles and
a repository. Whether the repository is a single master, or one of a
network of peer repositories, is not something VC has to care about.

Types of Log File

 Projects that use a version control system can have two types of log
for changes. One is the log maintained by the version control system:
each time you commit a change, you fill out a log entry for the
change (see the section called “Features of the Log Entry Buffer”). This is called the version control
log.
The other kind of log is the file ChangeLog (see the section called “Change Logs”). It provides a chronological record of all changes to a large
portion of a program—typically one directory and its subdirectories.
A small program would use one ChangeLog file; a large program
may have a ChangeLog file in each major directory.
See the section called “Change Logs”. Programmers have used change logs since long
before version control systems.
Changeset-based version systems typically maintain a changeset-based
modification log for the entire system, which makes change log files
somewhat redundant. One advantage that they retain is that it is
sometimes useful to be able to view the transaction history of a
single directory separately from those of other directories.
A project maintained with version control can use just the version
control log, or it can use both kinds of logs. It can handle some
files one way and some files the other way. Each project has its
policy, which you should follow.
When the policy is to use both, you typically want to write an entry
for each change just once, then put it into both logs. You can write
the entry in ChangeLog, then copy it to the log buffer with
C-c C-a when committing the change (see the section called “Features of the Log Entry Buffer”). Or you
can write the entry in the log buffer while committing the change, and
later use the C-x v a command to copy it to ChangeLog
(see the section called “Change Logs and VC”).

Version Control and the Mode Line

 When you visit a file that is under version control, Emacs indicates
this on the mode line. For example, ‘Bzr-1223’ says that Bazaar
is used for that file, and the current revision ID is 1223.
 The character between the back-end name and the revision ID
indicates the version control status of the work file. In a
merge-based version control system, a ‘-’ character indicates
that the work file is unmodified, and ‘:’ indicates that it has
been modified. ‘!’ indicates that the file contains conflicts as
result of a recent merge operation (see the section called “Merging Branches”), or that the file
was removed from the version control. Finally, ‘?’ means that
the file is under version control, but is missing from the working
tree.
In a lock-based system, ‘-’ indicates an unlocked file, and
‘:’ a locked file; if the file is locked by another user (for
instance, ‘jim’), that is displayed as ‘RCS:jim:1.3’.
‘@’ means that the file was locally added, but not yet committed
to the master repository.
On a graphical display, you can move the mouse over this mode line
indicator to pop up a “tool-tip”, which displays a more verbose
description of the version control status. Pressing Mouse-1
over the indicator pops up a menu of VC commands, identical to
‘Tools / Version Control’ on the menu bar.
 When Auto Revert mode (see the section called “Reverting a Buffer”) reverts a buffer that is
under version control, it updates the version control information in
the mode line. However, Auto Revert mode may not properly update this
information if the version control status changes without changes to
the work file, from outside the current Emacs session. If you set
auto-revert-check-vc-info to t, Auto Revert mode updates
the version control status information every
auto-revert-interval seconds, even if the work file itself is
unchanged. The resulting CPU usage depends on the version control
system, but is usually not excessive.

Basic Editing under Version Control

 Most VC commands operate on VC filesets. A VC fileset is a
collection of one or more files that a VC operation acts on. When you
type VC commands in a buffer visiting a version-controlled file, the
VC fileset is simply that one file. When you type them in a VC
Directory buffer, and some files in it are marked, the VC fileset
consists of the marked files (see the section called “VC Directory Mode”).
On modern changeset-based version control systems (see the section called “Changeset-based vs File-based Version Control”), VC commands handle multi-file VC filesets as a group.
For example, committing a multi-file VC fileset generates a single
revision, containing the changes to all those files. On older
file-based version control systems like CVS, each file in a multi-file
VC fileset is handled individually; for example, a commit generates
one revision for each changed file.
	C-x v v
	Perform the next appropriate version control operation on the current
VC fileset.

 The principal VC command is a multi-purpose command, C-x v v
(vc-next-action), which performs the “most appropriate”
action on the current VC fileset: either registering it with a version
control system, or committing it, or unlocking it, or merging changes
into it. The precise actions are described in detail in the following
subsections. You can use C-x v v either in a file-visiting
buffer or in a VC Directory buffer.
Note that VC filesets are distinct from the “named filesets” used
for viewing and visiting files in functional groups
(see the section called “Filesets”). Unlike named filesets, VC filesets are not named
and don't persist across sessions.
Basic Version Control with Merging

On a merging-based version control system (i.e. most modern ones;
see the section called “Merge-based vs lock-based Version Control”), C-x v v does the following:
	If there is more than one file in the VC fileset and the files have
inconsistent version control statuses, signal an error. (Note,
however, that a fileset is allowed to include both “newly-added”
files and “modified” files; see the section called “Registering a File for Version Control”.)

	If none of the files in the VC fileset are registered with a version
control system, register the VC fileset, i.e. place it under version
control. See the section called “Registering a File for Version Control”. If Emacs cannot find a system to
register under, it prompts for a repository type, creates a new
repository, and registers the VC fileset with it.

	If every work file in the VC fileset is unchanged, do nothing.

	If every work file in the VC fileset has been modified, commit the
changes. To do this, Emacs pops up a *vc-log* buffer; type the
desired log entry for the new revision, followed by C-c C-c to
commit. See the section called “Features of the Log Entry Buffer”.
If committing to a shared repository, the commit may fail if the
repository that has been changed since your last update. In that
case, you must perform an update before trying again. On a
decentralized version control system, use C-x v + (see the section called “Pulling Changes into a Branch”) or C-x v m (see the section called “Merging Branches”). On a centralized version
control system, type C-x v v again to merge in the repository
changes.

	Finally, if you are using a centralized version control system, check
if each work file in the VC fileset is up-to-date. If any file has
been changed in the repository, offer to update it.

These rules also apply when you use RCS in its “non-locking” mode,
except that changes are not automatically merged from the repository.
Nothing informs you if another user has committed changes in the same
file since you began editing it; when you commit your revision, his
changes are removed (however, they remain in the repository and are
thus not irrevocably lost). Therefore, you must verify that the
current revision is unchanged before committing your changes. In
addition, locking is possible with RCS even in this mode: C-x v
v with an unmodified file locks the file, just as it does with RCS in
its normal locking mode (see the section called “Basic Version Control with Locking”).

Basic Version Control with Locking

On a locking-based version control system (such as SCCS, and RCS in
its default mode), C-x v v does the following:
	If there is more than one file in the VC fileset and the files have
inconsistent version control statuses, signal an error.

	If each file in the VC fileset is not registered with a version
control system, register the VC fileset. See the section called “Registering a File for Version Control”. If
Emacs cannot find a system to register under, it prompts for a
repository type, creates a new repository, and registers the VC
fileset with it.

	If each file is registered and unlocked, lock it and make it writable,
so that you can begin to edit it.

	If each file is locked by you and contains changes, commit the
changes. To do this, Emacs pops up a *vc-log* buffer; type the
desired log entry for the new revision, followed by C-c C-c to
commit (see the section called “Features of the Log Entry Buffer”).

	If each file is locked by you, but you have not changed it, release
the lock and make the file read-only again.

	If each file is locked by another user, ask whether you want to
“steal the lock”. If you say yes, the file becomes locked by you,
and a warning message is sent to the user who had formerly locked the
file.

These rules also apply when you use CVS in locking mode, except
that CVS does not support stealing locks.

Advanced Control in C-x v v

 When you give a prefix argument to vc-next-action (C-u
C-x v v), it still performs the next logical version control
operation, but accepts additional arguments to specify precisely how
to do the operation.
	You can specify the name of a version control system. This is useful
if the fileset can be managed by more than one version control system,
and Emacs fails to detect the correct one.

	Otherwise, if using CVS or RCS, you can specify a revision ID.
If the fileset is modified (or locked), this makes Emacs commit with
that revision ID. You can create a new branch by supplying an
appropriate revision ID (see the section called “Version Control Branches”).
If the fileset is unmodified (and unlocked), this checks the specified
revision into the working tree. You can also specify a revision on
another branch by giving its revision or branch ID (see the section called “Switching between Branches”). An empty argument (i.e. C-u C-x v v RET)
checks out the latest (“head”) revision on the current branch.
This signals an error on a decentralized version control system.
Those systems do not let you specify your own revision IDs, nor do
they use the concept of “checking out” individual files.

Features of the Log Entry Buffer

 When you tell VC to commit a change, it pops up a buffer named
vc-log. In this buffer, you should write a log entry
describing the changes you have made (see the section called “Understanding the problems it addresses”).
After you are done, type C-c C-c (log-edit-done) to exit
the buffer and commit the change, together with your log entry.
 The major mode for the *vc-log* buffer is Log Edit mode, a
variant of Text mode (see the section called “Text Mode”). On entering Log Edit mode,
Emacs runs the hooks text-mode-hook and vc-log-mode-hook
(see the section called “Hooks”).
In the *vc-log* buffer, you can write one or more header
lines, specifying additional information to be supplied to the
version control system. Each header line must occupy a single line at
the top of the buffer; the first line that is not a header line is
treated as the start of the log entry. For example, the following
header line states that the present change was not written by you, but
by another developer:

Author: J. R. Hacker <jrh@example.com>

Apart from the ‘Author’ header, Emacs recognizes the headers
‘Date’ (a manually-specified commit time) and ‘Fixes’ (a
reference to a bug fixed by the change). Not all version control
systems recognize all headers: Bazaar recognizes all three headers,
while Git, Mercurial, and Monotone recognize only ‘Author’ and
‘Date’. If you specify a header for a system that does not
support it, the header is treated as part of the log entry.
 While in the *vc-log* buffer, the “current VC fileset” is
considered to be the fileset that will be committed if you type
C-c C-c. To view a list of the files in the VC fileset,
type C-c C-f (log-edit-show-files). To view a diff
of changes between the VC fileset and the version from which you
started editing (see the section called “Examining And Comparing Old Revisions”), type C-c C-d
(log-edit-show-diff).
 If the VC fileset includes one or more ChangeLog files
(see the section called “Change Logs”), type C-c C-a
(log-edit-insert-changelog) to pull the relevant entries into
the *vc-log* buffer. If the topmost item in each
ChangeLog was made under your user name on the current date,
this command searches that item for entries matching the file(s) to be
committed, and inserts them.
If you are using CVS or RCS, see the section called “Change Logs and VC”, for the
opposite way of working—generating ChangeLog entries from the Log
Edit buffer.
To abort a commit, just don't type C-c C-c in that
buffer. You can switch buffers and do other editing. As long as you
don't try to make another commit, the entry you were editing remains
in the *vc-log* buffer, and you can go back to that buffer at
any time to complete the commit.
 You can also browse the history of previous log entries to duplicate
a commit comment. This can be useful when you want to make several
commits with similar comments. The commands M-n, M-p,
M-s and M-r for doing this work just like the minibuffer
history commands (see the section called “Minibuffer History”), except that they are
used outside the minibuffer.

Registering a File for Version Control

	C-x v i
	Register the visited file for version control.

 The command C-x v i (vc-register) registers each
file in the current VC fileset, placing it under version control.
This is essentially equivalent to the action of C-x v v on an
unregistered VC fileset (see the section called “Basic Editing under Version Control”), except that if the
VC fileset is already registered, C-x v i signals an error
whereas C-x v v performs some other action.
To register a file, Emacs must choose a version control system. For
a multi-file VC fileset, the VC Directory buffer specifies the system
to use (see the section called “VC Directory Mode”). For a single-file VC fileset, if
the file's directory already contains files registered in a version
control system, or if the directory is part of a directory tree
controlled by a version control system, Emacs chooses that system. In
the event that more than one version control system is applicable,
Emacs uses the one that appears first in the variable
vc-handled-backends (see the section called “Customizing VC”).
If Emacs cannot find a version control system to register the file
under, it prompts for a repository type, creates a new repository, and
registers the file into that repository.
On most version control systems, registering a file with C-x v
i or C-x v v adds it to the “working tree” but not to the
repository. Such files are labeled as ‘added’ in the VC
Directory buffer, and show a revision ID of ‘@@’ in the mode
line. To make the registration take effect in the repository, you
must perform a commit (see the section called “Basic Editing under Version Control”). Note that a single
commit can include both file additions and edits to existing files.
On a locking-based version control system (see the section called “Merge-based vs lock-based Version Control”),
registering a file leaves it unlocked and read-only. Type C-x v
v to start editing it.

Examining And Comparing Old Revisions

	C-x v =
	Compare the work files in the current VC fileset with the versions you
started from (vc-diff). With a prefix argument, prompt for two
revisions of the current VC fileset and compare them. You can also
call this command from a Dired buffer (see Chapter 30, Dired, the Directory Editor).

	M-x vc-ediff
	Like C-x v =, but using Ediff. See See section ``Ediff'' in The Ediff Manual.

	C-x v D
	Compare the entire working tree to the revision you started from
(vc-root-diff). With a prefix argument, prompt for two
revisions and compare their trees.

	C-x v ~
	Prompt for a revision of the current file, and visit it in a separate
buffer (vc-revision-other-window).

	C-x v g
	Display an annotated version of the current file: for each line, show
the latest revision in which it was modified (vc-annotate).

 C-x v = (vc-diff) displays a diff which compares
each work file in the current VC fileset to the version(s) from which
you started editing. The diff is displayed in another window, in a
Diff mode buffer (see the section called “Diff Mode”) named *vc-diff*. The
usual Diff mode commands are available in this buffer. In particular,
the g (revert-buffer) command performs the file
comparison again, generating a new diff.
 To compare two arbitrary revisions of the current VC fileset, call
vc-diff with a prefix argument: C-u C-x v =. This
prompts for two revision IDs (see the section called “Concepts of Version Control”), and displays a
diff between those versions of the fileset. This will not work
reliably for multi-file VC filesets, if the version control system is
file-based rather than changeset-based (e.g. CVS), since then
revision IDs for different files would not be related in any
meaningful way.
Instead of the revision ID, some version control systems let you
specify revisions in other formats. For instance, under Bazaar you
can enter ‘date:yesterday’ for the argument to C-u C-x v =
(and related commands) to specify the first revision committed after
yesterday. See the documentation of the version control system for
details.
If you invoke C-x v = or C-u C-x v = from a Dired buffer
(see Chapter 30, Dired, the Directory Editor), the file listed on the current line is treated as the
current VC fileset.
 M-x vc-ediff works like C-x v =, except that it uses an
Ediff session. See See section ``Ediff'' in The Ediff Manual.
 C-x v D (vc-root-diff) is similar to C-x v =, but
it displays the changes in the entire current working tree (i.e. the
working tree containing the current VC fileset). If you invoke this
command from a Dired buffer, it applies to the working tree containing
the directory.
 You can customize the diff options that C-x v = and
C-x v D use for generating diffs. The options used are taken
from the first non-nil value amongst the variables
vc-backend-diff-switches, vc-diff-switches, and
diff-switches (see the section called “Comparing Files”), in that order. Here,
backend stands for the relevant version control system,
e.g. bzr for Bazaar. Since nil means to check the
next variable in the sequence, either of the first two may use the
value t to mean no switches at all. Most of the
vc-backend-diff-switches variables default to nil,
but some default to t; these are for version control systems
whose diff implementations do not accept common diff options,
such as Subversion.
 To directly examine an older version of a file, visit the work file
and type C-x v ~ revision RET
(vc-revision-other-window). This retrieves the file version
corresponding to revision, saves it to
filename.~revision~, and visits it in a separate
window.
 Many version control systems allow you to view files annotated
with per-line revision information, by typing C-x v g
(vc-annotate). This creates a new buffer (the “annotate
buffer”) displaying the file's text, with each line colored to show
how old it is. Red text is new, blue is old, and intermediate colors
indicate intermediate ages. By default, the color is scaled over the
full range of ages, such that the oldest changes are blue, and the
newest changes are red.
When you give a prefix argument to this command, Emacs reads two
arguments using the minibuffer: the revision to display and annotate
(instead of the current file contents), and the time span in days the
color range should cover.
From the annotate buffer, these and other color scaling options are
available from the ‘VC-Annotate’ menu. In this buffer, you can
also use the following keys to browse the annotations of past revisions,
view diffs, or view log entries:
	p
	Annotate the previous revision, i.e. the revision before the one
currently annotated. A numeric prefix argument is a repeat count, so
C-u 10 p would take you back 10 revisions.

	n
	Annotate the next revision, i.e. the revision after the one
currently annotated. A numeric prefix argument is a repeat count.

	j
	Annotate the revision indicated by the current line.

	a
	Annotate the revision before the one indicated by the current line.
This is useful to see the state the file was in before the change on
the current line was made.

	f
	Show in a buffer the file revision indicated by the current line.

	d
	Display the diff between the current line's revision and the previous
revision. This is useful to see what the current line's revision
actually changed in the file.

	D
	Display the diff between the current line's revision and the previous
revision for all files in the changeset (for VC systems that support
changesets). This is useful to see what the current line's revision
actually changed in the tree.

	l
	Show the log of the current line's revision. This is useful to see
the author's description of the changes in the revision on the current
line.

	w
	Annotate the working revision–the one you are editing. If you used
p and n to browse to other revisions, use this key to
return to your working revision.

	v
	Toggle the annotation visibility. This is useful for looking just at
the file contents without distraction from the annotations.

VC Change Log

	C-x v l
	Display the change history for the current fileset
(vc-print-log).

	C-x v L
	Display the change history for the current repository
(vc-print-root-log).

	C-x v I
	Display the changes that a pull operation will retrieve
(vc-log-incoming).

	C-x v O
	Display the changes that will be sent by the next push operation
(vc-log-outgoing).

 The command C-x v l (vc-print-log) displays a buffer
named *vc-change-log*, showing the history of changes made to
the current file, including who made the changes, the dates, and the
log entry for each change (these are the same log entries you would
enter via the *vc-log* buffer; see the section called “Features of the Log Entry Buffer”). Point is
centered at the revision of the file currently being visited. With a
prefix argument, the command prompts for the revision to center on,
and the maximum number of revisions to display.
If you call C-x v l from a VC Directory buffer (see the section called “VC Directory Mode”) or a Dired buffer (see Chapter 30, Dired, the Directory Editor), it applies to the
file listed on the current line.
 C-x v L (vc-print-root-log) displays a
vc-change-log buffer showing the history of the entire
version-controlled directory tree (RCS, SCCS, and CVS do not support
this feature). With a prefix argument, the command prompts for the
maximum number of revisions to display.
The C-x v L history is shown in a compact form, usually
showing only the first line of each log entry. However, you can type
RET (log-view-toggle-entry-display) in the
vc-change-log buffer to reveal the entire log entry for the
revision at point. A second RET hides it again.
On a decentralized version control system, the C-x v I
(vc-log-incoming) command displays a log buffer showing the
changes that will be applied, the next time you run the version
control system's “pull” command to get new revisions from another
repository (see the section called “Pulling Changes into a Branch”). This other repository is the default
one from which changes are pulled, as defined by the version control
system; with a prefix argument, vc-log-incoming prompts for a
specific repository. Similarly, C-x v O
(vc-log-outgoing) shows the changes that will be sent to
another repository, the next time you run the “push” command; with a
prefix argument, it prompts for a specific destination repository.
In the *vc-change-log* buffer, you can use the following keys
to move between the logs of revisions and of files, and to examine and
compare past revisions (see the section called “Examining And Comparing Old Revisions”):
	p
	Move to the previous revision entry. (Revision entries in the log
buffer are usually in reverse-chronological order, so the previous
revision-item usually corresponds to a newer revision.) A numeric
prefix argument is a repeat count.

	n
	Move to the next revision entry. A numeric prefix argument is a
repeat count.

	P
	Move to the log of the previous file, if showing logs for a multi-file
VC fileset. Otherwise, just move to the beginning of the log. A
numeric prefix argument is a repeat count.

	N
	Move to the log of the next file, if showing logs for a multi-file VC
fileset. A numeric prefix argument is a repeat count.

	a
	Annotate the revision on the current line (see the section called “Examining And Comparing Old Revisions”).

	e
	Modify the change comment displayed at point. Note that not all VC
systems support modifying change comments.

	f
	Visit the revision indicated at the current line.

	d
	Display a diff between the revision at point and the next earlier
revision, for the specific file.

	D
	Display the changeset diff between the revision at point and the next
earlier revision. This shows the changes to all files made in that
revision.

	RET
	In a compact-style log buffer (e.g. the one created by C-x v
L), toggle between showing and hiding the full log entry for the
revision at point.

Because fetching many log entries can be slow, the
vc-change-log buffer displays no more than 2000 revisions by
default. The variable vc-log-show-limit specifies this limit;
if you set the value to zero, that removes the limit. You can also
increase the number of revisions shown in an existing
vc-change-log buffer by clicking on the ‘Show 2X
entries’ or ‘Show unlimited entries’ buttons at the end of the
buffer. However, RCS, SCCS, and CVS do not support this feature.

Undoing Version Control Actions

	C-x v u
	Revert the work file(s) in the current VC fileset to the last revision
(vc-revert).

 If you want to discard all the changes you have made to the current
VC fileset, type C-x v u (vc-revert-buffer). This shows
you a diff between the work file(s) and the revision from which you
started editing, and asks for confirmation for discarding the changes.
If you agree, the fileset is reverted. If you don't want C-x v
u to show a diff, set the variable vc-revert-show-diff to
nil (you can still view the diff directly with C-x v =;
see the section called “Examining And Comparing Old Revisions”). Note that C-x v u cannot be reversed
with the usual undo commands (see the section called “Undo”), so use it with care.
On locking-based version control systems, C-x v u leaves files
unlocked; you must lock again to resume editing. You can also use
C-x v u to unlock a file if you lock it and then decide not to
change it.

VC Directory Mode

 The VC Directory buffer is a specialized buffer for viewing
the version control statuses of the files in a directory tree, and
performing version control operations on those files. In particular,
it is used to specify multi-file VC filesets for commands like
C-x v v to act on (see the section called “VC Directory Commands”).
 To use the VC Directory buffer, type C-x v d (vc-dir).
This reads a directory name using the minibuffer, and switches to a VC
Directory buffer for that directory. By default, the buffer is named
vc-dir. Its contents are described
in the section called “The VC Directory Buffer”.
The vc-dir command automatically detects the version control
system to be used in the specified directory. In the event that more
than one system is being used in the directory, you should invoke the
command with a prefix argument, C-u C-x v d; this prompts for
the version control system which the VC Directory buffer should use.
 In addition to the VC Directory buffer, Emacs has a similar facility
called PCL-CVS which is specialized for CVS. See See section ``About PCL-CVS'' in PCL-CVS --- The Emacs Front-End to CVS.
The VC Directory Buffer

The VC Directory buffer contains a list of version-controlled files
and their version control statuses. It lists files in the current
directory (the one specified when you called C-x v d) and its
subdirectories, but only those with a “noteworthy” status. Files
that are up-to-date (i.e. the same as in the repository) are
omitted. If all the files in a subdirectory are up-to-date, the
subdirectory is not listed either. As an exception, if a file has
become up-to-date as a direct result of a VC command, it is listed.
Here is an example of a VC Directory buffer listing:

 ./
 edited configure.ac
* added README
 unregistered temp.txt
 src/
* edited src/main.c

Two work files have been modified but not committed:
configure.ac in the current directory, and foo.c in the
src/ subdirectory. The file named README has been added
but is not yet committed, while temp.txt is not under version
control (see the section called “Registering a File for Version Control”).
The ‘*’ characters next to the entries for README and
src/main.c indicate that the user has marked out these files as
the current VC fileset
(see the section called “VC Directory Commands”).
The above example is typical for a decentralized version control
system like Bazaar, Git, or Mercurial. Other systems can show other
statuses. For instance, CVS shows the ‘needs-update’ status if
the repository has changes that have not been applied to the work
file. RCS and SCCS show the name of the user locking a file as its
status.
 On CVS and Subversion, the vc-dir command normally contacts
the repository, which may be on a remote machine, to check for
updates. If you change the variable vc-stay-local or
vc-cvs-stay-local (for CVS) to nil (see the section called “Options specific for CVS”), then Emacs avoids contacting a remote repository when
generating the VC Directory buffer (it will still contact it when
necessary, e.g. when doing a commit). This may be desirable if you
are working offline or the network is slow.
 The VC Directory buffer omits subdirectories listed in the variable
vc-directory-exclusion-list. Its default value contains
directories that are used internally by version control systems.

VC Directory Commands

Emacs provides several commands for navigating the VC Directory
buffer, and for “marking” files as belonging to the current VC
fileset.
	n, SPC
	Move point to the next entry (vc-dir-next-line).

	p
	Move point to the previous entry (vc-dir-previous-line).

	TAB
	Move to the next directory entry (vc-dir-next-directory).

	S-TAB
	Move to the previous directory entry
(vc-dir-previous-directory).

	RET, f
	Visit the file or directory listed on the current line
(vc-dir-find-file).

	o
	Visit the file or directory on the current line, in a separate window
(vc-dir-find-file-other-window).

	m
	Mark the file or directory on the current line (vc-dir-mark),
putting it in the current VC fileset. If the region is active, mark
all files in the region.
A file cannot be marked with this command if it is already in a marked
directory, or one of its subdirectories. Similarly, a directory
cannot be marked with this command if any file in its tree is marked.

	M
	If point is on a file entry, mark all files with the same status; if
point is on a directory entry, mark all files in that directory tree
(vc-dir-mark-all-files). With a prefix argument, mark all
listed files and directories.

	q
	Bury the VC Directory buffer, and delete its window if the window was
created just for that buffer.

	u
	Unmark the file or directory on the current line. If the region is
active, unmark all the files in the region (vc-dir-unmark).

	U
	If point is on a file entry, unmark all files with the same status; if
point is on a directory entry, unmark all files in that directory tree
(vc-dir-unmark-all-files). With a prefix argument, unmark all
files and directories.

	x
	Hide files with ‘up-to-date’ status
(vc-dir-hide-up-to-date).

	q
	Quit the VC Directory buffer, and bury it (quit-window).

 While in the VC Directory buffer, all the files that you mark with
m (vc-dir-mark) or M (vc-dir-mark) are in
the current VC fileset. If you mark a directory entry with m,
all the listed files in that directory tree are in the current VC
fileset. The files and directories that belong to the current VC
fileset are indicated with a ‘*’ character in the VC Directory
buffer, next to their VC status. In this way, you can set up a
multi-file VC fileset to be acted on by VC commands like C-x v
v (see the section called “Basic Editing under Version Control”), C-x v = (see the section called “Examining And Comparing Old Revisions”), and C-x v u (see the section called “Undoing Version Control Actions”).
The VC Directory buffer also defines some single-key shortcuts for
VC commands with the C-x v prefix: =, +, l,
i, and v.
For example, you can commit a set of edited files by opening a VC
Directory buffer, where the files are listed with the ‘edited’
status; marking the files; and typing v or C-x v v
(vc-next-action). If the version control system is
changeset-based, Emacs will commit the files in a single revision.
While in the VC Directory buffer, you can also perform search and
replace on the current VC fileset, with the following commands:
	S
	Search the fileset (vc-dir-search).

	Q
	Do a regular expression query replace on the fileset
(vc-dir-query-replace-regexp).

	M-s a C-s
	Do an incremental search on the fileset (vc-dir-isearch).

	M-s a C-M-s
	Do an incremental regular expression search on the fileset
(vc-dir-isearch-regexp).

Apart from acting on multiple files, these commands behave much like
their single-buffer counterparts (see Chapter 15, Searching and Replacement).
 The above commands are also available via the menu bar, and via a
context menu invoked by Mouse-2. Furthermore, some VC backends
use the menu to provide extra backend-specific commands. For example,
Git and Bazaar allow you to manipulate stashes and shelves
(where are a way to temporarily put aside uncommitted changes, and
bring them back at a later time).

Version Control Branches

 One use of version control is to support multiple independent lines
of development, which are called branches. Branches are used
for maintaining separate “stable” and “development” versions of a
program, and for developing unrelated features in isolation from one
another.
VC's support for branch operations is currently fairly limited. For
decentralized version control systems, it provides commands for
updating one branch with the contents of another, and for
merging the changes made to two different branches
(see the section called “Merging Branches”). For centralized version control systems, it
supports checking out different branches and committing into new or
different branches.
Switching between Branches

The various version control systems differ in how branches are
implemented, and these differences cannot be entirely concealed by VC.
On some decentralized version control systems, including Bazaar and
Mercurial in its normal mode of operation, each branch has its own
working directory tree, so switching between branches just involves
switching directories. On Git, switching between branches is done
using the git branch command, which changes the contents of
the working tree itself.
On centralized version control systems, you can switch between
branches by typing C-u C-x v v in an up-to-date work file
(see the section called “Advanced Control in C-x v v”), and entering the revision ID for a
revision on another branch. On CVS, for instance, revisions on the
trunk (the main line of development) normally have IDs of the
form 1.1, 1.2, 1.3, …, while the first branch created from (say)
revision 1.2 has revision IDs 1.2.1.1, 1.2.1.2, …, the second
branch created from revision 1.2 has revision IDs 1.2.2.1, 1.2.2.2,
…, and so forth. You can also specify the branch ID,
which is a branch revision ID omitting its final component
(e.g. 1.2.1), to switch to the latest revision on that branch.
On a locking-based system, switching to a different branch also
unlocks (write-protects) the working tree.
Once you have switched to a branch, VC commands will apply to that
branch until you switch away; for instance, any VC filesets that you
commit will be committed to that specific branch.

Pulling Changes into a Branch

	C-x v +
	On a decentralized version control system, update the current branch
by “pulling in” changes from another location.
On a centralized version control system, update the current VC
fileset.

 On a decentralized version control system, the command C-x v +
(vc-pull) updates the current branch and working tree. It is
typically used to update a copy of a remote branch. If you supply a
prefix argument, the command prompts for the exact version control
command to use, which lets you specify where to pull changes from.
Otherwise, it pulls from a default location determined by the version
control system.
Amongst decentralized version control systems, C-x v + is
currently supported only by Bazaar, Git, and Mercurial. On Bazaar, it
calls bzr pull for ordinary branches (to pull from a master
branch into a mirroring branch), and bzr update for a bound
branch (to pull from a central repository). On Git, it calls
git pull to fetch changes from a remote repository and merge
it into the current branch. On Mercurial, it calls hg pull
-u to fetch changesets from the default remote repository and update
the working directory.
Prior to pulling, you can use C-x v I (vc-log-incoming)
to view a log buffer of the changes to be applied. See the section called “VC Change Log”.
On a centralized version control system like CVS, C-x v +
updates the current VC fileset from the repository.

Merging Branches

	C-x v m
	On a decentralized version control system, merge changes from another
branch into the current one.
On a centralized version control system, merge changes from another
branch into the current VC fileset.

While developing a branch, you may sometimes need to merge in
changes that have already been made in another branch. This is not a
trivial operation, as overlapping changes may have been made to the
two branches.
On a decentralized version control system, merging is done with the
command C-x v m (vc-merge). On Bazaar, this prompts for
the exact arguments to pass to bzr merge, offering a
sensible default if possible. On Git, this prompts for the name of a
branch to merge from, with completion (based on the branch names known
to the current repository). The output from running the merge command
is shown in a separate buffer.
On a centralized version control system like CVS, C-x v m
prompts for a branch ID, or a pair of revision IDs (see the section called “Switching between Branches”); then it finds the changes from that branch, or the changes
between the two revisions you specified, and merges those changes into
the current VC fileset. If you just type RET, Emacs simply
merges any changes that were made on the same branch since you checked
the file out.
 Immediately after performing a merge, only the working tree is
modified, and you can review the changes produced by the merge with
C-x v D and related commands (see the section called “Examining And Comparing Old Revisions”). If the
two branches contained overlapping changes, merging produces a
conflict; a warning appears in the output of the merge command,
and conflict markers are inserted into each affected work file,
surrounding the two sets of conflicting changes. You must then
resolve the conflict by editing the conflicted files. Once you are
done, the modified files must be committed in the usual way for the
merge to take effect (see the section called “Basic Editing under Version Control”).

Creating New Branches

On centralized version control systems like CVS, Emacs supports
creating new branches as part of a commit operation. When committing
a modified VC fileset, type C-u C-x v v (vc-next-action
with a prefix argument; see the section called “Advanced Control in C-x v v”). Then Emacs prompts
for a revision ID for the new revision. You should specify a suitable
branch ID for a branch starting at the current revision. For example,
if the current revision is 2.5, the branch ID should be 2.5.1, 2.5.2,
and so on, depending on the number of existing branches at that point.
To create a new branch at an older revision (one that is no longer
the head of a branch), first select that revision (see the section called “Switching between Branches”). Your procedure will then differ depending on whether you
are using a locking or merging-based VCS.
On a locking VCS, you will need to lock the old revision branch with
C-x v v. You'll be asked to confirm, when you lock the old
revision, that you really mean to create a new branch—if you say no,
you'll be offered a chance to lock the latest revision instead. On a
merging-based VCS you will skip this step.
Then make your changes and type C-x v v again to commit a new
revision. This creates a new branch starting from the selected
revision.
After the branch is created, subsequent commits create new revisions
on that branch. To leave the branch, you must explicitly select a
different revision with C-u C-x v v.

Miscellaneous Commands and Features of VC

This section explains the less-frequently-used features of VC.
Change Logs and VC

If you use RCS or CVS for a program with a ChangeLog file
(see the section called “Change Logs”),
you can generate change log entries from the version control log
entries of previous commits.
Note that this only works with RCS or CVS. This procedure would be
particularly incorrect on a modern changeset-based version control
system, where changes to the ChangeLog file would normally be
committed as part of a changeset. In that case, you should write the
change log entries first, then pull them into the ‘*vc-log*’
buffer when you commit
(see the section called “Features of the Log Entry Buffer”).
	C-x v a
	Visit the current directory's ChangeLog file and, for
registered files in that directory, create new entries for versions
committed since the most recent change log entry
(vc-update-change-log).

	C-u C-x v a
	As above, but only find entries for the current buffer's file.

For example, suppose the first line of ChangeLog is dated
1999-04-10, and that the only check-in since then was by Nathaniel
Bowditch to rcs2log on 1999-05-22 with log entry ‘Ignore
log messages that start with `#'.’. Then C-x v a inserts this
ChangeLog entry:
1999-05-22 Nathaniel Bowditch <nat@apn.org>

 * rcs2log: Ignore log messages that start with `#'.

If the version control log entry specifies a function name (in
parenthesis at the beginning of a line), that is reflected in the
ChangeLog entry. For example, if a log entry for vc.el
is ‘(vc-do-command): Check call-process status.’, the
ChangeLog entry is:

1999-05-06 Nathaniel Bowditch <nat@apn.org>

 * vc.el (vc-do-command): Check call-process status.

When C-x v a adds several change log entries at once, it
groups related log entries together if they all are checked in by the
same author at nearly the same time. If the log entries for several
such files all have the same text, it coalesces them into a single
entry.

Deleting and Renaming Version-Controlled Files

	M-x vc-delete-file
	Prompt for a file name, delete the file from the working tree, and
schedule the deletion for committing.

	M-x vc-rename-file
	Prompt for two file names, VAR and OLD, rename them in the
working tree, and schedule the renaming for committing.

 If you wish to delete a version-controlled file, use the command
M-x vc-delete-file. This prompts for the file name, and deletes
it via the version control system. The file is removed from the
working tree, and in the VC Directory buffer
(see the section called “VC Directory Mode”),
it is displayed with the ‘removed’ status. When you commit it,
the deletion takes effect in the repository.
 To rename a version-controlled file, type M-x vc-rename-file.
This prompts for two arguments: the name of the file you wish to
rename, and the new name; then it performs the renaming via the
version control system. The renaming takes effect immediately in the
working tree, and takes effect in the repository when you commit the
renamed file.
On modern version control systems that have built-in support for
renaming, the renamed file retains the full change history of the
original file. On CVS and older version control systems, the
vc-rename-file command actually works by creating a copy of the
old file under the new name, registering it, and deleting the old
file. In this case, the change history is not preserved.

Revision Tags

 Most version control systems allow you to apply a revision tag
to a specific version of a version-controlled tree. On modern
changeset-based version control systems, a revision tag is simply a
symbolic name for a particular revision. On older file-based systems
like CVS, each tag is added to the entire set of version-controlled
files, allowing them to be handled as a unit. Revision tags are
commonly used to identify releases that are distributed to users.
There are two basic commands for tags; one makes a tag with a given
name, the other retrieves a named tag.

	C-x v s name RET
	Define the working revision of every registered file in or under the
current directory as a tag named name
(vc-create-tag).

	C-x v r name RET
	For all registered files at or below the current directory level,
retrieve the tagged revision name. This command will switch to a
branch if name is a branch name and your VCS distinguishes
branches from tags. (vc-retrieve-tag).
This command reports an error if any files are locked at or below the
current directory, without changing anything; this is to avoid
overwriting work in progress.

You can give a tag or branch name as an argument to C-x v = or
C-x v ~
(see the section called “Examining And Comparing Old Revisions”).
Thus, you can use it to compare a tagged version against the current files,
or two tagged versions against each other.
On SCCS, VC implements tags itself; these tags are visible only
through VC. Most later systems (including CVS, Subversion, bzr, git,
and hg) have a native tag facility, and VC uses it where available;
those tags will be visible even when you bypass VC.
In a file-oriented VCS, when you rename a registered file you need
to rename its master along with it; the command vc-rename-file
will do this automatically. If you are using SCCS, you must also
update the records of the tag, to mention the file by its new name
(vc-rename-file does this, too). An old tag that refers to a
master file that no longer exists under the recorded name is invalid;
VC can no longer retrieve it. It would be beyond the scope of this
manual to explain enough about RCS and SCCS to explain how to update
the tags by hand. Using vc-rename-file makes the tag remain
valid for retrieval, but it does not solve all problems. For example,
some of the files in your program probably refer to others by name.
At the very least, the makefile probably mentions the file that you
renamed. If you retrieve an old tag, the renamed file is retrieved
under its new name, which is not the name that the makefile expects.
So the program won't really work as retrieved.

Inserting Version Control Headers

On Subversion, CVS, RCS, and SCCS, you can put certain special
strings called version headers into a work file. When the file
is committed, the version control system automatically puts the
revision number, the name of the user who made the commit, and other
relevant information into the version header.
 VC does not normally use the information in the version headers. As
an exception, when using RCS, Emacs uses the version header, if there
is one, to determine the file version, since it is often more reliable
than the RCS master file. To inhibit using the version header this
way, change the variable vc-consult-headers to nil.
 To insert a suitable header string into the current buffer, type
C-x v h (vc-insert-headers). This command works only on
Subversion, CVS, RCS, and SCCS. The variable
vc-backend-header contains the list of keywords to insert
into the version header; for instance, CVS uses vc-cvs-header,
whose default value is '("\$Id\$"). (The extra backslashes
prevent the string constant from being interpreted as a header, if the
Emacs Lisp file defining it is maintained with version control.) The
C-x v h command inserts each keyword in the list on a new line
at point, surrounded by tabs, and inside comment delimiters if
necessary.
 The variable vc-static-header-alist specifies further strings
to add based on the name of the buffer. Its value should be a list of
elements of the form (regexp . format). Whenever
regexp matches the buffer name, format is also inserted as
part of the version header. A ‘%s’ in format is replaced
with the file's version control type.

Customizing VC

 The variable vc-handled-backends determines which version
control systems VC should handle. The default value is (RCS CVS
SVN SCCS Bzr Git Hg Mtn Arch), so it contains all the version systems
that are currently supported. If you want VC to ignore one or more of
these systems, exclude its name from the list. To disable VC
entirely, set this variable to nil.
The order of systems in the list is significant: when you visit a
file registered in more than one system, VC uses the system that comes
first in vc-handled-backends by default. The order is also
significant when you register a file for the first time
(see the section called “Registering a File for Version Control”).
General Options

 Emacs normally does not save backup files for source files that are
maintained with version control. If you want to make backup files even
for files that use version control, set the variable
vc-make-backup-files to a non-nil value.
 Editing a version-controlled file through a symbolic link may cause
unexpected results, if you are unaware that the underlying file is
version-controlled. The variable vc-follow-symlinks controls
what Emacs does if you try to visit a symbolic link pointing to a
version-controlled file. If the value is ask (the default),
Emacs asks for confirmation. If it is nil, Emacs just displays
a warning message. If it is t, Emacs automatically follows the
link and visits the real file instead.
 If vc-suppress-confirm is non-nil, then C-x v v
and C-x v i can save the current buffer without asking, and
C-x v u also operates without asking for confirmation.
 VC mode does much of its work by running the shell commands for the
appropriate version control system. If vc-command-messages is
non-nil, VC displays messages to indicate which shell commands
it runs, and additional messages when the commands finish.
 You can specify additional directories to search for version control
programs by setting the variable vc-path. These directories
are searched before the usual search path. It is rarely necessary to
set this variable, because VC normally finds the proper files
automatically.

Options for RCS and SCCS

 By default, RCS uses locking to coordinate the activities of several
users, but there is a mode called non-strict locking in which
you can check-in changes without locking the file first. Use
‘rcs -U’ to switch to non-strict locking for a particular file,
see the rcs manual page for details.
When deducing the version control state of an RCS file, VC first
looks for an RCS version header string in the file (see the section called “Inserting Version Control Headers”). If there is no header string, VC normally looks at the
file permissions of the work file; this is fast. But there might be
situations when the file permissions cannot be trusted. In this case
the master file has to be consulted, which is rather expensive. Also
the master file can only tell you if there's any lock on the
file, but not whether your work file really contains that locked
version.
 You can tell VC not to use version headers to determine the file
status by setting vc-consult-headers to nil. VC then
always uses the file permissions (if it is supposed to trust them), or
else checks the master file.
 You can specify the criterion for whether to trust the file
permissions by setting the variable vc-mistrust-permissions.
Its value can be t (always mistrust the file permissions and
check the master file), nil (always trust the file
permissions), or a function of one argument which makes the decision.
The argument is the directory name of the RCS subdirectory. A
non-nil value from the function says to mistrust the file
permissions. If you find that the file permissions of work files are
changed erroneously, set vc-mistrust-permissions to t.
Then VC always checks the master file to determine the file's status.
VC determines the version control state of files under SCCS much as
with RCS. It does not consider SCCS version headers, though. Thus,
the variable vc-mistrust-permissions affects SCCS use, but
vc-consult-headers does not.

Options specific for CVS

 You can specify additional command line options to pass to all CVS
operations in the variable vc-cvs-global-switches. These
switches are inserted immediately after the cvs command, before
the name of the operation to invoke.
 When using a CVS repository on a remote machine, VC can try keeping
network interactions to a minimum. This is controlled by the variable
vc-cvs-stay-local. There is another variable,
vc-stay-local, which enables the feature also for other back
ends that support it, including CVS. In the following, we will talk
only about vc-cvs-stay-local, but everything applies to
vc-stay-local as well.
If vc-cvs-stay-local is t (the default), VC determines
the version control status of each file using only the entry in the
local CVS subdirectory and the information returned by previous CVS
commands. As a consequence, if you have modified a file and somebody
else has checked in other changes, you will not be notified of the
conflict until you try to commit.
If you change vc-cvs-stay-local to nil, VC queries the
remote repository before it decides what to do in
vc-next-action (C-x v v), just as it does for local
repositories.
You can also set vc-cvs-stay-local to a regular expression
that is matched against the repository host name; VC then stays local
only for repositories from hosts that match the pattern.
 When using a remote repository, Emacs normally makes automatic
version backups of the original versions of each edited file. These
local backups are made whenever you save the first changes to a file,
and they are removed after you commit your changes to the repository.
(Note that these are not the same as ordinary Emacs backup files;
see the section called “Backup Files”.)
Commands like C-x v = and C-x v u make use of automatic
version backups, if possible, to avoid having to access the network.
Setting vc-cvs-stay-local to nil disables the making
of automatic version backups.
 Automatic version backups have names of the form
file.~version.~. This is similar to the name
that C-x v ~ saves old versions to
(see the section called “Examining And Comparing Old Revisions”),
except for the additional dot (‘.’) after the version. The
relevant VC commands can use both kinds of version backups. The main
difference is that the “manual” version backups made by C-x v
~ are not deleted automatically when you commit.
 CVS does not use locking by default, but there are ways to enable
locking-like behavior using its CVSREAD or watch feature;
see the CVS documentation for details. If that case, you can use
C-x v v in Emacs to toggle locking, as you would for a
locking-based version control system
(see the section called “Basic Version Control with Locking”).

Change Logs

 Many software projects keep a change log. This is a file,
normally named ChangeLog, containing a chronological record of
when and how the program was changed. Sometimes, there are several
change log files, each recording the changes in one directory or
directory tree.
Change Log Commands

 The Emacs command C-x 4 a adds a new entry to the change log
file for the file you are editing
(add-change-log-entry-other-window). If that file is actually
a backup file, it makes an entry appropriate for the file's
parent—that is useful for making log entries for functions that
have been deleted in the current version.
C-x 4 a visits the change log file and creates a new entry
unless the most recent entry is for today's date and your name. It
also creates a new item for the current file. For many languages, it
can even guess the name of the function or other object that was
changed.
 When the variable add-log-keep-changes-together is
non-nil, C-x 4 a adds to any existing item for the file
rather than starting a new item.
You can combine multiple changes of the same nature. If you don't
enter any text after the initial C-x 4 a, any subsequent
C-x 4 a adds another symbol to the change log entry.
 If add-log-always-start-new-record is non-nil,
C-x 4 a always makes a new entry, even if the last entry
was made by you and on the same date.
 If the value of the variable change-log-version-info-enabled
is non-nil, C-x 4 a adds the file's version number to the
change log entry. It finds the version number by searching the first
ten percent of the file, using regular expressions from the variable
change-log-version-number-regexp-list.
 The change log file is visited in Change Log mode. In this major
mode, each bunch of grouped items counts as one paragraph, and each
entry is considered a page. This facilitates editing the entries.
C-j and auto-fill indent each new line like the previous line;
this is convenient for entering the contents of an entry.
You can use the next-error command (by default bound to
C-x `) to move between entries in the Change Log, when Change
Log mode is on. You will jump to the actual site in the file that was
changed, not just to the next Change Log entry. You can also use
previous-error to move back in the same list.
 You can use the command M-x change-log-merge to merge other
log files into a buffer in Change Log Mode, preserving the date
ordering of entries.
Version control systems are another way to keep track of changes in
your program and keep a change log. In the VC log buffer, typing
C-c C-a (log-edit-insert-changelog) inserts the relevant
Change Log entry, if one exists. See the section called “Features of the Log Entry Buffer”.

Format of ChangeLog

A change log entry starts with a header line that contains the
current date, your name (taken from the variable
add-log-full-name), and your email address (taken from the
variable add-log-mailing-address). Aside from these header
lines, every line in the change log starts with a space or a tab. The
bulk of the entry consists of items, each of which starts with a
line starting with whitespace and a star. Here are two entries, both
dated in May 1993, with two items and one item respectively.

1993-05-25 Richard Stallman <rms@gnu.org>

 * man.el: Rename symbols `man-*' to `Man-*'.
 (manual-entry): Make prompt string clearer.

 * simple.el (blink-matching-paren-distance):
 Change default to 12,000.

1993-05-24 Richard Stallman <rms@gnu.org>

 * vc.el (minor-mode-map-alist): Don't use it if it's void.
 (vc-cancel-version): Doc fix.

One entry can describe several changes; each change should have its
own item, or its own line in an item. Normally there should be a
blank line between items. When items are related (parts of the same
change, in different places), group them by leaving no blank line
between them.
You should put a copyright notice and permission notice at the
end of the change log file. Here is an example:

Copyright 1997, 1998 Free Software Foundation, Inc.
Copying and distribution of this file, with or without modification, are
permitted provided the copyright notice and this notice are preserved.

Of course, you should substitute the proper years and copyright holder.

Tags Tables

 A tag is a reference to a subunit in a program or in a
document. In source code, tags reference syntactic elements of the
program: functions, subroutines, data types, macros, etc. In a
document, tags reference chapters, sections, appendices, etc. Each
tag specifies the name of the file where the corresponding subunit is
defined, and the position of the subunit's definition in that file.
A tags table records the tags extracted by scanning the source
code of a certain program or a certain document. Tags extracted from
generated files reference the original files, rather than the
generated files that were scanned during tag extraction. Examples of
generated files include C files generated from Cweb source files, from
a Yacc parser, or from Lex scanner definitions; .i preprocessed
C files; and Fortran files produced by preprocessing .fpp
source files.
 To produce a tags table, you run the etags shell command
on a document or the source code file. The ‘etags’ program
writes the tags to a tags table file, or tags file in
short. The conventional name for a tags file is TAGS.
See the section called “Creating Tags Tables”.
Emacs provides many commands for searching and replacing using the
information recorded in tags tables. For instance, the M-.
(find-tag) jumps to the location of a specified function
definition in its source file. See the section called “Finding a Tag”.
 The Ebrowse facility is similar to etags but specifically
tailored for C++. See See section ``Ebrowse'' in Ebrowse User's Manual. The Semantic package provides another way to generate and
use tags, separate from the etags facility.
See the section called “Semantic”.
Source File Tag Syntax

Here is how tag syntax is defined for the most popular languages:
	In C code, any C function or typedef is a tag, and so are definitions of
struct, union and enum.
#define macro definitions, #undef and enum
constants are also
tags, unless you specify ‘--no-defines’ when making the tags table.
Similarly, global variables are tags, unless you specify
‘--no-globals’, and so are struct members, unless you specify
‘--no-members’. Use of ‘--no-globals’, ‘--no-defines’
and ‘--no-members’ can make the tags table file much smaller.
You can tag function declarations and external variables in addition
to function definitions by giving the ‘--declarations’ option to
etags.

	In C++ code, in addition to all the tag constructs of C code, member
functions are also recognized; member variables are also recognized,
unless you use the ‘--no-members’ option. Tags for variables and
functions in classes are named ‘class::variable’ and
‘class::function’. operator definitions have
tag names like ‘operator+’.

	In Java code, tags include all the constructs recognized in C++, plus
the interface, extends and implements constructs.
Tags for variables and functions in classes are named
‘class.variable’ and ‘class.function’.

	In LaTeX documents, the arguments for \chapter,
\section, \subsection, \subsubsection,
\eqno, \label, \ref, \cite,
\bibitem, \part, \appendix, \entry,
\index, \def, \newcommand, \renewcommand,
\newenvironment and \renewenvironment are tags.
Other commands can make tags as well, if you specify them in the
environment variable TEXTAGS before invoking etags. The
value of this environment variable should be a colon-separated list of
command names. For example,

TEXTAGS="mycommand:myothercommand"
export TEXTAGS

specifies (using Bourne shell syntax) that the commands
‘\mycommand’ and ‘\myothercommand’ also define tags.

	In Lisp code, any function defined with defun, any variable
defined with defvar or defconst, and in general the first
argument of any expression that starts with ‘(def’ in column zero is
a tag.

	In Scheme code, tags include anything defined with def or with a
construct whose name starts with ‘def’. They also include variables
set with set! at top level in the file.

Several other languages are also supported:
	In Ada code, functions, procedures, packages, tasks and types are
tags. Use the ‘--packages-only’ option to create tags for
packages only.
In Ada, the same name can be used for different kinds of entity
(e.g., for a procedure and for a function). Also, for things like
packages, procedures and functions, there is the spec (i.e. the
interface) and the body (i.e. the implementation). To make it
easier to pick the definition you want, Ada tag name have suffixes
indicating the type of entity:
	‘/b’
	package body.

	‘/f’
	function.

	‘/k’
	task.

	‘/p’
	procedure.

	‘/s’
	package spec.

	‘/t’
	type.

Thus, M-x find-tag RET bidule/b RET will go
directly to the body of the package bidule, while M-x
find-tag RET bidule RET will just search for any tag
bidule.

	In assembler code, labels appearing at the start of a line,
followed by a colon, are tags.

	In Bison or Yacc input files, each rule defines as a tag the nonterminal
it constructs. The portions of the file that contain C code are parsed
as C code.

	In Cobol code, tags are paragraph names; that is, any word starting in
column 8 and followed by a period.

	In Erlang code, the tags are the functions, records and macros defined
in the file.

	In Fortran code, functions, subroutines and block data are tags.

	In HTML input files, the tags are the title and the h1,
h2, h3 headers. Also, tags are name= in anchors
and all occurrences of id=.

	In Lua input files, all functions are tags.

	In makefiles, targets are tags; additionally, variables are tags
unless you specify ‘--no-globals’.

	In Objective C code, tags include Objective C definitions for classes,
class categories, methods and protocols. Tags for variables and
functions in classes are named ‘class::variable’ and
‘class::function’.

	In Pascal code, the tags are the functions and procedures defined in
the file.

	In Perl code, the tags are the packages, subroutines and variables
defined by the package, sub, my and local
keywords. Use ‘--globals’ if you want to tag global variables.
Tags for subroutines are named ‘package::sub’. The
name for subroutines defined in the default package is
‘main::sub’.

	In PHP code, tags are functions, classes and defines. Vars are tags
too, unless you use the ‘--no-members’ option.

	In PostScript code, the tags are the functions.

	In Prolog code, tags are predicates and rules at the beginning of
line.

	In Python code, def or class at the beginning of a line
generate a tag.

You can also generate tags based on regexp matching (see the section called “Etags Regexps”) to handle other formats and languages.

Creating Tags Tables

 The etags program is used to create a tags table file. It knows
the syntax of several languages, as described in
the section called “Source File Tag Syntax”.
Here is how to run etags:

etags inputfiles…

The etags program reads the specified files, and writes a tags
table named TAGS in the current working directory. You can
optionally specify a different file name for the tags table by using the
‘--output=file’ option; specifying - as a file name
prints the tags table to standard output.
If the specified files don't exist, etags looks for
compressed versions of them and uncompresses them to read them. Under
MS-DOS, etags also looks for file names like mycode.cgz
if it is given ‘mycode.c’ on the command line and mycode.c
does not exist.
If the tags table becomes outdated due to changes in the files
described in it, you can update it by running the etags
program again. If the tags table does not record a tag, or records it
for the wrong file, then Emacs will not be able to find that
definition until you update the tags table. But if the position
recorded in the tags table becomes a little bit wrong (due to other
editing), Emacs will still be able to find the right position, with a
slight delay.
Thus, there is no need to update the tags table after each edit.
You should update a tags table when you define new tags that you want
to have listed, or when you move tag definitions from one file to
another, or when changes become substantial.
You can make a tags table include another tags table, by
passing the ‘--include=file’ option to etags. It
then covers all the files covered by the included tags file, as well
as its own.
If you specify the source files with relative file names when you run
etags, the tags file will contain file names relative to the
directory where the tags file was initially written. This way, you can
move an entire directory tree containing both the tags file and the
source files, and the tags file will still refer correctly to the source
files. If the tags file is - or is in the /dev directory,
however, the file names are
made relative to the current working directory. This is useful, for
example, when writing the tags to /dev/stdout.
When using a relative file name, it should not be a symbolic link
pointing to a tags file in a different directory, because this would
generally render the file names invalid.
If you specify absolute file names as arguments to etags, then
the tags file will contain absolute file names. This way, the tags file
will still refer to the same files even if you move it, as long as the
source files remain in the same place. Absolute file names start with
‘/’, or with ‘device:/’ on MS-DOS and MS-Windows.
When you want to make a tags table from a great number of files,
you may have problems listing them on the command line, because some
systems have a limit on its length. You can circumvent this limit by
telling etags to read the file names from its standard
input, by typing a dash in place of the file names, like this:

find . -name "*.[chCH]" -print | etags -

etags recognizes the language used in an input file based
on its file name and contents. You can specify the language
explicitly with the ‘--language=name’ option. You can
intermix these options with file names; each one applies to the file
names that follow it. Specify ‘--language=auto’ to tell
etags to resume guessing the language from the file names
and file contents. Specify ‘--language=none’ to turn off
language-specific processing entirely; then etags recognizes
tags by regexp matching alone (see the section called “Etags Regexps”).
The option ‘--parse-stdin=file’ is mostly useful when
calling etags from programs. It can be used (only once) in
place of a file name on the command line. etags will read from
standard input and mark the produced tags as belonging to the file
file.
‘etags --help’ outputs the list of the languages etags
knows, and the file name rules for guessing the language. It also prints
a list of all the available etags options, together with a short
explanation. If followed by one or more ‘--language=lang’
options, it outputs detailed information about how tags are generated for
lang.

Etags Regexps

The ‘--regex’ option to etags allows tags to be
recognized by regular expression matching. You can intermix this
option with file names; each one applies to the source files that
follow it. If you specify multiple ‘--regex’ options, all of
them are used in parallel. The syntax is:

--regex=[{language}]/tagregexp/[nameregexp/]modifiers

The essential part of the option value is tagregexp, the regexp
for matching tags. It is always used anchored, that is, it only
matches at the beginning of a line. If you want to allow indented
tags, use a regexp that matches initial whitespace; start it with
‘[\t]*’.
In these regular expressions, ‘\’ quotes the next character, and
all the GCC character escape sequences are supported (‘\a’ for
bell, ‘\b’ for back space, ‘\d’ for delete, ‘\e’ for
escape, ‘\f’ for formfeed, ‘\n’ for newline, ‘\r’ for
carriage return, ‘\t’ for tab, and ‘\v’ for vertical tab).
Ideally, tagregexp should not match more characters than are
needed to recognize what you want to tag. If the syntax requires you
to write tagregexp so it matches more characters beyond the tag
itself, you should add a nameregexp, to pick out just the tag.
This will enable Emacs to find tags more accurately and to do
completion on tag names more reliably. You can find some examples
below.
The modifiers are a sequence of zero or more characters that
modify the way etags does the matching. A regexp with no
modifiers is applied sequentially to each line of the input file, in a
case-sensitive way. The modifiers and their meanings are:
	‘i’
	Ignore case when matching this regexp.

	‘m’
	Match this regular expression against the whole file, so that
multi-line matches are possible.

	‘s’
	Match this regular expression against the whole file, and allow
‘.’ in tagregexp to match newlines.

The ‘-R’ option cancels all the regexps defined by preceding
‘--regex’ options. It too applies to the file names following
it. Here's an example:

etags --regex=/reg1/i voo.doo --regex=/reg2/m \
 bar.ber -R --lang=lisp los.er

Here etags chooses the parsing language for voo.doo and
bar.ber according to their contents. etags also uses
reg1 to recognize additional tags in voo.doo, and both
reg1 and reg2 to recognize additional tags in
bar.ber. reg1 is checked against each line of
voo.doo and bar.ber, in a case-insensitive way, while
reg2 is checked against the whole bar.ber file,
permitting multi-line matches, in a case-sensitive way. etags
uses only the Lisp tags rules, with no user-specified regexp matching,
to recognize tags in los.er.
You can restrict a ‘--regex’ option to match only files of a
given language by using the optional prefix {language}.
(‘etags --help’ prints the list of languages recognized by
etags.) This is particularly useful when storing many
predefined regular expressions for etags in a file. The
following example tags the DEFVAR macros in the Emacs source
files, for the C language only:

--regex='{c}/[\t]*DEFVAR_[A-Z_ \t(]+"\([^"]+\)"/'

When you have complex regular expressions, you can store the list of
them in a file. The following option syntax instructs etags to
read two files of regular expressions. The regular expressions
contained in the second file are matched without regard to case.

--regex=@case-sensitive-file --ignore-case-regex=@ignore-case-file

A regex file for etags contains one regular expression per
line. Empty lines, and lines beginning with space or tab are ignored.
When the first character in a line is ‘@’, etags assumes
that the rest of the line is the name of another file of regular
expressions; thus, one such file can include another file. All the
other lines are taken to be regular expressions. If the first
non-whitespace text on the line is ‘--’, that line is a comment.
For example, we can create a file called ‘emacs.tags’ with the
following contents:

 -- This is for GNU Emacs C source files
{c}/[\t]*DEFVAR_[A-Z_ \t(]+"\([^"]+\)"/\1/

and then use it like this:

etags --regex=@emacs.tags *.[ch] */*.[ch]

Here are some more examples. The regexps are quoted to protect them
from shell interpretation.
	Tag Octave files:

etags --language=none \
 --regex='/[\t]*function.*=[\t]*\([^ \t]*\)[\t]*(/\1/' \
 --regex='/###key \(.*\)/\1/' \
 --regex='/[\t]*global[\t].*/' \
 *.m

Note that tags are not generated for scripts, so that you have to add
a line by yourself of the form ‘###key scriptname’ if you
want to jump to it.

	Tag Tcl files:

etags --language=none --regex='/proc[\t]+\([^ \t]+\)/\1/' *.tcl

	Tag VHDL files:

etags --language=none \
 --regex='/[\t]*\(ARCHITECTURE\|CONFIGURATION\) +[^]* +OF/' \
 --regex='/[\t]*\(ATTRIBUTE\|ENTITY\|FUNCTION\|PACKAGE\
 \(BODY\)?\|PROCEDURE\|PROCESS\|TYPE\)[\t]+\([^ \t(]+\)/\3/'

Selecting a Tags Table

 Emacs has at any time one selected tags table. All the
commands for working with tags tables use the selected one. To select
a tags table, type M-x visit-tags-table, which reads the tags
table file name as an argument, with TAGS in the default
directory as the default.
 Emacs does not actually read in the tags table contents until you
try to use them; all visit-tags-table does is store the file
name in the variable tags-file-name, and setting the variable
yourself is just as good. The variable's initial value is nil;
that value tells all the commands for working with tags tables that
they must ask for a tags table file name to use.
Using visit-tags-table when a tags table is already loaded
gives you a choice: you can add the new tags table to the current list
of tags tables, or start a new list. The tags commands use all the tags
tables in the current list. If you start a new list, the new tags table
is used instead of others. If you add the new table to the
current list, it is used as well as the others.
 You can specify a precise list of tags tables by setting the variable
tags-table-list to a list of strings, like this:

(setq tags-table-list
 '("~/emacs" "/usr/local/lib/emacs/src"))

This tells the tags commands to look at the TAGS files in your
~/emacs directory and in the /usr/local/lib/emacs/src
directory. The order depends on which file you are in and which tags
table mentions that file, as explained above.
Do not set both tags-file-name and tags-table-list.

Finding a Tag

The most important thing that a tags table enables you to do is to find
the definition of a specific tag.
	M-. tag RET
	Find first definition of tag (find-tag).

	C-u M-.
	Find next alternate definition of last tag specified.

	C-u - M-.
	Go back to previous tag found.

	C-M-. pattern RET
	Find a tag whose name matches pattern (find-tag-regexp).

	C-u C-M-.
	Find the next tag whose name matches the last pattern used.

	C-x 4 . tag RET
	Find first definition of tag, but display it in another window
(find-tag-other-window).

	C-x 5 . tag RET
	Find first definition of tag, and create a new frame to select the
buffer (find-tag-other-frame).

	M-*
	Pop back to where you previously invoked M-. and friends.

 M-. (find-tag) prompts for a tag name and jumps to
its source definition. It works by searching through the tags table
for that tag's file and approximate character position, visiting that
file, and searching for the tag definition at ever-increasing
distances away from the recorded approximate position.
When entering the tag argument to M-., the usual minibuffer
completion commands can be used (see the section called “Completion”), with the tag
names in the selected tags table as completion candidates. If you
specify an empty argument, the balanced expression in the buffer
before or around point is the default argument. See the section called “Expressions with Balanced Parentheses”.
You don't need to give M-. the full name of the tag; a part
will do. M-. finds tags which contain that argument as a
substring. However, it prefers an exact match to a substring match.
To find other tags that match the same substring, give find-tag
a numeric argument, as in C-u M-. or M-0 M-.; this does
not read a tag name, but continues searching the tags table's text for
another tag containing the same substring last used.
 Like most commands that can switch buffers, find-tag has a
variant that displays the new buffer in another window, and one that
makes a new frame for it. The former is C-x 4 .
(find-tag-other-window), and the latter is C-x 5 .
(find-tag-other-frame).
To move back to previous tag definitions, use C-u - M-.; more
generally, M-. with a negative numeric argument. Similarly,
C-x 4 . with a negative argument finds the previous tag
location in another window.
 As well as going back to places you've found tags recently, you can
go back to places from where you found them, using M-*
(pop-tag-mark). Thus you can find and examine the definition
of something with M-. and then return to where you were with
M-*.
Both C-u - M-. and M-* allow you to retrace your steps to
a depth determined by the variable find-tag-marker-ring-length.
 The command C-M-. (find-tag-regexp) visits the tags that
match a specified regular expression. It is just like M-. except
that it does regexp matching instead of substring matching.

Searching and Replacing with Tags Tables

 The commands in this section visit and search all the files listed
in the selected tags table, one by one. For these commands, the tags
table serves only to specify a sequence of files to search. These
commands scan the list of tags tables starting with the first tags
table (if any) that describes the current file, proceed from there to
the end of the list, and then scan from the beginning of the list
until they have covered all the tables in the list.
	M-x tags-search RET regexp RET
	Search for regexp through the files in the selected tags
table.

	M-x tags-query-replace RET regexp RET replacement RET
	Perform a query-replace-regexp on each file in the selected tags table.

	M-,
	Restart one of the commands above, from the current location of point
(tags-loop-continue).

 M-x tags-search reads a regexp using the minibuffer, then
searches for matches in all the files in the selected tags table, one
file at a time. It displays the name of the file being searched so you
can follow its progress. As soon as it finds an occurrence,
tags-search returns.
 Having found one match, you probably want to find all the rest.
Type M-, (tags-loop-continue) to resume the
tags-search, finding one more match. This searches the rest of
the current buffer, followed by the remaining files of the tags table.
 M-x tags-query-replace performs a single
query-replace-regexp through all the files in the tags table. It
reads a regexp to search for and a string to replace with, just like
ordinary M-x query-replace-regexp. It searches much like M-x
tags-search, but repeatedly, processing matches according to your
input. See the section called “Replacement Commands”, for more information on query replace.
 You can control the case-sensitivity of tags search commands by
customizing the value of the variable tags-case-fold-search. The
default is to use the same setting as the value of
case-fold-search (see the section called “Searching and Case”).
It is possible to get through all the files in the tags table with a
single invocation of M-x tags-query-replace. But often it is
useful to exit temporarily, which you can do with any input event that
has no special query replace meaning. You can resume the query
replace subsequently by typing M-,; this command resumes the
last tags search or replace command that you did. For instance, to
skip the rest of the current file, you can type M-> M-,.
The commands in this section carry out much broader searches than the
find-tag family. The find-tag commands search only for
definitions of tags that match your substring or regexp. The commands
tags-search and tags-query-replace find every occurrence
of the regexp, as ordinary search commands and replace commands do in
the current buffer.
These commands create buffers only temporarily for the files that they
have to search (those which are not already visited in Emacs buffers).
Buffers in which no match is found are quickly killed; the others
continue to exist.
As an alternative to tags-search, you can run grep
as a subprocess and have Emacs show you the matching lines one by one.
See the section called “Searching with Grep under Emacs”.

Tags Table Inquiries

	C-M-i, M-TAB
	Perform completion on the text around point, using the selected tags
table if one is loaded (completion-at-point).

	M-x list-tags RET file RET
	Display a list of the tags defined in the program file file.

	M-x tags-apropos RET regexp RET
	Display a list of all tags matching regexp.

 In most programming language modes, you can type C-M-i or
M-TAB (completion-at-point) to complete the symbol
at point. If there is a selected tags table, this command can use it
to generate completion candidates. See the section called “Completion for Symbol Names”.
 M-x list-tags reads the name of one of the files covered by
the selected tags table, and displays a list of tags defined in that
file. Do not include a directory as part of the file name unless the
file name recorded in the tags table includes a directory.
 M-x tags-apropos is like apropos for tags
(see the section called “Apropos”). It displays a list of tags in the selected tags
table whose entries match regexp. If the variable
tags-apropos-verbose is non-nil, it displays the names
of the tags files together with the tag names. You can customize the
appearance of the output by setting the variable tags-tag-face
to a face. You can display additional output by customizing the
variable tags-apropos-additional-actions; see its documentation
for details.
 M-x next-file visits files covered by the selected tags table.
The first time it is called, it visits the first file covered by the
table. Each subsequent call visits the next covered file, unless a
prefix argument is supplied, in which case it returns to the first
file.

Emacs Development Environment

EDE (Emacs Development Environment) is a package that simplifies
the task of creating, building, and debugging large programs with
Emacs. It provides some of the features of an IDE, or Integrated
Development Environment, in Emacs.
This section provides a brief description of EDE usage.
For full details, see See section ``Top'' in Emacs Development Environment.
EDE is implemented as a global minor mode (see the section called “Minor Modes”). To
enable it, type M-x global-ede-mode or click on the
‘Project Support (EDE)’ item in the ‘Tools’ menu. You can
also enable EDE each time you start Emacs, by adding the following
line to your initialization file:

(global-ede-mode t)

Activating EDE adds a menu named ‘Development’ to the menu bar.
Many EDE commands, including the ones described below, can be invoked
from this menu.
EDE organizes files into projects, which correspond to
directory trees. The project root is the topmost directory of a
project. To define a new project, visit a file in the desired project
root and type M-x ede-new. This command prompts for a
project type, which refers to the underlying method that EDE
will use to manage the project (see See section ``Creating a Project'' in Emacs Development Environment). The most common project types are
‘Make’, which uses Makefiles, and ‘Automake’, which uses GNU
Automake (see See section ``Top'' in Automake). In both cases,
EDE also creates a file named Project.ede, which stores
information about the project.
A project may contain one or more targets. A target can be an
object file, executable program, or some other type of file, which is
“built” from one or more of the files in the project.
To add a new target to a project, type C-c . t
(M-x ede-new-target). This command also asks if you wish to
“add” the current file to that target, which means that the target
is to be built from that file. After you have defined a target, you
can add more files to it by typing C-c . a
(ede-add-file).
To build a target, type C-c . c (ede-compile-target).
To build all the targets in the project, type C-c . C
(ede-compile-project). EDE uses the file types to guess how
the target should be built.

Merging Files with Emerge

 It's not unusual for programmers to get their signals crossed and
modify the same program in two different directions. To recover from
this confusion, you need to merge the two versions. Emerge makes this
easier. For other ways to compare files, see
the section called “Comparing Files”,
and See section ``Ediff'' in The Ediff Manual.
Overview of Emerge

To start Emerge, run one of these four commands:
	M-x emerge-files
	Merge two specified files.

	M-x emerge-files-with-ancestor
	Merge two specified files, with reference to a common ancestor.

	M-x emerge-buffers
	Merge two buffers.

	M-x emerge-buffers-with-ancestor
	Merge two buffers with reference to a common ancestor in a third
buffer.

 The Emerge commands compare two files or buffers, and display the
comparison in three buffers: one for each input text (the A buffer
and the B buffer), and one (the merge buffer) where merging
takes place. The merge buffer shows the full merged text, not just the
differences. Wherever the two input texts differ, you can choose which
one of them to include in the merge buffer.
The Emerge commands that take input from existing buffers use only
the accessible portions of those buffers, if they are narrowed.
See the section called “Narrowing”.
If a common ancestor version is available, from which the two texts to
be merged were both derived, Emerge can use it to guess which
alternative is right. Wherever one current version agrees with the
ancestor, Emerge presumes that the other current version is a deliberate
change which should be kept in the merged version. Use the
‘with-ancestor’ commands if you want to specify a common ancestor
text. These commands read three file or buffer names—variant A,
variant B, and the common ancestor.
After the comparison is done and the buffers are prepared, the
interactive merging starts. You control the merging by typing special
merge commands in the merge buffer (see the section called “Merge Commands”).
For each run of differences between the input texts, you can choose
which one of them to keep, or edit them both together.
The merge buffer uses a special major mode, Emerge mode, with commands
for making these choices. But you can also edit the buffer with
ordinary Emacs commands.
At any given time, the attention of Emerge is focused on one
particular difference, called the selected difference. This
difference is marked off in the three buffers like this:
vvvvvvvvvvvvvvvvvvvv
text that differs
^^^^^^^^^^^^^^^^^^^^

Emerge numbers all the differences sequentially and the mode
line always shows the number of the selected difference.
Normally, the merge buffer starts out with the A version of the text.
But when the A version of a difference agrees with the common ancestor,
then the B version is initially preferred for that difference.
Emerge leaves the merged text in the merge buffer when you exit. At
that point, you can save it in a file with C-x C-w. If you give a
numeric argument to emerge-files or
emerge-files-with-ancestor, it reads the name of the output file
using the minibuffer. (This is the last file name those commands read.)
Then exiting from Emerge saves the merged text in the output file.
Normally, Emerge commands save the output buffer in its file when you
exit. If you abort Emerge with C-], the Emerge command does not
save the output buffer, but you can save it yourself if you wish.

Submodes of Emerge

You can choose between two modes for giving merge commands: Fast mode
and Edit mode. In Fast mode, basic merge commands are single
characters, but ordinary Emacs commands are disabled. This is
convenient if you use only merge commands. In Edit mode, all merge
commands start with the prefix key C-c C-c, and the normal Emacs
commands are also available. This allows editing the merge buffer, but
slows down Emerge operations.
Use e to switch to Edit mode, and C-c C-c f to switch to
Fast mode. The mode line indicates Edit and Fast modes with ‘E’
and ‘F’.
Emerge has two additional submodes that affect how particular merge
commands work: Auto Advance mode and Skip Prefers mode.
If Auto Advance mode is in effect, the a and b commands
advance to the next difference. This lets you go through the merge
faster as long as you simply choose one of the alternatives from the
input. The mode line indicates Auto Advance mode with ‘A’.
If Skip Prefers mode is in effect, the n and p commands
skip over differences in states “prefer-A” and “prefer-B”
(see the section called “State of a Difference”). Thus you see only differences for
which neither version is presumed “correct”. The mode line
indicates Skip Prefers mode with ‘S’. This mode is only relevant
when there is an ancestor.
 Use the command s a (emerge-auto-advance) to set or clear
Auto Advance mode. Use s s (emerge-skip-prefers) to set or
clear Skip Prefers mode. These commands turn on the mode with a
positive argument, turn it off with a negative or zero argument, and
toggle the mode with no argument.

State of a Difference

In the merge buffer, a difference is marked with lines of ‘v’ and
‘^’ characters. Each difference has one of these seven states:
	A
	The difference is showing the A version. The a command always
produces this state; the mode line indicates it with ‘A’.

	B
	The difference is showing the B version. The b command always
produces this state; the mode line indicates it with ‘B’.

	default-A, default-B
	The difference is showing the A or the B state by default, because you
haven't made a choice. All differences start in the default-A state
(and thus the merge buffer is a copy of the A buffer), except those for
which one alternative is “preferred” (see below).
When you select a difference, its state changes from default-A or
default-B to plain A or B. Thus, the selected difference never has
state default-A or default-B, and these states are never displayed in
the mode line.
The command d a chooses default-A as the default state, and d
b chooses default-B. This chosen default applies to all differences
that you have never selected and for which no alternative is preferred.
If you are moving through the merge sequentially, the differences you
haven't selected are those following the selected one. Thus, while
moving sequentially, you can effectively make the A version the default
for some sections of the merge buffer and the B version the default for
others by using d a and d b between sections.

	prefer-A, prefer-B
	The difference is showing the A or B state because it is
preferred. This means that you haven't made an explicit choice,
but one alternative seems likely to be right because the other
alternative agrees with the common ancestor. Thus, where the A buffer
agrees with the common ancestor, the B version is preferred, because
chances are it is the one that was actually changed.
These two states are displayed in the mode line as ‘A*’ and ‘B*’.

	combined
	The difference is showing a combination of the A and B states, as a
result of the x c or x C commands.
Once a difference is in this state, the a and b commands
don't do anything to it unless you give them a numeric argument.
The mode line displays this state as ‘comb’.

Merge Commands

Here are the Merge commands for Fast mode; in Edit mode, precede them
with C-c C-c:
	p
	Select the previous difference.

	n
	Select the next difference.

	a
	Choose the A version of this difference.

	b
	Choose the B version of this difference.

	C-u n j
	Select difference number n.

	.
	Select the difference containing point.

	q
	Quit—finish the merge.

	C-]
	Abort—exit merging and do not save the output.

	f
	Go into Fast mode. (In Edit mode, this is actually C-c C-c f.)

	e
	Go into Edit mode.

	l
	Recenter (like C-l) all three windows. With an argument,
reestablish the default three-window display.

	-
	Specify part of a prefix numeric argument.

	digit
	Also specify part of a prefix numeric argument.

	d a
	Choose the A version as the default from here down in
the merge buffer.

	d b
	Choose the B version as the default from here down in
the merge buffer.

	c a
	Copy the A version of this difference into the kill ring.

	c b
	Copy the B version of this difference into the kill ring.

	i a
	Insert the A version of this difference at point.

	i b
	Insert the B version of this difference at point.

	m
	Put point and mark around the difference.

	^
	Scroll all three windows down (like M-v).

	v
	Scroll all three windows up (like C-v).

	<
	Scroll all three windows left (like C-x <).

	>
	Scroll all three windows right (like C-x >).

	|
	Reset horizontal scroll on all three windows.

	x 1
	Shrink the merge window to one line. (Use C-u l to restore it
to full size.)

	x c
	Combine the two versions of this difference (see the section called “Combining the Two Versions”).

	x f
	Show the names of the files/buffers Emerge is operating on, in a Help
window. (Use C-u l to restore windows.)

	x j
	Join this difference with the following one.
(C-u x j joins this difference with the previous one.)

	x s
	Split this difference into two differences. Before you use this
command, position point in each of the three buffers at the place where
you want to split the difference.

	x t
	Trim identical lines off the top and bottom of the difference.
Such lines occur when the A and B versions are
identical but differ from the ancestor version.

Exiting Emerge

The q command (emerge-quit) finishes the merge, storing
the results into the output file if you specified one. It restores the
A and B buffers to their proper contents, or kills them if they were
created by Emerge and you haven't changed them. It also disables the
Emerge commands in the merge buffer, since executing them later could
damage the contents of the various buffers.
C-] aborts the merge. This means exiting without writing the
output file. If you didn't specify an output file, then there is no
real difference between aborting and finishing the merge.
If the Emerge command was called from another Lisp program, then its
return value is t for successful completion, or nil if you
abort.

Combining the Two Versions

Sometimes you want to keep both alternatives for a particular
difference. To do this, use x c, which edits the merge buffer
like this:

#ifdef NEW
version from B buffer
#else /* not NEW */
version from A buffer
#endif /* not NEW */

While this example shows C preprocessor conditionals delimiting the two
alternative versions, you can specify the strings to use by setting
the variable emerge-combine-versions-template to a string of your
choice. In the string, ‘%a’ says where to put version A, and
‘%b’ says where to put version B. The default setting, which
produces the results shown above, looks like this:

"#ifdef NEW\n%b#else /* not NEW */\n%a#endif /* not NEW */\n"

Fine Points of Emerge

During the merge, you mustn't try to edit the A and B buffers yourself.
Emerge modifies them temporarily, but ultimately puts them back the way
they were.
You can have any number of merges going at once—just don't use any one
buffer as input to more than one merge at once, since the temporary
changes made in these buffers would get in each other's way.
Starting Emerge can take a long time because it needs to compare the
files fully. Emacs can't do anything else until diff finishes.
Perhaps in the future someone will change Emerge to do the comparison in
the background when the input files are large—then you could keep on
doing other things with Emacs until Emerge is ready to accept
commands.
 After setting up the merge, Emerge runs the hook
emerge-startup-hook.
See the section called “Hooks”.

Chapter 29. Abbrevs

 A defined abbrev is a word which expands, if you insert
it, into some different text. Abbrevs are defined by the user to expand
in specific ways. For example, you might define ‘foo’ as an abbrev
expanding to ‘find outer otter’. Then you could insert
‘find outer otter ’ into the buffer by typing f o o
SPC.
A second kind of abbreviation facility is called dynamic abbrev
expansion. You use dynamic abbrev expansion with an explicit command
to expand the letters in the buffer before point by looking for other
words in the buffer that start with those letters. See the section called “Dynamic Abbrev Expansion”.
“Hippie” expansion generalizes abbreviation expansion.
See See section ``Hippie Expansion'' in Features for Automatic Typing.
Abbrev Concepts

An abbrev is a word that has been defined to expand into
a specified expansion. When you insert a word-separator character
following the abbrev, that expands the abbrev—replacing the abbrev
with its expansion. For example, if ‘foo’ is defined as an abbrev
expanding to ‘find outer otter’, then typing f o o . will
insert ‘find outer otter.’.
 Abbrevs expand only when Abbrev mode, a buffer-local minor mode, is
enabled. Disabling Abbrev mode does not cause abbrev definitions to
be forgotten, but they do not expand until Abbrev mode is enabled
again. The command M-x abbrev-mode toggles Abbrev mode; with a
numeric argument, it turns Abbrev mode on if the argument is positive,
off otherwise. See the section called “Minor Modes”.
Abbrevs can have mode-specific definitions, active only in one major
mode. Abbrevs can also have global definitions that are active in
all major modes. The same abbrev can have a global definition and various
mode-specific definitions for different major modes. A mode-specific
definition for the current major mode overrides a global definition.
You can define abbrevs interactively during the editing session,
irrespective of whether Abbrev mode is enabled. You can also save
lists of abbrev definitions in files, which you can the reload for use
in later sessions.

Defining Abbrevs

	C-x a g
	Define an abbrev, using one or more words before point as its expansion
(add-global-abbrev).

	C-x a l
	Similar, but define an abbrev specific to the current major mode
(add-mode-abbrev).

	C-x a i g
	Define a word in the buffer as an abbrev (inverse-add-global-abbrev).

	C-x a i l
	Define a word in the buffer as a mode-specific abbrev
(inverse-add-mode-abbrev).

	M-x define-global-abbrev RET abbrev RET exp RET
	Define abbrev as an abbrev expanding into exp.

	M-x define-mode-abbrev RET abbrev RET exp RET
	Define abbrev as a mode-specific abbrev expanding into exp.

	M-x kill-all-abbrevs
	Discard all abbrev definitions, leaving a blank slate.

 The usual way to define an abbrev is to enter the text you want the
abbrev to expand to, position point after it, and type C-x a g
(add-global-abbrev). This reads the abbrev itself using the
minibuffer, and then defines it as an abbrev for one or more words before
point. Use a numeric argument to say how many words before point should be
taken as the expansion. For example, to define the abbrev ‘foo’ as
mentioned above, insert the text ‘find outer otter’ and then type
C-u 3 C-x a g f o o RET.
An argument of zero to C-x a g means to use the contents of the
region as the expansion of the abbrev being defined.
 The command C-x a l (add-mode-abbrev) is similar, but
defines a mode-specific abbrev for the current major mode. The
arguments work the same as for C-x a g.
 C-x a i g (inverse-add-global-abbrev) and C-x a i
l (inverse-add-mode-abbrev) perform the opposite task: if the
abbrev text is already in the buffer, you use these commands to define
an abbrev by specifying the expansion in the minibuffer. These
commands will expand the abbrev text used for the definition.
 You can define an abbrev without inserting either the abbrev or its
expansion in the buffer using the command define-global-abbrev.
It reads two arguments—the abbrev, and its expansion. The command
define-mode-abbrev does likewise for a mode-specific abbrev.
To change the definition of an abbrev, just make a new definition.
When an abbrev has a prior definition, the abbrev definition commands
ask for confirmation before replacing it.
 To remove an abbrev definition, give a negative argument to the
abbrev definition command: C-u - C-x a g or C-u - C-x a l.
The former removes a global definition, while the latter removes a
mode-specific definition. M-x kill-all-abbrevs removes all
abbrev definitions, both global and local.

Controlling Abbrev Expansion

When Abbrev mode is enabled, an abbrev expands whenever it is
present in the buffer just before point and you type a self-inserting
whitespace or punctuation character (SPC, comma, etc.). More
precisely, any character that is not a word constituent expands an
abbrev, and any word-constituent character can be part of an abbrev.
The most common way to use an abbrev is to insert it and then insert a
punctuation or whitespace character to expand it.
 Abbrev expansion preserves case: ‘foo’ expands to ‘find
outer otter’, and ‘Foo’ to ‘Find outer otter’. ‘FOO’
expands to ‘Find Outer Otter’ by default, but if you change the
variable abbrev-all-caps to a non-nil value, it expands
to ‘FIND OUTER OTTER’.
These commands are used to control abbrev expansion:
	M-'
	Separate a prefix from a following abbrev to be expanded
(abbrev-prefix-mark).

	C-x a e
	Expand the abbrev before point (expand-abbrev).
This is effective even when Abbrev mode is not enabled.

	M-x expand-region-abbrevs
	Expand some or all abbrevs found in the region.

 You may wish to expand an abbrev and attach a prefix to the expansion;
for example, if ‘cnst’ expands into ‘construction’, you might want
to use it to enter ‘reconstruction’. It does not work to type
recnst, because that is not necessarily a defined abbrev. What
you can do is use the command M-' (abbrev-prefix-mark) in
between the prefix ‘re’ and the abbrev ‘cnst’. First, insert
‘re’. Then type M-'; this inserts a hyphen in the buffer to
indicate that it has done its work. Then insert the abbrev ‘cnst’;
the buffer now contains ‘re-cnst’. Now insert a non-word character
to expand the abbrev ‘cnst’ into ‘construction’. This
expansion step also deletes the hyphen that indicated M-' had been
used. The result is the desired ‘reconstruction’.
If you actually want the text of the abbrev in the buffer, rather than
its expansion, you can accomplish this by inserting the following
punctuation with C-q. Thus, foo C-q , leaves ‘foo,’ in
the buffer, not expanding it.
 If you expand an abbrev by mistake, you can undo the expansion by
typing C-/ (undo). See the section called “Undo”. This undoes the
insertion of the abbrev expansion and brings back the abbrev text. If
the result you want is the terminating non-word character plus the
unexpanded abbrev, you must reinsert the terminating character,
quoting it with C-q. You can also use the command M-x
unexpand-abbrev to cancel the last expansion without deleting the
terminating character.
 M-x expand-region-abbrevs searches through the region for defined
abbrevs, and for each one found offers to replace it with its expansion.
This command is useful if you have typed in text using abbrevs but forgot
to turn on Abbrev mode first. It may also be useful together with a
special set of abbrev definitions for making several global replacements at
once. This command is effective even if Abbrev mode is not enabled.
Expanding any abbrev runs abbrev-expand-functions, a special
hook. Functions in this special hook can make arbitrary changes to
the abbrev expansion. See See section ``Abbrev Expansion'' in The Emacs Lisp Reference Manual.

Examining and Editing Abbrevs

	M-x list-abbrevs
	Display a list of all abbrev definitions. With a numeric argument, list
only local abbrevs.

	M-x edit-abbrevs
	Edit a list of abbrevs; you can add, alter or remove definitions.

 The output from M-x list-abbrevs looks like this:

various other tables…
(lisp-mode-abbrev-table)
"dk" 0 "define-key"
(global-abbrev-table)
"dfn" 0 "definition"

(Some blank lines of no semantic significance, and some other abbrev
tables, have been omitted.)
A line containing a name in parentheses is the header for abbrevs in a
particular abbrev table; global-abbrev-table contains all the global
abbrevs, and the other abbrev tables that are named after major modes
contain the mode-specific abbrevs.
Within each abbrev table, each nonblank line defines one abbrev. The
word at the beginning of the line is the abbrev. The number that
follows is the number of times the abbrev has been expanded. Emacs
keeps track of this to help you see which abbrevs you actually use, so
that you can eliminate those that you don't use often. The string at
the end of the line is the expansion.
Some abbrevs are marked with ‘(sys)’. These “system” abbrevs
(see See section ``Abbrevs'' in The Emacs Lisp Reference Manual) are
pre-defined by various modes, and are not saved to your abbrev file.
To disable a “system” abbrev, define an abbrev of the same name that
expands to itself, and save it to your abbrev file.
 M-x edit-abbrevs allows you to add, change or kill abbrev
definitions by editing a list of them in an Emacs buffer. The list has
the same format described above. The buffer of abbrevs is called
Abbrevs, and is in Edit-Abbrevs mode. Type C-c C-c in
this buffer to install the abbrev definitions as specified in the
buffer—and delete any abbrev definitions not listed.
The command edit-abbrevs is actually the same as
list-abbrevs except that it selects the buffer *Abbrevs*
whereas list-abbrevs merely displays it in another window.

Saving Abbrevs

These commands allow you to keep abbrev definitions between editing
sessions.
	M-x write-abbrev-file RET file RET
	Write a file file describing all defined abbrevs.

	M-x read-abbrev-file RET file RET
	Read the file file and define abbrevs as specified therein.

	M-x define-abbrevs
	Define abbrevs from definitions in current buffer.

	M-x insert-abbrevs
	Insert all abbrevs and their expansions into current buffer.

 M-x write-abbrev-file reads a file name using the minibuffer and
then writes a description of all current abbrev definitions into that
file. This is used to save abbrev definitions for use in a later
session. The text stored in the file is a series of Lisp expressions
that, when executed, define the same abbrevs that you currently have.
 M-x read-abbrev-file reads a file name using the minibuffer
and then reads the file, defining abbrevs according to the contents of
the file. The function quietly-read-abbrev-file is similar
except that it does not display a message in the echo area; you cannot
invoke it interactively, and it is used primarily in your init file
(see the section called “The Emacs Initialization File”). If either of these functions is called with
nil as the argument, it uses the file given by the variable
abbrev-file-name, which is ~/.emacs.d/abbrev_defs by
default. This is your standard abbrev definition file, and Emacs
loads abbrevs from it automatically when it starts up. (As an
exception, Emacs does not load the abbrev file when it is started in
batch mode. See the section called “Initial Options”, for a description of batch mode.)
 Emacs will offer to save abbrevs automatically if you have changed
any of them, whenever it offers to save all files (for C-x s or
C-x C-c). It saves them in the file specified by
abbrev-file-name. This feature can be inhibited by setting the
variable save-abbrevs to nil.
 The commands M-x insert-abbrevs and M-x define-abbrevs are
similar to the previous commands but work on text in an Emacs buffer.
M-x insert-abbrevs inserts text into the current buffer after point,
describing all current abbrev definitions; M-x define-abbrevs parses
the entire current buffer and defines abbrevs accordingly.

Dynamic Abbrev Expansion

The abbrev facility described above operates automatically as you
insert text, but all abbrevs must be defined explicitly. By contrast,
dynamic abbrevs allow the meanings of abbreviations to be
determined automatically from the contents of the buffer, but dynamic
abbrev expansion happens only when you request it explicitly.

	M-/
	Expand the word in the buffer before point as a dynamic abbrev,
by searching in the buffer for words starting with that abbreviation
(dabbrev-expand).

	C-M-/
	Complete the word before point as a dynamic abbrev
(dabbrev-completion).

 For example, if the buffer contains ‘does this follow ’ and you
type f o M-/, the effect is to insert ‘follow’ because that
is the last word in the buffer that starts with ‘fo’. A numeric
argument to M-/ says to take the second, third, etc. distinct
expansion found looking backward from point. Repeating M-/
searches for an alternative expansion by looking farther back. After
scanning all the text before point, it searches the text after point.
The variable dabbrev-limit, if non-nil, specifies how far
away in the buffer to search for an expansion.
 After scanning the current buffer, M-/ normally searches other
buffers, unless you have set dabbrev-check-all-buffers to
nil.
 For finer control over which buffers to scan, customize the variable
dabbrev-ignored-buffer-regexps. Its value is a list of regular
expressions. If a buffer's name matches any of these regular
expressions, dynamic abbrev expansion skips that buffer.
A negative argument to M-/, as in C-u - M-/, says to
search first for expansions after point, then other buffers, and
consider expansions before point only as a last resort. If you repeat
the M-/ to look for another expansion, do not specify an
argument. Repeating M-/ cycles through all the expansions after
point and then the expansions before point.
After you have expanded a dynamic abbrev, you can copy additional
words that follow the expansion in its original context. Simply type
SPC M-/ for each additional word you want to copy. The
spacing and punctuation between words is copied along with the words.
The command C-M-/ (dabbrev-completion) performs
completion of a dynamic abbrev. Instead of trying the possible
expansions one by one, it finds all of them, then inserts the text
that they have in common. If they have nothing in common, C-M-/
displays a list of completions, from which you can select a choice in
the usual manner. See the section called “Completion”.
Dynamic abbrev expansion is completely independent of Abbrev mode; the
expansion of a word with M-/ is completely independent of whether
it has a definition as an ordinary abbrev.

Customizing Dynamic Abbreviation

Normally, dynamic abbrev expansion ignores case when searching for
expansions. That is, the expansion need not agree in case with the word
you are expanding.
 This feature is controlled by the variable
dabbrev-case-fold-search. If it is t, case is ignored
in this search; if it is nil, the word and the expansion must
match in case. If the value is case-fold-search (the default),
then the variable case-fold-search controls whether to ignore
case while searching for expansions (see the section called “Searching and Case”).
 Normally, dynamic abbrev expansion preserves the case pattern
of the dynamic abbrev you are expanding, by converting the
expansion to that case pattern.
 The variable dabbrev-case-replace controls whether to
preserve the case pattern of the dynamic abbrev. If it is t,
the dynamic abbrev's case pattern is preserved in most cases; if it is
nil, the expansion is always copied verbatim. If the value is
case-replace (the default), then the variable
case-replace controls whether to copy the expansion verbatim
(see the section called “Replace Commands and Case”).
However, if the expansion contains a complex mixed case pattern, and
the dynamic abbrev matches this pattern as far as it goes, then the
expansion is always copied verbatim, regardless of those variables.
Thus, for example, if the buffer contains
variableWithSillyCasePattern, and you type v a M-/, it
copies the expansion verbatim including its case pattern.
 The variable dabbrev-abbrev-char-regexp, if non-nil,
controls which characters are considered part of a word, for dynamic expansion
purposes. The regular expression must match just one character, never
two or more. The same regular expression also determines which
characters are part of an expansion. The value nil has a special
meaning: dynamic abbrevs are made of word characters, but expansions are
made of word and symbol characters.
 In shell scripts and makefiles, a variable name is sometimes prefixed
with ‘$’ and sometimes not. Major modes for this kind of text can
customize dynamic abbrev expansion to handle optional prefixes by setting
the variable dabbrev-abbrev-skip-leading-regexp. Its value
should be a regular expression that matches the optional prefix that
dynamic abbrev expression should ignore.

Chapter 30. Dired, the Directory Editor

 Dired makes an Emacs buffer containing a listing of a directory, and
optionally some of its subdirectories as well. You can use the normal
Emacs commands to move around in this buffer, and special Dired
commands to operate on the listed files.
The Dired buffer is “read-only”, and inserting text in it is not
allowed. Ordinary printing characters such as d and x are
redefined for special Dired commands. Some Dired commands mark
or flag the current file (that is, the file on the current
line); other commands operate on the marked files or on the flagged
files. You first mark certain files in order to operate on all of
them with one command.
The Dired-X package provides various extra features for Dired mode.
See See section ``Top'' in Dired Extra User's Manual.
You can also view a list of files in a directory with C-x C-d
(list-directory). Unlike Dired, this command does not allow
you to operate on the listed files. See the section called “File Directories”.
Entering Dired

 To invoke Dired, type C-x d (dired). This reads a
directory name using the minibuffer, and opens a Dired buffer
listing the files in that directory. You can also supply a wildcard
file name pattern as the minibuffer argument, in which case the Dired
buffer lists all files matching that pattern. The usual history and
completion commands can be used in the minibuffer; in particular,
M-n puts the name of the visited file (if any) in the minibuffer
(see the section called “Minibuffer History”).
You can also invoke Dired by giving C-x C-f (find-file)
a directory name.
The variable dired-listing-switches specifies the options to
give to ls for listing the directory; this string
must contain ‘-l’. If you use a prefix argument with the
dired command, you can specify the ls switches with the
minibuffer before you enter the directory specification. No matter
how they are specified, the ls switches can include short
options (that is, single characters) requiring no arguments, and long
options (starting with ‘--’) whose arguments are specified with
‘=’.
 If your ls program supports the ‘--dired’ option,
Dired automatically passes it that option; this causes ls to
emit special escape sequences for certain unusual file names, without
which Dired will not be able to parse those names. The first time you
run Dired in an Emacs session, it checks whether ls supports
the ‘--dired’ option by calling it once with that option. If the
exit code is 0, Dired will subsequently use the ‘--dired’ option;
otherwise it will not. You can inhibit this check by customizing the
variable dired-use-ls-dired. The value unspecified (the
default) means to perform the check; any other non-nil value
means to use the ‘--dired’ option; and nil means not to
use the ‘--dired’ option.
On MS-Windows and MS-DOS systems, Emacs emulates ls.
See the section called “Emulation of ls on MS-Windows”, for options and peculiarities of this emulation.
 To display the Dired buffer in another window, use C-x 4 d
(dired-other-window). C-x 5 d
(dired-other-frame) displays the Dired buffer in a separate
frame.
 Typing q (quit-window) buries the Dired buffer, and
deletes its window if the window was created just for that buffer.

Navigation in the Dired Buffer

 All the usual Emacs cursor motion commands are available in Dired
buffers. The keys C-n and C-p are redefined to put the
cursor at the beginning of the file name on the line, rather than at
the beginning of the line.
 For extra convenience, SPC and n in Dired are equivalent
to C-n. p is equivalent to C-p. (Moving by lines
is so common in Dired that it deserves to be easy to type.) DEL
(move up and unflag) is also often useful simply for moving up
(see the section called “Deleting Files with Dired”).
 j (dired-goto-file) prompts for a file name using the
minibuffer, and moves point to the line in the Dired buffer describing
that file.
 M-s f C-s (dired-isearch-filenames) performs a forward
incremental search in the Dired buffer, looking for matches only
amongst the file names and ignoring the rest of the text in the
buffer. M-s f M-C-s (dired-isearch-filenames-regexp)
does the same, using a regular expression search. If you change the
variable dired-isearch-filenames to t, then the
usual search commands also limit themselves to the file names; for
instance, C-s behaves like M-s f C-s. If the value is
dwim, then search commands match the file names only when point
was on a file name initially. See Chapter 15, Searching and Replacement, for information about
incremental search.
Some additional navigation commands are available when the Dired
buffer includes several directories. See the section called “Moving Over Subdirectories”.

Deleting Files with Dired

 One of the most frequent uses of Dired is to first flag files for
deletion, then delete the files that were flagged.
	d
	Flag this file for deletion.

	u
	Remove deletion flag on this line.

	DEL
	Move point to previous line and remove the deletion flag on that line.

	x
	Delete the files that are flagged for deletion.

 You can flag a file for deletion by moving to the line describing
the file and typing d (dired-flag-file-deletion). The
deletion flag is visible as a ‘D’ at the beginning of the line.
This command moves point to the next line, so that repeated d
commands flag successive files. A numeric argument serves as a repeat
count.
 The reason for flagging files for deletion, rather than deleting
files immediately, is to reduce the danger of deleting a file
accidentally. Until you direct Dired to delete the flagged files, you
can remove deletion flags using the commands u and DEL.
u (dired-unmark) works just like d, but removes
flags rather than making flags. DEL
(dired-unmark-backward) moves upward, removing flags; it is
like u with argument −1.
 To delete the flagged files, type x
(dired-do-flagged-delete). This command first displays a list
of all the file names flagged for deletion, and requests confirmation
with yes. If you confirm, Dired deletes the flagged files, then
deletes their lines from the text of the Dired buffer. The Dired
buffer, with somewhat fewer lines, remains selected.
If you answer no or quit with C-g when asked to confirm, you
return immediately to Dired, with the deletion flags still present in
the buffer, and no files actually deleted.
 You can delete empty directories just like other files, but normally
Dired cannot delete directories that are nonempty. If the variable
dired-recursive-deletes is non-nil, then Dired can
delete nonempty directories including all their contents. That can
be somewhat risky.
 If you change the variable delete-by-moving-to-trash to
t, the above deletion commands will move the affected files or
directories into the operating system's Trash, instead of deleting
them outright. See the section called “Miscellaneous File Operations”.

Flagging Many Files at Once

 The #, ~, ., % &, and % d commands
flag many files for deletion, based on their file names:
	#
	Flag all auto-save files (files whose names start and end with ‘#’)
for deletion (see the section called “Auto-Saving: Protection Against Disasters”).

	~
	Flag all backup files (files whose names end with ‘~’) for deletion
(see the section called “Backup Files”).

	. (Period)
	Flag excess numeric backup files for deletion. The oldest and newest
few backup files of any one file are exempt; the middle ones are
flagged.

	% &
	Flag for deletion all files with certain kinds of names which suggest
you could easily create those files again.

	% d regexp RET
	Flag for deletion all files whose names match the regular expression
regexp.

 # (dired-flag-auto-save-files) flags all files whose
names look like auto-save files—that is, files whose names begin and
end with ‘#’. See the section called “Auto-Saving: Protection Against Disasters”.
 ~ (dired-flag-backup-files) flags all files whose names
say they are backup files—that is, files whose names end in
‘~’. See the section called “Backup Files”.
 . (period, dired-clean-directory) flags just some of
the backup files for deletion: all but the oldest few and newest few
backups of any one file. Normally, the number of newest versions kept
for each file is given by the variable dired-kept-versions
(not kept-new-versions; that applies only when
saving). The number of oldest versions to keep is given by the
variable kept-old-versions.
Period with a positive numeric argument, as in C-u 3 .,
specifies the number of newest versions to keep, overriding
dired-kept-versions. A negative numeric argument overrides
kept-old-versions, using minus the value of the argument to
specify the number of oldest versions of each file to keep.
 % & (dired-flag-garbage-files) flags files whose names
match the regular expression specified by the variable
dired-garbage-files-regexp. By default, this matches certain
files produced by TeX, ‘.bak’ files, and the ‘.orig’ and
‘.rej’ files produced by patch.
 % d flags all files whose names match a specified regular
expression (dired-flag-files-regexp). Only the non-directory
part of the file name is used in matching. You can use ‘^’ and
‘$’ to anchor matches. You can exclude certain subdirectories
from marking by hiding them while you use % d. See the section called “Hiding Subdirectories”.

Visiting Files in Dired

There are several Dired commands for visiting or examining the files
listed in the Dired buffer. All of them apply to the current line's
file; if that file is really a directory, these commands invoke Dired on
that subdirectory (making a separate Dired buffer).
	f
	Visit the file described on the current line, like typing C-x C-f
and supplying that file name (dired-find-file). See the section called “Visiting Files”.

	RET, e
	Equivalent to f.

	o
	Like f, but uses another window to display the file's buffer
(dired-find-file-other-window). The Dired buffer remains visible
in the first window. This is like using C-x 4 C-f to visit the
file. See Chapter 20, Multiple Windows.

	C-o
	Visit the file described on the current line, and display the buffer in
another window, but do not select that window (dired-display-file).

	Mouse-1, Mouse-2
	Visit the file whose name you clicked on
(dired-mouse-find-file-other-window). This uses another window
to display the file, like the o command.

	v
	View the file described on the current line, with View mode
(dired-view-file). View mode provides convenient commands to
navigate the buffer but forbids changing it; See the section called “View Mode”.

	^
	Visit the parent directory of the current directory
(dired-up-directory). This is equivalent to moving to the line
for .. and typing f there.

Dired Marks vs. Flags

 Instead of flagging a file with ‘D’, you can mark the
file with some other character (usually ‘*’). Most Dired
commands to operate on files use the files marked with ‘*’. The
only command that operates on flagged files is x, which deletes
them.
Here are some commands for marking with ‘*’, for unmarking, and
for operating on marks. (See the section called “Deleting Files with Dired”, for commands to flag
and unflag files.)
	m, * m
	Mark the current file with ‘*’ (dired-mark). With a numeric
argument n, mark the next n files starting with the current
file. (If n is negative, mark the previous −n
files.)

	* *
	Mark all executable files with ‘*’
(dired-mark-executables). With a numeric argument, unmark all
those files.

	* @
	Mark all symbolic links with ‘*’ (dired-mark-symlinks).
With a numeric argument, unmark all those files.

	* /
	Mark with ‘*’ all files which are directories, except for
. and .. (dired-mark-directories). With a numeric
argument, unmark all those files.

	* s
	Mark all the files in the current subdirectory, aside from .
and .. (dired-mark-subdir-files).

	u, * u
	Remove any mark on this line (dired-unmark).

	DEL, * DEL
	Move point to previous line and remove any mark on that line
(dired-unmark-backward).

	* !, U
	Remove all marks from all the files in this Dired buffer
(dired-unmark-all-marks).

	* ? markchar, M-DEL
	Remove all marks that use the character markchar
(dired-unmark-all-files). The argument is a single
character—do not use RET to terminate it. See the description
of the * c command below, which lets you replace one mark
character with another.
With a numeric argument, this command queries about each marked file,
asking whether to remove its mark. You can answer y meaning yes,
n meaning no, or ! to remove the marks from the remaining
files without asking about them.

	* C-n, M-}
	Move down to the next marked file (dired-next-marked-file)
A file is “marked” if it has any kind of mark.

	* C-p, M-{
	Move up to the previous marked file (dired-prev-marked-file)

	t, * t
	Toggle all marks (dired-toggle-marks): files marked with ‘*’
become unmarked, and unmarked files are marked with ‘*’. Files
marked in any other way are not affected.

	* c old-markchar new-markchar
	Replace all marks that use the character old-markchar with marks
that use the character new-markchar (dired-change-marks).
This command is the primary way to create or use marks other than
‘*’ or ‘D’. The arguments are single characters—do not use
RET to terminate them.
You can use almost any character as a mark character by means of this
command, to distinguish various classes of files. If old-markchar
is a space (‘ ’), then the command operates on all unmarked files;
if new-markchar is a space, then the command unmarks the files it
acts on.
To illustrate the power of this command, here is how to put ‘D’
flags on all the files that have no marks, while unflagging all those
that already have ‘D’ flags:

* c D t * c SPC D * c t SPC

This assumes that no files were already marked with ‘t’.

	% m regexp RET, * % regexp RET
	Mark (with ‘*’) all files whose names match the regular expression
regexp (dired-mark-files-regexp). This command is like
% d, except that it marks files with ‘*’ instead of flagging
with ‘D’.
Only the non-directory part of the file name is used in matching. Use
‘^’ and ‘$’ to anchor matches. You can exclude
subdirectories by temporarily hiding them (see the section called “Hiding Subdirectories”).

	% g regexp RET
	Mark (with ‘*’) all files whose contents contain a match for
the regular expression regexp
(dired-mark-files-containing-regexp). This command is like
% m, except that it searches the file contents instead of the file
name.

	C-/, C-x u, C-_
	Undo changes in the Dired buffer, such as adding or removing
marks (dired-undo). This command does not revert the
actual file operations, nor recover lost files! It just undoes
changes in the buffer itself.
In some cases, using this after commands that operate on files can
cause trouble. For example, after renaming one or more files,
dired-undo restores the original names in the Dired buffer,
which gets the Dired buffer out of sync with the actual contents of
the directory.

Operating on Files

 This section describes the basic Dired commands to operate on one file
or several files. All of these commands are capital letters; all of
them use the minibuffer, either to read an argument or to ask for
confirmation, before they act. All of them let you specify the
files to manipulate in these ways:
	If you give the command a numeric prefix argument n, it operates
on the next n files, starting with the current file. (If n
is negative, the command operates on the −n files preceding
the current line.)

	Otherwise, if some files are marked with ‘*’, the command operates
on all those files.

	Otherwise, the command operates on the current file only.

Certain other Dired commands, such as ! and the ‘%’
commands, use the same conventions to decide which files to work on.
 Commands which ask for a destination directory, such as those which
copy and rename files or create links for them, try to guess the default
target directory for the operation. Normally, they suggest the Dired
buffer's default directory, but if the variable dired-dwim-target
is non-nil, and if there is another Dired buffer displayed in the
next window, that other buffer's directory is suggested instead.
Here are the file-manipulating Dired commands that operate on files.

	C new RET
	Copy the specified files (dired-do-copy). The argument new
is the directory to copy into, or (if copying a single file) the new
name. This is like the shell command cp.
If dired-copy-preserve-time is non-nil, then copying
with this command preserves the modification time of the old file in
the copy, like ‘cp -p’.
The variable dired-recursive-copies controls whether to copy
directories recursively (like ‘cp -r’). The default is
top, which means to ask before recursively copying a directory.

	D
	Delete the specified files (dired-do-delete). This is like the
shell command rm.
Like the other commands in this section, this command operates on the
marked files, or the next n files. By contrast, x
(dired-do-flagged-delete) deletes all flagged files.

	R new RET
	Rename the specified files (dired-do-rename). If you rename a
single file, the argument new is the new name of the file. If
you rename several files, the argument new is the directory into
which to move the files (this is like the shell command mv).
Dired automatically changes the visited file name of buffers associated
with renamed files so that they refer to the new names.

	H new RET
	Make hard links to the specified files (dired-do-hardlink).
This is like the shell command ln. The argument new is
the directory to make the links in, or (if making just one link) the
name to give the link.

	S new RET
	Make symbolic links to the specified files (dired-do-symlink).
This is like ‘ln -s’. The argument new is the directory to
make the links in, or (if making just one link) the name to give the
link.

	M modespec RET
	Change the mode (also called permission bits) of the specified
files (dired-do-chmod). modespec can be in octal or
symbolic notation, like arguments handled by the chmod
program.

	G newgroup RET
	Change the group of the specified files to newgroup
(dired-do-chgrp).

	O newowner RET
	Change the owner of the specified files to newowner
(dired-do-chown). (On most systems, only the superuser can do
this.)
The variable dired-chown-program specifies the name of the
program to use to do the work (different systems put chown
in different places).

	T timestamp RET
	Touch the specified files (dired-do-touch). This means
updating their modification times to the present time. This is like
the shell command touch.

	P command RET
	Print the specified files (dired-do-print). You must specify the
command to print them with, but the minibuffer starts out with a
suitable guess made using the variables lpr-command and
lpr-switches (the same variables that lpr-buffer uses;
see Chapter 38, Printing Hard Copies).

	Z
	Compress the specified files (dired-do-compress). If the file
appears to be a compressed file already, uncompress it instead.

	:d
	Decrypt the specified files (epa-dired-do-decrypt).
See See section ``Dired integration'' in EasyPG Assistant User's Manual.

	:v
	Verify digital signatures on the specified files (epa-dired-do-verify).
See See section ``Dired integration'' in EasyPG Assistant User's Manual.

	:s
	Digitally sign the specified files (epa-dired-do-sign).
See See section ``Dired integration'' in EasyPG Assistant User's Manual.

	:e
	Encrypt the specified files (epa-dired-do-encrypt).
See See section ``Dired integration'' in EasyPG Assistant User's Manual.

	L
	Load the specified Emacs Lisp files (dired-do-load).
See the section called “Libraries of Lisp Code for Emacs”.

	B
	Byte compile the specified Emacs Lisp files
(dired-do-byte-compile). See See section ``Byte Compilation'' in The Emacs Lisp Reference Manual.

	A regexp RET
	Search all the specified files for the regular expression regexp
(dired-do-search).
This command is a variant of tags-search. The search stops at
the first match it finds; use M-, to resume the search and find
the next match. See the section called “Searching and Replacing with Tags Tables”.

	Q regexp RET to RET
	Perform query-replace-regexp on each of the specified files,
replacing matches for regexp with the string
to (dired-do-query-replace-regexp).
This command is a variant of tags-query-replace. If you exit the
query replace loop, you can use M-, to resume the scan and replace
more matches. See the section called “Searching and Replacing with Tags Tables”.

Shell Commands in Dired

The Dired command ! (dired-do-shell-command) reads a
shell command string in the minibuffer and runs that shell command on
one or more files. The files that the shell command operates on are
determined in the usual way for Dired commands (see the section called “Operating on Files”). The command X is a synonym for !.
The command & (dired-do-async-shell-command) does the
same, except that it runs the shell command asynchronously. You can
also do this with !, by appending a ‘&’ character to the
end of the shell command.
For both ! and &, the working directory for the shell
command is the top-level directory of the Dired buffer.
If you tell ! or & to operate on more than one file, the
shell command string determines how those files are passed to the
shell command:
	If you use ‘*’ surrounded by whitespace in the command string,
then the command runs just once, with the list of file names
substituted for the ‘*’. The order of file names is the order of
appearance in the Dired buffer.
Thus, ! tar cf foo.tar * RET runs tar on the entire
list of file names, putting them into one tar file foo.tar.
If you want to use ‘*’ as a shell wildcard with whitespace around
it, write ‘*""’. In the shell, this is equivalent to ‘*’;
but since the ‘*’ is not surrounded by whitespace, Dired does not
treat it specially.

	Otherwise, if the command string contains ‘?’ surrounded by
whitespace, Emacs runs the shell command once for each file,
substituting the current file name for ‘?’ each time. You can
use ‘?’ more than once in the command; the same file name
replaces each occurrence.

	If the command string contains neither ‘*’ nor ‘?’, Emacs
runs the shell command once for each file, adding the file name at the
end. For example, ! uudecode RET runs uudecode on
each file.

To iterate over the file names in a more complicated fashion, use an
explicit shell loop. For example, here is how to uuencode each file,
making the output file name by appending ‘.uu’ to the input file
name:

for file in * ; do uuencode "$file" "$file" >"$file".uu; done

The ! and & commands do not attempt to update the Dired
buffer to show new or modified files, because they don't know what
files will be changed. Use the g command to update the Dired
buffer (see the section called “Updating the Dired Buffer”).
See the section called “Single Shell Commands”, for information about running shell commands
outside Dired.

Transforming File Names in Dired

This section describes Dired commands which alter file names in a
systematic way. Each command operates on some or all of the marked
files, using a new name made by transforming the existing name.
Like the basic Dired file-manipulation commands (see the section called “Operating on Files”), the commands described here operate either on the next
n files, or on all files marked with ‘*’, or on the current
file. (To mark files, use the commands described in the section called “Dired Marks vs. Flags”.)
All of the commands described in this section work
interactively: they ask you to confirm the operation for each
candidate file. Thus, you can select more files than you actually
need to operate on (e.g., with a regexp that matches many files), and
then filter the selected names by typing y or n when the
command prompts for confirmation.

	% u
	Rename each of the selected files to an upper-case name
(dired-upcase). If the old file names are Foo
and bar, the new names are FOO and BAR.

	% l
	Rename each of the selected files to a lower-case name
(dired-downcase). If the old file names are Foo and
bar, the new names are foo and bar.

	% R from RET to RET
	

	% C from RET to RET
	

	% H from RET to RET
	

	% S from RET to RET
	These four commands rename, copy, make hard links and make soft links,
in each case computing the new name by regular-expression substitution
from the name of the old file.

The four regular-expression substitution commands effectively
perform a search-and-replace on the selected file names. They read
two arguments: a regular expression from, and a substitution
pattern to; they match each “old” file name against
from, and then replace the matching part with to. You can
use ‘\&’ and ‘\digit’ in to to refer to all or
part of what the pattern matched in the old file name, as in
replace-regexp (see the section called “Regexp Replacement”). If the regular
expression matches more than once in a file name, only the first match
is replaced.
For example, % R ^.*$ RET x-\& RET renames each
selected file by prepending ‘x-’ to its name. The inverse of this,
removing ‘x-’ from the front of each file name, is also possible:
one method is % R ^x-\(.*\)$ RET \1 RET; another is
% R ^x- RET RET. (Use ‘^’ and ‘$’ to anchor
matches that should span the whole file name.)
Normally, the replacement process does not consider the files'
directory names; it operates on the file name within the directory. If
you specify a numeric argument of zero, then replacement affects the
entire absolute file name including directory name. (A non-zero
argument specifies the number of files to operate on.)
You may want to select the set of files to operate on using the same
regexp from that you will use to operate on them. To do this,
mark those files with % m from RET, then use the
same regular expression in the command to operate on the files. To
make this more convenient, the % commands to operate on files
use the last regular expression specified in any % command as a
default.

File Comparison with Dired

 Here are two Dired commands that compare specified files using
diff. They show the output in a buffer using Diff mode
(see the section called “Comparing Files”).
	=
	Compare the current file (the file at point) with another file (the
file at the mark) using the diff program (dired-diff).
The file at the mark is the first argument of diff, and the
file at point is the second argument. This refers to the ordinary
Emacs mark, not Dired marks; use C-SPC
(set-mark-command) to set the mark at the first file's line
(see the section called “Setting the Mark”).

	M-=
	Compare the current file with its latest backup file
(dired-backup-diff). If the current file is itself a backup,
compare it with the file it is a backup of; this way, you can compare
a file with any one of its backups.
The backup file is the first file given to diff.

Subdirectories in Dired

 A Dired buffer usually displays just one directory, but you can
optionally include its subdirectories as well.
The simplest way to include multiple directories in one Dired buffer is
to specify the options ‘-lR’ for running ls. (If you give a
numeric argument when you run Dired, then you can specify these options
in the minibuffer.) That produces a recursive directory listing showing
all subdirectories at all levels.
More often, you will want to show only specific subdirectories. You
can do this with i (dired-maybe-insert-subdir):

	i
	Insert the contents of a subdirectory later in the buffer.

If you use this command on a line that describes a file which is a
directory, it inserts the contents of that directory into the same
Dired buffer, and moves there. Inserted subdirectory contents follow
the top-level directory of the Dired buffer, just as they do in
‘ls -lR’ output.
If the subdirectory's contents are already present in the buffer,
the i command just moves to it.
In either case, i sets the Emacs mark before moving, so
C-u C-SPC returns to your previous position in the Dired
buffer (see the section called “Setting the Mark”). You can also use ‘^’ to return to
the parent directory in the same Dired buffer (see the section called “Visiting Files in Dired”).
Use the l command (dired-do-redisplay) to update the
subdirectory's contents, and use C-u k on the subdirectory
header line to remove the subdirectory listing (see the section called “Updating the Dired Buffer”). You can also hide and show inserted subdirectories
(see the section called “Hiding Subdirectories”).

Subdirectory Switches in Dired

You can insert subdirectories with specified ls switches in
Dired buffers using C-u i. You can change the ls
switches of an already inserted subdirectory at point using C-u l.
Dired preserves the switches if you revert the buffer. Deleting a
subdirectory forgets about its switches.
Using dired-undo
(see the section called “Dired Marks vs. Flags”)
to reinsert or delete
subdirectories that were inserted with explicit switches can bypass
Dired's machinery for remembering (or forgetting) switches. Deleting
a subdirectory using dired-undo does not forget its switches.
When later reinserted using i, it will be reinserted using its
old switches. Using dired-undo to reinsert a subdirectory that
was deleted using the regular Dired commands (not dired-undo)
will originally insert it with its old switches. Reverting the
buffer, however, will relist it using the buffer's default switches.
If any of this yields problems, you can easily correct the situation
using C-u i or C-u l.
Dired does not remember the R switch. Inserting a subdirectory
with switches that include the R switch is equivalent to
inserting each of its subdirectories using all remaining switches.
For instance, updating or killing a subdirectory that was inserted
with the R switch will not update or kill its subdirectories.
The buffer's default switches do not affect subdirectories that were
inserted using explicitly specified switches. In particular,
commands such as s that change the buffer's switches do not
affect such subdirectories. (They do, however, affect subdirectories
without explicitly assigned switches.)
You can make Dired forget about all subdirectory switches and relist
all subdirectories with the buffer's default switches using
M-x dired-reset-subdir-switches. This also reverts the Dired buffer.

Moving Over Subdirectories

When a Dired buffer lists subdirectories, you can use the page motion
commands C-x [and C-x] to move by entire directories
(see the section called “Pages”).
 The following commands move across, up and down in the tree of
directories within one Dired buffer. They move to directory header
lines, which are the lines that give a directory's name, at the
beginning of the directory's contents.

	C-M-n
	Go to next subdirectory header line, regardless of level
(dired-next-subdir).

	C-M-p
	Go to previous subdirectory header line, regardless of level
(dired-prev-subdir).

	C-M-u
	Go up to the parent directory's header line (dired-tree-up).

	C-M-d
	Go down in the directory tree, to the first subdirectory's header line
(dired-tree-down).

	<
	Move up to the previous directory-file line (dired-prev-dirline).
These lines are the ones that describe a directory as a file in its
parent directory.

	>
	Move down to the next directory-file line (dired-prev-dirline).

Hiding Subdirectories

 Hiding a subdirectory means to make it invisible, except for its
header line.
	$
	Hide or show the subdirectory that point is in, and move point to the
next subdirectory (dired-hide-subdir). This is a toggle. A
numeric argument serves as a repeat count.

	M-$
	Hide all subdirectories in this Dired buffer, leaving only their header
lines (dired-hide-all). Or, if any subdirectory is currently
hidden, make all subdirectories visible again. You can use this command
to get an overview in very deep directory trees or to move quickly to
subdirectories far away.

Ordinary Dired commands never consider files inside a hidden
subdirectory. For example, the commands to operate on marked files
ignore files in hidden directories even if they are marked. Thus you
can use hiding to temporarily exclude subdirectories from operations
without having to remove the Dired marks on files in those
subdirectories.
See the section called “Updating the Dired Buffer”, for how to insert or delete a subdirectory listing.

Updating the Dired Buffer

 This section describes commands to update the Dired buffer to reflect
outside (non-Dired) changes in the directories and files, and to delete
part of the Dired buffer.
	g
	Update the entire contents of the Dired buffer (revert-buffer).

	l
	Update the specified files (dired-do-redisplay). You specify the
files for l in the same way as for file operations.

	k
	Delete the specified file lines—not the files, just the lines
(dired-do-kill-lines).

	s
	Toggle between alphabetical order and date/time order
(dired-sort-toggle-or-edit).

	C-u s switches RET
	Refresh the Dired buffer using switches as
dired-listing-switches.

 Type g (revert-buffer) to update the contents of the
Dired buffer, based on changes in the files and directories listed.
This preserves all marks except for those on files that have vanished.
Hidden subdirectories are updated but remain hidden.
 To update only some of the files, type l
(dired-do-redisplay). Like the Dired file-operating commands,
this command operates on the next n files (or previous
−n files), or on the marked files if any, or on the
current file. Updating the files means reading their current status,
then updating their lines in the buffer to indicate that status.
If you use l on a subdirectory header line, it updates the
contents of the corresponding subdirectory.
 If you use C-x d or some other Dired command to visit a
directory that is already being shown in a Dired buffer, Dired
switches to that buffer but does not update it. If the buffer is not
up-to-date, Dired displays a warning telling you to type g to
update it. You can also tell Emacs to revert each Dired buffer
automatically when you revisit it, by setting the variable
dired-auto-revert-buffer to a non-nil value.
 To delete the specified file lines from the buffer—not
delete the files—type k (dired-do-kill-lines). Like
the file-operating commands, this command operates on the next n
files, or on the marked files if any; but it does not operate on the
current file as a last resort.
If you use k with a numeric prefix argument to kill the line
for a file that is a directory, which you have inserted in the Dired
buffer as a subdirectory, it removed that subdirectory line from the
buffer as well. Typing C-u k on the header line for a
subdirectory also removes the subdirectory line from the Dired buffer.
The g command brings back any individual lines that you have
killed in this way, but not subdirectories—you must use i to
reinsert a subdirectory.
 The files in a Dired buffers are normally listed in alphabetical order
by file names. Alternatively Dired can sort them by date/time. The
Dired command s (dired-sort-toggle-or-edit) switches
between these two sorting modes. The mode line in a Dired buffer
indicates which way it is currently sorted—by name, or by date.
C-u s switches RET lets you specify a new value for
dired-listing-switches.

Dired and find

 You can select a set of files for display in a Dired buffer more
flexibly by using the find utility to choose the files.
 To search for files with names matching a wildcard pattern use
M-x find-name-dired. It reads arguments directory and
pattern, and chooses all the files in directory or its
subdirectories whose individual names match pattern.
The files thus chosen are displayed in a Dired buffer, in which the
ordinary Dired commands are available.
 If you want to test the contents of files, rather than their names,
use M-x find-grep-dired. This command reads two minibuffer
arguments, directory and regexp; it chooses all the files
in directory or its subdirectories that contain a match for
regexp. It works by running the programs find and
grep. See also M-x grep-find, in the section called “Searching with Grep under Emacs”. Remember to write the regular expression for
grep, not for Emacs. (An alternative method of showing
files whose contents match a given regexp is the % g
regexp command, see the section called “Dired Marks vs. Flags”.)
 The most general command in this series is M-x find-dired,
which lets you specify any condition that find can test. It
takes two minibuffer arguments, directory and find-args;
it runs find in directory, passing find-args to
tell find what condition to test. To use this command, you
need to know how to use find.
 The format of listing produced by these commands is controlled by
the variable find-ls-option. This is a pair of options; the
first specifying how to call find to produce the file listing,
and the second telling Dired to parse the output.
 The command M-x locate provides a similar interface to the
locate program. M-x locate-with-filter is similar, but
keeps only files whose names match a given regular expression.
These buffers don't work entirely like ordinary Dired buffers: file
operations work, but do not always automatically update the buffer.
Reverting the buffer with g deletes all inserted subdirectories,
and erases all flags and marks.

Editing the Dired Buffer

 Wdired is a special mode that allows you to perform file operations
by editing the Dired buffer directly (the “W” in “Wdired” stands
for “writable”.) To enter Wdired mode, type C-x C-q
(dired-toggle-read-only) while in a Dired buffer.
Alternatively, use the ‘Immediate / Edit File Names’ menu item.
 While in Wdired mode, you can rename files by editing the file names
displayed in the Dired buffer. All the ordinary Emacs editing
commands, including rectangle operations and query-replace, are
available for this. Once you are done editing, type C-c C-c
(wdired-finish-edit). This applies your changes and switches
back to ordinary Dired mode.
Apart from simply renaming files, you can move a file to another
directory by typing in the new file name (either absolute or
relative). To mark a file for deletion, delete the entire file name.
To change the target of a symbolic link, edit the link target name
which appears next to the link name.
The rest of the text in the buffer, such as the file sizes and
modification dates, is marked read-only, so you can't edit it.
However, if you set wdired-allow-to-change-permissions to
t, you can edit the file permissions. For example, you can
change ‘-rw-r--r--’ to ‘-rw-rw-rw-’ to make a file
world-writable. These changes also take effect when you type C-c
C-c.

Viewing Image Thumbnails in Dired

 Image-Dired is a facility for browsing image files. It provides viewing
the images either as thumbnails or in full size, either inside Emacs
or through an external viewer.
 To enter Image-Dired, mark the image files you want to look at in
the Dired buffer, using m as usual. Then type C-t d
(image-dired-display-thumbs). This creates and switches to a
buffer containing image-dired, corresponding to the marked files.
You can also enter Image-Dired directly by typing M-x
image-dired. This prompts for a directory; specify one that has
image files. This creates thumbnails for all the images in that
directory, and displays them all in the “thumbnail buffer”. This
takes a long time if the directory contains many image files, and it
asks for confirmation if the number of image files exceeds
image-dired-show-all-from-dir-max-files.
With point in the thumbnail buffer, you can type RET
(image-dired-display-thumbnail-original-image) to display a
sized version of it in another window. This sizes the image to fit
the window. Use the arrow keys to move around in the buffer. For
easy browsing, use SPC
(image-dired-display-next-thumbnail-original) to advance and
display the next image. Typing DEL
(image-dired-display-previous-thumbnail-original) backs up to
the previous thumbnail and displays that instead.
 To view and the image in its original size, either provide a prefix
argument (C-u) before pressing RET, or type
C-RET (image-dired-thumbnail-display-external) to
display the image in an external viewer. You must first configure
image-dired-external-viewer.
You can delete images through Image-Dired also. Type d
(image-dired-flag-thumb-original-file) to flag the image file
for deletion in the Dired buffer. You can also delete the thumbnail
image from the thumbnail buffer with C-d
(image-dired-delete-char).
More advanced features include image tags, which are metadata
used to categorize image files. The tags are stored in a plain text
file configured by image-dired-db-file.
To tag image files, mark them in the dired buffer (you can also mark
files in Dired from the thumbnail buffer by typing m) and type
C-t t (image-dired-tag-files). This reads the tag name
in the minibuffer. To mark files having a certain tag, type C-t f
(image-dired-mark-tagged-files). After marking image files
with a certain tag, you can use C-t d to view them.
You can also tag a file directly from the thumbnail buffer by typing
t t and you can remove a tag by typing t r. There is also
a special “tag” called “comment” for each file (it is not a tag in
the exact same sense as the other tags, it is handled slightly
different). That is used to enter a comment or description about the
image. You comment a file from the thumbnail buffer by typing
c. You will be prompted for a comment. Type C-t c to add
a comment from Dired (image-dired-dired-comment-files).
Image-Dired also provides simple image manipulation. In the
thumbnail buffer, type L to rotate the original image 90 degrees
anti clockwise, and R to rotate it 90 degrees clockwise. This
rotation is lossless, and uses an external utility called JpegTRAN.

Other Dired Features

 The command + (dired-create-directory) reads a
directory name, and creates that directory. It signals an error if
the directory already exists.
 The command M-s a C-s (dired-do-isearch) begins a
“multi-file” incremental search on the marked files. If a search
fails at the end of a file, typing C-s advances to the next
marked file and repeats the search; at the end of the last marked
file, the search wraps around to the first marked file. The command
M-s a M-C-s (dired-do-isearch-regexp) does the same with
a regular expression search. See the section called “Repeating Incremental Search”, for information
about search repetition.
 The command w (dired-copy-filename-as-kill) puts the
names of the marked (or next n) files into the kill ring, as if
you had killed them with C-w. The names are separated by a
space.
With a zero prefix argument, this uses the absolute file name of
each marked file. With just C-u as the prefix argument, it uses
file names relative to the Dired buffer's default directory. (This
can still contain slashes if in a subdirectory.) As a special case,
if point is on a directory headerline, w gives you the absolute
name of that directory. Any prefix argument or marked files are
ignored in this case.
The main purpose of this command is so that you can yank the file
names into arguments for other Emacs commands. It also displays what
it added to the kill ring, so you can use it to display the list of
currently marked files in the echo area.
 If the directory you are visiting is under version control
(see the section called “Version Control”), then the normal VC diff and log commands
will operate on the selected files.
 The command M-x dired-compare-directories is used to compare
the current Dired buffer with another directory. It marks all the files
that are “different” between the two directories. It puts these marks
in all Dired buffers where these files are listed, which of course includes
the current buffer.
The default comparison method (used if you type RET at the
prompt) is to compare just the file names—each file name that does
not appear in the other directory is “different”. You can specify
more stringent comparisons by entering a Lisp expression, which can
refer to the variables size1 and size2, the respective
file sizes; mtime1 and mtime2, the last modification
times in seconds, as floating point numbers; and fa1 and
fa2, the respective file attribute lists (as returned by the
function file-attributes). This expression is evaluated for
each pair of like-named files, and if the expression's value is
non-nil, those files are considered “different”.
For instance, the sequence M-x dired-compare-directories
RET (> mtime1 mtime2) RET marks files newer in this
directory than in the other, and marks files older in the other
directory than in this one. It also marks files with no counterpart,
in both directories, as always.
 On the X Window System, Emacs supports the “drag and drop”
protocol. You can drag a file object from another program, and drop
it onto a Dired buffer; this either moves, copies, or creates a link
to the file in that directory. Precisely which action is taken is
determined by the originating program. Dragging files out of a Dired
buffer is currently not supported.

Chapter 31. The Calendar and the Diary

 Emacs provides the functions of a desk calendar, with a diary of
planned or past events. It also has facilities for managing your
appointments, and keeping track of how much time you spend working on
certain projects.
To enter the calendar, type M-x calendar; this displays a
three-month calendar centered on the current month, with point on the
current date. With a numeric argument, as in C-u M-x calendar, it
prompts you for the month and year to be the center of the three-month
calendar. The calendar uses its own buffer, whose major mode is
Calendar mode.
Mouse-3 in the calendar brings up a menu of operations on a
particular date; Mouse-2 brings up a menu of commonly used
calendar features that are independent of any particular date. To exit
the calendar, type q.
Movement in the Calendar

 Calendar mode provides commands to move through the calendar in
logical units of time such as days, weeks, months, and years. If you
move outside the three months originally displayed, the calendar
display “scrolls” automatically through time to make the selected
date visible. Moving to a date lets you view its holidays or diary
entries, or convert it to other calendars; moving by long time periods
is also useful simply to scroll the calendar.
Motion by Standard Lengths of Time

The commands for movement in the calendar buffer parallel the
commands for movement in text. You can move forward and backward by
days, weeks, months, and years.
	C-f
	Move point one day forward (calendar-forward-day).

	C-b
	Move point one day backward (calendar-backward-day).

	C-n
	Move point one week forward (calendar-forward-week).

	C-p
	Move point one week backward (calendar-backward-week).

	M-}
	Move point one month forward (calendar-forward-month).

	M-{
	Move point one month backward (calendar-backward-month).

	C-x]
	Move point one year forward (calendar-forward-year).

	C-x [
	Move point one year backward (calendar-backward-year).

 The day and week commands are natural analogues of the usual Emacs
commands for moving by characters and by lines. Just as C-n
usually moves to the same column in the following line, in Calendar
mode it moves to the same day in the following week. And C-p
moves to the same day in the previous week.
The arrow keys are equivalent to C-f, C-b, C-n and
C-p, just as they normally are in other modes.
 The commands for motion by months and years work like those for
weeks, but move a larger distance. The month commands M-} and
M-{ move forward or backward by an entire month. The year
commands C-x] and C-x [move forward or backward a
whole year.
The easiest way to remember these commands is to consider months and
years analogous to paragraphs and pages of text, respectively. But
the commands themselves are not quite analogous. The ordinary Emacs
paragraph commands move to the beginning or end of a paragraph,
whereas these month and year commands move by an entire month or an
entire year, keeping the same date within the month or year.
All these commands accept a numeric argument as a repeat count.
For convenience, the digit keys and the minus sign specify numeric
arguments in Calendar mode even without the Meta modifier. For example,
100 C-f moves point 100 days forward from its present location.

Beginning or End of Week, Month or Year

A week (or month, or year) is not just a quantity of days; we think of
weeks (months, years) as starting on particular dates. So Calendar mode
provides commands to move to the start or end of a week, month or year:

	C-a
	Move point to start of week (calendar-beginning-of-week).

	C-e
	Move point to end of week (calendar-end-of-week).

	M-a
	Move point to start of month (calendar-beginning-of-month).

	M-e
	Move point to end of month (calendar-end-of-month).

	M-<
	Move point to start of year (calendar-beginning-of-year).

	M->
	Move point to end of year (calendar-end-of-year).

These commands also take numeric arguments as repeat counts, with the
repeat count indicating how many weeks, months, or years to move
backward or forward.
 By default, weeks begin on Sunday. To make them begin on Monday
instead, set the variable calendar-week-start-day to 1.

Specified Dates

Calendar mode provides commands for moving to a particular date
specified in various ways.
	g d
	Move point to specified date (calendar-goto-date).

	g D
	Move point to specified day of year (calendar-goto-day-of-year).

	g w
	Move point to specified week of year (calendar-iso-goto-week).

	o
	Center calendar around specified month (calendar-other-month).

	.
	Move point to today's date (calendar-goto-today).

 g d (calendar-goto-date) prompts for a year, a month, and a day
of the month, and then moves to that date. Because the calendar includes all
dates from the beginning of the current era, you must type the year in its
entirety; that is, type ‘1990’, not ‘90’.
 g D (calendar-goto-day-of-year) prompts for a year and
day number, and moves to that date. Negative day numbers count
backward from the end of the year. g w
(calendar-iso-goto-week) prompts for a year and week number,
and moves to that week.
 o (calendar-other-month) prompts for a month and year,
then centers the three-month calendar around that month.
 You can return to today's date with .
(calendar-goto-today).

Scrolling in the Calendar

 The calendar display scrolls automatically through time when you
move out of the visible portion. You can also scroll it manually.
Imagine that the calendar window contains a long strip of paper with
the months on it. Scrolling the calendar means moving the strip
horizontally, so that new months become visible in the window.
	>
	Scroll calendar one month forward (calendar-scroll-left).

	<
	Scroll calendar one month backward (calendar-scroll-right).

	C-v, next
	Scroll three months forward (calendar-scroll-left-three-months).

	M-v, prior
	Scroll three months backward (calendar-scroll-right-three-months).

 The most basic calendar scroll commands scroll by one month at a
time. This means that there are two months of overlap between the
display before the command and the display after. > scrolls the
calendar contents one month forward in time. < scrolls the
contents one month backwards in time.
 The commands C-v and M-v scroll the calendar by an entire
“screenful”—three months—in analogy with the usual meaning of
these commands. C-v makes later dates visible and M-v makes
earlier dates visible. These commands take a numeric argument as a
repeat count; in particular, since C-u multiplies the next command
by four, typing C-u C-v scrolls the calendar forward by a year and
typing C-u M-v scrolls the calendar backward by a year.
The function keys next and prior are equivalent to
C-v and M-v, just as they are in other modes.

Counting Days

	M-=
	Display the number of days in the current region
(calendar-count-days-region).

 To determine the number of days in a range, set the mark on one
date using C-SPC, move point to another date, and type M-=
(calendar-count-days-region). The numbers of days shown is
inclusive; that is, it includes the days specified by mark and
point.

Miscellaneous Calendar Commands

	p d
	Display day-in-year (calendar-print-day-of-year).

	C-c C-l
	Regenerate the calendar window (calendar-redraw).

	SPC
	Scroll the next window up (scroll-other-window).

	DEL
	Scroll the next window down (scroll-other-window-down).

	q
	Exit from calendar (calendar-exit).

 To display the number of days elapsed since the start of the year, or
the number of days remaining in the year, type the p d command
(calendar-print-day-of-year). This displays both of those
numbers in the echo area. The count of days elapsed includes the
selected date. The count of days remaining does not include that
date.
 If the calendar window text gets corrupted, type C-c C-l
(calendar-redraw) to redraw it. (This can only happen if you use
non-Calendar-mode editing commands.)
 In Calendar mode, you can use SPC (scroll-other-window)
and DEL (scroll-other-window-down) to scroll the other
window (if there is one) up or down, respectively. This is handy when
you display a list of holidays or diary entries in another window.
 To exit from the calendar, type q (calendar-exit). This
buries all buffers related to the calendar, selecting other buffers.
(If a frame contains a dedicated calendar window, exiting from the
calendar deletes or iconifies that frame depending on the value of
calendar-remove-frame-by-deleting.)

Writing Calendar Files

You can write calendars and diary entries to HTML and LaTeX files.
 The Calendar HTML commands produce files of HTML code that contain
calendar and diary entries. Each file applies to one month, and has a
name of the format yyyy-mm.html, where yyyy and
mm are the four-digit year and two-digit month, respectively. The
variable cal-html-directory specifies the default output
directory for the HTML files.
 Diary entries enclosed by < and > are interpreted as
HTML tags (for example: this is a diary entry with some red text). You can change the overall
appearance of the displayed HTML pages (for example, the color of
various page elements, header styles) via a stylesheet cal.css in
the directory containing the HTML files (see the value of the variable
cal-html-css-default for relevant style settings).

	H m
	Generate a one-month calendar (cal-html-cursor-month).

	H y
	Generate a calendar file for each month of a year, as well as an index
page (cal-html-cursor-year). By default, this command writes
files to a yyyy subdirectory - if this is altered some hyperlinks
between years will not work.

If the variable cal-html-print-day-number-flag is
non-nil, then the monthly calendars show the day-of-the-year
number. The variable cal-html-year-index-cols specifies the
number of columns in the yearly index page.
 The Calendar LaTeX commands produce a buffer of LaTeX code that
prints as a calendar. Depending on the command you use, the printed
calendar covers the day, week, month or year that point is in.

	t m
	Generate a one-month calendar (cal-tex-cursor-month).

	t M
	Generate a sideways-printing one-month calendar
(cal-tex-cursor-month-landscape).

	t d
	Generate a one-day calendar
(cal-tex-cursor-day).

	t w 1
	Generate a one-page calendar for one week
(cal-tex-cursor-week).

	t w 2
	Generate a two-page calendar for one week
(cal-tex-cursor-week2).

	t w 3
	Generate an ISO-style calendar for one week
(cal-tex-cursor-week-iso).

	t w 4
	Generate a calendar for one Monday-starting week
(cal-tex-cursor-week-monday).

	t f w
	Generate a Filofax-style two-weeks-at-a-glance calendar
(cal-tex-cursor-filofax-2week).

	t f W
	Generate a Filofax-style one-week-at-a-glance calendar
(cal-tex-cursor-filofax-week).

	t y
	Generate a calendar for one year
(cal-tex-cursor-year).

	t Y
	Generate a sideways-printing calendar for one year
(cal-tex-cursor-year-landscape).

	t f y
	Generate a Filofax-style calendar for one year
(cal-tex-cursor-filofax-year).

Some of these commands print the calendar sideways (in “landscape
mode”), so it can be wider than it is long. Some of them use Filofax
paper size (3.75in x 6.75in). All of these commands accept a prefix
argument, which specifies how many days, weeks, months or years to print
(starting always with the selected one).
If the variable cal-tex-holidays is non-nil (the default),
then the printed calendars show the holidays in calendar-holidays.
If the variable cal-tex-diary is non-nil (the default is
nil), diary entries are included also (in monthly, filofax, and
iso-week calendars only). If the variable cal-tex-rules is
non-nil (the default is nil), the calendar displays ruled
pages in styles that have sufficient room. Consult the documentation of
the individual cal-tex functions to see which calendars support which
features.
You can use the variable cal-tex-preamble-extra to insert extra
LaTeX commands in the preamble of the generated document if you need
to.

Holidays

 The Emacs calendar knows about many major and minor holidays,
and can display them. You can add your own holidays to the default list.
	Mouse-3 Holidays, h
	Display holidays for the selected date
(calendar-cursor-holidays).

	x
	Mark holidays in the calendar window (calendar-mark-holidays).

	u
	Unmark calendar window (calendar-unmark).

	a
	List all holidays for the displayed three months in another window
(calendar-list-holidays).

	M-x holidays
	List all holidays for three months around today's date in another
window.

	M-x list-holidays
	List holidays in another window for a specified range of years.

 To see if any holidays fall on a given date, position point on that
date in the calendar window and use the h command. Alternatively,
click on that date with Mouse-3 and then choose Holidays
from the menu that appears. Either way, this displays the holidays for
that date, in the echo area if they fit there, otherwise in a separate
window.
 To view the distribution of holidays for all the dates shown in the
calendar, use the x command. This displays the dates that are
holidays in a different face.
See calendar-holiday-marker.
 The command applies both to the currently visible months and to
other months that subsequently become visible by scrolling. To turn
marking off and erase the current marks, type u, which also
erases any diary marks (see the section called “The Diary”). If the variable
calendar-mark-holidays-flag is non-nil, creating or
updating the calendar marks holidays automatically.
 To get even more detailed information, use the a command, which
displays a separate buffer containing a list of all holidays in the
current three-month range. You can use SPC and DEL in the
calendar window to scroll that list up and down, respectively.
 The command M-x holidays displays the list of holidays for the
current month and the preceding and succeeding months; this works even
if you don't have a calendar window. If the variable
calendar-view-holidays-initially-flag is non-nil, creating
the calendar displays holidays in this way. If you want the list of
holidays centered around a different month, use C-u M-x
holidays, which prompts for the month and year.
The holidays known to Emacs include United States holidays and the
major Bahá'í, Chinese, Christian, Islamic, and Jewish holidays; also the
solstices and equinoxes.
 The command M-x holiday-list displays the list of holidays for
a range of years. This function asks you for the starting and stopping
years, and allows you to choose all the holidays or one of several
categories of holidays. You can use this command even if you don't have
a calendar window.
The dates used by Emacs for holidays are based on current
practice, not historical fact. For example Veteran's Day began in
1919, but is shown in earlier years.

Times of Sunrise and Sunset

 Special calendar commands can tell you, to within a minute or two, the
times of sunrise and sunset for any date.
	Mouse-3 Sunrise/sunset, S
	Display times of sunrise and sunset for the selected date
(calendar-sunrise-sunset).

	M-x sunrise-sunset
	Display times of sunrise and sunset for today's date.

	C-u M-x sunrise-sunset
	Display times of sunrise and sunset for a specified date.

	M-x calendar-sunrise-sunset-month
	Display times of sunrise and sunset for the selected month.

 Within the calendar, to display the local times of sunrise and
sunset in the echo area, move point to the date you want, and type
S. Alternatively, click Mouse-3 on the date, then choose
‘Sunrise/sunset’ from the menu that appears. The command M-x
sunrise-sunset is available outside the calendar to display this
information for today's date or a specified date. To specify a date
other than today, use C-u M-x sunrise-sunset, which prompts for
the year, month, and day.
You can display the times of sunrise and sunset for any location and
any date with C-u C-u M-x sunrise-sunset. This asks you for a
longitude, latitude, number of minutes difference from Coordinated
Universal Time, and date, and then tells you the times of sunrise and
sunset for that location on that date.
Because the times of sunrise and sunset depend on the location on
earth, you need to tell Emacs your latitude, longitude, and location
name before using these commands. Here is an example of what to set:

(setq calendar-latitude 40.1)
(setq calendar-longitude -88.2)
(setq calendar-location-name "Urbana, IL")

Use one decimal place in the values of calendar-latitude and
calendar-longitude.
Your time zone also affects the local time of sunrise and sunset.
Emacs usually gets time zone information from the operating system, but
if these values are not what you want (or if the operating system does
not supply them), you must set them yourself. Here is an example:

(setq calendar-time-zone -360)
(setq calendar-standard-time-zone-name "CST")
(setq calendar-daylight-time-zone-name "CDT")

The value of calendar-time-zone is the number of minutes
difference between your local standard time and Coordinated Universal
Time (Greenwich time). The values of
calendar-standard-time-zone-name and
calendar-daylight-time-zone-name are the abbreviations used in
your time zone. Emacs displays the times of sunrise and sunset
corrected for daylight saving time. See the section called “Daylight Saving Time”,
for how daylight saving time is determined.
As a user, you might find it convenient to set the calendar location
variables for your usual physical location in your .emacs file.
If you are a system administrator, you may want to set these variables
for all users in a default.el file. See the section called “The Emacs Initialization File”.

Phases of the Moon

 These calendar commands display the dates and times of the phases of
the moon (new moon, first quarter, full moon, last quarter). This
feature is useful for debugging problems that “depend on the phase of
the moon”.
	M
	Display the dates and times for all the quarters of the moon for the
three-month period shown (calendar-lunar-phases).

	M-x lunar-phases
	Display dates and times of the quarters of the moon for three months around
today's date.

 Within the calendar, use the M command to display a separate
buffer of the phases of the moon for the current three-month range. The
dates and times listed are accurate to within a few minutes.
 Outside the calendar, use the command M-x lunar-phases to
display the list of the phases of the moon for the current month and the
preceding and succeeding months. For information about a different
month, use C-u M-x lunar-phases, which prompts for the month and
year.
The dates and times given for the phases of the moon are given in
local time (corrected for daylight saving, when appropriate).
See the discussion in the previous section. See the section called “Times of Sunrise and Sunset”.

Conversion To and From Other Calendars

 The Emacs calendar displayed is always the Gregorian calendar,
sometimes called the “new style” calendar, which is used in most of
the world today. However, this calendar did not exist before the
sixteenth century and was not widely used before the eighteenth century;
it did not fully displace the Julian calendar and gain universal
acceptance until the early twentieth century. The Emacs calendar can
display any month since January, year 1 of the current era, but the
calendar displayed is always the Gregorian, even for a date at which
the Gregorian calendar did not exist.
While Emacs cannot display other calendars, it can convert dates to
and from several other calendars.
Supported Calendar Systems

 The ISO commercial calendar is often used in business.
 The Julian calendar, named after Julius Caesar, was the one used in Europe
throughout medieval times, and in many countries up until the nineteenth
century.
 Astronomers use a simple counting of days elapsed since noon, Monday,
January 1, 4713 B.C. on the Julian calendar. The number of days elapsed
is called the Julian day number or the Astronomical day number.
 The Hebrew calendar is used by tradition in the Jewish religion. The
Emacs calendar program uses the Hebrew calendar to determine the dates
of Jewish holidays. Hebrew calendar dates begin and end at sunset.
 The Islamic calendar is used in many predominantly Islamic countries.
Emacs uses it to determine the dates of Islamic holidays. There is no
universal agreement in the Islamic world about the calendar; Emacs uses
a widely accepted version, but the precise dates of Islamic holidays
often depend on proclamation by religious authorities, not on
calculations. As a consequence, the actual dates of observance can vary
slightly from the dates computed by Emacs. Islamic calendar dates begin
and end at sunset.
 The French Revolutionary calendar was created by the Jacobins after the 1789
revolution, to represent a more secular and nature-based view of the annual
cycle, and to install a 10-day week in a rationalization measure similar to
the metric system. The French government officially abandoned this
calendar at the end of 1805.
 The Maya of Central America used three separate, overlapping calendar
systems, the long count, the tzolkin, and the haab.
Emacs knows about all three of these calendars. Experts dispute the
exact correlation between the Mayan calendar and our calendar; Emacs uses the
Goodman-Martinez-Thompson correlation in its calculations.
 The Copts use a calendar based on the ancient Egyptian solar calendar.
Their calendar consists of twelve 30-day months followed by an extra
five-day period. Once every fourth year they add a leap day to this
extra period to make it six days. The Ethiopic calendar is identical in
structure, but has different year numbers and month names.
 The Persians use a solar calendar based on a design of Omar Khayyam.
Their calendar consists of twelve months of which the first six have 31
days, the next five have 30 days, and the last has 29 in ordinary years
and 30 in leap years. Leap years occur in a complicated pattern every
four or five years.
The calendar implemented here is the arithmetical Persian calendar
championed by Birashk, based on a 2,820-year cycle. It differs from
the astronomical Persian calendar, which is based on astronomical
events. As of this writing the first future discrepancy is projected
to occur on March 20, 2025. It is currently not clear what the
official calendar of Iran will be at that time.

 The Chinese calendar is a complicated system of lunar months arranged
into solar years. The years go in cycles of sixty, each year containing
either twelve months in an ordinary year or thirteen months in a leap
year; each month has either 29 or 30 days. Years, ordinary months, and
days are named by combining one of ten “celestial stems” with one of
twelve “terrestrial branches” for a total of sixty names that are
repeated in a cycle of sixty.
 The Bahá'í calendar system is based on a solar cycle of 19 months with
19 days each. The four remaining “intercalary” days are placed
between the 18th and 19th months.

Converting To Other Calendars

The following commands describe the selected date (the date at point)
in various other calendar systems:

	Mouse-3 Other calendars, p o
	Display the selected date in various other calendars.
(calendar-print-other-dates).

	p c
	Display ISO commercial calendar equivalent for selected day
(calendar-iso-print-date).

	p j
	Display Julian date for selected day (calendar-julian-print-date).

	p a
	Display astronomical (Julian) day number for selected day
(calendar-astro-print-day-number).

	p h
	Display Hebrew date for selected day (calendar-hebrew-print-date).

	p i
	Display Islamic date for selected day (calendar-islamic-print-date).

	p f
	Display French Revolutionary date for selected day
(calendar-french-print-date).

	p b
	Display Bahá'í date for selected day
(calendar-bahai-print-date).

	p C
	Display Chinese date for selected day
(calendar-chinese-print-date).

	p k
	Display Coptic date for selected day
(calendar-coptic-print-date).

	p e
	Display Ethiopic date for selected day
(calendar-ethiopic-print-date).

	p p
	Display Persian date for selected day
(calendar-persian-print-date).

	p m
	Display Mayan date for selected day (calendar-mayan-print-date).

Otherwise, move point to the date you want to convert, then type the
appropriate command starting with p from the table above. The
prefix p is a mnemonic for “print”, since Emacs “prints” the
equivalent date in the echo area. p o displays the
date in all forms known to Emacs. You can also use Mouse-3 and
then choose Other calendars from the menu that appears. This
displays the equivalent forms of the date in all the calendars Emacs
understands, in the form of a menu. (Choosing an alternative from
this menu doesn't actually do anything—the menu is used only for
display.)

Converting From Other Calendars

You can use the other supported calendars to specify a date to move
to. This section describes the commands for doing this using calendars
other than Mayan; for the Mayan calendar, see the following section.

	g c
	Move to a date specified in the ISO commercial calendar
(calendar-iso-goto-date).

	g w
	Move to a week specified in the ISO commercial calendar
(calendar-iso-goto-week).

	g j
	Move to a date specified in the Julian calendar
(calendar-julian-goto-date).

	g a
	Move to a date specified with an astronomical (Julian) day number
(calendar-astro-goto-day-number).

	g b
	Move to a date specified in the Bahá'í calendar
(calendar-bahai-goto-date).

	g h
	Move to a date specified in the Hebrew calendar
(calendar-hebrew-goto-date).

	g i
	Move to a date specified in the Islamic calendar
(calendar-islamic-goto-date).

	g f
	Move to a date specified in the French Revolutionary calendar
(calendar-french-goto-date).

	g C
	Move to a date specified in the Chinese calendar
(calendar-chinese-goto-date).

	g p
	Move to a date specified in the Persian calendar
(calendar-persian-goto-date).

	g k
	Move to a date specified in the Coptic calendar
(calendar-coptic-goto-date).

	g e
	Move to a date specified in the Ethiopic calendar
(calendar-ethiopic-goto-date).

These commands ask you for a date on the other calendar, move point
to the Gregorian calendar date equivalent to that date, and display
the other calendar's date in the echo area. Emacs uses strict
completion (see the section called “Completion Exit”) whenever it asks you to type a
month name, so you don't have to worry about the spelling of Hebrew,
Islamic, or French names.
 One common issue concerning the Hebrew calendar is the computation
of the anniversary of a date of death, called a “yahrzeit”. The Emacs
calendar includes a facility for such calculations. If you are in the
calendar, the command M-x calendar-hebrew-list-yahrzeits asks you for
a range of years and then displays a list of the yahrzeit dates for those
years for the date given by point. If you are not in the calendar,
this command first asks you for the date of death and the range of
years, and then displays the list of yahrzeit dates.

Converting from the Mayan Calendar

Here are the commands to select dates based on the Mayan calendar:
	g m l
	Move to a date specified by the long count calendar
(calendar-mayan-goto-long-count-date).

	g m n t
	Move to the next occurrence of a place in the
tzolkin calendar (calendar-mayan-next-tzolkin-date).

	g m p t
	Move to the previous occurrence of a place in the
tzolkin calendar (calendar-mayan-previous-tzolkin-date).

	g m n h
	Move to the next occurrence of a place in the
haab calendar (calendar-mayan-next-haab-date).

	g m p h
	Move to the previous occurrence of a place in the
haab calendar (calendar-mayan-previous-haab-date).

	g m n c
	Move to the next occurrence of a place in the
calendar round (calendar-mayan-next-calendar-round-date).

	g m p c
	Move to the previous occurrence of a place in the
calendar round (calendar-mayan-previous-calendar-round-date).

 To understand these commands, you need to understand the Mayan calendars.
The long count is a counting of days with these units:

1 kin = 1 day 1 uinal = 20 kin 1 tun = 18 uinal

1 katun = 20 tun 1 baktun = 20 katun

Thus, the long count date 12.16.11.16.6 means 12 baktun, 16 katun, 11
tun, 16 uinal, and 6 kin. The Emacs calendar can handle Mayan long
count dates as early as 7.17.18.13.3, but no earlier. When you use the
g m l command, type the Mayan long count date with the baktun,
katun, tun, uinal, and kin separated by periods.
 The Mayan tzolkin calendar is a cycle of 260 days formed by a pair of
independent cycles of 13 and 20 days. Since this cycle repeats
endlessly, Emacs provides commands to move backward and forward to the
previous or next point in the cycle. Type g m p t to go to the
previous tzolkin date; Emacs asks you for a tzolkin date and moves point
to the previous occurrence of that date. Similarly, type g m n t
to go to the next occurrence of a tzolkin date.
 The Mayan haab calendar is a cycle of 365 days arranged as 18 months
of 20 days each, followed by a 5-day monthless period. Like the tzolkin
cycle, this cycle repeats endlessly, and there are commands to move
backward and forward to the previous or next point in the cycle. Type
g m p h to go to the previous haab date; Emacs asks you for a haab
date and moves point to the previous occurrence of that date.
Similarly, type g m n h to go to the next occurrence of a haab
date.
 The Maya also used the combination of the tzolkin date and the haab
date. This combination is a cycle of about 52 years called a
calendar round. If you type g m p c, Emacs asks you for
both a haab and a tzolkin date and then moves point to the previous
occurrence of that combination. Use g m n c to move point to the
next occurrence of a combination. These commands signal an error if the
haab/tzolkin date combination you have typed is impossible.
Emacs uses strict completion (see the section called “Completion Exit”) whenever it
asks you to type a Mayan name, so you don't have to worry about
spelling.

The Diary

 The Emacs diary keeps track of appointments or other events on a daily
basis, in conjunction with the calendar. To use the diary feature, you
must first create a diary file containing a list of events and
their dates. Then Emacs can automatically pick out and display the
events for today, for the immediate future, or for any specified
date.
The name of the diary file is specified by the variable
diary-file; ~/diary is the default. Here's an example
showing what that file looks like:

12/22/2012 Twentieth wedding anniversary!!
&1/1. Happy New Year!
10/22 Ruth's birthday.
* 21, *: Payday
Tuesday--weekly meeting with grad students at 10am
 Supowit, Shen, Bitner, and Kapoor to attend.
1/13/89 Friday the thirteenth!!
&thu 4pm squash game with Lloyd.
mar 16 Dad's birthday
April 15, 2013 Income tax due.
&* 15 time cards due.

This format is essentially the same as the one used by the separate
calendar utility that is present on some Unix systems. This
example uses extra spaces to align the event descriptions of most of
the entries. Such formatting is purely a matter of taste.
Although you probably will start by creating a diary manually, Emacs
provides a number of commands to let you view, add, and change diary
entries.
Displaying the Diary

Once you have created a diary file, you can use the calendar to view
it. You can also view today's events outside of Calendar mode. In the
following, key bindings refer to the Calendar buffer.
	Mouse-3 Diary, d
	Display all diary entries for the selected date
(diary-view-entries).

	s
	Display the entire diary file (diary-show-all-entries).

	m
	Mark all visible dates that have diary entries
(diary-mark-entries).

	u
	Unmark the calendar window (calendar-unmark).

	M-x diary-print-entries
	Print hard copy of the diary display as it appears.

	M-x diary
	Display all diary entries for today's date.

	M-x diary-mail-entries
	Mail yourself email reminders about upcoming diary entries.

 Displaying the diary entries with d shows in a separate window
the diary entries for the selected date in the calendar. The mode line
of the new window shows the date of the diary entries. Holidays are
shown either in the buffer or in the mode line, depending on the display
method you choose
(see the section called “Diary Display”).
If you specify a numeric argument with d, it shows all the diary
entries for that many successive days. Thus, 2 d displays all the
entries for the selected date and for the following day.
Another way to display the diary entries for a date is to click
Mouse-3 on the date, and then choose Diary entries from
the menu that appears. If the variable
calendar-view-diary-initially-flag is non-nil, creating the
calendar lists the diary entries for the current date (provided the
current date is visible).
 To get a broader view of which days are mentioned in the diary, use
the m command. This marks the dates that have diary entries in
a different face.
See diary-entry-marker.
This command applies both to the months that are currently visible
and to those that subsequently become visible after scrolling. To turn
marking off and erase the current marks, type u, which also
turns off holiday marks (see the section called “Holidays”). If the variable
calendar-mark-diary-entries-flag is non-nil, creating or
updating the calendar marks diary dates automatically.
 To see the full diary file, rather than just some of the entries, use
the s command.
 The command M-x diary displays the diary entries for the current
date, independently of the calendar display, and optionally for the next
few days as well; the variable diary-number-of-entries specifies
how many days to include.
See diary-number-of-entries.
If you put (diary) in your .emacs file, this
automatically displays a window with the day's diary entries when you
start Emacs.
 Some people like to receive email notifications of events in their
diary. To send such mail to yourself, use the command M-x
diary-mail-entries. A prefix argument specifies how many days
(starting with today) to check; otherwise, the variable
diary-mail-days says how many days.

The Diary File

 Your diary file is a file that records events associated with
particular dates. The name of the diary file is specified by the
variable diary-file; ~/diary is the default. The
calendar utility program supports a subset of the format allowed
by the Emacs diary facilities, so you can use that utility to view the
diary file, with reasonable results aside from the entries it cannot
understand.
Each entry in the diary file describes one event and consists of one
or more lines. An entry always begins with a date specification at the
left margin. The rest of the entry is simply text to describe the
event. If the entry has more than one line, then the lines after the
first must begin with whitespace to indicate they continue a previous
entry. Lines that do not begin with valid dates and do not continue a
preceding entry are ignored.
You can also use a format where the first line of a diary entry
consists only of the date or day name (with no following blanks or
punctuation). For example:

02/11/2012
 Bill B. visits Princeton today
 2pm Cognitive Studies Committee meeting
 2:30-5:30 Liz at Lawrenceville
 4:00pm Dentist appt
 7:30pm Dinner at George's
 8:00-10:00pm concert

This entry will have a different appearance if you use the simple diary
display
(see the section called “Diary Display”).
The simple diary display omits the date line at the beginning; only the
continuation lines appear. This style of entry looks neater when you
display just a single day's entries, but can cause confusion if you ask
for more than one day's entries.
 You can inhibit the marking of certain diary entries in the calendar
window; to do this, insert the string that
diary-nonmarking-symbol specifies (default ‘&’) at the
beginning of the entry, before the date. This
has no effect on display of the entry in the diary window; it only
affects marks on dates in the calendar window. Nonmarking entries are
especially useful for generic entries that would otherwise mark many
different dates.

Date Formats

Here are some sample diary entries, illustrating different ways of
formatting a date. The examples all show dates in American order
(month, day, year), but Calendar mode supports European order (day,
month, year) and ISO order (year, month, day) as options.

4/20/12 Switch-over to new tabulation system
apr. 25 Start tabulating annual results
4/30 Results for April are due
*/25 Monthly cycle finishes
Friday Don't leave without backing up files

The first entry appears only once, on April 20, 2012. The second and
third appear every year on the specified dates, and the fourth uses a
wildcard (asterisk) for the month, so it appears on the 25th of every
month. The final entry appears every week on Friday.
You can use just numbers to express a date, as in
‘month/day’ or ‘month/day/year’.
This must be followed by a nondigit. In the date itself, month
and day are numbers of one or two digits. The optional year
is also a number, and may be abbreviated to the last two digits; that
is, you can use ‘11/12/2012’ or ‘11/12/12’.
Dates can also have the form ‘monthname day’ or
‘monthname day, year’, where the month's name can
be spelled in full or abbreviated (with or without a period). The
preferred abbreviations for month and day names can be set using
the variables calendar-abbrev-length,
calendar-month-abbrev-array, and
calendar-day-abbrev-array. The default is to use the first three
letters of a name as its abbreviation. Case is not significant.
A date may be generic; that is, partially unspecified. Then the
entry applies to all dates that match the specification. If the date
does not contain a year, it is generic and applies to any year.
Alternatively, month, day, or year can be ‘*’;
this matches any month, day, or year, respectively. Thus, a diary entry
‘3/*/*’ matches any day in March of any year; so does ‘march
*’.
 If you prefer the European style of writing dates (in which the day
comes before the month), or the ISO style (in which the order is year,
month, day), type M-x calendar-set-date-style while in the
calendar, or customize the variable calendar-date-style. This
affects how diary dates are interpreted, date display, and the order in
which some commands expect their arguments to be given.
You can use the name of a day of the week as a generic date which
applies to any date falling on that day of the week. You can abbreviate
the day of the week as described above, or spell it in full; case is not
significant.

Commands to Add to the Diary

While in the calendar, there are several commands to create diary
entries. The basic commands are listed here; more sophisticated
commands are in the next section (see the section called “Special Diary Entries”).
Entries can also be based on non-Gregorian calendars.
See the section called “Diary Entries Using non-Gregorian Calendars”.
	i d
	Add a diary entry for the selected date (diary-insert-entry).

	i w
	Add a diary entry for the selected day of the week (diary-insert-weekly-entry).

	i m
	Add a diary entry for the selected day of the month (diary-insert-monthly-entry).

	i y
	Add a diary entry for the selected day of the year (diary-insert-yearly-entry).

 You can make a diary entry for a specific date by selecting that date
in the calendar window and typing the i d command. This command
displays the end of your diary file in another window and inserts the
date; you can then type the rest of the diary entry.
 If you want to make a diary entry that applies to a specific day of
the week, select that day of the week (any occurrence will do) and type
i w. This inserts the day-of-week as a generic date; you can then
type the rest of the diary entry. You can make a monthly diary entry in
the same fashion: select the day of the month, use the i m
command, and type the rest of the entry. Similarly, you can insert a
yearly diary entry with the i y command.
All of the above commands make marking diary entries by default. To
make a nonmarking diary entry, give a prefix argument to the command.
For example, C-u i w makes a nonmarking weekly diary entry.
When you modify the diary file, be sure to save the file before
exiting Emacs. Saving the diary file after using any of the above
insertion commands will automatically update the diary marks in the
calendar window, if appropriate. You can use the command
calendar-redraw to force an update at any time.

Special Diary Entries

In addition to entries based on calendar dates, the diary file can
contain sexp entries for regular events such as anniversaries.
These entries are based on Lisp expressions (sexps) that Emacs evaluates
as it scans the diary file. Instead of a date, a sexp entry contains
‘%%’ followed by a Lisp expression which must begin and end with
parentheses. The Lisp expression determines which dates the entry
applies to.
Calendar mode provides commands to insert certain commonly used
sexp entries:
	i a
	Add an anniversary diary entry for the selected date
(diary-insert-anniversary-entry).

	i b
	Add a block diary entry for the current region
(diary-insert-block-entry).

	i c
	Add a cyclic diary entry starting at the date
(diary-insert-cyclic-entry).

 If you want to make a diary entry that applies to the anniversary of a
specific date, move point to that date and use the i a command.
This displays the end of your diary file in another window and inserts
the anniversary description; you can then type the rest of the diary
entry. The entry looks like this:

%%(diary-anniversary 10 31 1948) Arthur's birthday

This entry applies to October 31 in any year after 1948; ‘10 31
1948’ specifies the date. (If you are using the European or ISO
calendar style, the input order of month, day and year is different.)
The reason this expression requires a beginning year is that advanced
diary functions can use it to calculate the number of elapsed years.
A block diary entry applies to a specified range of consecutive
dates. Here is a block diary entry that applies to all dates from June
24, 2012 through July 10, 2012:

%%(diary-block 6 24 2012 7 10 2012) Vacation

The ‘6 24 2012’ indicates the starting date and the ‘7 10 2012’
indicates the stopping date. (Again, if you are using the European or ISO
calendar style, the input order of month, day and year is different.)
 To insert a block entry, place point and the mark on the two
dates that begin and end the range, and type i b. This command
displays the end of your diary file in another window and inserts the
block description; you can then type the diary entry.
 Cyclic diary entries repeat after a fixed interval of days. To
create one, select the starting date and use the i c command. The
command prompts for the length of interval, then inserts the entry,
which looks like this:

%%(diary-cyclic 50 3 1 2012) Renew medication

This entry applies to March 1, 2012 and every 50th day following;
‘3 1 2012’ specifies the starting date. (If you are using the
European or ISO calendar style, the input order of month, day and year
is different.)
All three of these commands make marking diary entries. To insert a
nonmarking entry, give a prefix argument to the command. For example,
C-u i a makes a nonmarking anniversary diary entry.
Marking sexp diary entries in the calendar can be time-consuming,
since every date visible in the calendar window must be individually
checked. So it's a good idea to make sexp diary entries nonmarking
(with ‘&’) when possible.
Another sophisticated kind of sexp entry, a floating diary entry,
specifies a regularly occurring event by offsets specified in days,
weeks, and months. It is comparable to a crontab entry interpreted by
the cron utility. Here is a nonmarking, floating diary entry
that applies to the fourth Thursday in November:

&%%(diary-float 11 4 4) American Thanksgiving

The 11 specifies November (the eleventh month), the 4 specifies Thursday
(the fourth day of the week, where Sunday is numbered zero), and the
second 4 specifies the fourth Thursday (1 would mean “first”, 2 would
mean “second”, −2 would mean “second-to-last”, and so on).
The month can be a single month or a list of months. Thus you could change
the 11 above to ‘'(1 2 3)’ and have the entry apply to the last
Thursday of January, February, and March. If the month is t, the
entry applies to all months of the year.
Each of the standard sexp diary entries takes an optional parameter
specifying the name of a face or a single-character string to use when
marking the entry in the calendar. Most generally, sexp diary entries
can perform arbitrary computations to determine when they apply.
See the section called “Sexp Entries and the Fancy Diary Display”.

Appointments

 If you have a diary entry for an appointment, and that diary entry
begins with a recognizable time of day, Emacs can warn you in advance
that an appointment is pending. Emacs alerts you
to the appointment by displaying a message in your chosen format, as
specified by the variable appt-display-format. If the value of
appt-audible is non-nil, the warning includes an audible
reminder. In addition, if appt-display-mode-line is
non-nil, Emacs displays the number of minutes to the
appointment on the mode line.
 If appt-display-format has the value window, then the
variable appt-display-duration controls how long the reminder
window is visible for; and the variables
appt-disp-window-function and appt-delete-window-function
give the names of functions used to create and destroy the window,
respectively.
 To enable appointment notification, type M-x appt-activate.
With a positive argument, it enables notification; with a negative
argument, it disables notification; with no argument, it toggles.
Enabling notification also sets up an appointment list for today from
the diary file, giving all diary entries found with recognizable times
of day, and reminds you just before each of them.
For example, suppose the diary file contains these lines:

Monday
 9:30am Coffee break
 12:00pm Lunch

Then on Mondays, you will be reminded at around 9:20am about your
coffee break and at around 11:50am about lunch. The variable
appt-message-warning-time specifies how many minutes (default 12)
in advance to warn you. This is a default warning time. Each
appointment can specify a different warning time by adding a piece
matching appt-warning-time-regexp (see that variable's
documentation for details).
You can write times in am/pm style (with ‘12:00am’ standing
for midnight and ‘12:00pm’ standing for noon), or 24-hour
European/military style. You need not be consistent; your diary file
can have a mixture of the two styles. Times must be at the beginning of
diary entries if they are to be recognized.
 Emacs updates the appointments list from the diary file
automatically just after midnight. You can force an update at any
time by re-enabling appointment notification. Both these actions also
display the day's diary buffer, unless you set
appt-display-diary to nil. The appointments list is
also updated whenever the diary file (or a file it includes; see
the section called “Fancy Diary Display”)
is saved.
 You can also use the appointment notification facility like an alarm
clock. The command M-x appt-add adds entries to the appointment
list without affecting your diary file. You delete entries from the
appointment list with M-x appt-delete.

Importing and Exporting Diary Entries

You can transfer diary entries between Emacs diary files and a
variety of other formats.
 You can import diary entries from Outlook-generated appointment
messages. While viewing such a message in Rmail or Gnus, do M-x
diary-from-outlook to import the entry. You can make this command
recognize additional appointment message formats by customizing the
variable diary-outlook-formats.
 The icalendar package allows you to transfer data between your Emacs
diary file and iCalendar files, which are defined in “RFC
2445—Internet Calendaring and Scheduling Core Object Specification
(iCalendar)” (as well as the earlier vCalendar format).
 The command icalendar-import-buffer extracts
iCalendar data from the current buffer and adds it to your
diary file. This function is also suitable for automatic extraction of
iCalendar data; for example with the Rmail mail client one could use:

(add-hook 'rmail-show-message-hook 'icalendar-import-buffer)

 The command icalendar-import-file imports an iCalendar file
and adds the results to an Emacs diary file. For example:

(icalendar-import-file "/here/is/calendar.ics"
 "/there/goes/ical-diary")

You can use an #include directive to add the import file contents
to the main diary file, if these are different files.
See the section called “Fancy Diary Display”.
 Use icalendar-export-file to interactively export an entire
Emacs diary file to iCalendar format. To export only a part of a diary
file, mark the relevant area, and call icalendar-export-region.
In both cases, Emacs appends the result to the target file.

Daylight Saving Time

 Emacs understands the difference between standard time and daylight
saving time—the times given for sunrise, sunset, solstices,
equinoxes, and the phases of the moon take that into account. The rules
for daylight saving time vary from place to place and have also varied
historically from year to year. To do the job properly, Emacs needs to
know which rules to use.
 Some operating systems keep track of the rules that apply to the place
where you are; on these systems, Emacs gets the information it needs
from the system automatically. If some or all of this information is
missing, Emacs fills in the gaps with the rules currently used in
Cambridge, Massachusetts. If the resulting rules are not what you want,
you can tell Emacs the rules to use by setting certain variables:
calendar-daylight-savings-starts and
calendar-daylight-savings-ends.
These values should be Lisp expressions that refer to the variable
year, and evaluate to the Gregorian date on which daylight
saving time starts or (respectively) ends, in the form of a list
(month day year). The values should be
nil if your area does not use daylight saving time.
Emacs uses these expressions to determine the starting date of
daylight saving time for the holiday list and for correcting times of
day in the solar and lunar calculations.
The values for Cambridge, Massachusetts are as follows:

(calendar-nth-named-day 2 0 3 year)
(calendar-nth-named-day 1 0 11 year)

That is, the second 0th day (Sunday) of the third month (March) in
the year specified by year, and the first Sunday of the eleventh month
(November) of that year. If daylight saving time were
changed to start on October 1, you would set
calendar-daylight-savings-starts to this:

(list 10 1 year)

If there is no daylight saving time at your location, or if you want
all times in standard time, set calendar-daylight-savings-starts
and calendar-daylight-savings-ends to nil.
 The variable calendar-daylight-time-offset specifies the
difference between daylight saving time and standard time, measured in
minutes. The value for Cambridge, Massachusetts is 60.
 Finally, the two variables
calendar-daylight-savings-starts-time and
calendar-daylight-savings-ends-time specify the number of
minutes after midnight local time when the transition to and from
daylight saving time should occur. For Cambridge, Massachusetts both
variables' values are 120.

Summing Time Intervals

 The timeclock package adds up time intervals, so you can (for
instance) keep track of how much time you spend working on particular
projects.
 Use the M-x timeclock-in command when you start working on a
project, and M-x timeclock-out command when you're done. Each
time you do this, it adds one time interval to the record of the
project. You can change to working on a different project with M-x
timeclock-change.
Once you've collected data from a number of time intervals, you can use
M-x timeclock-workday-remaining to see how much time is left to
work today (assuming a typical average of 8 hours a day), and M-x
timeclock-when-to-leave which will calculate when you're “done”.
 If you want Emacs to display the amount of time “left” of your
workday in the mode line, either customize the
timeclock-modeline-display variable and set its value to
t, or invoke the M-x timeclock-modeline-display command.
 Terminating the current Emacs session might or might not mean that
you have stopped working on the project and, by default, Emacs asks
you. You can, however, customize the value of the variable
timeclock-ask-before-exiting to nil to avoid the question;
then, only an explicit M-x timeclock-out or M-x
timeclock-change will tell Emacs that the current interval is over.
 The timeclock functions work by accumulating the data in a file
called .timelog in your home directory. You can specify a
different name for this file by customizing the variable
timeclock-file. If you edit the timeclock file manually, or if
you change the value of any of timeclock's customizable variables, you
should run the command M-x timeclock-reread-log to update the
data in Emacs from the file.

Customizing the Calendar and Diary

There are many ways in which you can customize the calendar and
diary to suit your personal tastes.
Customizing the Calendar

 The calendar display unfortunately cannot be changed from three
months, but you can customize the whitespace used by setting the
variables: calendar-left-margin,
calendar-day-header-width, calendar-day-digit-width,
calendar-column-width, and calendar-intermonth-spacing.
To display text between the months, for example week numbers,
customize the variables calendar-intermonth-header and
calendar-intermonth-text as described in their documentation.
 The variable calendar-holiday-marker specifies how to mark a
date that is a holiday. Its value may be a single-character string to
insert next to the date, or a face name to use for displaying the date.
Likewise, the variable diary-entry-marker specifies how to mark a
date that has diary entries. The function calendar-mark-today
uses calendar-today-marker to mark today's date. By default,
the calendar uses faces named holiday, diary, and
calendar-today for these purposes.
 The variable calendar-load-hook is a normal hook run when the
calendar package is first loaded (before actually starting to display
the calendar).
 Starting the calendar runs the normal hook
calendar-initial-window-hook. Recomputation of the calendar
display does not run this hook. But if you leave the calendar with the
q command and reenter it, the hook runs again.
 The variable calendar-today-visible-hook is a normal hook run
after the calendar buffer has been prepared with the calendar, when the
current date is visible in the window. One use of this hook is to
mark today's date; to do that use either of the functions
calendar-mark-today or calendar-star-date:

(add-hook 'calendar-today-visible-hook 'calendar-mark-today)

A similar normal hook, calendar-today-invisible-hook is run if
the current date is not visible in the window.
 Each of the calendar cursor motion commands runs the hook
calendar-move-hook after it moves the cursor.

Customizing the Holidays

 There are several variables listing the default holidays that Emacs
knows about. These are: holiday-general-holidays,
holiday-local-holidays, holiday-solar-holidays,
holiday-bahai-holidays, holiday-christian-holidays,
holiday-hebrew-holidays, holiday-islamic-holidays,
holiday-oriental-holidays, and holiday-other-holidays.
The names should be self-explanatory; e.g. holiday-solar-holidays
lists sun- and moon-related holidays.
You can customize these lists of holidays to your own needs, deleting or
adding holidays as described below. Set any of them to nil to
not show the associated holidays.
 The general holidays are, by default, holidays common throughout the
United States. In contrast, holiday-local-holidays and
holiday-other-holidays are both empty by default. These are
intended for system-wide settings and your individual use,
respectively.
 By default, Emacs does not include all the holidays of the religions
that it knows, only those commonly found in secular calendars. For a
more extensive collection of religious holidays, you can set any (or
all) of the variables calendar-bahai-all-holidays-flag,
calendar-christian-all-holidays-flag,
calendar-hebrew-all-holidays-flag, or
calendar-islamic-all-holidays-flag to t.
 Each of the holiday variables is a list of holiday forms, each
form describing a holiday (or sometimes a list of holidays). Here is
a table of the possible kinds of holiday form. Day numbers and month
numbers count starting from 1, but “dayname” numbers count Sunday as
0. The argument string is always the description of the
holiday, as a string.
	(holiday-fixed month day string)
	A fixed date on the Gregorian calendar.

	(holiday-float month dayname k string
	&optional day)
The kth dayname (dayname=0 for Sunday, and so on)
after or before Gregorian date month, day. Negative k
means count back from the end of the month. Optional day defaults
to 1 if k is positive, and the last day of month otherwise.

	(holiday-chinese month day string)
	A fixed date on the Chinese calendar.

	(holiday-hebrew month day string)
	A fixed date on the Hebrew calendar.

	(holiday-islamic month day string)
	A fixed date on the Islamic calendar.

	(holiday-julian month day string)
	A fixed date on the Julian calendar.

	(holiday-sexp sexp string)
	A date calculated by the Lisp expression sexp. The expression
should use the variable year to compute and return the date of a
holiday in the form of a list (month day year),
or nil if the holiday doesn't happen this year.

	(if condition holiday-form)
	A holiday that happens only if condition is true.

	(function [args])
	A list of dates calculated by the function function, called with
arguments args.

For example, suppose you want to add Bastille Day, celebrated in
France on July 14 (i.e., the fourteenth day of the seventh month). You
can do this as follows:

(setq holiday-other-holidays '((holiday-fixed 7 14 "Bastille Day")))

Many holidays occur on a specific day of the week, at a specific time
of month. Here is a holiday form describing Hurricane Supplication Day,
celebrated in the Virgin Islands on the fourth Monday in August:

(holiday-float 8 1 4 "Hurricane Supplication Day")

Here the 8 specifies August, the 1 specifies Monday (Sunday is 0,
Tuesday is 2, and so on), and the 4 specifies the fourth occurrence in
the month (1 specifies the first occurrence, 2 the second occurrence,
−1 the last occurrence, −2 the second-to-last occurrence, and
so on).
You can specify holidays that occur on fixed days of the Bahá'í,
Chinese, Hebrew, Islamic, and Julian calendars too. For example,

(setq holiday-other-holidays
 '((holiday-hebrew 10 2 "Last day of Hanukkah")
 (holiday-islamic 3 12 "Mohammed's Birthday")
 (holiday-julian 4 2 "Jefferson's Birthday")))

adds the last day of Hanukkah (since the Hebrew months are numbered with
1 starting from Nisan), the Islamic feast celebrating Mohammed's
birthday (since the Islamic months are numbered from 1 starting with
Muharram), and Thomas Jefferson's birthday, which is 2 April 1743 on the
Julian calendar.
To include a holiday conditionally, use either Emacs Lisp's if
or the holiday-sexp form. For example, American presidential
elections occur on the first Tuesday after the first Monday in November
of years divisible by 4:

(holiday-sexp '(if (zerop (% year 4))
 (calendar-gregorian-from-absolute
 (1+ (calendar-dayname-on-or-before
 1 (+ 6 (calendar-absolute-from-gregorian
 (list 11 1 year)))))))
 "US Presidential Election")

or

(if (zerop (% displayed-year 4))
 (holiday-fixed 11
 (calendar-extract-day
 (calendar-gregorian-from-absolute
 (1+ (calendar-dayname-on-or-before
 1 (+ 6 (calendar-absolute-from-gregorian
 (list 11 1 displayed-year)))))))
 "US Presidential Election"))

Some holidays just don't fit into any of these forms because special
calculations are involved in their determination. In such cases you
must write a Lisp function to do the calculation. To include eclipses,
for example, add (eclipses) to holiday-other-holidays
and write an Emacs Lisp function eclipses that returns a
(possibly empty) list of the relevant Gregorian dates among the range
visible in the calendar window, with descriptive strings, like this:

(((6 4 2012) "Lunar Eclipse") ((11 13 2012) "Solar Eclipse") ...)

Date Display Format

 You can customize the way dates are displayed in the diary, mode
lines, and messages by setting calendar-date-display-form.
This variable holds a list of expressions that can involve the variables
month, day, and year, which are all numbers in
string form, and monthname and dayname, which are both
alphabetic strings. In the American style, the default value of this
list is as follows:

((if dayname (concat dayname ", ")) monthname " " day ", " year)

while in the European style this value is the default:

((if dayname (concat dayname ", ")) day " " monthname " " year)

The default ISO date representation is:

((format "%s-%.2d-%.2d" year (string-to-number month)
 (string-to-number day)))

Another typical American format is:

(month "/" day "/" (substring year -2))

Time Display Format

 The calendar and diary by default display times of day in the
conventional American style with the hours from 1 through 12, minutes,
and either ‘am’ or ‘pm’. If you prefer the European style,
also known in the US as military, in which the hours go from 00 to 23,
you can alter the variable calendar-time-display-form. This
variable is a list of expressions that can involve the variables
12-hours, 24-hours, and minutes, which are all
numbers in string form, and am-pm and time-zone, which are
both alphabetic strings. The default value is:

(12-hours ":" minutes am-pm
 (if time-zone " (") time-zone (if time-zone ")"))

Here is a value that provides European style times:

(24-hours ":" minutes
 (if time-zone " (") time-zone (if time-zone ")"))

Note that few calendar functions return a time of day (at present, only
solar functions).

Customizing the Diary

 Ordinarily, the diary window indicates any holidays that fall on the
date of the diary entries, either in the mode line or the buffer itself.
The process of checking for holidays can be slow, depending on the
defined holidays. In that case, setting diary-show-holidays-flag
to nil will speed up the diary display.
 The variable diary-number-of-entries controls the number of
days of diary entries to be displayed at one time. It affects the
initial display when calendar-view-diary-initially-flag is
t, as well as the command M-x diary. For example, a value
of 1 (the default) displays only the current day's diary entries,
whereas a value of 2 will also show the next day's entries. The value
can also be a vector of seven integers: for example, if the value is
[0 2 2 2 2 4 1] then no diary entries appear on Sunday, the
current date's and the next day's diary entries appear Monday through
Thursday, Friday through Monday's entries appear on Friday, while on
Saturday only that day's entries appear.
 You can customize the form of dates in your diary file by setting the
variable diary-date-forms. This variable is a list of patterns
for recognizing a date. Each date pattern is a list whose elements may
be regular expressions (see See section ``Regular Expressions'' in the Emacs Lisp Reference Manual) or the symbols month, day,
year, monthname, and dayname. All these elements
serve as patterns that match certain kinds of text in the diary file.
In order for the date pattern as a whole to match, all of its elements
must match consecutively.
A regular expression in a date pattern matches in its usual fashion,
using the standard syntax table altered so that ‘*’ is a word
constituent.
The symbols month, day, year, monthname,
and dayname match the month number, day number, year number,
month name, and day name of the date being considered. The symbols that
match numbers allow leading zeros; those that match names allow
capitalization and abbreviation (as specified by
calendar-month-abbrev-array and
calendar-day-abbrev-array). All the symbols can match ‘*’;
since ‘*’ in a diary entry means “any day”, “any month”, and so
on, it should match regardless of the date being considered.
The default value of diary-date-forms in the American style is
provided by diary-american-date-forms:

((month "/" day "[^/0-9]")
 (month "/" day "/" year "[^0-9]")
 (monthname " *" day "[^,0-9]")
 (monthname " *" day ", *" year "[^0-9]")
 (dayname "\\W"))

The variables diary-european-date-forms and
diary-iso-date-forms provide other default styles.
The date patterns in the list must be mutually exclusive and
must not match any portion of the diary entry itself, just the date and
one character of whitespace. If, to be mutually exclusive, the pattern
must match a portion of the diary entry text—beyond the whitespace
that ends the date—then the first element of the date pattern
must be backup. This causes the date recognizer to back
up to the beginning of the current word of the diary entry, after
finishing the match. Even if you use backup, the date pattern
must absolutely not match more than a portion of the first word of the
diary entry. For example, the default value of
diary-european-date-forms is:

((day "/" month "[^/0-9]")
 (day "/" month "/" year "[^0-9]")
 (backup day " *" monthname "\\W+\\<\\([^*0-9]\\|\\([0-9]+[:aApP]\\)\\)")
 (day " *" monthname " *" year "[^0-9]")
 (dayname "\\W"))

Notice the use of backup in the third pattern, because it needs
to match part of a word beyond the date itself to distinguish it from
the fourth pattern.

Diary Entries Using non-Gregorian Calendars

As well as entries based on the standard Gregorian calendar, your
diary can have entries based on Bahá'í, Hebrew, or Islamic dates.
Recognition of such entries can be time-consuming, however, and since
most people don't use them, you must explicitly enable their use. If
you want the diary to recognize Hebrew-date diary entries, for example,
you must do this:

(add-hook 'diary-nongregorian-listing-hook 'diary-hebrew-list-entries)
(add-hook 'diary-nongregorian-marking-hook 'diary-hebrew-mark-entries)

Similarly, for Islamic and Bahá'í entries, add
diary-islamic-list-entries and diary-islamic-mark-entries, or
diary-bahai-list-entries and diary-bahai-mark-entries.
 These diary entries have the same formats as Gregorian-date diary
entries; except that diary-bahai-entry-symbol (default ‘B’)
must precede a Bahá'í date, diary-hebrew-entry-symbol (default
‘H’) a Hebrew date, and diary-islamic-entry-symbol (default
‘I’) an Islamic date. Moreover, non-Gregorian month names may not
be abbreviated (because the first three letters are often not unique).
(Note also that you must use “Adar I” if you want Adar of a common
Hebrew year.) For example, a diary entry for the Hebrew date Heshvan 25
could look like this:

HHeshvan 25 Happy Hebrew birthday!

and would appear in the diary for any date that corresponds to Heshvan 25
on the Hebrew calendar. And here is an Islamic-date diary entry that matches
Dhu al-Qada 25:

IDhu al-Qada 25 Happy Islamic birthday!

As with Gregorian-date diary entries, non-Gregorian entries are
nonmarking if preceded by diary-nonmarking-symbol (default
‘&’).
Here is a table of commands used in the calendar to create diary
entries that match the selected date and other dates that are similar in
the Bahá'í, Hebrew, or Islamic calendars:
	i h d
	diary-hebrew-insert-entry

	i h m
	diary-hebrew-insert-monthly-entry

	i h y
	diary-hebrew-insert-yearly-entry

	i i d
	diary-islamic-insert-entry

	i i m
	diary-islamic-insert-monthly-entry

	i i y
	diary-islamic-insert-yearly-entry

	i B d
	diary-bahai-insert-entry

	i B m
	diary-bahai-insert-monthly-entry

	i B y
	diary-bahai-insert-yearly-entry

 These commands work much like the corresponding commands for ordinary
diary entries: they apply to the date that point is on in the calendar
window, and what they do is insert just the date portion of a diary
entry at the end of your diary file. You must then insert the rest of
the diary entry. The basic commands add an entry for the specific
non-Gregorian date, the ‘monthly’ commands for the given
non-Gregorian day-within-month in every month, and the ‘yearly’
commands for the given non-Gregorian day and month in every year.

Diary Display

 Diary display works by preparing the list of diary entries and then
running the function specified by the variable
diary-display-function. The default value
diary-fancy-display displays diary entries and holidays by
copying them into a special buffer that exists only for the sake of
display. Copying diary entries to a separate buffer provides an
opportunity to change the displayed text to make it prettier—for
example, to sort the entries by the dates they apply to.
 Ordinarily, the fancy diary buffer does not show days for which there
are no diary entries, even if that day is a holiday. If you want such
days to be shown in the fancy diary buffer, set the variable
diary-list-include-blanks to t.
The fancy diary buffer enables View mode
(see the section called “View Mode”).
The alternative display method diary-simple-display shows the
actual diary buffer, and uses invisible text to hide entries that don't
apply. Holidays are shown in the mode line. The advantage of this
method is that you can edit the buffer and save your changes directly to
the diary file. This method is not as flexible as the fancy method,
however. For example, it cannot sort entries. Another disadvantage is
that invisible text can be confusing. For example, if you copy a region
of text in order to paste it elsewhere, invisible text may be included.
Similarly, since the diary buffer as you see it is an illusion, simply
printing the buffer may not print what you see on your screen.
 For this reason, there is a special command to print hard copy of the
diary buffer as it appears; this command is M-x
diary-print-entries. It works with either display method, although
with the fancy display you can also print the buffer like any other. To
print a hard copy of a day-by-day diary for a week, position point on
the first day of the week, type 7 d, and then do M-x
diary-print-entries. As usual, the inclusion of the holidays slows
down the display slightly; you can speed things up by setting the
variable diary-show-holidays-flag to nil.
This command prepares a temporary buffer that contains only the diary
entries currently visible in the diary buffer. Unlike with the simple
display, the other irrelevant entries are really absent, not just
hidden. After preparing the buffer, it runs the hook
diary-print-entries-hook. The default value of this hook sends
the data directly to the printer with the command lpr-buffer
(see Chapter 38, Printing Hard Copies).
If you want to use a different command to do the
printing, just change the value of this hook. Other uses might include,
for example, rearranging the lines into order by day and time.
You can edit the diary entries as they appear in the simple diary
window, but it is important to remember that the buffer displayed
contains the entire diary file, with portions of it concealed
from view. This means, for instance, that the C-f
(forward-char) command can put point at what appears to be the
end of the line, but what is in reality the middle of some concealed
line.
Be careful when editing the diary entries in the simple display!
Inserting additional lines or adding/deleting characters in the middle
of a visible line cannot cause problems, but editing at the end of a
line may not do what you expect. Deleting a line may delete other
invisible entries that follow it. Before editing the simple diary
buffer, it is best to display the entire file with s
(diary-show-all-entries).

Fancy Diary Display

The following features only work with the fancy diary display.
 You can use the normal hook diary-list-entries-hook to sort
each day's diary entries by their time of day. Here's how:

(add-hook 'diary-list-entries-hook 'diary-sort-entries t)

For each day, this sorts diary entries that begin with a recognizable
time of day according to their times. Diary entries without times come
first within each day. Note how the sort command is placed at the end
of the hook list, in case earlier members of the list change the order
of the diary entries, or add items.
 You can write ‘comments’ in diary entries, by setting the
variables diary-comment-start and diary-comment-end to
strings that delimit comments. The fancy display does not print
comments. You might want to put meta-data for the use of other packages
(e.g. the appointment package,
see the section called “Appointments”)
inside comments.
 Your main diary file can include other files. This permits a group of
people to share a diary file for events that apply to all of them.
Lines in the diary file starting with diary-include-string:

#include "filename"

include the diary entries from the file filename in the fancy
diary buffer. The include mechanism is recursive, so that included
files can include other files, and so on (you must be careful not to
have a cycle of inclusions, of course). Here is how to enable the
include facility:

(add-hook 'diary-list-entries-hook 'diary-include-other-diary-files)
(add-hook 'diary-mark-entries-hook 'diary-mark-included-diary-files)

The include mechanism works only with the fancy diary display, because
simple diary display shows the entries directly from your diary file.

Sexp Entries and the Fancy Diary Display

 Sexp diary entries allow you to do more than just have complicated
conditions under which a diary entry applies. Sexp entries should be
preceded by diary-sexp-entry-symbol (default ‘%%’) in the
diary file. With the fancy diary display, sexp entries can generate the
text of the entry depending on the date itself.
For example, an anniversary diary entry can insert
the number of years since the anniversary date into the text of the
diary entry. Thus the ‘%d’ in this diary entry:

%%(diary-anniversary 10 31 1948) Arthur's birthday (%d years old)

gets replaced by the age, so on October 31, 1990 the entry appears in
the fancy diary buffer like this:

Arthur's birthday (42 years old)

If the diary file instead contains this entry:

%%(diary-anniversary 10 31 1948) Arthur's %d%s birthday

the entry in the fancy diary buffer for October 31, 1990 appears like this:

Arthur's 42nd birthday

Similarly, cyclic diary entries can interpolate the number of repetitions
that have occurred:

%%(diary-cyclic 50 1 1 2012) Renew medication (%d%s time)

looks like this:

Renew medication (5th time)

in the fancy diary display on September 7, 2012.
There is an “early reminder” diary sexp that includes its entry in the
diary not only on the date of occurrence, but also on earlier dates.
For example, if you want a reminder a week before your anniversary, you
can use

%%(diary-remind '(diary-anniversary 12 22 1968) 7) Ed's anniversary

and the fancy diary will show ‘Ed's anniversary’ both on December
15 and on December 22.
 The function diary-date applies to dates described by a month,
day, year combination, each of which can be an integer, a list of
integers, or t (meaning all values). For example,

%%(diary-date '(10 11 12) 22 t) Rake leaves

causes the fancy diary to show

Rake leaves

on October 22, November 22, and December 22 of every year.
 The function diary-float allows you to describe diary entries
that apply to dates like the third Friday of November, or the last
Tuesday in April. The parameters are the month, dayname,
and an index n. The entry appears on the nth dayname
after the first day of month, where dayname=0 means Sunday,
1 means Monday, and so on. If n is negative it counts backward
from the end of month. The value of month can be a list of
months, a single month, or t to specify all months. You can also
use an optional parameter day to specify the nth
dayname on or after/before day of month; the value of
day defaults to 1 if n is positive and to the last day of
month if n is negative. For example,

%%(diary-float t 1 -1) Pay rent

causes the fancy diary to show

Pay rent

on the last Monday of every month.
The generality of sexp diary entries lets you specify any diary
entry that you can describe algorithmically. A sexp diary entry
contains an expression that computes whether the entry applies to any
given date. If its value is non-nil, the entry applies to that
date; otherwise, it does not. The expression can use the variable
date to find the date being considered; its value is a list
(month day year) that refers to the Gregorian
calendar.
The sexp diary entry applies to a date when the expression's value
is non-nil, but some values have more specific meanings. If
the value is a string, that string is a description of the event which
occurs on that date. The value can also have the form
(mark . string); then mark specifies how to
mark the date in the calendar, and string is the description of
the event. If mark is a single-character string, that character
appears next to the date in the calendar. If mark is a face
name, the date is displayed in that face. If mark is
nil, that specifies no particular highlighting for the date.
Suppose you get paid on the 21st of the month if it is a weekday, and
on the Friday before if the 21st is on a weekend. Here is how to write
a sexp diary entry that matches those dates:

&%%(let ((dayname (calendar-day-of-week date))
 (day (cadr date)))
 (or (and (= day 21) (memq dayname '(1 2 3 4 5)))
 (and (memq day '(19 20)) (= dayname 5)))
) Pay check deposited

The following sexp diary entries take advantage of the ability (in the fancy
diary display) to concoct diary entries whose text varies based on the date:

	%%(diary-sunrise-sunset)
	Make a diary entry for today's local times of sunrise and sunset.

	%%(diary-lunar-phases)
	Make a diary entry for the phases (quarters) of the moon.

	%%(diary-day-of-year)
	Make a diary entry with today's day number in the current year and the number
of days remaining in the current year.

	%%(diary-iso-date)
	Make a diary entry with today's equivalent ISO commercial date.

	%%(diary-julian-date)
	Make a diary entry with today's equivalent Julian calendar date.

	%%(diary-astro-day-number)
	Make a diary entry with today's equivalent astronomical (Julian) day number.

	%%(diary-bahai-date)
	Make a diary entry with today's equivalent Bahá'í calendar date.

	%%(diary-chinese-date)
	Make a diary entry with today's equivalent Chinese calendar date.

	%%(diary-coptic-date)
	Make a diary entry with today's equivalent Coptic calendar date.

	%%(diary-ethiopic-date)
	Make a diary entry with today's equivalent Ethiopic calendar date.

	%%(diary-french-date)
	Make a diary entry with today's equivalent date on the French Revolutionary
calendar.

	%%(diary-hebrew-date)
	Make a diary entry with today's equivalent Hebrew calendar date.

	%%(diary-islamic-date)
	Make a diary entry with today's equivalent Islamic calendar date.

	%%(diary-mayan-date)
	Make a diary entry with today's equivalent Mayan calendar date.

	%%(diary-persian-date)
	Make a diary entry with today's equivalent Persian calendar date.

For example, including the diary entry

&%%(diary-hebrew-date)

causes every day's diary display to contain the equivalent date on the
Hebrew calendar, if you are using the fancy diary display. (With simple
diary display, the literal line ‘&%%(diary-hebrew-date)’ appears in
the diary for any date.)
This function has been used to construct certain standard Hebrew sexp
diary entries:

	%%(diary-hebrew-rosh-hodesh)
	Make a diary entry that tells the occurrence and ritual announcement of each
new Hebrew month.

	%%(diary-hebrew-parasha)
	Make a Saturday diary entry that tells the weekly synagogue scripture reading.

	%%(diary-hebrew-sabbath-candles)
	Make a Friday diary entry that tells the local time of Sabbath
candle lighting.

	%%(diary-hebrew-omer)
	Make a diary entry that gives the omer count, when appropriate.

	%%(diary-hebrew-yahrzeit month day year) name
	Make a diary entry marking the anniversary of a date of death. The date
is the Gregorian (civil) date of death. The diary entry appears
on the proper Hebrew calendar anniversary and on the day before. (The
order of the parameters changes according to the calendar date style;
for example in the European style to day, month, year.)

	%%(diary-hebrew-birthday month day year)
	Make a diary entry for a birthday on the Hebrew calendar.

All the functions documented above take an optional argument
mark which specifies how to mark the date in the calendar display.
If one of these functions decides that it applies to a certain date,
it returns a value that contains mark, as described above.

Chapter 32. Sending Mail

 To send an email message from Emacs, type C-x m. This
switches to a buffer named *unsent mail*, where you can edit
the text and headers of the message. When done, type C-c C-s or
C-c C-c to send it.
	C-x m
	Begin composing mail (compose-mail).

	C-x 4 m
	Likewise, in another window (compose-mail-other-window).

	C-x 5 m
	Likewise, but in a new frame (compose-mail-other-frame).

	C-c C-s
	In the mail buffer, send the message (message-send).

	C-c C-c
	In the mail buffer, send the message and bury the buffer
(message-send-and-exit).

The mail buffer is an ordinary Emacs buffer, so you can switch to
other buffers while composing the mail. If you want to send another
mail before finishing the current one, type C-x m again to open
a new mail buffer whose name has a different numeric suffix
(see the section called “Miscellaneous Buffer Operations”). If you invoke the command with a prefix
argument, C-u C-x m, Emacs switches back to the last mail
buffer, and asks if you want to erase the message in that buffer; if
you answer no, this lets you pick up editing the message where you
left off.
 The command C-x 4 m (compose-mail-other-window) does
the same as C-x m, except it displays the mail buffer in a
different window. The command C-x 5 m
(compose-mail-other-frame) does it in a new frame.
When you type C-c C-c or C-c C-s to send the mail, Emacs
may ask you how it should deliver the mail—either directly via SMTP,
or using some other method. See the section called “Mail Sending”, for details.
The Format of the Mail Buffer

Here is an example of the contents of a mail buffer:

To: subotai@example.org
CC: mongol.soldier@example.net, rms@gnu.org
Subject: Re: What is best in life?
From: conan@example.org
--text follows this line--
To crush your enemies, see them driven before you, and to hear the
lamentation of their women.

At the top of the mail buffer is a set of header fields, which
are used for specifying information about the email's recipient(s),
subject, and so on. The above buffer contains header fields for
‘To’, ‘Cc’, ‘Subject’, and ‘From’. Some header
fields are automatically pre-initialized in the mail buffer, when
appropriate.
The line that says ‘--text follows this line--’ separates the
header fields from the body (or text) of the message.
Everything above that line is treated as part of the headers;
everything below it is treated as the body. The delimiter line itself
does not appear in the message actually sent.
You can insert and edit header fields using ordinary editing
commands. See the section called “Mail Header Editing”, for commands specific to editing
header fields. Certain headers, such as ‘Date’ and
‘Message-Id’, are normally omitted from the mail buffer and are
created automatically when the message is sent.

Mail Header Fields

 A header field in the mail buffer starts with a field name at the
beginning of a line, terminated by a colon. Upper and lower case are
equivalent in field names. After the colon and optional whitespace
comes the contents of the field.
You can use any name you like for a header field, but normally
people use only standard field names with accepted meanings.
 The ‘From’ header field identifies the person sending the email
(i.e. you). This should be a valid mailing address, as replies are
normally sent there. The default contents of this header field are
computed from the variables user-full-name (which specifies
your full name) and user-mail-address (your email address). On
some operating systems, Emacs initializes these two variables using
environment variables (see the section called “General Variables”). If this
information is unavailable or wrong, you should customize the
variables yourself (see the section called “Easy Customization Interface”).
 The value of the variable mail-from-style specifies how to
format the contents of the ‘From’ field:
	nil
	Use just the address, as in ‘king@grassland.com’.

	parens
	Use both address and full name, as in:
‘king@grassland.com (Elvis Parsley)’.

	angles
	Use both address and full name, as in:
‘Elvis Parsley <king@grassland.com>’.

	any other value
	Use angles normally. But if the address must be “quoted” to
remain syntactically valid under the angles format but not
under the parens format, use parens instead. This is
the default.

Apart from ‘From’, here is a table of commonly-used fields:
	‘To’
	The mailing address(es) to which the message is addressed. To list
more than one address, use commas to separate them.

	‘Subject’
	The subject of the message.

	‘CC’
	Additional mailing address(es) to send the message to. This is like
‘To’, except that these readers should not regard the message as
directed at them.

	‘BCC’
	Additional mailing address(es) to send the message to, which should
not appear in the header of the message actually sent. “BCC” stands
for blind carbon copies.

	‘FCC’
	The name of a file, to which a copy of the sent message should be
appended. Emacs writes the message in mbox format, unless the file is
in Babyl format (used by Rmail before Emacs 23), in which case Emacs
writes in Babyl format. If an Rmail buffer is visiting the file,
Emacs updates it accordingly. To specify more than one file, use
several ‘FCC’ fields, with one file name in each field.

	‘Reply-to’
	An address to which replies should be sent, instead of ‘From’.
This is used if, for some reason, your ‘From’ address cannot
receive replies.

	‘Mail-reply-to’
	This field takes precedence over ‘Reply-to’. It is used because
some mailing lists set the ‘Reply-to’ field for their own
purposes (a somewhat controversial practice).

	‘Mail-followup-to’
	One of more address(es) to use as default recipient(s) for follow-up
messages. This is typically used when you reply to a message from a
mailing list that you are subscribed to, and want replies to go to the
list without sending an extra copy to you.

	‘In-reply-to’
	An identifier for the message you are replying to. Most mail readers
use this information to group related messages together. Normally,
this header is filled in automatically when you reply to a message in
any mail program built into Emacs.

	‘References’
	Identifiers for previous related messages. Like ‘In-reply-to’,
this is normally filled in automatically for you.

The ‘To’, ‘CC’, and ‘BCC’ fields can appear any number
of times, and each such header field can contain multiple addresses,
separated by commas. This way, you can specify any number of places
to send the message. These fields can also have continuation lines:
one or more lines starting with whitespace, following the starting
line of the field, are considered part of the field. Here's an
example of a ‘To’ field with a continuation line:

To: foo@example.net, this@example.net,
 bob@example.com

 You can direct Emacs to insert certain default headers into the mail
buffer by setting the variable mail-default-headers to a
string. Then C-x m inserts this string into the message
headers. For example, here is how to add a ‘Reply-to’ and
‘FCC’ header to each message:

(setq mail-default-headers
 "Reply-to: foo@example.com\nFCC: ~/Mail/sent")

If the default header fields are not appropriate for a
particular message, edit them as necessary before sending the message.

Mail Aliases

 You can define mail aliases, which are short mnemonic names
that stand for one or more mailing addresses. By default, mail
aliases are defined in the file ~/.mailrc. You can specify a
different file name to use, by setting the variable
mail-personal-alias-file.
To define an alias in .mailrc, write a line like this:

alias nick fulladdresses

This means that nick should expand into fulladdresses,
where fulladdresses can be either a single address, or multiple
addresses separated with spaces. For instance, to make maingnu
stand for gnu@gnu.org plus a local address of your own, put in
this line:

alias maingnu gnu@gnu.org local-gnu

If an address contains a space, quote the whole address with a pair of
double quotes, like this:

alias jsmith "John Q. Smith <none@example.com>"

Note that you need not include double quotes around individual parts
of the address, such as the person's full name. Emacs puts them in if
they are needed. For instance, it inserts the above address as
‘"John Q. Smith" <none@example.com>’.
Emacs also recognizes “include” commands in .mailrc. They
look like this:

source filename

The .mailrc file is not unique to Emacs; many other
mail-reading programs use it for mail aliases, and it can contain
various other commands. However, Emacs ignores everything except
alias definitions and include commands.
 Mail aliases expand as abbrevs—that is to say, as soon as you type
a word-separator character after an alias (see Chapter 29, Abbrevs). This
expansion takes place only within the ‘To’, ‘From’,
‘CC’, ‘BCC’, and ‘Reply-to’ header fields (plus their
‘Resent-’ variants); it does not take place in other header
fields, such as ‘Subject’.
You can also insert an aliased address directly, using the command
M-x mail-abbrev-insert-alias. This reads an alias name, with
completion, and inserts its definition at point.

Mail Commands

 The default major mode for the *mail* buffer is called
Message mode. It behaves like Text mode in many ways, but provides
several additional commands on the C-c prefix, which make
editing a message more convenient.
In this section, we will describe some of the most commonly-used
commands available in Message mode.
Message mode also has its own manual, where its features are described
in greater detail. See See section ``Message'' in Message.
Mail Sending

	C-c C-c
	Send the message, and bury the mail buffer (message-send-and-exit).

	C-c C-s
	Send the message, and leave the mail buffer selected (message-send).

 The usual command to send a message is C-c C-c
(mail-send-and-exit). This sends the message and then
“buries” the mail buffer, putting it at the lowest priority for
reselection. If you want it to kill the mail buffer instead, change
the variable message-kill-buffer-on-exit to t.
 The command C-c C-s (message-send) sends the message
and leaves the buffer selected. Use this command if you want to
modify the message (perhaps with new recipients) and send it again.
 Sending a message runs the hook message-send-hook. It also
marks the mail buffer as unmodified, except if the mail buffer is also
a file-visiting buffer (in that case, only saving the file does that,
and you don't get a warning if you try to send the same message
twice).
 The variable send-mail-function controls how the message is
delivered. Its value should be one of the following functions:
	sendmail-query-once
	Query for a delivery method (one of the other entries in this list),
and use that method for this message; then save the method to
send-mail-function, so that it is used for future deliveries.
This is the default, unless you have already set the variables for
sending mail via smtpmail-send-it (see below).

	smtpmail-send-it
	Send mail using the through an external mail host, such as your
Internet service provider's outgoing SMTP mail server. If you have
not told Emacs how to contact the SMTP server, it prompts for this
information, which is saved in the smtpmail-smtp-server variable
and the file ~/.authinfo.
See See section ``Emacs SMTP Library'' in Sending mail via SMTP.

	sendmail-send-it
	Send mail using the system's default sendmail program, or
equivalent. This requires the system to be set up for delivering mail
directly via SMTP.

	mailclient-send-it
	Pass the mail buffer on to the system's designated mail client. See
the commentary section in the file mailclient.el for details.

	feedmail-send-it
	This is similar to sendmail-send-it, but allows you to queue
messages for later sending. See the commentary section in the file
feedmail.el for details.

 When you send a message containing non-ASCII characters,
they need to be encoded with a coding system (see the section called “Coding Systems”).
Usually the coding system is specified automatically by your chosen
language environment (see the section called “Language Environments”). You can
explicitly specify the coding system for outgoing mail by setting the
variable sendmail-coding-system (see the section called “Recognizing Coding Systems”). If
the coding system thus determined does not handle the characters in a
particular message, Emacs asks you to select the coding system to use,
showing a list of possible coding systems.

Mail Header Editing

Message mode provides the following special commands to move to
particular header fields and to complete addresses in headers.
	C-c C-f C-t
	Move to the ‘To’ header (message-goto-to).

	C-c C-f C-s
	Move to the ‘Subject’ header (message-goto-subject).

	C-c C-f C-c
	Move to the ‘CC’ header (message-goto-cc).

	C-c C-f C-b
	Move to the ‘BCC’ header (message-goto-bcc).

	C-c C-f C-r
	Move to the ‘Reply-To’ header (message-goto-reply-to).

	C-c C-f C-f
	Move to the ‘Mail-Followup-To’ header field
(message-goto-followup-to).

	C-c C-f C-w
	Add a new ‘FCC’ header field, with file-name completion
(message-goto-fcc).

	C-c C-b
	Move to the start of the message body (message-goto-body).

	TAB
	Complete a mailing address (message-tab).

 The commands to move point to particular header fields are all based
on the prefix C-c C-f (‘C-f’ is for “field”). If the
field in question does not exist, the command creates one (the
exception is mail-fcc, which creates a new field each time).
 The command C-c C-b (message-goto-body) moves point to
just after the header separator line—that is, to the beginning of
the body.
 While editing a header field that contains addresses, such as
‘To:’, ‘CC:’ and ‘BCC:’, you can complete an address by
typing TAB (message-tab). This attempts to insert the
full name corresponding to the address based on a couple of methods,
including EUDC, a library that recognizes a number of directory server
protocols (see See section ``EUDC'' in The Emacs Unified Directory Client). Failing that, it attempts to expand the address as a mail
alias (see the section called “Mail Aliases”). If point is on a header field that does
not take addresses, or if it is in the message body, then TAB
just inserts a tab character.

Citing Mail

	C-c C-y
	Yank the selected message from the mail reader, as a citation
(message-yank-original).

	C-c C-q
	Fill each paragraph cited from another message
(message-fill-yanked-message).

 You can use the command C-c C-y (message-yank-original)
to cite a message that you are replying to. This inserts the
text of that message into the mail buffer. This command works only if
the mail buffer is invoked from a mail reader running in Emacs, such
as Rmail.
By default, Emacs inserts the string ‘>’ in front of each line
of the cited text; this prefix string is specified by the variable
message-yank-prefix. If you call message-yank-original
with a prefix argument, the citation prefix is not inserted.
 After using C-c C-y, you can type C-c C-q
(message-fill-yanked-message) to fill the paragraphs of the
cited message. One use of C-c C-q fills all such paragraphs,
each one individually. To fill a single paragraph of the quoted
message, use M-q. If filling does not automatically handle the
type of citation prefix you use, try setting the fill prefix
explicitly. See the section called “Filling Text”.
 You can customize mail citation through the hook
mail-citation-hook. For example, you can use the Supercite
package, which provides more flexible citation
(see See section ``Introduction'' in Supercite).

Mail Miscellany

 You can attach a file to an outgoing message by typing
C-c C-a (mml-attach-file) in the mail buffer. Attaching
is done using the Multipurpose Internet Mail Extensions
(MIME) standard.
The mml-attach-file command prompts for the name of the file,
and for the attachment's content type, description, and
disposition. The content type is normally detected
automatically; just type RET to accept the default. The
description is a single line of text that the recipient will see next
to the attachment; you may also choose to leave this empty. The
disposition is either ‘inline’ (the default), which means the
recipient will see a link to the attachment within the message body,
or ‘attachment’, which means the link will be separate from the
body.
 The mml-attach-file command is specific to Message mode; in
Mail mode use mail-add-attachment instead. It will prompt only
for the name of the file, and will determine the content type and the
disposition automatically. If you want to include some description of
the attached file, type that in the message body.
The actual contents of the attached file are not inserted into the
mail buffer. Instead, some placeholder text is inserted into the mail
buffer, like this:

<#part type="text/plain" filename="~/foo.txt" disposition=inline>
<#/part>

When you type C-c C-c or C-c C-s to send the message, the
attached file will be delivered with it.
 While composing a message, you can do spelling correction on the
message text by typing M-x ispell-message. If you have yanked
an incoming message into the outgoing draft, this command skips what
was yanked, but it checks the text that you yourself inserted (it
looks for indentation or mail-yank-prefix to distinguish the
cited lines from your input). See the section called “Checking and Correcting Spelling”.
 Turning on Message mode (which C-x m does automatically) runs
the normal hooks text-mode-hook and message-mode-hook.
Initializing a new outgoing message runs the normal hook
message-setup-hook; you can use this hook if you want to make
changes to the appearance of the mail buffer. See the section called “Hooks”.
The main difference between these hooks is just when they are
invoked. Whenever you type C-x m, message-mode-hook runs
as soon as the mail buffer is created. Then the message-setup
function inserts the default contents of the buffer. After these
default contents are inserted, message-setup-hook runs.
If you use C-x m to continue an existing composition,
message-mode-hook runs immediately after switching to the mail
buffer. If the buffer is unmodified, or if you decide to erase it and
start again, message-setup-hook runs after the default contents
are inserted.

Mail Signature

 You can add a standard piece of text—your mail
signature—to the end of every message. This signature may contain
information such as your telephone number or your physical location.
The variable mail-signature determines how Emacs handles the
mail signature.
The default value of mail-signature is t; this means
to look for your mail signature in the file ~/.signature. If
this file exists, its contents are automatically inserted into the end
of the mail buffer. You can change the signature file via the
variable mail-signature-file.
If you change mail-signature to a string, that specifies the
text of the signature directly.
 If you change mail-signature to nil, Emacs will not
insert your mail signature automatically. You can insert your mail
signature by typing C-c C-w (message-insert-signature) in
the mail buffer. Emacs will look for your signature in the signature
file.
By convention, a mail signature should be marked by a line whose
contents are ‘-- ’. If your signature lacks this prefix, it is
added for you. The remainder of your signature should be no more than
four lines.

Mail Amusements

 M-x spook adds a line of randomly chosen keywords to an outgoing
mail message. The keywords are chosen from a list of words that suggest
you are discussing something subversive.
The idea behind this feature is the suspicion that the
NSA[12] and other intelligence
agencies snoop on all electronic mail messages that contain keywords
suggesting they might find them interesting. (The agencies say that
they don't, but that's what they would say.) The idea is that if
lots of people add suspicious words to their messages, the agencies will
get so busy with spurious input that they will have to give up reading
it all. Whether or not this is true, it at least amuses some people.
 You can use the fortune program to put a “fortune cookie”
message into outgoing mail. To do this, add
fortune-to-signature to mail-setup-hook:

(add-hook 'mail-setup-hook 'fortune-to-signature)

You will probably need to set the variable fortune-file before
using this.

[12] The US National Security Agency.

Mail-Composition Methods

 In this chapter we have described the usual Emacs mode for editing
and sending mail—Message mode. This is only one of several
available modes. Prior to Emacs 23.2, the default mode was Mail mode,
which is similar to Message mode in many respects but lacks features
such as MIME support. Another available mode is MH-E
(see See section ``MH-E'' in The Emacs Interface to MH).
 You can choose any of these mail user agents as your preferred
method for editing and sending mail. The commands C-x m,
C-x 4 m and C-x 5 m use whichever agent you have
specified; so do various other parts of Emacs that send mail, such as
the bug reporter (see Chapter 51, Reporting Bugs). To specify a mail user agent,
customize the variable mail-user-agent. Currently, legitimate
values include message-user-agent (Message mode)
sendmail-user-agent (Mail mode), gnus-user-agent, and
mh-e-user-agent.
If you select a different mail-composition method, the information
in this chapter about the mail buffer and Message mode does not apply;
the other methods use a different format of text in a different
buffer, and their commands are different as well.
 Similarly, to specify your preferred method for reading mail,
customize the variable read-mail-command. The default is
rmail (see Chapter 33, Reading Mail with Rmail).

Chapter 33. Reading Mail with Rmail

 Rmail is an Emacs subsystem for reading and disposing of mail that
you receive. Rmail stores mail messages in files called Rmail files.
Reading the messages in an Rmail file is done in a special major mode,
Rmail mode, which redefines most letters to run commands for managing mail.
Basic Concepts of Rmail

 Using Rmail in the simplest fashion, you have one Rmail file
~/RMAIL in which all of your mail is saved. It is called your
primary Rmail file. The command M-x rmail reads your primary
Rmail file, merges new mail in from your inboxes, displays the first
message you haven't read yet, and lets you begin reading. The variable
rmail-file-name specifies the name of the primary Rmail file.
Rmail displays only one message in the Rmail file at a time.
The message that is shown is called the current message. Rmail
mode's special commands can do such things as delete the current
message, copy it into another file, send a reply, or move to another
message. You can also create multiple Rmail files and use Rmail to move
messages between them.
 Within the Rmail file, messages are normally arranged sequentially in
order of receipt; you can specify other ways to sort them (see the section called “Sorting the Rmail File”). Messages are identified by consecutive integers which are
their message numbers. The number of the current message is
displayed in Rmail's mode line, followed by the total number of messages
in the file. You can move to a message by specifying its message number
with the j key (see the section called “Moving Among Messages”).
 Following the usual conventions of Emacs, changes in an Rmail file
become permanent only when you save the file. You can save it with
s (rmail-expunge-and-save), which also expunges deleted
messages from the file first (see the section called “Deleting Messages”). To save the
file without expunging, use C-x C-s. Rmail also saves the Rmail
file after merging new mail from an inbox file (see the section called “Rmail Files and Inboxes”).
 You can exit Rmail with q (rmail-quit); this expunges
and saves the Rmail file, then buries the Rmail buffer as well as its
summary buffer, if present (see the section called “Summaries”). But there is no
need to “exit” formally. If you switch from Rmail to editing in
other buffers, and never switch back, you have exited. Just make sure
to save the Rmail file eventually (like any other file you have
changed). C-x s is a suitable way to do this (see the section called “Commands for Saving Files”). The Rmail command b, rmail-bury, buries the
Rmail buffer and its summary without expunging and saving the Rmail file.

Scrolling Within a Message

When Rmail displays a message that does not fit on the screen, you
must scroll through it to read the rest. You could do this with
C-v, M-v and M-<, but in Rmail scrolling is so
frequent that it deserves to be easier.
	SPC
	Scroll forward (scroll-up-command).

	DEL
	Scroll backward (scroll-down-command).

	.
	Scroll to start of message (rmail-beginning-of-message).

	/
	Scroll to end of message (rmail-end-of-message).

 Since the most common thing to do while reading a message is to
scroll through it by screenfuls, Rmail makes SPC and DEL
do the same as C-v (scroll-up-command) and M-v
(scroll-down-command) respectively.
 The command . (rmail-beginning-of-message) scrolls back to the
beginning of the selected message. This is not quite the same as M-<:
for one thing, it does not set the mark; for another, it resets the buffer
boundaries of the current message if you have changed them. Similarly,
the command / (rmail-end-of-message) scrolls forward to the end
of the selected message.

Moving Among Messages

The most basic thing to do with a message is to read it. The way to
do this in Rmail is to make the message current. The usual practice is
to move sequentially through the file, since this is the order of
receipt of messages. When you enter Rmail, you are positioned at the
first message that you have not yet made current (that is, the first one
that has the ‘unseen’ attribute; see the section called “Rmail Attributes”). Move
forward to see the other new messages; move backward to re-examine old
messages.
	n
	Move to the next nondeleted message, skipping any intervening deleted
messages (rmail-next-undeleted-message).

	p
	Move to the previous nondeleted message
(rmail-previous-undeleted-message).

	M-n
	Move to the next message, including deleted messages
(rmail-next-message).

	M-p
	Move to the previous message, including deleted messages
(rmail-previous-message).

	C-c C-n
	Move to the next message with the same subject as the current one
(rmail-next-same-subject).

	C-c C-p
	Move to the previous message with the same subject as the current one
(rmail-previous-same-subject).

	j
	Move to the first message. With argument n, move to
message number n (rmail-show-message).

	>
	Move to the last message (rmail-last-message).

	<
	Move to the first message (rmail-first-message).

	M-s regexp RET
	Move to the next message containing a match for regexp
(rmail-search).

	- M-s regexp RET
	Move to the previous message containing a match for regexp.

 n and p are the usual way of moving among messages in
Rmail. They move through the messages sequentially, but skip over
deleted messages, which is usually what you want to do. Their command
definitions are named rmail-next-undeleted-message and
rmail-previous-undeleted-message. If you do not want to skip
deleted messages—for example, if you want to move to a message to
undelete it—use the variants M-n and M-p
(rmail-next-message and rmail-previous-message). A
numeric argument to any of these commands serves as a repeat
count.
In Rmail, you can specify a numeric argument by typing just the
digits. You don't need to type C-u first.
 The M-s (rmail-search) command is Rmail's version of
search. The usual incremental search command C-s works in Rmail,
but it searches only within the current message. The purpose of
M-s is to search for another message. It reads a regular
expression (see the section called “Syntax of Regular Expressions”) nonincrementally, then searches starting at
the beginning of the following message for a match. It then selects
that message. If regexp is empty, M-s reuses the regexp
used the previous time.
To search backward in the file for another message, give M-s a
negative argument. In Rmail you can do this with - M-s. This
begins searching from the end of the previous message.
It is also possible to search for a message based on labels.
See the section called “Labels”.
 The C-c C-n (rmail-next-same-subject) command moves to
the next message with the same subject as the current one. A prefix
argument serves as a repeat count. With a negative argument, this
command moves backward, acting like C-c C-p
(rmail-previous-same-subject). When comparing subjects, these
commands ignore the prefixes typically added to the subjects of replies.
 To move to a message specified by absolute message number, use j
(rmail-show-message) with the message number as argument. With
no argument, j selects the first message. <
(rmail-first-message) also selects the first message. >
(rmail-last-message) selects the last message.

Deleting Messages

 When you no longer need to keep a message, you can delete it. This
flags it as ignorable, and some Rmail commands pretend it is no longer
present; but it still has its place in the Rmail file, and still has its
message number.
 Expunging the Rmail file actually removes the deleted messages.
The remaining messages are renumbered consecutively.

	d
	Delete the current message, and move to the next nondeleted message
(rmail-delete-forward).

	C-d
	Delete the current message, and move to the previous nondeleted
message (rmail-delete-backward).

	u
	Undelete the current message, or move back to the previous deleted
message and undelete it (rmail-undelete-previous-message).

	x
	Expunge the Rmail file (rmail-expunge).

 There are two Rmail commands for deleting messages. Both delete the
current message and select another. d
(rmail-delete-forward) moves to the following message, skipping
messages already deleted, while C-d (rmail-delete-backward)
moves to the previous nondeleted message. If there is no nondeleted
message to move to in the specified direction, the message that was just
deleted remains current. d with a prefix argument is equivalent
to C-d. Note that the Rmail summary versions of these commands
behave slightly differently (see the section called “Editing in Summaries”).
 Whenever Rmail deletes a message, it runs the hook
rmail-delete-message-hook. When the hook functions are invoked,
the message has been marked deleted, but it is still the current message
in the Rmail buffer.
 To make all the deleted messages finally vanish from the Rmail file,
type x (rmail-expunge). Until you do this, you can still
undelete the deleted messages. The undeletion command, u
(rmail-undelete-previous-message), is designed to cancel the
effect of a d command in most cases. It undeletes the current
message if the current message is deleted. Otherwise it moves backward
to previous messages until a deleted message is found, and undeletes
that message.
You can usually undo a d with a u because the u
moves back to and undeletes the message that the d deleted. But
this does not work when the d skips a few already-deleted messages
that follow the message being deleted; then the u command
undeletes the last of the messages that were skipped. There is no clean
way to avoid this problem. However, by repeating the u command,
you can eventually get back to the message that you intend to
undelete. You can also select a particular deleted message with
the M-p command, then type u to undelete it.
A deleted message has the ‘deleted’ attribute, and as a result
‘deleted’ appears in the mode line when the current message is
deleted. In fact, deleting or undeleting a message is nothing more than
adding or removing this attribute. See the section called “Rmail Attributes”.

Rmail Files and Inboxes

 When you receive mail locally, the operating system places incoming
mail for you in a file that we call your inbox. When you start
up Rmail, it runs a C program called movemail to copy the new
messages from your local inbox into your primary Rmail file, which
also contains other messages saved from previous Rmail sessions. It
is in this file that you actually read the mail with Rmail. This
operation is called getting new mail. You can get new mail at
any time in Rmail by typing g.
 The variable rmail-primary-inbox-list contains a list of the
files that are inboxes for your primary Rmail file. If you don't set
this variable explicitly, Rmail uses the MAIL environment
variable, or, as a last resort, a default inbox based on
rmail-spool-directory. The default inbox file depends on your
operating system; often it is /var/mail/username,
/var/spool/mail/username, or
/usr/spool/mail/username.
You can specify the inbox file(s) for any Rmail file for the current
session with the command set-rmail-inbox-list; see the section called “Multiple Rmail Files”.
There are two reasons for having separate Rmail files and inboxes.
	The inbox file format varies between operating systems and according to
the other mail software in use. Only one part of Rmail needs to know
about the alternatives, and it need only understand how to convert all
of them to Rmail's own format.

	It is very cumbersome to access an inbox file without danger of losing
mail, because it is necessary to interlock with mail delivery.
Moreover, different operating systems use different interlocking
techniques. The strategy of moving mail out of the inbox once and for
all into a separate Rmail file avoids the need for interlocking in all
the rest of Rmail, since only Rmail operates on the Rmail file.

Rmail was originally written to use the Babyl format as its internal
format. Since then, we have recognized that the usual inbox format
(‘mbox’) on Unix and GNU systems is adequate for the job, and so
since Emacs 23 Rmail uses that as its internal format. The Rmail file
is still separate from the inbox file, even though their format is the
same.
 When getting new mail, Rmail first copies the new mail from the
inbox file to the Rmail file; then it saves the Rmail file; then it
clears out the inbox file. This way, a system crash may cause
duplication of mail between the inbox and the Rmail file, but cannot
lose mail. If rmail-preserve-inbox is non-nil, then
Rmail does not clear out the inbox file when it gets new mail. You
may wish to set this, for example, on a portable computer you use to
check your mail via POP while traveling, so that your mail will remain
on the server and you can save it later on your workstation.
In some cases, Rmail copies the new mail from the inbox file
indirectly. First it runs the movemail program to move the mail
from the inbox to an intermediate file called
.newmail-inboxname, in the same directory as the Rmail
file. Then Rmail merges the new mail from that file, saves the Rmail
file, and only then deletes the intermediate file. If there is a crash
at the wrong time, this file continues to exist, and Rmail will use it
again the next time it gets new mail from that inbox.
If Rmail is unable to convert the data in
.newmail-inboxname into mbox format, it renames the file to
RMAILOSE.n (n is an integer chosen to make the name
unique) so that Rmail will not have trouble with the data again. You
should look at the file, find whatever message confuses Rmail (probably
one that includes the control-underscore character, octal code 037), and
delete it. Then you can use 1 g to get new mail from the
corrected file.

Multiple Rmail Files

Rmail operates by default on your primary Rmail file, which is named
~/RMAIL and receives your incoming mail from your system inbox file.
But you can also have other Rmail files and edit them with Rmail. These
files can receive mail through their own inboxes, or you can move messages
into them with explicit Rmail commands (see the section called “Copying Messages Out to Files”).
	i file RET
	Read file into Emacs and run Rmail on it (rmail-input).

	M-x set-rmail-inbox-list RET files RET
	Specify inbox file names for current Rmail file to get mail from.

	g
	Merge new mail from current Rmail file's inboxes
(rmail-get-new-mail).

	C-u g file RET
	Merge new mail from inbox file file.

 To run Rmail on a file other than your primary Rmail file, you can use
the i (rmail-input) command in Rmail. This visits the file
in Rmail mode. You can use M-x rmail-input even when not in
Rmail, but it is easier to type C-u M-x rmail, which does the
same thing.
The file you read with i should normally be a valid mbox file.
If it is not, Rmail tries to convert its text to mbox format, and
visits the converted text in the buffer. If you save the buffer, that
converts the file.
If you specify a file name that doesn't exist, i initializes a
new buffer for creating a new Rmail file.
 You can also select an Rmail file from a menu. In the Classify menu,
choose the Input Rmail File item; then choose the Rmail file you want.
The variables rmail-secondary-file-directory and
rmail-secondary-file-regexp specify which files to offer in the
menu: the first variable says which directory to find them in; the
second says which files in that directory to offer (all those that match
the regular expression). If no files match, you cannot select this menu
item. These variables also apply to choosing a file for output
(see the section called “Copying Messages Out to Files”).

 The inbox files to use are specified by the variable
rmail-inbox-list, which is buffer-local in Rmail mode. As a
special exception, if you have specified no inbox files for your primary
Rmail file, it uses the MAIL environment variable, or your
standard system inbox.
 The g command (rmail-get-new-mail) merges mail into the
current Rmail file from its inboxes. If the Rmail file has no
inboxes, g does nothing. The command M-x rmail also
merges new mail into your primary Rmail file.
To merge mail from a file that is not the usual inbox, give the
g key a numeric argument, as in C-u g. Then it reads a file
name and merges mail from that file. The inbox file is not deleted or
changed in any way when g with an argument is used. This is,
therefore, a general way of merging one file of messages into another.

Copying Messages Out to Files

These commands copy messages from an Rmail file into another file.
	o file RET
	Append a full copy of the current message to the file file
(rmail-output).

	C-o file RET
	Append a copy of the current message, as displayed, to the file
file (rmail-output-as-seen).

	w file RET
	Output just the message body to the file file, taking the default
file name from the message ‘Subject’ header.

 The commands o and C-o copy the current message into a
specified file, adding it at the end. The two commands differ mainly
in how much to copy: o copies the full message headers, even if
they are not all visible, while C-o copies exactly the headers
currently displayed and no more. See the section called “Display of Messages”. In addition,
o converts the message to Babyl format (used by Rmail in Emacs
version 22 and before) if the file is in Babyl format; C-o
cannot output to Babyl files at all.

 If the output file is currently visited in an Emacs buffer, the
output commands append the message to that buffer. It is up to you to
save the buffer eventually in its file.
 Sometimes you may receive a message whose body holds the contents of a
file. You can save the body to a file (excluding the message header)
with the w command (rmail-output-body-to-file). Often
these messages contain the intended file name in the ‘Subject’
field, so the w command uses the ‘Subject’ field as the
default for the output file name. However, the file name is read using
the minibuffer, so you can specify a different name if you wish.
You can also output a message to an Rmail file chosen with a menu.
In the Classify menu, choose the Output Rmail File menu item; then
choose the Rmail file you want. This outputs the current message to
that file, like the o command. The variables
rmail-secondary-file-directory and
rmail-secondary-file-regexp specify which files to offer in the
menu: the first variable says which directory to find them in; the
second says which files in that directory to offer (all those that
match the regular expression). If no files match, you cannot select
this menu item.
 Copying a message with o or C-o gives the original copy
of the message the ‘filed’ attribute, so that ‘filed’
appears in the mode line when such a message is current.
If you like to keep just a single copy of every mail message, set
the variable rmail-delete-after-output to t; then the
o, C-o and w commands delete the original message
after copying it. (You can undelete it afterward if you wish.)
 The variable rmail-output-file-alist lets you specify
intelligent defaults for the output file, based on the contents of the
current message. The value should be a list whose elements have this
form:

(regexp . name-exp)

If there's a match for regexp in the current message, then the
default file name for output is name-exp. If multiple elements
match the message, the first matching element decides the default file
name. The subexpression name-exp may be a string constant giving
the file name to use, or more generally it may be any Lisp expression
that returns a file name as a string. rmail-output-file-alist
applies to both o and C-o.
Rmail can automatically save messages from your primary Rmail file
(the one that rmail-file-name specifies) to other files, based
on the value of the variable rmail-automatic-folder-directives.
This variable is a list of elements (‘directives’) that say which
messages to save where. Each directive is a list consisting of an
output file, followed by one or more pairs of a header name and a regular
expression. If a message has a header matching the specified regular
expression, that message is saved to the given file. If the directive
has more than one header entry, all must match. Rmail checks directives
when it shows a message from the file rmail-file-name, and
applies the first that matches (if any). If the output file is
nil, the message is deleted, not saved. For example, you can use
this feature to save messages from a particular address, or with a
particular subject, to a dedicated file.

Labels

 Each message can have various labels assigned to it as a means
of classification. Each label has a name; different names are different
labels. Any given label is either present or absent on a particular
message. A few label names have standard meanings and are given to
messages automatically by Rmail when appropriate; these special labels
are called attributes.
(See the section called “Rmail Attributes”.)
All other labels are assigned only by users.
	a label RET
	Assign the label label to the current message (rmail-add-label).

	k label RET
	Remove the label label from the current message (rmail-kill-label).

	C-M-n labels RET
	Move to the next message that has one of the labels labels
(rmail-next-labeled-message).

	C-M-p labels RET
	Move to the previous message that has one of the labels labels
(rmail-previous-labeled-message).

	l labels RET, C-M-l labels RET
	Make a summary of all messages containing any of the labels labels
(rmail-summary-by-labels).

 The a (rmail-add-label) and k
(rmail-kill-label) commands allow you to assign or remove any
label on the current message. If the label argument is empty, it
means to assign or remove the same label most recently assigned or
removed.
Once you have given messages labels to classify them as you wish, there
are three ways to use the labels: in moving, in summaries, and in sorting.
 C-M-n labels RET
(rmail-next-labeled-message) moves to the next message that has
one of the labels labels. The argument labels specifies
one or more label names, separated by commas. C-M-p
(rmail-previous-labeled-message) is similar, but moves
backwards to previous messages. A numeric argument to either command
serves as a repeat count.
The command C-M-l labels RET
(rmail-summary-by-labels) displays a summary containing only the
messages that have at least one of a specified set of labels. The
argument labels is one or more label names, separated by commas.
See the section called “Summaries”, for information on summaries.
If the labels argument to C-M-n, C-M-p or
C-M-l is empty, it means to use the last set of labels specified
for any of these commands.
See the section called “Sorting the Rmail File”, for information on sorting messages with labels.

Rmail Attributes

Some labels such as ‘deleted’ and ‘filed’ have built-in
meanings, and Rmail assigns them to messages automatically at
appropriate times; these labels are called attributes. Here is
a list of Rmail attributes:
	‘unseen’
	Means the message has never been current. Assigned to messages when
they come from an inbox file, and removed when a message is made
current. When you start Rmail, it initially shows the first message
that has this attribute.

	‘deleted’
	Means the message is deleted. Assigned by deletion commands and
removed by undeletion commands (see the section called “Deleting Messages”).

	‘filed’
	Means the message has been copied to some other file. Assigned by the
o and C-o file output commands (see the section called “Copying Messages Out to Files”).

	‘answered’
	Means you have mailed an answer to the message. Assigned by the r
command (rmail-reply). See the section called “Sending Replies”.

	‘forwarded’
	Means you have forwarded the message. Assigned by the f command
(rmail-forward). See the section called “Sending Replies”.

	‘edited’
	Means you have edited the text of the message within Rmail.
See the section called “Editing Within a Message”.

	‘resent’
	Means you have resent the message. Assigned by the command M-x
rmail-resend. See the section called “Sending Replies”.

	‘retried’
	Means you have retried a failed outgoing message. Assigned by the
command M-x rmail-retry-failure. See the section called “Sending Replies”.

All other labels are assigned or removed only by users, and have no
standard meaning.

Sending Replies

Rmail has several commands to send outgoing mail. See Chapter 32, Sending Mail, for information on using Message mode, including certain
features meant to work with Rmail. What this section documents are
the special commands of Rmail for entering the mail buffer. Note that
the usual keys for sending mail—C-x m, C-x 4 m, and
C-x 5 m—also work normally in Rmail mode.
	m
	Send a message (rmail-mail).

	c
	Continue editing the already started outgoing message (rmail-continue).

	r
	Send a reply to the current Rmail message (rmail-reply).

	f
	Forward the current message to other users (rmail-forward).

	C-u f
	Resend the current message to other users (rmail-resend).

	M-m
	Try sending a bounced message a second time (rmail-retry-failure).

 The most common reason to send a message while in Rmail is to reply
to the message you are reading. To do this, type r
(rmail-reply). This displays a mail composition buffer in
another window, much like C-x 4 m, but preinitializes the
‘Subject’, ‘To’, ‘CC’, ‘In-reply-to’ and
‘References’ header fields based on the message you are replying
to. The ‘To’ field starts out as the address of the person who
sent the message you received, and the ‘CC’ field starts out with
all the other recipients of that message.
 You can exclude certain recipients from being included automatically
in replies, using the variable mail-dont-reply-to-names. Its
value should be a regular expression; any recipients that match are
excluded from the ‘CC’ field. They are also excluded from the
‘To’ field, unless this would leave the field empty. If this
variable is nil, then the first time you compose a reply it is
initialized to a default value that matches your own address.
To omit the ‘CC’ field completely for a particular reply, enter
the reply command with a numeric argument: C-u r or 1 r.
This means to reply only to the sender of the original message.
Once the mail composition buffer has been initialized, editing and
sending the mail goes as usual (see Chapter 32, Sending Mail). You can edit
the presupplied header fields if they are not what you want. You can
also use commands such as C-c C-y, which yanks in the message
that you are replying to (see the section called “Mail Commands”). You can also switch
to the Rmail buffer, select a different message there, switch back,
and yank the new current message.
 Sometimes a message does not reach its destination. Mailers usually
send the failed message back to you, enclosed in a failure
message. The Rmail command M-m (rmail-retry-failure)
prepares to send the same message a second time: it sets up a
mail composition buffer with the same text and header fields as before. If
you type C-c C-c right away, you send the message again exactly
the same as the first time. Alternatively, you can edit the text or
headers and then send it. The variable
rmail-retry-ignored-headers, in the same format as
rmail-ignored-headers (see the section called “Display of Messages”), controls which
headers are stripped from the failed message when retrying it.
 Another frequent reason to send mail in Rmail is to forward the
current message to other users. f (rmail-forward) makes
this easy by preinitializing the mail composition buffer with the current
message as the text, and a subject of the form [from:
subject], where from and subject are the sender and
subject of the original message. All you have to do is fill in the
recipients and send. When you forward a message, recipients get a
message which is “from” you, and which has the original message in
its contents.
 Rmail offers two formats for forwarded messages. The default is to
use MIME (see the section called “Display of Messages”) format. This includes the original
message as a separate part. You can use a simpler format if you
prefer, by setting the variable rmail-enable-mime-composing to
nil. In this case, Rmail just includes the original message
enclosed between two delimiter lines. It also modifies every line
that starts with a dash, by inserting ‘- ’ at the start of
the line. When you receive a forwarded message in this format, if it
contains something besides ordinary text—for example, program source
code—you might find it useful to undo that transformation. You can
do this by selecting the forwarded message and typing M-x
unforward-rmail-message. This command extracts the original
forwarded message, deleting the inserted ‘- ’ strings, and
inserts it into the Rmail file as a separate message immediately
following the current one.
 Resending is an alternative similar to forwarding; the
difference is that resending sends a message that is “from” the
original sender, just as it reached you—with a few added header fields
(‘Resent-From’ and ‘Resent-To’) to indicate that it came via
you. To resend a message in Rmail, use C-u f. (f runs
rmail-forward, which invokes rmail-resend if you provide a
numeric argument.)
 Use the m (rmail-mail) command to start editing an
outgoing message that is not a reply. It leaves the header fields empty.
Its only difference from C-x 4 m is that it makes the Rmail buffer
accessible for C-c C-y, just as r does.
 The c (rmail-continue) command resumes editing the
mail composition buffer, to finish editing an outgoing message you were
already composing, or to alter a message you have sent.
 If you set the variable rmail-mail-new-frame to a
non-nil value, then all the Rmail commands to start sending a
message create a new frame to edit it in. This frame is deleted when
you send the message.
All the Rmail commands to send a message use the mail-composition
method that you have chosen (see the section called “Mail-Composition Methods”).

Summaries

 A summary is a buffer containing one line per message to give
you an overview of the mail in an Rmail file. Each line shows the
message number and date, the sender, the line count, the labels, and
the subject. Moving point in the summary buffer selects messages as
you move to their summary lines. Almost all Rmail commands are valid
in the summary buffer also; when used there, they apply to the message
described by the current line of the summary.
A summary buffer applies to a single Rmail file only; if you are
editing multiple Rmail files, each one can have its own summary buffer.
The summary buffer name is made by appending ‘-summary’ to the
Rmail buffer's name. Normally only one summary buffer is displayed at a
time.
Making Summaries

Here are the commands to create a summary for the current Rmail
buffer. Once the Rmail buffer has a summary, changes in the Rmail
buffer (such as deleting or expunging messages, and getting new mail)
automatically update the summary.
	h, C-M-h
	Summarize all messages (rmail-summary).

	l labels RET, C-M-l labels RET
	Summarize messages that have one or more of the specified labels
(rmail-summary-by-labels).

	C-M-r rcpts RET
	Summarize messages that match the specified recipients
(rmail-summary-by-recipients).

	C-M-t topic RET
	Summarize messages that have a match for the specified regexp
topic in their subjects (rmail-summary-by-topic).

	C-M-s regexp RET
	Summarize messages whose headers match the specified regular expression
regexp (rmail-summary-by-regexp).

	C-M-f senders RET
	Summarize messages that match the specified senders.
(rmail-summary-by-senders).

 The h or C-M-h (rmail-summary) command fills the summary buffer
for the current Rmail buffer with a summary of all the messages in the buffer.
It then displays and selects the summary buffer in another window.
 C-M-l labels RET (rmail-summary-by-labels) makes
a partial summary mentioning only the messages that have one or more of the
labels labels. labels should contain label names separated by
commas.
 C-M-r rcpts RET (rmail-summary-by-recipients)
makes a partial summary mentioning only the messages that have one or
more recipients matching the regular expression rcpts. You can
use commas to separate multiple regular expressions. These are matched
against the ‘To’, ‘From’, and ‘CC’ headers (supply a prefix
argument to exclude this header).
 C-M-t topic RET (rmail-summary-by-topic)
makes a partial summary mentioning only the messages whose subjects have
a match for the regular expression topic. You can use commas to
separate multiple regular expressions. With a prefix argument, the
match is against the whole message, not just the subject.
 C-M-s regexp RET (rmail-summary-by-regexp)
makes a partial summary that mentions only the messages whose headers
(including the date and the subject lines) match the regular
expression regexp.
 C-M-f senders RET (rmail-summary-by-senders)
makes a partial summary that mentions only the messages whose ‘From’
fields match the regular expression senders. You can use commas to
separate multiple regular expressions.
Note that there is only one summary buffer for any Rmail buffer;
making any kind of summary discards any previous summary.
 The variable rmail-summary-window-size says how many lines to
use for the summary window. The variable
rmail-summary-line-count-flag controls whether the summary line
for a message should include the line count of the message. Setting
this option to nil might speed up the generation of summaries.

Editing in Summaries

You can use the Rmail summary buffer to do almost anything you can do
in the Rmail buffer itself. In fact, once you have a summary buffer,
there's no need to switch back to the Rmail buffer.
You can select and display various messages in the Rmail buffer, from
the summary buffer, just by moving point in the summary buffer to
different lines. It doesn't matter what Emacs command you use to move
point; whichever line point is on at the end of the command, that
message is selected in the Rmail buffer.
Almost all Rmail commands work in the summary buffer as well as in the
Rmail buffer. Thus, d in the summary buffer deletes the current
message, u undeletes, and x expunges. (However, in the
summary buffer, a numeric argument to d, C-d and u
serves as a repeat count. A negative argument reverses the meaning of
d and C-d. Also, if there are no more undeleted messages in
the relevant direction, the delete commands go to the first or last
message, rather than staying on the current message.) o and
C-o output the current message to a FILE; r starts a reply
to it; etc. You can scroll the current message while remaining in the
summary buffer using SPC and DEL.

M-u (rmail-summary-undelete-many) undeletes all deleted
messages in the summary. A prefix argument means to undelete that many
of the previous deleted messages.
The Rmail commands to move between messages also work in the summary
buffer, but with a twist: they move through the set of messages included
in the summary. They also ensure the Rmail buffer appears on the screen
(unlike cursor motion commands, which update the contents of the Rmail
buffer but don't display it in a window unless it already appears).
Here is a list of these commands:
	n
	Move to next line, skipping lines saying `deleted', and select its
message (rmail-summary-next-msg).

	p
	Move to previous line, skipping lines saying `deleted', and select
its message (rmail-summary-previous-msg).

	M-n
	Move to next line and select its message (rmail-summary-next-all).

	M-p
	Move to previous line and select its message
(rmail-summary-previous-all).

	>
	Move to the last line, and select its message
(rmail-summary-last-message).

	<
	Move to the first line, and select its message
(rmail-summary-first-message).

	j, RET
	Select the message on the current line (ensuring that the Rmail buffer
appears on the screen; rmail-summary-goto-msg). With argument
n, select message number n and move to its line in the
summary buffer; this signals an error if the message is not listed in
the summary buffer.

	M-s pattern RET
	Search through messages for pattern starting with the current
message; select the message found, and move point in the summary buffer
to that message's line (rmail-summary-search). A prefix argument
acts as a repeat count; a negative argument means search backward
(equivalent to rmail-summary-search-backward.)

	C-M-n labels RET
	Move to the next message with at least one of the specified labels
(rmail-summary-next-labeled-message). labels is a
comma-separated list of labels. A prefix argument acts as a repeat
count.

	C-M-p labels RET
	Move to the previous message with at least one of the specified labels
(rmail-summary-previous-labeled-message).

	C-c C-n RET
	Move to the next message with the same subject as the current message
(rmail-summary-next-same-subject). A prefix argument acts as a
repeat count.

	C-c C-p RET
	Move to the previous message with the same subject as the current message
(rmail-summary-previous-same-subject).

 Deletion, undeletion, and getting new mail, and even selection of a
different message all update the summary buffer when you do them in the
Rmail buffer. If the variable rmail-redisplay-summary is
non-nil, these actions also bring the summary buffer back onto
the screen.
 When you are finished using the summary, type Q
(rmail-summary-wipe) to delete the summary buffer's window. You
can also exit Rmail while in the summary: q
(rmail-summary-quit) deletes the summary window, then exits from
Rmail by saving the Rmail file and switching to another buffer.
Alternatively, b (rmail-summary-bury) simply buries the
Rmail summary and buffer.

Sorting the Rmail File

	C-c C-s C-d, M-x rmail-sort-by-date
	Sort messages of current Rmail buffer by date.

	C-c C-s C-s, M-x rmail-sort-by-subject
	Sort messages of current Rmail buffer by subject.

	C-c C-s C-a, M-x rmail-sort-by-author
	Sort messages of current Rmail buffer by author's name.

	C-c C-s C-r, M-x rmail-sort-by-recipient
	Sort messages of current Rmail buffer by recipient's names.

	C-c C-s C-c, M-x rmail-sort-by-correspondent
	Sort messages of current Rmail buffer by the name of the other
correspondent.

	C-c C-s C-l, M-x rmail-sort-by-lines
	Sort messages of current Rmail buffer by number of lines.

	C-c C-s C-k RET labels RET, M-x rmail-sort-by-labels RET labels RET
	Sort messages of current Rmail buffer by labels. The argument
labels should be a comma-separated list of labels. The order of
these labels specifies the order of messages; messages with the first
label come first, messages with the second label come second, and so on.
Messages that have none of these labels come last.

The Rmail sort commands perform a stable sort: if there is no
reason to prefer either one of two messages, their order remains
unchanged. You can use this to sort by more than one criterion. For
example, if you use rmail-sort-by-date and then
rmail-sort-by-author, messages from the same author appear in
order by date.
With a prefix argument, all these commands reverse the order of
comparison. This means they sort messages from newest to oldest, from
biggest to smallest, or in reverse alphabetical order.
The same keys in the summary buffer run similar functions; for
example, C-c C-s C-l runs rmail-summary-sort-by-lines.
Note that these commands always sort the whole Rmail buffer, even if the
summary is only showing a subset of messages.
Note that you cannot undo a sort, so you may wish to save the Rmail
buffer before sorting it.

Display of Messages

This section describes how Rmail displays mail headers,
MIME sections and attachments, URLs, and encrypted messages.
	t
	Toggle display of complete header (rmail-toggle-header).

 Before displaying each message for the first time, Rmail reformats
its header, hiding uninteresting header fields to reduce clutter. The
t (rmail-toggle-header) command toggles this, switching
between showing the reformatted header fields and showing the
complete, original header. With a positive prefix argument, the
command shows the reformatted header; with a zero or negative prefix
argument, it shows the full header. Selecting the message again also
reformats it if necessary.
 The variable rmail-ignored-headers holds a regular expression
specifying the header fields to hide; any matching header line will be
hidden. The variable rmail-nonignored-headers overrides this:
any header field matching that regular expression is shown even if it
matches rmail-ignored-headers too. The variable
rmail-displayed-headers is an alternative to these two
variables; if non-nil, this should be a regular expression
specifying which headers to display (the default is nil).
 Rmail highlights certain header fields that are especially
interesting—by default, the ‘From’ and ‘Subject’ fields.
This highlighting uses the rmail-highlight face. The variable
rmail-highlighted-headers holds a regular expression specifying
the header fields to highlight; if it matches the beginning of a
header field, that whole field is highlighted. To disable this
feature, set rmail-highlighted-headers to nil.
 If a message is in MIME (Multipurpose Internet Mail
Extensions) format and contains multiple parts (MIME
entities), Rmail displays each part with a tagline. The tagline
summarizes the part's index, size, and content type. Depending on the
content type, it may also contain one or more buttons; these perform
actions such as saving the part into a file.

	RET
	Hide or show the MIME part at point
(rmail-mime-toggle-hidden).

	TAB
	Move point to the next MIME tagline button.
(rmail-mime-next-item).

	S-TAB
	Move point to the previous MIME part
(rmail-mime-previous-item).

	v
	Toggle between MIME display and raw message
(rmail-mime).

Each plain-text MIME part is initially displayed
immediately after its tagline, as part of the Rmail buffer, while
MIME parts of other types are represented only by their
taglines, with their actual contents hidden. In either case, you can
toggle a MIME part between its “displayed” and “hidden”
states by typing RET anywhere in the part—or anywhere in its
tagline (except for buttons for other actions, if there are any). Type
RET (or click with the mouse) to activate a tagline button, and
TAB to cycle point between tagline buttons.
The v (rmail-mime) command toggles between the default
MIME display described above, and a “raw” display showing
the undecoded MIME data. With a prefix argument, this
command toggles the display of only an entity at point.
To prevent Rmail from handling MIME decoded messages, change the
variable rmail-enable-mime to nil. When this is the
case, the v (rmail-mime) command instead creates a
temporary buffer to display the current MIME message.
 If the current message is an encrypted one, use the command M-x
rmail-epa-decrypt to decrypt it, using the EasyPG library
(see See section ``EasyPG'' in EasyPG Assistant User's Manual).
You can highlight and activate URLs in the Rmail buffer using Goto
Address mode:

(add-hook 'rmail-show-message-hook 'goto-address-mode)

Then you can browse these URLs by clicking on them with Mouse-2
(or Mouse-1 quickly) or by moving to one and typing C-c
RET. See Activating URLs.

Rmail and Coding Systems

 Rmail automatically decodes messages which contain non-ASCII
characters, just as Emacs does with files you visit and with subprocess
output. Rmail uses the standard ‘charset=charset’ header in
the message, if any, to determine how the message was encoded by the
sender. It maps charset into the corresponding Emacs coding
system (see the section called “Coding Systems”), and uses that coding system to decode
message text. If the message header doesn't have the ‘charset’
specification, or if charset is not recognized,
Rmail chooses the coding system with the usual Emacs heuristics and
defaults (see the section called “Recognizing Coding Systems”).
 Occasionally, a message is decoded incorrectly, either because Emacs
guessed the wrong coding system in the absence of the ‘charset’
specification, or because the specification was inaccurate. For
example, a misconfigured mailer could send a message with a
‘charset=iso-8859-1’ header when the message is actually encoded
in koi8-r. When you see the message text garbled, or some of
its characters displayed as hex codes or empty boxes, this may have
happened.
 You can correct the problem by decoding the message again using the
right coding system, if you can figure out or guess which one is
right. To do this, invoke the M-x rmail-redecode-body command.
It reads the name of a coding system, and then redecodes the message
using the coding system you specified. If you specified the right
coding system, the result should be readable.

Editing Within a Message

Most of the usual Emacs key bindings are available in Rmail mode,
though a few, such as C-M-n and C-M-h, are redefined by
Rmail for other purposes. However, the Rmail buffer is normally read
only, and most of the letters are redefined as Rmail commands. If you
want to edit the text of a message, you must use the Rmail command
e.
	e
	Edit the current message as ordinary text.

 The e command (rmail-edit-current-message) switches from
Rmail mode into Rmail Edit mode, another major mode which is nearly the
same as Text mode. The mode line indicates this change.
In Rmail Edit mode, letters insert themselves as usual and the Rmail
commands are not available. You can edit the message body and header
fields. When you are finished editing the message, type C-c C-c
to switch back to Rmail mode. Alternatively, you can return to Rmail
mode but cancel any editing that you have done, by typing C-c C-].
 Entering Rmail Edit mode runs the hook text-mode-hook; then
it runs the hook rmail-edit-mode-hook (see the section called “Hooks”).
Returning to ordinary Rmail mode adds the attribute ‘edited’ to
the message, if you have made any changes in it.

Digest Messages

 A digest message is a message which exists to contain and carry
several other messages. Digests are used on some mailing
lists; all the messages that arrive for the list during a period of time
such as one day are put inside a single digest which is then sent to the
subscribers. Transmitting the single digest uses less computer
time than transmitting the individual messages even though the total
size is the same, because of the per-message overhead in network mail
transmission.
 When you receive a digest message, the most convenient way to read it is
to undigestify it: to turn it back into many individual messages.
Then you can read and delete the individual messages as it suits you.
To do this, select the digest message and type the command M-x
undigestify-rmail-message. This extracts the submessages as separate
Rmail messages, and inserts them following the digest. The digest
message itself is flagged as deleted.

Reading Rot13 Messages

 Mailing list messages that might offend or annoy some readers are sometimes
encoded in a simple code called rot13—so named because it
rotates the alphabet by 13 letters. This code is not for secrecy, as it
provides none; rather, it enables those who wish to to avoid
seeing the real text of the message. For example, a review of a film
might use rot13 to hide important plot points.
 To view a buffer that uses the rot13 code, use the command M-x
rot13-other-window. This displays the current buffer in another window
which applies the code when displaying the text.

movemail program

 Rmail uses the movemail program to move mail from your inbox to
your Rmail file (see the section called “Rmail Files and Inboxes”). When loaded for the first time,
Rmail attempts to locate the movemail program and determine its
version. There are two versions of the movemail program: the
native one, shipped with GNU Emacs (the “emacs version”) and the one
included in GNU mailutils (the “mailutils version”,
see See section ``movemail'' in GNU mailutils). They support the same
command line syntax and the same basic subset of options. However, the
Mailutils version offers additional features.
The Emacs version of movemail is able to retrieve mail from
the usual Unix mailbox formats and from remote mailboxes using the
POP3 protocol.
The Mailutils version is able to handle a wide set of mailbox
formats, such as plain Unix mailboxes, maildir and MH
mailboxes, etc. It is able to access remote mailboxes using the POP3
or IMAP4 protocol, and can retrieve mail from them using a TLS
encrypted channel. It also accepts mailbox arguments in URL
form. The detailed description of mailbox URLs can be found
in See section ``URL'' in Mailbox URL Formats. In short, a
URL is:

proto://[user[:password]@]host-or-file-name

where square brackets denote optional elements.
	proto
	Specifies the mailbox protocol, or format to
use. The exact semantics of the rest of URL elements depends
on the actual value of proto (see below).

	user
	User name to access the remote mailbox.

	password
	User password to access the remote mailbox.

	host-or-file-name
	Hostname of the remote server for remote mailboxes or file name of a
local mailbox.

Proto can be one of:
	mbox
	Usual Unix mailbox format. In this case, neither user nor
pass are used, and host-or-file-name denotes the file name
of the mailbox file, e.g., mbox://var/spool/mail/smith.

	mh
	A local mailbox in the MH format. User and
pass are not used. Host-or-file-name denotes the name of
MH folder, e.g., mh://Mail/inbox.

	maildir
	A local mailbox in the maildir format. User and
pass are not used, and host-or-file-name denotes the name of
maildir mailbox, e.g., maildir://mail/inbox.

	file
	Any local mailbox format. Its actual format is detected automatically
by movemail.

	pop
	A remote mailbox to be accessed via POP3 protocol. User
specifies the remote user name to use, pass may be used to
specify the user password, host-or-file-name is the name or IP
address of the remote mail server to connect to; e.g.,
pop://smith:guessme@remote.server.net.

	imap
	A remote mailbox to be accessed via IMAP4 protocol. User
specifies the remote user name to use, pass may be used to
specify the user password, host-or-file-name is the name or IP
address of the remote mail server to connect to;
e.g., imap://smith:guessme@remote.server.net.

Alternatively, you can specify the file name of the mailbox to use.
This is equivalent to specifying the ‘file’ protocol:

/var/spool/mail/user == file://var/spool/mail/user

 The variable rmail-movemail-program controls which version of
movemail to use. If that is a string, it specifies the
absolute file name of the movemail executable. If it is
nil, Rmail searches for movemail in the directories
listed in rmail-movemail-search-path, then in exec-path
(see Chapter 36, Running Shell Commands from Emacs), then in exec-directory.

Retrieving Mail from Remote Mailboxes

 Some sites use a method called POP for accessing users' inbox data
instead of storing the data in inbox files. By default, the Emacs
movemail can work with POP (unless the Emacs configure script
was run with the option ‘--without-pop’).
Similarly, the Mailutils movemail by default supports POP, unless
it was configured with the ‘--disable-pop’ option.
Both versions of movemail only work with POP3, not with older
versions of POP.
 No matter which flavor of movemail you use, you can specify
a POP inbox by using a POP URL (see the section called “movemail program”). A POP
URL is a “file name” of the form
‘pop://username@hostname’, where
hostname is the host name or IP address of the remote mail
server and username is the user name on that server.
Additionally, you may specify the password in the mailbox URL:
‘pop://username:password@hostname’. In this
case, password takes preference over the one set by
rmail-remote-password (see below). This is especially useful
if you have several remote mailboxes with different passwords.
For backward compatibility, Rmail also supports an alternative way of
specifying remote POP mailboxes. Specifying an inbox name in the form
‘po:username:hostname’ is equivalent to
‘pop://username@hostname’. If you omit the
:hostname part, the MAILHOST environment variable specifies
the machine on which to look for the POP server.
 Another method for accessing remote mailboxes is IMAP. This method is
supported only by the Mailutils movemail. To specify an IMAP
mailbox in the inbox list, use the following mailbox URL:
‘imap://username[:password]@hostname’. The
password part is optional, as described above.
 Accessing a remote mailbox may require a password. Rmail uses the
following algorithm to retrieve it:
	If a password is present in the mailbox URL (see above), it is
used.

	If the variable rmail-remote-password-required is nil,
Rmail assumes no password is required.

	If the variable rmail-remote-password is non-nil, its
value is used.

	Otherwise, Rmail will ask you for the password to use.

 If you need to pass additional command-line flags to movemail,
set the variable rmail-movemail-flags a list of the flags you
wish to use. Do not use this variable to pass the ‘-p’ flag to
preserve your inbox contents; use rmail-preserve-inbox instead.
 The movemail program installed at your site may support
Kerberos authentication (the Emacs movemail does so if Emacs was
configured with the option --with-kerberos or
--with-kerberos5). If it is supported, it is used by default
whenever you attempt to retrieve POP mail when
rmail-remote-password and rmail-remote-password-required
are unset.
 Some POP servers store messages in reverse order. If your server does
this, and you would rather read your mail in the order in which it was
received, you can tell movemail to reverse the order of
downloaded messages by adding the ‘-r’ flag to
rmail-movemail-flags.
 Mailutils movemail supports TLS encryption. If you wish to
use it, add the ‘--tls’ flag to rmail-movemail-flags.

Retrieving Mail from Local Mailboxes in Various Formats

If your incoming mail is stored on a local machine in a format other
than Unix mailbox, you will need the Mailutils movemail to
retrieve it. See the section called “movemail program”, for the detailed description of
movemail versions. For example, to access mail from a inbox in
maildir format located in /var/spool/mail/in, you would
include the following in the Rmail inbox list:

maildir://var/spool/mail/in

Chapter 34. Gnus

 Gnus is an Emacs package primarily designed for reading and posting
Usenet news. It can also be used to read and respond to messages from
a number of other sources—email, remote directories, digests, and so
on. Here we introduce Gnus and describe several basic features.
For full details, see See section ``Top'' in The Gnus Manual.
Gnus Buffers

Gnus uses several buffers to display information and to receive
commands. The three most commonly-used Gnus buffers are the
group buffer, the summary buffer and the article
buffer.
The group buffer contains a list of article sources (e.g.
newsgroups and email inboxes), which are collectively referred to as
groups. This is the first buffer Gnus displays when it starts
up. It normally displays only the groups to which you subscribe and
that contain unread articles. From this buffer, you can select a
group to read.
The summary buffer lists the articles in a single group,
showing one article per line. By default, it displays each article's
author, subject, and line
number, but this is customizable; See See section ``Summary Buffer Format'' in The Gnus Manual.
The summary buffer is created when you select a group in the group
buffer, and is killed when you exit the group.
From the summary buffer, you can choose an article to view. The
article is displayed in the article buffer. In normal Gnus
usage, you view this buffer but do not select it—all useful Gnus
commands can be invoked from the summary buffer. But you can select
the article buffer, and execute Gnus commands from it, if you wish.

When Gnus Starts Up

 If your system has been set up for reading Usenet news, getting
started with Gnus is easy—just type M-x gnus.
On starting up, Gnus reads your news initialization file: a
file named .newsrc in your home directory which lists your
Usenet newsgroups and subscriptions (this file is not unique to Gnus;
it is used by many other newsreader programs). It then tries to
contact the system's default news server, which is typically specified
by the NNTPSERVER environment variable.
If your system does not have a default news server, or if you wish
to use Gnus for reading email, then before invoking M-x gnus you
need to tell Gnus where to get news and/or mail. To do this,
customize the variables gnus-select-method and/or
gnus-secondary-select-methods.
See See section ``Finding the News'' in The Gnus Manual.
Once Gnus has started up, it displays the group buffer. By default,
the group buffer shows only a small number of subscribed groups.
Groups with other statuses—unsubscribed, killed, or
zombie—are hidden. The first time you start Gnus, any group
to which you are not subscribed is made into a killed group; any group
that subsequently appears on the news server becomes a zombie group.
To proceed, you must select a group in the group buffer to open the
summary buffer for that group; then, select an article in the summary
buffer to view its article buffer in a separate window. The following
sections explain how to use the group and summary buffers to do this.
To quit Gnus, type q in the group buffer. This automatically
records your group statuses in the files .newsrc and
.newsrc.eld, so that they take effect in subsequent Gnus
sessions.

Using the Gnus Group Buffer

The following commands are available in the Gnus group buffer:

	SPC
	Switch to the summary buffer for the group on the current line.

	l, A s
	In the group buffer, list only the groups to which you subscribe and
which contain unread articles (this is the default listing).

	L, A u
	List all subscribed and unsubscribed groups, but not killed or zombie
groups.

	A k
	List killed groups.

	A z
	List zombie groups.

	u
	Toggle the subscription status of the group on the current line
(i.e. turn a subscribed group into an unsubscribed group, or vice
versa). Invoking this on a killed or zombie group turns it into an
unsubscribed group.

	C-k
	Kill the group on the current line. Killed groups are not recorded in
the .newsrc file, and they are not shown in the l or
L listings.

	DEL
	Move point to the previous group containing unread articles.

	n
	Move point to the next unread group.

	p
	Move point to the previous unread group.

	q
	Update your Gnus settings, and quit Gnus.

Using the Gnus Summary Buffer

The following commands are available in the Gnus summary buffer:

	SPC
	If there is no article selected, select the article on the current
line and display its article buffer. Otherwise, try scrolling the
selected article buffer in its window; on reaching the end of the
buffer, select the next unread article.
Thus, you can read through all articles by repeatedly typing
SPC.

	DEL
	Scroll the text of the article backwards.

	n
	Select the next unread article.

	p
	Select the previous unread article.

	s
	Do an incremental search on the selected article buffer, as if you
switched to the buffer and typed C-s (see the section called “Incremental Search”).

	M-s regexp RET
	Search forward for articles containing a match for regexp.

	q
	Exit the summary buffer and return to the group buffer.

Chapter 35. Document Viewing

 DocView mode is a major mode for viewing DVI, PostScript (PS), PDF,
OpenDocument, and Microsoft Office documents. It provides features
such as slicing, zooming, and searching inside documents. It works by
converting the document to a set of images using the gs
(GhostScript) command and other external tools [13], and displaying those images.
 When you visit a document file that can be displayed with DocView
mode, Emacs automatically uses DocView mode [14]. As an exception, when you visit a PostScript file, Emacs
switches to PS mode, a major mode for editing PostScript files as
text; however, it also enables DocView minor mode, so you can type
C-c C-c to view the document with DocView. In either DocView
mode or DocView minor mode, repeating C-c C-c
(doc-view-toggle-display) toggles between DocView and the
underlying file contents.
You can explicitly enable DocView mode with the command M-x
doc-view-mode. You can toggle DocView minor mode with M-x
doc-view-minor-mode.
When DocView mode starts, it displays a welcome screen and begins
formatting the file, page by page. It displays the first page once
that has been formatted.
To kill the DocView buffer, type k
(doc-view-kill-proc-and-buffer). To bury it, type q
(quit-window).
DocView Navigation

In DocView mode, you can scroll the current page using the usual
Emacs movement keys: C-p, C-n, C-b, C-f, and
the arrow keys.
 By default, the line-motion keys C-p and C-n stop
scrolling at the beginning and end of the current page, respectively.
However, if you change the variable doc-view-continuous to a
non-nil value, then C-p displays the previous page if you
are already at the beginning of the current page, and C-n
displays the next page if you are at the end of the current page.
 You can also display the next page by typing n, next or
C-x] (doc-view-next-page). To display the previous
page, type p, prior or C-x [
(doc-view-previous-page).
 SPC (doc-view-scroll-up-or-next-page) is a convenient
way to advance through the document. It scrolls within the current
page or advances to the next. DEL moves backwards in a similar
way (doc-view-scroll-down-or-previous-page).
 To go to the first page, type M-<
(doc-view-first-page); to go to the last one, type M->
(doc-view-last-page). To jump to a page by its number, type
M-g M-g or M-g g (doc-view-goto-page).
 You can enlarge or shrink the document with +
(doc-view-enlarge) and - (doc-view-shrink). These
commands work by reconverting the document at the new size. To
specify the default size for DocView, customize the variable
doc-view-resolution.

[13] gs is
a hard requirement. For DVI files, dvipdf or dvipdfm is
needed. For OpenDocument and Microsoft Office documents, the
unoconv tool is needed.

[14] The needed
external tools for the document type must be available, and Emacs must
be running in a graphical frame and have PNG image support. If any of
these requirements is not fulfilled, Emacs falls back to another major
mode.

DocView Searching

In DocView mode, you can search the file's text for a regular
expression (see the section called “Syntax of Regular Expressions”). The interface for searching is inspired
by isearch (see the section called “Incremental Search”).
 To begin a search, type C-s (doc-view-search) or
C-r (doc-view-search-backward). This reads a regular
expression using a minibuffer, then echoes the number of matches found
within the document. You can move forward and back among the matches
by typing C-s and C-r. DocView mode has no way to show
the match inside the page image; instead, it displays a tooltip (at
the mouse position) listing all matching lines in the current page.
To force display of this tooltip, type C-t
(doc-view-show-tooltip).
To start a new search, use the search command with a prefix
argument; i.e., C-u C-s for a forward search or C-u C-r
for a backward search.

DocView Slicing

Documents often have wide margins for printing. They are annoying
when reading the document on the screen, because they use up screen
space and can cause inconvenient scrolling.
 With DocView you can hide these margins by selecting a slice
of pages to display. A slice is a rectangle within the page area;
once you specify a slice in DocView, it applies to whichever page you
look at.
To specify the slice numerically, type s s
(doc-view-set-slice); then enter the top left pixel position
and the slice's width and height.

 A more convenient graphical way to specify the slice is with s
m (doc-view-set-slice-using-mouse), where you use the mouse to
select the slice.

 To cancel the selected slice, type s r
(doc-view-reset-slice). Then DocView shows the entire page
including its entire margins.

DocView Conversion

 For efficiency, DocView caches the images produced by gs.
The name of this directory is given by the variable
doc-view-cache-directory. You can clear the cache directory by
typing M-x doc-view-clear-cache.
 To force reconversion of the currently viewed document, type r
or g (revert-buffer). To kill the converter process
associated with the current buffer, type K
(doc-view-kill-proc). The command k
(doc-view-kill-proc-and-buffer) kills the converter process and
the DocView buffer.

Chapter 36. Running Shell Commands from Emacs

 Emacs has commands for passing single command lines to shell
subprocesses, and for running a shell interactively with input and
output to an Emacs buffer, and for running a shell in a terminal
emulator window.
	M-! cmd RET
	Run the shell command cmd and display the output
(shell-command).

	M-| cmd RET
	Run the shell command cmd with region contents as input;
optionally replace the region with the output
(shell-command-on-region).

	M-& cmd RET
	Run the shell command cmd asynchronously, and display the output
(async-shell-command).

	M-x shell
	Run a subshell with input and output through an Emacs buffer. You can
then give commands interactively.

	M-x term
	Run a subshell with input and output through an Emacs buffer. You can
then give commands interactively. Full terminal emulation is
available.

 Whenever you specify a relative file name for an executable program
(either in the cmd argument to one of the above commands, or in
other contexts), Emacs searches for the program in the directories
specified by the variable exec-path. The value of this
variable must be a list of directory names; the default value is
initialized from the environment variable PATH when Emacs is
started (see the section called “General Variables”).
M-x eshell invokes a shell implemented entirely in Emacs. It
is documented in its own manual.
See See section ``Eshell'' in Eshell: The Emacs Shell.
Single Shell Commands

 M-! (shell-command) reads a line of text using the
minibuffer and executes it as a shell command, in a subshell made just
for that command. Standard input for the command comes from the null
device. If the shell command produces any output, the output appears
either in the echo area (if it is short), or in an Emacs buffer named
Shell Command Output, displayed in another window (if the
output is long).
For instance, one way to decompress a file named foo.gz is to
type M-! gunzip foo.gz RET. That shell command normally
creates the file foo and produces no terminal output.
A numeric argument to shell-command, e.g. M-1 M-!,
causes it to insert terminal output into the current buffer instead of
a separate buffer. It puts point before the output, and sets the mark
after the output. For instance, M-1 M-! gunzip < foo.gz
RET would insert the uncompressed form of the file
foo.gz into the current buffer.
Provided the specified shell command does not end with ‘&’, it
runs synchronously, and you must wait for it to exit before
continuing to use Emacs. To stop waiting, type C-g to quit;
this sends a SIGINT signal to terminate the shell command (this
is the same signal that C-c normally generates in the shell).
Emacs then waits until the command actually terminates. If the shell
command doesn't stop (because it ignores the SIGINT signal),
type C-g again; this sends the command a SIGKILL signal,
which is impossible to ignore.
 A shell command that ends in ‘&’ is executed
asynchronously, and you can continue to use Emacs as it runs.
You can also type M-& (async-shell-command) to execute a
shell command asynchronously; this is exactly like calling M-!
with a trailing ‘&’, except that you do not need the ‘&’.
The output buffer for asynchronous shell commands is named
‘*Async Shell Command*’. Emacs inserts the output into this
buffer as it comes in, whether or not the buffer is visible in a
window.
 M-| (shell-command-on-region) is like M-!, but
passes the contents of the region as the standard input to the shell
command, instead of no input. With a numeric argument, it deletes the
old region and replaces it with the output from the shell command.
For example, you can use M-| with the gpg program to
see what keys are in the buffer. If the buffer contains a GnuPG key,
type C-x h M-| gpg RET to feed the entire buffer contents
to gpg. This will output the list of keys to the
Shell Command Output buffer.
 The above commands use the shell specified by the variable
shell-file-name. Its default value is determined by the
SHELL environment variable when Emacs is started. If the file
name is relative, Emacs searches the directories listed in
exec-path (see Chapter 36, Running Shell Commands from Emacs).
To specify a coding system for M-! or M-|, use the command
C-x RET c immediately beforehand. See the section called “Coding Systems for Interprocess Communication”.
 By default, error output is intermixed with the regular output in
the output buffer. But if you change the value of the variable
shell-command-default-error-buffer to a string, error output is
inserted into a buffer of that name.

Interactive Subshell

 To run a subshell interactively, type M-x shell. This creates
(or reuses) a buffer named *shell*, and runs a shell subprocess
with input coming from and output going to that buffer. That is to
say, any terminal output from the subshell goes into the buffer,
advancing point, and any terminal input for the subshell comes from
text in the buffer. To give input to the subshell, go to the end of
the buffer and type the input, terminated by RET.
While the subshell is waiting or running a command, you can switch
windows or buffers and perform other editing in Emacs. Emacs inserts
the output from the subshell into the Shell buffer whenever it has
time to process it (e.g. while waiting for keyboard input).
 In the Shell buffer, prompts are displayed with the face
comint-highlight-prompt, and submitted input lines are
displayed with the face comint-highlight-input. This makes it
easier to distinguish input lines from the shell output.
See the section called “Text Faces”.
To make multiple subshells, invoke M-x shell with a prefix
argument (e.g. C-u M-x shell). Then the command will read a
buffer name, and create (or reuse) a subshell in that buffer. You can
also rename the *shell* buffer using M-x rename-uniquely,
then create a new *shell* buffer using plain M-x shell.
Subshells in different buffers run independently and in parallel.
 To specify the shell file name used by M-x shell, customize
the variable explicit-shell-file-name. If this is nil
(the default), Emacs uses the environment variable ESHELL if it
exists. Otherwise, it usually uses the variable
shell-file-name (see the section called “Single Shell Commands”); but if the default
directory is remote (see the section called “Remote Files”), it prompts you for the
shell file name.
Emacs sends the new shell the contents of the file
~/.emacs_shellname as input, if it exists, where
shellname is the name of the file that the shell was loaded
from. For example, if you use bash, the file sent to it is
~/.emacs_bash. If this file is not found, Emacs tries with
~/.emacs.d/init_shellname.sh.
To specify a coding system for the shell, you can use the command
C-x RET c immediately before M-x shell. You can
also change the coding system for a running subshell by typing
C-x RET p in the shell buffer. See the section called “Coding Systems for Interprocess Communication”.
 Emacs sets the environment variable INSIDE_EMACS in the
subshell to ‘version,comint’, where version is the
Emacs version (e.g. ‘24.1’). Programs can check this variable
to determine whether they are running inside an Emacs subshell. (It
also sets the EMACS environment variable to t, if that
environment variable is not already defined. However, this
environment variable is deprecated; programs that use it should switch
to using INSIDE_EMACS instead.)

Shell Mode

 The major mode for Shell buffers is Shell mode. Many of its special
commands are bound to the C-c prefix, and resemble the usual
editing and job control characters present in ordinary shells, except
that you must type C-c first. Here is a list of Shell mode
commands:
	RET
	Send the current line as input to the subshell
(comint-send-input). Any shell prompt at the beginning of the
line is omitted (see the section called “Shell Prompts”). If point is at the end of
buffer, this is like submitting the command line in an ordinary
interactive shell. However, you can also invoke RET elsewhere
in the shell buffer to submit the current line as input.

	TAB
	Complete the command name or file name before point in the shell
buffer (completion-at-point). This uses the usual Emacs
completion rules (see the section called “Completion”), with the completion
alternatives being file names, environment variable names, the shell
command history, and history references (see the section called “Shell History References”).
The variable shell-completion-fignore specifies a list of file
name extensions to ignore in Shell mode completion. The default
setting is nil, but some users prefer ("~" "#" "%") to
ignore file names ending in ‘~’, ‘#’ or ‘%’. Other
related Comint modes use the variable comint-completion-fignore
instead.

	M-?
	Display temporarily a list of the possible completions of the file
name before point (comint-dynamic-list-filename-completions).

	C-d
	Either delete a character or send EOF
(comint-delchar-or-maybe-eof). Typed at the end of the shell
buffer, this sends EOF to the subshell. Typed at any other
position in the buffer, this deletes a character as usual.

	C-c C-a
	Move to the beginning of the line, but after the prompt if any
(comint-bol-or-process-mark). If you repeat this command twice
in a row, the second time it moves back to the process mark, which is
the beginning of the input that you have not yet sent to the subshell.
(Normally that is the same place—the end of the prompt on this
line—but after C-c SPC the process mark may be in a
previous line.)

	C-c SPC
	Accumulate multiple lines of input, then send them together. This
command inserts a newline before point, but does not send the preceding
text as input to the subshell—at least, not yet. Both lines, the one
before this newline and the one after, will be sent together (along with
the newline that separates them), when you type RET.

	C-c C-u
	Kill all text pending at end of buffer to be sent as input
(comint-kill-input). If point is not at end of buffer,
this only kills the part of this text that precedes point.

	C-c C-w
	Kill a word before point (backward-kill-word).

	C-c C-c
	Interrupt the shell or its current subjob if any
(comint-interrupt-subjob). This command also kills
any shell input pending in the shell buffer and not yet sent.

	C-c C-z
	Stop the shell or its current subjob if any (comint-stop-subjob).
This command also kills any shell input pending in the shell buffer and
not yet sent.

	C-c C-\
	Send quit signal to the shell or its current subjob if any
(comint-quit-subjob). This command also kills any shell input
pending in the shell buffer and not yet sent.

	C-c C-o
	Delete the last batch of output from a shell command
(comint-delete-output). This is useful if a shell command spews
out lots of output that just gets in the way.

	C-c C-s
	Write the last batch of output from a shell command to a file
(comint-write-output). With a prefix argument, the file is
appended to instead. Any prompt at the end of the output is not
written.

	C-c C-r, C-M-l
	Scroll to display the beginning of the last batch of output at the top
of the window; also move the cursor there (comint-show-output).

	C-c C-e
	Scroll to put the end of the buffer at the bottom of the window
(comint-show-maximum-output).

	C-c C-f
	Move forward across one shell command, but not beyond the current line
(shell-forward-command). The variable shell-command-regexp
specifies how to recognize the end of a command.

	C-c C-b
	Move backward across one shell command, but not beyond the current line
(shell-backward-command).

	M-x dirs
	Ask the shell for its working directory, and update the Shell buffer's
default directory. See the section called “Directory Tracking”.

	M-x send-invisible RET text RET
	Send text as input to the shell, after reading it without
echoing. This is useful when a shell command runs a program that asks
for a password.
Please note that Emacs will not echo passwords by default. If you
really want them to be echoed, evaluate the following Lisp
expression:

(remove-hook 'comint-output-filter-functions
 'comint-watch-for-password-prompt)

	M-x comint-continue-subjob
	Continue the shell process. This is useful if you accidentally suspend
the shell process.[15]

	M-x comint-strip-ctrl-m
	Discard all control-M characters from the current group of shell output.
The most convenient way to use this command is to make it run
automatically when you get output from the subshell. To do that,
evaluate this Lisp expression:

(add-hook 'comint-output-filter-functions
 'comint-strip-ctrl-m)

	M-x comint-truncate-buffer
	This command truncates the shell buffer to a certain maximum number of
lines, specified by the variable comint-buffer-maximum-size.
Here's how to do this automatically each time you get output from the
subshell:

(add-hook 'comint-output-filter-functions
 'comint-truncate-buffer)

 Shell mode is a derivative of Comint mode, a general-purpose mode for
communicating with interactive subprocesses. Most of the features of
Shell mode actually come from Comint mode, as you can see from the
command names listed above. The special features of Shell mode include
the directory tracking feature, and a few user commands.
Other Emacs features that use variants of Comint mode include GUD
(see the section called “Running Debuggers Under Emacs”) and M-x run-lisp (see the section called “Running an External Lisp”).
 You can use M-x comint-run to execute any program of your choice
in a subprocess using unmodified Comint mode—without the
specializations of Shell mode.

[15] You should not suspend the shell process.
Suspending a subjob of the shell is a completely different matter—that
is normal practice, but you must use the shell to continue the subjob;
this command won't do it.

Shell Prompts

 A prompt is text output by a program to show that it is ready to
accept new user input. Normally, Comint mode (and thus Shell mode)
automatically figures out part of the buffer is a prompt, based on the
output of the subprocess. (Specifically, it assumes that any received
output line which doesn't end with a newline is a prompt.)
Comint mode divides the buffer into two types of fields: input
fields (where user input is typed) and output fields (everywhere
else). Prompts are part of the output fields. Most Emacs motion
commands do not cross field boundaries, unless they move over multiple
lines. For instance, when point is in the input field on a shell
command line, C-a puts point at the beginning of the input
field, after the prompt. Internally, the fields are implemented using
the field text property (see See section ``Text Properties'' in the Emacs Lisp Reference Manual).
 If you change the variable comint-use-prompt-regexp to a
non-nil value, then Comint mode recognize prompts using a
regular expression (see the section called “Syntax of Regular Expressions”). In Shell mode, the regular
expression is specified by the variable shell-prompt-pattern.
The default value of comint-use-prompt-regexp is nil,
because this method for recognizing prompts is unreliable, but you may
want to set it to a non-nil value in unusual circumstances. In
that case, Emacs does not divide the Comint buffer into fields, so the
general motion commands behave as they normally do in buffers without
special text properties. However, you can use the paragraph motion
commands to conveniently navigate the buffer (see the section called “Paragraphs”); in
Shell mode, Emacs uses shell-prompt-pattern as paragraph
boundaries.

Shell Command History

Shell buffers support three ways of repeating earlier commands. You
can use keys like those used for the minibuffer history; these work
much as they do in the minibuffer, inserting text from prior commands
while point remains always at the end of the buffer. You can move
through the buffer to previous inputs in their original place, then
resubmit them or copy them to the end. Or you can use a
‘!’-style history reference.

Shell History Ring

	M-p, C-UP
	Fetch the next earlier old shell command.

	M-n, C-DOWN
	Fetch the next later old shell command.

	M-r
	Begin an incremental regexp search of old shell commands.

	C-c C-x
	Fetch the next subsequent command from the history.

	C-c .
	Fetch one argument from an old shell command.

	C-c C-l
	Display the buffer's history of shell commands in another window
(comint-dynamic-list-input-ring).

Shell buffers provide a history of previously entered shell
commands. To reuse shell commands from the history, use the editing
commands M-p, M-n, M-r and M-s. These work
just like the minibuffer history commands (see the section called “Minibuffer History”), except that they operate within the Shell buffer rather
than the minibuffer.
M-p fetches an earlier shell command to the end of the shell
buffer. Successive use of M-p fetches successively earlier
shell commands, each replacing any text that was already present as
potential shell input. M-n does likewise except that it finds
successively more recent shell commands from the buffer.
C-UP works like M-p, and C-DOWN like
M-n.
The history search command M-r begins an incremental regular
expression search of previous shell commands. After typing M-r,
start typing the desired string or regular expression; the last
matching shell command will be displayed in the current line.
Incremental search commands have their usual effects—for instance,
C-s and C-r search forward and backward for the next match
(see the section called “Incremental Search”). When you find the desired input, type
RET to terminate the search. This puts the input in the command
line. Any partial input you were composing before navigating the
history list is restored when you go to the beginning or end of the
history ring.
Often it is useful to reexecute several successive shell commands that
were previously executed in sequence. To do this, first find and
reexecute the first command of the sequence. Then type C-c C-x;
that will fetch the following command—the one that follows the command
you just repeated. Then type RET to reexecute this command. You
can reexecute several successive commands by typing C-c C-x
RET over and over.
The command C-c . (comint-input-previous-argument)
copies an individual argument from a previous command, like ESC
. in Bash. The simplest use copies the last argument from the
previous shell command. With a prefix argument n, it copies the
nth argument instead. Repeating C-c . copies from an
earlier shell command instead, always using the same value of n
(don't give a prefix argument when you repeat the C-c .
command).
These commands get the text of previous shell commands from a special
history list, not from the shell buffer itself. Thus, editing the shell
buffer, or even killing large parts of it, does not affect the history
that these commands access.
 Some shells store their command histories in files so that you can
refer to commands from previous shell sessions. Emacs reads
the command history file for your chosen shell, to initialize its own
command history. The file name is ~/.bash_history for bash,
~/.sh_history for ksh, and ~/.history for other shells.

Shell History Copying

	C-c C-p
	Move point to the previous prompt (comint-previous-prompt).

	C-c C-n
	Move point to the following prompt (comint-next-prompt).

	C-c RET
	Copy the input command at point, inserting the copy at the end of the
buffer (comint-copy-old-input). This is useful if you move
point back to a previous command. After you copy the command, you can
submit the copy as input with RET. If you wish, you can edit
the copy before resubmitting it. If you use this command on an output
line, it copies that line to the end of the buffer.

	Mouse-2
	If comint-use-prompt-regexp is nil (the default), copy
the old input command that you click on, inserting the copy at the end
of the buffer (comint-insert-input). If
comint-use-prompt-regexp is non-nil, or if the click is
not over old input, just yank as usual.

Moving to a previous input and then copying it with C-c
RET or Mouse-2 produces the same results—the same
buffer contents—that you would get by using M-p enough times
to fetch that previous input from the history list. However, C-c
RET copies the text from the buffer, which can be different
from what is in the history list if you edit the input text in the
buffer after it has been sent.

Shell History References

 Various shells including csh and bash support history
references that begin with ‘!’ and ‘^’. Shell mode
recognizes these constructs, and can perform the history substitution
for you.
If you insert a history reference and type TAB, this searches
the input history for a matching command, performs substitution if
necessary, and places the result in the buffer in place of the history
reference. For example, you can fetch the most recent command
beginning with ‘mv’ with ! m v TAB. You can edit the
command if you wish, and then resubmit the command to the shell by
typing RET.
 Shell mode can optionally expand history references in the buffer
when you send them to the shell. To request this, set the variable
comint-input-autoexpand to input. You can make
SPC perform history expansion by binding SPC to the
command comint-magic-space.
Shell mode recognizes history references when they follow a prompt.
See the section called “Shell Prompts”, for how Shell mode recognizes prompts.

Directory Tracking

 Shell mode keeps track of ‘cd’, ‘pushd’ and ‘popd’
commands given to the subshell, in order to keep the Shell buffer's
default directory (see the section called “File Names”) the same as the shell's working
directory. It recognizes these commands by examining lines of input
that you send.
If you use aliases for these commands, you can tell Emacs to
recognize them also, by setting the variables
shell-pushd-regexp, shell-popd-regexp, and
shell-cd-regexp to the appropriate regular expressions
(see the section called “Syntax of Regular Expressions”). For example, if shell-pushd-regexp matches
the beginning of a shell command line, that line is regarded as a
pushd command. These commands are recognized only at the
beginning of a shell command line.
 If Emacs gets confused about changes in the working directory of the
subshell, type M-x dirs. This command asks the shell for its
working directory and updates the default directory accordingly. It
works for shells that support the most common command syntax, but may
not work for unusual shells.
 You can also use Dirtrack mode, a buffer-local minor mode that
implements an alternative method of tracking the shell's working
directory. To use this method, your shell prompt must contain the
working directory at all times, and you must supply a regular
expression for recognizing which part of the prompt contains the
working directory; see the documentation of the variable
dirtrack-list for details. To use Dirtrack mode, type M-x
dirtrack-mode in the Shell buffer, or add dirtrack-mode to
shell-mode-hook (see the section called “Hooks”).

Shell Mode Options

 If the variable comint-scroll-to-bottom-on-input is
non-nil, insertion and yank commands scroll the selected window
to the bottom before inserting. The default is nil.
 If comint-scroll-show-maximum-output is non-nil, then
arrival of output when point is at the end tries to scroll the last
line of text to the bottom line of the window, showing as much useful
text as possible. (This mimics the scrolling behavior of most
terminals.) The default is t.
 By setting comint-move-point-for-output, you can opt for
having point jump to the end of the buffer whenever output arrives—no
matter where in the buffer point was before. If the value is
this, point jumps in the selected window. If the value is
all, point jumps in each window that shows the Comint buffer. If
the value is other, point jumps in all nonselected windows that
show the current buffer. The default value is nil, which means
point does not jump to the end.
 If you set comint-prompt-read-only, the prompts in the Comint
buffer are read-only.
 The variable comint-input-ignoredups controls whether successive
identical inputs are stored in the input history. A non-nil
value means to omit an input that is the same as the previous input.
The default is nil, which means to store each input even if it is
equal to the previous input.
 Three variables customize file name completion. The variable
comint-completion-addsuffix controls whether completion inserts a
space or a slash to indicate a fully completed file or directory name
(non-nil means do insert a space or slash).
comint-completion-recexact, if non-nil, directs TAB
to choose the shortest possible completion if the usual Emacs completion
algorithm cannot add even a single character.
comint-completion-autolist, if non-nil, says to list all
the possible completions whenever completion is not exact.
 Command completion normally considers only executable files.
If you set shell-completion-execonly to nil,
it considers nonexecutable files as well.
 You can configure the behavior of ‘pushd’. Variables control
whether ‘pushd’ behaves like ‘cd’ if no argument is given
(shell-pushd-tohome), pop rather than rotate with a numeric
argument (shell-pushd-dextract), and only add directories to the
directory stack if they are not already on it
(shell-pushd-dunique). The values you choose should match the
underlying shell, of course.

Emacs Terminal Emulator

 To run a subshell in a terminal emulator, use M-x term. This
creates (or reuses) a buffer named *terminal*, and runs a
subshell with input coming from your keyboard, and output going to
that buffer.
The terminal emulator uses Term mode, which has two input modes. In
line mode, Term basically acts like Shell mode (see the section called “Shell Mode”).
In char mode, each character is sent directly to the subshell, as
“terminal input”. Any “echoing” of your input is the
responsibility of the subshell. The sole exception is the terminal
escape character, which by default is C-c (see the section called “Term Mode”).
Any “terminal output” from the subshell goes into the buffer,
advancing point.
Some programs (such as Emacs itself) need to control the appearance
on the terminal screen in detail. They do this by sending special
control codes. The exact control codes needed vary from terminal to
terminal, but nowadays most terminals and terminal emulators
(including xterm) understand the ANSI-standard (VT100-style)
escape sequences. Term mode recognizes these escape sequences, and
handles each one appropriately, changing the buffer so that the
appearance of the window matches what it would be on a real terminal.
You can actually run Emacs inside an Emacs Term window.
You can also Term mode to communicate with a device connected to a
serial port. See the section called “Serial Terminal”.
The file name used to load the subshell is determined the same way
as for Shell mode. To make multiple terminal emulators, rename the
buffer *terminal* to something different using M-x
rename-uniquely, just as with Shell mode.
Unlike Shell mode, Term mode does not track the current directory by
examining your input. But some shells can tell Term what the current
directory is. This is done automatically by bash version 1.15
and later.

Term Mode

 The terminal emulator uses Term mode, which has two input modes. In
line mode, Term basically acts like Shell mode (see the section called “Shell Mode”).
In char mode, each character is sent directly to the subshell, except
for the Term escape character, normally C-c.
To switch between line and char mode, use these commands:

	C-c C-j
	Switch to line mode (term-line-mode). Do nothing if already in
line mode.

	C-c C-k
	Switch to char mode (term-char-mode). Do nothing if already in
char mode.

The following commands are only available in char mode:
	C-c C-c
	Send a literal C-c to the sub-shell.

	C-c char
	This is equivalent to C-x char in normal Emacs. For
example, C-c o invokes the global binding of C-x o, which
is normally ‘other-window’.

 Term mode has a page-at-a-time feature. When enabled, it makes
output pause at the end of each screenful:

	C-c C-q
	Toggle the page-at-a-time feature. This command works in both line
and char modes. When the feature is enabled, the mode-line displays
the word ‘page’, and each time Term receives more than a
screenful of output, it pauses and displays ‘**MORE**’ in the
mode-line. Type SPC to display the next screenful of output, or
? to see your other options. The interface is similar to the
more program.

Remote Host Shell

 You can login to a remote computer, using whatever commands you
would from a regular terminal (e.g. using the telnet or
rlogin commands), from a Term window.
A program that asks you for a password will normally suppress
echoing of the password, so the password will not show up in the
buffer. This will happen just as if you were using a real terminal,
if the buffer is in char mode. If it is in line mode, the password is
temporarily visible, but will be erased when you hit return. (This
happens automatically; there is no special password processing.)
When you log in to a different machine, you need to specify the type
of terminal you're using, by setting the TERM environment
variable in the environment for the remote login command. (If you use
bash, you do that by writing the variable assignment before the remote
login command, without a separating comma.) Terminal types
‘ansi’ or ‘vt100’ will work on most systems.

Serial Terminal

 If you have a device connected to a serial port of your computer,
you can communicate with it by typing M-x serial-term. This
command asks for a serial port name and speed, and switches to a new
Term mode buffer. Emacs communicates with the serial device through
this buffer just like it does with a terminal in ordinary Term mode.
The speed of the serial port is measured in bits per second. The
most common speed is 9600 bits per second. You can change the speed
interactively by clicking on the mode line.
A serial port can be configured even more by clicking on “8N1” in
the mode line. By default, a serial port is configured as “8N1”,
which means that each byte consists of 8 data bits, No parity check
bit, and 1 stopbit.
If the speed or the configuration is wrong, you cannot communicate
with your device and will probably only see garbage output in the
window.

Chapter 37. Using Emacs as a Server

 Various programs can invoke your choice of editor to edit a
particular piece of text. For instance, version control programs
invoke an editor to enter version control logs (see the section called “Version Control”), and the Unix mail utility invokes an editor to
enter a message to send. By convention, your choice of editor is
specified by the environment variable EDITOR. If you set
EDITOR to ‘emacs’, Emacs would be invoked, but in an
inconvenient way—by starting a new Emacs process. This is
inconvenient because the new Emacs process doesn't share buffers, a
command history, or other kinds of information with any existing Emacs
process.
You can solve this problem by setting up Emacs as an edit
server, so that it “listens” for external edit requests and acts
accordingly. There are two ways to start an Emacs server:
	Run the command server-start in an existing Emacs process:
either type M-x server-start, or put the expression
(server-start) in your init file (see the section called “The Emacs Initialization File”). The
existing Emacs process is the server; when you exit Emacs, the server
dies with the Emacs process.

	Run Emacs as a daemon, using the ‘--daemon’ command-line
option. See the section called “Initial Options”. When Emacs is started this way, it
calls server-start after initialization, and returns control to
the calling terminal instead of opening an initial frame; it then
waits in the background, listening for edit requests.

 Either way, once an Emacs server is started, you can use a shell
command called emacsclient to connect to the Emacs process
and tell it to visit a file. You can then set the EDITOR
environment variable to ‘emacsclient’, so that external programs
will use the existing Emacs process for editing.[16]
 You can run multiple Emacs servers on the same machine by giving
each one a unique “server name”, using the variable
server-name. For example, M-x set-variable RET
server-name RET foo RET sets the server name to
‘foo’. The emacsclient program can specify a server by
name, using the ‘-s’ option (see the section called “emacsclient Options”).
 If you have defined a server by a unique server name, it is possible
to connect to the server from another Emacs instance and evaluate Lisp
expressions on the server, using the server-eval-at function.
For instance, (server-eval-at "foo" '(+ 1 2)) evaluates the
expression (+ 1 2) on the ‘foo’ server, and returns
3. (If there is no server with that name, an error is
signaled.) Currently, this feature is mainly useful for developers.
Invoking emacsclient

 The simplest way to use the emacsclient program is to run
the shell command ‘emacsclient file’, where file is a
file name. This connects to an Emacs server, and tells that Emacs
process to visit file in one of its existing frames—either a
graphical frame, or one in a text terminal (see Chapter 21, Frames and Graphical Displays). You
can then select that frame to begin editing.
If there is no Emacs server, the emacsclient program halts
with an error message. If the Emacs process has no existing
frame—which can happen if it was started as a daemon (see Chapter 37, Using Emacs as a Server)—then Emacs opens a frame on the terminal in which you
called emacsclient.
You can also force emacsclient to open a new frame on a
graphical display, or on a text terminal, using the ‘-c’ and
‘-t’ options. See the section called “emacsclient Options”.
If you are running on a single text terminal, you can switch between
emacsclient's shell and the Emacs server using one of two
methods: (i) run the Emacs server and emacsclient on
different virtual terminals, and switch to the Emacs server's virtual
terminal after calling emacsclient; or (ii) call
emacsclient from within the Emacs server itself, using Shell
mode (see the section called “Interactive Subshell”) or Term mode (see the section called “Term Mode”);
emacsclient blocks only the subshell under Emacs, and you can
still use Emacs to edit the file.
 When you finish editing file in the Emacs server, type
C-x # (server-edit) in its buffer. This saves the file
and sends a message back to the emacsclient program, telling
it to exit. Programs that use EDITOR usually wait for the
“editor”—in this case emacsclient—to exit before doing
something else.
You can also call emacsclient with multiple file name
arguments: ‘emacsclient file1 file2 ...’ tells the
Emacs server to visit file1, file2, and so forth. Emacs
selects the buffer visiting file1, and buries the other buffers
at the bottom of the buffer list (see Chapter 19, Using Multiple Buffers). The
emacsclient program exits once all the specified files are
finished (i.e., once you have typed C-x # in each server
buffer).
 Finishing with a server buffer also kills the buffer, unless it
already existed in the Emacs session before the server was asked to
create it. However, if you set server-kill-new-buffers to
nil, then a different criterion is used: finishing with a
server buffer kills it if the file name matches the regular expression
server-temp-file-regexp. This is set up to distinguish certain
“temporary” files.
Each C-x # checks for other pending external requests to edit
various files, and selects the next such file. You can switch to a
server buffer manually if you wish; you don't have to arrive at it
with C-x #. But C-x # is the way to tell
emacsclient that you are finished.
 If you set the value of the variable server-window to a
window or a frame, C-x # always displays the next server buffer
in that window or in that frame.

[16] Some
programs use a different environment variable; for example, to make
TeX use ‘emacsclient’, set the TEXEDIT environment
variable to ‘emacsclient +%d %s’.

emacsclient Options

 You can pass some optional arguments to the emacsclient
program, such as:

emacsclient -c +12 file1 +4:3 file2

The ‘+line’ or ‘+line:column’ arguments
specify line numbers, or line and column numbers, for the next file
argument. These behave like the command line arguments for Emacs
itself. See the section called “Action Arguments”.
The other optional arguments recognized by emacsclient are
listed below:
	‘-a command’, ‘--alternate-editor=command’
	Specify a command to run if emacsclient fails to contact Emacs.
This is useful when running emacsclient in a script.
As a special exception, if command is the empty string, then
emacsclient starts Emacs in daemon mode (as emacs
--daemon) and then tries connecting again.
The environment variable ALTERNATE_EDITOR has the same effect as
the ‘-a’ option. If both are present, the latter takes
precedence.

	‘-c’
	Create a new graphical client frame, instead of using an
existing Emacs frame. If you omit a filename argument while supplying
the ‘-c’ option, the new frame displays the *scratch*
buffer (see Chapter 19, Using Multiple Buffers). See below for the special behavior of
C-x C-c in a client frame.
If Emacs is unable to create a new graphical frame (e.g. if it is
unable to connect to the X server), it tries to create a text terminal
client frame, as though you had supplied the ‘-t’ option instead
(see below).
On MS-Windows, a single Emacs session cannot display frames on both
graphical and text terminals, nor on multiple text terminals. Thus,
if the Emacs server is running on a text terminal, the ‘-c’
option, like the ‘-t’ option, creates a new frame in the server's
current text terminal. See the section called “How to Start Emacs on MS-Windows”.

	‘-F alist’, ‘--frame-parameters=alist’
	Set the parameters for a newly-created graphical frame
(see the section called “Frame Parameters”).

	‘-d display’, ‘--display=display’
	Tell Emacs to open the given files on the X display display
(assuming there is more than one X display available).

	‘-e’, ‘--eval’
	Tell Emacs to evaluate some Emacs Lisp code, instead of visiting some
files. When this option is given, the arguments to
emacsclient are interpreted as a list of expressions to
evaluate, not as a list of files to visit.

	‘-f server-file’, ‘--server-file=server-file’
	Specify a server file for connecting to an Emacs server via TCP.
An Emacs server usually uses an operating system feature called a
“local socket” to listen for connections. Some operating systems,
such as Microsoft Windows, do not support local sockets; in that case,
Emacs uses TCP instead. When you start the Emacs server, Emacs
creates a server file containing some TCP information that
emacsclient needs for making the connection. By default,
the server file is in ~/.emacs.d/server/. On Microsoft
Windows, if emacsclient does not find the server file there,
it looks in the .emacs.d/server/ subdirectory of the directory
pointed to by the APPDATA environment variable. You can tell
emacsclient to use a specific server file with the ‘-f’
or ‘--server-file’ option, or by setting the
EMACS_SERVER_FILE environment variable.
Even if local sockets are available, you can tell Emacs to use TCP by
setting the variable server-use-tcp to t. One advantage
of TCP is that the server can accept connections from remote machines.
For this to work, you must (i) set the variable server-host to
the hostname or IP address of the machine on which the Emacs server
runs, and (ii) provide emacsclient with the server file.
(One convenient way to do the latter is to put the server file on a
networked file system such as NFS.)
 When the Emacs server is using TCP, the variable server-port
determines the port number to listen on; the default value,
nil, means to choose a random port when the server starts.

	‘-n’, ‘--no-wait’
	Let emacsclient exit immediately, instead of waiting until
all server buffers are finished. You can take as long as you like to
edit the server buffers within Emacs, and they are not killed
when you type C-x # in them.

	‘--parent-id ID’
	Open an emacsclient frame as a client frame in the parent X
window with id ID, via the XEmbed protocol. Currently, this
option is mainly useful for developers.

	‘-q’, ‘--quiet’
	Do not let emacsclient display messages about waiting for
Emacs or connecting to remote server sockets.

	‘-s server-name’, ‘--socket-name=server-name’
	Connect to the Emacs server named server-name. The server name
is given by the variable server-name on the Emacs server. If
this option is omitted, emacsclient connects to the first
server it finds. (This option is not supported on MS-Windows.)

	‘-t’, ‘--tty’, ‘-nw’
	Create a new client frame on the current text terminal, instead of
using an existing Emacs frame. This is similar to the ‘-c’
option, above, except that it creates a text terminal frame
(see the section called “Non-Window Terminals”). If you omit a filename argument while
supplying this option, the new frame displays the *scratch*
buffer (see Chapter 19, Using Multiple Buffers). See below for the special behavior of
C-x C-c in a client frame.
On MS-Windows, a single Emacs session cannot display frames on both
graphical and text terminals, nor on multiple text terminals. Thus,
if the Emacs server is using the graphical display, ‘-t’ behaves
like ‘-c’ (see above); whereas if the Emacs server is running on
a text terminal, it creates a new frame in its current text terminal.
See the section called “How to Start Emacs on MS-Windows”.

The new graphical or text terminal frames created by the ‘-c’
or ‘-t’ options are considered client frames. Any new
frame that you create from a client frame is also considered a client
frame. If you type C-x C-c (save-buffers-kill-terminal)
in a client frame, that command does not kill the Emacs session as it
normally does (see Chapter 6, Exiting Emacs). Instead, Emacs deletes the client
frame; furthermore, if the client frame has an emacsclient
waiting to regain control (i.e. if you did not supply the ‘-n’
option), Emacs deletes all other frames of the same client, and marks
the client's server buffers as finished, as though you had typed
C-x # in all of them. If it so happens that there are no
remaining frames after the client frame(s) are deleted, the Emacs
session exits.
As an exception, when Emacs is started as a daemon, all frames are
considered client frames, and C-x C-c never kills Emacs. To
kill a daemon session, type M-x kill-emacs.
Note that the ‘-t’ and ‘-n’ options are contradictory:
‘-t’ says to take control of the current text terminal to create
a new client frame, while ‘-n’ says not to take control of the
text terminal. If you supply both options, Emacs visits the specified
files(s) in an existing frame rather than a new client frame, negating
the effect of ‘-t’.

Chapter 38. Printing Hard Copies

 Emacs provides commands for printing hardcopies of either an entire
buffer or part of one. You can invoke the printing commands directly,
as detailed below, or using the ‘File’ menu on the menu bar.
 Aside from the commands described in this section, you can also
print hardcopies from Dired (see the section called “Operating on Files”) and the diary
(see the section called “Displaying the Diary”). You can also “print” an Emacs
buffer to HTML with the command M-x htmlfontify-buffer, which
converts the current buffer to a HTML file, replacing Emacs faces with
CSS-based markup. Furthermore, Org mode allows you to “print” Org
files to a variety of formats, such as PDF (see the section called “Org Mode”).
	M-x print-buffer
	Print hardcopy of current buffer with page headings containing the
file name and page number.

	M-x lpr-buffer
	Print hardcopy of current buffer without page headings.

	M-x print-region
	Like print-buffer but print only the current region.

	M-x lpr-region
	Like lpr-buffer but print only the current region.

 On most operating system, the above hardcopy commands submit files
for printing by calling the lpr program. To change the
printer program, customize the variable lpr-command. To
specify extra switches to give the printer program, customize the list
variable lpr-switches. Its value should be a list of option
strings, each of which should start with ‘-’ (e.g. the option
string "-w80" specifies a line width of 80 columns). The
default is the empty list, nil.
 To specify the printer to use, set the variable printer-name.
The default, nil, specifies the default printer. If you set it
to a printer name (a string), that name is passed to lpr
with the ‘-P’ switch; if you are not using lpr, you
should specify the switch with lpr-printer-switch.
 The variable lpr-headers-switches similarly specifies the
extra switches to use to make page headers. The variable
lpr-add-switches controls whether to supply ‘-T’ and
‘-J’ options (suitable for lpr) to the printer program:
nil means don't add them (this should be the value if your
printer program is not compatible with lpr).
PostScript Hardcopy

These commands convert buffer contents to PostScript,
either printing it or leaving it in another Emacs buffer.
	M-x ps-print-buffer
	Print hardcopy of the current buffer in PostScript form.

	M-x ps-print-region
	Print hardcopy of the current region in PostScript form.

	M-x ps-print-buffer-with-faces
	Print hardcopy of the current buffer in PostScript form, showing the
faces used in the text by means of PostScript features.

	M-x ps-print-region-with-faces
	Print hardcopy of the current region in PostScript form, showing the
faces used in the text.

	M-x ps-spool-buffer
	Generate and spool a PostScript image for the current buffer text.

	M-x ps-spool-region
	Generate and spool a PostScript image for the current region.

	M-x ps-spool-buffer-with-faces
	Generate and spool a PostScript image for the current buffer, showing the faces used.

	M-x ps-spool-region-with-faces
	Generate and spool a PostScript image for the current region, showing the faces used.

	M-x ps-despool
	Send the spooled PostScript to the printer.

	M-x handwrite
	Generate/print PostScript for the current buffer as if handwritten.

 The ps-print-buffer and ps-print-region commands print
buffer contents in PostScript form. One command prints the entire
buffer; the other, just the region. The commands
ps-print-buffer-with-faces and
ps-print-region-with-faces behave similarly, but use PostScript
features to show the faces (fonts and colors) of the buffer text.
Interactively, when you use a prefix argument (C-u), the command
prompts the user for a file name, and saves the PostScript image in that file
instead of sending it to the printer.
 The commands whose names have ‘spool’ instead of ‘print’,
generate the PostScript output in an Emacs buffer instead of sending
it to the printer.
 Use the command ps-despool to send the spooled images to the
printer. This command sends the PostScript generated by
‘-spool-’ commands (see commands above) to the printer. With a
prefix argument (C-u), it prompts for a file name, and saves the
spooled PostScript image in that file instead of sending it to the
printer.
 M-x handwrite is more frivolous. It generates a PostScript
rendition of the current buffer as a cursive handwritten document. It
can be customized in group handwrite. This function only
supports ISO 8859-1 characters.

Variables for PostScript Hardcopy

 All the PostScript hardcopy commands use the variables
ps-lpr-command and ps-lpr-switches to specify how to print
the output. ps-lpr-command specifies the command name to run,
ps-lpr-switches specifies command line options to use, and
ps-printer-name specifies the printer. If you don't set the
first two variables yourself, they take their initial values from
lpr-command and lpr-switches. If ps-printer-name
is nil, printer-name is used.
 The variable ps-print-header controls whether these commands
add header lines to each page—set it to nil to turn headers
off.
 If your printer doesn't support colors, you should turn off color
processing by setting ps-print-color-p to nil. By
default, if the display supports colors, Emacs produces hardcopy output
with color information; on black-and-white printers, colors are emulated
with shades of gray. This might produce illegible output, even if your
screen colors only use shades of gray.
Alternatively, you can set ps-print-color-p to black-white to
print colors on black/white printers.
 By default, PostScript printing ignores the background colors of the
faces, unless the variable ps-use-face-background is
non-nil. This is to avoid unwanted interference with the zebra
stripes and background image/text.
 The variable ps-paper-type specifies which size of paper to
format for; legitimate values include a4, a3,
a4small, b4, b5, executive, ledger,
legal, letter, letter-small, statement,
tabloid. The default is letter. You can define
additional paper sizes by changing the variable
ps-page-dimensions-database.
 The variable ps-landscape-mode specifies the orientation of
printing on the page. The default is nil, which stands for
“portrait” mode. Any non-nil value specifies “landscape”
mode.
 The variable ps-number-of-columns specifies the number of
columns; it takes effect in both landscape and portrait mode. The
default is 1.
 The variable ps-font-family specifies which font family to use
for printing ordinary text. Legitimate values include Courier,
Helvetica, NewCenturySchlbk, Palatino and
Times. The variable ps-font-size specifies the size of
the font for ordinary text. It defaults to 8.5 points.
 Emacs supports more scripts and characters than a typical PostScript
printer. Thus, some of the characters in your buffer might not be
printable using the fonts built into your printer. You can augment
the fonts supplied with the printer with those from the GNU Intlfonts
package, or you can instruct Emacs to use Intlfonts exclusively. The
variable ps-multibyte-buffer controls this: the default value,
nil, is appropriate for printing ASCII and Latin-1
characters; a value of non-latin-printer is for printers which
have the fonts for ASCII, Latin-1, Japanese, and Korean
characters built into them. A value of bdf-font arranges for
the BDF fonts from the Intlfonts package to be used for all
characters. Finally, a value of bdf-font-except-latin
instructs the printer to use built-in fonts for ASCII and Latin-1
characters, and Intlfonts BDF fonts for the rest.
 To be able to use the BDF fonts, Emacs needs to know where to find
them. The variable bdf-directory-list holds the list of
directories where Emacs should look for the fonts; the default value
includes a single directory /usr/local/share/emacs/fonts/bdf.
Many other customization variables for these commands are defined and
described in the Lisp files ps-print.el and ps-mule.el.

Printing Package

 The basic Emacs facilities for printing hardcopy can be extended
using the Printing package. This provides an easy-to-use interface
for choosing what to print, previewing PostScript files before
printing, and setting various printing options such as print headers,
landscape or portrait modes, duplex modes, and so forth. On GNU/Linux
or Unix systems, the Printing package relies on the gs and
gv utilities, which are distributed as part of the GhostScript
program. On MS-Windows, the gstools port of Ghostscript can be
used.
 To use the Printing package, add (require 'printing) to your
init file (see the section called “The Emacs Initialization File”), followed by (pr-update-menus).
This function replaces the usual printing commands in the menu bar
with a ‘Printing’ submenu that contains various printing options.
You can also type M-x pr-interface RET; this creates a
Printing Interface buffer, similar to a customization buffer,
where you can set the printing options. After selecting what and how
to print, you start the print job using the ‘Print’ button (click
mouse-2 on it, or move point over it and type RET). For
further information on the various options, use the ‘Interface
Help’ button.

Chapter 39. Sorting Text

 Emacs provides several commands for sorting text in the buffer. All
operate on the contents of the region.
They divide the text of the region into many sort records,
identify a sort key for each record, and then reorder the records
into the order determined by the sort keys. The records are ordered so
that their keys are in alphabetical order, or, for numeric sorting, in
numeric order. In alphabetic sorting, all upper-case letters `A' through
`Z' come before lower-case `a', in accord with the ASCII character
sequence.
The various sort commands differ in how they divide the text into sort
records and in which part of each record is used as the sort key. Most of
the commands make each line a separate sort record, but some commands use
paragraphs or pages as sort records. Most of the sort commands use each
entire sort record as its own sort key, but some use only a portion of the
record as the sort key.

	M-x sort-lines
	Divide the region into lines, and sort by comparing the entire
text of a line. A numeric argument means sort into descending order.

	M-x sort-paragraphs
	Divide the region into paragraphs, and sort by comparing the entire
text of a paragraph (except for leading blank lines). A numeric
argument means sort into descending order.

	M-x sort-pages
	Divide the region into pages, and sort by comparing the entire
text of a page (except for leading blank lines). A numeric
argument means sort into descending order.

	M-x sort-fields
	Divide the region into lines, and sort by comparing the contents of
one field in each line. Fields are defined as separated by
whitespace, so the first run of consecutive non-whitespace characters
in a line constitutes field 1, the second such run constitutes field
2, etc.
Specify which field to sort by with a numeric argument: 1 to sort by
field 1, etc. A negative argument means count fields from the right
instead of from the left; thus, minus 1 means sort by the last field.
If several lines have identical contents in the field being sorted, they
keep the same relative order that they had in the original buffer.

	M-x sort-numeric-fields
	Like M-x sort-fields except the specified field is converted
to an integer for each line, and the numbers are compared. ‘10’
comes before ‘2’ when considered as text, but after it when
considered as a number. By default, numbers are interpreted according
to sort-numeric-base, but numbers beginning with ‘0x’ or
‘0’ are interpreted as hexadecimal and octal, respectively.

	M-x sort-columns
	Like M-x sort-fields except that the text within each line
used for comparison comes from a fixed range of columns. See below
for an explanation.

	M-x reverse-region
	Reverse the order of the lines in the region. This is useful for
sorting into descending order by fields or columns, since those sort
commands do not have a feature for doing that.

For example, if the buffer contains this:

On systems where clash detection (locking of files being edited) is
implemented, Emacs also checks the first time you modify a buffer
whether the file has changed on disk since it was last visited or
saved. If it has, you are asked to confirm that you want to change
the buffer.

applying M-x sort-lines to the entire buffer produces this:

On systems where clash detection (locking of files being edited) is
implemented, Emacs also checks the first time you modify a buffer
saved. If it has, you are asked to confirm that you want to change
the buffer.
whether the file has changed on disk since it was last visited or

where the upper-case ‘O’ sorts before all lower-case letters. If
you use C-u 2 M-x sort-fields instead, you get this:

implemented, Emacs also checks the first time you modify a buffer
saved. If it has, you are asked to confirm that you want to change
the buffer.
On systems where clash detection (locking of files being edited) is
whether the file has changed on disk since it was last visited or

where the sort keys were ‘Emacs’, ‘If’, ‘buffer’,
‘systems’ and ‘the’.
 M-x sort-columns requires more explanation. You specify the
columns by putting point at one of the columns and the mark at the other
column. Because this means you cannot put point or the mark at the
beginning of the first line of the text you want to sort, this command
uses an unusual definition of “region”: all of the line point is in is
considered part of the region, and so is all of the line the mark is in,
as well as all the lines in between.
For example, to sort a table by information found in columns 10 to 15,
you could put the mark on column 10 in the first line of the table, and
point on column 15 in the last line of the table, and then run
sort-columns. Equivalently, you could run it with the mark on
column 15 in the first line and point on column 10 in the last line.
This can be thought of as sorting the rectangle specified by point and
the mark, except that the text on each line to the left or right of the
rectangle moves along with the text inside the rectangle.
See the section called “Rectangles”.
 Many of the sort commands ignore case differences when comparing, if
sort-fold-case is non-nil.

Chapter 40. Editing Pictures

 To edit a picture made out of text characters (for example, a picture
of the division of a register into fields, as a comment in a program),
use the command M-x picture-mode to enter Picture mode.
In Picture mode, editing is based on the quarter-plane model of
text, according to which the text characters lie studded on an area that
stretches infinitely far to the right and downward. The concept of the end
of a line does not exist in this model; the most you can say is where the
last nonblank character on the line is found.
Of course, Emacs really always considers text as a sequence of
characters, and lines really do have ends. But Picture mode replaces
the most frequently-used commands with variants that simulate the
quarter-plane model of text. They do this by inserting spaces or by
converting tabs to spaces.
Most of the basic editing commands of Emacs are redefined by Picture mode
to do essentially the same thing but in a quarter-plane way. In addition,
Picture mode defines various keys starting with the C-c prefix to
run special picture editing commands.
One of these keys, C-c C-c, is particularly important. Often
a picture is part of a larger file that is usually edited in some
other major mode. Picture mode records the name of the previous major
mode so you can use the C-c C-c command
(picture-mode-exit) later to go back to that mode. C-c
C-c also deletes spaces from the ends of lines, unless given a
numeric argument.
The special commands of Picture mode all work in other modes (provided
the picture library is loaded), but are not bound to keys except
in Picture mode. The descriptions below talk of moving “one column”
and so on, but all the picture mode commands handle numeric arguments as
their normal equivalents do.
 Turning on Picture mode runs the hook picture-mode-hook.
Additional extensions to Picture mode can be found in
artist.el.
Basic Editing in Picture Mode

 Most keys do the same thing in Picture mode that they usually do, but
do it in a quarter-plane style. For example, C-f is rebound to
run picture-forward-column, a command which moves point one
column to the right, inserting a space if necessary so that the actual
end of the line makes no difference. C-b is rebound to run
picture-backward-column, which always moves point left one
column, converting a tab to multiple spaces if necessary. C-n and
C-p are rebound to run picture-move-down and
picture-move-up, which can either insert spaces or convert tabs
as necessary to make sure that point stays in exactly the same column.
C-e runs picture-end-of-line, which moves to after the last
nonblank character on the line. C-a runs
picture-beginning-of-line. (The choice of screen model does not
affect beginnings of lines; the only extra thing this command does is
update the current picture column to 0.)
 Insertion of text is adapted to the quarter-plane screen model
through the use of Overwrite mode
(see the section called “Minor Modes”.)
Self-inserting characters replace existing text, column by column,
rather than pushing existing text to the right. RET runs
picture-newline, which just moves to the beginning of the
following line so that new text will replace that line.
 In Picture mode, the commands that normally delete or kill text,
instead erase text (replacing it with spaces). DEL
(picture-backward-clear-column) replaces the preceding
character with a space rather than removing it; this moves point
backwards. C-d (picture-clear-column) replaces the next
character or characters with spaces, but does not move point. (If you
want to clear characters to spaces and move forward over them, use
SPC.) C-k (picture-clear-line) really kills the
contents of lines, but does not delete the newlines from the buffer.
 To do actual insertion, you must use special commands. C-o
(picture-open-line) creates a blank line after the current
line; it never splits a line. C-M-o (split-line) makes
sense in Picture mode, so it is not changed. C-j
(picture-duplicate-line) inserts another line with the same
contents below the current line.
 To do actual deletion in Picture mode, use C-w, C-c C-d
(which is defined as delete-char, as C-d is in other
modes), or one of the picture rectangle commands (see the section called “Picture Mode Rectangle Commands”).

Controlling Motion after Insert

 Since “self-inserting” characters in Picture mode overwrite and move
point, there is no essential restriction on how point should be moved.
Normally point moves right, but you can specify any of the eight
orthogonal or diagonal directions for motion after a “self-inserting”
character. This is useful for drawing lines in the buffer.
	C-c <, C-c LEFT
	Move left after insertion (picture-movement-left).

	C-c >, C-c RIGHT
	Move right after insertion (picture-movement-right).

	C-c ^, C-c UP
	Move up after insertion (picture-movement-up).

	C-c ., C-c DOWN
	Move down after insertion (picture-movement-down).

	C-c `, C-c HOME
	Move up and left (“northwest”) after insertion (picture-movement-nw).

	C-c ', C-c prior
	Move up and right (“northeast”) after insertion
(picture-movement-ne).

	C-c /, C-c END
	Move down and left (“southwest”) after insertion
(picture-movement-sw).

	C-c \, C-c next
	Move down and right (“southeast”) after insertion
(picture-movement-se).

 Two motion commands move based on the current Picture insertion
direction. The command C-c C-f (picture-motion) moves in the
same direction as motion after “insertion” currently does, while C-c
C-b (picture-motion-reverse) moves in the opposite direction.

Picture Mode Tabs

 Two kinds of tab-like action are provided in Picture mode. Use
M-TAB (picture-tab-search) for context-based tabbing.
With no argument, it moves to a point underneath the next
“interesting” character that follows whitespace in the previous
nonblank line. “Next” here means “appearing at a horizontal position
greater than the one point starts out at”. With an argument, as in
C-u M-TAB, this command moves to the next such interesting
character in the current line. M-TAB does not change the
text; it only moves point. “Interesting” characters are defined by
the variable picture-tab-chars, which should define a set of
characters. The syntax for this variable is like the syntax used inside
of ‘[…]’ in a regular expression—but without the ‘[’
and the ‘]’. Its default value is "!-~".
 TAB itself runs picture-tab, which operates based on the
current tab stop settings; it is the Picture mode equivalent of
tab-to-tab-stop. Normally it just moves point, but with a numeric
argument it clears the text that it moves over.
 The context-based and tab-stop-based forms of tabbing are brought
together by the command C-c TAB (picture-set-tab-stops).
This command sets the tab stops to the positions which M-TAB
would consider significant in the current line. The use of this command,
together with TAB, can get the effect of context-based tabbing. But
M-TAB is more convenient in the cases where it is sufficient.
It may be convenient to prevent use of actual tab characters in
pictures. For example, this prevents C-x TAB from messing
up the picture. You can do this by setting the variable
indent-tabs-mode to nil.

Picture Mode Rectangle Commands

 Picture mode defines commands for working on rectangular pieces of
the text in ways that fit with the quarter-plane model. The standard
rectangle commands may also be useful.
See the section called “Rectangles”.
	C-c C-k
	Clear out the region-rectangle with spaces
(picture-clear-rectangle). With a prefix argument, delete the
text.

	C-c C-w r
	Similar, but save rectangle contents in register r first
(picture-clear-rectangle-to-register).

	C-c C-y
	Copy last killed rectangle into the buffer by overwriting, with upper
left corner at point (picture-yank-rectangle). With argument,
insert instead.

	C-c C-x r
	Similar, but use the rectangle in register r
(picture-yank-rectangle-from-register).

 The picture rectangle commands C-c C-k
(picture-clear-rectangle) and C-c C-w
(picture-clear-rectangle-to-register) differ from the standard
rectangle commands in that they normally clear the rectangle instead of
deleting it; this is analogous with the way C-d is changed in Picture
mode.
However, deletion of rectangles can be useful in Picture mode, so
these commands delete the rectangle if given a numeric argument.
C-c C-k either with or without a numeric argument saves the
rectangle for C-c C-y.
 The Picture mode commands for yanking rectangles differ from the
standard ones in that they overwrite instead of inserting. This is
the same way that Picture mode insertion of other text differs from
other modes. C-c C-y (picture-yank-rectangle) inserts
(by overwriting) the rectangle that was most recently killed, while
C-c C-x (picture-yank-rectangle-from-register) does
likewise for the rectangle found in a specified register.

Chapter 41. Editing Binary Files

 There is a special major mode for editing binary files: Hexl mode. To
use it, use M-x hexl-find-file instead of C-x C-f to visit
the file. This command converts the file's contents to hexadecimal and
lets you edit the translation. When you save the file, it is converted
automatically back to binary.
You can also use M-x hexl-mode to translate an existing buffer
into hex. This is useful if you visit a file normally and then discover
it is a binary file.
Ordinary text characters overwrite in Hexl mode. This is to reduce
the risk of accidentally spoiling the alignment of data in the file.
There are special commands for insertion. Here is a list of the
commands of Hexl mode:
	C-M-d
	Insert a byte with a code typed in decimal.

	C-M-o
	Insert a byte with a code typed in octal.

	C-M-x
	Insert a byte with a code typed in hex.

	C-x [
	Move to the beginning of a 1k-byte “page”.

	C-x]
	Move to the end of a 1k-byte “page”.

	M-g
	Move to an address specified in hex.

	M-j
	Move to an address specified in decimal.

	C-c C-c
	Leave Hexl mode, going back to the major mode this buffer had before you
invoked hexl-mode.

Other Hexl commands let you insert strings (sequences) of binary
bytes, move by shorts or ints, etc.; type C-h a
hexl-RET for details.

Chapter 42. Saving Emacs Sessions

 Use the desktop library to save the state of Emacs from one session
to another. Once you save the Emacs desktop—the buffers,
their file names, major modes, buffer positions, and so on—then
subsequent Emacs sessions reload the saved desktop.
 You can save the desktop manually with the command M-x
desktop-save. You can also enable automatic saving of the desktop
when you exit Emacs, and automatic restoration of the last saved
desktop when Emacs starts: use the Customization buffer (see the section called “Easy Customization Interface”) to set desktop-save-mode to t for future
sessions, or add this line in your init file (see the section called “The Emacs Initialization File”):

(desktop-save-mode 1)

 If you turn on desktop-save-mode in your init file, then when
Emacs starts, it looks for a saved desktop in the current directory.
(More precisely, it looks in the directories specified by
desktop-path, and uses the first desktop it finds.)
Thus, you can have separate saved desktops in different directories,
and the starting directory determines which one Emacs reloads. You
can save the current desktop and reload one saved in another directory
by typing M-x desktop-change-dir. Typing M-x
desktop-revert reverts to the desktop previously reloaded.
Specify the option ‘--no-desktop’ on the command line when you
don't want it to reload any saved desktop. This turns off
desktop-save-mode for the current session. Starting Emacs with
the ‘--no-init-file’ option also disables desktop reloading,
since it bypasses the init file, where desktop-save-mode is
usually turned on.
 By default, all the buffers in the desktop are restored at one go.
However, this may be slow if there are a lot of buffers in the
desktop. You can specify the maximum number of buffers to restore
immediately with the variable desktop-restore-eager; the
remaining buffers are restored “lazily”, when Emacs is idle.
 Type M-x desktop-clear to empty the Emacs desktop. This kills
all buffers except for internal ones, and clears the global variables
listed in desktop-globals-to-clear. If you want this to
preserve certain buffers, customize the variable
desktop-clear-preserve-buffers-regexp, whose value is a regular
expression matching the names of buffers not to kill.
If you want to save minibuffer history from one session to
another, use the savehist library.

Chapter 43. Recursive Editing Levels

 A recursive edit is a situation in which you are using Emacs
commands to perform arbitrary editing while in the middle of another
Emacs command. For example, when you type C-r inside of a
query-replace, you enter a recursive edit in which you can change
the current buffer. On exiting from the recursive edit, you go back to
the query-replace.
 Exiting the recursive edit means returning to the unfinished
command, which continues execution. The command to exit is C-M-c
(exit-recursive-edit).
You can also abort the recursive edit. This is like exiting,
but also quits the unfinished command immediately. Use the command
C-] (abort-recursive-edit) to do this. See Chapter 49, Quitting and Aborting.
The mode line shows you when you are in a recursive edit by displaying
square brackets around the parentheses that always surround the major and
minor mode names. Every window's mode line shows this in the same way,
since being in a recursive edit is true of Emacs as a whole rather than
any particular window or buffer.
It is possible to be in recursive edits within recursive edits. For
example, after typing C-r in a query-replace, you may type a
command that enters the debugger. This begins a recursive editing level
for the debugger, within the recursive editing level for C-r.
Mode lines display a pair of square brackets for each recursive editing
level currently in progress.
Exiting the inner recursive edit (such as with the debugger c
command) resumes the command running in the next level up. When that
command finishes, you can then use C-M-c to exit another recursive
editing level, and so on. Exiting applies to the innermost level only.
Aborting also gets out of only one level of recursive edit; it returns
immediately to the command level of the previous recursive edit. If you
wish, you can then abort the next recursive editing level.
Alternatively, the command M-x top-level aborts all levels of
recursive edits, returning immediately to the top-level command
reader. It also exits the minibuffer, if it is active.
The text being edited inside the recursive edit need not be the same text
that you were editing at top level. It depends on what the recursive edit
is for. If the command that invokes the recursive edit selects a different
buffer first, that is the buffer you will edit recursively. In any case,
you can switch buffers within the recursive edit in the normal manner (as
long as the buffer-switching keys have not been rebound). You could
probably do all the rest of your editing inside the recursive edit,
visiting files and all. But this could have surprising effects (such as
stack overflow) from time to time. So remember to exit or abort the
recursive edit when you no longer need it.
In general, we try to minimize the use of recursive editing levels in
GNU Emacs. This is because they constrain you to “go back” in a
particular order—from the innermost level toward the top level. When
possible, we present different activities in separate buffers so that
you can switch between them as you please. Some commands switch to a
new major mode which provides a command to switch back. These
approaches give you more flexibility to go back to unfinished tasks in
the order you choose.

Chapter 44. Emulation

 GNU Emacs can be programmed to emulate (more or less) most other
editors. Standard facilities can emulate these:
	CRiSP/Brief (PC editor)
	You can turn on key bindings to emulate the CRiSP/Brief editor with
M-x crisp-mode. Note that this rebinds M-x to exit Emacs
unless you set the variable crisp-override-meta-x. You can
also use the command M-x scroll-all-mode or set the variable
crisp-load-scroll-all to emulate CRiSP's scroll-all feature
(scrolling all windows together).

	EDT (DEC VMS editor)
	Turn on EDT emulation M-x edt-emulation-on; use M-x
edt-emulation-off to restore normal Emacs command bindings.
Most of the EDT emulation commands are keypad keys, and most standard
Emacs key bindings are still available. The EDT emulation rebindings
are done in the global keymap, so there is no problem switching
buffers or major modes while in EDT emulation.

	TPU (DEC VMS editor)
	M-x tpu-edt-on turns on emulation of the TPU editor emulating EDT.

	vi (Berkeley editor)
	Viper is the newest emulator for vi. It implements several levels of
emulation; level 1 is closest to vi itself, while level 5 departs
somewhat from strict emulation to take advantage of the capabilities of
Emacs. To invoke Viper, type M-x viper-mode; it will guide you
the rest of the way and ask for the emulation level. *note Viper: (viper)Top.

	vi (another emulator)
	M-x vi-mode enters a major mode that replaces the previously
established major mode. All of the vi commands that, in real vi, enter
“input” mode are programmed instead to return to the previous major
mode. Thus, ordinary Emacs serves as vi's “input” mode.
Because vi emulation works through major modes, it does not work
to switch buffers during emulation. Return to normal Emacs first.
If you plan to use vi emulation much, you probably want to bind a key
to the vi-mode command.

	vi (alternate emulator)
	M-x vip-mode invokes another vi emulator, said to resemble real vi
more thoroughly than M-x vi-mode. “Input” mode in this emulator
is changed from ordinary Emacs so you can use ESC to go back to
emulated vi command mode. To get from emulated vi command mode back to
ordinary Emacs, type C-z.
This emulation does not work through major modes, and it is possible
to switch buffers in various ways within the emulator. It is not
so necessary to assign a key to the command vip-mode as
it is with vi-mode because terminating insert mode does
not use it.
*note VIP: (vip)Top, for full information.

	WordStar (old wordprocessor)
	M-x wordstar-mode provides a major mode with WordStar-like
key bindings.

Chapter 45. Hyperlinking and Navigation Features

The following subsections describe convenience features for handling
URLs and other types of links occurring in Emacs buffer text.
Following URLs

	M-x browse-url RET url RET
	Load a URL into a Web browser.

The Browse-URL package allows you to easily follow URLs from within
Emacs. Most URLs are followed by invoking a web browser;
‘mailto:’ URLs are followed by invoking the compose-mail
Emacs command to send mail to the specified address (see Chapter 32, Sending Mail).
The command M-x browse-url prompts for a URL, and follows it.
If point is located near a plausible URL, that URL is offered as the
default. The Browse-URL package also provides other commands which
you might like to bind to keys, such as browse-url-at-point and
browse-url-at-mouse.
 You can customize Browse-URL's behavior via various options in the
browse-url Customize group. In particular, the option
browse-url-mailto-function lets you define how to follow
‘mailto:’ URLs, while browse-url-browser-function lets you
define how to follow other types of URLs. For more information, view
the package commentary by typing C-h P browse-url RET.

Activating URLs

	M-x goto-address-mode
	Activate URLs and e-mail addresses in the current buffer.

 You can make Emacs mark out URLs specially in the current buffer, by
typing M-x goto-address-mode. When this buffer-local minor mode
is enabled, it finds all the URLs in the buffer, highlights them, and
turns them into clickable buttons. You can follow the URL by typing
C-c RET (goto-address-at-point) while point is on
its text; or by clicking with Mouse-2, or by clicking
Mouse-1 quickly (see the section called “Following References with the Mouse”). Following a URL is
done by calling browse-url as a subroutine
(see the section called “Following URLs”).
It can be useful to add goto-address-mode to mode hooks and
hooks for displaying an incoming message
(e.g. rmail-show-message-hook for Rmail, and
mh-show-mode-hook for MH-E). This is not needed for Gnus,
which has a similar feature of its own.

Finding Files and URLs at Point

 The FFAP package replaces certain key bindings for finding files,
such as C-x C-f, with commands that provide more sensitive
defaults. These commands behave like the ordinary ones when given a
prefix argument. Otherwise, they get the default file name or URL
from the text around point. If what is found in the buffer has the
form of a URL rather than a file name, the commands use
browse-url to view it (see the section called “Following URLs”).
This feature is useful for following references in mail or news
buffers, README files, MANIFEST files, and so on. For
more information, view the package commentary by typing C-h P
ffap RET.
 To enable FFAP, type M-x ffap-bindings. This makes the
following key bindings, and also installs hooks for additional FFAP
functionality in Rmail, Gnus and VM article buffers.
	C-x C-f filename RET
	Find filename, guessing a default from text around point
(find-file-at-point).

	C-x C-r
	ffap-read-only, analogous to find-file-read-only.

	C-x C-v
	ffap-alternate-file, analogous to find-alternate-file.

	C-x d directory RET
	Start Dired on directory, defaulting to the directory name at
point (dired-at-point).

	C-x C-d
	ffap-list-directory, analogous to list-directory.

	C-x 4 f
	ffap-other-window, analogous to find-file-other-window.

	C-x 4 r
	ffap-read-only-other-window, analogous to
find-file-read-only-other-window.

	C-x 4 d
	ffap-dired-other-window, analogous to dired-other-window.

	C-x 5 f
	ffap-other-frame, analogous to find-file-other-frame.

	C-x 5 r
	ffap-read-only-other-frame, analogous to
find-file-read-only-other-frame.

	C-x 5 d
	ffap-dired-other-frame, analogous to dired-other-frame.

	M-x ffap-next
	Search buffer for next file name or URL, then find that file or URL.

	S-Mouse-3
	ffap-at-mouse finds the file guessed from text around the position
of a mouse click.

	C-S-Mouse-3
	Display a menu of files and URLs mentioned in current buffer, then
find the one you select (ffap-menu).

Chapter 46. Other Amusements

 The animate package makes text dance (e.g. try
M-x animate-birthday-present).
 M-x blackbox, M-x mpuz and M-x 5x5 are puzzles.
blackbox challenges you to determine the location of objects
inside a box by tomography. mpuz displays a multiplication
puzzle with letters standing for digits in a code that you must
guess—to guess a value, type a letter and then the digit you think it
stands for. The aim of 5x5 is to fill in all the squares.
 M-x bubbles is a game in which the object is to remove as many
bubbles as you can in the smallest number of moves.
 M-x decipher helps you to cryptanalyze a buffer which is
encrypted in a simple monoalphabetic substitution cipher.
 M-x dissociated-press scrambles the text in the current Emacs
buffer, word by word or character by character, writing its output to
a buffer named *Dissociation*. A positive argument tells it to
operate character by character, and specifies the number of overlap
characters. A negative argument tells it to operate word by word, and
specifies the number of overlap words. Dissociated Press produces
results fairly like those of a Markov chain, but is however, an
independent, ignoriginal invention; it techniquitously copies several
consecutive characters from the sample text between random jumps,
unlike a Markov chain which would jump randomly after each word or
character. Keep dissociwords out of your documentation, if you want
it to be well userenced and properbose.
 M-x dunnet runs an text-based adventure game.
 If you want a little more personal involvement, try M-x gomoku,
which plays the game Go Moku with you.
 If you are a little bit bored, you can try M-x hanoi. If you are
considerably bored, give it a numeric argument. If you are very, very
bored, try an argument of 9. Sit back and watch.
 M-x life runs Conway's “Life” cellular automaton.
 M-x landmark runs a relatively non-participatory game in which
a robot attempts to maneuver towards a tree at the center of the
window based on unique olfactory cues from each of the four
directions.
 M-x morse-region converts the text in the region to Morse
code; M-x unmorse-region converts it back. M-x
nato-region converts the text in the region to NATO phonetic
alphabet; M-x denato-region converts it back.
 M-x pong, M-x snake and M-x tetris are
implementations of the well-known Pong, Snake and Tetris games.
 M-x solitaire plays a game of solitaire in which you jump pegs
across other pegs.
 The command M-x zone plays games with the display when Emacs
is idle.
 Finally, if you find yourself frustrated, try describing your
problems to the famous psychotherapist Eliza. Just do M-x
doctor. End each input by typing RET twice.

Chapter 47. Emacs Lisp Packages

Emacs includes a facility that lets you easily download and install
packages that implement additional features. Each package is a
separate Emacs Lisp program, sometimes including other components such
as an Info manual.
M-x list-packages brings up a buffer named *Packages*
with a list of all packages. You can install or uninstall packages
via this buffer. See the section called “The Package Menu Buffer”.
 The command C-h P (describe-package) prompts for the
name of a package, and displays a help buffer describing the
attributes of the package and the features that it implements.
By default, Emacs downloads packages from a package archive
maintained by the Emacs developers and hosted by the GNU project.
Optionally, you can also download packages from archives maintained by
third parties. See the section called “Package Installation”.
For information about turning an Emacs Lisp program into an
installable package, See See section ``Packaging'' in The Emacs Lisp Reference Manual. For information about finding third-party packages and other
Emacs Lisp extensions, See See section ``Packages that do not come with Emacs'' in GNU Emacs FAQ.
The Package Menu Buffer

The command M-x list-packages brings up the package menu.
This is a buffer listing all the packages that Emacs knows about, one
on each line, with the following information:
	The package name (e.g. ‘auctex’).

	The package's version number (e.g. ‘11.86’).

	The package's status—normally one of ‘available’ (can be
downloaded from the package archive), ‘installed’, or
‘built-in’ (included in Emacs by default).
In some instances, the status can be ‘held’, ‘disabled’, or
‘obsolete’. See the section called “Package Installation”.

	A short description of the package.

The list-packages command accesses the network, to retrieve the
list of available packages from the package archive server. If the
network is unavailable, it falls back on the most recently retrieved
list.
The following commands are available in the package menu:
	h
	Print a short message summarizing how to use the package menu
(package-menu-quick-help).

	?, RET
	Display a help buffer for the package on the current line
(package-menu-describe-package), similar to the help window
displayed by the C-h P command (see Chapter 47, Emacs Lisp Packages).

	i
	Mark the package on the current line for installation
(package-menu-mark-install). If the package status is
‘available’, this adds an ‘I’ character to the start of the
line; typing x (see below) will download and install the
package.

	d
	Mark the package on the current line for deletion
(package-menu-mark-delete). If the package status is
‘installed’, this adds a ‘D’ character to the start of the
line; typing x (see below) will delete the package.
See the section called “Package Files and Directory Layout”, for information about what package deletion
entails.

	u
	Remove any installation or deletion mark previously added to the
current line by an i or d command.

	U
	Mark all package with a newer available version for “upgrading”
(package-menu-mark-upgrades). This places an installation mark
on the new available versions, and a deletion mark on the old
installed versions.

	x
	Download and install all packages marked with i, and their
dependencies; also, delete all packages marked with d
(package-menu-execute). This also removes the marks.

	r
	Refresh the package list (package-menu-refresh). This fetches
the list of available packages from the package archive again, and
recomputes the package list.

For example, you can install a package by typing i on the line
listing that package, followed by x.

Package Installation

 Packages are most conveniently installed using the package menu
(see the section called “The Package Menu Buffer”), but you can also use the command M-x
package-install. This prompts for the name of a package with the
‘available’ status, then downloads and installs it.
 A package may require certain other packages to be installed,
because it relies on functionality provided by them. When Emacs
installs such a package, it also automatically downloads and installs
any required package that is not already installed. (If a required
package is somehow unavailable, Emacs signals an error and stops
installation.) A package's requirements list is shown in its help
buffer.
 By default, packages are downloaded from a single package archive
maintained by the Emacs developers. This is controlled by the
variable package-archives, whose value is a list of package
archives known to Emacs. Each list element must have the form
(id . location), where id is the name of a
package archive and location is the HTTP address or
directory name of the package archive. You can alter this list if you
wish to use third party package archives—but do so at your own risk,
and use only third parties that you think you can trust!
Once a package is downloaded and installed, it is loaded into
the current Emacs session. Loading a package is not quite the same as
loading a Lisp library (see the section called “Libraries of Lisp Code for Emacs”); its effect varies
from package to package. Most packages just make some new commands
available, while others have more wide-ranging effects on the Emacs
session. For such information, consult the package's help buffer.
By default, Emacs also automatically loads all installed packages in
subsequent Emacs sessions. This happens at startup, after processing
the init file (see the section called “The Emacs Initialization File”). As an exception, Emacs does not
load packages at startup if invoked with the ‘-q’ or
‘--no-init-file’ options (see the section called “Initial Options”).
 To disable automatic package loading, change the variable
package-enable-at-startup to nil.
 The reason automatic package loading occurs after loading the init
file is that user options only receive their customized values after
loading the init file, including user options which affect the
packaging system. In some circumstances, you may want to load
packages explicitly in your init file (usually because some other code
in your init file depends on a package). In that case, your init file
should call the function package-initialize. It is up to you
to ensure that relevant user options, such as package-load-list
(see below), are set up prior to the package-initialize call.
You should also set package-enable-at-startup to nil, to
avoid loading the packages again after processing the init file.
Alternatively, you may choose to completely inhibit package loading at
startup, and invoke the command M-x package-initialize to load
your packages manually.
 For finer control over package loading, you can use the variable
package-load-list. Its value should be a list. A list element
of the form (name version) tells Emacs to load
version version of the package named name. Here,
version should be a version string (corresponding to a specific
version of the package), or t (which means to load any
installed version), or nil (which means no version; this
“disables” the package, preventing it from being loaded). A list
element can also be the symbol all, which means to load the
latest installed version of any package not named by the other list
elements. The default value is just '(all).
For example, if you set package-load-list to '((muse
"3.20") all), then Emacs only loads version 3.20 of the ‘muse’
package, plus any installed version of packages other than
‘muse’. Any other version of ‘muse’ that happens to be
installed will be ignored. The ‘muse’ package will be listed in
the package menu with the ‘held’ status.

Package Files and Directory Layout

 Each package is downloaded from the package archive in the form of a
single package file—either an Emacs Lisp source file, or a tar
file containing multiple Emacs Lisp source and other files. Package
files are automatically retrieved, processed, and disposed of by the
Emacs commands that install packages. Normally, you will not need to
deal directly with them, unless you are making a package
(see See section ``Packaging'' in The Emacs Lisp Reference Manual). Should
you ever need to install a package directly from a package file, use
the command M-x package-install-file.
 Once installed, the contents of a package are placed in a
subdirectory of ~/.emacs.d/elpa/ (you can change the name of
that directory by changing the variable package-user-dir). The
package subdirectory is named name-version, where
name is the package name and version is its version
string.
 In addition to package-user-dir, Emacs looks for installed
packages in the directories listed in package-directory-list.
These directories are meant for system administrators to make Emacs
packages available system-wide; Emacs itself never installs packages
there. The package subdirectories for package-directory-list
are laid out in the same way as in package-user-dir.
Deleting a package (see the section called “The Package Menu Buffer”) involves deleting the
corresponding package subdirectory. This only works for packages
installed in package-user-dir; if told to act on a package in a
system-wide package directory, the deletion command signals an error.

Chapter 48. Customization

 This chapter describes some simple methods to customize the behavior
of Emacs.
Apart from the methods described here, see Appendix D, X Options and Resources for
information about using X resources to customize Emacs, and see
Chapter 17, Keyboard Macros for information about recording and replaying
keyboard macros. Making more far-reaching and open-ended changes
involves writing Emacs Lisp code; see
See section ``Emacs Lisp'' in The Emacs Lisp Reference Manual.
Easy Customization Interface

 Emacs has many settings which you can change. Most settings
are customizable variables (see the section called “Variables”), which are also
called user options. There is a huge number of customizable
variables, controlling numerous aspects of Emacs behavior; the
variables documented in this manual are listed in Variable Index. A separate class of settings are the faces, which
determine the fonts, colors, and other attributes of text
(see the section called “Text Faces”).
 To browse and alter settings (both variables and faces), type
M-x customize. This creates a customization buffer, which
lets you navigate through a logically organized list of settings, edit
and set their values, and save them permanently.
Customization Groups

 Customization settings are organized into customization
groups. These groups are collected into bigger groups, all the way
up to a master group called Emacs.
M-x customize creates a customization buffer that shows the
top-level Emacs group. It looks like this, in part:

To apply changes, use the Save or Set buttons.
For details, see [Saving Customizations] in the [Emacs manual].

__ [Search]

 Operate on all settings in this buffer:
 [Set for current session] [Save for future sessions]
 [Undo edits] [Reset to saved] [Erase customizations] [Exit]

Emacs group: Customization of the One True Editor.
 [State]: visible group members are all at standard values.
 See also [Manual].

[Editing] : Basic text editing facilities.

[Convenience] : Convenience features for faster editing.

more second-level groups

The main part of this buffer shows the ‘Emacs’ customization
group, which contains several other groups (‘Editing’,
‘Convenience’, etc.). The contents of those groups are not
listed here, only one line of documentation each.
The state of the group indicates whether setting in that group
has been edited, set or saved. See the section called “Changing a Variable”.
 Most of the customization buffer is read-only, but it includes some
editable fields that you can edit. For example, at the top of
the customization buffer is an editable field for searching for
settings (see the section called “Browsing and Searching for Settings”). There are also buttons and
links, which you can activate by either clicking with the mouse,
or moving point there and typing RET. For example, the group
names like ‘[Editing]’ are links; activating one of these links
brings up the customization buffer for that group.
 In the customizable buffer, you can type TAB
(widget-forward) to move forward to the next button or editable
field. S-TAB (widget-backward) moves back to the
previous button or editable field.

Browsing and Searching for Settings

 From the top-level customization buffer created by M-x
customize, you can follow the links to the subgroups of the
‘Emacs’ customization group. These subgroups may contain
settings for you to customize; they may also contain further subgroups,
dealing with yet more specialized subsystems of Emacs. As you
navigate the hierarchy of customization groups, you should find some
settings that you want to customize.
If you are interested in customizing a particular setting or
customization group, you can go straight there with the commands
M-x customize-option, M-x customize-face, or M-x
customize-group. See the section called “Customizing Specific Items”.
 If you don't know exactly what groups or settings you want to
customize, you can search for them using the editable search field at
the top of each customization buffer. Here, you can type in a search
term—either one or more words separated by spaces, or a regular
expression (see the section called “Syntax of Regular Expressions”). Then type RET in the field, or
activate the ‘Search’ button next to it, to switch to a
customization buffer containing groups and settings that match those
terms. Note, however, that this feature only finds groups and
settings that are loaded in the current Emacs session.
If you don't want customization buffers to show the search field,
change the variable custom-search-field to nil.
The command M-x customize-apropos is similar to using the
search field, except that it reads the search term(s) using the
minibuffer. See the section called “Customizing Specific Items”.
M-x customize-browse is another way to browse the available
settings. This command creates a special customization buffer which
shows only the names of groups and settings, in a structured layout.
You can show the contents of a group, in the same buffer, by invoking
the ‘[+]’ button next to the group name. When the group contents
are shown, the button changes to ‘[-]’; invoking that hides the
group contents again. Each group or setting in this buffer has a link
which says ‘[Group]’, ‘[Option]’ or ‘[Face]’. Invoking
this link creates an ordinary customization buffer showing just that
group, option, or face; this is the way to change settings that you
find with M-x customize-browse.

Changing a Variable

Here is an example of what a variable, or user option, looks like in
the customization buffer:

[Hide] Kill Ring Max: 60
 [State]: STANDARD.
 Maximum length of kill ring before oldest elements are thrown away.

The first line shows that the variable is named
kill-ring-max, formatted as ‘Kill Ring Max’ for easier
viewing. Its value is ‘60’. The button labeled ‘[Hide]’,
if activated, hides the variable's value and state; this is useful to
avoid cluttering up the customization buffer with very long values
(for this reason, variables that have very long values may start out
hidden). If you use the ‘[Hide]’ button, it changes to
‘[Show Value]’, which you can activate to reveal the value and
state. On a graphical display, the ‘[Hide]’ and ‘[Show
Value]’ buttons are replaced with graphical triangles pointing
downwards and rightwards respectively.
The line after the variable name indicates the customization
state of the variable: in this example, ‘STANDARD’ means you
have not changed the variable, so its value is the default one. The
‘[State]’ button gives a menu of operations for customizing the
variable.
Below the customization state is the documentation for the variable.
This is the same documentation that would be shown by the C-h v
command (see the section called “Examining and Setting Variables”). If the documentation is more than one
line long, only one line may be shown. If so, that line ends with a
‘[More]’ button; activate this to see the full documentation.
 To enter a new value for ‘Kill Ring Max’, just move point to
the value and edit it. For example, type M-d to delete the
‘60’ and type in another number. As you begin to alter the text,
the ‘[State]’ line will change:

[State]: EDITED, shown value does not take effect until you
 set or save it.

Editing the value does not make it take effect right away. To do
that, you must set the variable by activating the ‘[State]’
button and choosing ‘Set for Current Session’. Then the
variable's state becomes:

[State]: SET for current session only.

You don't have to worry about specifying a value that is not valid;
the ‘Set for Current Session’ operation checks for validity and
will not install an unacceptable value.
 While editing certain kinds of values, such as file names, directory
names, and Emacs command names, you can perform completion with
C-M-i (widget-complete), or the equivalent keys
M-TAB or ESC TAB. This behaves much
like minibuffer completion (see the section called “Completion”).
Typing RET on an editable value field moves point forward to
the next field or button, like TAB. You can thus type RET
when you are finished editing a field, to move on to the next button
or field. To insert a newline within an editable field, use C-o
or C-q C-j.
For some variables, there is only a fixed set of legitimate values,
and you are not allowed to edit the value directly. Instead, a
‘[Value Menu]’ button appears before the value; activating this
button presents a choice of values. For a boolean “on or off”
value, the button says ‘[Toggle]’, and flips the value. After
using the ‘[Value Menu]’ or ‘[Toggle]’ button, you must
again set the variable to make the chosen value take effect.
Some variables have values with complex structure. For example, the
value of minibuffer-frame-alist is an association list. Here
is how it appears in the customization buffer:

[Hide] Minibuffer Frame Alist:
[INS] [DEL] Parameter: width
 Value: 80
[INS] [DEL] Parameter: height
 Value: 2
[INS]
 [State]: STANDARD.
 Alist of parameters for the initial minibuffer frame. [Hide]
 […more lines of documentation…]

In this case, each association in the list consists of two items, one
labeled ‘Parameter’ and one labeled ‘Value’; both are
editable fields. You can delete an association from the list with the
‘[DEL]’ button next to it. To add an association, use the
‘[INS]’ button at the position where you want to insert it; the
very last ‘[INS]’ button inserts at the end of the list.
 When you set a variable, the new value takes effect only in the
current Emacs session. To save the value for future sessions,
use the ‘[State]’ button and select the ‘Save for Future
Sessions’ operation. See the section called “Saving Customizations”.
You can also restore the variable to its standard value by using the
‘[State]’ button and selecting the ‘Erase Customization’
operation. There are actually four reset operations:
	‘Undo Edits’
	If you have modified but not yet set the variable, this restores the
text in the customization buffer to match the actual value.

	‘Reset to Saved’
	This restores the value of the variable to the last saved value,
and updates the text accordingly.

	‘Erase Customization’
	This sets the variable to its standard value. Any saved value that
you have is also eliminated.

	‘Set to Backup Value’
	This sets the variable to a previous value that was set in the
customization buffer in this session. If you customize a variable
and then reset it, which discards the customized value,
you can get the discarded value back again with this operation.

 Sometimes it is useful to record a comment about a specific
customization. Use the ‘Add Comment’ item from the
‘[State]’ menu to create a field for entering the comment.
Near the top of the customization buffer are two lines of buttons:

 [Set for Current Session] [Save for Future Sessions]
 [Undo Edits] [Reset to Saved] [Erase Customization] [Exit]

Each of the first five buttons performs the stated operation—set,
save, reset, etc.—on all the settings in the buffer that could
meaningfully be affected. They do not operate on settings that are
hidden, nor on subgroups that are hidden or not visible in the buffer.
 The command C-c C-c (Custom-set) is equivalent using to
the ‘[Set for Current Session]’ button. The command C-x
C-s (Custom-save) is like using the ‘[Save for Future
Sessions]’ button.
 The ‘[Exit]’ button switches out of the customization buffer,
and buries the buffer at the bottom of the buffer list. To make it
kill the customization buffer instead, change the variable
custom-buffer-done-kill to t.

Saving Customizations

In the customization buffer, you can save a customization
setting by choosing the ‘Save for Future Sessions’ choice from
its ‘[State]’ button. The C-x C-s (Custom-save)
command, or the ‘[Save for Future Sessions]’ button at the top of
the customization buffer, saves all applicable settings in the buffer.
Saving works by writing code to a file, usually your initialization
file (see the section called “The Emacs Initialization File”). Future Emacs sessions automatically read
this file at startup, which sets up the customizations again.
 You can choose to save customizations somewhere other than your
initialization file. To make this work, you must add a couple of
lines of code to your initialization file, to set the variable
custom-file to the name of the desired file, and to load that
file. For example:

(setq custom-file "~/.emacs-custom.el")
(load custom-file)

You can even specify different customization files for different
Emacs versions, like this:

(cond ((< emacs-major-version 22)
 ;; Emacs 21 customization.
 (setq custom-file "~/.custom-21.el"))
 ((and (= emacs-major-version 22)
 (< emacs-minor-version 3))
 ;; Emacs 22 customization, before version 22.3.
 (setq custom-file "~/.custom-22.el"))
 (t
 ;; Emacs version 22.3 or later.
 (setq custom-file "~/.emacs-custom.el")))

(load custom-file)

If Emacs was invoked with the -q or --no-init-file
options (see the section called “Initial Options”), it will not let you save your
customizations in your initialization file. This is because saving
customizations from such a session would wipe out all the other
customizations you might have on your initialization file.

Customizing Faces

 You can customize faces (see the section called “Text Faces”), which determine how Emacs
displays different types of text. Customization groups can contain
both variables and faces.
For example, in programming language modes, source code comments are
shown with font-lock-comment-face (see the section called “Font Lock mode”). In a
customization buffer, that face appears like this:

[Hide] Font Lock Comment Face:[sample]
 [State] : STANDARD.
 Font Lock mode face used to highlight comments.
 [] Font Family: --
 [] Font Foundry: --
 [] Width: --
 [] Height: --
 [] Weight: --
 [] Slant: --
 [] Underline: --
 [] Overline: --
 [] Strike-through: --
 [] Box around text: --
 [] Inverse-video: --
 [X] Foreground: Firebrick [Choose] (sample)
 [] Background: --
 [] Stipple: --
 [] Inherit: --
 [Hide Unused Attributes]

The first three lines show the name, ‘[State]’ button, and
documentation for the face. Below that is a list of face
attributes. In front of each attribute is a checkbox. A filled
checkbox, ‘[X]’, means that the face specifies a value for this
attribute; an empty checkbox, ‘[]’, means that the face does not
specify any special value for the attribute. You can activate a
checkbox to specify or unspecify its attribute.
Most faces only specify a few attributes (in the above example,
font-lock-comment-face only specifies the foreground color).
Emacs has a special face, default, whose attributes are all
specified; it determines the attributes left unspecified by other
faces.
The ‘Hide Unused Attributes’ button, at the end of the
attribute list, hides the unspecified attributes of the face. When
attributes are being hidden, the button changes to ‘[Show All
Attributes]’, which reveals the entire attribute list. The
customization buffer may start out with unspecified attributes hidden,
to avoid cluttering the interface.
When an attribute is specified, you can change its value in the
usual ways.
Foreground and background colors can be specified using either color
names or RGB triplets (see the section called “Colors for Faces”). You can also use the
‘[Choose]’ button to switch to a list of color names; select a
color with RET in that buffer to put the color name in the value
field.
Setting, saving and resetting a face work like the same operations for
variables (see the section called “Changing a Variable”).
A face can specify different appearances for different types of
displays. For example, a face can make text red on a color display,
but use a bold font on a monochrome display. To specify multiple
appearances for a face, select ‘For All Kinds of Displays’ in the
menu you get from invoking ‘[State]’.

Customizing Specific Items

	M-x customize-option RET option RET, M-x customize-variable RET option RET
	Set up a customization buffer for just one user option, option.

	M-x customize-face RET face RET
	Set up a customization buffer for just one face, face.

	M-x customize-group RET group RET
	Set up a customization buffer for just one group, group.

	M-x customize-apropos RET regexp RET
	Set up a customization buffer for all the settings and groups that
match regexp.

	M-x customize-changed RET version RET
	Set up a customization buffer with all the settings and groups
whose meaning has changed since Emacs version version.

	M-x customize-saved
	Set up a customization buffer containing all settings that you
have saved with customization buffers.

	M-x customize-unsaved
	Set up a customization buffer containing all settings that you have
set but not saved.

 If you want to customize a particular user option, type M-x
customize-option. This reads the variable name, and sets up the
customization buffer with just that one user option. When entering
the variable name into the minibuffer, completion is available, but
only for the names of variables that have been loaded into Emacs.
 Likewise, you can customize a specific face using M-x
customize-face. You can set up a customization buffer for a specific
customization group using M-x customize-group.
 M-x customize-apropos prompts for a search term—either one
or more words separated by spaces, or a regular expression—and sets
up a customization buffer for all loaded settings and groups
with matching names. This is like using the search field at the top
of the customization buffer (see the section called “Customization Groups”).
 When you upgrade to a new Emacs version, you might want to consider
customizing new settings, and settings whose meanings or default
values have changed. To do this, use M-x customize-changed and
specify a previous Emacs version number using the minibuffer. It
creates a customization buffer which shows all the settings and groups
whose definitions have been changed since the specified version,
loading them if necessary.
 If you change settings and then decide the change was a mistake, you
can use two commands to revisit your changes. Use M-x
customize-saved to customize settings that you have saved. Use
M-x customize-unsaved to customize settings that you have set
but not saved.

Custom Themes

 Custom themes are collections of settings that can be enabled
or disabled as a unit. You can use Custom themes to switch easily
between various collections of settings, and to transfer such
collections from one computer to another.
A Custom theme is stored an Emacs Lisp source file. If the name of
the Custom theme is name, the theme file is named
name-theme.el. See the section called “Creating Custom Themes”, for the
format of a theme file and how to make one.
 Type M-x customize-themes to switch to a buffer named
Custom Themes, which lists the Custom themes that Emacs knows
about. By default, Emacs looks for theme files in two locations: the
directory specified by the variable custom-theme-directory
(which defaults to ~/.emacs.d/), and a directory named
etc/themes in your Emacs installation (see the variable
data-directory). The latter contains several Custom themes
which are distributed with Emacs, which customize Emacs's faces to fit
various color schemes. (Note, however, that Custom themes need not be
restricted to this purpose; they can be used to customize variables
too).
 If you want Emacs to look for Custom themes in some other directory,
add the directory name to the list variable
custom-theme-load-path. Its default value is
(custom-theme-directory t); here, the symbol
custom-theme-directory has the special meaning of the value of
the variable custom-theme-directory, while t stands for
the built-in theme directory etc/themes. The themes listed in
the *Custom Themes* buffer are those found in the directories
specified by custom-theme-load-path.
 In the *Custom Themes* buffer, you can activate the checkbox
next to a Custom theme to enable or disable the theme for the current
Emacs session. When a Custom theme is enabled, all of its settings
(variables and faces) take effect in the Emacs session. To apply the
choice of theme(s) to future Emacs sessions, type C-x C-s
(custom-theme-save) or use the ‘[Save Theme Settings]’
button.
 When you first enable a Custom theme, Emacs displays the contents of
the theme file and asks if you really want to load it. Because
loading a Custom theme can execute arbitrary Lisp code, you should
only say yes if you know that the theme is safe; in that case, Emacs
offers to remember in the future that the theme is safe (this is done
by saving the theme file's SHA-256 hash to the variable
custom-safe-themes; if you want to treat all themes as safe,
change its value to t). Themes that come with Emacs (in the
etc/themes directory) are exempt from this check, and are
always considered safe.
 Setting or saving Custom themes actually works by customizing the
variable custom-enabled-themes. The value of this variable is
a list of Custom theme names (as Lisp symbols, e.g. tango).
Instead of using the *Custom Themes* buffer to set
custom-enabled-themes, you can customize the variable using the
usual customization interface, e.g. with M-x customize-option.
Note that Custom themes are not allowed to set
custom-enabled-themes themselves.
Any customizations that you make through the customization buffer
take precedence over theme settings. This lets you easily override
individual theme settings that you disagree with. If settings from
two different themes overlap, the theme occurring earlier in
custom-enabled-themes takes precedence. In the customization
buffer, if a setting has been changed from its default by a Custom
theme, its ‘State’ display shows ‘THEMED’ instead of
‘STANDARD’.
 You can enable a specific Custom theme in the current Emacs session
by typing M-x load-theme. This prompts for a theme name, loads
the theme from the theme file, and enables it. If a theme file
has been loaded before, you can enable the theme without loading its
file by typing M-x enable-theme. To disable a Custom theme,
type M-x disable-theme.
 To see a description of a Custom theme, type ? on its line in
the *Custom Themes* buffer; or type M-x describe-theme
anywhere in Emacs and enter the theme name.

Creating Custom Themes

 You can define a Custom theme using an interface similar to the
customization buffer, by typing M-x customize-create-theme.
This switches to a buffer named *Custom Theme*. It also offers
to insert some common Emacs faces into the theme (a convenience, since
Custom themes are often used to customize faces). If you answer no,
the theme will initially contain no settings.
Near the top of the *Custom Theme* buffer are editable fields
where you can enter the theme's name and description. The name can be
anything except ‘user’. The description is the one that will be
shown when you invoke M-x describe-theme for the theme. Its
first line should be a brief one-sentence summary; in the buffer made
by M-x customize-themes, this sentence is displayed next to the
theme name.
To add a new setting to the theme, use the ‘[Insert Additional
Face]’ or ‘[Insert Additional Variable]’ buttons. Each button
reads a face or variable name using the minibuffer, with completion,
and inserts a customization entry for the face or variable. You can
edit the variable values or face attributes in the same way as in a
normal customization buffer. To remove a face or variable from the
theme, uncheck the checkbox next to its name.
 After specifying the Custom theme's faces and variables, type
C-x C-s (custom-theme-write) or use the buffer's
‘[Save Theme]’ button. This saves the theme file, named
name-theme.el where name is the theme name, in the
directory named by custom-theme-directory.
From the *Custom Theme* buffer, you can view and edit an
existing Custom theme by activating the ‘[Visit Theme]’ button
and specifying the theme name. You can also add the settings of
another theme into the buffer, using the ‘[Merge Theme]’ button.
You can import your non-theme settings into a Custom theme by using
the ‘[Merge Theme]’ button and specifying the special theme named
‘user’.
A theme file is simply an Emacs Lisp source file, and loading the
Custom theme works by loading the Lisp file. Therefore, you can edit
a theme file directly instead of using the *Custom Theme*
buffer. See See section ``Custom Themes'' in The Emacs Lisp Reference Manual, for details.

Variables

 A variable is a Lisp symbol which has a value. The symbol's
name is also called the variable name. A variable name can
contain any characters that can appear in a file, but most variable
names consist of ordinary words separated by hyphens.
The name of the variable serves as a compact description of its
role. Most variables also have a documentation string, which
describes what the variable's purpose is, what kind of value it should
have, and how the value will be used. You can view this documentation
using the help command C-h v (describe-variable).
See the section called “Examining and Setting Variables”.
Emacs uses many Lisp variables for internal record keeping, but the
most interesting variables for a non-programmer user are those meant
for users to change—these are called customizable variables or
user options (see the section called “Easy Customization Interface”). In the following
sections, we will describe other aspects of Emacs variables, such as
how to set them outside Customize.
Emacs Lisp allows any variable (with a few exceptions) to have any
kind of value. However, many variables are meaningful only if
assigned values of a certain type. For example, only numbers are
meaningful values for kill-ring-max, which specifies the
maximum length of the kill ring (see the section called “Yanking Earlier Kills”); if you give
kill-ring-max a string value, commands such as C-y
(yank) will signal an error. On the other hand, some variables
don't care about type; for instance, if a variable has one effect for
nil values and another effect for “non-nil” values,
then any value that is not the symbol nil induces the second
effect, regardless of its type (by convention, we usually use the
value t—a symbol which stands for “true”—to specify a
non-nil value). If you set a variable using the customization
buffer, you need not worry about giving it an invalid type: the
customization buffer usually only allows you to enter meaningful
values. When in doubt, use C-h v (describe-variable) to
check the variable's documentation string to see kind of value it
expects (see the section called “Examining and Setting Variables”).
Examining and Setting Variables

	C-h v var RET
	Display the value and documentation of variable var
(describe-variable).

	M-x set-variable RET var RET value RET
	Change the value of variable var to value.

To examine the value of a variable, use C-h v
(describe-variable). This reads a variable name using the
minibuffer, with completion, and displays both the value and the
documentation of the variable. For example,

C-h v fill-column RET

displays something like this:

fill-column is a variable defined in `C source code'.
fill-column's value is 70
Local in buffer custom.texi; global value is 70
Automatically becomes buffer-local when set in any fashion.

 Automatically becomes buffer-local when set in any fashion.
 This variable is safe as a file local variable if its value
 satisfies the predicate `integerp'.

Documentation:
*Column beyond which automatic line-wrapping should happen.
Interactively, you can set the buffer local value using C-x f.

You can customize this variable.

The line that says “You can customize the variable” indicates that
this variable is a user option. C-h v is not restricted to user
options; it allows non-customizable variables too.
 The most convenient way to set a specific customizable variable is
with M-x set-variable. This reads the variable name with the
minibuffer (with completion), and then reads a Lisp expression for the
new value using the minibuffer a second time (you can insert the old
value into the minibuffer for editing via M-n). For example,

M-x set-variable RET fill-column RET 75 RET

sets fill-column to 75.
M-x set-variable is limited to customizable variables, but you
can set any variable with a Lisp expression like this:

(setq fill-column 75)

To execute such an expression, type M-: (eval-expression)
and enter the expression in the minibuffer (see the section called “Evaluating Emacs Lisp Expressions”).
Alternatively, go to the *scratch* buffer, type in the
expression, and then type C-j (see the section called “Lisp Interaction Buffers”).
Setting variables, like all means of customizing Emacs except where
otherwise stated, affects only the current Emacs session. The only
way to alter the variable in future sessions is to put something in
your initialization file (see the section called “The Emacs Initialization File”).

Hooks

 Hooks are an important mechanism for customizing Emacs. A
hook is a Lisp variable which holds a list of functions, to be called
on some well-defined occasion. (This is called running the
hook.) The individual functions in the list are called the hook
functions of the hook. For example, the hook kill-emacs-hook
runs just before exiting Emacs (see Chapter 6, Exiting Emacs).
 Most hooks are normal hooks. This means that when Emacs runs
the hook, it calls each hook function in turn, with no arguments. We
have made an effort to keep most hooks normal, so that you can use
them in a uniform way. Every variable whose name ends in ‘-hook’
is a normal hook.
 A few hooks are abnormal hooks. Their names end in
‘-hooks’ or ‘-functions’, instead of ‘-hook’. What
makes these hooks abnormal is the way its functions are
called—perhaps they are given arguments, or perhaps the values they
return are used in some way. For example,
find-file-not-found-functions is abnormal because as soon as
one hook function returns a non-nil value, the rest are not
called at all (see the section called “Visiting Files”). The documentation of each abnormal
hook variable explains how its functions are used.
 You can set a hook variable with setq like any other Lisp
variable, but the recommended way to add a function to a hook (either
normal or abnormal) is to use add-hook, as shown by the
following examples. See See section ``Hooks'' in The Emacs Lisp Reference Manual, for details.
Most major modes run one or more mode hooks as the last step
of initialization. Mode hooks are a convenient way to customize the
behavior of individual modes; they are always normal. For example,
here's how to set up a hook to turn on Auto Fill mode in Text mode and
other modes based on Text mode:

(add-hook 'text-mode-hook 'auto-fill-mode)

This works by calling auto-fill-mode, which enables the minor
mode when no argument is supplied (see the section called “Minor Modes”). Next,
suppose you don't want Auto Fill mode turned on in LaTeX mode,
which is one of the modes based on Text mode. You can do this with
the following additional line:

(add-hook 'latex-mode-hook (lambda () (auto-fill-mode -1)))

Here we have used the special macro lambda to construct an
anonymous function (see See section ``Lambda Expressions'' in The Emacs Lisp Reference Manual), which calls auto-fill-mode with an argument
of -1 to disable the minor mode. Because LaTeX mode runs
latex-mode-hook after running text-mode-hook, the result
leaves Auto Fill mode disabled.
Here is a more complex example, showing how to use a hook to
customize the indentation of C code:

(setq my-c-style
 '((c-comment-only-line-offset . 4)
 (c-cleanup-list . (scope-operator
 empty-defun-braces
 defun-close-semi))))

(add-hook 'c-mode-common-hook
 (lambda () (c-add-style "my-style" my-c-style t)))

 Major mode hooks also apply to other major modes derived from
the original mode (see See section ``Derived Modes'' in The Emacs Lisp Reference Manual). For instance, HTML mode is derived from Text mode
(see the section called “SGML and HTML Modes”); when HTML mode is enabled, it runs
text-mode-hook before running html-mode-hook. This
provides a convenient way to use a single hook to affect several
related modes. In particular, if you want to apply a hook function to
any programming language mode, add it to prog-mode-hook; Prog
mode is a major mode that does little else than to let other major
modes inherit from it, exactly for this purpose.
It is best to design your hook functions so that the order in which
they are executed does not matter. Any dependence on the order is
asking for trouble. However, the order is predictable: the hook
functions are executed in the order they appear in the hook.
 If you play with adding various different versions of a hook
function by calling add-hook over and over, remember that all
the versions you added will remain in the hook variable together. You
can clear out individual functions by calling remove-hook, or
do (setq hook-variable nil) to remove everything.
 If the hook variable is buffer-local, the buffer-local variable will
be used instead of the global variable. However, if the buffer-local
variable contains the element t, the global hook variable will
be run as well.

Local Variables

	M-x make-local-variable RET var RET
	Make variable var have a local value in the current buffer.

	M-x kill-local-variable RET var RET
	Make variable var use its global value in the current buffer.

	M-x make-variable-buffer-local RET var RET
	Mark variable var so that setting it will make it local to the
buffer that is current at that time.

 Almost any variable can be made local to a specific Emacs
buffer. This means that its value in that buffer is independent of its
value in other buffers. A few variables are always local in every
buffer. Every other Emacs variable has a global value which is in
effect in all buffers that have not made the variable local.
 M-x make-local-variable reads the name of a variable and makes
it local to the current buffer. Changing its value subsequently in
this buffer will not affect others, and changes in its global value
will not affect this buffer.
 M-x make-variable-buffer-local marks a variable so it will
become local automatically whenever it is set. More precisely, once a
variable has been marked in this way, the usual ways of setting the
variable automatically do make-local-variable first. We call
such variables per-buffer variables. Many variables in Emacs
are normally per-buffer; the variable's document string tells you when
this is so. A per-buffer variable's global value is normally never
effective in any buffer, but it still has a meaning: it is the initial
value of the variable for each new buffer.
Major modes (see the section called “Major Modes”) always make variables local to the
buffer before setting the variables. This is why changing major modes
in one buffer has no effect on other buffers. Minor modes also work
by setting variables—normally, each minor mode has one controlling
variable which is non-nil when the mode is enabled
(see the section called “Minor Modes”). For many minor modes, the controlling variable
is per buffer, and thus always buffer-local. Otherwise, you can make
it local in a specific buffer like any other variable.
A few variables cannot be local to a buffer because they are always
local to each display instead (see the section called “Multiple Displays”). If you try to
make one of these variables buffer-local, you'll get an error message.
 M-x kill-local-variable makes a specified variable cease to be
local to the current buffer. The global value of the variable
henceforth is in effect in this buffer. Setting the major mode kills
all the local variables of the buffer except for a few variables
specially marked as permanent locals.
 To set the global value of a variable, regardless of whether the
variable has a local value in the current buffer, you can use the Lisp
construct setq-default. This construct is used just like
setq, but it sets variables' global values instead of their local
values (if any). When the current buffer does have a local value, the
new global value may not be visible until you switch to another buffer.
Here is an example:

(setq-default fill-column 75)

setq-default is the only way to set the global value of a variable
that has been marked with make-variable-buffer-local.
 Lisp programs can use default-value to look at a variable's
default value. This function takes a symbol as argument and returns its
default value. The argument is evaluated; usually you must quote it
explicitly. For example, here's how to obtain the default value of
fill-column:

(default-value 'fill-column)

Local Variables in Files

 A file can specify local variable values to use when editing the
file with Emacs. Visiting the file checks for local variable
specifications; it automatically makes these variables local to the
buffer, and sets them to the values specified in the file.
Specifying File Variables

There are two ways to specify file local variable values: in the first
line, or with a local variables list. Here's how to specify them in the
first line:

-*- mode: modename; var: value; … -*-

You can specify any number of variable/value pairs in this way, each
pair with a colon and semicolon. The special variable/value pair
mode: modename;, if present, specifies a major mode. The
values are used literally, and not evaluated.
 You can use the command M-x add-file-local-variable-prop-line
instead of adding entries by hand. It prompts for
a variable and value, and adds them to the first line in the
appropriate way. M-x delete-file-local-variable-prop-line
prompts for a variable, and deletes its entry from the line. M-x
copy-dir-locals-to-file-locals-prop-line copies directory-local
variables to the first line (see the section called “Per-Directory Local Variables”).
Here is an example first line that specifies Lisp mode and sets two
variables with numeric values:

;; -*- mode: Lisp; fill-column: 75; comment-column: 50; -*-

Aside from mode, other keywords that have special meanings as
file variables are coding, unibyte, and eval.
These are described below.
 In shell scripts, the first line is used to identify the script
interpreter, so you cannot put any local variables there. To
accommodate this, Emacs looks for local variable specifications in the
second line if the first line specifies an interpreter. The
same is true for man pages which start with the magic string
‘'\"’ to specify a list of troff preprocessors (not all do,
however).
Apart from using a ‘-*-’ line, you can define file local
variables using a local variables list near the end of the file.
The start of the local variables list should be no more than 3000
characters from the end of the file, and must be on the last page if
the file is divided into pages.
If a file has both a local variables list and a ‘-*-’ line,
Emacs processes everything in the ‘-*-’ line first, and
everything in the local variables list afterward. The exception
to this is a major mode specification. Emacs applies this first,
wherever it appears, since most major modes kill all local variables as
part of their initialization.
A local variables list starts with a line containing the string
‘Local Variables:’, and ends with a line containing the string
‘End:’. In between come the variable names and values, one set
per line, like this:

/* Local Variables: */
/* mode: c */
/* comment-column: 0 */
/* End: */

In this example, each line starts with the prefix ‘/*’ and ends
with the suffix ‘*/’. Emacs recognizes the prefix and suffix by
finding them surrounding the magic string ‘Local Variables:’, on
the first line of the list; it then automatically discards them from
the other lines of the list. The usual reason for using a prefix
and/or suffix is to embed the local variables list in a comment, so it
won't confuse other programs that the file is intended for. The
example above is for the C programming language, where comments start
with ‘/*’ and end with ‘*/’.
 Instead of typing in the local variables list directly, you can use
the command M-x add-file-local-variable. This prompts for a
variable and value, and adds them to the list, adding the ‘Local
Variables:’ string and start and end markers as necessary. The
command M-x delete-file-local-variable deletes a variable from
the list. M-x copy-dir-locals-to-file-locals copies
directory-local variables to the list (see the section called “Per-Directory Local Variables”).
As with the ‘-*-’ line, the variables in a local variables list
are used literally, and are not evaluated first. If you want to split
a long string value across multiple lines of the file, you can use
backslash-newline, which is ignored in Lisp string constants; you
should put the prefix and suffix on each line, even lines that start
or end within the string, as they will be stripped off when processing
the list. Here is an example:

Local Variables:
compile-command: "cc foo.c -Dfoo=bar -Dhack=whatever \
-Dmumble=blaah"
End:

Some “variable names” have special meanings in a local variables
list:
	mode enables the specified major mode.

	eval evaluates the specified Lisp expression (the value
returned by that expression is ignored).

	coding specifies the coding system for character code
conversion of this file. See the section called “Coding Systems”.

	unibyte says to load or compile a file of Emacs Lisp in unibyte
mode, if the value is t. See the section called “Disabling Multibyte Characters”.

These four keywords are not really variables; setting them in any
other context has no special meaning.
Do not use the mode keyword for minor modes. To enable or
disable a minor mode in a local variables list, use the eval
keyword with a Lisp expression that runs the mode command
(see the section called “Minor Modes”). For example, the following local variables
list enables Eldoc mode (see the section called “Emacs Lisp Documentation Lookup”) by calling
eldoc-mode with no argument (calling it with an argument of 1
would do the same), and disables Font Lock mode (see the section called “Font Lock mode”) by
calling font-lock-mode with an argument of -1.

;; Local Variables:
;; eval: (eldoc-mode)
;; eval: (font-lock-mode -1)
;; End:

Note, however, that it is often a mistake to specify minor modes this
way. Minor modes represent individual user preferences, and it may be
inappropriate to impose your preferences on another user who might
edit the file. If you wish to automatically enable or disable a minor
mode in a situation-dependent way, it is often better to do it in a
major mode hook (see the section called “Hooks”).
Use the command M-x normal-mode to reset the local variables
and major mode of a buffer according to the file name and contents,
including the local variables list if any. See the section called “Choosing File Modes”.

Safety of File Variables

File-local variables can be dangerous; when you visit someone else's
file, there's no telling what its local variables list could do to
your Emacs. Improper values of the eval “variable”, and
other variables such as load-path, could execute Lisp code you
didn't intend to run.
Therefore, whenever Emacs encounters file local variable values that
are not known to be safe, it displays the file's entire local
variables list, and asks you for confirmation before setting them.
You can type y or SPC to put the local variables list into
effect, or n to ignore it. When Emacs is run in batch mode
(see the section called “Initial Options”), it can't really ask you, so it assumes the
answer n.
Emacs normally recognizes certain variable/value pairs as safe.
For instance, it is safe to give comment-column or
fill-column any integer value. If a file specifies only
known-safe variable/value pairs, Emacs does not ask for confirmation
before setting them. Otherwise, you can tell Emacs to record all the
variable/value pairs in this file as safe, by typing ! at the
confirmation prompt. When Emacs encounters these variable/value pairs
subsequently, in the same file or others, it will assume they are
safe.
 Some variables, such as load-path, are considered
particularly risky: there is seldom any reason to specify them
as local variables, and changing them can be dangerous. If a file
contains only risky local variables, Emacs neither offers nor accepts
! as input at the confirmation prompt. If some of the local
variables in a file are risky, and some are only potentially unsafe, you
can enter ! at the prompt. It applies all the variables, but only
marks the non-risky ones as safe for the future. If you really want to
record safe values for risky variables, do it directly by customizing
‘safe-local-variable-values’ (see the section called “Easy Customization Interface”).
 The variable enable-local-variables allows you to change the
way Emacs processes local variables. Its default value is t,
which specifies the behavior described above. If it is nil,
Emacs simply ignores all file local variables. :safe means use
only the safe values and ignore the rest. Any other value says to
query you about each file that has local variables, without trying to
determine whether the values are known to be safe.
 The variable enable-local-eval controls whether Emacs
processes eval variables. The three possibilities for the
variable's value are t, nil, and anything else, just as
for enable-local-variables. The default is maybe, which
is neither t nor nil, so normally Emacs does ask for
confirmation about processing eval variables.
As an exception, Emacs never asks for confirmation to evaluate any
eval form if that form occurs within the variable
safe-local-eval-forms.

Per-Directory Local Variables

 Sometimes, you may wish to define the same set of local variables to
all the files in a certain directory and its subdirectories, such as
the directory tree of a large software project. This can be
accomplished with directory-local variables.
 The usual way to define directory-local variables is to put a file
named .dir-locals.el[17] in a
directory. Whenever Emacs visits any file in that directory or any of
its subdirectories, it will apply the directory-local variables
specified in .dir-locals.el, as though they had been defined as
file-local variables for that file (see the section called “Local Variables in Files”). Emacs
searches for .dir-locals.el starting in the directory of the
visited file, and moving up the directory tree. To avoid slowdown,
this search is skipped for remote files.
The .dir-locals.el file should hold a specially-constructed
list, which maps major mode names (symbols) to alists
(see See section ``Association Lists'' in The Emacs Lisp Reference Manual).
Each alist entry consists of a variable name and the directory-local
value to assign to that variable, when the specified major mode is
enabled. Instead of a mode name, you can specify ‘nil’, which
means that the alist applies to any mode; or you can specify a
subdirectory name (a string), in which case the alist applies to all
files in that subdirectory.
Here's an example of a .dir-locals.el file:

((nil . ((indent-tabs-mode . t)
 (fill-column . 80)))
 (c-mode . ((c-file-style . "BSD")))
 (subdirs . nil)))
 ("src/imported"
 . ((nil . ((change-log-default-name
 . "ChangeLog.local"))))))

This sets ‘indent-tabs-mode’ and fill-column for any file
in the directory tree, and the indentation style for any C source
file. The special subdirs element is not a variable, but a
special keyword which indicates that the C mode settings are only to
be applied in the current directory, not in any subdirectories.
Finally, it specifies a different ChangeLog file name for any
file in the src/imported subdirectory.
 Instead of editing the .dir-locals.el file by hand, you can
use the command M-x add-dir-local-variable. This prompts for a
mode or subdirectory name, and for variable and value, and adds the
entry defining the directory-local variable. M-x
delete-dir-local-variable deletes an entry. M-x
copy-file-locals-to-dir-locals copies the file-local variables in the
current file into .dir-locals.el.
 Another method of specifying directory-local variables is to define
a group of variables/value pairs in a directory class, using the
dir-locals-set-class-variables function; then, tell Emacs which
directories correspond to the class by using the
dir-locals-set-directory-class function. These function calls
normally go in your initialization file (see the section called “The Emacs Initialization File”). This
method is useful when you can't put .dir-locals.el in a
directory for some reason. For example, you could apply settings to
an unwritable directory this way:

(dir-locals-set-class-variables 'unwritable-directory
 '((nil . ((some-useful-setting . value)))))

(dir-locals-set-directory-class
 "/usr/include/" 'unwritable-directory)

If a variable has both a directory-local and file-local value
specified, the file-local value takes effect. Unsafe directory-local
variables are handled in the same way as unsafe file-local variables
(see the section called “Safety of File Variables”).
Directory-local variables also take effect in certain buffers that
do not visit a file directly but perform work within a directory, such
as Dired buffers (see Chapter 30, Dired, the Directory Editor).

[17] On MS-DOS, the name of this file
should be _dir-locals.el, due to limitations of the DOS
filesystems. If the filesystem is limited to 8+3 file names, the name
of the file will be truncated by the OS to _dir-loc.el.

Customizing Key Bindings

 This section describes key bindings, which map keys to
commands, and keymaps, which record key bindings. It also
explains how to customize key bindings, which is done by editing your
init file (see the section called “Rebinding Keys in Your Init File”).
Keymaps

 As described in Chapter 4, Keys and Commands, each Emacs command is a Lisp
function whose definition provides for interactive use. Like every
Lisp function, a command has a function name, which usually consists
of lower-case letters and hyphens.
A key sequence (key, for short) is a sequence of
input events that have a meaning as a unit. Input events
include characters, function keys and mouse buttons—all the inputs
that you can send to the computer. A key sequence gets its meaning
from its binding, which says what command it runs.
The bindings between key sequences and command functions are
recorded in data structures called keymaps. Emacs has many of
these, each used on particular occasions.
 The global keymap is the most important keymap because it is
always in effect. The global keymap defines keys for Fundamental mode
(see the section called “Major Modes”); most of these definitions are common to most or
all major modes. Each major or minor mode can have its own keymap
which overrides the global definitions of some keys.
For example, a self-inserting character such as g is
self-inserting because the global keymap binds it to the command
self-insert-command. The standard Emacs editing characters
such as C-a also get their standard meanings from the global
keymap. Commands to rebind keys, such as M-x global-set-key,
work by storing the new binding in the proper place in the global map
(see the section called “Changing Key Bindings Interactively”).
 Most modern keyboards have function keys as well as character keys.
Function keys send input events just as character keys do, and keymaps
can have bindings for them. Key sequences can mix function keys and
characters. For example, if your keyboard has a Home function
key, Emacs can recognize key sequences like C-x Home. You
can even mix mouse events with keyboard events, such as
S-down-mouse-1.
On text terminals, typing a function key actually sends the computer
a sequence of characters; the precise details of the sequence depends
on the function key and on the terminal type. (Often the sequence
starts with ESC [.) If Emacs understands your terminal
type properly, it automatically handles such sequences as single input
events.

Prefix Keymaps

Internally, Emacs records only single events in each keymap.
Interpreting a key sequence of multiple events involves a chain of
keymaps: the first keymap gives a definition for the first event,
which is another keymap, which is used to look up the second event in
the sequence, and so on. Thus, a prefix key such as C-x or
ESC has its own keymap, which holds the definition for the event
that immediately follows that prefix.
The definition of a prefix key is usually the keymap to use for
looking up the following event. The definition can also be a Lisp
symbol whose function definition is the following keymap; the effect is
the same, but it provides a command name for the prefix key that can be
used as a description of what the prefix key is for. Thus, the binding
of C-x is the symbol Control-X-prefix, whose function
definition is the keymap for C-x commands. The definitions of
C-c, C-x, C-h and ESC as prefix keys appear in
the global map, so these prefix keys are always available.
Aside from ordinary prefix keys, there is a fictitious “prefix key”
which represents the menu bar; see See section ``Menu Bar'' in The Emacs Lisp Reference Manual, for special information about menu bar key bindings.
Mouse button events that invoke pop-up menus are also prefix keys; see
See section ``Menu Keymaps'' in The Emacs Lisp Reference Manual, for more
details.
Some prefix keymaps are stored in variables with names:
	ctl-x-map is the variable name for the map used for characters that
follow C-x.

	help-map is for characters that follow C-h.

	esc-map is for characters that follow ESC. Thus, all Meta
characters are actually defined by this map.

	ctl-x-4-map is for characters that follow C-x 4.

	mode-specific-map is for characters that follow C-c.

Local Keymaps

 So far, we have explained the ins and outs of the global map. Major
modes customize Emacs by providing their own key bindings in
local keymaps. For example, C mode overrides TAB to make
it indent the current line for C code. Minor modes can also have
local keymaps; whenever a minor mode is in effect, the definitions in
its keymap override both the major mode's local keymap and the global
keymap. In addition, portions of text in the buffer can specify their
own keymaps, which override all other keymaps.
A local keymap can redefine a key as a prefix key by defining it as
a prefix keymap. If the key is also defined globally as a prefix, its
local and global definitions (both keymaps) effectively combine: both
definitions are used to look up the event that follows the prefix key.
For example, if a local keymap defines C-c as a prefix keymap,
and that keymap defines C-z as a command, this provides a local
meaning for C-c C-z. This does not affect other sequences that
start with C-c; if those sequences don't have their own local
bindings, their global bindings remain in effect.
Another way to think of this is that Emacs handles a multi-event key
sequence by looking in several keymaps, one by one, for a binding of the
whole key sequence. First it checks the minor mode keymaps for minor
modes that are enabled, then it checks the major mode's keymap, and then
it checks the global keymap. This is not precisely how key lookup
works, but it's good enough for understanding the results in ordinary
circumstances.

Minibuffer Keymaps

 The minibuffer has its own set of local keymaps; they contain various
completion and exit commands.
	minibuffer-local-map is used for ordinary input (no completion).

	minibuffer-local-ns-map is similar, except that SPC exits
just like RET.

	minibuffer-local-completion-map is for permissive completion.

	minibuffer-local-must-match-map is for strict completion and
for cautious completion.

	minibuffer-local-filename-completion-map and
minibuffer-local-filename-must-match-map are like the two
previous ones, but they are specifically for file name completion.
They do not bind SPC.

Changing Key Bindings Interactively

 The way to redefine an Emacs key is to change its entry in a keymap.
You can change the global keymap, in which case the change is
effective in all major modes (except those that have their own
overriding local bindings for the same key). Or you can change a
local keymap, which affects all buffers using the same major mode.
In this section, we describe how to rebind keys for the present
Emacs session. See the section called “Rebinding Keys in Your Init File”, for a description of how to
make key rebindings affect future Emacs sessions.

	M-x global-set-key RET key cmd RET
	Define key globally to run cmd.

	M-x local-set-key RET key cmd RET
	Define key locally (in the major mode now in effect) to run
cmd.

	M-x global-unset-key RET key
	Make key undefined in the global map.

	M-x local-unset-key RET key
	Make key undefined locally (in the major mode now in effect).

For example, the following binds C-z to the shell
command (see the section called “Interactive Subshell”), replacing the normal global
definition of C-z:

M-x global-set-key RET C-z shell RET

The global-set-key command reads the command name after the
key. After you press the key, a message like this appears so that you
can confirm that you are binding the key you want:

Set key C-z to command:

You can redefine function keys and mouse events in the same way; just
type the function key or click the mouse when it's time to specify the
key to rebind.
You can rebind a key that contains more than one event in the same
way. Emacs keeps reading the key to rebind until it is a complete key
(that is, not a prefix key). Thus, if you type C-f for
key, that's the end; it enters the minibuffer immediately to
read cmd. But if you type C-x, since that's a prefix, it
reads another character; if that is 4, another prefix character,
it reads one more character, and so on. For example,

M-x global-set-key RET C-x 4 $ spell-other-window RET

redefines C-x 4 $ to run the (fictitious) command
spell-other-window.
You can remove the global definition of a key with
global-unset-key. This makes the key undefined; if you
type it, Emacs will just beep. Similarly, local-unset-key makes
a key undefined in the current major mode keymap, which makes the global
definition (or lack of one) come back into effect in that major mode.
If you have redefined (or undefined) a key and you subsequently wish
to retract the change, undefining the key will not do the job—you need
to redefine the key with its standard definition. To find the name of
the standard definition of a key, go to a Fundamental mode buffer in a
fresh Emacs and use C-h c. The documentation of keys in this
manual also lists their command names.
If you want to prevent yourself from invoking a command by mistake, it
is better to disable the command than to undefine the key. A disabled
command is less work to invoke when you really want to.
See the section called “Disabling Commands”.

Rebinding Keys in Your Init File

 If you have a set of key bindings that you like to use all the time,
you can specify them in your initialization file by writing Lisp code.
See the section called “The Emacs Initialization File”, for a description of the initialization file.
 There are several ways to write a key binding using Lisp. The
simplest is to use the kbd macro, which converts a textual
representation of a key sequence—similar to how we have written key
sequences in this manual—into a form that can be passed as an
argument to global-set-key. For example, here's how to bind
C-z to the shell command (see the section called “Interactive Subshell”):

(global-set-key (kbd "C-z") 'shell)

The single-quote before the command name, shell, marks it as a
constant symbol rather than a variable. If you omit the quote, Emacs
would try to evaluate shell as a variable. This probably
causes an error; it certainly isn't what you want.
Here are some additional examples, including binding function keys
and mouse events:

(global-set-key (kbd "C-c y") 'clipboard-yank)
(global-set-key (kbd "C-M-q") 'query-replace)
(global-set-key (kbd "<f5>") 'flyspell-mode)
(global-set-key (kbd "C-<f5>") 'linum-mode)
(global-set-key (kbd "C-<right>") 'forward-sentence)
(global-set-key (kbd "<mouse-2>") 'mouse-save-then-kill)

Instead of using the kbd macro, you can use a Lisp string or
vector to specify the key sequence. Using a string is simpler, but
only works for ASCII characters and Meta-modified
ASCII characters. For example, here's how to bind C-x
M-l to make-symbolic-link (see the section called “Miscellaneous File Operations”):

(global-set-key "\C-x\M-l" 'make-symbolic-link)

To put TAB, RET, ESC, or DEL in the string,
use the Emacs Lisp escape sequences ‘\t’, ‘\r’, ‘\e’,
and ‘\d’ respectively. Here is an example which binds C-x
TAB to indent-rigidly (see Chapter 24, Indentation):

(global-set-key "\C-x\t" 'indent-rigidly)

When the key sequence includes function keys or mouse button events,
or non-ASCII characters such as C-= or H-a,
you can use a vector to specify the key sequence. Each element in the
vector stands for an input event; the elements are separated by spaces
and surrounded by a pair of square brackets. If a vector element is a
character, write it as a Lisp character constant: ‘?’ followed by
the character as it would appear in a string. Function keys are
represented by symbols (see the section called “Rebinding Function Keys”); simply write the
symbol's name, with no other delimiters or punctuation. Here are some
examples:

(global-set-key [?\C-=] 'make-symbolic-link)
(global-set-key [?\M-\C-=] 'make-symbolic-link)
(global-set-key [?\H-a] 'make-symbolic-link)
(global-set-key [f7] 'make-symbolic-link)
(global-set-key [C-mouse-1] 'make-symbolic-link)

You can use a vector for the simple cases too:

(global-set-key [?\C-z ?\M-l] 'make-symbolic-link)

Language and coding systems may cause problems with key bindings for
non-ASCII characters. See the section called “Non-ASCII Characters in Init Files”.
As described in the section called “Local Keymaps”, major modes and minor modes can
define local keymaps. These keymaps are constructed when the mode is
used for the first time in a session. If you wish to change one of
these keymaps, you must use the mode hook (see the section called “Hooks”).
 For example, Texinfo mode runs the hook texinfo-mode-hook.
Here's how you can use the hook to add local bindings for C-c n
and C-c p in Texinfo mode:

(add-hook 'texinfo-mode-hook
 '(lambda ()
 (define-key texinfo-mode-map "\C-cp"
 'backward-paragraph)
 (define-key texinfo-mode-map "\C-cn"
 'forward-paragraph)))

Modifier Keys

 The default key bindings in Emacs are set up so that modified
alphabetical characters are case-insensitive. In other words,
C-A does the same thing as C-a, and M-A does the
same thing as M-a. This concerns only alphabetical characters,
and does not apply to “shifted” versions of other keys; for
instance, C-@ is not the same as C-2.
A Control-modified alphabetical character is always considered
case-insensitive: Emacs always treats C-A as C-a,
C-B as C-b, and so forth. The reason for this is
historical.
For all other modifiers, you can make the modified alphabetical
characters case-sensitive when you customize Emacs. For instance, you
could make M-a and M-A run different commands.
Although only the Control and Meta modifier keys are
commonly used, Emacs supports three other modifier keys. These are
called Super, Hyper and Alt. Few terminals provide
ways to use these modifiers; the key labeled Alt on most
keyboards usually issues the Meta modifier, not Alt. The
standard key bindings in Emacs do not include any characters with
these modifiers. However, you can customize Emacs to assign meanings
to them. The modifier bits are labeled as ‘s-’, ‘H-’ and
‘A-’ respectively.
Even if your keyboard lacks these additional modifier keys, you can
enter it using C-x @: C-x @ h adds the “hyper” flag to
the next character, C-x @ s adds the “super” flag, and
C-x @ a adds the “alt” flag. For instance, C-x @ h
C-a is a way to enter Hyper-Control-a. (Unfortunately, there
is no way to add two modifiers by using C-x @ twice for the
same character, because the first one goes to work on the C-x.)

Rebinding Function Keys

Key sequences can contain function keys as well as ordinary
characters. Just as Lisp characters (actually integers) represent
keyboard characters, Lisp symbols represent function keys. If the
function key has a word as its label, then that word is also the name of
the corresponding Lisp symbol. Here are the conventional Lisp names for
common function keys:
	left, up, right, down
	Cursor arrow keys.

	begin, end, home, next, prior
	Other cursor repositioning keys.

	select, print, execute, backtab, insert, undo, redo, clearline, insertline, deleteline, insertchar, deletechar
	Miscellaneous function keys.

	f1, f2, … f35
	Numbered function keys (across the top of the keyboard).

	kp-add, kp-subtract, kp-multiply, kp-divide, kp-backtab, kp-space, kp-tab, kp-enter, kp-separator, kp-decimal, kp-equal
	Keypad keys (to the right of the regular keyboard), with names or punctuation.

	kp-0, kp-1, … kp-9
	Keypad keys with digits.

	kp-f1, kp-f2, kp-f3, kp-f4
	Keypad PF keys.

These names are conventional, but some systems (especially when using
X) may use different names. To make certain what symbol is used for a
given function key on your terminal, type C-h c followed by that
key.
See the section called “Rebinding Keys in Your Init File”, for examples of binding function keys.
 Many keyboards have a “numeric keypad” on the right hand side.
The numeric keys in the keypad double up as cursor motion keys,
toggled by a key labeled ‘Num Lock’. By default, Emacs
translates these keys to the corresponding keys in the main keyboard.
For example, when ‘Num Lock’ is on, the key labeled ‘8’ on
the numeric keypad produces kp-8, which is translated to
8; when ‘Num Lock’ is off, the same key produces
kp-up, which is translated to UP. If you rebind a key
such as 8 or UP, it affects the equivalent keypad key too.
However, if you rebind a ‘kp-’ key directly, that won't affect
its non-keypad equivalent. Note that the modified keys are not
translated: for instance, if you hold down the META key while
pressing the ‘8’ key on the numeric keypad, that generates
M-kp-8.
Emacs provides a convenient method for binding the numeric keypad
keys, using the variables keypad-setup,
keypad-numlock-setup, keypad-shifted-setup, and
keypad-numlock-shifted-setup. These can be found in the
‘keyboard’ customization group (see the section called “Easy Customization Interface”). You
can rebind the keys to perform other tasks, such as issuing numeric
prefix arguments.

Named ASCII Control Characters

TAB, RET, BS, LFD, ESC and DEL
started out as names for certain ASCII control characters,
used so often that they have special keys of their own. For instance,
TAB was another name for C-i. Later, users found it
convenient to distinguish in Emacs between these keys and the “same”
control characters typed with the CTRL key. Therefore, on most
modern terminals, they are no longer the same: TAB is different
from C-i.
Emacs can distinguish these two kinds of input if the keyboard does.
It treats the “special” keys as function keys named tab,
return, backspace, linefeed, escape, and
delete. These function keys translate automatically into the
corresponding ASCII characters if they have no
bindings of their own. As a result, neither users nor Lisp programs
need to pay attention to the distinction unless they care to.
If you do not want to distinguish between (for example) TAB and
C-i, make just one binding, for the ASCII character TAB
(octal code 011). If you do want to distinguish, make one binding for
this ASCII character, and another for the “function key” tab.
With an ordinary ASCII terminal, there is no way to distinguish
between TAB and C-i (and likewise for other such pairs),
because the terminal sends the same character in both cases.

Rebinding Mouse Buttons

 Emacs uses Lisp symbols to designate mouse buttons, too. The ordinary
mouse events in Emacs are click events; these happen when you
press a button and release it without moving the mouse. You can also
get drag events, when you move the mouse while holding the button
down. Drag events happen when you finally let go of the button.
The symbols for basic click events are mouse-1 for the leftmost
button, mouse-2 for the next, and so on. Here is how you can
redefine the second mouse button to split the current window:

(global-set-key [mouse-2] 'split-window-below)

The symbols for drag events are similar, but have the prefix
‘drag-’ before the word ‘mouse’. For example, dragging the
first button generates a drag-mouse-1 event.
You can also define bindings for events that occur when a mouse button
is pressed down. These events start with ‘down-’ instead of
‘drag-’. Such events are generated only if they have key bindings.
When you get a button-down event, a corresponding click or drag event
will always follow.
 If you wish, you can distinguish single, double, and triple clicks. A
double click means clicking a mouse button twice in approximately the
same place. The first click generates an ordinary click event. The
second click, if it comes soon enough, generates a double-click event
instead. The event type for a double-click event starts with
‘double-’: for example, double-mouse-3.
This means that you can give a special meaning to the second click at
the same place, but it must act on the assumption that the ordinary
single click definition has run when the first click was received.
This constrains what you can do with double clicks, but user interface
designers say that this constraint ought to be followed in any case. A
double click should do something similar to the single click, only
“more so”. The command for the double-click event should perform the
extra work for the double click.
If a double-click event has no binding, it changes to the
corresponding single-click event. Thus, if you don't define a
particular double click specially, it executes the single-click command
twice.
Emacs also supports triple-click events whose names start with
‘triple-’. Emacs does not distinguish quadruple clicks as event
types; clicks beyond the third generate additional triple-click events.
However, the full number of clicks is recorded in the event list, so
if you know Emacs Lisp you can distinguish if you really want to
(see See section ``Click Events'' in The Emacs Lisp Reference Manual).
We don't recommend distinct meanings for more than three clicks, but
sometimes it is useful for subsequent clicks to cycle through the same
set of three meanings, so that four clicks are equivalent to one
click, five are equivalent to two, and six are equivalent to three.
Emacs also records multiple presses in drag and button-down events.
For example, when you press a button twice, then move the mouse while
holding the button, Emacs gets a ‘double-drag-’ event. And at the
moment when you press it down for the second time, Emacs gets a
‘double-down-’ event (which is ignored, like all button-down
events, if it has no binding).
 The variable double-click-time specifies how much time can
elapse between clicks and still allow them to be grouped as a multiple
click. Its value is in units of milliseconds. If the value is
nil, double clicks are not detected at all. If the value is
t, then there is no time limit. The default is 500.
 The variable double-click-fuzz specifies how much the mouse
can move between clicks and still allow them to be grouped as a multiple
click. Its value is in units of pixels on windowed displays and in
units of 1/8 of a character cell on text-mode terminals; the default is
3.
The symbols for mouse events also indicate the status of the modifier
keys, with the usual prefixes ‘C-’, ‘M-’, ‘H-’,
‘s-’, ‘A-’ and ‘S-’. These always precede ‘double-’
or ‘triple-’, which always precede ‘drag-’ or ‘down-’.
A frame includes areas that don't show text from the buffer, such as
the mode line and the scroll bar. You can tell whether a mouse button
comes from a special area of the screen by means of dummy “prefix
keys”. For example, if you click the mouse in the mode line, you get
the prefix key mode-line before the ordinary mouse-button symbol.
Thus, here is how to define the command for clicking the first button in
a mode line to run scroll-up-command:

(global-set-key [mode-line mouse-1] 'scroll-up-command)

Here is the complete list of these dummy prefix keys and their
meanings:
	mode-line
	The mouse was in the mode line of a window.

	vertical-line
	The mouse was in the vertical line separating side-by-side windows. (If
you use scroll bars, they appear in place of these vertical lines.)

	vertical-scroll-bar
	The mouse was in a vertical scroll bar. (This is the only kind of
scroll bar Emacs currently supports.)

	menu-bar
	The mouse was in the menu bar.

	header-line
	The mouse was in a header line.

You can put more than one mouse button in a key sequence, but it isn't
usual to do so.

Disabling Commands

 Disabling a command means that invoking it interactively asks for
confirmation from the user. The purpose of disabling a command is to
prevent users from executing it by accident; we do this for commands
that might be confusing to the uninitiated.
Attempting to invoke a disabled command interactively in Emacs
displays a window containing the command's name, its documentation,
and some instructions on what to do immediately; then Emacs asks for
input saying whether to execute the command as requested, enable it
and execute it, or cancel. If you decide to enable the command, you
must then answer another question—whether to do this permanently, or
just for the current session. (Enabling permanently works by
automatically editing your initialization file.) You can also type
! to enable all commands, for the current session only.
The direct mechanism for disabling a command is to put a
non-nil disabled property on the Lisp symbol for the
command. Here is the Lisp program to do this:

(put 'delete-region 'disabled t)

If the value of the disabled property is a string, that string
is included in the message displayed when the command is used:

(put 'delete-region 'disabled
 "It's better to use `kill-region' instead.\n")

 You can make a command disabled either by editing the initialization
file directly, or with the command M-x disable-command, which
edits the initialization file for you. Likewise, M-x
enable-command edits the initialization file to enable a command
permanently. See the section called “The Emacs Initialization File”.
If Emacs was invoked with the -q or --no-init-file
options (see the section called “Initial Options”), it will not edit your
initialization file. Doing so could lose information because Emacs
has not read your initialization file.
Whether a command is disabled is independent of what key is used to
invoke it; disabling also applies if the command is invoked using
M-x. However, disabling a command has no effect on calling it
as a function from Lisp programs.

The Emacs Initialization File

 When Emacs is started, it normally tries to load a Lisp program from
an initialization file, or init file for short. This
file, if it exists, specifies how to initialize Emacs for you. Emacs
looks for your init file using the filenames ~/.emacs,
~/.emacs.el, or ~/.emacs.d/init.el; you can choose to
use any one of these three names (see the section called “How Emacs Finds Your Init File”). Here, ~/
stands for your home directory.
You can use the command line switch ‘-q’ to prevent loading
your init file, and ‘-u’ (or ‘--user’) to specify a
different user's init file (see the section called “Initial Options”).
 There can also be a default init file, which is the library
named default.el, found via the standard search path for
libraries. The Emacs distribution contains no such library; your site
may create one for local customizations. If this library exists, it is
loaded whenever you start Emacs (except when you specify ‘-q’).
But your init file, if any, is loaded first; if it sets
inhibit-default-init non-nil, then default is not
loaded.
 Your site may also have a site startup file; this is named
site-start.el, if it exists. Like default.el, Emacs
finds this file via the standard search path for Lisp libraries.
Emacs loads this library before it loads your init file. To inhibit
loading of this library, use the option ‘--no-site-file’.
See the section called “Initial Options”. We recommend against using
site-start.el for changes that some users may not like. It is
better to put them in default.el, so that users can more easily
override them.
You can place default.el and site-start.el in any of
the directories which Emacs searches for Lisp libraries. The variable
load-path (see the section called “Libraries of Lisp Code for Emacs”) specifies these directories.
Many sites put these files in the site-lisp subdirectory of the
Emacs installation directory, typically
/usr/local/share/emacs/site-lisp.
Byte-compiling your init file is not recommended (see See section ``Byte Compilation'' in the Emacs Lisp Reference Manual). It generally does not speed up startup very much, and often
leads to problems when you forget to recompile the file. A better
solution is to use the Emacs server to reduce the number of times you
have to start Emacs (see Chapter 37, Using Emacs as a Server). If your init file defines
many functions, consider moving them to a separate (byte-compiled)
file that you load in your init file.
If you are going to write actual Emacs Lisp programs that go beyond
minor customization, you should read the Emacs Lisp Reference Manual.
See See section ``Emacs Lisp'' in the Emacs Lisp Reference Manual.
Init File Syntax

The init file contains one or more Lisp expressions. Each of these
consists of a function name followed by arguments, all surrounded by
parentheses. For example, (setq fill-column 60) calls the
function setq to set the variable fill-column
(see the section called “Filling Text”) to 60.
You can set any Lisp variable with setq, but with certain
variables setq won't do what you probably want in the
.emacs file. Some variables automatically become buffer-local
when set with setq; what you want in .emacs is to set
the default value, using setq-default. Some customizable minor
mode variables do special things to enable the mode when you set them
with Customize, but ordinary setq won't do that; to enable the
mode in your .emacs file, call the minor mode command. The
following section has examples of both of these methods.
The second argument to setq is an expression for the new
value of the variable. This can be a constant, a variable, or a
function call expression. In .emacs, constants are used most
of the time. They can be:
	Numbers:
	Numbers are written in decimal, with an optional initial minus sign.

	Strings:
	Lisp string syntax is the same as C string syntax with a few extra
features. Use a double-quote character to begin and end a string constant.
In a string, you can include newlines and special characters literally.
But often it is cleaner to use backslash sequences for them: ‘\n’
for newline, ‘\b’ for backspace, ‘\r’ for carriage return,
‘\t’ for tab, ‘\f’ for formfeed (control-L), ‘\e’ for
escape, ‘\\’ for a backslash, ‘\"’ for a double-quote, or
‘\ooo’ for the character whose octal code is ooo.
Backslash and double-quote are the only characters for which backslash
sequences are mandatory.
‘\C-’ can be used as a prefix for a control character, as in
‘\C-s’ for ASCII control-S, and ‘\M-’ can be used as a prefix for
a Meta character, as in ‘\M-a’ for Meta-A or ‘\M-\C-a’ for
Control-Meta-A.
See the section called “Non-ASCII Characters in Init Files”, for information about including
non-ASCII in your init file.

	Characters:
	Lisp character constant syntax consists of a ‘?’ followed by
either a character or an escape sequence starting with ‘\’.
Examples: ?x, ?\n, ?\", ?\). Note that
strings and characters are not interchangeable in Lisp; some contexts
require one and some contexts require the other.
See the section called “Non-ASCII Characters in Init Files”, for information about binding commands to
keys which send non-ASCII characters.

	True:
	t stands for `true'.

	False:
	nil stands for `false'.

	Other Lisp objects:
	Write a single-quote (') followed by the Lisp object you want.

Init File Examples

Here are some examples of doing certain commonly desired things with
Lisp expressions:
	Add a directory to the variable load-path. You can then put
Lisp libraries that are not included with Emacs in this directory, and
load them with M-x load-library. See the section called “Libraries of Lisp Code for Emacs”.

(add-to-list 'load-path "/path/to/lisp/libraries")

	Make TAB in C mode just insert a tab if point is in the middle of a
line.

(setq c-tab-always-indent nil)

Here we have a variable whose value is normally t for `true'
and the alternative is nil for `false'.

	Make searches case sensitive by default (in all buffers that do not
override this).

(setq-default case-fold-search nil)

This sets the default value, which is effective in all buffers that do
not have local values for the variable (see the section called “Local Variables”). Setting
case-fold-search with setq affects only the current
buffer's local value, which is probably not what you want to do in an
init file.

	Specify your own email address, if Emacs can't figure it out correctly.

(setq user-mail-address "cheney@torture.gov")

Various Emacs packages, such as Message mode, consult
user-mail-address when they need to know your email address.
See the section called “Mail Header Fields”.

	Make Text mode the default mode for new buffers.

(setq-default major-mode 'text-mode)

Note that text-mode is used because it is the command for
entering Text mode. The single-quote before it makes the symbol a
constant; otherwise, text-mode would be treated as a variable
name.

	Set up defaults for the Latin-1 character set
which supports most of the languages of Western Europe.

(set-language-environment "Latin-1")

	Turn off Line Number mode, a global minor mode.

(line-number-mode 0)

	Turn on Auto Fill mode automatically in Text mode and related modes
(see the section called “Hooks”).

(add-hook 'text-mode-hook 'auto-fill-mode)

	Load the installed Lisp library named foo (actually a file
foo.elc or foo.el in a standard Emacs directory).

(load "foo")

When the argument to load is a relative file name, not starting
with ‘/’ or ‘~’, load searches the directories in
load-path (see the section called “Libraries of Lisp Code for Emacs”).

	Load the compiled Lisp file foo.elc from your home directory.

(load "~/foo.elc")

Here a full file name is used, so no searching is done.

	Tell Emacs to find the definition for the function myfunction
by loading a Lisp library named mypackage (i.e. a file
mypackage.elc or mypackage.el):

(autoload 'myfunction "mypackage" "Do what I say." t)

Here the string "Do what I say." is the function's
documentation string. You specify it in the autoload
definition so it will be available for help commands even when the
package is not loaded. The last argument, t, indicates that
this function is interactive; that is, it can be invoked interactively
by typing M-x myfunction RET or by binding it to a key.
If the function is not interactive, omit the t or use
nil.

	Rebind the key C-x l to run the function make-symbolic-link
(see the section called “Rebinding Keys in Your Init File”).

(global-set-key "\C-xl" 'make-symbolic-link)

or

(define-key global-map "\C-xl" 'make-symbolic-link)

Note once again the single-quote used to refer to the symbol
make-symbolic-link instead of its value as a variable.

	Do the same thing for Lisp mode only.

(define-key lisp-mode-map "\C-xl" 'make-symbolic-link)

	Redefine all keys which now run next-line in Fundamental mode
so that they run forward-line instead.

(substitute-key-definition 'next-line 'forward-line
 global-map)

	Make C-x C-v undefined.

(global-unset-key "\C-x\C-v")

One reason to undefine a key is so that you can make it a prefix.
Simply defining C-x C-v anything will make C-x C-v a
prefix, but C-x C-v must first be freed of its usual non-prefix
definition.

	Make ‘$’ have the syntax of punctuation in Text mode.
Note the use of a character constant for ‘$’.

(modify-syntax-entry ?\$ "." text-mode-syntax-table)

	Enable the use of the command narrow-to-region without confirmation.

(put 'narrow-to-region 'disabled nil)

	Adjusting the configuration to various platforms and Emacs versions.
Users typically want Emacs to behave the same on all systems, so the
same init file is right for all platforms. However, sometimes it
happens that a function you use for customizing Emacs is not available
on some platforms or in older Emacs versions. To deal with that
situation, put the customization inside a conditional that tests whether
the function or facility is available, like this:

(if (fboundp 'blink-cursor-mode)
 (blink-cursor-mode 0))

(if (boundp 'coding-category-utf-8)
 (set-coding-priority '(coding-category-utf-8)))

You can also simply disregard the errors that occur if the
function is not defined.

(condition case ()
 (set-face-background 'region "grey75")
 (error nil))

A setq on a variable which does not exist is generally
harmless, so those do not need a conditional.

Terminal-specific Initialization

Each terminal type can have a Lisp library to be loaded into Emacs when
it is run on that type of terminal. For a terminal type named
termtype, the library is called term/termtype and it is
found by searching the directories load-path as usual and trying the
suffixes ‘.elc’ and ‘.el’. Normally it appears in the
subdirectory term of the directory where most Emacs libraries are
kept.
The usual purpose of the terminal-specific library is to map the
escape sequences used by the terminal's function keys onto more
meaningful names, using input-decode-map (or
function-key-map before it). See the file
term/lk201.el for an example of how this is done. Many function
keys are mapped automatically according to the information in the
Termcap data base; the terminal-specific library needs to map only the
function keys that Termcap does not specify.
When the terminal type contains a hyphen, only the part of the name
before the first hyphen is significant in choosing the library name.
Thus, terminal types ‘aaa-48’ and ‘aaa-30-rv’ both use
the library term/aaa. The code in the library can use
(getenv "TERM") to find the full terminal type name.
 The library's name is constructed by concatenating the value of the
variable term-file-prefix and the terminal type. Your .emacs
file can prevent the loading of the terminal-specific library by setting
term-file-prefix to nil.
 Emacs runs the hook term-setup-hook at the end of
initialization, after both your .emacs file and any
terminal-specific library have been read in. Add hook functions to this
hook if you wish to override part of any of the terminal-specific
libraries and to define initializations for terminals that do not have a
library. See the section called “Hooks”.

How Emacs Finds Your Init File

Normally Emacs uses the environment variable HOME
(see HOME) to find .emacs; that's what
‘~’ means in a file name. If .emacs is not found inside
~/ (nor .emacs.el), Emacs looks for
~/.emacs.d/init.el (which, like ~/.emacs.el, can be
byte-compiled).
However, if you run Emacs from a shell started by su, Emacs
tries to find your own .emacs, not that of the user you are
currently pretending to be. The idea is that you should get your own
editor customizations even if you are running as the super user.
More precisely, Emacs first determines which user's init file to use.
It gets your user name from the environment variables LOGNAME and
USER; if neither of those exists, it uses effective user-ID.
If that user name matches the real user-ID, then Emacs uses HOME;
otherwise, it looks up the home directory corresponding to that user
name in the system's data base of users.

Non-ASCII Characters in Init Files

 Language and coding systems may cause problems if your init file
contains non-ASCII characters, such as accented letters, in
strings or key bindings.
If you want to use non-ASCII characters in your init file,
you should put a ‘-*-coding: coding-system-*-’ tag on
the first line of the init file, and specify a coding system that
supports the character(s) in question. See the section called “Recognizing Coding Systems”. This
is because the defaults for decoding non-ASCII text might
not yet be set up by the time Emacs reads those parts of your init
file which use such strings, possibly leading Emacs to decode those
strings incorrectly. You should then avoid adding Emacs Lisp code
that modifies the coding system in other ways, such as calls to
set-language-environment.
To bind non-ASCII keys, you must use a vector (see the section called “Rebinding Keys in Your Init File”). The string syntax cannot be used, since the
non-ASCII characters will be interpreted as meta keys. For
instance:

(global-set-key [?char] 'some-function)

Type C-q, followed by the key you want to bind, to insert char.
Warning: if you change the keyboard encoding, or change
between multibyte and unibyte mode, or anything that would alter which
code C-q would insert for that character, this key binding may
stop working. It is therefore advisable to use one and only one
coding system, for your init file as well as the files you edit. For
example, don't mix the ‘latin-1’ and ‘latin-9’ coding
systems.

Chapter 49. Quitting and Aborting

	C-g, C-BREAK (MS-DOS only)
	Quit: cancel running or partially typed command.

	C-]
	Abort innermost recursive editing level and cancel the command which
invoked it (abort-recursive-edit).

	ESC ESC ESC
	Either quit or abort, whichever makes sense (keyboard-escape-quit).

	M-x top-level
	Abort all recursive editing levels that are currently executing.

	C-/, C-x u, C-_
	Cancel a previously made change in the buffer contents (undo).

There are two ways of canceling a command before it has finished:
quitting with C-g, and aborting with C-] or
M-x top-level. Quitting cancels a partially typed command, or
one which is still running. Aborting exits a recursive editing level
and cancels the command that invoked the recursive edit
(see Chapter 43, Recursive Editing Levels).
 Quitting with C-g is the way to get rid of a partially typed
command, or a numeric argument that you don't want. Furthermore, if
you are in the middle of a command that is running, C-g stops
the command in a relatively safe way. For example, if you quit out of
a kill command that is taking a long time, either your text will
all still be in the buffer, or it will all be in the
kill ring, or maybe both. If the region is active, C-g
deactivates the mark, unless Transient Mark mode is off
(see the section called “Disabling Transient Mark Mode”). If you are in the middle of an
incremental search, C-g behaves specially; it may take two
successive C-g characters to get out of a search.
See the section called “Incremental Search”, for details.
On MS-DOS, the character C-BREAK serves as a quit character
like C-g. The reason is that it is not feasible, on MS-DOS, to
recognize C-g while a command is running, between interactions
with the user. By contrast, it is feasible to recognize
C-BREAK at all times.
See the section called “Keyboard Usage on MS-DOS”.
 C-g works by setting the variable quit-flag to t
the instant C-g is typed; Emacs Lisp checks this variable
frequently, and quits if it is non-nil. C-g is only
actually executed as a command if you type it while Emacs is waiting for
input. In that case, the command it runs is keyboard-quit.
On a text terminal, if you quit with C-g a second time before
the first C-g is recognized, you activate the “emergency
escape” feature and return to the shell. See the section called “Emergency Escape”.
 There are some situations where you cannot quit. When Emacs is
waiting for the operating system to do something, quitting is
impossible unless special pains are taken for the particular system
call within Emacs where the waiting occurs. We have done this for the
system calls that users are likely to want to quit from, but it's
possible you will encounter a case not handled. In one very common
case—waiting for file input or output using NFS—Emacs itself knows
how to quit, but many NFS implementations simply do not allow user
programs to stop waiting for NFS when the NFS server is hung.
 Aborting with C-] (abort-recursive-edit) is used to get
out of a recursive editing level and cancel the command which invoked
it. Quitting with C-g does not do this, and could not do this,
because it is used to cancel a partially typed command within the
recursive editing level. Both operations are useful. For example, if
you are in a recursive edit and type C-u 8 to enter a numeric
argument, you can cancel that argument with C-g and remain in the
recursive edit.
 The sequence ESC ESC ESC
(keyboard-escape-quit) can either quit or abort. (We defined
it this way because ESC means “get out” in many PC programs.)
It can cancel a prefix argument, clear a selected region, or get out
of a Query Replace, like C-g. It can get out of the minibuffer
or a recursive edit, like C-]. It can also get out of splitting
the frame into multiple windows, as with C-x 1. One thing it
cannot do, however, is stop a command that is running. That's because
it executes as an ordinary command, and Emacs doesn't notice it until
it is ready for the next command.
 The command M-x top-level is equivalent to “enough”
C-] commands to get you out of all the levels of recursive edits
that you are in; it also exits the minibuffer if it is active.
C-] gets you out one level at a time, but M-x top-level
goes out all levels at once. Both C-] and M-x top-level
are like all other commands, and unlike C-g, in that they take
effect only when Emacs is ready for a command. C-] is an
ordinary key and has its meaning only because of its binding in the
keymap. See Chapter 43, Recursive Editing Levels.
C-/ (undo) is not strictly speaking a way of canceling
a command, but you can think of it as canceling a command that already
finished executing. See the section called “Undo”, for more information about the undo
facility.

Chapter 50. Dealing with Emacs Trouble

This section describes how to recognize and deal with situations in
which Emacs does not work as you expect, such as keyboard code mixups,
garbled displays, running out of memory, and crashes and hangs.
See Chapter 51, Reporting Bugs, for what to do when you think you have found a bug in
Emacs.
If DEL Fails to Delete

 Every keyboard has a large key, usually labeled Backspace,
which is ordinarily used to erase the last character that you typed.
In Emacs, this key is supposed to be equivalent to DEL.
When Emacs starts up on a graphical display, it determines
automatically which key should be DEL. In some unusual cases,
Emacs gets the wrong information from the system, and Backspace
ends up deleting forwards instead of backwards.
Some keyboards also have a Delete key, which is ordinarily
used to delete forwards. If this key deletes backward in Emacs, that
too suggests Emacs got the wrong information—but in the opposite
sense.
On a text terminal, if you find that Backspace prompts for a
Help command, like Control-h, instead of deleting a character,
it means that key is actually sending the BS character. Emacs
ought to be treating BS as DEL, but it isn't.
 In all of those cases, the immediate remedy is the same: use the
command M-x normal-erase-is-backspace-mode. This toggles
between the two modes that Emacs supports for handling DEL, so
if Emacs starts in the wrong mode, this should switch to the right
mode. On a text terminal, if you want to ask for help when BS
is treated as DEL, use F1; C-? may also work, if it
sends character code 127.
To fix the problem in every Emacs session, put one of the following
lines into your initialization file (see the section called “The Emacs Initialization File”). For the
first case above, where Backspace deletes forwards instead of
backwards, use this line to make Backspace act as DEL:

(normal-erase-is-backspace-mode 0)

For the other two cases, use this line:

(normal-erase-is-backspace-mode 1)

 Another way to fix the problem for every Emacs session is to
customize the variable normal-erase-is-backspace: the value
t specifies the mode where BS or BACKSPACE is
DEL, and nil specifies the other mode. See the section called “Easy Customization Interface”.

Recursive Editing Levels

Recursive editing levels are important and useful features of Emacs, but
they can seem like malfunctions if you do not understand them.
If the mode line has square brackets ‘[…]’ around the
parentheses that contain the names of the major and minor modes, you
have entered a recursive editing level. If you did not do this on
purpose, or if you don't understand what that means, you should just
get out of the recursive editing level. To do so, type M-x
top-level. See Chapter 43, Recursive Editing Levels.

Garbage on the Screen

If the text on a text terminal looks wrong, the first thing to do is
see whether it is wrong in the buffer. Type C-l to redisplay
the entire screen. If the screen appears correct after this, the
problem was entirely in the previous screen update. (Otherwise, see
the following section.)
Display updating problems often result from an incorrect terminfo
entry for the terminal you are using. The file etc/TERMS in
the Emacs distribution gives the fixes for known problems of this
sort. INSTALL contains general advice for these problems in
one of its sections. If you seem to be using the right terminfo
entry, it is possible that there is a bug in the terminfo entry, or a
bug in Emacs that appears for certain terminal types.

Garbage in the Text

If C-l shows that the text is wrong, first type C-h l to
see what commands you typed to produce the observed results. Then try
undoing the changes step by step using C-x u, until it gets back
to a state you consider correct.
If a large portion of text appears to be missing at the beginning or
end of the buffer, check for the word ‘Narrow’ in the mode line.
If it appears, the text you don't see is probably still present, but
temporarily off-limits. To make it accessible again, type C-x n
w. See the section called “Narrowing”.

Running out of Memory

 If you get the error message ‘Virtual memory exceeded’, save
your modified buffers with C-x s. This method of saving them
has the smallest need for additional memory. Emacs keeps a reserve of
memory which it makes available when this error happens; that should
be enough to enable C-x s to complete its work. When the
reserve has been used, ‘!MEM FULL!’ appears at the beginning of
the mode line, indicating there is no more reserve.
Once you have saved your modified buffers, you can exit this Emacs
session and start another, or you can use M-x kill-some-buffers
to free space in the current Emacs job. If this frees up sufficient
space, Emacs will refill its memory reserve, and ‘!MEM FULL!’
will disappear from the mode line. That means you can safely go on
editing in the same Emacs session.
Do not use M-x buffer-menu to save or kill buffers when you run
out of memory, because the buffer menu needs a fair amount of memory
itself, and the reserve supply may not be enough.

Recovery After a Crash

If Emacs or the computer crashes, you can recover the files you were
editing at the time of the crash from their auto-save files. To do
this, start Emacs again and type the command M-x recover-session.
This command initially displays a buffer which lists interrupted
session files, each with its date. You must choose which session to
recover from. Typically the one you want is the most recent one. Move
point to the one you choose, and type C-c C-c.
Then recover-session considers each of the files that you
were editing during that session; for each such file, it asks whether
to recover that file. If you answer y for a file, it shows the
dates of that file and its auto-save file, then asks once again
whether to recover that file. For the second question, you must
confirm with yes. If you do, Emacs visits the file but gets the
text from the auto-save file.
When recover-session is done, the files you've chosen to
recover are present in Emacs buffers. You should then save them. Only
this—saving them—updates the files themselves.
As a last resort, if you had buffers with content which were not
associated with any files, or if the autosave was not recent enough to
have recorded important changes, you can use the
etc/emacs-buffer.gdb script with GDB (the GNU Debugger) to
retrieve them from a core dump–provided that a core dump was saved,
and that the Emacs executable was not stripped of its debugging
symbols.
As soon as you get the core dump, rename it to another name such as
core.emacs, so that another crash won't overwrite it.
To use this script, run gdb with the file name of your Emacs
executable and the file name of the core dump, e.g. ‘gdb
/usr/bin/emacs core.emacs’. At the (gdb) prompt, load the
recovery script: ‘source /usr/src/emacs/etc/emacs-buffer.gdb’.
Then type the command ybuffer-list to see which buffers are
available. For each buffer, it lists a buffer number. To save a
buffer, use ysave-buffer; you specify the buffer number, and
the file name to write that buffer into. You should use a file name
which does not already exist; if the file does exist, the script does
not make a backup of its old contents.

Emergency Escape

On text terminals, the emergency escape feature suspends Emacs
immediately if you type C-g a second time before Emacs can
actually respond to the first one by quitting. This is so you can
always get out of GNU Emacs no matter how badly it might be hung.
When things are working properly, Emacs recognizes and handles the
first C-g so fast that the second one won't trigger emergency
escape. However, if some problem prevents Emacs from handling the
first C-g properly, then the second one will get you back to the
shell.
When you resume Emacs after a suspension caused by emergency escape,
it asks two questions before going back to what it had been doing:

Auto-save? (y or n)
Abort (and dump core)? (y or n)

Answer each one with y or n followed by RET.
Saying y to ‘Auto-save?’ causes immediate auto-saving of
all modified buffers in which auto-saving is enabled. Saying n
skips this.
Saying y to ‘Abort (and dump core)?’ causes Emacs to
crash, dumping core. This is to enable a wizard to figure out why
Emacs was failing to quit in the first place. Execution does not
continue after a core dump.
If you answer this question n, Emacs execution resumes. With
luck, Emacs will ultimately do the requested quit. If not, each
subsequent C-g invokes emergency escape again.
If Emacs is not really hung, just slow, you may invoke the double
C-g feature without really meaning to. Then just resume and
answer n to both questions, and you will get back to the former
state. The quit you requested will happen by and by.
Emergency escape is active only for text terminals. On graphical
displays, you can use the mouse to kill Emacs or switch to another
program.
On MS-DOS, you must type C-BREAK (twice) to cause
emergency escape—but there are cases where it won't work, when
system call hangs or when Emacs is stuck in a tight loop in C code.

Chapter 51. Reporting Bugs

 If you think you have found a bug in Emacs, please report it. We
cannot promise to fix it, or always to agree that it is a bug, but we
certainly want to hear about it. The same applies for new features
you would like to see added. The following sections will help you to
construct an effective bug report.
Reading Existing Bug Reports and Known Problems

Before reporting a bug, if at all possible please check to see if it
is already known about. Indeed, it may already have been fixed in a
later release of Emacs, or in the development version. Here is a list
of the main places you can read about known issues:
	The etc/PROBLEMS file; type C-h C-p to read it. This
file contains a list of particularly well-known issues that have been
encountered in compiling, installing and running Emacs. Often, there
are suggestions for workarounds and solutions.

	Some additional user-level problems can be found in See section ``Bugs and problems'' in GNU Emacs FAQ.

	The GNU Bug Tracker at http://debbugs.gnu.org. Emacs bugs are
filed in the tracker under the ‘emacs’ package. The tracker
records information about the status of each bug, the initial bug
report, and the follow-up messages by the bug reporter and Emacs
developers. You can search for bugs by subject, severity, and other
criteria.
Instead of browsing the bug tracker as a webpage, you can browse it
from Emacs using the debbugs package, which can be downloaded
via the Package Menu (see Chapter 47, Emacs Lisp Packages). This package provides the
command M-x debbugs-gnu to list bugs, and M-x
debbugs-gnu-search to search for a specific bug.

	The ‘bug-gnu-emacs’ mailing list (also available as the newsgroup
‘gnu.emacs.bug’). You can read the list archives at
http://lists.gnu.org/mailman/listinfo/bug-gnu-emacs. This list
works as a “mirror” of the Emacs bug reports and follow-up messages
which are sent to the bug tracker. It also contains old bug reports
from before the bug tracker was introduced (in early 2008).
If you like, you can subscribe to the list. Be aware that its purpose
is to provide the Emacs maintainers with information about bugs and
feature requests, so reports may contain fairly large amounts of data;
spectators should not complain about this.

	The ‘emacs-pretest-bug’ mailing list. This list is no longer
used, and is mainly of historical interest. At one time, it was used
for bug reports in development (i.e., not yet released) versions of
Emacs. You can read the archives for 2003 to mid 2007 at
http://lists.gnu.org/archive/html/emacs-pretest-bug/. Nowadays,
it is an alias for ‘bug-gnu-emacs’.

	The ‘emacs-devel’ mailing list. Sometimes people report bugs to
this mailing list. This is not the main purpose of the list, however,
and it is much better to send bug reports to the bug list. You should
not feel obliged to read this list before reporting a bug.

When Is There a Bug

If Emacs accesses an invalid memory location (“segmentation
fault”), or exits with an operating system error message that
indicates a problem in the program (as opposed to something like
“disk full”), then it is certainly a bug.
If the Emacs display does not correspond properly to the contents of
the buffer, then it is a bug. But you should check that features like
buffer narrowing (see the section called “Narrowing”), which can hide parts of the
buffer or change how it is displayed, are not responsible.
Taking forever to complete a command can be a bug, but you must make
sure that it is really Emacs's fault. Some commands simply take a
long time. Type C-g (C-BREAK on MS-DOS) and then
C-h l to see whether the input Emacs received was what you
intended to type; if the input was such that you know it should
have been processed quickly, report a bug. If you don't know whether
the command should take a long time, find out by looking in the manual
or by asking for assistance.
If a command you are familiar with causes an Emacs error message in a
case where its usual definition ought to be reasonable, it is probably a
bug.
If a command does the wrong thing, that is a bug. But be sure you
know for certain what it ought to have done. If you aren't familiar
with the command, it might actually be working right. If in doubt,
read the command's documentation (see the section called “Help by Command or Variable Name”).
A command's intended definition may not be the best possible
definition for editing with. This is a very important sort of
problem, but it is also a matter of judgment. Also, it is easy to
come to such a conclusion out of ignorance of some of the existing
features. It is probably best not to complain about such a problem
until you have checked the documentation in the usual ways, feel
confident that you understand it, and know for certain that what you
want is not available. Ask other Emacs users, too. If you are not
sure what the command is supposed to do after a careful reading of the
manual, check the index and glossary for any terms that may be
unclear.
If after careful rereading of the manual you still do not understand
what the command should do, that indicates a bug in the manual, which
you should report. The manual's job is to make everything clear to
people who are not Emacs experts—including you. It is just as
important to report documentation bugs as program bugs.
If the built-in documentation for a function or variable disagrees
with the manual, one of them must be wrong; that is a bug.

Understanding Bug Reporting

 When you decide that there is a bug, it is important to report it
and to report it in a way which is useful. What is most useful is an
exact description of what commands you type, starting with the shell
command to run Emacs, until the problem happens.
The most important principle in reporting a bug is to report
facts. Hypotheses and verbal descriptions are no substitute
for the detailed raw data. Reporting the facts is straightforward,
but many people strain to posit explanations and report them instead
of the facts. If the explanations are based on guesses about how
Emacs is implemented, they will be useless; meanwhile, lacking the
facts, we will have no real information about the bug. If you want to
actually debug the problem, and report explanations that are
more than guesses, that is useful—but please include the raw facts
as well.
For example, suppose that you type C-x C-f /glorp/baz.ugh
RET, visiting a file which (you know) happens to be rather
large, and Emacs displays ‘I feel pretty today’. The bug report
would need to provide all that information. You should not assume
that the problem is due to the size of the file and say, “I visited a
large file, and Emacs displayed ‘I feel pretty today’.” This is
what we mean by “guessing explanations”. The problem might be due
to the fact that there is a ‘z’ in the file name. If this is so,
then when we got your report, we would try out the problem with some
“large file”, probably with no ‘z’ in its name, and not see any
problem. There is no way we could guess that we should try visiting a
file with a ‘z’ in its name.
You should not even say “visit a file” instead of C-x C-f.
Similarly, rather than saying “if I have three characters on the
line”, say “after I type RET A B C RET C-p”, if
that is the way you entered the text.
If possible, try quickly to reproduce the bug by invoking Emacs with
emacs -Q (so that Emacs starts with no initial
customizations; see the section called “Initial Options”), and repeating the steps that
you took to trigger the bug. If you can reproduce the bug this way,
that rules out bugs in your personal customizations. Then your bug
report should begin by stating that you started Emacs with
emacs -Q, followed by the exact sequence of steps for
reproducing the bug. If possible, inform us of the exact contents of
any file that is needed to reproduce the bug.
Some bugs are not reproducible from emacs -Q; some are not
easily reproducible at all. In that case, you should report what you
have—but, as before, please stick to the raw facts about what you
did to trigger the bug the first time.

Checklist for Bug Reports

 Before reporting a bug, first try to see if the problem has already
been reported (see the section called “Reading Existing Bug Reports and Known Problems”).
If you are able to, try the latest release of Emacs to see if the
problem has already been fixed. Even better is to try the latest
development version. We recognize that this is not easy for some
people, so do not feel that you absolutely must do this before making
a report.
 The best way to write a bug report for Emacs is to use the command
M-x report-emacs-bug. This sets up a mail buffer
(see Chapter 32, Sending Mail) and automatically inserts some of the
essential information. However, it cannot supply all the necessary
information; you should still read and follow the guidelines below, so
you can enter the other crucial information by hand before you send
the message. You may feel that some of the information inserted by
M-x report-emacs-bug is not relevant, but unless you are
absolutely sure it is best to leave it, so that the developers can
decide for themselves.
When you have finished writing your report, type C-c C-c and it
will be sent to the Emacs maintainers at <bug-gnu-emacs@gnu.org>.
(If you want to suggest an improvement or new feature, use the same
address.) If you cannot send mail from inside Emacs, you can copy the
text of your report to your normal mail client (if your system
supports it, you can type C-c m to have Emacs do this for you)
and send it to that address. Or you can simply send an email to that
address describing the problem.
Your report will be sent to the ‘bug-gnu-emacs’ mailing list, and
stored in the GNU Bug Tracker at http://debbugs.gnu.org. Please
include a valid reply email address, in case we need to ask you for
more information about your report. Submissions are moderated, so
there may be a delay before your report appears.
You do not need to know how the Gnu Bug Tracker works in order to
report a bug, but if you want to, you can read the tracker's online
documentation to see the various features you can use.
All mail sent to the ‘bug-gnu-emacs’ mailing list is also
gatewayed to the ‘gnu.emacs.bug’ newsgroup. The reverse is also
true, but we ask you not to post bug reports (or replies) via the
newsgroup. It can make it much harder to contact you if we need to ask
for more information, and it does not integrate well with the bug
tracker.
If your data is more than 500,000 bytes, please don't include it
directly in the bug report; instead, offer to send it on request, or
make it available by ftp and say where.
To enable maintainers to investigate a bug, your report
should include all these things:
	The version number of Emacs. Without this, we won't know whether there is any
point in looking for the bug in the current version of GNU Emacs.
M-x report-emacs-bug includes this information automatically,
but if you are not using that command for your report you can get the
version number by typing M-x emacs-version RET. If that
command does not work, you probably have something other than GNU
Emacs, so you will have to report the bug somewhere else.

	The type of machine you are using, and the operating system name and
version number (again, automatically included by M-x
report-emacs-bug). M-x emacs-version RET provides this
information too. Copy its output from the *Messages* buffer,
so that you get it all and get it accurately.

	The operands given to the configure command when Emacs was
installed (automatically included by M-x report-emacs-bug).

	A complete list of any modifications you have made to the Emacs source.
(We may not have time to investigate the bug unless it happens in an
unmodified Emacs. But if you've made modifications and you don't tell
us, you are sending us on a wild goose chase.)
Be precise about these changes. A description in English is not
enough—send a context diff for them.
Adding files of your own, or porting to another machine, is a
modification of the source.

	Details of any other deviations from the standard procedure for installing
GNU Emacs.

	The complete text of any files needed to reproduce the bug.
If you can tell us a way to cause the problem without visiting any files,
please do so. This makes it much easier to debug. If you do need files,
make sure you arrange for us to see their exact contents. For example, it
can matter whether there are spaces at the ends of lines, or a
newline after the last line in the buffer (nothing ought to care whether
the last line is terminated, but try telling the bugs that).

	The precise commands we need to type to reproduce the bug. If at all
possible, give a full recipe for an Emacs started with the ‘-Q’
option (see the section called “Initial Options”). This bypasses your personal
customizations.
One way to record the input to Emacs precisely is to write a dribble
file. To start the file, use the M-x open-dribble-file
RET command. From then on, Emacs copies all your input to the
specified dribble file until the Emacs process is killed.

	For possible display bugs, the terminal type (the value of environment
variable TERM), the complete termcap entry for the terminal from
/etc/termcap (since that file is not identical on all machines),
and the output that Emacs actually sent to the terminal.
The way to collect the terminal output is to execute the Lisp expression

(open-termscript "~/termscript")

using M-: or from the *scratch* buffer just after
starting Emacs. From then on, Emacs copies all terminal output to the
specified termscript file as well, until the Emacs process is killed.
If the problem happens when Emacs starts up, put this expression into
your Emacs initialization file so that the termscript file will be
open when Emacs displays the screen for the first time.
Be warned: it is often difficult, and sometimes impossible, to fix a
terminal-dependent bug without access to a terminal of the type that
stimulates the bug.

	If non-ASCII text or internationalization is relevant, the locale that
was current when you started Emacs. On GNU/Linux and Unix systems, or
if you use a Posix-style shell such as Bash, you can use this shell
command to view the relevant values:

echo LC_ALL=$LC_ALL LC_COLLATE=$LC_COLLATE LC_CTYPE=$LC_CTYPE \
 LC_MESSAGES=$LC_MESSAGES LC_TIME=$LC_TIME LANG=$LANG

Alternatively, use the locale command, if your system has it,
to display your locale settings.
You can use the M-! command to execute these commands from
Emacs, and then copy the output from the *Messages* buffer into
the bug report. Alternatively, M-x getenv RET LC_ALL
RET will display the value of LC_ALL in the echo area, and
you can copy its output from the *Messages* buffer.

	A description of what behavior you observe that you believe is
incorrect. For example, “The Emacs process gets a fatal signal”, or,
“The resulting text is as follows, which I think is wrong.”
Of course, if the bug is that Emacs gets a fatal signal, then one can't
miss it. But if the bug is incorrect text, the maintainer might fail to
notice what is wrong. Why leave it to chance?
Even if the problem you experience is a fatal signal, you should still
say so explicitly. Suppose something strange is going on, such as, your
copy of the source is out of sync, or you have encountered a bug in the
C library on your system. (This has happened!) Your copy might crash
and the copy here might not. If you said to expect a crash, then
when Emacs here fails to crash, we would know that the bug was not
happening. If you don't say to expect a crash, then we would not know
whether the bug was happening—we would not be able to draw any
conclusion from our observations.

	If the bug is that the Emacs Manual or the Emacs Lisp Reference Manual
fails to describe the actual behavior of Emacs, or that the text is
confusing, copy in the text from the online manual which you think is
at fault. If the section is small, just the section name is enough.

	If the manifestation of the bug is an Emacs error message, it is
important to report the precise text of the error message, and a
backtrace showing how the Lisp program in Emacs arrived at the error.
To get the error message text accurately, copy it from the
Messages buffer into the bug report. Copy all of it, not just
part.
To make a backtrace for the error, use M-x toggle-debug-on-error
before the error happens (that is to say, you must give that command
and then make the bug happen). This causes the error to start the Lisp
debugger, which shows you a backtrace. Copy the text of the
debugger's backtrace into the bug report. See See section ``The Lisp Debugger'' in the Emacs Lisp Reference Manual, for information on
debugging Emacs Lisp programs with the Edebug package.
This use of the debugger is possible only if you know how to make the
bug happen again. If you can't make it happen again, at least copy
the whole error message.
If Emacs appears to be stuck in an infinite loop or in a very long
operation, typing C-g with the variable debug-on-quit
non-nil will start the Lisp debugger and show a backtrace.
This backtrace is useful for debugging such long loops, so if you can
produce it, copy it into the bug report.
If you cannot get Emacs to respond to C-g (e.g., because
inhibit-quit is set), then you can try sending the signal
specified by debug-on-event (default SIGUSR2) from outside
Emacs to cause it to enter the debugger.

	Check whether any programs you have loaded into the Lisp world,
including your initialization file, set any variables that may affect
the functioning of Emacs. Also, see whether the problem happens in a
freshly started Emacs without loading your initialization file (start
Emacs with the -Q switch to prevent loading the init files).
If the problem does not occur then, you must report the precise
contents of any programs that you must load into the Lisp world in
order to cause the problem to occur.

	If the problem does depend on an init file or other Lisp programs that
are not part of the standard Emacs system, then you should make sure it
is not a bug in those programs by complaining to their maintainers
first. After they verify that they are using Emacs in a way that is
supposed to work, they should report the bug.

	If you wish to mention something in the GNU Emacs source, show the line
of code with a few lines of context. Don't just give a line number.
The line numbers in the development sources don't match those in your
sources. It would take extra work for the maintainers to determine what
code is in your version at a given line number, and we could not be
certain.

	Additional information from a C debugger such as GDB might enable
someone to find a problem on a machine which he does not have available.
If you don't know how to use GDB, please read the GDB manual—it is not
very long, and using GDB is easy. You can find the GDB distribution,
including the GDB manual in online form, in most of the same places you
can find the Emacs distribution. To run Emacs under GDB, you should
switch to the src subdirectory in which Emacs was compiled, then
do ‘gdb emacs’. It is important for the directory src to be
current so that GDB will read the .gdbinit file in this
directory.
However, you need to think when you collect the additional information
if you want it to show what causes the bug.
For example, many people send just a backtrace, but that is not very
useful by itself. A simple backtrace with arguments often conveys
little about what is happening inside GNU Emacs, because most of the
arguments listed in the backtrace are pointers to Lisp objects. The
numeric values of these pointers have no significance whatever; all that
matters is the contents of the objects they point to (and most of the
contents are themselves pointers).
To provide useful information, you need to show the values of Lisp
objects in Lisp notation. Do this for each variable which is a Lisp
object, in several stack frames near the bottom of the stack. Look at
the source to see which variables are Lisp objects, because the debugger
thinks of them as integers.
To show a variable's value in Lisp syntax, first print its value, then
use the user-defined GDB command pr to print the Lisp object in
Lisp syntax. (If you must use another debugger, call the function
debug_print with the object as an argument.) The pr
command is defined by the file .gdbinit, and it works only if you
are debugging a running process (not with a core dump).
To make Lisp errors stop Emacs and return to GDB, put a breakpoint at
Fsignal.
For a short listing of Lisp functions running, type the GDB
command xbacktrace.
The file .gdbinit defines several other commands that are useful
for examining the data types and contents of Lisp objects. Their names
begin with ‘x’. These commands work at a lower level than
pr, and are less convenient, but they may work even when
pr does not, such as when debugging a core dump or when Emacs has
had a fatal signal.
More detailed advice and other useful techniques for debugging Emacs
are available in the file etc/DEBUG in the Emacs distribution.
That file also includes instructions for investigating problems
whereby Emacs stops responding (many people assume that Emacs is
“hung”, whereas in fact it might be in an infinite loop).
To find the file etc/DEBUG in your Emacs installation, use the
directory name stored in the variable data-directory.

Here are some things that are not necessary in a bug report:
	A description of the envelope of the bug—this is not necessary for a
reproducible bug.
Often people who encounter a bug spend a lot of time investigating
which changes to the input file will make the bug go away and which
changes will not affect it.
This is often time-consuming and not very useful, because the way we
will find the bug is by running a single example under the debugger
with breakpoints, not by pure deduction from a series of examples.
You might as well save time by not searching for additional examples.
It is better to send the bug report right away, go back to editing,
and find another bug to report.
Of course, if you can find a simpler example to report instead of
the original one, that is a convenience. Errors in the output will be
easier to spot, running under the debugger will take less time, etc.
However, simplification is not vital; if you can't do this or don't have
time to try, please report the bug with your original test case.

	A core dump file.
Debugging the core dump might be useful, but it can only be done on
your machine, with your Emacs executable. Therefore, sending the core
dump file to the Emacs maintainers won't be useful. Above all, don't
include the core file in an email bug report! Such a large message
can be extremely inconvenient.

	A system-call trace of Emacs execution.
System-call traces are very useful for certain special kinds of
debugging, but in most cases they give little useful information. It is
therefore strange that many people seem to think that the way to
report information about a crash is to send a system-call trace. Perhaps
this is a habit formed from experience debugging programs that don't
have source code or debugging symbols.
In most programs, a backtrace is normally far, far more informative than
a system-call trace. Even in Emacs, a simple backtrace is generally
more informative, though to give full information you should supplement
the backtrace by displaying variable values and printing them as Lisp
objects with pr (see above).

	A patch for the bug.
A patch for the bug is useful if it is a good one. But don't omit the
other information that a bug report needs, such as the test case, on the
assumption that a patch is sufficient. We might see problems with your
patch and decide to fix the problem another way, or we might not
understand it at all. And if we can't understand what bug you are
trying to fix, or why your patch should be an improvement, we mustn't
install it.
See the section called “Sending Patches for GNU Emacs”, for guidelines on how to make it easy for us to
understand and install your patches.

	A guess about what the bug is or what it depends on.
Such guesses are usually wrong. Even experts can't guess right about
such things without first using the debugger to find the facts.

Sending Patches for GNU Emacs

 If you would like to write bug fixes or improvements for GNU Emacs,
that is very helpful. When you send your changes, please follow these
guidelines to make it easy for the maintainers to use them. If you
don't follow these guidelines, your information might still be useful,
but using it will take extra work. Maintaining GNU Emacs is a lot of
work in the best of circumstances, and we can't keep up unless you do
your best to help.
	Send an explanation with your changes of what problem they fix or what
improvement they bring about. For a fix for an existing bug, it is
best to reply to the relevant discussion on the ‘bug-gnu-emacs’
list, or the bug entry in the GNU Bug Tracker at
http://debbugs.gnu.org. Explain why your change fixes the bug.

	Always include a proper bug report for the problem you think you have
fixed. We need to convince ourselves that the change is right before
installing it. Even if it is correct, we might have trouble
understanding it if we don't have a way to reproduce the problem.

	Include all the comments that are appropriate to help people reading the
source in the future understand why this change was needed.

	Don't mix together changes made for different reasons.
Send them individually.
If you make two changes for separate reasons, then we might not want to
install them both. We might want to install just one. If you send them
all jumbled together in a single set of diffs, we have to do extra work
to disentangle them—to figure out which parts of the change serve
which purpose. If we don't have time for this, we might have to ignore
your changes entirely.
If you send each change as soon as you have written it, with its own
explanation, then two changes never get tangled up, and we can consider
each one properly without any extra work to disentangle them.

	Send each change as soon as that change is finished. Sometimes people
think they are helping us by accumulating many changes to send them all
together. As explained above, this is absolutely the worst thing you
could do.
Since you should send each change separately, you might as well send it
right away. That gives us the option of installing it immediately if it
is important.

	Use ‘diff -c’ to make your diffs. Diffs without context are hard
to install reliably. More than that, they are hard to study; we must
always study a patch to decide whether we want to install it. Unidiff
format is better than contextless diffs, but not as easy to read as
‘-c’ format.
If you have GNU diff, use ‘diff -c -F'^[_a-zA-Z0-9$]+ *('’ when
making diffs of C code. This shows the name of the function that each
change occurs in.

	Avoid any ambiguity as to which is the old version and which is the new.
Please make the old version the first argument to diff, and the new
version the second argument. And please give one version or the other a
name that indicates whether it is the old version or your new changed
one.

	Write the change log entries for your changes. This is both to save us
the extra work of writing them, and to help explain your changes so we
can understand them.
The purpose of the change log is to show people where to find what was
changed. So you need to be specific about what functions you changed;
in large functions, it's often helpful to indicate where within the
function the change was.
On the other hand, once you have shown people where to find the change,
you need not explain its purpose in the change log. Thus, if you add a
new function, all you need to say about it is that it is new. If you
feel that the purpose needs explaining, it probably does—but put the
explanation in comments in the code. It will be more useful there.
Please read the ChangeLog files in the src and
lisp directories to see what sorts of information to put in,
and to learn the style that we use. See the section called “Change Logs”.

	When you write the fix, keep in mind that we can't install a change that
would break other systems. Please think about what effect your change
will have if compiled on another type of system.
Sometimes people send fixes that might be an improvement in
general—but it is hard to be sure of this. It's hard to install
such changes because we have to study them very carefully. Of course,
a good explanation of the reasoning by which you concluded the change
was correct can help convince us.
The safest changes are changes to the configuration files for a
particular machine. These are safe because they can't create new bugs
on other machines.
Please help us keep up with the workload by designing the patch in a
form that is clearly safe to install.

Chapter 52. Contributing to Emacs Development

If you would like to help pretest Emacs releases to assure they work
well, or if you would like to work on improving Emacs, please contact
the maintainers at <emacs-devel@gnu.org>. A pretester
should be prepared to investigate bugs as well as report them. If you'd
like to work on improving Emacs, please ask for suggested projects or
suggest your own ideas.
If you have already written an improvement, please tell us about it. If
you have not yet started work, it is useful to contact
<emacs-devel@gnu.org> before you start; it might be
possible to suggest ways to make your extension fit in better with the
rest of Emacs.
The development version of Emacs can be downloaded from the
repository where it is actively maintained by a group of developers.
See the Emacs project page
http://savannah.gnu.org/projects/emacs/ for details.
For more information on how to contribute, see the etc/CONTRIBUTE
file in the Emacs distribution.

Chapter 53. How To Get Help with GNU Emacs

If you need help installing, using or changing GNU Emacs, there are two
ways to find it:
	Send a message to the mailing list
<help-gnu-emacs@gnu.org>, or post your request on
newsgroup gnu.emacs.help. (This mailing list and newsgroup
interconnect, so it does not matter which one you use.)

	Look in the service directory for someone who might help you for a fee.
The service directory is found in the file named etc/SERVICE in the
Emacs distribution.

Appendix A. GNU GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright © 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this

license document, but changing it is not allowed.

Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom
to share and change all versions of a program—to make sure it remains
free software for all its users. We, the Free Software Foundation,
use the GNU General Public License for most of our software; it
applies also to any other work released this way by its authors. You
can apply it to your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you
have certain responsibilities if you distribute copies of the
software, or if you modify it: responsibilities to respect the freedom
of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too,
receive or can get the source code. And you must show them these
terms so they know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the
manufacturer can do so. This is fundamentally incompatible with the
aim of protecting users' freedom to change the software. The
systematic pattern of such abuse occurs in the area of products for
individuals to use, which is precisely where it is most unacceptable.
Therefore, we have designed this version of the GPL to prohibit the
practice for those products. If such problems arise substantially in
other domains, we stand ready to extend this provision to those
domains in future versions of the GPL, as needed to protect the
freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish
to avoid the special danger that patents applied to a free program
could make it effectively proprietary. To prevent this, the GPL
assures that patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
	Definitions.
“This License” refers to version 3 of the GNU General Public License.
“Copyright” also means copyright-like laws that apply to other kinds
of works, such as semiconductor masks.
“The Program” refers to any copyrightable work licensed under this
License. Each licensee is addressed as “you”. “Licensees” and
“recipients” may be individuals or organizations.
To “modify” a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of
an exact copy. The resulting work is called a “modified version” of
the earlier work or a work “based on” the earlier work.
A “covered work” means either the unmodified Program or a work based
on the Program.
To “propagate” a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To “convey” a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user
through a computer network, with no transfer of a copy, is not
conveying.
An interactive user interface displays “Appropriate Legal Notices” to
the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

	Source Code.
The “source code” for a work means the preferred form of the work for
making modifications to it. “Object code” means any non-source form
of a work.
A “Standard Interface” means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The “System Libraries” of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
“Major Component”, in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The “Corresponding Source” for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users can
regenerate automatically from other parts of the Corresponding Source.
The Corresponding Source for a work in source code form is that same
work.

	Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not convey,
without conditions so long as your license otherwise remains in force.
You may convey covered works to others for the sole purpose of having
them make modifications exclusively for you, or provide you with
facilities for running those works, provided that you comply with the
terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for
you must do so exclusively on your behalf, under your direction and
control, on terms that prohibit them from making any copies of your
copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under the
conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.

	Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such
circumvention is effected by exercising rights under this License with
respect to the covered work, and you disclaim any intention to limit
operation or modification of the work as a means of enforcing, against
the work's users, your or third parties' legal rights to forbid
circumvention of technological measures.

	Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

	Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these
conditions:
	The work must carry prominent notices stating that you modified it,
and giving a relevant date.

	The work must carry prominent notices stating that it is released
under this License and any conditions added under section 7. This
requirement modifies the requirement in section 4 to “keep intact all
notices”.

	You must license the entire work, as a whole, under this License to
anyone who comes into possession of a copy. This License will
therefore apply, along with any applicable section 7 additional terms,
to the whole of the work, and all its parts, regardless of how they
are packaged. This License gives no permission to license the work in
any other way, but it does not invalidate such permission if you have
separately received it.

	If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your work
need not make them do so.

A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
“aggregate” if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

	Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms of
sections 4 and 5, provided that you also convey the machine-readable
Corresponding Source under the terms of this License, in one of these
ways:
	Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium customarily
used for software interchange.

	Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a written
offer, valid for at least three years and valid for as long as you
offer spare parts or customer support for that product model, to give
anyone who possesses the object code either (1) a copy of the
Corresponding Source for all the software in the product that is
covered by this License, on a durable physical medium customarily used
for software interchange, for a price no more than your reasonable
cost of physically performing this conveying of source, or (2) access
to copy the Corresponding Source from a network server at no charge.

	Convey individual copies of the object code with a copy of the written
offer to provide the Corresponding Source. This alternative is
allowed only occasionally and noncommercially, and only if you
received the object code with such an offer, in accord with subsection
6b.

	Convey the object code by offering access from a designated place
(gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to copy
the object code is a network server, the Corresponding Source may be
on a different server (operated by you or a third party) that supports
equivalent copying facilities, provided you maintain clear directions
next to the object code saying where to find the Corresponding Source.
Regardless of what server hosts the Corresponding Source, you remain
obligated to ensure that it is available for as long as needed to
satisfy these requirements.

	Convey the object code using peer-to-peer transmission, provided you
inform other peers where the object code and Corresponding Source of
the work are being offered to the general public at no charge under
subsection 6d.

A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A “User Product” is either (1) a “consumer product”, which means any
tangible personal property which is normally used for personal,
family, or household purposes, or (2) anything designed or sold for
incorporation into a dwelling. In determining whether a product is a
consumer product, doubtful cases shall be resolved in favor of
coverage. For a particular product received by a particular user,
“normally used” refers to a typical or common use of that class of
product, regardless of the status of the particular user or of the way
in which the particular user actually uses, or expects or is expected
to use, the product. A product is a consumer product regardless of
whether the product has substantial commercial, industrial or
non-consumer uses, unless such uses represent the only significant
mode of use of the product.
“Installation Information” for a User Product means any methods,
procedures, authorization keys, or other information required to
install and execute modified versions of a covered work in that User
Product from a modified version of its Corresponding Source. The
information must suffice to ensure that the continued functioning of
the modified object code is in no case prevented or interfered with
solely because modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or
updates for a work that has been modified or installed by the
recipient, or for the User Product in which it has been modified or
installed. Access to a network may be denied when the modification
itself materially and adversely affects the operation of the network
or violates the rules and protocols for communication across the
network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.

	Additional Terms.
“Additional permissions” are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders
of that material) supplement the terms of this License with terms:
	Disclaiming warranty or limiting liability differently from the terms
of sections 15 and 16 of this License; or

	Requiring preservation of specified reasonable legal notices or author
attributions in that material or in the Appropriate Legal Notices
displayed by works containing it; or

	Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or

	Limiting the use for publicity purposes of names of licensors or
authors of the material; or

	Declining to grant rights under trademark law for use of some trade
names, trademarks, or service marks; or

	Requiring indemnification of licensors and authors of that material by
anyone who conveys the material (or modified versions of it) with
contractual assumptions of liability to the recipient, for any
liability that these contractual assumptions directly impose on those
licensors and authors.

All other non-permissive additional terms are considered “further
restrictions” within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions; the
above requirements apply either way.

	Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your license
from a particular copyright holder is reinstated (a) provisionally,
unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder
fails to notify you of the violation by some reasonable means prior to
60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.

	Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or run
a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

	Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An “entity transaction” is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.

	Patents.
A “contributor” is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's “contributor version”.
A contributor's “essential patent claims” are all patent claims owned
or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, “control” includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a “patent license” is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To “grant” such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. “Knowingly relying” means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is “discriminatory” if it does not include within the
scope of its coverage, prohibits the exercise of, or is conditioned on
the non-exercise of one or more of the rights that are specifically
granted under this License. You may not convey a covered work if you
are a party to an arrangement with a third party that is in the
business of distributing software, under which you make payment to the
third party based on the extent of your activity of conveying the
work, and under which the third party grants, to any of the parties
who would receive the covered work from you, a discriminatory patent
license (a) in connection with copies of the covered work conveyed by
you (or copies made from those copies), or (b) primarily for and in
connection with specific products or compilations that contain the
covered work, unless you entered into that arrangement, or that patent
license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

	No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey
a covered work so as to satisfy simultaneously your obligations under
this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree
to terms that obligate you to collect a royalty for further conveying
from those to whom you convey the Program, the only way you could
satisfy both those terms and this License would be to refrain entirely
from conveying the Program.

	Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.

	Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions
of the GNU General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program
specifies that a certain numbered version of the GNU General Public
License “or any later version” applies to it, you have the option of
following the terms and conditions either of that numbered version or
of any later version published by the Free Software Foundation. If
the Program does not specify a version number of the GNU General
Public License, you may choose any version ever published by the Free
Software Foundation.
If the Program specifies that a proxy can decide which future versions
of the GNU General Public License can be used, that proxy's public
statement of acceptance of a version permanently authorizes you to
choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

	Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE
DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

	Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR
CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT
NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER
PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

	Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these
terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the “copyright” line and a pointer to where the full notice is found.

one line to give the program's name and a brief idea of what it does.
Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or (at
your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:

program Copyright (C) year name of author
This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show
the appropriate parts of the General Public License. Of course, your
program's commands might be different; for a GUI interface, you would
use an “about box”.
You should also get your employer (if you work as a programmer) or school,
if any, to sign a “copyright disclaimer” for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
http://www.gnu.org/licenses/.
The GNU General Public License does not permit incorporating your
program into proprietary programs. If your program is a subroutine
library, you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use
the GNU Lesser General Public License instead of this License. But
first, please read http://www.gnu.org/philosophy/why-not-lgpl.html.

Appendix B. GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008, 2009 Free Software Foundation, Inc.

http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

	PREAMBLE
The purpose of this License is to make a manual, textbook, or other
functional and useful document free in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible
for modifications made by others.
This License is a kind of “copyleft”, which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft
license designed for free software.
We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

	APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Document”, below,
refers to any such manual or work. Any member of the public is a
licensee, and is addressed as “you”. You accept the license if you
copy, modify or distribute the work in a way requiring permission
under copyright law.
A “Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.
A “Secondary Section” is a named appendix or a front-matter section
of the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document's overall
subject (or to related matters) and contains nothing that could fall
directly within that overall subject. (Thus, if the Document is in
part a textbook of mathematics, a Secondary Section may not explain
any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding
them.
The “Invariant Sections” are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice
that says that the Document is released under this License. If a
section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.
The “Cover Texts” are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.
A “Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the
general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to thwart
or discourage subsequent modification by readers is not Transparent.
An image format is not Transparent if used for any substantial amount
of text. A copy that is not “Transparent” is called “Opaque”.
Examples of suitable formats for Transparent copies include plain
ascii without markup, Texinfo input format, LaTeX input
format, SGML or XML using a publicly available
DTD, and standard-conforming simple HTML,
PostScript or PDF designed for human modification. Examples
of transparent image formats include PNG, XCF and
JPG. Opaque formats include proprietary formats that can be
read and edited only by proprietary word processors, SGML or
XML for which the DTD and/or processing tools are
not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for
output purposes only.
The “Title Page” means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page. For works in
formats which do not have any title page as such, “Title Page” means
the text near the most prominent appearance of the work's title,
preceding the beginning of the body of the text.
The “publisher” means any person or entity that distributes copies
of the Document to the public.
A section “Entitled XYZ” means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following
text that translates XYZ in another language. (Here XYZ stands for a
specific section name mentioned below, such as “Acknowledgements”,
“Dedications”, “Endorsements”, or “History”.) To “Preserve the Title”
of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.
The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has
no effect on the meaning of this License.

	VERBATIM COPYING
You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.
You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

	COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document's license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and
visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent
pages.
If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a computer-network location from which the general network-using
public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that
edition to the public.
It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.

	MODIFICATIONS
You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy
of it. In addition, you must do these things in the Modified Version:
	Use in the Title Page (and on the covers, if any) a title distinct
from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section
of the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.

	List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

	State on the Title page the name of the publisher of the
Modified Version, as the publisher.

	Preserve all the copyright notices of the Document.

	Add an appropriate copyright notice for your modifications
adjacent to the other copyright notices.

	Include, immediately after the copyright notices, a license notice
giving the public permission to use the Modified Version under the
terms of this License, in the form shown in the Addendum below.

	Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document's license notice.

	Include an unaltered copy of this License.

	Preserve the section Entitled “History”, Preserve its Title, and add
to it an item stating at least the title, year, new authors, and
publisher of the Modified Version as given on the Title Page. If
there is no section Entitled “History” in the Document, create one
stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

	Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the “History” section.
You may omit a network location for a work that was published at
least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

	For any section Entitled “Acknowledgements” or “Dedications”, Preserve
the Title of the section, and preserve in the section all the
substance and tone of each of the contributor acknowledgements and/or
dedications given therein.

	Preserve all the Invariant Sections of the Document,
unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section titles.

	Delete any section Entitled “Endorsements”. Such a section
may not be included in the Modified Version.

	Do not retitle any existing section to be Entitled “Endorsements” or
to conflict in title with any Invariant Section.

	Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version's license notice.
These titles must be distinct from any other section titles.
You may add a section Entitled “Endorsements”, provided it contains
nothing but endorsements of your Modified Version by various
parties—for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.
You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list
of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.
The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.

	COMBINING DOCUMENTS
You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its
license notice, and that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.
In the combination, you must combine any sections Entitled “History”
in the various original documents, forming one section Entitled
“History”; likewise combine any sections Entitled “Acknowledgements”,
and any sections Entitled “Dedications”. You must delete all
sections Entitled “Endorsements.”

	COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this
License in the various documents with a single copy that is included in
the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.
You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this
License into the extracted document, and follow this License in all
other respects regarding verbatim copying of that document.

	AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an “aggregate” if the copyright
resulting from the compilation is not used to limit the legal rights
of the compilation's users beyond what the individual works permit.
When the Document is included in an aggregate, this License does not
apply to the other works in the aggregate which are not themselves
derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one half of
the entire aggregate, the Document's Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole
aggregate.

	TRANSLATION
Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions
of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice
or disclaimer, the original version will prevail.
If a section in the Document is Entitled “Acknowledgements”,
“Dedications”, or “History”, the requirement (section 4) to Preserve
its Title (section 1) will typically require changing the actual
title.

	TERMINATION
You may not copy, modify, sublicense, or distribute the Document
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense, or distribute it is void, and
will automatically terminate your rights under this License.
However, if you cease all violation of this License, then your license
from a particular copyright holder is reinstated (a) provisionally,
unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder
fails to notify you of the violation by some reasonable means prior to
60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, receipt of a copy of some or all of the same material does
not give you any rights to use it.

	FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions
of the GNU Free Documentation License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License “or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation. If the Document
specifies that a proxy can decide which future versions of this
License can be used, that proxy's public statement of acceptance of a
version permanently authorizes you to choose that version for the
Document.

	RELICENSING
“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any
World Wide Web server that publishes copyrightable works and also
provides prominent facilities for anybody to edit those works. A
public wiki that anybody can edit is an example of such a server. A
“Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC
site.
“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0
license published by Creative Commons Corporation, a not-for-profit
corporation with a principal place of business in San Francisco,
California, as well as future copyleft versions of that license
published by that same organization.
“Incorporate” means to publish or republish a Document, in whole or
in part, as part of another Document.
An MMC is “eligible for relicensing” if it is licensed under this
License, and if all works that were first published under this License
somewhere other than this MMC, and subsequently incorporated in whole
or in part into the MMC, (1) had no cover texts or invariant sections,
and (2) were thus incorporated prior to November 1, 2008.
The operator of an MMC Site may republish an MMC contained in the site
under CC-BY-SA on the same site at any time before August 1, 2009,
provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents
To use this License in a document you have written, include a copy of
the License in the document and put the following copyright and
license notices just after the title page:

 Copyright (C) year your name.
 Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU Free Documentation License, Version 1.3
 or any later version published by the Free Software Foundation;
 with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
 Texts. A copy of the license is included in the section entitled ``GNU
 Free Documentation License''.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the “with…Texts.” line with this:

 with the Invariant Sections being list their titles, with
 the Front-Cover Texts being list, and with the Back-Cover Texts
 being list.

If you have Invariant Sections without Cover Texts, or some other
combination of the three, merge those two alternatives to suit the
situation.
If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of
free software license, such as the GNU General Public License,
to permit their use in free software.

Appendix C. Command Line Arguments for Emacs Invocation

 Emacs supports command line arguments to request various actions
when invoking Emacs. These are for compatibility with other editors
and for sophisticated activities. We don't recommend using them for
ordinary editing (See Chapter 37, Using Emacs as a Server, for a way to access an existing
Emacs job from the command line).
Arguments starting with ‘-’ are options, and so is
‘+linenum’. All other arguments specify files to visit.
Emacs visits the specified files while it starts up. The last file
specified on the command line becomes the current buffer; the other
files are also visited in other buffers. As with most programs, the
special argument ‘--’ says that all subsequent arguments are file
names, not options, even if they start with ‘-’.
Emacs command options can specify many things, such as the size and
position of the X window Emacs uses, its colors, and so on. A few
options support advanced usage, such as running Lisp functions on files
in batch mode. The sections of this chapter describe the available
options, arranged according to their purpose.
There are two ways of writing options: the short forms that start with
a single ‘-’, and the long forms that start with ‘--’. For
example, ‘-d’ is a short form and ‘--display’ is the
corresponding long form.
The long forms with ‘--’ are easier to remember, but longer to
type. However, you don't have to spell out the whole option name; any
unambiguous abbreviation is enough. When a long option takes an
argument, you can use either a space or an equal sign to separate the
option name and the argument. Thus, you can write either
‘--display sugar-bombs:0.0’ or ‘--display=sugar-bombs:0.0’.
We recommend an equal sign because it makes the relationship clearer,
and the tables below always show an equal sign.
 Most options specify how to initialize Emacs, or set parameters for
the Emacs session. We call them initial options. A few options
specify things to do, such as loading libraries or calling Lisp
functions. These are called action options. These and file
names together are called action arguments. The action
arguments are stored as a list of strings in the variable
command-line-args. (Actually, when Emacs starts up,
command-line-args contains all the arguments passed from the
command line; during initialization, the initial arguments are removed
from this list when they are processed, leaving only the action
arguments.)
Action Arguments

Here is a table of action arguments:
	‘file’
	

	‘--file=file’
	

	‘--find-file=file’
	

	‘--visit=file’
	Visit file using find-file. See the section called “Visiting Files”.
When Emacs starts up, it displays the startup buffer in one window,
and the buffer visiting file in another window
(see Chapter 20, Multiple Windows). If you supply more than one file argument, the
displayed file is the last one specified on the command line; the
other files are visited but their buffers are not shown.
If the startup buffer is disabled (see Chapter 5, Entering Emacs), then
file is visited in a single window if one file argument was
supplied; with two file arguments, Emacs displays the files in two
different windows; with more than two file argument, Emacs displays
the last file specified in one window, plus a Buffer Menu in a
different window (see the section called “Operating on Several Buffers”). To inhibit using the
Buffer Menu for this, change the variable
inhibit-startup-buffer-menu to t.

	‘+linenum file’
	Visit file using find-file, then go to line number
linenum in it.

	‘+linenum:columnnum file’
	Visit file using find-file, then go to line number
linenum and put point at column number columnnum.

	‘-l file’
	

	‘--load=file’
	Load a Lisp library named file with the function load.
If file is not an absolute file name, Emacs first looks for it
in the current directory, then in the directories listed in
load-path (see the section called “Libraries of Lisp Code for Emacs”).
Warning: If previous command-line arguments have visited
files, the current directory is the directory of the last file
visited.

	‘-L dir’
	

	‘--directory=dir’
	Add directory dir to the variable load-path.

	‘-f function’
	

	‘--funcall=function’
	Call Lisp function function. If it is an interactive function
(a command), it reads the arguments interactively just as if you had
called the same function with a key sequence. Otherwise, it calls the
function with no arguments.

	‘--eval=expression’
	

	‘--execute=expression’
	Evaluate Lisp expression expression.

	‘--insert=file’
	Insert the contents of file into the *scratch* buffer
(see the section called “Lisp Interaction Buffers”). This is like what M-x insert-file
does (see the section called “Miscellaneous File Operations”).

	‘--kill’
	Exit from Emacs without asking for confirmation.

	‘--help’
	Print a usage message listing all available options, then exit
successfully.

	‘--version’
	Print Emacs version, then exit successfully.

Initial Options

The initial options specify parameters for the Emacs session. This
section describes the more general initial options; some other options
specifically related to the X Window System appear in the following
sections.
Some initial options affect the loading of the initialization file.
Normally, Emacs first loads site-start.el if it exists, then
your own initialization file if it exists, and finally the default
initialization file default.el if it exists (see the section called “The Emacs Initialization File”). Certain options prevent loading of some of these files or
substitute other files for them.
	‘-chdir directory’
	

	‘--chdir=directory’
	Change to directory before doing anything else. This is mainly used
by session management in X so that Emacs starts in the same directory as it
stopped. This makes desktop saving and restoring easier.

	‘-t device’
	

	‘--terminal=device’
	Use device as the device for terminal input and output. This
option implies ‘--no-window-system’.

	‘-d display’
	

	‘--display=display’
	Use the X Window System and use the display named display to open
the initial Emacs frame. See the section called “Specifying the Display Name”, for more details.

	‘-nw’
	

	‘--no-window-system’
	Don't communicate directly with the window system, disregarding the
DISPLAY environment variable even if it is set. This means that
Emacs uses the terminal from which it was launched for all its display
and input.

	‘-batch’
	

	‘--batch’
	Run Emacs in batch mode. Batch mode is used for running
programs written in Emacs Lisp from shell scripts, makefiles, and so
on. To invoke a Lisp program, use the ‘-batch’ option in
conjunction with one or more of ‘-l’, ‘-f’ or ‘--eval’
(see the section called “Action Arguments”). See the section called “Command Argument Example”, for an example.
In batch mode, Emacs does not display the text being edited, and the
standard terminal interrupt characters such as C-z and C-c
have their usual effect. Emacs functions that normally print a
message in the echo area will print to either the standard output
stream (stdout) or the standard error stream (stderr)
instead. (To be precise, functions like prin1, princ
and print print to stdout, while message and
error print to stderr.) Functions that normally read
keyboard input from the minibuffer take their input from the
terminal's standard input stream (stdin) instead.
‘--batch’ implies ‘-q’ (do not load an initialization file),
but site-start.el is loaded nonetheless. It also causes Emacs
to exit after processing all the command options. In addition, it
disables auto-saving except in buffers for which auto-saving is
explicitly requested.

	‘--script file’
	Run Emacs in batch mode, like ‘--batch’, and then read and
execute the Lisp code in file.
The normal use of this option is in executable script files that run
Emacs. They can start with this text on the first line

#!/usr/bin/emacs --script

which will invoke Emacs with ‘--script’ and supply the name of
the script file as file. Emacs Lisp then treats the ‘#!’
on this first line as a comment delimiter.

	‘-q’
	

	‘--no-init-file’
	Do not load any initialization file (see the section called “The Emacs Initialization File”). When Emacs
is invoked with this option, the Customize facility does not allow
options to be saved (see the section called “Easy Customization Interface”). This option does
not disable loading site-start.el.

	‘--no-site-file’
	Do not load site-start.el (see the section called “The Emacs Initialization File”). The ‘-Q’
option does this too, but other options like ‘-q’ do not.

	‘--no-site-lisp’
	Do not include the site-lisp directories in load-path
(see the section called “The Emacs Initialization File”). The ‘-Q’ option does this too.

	‘--no-splash’
	Do not display a startup screen. You can also achieve this effect by
setting the variable inhibit-startup-screen to non-nil
in your initialization file (see Chapter 5, Entering Emacs).

	‘-Q’
	

	‘--quick’
	Start emacs with minimum customizations. This is similar to using ‘-q’,
‘--no-site-file’, ‘--no-site-lisp’, and ‘--no-splash’
together. This also stops Emacs from processing X resources by
setting inhibit-x-resources to t (see the section called “X Resources”).

	‘-daemon’
	

	‘--daemon’
	Start Emacs as a daemon—after Emacs starts up, it starts the Emacs
server and disconnects from the terminal without opening any frames.
You can then use the emacsclient command to connect to Emacs
for editing. See Chapter 37, Using Emacs as a Server, for information about using Emacs
as a daemon.

	‘-daemon=SERVER-NAME’
	Start emacs in background as a daemon, and use SERVER-NAME as
the server name.

	‘--no-desktop’
	Do not reload any saved desktop. See Chapter 42, Saving Emacs Sessions.

	‘-u user’
	

	‘--user=user’
	Load user's initialization file instead of your
own[18].

	‘--debug-init’
	Enable the Emacs Lisp debugger for errors in the init file.
See See section ``Entering the Debugger on an Error'' in The GNU Emacs Lisp Reference Manual.

[18] This option has no effect on MS-Windows.

Command Argument Example

Here is an example of using Emacs with arguments and options. It
assumes you have a Lisp program file called hack-c.el which, when
loaded, performs some useful operation on the current buffer, expected
to be a C program.

emacs --batch foo.c -l hack-c -f save-buffer >& log

This says to visit foo.c, load hack-c.el (which makes
changes in the visited file), save foo.c (note that
save-buffer is the function that C-x C-s is bound to), and
then exit back to the shell (because of ‘--batch’). ‘--batch’
also guarantees there will be no problem redirecting output to
log, because Emacs will not assume that it has a display terminal
to work with.

Environment Variables

 The environment is a feature of the operating system; it
consists of a collection of variables with names and values. Each
variable is called an environment variable; environment variable
names are case-sensitive, and it is conventional to use upper case
letters only. The values are all text strings.
What makes the environment useful is that subprocesses inherit the
environment automatically from their parent process. This means you
can set up an environment variable in your login shell, and all the
programs you run (including Emacs) will automatically see it.
Subprocesses of Emacs (such as shells, compilers, and version control
programs) inherit the environment from Emacs, too.
 Inside Emacs, the command M-x getenv reads the name of an
environment variable, and prints its value in the echo area. M-x
setenv sets a variable in the Emacs environment, and C-u M-x
setenv removes a variable. (Environment variable substitutions with
‘$’ work in the value just as in file names; see ???.) The variable initial-environment stores the initial
environment inherited by Emacs.
The way to set environment variables outside of Emacs depends on the
operating system, and especially the shell that you are using. For
example, here's how to set the environment variable ORGANIZATION
to ‘not very much’ using Bash:

export ORGANIZATION="not very much"

and here's how to do it in csh or tcsh:

setenv ORGANIZATION "not very much"

When Emacs is using the X Window System, various environment
variables that control X work for Emacs as well. See the X
documentation for more information.
General Variables

Here is an alphabetical list of environment variables that have
special meanings in Emacs. Most of these variables are also used by
some other programs. Emacs does not require any of these environment
variables to be set, but it uses their values if they are set.
	CDPATH
	Used by the cd command to search for the directory you specify,
when you specify a relative directory name.

	EMACSDATA
	Directory for the architecture-independent files that come with Emacs.
This is used to initialize the Lisp variable data-directory.

	EMACSDOC
	Directory for the documentation string file, which is used to
initialize the Lisp variable doc-directory.

	EMACSLOADPATH
	A colon-separated list of directories[19] to search for
Emacs Lisp files. If set, it overrides the usual initial value of the
load-path variable (see the section called “Libraries of Lisp Code for Emacs”).

	EMACSPATH
	A colon-separated list of directories to search for executable files.
If set, Emacs uses this in addition to PATH (see below) when
initializing the variable exec-path (see Chapter 36, Running Shell Commands from Emacs).

	EMAIL
	Your email address; used to initialize the Lisp variable
user-mail-address, which the Emacs mail interface puts into the
‘From’ header of outgoing messages (see the section called “Mail Header Fields”).

	ESHELL
	Used for shell-mode to override the SHELL environment variable
(see the section called “Interactive Subshell”).

	HISTFILE
	The name of the file that shell commands are saved in between logins.
This variable defaults to ~/.bash_history if you use Bash, to
~/.sh_history if you use ksh, and to ~/.history
otherwise.

	HOME
	The location of your files in the directory tree; used for
expansion of file names starting with a tilde (~). On MS-DOS,
it defaults to the directory from which Emacs was started, with
‘/bin’ removed from the end if it was present. On Windows, the
default value of HOME is the Application Data
subdirectory of the user profile directory (normally, this is
C:/Documents and Settings/username/Application Data,
where username is your user name), though for backwards
compatibility C:/ will be used instead if a .emacs file
is found there.

	HOSTNAME
	The name of the machine that Emacs is running on.

	INCPATH
	A colon-separated list of directories. Used by the complete package
to search for files.

	INFOPATH
	A colon-separated list of directories in which to search for Info files.

	LC_ALL, LC_COLLATE, LC_CTYPE, LC_MESSAGES, LC_MONETARY, LC_NUMERIC, LC_TIME, LANG
	The user's preferred locale. The locale has six categories, specified
by the environment variables LC_COLLATE for sorting,
LC_CTYPE for character encoding, LC_MESSAGES for system
messages, LC_MONETARY for monetary formats, LC_NUMERIC for
numbers, and LC_TIME for dates and times. If one of these
variables is not set, the category defaults to the value of the
LANG environment variable, or to the default ‘C’ locale if
LANG is not set. But if LC_ALL is specified, it overrides
the settings of all the other locale environment variables.
On MS-Windows, if LANG is not already set in the environment
when Emacs starts, Emacs sets it based on the system-wide default
language, which you can set in the ‘Regional Settings’ Control Panel
on some versions of MS-Windows.
The value of the LC_CTYPE category is
matched against entries in locale-language-names,
locale-charset-language-names, and
locale-preferred-coding-systems, to select a default language
environment and coding system. See the section called “Language Environments”.

	LOGNAME
	The user's login name. See also USER.

	MAIL
	The name of your system mail inbox.

	MH
	Name of setup file for the mh system. See See section ``MH-E'' in The Emacs Interface to MH.

	NAME
	Your real-world name. This is used to initialize the variable
user-full-name (see the section called “Mail Header Fields”).

	NNTPSERVER
	The name of the news server. Used by the mh and Gnus packages.

	ORGANIZATION
	The name of the organization to which you belong. Used for setting the
`Organization:' header in your posts from the Gnus package.

	PATH
	A colon-separated list of directories containing executable files.
This is used to initialize the variable exec-path
(see Chapter 36, Running Shell Commands from Emacs).

	PWD
	If set, this should be the default directory when Emacs was started.

	REPLYTO
	If set, this specifies an initial value for the variable
mail-default-reply-to (see the section called “Mail Header Fields”).

	SAVEDIR
	The name of a directory in which news articles are saved by default.
Used by the Gnus package.

	SHELL
	The name of an interpreter used to parse and execute programs run from
inside Emacs.

	SMTPSERVER
	The name of the outgoing mail server. This is used to initialize the
variable smtpmail-smtp-server (see the section called “Mail Sending”).

	TERM
	The type of the terminal that Emacs is using. This variable must be
set unless Emacs is run in batch mode. On MS-DOS, it defaults to
‘internal’, which specifies a built-in terminal emulation that
handles the machine's own display.

	TERMCAP
	The name of the termcap library file describing how to program the
terminal specified by TERM. This defaults to
/etc/termcap.

	TMPDIR, TMP, TEMP
	These environment variables are used to initialize the variable
temporary-file-directory, which specifies a directory in which
to put temporary files (see the section called “Backup Files”). Emacs tries to use
TMPDIR first; if that is unset, it tries TMP, then
TEMP, and finally /tmp. But on MS-Windows and MS-DOS,
Emacs tries TEMP, then TMPDIR, then TMP, and finally
c:/temp.

	TZ
	This specifies the current time zone and possibly also daylight
saving time information. On MS-DOS, if TZ is not set in the
environment when Emacs starts, Emacs defines a default value as
appropriate for the country code returned by DOS. On MS-Windows, Emacs
does not use TZ at all.

	USER
	The user's login name. See also LOGNAME. On MS-DOS, this
defaults to ‘root’.

	VERSION_CONTROL
	Used to initialize the version-control variable (see the section called “Single or Numbered Backups”).

Miscellaneous Variables

These variables are used only on particular configurations:
	COMSPEC
	On MS-DOS and MS-Windows, the name of the command interpreter to use
when invoking batch files and commands internal to the shell. On MS-DOS
this is also used to make a default value for the SHELL environment
variable.

	NAME
	On MS-DOS, this variable defaults to the value of the USER
variable.

	EMACSTEST
	On MS-DOS, this specifies a file to use to log the operation of the
internal terminal emulator. This feature is useful for submitting bug
reports.

	EMACSCOLORS
	On MS-DOS, this specifies the screen colors. It is useful to set them
this way, since otherwise Emacs would display the default colors
momentarily when it starts up.
The value of this variable should be the two-character encoding of the
foreground (the first character) and the background (the second
character) colors of the default face. Each character should be the
hexadecimal code for the desired color on a standard PC text-mode
display. For example, to get blue text on a light gray background,
specify ‘EMACSCOLORS=17’, since 1 is the code of the blue color and
7 is the code of the light gray color.
The PC display usually supports only eight background colors. However,
Emacs switches the DOS display to a mode where all 16 colors can be used
for the background, so all four bits of the background color are
actually used.

	PRELOAD_WINSOCK
	On MS-Windows, if you set this variable, Emacs will load and initialize
the network library at startup, instead of waiting until the first
time it is required.

	emacs_dir
	On MS-Windows, emacs_dir is a special environment variable, which
indicates the full path of the directory in which Emacs is installed.
If Emacs is installed in the standard directory structure, it
calculates this value automatically. It is not much use setting this
variable yourself unless your installation is non-standard, since
unlike other environment variables, it will be overridden by Emacs at
startup. When setting other environment variables, such as
EMACSLOADPATH, you may find it useful to use emacs_dir
rather than hard-coding an absolute path. This allows multiple
versions of Emacs to share the same environment variable settings, and
it allows you to move the Emacs installation directory, without
changing any environment or registry settings.

The MS-Windows System Registry

On MS-Windows, the installation program addpm.exe adds
values for emacs_dir, EMACSLOADPATH, EMACSDATA,
EMACSPATH, EMACSDOC, SHELL and TERM to the
HKEY_LOCAL_MACHINE section of the system registry, under
/Software/GNU/Emacs. It does this because there is no standard
place to set environment variables across different versions of
Windows. Running addpm.exe is no longer strictly necessary
in recent versions of Emacs, but if you are upgrading from an older
version, running addpm.exe ensures that you do not have
older registry entries from a previous installation, which may not be
compatible with the latest version of Emacs.
When Emacs starts, as well as checking the environment, it also checks
the System Registry for those variables and for HOME, LANG
and PRELOAD_WINSOCK.
To determine the value of those variables, Emacs goes through the
following procedure. First, the environment is checked. If the
variable is not found there, Emacs looks for registry keys by that
name under /Software/GNU/Emacs; first in the
HKEY_CURRENT_USER section of the registry, and if not found
there, in the HKEY_LOCAL_MACHINE section. Finally, if Emacs
still cannot determine the values, compiled-in defaults are used.
In addition to the environment variables above, you can also add many
of the settings which on X belong in the .Xdefaults file
(see Appendix D, X Options and Resources) to the /Software/GNU/Emacs registry key.

[19] Here and below,
whenever we say “colon-separated list of directories”, it pertains
to Unix and GNU/Linux systems. On MS-DOS and MS-Windows, the
directories are separated by semi-colons instead, since DOS/Windows
file names might include a colon after a drive letter.

Specifying the Display Name

 The environment variable DISPLAY tells all X clients,
including Emacs, where to display their windows. Its value is set by
default in ordinary circumstances, when you start an X server and run
jobs locally. You can specify the display yourself; one reason to do
this is if you want to log into another system and run Emacs there,
and have the window displayed at your local terminal.
DISPLAY has the syntax
‘host:display.screen’, where host is the
host name of the X Window System server machine, display is an
arbitrarily-assigned number that distinguishes your server (X
terminal) from other servers on the same machine, and screen is
a field that allows an X server to control multiple terminal screens.
The period and the screen field are optional. If included,
screen is usually zero.
For example, if your host is named ‘glasperle’ and your server is
the first (or perhaps the only) server listed in the configuration, your
DISPLAY is ‘glasperle:0.0’.
You can specify the display name explicitly when you run Emacs, either
by changing the DISPLAY variable, or with the option ‘-d
display’ or ‘--display=display’. Here is an example:

emacs --display=glasperle:0 &

You can inhibit the use of the X window system with the ‘-nw’
option. Then Emacs uses its controlling text terminal for display.
See the section called “Initial Options”.
Sometimes, security arrangements prevent a program on a remote system
from displaying on your local system. In this case, trying to run Emacs
produces messages like this:

Xlib: connection to "glasperle:0.0" refused by server

You might be able to overcome this problem by using the xhost
command on the local system to give permission for access from your
remote machine.

Font Specification Options

You can use the command line option ‘-fn font’ (or
‘--font’, which is an alias for ‘-fn’) to specify a default
font:
	‘-fn font’
	

	‘--font=font’
	Use font as the default font.

When passing a font name to Emacs on the command line, you may need to
“quote” it, by enclosing it in quotation marks, if it contains
characters that the shell treats specially (e.g. spaces). For
example:

emacs -fn "DejaVu Sans Mono-12"

See the section called “Fonts”, for details about font names and other ways to specify
the default font.

Window Color Options

 You can use the following command-line options to specify the colors
to use for various parts of the Emacs display. Colors may be
specified using either color names or RGB triplets (see the section called “Colors for Faces”).
	‘-fg color’
	

	‘--foreground-color=color’
	Specify the foreground color, overriding the color specified by the
default face (see the section called “Text Faces”).

	‘-bg color’
	

	‘--background-color=color’
	Specify the background color, overriding the color specified by the
default face.

	‘-bd color’
	

	‘--border-color=color’
	Specify the color of the border of the X window. This has no effect
if Emacs is compiled with GTK+ support.

	‘-cr color’
	

	‘--cursor-color=color’
	Specify the color of the Emacs cursor which indicates where point is.

	‘-ms color’
	

	‘--mouse-color=color’
	Specify the color for the mouse cursor when the mouse is in the Emacs window.

	‘-r’
	

	‘-rv’
	

	‘--reverse-video’
	Reverse video—swap the foreground and background colors.

	‘--color=mode’
	Set the color support mode when Emacs is run on a text terminal.
This option overrides the number of supported colors that the
character terminal advertises in its termcap or terminfo
database. The parameter mode can be one of the following:

	‘never’, ‘no’
	Don't use colors even if the terminal's capabilities specify color
support.

	‘default’, ‘auto’
	Same as when --color is not used at all: Emacs detects at
startup whether the terminal supports colors, and if it does, turns on
colored display.

	‘always’, ‘yes’, ‘ansi8’
	Turn on the color support unconditionally, and use color commands
specified by the ANSI escape sequences for the 8 standard colors.

	‘num’
	Use color mode for num colors. If num is -1, turn off
color support (equivalent to ‘never’); if it is 0, use the
default color support for this terminal (equivalent to ‘auto’);
otherwise use an appropriate standard mode for num colors.
Depending on your terminal's capabilities, Emacs might be able to turn
on a color mode for 8, 16, 88, or 256 as the value of num. If
there is no mode that supports num colors, Emacs acts as if
num were 0, i.e. it uses the terminal's default color support
mode.

If mode is omitted, it defaults to ansi8.

For example, to use a coral mouse cursor and a slate blue text cursor,
enter:

emacs -ms coral -cr 'slate blue' &

You can reverse the foreground and background colors through the
‘-rv’ option or with the X resource ‘reverseVideo’.
The ‘-fg’, ‘-bg’, and ‘-rv’ options function on text
terminals as well as on graphical displays.
Options for Window Size and Position

 Here is a list of the command-line options for specifying size and
position of the initial Emacs frame:
	‘-g widthxheight[{+-}xoffset{+-}yoffset]]’
	

	‘--geometry=widthxheight[{+-}xoffset{+-}yoffset]]’
	Specify the size width and height (measured in character
columns and lines), and positions xoffset and yoffset
(measured in pixels). The width and height parameters
apply to all frames, whereas xoffset and yoffset only to
the initial frame.

	‘-fs’
	

	‘--fullscreen’
	Specify that width and height shall be the size of the screen. Normally
no window manager decorations are shown.

	‘-mm’
	

	‘--maximized’
	Specify that the Emacs frame shall be maximized. This normally
means that the frame has window manager decorations.

	‘-fh’
	

	‘--fullheight’
	Specify that the height shall be the height of the screen.

	‘-fw’
	

	‘--fullwidth’
	Specify that the width shall be the width of the screen.

In the ‘--geometry’ option, {+-} means either a plus
 sign or a minus sign. A plus
sign before xoffset means it is the distance from the left side of
the screen; a minus sign means it counts from the right side. A plus
sign before yoffset means it is the distance from the top of the
screen, and a minus sign there indicates the distance from the bottom.
The values xoffset and yoffset may themselves be positive or
negative, but that doesn't change their meaning, only their direction.
Emacs uses the same units as xterm does to interpret the geometry.
The width and height are measured in characters, so a large font
creates a larger frame than a small font. (If you specify a proportional
font, Emacs uses its maximum bounds width as the width unit.) The
xoffset and yoffset are measured in pixels.
You do not have to specify all of the fields in the geometry
specification. If you omit both xoffset and yoffset, the
window manager decides where to put the Emacs frame, possibly by
letting you place it with the mouse. For example, ‘164x55’
specifies a window 164 columns wide, enough for two ordinary width
windows side by side, and 55 lines tall.
The default frame width is 80 characters and the default height is
40 lines. You can omit either the width or the height or both. If
you start the geometry with an integer, Emacs interprets it as the
width. If you start with an ‘x’ followed by an integer, Emacs
interprets it as the height. Thus, ‘81’ specifies just the
width; ‘x45’ specifies just the height.
If you start with ‘+’ or ‘-’, that introduces an offset,
which means both sizes are omitted. Thus, ‘-3’ specifies the
xoffset only. (If you give just one offset, it is always
xoffset.) ‘+3-3’ specifies both the xoffset and the
yoffset, placing the frame near the bottom left of the screen.
You can specify a default for any or all of the fields in your X
resource file (see the section called “X Resources”), and then override selected fields
with a ‘--geometry’ option.
Since the mode line and the echo area occupy the last 2 lines of the
frame, the height of the initial text window is 2 less than the height
specified in your geometry. In non-X-toolkit versions of Emacs, the
menu bar also takes one line of the specified number. But in the X
toolkit version, the menu bar is additional and does not count against
the specified height. The tool bar, if present, is also additional.
Enabling or disabling the menu bar or tool bar alters the amount of
space available for ordinary text. Therefore, if Emacs starts up with
a tool bar (which is the default), and handles the geometry
specification assuming there is a tool bar, and then your
initialization file disables the tool bar, you will end up with a
frame geometry different from what you asked for. To get the intended
size with no tool bar, use an X resource to specify “no tool bar”
(see the section called “Table of X Resources for Emacs”); then Emacs will already know there's no
tool bar when it processes the specified geometry.
When using one of ‘--fullscreen’, ‘--maximized’, ‘--fullwidth’
or ‘--fullheight’ there may be some space around the frame
anyway. That is because Emacs rounds the sizes so they are an
even number of character heights and widths.
Some window managers have options that can make them ignore both
program-specified and user-specified positions. If these are set,
Emacs fails to position the window correctly.

Internal and External Borders

 An Emacs frame has an internal border and an external border. The
internal border is an extra strip of the background color around the
text portion of the frame. Emacs itself draws the internal border.
The external border is added by the window manager outside the frame;
depending on the window manager you use, it may contain various boxes
you can click on to move or iconify the window.
	‘-ib width’
	

	‘--internal-border=width’
	Specify width as the width of the internal border (between the text
and the main border), in pixels.

	‘-bw width’
	

	‘--border-width=width’
	Specify width as the width of the main border, in pixels.

When you specify the size of the frame, that does not count the
borders. The frame's position is measured from the outside edge of the
external border.
Use the ‘-ib n’ option to specify an internal border
n pixels wide. The default is 1. Use ‘-bw n’ to
specify the width of the external border (though the window manager may
not pay attention to what you specify). The default width of the
external border is 2.

Frame Titles

An Emacs frame may or may not have a specified title. The frame
title, if specified, appears in window decorations and icons as the
name of the frame. If an Emacs frame has no specified title, the
default title has the form ‘invocation-name@machine’
(if there is only one frame) or the selected window's buffer name (if
there is more than one frame).
You can specify a title for the initial Emacs frame with a command
line option:
	‘-T title’
	

	‘--title=title’
	Specify title as the title for the initial Emacs frame.

The ‘--name’ option (see the section called “X Resources”) also specifies the title
for the initial Emacs frame.

Icons

	‘-iconic’
	

	‘--iconic’
	Start Emacs in an iconified (“minimized”) state.

	‘-nbi’
	

	‘--no-bitmap-icon’
	Disable the use of the Emacs icon.

Most window managers allow you to “iconify” (or “minimize”) an
Emacs frame, hiding it from sight. Some window managers replace
iconified windows with tiny “icons”, while others remove them
entirely from sight. The ‘-iconic’ option tells Emacs to begin
running in an iconified state, rather than showing a frame right away.
The text frame doesn't appear until you deiconify (or “un-minimize”)
it.
By default, Emacs uses an icon containing the Emacs logo. On
desktop environments such as Gnome, this icon is also displayed in
other contexts, e.g. when switching into an Emacs frame. The
‘-nbi’ or ‘--no-bitmap-icon’ option tells Emacs to let the
window manager choose what sort of icon to use—usually just a small
rectangle containing the frame's title.

Other Display Options

	‘--parent-id ID’
	Open Emacs as a client X window via the XEmbed protocol, with ID
as the parent X window id. Currently, this option is mainly useful
for developers.

	‘-vb’
	

	‘--vertical-scroll-bars’
	Enable vertical scroll bars.

	‘-lsp pixels’
	

	‘--line-spacing=pixels’
	Specify pixels as additional space to put between lines, in pixels.

	‘-nbc’
	

	‘--no-blinking-cursor’
	Disable the blinking cursor on graphical displays.

	‘-D’
	

	‘--basic-display’
	Disable the menu-bar, the tool-bar, the scroll-bars, and tool tips,
and turn off the blinking cursor. This can be useful for making a
test case that simplifies debugging of display problems.

The ‘--xrm’ option (see the section called “X Resources”) specifies additional
X resource values.

Appendix D. X Options and Resources

You can customize some X-related aspects of Emacs behavior using X
resources, as is usual for programs that use X.
When Emacs is compiled with GTK+ support, the appearance of various
graphical widgets, such as the menu-bar, scroll-bar, and dialog boxes,
is determined by
“GTK resources”, which we will also describe.
When Emacs is built without GTK+ support, the appearance of these
widgets is determined by additional X resources.
On MS-Windows, you can customize some of the same aspects using the
system registry (see the section called “The MS-Windows System Registry”).
X Resources

 Programs running under the X Window System organize their user
options under a hierarchy of classes and resources. You can specify
default values for these options in your X resource file,
usually named ~/.Xdefaults or ~/.Xresources. Changes in
this file do not take effect immediately, because the X server stores
its own list of resources; to update it, use the command
xrdb—for instance, ‘xrdb ~/.Xdefaults’.
 (MS-Windows systems do not support X resource files; on such systems,
Emacs looks for X resources in the Windows Registry, first under the
key ‘HKEY_CURRENT_USER\SOFTWARE\GNU\Emacs’, which affects only
the current user and override the system-wide settings, and then under
the key ‘HKEY_LOCAL_MACHINE\SOFTWARE\GNU\Emacs’, which affects
all users of the system. The menu and scroll bars are native widgets
on MS-Windows, so they are only customizable via the system-wide
settings in the Display Control Panel. You can also set resources
using the ‘-xrm’ command line option, as explained below.)
Each line in the X resource file specifies a value for one option or
for a collection of related options. The order in which the lines
appear in the file does not matter. Each resource specification
consists of a program name and a resource name. Case
distinctions are significant in each of these names. Here is an
example:

emacs.cursorColor: dark green

The program name is the name of the executable file to which the
resource applies. For Emacs, this is normally ‘emacs’. To
specify a definition that applies to all instances of Emacs,
regardless of the name of the Emacs executable, use ‘Emacs’.
The resource name is the name of a program setting. For instance,
Emacs recognizes a ‘cursorColor’ resource that controls the color
of the text cursor.
Resources are grouped into named classes. For instance, the
‘Foreground’ class contains the ‘cursorColor’,
‘foreground’ and ‘pointerColor’ resources (see the section called “Table of X Resources for Emacs”). Instead of using a resource name, you can use a class
name to specify the default value for all resources in that class,
like this:
emacs.Foreground: dark green

Emacs does not process X resources at all if you set the variable
inhibit-x-resources to a non-nil value. If you invoke
Emacs with the ‘-Q’ (or ‘--quick’) command-line option,
inhibit-x-resources is automatically set to t
(see the section called “Initial Options”).
In addition, you can use the following command-line options to
override the X resources file:
	‘-name name’
	

	‘--name=name’
	This option sets the program name of the initial Emacs frame to
name. It also sets the title of the initial frame to
name. This option does not affect subsequent frames.
If you don't specify this option, the default is to use the Emacs
executable's name as the program name.
For consistency, ‘-name’ also specifies the name to use for other
resource values that do not belong to any particular frame.
The resources that name Emacs invocations also belong to a class,
named ‘Emacs’. If you write ‘Emacs’ instead of
‘emacs’, the resource applies to all frames in all Emacs jobs,
regardless of frame titles and regardless of the name of the
executable file.

	‘-xrm resource-values’
	

	‘--xrm=resource-values’
	This option specifies X resource values for the present Emacs job.
resource-values should have the same format that you would use
inside a file of X resources. To include multiple resource
specifications in resource-values, put a newline between them,
just as you would in a file. You can also use ‘#include
"filename"’ to include a file full of resource specifications.
Resource values specified with ‘-xrm’ take precedence over all
other resource specifications.

Table of X Resources for Emacs

This table lists the X resource names that Emacs recognizes,
excluding those that control the appearance of graphical widgets like
the menu bar:
	background (class Background)
	Background color (see the section called “Colors for Faces”).

	bitmapIcon (class BitmapIcon)
	Tell the window manager to display the Emacs icon if ‘on’; don't
do so if ‘off’. See the section called “Icons”, for a description of the icon.

	borderColor (class BorderColor)
	Color of the frame's external border. This has no effect if Emacs is
compiled with GTK+ support.

	borderWidth (class BorderWidth)
	Width of the frame's external border, in pixels. This has no effect
if Emacs is compiled with GTK+ support.

	cursorColor (class Foreground)
	Text cursor color. If this resource is specified when Emacs starts
up, Emacs sets its value as the background color of the cursor
face (see the section called “Text Faces”).

	cursorBlink (class CursorBlink)
	If the value of this resource is ‘off’ or ‘false’ or
‘0’ at startup, Emacs disables Blink Cursor mode (see the section called “Displaying the Cursor”).

	font (class Font)
	Font name for the default face (see the section called “Fonts”). You can also
specify a fontset name (see the section called “Fontsets”).

	fontBackend (class FontBackend)
	Comma-delimited list of backend(s) to use for drawing fonts, in order
of precedence. For instance, the value ‘x,xft’ tells Emacs to
draw fonts using the X core font driver, falling back on the Xft font
driver if that fails. Normally, you should leave this resource unset,
in which case Emacs tries using all available font backends.

	foreground (class Foreground)
	Default foreground color for text.

	geometry (class Geometry)
	Window size and position. The value should be a size and position
specification, of the same form as in the ‘-g’ or
‘--geometry’ command-line option (see the section called “Options for Window Size and Position”).
The size applies to all frames in the Emacs session, but the position
applies only to the initial Emacs frame (or, in the case of a resource
for a specific frame name, only that frame).
Be careful not to specify this resource as ‘emacs*geometry’, as
that may affect individual menus as well as the main Emacs frame.

	fullscreen (class Fullscreen)
	The desired fullscreen size. The value can be one of fullboth,
maximized, fullwidth or fullheight, which
correspond to the command-line options ‘-fs’, ‘-mm’,
‘-fw’, and ‘-fh’ (see the section called “Options for Window Size and Position”). Note that this
applies to the initial frame only.

	iconName (class Title)
	Name to display in the icon.

	internalBorder (class BorderWidth)
	Width of the internal frame border, in pixels.

	lineSpacing (class LineSpacing)
	Additional space between lines, in pixels.

	menuBar (class MenuBar)
	If the value of this resource is ‘off’ or ‘false’ or
‘0’, Emacs disables Menu Bar mode at startup (see the section called “Menu Bars”).

	minibuffer (class Minibuffer)
	If ‘none’, Emacs will not make a minibuffer in this frame; it
will use a separate minibuffer frame instead.

	paneFont (class Font)
	Font name for menu pane titles, in non-toolkit versions of Emacs.

	pointerColor (class Foreground)
	Color of the mouse cursor. This has no effect in many graphical
desktop environments, as they do not let Emacs change the mouse cursor
this way.

	privateColormap (class PrivateColormap)
	If ‘on’, use a private color map, in the case where the “default
visual” of class PseudoColor and Emacs is using it.

	reverseVideo (class ReverseVideo)
	Switch foreground and background default colors if ‘on’, use colors as
specified if ‘off’.

	screenGamma (class ScreenGamma)
	Gamma correction for colors, equivalent to the frame parameter
screen-gamma.

	scrollBarWidth (class ScrollBarWidth)
	The scroll bar width in pixels, equivalent to the frame parameter
scroll-bar-width. Do not set this resource if Emacs is
compiled with GTK+ support.

	selectionFont (class SelectionFont)
	Font name for pop-up menu items, in non-toolkit versions of Emacs. (For
toolkit versions, see the section called “Lucid Menu And Dialog X Resources”, also see the section called “LessTif Menu X Resources”.)

	selectionTimeout (class SelectionTimeout)
	Number of milliseconds to wait for a selection reply.
If the selection owner doesn't reply in this time, we give up.
A value of 0 means wait as long as necessary.

	synchronous (class Synchronous)
	Run Emacs in synchronous mode if ‘on’. Synchronous mode is
useful for debugging X problems.

	title (class Title)
	Name to display in the title bar of the initial Emacs frame.

	toolBar (class ToolBar)
	If the value of this resource is ‘off’ or ‘false’ or
‘0’, Emacs disables Tool Bar mode at startup (see the section called “Tool Bars”).

	useXIM (class UseXIM)
	Disable use of X input methods (XIM) if ‘false’ or ‘off’.
This is only relevant if your Emacs is built with XIM support. It
might be useful to turn off XIM on slow X client/server links.

	verticalScrollBars (class ScrollBars)
	Give frames scroll bars if ‘on’; don't have scroll bars if
‘off’.

	visualClass (class VisualClass)
	The visual class for X color display. If specified, the value
should start with one of ‘TrueColor’, ‘PseudoColor’,
‘DirectColor’, ‘StaticColor’, ‘GrayScale’, and
‘StaticGray’, followed by ‘-depth’, where depth
is the number of color planes.

You can also use X resources to customize individual Emacs faces
(see the section called “Text Faces”). For example, setting the resource
‘face.attributeForeground’ is equivalent to customizing the
‘foreground’ attribute of the face face. However, we
recommend customizing faces from within Emacs, instead of using X
resources. See the section called “Customizing Faces”.

Lucid Menu And Dialog X Resources

 If Emacs is compiled with the X toolkit support using Lucid widgets,
you can use X resources to customize the appearance of the menu bar,
pop-up menus, and dialog boxes. The resources for the menu bar fall
in the ‘pane.menubar’ class (following, as always, either the
name of the Emacs executable or ‘Emacs’ for all Emacs
invocations). The resources for the pop-up menu are in the
‘menu*’ class. The resources for dialog boxes are in the
‘dialog*’ class.
For example, to display menu bar entries with the ‘Courier-12’
font (see the section called “Fonts”), write this:

Emacs.pane.menubar.font: Courier-12

Lucid widgets can display multilingual text in your locale. To enable
this, specify a fontSet resource instead of a font
resource. See the section called “Fontsets”. If both font and fontSet
resources are specified, the fontSet resource is used.
Here is a list of resources for menu bars, pop-up menus, and dialogs:
	font
	Font for menu item text.

	fontSet
	Fontset for menu item text.

	foreground
	Foreground color.

	background
	Background color.

	buttonForeground
	Foreground color for a selected item.

	horizontalSpacing
	Horizontal spacing in pixels between items. Default is 3.

	verticalSpacing
	Vertical spacing in pixels between items. Default is 2.

	arrowSpacing
	Horizontal spacing between the arrow (which indicates a submenu) and
the associated text. Default is 10.

	shadowThickness
	Thickness of shadow lines for 3D buttons, arrows, and other graphical
elements. Default is 1.

	margin
	Margin of the menu bar, in characters. Default is 1.

LessTif Menu X Resources

 If Emacs is compiled with the X toolkit support using LessTif or
Motif widgets, you can use X resources to customize the appearance of
the menu bar, pop-up menus, and dialog boxes. However, the resources
are organized differently from Lucid widgets.
The resource names for the menu bar are in the ‘pane.menubar’
class, and they must be specified in this form:

Emacs.pane.menubar.subwidget.resource: value

For pop-up menus, the resources are in the ‘menu*’ class, instead
of ‘pane.menubar’. For dialog boxes, they are in ‘dialog’.
In each case, each individual menu string is a subwidget; the
subwidget's name is the same as the menu item string. For example,
the ‘File’ menu in the menu bar is a subwidget named
‘emacs.pane.menubar.File’.
Typically, you want to specify the same resources for the whole menu
bar. To do this, use ‘*’ instead of a specific subwidget name.
For example, to specify the font ‘8x16’ for all menu bar items,
including submenus, write this:

Emacs.pane.menubar.*.fontList: 8x16

Each item in a submenu also has its own name for X resources; for
example, the ‘File’ submenu has an item named ‘Save (current
buffer)’. A resource specification for a submenu item looks like
this:

Emacs.pane.menubar.popup_*.menu.item.resource: value

For example, here's how to specify the font for the ‘Save (current
buffer)’ item:

Emacs.pane.menubar.popup_*.File.Save (current buffer).fontList: 8x16

For an item in a second-level submenu, such as ‘Complete Word’
under ‘Spell Checking’ under ‘Tools’, the resource fits this
template:

Emacs.pane.menubar.popup_*.popup_*.menu.resource: value

For example,

Emacs.pane.menubar.popup_*.popup_*.Spell Checking.Complete Word: value

(This should be one long line.)
If you want the submenu items to look different from the menu bar
itself, you must first specify the resource for all of them, then
override the value for submenus alone. Here is an example:

Emacs.pane.menubar.*.fontList: 8x16
Emacs.pane.menubar.popup_*.fontList: 8x16

To specify resources for the LessTif file-selection box, use
‘fsb*’, like this:

Emacs.fsb*.fontList: 8x16

Here is a list of resources for LessTif menu bars and pop-up menus:
	armColor
	The color to show in an armed button.

	fontList
	The font to use.

	marginBottom, marginHeight, marginLeft, marginRight, marginTop, marginWidth
	Amount of space to leave around the item, within the border.

	borderWidth
	The width of the border around the menu item, on all sides.

	shadowThickness
	The width of the border shadow.

	bottomShadowColor
	The color for the border shadow, on the bottom and the right.

	topShadowColor
	The color for the border shadow, on the top and the left.

GTK resources

 If Emacs is compiled with GTK+ toolkit support, the simplest way to
customize its GTK+ widgets (e.g. menus, dialogs, tool bars and
scroll bars) is to choose an appropriate GTK+ theme, for example with
the GNOME theme selector.
In GTK+ version 2, you can also use GTK+ resources to
customize the appearance of GTK+ widgets used by Emacs. These
resources are specified in either the file ~/.emacs.d/gtkrc
(for Emacs-specific GTK+ resources), or ~/.gtkrc-2.0 (for
general GTK+ resources). We recommend using ~/.emacs.d/gtkrc,
since GTK+ seems to ignore ~/.gtkrc-2.0 when running GConf with
GNOME. Note, however, that some GTK themes may override
customizations in ~/.emacs.d/gtkrc; there is nothing we can do
about this. GTK+ resources do not affect aspects of Emacs unrelated
to GTK+ widgets, such as fonts and colors in the main Emacs window;
those are governed by normal X resources (see the section called “X Resources”).
The following sections describe how to customize GTK+ resources for
Emacs. For details about GTK+ resources, see the GTK+ API document at
http://developer.gnome.org/doc/API/2.0/gtk/gtk-Resource-Files.html.
In GTK+ version 3, GTK+ resources have been replaced by a completely
different system. The appearance of GTK+ widgets is now determined by
CSS-like style files: gtk-3.0/gtk.css in the GTK+ installation
directory, and ~/.themes/theme/gtk-3.0/gtk.css for local
style settings (where theme is the name of the current GTK+
theme). Therefore, the description of GTK+ resources in this section
does not apply to GTK+ 3. For details about the GTK+ 3 styling
system, see
http://developer.gnome.org/gtk3/3.0/GtkCssProvider.html.
GTK Resource Basics

In a GTK+ 2 resource file (usually ~/.emacs.d/gtkrc), the
simplest kinds of resource settings simply assign a value to a
variable. For example, putting the following line in the resource
file changes the font on all GTK+ widgets to ‘courier-12’:

gtk-font-name = "courier 12"

Note that in this case the font name must be supplied as a GTK font
pattern (also called a Pango font name), not as a
Fontconfig-style font name or XLFD. See the section called “Fonts”.
To customize widgets you first define a style, and then apply
the style to the widgets. Here is an example that sets the font for
menus (‘#’ characters indicate comments):

Define the style ‘my_style’.
style "my_style"
{
 font_name = "helvetica bold 14"
}

Specify that widget type ‘*emacs-menuitem*’ uses ‘my_style’.
widget "*emacs-menuitem*" style "my_style"

The widget name in this example contains wildcards, so the style is
applied to all widgets matching ‘*emacs-menuitem*’. The widgets
are named by the way they are contained, from the outer widget to the
inner widget. Here is another example that applies ‘my_style’
specifically to the Emacs menu bar:

widget "Emacs.pane.menubar.*" style "my_style"

Here is a more elaborate example, showing how to change the parts of
the scroll bar:

style "scroll"
{
 fg[NORMAL] = "red" # Arrow color.
 bg[NORMAL] = "yellow" # Thumb and background around arrow.
 bg[ACTIVE] = "blue" # Trough color.
 bg[PRELIGHT] = "white" # Thumb color when the mouse is over it.
}

widget "*verticalScrollBar*" style "scroll"

GTK widget names

 A GTK+ widget is specified by a widget name and a widget
class. The widget name refers to a specific widget
(e.g. ‘emacs-menuitem’), while the widget class refers to a
collection of similar widgets (e.g. ‘GtkMenuItem’). A widget
always has a class, but need not have a name.
Absolute names are sequences of widget names or widget
classes, corresponding to hierarchies of widgets embedded within
other widgets. For example, if a GtkWindow named top
contains a GtkVBox named box, which in turn contains
a GtkMenuBar called menubar, the absolute class name
of the menu-bar widget is GtkWindow.GtkVBox.GtkMenuBar, and
its absolute widget name is top.box.menubar.
GTK+ resource files can contain two types of commands for specifying
widget appearances:
	widget
	specifies a style for widgets based on the class name, or just the
class.

	widget_class
	specifies a style for widgets based on the class name.

See the previous subsection for examples of using the widget
command; the widget_class command is used similarly. Note that
the widget name/class and the style must be enclosed in double-quotes,
and these commands must be at the top level in the GTK+ resource file.
As previously noted, you may specify a widget name or class with
shell wildcard syntax: ‘*’ matches zero or more characters and
‘?’ matches one character. This example assigns a style to all
widgets:

widget "*" style "my_style"

GTK Widget Names in Emacs

 The GTK+ widgets used by an Emacs frame are listed below:
	Emacs (class GtkWindow)
	

	pane (class GtkVBox)
	

	menubar (class GtkMenuBar)
	

	[menu item widgets]
	

[unnamed widget] (class GtkHandleBox)	emacs-toolbar (class GtkToolbar)
	

	[tool bar item widgets]
	

emacs (class GtkFixed)	verticalScrollBar (class GtkVScrollbar)
	

The contents of Emacs windows are drawn in the emacs widget.
Note that even if there are multiple Emacs windows, each scroll bar
widget is named verticalScrollBar.
For example, here are two different ways to set the menu bar style:

widget "Emacs.pane.menubar.*" style "my_style"
widget_class "GtkWindow.GtkVBox.GtkMenuBar.*" style "my_style"

For GTK+ dialogs, Emacs uses a widget named emacs-dialog, of
class GtkDialog. For file selection, Emacs uses a widget named
emacs-filedialog, of class GtkFileSelection.
Because the widgets for pop-up menus and dialogs are free-standing
windows and not “contained” in the Emacs widget, their GTK+
absolute names do not start with ‘Emacs’. To customize these
widgets, use wildcards like this:

widget "*emacs-dialog*" style "my_dialog_style"
widget "*emacs-filedialog* style "my_file_style"
widget "*emacs-menuitem* style "my_menu_style"

If you want to apply a style to all menus in Emacs, use this:

widget_class "*Menu*" style "my_menu_style"

GTK styles

 Here is an example of two GTK+ style declarations:

pixmap_path "/usr/share/pixmaps:/usr/include/X11/pixmaps"

style "default"
{
 font_name = "helvetica 12"

 bg[NORMAL] = { 0.83, 0.80, 0.73 }
 bg[SELECTED] = { 0.0, 0.55, 0.55 }
 bg[INSENSITIVE] = { 0.77, 0.77, 0.66 }
 bg[ACTIVE] = { 0.0, 0.55, 0.55 }
 bg[PRELIGHT] = { 0.0, 0.55, 0.55 }

 fg[NORMAL] = "black"
 fg[SELECTED] = { 0.9, 0.9, 0.9 }
 fg[ACTIVE] = "black"
 fg[PRELIGHT] = { 0.9, 0.9, 0.9 }

 base[INSENSITIVE] = "#777766"
 text[INSENSITIVE] = { 0.60, 0.65, 0.57 }

 bg_pixmap[NORMAL] = "background.xpm"
 bg_pixmap[INSENSITIVE] = "background.xpm"
 bg_pixmap[ACTIVE] = "background.xpm"
 bg_pixmap[PRELIGHT] = "<none>"

}

style "ruler" = "default"
{
 font_name = "helvetica 8"
}

The style ‘ruler’ inherits from ‘default’. This way you can build
on existing styles. The syntax for fonts and colors is described below.
As this example shows, it is possible to specify several values for
foreground and background depending on the widget's state. The
possible states are:
	NORMAL
	This is the default state for widgets.

	ACTIVE
	This is the state for a widget that is ready to do something. It is
also for the trough of a scroll bar, i.e. bg[ACTIVE] = "red"
sets the scroll bar trough to red. Buttons that have been pressed but
not released yet (“armed”) are in this state.

	PRELIGHT
	This is the state for a widget that can be manipulated, when the mouse
pointer is over it—for example when the mouse is over the thumb in
the scroll bar or over a menu item. When the mouse is over a button
that is not pressed, the button is in this state.

	SELECTED
	This is the state for data that has been selected by the user. It can
be selected text or items selected in a list. This state is not used
in Emacs.

	INSENSITIVE
	This is the state for widgets that are visible, but they can not be
manipulated in the usual way—for example, buttons that can't be
pressed, and disabled menu items. To display disabled menu items in
yellow, use fg[INSENSITIVE] = "yellow".

Here are the things that can go in a style declaration:
	bg[state] = color
	This specifies the background color for the widget. Note that
editable text doesn't use bg; it uses base instead.

	base[state] = color
	This specifies the background color for editable text. In Emacs, this
color is used for the background of the text fields in the file
dialog.

	bg_pixmap[state] = "pixmap"
	This specifies an image background (instead of a background color).
pixmap should be the image file name. GTK can use a number of
image file formats, including XPM, XBM, GIF, JPEG and PNG. If you
want a widget to use the same image as its parent, use
‘<parent>’. If you don't want any image, use ‘<none>’.
‘<none>’ is the way to cancel a background image inherited from a
parent style.
You can't specify the file by its absolute file name. GTK looks for
the pixmap file in directories specified in pixmap_path.
pixmap_path is a colon-separated list of directories within
double quotes, specified at the top level in a gtkrc file
(i.e. not inside a style definition; see example above):

pixmap_path "/usr/share/pixmaps:/usr/include/X11/pixmaps"

	fg[state] = color
	This specifies the foreground color for widgets to use. It is the
color of text in menus and buttons, and the color for the arrows in
the scroll bar. For editable text, use text.

	text[state] = color
	This is the color for editable text. In Emacs, this color is used for the
text fields in the file dialog.

	font_name = "font"
	This specifies the font for text in the widget. font is a
GTK-style (or Pango) font name, like ‘Sans Italic 10’.
See the section called “Fonts”. The names are case insensitive.

There are three ways to specify a color: a color name, an RGB
triplet, or a GTK-style RGB triplet. See the section called “Colors for Faces”, for a description
of color names and RGB triplets. Color names should be enclosed with
double quotes, e.g. ‘"red"’. RGB triplets should be written
without double quotes, e.g. ‘#ff0000’. GTK-style RGB triplets
have the form { r, g, b }, where
r, g and b are either integers in the range 0-65535
or floats in the range 0.0-1.0.

Appendix E. Emacs 23 Antinews

For those users who live backwards in time, here is information
about downgrading to Emacs version 23.4. We hope you will enjoy the
greater simplicity that results from the absence of many Emacs
24.1 features.
	Support for displaying and editing “bidirectional” text has been
removed. Text is now always displayed on the screen in a single
consistent direction—left to right—regardless of the underlying
script. Similarly, C-f and C-b always move the text
cursor to the right and left respectively. Also, right and
left are now equivalent to C-f and C-b, as you might
expect, rather than moving forward or backward based on the underlying
“paragraph direction”.
Users of “right-to-left” languages, like Arabic and Hebrew, may
adapt by reading and/or editing text in left-to-right order.

	The Emacs Lisp package manager has been removed. Instead of using a
“user interface” (M-x list-packages), additional Lisp packages
must now be installed by hand, which is the most flexible and
“Lispy” method anyway. Typically, this just involves editing your
init file to add the package installation directory to the load path
and defining some autoloads; see each package's commentary section
and/or README file for details.

	The option delete-active-region has been deleted. When the
region is active, typing DEL or delete no longer deletes
the text in the region; it deletes a single character instead.

	We have reworked how Emacs handles the clipboard and the X primary
selection. Commands for killing and yanking, like C-w and
C-y, use the primary selection and not the clipboard, so you can
use these commands without interfering with “cutting” or “pasting”
in other programs. The ‘Cut’/‘Copy’/‘Paste’ menu items
are bound to separate clipboard commands, not to the same commands as
C-w/M-w/C-y.
Selecting text by dragging with the mouse now puts the text in the
kill ring, in addition to the primary selection. But note that
selecting an active region with C-SPC does not
alter the kill ring nor the primary selection, even though the text
highlighting is visually identical.

	In Isearch, C-y and M-y are no longer bound to
isearch-yank-kill and isearch-yank-pop respectively.
Instead, C-y yanks the rest of the current line into the search
string (isearch-yank-line), whereas M-y does
isearch-yank-kill. The mismatch with the usual meanings of
C-y and M-y is unintended.

	Various completion features have been simplified. The options
completion-cycle-threshold and
completion-category-overrides have been removed. Due to the
latter removal, Emacs uses a single consistent scheme to generate
completions, instead of using a separate scheme for (say) buffer name
completion. Several major modes, such as Shell mode, now implement
their own inline completion commands instead of using
completion-at-point.

	We have removed various options for controlling how windows are used,
e.g. display-buffer-base-action, display-buffer-alist,
window-combination-limit, and window-combination-resize.

	The command M-x customize-themes has been removed. Emacs no
longer comes with pre-defined themes (you can write your own).

	Emacs no longer adapts various aspects of its display to GTK+
settings, opting instead for a uniform toolkit-independent look. GTK+
scroll bars are placed on the left, the same position as non-GTK+ X
scroll bars. Emacs no longer refers to GTK+ to set the default
region face, nor for drawing tooltips.

	Setting the option delete-by-moving-to-trash to a
non-nil now causes all file deletions to use the system trash,
even temporary files created by Lisp programs; furthermore, the
M-x delete-file and M-x delete-directory commands no
longer accept prefix arguments to force true deletion.

	On GNU/Linux and Unix, the default method for sending mail (as
specified by send-mail-function) is to use the
sendmail program. Emacs no longer asks for a delivery
method the first time you try to send mail, trusting instead that the
system is configured for mail delivery, as it ought to be.

	Several VC features have been removed, including the C-x v + and
C-x v m commands for pulling and merging on distributed version
control systems, and the ability to view inline log entries in the log
buffers made by C-x v L.

	To keep up with decreasing computer memory capacity and disk space, many
other functions and files have been eliminated in Emacs 23.4.

Appendix F. Emacs and Mac OS / GNUstep

 This section describes the peculiarities of using Emacs built with
the GNUstep libraries on GNU/Linux or other operating systems, or on
Mac OS X with native window system support. On Mac OS X, Emacs can be
built either without window system support, with X11, or with the
Cocoa interface; this section only applies to the Cocoa build. This
does not support versions of Mac OS X earlier than 10.4.
For various historical and technical reasons, Emacs uses the term
‘Nextstep’ internally, instead of “Cocoa” or “Mac OS X”; for
instance, most of the commands and variables described in this section
begin with ‘ns-’, which is short for ‘Nextstep’. NeXTstep
was an application interface released by NeXT Inc during the 1980s, of
which Cocoa is a direct descendant. Apart from Cocoa, there is
another NeXTstep-style system: GNUstep, which is free software. As of
this writing, Emacs GNUstep support is alpha status (see the section called “GNUstep Support”), but we hope to improve it in the future.
Basic Emacs usage under Mac OS and GNUstep

By default, the alt and option keys are the same as
Meta. The Mac Cmd key is the same as Super, and
Emacs provides a set of key bindings using this modifier key that mimic
other Mac / GNUstep applications (see the section called “Windowing System Events under Mac OS / GNUstep”). You
can change these bindings in the usual way (see the section called “Customizing Key Bindings”).
The variable ns-right-alternate-modifier controls the
behavior of the right alt and option keys. These keys
behave like the left-hand keys if the value is left (the
default). A value of control, meta, alt,
super, or hyper makes them behave like the corresponding
modifier keys; a value of none tells Emacs to ignore them.
S-Mouse-1 adjusts the region to the click position,
just like Mouse-3 (mouse-save-then-kill); it does not pop
up a menu for changing the default face, as S-Mouse-1 normally
does (see the section called “Text Scale”). This change makes Emacs behave more like
other Mac / GNUstep applications.
When you open or save files using the menus, or using the
Cmd-o and Cmd-S bindings, Emacs uses graphical file
dialogs to read file names. However, if you use the regular Emacs key
sequences, such as C-x C-f, Emacs uses the minibuffer to read
file names.
On GNUstep, in an X-windows environment you need to use Cmd-c
instead of one of the C-w or M-w commands to transfer text
to the X primary selection; otherwise, Emacs will use the
“clipboard” selection. Likewise, Cmd-y (instead of C-y)
yanks from the X primary selection instead of the kill-ring or
clipboard.
Grabbing environment variables

Many programs which may run under Emacs, like latex or man, depend on the
settings of environment variables. If Emacs is launched from the shell, it
will automatically inherit these environment variables and its subprocesses
will inherit them from it. But if Emacs is launched from the Finder it
is not a descendant of any shell, so its environment variables haven't been
set, which often causes the subprocesses it launches to behave differently than
they would when launched from the shell.
For the PATH and MANPATH variables, a system-wide method
of setting PATH is recommended on Mac OS X 10.5 and later, using the
/etc/paths files and the /etc/paths.d directory.

Mac / GNUstep Customization

Emacs can be customized in several ways in addition to the standard
customization buffers and the Options menu.
Font and Color Panels

The standard Mac / GNUstep font and color panels are accessible via
Lisp commands. The Font Panel may be accessed with M-x
ns-popup-font-panel. It will set the default font in the frame most
recently used or clicked on.
You can bring up a color panel with M-x ns-popup-color-panel and
drag the color you want over the Emacs face you want to change. Normal
dragging will alter the foreground color. Shift dragging will alter the
background color. To discard the settings, create a new frame and
close the altered one.
Useful in this context is the listing of all faces obtained by
M-x list-faces-display.

Customization options specific to Mac OS / GNUstep

The following customization options are specific to the Nextstep port.
	ns-auto-hide-menu-bar
	Non-nil means the menu-bar is hidden by default, but appears if you
move the mouse pointer over it. (Requires Mac OS X 10.6 or later.)

Windowing System Events under Mac OS / GNUstep

Nextstep applications receive a number of special events which have
no X equivalent. These are sent as specially defined “keys”, which
do not correspond to any sequence of keystrokes. Under Emacs, these
“key” events can be bound to functions just like ordinary
keystrokes. Here is a list of these events.
	ns-open-file
	This event occurs when another Nextstep application requests that
Emacs open a file. A typical reason for this would be a user
double-clicking a file in the Finder application. By default, Emacs
responds to this event by opening a new frame and visiting the file in
that frame (ns-find-file). As an exception, if the selected
buffer is the *scratch* buffer, Emacs visits the file in the
selected frame.
You can change how Emacs responds to a ns-open-file event by
changing the variable ns-pop-up-frames. Its default value,
‘fresh’, is what we have just described. A value of t
means to always visit the file in a new frame. A value of nil
means to always visit the file in an existing frame.

	ns-open-temp-file
	This event occurs when another application requests that Emacs open a
temporary file. By default, this is handled by just generating a
ns-open-file event, the results of which are described above.

	ns-open-file-line
	Some applications, such as ProjectBuilder and gdb, request not only a
particular file, but also a particular line or sequence of lines in
the file. Emacs handles this by visiting that file and highlighting
the requested line (ns-open-file-select-line).

	ns-drag-file
	This event occurs when a user drags files from another application
into an Emacs frame. The default behavior is to insert the contents
of all the dragged files into the current buffer
(ns-insert-files). The list of dragged files is stored in the
variable ns-input-file.

	ns-drag-color
	This event occurs when a user drags a color from the color well (or
some other source) into an Emacs frame. The default behavior is to
alter the foreground color of the area the color was dragged onto
(ns-set-foreground-at-mouse). If this event is issued with a
Shift modifier, Emacs changes the background color instead
(ns-set-background-at-mouse). The name of the dragged color is
stored in the variable ns-input-color.

	ns-change-font
	This event occurs when the user selects a font in a Nextstep font
panel (which can be opened with Cmd-t). The default behavior is
to adjust the font of the selected frame
(ns-respond-to-changefont). The name and size of the selected
font are stored in the variables ns-input-font and
ns-input-fontsize, respectively.

	ns-power-off
	This event occurs when the user logs out and Emacs is still running, or when
`Quit Emacs' is chosen from the application menu.
The default behavior is to save all file-visiting buffers.

Emacs also allows users to make use of Nextstep services, via a set
of commands whose names begin with ‘ns-service-’ and end with the
name of the service. Type M-x ns-service-TAB to
see a list of these commands. These functions either operate on
marked text (replacing it with the result) or take a string argument
and return the result as a string. You can also use the Lisp function
ns-perform-service to pass arbitrary strings to arbitrary
services and receive the results back. Note that you may need to
restart Emacs to access newly-available services.

GNUstep Support

Emacs can be built and run under GNUstep, but there are still
issues to be addressed. Interested developers should contact
<emacs-devel@gnu.org>.

Appendix G. Emacs and Microsoft Windows/MS-DOS

 This section describes peculiarities of using Emacs on Microsoft
Windows. Some of these peculiarities are also relevant to Microsoft's
older MS-DOS “operating system” (also known as “MS-DOG”).
However, Emacs features that are relevant only to MS-DOS are
described in a separate
section (see the section called “Emacs and MS-DOS”).
The behavior of Emacs on MS-Windows is reasonably similar to what is
documented in the rest of the manual, including support for long file
names, multiple frames, scroll bars, mouse menus, and subprocesses.
However, a few special considerations apply, and they are described
here.
How to Start Emacs on MS-Windows

 There are several ways of starting Emacs on MS-Windows:
	From the desktop shortcut icon: either double-click the left mouse
button on the icon, or click once, then press RET. The desktop
shortcut should specify as its “Target” (in the “Properties” of
the shortcut) the full absolute file name of runemacs.exe,
not of emacs.exe. This is because runemacs.exe
hides the console window that would have been created if the target of
the shortcut were emacs.exe (which is a console program, as far
as Windows is concerned). If you use this method, Emacs starts in the
directory specified by the shortcut. To control where that is,
right-click on the shortcut, select “Properties”, and in the
“Shortcut” tab modify the “Start in” field to your liking.

	From the Command Prompt window, by typing emacs RET at the
prompt. The Command Prompt window where you did that will not be
available for invoking other commands until Emacs exits. In this
case, Emacs will start in the current directory of the Windows shell.

	From the Command Prompt window, by typing runemacs RET at
the prompt. The Command Prompt window where you did that will be
immediately available for invoking other commands. In this case,
Emacs will start in the current directory of the Windows shell.

	Via emacsclient.exe or emacsclientw.exe, which allow you
to invoke Emacs from other programs, and to reuse a running Emacs
process for serving editing jobs required by other programs.
See Chapter 37, Using Emacs as a Server. The difference between emacsclient.exe
and emacsclientw.exe is that the former is a console program,
while the latter is a Windows GUI program. Both programs wait for
Emacs to signal that the editing job is finished, before they exit and
return control to the program that invoked them. Which one of them to
use in each case depends on the expectations of the program that needs
editing services. If that program is itself a console (text-mode)
program, you should use emacsclient.exe, so that any of its
messages and prompts appear in the same command window as those of the
invoking program. By contrast, if the invoking program is a GUI
program, you will be better off using emacsclientw.exe, because
emacsclient.exe will pop up a command window if it is invoked
from a GUI program. A notable situation where you would want
emacsclientw.exe is when you right-click on a file in the
Windows Explorer and select “Open With” from the pop-up menu. Use
the ‘--alternate-editor=’ or ‘-a’ options if Emacs might not
be running (or not running as a server) when emacsclient is
invoked—that will always give you an editor. When invoked via
emacsclient, Emacs will start in the current directory of
the program that invoked emacsclient.

Note that, due to limitations of MS-Windows, Emacs cannot have both
GUI and text-mode frames in the same session. It also cannot open
text-mode frames on more than a single Command Prompt window,
because each Windows program can have only one console at any given
time. For these reasons, if you invoke emacsclient with the
-c option, and the Emacs server runs in a text-mode session,
Emacs will always create a new text-mode frame in the same
Command Prompt window where it was started; a GUI frame will be
created only if the server runs in a GUI session. Similarly, if you
invoke emacsclient with the -t option, Emacs will
create a GUI frame if the server runs in a GUI session, or a text-mode
frame when the session runs in text mode in a Command Prompt
window. See the section called “emacsclient Options”.

Text Files and Binary Files

 GNU Emacs uses newline characters to separate text lines. This is the
convention used on GNU, Unix, and other Posix-compliant systems.
 By contrast, MS-DOS and MS-Windows normally use carriage-return linefeed,
a two-character sequence, to separate text lines. (Linefeed is the same
character as newline.) Therefore, convenient editing of typical files
with Emacs requires conversion of these end-of-line (EOL) sequences.
And that is what Emacs normally does: it converts carriage-return
linefeed into newline when reading files, and converts newline into
carriage-return linefeed when writing files. The same mechanism that
handles conversion of international character codes does this conversion
also (see the section called “Coding Systems”).
 One consequence of this special format-conversion of most files is
that character positions as reported by Emacs (see the section called “Cursor Position Information”) do
not agree with the file size information known to the operating system.
In addition, if Emacs recognizes from a file's contents that it uses
newline rather than carriage-return linefeed as its line separator, it
does not perform EOL conversion when reading or writing that file.
Thus, you can read and edit files from GNU and Unix systems on MS-DOS
with no special effort, and they will retain their Unix-style
end-of-line convention after you edit them.
The mode line indicates whether end-of-line translation was used for
the current buffer. If MS-DOS end-of-line translation is in use for the
buffer, the MS-Windows build of Emacs displays a backslash ‘\’ after
the coding system mnemonic near the beginning of the mode line
(see the section called “The Mode Line”). If no EOL translation was performed, the string
‘(Unix)’ is displayed instead of the backslash, to alert you that the
file's EOL format is not the usual carriage-return linefeed.
 To visit a file and specify whether it uses DOS-style or Unix-style
end-of-line, specify a coding system (see the section called “Specifying a Coding System for File Text”). For
example, C-x RET c unix RET C-x C-f foobar.txt
visits the file foobar.txt without converting the EOLs; if some
line ends with a carriage-return linefeed pair, Emacs will display
‘^M’ at the end of that line. Similarly, you can direct Emacs to
save a buffer in a specified EOL format with the C-x RET f
command. For example, to save a buffer with Unix EOL format, type
C-x RET f unix RET C-x C-s. If you visit a file
with DOS EOL conversion, then save it with Unix EOL format, that
effectively converts the file to Unix EOL style, like the
dos2unix program.
 When you use NFS, Samba, or some other similar method to access file
systems that reside on computers using GNU or Unix systems, Emacs
should not perform end-of-line translation on any files in these file
systems—not even when you create a new file. To request this,
designate these file systems as untranslated file systems by
calling the function add-untranslated-filesystem. It takes one
argument: the file system name, including a drive letter and
optionally a directory. For example,

(add-untranslated-filesystem "Z:")

designates drive Z as an untranslated file system, and

(add-untranslated-filesystem "Z:\\foo")

designates directory \foo on drive Z as an untranslated file
system.
Most often you would use add-untranslated-filesystem in your
.emacs file, or in site-start.el so that all the users at
your site get the benefit of it.
 To countermand the effect of add-untranslated-filesystem, use
the function remove-untranslated-filesystem. This function takes
one argument, which should be a string just like the one that was used
previously with add-untranslated-filesystem.
Designating a file system as untranslated does not affect character
set conversion, only end-of-line conversion. Essentially, it directs
Emacs to create new files with the Unix-style convention of using
newline at the end of a line. See the section called “Coding Systems”.
 Some kinds of files should not be converted at all, because their
contents are not really text. Therefore, Emacs on MS-Windows distinguishes
certain files as binary files. (This distinction is not part of
MS-Windows; it is made by Emacs only.) Binary files include executable
programs, compressed archives, etc. Emacs uses the file name to decide
whether to treat a file as binary: the variable
file-name-buffer-file-type-alist defines the file-name patterns
that indicate binary files. If a file name matches one of the patterns
for binary files (those whose associations are of the type
(pattern . t), Emacs reads and writes that file using the
no-conversion coding system (see the section called “Coding Systems”) which turns
off all coding-system conversions, not only the EOL conversion.
file-name-buffer-file-type-alist also includes file-name patterns
for files which are known to be Windows-style text files with
carriage-return linefeed EOL format, such as CONFIG.SYS; Emacs
always writes those files with Windows-style EOLs.
If a file that belongs to an untranslated file system matches one of
the file-name patterns in file-name-buffer-file-type-alist, the
EOL conversion is determined by file-name-buffer-file-type-alist.

File Names on MS-Windows

 MS-Windows and MS-DOS normally use a backslash, ‘\’, to
separate name units within a file name, instead of the slash used on
other systems. Emacs on MS-DOS/MS-Windows permits use of either slash or
backslash, and also knows about drive letters in file names.
 On MS-DOS/MS-Windows, file names are case-insensitive, so Emacs by
default ignores letter-case in file names during completion.
 The variable w32-get-true-file-attributes controls whether
Emacs should issue additional system calls to determine more
accurately file attributes in primitives like file-attributes
and directory-files-and-attributes. These additional calls are
needed to report correct file ownership, link counts and file types
for special files such as pipes. Without these system calls, file
ownership will be attributed to the current user, link counts will be
always reported as 1, and special files will be reported as regular
files.
If the value of this variable is local (the default), Emacs
will issue these additional system calls only for files on local fixed
drives. Any other non-nil value means do this even for
removable and remote volumes, where this could potentially slow down
Dired and other related features. The value of nil means never
issue those system calls. Non-nil values are more useful on
NTFS volumes, which support hard links and file security, than on FAT,
FAT32, and XFAT volumes.

Emulation of ls on MS-Windows

 Dired normally uses the external program ls
to produce the directory listing displayed in Dired
buffers (see Chapter 30, Dired, the Directory Editor). However, MS-Windows and MS-DOS systems don't
come with such a program, although several ports of gnu ls
are available. Therefore, Emacs on those systems emulates
ls in Lisp, by using the ls-lisp.el package. While
ls-lisp.el provides a reasonably full emulation of ls,
there are some options and features peculiar to that emulation;
they are described in this section.
The ls emulation supports many of the ls switches, but
it doesn't support all of them. Here's the list of the switches it
does support: -A, -a, -B, -C,
-c, -G, -g, -h, -i, -n,
-R, -r, -S, -s, -t, -U,
-u, and -X. The -F switch is partially
supported (it appends the character that classifies the file, but does
not prevent symlink following).
 On MS-Windows and MS-DOS, ls-lisp.el is preloaded when Emacs
is built, so the Lisp emulation of ls is always used on those
platforms. If you have a ported ls, setting
ls-lisp-use-insert-directory-program to a non-nil value
will revert to using an external program named by the variable
insert-directory-program.
 By default, ls-lisp.el uses a case-sensitive sort order for
the directory listing it produces; this is so the listing looks the
same as on other platforms. If you wish that the files be sorted in
case-insensitive order, set the variable ls-lisp-ignore-case to
a non-nil value.
 By default, files and subdirectories are sorted together, to emulate
the behavior of ls. However, native MS-Windows/MS-DOS file
managers list the directories before the files; if you want that
behavior, customize the option ls-lisp-dirs-first to a
non-nil value.
 The variable ls-lisp-verbosity controls the file attributes
that ls-lisp.el displays. The value should be a list that
contains one or more of the symbols links, uid, and
gid. links means display the count of different file
names that are associated with (a.k.a. links to) the file's
data; this is only useful on NTFS volumes. uid means display
the numerical identifier of the user who owns the file. gid
means display the numerical identifier of the file owner's group. The
default value is (links uid gid) i.e. all the 3 optional
attributes are displayed.
 The variable ls-lisp-emulation controls the flavor of the
ls emulation by setting the defaults for the 3 options
described above: ls-lisp-ignore-case,
ls-lisp-dirs-first, and ls-lisp-verbosity. The value of
this option can be one of the following symbols:
	GNU, nil
	Emulate gnu systems; this is the default. This sets
ls-lisp-ignore-case and ls-lisp-dirs-first to
nil, and ls-lisp-verbosity to (links uid gid).

	UNIX
	Emulate Unix systems. Like GNU, but sets
ls-lisp-verbosity to (links uid).

	MacOS
	Emulate MacOS. Sets ls-lisp-ignore-case to t, and
ls-lisp-dirs-first and ls-lisp-verbosity to nil.

	MS-Windows
	Emulate MS-Windows. Sets ls-lisp-ignore-case and
ls-lisp-dirs-first to t, and ls-lisp-verbosity to
(links) on Windows NT/2K/XP/2K3 and to nil on Windows 9X.
Note that the default emulation is not MS-Windows, even
on Windows, since many users of Emacs on those platforms prefer the
gnu defaults.

Any other value of ls-lisp-emulation means the same as GNU.
Customizing this option calls the function ls-lisp-set-options to
update the 3 dependent options as needed. If you change the value of
this variable without using customize after ls-lisp.el is loaded
(note that it is preloaded on MS-Windows and MS-DOS), you can call that
function manually for the same result.
 The variable ls-lisp-support-shell-wildcards controls how
file-name patterns are supported: if it is non-nil (the
default), they are treated as shell-style wildcards; otherwise they
are treated as Emacs regular expressions.
 The variable ls-lisp-format-time-list defines how to format
the date and time of files. The value of this variable is
ignored, unless Emacs cannot determine the current locale. (However,
if the value of ls-lisp-use-localized-time-format is
non-nil, Emacs obeys ls-lisp-format-time-list even if
the current locale is available; see below.)
The value of ls-lisp-format-time-list is a list of 2 strings.
The first string is used if the file was modified within the current
year, while the second string is used for older files. In each of
these two strings you can use ‘%’-sequences to substitute parts
of the time. For example:

("%b %e %H:%M" "%b %e %Y")

Note that the strings substituted for these ‘%’-sequences depend
on the current locale. See See section ``Time Parsing'' in The Emacs Lisp Reference Manual, for more about format time specs.
 Normally, Emacs formats the file time stamps in either traditional
or ISO-style time format. However, if the value of the variable
ls-lisp-use-localized-time-format is non-nil, Emacs
formats file time stamps according to what
ls-lisp-format-time-list specifies. The ‘%’-sequences in
ls-lisp-format-time-list produce locale-dependent month and day
names, which might cause misalignment of columns in Dired display.

HOME and Startup Directories on MS-Windows

 The Windows equivalent of the HOME directory is the
user-specific application data directory. The actual location
depends on the Windows version; typical values are C:\Documents
and Settings\username\Application Data on Windows 2K/XP/2K3,
C:\Users\username\AppData\Roaming on Windows Vista/7/2K8,
and either C:\WINDOWS\Application Data or
C:\WINDOWS\Profiles\username\Application Data on the
older Windows 9X/ME systems. If this directory does not exist or
cannot be accessed, Emacs falls back to C:\ as the default
value of HOME.
You can override this default value of HOME by explicitly
setting the environment variable HOME to point to any directory
on your system. HOME can be set either from the command shell
prompt or from ‘Properties’ dialog of ‘My Computer’.
HOME can also be set in the system registry,
see the section called “The MS-Windows System Registry”.
For compatibility with older versions of Emacs[20], if there is a file named .emacs in C:\, the root
directory of drive C:, and HOME is set neither in the
environment nor in the Registry, Emacs will treat C:\ as the
default HOME location, and will not look in the application
data directory, even if it exists. Note that only .emacs is
looked for in C:\; the older name _emacs (see below) is
not. This use of C:\.emacs to define HOME is
deprecated.
Whatever the final place is, Emacs sets the internal value of the
HOME environment variable to point to it, and it will use that
location for other files and directories it normally looks for or
creates in your home directory.
You can always find out what Emacs thinks is your home directory's
location by typing C-x d ~/ RET. This should present the
list of files in the home directory, and show its full name on the
first line. Likewise, to visit your init file, type C-x C-f
~/.emacs RET (assuming the file's name is .emacs).
 The home directory is where your init file is stored. It can have
any name mentioned in the section called “The Emacs Initialization File”.
 Because MS-DOS does not allow file names with leading dots, and
older Windows systems made it hard to create files with such names,
the Windows port of Emacs supports an init file name _emacs, if
such a file exists in the home directory and .emacs does not.
This name is considered obsolete.

[20]
Older versions of Emacs didn't check the application data directory.

Keyboard Usage on MS-Windows

 This section describes the Windows-specific features related to
keyboard input in Emacs.
 Many key combinations (known as “keyboard shortcuts”) that have
conventional uses in MS-Windows programs conflict with traditional
Emacs key bindings. (These Emacs key bindings were established years
before Microsoft was founded.) Examples of conflicts include
C-c, C-x, C-z, C-a, and W-SPC.
You can redefine some of them with meanings more like the MS-Windows
meanings by enabling CUA Mode (see the section called “CUA Bindings”).
 The F10 key on Windows activates the menu bar in a way that
makes it possible to use the menus without a mouse. In this mode, the
arrow keys traverse the menus, RET selects a highlighted menu
item, and ESC closes the menu.
 By default, the key labeled Alt is mapped as the META
key. If you wish it to produce the Alt modifier instead, set
the variable w32-alt-is-meta to a nil value.
 MS-Windows reserves certain key combinations, such as
Alt-TAB, for its own use. These key combinations are
intercepted by the system before Emacs can see them. You can use the
w32-register-hot-key function to allow a key sequence to be
seen by Emacs instead of being grabbed by Windows. This functions
registers a key sequence as a hot key, overriding the special
meaning of that key sequence for Windows. (MS-Windows is told that
the key sequence is a hot key only when one of the Emacs windows has
focus, so that the special keys still have their usual meaning for
other Windows applications.)
The argument to w32-register-hot-key must be a single key,
with or without modifiers, in vector form that would be acceptable to
define-key. The meta modifier is interpreted as the ALT
key if w32-alt-is-meta is t (the default), and the hyper
modifier is always interpreted as the Windows key (usually labeled
with start and the Windows logo). If the function succeeds in
registering the key sequence, it returns the hotkey ID, a number;
otherwise it returns nil.
 For example, (w32-register-hot-key [M-tab]) lets you use
M-TAB normally in Emacs; for instance, to complete the word or
symbol at point at top level, or to complete the current search string
against previously sought strings during incremental search.
The function w32-unregister-hot-key reverses the effect of
w32-register-hot-key for its argument key sequence.
 By default, the CapsLock key only affects normal character
keys (it converts lower-case characters to their upper-case
variants). However, if you set the variable
w32-capslock-is-shiftlock to a non-nil value, the
CapsLock key will affect non-character keys as well, as if you
pressed the Shift key while typing the non-character key.
 If the variable w32-enable-caps-lock is set to a nil
value, the CapsLock key produces the symbol capslock
instead of the shifted version of they keys. The default value is
t.
 Similarly, if w32-enable-num-lock is nil, the
NumLock key will produce the symbol kp-numlock. The
default is t, which causes NumLock to work as expected:
toggle the meaning of the keys on the numeric keypad.
 The variable w32-apps-modifier controls the effect of the
Apps key (usually located between the right Alt and the
right Ctrl keys). Its value can be one of the symbols
hyper, super, meta, alt, control,
or shift for the respective modifier, or nil to appear
as the key apps. The default is nil.
 The variable w32-lwindow-modifier determines the effect of
the left Windows key (usually labeled with start and the Windows
logo). If its value is nil (the default), the key will produce
the symbol lwindow. Setting it to one of the symbols
hyper, super, meta, alt, control,
or shift will produce the respective modifier. A similar
variable w32-rwindow-modifier controls the effect of the right
Windows key, and w32-scroll-lock-modifier does the same for the
ScrLock key. If these variables are set to nil, the
right Windows key produces the symbol rwindow and ScrLock
produces the symbol scroll.
 Emacs compiled as a native Windows application normally turns off
the Windows feature that tapping the ALT key invokes the Windows
menu. The reason is that the ALT serves as META in Emacs.
When using Emacs, users often press the META key temporarily and
then change their minds; if this has the effect of bringing up the
Windows menu, it alters the meaning of subsequent commands. Many
users find this frustrating.
You can re-enable Windows's default handling of tapping the ALT
key by setting w32-pass-alt-to-system to a non-nil
value.
 The variables w32-pass-lwindow-to-system and
w32-pass-rwindow-to-system determine whether the respective
keys are passed to Windows or swallowed by Emacs. If the value is
nil, the respective key is silently swallowed by Emacs,
otherwise it is passed to Windows. The default is t for both
of these variables. Passing each of these keys to Windows produces
its normal effect: for example, Lwindow opens the
Start menu, etc.[21]
 The variable w32-recognize-altgr controls whether the
AltGr key (if it exists on your keyboard), or its equivalent,
the combination of the right Alt and left Ctrl keys
pressed together, is recognized as the AltGr key. The default
is t, which means these keys produce AltGr; setting it
to nil causes AltGr or the equivalent key combination to
be interpreted as the combination of CTRL and META
modifiers.

[21]
Some combinations of the “Windows” keys with other keys are caught
by Windows at a low level in a way that Emacs currently cannot prevent.
For example, Lwindow r always pops up the Windows
‘Run’ dialog. Customizing the value of
w32-phantom-key-code might help in some cases, though.

Mouse Usage on MS-Windows

 This section describes the Windows-specific variables related to
the mouse.
 The variable w32-mouse-button-tolerance specifies the
time interval, in milliseconds, for faking middle mouse button press
on 2-button mice. If both mouse buttons are depressed within this
time interval, Emacs generates a middle mouse button click event
instead of a double click on one of the buttons.
 If the variable w32-pass-extra-mouse-buttons-to-system is
non-nil, Emacs passes the fourth and fifth mouse buttons to
Windows.
 The variable w32-swap-mouse-buttons controls which of the 3
mouse buttons generates the mouse-2 events. When it is
nil (the default), the middle button generates mouse-2
and the right button generates mouse-3 events. If this variable
is non-nil, the roles of these two buttons are reversed.

Subprocesses on Windows 9X/ME and Windows NT/2K/XP

 Emacs compiled as a native Windows application (as opposed to the DOS
version) includes full support for asynchronous subprocesses.
In the Windows version, synchronous and asynchronous subprocesses work
fine on both
Windows 9X/ME and Windows NT/2K/XP as long as you run only 32-bit Windows
applications. However, when you run a DOS application in a subprocess,
you may encounter problems or be unable to run the application at all;
and if you run two DOS applications at the same time in two
subprocesses, you may have to reboot your system.
Since the standard command interpreter (and most command line utilities)
on Windows 9X are DOS applications, these problems are significant when
using that system. But there's nothing we can do about them; only
Microsoft can fix them.
If you run just one DOS application subprocess, the subprocess should
work as expected as long as it is “well-behaved” and does not perform
direct screen access or other unusual actions. If you have a CPU
monitor application, your machine will appear to be 100% busy even when
the DOS application is idle, but this is only an artifact of the way CPU
monitors measure processor load.
You must terminate the DOS application before you start any other DOS
application in a different subprocess. Emacs is unable to interrupt or
terminate a DOS subprocess. The only way you can terminate such a
subprocess is by giving it a command that tells its program to exit.
If you attempt to run two DOS applications at the same time in separate
subprocesses, the second one that is started will be suspended until the
first one finishes, even if either or both of them are asynchronous.
If you can go to the first subprocess, and tell it to exit, the second
subprocess should continue normally. However, if the second subprocess
is synchronous, Emacs itself will be hung until the first subprocess
finishes. If it will not finish without user input, then you have no
choice but to reboot if you are running on Windows 9X. If you are
running on Windows NT/2K/XP, you can use a process viewer application to kill
the appropriate instance of NTVDM instead (this will terminate both DOS
subprocesses).
If you have to reboot Windows 9X in this situation, do not use the
Shutdown command on the Start menu; that usually hangs the
system. Instead, type CTL-ALT-DEL and then choose
Shutdown. That usually works, although it may take a few minutes
to do its job.
 The variable w32-quote-process-args controls how Emacs quotes
the process arguments. Non-nil means quote with the "
character. If the value is a character, Emacs uses that character to escape
any quote characters that appear; otherwise it chooses a suitable escape
character based on the type of the program.
 The function w32-shell-execute can be useful for writing
customized commands that run MS-Windows applications registered to
handle a certain standard Windows operation for a specific type of
document or file. This function is a wrapper around the Windows
ShellExecute API. See the MS-Windows API documentation for
more details.

Printing and MS-Windows

Printing commands, such as lpr-buffer (see Chapter 38, Printing Hard Copies) and
ps-print-buffer (see the section called “PostScript Hardcopy”) work in MS-DOS and
MS-Windows by sending the output to one of the printer ports, if a
Posix-style lpr program is unavailable. The same Emacs
variables control printing on all systems, but in some cases they have
different default values on MS-DOS and MS-Windows.
Emacs on MS Windows attempts to determine your default printer
automatically (using the function default-printer-name).
But in some rare cases this can fail, or you may wish to use a different
printer from within Emacs. The rest of this section explains how to
tell Emacs which printer to use.
 If you want to use your local printer, then set the Lisp variable
lpr-command to "" (its default value on Windows) and
printer-name to the name of the printer port—for example,
"PRN", the usual local printer port, or "LPT2", or
"COM1" for a serial printer. You can also set
printer-name to a file name, in which case “printed” output
is actually appended to that file. If you set printer-name to
"NUL", printed output is silently discarded (sent to the system
null device).
You can also use a printer shared by another machine by setting
printer-name to the UNC share name for that printer—for
example, "//joes_pc/hp4si". (It doesn't matter whether you use
forward slashes or backslashes here.) To find out the names of shared
printers, run the command ‘net view’ from the command prompt to
obtain a list of servers, and ‘net view server-name’ to see
the names of printers (and directories) shared by that server.
Alternatively, click the ‘Network Neighborhood’ icon on your
desktop, and look for machines that share their printers via the
network.
 If the printer doesn't appear in the output of ‘net view’, or
if setting printer-name to the UNC share name doesn't produce a
hardcopy on that printer, you can use the ‘net use’ command to
connect a local print port such as "LPT2" to the networked
printer. For example, typing net use LPT2: \\joes_pc\hp4si[22]
causes Windows to capture the LPT2 port and redirect the
printed material to the printer connected to the machine joes_pc.
After this command, setting printer-name to "LPT2"
should produce the hardcopy on the networked printer.
With some varieties of Windows network software, you can instruct
Windows to capture a specific printer port such as "LPT2", and
redirect it to a networked printer via the Control
Panel->Printers applet instead of ‘net use’.
If you set printer-name to a file name, it's best to use an
absolute file name. Emacs changes the working directory according to
the default directory of the current buffer, so if the file name in
printer-name is relative, you will end up with several such
files, each one in the directory of the buffer from which the printing
was done.
If the value of printer-name is correct, but printing does
not produce the hardcopy on your printer, it is possible that your
printer does not support printing plain text (some cheap printers omit
this functionality). In that case, try the PostScript print commands,
described below.
 The commands print-buffer and print-region call the
pr program, or use special switches to the lpr program, to
produce headers on each printed page. MS-DOS and MS-Windows don't
normally have these programs, so by default, the variable
lpr-headers-switches is set so that the requests to print page
headers are silently ignored. Thus, print-buffer and
print-region produce the same output as lpr-buffer and
lpr-region, respectively. If you do have a suitable pr
program (for example, from GNU Coreutils), set
lpr-headers-switches to nil; Emacs will then call
pr to produce the page headers, and print the resulting output as
specified by printer-name.
 Finally, if you do have an lpr work-alike, you can set the
variable lpr-command to "lpr". Then Emacs will use
lpr for printing, as on other systems. (If the name of the
program isn't lpr, set lpr-command to the appropriate value.)
The variable lpr-switches has its standard meaning
when lpr-command is not "". If the variable
printer-name has a string value, it is used as the value for the
-P option to lpr, as on Unix.
 A parallel set of variables, ps-lpr-command,
ps-lpr-switches, and ps-printer-name (see the section called “Variables for PostScript Hardcopy”), defines how PostScript files should be printed. These
variables are used in the same way as the corresponding variables
described above for non-PostScript printing. Thus, the value of
ps-printer-name is used as the name of the device (or file) to
which PostScript output is sent, just as printer-name is used
for non-PostScript printing. (There are two distinct sets of
variables in case you have two printers attached to two different
ports, and only one of them is a PostScript printer.)
 The default value of the variable ps-lpr-command is "",
which causes PostScript output to be sent to the printer port specified
by ps-printer-name; but ps-lpr-command can also be set to
the name of a program which will accept PostScript files. Thus, if you
have a non-PostScript printer, you can set this variable to the name of
a PostScript interpreter program (such as Ghostscript). Any switches
that need to be passed to the interpreter program are specified using
ps-lpr-switches. (If the value of ps-printer-name is a
string, it will be added to the list of switches as the value for the
-P option. This is probably only useful if you are using
lpr, so when using an interpreter typically you would set
ps-printer-name to something other than a string so it is
ignored.)
For example, to use Ghostscript for printing on the system's default
printer, put this in your .emacs file:

(setq ps-printer-name t)
(setq ps-lpr-command "D:/gs6.01/bin/gswin32c.exe")
(setq ps-lpr-switches '("-q" "-dNOPAUSE" "-dBATCH"
 "-sDEVICE=mswinpr2"
 "-sPAPERSIZE=a4"))

(This assumes that Ghostscript is installed in the
D:/gs6.01 directory.)

[22]
Note that the ‘net use’ command requires the UNC share name to be
typed with the Windows-style backslashes, while the value of
printer-name can be set with either forward- or backslashes.

Specifying Fonts on MS-Windows

 Starting with Emacs 23, fonts are specified by their name, size
and optional properties. The format for specifying fonts comes from the
fontconfig library used in modern Free desktops:

 [Family[-PointSize]][:Option1=Value1[:Option2=Value2[...]]]

The old XLFD based format is also supported for backwards compatibility.
 Emacs 23 and later supports a number of font backends. Currently,
the gdi and uniscribe backends are supported on Windows.
The gdi font backend is available on all versions of Windows,
and supports all fonts that are natively supported by Windows. The
uniscribe font backend is available on Windows 2000 and later,
and supports TrueType and OpenType fonts. Some languages requiring
complex layout can only be properly supported by the Uniscribe
backend. By default, both backends are enabled if supported, with
uniscribe taking priority over gdi. To override that
and use the GDI backend even if Uniscribe is available, invoke Emacs
with the -xrm Emacs.fontBackend:gdi command-line argument, or
add a Emacs.fontBackend resource with the value gdi in
the Registry under either the
‘HKEY_CURRENT_USER\SOFTWARE\GNU\Emacs’ or the
‘HKEY_LOCAL_MACHINE\SOFTWARE\GNU\Emacs’ key (see the section called “X Resources”).
Optional properties common to all font backends on MS-Windows are:

	weight
	Specifies the weight of the font. Special values light,
medium, demibold, bold, and black can be specified
without weight= (e.g., Courier New-12:bold). Otherwise,
the weight should be a numeric value between 100 and 900, or one of the
named weights in font-weight-table. If unspecified, a regular font
is assumed.

	slant
	Specifies whether the font is italic. Special values
roman, italic and oblique can be specified
without slant= (e.g., Courier New-12:italic).
Otherwise, the slant should be a numeric value, or one of the named
slants in font-slant-table. On Windows, any slant above 150 is
treated as italics, and anything below as roman.

	family
	Specifies the font family, but normally this will be specified
at the start of the font name.

	pixelsize
	Specifies the font size in pixels. This can be used instead
of the point size specified after the family name.

	adstyle
	Specifies additional style information for the font.
On MS-Windows, the values mono, sans, serif,
script and decorative are recognized. These are most useful
as a fallback with the font family left unspecified.

	registry
	Specifies the character set registry that the font is
expected to cover. Most TrueType and OpenType fonts will be Unicode fonts
that cover several national character sets, but you can narrow down the
selection of fonts to those that support a particular character set by
using a specific registry from w32-charset-info-alist here.

	spacing
	Specifies how the font is spaced. The p spacing specifies
a proportional font, and m or c specify a monospaced font.

	foundry
	Not used on Windows, but for informational purposes and to
prevent problems with code that expects it to be set, is set internally to
raster for bitmapped fonts, outline for scalable fonts,
or unknown if the type cannot be determined as one of those.

Options specific to GDI fonts:

	script
	Specifies a Unicode subrange the font should support.
The following scripts are recognized on Windows: latin, greek,
coptic, cyrillic, armenian, hebrew, arabic,
syriac, nko, thaana, devanagari, bengali,
gurmukhi, gujarati, oriya, tamil, telugu,
kannada, malayam, sinhala, thai, lao,
tibetan, myanmar, georgian, hangul,
ethiopic, cherokee, canadian-aboriginal, ogham,
runic, khmer, mongolian, symbol, braille,
han, ideographic-description, cjk-misc, kana,
bopomofo, kanbun, yi, byzantine-musical-symbol,
musical-symbol, and mathematical.

	antialias
	Specifies the antialiasing method. The value none means no
antialiasing, standard means use standard antialiasing,
subpixel means use subpixel antialiasing (known as Cleartype on
Windows), and natural means use subpixel antialiasing with
adjusted spacing between letters. If unspecified, the font will use
the system default antialiasing.

Miscellaneous Windows-specific features

This section describes miscellaneous Windows-specific features.
 The variable w32-use-visible-system-caret is a flag that
determines whether to make the system caret visible. The default when
no screen reader software is in use is nil, which means Emacs
draws its own cursor to indicate the position of point. A
non-nil value means Emacs will indicate point location with the
system caret; this facilitates use of screen reader software, and is
the default when such software is detected when running Emacs.
When this variable is non-nil, other variables affecting the
cursor display have no effect.
 The variable w32-grab-focus-on-raise, if set to a
non-nil value causes a frame to grab focus when it is raised.
The default is t, which fits well with the Windows default
click-to-focus policy.

Emacs and MS-DOS

 This section briefly describes the peculiarities of using Emacs on
the MS-DOS “operating system” (also known as “MS-DOG”).
Information about peculiarities common to MS-DOS and Microsoft's
current operating systems Windows (also known as “Losedows”) is in
Appendix G, Emacs and Microsoft Windows/MS-DOS.
If you build Emacs for MS-DOS, the binary will also run on Windows
3.X, Windows NT, Windows 9X/ME, Windows 2000/XP, or OS/2 as a DOS
application; all of this chapter applies for all of those systems, if
you use an Emacs that was built for MS-DOS.
See the section called “Text Files and Binary Files”, for information
about Emacs's special handling of text files under MS-DOS (and Windows).
Keyboard Usage on MS-DOS

 The key that is called DEL in Emacs (because that's how it is
designated on most workstations) is known as BS (backspace) on a
PC. That is why the PC-specific terminal initialization remaps the
BS key to act as DEL; the DELETE key is remapped to act
as C-d for the same reasons.
 Emacs built for MS-DOS recognizes C-BREAK as a quit
character, just like C-g. This is because Emacs cannot detect
that you have typed C-g until it is ready for more input. As a
consequence, you cannot use C-g to stop a running command
(see Chapter 49, Quitting and Aborting).
By contrast, C-BREAK is detected as soon as you
type it (as C-g is on other systems), so it can be used to stop
a running command and for emergency escape
(see the section called “Emergency Escape”).
 The PC keyboard maps use the left ALT key as the META key.
You have two choices for emulating the SUPER and HYPER keys:
choose either the right CTRL key or the right ALT key by
setting the variables dos-hyper-key and dos-super-key to 1
or 2 respectively. If neither dos-super-key nor
dos-hyper-key is 1, then by default the right ALT key is
also mapped to the META key. However, if the MS-DOS international
keyboard support program KEYB.COM is installed, Emacs will
not map the right ALT to META, since it is used for
accessing characters like ~ and @ on non-US keyboard
layouts; in this case, you may only use the left ALT as META
key.
 The variable dos-keypad-mode is a flag variable that controls
what key codes are returned by keys in the numeric keypad. You can also
define the keypad ENTER key to act like C-j, by putting the
following line into your _emacs file:

;; Make the ENTER key from the numeric keypad act as C-j.
(define-key function-key-map [kp-enter] [?\C-j])

Mouse Usage on MS-DOS

 Emacs on MS-DOS supports a mouse (on the default terminal only).
The mouse commands work as documented, including those that use menus
and the menu bar
(see the section called “The Menu Bar”).
 Scroll bars don't work in MS-DOS Emacs. PC mice usually have only
two buttons; these act as Mouse-1 and Mouse-2, but if you
press both of them together, that has the effect of Mouse-3. If
the mouse does have 3 buttons, Emacs detects that at startup, and all
the 3 buttons function normally, as on X.
Help strings for menu-bar and pop-up menus are displayed in the echo
area when the mouse pointer moves across the menu items. Highlighting
of mouse-sensitive text
(see the section called “Following References with the Mouse”)
is also supported.
 Some versions of mouse drivers don't report the number of mouse
buttons correctly. For example, mice with a wheel report that they
have 3 buttons, but only 2 of them are passed to Emacs; the clicks on
the wheel, which serves as the middle button, are not passed. In
these cases, you can use the M-x msdos-set-mouse-buttons command
to tell Emacs how many mouse buttons to expect. You could make such a
setting permanent by adding this fragment to your _emacs init
file:

;; Treat the mouse like a 2-button mouse.
(msdos-set-mouse-buttons 2)

 Emacs built for MS-DOS supports clipboard operations when it runs on
Windows. Commands that put text on the kill ring, or yank text from
the ring, check the Windows clipboard first, just as Emacs does on the
X Window System
(see the section called “Mouse Commands for Editing”).
Only the primary selection and the cut buffer are supported by MS-DOS
Emacs on Windows; the secondary selection always appears as empty.
Due to the way clipboard access is implemented by Windows, the
length of text you can put into the clipboard is limited by the amount
of free DOS memory that is available to Emacs. Usually, up to 620KB of
text can be put into the clipboard, but this limit depends on the system
configuration and is lower if you run Emacs as a subprocess of
another program. If the killed text does not fit, Emacs outputs a
message saying so, and does not put the text into the clipboard.
Null characters also cannot be put into the Windows clipboard. If the
killed text includes null characters, Emacs does not put such text into
the clipboard, and displays in the echo area a message to that effect.
 The variable dos-display-scancodes, when non-nil,
directs Emacs to display the ASCII value and the keyboard scan code of
each keystroke; this feature serves as a complement to the
view-lossage command, for debugging.

Display on MS-DOS

 Display on MS-DOS cannot use font variants, like bold or italic, but
it does support multiple faces, each of which can specify a foreground
and a background color. Therefore, you can get the full functionality
of Emacs packages that use fonts (such as font-lock, Enriched
Text mode, and others) by defining the relevant faces to use different
colors. Use the list-colors-display command
(see the section called “Colors for Faces”)
and the list-faces-display command
(see the section called “Text Faces”)
to see what colors and faces are available and what they look like.
See the section called “International Support on MS-DOS”, later in this chapter, for information on
how Emacs displays glyphs and characters that aren't supported by the
native font built into the DOS display.
 When Emacs starts, it changes the cursor shape to a solid box. This
is for compatibility with other systems, where the box cursor is the
default in Emacs. This default shape can be changed to a bar by
specifying the cursor-type parameter in the variable
default-frame-alist
(see the section called “Creating Frames”).
The MS-DOS terminal doesn't support a vertical-bar cursor,
so the bar cursor is horizontal, and the width parameter,
if specified by the frame parameters, actually determines its height.
For this reason, the bar and hbar cursor types produce
the same effect on MS-DOS. As an extension, the bar cursor
specification can include the starting scan line of the cursor as well
as its width, like this:

 '(cursor-type bar width . start)

In addition, if the width parameter is negative, the cursor bar
begins at the top of the character cell.
 The MS-DOS terminal can only display a single frame at a time. The
Emacs frame facilities work on MS-DOS much as they do on text
terminals
(see Chapter 21, Frames and Graphical Displays).
When you run Emacs from a DOS window on MS-Windows, you can make the
visible frame smaller than the full screen, but Emacs still cannot
display more than a single frame at a time.
 The dos-mode4350 command switches the display to 43 or 50
lines, depending on your hardware; the dos-mode25 command switches
to the default 80x25 screen size.
By default, Emacs only knows how to set screen sizes of 80 columns by
25, 28, 35, 40, 43 or 50 rows. However, if your video adapter has
special video modes that will switch the display to other sizes, you can
have Emacs support those too. When you ask Emacs to switch the frame to
n rows by m columns dimensions, it checks if there is a
variable called screen-dimensions-nxm, and if so,
uses its value (which must be an integer) as the video mode to switch
to. (Emacs switches to that video mode by calling the BIOS Set
Video Mode function with the value of
screen-dimensions-nxm in the AL register.)
For example, suppose your adapter will switch to 66x80 dimensions when
put into video mode 85. Then you can make Emacs support this screen
size by putting the following into your _emacs file:

(setq screen-dimensions-66x80 85)

Since Emacs on MS-DOS can only set the frame size to specific
supported dimensions, it cannot honor every possible frame resizing
request. When an unsupported size is requested, Emacs chooses the next
larger supported size beyond the specified size. For example, if you
ask for 36x80 frame, you will get 40x80 instead.
The variables screen-dimensions-nxm are used only
when they exactly match the specified size; the search for the next
larger supported size ignores them. In the above example, even if your
VGA supports 38x80 dimensions and you define a variable
screen-dimensions-38x80 with a suitable value, you will still get
40x80 screen when you ask for a 36x80 frame. If you want to get the
38x80 size in this case, you can do it by setting the variable named
screen-dimensions-36x80 with the same video mode value as
screen-dimensions-38x80.
Changing frame dimensions on MS-DOS has the effect of changing all the
other frames to the new dimensions.

File Names on MS-DOS

 On MS-DOS, file names are case-insensitive and limited to eight
characters, plus optionally a period and three more characters. Emacs
knows enough about these limitations to handle file names that were
meant for other operating systems. For instance, leading dots
‘.’ in file names are invalid in MS-DOS, so Emacs transparently
converts them to underscores ‘_’; thus your default init file
(see the section called “The Emacs Initialization File”)
is called _emacs on MS-DOS. Excess characters before or after
the period are generally ignored by MS-DOS itself; thus, if you visit
the file LongFileName.EvenLongerExtension, you will silently
get longfile.eve, but Emacs will still display the long file
name on the mode line. Other than that, it's up to you to specify
file names which are valid under MS-DOS; the transparent conversion as
described above only works on file names built into Emacs.
 The above restrictions on the file names on MS-DOS make it almost
impossible to construct the name of a backup file
(see the section called “Single or Numbered Backups”)
without losing some of the original file name characters. For
example, the name of a backup file for docs.txt is
docs.tx~ even if single backup is used.
 If you run Emacs as a DOS application under Windows 9X, Windows ME, or
Windows 2000/XP, you can turn on support for long file names. If you do
that, Emacs doesn't truncate file names or convert them to lower case;
instead, it uses the file names that you specify, verbatim. To enable
long file name support, set the environment variable LFN to
‘y’ before starting Emacs. Unfortunately, Windows NT doesn't allow
DOS programs to access long file names, so Emacs built for MS-DOS will
only see their short 8+3 aliases.
 MS-DOS has no notion of home directory, so Emacs on MS-DOS pretends
that the directory where it is installed is the value of the HOME
environment variable. That is, if your Emacs binary,
emacs.exe, is in the directory c:/utils/emacs/bin, then
Emacs acts as if HOME were set to ‘c:/utils/emacs’. In
particular, that is where Emacs looks for the init file _emacs.
With this in mind, you can use ‘~’ in file names as an alias for
the home directory, as you would on GNU or Unix. You can also set
HOME variable in the environment before starting Emacs; its
value will then override the above default behavior.
Emacs on MS-DOS handles the directory name /dev specially,
because of a feature in the emulator libraries of DJGPP that pretends
I/O devices have names in that directory. We recommend that you avoid
using an actual directory named /dev on any disk.

Printing and MS-DOS

Printing commands, such as lpr-buffer
(see Chapter 38, Printing Hard Copies) and ps-print-buffer (see the section called “PostScript Hardcopy”)
can work on MS-DOS by sending the output to one of the printer ports,
if a Posix-style lpr program is unavailable. The same Emacs
variables control printing on all systems, but in some cases they have
different default values on MS-DOS.
See the section called “Printing and MS-Windows”,
for details about setting up printing to a networked printer.
Some printers expect DOS codepage encoding of non-ASCII text, even
though they are connected to a Windows machine that uses a different
encoding for the same locale. For example, in the Latin-1 locale, DOS
uses codepage 850 whereas Windows uses codepage 1252. See the section called “International Support on MS-DOS”. When you print to such printers from Windows, you can use the
C-x RET c (universal-coding-system-argument) command before
M-x lpr-buffer; Emacs will then convert the text to the DOS
codepage that you specify. For example, C-x RET c cp850-dos RET
M-x lpr-region RET will print the region while converting it to the
codepage 850 encoding.
 For backwards compatibility, the value of dos-printer
(dos-ps-printer), if it has a value, overrides the value of
printer-name (ps-printer-name), on MS-DOS.

International Support on MS-DOS

 Emacs on MS-DOS supports the same international character sets as it
does on GNU, Unix and other platforms
(see Chapter 22, International Character Set Support),
including coding systems for converting between the different
character sets. However, due to incompatibilities between
MS-DOS/MS-Windows and other systems, there are several DOS-specific
aspects of this support that you should be aware of. This section
describes these aspects.
The description below is largely specific to the MS-DOS port of
Emacs, especially where it talks about practical implications for
Emacs users.
	M-x dos-codepage-setup
	Set up Emacs display and coding systems as appropriate for the current
DOS codepage.

 MS-DOS is designed to support one character set of 256 characters at
any given time, but gives you a variety of character sets to choose
from. The alternative character sets are known as DOS codepages.
Each codepage includes all 128 ASCII characters, but the other 128
characters (codes 128 through 255) vary from one codepage to another.
Each DOS codepage is identified by a 3-digit number, such as 850, 862,
etc.
In contrast to X, which lets you use several fonts at the same time,
MS-DOS normally doesn't allow use of several codepages in a single
session. MS-DOS was designed to load a single codepage at system
startup, and require you to reboot in order to change
it[23]. Much the same limitation applies when you run DOS
executables on other systems such as MS-Windows.
 For multibyte operation on MS-DOS, Emacs needs to know which
characters the chosen DOS codepage can display. So it queries the
system shortly after startup to get the chosen codepage number, and
stores the number in the variable dos-codepage. Some systems
return the default value 437 for the current codepage, even though the
actual codepage is different. (This typically happens when you use the
codepage built into the display hardware.) You can specify a different
codepage for Emacs to use by setting the variable dos-codepage in
your init file.
 Multibyte Emacs supports only certain DOS codepages: those which can
display Far-Eastern scripts, like the Japanese codepage 932, and those
that encode a single ISO 8859 character set.
The Far-Eastern codepages can directly display one of the MULE
character sets for these countries, so Emacs simply sets up to use the
appropriate terminal coding system that is supported by the codepage.
The special features described in the rest of this section mostly
pertain to codepages that encode ISO 8859 character sets.
For the codepages that correspond to one of the ISO character sets,
Emacs knows the character set based on the codepage number. Emacs
automatically creates a coding system to support reading and writing
files that use the current codepage, and uses this coding system by
default. The name of this coding system is cpnnn, where
nnn is the codepage number.[24]
 All the cpnnn coding systems use the letter ‘D’
(for “DOS”) as their mode-line mnemonic. Since both the terminal
coding system and the default coding system for file I/O are set to
the proper cpnnn coding system at startup, it is normal
for the mode line on MS-DOS to begin with ‘-DD\-’.
See the section called “The Mode Line”.
Far-Eastern DOS terminals do not use the cpnnn coding
systems, and thus their initial mode line looks like the Emacs
default.
Since the codepage number also indicates which script you are using,
Emacs automatically runs set-language-environment to select the
language environment for that script
(see the section called “Language Environments”).
If a buffer contains a character belonging to some other ISO 8859
character set, not the one that the chosen DOS codepage supports, Emacs
displays it using a sequence of ASCII characters. For example, if the
current codepage doesn't have a glyph for the letter ‘ò’ (small
‘o’ with a grave accent), it is displayed as ‘{`o}’, where
the braces serve as a visual indication that this is a single character.
(This may look awkward for some non-Latin characters, such as those from
Greek or Hebrew alphabets, but it is still readable by a person who
knows the language.) Even though the character may occupy several
columns on the screen, it is really still just a single character, and
all Emacs commands treat it as one.
 MS-Windows provides its own codepages, which are different from the
DOS codepages for the same locale. For example, DOS codepage 850
supports the same character set as Windows codepage 1252; DOS codepage
855 supports the same character set as Windows codepage 1251, etc.
The MS-Windows version of Emacs uses the current codepage for display
when invoked with the ‘-nw’ option.

Subprocesses on MS-DOS

 Because MS-DOS is a single-process “operating system”,
asynchronous subprocesses are not available. In particular, Shell
mode and its variants do not work. Most Emacs features that use
asynchronous subprocesses also don't work on MS-DOS, including
Shell mode and GUD. When in doubt, try and see; commands that
don't work output an error message saying that asynchronous processes
aren't supported.
Compilation under Emacs with M-x compile, searching files with
M-x grep and displaying differences between files with M-x
diff do work, by running the inferior processes synchronously. This
means you cannot do any more editing until the inferior process
finishes.
Spell checking also works, by means of special support for synchronous
invocation of the ispell program. This is slower than the
asynchronous invocation on other platforms
Instead of the Shell mode, which doesn't work on MS-DOS, you can use
the M-x eshell command. This invokes the Eshell package that
implements a Posix-like shell entirely in Emacs Lisp.
By contrast, Emacs compiled as a native Windows application
does support asynchronous subprocesses.
See the section called “Subprocesses on Windows 9X/ME and Windows NT/2K/XP”.
 Printing commands, such as lpr-buffer
(see Chapter 38, Printing Hard Copies) and ps-print-buffer (see the section called “PostScript Hardcopy”),
work in MS-DOS by sending the output to one of the printer ports.
See the section called “Printing and MS-DOS”.
When you run a subprocess synchronously on MS-DOS, make sure the
program terminates and does not try to read keyboard input. If the
program does not terminate on its own, you will be unable to terminate
it, because MS-DOS provides no general way to terminate a process.
Pressing C-c or C-BREAK might sometimes help in these
cases.
Accessing files on other machines is not supported on MS-DOS. Other
network-oriented commands such as sending mail, Web browsing, remote
login, etc., don't work either, unless network access is built into
MS-DOS with some network redirector.
 Dired on MS-DOS uses the ls-lisp package
(see the section called “Emulation of ls on MS-Windows”).
Therefore, Dired on MS-DOS supports only some of the possible options
you can mention in the dired-listing-switches variable. The
options that work are ‘-A’, ‘-a’, ‘-c’, ‘-i’,
‘-r’, ‘-S’, ‘-s’, ‘-t’, and ‘-u’.

[23] Normally, one particular codepage is burnt into the
display memory, while other codepages can be installed by modifying
system configuration files, such as CONFIG.SYS, and rebooting.
While there is third-party software that allows changing the codepage
without rebooting, we describe here how a stock MS-DOS system
behaves.

[24] The standard Emacs coding
systems for ISO 8859 are not quite right for the purpose, because
typically the DOS codepage does not match the standard ISO character
codes. For example, the letter ‘ç’ (‘c’ with cedilla) has
code 231 in the standard Latin-1 character set, but the corresponding
DOS codepage 850 uses code 135 for this glyph.

Chapter . The GNU Manifesto

The GNU Manifesto which appears below was written by Richard Stallman at
the beginning of the GNU project, to ask for participation and support.
For the first few years, it was updated in minor ways to account for
developments, but now it seems best to leave it unchanged as most people
have seen it.
Since that time, we have learned about certain common misunderstandings
that different wording could help avoid. Footnotes added in 1993 help
clarify these points.
For up-to-date information about available GNU software, please see
our web site, http://www.gnu.org. For software tasks and other
ways to contribute, see http://www.gnu.org/help.

What's GNU? Gnu's Not Unix!

GNU, which stands for Gnu's Not Unix, is the name for the complete
Unix-compatible software system which I am writing so that I can give it
away free to everyone who can use it.[25] Several other volunteers are helping
me. Contributions of time, money, programs and equipment are greatly
needed.
So far we have an Emacs text editor with Lisp for writing editor commands,
a source level debugger, a yacc-compatible parser generator, a linker, and
around 35 utilities. A shell (command interpreter) is nearly completed. A
new portable optimizing C compiler has compiled itself and may be released
this year. An initial kernel exists but many more features are needed to
emulate Unix. When the kernel and compiler are finished, it will be
possible to distribute a GNU system suitable for program development. We
will use TeX as our text formatter, but an nroff is being worked on. We
will use the free, portable X window system as well. After this we will
add a portable Common Lisp, an Empire game, a spreadsheet, and hundreds of
other things, plus on-line documentation. We hope to supply, eventually,
everything useful that normally comes with a Unix system, and more.
GNU will be able to run Unix programs, but will not be identical to Unix.
We will make all improvements that are convenient, based on our experience
with other operating systems. In particular, we plan to have longer
file names, file version numbers, a crashproof file system, file name
completion perhaps, terminal-independent display support, and perhaps
eventually a Lisp-based window system through which several Lisp programs
and ordinary Unix programs can share a screen. Both C and Lisp will be
available as system programming languages. We will try to support UUCP,
MIT Chaosnet, and Internet protocols for communication.
GNU is aimed initially at machines in the 68000/16000 class with virtual
memory, because they are the easiest machines to make it run on. The extra
effort to make it run on smaller machines will be left to someone who wants
to use it on them.
To avoid horrible confusion, please pronounce the `G' in the word `GNU'
when it is the name of this project.

[25] The wording here was
careless. The intention was that nobody would have to pay for
permission to use the GNU system. But the words don't make this
clear, and people often interpret them as saying that copies of GNU
should always be distributed at little or no charge. That was never the
intent; later on, the manifesto mentions the possibility of companies
providing the service of distribution for a profit. Subsequently I have
learned to distinguish carefully between “free” in the sense of
freedom and “free” in the sense of price. Free software is software
that users have the freedom to distribute and change. Some users may
obtain copies at no charge, while others pay to obtain copies—and if
the funds help support improving the software, so much the better. The
important thing is that everyone who has a copy has the freedom to
cooperate with others in using it.

Why I Must Write GNU

I consider that the golden rule requires that if I like a program I must
share it with other people who like it. Software sellers want to divide
the users and conquer them, making each user agree not to share with
others. I refuse to break solidarity with other users in this way. I
cannot in good conscience sign a nondisclosure agreement or a software
license agreement. For years I worked within the Artificial Intelligence
Lab to resist such tendencies and other inhospitalities, but eventually
they had gone too far: I could not remain in an institution where such
things are done for me against my will.
So that I can continue to use computers without dishonor, I have decided to
put together a sufficient body of free software so that I will be able to
get along without any software that is not free. I have resigned from the
AI lab to deny MIT any legal excuse to prevent me from giving GNU away.

Why GNU Will Be Compatible with Unix

Unix is not my ideal system, but it is not too bad. The essential features
of Unix seem to be good ones, and I think I can fill in what Unix lacks
without spoiling them. And a system compatible with Unix would be
convenient for many other people to adopt.

How GNU Will Be Available

GNU is not in the public domain. Everyone will be permitted to modify and
redistribute GNU, but no distributor will be allowed to restrict its
further redistribution. That is to say, proprietary modifications will not
be allowed. I want to make sure that all versions of GNU remain free.

Why Many Other Programmers Want to Help

I have found many other programmers who are excited about GNU and want to
help.
Many programmers are unhappy about the commercialization of system
software. It may enable them to make more money, but it requires them to
feel in conflict with other programmers in general rather than feel as
comrades. The fundamental act of friendship among programmers is the
sharing of programs; marketing arrangements now typically used essentially
forbid programmers to treat others as friends. The purchaser of software
must choose between friendship and obeying the law. Naturally, many decide
that friendship is more important. But those who believe in law often do
not feel at ease with either choice. They become cynical and think that
programming is just a way of making money.
By working on and using GNU rather than proprietary programs, we can be
hospitable to everyone and obey the law. In addition, GNU serves as an
example to inspire and a banner to rally others to join us in sharing.
This can give us a feeling of harmony which is impossible if we use
software that is not free. For about half the programmers I talk to, this
is an important happiness that money cannot replace.

How You Can Contribute

I am asking computer manufacturers for donations of machines and money.
I'm asking individuals for donations of programs and work.
One consequence you can expect if you donate machines is that GNU will run
on them at an early date. The machines should be complete, ready to use
systems, approved for use in a residential area, and not in need of
sophisticated cooling or power.
I have found very many programmers eager to contribute part-time work for
GNU. For most projects, such part-time distributed work would be very hard
to coordinate; the independently-written parts would not work together.
But for the particular task of replacing Unix, this problem is absent. A
complete Unix system contains hundreds of utility programs, each of which
is documented separately. Most interface specifications are fixed by Unix
compatibility. If each contributor can write a compatible replacement for
a single Unix utility, and make it work properly in place of the original
on a Unix system, then these utilities will work right when put together.
Even allowing for Murphy to create a few unexpected problems, assembling
these components will be a feasible task. (The kernel will require closer
communication and will be worked on by a small, tight group.)
If I get donations of money, I may be able to hire a few people full or
part time. The salary won't be high by programmers' standards, but I'm
looking for people for whom building community spirit is as important as
making money. I view this as a way of enabling dedicated people to devote
their full energies to working on GNU by sparing them the need to make a
living in another way.

Why All Computer Users Will Benefit

Once GNU is written, everyone will be able to obtain good system
software free, just like air.[26]
This means much more than just saving everyone the price of a Unix license.
It means that much wasteful duplication of system programming effort will
be avoided. This effort can go instead into advancing the state of the
art.
Complete system sources will be available to everyone. As a result, a user
who needs changes in the system will always be free to make them himself,
or hire any available programmer or company to make them for him. Users
will no longer be at the mercy of one programmer or company which owns the
sources and is in sole position to make changes.
Schools will be able to provide a much more educational environment by
encouraging all students to study and improve the system code. Harvard's
computer lab used to have the policy that no program could be installed on
the system if its sources were not on public display, and upheld it by
actually refusing to install certain programs. I was very much inspired by
this.
Finally, the overhead of considering who owns the system software and what
one is or is not entitled to do with it will be lifted.
Arrangements to make people pay for using a program, including licensing of
copies, always incur a tremendous cost to society through the cumbersome
mechanisms necessary to figure out how much (that is, which programs) a
person must pay for. And only a police state can force everyone to obey
them. Consider a space station where air must be manufactured at great
cost: charging each breather per liter of air may be fair, but wearing the
metered gas mask all day and all night is intolerable even if everyone can
afford to pay the air bill. And the TV cameras everywhere to see if you
ever take the mask off are outrageous. It's better to support the air
plant with a head tax and chuck the masks.
Copying all or parts of a program is as natural to a programmer as
breathing, and as productive. It ought to be as free.

[26] This is another place I failed to
distinguish carefully between the two different meanings of “free.”
The statement as it stands is not false—you can get copies of GNU
software at no charge, from your friends or over the net. But it does
suggest the wrong idea.

Some Easily Rebutted Objections to GNU's Goals

“Nobody will use it if it is free, because that means they can't rely
on any support.”
“You have to charge for the program to pay for providing the
support.”

If people would rather pay for GNU plus service than get GNU free without
service, a company to provide just service to people who have obtained GNU
free ought to be profitable.[27]
We must distinguish between support in the form of real programming work
and mere handholding. The former is something one cannot rely on from a
software vendor. If your problem is not shared by enough people, the
vendor will tell you to get lost.
If your business needs to be able to rely on support, the only way is to
have all the necessary sources and tools. Then you can hire any available
person to fix your problem; you are not at the mercy of any individual.
With Unix, the price of sources puts this out of consideration for most
businesses. With GNU this will be easy. It is still possible for there to
be no available competent person, but this problem cannot be blamed on
distribution arrangements. GNU does not eliminate all the world's problems,
only some of them.
Meanwhile, the users who know nothing about computers need handholding:
doing things for them which they could easily do themselves but don't know
how.
Such services could be provided by companies that sell just hand-holding
and repair service. If it is true that users would rather spend money and
get a product with service, they will also be willing to buy the service
having got the product free. The service companies will compete in quality
and price; users will not be tied to any particular one. Meanwhile, those
of us who don't need the service should be able to use the program without
paying for the service.
“You cannot reach many people without advertising,
and you must charge for the program to support that.”
“It's no use advertising a program people can get free.”

There are various forms of free or very cheap publicity that can be used to
inform numbers of computer users about something like GNU. But it may be
true that one can reach more microcomputer users with advertising. If this
is really so, a business which advertises the service of copying and
mailing GNU for a fee ought to be successful enough to pay for its
advertising and more. This way, only the users who benefit from the
advertising pay for it.
On the other hand, if many people get GNU from their friends, and such
companies don't succeed, this will show that advertising was not really
necessary to spread GNU. Why is it that free market advocates don't
want to let the free market decide this?[28]
“My company needs a proprietary operating system
to get a competitive edge.”

GNU will remove operating system software from the realm of competition.
You will not be able to get an edge in this area, but neither will your
competitors be able to get an edge over you. You and they will compete in
other areas, while benefiting mutually in this one. If your business is
selling an operating system, you will not like GNU, but that's tough on
you. If your business is something else, GNU can save you from being
pushed into the expensive business of selling operating systems.
I would like to see GNU development supported by gifts from many
manufacturers and users, reducing the cost to each.[29]
“Don't programmers deserve a reward for their creativity?”

If anything deserves a reward, it is social contribution. Creativity can
be a social contribution, but only in so far as society is free to use the
results. If programmers deserve to be rewarded for creating innovative
programs, by the same token they deserve to be punished if they restrict
the use of these programs.
“Shouldn't a programmer be able to ask for a reward for his creativity?”

There is nothing wrong with wanting pay for work, or seeking to maximize
one's income, as long as one does not use means that are destructive. But
the means customary in the field of software today are based on
destruction.
Extracting money from users of a program by restricting their use of it is
destructive because the restrictions reduce the amount and the ways that
the program can be used. This reduces the amount of wealth that humanity
derives from the program. When there is a deliberate choice to restrict,
the harmful consequences are deliberate destruction.
The reason a good citizen does not use such destructive means to become
wealthier is that, if everyone did so, we would all become poorer from the
mutual destructiveness. This is Kantian ethics; or, the Golden Rule.
Since I do not like the consequences that result if everyone hoards
information, I am required to consider it wrong for one to do so.
Specifically, the desire to be rewarded for one's creativity does not
justify depriving the world in general of all or part of that creativity.
“Won't programmers starve?”

I could answer that nobody is forced to be a programmer. Most of us cannot
manage to get any money for standing on the street and making faces. But
we are not, as a result, condemned to spend our lives standing on the
street making faces, and starving. We do something else.
But that is the wrong answer because it accepts the questioner's implicit
assumption: that without ownership of software, programmers cannot possibly
be paid a cent. Supposedly it is all or nothing.
The real reason programmers will not starve is that it will still be
possible for them to get paid for programming; just not paid as much as
now.
Restricting copying is not the only basis for business in software. It is
the most common basis because it brings in the most money. If it were
prohibited, or rejected by the customer, software business would move to
other bases of organization which are now used less often. There are
always numerous ways to organize any kind of business.
Probably programming will not be as lucrative on the new basis as it is
now. But that is not an argument against the change. It is not considered
an injustice that sales clerks make the salaries that they now do. If
programmers made the same, that would not be an injustice either. (In
practice they would still make considerably more than that.)
“Don't people have a right to control how their creativity is used?”

“Control over the use of one's ideas” really constitutes control over
other people's lives; and it is usually used to make their lives more
difficult.
People who have studied the issue of intellectual property
rights[30] carefully
(such as lawyers) say that there is no intrinsic right to intellectual
property. The kinds of supposed intellectual property rights that the
government recognizes were created by specific acts of legislation for
specific purposes.
For example, the patent system was established to encourage inventors to
disclose the details of their inventions. Its purpose was to help society
rather than to help inventors. At the time, the life span of 17 years for
a patent was short compared with the rate of advance of the state of the
art. Since patents are an issue only among manufacturers, for whom the
cost and effort of a license agreement are small compared with setting up
production, the patents often do not do much harm. They do not obstruct
most individuals who use patented products.
The idea of copyright did not exist in ancient times, when authors
frequently copied other authors at length in works of non-fiction. This
practice was useful, and is the only way many authors' works have survived
even in part. The copyright system was created expressly for the purpose
of encouraging authorship. In the domain for which it was
invented—books, which could be copied economically only on a printing
press—it did little harm, and did not obstruct most of the individuals
who read the books.
All intellectual property rights are just licenses granted by society
because it was thought, rightly or wrongly, that society as a whole would
benefit by granting them. But in any particular situation, we have to ask:
are we really better off granting such license? What kind of act are we
licensing a person to do?
The case of programs today is very different from that of books a hundred
years ago. The fact that the easiest way to copy a program is from one
neighbor to another, the fact that a program has both source code and
object code which are distinct, and the fact that a program is used rather
than read and enjoyed, combine to create a situation in which a person who
enforces a copyright is harming society as a whole both materially and
spiritually; in which a person should not do so regardless of whether the
law enables him to.
“Competition makes things get done better.”

The paradigm of competition is a race: by rewarding the winner, we
encourage everyone to run faster. When capitalism really works this way,
it does a good job; but its defenders are wrong in assuming it always works
this way. If the runners forget why the reward is offered and become
intent on winning, no matter how, they may find other strategies—such as,
attacking other runners. If the runners get into a fist fight, they will
all finish late.
Proprietary and secret software is the moral equivalent of runners in a
fist fight. Sad to say, the only referee we've got does not seem to
object to fights; he just regulates them (“For every ten yards you run,
you can fire one shot”). He really ought to break them up, and penalize
runners for even trying to fight.
“Won't everyone stop programming without a monetary incentive?”

Actually, many people will program with absolutely no monetary incentive.
Programming has an irresistible fascination for some people, usually the
people who are best at it. There is no shortage of professional musicians
who keep at it even though they have no hope of making a living that way.
But really this question, though commonly asked, is not appropriate to the
situation. Pay for programmers will not disappear, only become less. So
the right question is, will anyone program with a reduced monetary
incentive? My experience shows that they will.
For more than ten years, many of the world's best programmers worked at the
Artificial Intelligence Lab for far less money than they could have had
anywhere else. They got many kinds of non-monetary rewards: fame and
appreciation, for example. And creativity is also fun, a reward in itself.
Then most of them left when offered a chance to do the same interesting
work for a lot of money.
What the facts show is that people will program for reasons other than
riches; but if given a chance to make a lot of money as well, they will
come to expect and demand it. Low-paying organizations do poorly in
competition with high-paying ones, but they do not have to do badly if the
high-paying ones are banned.
“We need the programmers desperately. If they demand that we
stop helping our neighbors, we have to obey.”

You're never so desperate that you have to obey this sort of demand.
Remember: millions for defense, but not a cent for tribute!
“Programmers need to make a living somehow.”

In the short run, this is true. However, there are plenty of ways that
programmers could make a living without selling the right to use a program.
This way is customary now because it brings programmers and businessmen the
most money, not because it is the only way to make a living. It is easy to
find other ways if you want to find them. Here are a number of examples.
A manufacturer introducing a new computer will pay for the porting of
operating systems onto the new hardware.
The sale of teaching, hand-holding and maintenance services could also
employ programmers.
People with new ideas could distribute programs as
freeware[31], asking for donations from satisfied users, or selling
hand-holding services. I have met people who are already working this
way successfully.
Users with related needs can form users' groups, and pay dues. A group
would contract with programming companies to write programs that the
group's members would like to use.
All sorts of development can be funded with a Software Tax:
Suppose everyone who buys a computer has to pay x percent of
the price as a software tax. The government gives this to
an agency like the NSF to spend on software development.
But if the computer buyer makes a donation to software development
himself, he can take a credit against the tax. He can donate to
the project of his own choosing—often, chosen because he hopes to
use the results when it is done. He can take a credit for any amount
of donation up to the total tax he had to pay.
The total tax rate could be decided by a vote of the payers of
the tax, weighted according to the amount they will be taxed on.
The consequences:
	The computer-using community supports software development.

	This community decides what level of support is needed.

	Users who care which projects their share is spent on
can choose this for themselves.

In the long run, making programs free is a step toward the post-scarcity
world, where nobody will have to work very hard just to make a living.
People will be free to devote themselves to activities that are fun, such
as programming, after spending the necessary ten hours a week on required
tasks such as legislation, family counseling, robot repair and asteroid
prospecting. There will be no need to be able to make a living from
programming.
We have already greatly reduced the amount of work that the whole society
must do for its actual productivity, but only a little of this has
translated itself into leisure for workers because much nonproductive
activity is required to accompany productive activity. The main causes of
this are bureaucracy and isometric struggles against competition. Free
software will greatly reduce these drains in the area of software
production. We must do this, in order for technical gains in productivity
to translate into less work for us.

[27] Several such companies now exist.

[28] The Free Software
Foundation raises most of its funds from a distribution service,
although it is a charity rather than a company. If no one
chooses to obtain copies by ordering from the FSF, it will be unable
to do its work. But this does not mean that proprietary restrictions
are justified to force every user to pay. If a small fraction of all
the users order copies from the FSF, that is sufficient to keep the FSF
afloat. So we ask users to choose to support us in this way. Have you
done your part?

[29] A group of
computer companies recently pooled funds to support maintenance of the
GNU C Compiler.

[30] In the 80s I had not yet realized how confusing it was
to speak of “the issue” of “intellectual property.” That term is
obviously biased; more subtle is the fact that it lumps together
various disparate laws which raise very different issues. Nowadays I
urge people to reject the term “intellectual property” entirely,
lest it lead others to suppose that those laws form one coherent
issue. The way to be clear is to discuss patents, copyrights, and
trademarks separately. See
http://www.gnu.org/philosophy/not-ipr.xhtml for more
explanation of how this term spreads confusion and bias.

[31] Subsequently we have discovered the need to
distinguish between “free software” and “freeware”. The term
“freeware” means software you are free to redistribute, but usually
you are not free to study and change the source code, so most of it is
not free software. See
http://www.gnu.org/philosophy/words-to-avoid.html for more
explanation.

Chapter . Glossary

	Abbrev
	An abbrev is a text string that expands into a different text string
when present in the buffer. For example, you might define a few letters
as an abbrev for a long phrase that you want to insert frequently.
See Chapter 29, Abbrevs.

	Aborting
	Aborting means getting out of a recursive edit (q.v.). The
commands C-] and M-x top-level are used for this.
See Chapter 49, Quitting and Aborting.

	Alt
	Alt is the name of a modifier bit that a keyboard input character may
have. To make a character Alt, type it while holding down the ALT
key. Such characters are given names that start with Alt-
(usually written A- for short). (Note that many terminals have a
key labeled ALT that is really a META key.) See Alt.

	Argument
	See ???.

	ASCII character
	An ASCII character is either an ASCII control
character or an ASCII printing character. See Chapter 2, Kinds of User Input.

	ASCII control character
	An ASCII control character is the Control version of an upper-case
letter, or the Control version of one of the characters ‘@[\]^_?’.

	ASCII printing character
	ASCII printing characters include letters, digits, space, and these
punctuation characters: ‘!@#$%^&*()_-+=|\~`{}[]:;"'<>,.?/’.

	Auto Fill Mode
	Auto Fill mode is a minor mode (q.v.) in which text that you insert is
automatically broken into lines of a given maximum width.
See the section called “Filling Text”.

	Auto Saving
	Auto saving is the practice of periodically saving the contents of an
Emacs buffer in a specially-named file, so that the information will
be preserved if the buffer is lost due to a system error or user error.
See the section called “Auto-Saving: Protection Against Disasters”.

	Autoloading
	Emacs can automatically load Lisp libraries when a Lisp program requests a
function from those libraries. This is called `autoloading'.
See the section called “Libraries of Lisp Code for Emacs”.

	Backtrace
	A backtrace is a trace of a series of function calls showing how a
program arrived at a certain point. It is used mainly for finding and
correcting bugs (q.v.). Emacs can display a backtrace when it signals
an error or when you type C-g (see ???).
See the section called “Checklist for Bug Reports”.

	Backup File
	A backup file records the contents that a file had before the current
editing session. Emacs makes backup files automatically to help you
track down or cancel changes you later regret making. See the section called “Backup Files”.

	Balancing Parentheses
	Emacs can balance parentheses (or other matching delimiters) either
manually or automatically. You do manual balancing with the commands
to move over parenthetical groupings (see the section called “Moving in the Parenthesis Structure”).
Automatic balancing works by blinking or highlighting the delimiter
that matches the one you just inserted, or inserting the matching
delimiter for you (see Matching Parens).

	Balanced Expressions
	A balanced expression is a syntactically recognizable expression, such
as a symbol, number, string constant, block, or parenthesized expression
in C. See Balanced Expressions.

	Balloon Help
	See ???.

	Base Buffer
	A base buffer is a buffer whose text is shared by an indirect buffer
(q.v.).

	Bidirectional Text
	Some human languages, such as English, are written from left to right.
Others, such as Arabic, are written from right to left. Emacs
supports both of these forms, as well as any mixture of them—this
is `bidirectional text'. See the section called “Bidirectional Editing”.

	Bind
	To bind a key sequence means to give it a binding (q.v.).
See the section called “Changing Key Bindings Interactively”.

	Binding
	A key sequence gets its meaning in Emacs by having a binding, which is a
command (q.v.), a Lisp function that is run when you type that
sequence. See Binding. Customization often involves
rebinding a character to a different command function. The bindings of
all key sequences are recorded in the keymaps (q.v.). See the section called “Keymaps”.

	Blank Lines
	Blank lines are lines that contain only whitespace. Emacs has several
commands for operating on the blank lines in the buffer. See the section called “Blank Lines”.

	Bookmark
	Bookmarks are akin to registers (q.v.) in that they record positions
in buffers to which you can return later. Unlike registers, bookmarks
persist between Emacs sessions. See the section called “Bookmarks”.

	Border
	A border is a thin space along the edge of the frame, used just for
spacing, not for displaying anything. An Emacs frame has an ordinary
external border, outside of everything including the menu bar, plus an
internal border that surrounds the text windows, their scroll bars
and fringes, and separates them from the menu bar and tool bar. You
can customize both borders with options and resources (see the section called “Internal and External Borders”). Borders are not the same as fringes (q.v.).

	Buffer
	The buffer is the basic editing unit; one buffer corresponds to one text
being edited. You normally have several buffers, but at any time you are
editing only one, the `current buffer', though several can be visible
when you are using multiple windows or frames (q.v.). Most buffers
are visiting (q.v.) some file. See Chapter 19, Using Multiple Buffers.

	Buffer Selection History
	Emacs keeps a buffer selection history that records how recently each
Emacs buffer has been selected. This is used for choosing a buffer to
select. See Chapter 19, Using Multiple Buffers.

	Bug
	A bug is an incorrect or unreasonable behavior of a program, or
inaccurate or confusing documentation. Emacs developers treat bug
reports, both in Emacs code and its documentation, very seriously and
ask you to report any bugs you find. See Chapter 51, Reporting Bugs.

	Button Down Event
	A button down event is the kind of input event (q.v.) generated
right away when you press down on a mouse button. See the section called “Rebinding Mouse Buttons”.

	By Default
	See ???.

	Byte Compilation
	See ???.

	C-
	C- in the name of a character is an abbreviation for Control.
See C-.

	C-M-
	C-M- in the name of a character is an abbreviation for
Control-Meta. If your terminal lacks a real META key, you type
a Control-Meta character by typing ESC and then typing the
corresponding Control character. See C-M-.

	Case Conversion
	Case conversion means changing text from upper case to lower case or
vice versa. See the section called “Case Conversion Commands”.

	Character
	Characters form the contents of an Emacs buffer. Also, key sequences
(q.v.) are usually made up of characters (though they may include
other input events as well). See Chapter 2, Kinds of User Input.

	Character Set
	Emacs supports a number of character sets, each of which represents a
particular alphabet or script. See Chapter 22, International Character Set Support.

	Character Terminal
	See ???.

	Click Event
	A click event is the kind of input event (q.v.) generated when you
press a mouse button and release it without moving the mouse.
See the section called “Rebinding Mouse Buttons”.

	Client
	See ???.

	Clipboard
	A clipboard is a buffer provided by the window system for transferring
text between applications. On the X Window System, the clipboard is
provided in addition to the primary selection (q.v.); on MS-Windows and Mac,
the clipboard is used instead of the primary selection.
See the section called “Using the Clipboard”.

	Coding System
	A coding system is an encoding for representing text characters in a
file or in a stream of information. Emacs has the ability to convert
text to or from a variety of coding systems when reading or writing it.
See the section called “Coding Systems”.

	Command
	A command is a Lisp function specially defined to be able to serve as a
key binding in Emacs. When you type a key sequence (q.v.), its
binding (q.v.) is looked up in the relevant keymaps (q.v.) to find
the command to run. See Chapter 4, Keys and Commands.

	Command History
	See ???.

	Command Name
	A command name is the name of a Lisp symbol that is a command
(see Chapter 4, Keys and Commands). You can invoke any command by its name using
M-x (see Running Commands by Name).

	Comment
	A comment is text in a program which is intended only for humans reading
the program, and which is specially marked so that it will be ignored
when the program is loaded or compiled. Emacs offers special commands
for creating, aligning and killing comments. See the section called “Manipulating Comments”.

	Common Lisp
	Common Lisp is a dialect of Lisp (q.v.) much larger and more powerful
than Emacs Lisp. Emacs provides a subset of Common Lisp in the CL
package. See See section ``Overview'' in Common Lisp Extensions.

	Compilation
	Compilation is the process of creating an executable program from source
code. Emacs has commands for compiling files of Emacs Lisp code
(see See section ``Byte Compilation'' in the Emacs Lisp Reference Manual) and programs in C and other languages
(see the section called “Running Compilations under Emacs”).

	Complete Key
	A complete key is a key sequence that fully specifies one action to be
performed by Emacs. For example, X and C-f and C-x m
are complete keys. Complete keys derive their meanings from being bound
(q.v.) to commands (q.v.). Thus, X is conventionally bound to
a command to insert ‘X’ in the buffer; C-x m is
conventionally bound to a command to begin composing a mail message.
See Chapter 3, Keys.

	Completion
	Completion is what Emacs does when it automatically expands an
abbreviation for a name into the entire name. Completion is done for
minibuffer (q.v.) arguments when the set of possible valid inputs
is known; for example, on command names, buffer names, and
file names. Completion usually occurs when TAB, SPC or
RET is typed. See the section called “Completion”.

	Continuation Line
	When a line of text is longer than the width of the window, it
normally (but see ???) takes up more than one
screen line when displayed. We say that the text line is continued, and all
screen lines used for it after the first are called continuation
lines. See the section called “Continuation Lines”. A related Emacs feature is
`filling' (q.v.).

	Control Character
	A control character is a character that you type by holding down the
CTRL key. Some control characters also have their own keys, so
that you can type them without using CTRL. For example,
RET, TAB, ESC and DEL are all control
characters. See Chapter 2, Kinds of User Input.

	Copyleft
	A copyleft is a notice giving the public legal permission to
redistribute and modify a program or other work of art, but requiring
modified versions to carry similar permission. Copyright is normally
used to keep users divided and helpless; with copyleft we turn that
around to empower users and encourage them to cooperate.
The particular form of copyleft used by the GNU project is called the
GNU General Public License. See Appendix A, GNU GENERAL PUBLIC LICENSE.

	CTRL
	The CTRL or “control” key is what you hold down
in order to enter a control character (q.v.). See ???.

	Current Buffer
	The current buffer in Emacs is the Emacs buffer on which most editing
commands operate. You can select any Emacs buffer as the current one.
See Chapter 19, Using Multiple Buffers.

	Current Line
	The current line is the line that point is on (see the section called “Point”).

	Current Paragraph
	The current paragraph is the paragraph that point is in. If point is
between two paragraphs, the current paragraph is the one that follows
point. See the section called “Paragraphs”.

	Current Defun
	The current defun is the defun (q.v.) that point is in. If point is
between defuns, the current defun is the one that follows point.
See the section called “Top-Level Definitions, or Defuns”.

	Cursor
	The cursor is the rectangle on the screen which indicates the position
(called point; q.v.) at which insertion and deletion takes place.
The cursor is on or under the character that follows point. Often
people speak of `the cursor' when, strictly speaking, they mean
`point'. See Cursor.

	Customization
	Customization is making minor changes in the way Emacs works, to
reflect your preferences or needs. It is often done by setting
variables (see the section called “Variables”) or faces (see the section called “Customizing Faces”),
or by rebinding key sequences (see the section called “Keymaps”).

	Cut and Paste
	See ???, and ???.

	Daemon
	A daemon is a standard term for a system-level process that runs in the
background. Daemons are often started when the system first starts up.
When Emacs runs in daemon-mode, it runs in the background and does not
open a display. You can then connect to it with the
emacsclient program. See Chapter 37, Using Emacs as a Server.

	Default Argument
	The default for an argument is the value that will be assumed if you
do not specify one. When the minibuffer is used to read an argument,
the default argument is used if you just type RET.
See Chapter 8, The Minibuffer.

	Default
	A default is the value that is used for a certain purpose when
you do not explicitly specify a value to use.

	Default Directory
	When you specify a file name that does not start with ‘/’ or ‘~’,
it is interpreted relative to the current buffer's default directory.
(On MS systems, file names that start with a drive letter
‘x:’ are treated as absolute, not relative.)
See Default Directory.

	Defun
	A defun is a major definition at the top level in a program. The name
`defun' comes from Lisp, where most such definitions use the construct
defun. See the section called “Top-Level Definitions, or Defuns”.

	DEL
	DEL is a character that runs the command to delete one character
of text before the cursor. It is typically either the DELETE
key or the BACKSPACE key, whichever one is easy to type.
See DEL.

	Deletion
	Deletion means erasing text without copying it into the kill ring
(q.v.). The alternative is killing (q.v.). See Deletion.

	Deletion of Files
	Deleting a file means erasing it from the file system.
(Note that some systems use the concept of a “trash can”, or “recycle
bin”, to allow you to “undelete” files.)
See Miscellaneous File Operations.

	Deletion of Messages
	Deleting a message (in Rmail, and other mail clients) means flagging
it to be eliminated from your mail file. Until you expunge (q.v.)
the Rmail file, you can still undelete the messages you have deleted.
See the section called “Deleting Messages”.

	Deletion of Windows
	Deleting a window means eliminating it from the screen. Other windows
expand to use up the space. The text that was in the window is not
lost, and you can create a new window with the same dimensions as the
old if you wish. See Chapter 20, Multiple Windows.

	Directory
	File directories are named collections in the file system, within which
you can place individual files or subdirectories. They are sometimes
referred to as “folders”. See the section called “File Directories”.

	Directory Local Variable
	A directory local variable is a local variable (q.v.) that applies
to all the files within a certain directory. See the section called “Per-Directory Local Variables”.

	Dired
	Dired is the Emacs facility that displays the contents of a file
directory and allows you to “edit the directory”, performing
operations on the files in the directory. See Chapter 30, Dired, the Directory Editor.

	Disabled Command
	A disabled command is one that you may not run without special
confirmation. The usual reason for disabling a command is that it is
confusing for beginning users. See the section called “Disabling Commands”.

	Down Event
	Short for `button down event' (q.v.).

	Drag Event
	A drag event is the kind of input event (q.v.) generated when you
press a mouse button, move the mouse, and then release the button.
See the section called “Rebinding Mouse Buttons”.

	Dribble File
	A dribble file is a file into which Emacs writes all the characters that
you type on the keyboard. Dribble files can be used to make a record
for debugging Emacs bugs. Emacs does not make a dribble file unless you
tell it to. See Chapter 51, Reporting Bugs.

	Echo Area
	The echo area is the bottom line of the screen, used for echoing the
arguments to commands, for asking questions, and showing brief messages
(including error messages). The messages are stored in the buffer
Messages so you can review them later. See the section called “The Echo Area”.

	Echoing
	Echoing is acknowledging the receipt of input events by displaying
them (in the echo area). Emacs never echoes single-character key
sequences; longer key sequences echo only if you pause while typing
them.

	Electric
	We say that a character is electric if it is normally self-inserting
(q.v.), but the current major mode (q.v.) redefines it to do something
else as well. For example, some programming language major modes define
particular delimiter characters to reindent the line, or insert one or
more newlines in addition to self-insertion.

	End Of Line
	End of line is a character or a sequence of characters that indicate
the end of a text line. On GNU and Unix systems, this is a newline
(q.v.), but other systems have other conventions. See end-of-line. Emacs can recognize several end-of-line
conventions in files and convert between them.

	Environment Variable
	An environment variable is one of a collection of variables stored by
the operating system, each one having a name and a value. Emacs can
access environment variables set by its parent shell, and it can set
variables in the environment it passes to programs it invokes.
See the section called “Environment Variables”.

	EOL
	See ???.

	Error
	An error occurs when an Emacs command cannot execute in the current
circumstances. When an error occurs, execution of the command stops
(unless the command has been programmed to do otherwise) and Emacs
reports the error by displaying an error message (q.v.).

	Error Message
	An error message is output displayed by Emacs when you ask it to do
something impossible (such as, killing text forward when point is at
the end of the buffer), or when a command malfunctions in some way.
Such messages appear in the echo area, accompanied by a beep.

	ESC
	ESC is a character used as a prefix for typing Meta characters on
keyboards lacking a META key. Unlike the META key (which,
like the SHIFT key, is held down while another character is
typed), you press the ESC key as you would press a letter key, and
it applies to the next character you type.

	Expression
	See ???.

	Expunging
	Expunging an Rmail, Gnus newsgroup, or Dired buffer is an operation
that truly discards the messages or files you have previously flagged
for deletion.

	Face
	A face is a style of displaying characters. It specifies attributes
such as font family and size, foreground and background colors,
underline and strike-through, background stipple, etc. Emacs provides
features to associate specific faces with portions of buffer text, in
order to display that text as specified by the face attributes.
See the section called “Text Faces”.

	File Local Variable
	A file local variable is a local variable (q.v.) specified in a
given file. See the section called “Local Variables in Files”, and ???.

	File Locking
	Emacs uses file locking to notice when two different users
start to edit one file at the same time. See the section called “Protection against Simultaneous Editing”.

	File Name
	A file name is a name that refers to a file. File names may be relative
or absolute; the meaning of a relative file name depends on the current
directory, but an absolute file name refers to the same file regardless
of which directory is current. On GNU and Unix systems, an absolute
file name starts with a slash (the root directory) or with ‘~/’ or
‘~user/’ (a home directory). On MS-Windows/MS-DOS, an
absolute file name can also start with a drive letter and a colon, e.g.
‘d:’.
Some people use the term “pathname” for file names, but we do not;
we use the word “path” only in the term “search path” (q.v.).

	File-Name Component
	A file-name component names a file directly within a particular
directory. On GNU and Unix systems, a file name is a sequence of
file-name components, separated by slashes. For example, foo/bar
is a file name containing two components, ‘foo’ and ‘bar’; it
refers to the file named ‘bar’ in the directory named ‘foo’ in
the current directory. MS-DOS/MS-Windows file names can also use
backslashes to separate components, as in foo\bar.

	Fill Prefix
	The fill prefix is a string that should be expected at the beginning
of each line when filling is done. It is not regarded as part of the
text to be filled. See the section called “Filling Text”.

	Filling
	Filling text means adjusting the position of line-breaks to shift text
between consecutive lines, so that all the lines are approximately the
same length. See the section called “Filling Text”. Some other editors call this feature
“line wrapping”.

	Font Lock
	Font Lock is a mode that highlights parts of buffer text in different
faces, according to the syntax. Some other editors refer to this as
“syntax highlighting”. For example, all comments (q.v.)
might be colored red. See the section called “Font Lock mode”.

	Fontset
	A fontset is a named collection of fonts. A fontset specification lists
character sets and which font to use to display each of them. Fontsets
make it easy to change several fonts at once by specifying the name of a
fontset, rather than changing each font separately. See the section called “Fontsets”.

	Formfeed Character
	See ???.

	Frame
	A frame is a rectangular cluster of Emacs windows. Emacs starts out
with one frame, but you can create more. You can subdivide each frame
into Emacs windows (q.v.). When you are using a window system
(q.v.), more than one frame can be visible at the same time.
See Chapter 21, Frames and Graphical Displays. Some other editors use the term “window” for this,
but in Emacs a window means something else.

	Free Software
	Free software is software that gives you the freedom to share, study
and modify it. Emacs is free software, part of the GNU project
(q.v.), and distributed under a copyleft (q.v.) license called the
GNU General Public License. See Appendix A, GNU GENERAL PUBLIC LICENSE.

	Free Software Foundation
	The Free Software Foundation (FSF) is a charitable foundation
dedicated to promoting the development of free software (q.v.).
For more information, see the FSF website.

	Fringe
	On a graphical display (q.v.), there's a narrow portion of the frame
(q.v.) between the text area and the window's border. These
“fringes” are used to display symbols that provide information about
the buffer text (see the section called “Window Fringes”). Emacs displays the fringe using a
special face (q.v.) called fringe. See fringe.

	FSF
	See ???.

	FTP
	FTP is an acronym for File Transfer Protocol. This is one standard
method for retrieving remote files (q.v.).

	Function Key
	A function key is a key on the keyboard that sends input but does not
correspond to any character. See the section called “Rebinding Function Keys”.

	Global
	Global means “independent of the current environment; in effect
throughout Emacs”. It is the opposite of local (q.v.). Particular
examples of the use of `global' appear below.

	Global Abbrev
	A global definition of an abbrev (q.v.) is effective in all major
modes that do not have local (q.v.) definitions for the same abbrev.
See Chapter 29, Abbrevs.

	Global Keymap
	The global keymap (q.v.) contains key bindings that are in effect
everywhere, except when overridden by local key bindings in a major
mode's local keymap (q.v.). See the section called “Keymaps”.

	Global Mark Ring
	The global mark ring records the series of buffers you have recently
set a mark (q.v.) in. In many cases you can use this to backtrack
through buffers you have been editing, or in which you have found
tags (see ???). See the section called “The Global Mark Ring”.

	Global Substitution
	Global substitution means replacing each occurrence of one string by
another string throughout a large amount of text. See the section called “Replacement Commands”.

	Global Variable
	The global value of a variable (q.v.) takes effect in all buffers
that do not have their own local (q.v.) values for the variable.
See the section called “Variables”.

	GNU
	GNU is a recursive acronym for GNU's Not Unix, and it refers to a
Unix-compatible operating system which is free software (q.v.).
See The GNU Manifesto. GNU is normally used with Linux as the kernel since
Linux works better than the GNU kernel. For more information, see
the GNU website.

	Graphic Character
	Graphic characters are those assigned pictorial images rather than
just names. All the non-Meta (q.v.) characters except for the
Control (q.v.) characters are graphic characters. These include
letters, digits, punctuation, and spaces; they do not include
RET or ESC. In Emacs, typing a graphic character inserts
that character (in ordinary editing modes). See the section called “Inserting Text”.

	Graphical Display
	A graphical display is one that can display images and multiple fonts.
Usually it also has a window system (q.v.).

	Highlighting
	Highlighting text means displaying it with a different foreground and/or
background color to make it stand out from the rest of the text in the
buffer.
Emacs uses highlighting in several ways. It highlights the region
whenever it is active (see Chapter 11, The Mark and the Region). Incremental search also
highlights matches (see the section called “Incremental Search”). See ???.

	Hardcopy
	Hardcopy means printed output. Emacs has various commands for
printing the contents of Emacs buffers. See Chapter 38, Printing Hard Copies.

	HELP
	HELP is the Emacs name for C-h or F1. You can type
HELP at any time to ask what options you have, or to ask what a
command does. See Chapter 10, Help.

	Help Echo
	Help echo is a short message displayed in the echo area (q.v.) when
the mouse pointer is located on portions of display that require some
explanations. Emacs displays help echo for menu items, parts of the
mode line, tool-bar buttons, etc. On graphical displays, the messages
can be displayed as tooltips (q.v.). See the section called “Tooltips”.

	Home Directory
	Your home directory contains your personal files. On a multi-user GNU
or Unix system, each user has his or her own home directory. When you
start a new login session, your home directory is the default
directory in which to start. A standard shorthand for your home
directory is ‘~’. Similarly, ‘~user’ represents the
home directory of some other user.

	Hook
	A hook is a list of functions to be called on specific occasions, such
as saving a buffer in a file, major mode activation, etc. By
customizing the various hooks, you can modify Emacs's behavior without
changing any of its code. See the section called “Hooks”.

	Hyper
	Hyper is the name of a modifier bit that a keyboard input character may
have. To make a character Hyper, type it while holding down the
HYPER key. Such characters are given names that start with
Hyper- (usually written H- for short). See Chapter 2, Kinds of User Input.

	Iff
	“Iff” means “if and only if”. This terminology comes from
mathematics. Try to avoid using this term in documentation, since
many are unfamiliar with it and mistake it for a typo.

	Inbox
	An inbox is a file in which mail is delivered by the operating system.
Rmail transfers mail from inboxes to Rmail files in which the
mail is then stored permanently or until explicitly deleted.
See the section called “Rmail Files and Inboxes”.

	Incremental Search
	Emacs provides an incremental search facility, whereby Emacs begins
searching for a string as soon as you type the first character.
As you type more characters, it refines the search. See the section called “Incremental Search”.

	Indentation
	Indentation means blank space at the beginning of a line. Most
programming languages have conventions for using indentation to
illuminate the structure of the program, and Emacs has special
commands to adjust indentation.
See Chapter 24, Indentation.

	Indirect Buffer
	An indirect buffer is a buffer that shares the text of another buffer,
called its base buffer (q.v.). See the section called “Indirect Buffers”.

	Info
	Info is the hypertext format used by the GNU project for writing
documentation.

	Input Event
	An input event represents, within Emacs, one action taken by the user on
the terminal. Input events include typing characters, typing function
keys, pressing or releasing mouse buttons, and switching between Emacs
frames. See Chapter 2, Kinds of User Input.

	Input Method
	An input method is a system for entering non-ASCII text characters by
typing sequences of ASCII characters (q.v.). See the section called “Input Methods”.

	Insertion
	Insertion means adding text into the buffer, either from the keyboard
or from some other place in Emacs.

	Interlocking
	See ???.

	Isearch
	See ???.

	Justification
	Justification means adding extra spaces within lines of text in order
to adjust the position of the text edges. See the section called “Explicit Fill Commands”.

	Key Binding
	See ???.

	Keyboard Macro
	Keyboard macros are a way of defining new Emacs commands from
sequences of existing ones, with no need to write a Lisp program.
You can use a macro to record a sequence of commands, then
play them back as many times as you like.
See Chapter 17, Keyboard Macros.

	Keyboard Shortcut
	A keyboard shortcut is a key sequence (q.v.) that invokes a
command. What some programs call “assigning a keyboard shortcut”,
Emacs calls “binding a key sequence”. See ???.

	Key Sequence
	A key sequence (key, for short) is a sequence of input events (q.v.)
that are meaningful as a single unit. If the key sequence is enough to
specify one action, it is a complete key (q.v.); if it is not enough,
it is a prefix key (q.v.). See Chapter 3, Keys.

	Keymap
	The keymap is the data structure that records the bindings (q.v.) of
key sequences to the commands that they run. For example, the global
keymap binds the character C-n to the command function
next-line. See the section called “Keymaps”.

	Keyboard Translation Table
	The keyboard translation table is an array that translates the character
codes that come from the terminal into the character codes that make up
key sequences.

	Kill Ring
	The kill ring is where all text you have killed (see ???)
recently is saved. You can reinsert any of the killed text still in
the ring; this is called yanking (q.v.). See the section called “Yanking”.

	Killing
	Killing means erasing text and saving it on the kill ring so it can be
yanked (q.v.) later. Some other systems call this “cutting”.
Most Emacs commands that erase text perform killing, as opposed to
deletion (q.v.). See Chapter 12, Killing and Moving Text.

	Killing a Job
	Killing a job (such as, an invocation of Emacs) means making it cease
to exist. Any data within it, if not saved in a file, is lost.
See Chapter 6, Exiting Emacs.

	Language Environment
	Your choice of language environment specifies defaults for the input
method (q.v.) and coding system (q.v.). See the section called “Language Environments”. These defaults are relevant if you edit
non-ASCII text (see Chapter 22, International Character Set Support).

	Line Wrapping
	See ???.

	Lisp
	Lisp is a programming language. Most of Emacs is written in a dialect
of Lisp, called Emacs Lisp, which is extended with special features that
make it especially suitable for text editing tasks.

	List
	A list is, approximately, a text string beginning with an open
parenthesis and ending with the matching close parenthesis. In C mode
and other non-Lisp modes, groupings surrounded by other kinds of matched
delimiters appropriate to the language, such as braces, are also
considered lists. Emacs has special commands for many operations on
lists. See the section called “Moving in the Parenthesis Structure”.

	Local
	Local means “in effect only in a particular context”; the relevant
kind of context is a particular function execution, a particular
buffer, or a particular major mode. It is the opposite of `global'
(q.v.). Specific uses of `local' in Emacs terminology appear below.

	Local Abbrev
	A local abbrev definition is effective only if a particular major mode
is selected. In that major mode, it overrides any global definition
for the same abbrev. See Chapter 29, Abbrevs.

	Local Keymap
	A local keymap is used in a particular major mode; the key bindings
(q.v.) in the current local keymap override global bindings of the
same key sequences. See the section called “Keymaps”.

	Local Variable
	A local value of a variable (q.v.) applies to only one buffer.
See the section called “Local Variables”.

	M-
	M- in the name of a character is an abbreviation for META,
one of the modifier keys that can accompany any character.
See M-.

	M-C-
	M-C- in the name of a character is an abbreviation for
Control-Meta; it means the same thing as `C-M-' (q.v.).

	M-x
	M-x is the key sequence that is used to call an Emacs command by
name. This is how you run commands that are not bound to key sequences.
See Running Commands by Name.

	Mail
	Mail means messages sent from one user to another through the computer
system, to be read at the recipient's convenience. Emacs has commands for
composing and sending mail, and for reading and editing the mail you have
received. See Chapter 32, Sending Mail. See Chapter 33, Reading Mail with Rmail, for one way to read
mail with Emacs.

	Mail Composition Method
	A mail composition method is a program runnable within Emacs for editing
and sending a mail message. Emacs lets you select from several
alternative mail composition methods. See the section called “Mail-Composition Methods”.

	Major Mode
	The Emacs major modes are a mutually exclusive set of options, each of
which configures Emacs for editing a certain sort of text. Ideally,
each programming language has its own major mode. See the section called “Major Modes”.

	Margin
	The space between the usable part of a window (including the
fringe) and the window edge.

	Mark
	The mark points to a position in the text. It specifies one end of the
region (q.v.), point being the other end. Many commands operate on
all the text from point to the mark. Each buffer has its own mark.
See Chapter 11, The Mark and the Region.

	Mark Ring
	The mark ring is used to hold several recent previous locations of the
mark, in case you want to move back to them. Each buffer has its
own mark ring; in addition, there is a single global mark ring (q.v.).
See the section called “The Mark Ring”.

	Menu Bar
	The menu bar is a line at the top of an Emacs frame. It contains
words you can click on with the mouse to bring up menus, or you can use
a keyboard interface to navigate it. See the section called “Menu Bars”.

	Message
	See ???.

	Meta
	Meta is the name of a modifier bit which you can use in a command
character. To enter a meta character, you hold down the META
key while typing the character. We refer to such characters with
names that start with Meta- (usually written M- for
short). For example, M-< is typed by holding down META
and at the same time typing < (which itself is done, on most
terminals, by holding down SHIFT and typing ,).
See Meta.
On some terminals, the META key is actually labeled ALT
or EDIT.

	Meta Character
	A Meta character is one whose character code includes the Meta bit.

	Minibuffer
	The minibuffer is the window that appears when necessary inside the
echo area (q.v.), used for reading arguments to commands.
See Chapter 8, The Minibuffer.

	Minibuffer History
	The minibuffer history records the text you have specified in the past
for minibuffer arguments, so you can conveniently use the same text
again. See the section called “Minibuffer History”.

	Minor Mode
	A minor mode is an optional feature of Emacs, which can be switched on
or off independently of all other features. Each minor mode has a
command to turn it on or off. Some minor modes are global (q.v.),
and some are local (q.v.). See the section called “Minor Modes”.

	Minor Mode Keymap
	A minor mode keymap is a keymap that belongs to a minor mode and is
active when that mode is enabled. Minor mode keymaps take precedence
over the buffer's local keymap, just as the local keymap takes
precedence over the global keymap. See the section called “Keymaps”.

	Mode Line
	The mode line is the line at the bottom of each window (q.v.), giving
status information on the buffer displayed in that window. See the section called “The Mode Line”.

	Modified Buffer
	A buffer (q.v.) is modified if its text has been changed since the
last time the buffer was saved (or since it was created, if it
has never been saved). See the section called “Saving Files”.

	Moving Text
	Moving text means erasing it from one place and inserting it in
another. The usual way to move text is by killing (q.v.) it and then
yanking (q.v.) it. See Chapter 12, Killing and Moving Text.

	MULE
	MULE refers to the Emacs features for editing multilingual
non-ASCII text using multibyte characters (q.v.).
See Chapter 22, International Character Set Support.

	Multibyte Character
	A multibyte character is a character that takes up several bytes in a
buffer. Emacs uses multibyte characters to represent non-ASCII text,
since the number of non-ASCII characters is much more than 256.
See International Characters.

	Named Mark
	A named mark is a register (q.v.), in its role of recording a
location in text so that you can move point to that location.
See Chapter 13, Registers.

	Narrowing
	Narrowing means creating a restriction (q.v.) that limits editing in
the current buffer to only a part of the text. Text outside that part
is inaccessible for editing (or viewing) until the boundaries are
widened again, but it is still there, and saving the file saves it
all. See the section called “Narrowing”.

	Newline
	Control-J characters in the buffer terminate lines of text and are
therefore also called newlines. See ???.

	nil
	nil is a value usually interpreted as a logical “false”. Its
opposite is t, interpreted as “true”.

	Numeric Argument
	A numeric argument is a number, specified before a command, to change
the effect of the command. Often the numeric argument serves as a
repeat count. See the section called “Numeric Arguments”.

	Overwrite Mode
	Overwrite mode is a minor mode. When it is enabled, ordinary text
characters replace the existing text after point rather than pushing
it to one side. See the section called “Minor Modes”.

	Package
	A package is a collection of Lisp code that you download and
automatically install from within Emacs. Packages provide a
convenient way to add new features. See Chapter 47, Emacs Lisp Packages.

	Page
	A page is a unit of text, delimited by formfeed characters (ASCII
control-L, code 014) at the beginning of a line. Some Emacs
commands are provided for moving over and operating on pages.
See the section called “Pages”.

	Paragraph
	Paragraphs are the medium-size unit of human-language text. There are
special Emacs commands for moving over and operating on paragraphs.
See the section called “Paragraphs”.

	Parsing
	We say that certain Emacs commands parse words or expressions in the
text being edited. Really, all they know how to do is find the other
end of a word or expression.

	Point
	Point is the place in the buffer at which insertion and deletion
occur. Point is considered to be between two characters, not at one
character. The terminal's cursor (q.v.) indicates the location of
point. See the section called “Point”.

	Prefix Argument
	See ???.

	Prefix Key
	A prefix key is a key sequence (q.v.) whose sole function is to
introduce a set of longer key sequences. C-x is an example of
prefix key; any two-character sequence starting with C-x is
therefore a legitimate key sequence. See Chapter 3, Keys.

	Primary Selection
	The primary selection is one particular X selection (q.v.); it is the
selection that most X applications use for transferring text to and from
other applications.
The Emacs kill commands set the primary selection and the yank command
uses the primary selection when appropriate. See Chapter 12, Killing and Moving Text.

	Prompt
	A prompt is text used to ask you for input. Displaying a prompt
is called prompting. Emacs prompts always appear in the echo area
(q.v.). One kind of prompting happens when the minibuffer is used to
read an argument (see Chapter 8, The Minibuffer); the echoing that happens when
you pause in the middle of typing a multi-character key sequence is also
a kind of prompting (see the section called “The Echo Area”).

	Query-Replace
	Query-replace is an interactive string replacement feature provided by
Emacs. See the section called “Query Replace”.

	Quitting
	Quitting means canceling a partially typed command or a running
command, using C-g (or C-BREAK on MS-DOS). See Chapter 49, Quitting and Aborting.

	Quoting
	Quoting means depriving a character of its usual special significance.
The most common kind of quoting in Emacs is with C-q. What
constitutes special significance depends on the context and on
convention. For example, an “ordinary” character as an Emacs command
inserts itself; so in this context, a special character is any character
that does not normally insert itself (such as DEL, for example),
and quoting it makes it insert itself as if it were not special. Not
all contexts allow quoting. See Quoting.

	Quoting File Names
	Quoting a file name turns off the special significance of constructs
such as ‘$’, ‘~’ and ‘:’. See the section called “Quoted File Names”.

	Read-Only Buffer
	A read-only buffer is one whose text you are not allowed to change.
Normally Emacs makes buffers read-only when they contain text which
has a special significance to Emacs; for example, Dired buffers.
Visiting a file that is write-protected also makes a read-only buffer.
See Chapter 19, Using Multiple Buffers.

	Rectangle
	A rectangle consists of the text in a given range of columns on a given
range of lines. Normally you specify a rectangle by putting point at
one corner and putting the mark at the diagonally opposite corner.
See the section called “Rectangles”.

	Recursive Editing Level
	A recursive editing level is a state in which part of the execution of
a command involves asking you to edit some text. This text may
or may not be the same as the text to which the command was applied.
The mode line indicates recursive editing levels with square brackets
(‘[’ and ‘]’). See Chapter 43, Recursive Editing Levels.

	Redisplay
	Redisplay is the process of correcting the image on the screen to
correspond to changes that have been made in the text being edited.
See Redisplay.

	Regexp
	See ???.

	Region
	The region is the text between point (q.v.) and the mark (q.v.).
Many commands operate on the text of the region. See Region.

	Register
	Registers are named slots in which text, buffer positions, or
rectangles can be saved for later use. See Chapter 13, Registers. A related
Emacs feature is `bookmarks' (q.v.).

	Regular Expression
	A regular expression is a pattern that can match various text strings;
for example, ‘a[0-9]+’ matches ‘a’ followed by one or more
digits. See the section called “Syntax of Regular Expressions”.

	Remote File
	A remote file is a file that is stored on a system other than your own.
Emacs can access files on other computers provided that they are
connected to the same network as your machine, and (obviously) that
you have a supported method to gain access to those files.
See the section called “Remote Files”.

	Repeat Count
	See ???.

	Replacement
	See ???.

	Restriction
	A buffer's restriction is the amount of text, at the beginning or the
end of the buffer, that is temporarily inaccessible. Giving a buffer a
nonzero amount of restriction is called narrowing (q.v.); removing
a restriction is called widening (q.v.). See the section called “Narrowing”.

	RET
	RET is a character that in Emacs runs the command to insert a
newline into the text. It is also used to terminate most arguments
read in the minibuffer (q.v.). See Return.

	Reverting
	Reverting means returning to the original state. Emacs lets you
revert a buffer by re-reading its file from disk. See the section called “Reverting a Buffer”.

	Saving
	Saving a buffer means copying its text into the file that was visited
(q.v.) in that buffer. This is the way text in files actually gets
changed by your Emacs editing. See the section called “Saving Files”.

	Scroll Bar
	A scroll bar is a tall thin hollow box that appears at the side of a
window. You can use mouse commands in the scroll bar to scroll the
window. The scroll bar feature is supported only under windowing
systems. See the section called “Scroll Bars”.

	Scrolling
	Scrolling means shifting the text in the Emacs window so as to see a
different part of the buffer. See the section called “Scrolling”.

	Searching
	Searching means moving point to the next occurrence of a specified
string or the next match for a specified regular expression.
See Chapter 15, Searching and Replacement.

	Search Path
	A search path is a list of directory names, to be used for searching for
files for certain purposes. For example, the variable load-path
holds a search path for finding Lisp library files. See the section called “Libraries of Lisp Code for Emacs”.

	Secondary Selection
	The secondary selection is one particular X selection (q.v.); some X
applications can use it for transferring text to and from other
applications. Emacs has special mouse commands for transferring text
using the secondary selection. See the section called “Secondary Selection”.

	Selected Frame
	The selected frame is the one your input currently operates on.
See Chapter 21, Frames and Graphical Displays.

	Selected Window
	The selected window is the one your input currently operates on.
See the section called “Concepts of Emacs Windows”.

	Selecting a Buffer
	Selecting a buffer means making it the current (q.v.) buffer.
See the section called “Creating and Selecting Buffers”.

	Selection
	Windowing systems allow an application program to specify
selections whose values are text. A program can also read the
selections that other programs have set up. This is the principal way
of transferring text between window applications. Emacs has commands to
work with the primary (q.v.) selection and the secondary (q.v.)
selection, and also with the clipboard (q.v.).

	Self-Documentation
	Self-documentation is the feature of Emacs that can tell you what any
command does, or give you a list of all commands related to a topic
you specify. You ask for self-documentation with the help character,
C-h. See Chapter 10, Help.

	Self-Inserting Character
	A character is self-inserting if typing that character inserts that
character in the buffer. Ordinary printing and whitespace characters
are self-inserting in Emacs, except in certain special major modes.

	Sentences
	Emacs has commands for moving by or killing by sentences.
See the section called “Sentences”.

	Server
	Within Emacs, you can start a `server' process, which listens for
connections from `clients'. This offers a faster alternative to
starting several Emacs instances. See Chapter 37, Using Emacs as a Server, and
???.

	Sexp
	A sexp (short for “s-expression”) is the basic syntactic unit of
Lisp in its textual form: either a list, or Lisp atom. Sexps are also
the balanced expressions (q.v.) of the Lisp language; this is why
the commands for editing balanced expressions have `sexp' in their
name. See Sexps.

	Simultaneous Editing
	Simultaneous editing means two users modifying the same file at once.
Simultaneous editing, if not detected, can cause one user to lose his
or her work. Emacs detects all cases of simultaneous editing, and
warns one of the users to investigate.
See Simultaneous Editing.

	SPC
	SPC is the space character, which you enter by pressing the
space bar.

	Speedbar
	The speedbar is a special tall frame that provides fast access to Emacs
buffers, functions within those buffers, Info nodes, and other
interesting parts of text within Emacs. See the section called “Speedbar Frames”.

	Spell Checking
	Spell checking means checking correctness of the written form of each
one of the words in a text. Emacs can use various external
spelling-checker programs to check the spelling of parts of a buffer
via a convenient user interface. See the section called “Checking and Correcting Spelling”.

	String
	A string is a kind of Lisp data object that contains a sequence of
characters. Many Emacs variables are intended to have strings as
values. The Lisp syntax for a string consists of the characters in the
string with a ‘"’ before and another ‘"’ after. A ‘"’
that is part of the string must be written as ‘\"’ and a ‘\’
that is part of the string must be written as ‘\\’. All other
characters, including newline, can be included just by writing them
inside the string; however, backslash sequences as in C, such as
‘\n’ for newline or ‘\241’ using an octal character code, are
allowed as well.

	String Substitution
	See ???.

	Syntax Highlighting
	See ???.

	Syntax Table
	The syntax table tells Emacs which characters are part of a word,
which characters balance each other like parentheses, etc.
See See section ``Syntax Tables'' in The Emacs Lisp Reference Manual.

	Super
	Super is the name of a modifier bit that a keyboard input character may
have. To make a character Super, type it while holding down the
SUPER key. Such characters are given names that start with
Super- (usually written s- for short). See Chapter 2, Kinds of User Input.

	Suspending
	Suspending Emacs means stopping it temporarily and returning control
to its parent process, which is usually a shell. Unlike killing a job
(q.v.), you can later resume the suspended Emacs job without losing
your buffers, unsaved edits, undo history, etc. See Chapter 6, Exiting Emacs.

	TAB
	TAB is the tab character. In Emacs it is typically used for
indentation or completion.

	Tags Table
	A tags table is a file that serves as an index to the function
definitions in one or more other files. See the section called “Tags Tables”.

	Termscript File
	A termscript file contains a record of all characters sent by Emacs to
the terminal. It is used for tracking down bugs in Emacs redisplay.
Emacs does not make a termscript file unless you tell it to.
See Chapter 51, Reporting Bugs.

	Text
	`Text' has two meanings (see Chapter 25, Commands for Human Languages):
	Data consisting of a sequence of characters, as opposed to binary
numbers, executable programs, and the like. The basic contents of an
Emacs buffer (aside from the text properties, q.v.) are always text
in this sense.

	Data consisting of written human language (as opposed to programs),
or following the stylistic conventions of human language.

	Text Terminal
	A text terminal, or character terminal, is a display that is limited
to displaying text in character units. Such a terminal cannot control
individual pixels it displays. Emacs supports a subset of display
features on text terminals.

	Text Properties
	Text properties are annotations recorded for particular characters in
the buffer. Images in the buffer are recorded as text properties;
they also specify formatting information. See the section called “Editing Format Information”.

	Theme
	A theme is a set of customizations (q.v.) that give Emacs a
particular appearance or behavior. For example, you might use a theme
for your favorite set of faces (q.v.).

	Tool Bar
	The tool bar is a line (sometimes multiple lines) of icons at the top
of an Emacs frame. Clicking on one of these icons executes a command.
You can think of this as a graphical relative of the menu bar (q.v.).
See the section called “Tool Bars”.

	Tooltips
	Tooltips are small windows displaying a help echo (q.v.) text, which
explains parts of the display, lists useful options available via mouse
clicks, etc. See the section called “Tooltips”.

	Top Level
	Top level is the normal state of Emacs, in which you are editing the
text of the file you have visited. You are at top level whenever you
are not in a recursive editing level (q.v.) or the minibuffer
(q.v.), and not in the middle of a command. You can get back to top
level by aborting (q.v.) and quitting (q.v.). See Chapter 49, Quitting and Aborting.

	Transposition
	Transposing two units of text means putting each one into the place
formerly occupied by the other. There are Emacs commands to transpose
two adjacent characters, words, balanced expressions (q.v.) or lines
(see the section called “Transposing Text”).

	Trash Can
	See ???.

	Truncation
	Truncating text lines in the display means leaving out any text on a
line that does not fit within the right margin of the window
displaying it. See Truncation, and
???.

	TTY
	See ???.

	Undoing
	Undoing means making your previous editing go in reverse, bringing
back the text that existed earlier in the editing session.
See the section called “Undo”.

	Unix
	Unix is a class of multi-user computer operating systems with a long
history. There are several implementations today. The GNU project
(q.v.) aims to develop a complete Unix-like operating system that
is free software (q.v.).

	User Option
	A user option is a face (q.v.) or a variable (q.v.) that exists so
that you can customize Emacs by setting it to a new value.
See the section called “Easy Customization Interface”.

	Variable
	A variable is an object in Lisp that can store an arbitrary value.
Emacs uses some variables for internal purposes, and has others (known
as `user options'; q.v.) just so that you can set their values to
control the behavior of Emacs. The variables used in Emacs that you
are likely to be interested in are listed in the Variables Index in
this manual (see Variable Index). See the section called “Variables”, for
information on variables.

	Version Control
	Version control systems keep track of multiple versions of a source file.
They provide a more powerful alternative to keeping backup files (q.v.).
See the section called “Version Control”.

	Visiting
	Visiting a file means loading its contents into a buffer (q.v.)
where they can be edited. See the section called “Visiting Files”.

	Whitespace
	Whitespace is any run of consecutive formatting characters (space,
tab, newline, and backspace).

	Widening
	Widening is removing any restriction (q.v.) on the current buffer;
it is the opposite of narrowing (q.v.). See the section called “Narrowing”.

	Window
	Emacs divides a frame (q.v.) into one or more windows, each of which
can display the contents of one buffer (q.v.) at any time.
See Chapter 1, The Organization of the Screen, for basic information on how Emacs uses the screen.
See Chapter 20, Multiple Windows, for commands to control the use of windows. Some
other editors use the term “window” for what we call a `frame'
(q.v.) in Emacs.

	Window System
	A window system is software that operates on a graphical display
(q.v.), to subdivide the screen so that multiple applications can
have their] own windows at the same time. All modern operating systems
include a window system.

	Word Abbrev
	See ???.

	Word Search
	Word search is searching for a sequence of words, considering the
punctuation between them as insignificant. See the section called “Word Search”.

	Yanking
	Yanking means reinserting text previously killed (q.v.). It can be
used to undo a mistaken kill, or for copying or moving text. Some
other systems call this “pasting”. See the section called “Yanking”.

Chapter . Acknowledgments

Many people have contributed code included in the Free Software
Foundation's distribution of GNU Emacs. To show our appreciation for
their public spirit, we list here in alphabetical order those who have
written substantial portions. Others too numerous to mention have
reported and fixed bugs, and added features to many parts of Emacs.
We thank them for their generosity as well.
This list is intended to mention every contributor of a major package or
feature we currently distribute; if you know of someone we have omitted,
please report that as a manual bug. More comprehensive information is
available in the ChangeLog files, summarized in the file
etc/AUTHORS in the distribution.
	Per Abrahamsen wrote the customization facilities, as well as
double.el, for typing accented characters not normally available
from the keyboard; xt-mouse.el, which allows mouse commands
through Xterm; gnus-cus.el, which implements customization
commands for Gnus; gnus-cite.el, a citation-parsing facility for
news articles; gnus-score.el, scoring for Gnus; cpp.el,
which hides or highlights parts of C programs according to preprocessor
conditionals; and the widget library files wid-browse.el,
wid-edit.el, widget.el. He also co-wrote
gnus-soup.el.

	Tomas Abrahamsson wrote artist.el, a package for producing
ASCII art with a mouse or with keyboard keys.

	Jay K. Adams wrote jka-compr.el and jka-cmpr-hook.el,
providing automatic decompression and recompression for compressed
files.

	Michael Albinus wrote dbus.el, a package that implements the
D-Bus message bus protocol; zeroconf.el, a mode for browsing
Avahi services; xesam.el, a Xesam-based search engine
interface; and secrets.el, an interface to keyring daemons for
storing confidential data. He and Kai Großjohann wrote the Tramp package, which
provides transparent remote file editing using rcp, ssh, ftp, and
other network protocols. He and Daniel Pittman wrote
tramp-cache.el.

	Ralf Angeli wrote scroll-lock.el, a minor mode which keeps the
point vertically fixed by scrolling the window when moving up and down
in the buffer.

	Joe Arceneaux wrote the original text property implementation, and
implemented support for X11.

	Emil Åström, Milan Zamaza, and Stefan Bruda wrote prolog.el,
a mode for editing Prolog (and Mercury) code.

	Miles Bader wrote image-file.el, support code for visiting image
files; minibuf-eldef.el, a minor mode that hides the minibuffer
default value when appropriate; rfn-eshadow.el, shadowing of
read-file-name input; mb-depth.el, display of minibuffer
depth; button.el, the library that implements clickable buttons;
face-remap.el, a package for changing the default face in
individual buffers; and macroexp.el for macro-expansion. He
also worked on an early version of the lexical binding code.

	David Bakhash wrote strokes.el, a mode for controlling Emacs by
moving the mouse in particular patterns.

	Juanma Barranquero wrote emacs-lock.el (based on the original
version by Tom Wurgler), which makes it harder to exit with valuable
buffers unsaved. He also made many other contributions to other
areas, including MS Windows support.

	Eli Barzilay wrote calculator.el, a desktop calculator for
Emacs.

	Steven L. Baur wrote footnote.el which lets you include
footnotes in email messages; and gnus-audio.el and
earcon.el, which provide sound effects for Gnus. He also wrote
gnus-setup.el.

	Alexander L. Belikoff, Sergey Berezin, Sacha Chua, David Edmondson,
Noah Friedman, Andreas Fuchs, Mario Lang, Ben Mesander, Lawrence
Mitchell, Gergely Nagy, Michael Olson, Per Persson, Jorgen Schaefer,
Alex Schroeder, and Tom Tromey wrote ERC, an advanced Internet Relay
Chat client (for more information, see the file CREDITS in the
ERC distribution).

	Scott Bender, Michael Brouwer, Christophe de Dinechin, Carl Edman,
Christian Limpach and Adrian Robert developed and maintained the
NeXTstep port of Emacs.

	Anna M. Bigatti wrote cal-html.el, which produces HTML calendars.

	Ray Blaak and Simon South wrote delphi.el, a mode for editing
Delphi (Object Pascal) source code.

	Martin Blais, Stefan Merten, and David Goodger wrote rst.el, a
mode for editing reStructuredText documents.

	Jim Blandy wrote Emacs 19's input system, brought its configuration and
build process up to the GNU coding standards, and contributed to the
frame support and multi-face support. Jim also wrote tvi970.el,
terminal support for the TeleVideo 970 terminals; and co-wrote
wyse50.el (q.v.).

	Per Bothner wrote term.el, a terminal emulator in an Emacs
buffer.

	Terrence M. Brannon wrote landmark.el, a neural-network robot
that learns landmarks.

	Frank Bresz wrote diff.el, a program to display diff
output.

	Peter Breton implemented dirtrack.el, a library for tracking
directory changes in shell buffers; filecache.el, which records
which directories your files are in; locate.el, which
interfaces to the locate command; find-lisp.el, an Emacs
Lisp emulation of the find program; net-utils.el; and
the “generic mode” feature.

	Emmanuel Briot wrote xml.el, an XML parser for Emacs; and
ada-prj.el, editing of Ada mode project files, as well as
co-authoring ada-mode.el and ada-xref.el.

	Kevin Broadey wrote foldout.el, providing folding extensions to
Emacs's outline modes.

	David M. Brown wrote array.el, for editing arrays and other
tabular data.

	W/lodek Bzyl and Ryszard Kubiak wrote ogonek.el, a package for
changing the encoding of Polish characters.

	Bill Carpenter provided feedmail.el, a package for massaging
outgoing mail messages and sending them through various popular mailers.

	Per Cederqvist and Inge Wallin wrote ewoc.el, an Emacs widget for
manipulating object collections. Per Cederqvist, Inge Wallin, and
Thomas Bellman wrote avl-tree.el, for balanced binary trees.

	Hans Chalupsky wrote advice.el, an overloading mechanism for
Emacs Lisp functions; and trace.el, a tracing facility for Emacs
Lisp.

	Chris Chase, Carsten Dominik, and J. D. Smith wrote IDLWAVE mode,
for editing IDL and WAVE CL.

	Bob Chassell wrote texnfo-upd.el, texinfo.el, and
makeinfo.el, modes and utilities for working with Texinfo files;
and page-ext.el, commands for extended page handling. He also
wrote the “Introduction to programming in Emacs Lisp” manual.

	Jihyun Cho wrote hanja-util.el and hangul.el, utilities
for Korean Hanja.

	Andrew Choi and Yamamoto Mitsuharu wrote the Carbon support, used
prior to Emacs 23 for Mac OS.

	Chong Yidong was the Emacs co-maintainer from Emacs 23 onwards. He made many
improvements to the Emacs display engine. He also wrote
tabulated-list.el, a generic major mode for lists of data;
and improved support for themes and packages.

	James Clark wrote SGML mode, a mode for editing SGML documents; and
nXML mode, a mode for editing XML documents. He also contributed to
Emacs's dumping procedures.

	Mike Clarkson wrote edt.el, an emulation of DEC's EDT editor.

	Glynn Clements provided gamegrid.el and a couple of games that
use it, Snake and Tetris.

	Andrew Cohen wrote spam-wash.el, to decode and clean email before
it is analyzed for spam.

	Edward O'Connor wrote json.el, a file for parsing and
generating JSON files.

	Georges Brun-Cottan and Stefan Monnier wrote easy-mmode.el, a
package for easy definition of major and minor modes.

	Andrew Csillag wrote M4 mode (m4-mode.el).

	Doug Cutting and Jamie Zawinski wrote disass.el, a disassembler
for compiled Emacs Lisp code.

	Mathias Dahl wrote image-dired.el, a package for viewing image
files as “thumbnails”.

	Julien Danjou wrote an implementation of “Desktop Notifications”
(notifications.el); and color.el, a library for general
color manipulation. He also made various contributions to Gnus.

	Vivek Dasmohapatra wrote htmlfontify.el, to convert a buffer or
source tree to HTML.

	Gary Delp wrote mailpost.el, an interface between RMAIL and the
/usr/uci/post mailer.

	Matthieu Devin wrote delsel.el, a package to make newly-typed
text replace the current selection.

	Eric Ding wrote goto-addr.el,

	Jan Djärv added support for the GTK+ toolkit and X drag-and-drop.
He also wrote dynamic-setting.el.

	Carsten Dominik wrote RefTeX, a package for setting up labels and
cross-references in LaTeX documents; and co-wrote IDLWAVE mode
(q.v.). He was the original author of Org mode, for maintaining notes,
todo lists, and project planning. Bastien Guerry subsequently took
over maintainership. Benjamin Andresen, Thomas Baumann, Joel Boehland, Jan Böcker, Lennart
Borgman, Baoqiu Cui, Dan Davison, Christian Egli, Eric S. Fraga, Daniel German, Chris Gray, Konrad Hinsen, Tassilo Horn, Philip
Jackson, Martyn Jago, Thorsten Jolitz, Jambunathan K, Tokuya Kameshima, Sergey Litvinov, David Maus, Ross Patterson, Juan Pechiar, Sebastian Rose, Eric Schulte,
Paul Sexton, Ulf Stegemann, Andy Stewart, Christopher Suckling, David O'Toole, John Wiegley, Zhang Weize,
Piotr Zielinski, and others also wrote various Org mode components.
For more information, see See section ``History and Acknowledgments'' in The Org Manual.

	Scott Draves wrote tq.el, help functions for maintaining
transaction queues between Emacs and its subprocesses.

	Benjamin Drieu wrote pong.el, an implementation of the classical
pong game.

	Viktor Dukhovni wrote support for dumping under SunOS version 4.

	John Eaton and Kurt Hornik wrote Octave mode.

	Rolf Ebert, Markus Heritsch, and Emmanuel Briot wrote Ada mode.

	Paul Eggert integrated the Gnulib portability library, and made many
other portability fixes to the C code; as well as his contributions
to VC and the calendar.

	Stephen Eglen wrote mspools.el, which tells you which Procmail
folders have mail waiting in them; and iswitchb.el, a feature
for incremental reading and completion of buffer names.

	Torbjörn Einarsson wrote f90.el, a mode for Fortran 90 files.

	Tsugutomo Enami co-wrote the support for international character sets.

	David Engster wrote mairix.el and nnmairix.el, an
interface to the Mairix indexing tool.

	Hans Henrik Eriksen wrote simula.el, a mode for editing SIMULA 87
code.

	Michael Ernst wrote reposition.el, a command for recentering a
function's source code and preceding comment on the screen.

	Ata Etemadi wrote cdl.el, functions for working with Common Data
Language source code.

	Frederick Farnbach implemented morse.el, which converts text to
Morse code.

	Oscar Figueiredo wrote EUDC, the Emacs Unified Directory Client, which
is an interface to directory servers via LDAP, CCSO PH/QI, or BBDB; and
ldap.el, the LDAP client interface.

	Fred Fish wrote the support for dumping COFF executable files.

	Karl Fogel wrote bookmark.el, which implements named
placeholders; mail-hist.el, a history mechanism for outgoing
mail messages; and saveplace.el, for preserving point's
location in files between editing sessions.

	Gary Foster wrote crisp.el, the emulation for CRiSP and Brief
editors; and scroll-all.el, a mode for scrolling several buffers
together.

	Noah Friedman wrote rlogin.el, an interface to Rlogin,
type-break.el, which reminds you to take periodic breaks from
typing, and eldoc-mode, a mode to show the defined parameters or
the doc string for the Lisp function near point.

	Shigeru Fukaya wrote a testsuite for the byte-compiler.

	Keith Gabryelski wrote hexl.el, a mode for editing binary files.

	Kevin Gallagher rewrote and enhanced the EDT emulation, and wrote
flow-ctrl.el, a package for coping with unsuppressible XON/XOFF
flow control.

	Kevin Gallo added multiple-frame support for Windows NT and wrote
w32-win.el, support functions for the MS-Windows window system.

	Juan León Lahoz García wrote wdired.el, a package for
performing file operations by directly editing Dired buffers.

	Howard Gayle wrote much of the C and Lisp code for display tables and
case tables. He also wrote rot13.el, a command to display the
plain-text form of a buffer encoded with the Caesar cipher;
vt100-led.el, a package for controlling the LEDs on
VT100-compatible terminals; and much of the support for ISO-8859
European character sets (which includes iso-ascii.el,
iso-insert.el, iso-swed.el,
iso-syntax.el, iso-transl.el, and swedish.el).

	Stephen Gildea made the Emacs quick reference card, and made many
contributions for time-stamp.el, a package for maintaining
last-change time stamps in files.

	Julien Gilles wrote gnus-ml.el, a mailing list minor mode for
Gnus.

	David Gillespie wrote the Common Lisp compatibility packages;
Calc, an advanced calculator and mathematical tool, since
maintained and developed by Jay Belanger; complete.el, a partial
completion mechanism; and edmacro.el, a package for editing
keyboard macros.

	Bob Glickstein wrote sregex.el, a facility for writing regexps
using a Lisp-like syntax.

	Boris Goldowsky wrote avoid.el, a package to keep the mouse
cursor out of the way of the text cursor; shadowfile.el, a
package for keeping identical copies of files in more than one place;
format.el, a package for reading and writing files in various
formats; enriched.el, a package for saving text properties in
files; facemenu.el, a package for specifying faces; and
descr-text.el, describing text and character properties.

	Michelangelo Grigni wrote ffap.el which visits a file,
taking the file name from the buffer.

	Odd Gripenstam wrote dcl-mode.el for editing DCL command files.

	Michael Gschwind wrote iso-cvt.el, a package to convert between
the ISO 8859-1 character set and the notations for non-ASCII
characters used by TeX and net tradition.

	Bastien Guerry wrote gnus-bookmark.el, bookmark support for Gnus;
as well as helping to maintain Org mode (q.v.).

	Henry Guillaume wrote find-file.el, a package to visit files
related to the currently visited file.

	Doug Gwyn wrote the portable alloca implementation.

	Ken'ichi Handa implemented most of the support for international
character sets, and wrote most of the Emacs 23 font handling code. He
also wrote composite.el, which provides a minor mode that
composes characters automatically when they are displayed;
isearch-x.el, a facility for searching non-ASCII
text; and ps-bdf.el, a BDF font support for printing
non-ASCII text on a PostScript printer. Together with Naoto
Takahashi, he wrote quail.el, an input facility for typing
non-ASCII text from an ASCII keyboard.

	Jesper Harder wrote yenc.el, for decoding yenc encoded messages.

	Alexandru Harsanyi wrote a library for accessing SOAP web services.

	K. Shane Hartman wrote chistory.el and echistory.el,
packages for browsing command history lists; electric.el and
helper.el, which provide an alternative command loop and
appropriate help facilities; emacsbug.el, a package for
reporting Emacs bugs; picture.el, a mode for editing
ASCII pictures; and view.el, a package for perusing
files and buffers without editing them.

	John Heidemann wrote mouse-copy.el and mouse-drag.el,
which provide alternative mouse-based editing and scrolling features.

	Jon K Hellan wrote utf7.el, support for mail-safe transformation
format of Unicode.

	Karl Heuer wrote the original blessmail script, implemented the
intangible text property, and rearranged the structure of the
Lisp_Object type to allow for more data bits.

	Manabu Higashida ported Emacs to MS-DOS.

	Anders Holst wrote hippie-exp.el, a versatile completion and
expansion package.

	Tassilo Horn wrote DocView mode, allowing viewing of PDF, PostScript and
DVI documents.

	Tom Houlder wrote mantemp.el, which generates manual C++
template instantiations.

	Joakim Hove wrote html2text.el, a html to plain text converter.

	Denis Howe wrote browse-url.el, a package for invoking a WWW
browser to display a URL.

	Lars Magne Ingebrigtsen did a major redesign of the Gnus news-reader and
wrote many of its parts. Several of these are now general components of
Emacs, including: dns.el for Domain Name Service lookups;
format-spec.el for formatting arbitrary format strings;
netrc.el for parsing of .netrc files; and
time-date.el for general date and time handling.
He also wrote network-stream.el, for opening network processes;
url-queue.el, for controlling parallel downloads of URLs;
and implemented libxml2 support.
Components of Gnus have also been written by: Nagy Andras, David
Blacka, Scott Byer, Ludovic Courtès, Julien Danjou, Kevin Greiner, Kai
Großjohann, Joe Hildebrand, Paul Jarc, Simon Josefsson, Sascha
Lüdecke, David Moore, Jim Radford, Benjamin Rutt, Raymond Scholz,
Thomas Steffen, Reiner Steib, Didier Verna, Ilja Weis, Katsumi
Yamaoka, Teodor Zlatanov, and others (see See section ``Contributors'' in the Gnus Manual).

	Andrew Innes contributed extensively to the MS-Windows support.

	Seiichiro Inoue improved Emacs's XIM support.

	Philip Jackson wrote find-cmd.el, to build a find
command-line.

	Ulf Jasper wrote icalendar.el, a package for converting Emacs
diary entries to and from the iCalendar format;
newsticker.el, an RSS and Atom based Newsticker; and
bubbles.el, a puzzle game.

	Kyle Jones wrote life.el, a package to play Conway's “life” game.

	Terry Jones wrote shadow.el, a package for finding potential
load-path problems when some Lisp file “shadows” another.

	Simon Josefsson wrote dns-mode.el, an editing mode for Domain
Name System master files; dig.el, a Domain Name System interface;
flow-fill.el, a package for interpreting RFC2646 formatted text
in messages; fringe.el, a package for customizing the fringe;
imap.el, an Emacs Lisp library for talking to IMAP servers;
password-cache.el, a password reader; nnimap.el, the IMAP
back-end for Gnus; url-imap.el for the URL library;
rfc2104.el, a hashed message authentication facility; the Gnus
S/MIME and Sieve components; and tls.el and starttls.el
for the Transport Layer Security protocol.

	Arne Jørgensen wrote latexenc.el, a package to
automatically guess the correct coding system in LaTeX files.

	Alexandre Julliard wrote vc-git.el, support for the Git version
control system.

	Tomoji Kagatani implemented smtpmail.el, used for sending out
mail with SMTP.

	Ivan Kanis wrote vc-hg.el, support for the Mercurial version
control system.

	Henry Kautz wrote bib-mode.el, a mode for maintaining
bibliography databases compatible with refer (the troff
version) and lookbib, and refbib.el, a package to convert
those databases to the format used by the LaTeX text formatting package.

	Taichi Kawabata added support for Devanagari script and the Indian
languages, and wrote ucs-normalize.el for Unicode normalization.

	Taro Kawagishi implemented the MD4 Message Digest Algorithm in Lisp; and
wrote ntlm.el and sasl-ntlm.el for NT LanManager
authentication support.

	Howard Kaye wrote sort.el, commands to sort text in Emacs
buffers.

	Michael Kifer wrote ediff, an interactive interface to the
diff, patch, and merge programs; and
Viper, another emulator of the VI editor.

	Richard King wrote the first version of userlock.el and
filelock.c, which provide simple support for multiple users
editing the same file. He also wrote the initial version of
uniquify.el, a facility to make buffer names unique by adding
parts of the file's name to the buffer name.

	Peter Kleiweg wrote ps-mode.el, a mode for editing PostScript
files and running a PostScript interpreter interactively from within
Emacs.

	Karel Klíc< contributed SELinux support, for preserving the
Security-Enhanced Linux context of files on backup and copy.

	Shuhei Kobayashi wrote hex-util.el, for operating on hexadecimal
strings; and support for HMAC (Keyed-Hashing for Message Authentication).

	Pavel Kobyakov wrote flymake.el, a minor mode for performing
on-the-fly syntax checking.

	David M. Koppelman wrote hi-lock.el, a minor mode for
interactive automatic highlighting of parts of the buffer text.

	Koseki Yoshinori wrote iimage.el, a minor mode for displaying
inline images.

	Robert Krawitz wrote the original xmenu.c, part of Emacs's pop-up
menu support.

	Sebastian Kremer wrote dired-mode, with contributions by Lawrence
R. Dodd. He also wrote ls-lisp.el, a Lisp emulation of the
ls command for platforms that don't have ls as a standard
program.

	David Ka*gedal wrote tempo.el, providing support for
easy insertion of boilerplate text and other common constructions.

	Igor Kuzmin wrote cconv.el, providing closure conversion for
statically scoped Emacs lisp.

	Daniel LaLiberte wrote edebug.el, a source-level debugger for
Emacs Lisp; cl-specs.el, specifications to help edebug
debug code written using David Gillespie's Common Lisp support;
cust-print.el, a customizable package for printing lisp
objects; and isearch.el, Emacs's incremental search minor mode.
He also co-wrote hideif.el (q.v.).

	Karl Landstrom and Daniel Colascione wrote js.el, a mode for
editing JavaScript.

	Vinicius Jose Latorre wrote the Emacs printing facilities, as well as
ps-print (with Jim Thompson, Jacques Duthen, and Kenichi Handa),
a package for pretty-printing Emacs buffers to PostScript printers;
delim-col.el, a package to arrange text into columns;
ebnf2ps.el, a package that translates EBNF grammar to a syntactic
chart that can be printed to a PostScript printer; and
whitespace.el, a package that detects and cleans up excess
whitespace in a file (building on an earlier version by Rajesh Vaidheeswarran).

	Frederic Lepied wrote expand.el, which uses the abbrev
mechanism for inserting programming constructs.

	Peter Liljenberg wrote elint.el, a Lint-style code checker for
Emacs Lisp programs.

	Lars Lindberg wrote msb.el, which provides more flexible menus
for buffer selection; co-wrote imenu.el (q.v.); and rewrote
dabbrev.el, originally written by Don Morrison.

	Anders Lindgren wrote autorevert.el, a package for automatically
reverting files visited by Emacs that were changed on disk;
cwarn.el, a package to highlight suspicious C and C++
constructs; and follow.el, a minor mode to synchronize windows
that show the same buffer.

	Thomas Link wrote filesets.el, a package for handling sets of
files.

	Juri Linkov wrote misearch.el, extending isearch to multi-buffer
searches; the code in files-x.el for handling file- and
directory-local variables; and the info-finder feature that
creates a virtual Info manual of package keywords.

	Károly Lo''rentey wrote the “multi-terminal” code, which allows
Emacs to run on graphical and text terminals simultaneously.

	Martin Lorentzon wrote vc-annotate.el, support for version
control annotation.

	Dave Love wrote much of the code dealing with Unicode support and
Latin-N unification. He added support for many coding systems,
including the various UTF-7 and UTF-16 coding systems. He also wrote
autoarg-mode, a global minor mode whereby digit keys supply
prefix arguments; autoarg-kp-mode, which redefines the keypad
numeric keys to digit arguments; autoconf.el, a mode for editing
Autoconf files; cfengine.el, a mode for editing Cfengine files;
elide-head.el, a package for eliding boilerplate text from file
headers; hl-line.el, a minor mode for highlighting the line in
the current window on which point is; cap-words.el, a minor mode
for motion in “CapitalizedWordIdentifiers”; latin1-disp.el, a
package that lets you display ISO 8859 characters on Latin-1 terminals
by setting up appropriate display tables; python.el, a major mode
for the Python programming language; smiley.el, a facility for
displaying smiley faces; sym-comp.el, a library for performing
mode-dependent symbol completion; benchmark.el for timing code
execution; and tool-bar.el, a mode to control the display of
the Emacs tool bar. With Riccardo Murri he wrote vc-bzr.el,
support for the Bazaar version control system.

	Eric Ludlam wrote the Speedbar package; checkdoc.el, for checking
doc strings in Emacs Lisp programs; dframe.el, providing
dedicated frame support modes; ezimage.el, a generalized way to
place images over text; chart.el for drawing bar charts etc; and
the EIEIO (Enhanced Implementation of Emacs Interpreted Objects)
package. He was also the main author of the CEDET (Collection of Emacs
Development Environment Tools) package. Portions were also written by
Jan Moringen, David Ponce, and Joakim Verona.

	Roland McGrath wrote compile.el (since updated by Daniel
Pfeiffer), a package for running compilations in a buffer, and then
visiting the locations reported in error messages; etags.el, a
package for jumping to function definitions and searching or replacing
in all the files mentioned in a TAGS file; with Sebastian
Kremer find-dired.el, for using dired commands on output
from the find program; grep.el for running the
grep command; map-ynp.el, a general purpose boolean
question-asker; autoload.el, providing semi-automatic
maintenance of autoload files.

	Alan Mackenzie wrote the integrated AWK support in CC Mode, and
maintained CC Mode from Emacs 22 onwards.

	Michael McNamara and Wilson Snyder wrote Verilog mode.

	Christopher J. Madsen wrote decipher.el, a package for cracking
simple substitution ciphers.

	Neil M. Mager wrote appt.el, functions to notify users of their
appointments. It finds appointments recorded in the diary files
used by the calendar package.

	Ken Manheimer wrote allout.el, a mode for manipulating and
formatting outlines, and icomplete.el, which provides incremental
completion feedback in the minibuffer.

	Bill Mann wrote perl-mode.el, a mode for editing Perl code.

	Brian Marick and Daniel LaLiberte wrote hideif.el, support for
hiding selected code within C #ifdef clauses.

	Simon Marshall wrote regexp-opt.el, which generates a regular
expression from a list of strings; and the fast-lock and lazy-lock
font-lock support modes. He also extended comint.el and
shell.el, originally written by Olin Shivers.

	Bengt Martensson, Dirk Herrmann, Marc Shapiro, Mike Newton, Aaron Larson,
and Stefan Schoef, wrote bibtex.el, a mode for editing BibTeX
bibliography files.

	Charlie Martin wrote autoinsert.el, which provides automatic
mode-sensitive insertion of text into new files.

	Yukihiro Matsumoto and Nobuyoshi Nakada wrote Ruby-mode.

	Thomas May wrote blackbox.el, a version of the traditional
blackbox game.

	David Megginson wrote derived.el, which allows one to define new
major modes by inheriting key bindings and commands from existing major
modes.

	Will Mengarini wrote repeat.el, a command to repeat the preceding
command with its arguments.

	Richard Mlynarik wrote cl-indent.el, a package for indenting
Common Lisp code; ebuff-menu.el, an “electric” browser for
buffer listings; ehelp.el, bindings for browsing help screens;
rfc822.el, a parser for E-mail addresses in the RFC-822 format,
used in mail messages and news articles; terminal.el, a
terminal emulator for Emacs subprocesses; and yow.el, an
essential utility.

	Gerd Moellmann was the Emacs maintainer from the beginning of Emacs 21
development until the release of 21.1. He wrote the new display
engine used from Emacs 21 onwards, and the asynchronous timers
facility. He also wrote ebrowse, the C++ browser;
jit-lock.el, the Just-In-Time font-lock support mode;
tooltip.el, a package for displaying tooltips;
authors.el, a package for maintaining the AUTHORS file;
and rx.el, a regular expression constructor.

	Stefan Monnier was the Emacs co-maintainer from Emacs 23 onwards. He added
support for Arch and Subversion to VC, re-wrote much of the Emacs server
to use the built-in networking primitives, and re-wrote the abbrev and
minibuffer completion code for Emacs 23. He also wrote PCL-CVS,
a directory-level front end to the CVS version control system;
reveal.el, a minor mode for automatically revealing invisible
text; smerge-mode.el, a minor mode for resolving diff3
conflicts; diff-mode.el, a mode for viewing and editing context
diffs; css-mode.el for Cascading Style Sheets;
bibtex-style.el for BibTeX Style files; mpc.el, a
client for the “Music Player Daemon”; smie.el, a generic
indentation engine; and pcase.el, implementing ML-style pattern
matching. He integrated the lexical binding code in Emacs 24.

	Morioka Tomohiko wrote several packages for MIME support in Gnus and
elsewhere.

	Sen Nagata wrote crm.el, a package for reading multiple strings
with completion, and rfc2368.el, support for mailto:
URLs.

	Erik Naggum wrote the time-conversion functions. He also wrote
disp-table.el, for dealing with display tables;
mailheader.el, for parsing email headers; and
parse-time.el, for parsing time strings.

	Takahashi Naoto co-wrote quail.el (q.v.), and wrote
robin.el, another input method.

	Thomas Neumann and Eric Raymond wrote make-mode.el,
a mode for editing makefiles.

	Thien-Thi Nguyen and Dan Nicolaescu wrote hideshow.el, a minor
mode for selectively displaying blocks of text.

	Jurgen Nickelsen wrote ws-mode.el, providing WordStar emulation.

	Dan Nicolaescu added support for running Emacs as a daemon. He also
wrote romanian.el, support for editing Romanian text;
iris-ansi.el, support for running Emacs on SGI's xwsh
and winterm terminal emulators; and vc-dir.el, displaying
the status of version-controlled directories.

	Hrvoje Niksic wrote savehist.el, for saving the minibuffer
history between Emacs sessions.

	Jeff Norden wrote kermit.el, a package to help the Kermit
dialup communications program run comfortably in an Emacs shell buffer.

	Andrew Norman wrote ange-ftp.el, providing transparent FTP
support.

	Kentaro Ohkouchi created the Emacs icons used beginning with Emacs 23.

	Christian Ohler wrote ert.el, a library for automated regression
testing.

	Alexandre Oliva wrote gnus-mlspl.el, a group params-based mail
splitting mechanism.

	Takaaki Ota wrote table.el, a package for creating and editing
embedded text-based tables.

	Pieter E. J. Pareit wrote mixal-mode.el, an editing mode for
the MIX assembly language.

	David Pearson wrote quickurl.el, a simple method of inserting a
URL into the current buffer based on text at point; 5x5.el, a
game to fill all squares on the field.

	Jeff Peck wrote sun.el, key bindings for sunterm keys.

	Damon Anton Permezel wrote hanoi.el, an animated demonstration of
the “Towers of Hanoi” puzzle.

	William M. Perry wrote mailcap.el (with Lars Magne
Ingebrigtsen), a MIME media types configuration facility;
mwheel.el, a package for supporting mouse wheels; co-wrote (with
Dave Love) socks.el, a Socks v5 client; and developed the URL
package.

	Per Persson wrote gnus-vm.el, the VM interface for Gnus.

	Jens Petersen wrote find-func.el, which makes it easy to find
the source code for an Emacs Lisp function or variable.

	Daniel Pfeiffer wrote conf-mode.el, a mode for editing
configuration files; copyright.el, a package for updating
copyright notices in files; executable.el, a package for
executing interpreter scripts; sh-script.el, a mode for editing
shell scripts; skeleton.el, implementing a concise language for
writing statement skeletons; and two-column.el, a minor mode
for simultaneous two-column editing.
Daniel also rewrote apropos.el (originally written by Joe Wells),
for finding commands, functions, and variables matching a regular
expression; and, together with Jim Blandy, co-authored wyse50.el,
support for Wyse 50 terminals. He also co-wrote compile.el
(q.v.) and ada-stmt.el.

	Richard L. Pieri wrote pop3.el, a Post Office Protocol (RFC
1460) interface for Emacs.

	Fred Pierresteguy and Paul Reilly made Emacs work with X Toolkit
widgets.

	François Pinard, Greg McGary, and Bruno Haible wrote po.el,
support for PO translation files.

	Christian Plaunt wrote soundex.el, an implementation of the
Soundex algorithm for comparing English words by their pronunciation.

	David Ponce wrote recentf.el, a package that puts a menu of
recently visited files in the Emacs menu bar; ruler-mode.el, a
minor mode for displaying a ruler in the header line; and
tree-widget.el, a package to display hierarchical data
structures.

	Francesco A. Potorti wrote cmacexp.el, providing a command which
runs the C preprocessor on a region of a file and displays the results.
He also expanded and redesigned the etags program.

	Michael D. Prange and Steven A. Wood wrote fortran.el, a mode
for editing Fortran code.

	Ashwin Ram wrote refer.el, commands to look up references in
bibliography files by keyword.

	Eric S. Raymond wrote vc.el, an interface to the RCS and SCCS
source code version control systems, with Paul Eggert; gud.el,
a package for running source-level debuggers like GDB and SDB in
Emacs; asm-mode.el, a mode for editing assembly language code;
AT386.el, terminal support package for IBM's AT keyboards;
cookie1.el, support for “fortune-cookie” programs like
yow.el and spook.el; finder.el, a package for
finding Emacs Lisp packages by keyword and topic; keyswap.el,
code to swap the BS and DEL keys; loadhist.el,
functions for loading and unloading Emacs features;
lisp-mnt.el, functions for working with the special headers
used in Emacs Lisp library files; and code to set and make use of the
load-history lisp variable, which records the source file from
which each lisp function loaded into Emacs came.

	Edward M. Reingold wrote the calendar and diary support,
with contributions from Stewart Clamen (cal-mayan.el), Nachum
Dershowitz (cal-hebrew.el), Paul Eggert (cal-dst.el),
Steve Fisk (cal-tex.el), Michael Kifer (cal-x.el), Lara
Rios (cal-menu.el), and Denis B. Roegel (solar.el).
Andy Oram contributed to its documentation. Reingold also contributed
to tex-mode.el, a mode for editing TeX files, as did William
F. Schelter, Dick King, Stephen Gildea, Michael Prange, and Jacob
Gore.

	David Reitter wrote mailclient.el which can send mail via the
system's designated mail client.

	Alex Rezinsky wrote which-func.el, a mode that shows the name
of the current function in the mode line.

	Rob Riepel wrote tpu-edt.el and its associated files, providing
an emulation of the VMS TPU text editor emulating the VMS EDT editor,
and vt-control.el, providing some control functions for the DEC
VT line of terminals.

	Nick Roberts wrote t-mouse.el, for mouse support in text
terminals; and gdb-ui.el, a graphical user interface to GDB.
Together with Dmitry Dzhus, he wrote gdb-mi.el, the successor to
gdb-ui.el.

	Danny Roozendaal implemented handwrite.el, which converts text
into “handwriting”.

	Markus Rost wrote cus-test.el, a testing framework for customize.

	Guillermo J. Rozas wrote scheme.el, a mode for editing Scheme and
DSSSL code.

	Martin Rudalics implemented improved display-buffer handling in Emacs 24.

	Ivar Rummelhoff wrote winner.el, which records recent window
configurations so you can move back to them.

	Jason Rumney ported the Emacs 21 display engine to MS-Windows, and has
contributed extensively to the MS-Windows port of Emacs.

	Wolfgang Rupprecht wrote Emacs 19's floating-point support (including
float-sup.el and floatfns.c), and sup-mouse.el,
support for the Supdup mouse on lisp machines.

	Kevin Ryde wrote info-xref.el, a library for checking
references in Info files.

	James B. Salem and Brewster Kahle wrote completion.el, providing
dynamic word completion.

	Masahiko Sato wrote vip.el, an emulation of the VI editor.

	Holger Schauer wrote fortune.el, a package for using fortune in
message signatures.

	William Schelter wrote telnet.el, support for telnet
sessions within Emacs.

	Ralph Schleicher wrote battery.el, a package for displaying
laptop computer battery status, and info-look.el, a package for
looking up Info documentation for symbols in the buffer.

	Michael Schmidt and Tom Perrine wrote modula2.el, a mode for
editing Modula-2 code, based on work by Mick Jordan and Peter Robinson.

	Ronald S. Schnell wrote dunnet.el, a text adventure game.

	Philippe Schnoebelen wrote gomoku.el, a Go Moku game played
against Emacs; and mpuz.el, a multiplication puzzle.

	Rainer Schoepf contributed to Alpha and OSF1 support.

	Jan Schormann wrote solitaire.el, an implementation of the
Solitaire game.

	Alex Schroeder wrote ansi-color.el, a package for translating
ANSI color escape sequences to Emacs faces; sql.el, a package
for interactively running an SQL interpreter in an Emacs buffer;
cus-theme.el, an interface for custom themes; master.el, a
package for making a buffer ‘master’ over another; and
spam-stat.el, for statistical detection of junk email. He also
wrote parts of the IRC client ERC (q.v.).

	Randal Schwartz wrote pp.el, a pretty-printer for lisp objects.

	Oliver Seidel wrote todo-mode.el, a package for maintaining
TODO list files.

	Manuel Serrano wrote the Flyspell package, which does spell checking
as you type.

	Hovav Shacham wrote windmove.el, a set of commands for selecting
windows based on their geometrical position on the frame.

	Stanislav Shalunov wrote uce.el, for responding to unsolicited
commercial email.

	Richard Sharman wrote hilit-chg.el, which uses colors to show
recent editing changes.

	Olin Shivers wrote comint.el, a library for modes running
interactive command-line-oriented subprocesses, and shell.el, for
running inferior shells (both since extended by Simon Marshall);
cmuscheme.el, for running inferior Scheme processes;
inf-lisp.el, for running inferior Lisp process.

	Espen Skoglund wrote pascal.el, a mode for editing Pascal code.

	Rick Sladkey wrote backquote.el, a lisp macro for creating
mostly-constant data.

	Lynn Slater wrote help-macro.el, a macro for writing interactive
help for key bindings.

	Chris Smith wrote icon.el, a mode for editing Icon code.

	David Smith wrote ielm.el, a mode for interacting with the Emacs
Lisp interpreter as a subprocess.

	Paul D. Smith wrote snmp-mode.el.

	William Sommerfeld wrote scribe.el, a mode for editing Scribe
files, and server.el, a package allowing programs to send files
to an extant Emacs job to be edited.

	Andre Spiegel made many contributions to the Emacs Version Control
package, and in particular made it support multiple back ends.

	Michael Staats wrote pc-select.el, which rebinds keys for
selecting regions to follow many other systems.

	Richard Stallman invented Emacs. He is the original author of GNU
Emacs, and has been Emacs maintainer over several non-contiguous
periods. In addition to much of the “core” Emacs code, he has
written easymenu.el, a facility for defining Emacs menus;
image-mode.el, support for visiting image files;
menu-bar.el, the Emacs menu bar support code;
paren.el, a package to make matching parentheses stand out in
color; and also co-authored portions of CC mode.

	Sam Steingold wrote gulp.el, a facility for asking package
maintainers for updated versions of their packages via e-mail, and
midnight.el, a package for running a command every midnight.

	Ake Stenhoff and Lars Lindberg wrote imenu.el, a framework for
browsing indices made from buffer contents.

	Peter Stephenson wrote vcursor.el, which implements a “virtual
cursor” that you can move with the keyboard and use for copying text.

	Ken Stevens wrote ispell.el, a spell-checker interface.

	Kim F. Storm made many improvements to the Emacs display engine,
process support, and networking support. He also wrote
bindat.el, a package for encoding and decoding binary data;
CUA mode, which allows Emacs to emulate the standard CUA key
bindings; ido.el, a package for selecting buffers and files
quickly; keypad.el for simplified keypad bindings; and
kmacro.el, the keyboard macro facility.

	Martin Stjernholm co-authored CC Mode, a major editing mode for C,
C++, Objective-C, Java, Pike, CORBA IDL, and AWK code.

	Steve Strassmann did not write spook.el, and even if he did, he
really didn't mean for you to use it in an anarchistic way.

	Olaf Sylvester wrote bs.el, a package for manipulating Emacs
buffers.

	Tibor S<imko and Milan Zamazal wrote slovak.el, support for
editing text in Slovak language.

	Luc Teirlinck wrote help-at-pt.el, providing local help through
the keyboard.

	Jean-Philippe Theberge wrote thumbs.el, a package for viewing
image files as “thumbnails”.

	Spencer Thomas wrote the original dabbrev.el, providing a command
which completes the partial word before point, based on other nearby
words for which it is a prefix. He also wrote the original dumping
support.

	Toru Tomabechi contributed to Tibetan support.

	Markus Triska wrote linum.el, a minor mode that displays line
numbers in the left margin.

	Tom Tromey and Chris Lindblad wrote tcl.el, a mode for editing
Tcl/Tk source files and running a Tcl interpreter as an Emacs
subprocess. Tom Tromey also wrote bug-reference.el, providing
clickable links to bug reports; and the first version of the Emacs
package system.

	Eli Tziperman wrote rmail-spam-filter.el, a spam filter for RMAIL.

	Daiki Ueno wrote starttls.el, support for Transport Layer
Security protocol; sasl-cram.el and sasl-digest.el (with
Kenichi Okada), and sasl.el, support for Simple Authentication
and Security Layer (SASL); plstore.el for secure storage of
property lists; and the EasyPG (and its predecessor PGG)
package, for GnuPG and PGP support.

	Masanobu Umeda wrote GNUS, a feature-rich reader for Usenet news that
was the ancestor of the current Gnus package. He also wrote
rmailsort.el, a package for sorting messages in RMAIL folders;
metamail.el, an interface to the Metamail program;
gnus-kill.el, the Kill File mode for Gnus; gnus-mh.el, an
mh-e interface for Gnus; gnus-msg.el, a mail and post interface
for Gnus; and timezone.el, providing functions for dealing with
time zones.

	Neil W. Van Dyke wrote webjump.el, a “hot links” package.

	Didier Verna wrote rect.el, a package of functions for
operations on rectangle regions of text. He also contributed to Gnus
(q.v.).

	Joakim Verona implemented ImageMagick support.

	Ulrik Vieth implemented meta-mode.el, for editing MetaFont code.

	Geoffrey Voelker wrote the Windows NT support. He also wrote
dos-w32.el, functions shared by the MS-DOS and MS-Windows ports
of Emacs, and w32-fns.el, MS-Windows specific support functions.

	Johan Vromans wrote forms.el and its associated files, a mode for
filling in forms. He also wrote iso-acc.el, a minor mode
providing electric accent keys.

	Colin Walters wrote Ibuffer, an enhanced buffer menu.

	Barry Warsaw wrote assoc.el, a set of utility functions for
working with association lists; cc-mode.el, a mode for editing
C, C++, and Java code, based on earlier work by Dave Detlefs,
Stewart Clamen, and Richard Stallman; elp.el, a profiler for
Emacs Lisp programs; man.el, a mode for reading Unix manual
pages; regi.el, providing an AWK-like functionality for use in
lisp programs; reporter.el, providing customizable bug
reporting for lisp packages; and supercite.el, a minor mode for
quoting sections of mail messages and news articles.

	Christoph Wedler wrote antlr-mode.el, a major mode for ANTLR
grammar files.

	Morten Welinder helped port Emacs to MS-DOS, and introduced face
support into the MS-DOS port of Emacs. He also wrote
desktop.el, facilities for saving some of Emacs's state between
sessions; timer.el, the Emacs facility to run commands at a
given time or frequency, or when Emacs is idle, and its C-level
support code; pc-win.el, the MS-DOS “window-system” support;
internal.el, an “internal terminal” emulator for the MS-DOS
port of Emacs; arc-mode.el, the mode for editing compressed
archives; s-region.el, commands for setting the region using
the shift key and motion commands; and dos-fns.el, functions
for use under MS-DOS.

	Joe Wells wrote the original version of apropos.el (q.v.);
resume.el, support for processing command-line arguments after
resuming a suspended Emacs job; and mail-extr.el, a package for
extracting names and addresses from mail headers, with contributions
from Jamie Zawinski.

	Rodney Whitby and Reto Zimmermann wrote vhdl-mode.el, a major
mode for editing VHDL source code.

	John Wiegley wrote align.el, a set of commands for aligning text
according to regular-expression based rules; isearchb.el for fast
buffer switching; timeclock.el, a package for keeping track of
time spent on projects; the Bahá'í calendar support;
pcomplete.el, a programmable completion facility;
remember.el, a mode for jotting down things to remember;
eudcb-mab.el, an address book backend for the Emacs Unified
Directory Client; and eshell, a command shell implemented
entirely in Emacs Lisp. He also contributed to Org mode (q.v.).

	Mike Williams wrote mouse-sel.el, providing enhanced mouse
selection; and thingatpt.el, a library of functions for finding
the “thing” (word, line, s-expression) containing point.

	Roland Winkler wrote proced.el, a system process editor.

	Bill Wohler wrote MH-E, the Emacs interface to the MH mail system;
making use of earlier work by James R. Larus. Satyaki Das, Peter S.
Galbraith, Stephen Gildea, and Jeffrey C. Honig also wrote various
MH-E components.

	Dale R. Worley wrote emerge.el, a package for interactively
merging two versions of a file.

	Francis J. Wright wrote woman.el, a package for browsing
manual pages without the man command.

	Masatake Yamato wrote ld-script.el, an editing mode for GNU
linker scripts, and contributed subword handling and style
“guessing” in CC mode.

	Jonathan Yavner wrote testcover.el, a package for keeping track
of the testing status of Emacs Lisp code; unsafep.el to determine
if a Lisp form is safe; and the SES spreadsheet package.

	Ryan Yeske wrote rcirc.el a simple Internet Relay Chat client.

	Ilya Zakharevich and Bob Olson wrote cperl-mode.el, a major
mode for editing Perl code. Ilya Zakharevich also wrote
tmm.el, a mode for accessing the Emacs menu bar on a text-mode
terminal.

	Milan Zamazal wrote czech.el, support for editing Czech text;
glasses.el, a package for easier reading of source code that
uses illegible identifier names; and tildify.el, commands for
adding hard spaces to text, TeX, and SGML/HTML files.

	Victor Zandy wrote zone.el, a package for people who like to
zone out in front of Emacs.

	Eli Zaretskii made many standard Emacs features work on MS-DOS and
Microsoft Windows. He also wrote tty-colors.el, which
implements transparent mapping of X colors to tty colors; and
rxvt.el. He implemented support for bidirectional text.

	Jamie Zawinski wrote much of the support for faces and X selections.
With Hallvard Furuseth, he wrote the optimizing byte compiler used
from Emacs 19 onwards. He also wrote mailabbrev.el, a package
that provides automatic expansion of mail aliases, and
tar-mode.el, which provides simple viewing and editing commands
for tar files.

	Andrew Zhilin created the Emacs 22 icons.

	Shenghuo Zhu wrote binhex.el, a package for reading and writing
binhex files; mm-partial.el, message/partial support for MIME
messages; rfc1843.el, an HZ decoding package;
uudecode.el, an Emacs Lisp decoder for uuencoded data; and
webmail.el, an interface to Web mail. He also wrote several
other Gnus components.

	Ian T. Zimmerman wrote gametree.el.

	Reto Zimmermann wrote vera-mode.el.

	Neal Ziring and Felix S. T. Wu wrote vi.el, an emulation of the
VI text editor.

	Ted Zlatanov (as well as his contributions to the Gnus newsreader)
wrote an interface to the GnuTLS library, for secure network
connections; and a futures facility for the URL library.

	Detlev Zundel wrote re-builder.el, a package for building regexps
with visual feedback.

Chapter . Key (Character) Index

Index

Symbols
	! (Dired), Shell Commands in Dired
	" (TeX mode), TeX Editing Commands
	# (Dired), Flagging Many Files at Once
	$ (Dired), Hiding Subdirectories
	$ in file names, File Names
	% & (Dired), Flagging Many Files at Once
	% C (Dired), Transforming File Names in Dired
	% d (Dired), Flagging Many Files at Once
	% g (Dired), Dired Marks vs. Flags
	% H (Dired), Transforming File Names in Dired
	% l (Dired), Transforming File Names in Dired
	% m (Dired), Dired Marks vs. Flags
	% R (Dired), Transforming File Names in Dired
	% S (Dired), Transforming File Names in Dired
	% u (Dired), Transforming File Names in Dired
	(in leftmost column, Left Margin Convention
	* ! (Dired), Dired Marks vs. Flags
	* % (Dired), Dired Marks vs. Flags
	* * (Dired), Dired Marks vs. Flags
	* / (Dired), Dired Marks vs. Flags
	* ? (Dired), Dired Marks vs. Flags
	* @ (Dired), Dired Marks vs. Flags
	* c (Dired), Dired Marks vs. Flags
	* C-n (Dired), Dired Marks vs. Flags
	* C-p (Dired), Dired Marks vs. Flags
	* DEL (Dired), Dired Marks vs. Flags
	* m (Dired), Dired Marks vs. Flags
	* s (Dired), Dired Marks vs. Flags
	* t (Dired), Dired Marks vs. Flags
	* u (Dired), Dired Marks vs. Flags
	Messages buffer, The Echo Area
	+ (Dired), Other Dired Features
	+ (DocView mode), DocView Navigation
	+linenum, Action Arguments
	- (DocView mode), DocView Navigation
	-bd, Window Color Options
	-bg, Window Color Options
	-bw, Internal and External Borders
	-chdir, Initial Options
	-cr, Window Color Options
	-d, Initial Options
	-D, Other Display Options
	-daemon, Initial Options
	-f, Action Arguments
	-fg, Window Color Options
	-fh, Options for Window Size and Position
	-fn, Font Specification Options
	-fs, Options for Window Size and Position
	-fw, Options for Window Size and Position
	-g, Options for Window Size and Position
	-ib, Internal and External Borders
	-l, Action Arguments
	-L, Action Arguments
	-lsp, Other Display Options
	-mm, Options for Window Size and Position
	-ms, Window Color Options
	-nbc, Other Display Options
	-nbi, Icons
	-nw, Initial Options
	-q, Initial Options
	-Q, Initial Options
	-r, Window Color Options
	-rv, Window Color Options
	-t, Initial Options
	-T, Frame Titles
	-u, Initial Options
	-vb, Other Display Options
	. (Calendar mode), Specified Dates
	. (Dired), Flagging Many Files at Once
	. (Rmail), Scrolling Within a Message
	.dir-locals.el file, Per-Directory Local Variables
	.emacs file, The Emacs Initialization File
	.mailrc file, Mail Aliases
	.newsrc file, When Gnus Starts Up
	.timelog file, Summing Time Intervals
	/ (Rmail), Scrolling Within a Message
	// in file name, Minibuffers for File Names
	2C-associate-buffer, Two-Column Editing
	2C-dissociate, Two-Column Editing
	2C-merge, Two-Column Editing
	2C-newline, Two-Column Editing
	2C-split, Two-Column Editing
	2C-two-columns, Two-Column Editing
	5x5, Other Amusements
	7z, File Archives
	8-bit display, Unibyte Editing Mode
	8-bit input, Unibyte Editing Mode
	:d (Dired), Operating on Files
	:e (Dired), Operating on Files
	:s (Dired), Operating on Files
	:v (Dired), Operating on Files
	< (Calendar mode), Scrolling in the Calendar
	< (Dired), Moving Over Subdirectories
	< (Rmail), Moving Among Messages
	= (Dired), File Comparison with Dired
	> (Calendar mode), Scrolling in the Calendar
	> (Dired), Moving Over Subdirectories
	> (Rmail), Moving Among Messages
	? (completion), Completion Commands
	^ (Dired), Visiting Files in Dired
	_emacs init file, MS-Windows, HOME and Startup Directories on MS-Windows
	~ (Dired), Flagging Many Files at Once
	~/.emacs file, The Emacs Initialization File
	~/.emacs.d/gtkrc file, GTK resources
	~/.gtkrc-2.0 file, GTK resources
	~/.Xdefaults file, X Resources
	~/.Xresources file, X Resources
	–/—/.-./.../., Other Amusements
	–background-color, Window Color Options
	–basic-display, Other Display Options
	–batch, Initial Options
	–border-color, Window Color Options
	–border-width, Internal and External Borders
	–chdir, Initial Options
	–color, Window Color Options
	–cursor-color, Window Color Options
	–daemon, Initial Options
	–debug-init, Initial Options
	–directory, Action Arguments
	–display, Initial Options
	–eval, Action Arguments
	–execute, Action Arguments
	–file, Action Arguments
	–find-file, Action Arguments
	–font, Font Specification Options
	–foreground-color, Window Color Options
	–fullheight, Options for Window Size and Position
	–fullscreen, Options for Window Size and Position
	–fullwidth, Options for Window Size and Position
	–funcall, Action Arguments
	–geometry, Options for Window Size and Position
	–help, Action Arguments
	–iconic, Icons
	–insert, Action Arguments
	–internal-border, Internal and External Borders
	–kill, Action Arguments
	–line-spacing, Other Display Options
	–load, Action Arguments
	–maximized, Options for Window Size and Position
	–mouse-color, Window Color Options
	–name, X Resources
	–no-bitmap-icon, Icons
	–no-blinking-cursor, Other Display Options
	–no-desktop, Initial Options
	–no-init-file, Initial Options
	–no-site-file, Initial Options
	–no-site-lisp, Initial Options
	–no-splash, Initial Options
	–no-window-system, Initial Options
	–quick, Initial Options
	–reverse-video, Window Color Options
	–script, Initial Options
	–terminal, Initial Options
	–title, Frame Titles
	–user, Initial Options
	–version, Action Arguments
	–vertical-scroll-bars, Other Display Options
	–visit, Action Arguments
	–xrm, X Resources
	‘?’ in display, Introduction to International Character Sets
	‘net use’, and printing on MS-Windows, Printing and MS-Windows

A
	a (Calendar mode), Holidays
	A (Dired), Operating on Files
	a (Rmail), Labels
	A and B buffers (Emerge), Overview of Emerge
	A k (Gnus Group mode), Using the Gnus Group Buffer
	A s (Gnus Group mode), Using the Gnus Group Buffer
	A u (Gnus Group mode), Using the Gnus Group Buffer
	A z (Gnus Group mode), Using the Gnus Group Buffer
	abbrev file, Saving Abbrevs
	Abbrev mode, Abbrev Concepts
	abbrev-all-caps, Controlling Abbrev Expansion
	abbrev-file-name, Saving Abbrevs
	abbrev-mode, Abbrev Concepts
	abbrev-prefix-mark, Controlling Abbrev Expansion
	abbrevs, Abbrevs
	abnormal hook, Hooks
	abort-recursive-edit, Quitting and Aborting
	aborting recursive edit, Quitting and Aborting
	accented characters, Unibyte Editing Mode
	accessible portion, Narrowing
	accumulating scattered text, Accumulating Text
	action options (command line), Command Line Arguments for Emacs Invocation
	active region, The Mark and the Region
	adaptive filling, Adaptive Filling
	adaptive-fill-first-line-regexp, Adaptive Filling
	adaptive-fill-function, Adaptive Filling
	adaptive-fill-mode, Adaptive Filling
	adaptive-fill-regexp, Adaptive Filling
	add-change-log-entry-other-window, Change Log Commands
	add-change-log-entry-other-window, in Diff mode, Diff Mode
	add-dir-local-variable, Per-Directory Local Variables
	add-file-local-variable, Specifying File Variables
	add-file-local-variable-prop-line, Specifying File Variables
	add-global-abbrev, Defining Abbrevs
	add-hook, Hooks
	add-log-always-start-new-record, Change Log Commands
	add-log-keep-changes-together, Change Log Commands
	add-mode-abbrev, Defining Abbrevs
	add-name-to-file, Miscellaneous File Operations
	add-untranslated-filesystem, Text Files and Binary Files
	Adding to the kill ring in Dired., Other Dired Features
	addpm, MS-Windows installation program, The MS-Windows System Registry
	adjust buffer face height, Text Scale
	aggressive scrolling, Automatic Scrolling
	alarm clock, Appointments
	alignment for comments, Comment Commands
	Alt key (MS-Windows), Keyboard Usage on MS-Windows
	Alt key invokes menu (Windows), Keyboard Usage on MS-Windows
	Alt-TAB vs M-TAB (MS-Windows), Keyboard Usage on MS-Windows
	ALTERNATE_EDITOR environment variable, emacsclient Options
	AltGr (MS-Windows), Keyboard Usage on MS-Windows
	AltGr key (MS-Windows), Keyboard Usage on MS-Windows
	ange-ftp, Remote Files
	ange-ftp-default-user, Remote Files
	ange-ftp-gateway-host, Remote Files
	ange-ftp-generate-anonymous-password, Remote Files
	ange-ftp-make-backup-files, Remote Files
	ange-ftp-smart-gateway, Remote Files
	animate, Other Amusements
	animate-birthday-present, Other Amusements
	animated images, Convenience Features for Finding Files
	anonymous FTP, Remote Files
	append-next-kill, Appending Kills
	append-to-buffer, Accumulating Text
	append-to-file, Accumulating Text
	append-to-register, Saving Text in Registers
	appending kills in the ring, Appending Kills
	apply-macro-to-region-lines, Basic Use
	appointment notification, Appointments
	appt-activate, Appointments
	appt-add, Appointments
	appt-audible, Appointments
	appt-delete, Appointments
	appt-delete-window-function, Appointments
	appt-disp-window-function, Appointments
	appt-display-diary, Appointments
	appt-display-duration, Appointments
	appt-display-format, Appointments
	appt-display-mode-line, Appointments
	appt-message-warning-time, Appointments
	appt-warning-time-regexp, Appointments
	apropos, Apropos
	apropos search results, order by score, Apropos
	apropos-command, Apropos
	apropos-do-all, Apropos
	apropos-documentation, Apropos
	apropos-documentation-sort-by-scores, Apropos
	apropos-sort-by-scores, Apropos
	apropos-value, Apropos
	apropos-variable, Apropos
	arc, File Archives
	Arch, Supported Version Control Systems
	Archive mode, File Archives
	arguments (command line), Command Line Arguments for Emacs Invocation
	arguments to commands, Numeric Arguments
	arrow keys, Changing the Location of Point
	ASCII, Kinds of User Input
	ASCII art, Commands for Human Languages
	ask-user-about-lock, Protection against Simultaneous Editing
	Asm mode, Asm Mode
	assembler mode, Asm Mode
	astronomical day numbers, Supported Calendar Systems
	async-shell-command, Single Shell Commands
	attached frame (of speedbar), Speedbar Frames
	attribute (Rmail), Labels
	attributes of mode line, changing, Optional Mode Line Features
	Auto Compression mode, Accessing Compressed Files
	Auto Fill mode, Auto Fill Mode
	Auto Save mode, Auto-Saving: Protection Against Disasters
	auto-coding-alist, Recognizing Coding Systems
	auto-coding-functions, Recognizing Coding Systems
	auto-coding-regexp-alist, Recognizing Coding Systems
	auto-compression-mode, Accessing Compressed Files
	auto-fill-mode, Auto Fill Mode
	auto-hscroll-mode, Horizontal Scrolling
	auto-mode-alist, Choosing File Modes
	auto-mode-case-fold, Choosing File Modes
	Auto-Revert mode, Reverting a Buffer
	auto-revert-check-vc-info, Version Control and the Mode Line
	auto-revert-interval, Reverting a Buffer
	auto-revert-mode, Reverting a Buffer
	auto-revert-tail-mode, Reverting a Buffer
	auto-save for remote files, Auto-Save Files
	auto-save-default, Controlling Auto-Saving
	auto-save-file-name-transforms, Auto-Save Files
	auto-save-interval, Controlling Auto-Saving
	auto-save-list-file-prefix, Recovering Data from Auto-Saves
	auto-save-mode, Controlling Auto-Saving
	auto-save-timeout, Controlling Auto-Saving
	auto-save-visited-file-name, Auto-Save Files
	autoload, Libraries of Lisp Code for Emacs
	autoload Lisp libraries, Init File Examples
	automatic version backups, Options specific for CVS
	avoiding mouse in the way of your typing, Mouse Avoidance
	AWK mode, C and Related Modes

B
	B (Dired), Operating on Files
	b (Rmail summary), Editing in Summaries
	b (Rmail), Basic Concepts of Rmail
	back end (version control), Supported Version Control Systems
	back reference, in regexp, Backslash in Regular Expressions
	back reference, in regexp replacement, Regexp Replacement
	back-to-indentation, Indentation Commands
	background color, Text Faces
	background color, command-line argument, Window Color Options
	background mode, on xterm, General Variables
	background syntax highlighting, Font Lock mode
	BACKSPACE vs DEL, If DEL Fails to Delete
	backtrace for bug reports, Checklist for Bug Reports
	backup file, Backup Files
	backup file names on MS-DOS, File Names on MS-DOS
	backup, and user-id, Copying vs. Renaming
	backup-by-copying, Copying vs. Renaming
	backup-by-copying-when-linked, Copying vs. Renaming
	backup-by-copying-when-mismatch, Copying vs. Renaming
	backup-by-copying-when-privileged-mismatch, Copying vs. Renaming
	backup-directory-alist, Single or Numbered Backups
	backup-enable-predicate, Backup Files
	backups for remote files, Remote Files
	backward-button, Help Mode Commands
	backward-char, Changing the Location of Point
	backward-delete-char-untabify, Major Modes for Programming Languages
	backward-kill-sentence, Sentences
	backward-kill-word, Words
	backward-list, Moving in the Parenthesis Structure
	backward-page, Pages
	backward-paragraph, Paragraphs
	backward-sentence, Sentences
	backward-sexp, Expressions with Balanced Parentheses
	backward-text-line, Nroff Mode
	backward-up-list, Moving in the Parenthesis Structure
	backward-word, Changing the Location of Point, Words
	Bahá'í calendar, Supported Calendar Systems
	balance-windows, Deleting and Rearranging Windows
	balanced expression, Expressions with Balanced Parentheses
	balloon help, Help on Active Text and Tooltips
	base buffer, Indirect Buffers
	base direction of paragraphs, Bidirectional Editing
	batch mode, Initial Options
	battery-mode-line-format, Optional Mode Line Features
	Bazaar, Supported Version Control Systems
	bdf-directory-list, Variables for PostScript Hardcopy
	beginning-of-buffer, Changing the Location of Point
	beginning-of-defun, Moving by Defuns
	beginning-of-visual-line, Visual Line Mode
	bibtex-mode, TeX Mode
	bidi-display-reordering, Bidirectional Editing
	bidi-paragraph-direction, Bidirectional Editing
	bidirectional editing, Bidirectional Editing
	binary files, on MS-DOS/MS-Windows, Text Files and Binary Files
	binary-overwrite-mode, Minor Modes
	binding, Keys and Commands
	binding keyboard macros, Naming and Saving Keyboard Macros
	binding keys, Changing Key Bindings Interactively
	blackbox, Other Amusements
	blank lines, Blank Lines
	blank lines in programs, Multiple Lines of Comments
	blink-cursor-alist, Displaying the Cursor
	blink-cursor-mode, Displaying the Cursor
	blink-matching-delay, Matching Parentheses
	blink-matching-paren, Matching Parentheses
	blink-matching-paren-distance, Matching Parentheses
	blinking cursor, Displaying the Cursor
	blinking cursor disable, command-line argument, Other Display Options
	body lines (Outline mode), Format of Outlines
	bookmark-delete, Bookmarks
	bookmark-insert, Bookmarks
	bookmark-insert-location, Bookmarks
	bookmark-jump, Bookmarks
	bookmark-load, Bookmarks
	bookmark-save, Bookmarks
	bookmark-save-flag, Bookmarks
	bookmark-search-size, Bookmarks
	bookmark-set, Bookmarks
	bookmark-write, Bookmarks
	bookmarks, Bookmarks
	border color, command-line argument, Window Color Options
	borders (X Window System), Internal and External Borders
	boredom, Other Amusements
	brace in column zero and fontification, Font Lock mode
	braces, moving across, Moving in the Parenthesis Structure
	branch (version control), Version Control Branches
	Brief emulation, Emulation
	browse-url, Help Mode Commands, Following URLs
	Browse-URL, Following URLs
	browse-url-at-mouse, Following URLs
	browse-url-at-point, Following URLs
	browse-url-browser-function, Following URLs
	browse-url-mailto-function, Following URLs
	BS (MS-DOS), Keyboard Usage on MS-DOS
	bs-show, Customizing Buffer Menus
	bubbles, Other Amusements
	buffer definitions index, Imenu
	buffer list, customizable, Customizing Buffer Menus
	buffer menu, Operating on Several Buffers, Customizing Buffer Menus
	buffer size display, Optional Mode Line Features
	buffer size, maximum, Using Multiple Buffers
	buffer-file-coding-system, Choosing Coding Systems for Output
	buffer-local hooks, Hooks
	buffer-menu, Operating on Several Buffers
	buffer-menu-other-window, Operating on Several Buffers
	buffer-read-only, Miscellaneous Buffer Operations
	buffer-stale-function, Adding Support for Auto-Reverting additional Buffers.
	buffers, Using Multiple Buffers
	bug tracker, Reading Existing Bug Reports and Known Problems
	bugs, Reporting Bugs
	building programs, Compiling and Testing Programs
	built-in package, The Package Menu Buffer
	button down events, Rebinding Mouse Buttons
	buttons, Following References with the Mouse
	buttons (customization buffer), Customization Groups
	buttons at buffer position, Editing Format Information
	bypassing init and default.el file, Initial Options
	byte code, Libraries of Lisp Code for Emacs
	byte-compiling several files (in Dired), Operating on Files
	bzr, Supported Version Control Systems

C
	C (Dired), Operating on Files
	c (Rmail), Sending Replies
	C editing, Editing Programs
	C mode, C and Related Modes
	C++ class browser, tags, Tags Tables
	C++ mode, C and Related Modes
	C-, Kinds of User Input
	C-/, Undo
	C-@, Setting the Mark
	C-a, Changing the Location of Point
	C-a (Calendar mode), Beginning or End of Week, Month or Year
	C-b, Changing the Location of Point
	C-b (Calendar mode), Motion by Standard Lengths of Time
	c-backslash-region, Other Commands for C Mode
	c-backward-conditional, C Mode Motion Commands
	c-beginning-of-defun, C Mode Motion Commands
	c-beginning-of-statement, C Mode Motion Commands
	C-BREAK (MS-DOS), Keyboard Usage on MS-DOS
	C-c ' (Picture mode), Controlling Motion after Insert
	C-c , j, Semantic
	C-c , J, Semantic
	C-c , l, Semantic
	C-c , SPC, Semantic
	C-c . (C mode), Customizing C Indentation
	C-c . (Picture mode), Controlling Motion after Insert
	C-c . (Shell mode), Shell History Ring
	C-c / (Picture mode), Controlling Motion after Insert
	C-c / (SGML mode), SGML and HTML Modes
	C-c 8 (SGML mode), SGML and HTML Modes
	C-c ; (Fortran mode), Fortran Comments
	C-c < (GUD), Commands of GUD
	C-c < (Picture mode), Controlling Motion after Insert
	C-c > (GUD), Commands of GUD
	C-c > (Picture mode), Controlling Motion after Insert
	C-c ? (SGML mode), SGML and HTML Modes
	C-c @ (Outline minor mode), Outline Mode
	C-c @ C-h, Hideshow minor mode
	C-c @ C-l, Hideshow minor mode
	C-c @ C-M-h, Hideshow minor mode
	C-c @ C-M-s, Hideshow minor mode
	C-c @ C-r, Hideshow minor mode
	C-c @ C-s, Hideshow minor mode
	C-c C-a (C mode), Electric C Characters
	C-c C-a (F90 mode), Motion Commands
	C-c C-a (Log Edit mode), Features of the Log Entry Buffer
	C-c C-a (Message mode), Mail Miscellany
	C-c C-a (Outline mode), Outline Visibility Commands
	C-c C-a (SGML mode), SGML and HTML Modes
	C-c C-a (Shell mode), Shell Mode
	C-c C-b (Help mode), Help Mode Commands
	C-c C-b (Message mode), Mail Header Editing
	C-c C-b (Outline mode), Outline Motion Commands
	C-c C-b (Picture mode), Controlling Motion after Insert
	C-c C-b (SGML mode), SGML and HTML Modes
	C-c C-b (Shell mode), Shell Mode
	C-c C-b (TeX mode), TeX Printing Commands
	C-c C-c (C mode), Comment Commands
	C-c C-c (customization buffer), Changing a Variable
	C-c C-c (Edit Abbrevs), Examining and Editing Abbrevs
	C-c C-c (Edit Tab Stops), Tab Stops
	C-c C-c (Log Edit mode), Features of the Log Entry Buffer
	C-c C-c (Message mode), Mail Sending
	C-c C-c (Outline mode), Outline Visibility Commands
	C-c C-c (Shell mode), Shell Mode
	C-c C-c (TeX mode), TeX Printing Commands
	C-c C-d (C Mode), Hungry Delete Feature in C
	C-c C-d (Fortran mode), Fortran Indentation and Filling Commands
	C-c C-d (GUD), Commands of GUD
	C-c C-d (Log Edit mode), Features of the Log Entry Buffer
	C-c C-d (Org Mode), Org as an organizer
	C-c C-d (Outline mode), Outline Visibility Commands
	C-c C-d (Picture mode), Basic Editing in Picture Mode
	C-c C-d (SGML mode), SGML and HTML Modes
	C-c C-DEL (C Mode), Hungry Delete Feature in C
	C-c C-DELETE (C Mode), Hungry Delete Feature in C
	C-c C-e (C mode), Other Commands for C Mode
	C-c C-e (F90 mode), Motion Commands
	C-c C-e (LaTeX mode), LaTeX Editing Commands
	C-c C-e (Org mode), Org as an authoring system
	C-c C-e (Outline mode), Outline Visibility Commands
	C-c C-e (Shell mode), Shell Mode
	C-c C-f (GUD), Commands of GUD
	C-c C-f (Log Edit mode), Features of the Log Entry Buffer
	C-c C-f (Outline mode), Outline Motion Commands
	C-c C-f (Picture mode), Controlling Motion after Insert
	C-c C-f (SGML mode), SGML and HTML Modes
	C-c C-f (Shell mode), Shell Mode
	C-c C-f (TeX mode), TeX Printing Commands
	C-c C-f C-b (Message mode), Mail Header Editing
	C-c C-f C-c (Message mode), Mail Header Editing
	C-c C-f C-f (Message mode), Mail Header Editing
	C-c C-f C-r (Message mode), Mail Header Editing
	C-c C-f C-s (Message mode), Mail Header Editing
	C-c C-f C-t (Message mode), Mail Header Editing
	C-c C-f C-w (Message mode), Mail Header Editing
	C-c C-i (GUD), Commands of GUD
	C-c C-i (Outline mode), Outline Visibility Commands
	C-c C-j (Term mode), Term Mode
	C-c C-k (Outline mode), Outline Visibility Commands
	C-c C-k (Picture mode), Picture Mode Rectangle Commands
	C-c C-k (Term mode), Term Mode
	C-c C-k (TeX mode), TeX Printing Commands
	C-c C-l (C mode), Electric C Characters
	C-c C-l (Calendar mode), Miscellaneous Calendar Commands
	C-c C-l (GUD), Commands of GUD
	C-c C-l (Outline mode), Outline Visibility Commands
	C-c C-l (Shell mode), Shell History Ring
	C-c C-l (TeX mode), TeX Printing Commands
	C-c C-n (C mode), C Mode Motion Commands
	C-c C-n (Fortran mode), Motion Commands
	C-c C-n (GUD), Commands of GUD
	C-c C-n (Outline mode), Outline Motion Commands
	C-c C-n (Rmail), Moving Among Messages
	C-c C-n (SGML mode), SGML and HTML Modes
	C-c C-n (Shell mode), Shell History Copying
	C-c C-o (LaTeX mode), LaTeX Editing Commands
	C-c C-o (Outline mode), Outline Visibility Commands
	C-c C-o (Shell mode), Shell Mode
	C-c C-p (C mode), C Mode Motion Commands
	C-c C-p (Fortran mode), Motion Commands
	C-c C-p (GUD), Commands of GUD
	C-c C-p (Outline mode), Outline Motion Commands
	C-c C-p (Rmail), Moving Among Messages
	C-c C-p (Shell mode), Shell History Copying
	C-c C-p (TeX mode), TeX Printing Commands
	C-c C-q (C mode), Commands for C Indentation
	C-c C-q (Message mode), Citing Mail
	C-c C-q (Outline mode), Outline Visibility Commands
	C-c C-q (Term mode), Term Mode
	C-c C-r (Fortran mode), Checking Columns in Fortran
	C-c C-r (GUD), Commands of GUD
	C-c C-r (Shell mode), Shell Mode
	C-c C-r (TeX mode), TeX Printing Commands
	C-c C-s (C mode), Other Commands for C Mode
	C-c C-s (GUD), Commands of GUD
	C-c C-s (Message mode), Mail Sending
	C-c C-s (Org Mode), Org as an organizer
	C-c C-s (Outline mode), Outline Visibility Commands
	C-c C-s (Shell mode), Shell Mode
	C-c C-t (GUD), Commands of GUD
	C-c C-t (Org Mode), Org as an organizer
	C-c C-t (Outline mode), Outline Visibility Commands
	C-c C-t (SGML mode), SGML and HTML Modes
	C-c C-u (C mode), C Mode Motion Commands
	C-c C-u (GUD), Commands of GUD
	C-c C-u (Outline mode), Outline Motion Commands
	C-c C-u (Shell mode), Shell Mode
	C-c C-v (SGML mode), SGML and HTML Modes
	C-c C-v (TeX mode), TeX Printing Commands
	C-c C-w (Fortran mode), Checking Columns in Fortran
	C-c C-w (Message mode), Mail Signature
	C-c C-w (Picture mode), Picture Mode Rectangle Commands
	C-c C-w (Shell mode), Shell Mode
	C-c C-x, Folding Editing
	C-c C-x (Picture mode), Picture Mode Rectangle Commands
	C-c C-x (Shell mode), Shell History Ring
	C-c C-y (Message mode), Citing Mail
	C-c C-y (Picture mode), Picture Mode Rectangle Commands
	C-c C-z, Folding Editing
	C-c C-z (Shell mode), Shell Mode
	C-c C-\ (C mode), Other Commands for C Mode
	C-c C-\ (Shell mode), Shell Mode
	C-c DEL (C Mode), Hungry Delete Feature in C
	C-c DELETE (C Mode), Hungry Delete Feature in C
	C-c RET (Goto Address mode), Activating URLs
	C-c RET (Shell mode), Shell History Copying
	C-c TAB (Picture mode), Picture Mode Tabs
	C-c TAB (SGML mode), SGML and HTML Modes
	C-c TAB (TeX mode), TeX Printing Commands
	C-c [(Enriched mode), Indentation in Enriched Text
	C-c [(Org Mode), Org as an organizer
	C-c \ (Picture mode), Controlling Motion after Insert
	C-c] (Enriched mode), Indentation in Enriched Text
	C-c ^ (Picture mode), Controlling Motion after Insert
	C-c ` (Picture mode), Controlling Motion after Insert
	C-c { (TeX mode), TeX Editing Commands
	C-c } (TeX mode), TeX Editing Commands
	c-context-line-break, Other Commands for C Mode
	C-d (Rmail), Deleting Messages
	C-d (Shell mode), Shell Mode
	c-default-style, Customizing C Indentation
	C-Down-Mouse-1, Customizing Buffer Menus
	C-e, Changing the Location of Point
	C-e (Calendar mode), Beginning or End of Week, Month or Year
	c-electric-backspace, Major Modes for Programming Languages
	c-end-of-defun, C Mode Motion Commands
	c-end-of-statement, C Mode Motion Commands
	C-f, Changing the Location of Point
	C-f (Calendar mode), Motion by Standard Lengths of Time
	c-fill-paragraph, Other Commands for C Mode
	c-forward-conditional, C Mode Motion Commands
	C-g, Quitting and Aborting
	C-g (Incremental search), Errors in Incremental Search
	C-g (MS-DOS), Keyboard Usage on MS-DOS
	c-guess, Customizing C Indentation
	c-guess-install, Customizing C Indentation
	C-h, Help
	C-h ., Help on Active Text and Tooltips
	C-h a, Apropos
	C-h b, Other Help Commands
	C-h c, Documentation for a Key
	C-h C, Coding Systems
	C-h C-c, Help Files
	C-h C-d, Help Files
	C-h C-e, Help Files
	C-h C-f, Help Files
	C-h C-h, Help
	C-h C-m, Help Files
	C-h C-n, Help Files
	C-h C-o, Help Files
	C-h C-p, Help Files
	C-h C-t, Help Files
	C-h C-w, Help Files
	C-h C-\, Selecting an Input Method
	C-h d, Apropos
	C-h e, Other Help Commands
	C-h f, Help by Command or Variable Name
	C-h F, Help by Command or Variable Name
	C-h g, Help Files
	C-h h, Introduction to International Character Sets
	C-h i, Other Help Commands
	C-h I, Selecting an Input Method
	C-h k, Documentation for a Key
	C-h K, Documentation for a Key
	C-h l, Other Help Commands
	C-h L, Language Environments
	C-h m, Other Help Commands, Major Modes
	C-h p, Keyword Search for Packages
	C-h P, Keyword Search for Packages
	C-h S, Other Help Commands, Info Documentation Lookup
	C-h t, Basic Editing Commands
	C-h v, Help by Command or Variable Name
	C-h w, Documentation for a Key
	c-hungry-delete-backwards, Hungry Delete Feature in C
	c-hungry-delete-forward, Hungry Delete Feature in C
	c-hungry-delete-key, Hungry Delete Feature in C
	c-indent-command, Basic Program Indentation Commands, Commands for C Indentation
	c-indent-defun, Commands for C Indentation
	c-indent-exp, Commands for C Indentation
	C-j, Indentation Commands
	C-j (and major modes), Major Modes
	C-j (indenting source code), Basic Program Indentation Commands
	C-j (Lisp Interaction mode), Lisp Interaction Buffers
	C-j (MS-DOS), Keyboard Usage on MS-DOS
	C-j (TeX mode), TeX Editing Commands
	C-k, Killing by Lines
	C-k (Gnus Group mode), Using the Gnus Group Buffer
	C-l, Recentering
	C-LEFT, Changing the Location of Point
	C-M-%, Query Replace
	C-M-., Finding a Tag
	C-M-/, Dynamic Abbrev Expansion
	C-M-@, Commands to Mark Textual Objects, Expressions with Balanced Parentheses
	C-M-a, Moving by Defuns
	C-M-b, Expressions with Balanced Parentheses
	C-M-c, Recursive Editing Levels
	C-M-d, Moving in the Parenthesis Structure
	C-M-d (Dired), Moving Over Subdirectories
	C-M-e, Moving by Defuns
	C-M-f, Expressions with Balanced Parentheses
	C-M-f (Rmail), Making Summaries
	C-M-h, Moving by Defuns
	C-M-h (C mode), Moving by Defuns
	C-M-i, Completion for Symbol Names
	C-M-i (customization buffer), Changing a Variable
	C-M-j, Multiple Lines of Comments
	C-M-j (Fortran mode), Fortran Indentation and Filling Commands
	C-M-k, Expressions with Balanced Parentheses
	C-M-l, Recentering
	C-M-l (Rmail), Making Summaries
	C-M-l (Shell mode), Shell Mode
	C-M-n, Moving in the Parenthesis Structure
	C-M-n (Dired), Moving Over Subdirectories
	C-M-n (Fortran mode), Motion Commands
	C-M-n (Rmail), Labels
	C-M-o, Indentation Commands
	C-M-p, Moving in the Parenthesis Structure
	C-M-p (Dired), Moving Over Subdirectories
	C-M-p (Fortran mode), Motion Commands
	C-M-p (Rmail), Labels
	C-M-q, Indenting Several Lines
	C-M-q (C mode), Commands for C Indentation
	C-M-q (Fortran mode), Fortran Indentation and Filling Commands
	C-M-r, Regular Expression Search
	C-M-r (Rmail), Making Summaries
	C-M-s, Regular Expression Search
	C-M-s (Rmail), Making Summaries
	C-M-SPC, Expressions with Balanced Parentheses
	C-M-t, Expressions with Balanced Parentheses
	C-M-t (Rmail), Making Summaries
	C-M-u, Moving in the Parenthesis Structure
	C-M-u (Dired), Moving Over Subdirectories
	C-M-v, Using Other Windows
	C-M-w, Appending Kills
	C-M-w (Incremental search), Isearch Yanking
	C-M-x (Emacs Lisp mode), Evaluating Emacs Lisp Expressions
	C-M-x (Lisp mode), Running an External Lisp
	C-M-x (Scheme mode), Running an External Lisp
	C-M-y (Incremental search), Isearch Yanking
	C-M-\, Indentation Commands
	c-macro-expand, Other Commands for C Mode
	c-mark-function, Moving by Defuns
	c-mode-hook, Major Modes for Programming Languages
	C-Mouse-1, Mouse Clicks for Menus
	C-Mouse-2, Mouse Clicks for Menus
	C-Mouse-2 (mode line), Splitting Windows
	C-mouse-2 (mode line), Mode Line Mouse Commands
	C-Mouse-2 (scroll bar), Splitting Windows
	C-Mouse-3, Mouse Clicks for Menus
	C-Mouse-3 (when menu bar is disabled), Menu Bars
	C-n, Changing the Location of Point
	C-n (Calendar mode), Motion by Standard Lengths of Time
	C-n (Dired), Navigation in the Dired Buffer
	C-o, Blank Lines
	C-o (Dired), Visiting Files in Dired
	C-o (Occur mode), Other Search-and-Loop Commands
	C-o (Rmail), Copying Messages Out to Files
	C-p, Changing the Location of Point
	C-p (Calendar mode), Motion by Standard Lengths of Time
	C-p (Dired), Navigation in the Dired Buffer
	C-q, Inserting Text
	C-r, Basics of Incremental Search
	C-RIGHT, Changing the Location of Point
	C-s, Basics of Incremental Search
	C-S-backspace, Killing by Lines
	C-S-Mouse-3 (FFAP), Finding Files and URLs at Point
	c-set-style, Customizing C Indentation
	c-show-syntactic-information, Other Commands for C Mode
	C-SPC, Setting the Mark
	C-SPC C-SPC, The Mark Ring, Disabling Transient Mark Mode
	C-t, Transposing Text
	C-t d (Image-Dired), Viewing Image Thumbnails in Dired
	C-TAB, File Name Cache
	c-tab-always-indent, Commands for C Indentation
	c-toggle-auto-newline, Electric C Characters
	c-toggle-electric-state, Electric C Characters
	c-toggle-hungry-state, Hungry Delete Feature in C
	C-u, Numeric Arguments
	C-u C-/, Undo
	C-u C-c C-w (Fortran mode), Checking Columns in Fortran
	C-u C-SPC, The Mark Ring
	C-u C-x C-x, Disabling Transient Mark Mode
	C-u C-x v =, Examining And Comparing Old Revisions
	C-u M-;, Comment Commands
	C-u TAB, Indenting Several Lines
	c-up-conditional, C Mode Motion Commands
	C-v, Scrolling
	C-v (Calendar mode), Scrolling in the Calendar
	C-w, Other Kill Commands
	C-w (Incremental search), Isearch Yanking
	C-x #, Invoking emacsclient
	C-x $, Selective Display
	C-x (, Basic Use
	C-x), Basic Use
	C-x +, Deleting and Rearranging Windows
	C-x -, Deleting and Rearranging Windows
	C-x ., The Fill Prefix
	C-x 0, Deleting and Rearranging Windows
	C-x 1, Deleting and Rearranging Windows
	C-x 2, Splitting Windows
	C-x 3, Splitting Windows
	C-x 4, Displaying in Another Window
	C-x 4 ., Finding a Tag
	C-x 4 0, Deleting and Rearranging Windows
	C-x 4 a, Change Log Commands
	C-x 4 b, Creating and Selecting Buffers
	C-x 4 b (Iswitchb mode), Switching Between Buffers using Substrings
	C-x 4 c, Indirect Buffers
	C-x 4 C-o, Displaying in Another Window
	C-x 4 C-o (Iswitchb mode), Switching Between Buffers using Substrings
	C-x 4 d, Entering Dired
	C-x 4 f, Visiting Files
	C-x 4 f (FFAP), Finding Files and URLs at Point
	C-x 4 m, Sending Mail
	C-x 5, Creating Frames
	C-x 5 ., Finding a Tag
	C-x 5 0, Frame Commands
	C-x 5 1, Frame Commands
	C-x 5 2, Creating Frames
	C-x 5 b, Creating and Selecting Buffers
	C-x 5 b (Iswitchb mode), Switching Between Buffers using Substrings
	C-x 5 d, Entering Dired
	C-x 5 f, Visiting Files
	C-x 5 f (FFAP), Finding Files and URLs at Point
	C-x 5 m, Sending Mail
	C-x 5 o, Frame Commands
	C-x 5 r, Creating Frames
	C-x 6 1, Two-Column Editing
	C-x 6 2, Two-Column Editing
	C-x 6 b, Two-Column Editing
	C-x 6 d, Two-Column Editing
	C-x 6 RET, Two-Column Editing
	C-x 6 s, Two-Column Editing
	C-x 8, Unibyte Editing Mode
	C-x 8 RET, Inserting Text
	C-x ;, Options Controlling Comments
	C-x <, Horizontal Scrolling
	C-x =, Cursor Position Information, Introduction to International Character Sets
	C-x >, Horizontal Scrolling
	C-x a g, Defining Abbrevs
	C-x a i g, Defining Abbrevs
	C-x a i l, Defining Abbrevs
	C-x a l, Defining Abbrevs
	C-x b, Creating and Selecting Buffers
	C-x b (Iswitchb mode), Switching Between Buffers using Substrings
	C-x C-+, Text Scale
	C-x C-0, Text Scale
	C-x C-=, Text Scale
	C-x C-a (GUD), Commands of GUD
	C-x C-a C-j (GUD), Commands of GUD
	C-x C-a C-w (GUD), Watch Expressions
	C-x C-b, Listing Existing Buffers
	C-x C-c, Exiting Emacs
	C-x C-c (customization buffer), Changing a Variable
	C-x C-d, File Directories
	C-x C-e, Evaluating Emacs Lisp Expressions
	C-x C-f, Visiting Files
	C-x C-f (FFAP), Finding Files and URLs at Point
	C-x C-k b, Naming and Saving Keyboard Macros
	C-x C-k C-a, The Keyboard Macro Counter
	C-x C-k C-c, The Keyboard Macro Counter
	C-x C-k C-e, Editing a Keyboard Macro
	C-x C-k C-f, The Keyboard Macro Counter
	C-x C-k C-i, The Keyboard Macro Counter
	C-x C-k C-k, The Keyboard Macro Ring
	C-x C-k C-n, The Keyboard Macro Ring
	C-x C-k C-p, The Keyboard Macro Ring
	C-x C-k e, Editing a Keyboard Macro
	C-x C-k l, Editing a Keyboard Macro
	C-x C-k n, Naming and Saving Keyboard Macros
	C-x C-k r, Basic Use
	C-x C-k RET, Editing a Keyboard Macro
	C-x C-k SPC, Stepwise Editing a Keyboard Macro
	C-x C-l, Case Conversion Commands
	C-x C-n, Changing the Location of Point
	C-x C-o, Blank Lines
	C-x C-p, Pages
	C-x C-q, Miscellaneous Buffer Operations
	C-x C-r, Visiting Files
	C-x C-r (FFAP), Finding Files and URLs at Point
	C-x C-s, Commands for Saving Files
	C-x C-s (Custom Themes buffer), Custom Themes
	C-x C-SPC, The Global Mark Ring
	C-x C-t, Transposing Text
	C-x C-u, Case Conversion Commands
	C-x C-v, Visiting Files
	C-x C-v (FFAP), Finding Files and URLs at Point
	C-x C-w, Commands for Saving Files
	C-x C-x, Setting the Mark
	C-x C-z, Running an External Lisp
	C-x C–, Text Scale
	C-x d, Entering Dired
	C-x d (FFAP), Finding Files and URLs at Point
	C-x DEL, Sentences
	C-x e, Basic Use
	C-x ESC ESC, Repeating Minibuffer Commands
	C-x f, Explicit Fill Commands
	C-x h, Commands to Mark Textual Objects
	C-x i, Miscellaneous File Operations
	C-x k, Killing Buffers
	C-x l, Pages
	C-x LEFT, Creating and Selecting Buffers
	C-x m, Sending Mail
	C-x n d, Narrowing
	C-x n n, Narrowing
	C-x n p, Narrowing
	C-x n w, Narrowing
	C-x o, Using Other Windows
	C-x q, Executing Macros with Variations
	C-x r +, Keeping Numbers in Registers
	C-x r b, Bookmarks
	C-x r c, Rectangles
	C-x r d, Rectangles
	C-x r f, Saving Window Configurations in Registers
	C-x r i, Saving Text in Registers
	C-x r j, Saving Positions in Registers
	C-x r k, Rectangles
	C-x r l, Bookmarks
	C-x r m, Bookmarks
	C-x r N, Rectangles
	C-x r n, Keeping Numbers in Registers
	C-x r o, Rectangles
	C-x r r, Saving Rectangles in Registers
	C-x r s, Saving Text in Registers
	C-x r SPC, Saving Positions in Registers
	C-x r t, Rectangles
	C-x r w, Saving Window Configurations in Registers
	C-x r y, Rectangles
	C-x RET, Introduction to International Character Sets
	C-x RET c, Specifying a Coding System for File Text
	C-x RET C-\, Selecting an Input Method
	C-x RET f, Specifying a Coding System for File Text
	C-x RET F, Coding Systems for File Names
	C-x RET k, Coding Systems for Terminal I/O
	C-x RET p, Coding Systems for Interprocess Communication
	C-x RET r, Specifying a Coding System for File Text
	C-x RET t, Coding Systems for Terminal I/O
	C-x RET x, Coding Systems for Interprocess Communication
	C-x RET X, Coding Systems for Interprocess Communication
	C-x RIGHT, Creating and Selecting Buffers
	C-x s, Commands for Saving Files
	C-x SPC, Commands of GUD
	C-x TAB, Indentation Commands
	C-x TAB (Enriched mode), Indentation in Enriched Text
	C-x u, Undo
	C-x v +, Pulling Changes into a Branch
	C-x v =, Examining And Comparing Old Revisions
	C-x v a, Change Logs and VC
	C-x v D, Examining And Comparing Old Revisions
	C-x v d, VC Directory Mode
	C-x v g, Examining And Comparing Old Revisions
	C-x v h, Inserting Version Control Headers
	C-x v i, Registering a File for Version Control
	C-x v l, VC Change Log
	C-x v r, Revision Tags
	C-x v s, Revision Tags
	C-x v u, Undoing Version Control Actions
	C-x v v, Basic Editing under Version Control
	C-x v ~, Examining And Comparing Old Revisions
	C-x w b, Interactive Highlighting
	C-x w h, Interactive Highlighting
	C-x w i, Interactive Highlighting
	C-x w l, Interactive Highlighting
	C-x w r, Interactive Highlighting
	C-x z, Repeating a Command
	C-x [, Pages
	C-x [(Calendar mode), Motion by Standard Lengths of Time
	C-x [(DocView mode), DocView Navigation
	C-x], Pages
	C-x] (Calendar mode), Motion by Standard Lengths of Time
	C-x] (DocView mode), DocView Navigation
	C-x ^, Deleting and Rearranging Windows
	C-x `, Compilation Mode
	C-x }, Deleting and Rearranging Windows
	C-y, Yanking
	C-y (Incremental search), Isearch Yanking
	C-z, Exiting Emacs
	C-z (X windows), Frame Commands
	C-\, Selecting an Input Method
	C-], Quitting and Aborting
	C-_, Undo
	C-_ (Dired), Dired Marks vs. Flags
	cache of file names, File Name Cache
	cal-html-css-default, Writing Calendar Files
	calendar, The Calendar and the Diary
	calendar and HTML, Writing Calendar Files
	calendar and LaTeX, Writing Calendar Files
	calendar layout, Customizing the Calendar
	calendar week numbers, Customizing the Calendar
	calendar, first day of week, Beginning or End of Week, Month or Year
	calendar-astro-goto-day-number, Converting From Other Calendars
	calendar-astro-print-day-number, Converting To Other Calendars
	calendar-backward-day, Motion by Standard Lengths of Time
	calendar-backward-month, Motion by Standard Lengths of Time
	calendar-backward-week, Motion by Standard Lengths of Time
	calendar-bahai-all-holidays-flag, Customizing the Holidays
	calendar-bahai-goto-date, Converting From Other Calendars
	calendar-bahai-print-date, Converting To Other Calendars
	calendar-beginning-of-month, Beginning or End of Week, Month or Year
	calendar-beginning-of-week, Beginning or End of Week, Month or Year
	calendar-beginning-of-year, Beginning or End of Week, Month or Year
	calendar-chinese-goto-date, Converting From Other Calendars
	calendar-chinese-print-date, Converting To Other Calendars
	calendar-christian-all-holidays-flag, Customizing the Holidays
	calendar-coptic-goto-date, Converting From Other Calendars
	calendar-coptic-print-date, Converting To Other Calendars
	calendar-count-days-region, Counting Days
	calendar-cursor-holidays, Holidays
	calendar-date-display-form, Date Display Format
	calendar-date-style, Date Formats
	calendar-daylight-savings-ends, Daylight Saving Time
	calendar-daylight-savings-ends-time, Daylight Saving Time
	calendar-daylight-savings-starts, Daylight Saving Time
	calendar-daylight-time-offset, Daylight Saving Time
	calendar-daylight-time-zone-name, Times of Sunrise and Sunset
	calendar-end-of-month, Beginning or End of Week, Month or Year
	calendar-end-of-week, Beginning or End of Week, Month or Year
	calendar-end-of-year, Beginning or End of Week, Month or Year
	calendar-ethiopic-goto-date, Converting From Other Calendars
	calendar-ethiopic-print-date, Converting To Other Calendars
	calendar-forward-day, Motion by Standard Lengths of Time
	calendar-forward-month, Motion by Standard Lengths of Time
	calendar-forward-week, Motion by Standard Lengths of Time
	calendar-forward-year, Motion by Standard Lengths of Time
	calendar-french-goto-date, Converting From Other Calendars
	calendar-french-print-date, Converting To Other Calendars
	calendar-goto-date, Specified Dates
	calendar-goto-day-of-year, Specified Dates
	calendar-goto-today, Specified Dates
	calendar-hebrew-all-holidays-flag, Customizing the Holidays
	calendar-hebrew-goto-date, Converting From Other Calendars
	calendar-hebrew-list-yahrzeits, Converting From Other Calendars
	calendar-hebrew-print-date, Converting To Other Calendars
	calendar-holiday-marker, Customizing the Calendar
	calendar-holidays, Customizing the Holidays
	calendar-initial-window-hook, Customizing the Calendar
	calendar-intermonth-text, Customizing the Calendar
	calendar-islamic-all-holidays-flag, Customizing the Holidays
	calendar-islamic-goto-date, Converting From Other Calendars
	calendar-islamic-print-date, Converting To Other Calendars
	calendar-iso-goto-date, Converting From Other Calendars
	calendar-iso-goto-week, Specified Dates, Converting From Other Calendars
	calendar-iso-print-date, Converting To Other Calendars
	calendar-julian-goto-date, Converting From Other Calendars
	calendar-julian-print-date, Converting To Other Calendars
	calendar-latitude, Times of Sunrise and Sunset
	calendar-list-holidays, Holidays
	calendar-load-hook, Customizing the Calendar
	calendar-location-name, Times of Sunrise and Sunset
	calendar-longitude, Times of Sunrise and Sunset
	calendar-lunar-phases, Phases of the Moon
	calendar-mark-diary-entries-flag, Displaying the Diary
	calendar-mark-holidays, Holidays
	calendar-mark-holidays-flag, Holidays
	calendar-mark-today, Customizing the Calendar
	calendar-mayan-goto-long-count-date, Converting from the Mayan Calendar
	calendar-mayan-next-calendar-round-date, Converting from the Mayan Calendar
	calendar-mayan-next-haab-date, Converting from the Mayan Calendar
	calendar-mayan-next-tzolkin-date, Converting from the Mayan Calendar
	calendar-mayan-previous-haab-date, Converting from the Mayan Calendar
	calendar-mayan-previous-tzolkin-date, Converting from the Mayan Calendar
	calendar-mayan-print-date, Converting To Other Calendars
	calendar-move-hook, Customizing the Calendar
	calendar-other-month, Specified Dates
	calendar-persian-goto-date, Converting From Other Calendars
	calendar-persian-print-date, Converting To Other Calendars
	calendar-print-day-of-year, Miscellaneous Calendar Commands
	calendar-print-other-dates, Converting To Other Calendars
	calendar-redraw, Miscellaneous Calendar Commands
	calendar-remove-frame-by-deleting, Miscellaneous Calendar Commands
	calendar-scroll-left, Scrolling in the Calendar
	calendar-scroll-left-three-months, Scrolling in the Calendar
	calendar-scroll-right, Scrolling in the Calendar
	calendar-scroll-right-three-months, Scrolling in the Calendar
	calendar-set-date-style, Date Formats
	calendar-standard-time-zone-name, Times of Sunrise and Sunset
	calendar-star-date, Customizing the Calendar
	calendar-sunrise-sunset, Times of Sunrise and Sunset
	calendar-time-display-form, Time Display Format
	calendar-time-zone, Times of Sunrise and Sunset
	calendar-today-invisible-hook, Customizing the Calendar
	calendar-today-marker, Customizing the Calendar
	calendar-today-visible-hook, Customizing the Calendar
	calendar-unmark, Holidays
	calendar-view-diary-initially-flag, Displaying the Diary
	calendar-view-holidays-initially-flag, Holidays
	calendar-week-start-day, Beginning or End of Week, Month or Year
	call Lisp functions, command-line argument, Action Arguments
	camel case, Glasses minor mode
	candle lighting times, Sexp Entries and the Fancy Diary Display
	capitalize-word, Case Conversion Commands
	capitalizing words, Case Conversion Commands
	case conversion, Case Conversion Commands
	case in completion, Completion Options
	case-fold-search, Searching and Case
	case-replace, Replace Commands and Case
	case-sensitivity and completion, Completion Options
	case-sensitivity and tags search, Searching and Replacing with Tags Tables
	categories of characters, Backslash in Regular Expressions
	cd, File Names
	cells, for text-based tables, What is a Text-based Table?
	Celtic, International Character Set Support
	center-line, Explicit Fill Commands
	centering, Explicit Fill Commands
	centralized version control, Decentralized vs Centralized Repositories
	change buffers, Creating and Selecting Buffers
	change Emacs directory, Initial Options
	change log, Change Logs
	Change Log mode, Change Log Commands
	change-log-merge, Change Log Commands
	change-log-mode, Change Log Commands
	change-log-version-info-enabled, Change Log Commands
	change-log-version-number-regexp-list, Change Log Commands
	change-major-mode-with-file-name, Choosing File Modes
	changes, undoing, Undo
	changeset-based version control, Changeset-based vs File-based Version Control
	changing file group (in Dired), Operating on Files
	changing file owner (in Dired), Operating on Files
	changing file permissions (in Dired), Operating on Files
	changing file time (in Dired), Operating on Files
	character set (keyboard), Kinds of User Input
	character set of character at point, Introduction to International Character Sets
	character syntax, Init File Syntax
	characters (in text), How Text Is Displayed
	characters in a certain charset, Charsets
	characters which belong to a specific language, Backslash in Regular Expressions
	characters with no font glyphs, How Text Is Displayed
	characters, inserting by name or code-point, Inserting Text
	charsets, Charsets
	check-parens, Commands for Editing with Parentheses
	checking out files, Concepts of Version Control
	checking spelling, Checking and Correcting Spelling
	checking syntax, Finding Syntax Errors On The Fly
	Chinese, International Character Set Support
	Chinese calendar, Supported Calendar Systems
	choose-completion, Completion Commands
	choosing a major mode, Choosing File Modes
	choosing a minor mode, Choosing File Modes
	ciphers, Other Amusements
	citing mail, Citing Mail
	class browser, C++, Tags Tables
	clean-buffer-list, Killing Buffers
	clear-rectangle, Rectangles
	click events, Rebinding Mouse Buttons
	client frame, emacsclient Options
	client-side fonts, Fonts
	clipboard, Using the Clipboard
	clipboard manager, Using the Clipboard
	clipboard-kill-region, Using the Clipboard
	clipboard-kill-ring-save, Using the Clipboard
	clipboard-yank, Using the Clipboard
	clone-indirect-buffer, Indirect Buffers
	clone-indirect-buffer-hook, Indirect Buffers
	clone-indirect-buffer-other-window, Indirect Buffers
	codepage, MS-DOS, International Support on MS-DOS
	coding, Specifying a File's Coding System
	coding systems, Coding Systems
	collision, Protection against Simultaneous Editing
	colon-double-space, Explicit Fill Commands
	color emulation on black-and-white printers, Variables for PostScript Hardcopy
	color name, Colors for Faces
	color of window, from command line, Window Color Options
	color scheme, Custom Themes
	Column Number mode, Optional Mode Line Features
	column-number-mode, Optional Mode Line Features
	columns (and rectangles), Rectangles
	columns (indentation), Indentation
	columns, splitting, Two-Column Editing
	Comint mode, Shell Mode
	comint-bol-or-process-mark, Shell Mode
	comint-completion-addsuffix, Shell Mode Options
	comint-completion-autolist, Shell Mode Options
	comint-completion-fignore, Shell Mode
	comint-completion-recexact, Shell Mode Options
	comint-continue-subjob, Shell Mode
	comint-copy-old-input, Shell History Copying
	comint-delchar-or-maybe-eof, Shell Mode
	comint-delete-output, Shell Mode
	comint-dynamic-list-filename…, Shell Mode
	comint-dynamic-list-input-ring, Shell History Ring
	comint-get-next-from-history, Shell History Ring
	comint-highlight-input face, Interactive Subshell
	comint-highlight-prompt face, Interactive Subshell
	comint-history-isearch-backward-regexp, Shell History Ring
	comint-input-autoexpand, Shell History References
	comint-input-ignoredups, Shell Mode Options
	comint-input-previous-argument, Shell History Ring
	comint-interrupt-subjob, Shell Mode
	comint-kill-input, Shell Mode
	comint-magic-space, Shell History References
	comint-move-point-for-output, Shell Mode Options
	comint-next-input, Shell History Ring
	comint-next-prompt, Shell History Copying
	comint-previous-input, Shell History Ring
	comint-previous-prompt, Shell History Copying
	comint-prompt-read-only, Shell Mode Options
	comint-quit-subjob, Shell Mode
	comint-run, Shell Mode
	comint-scroll-show-maximum-output, Shell Mode Options
	comint-scroll-to-bottom-on-input, Shell Mode Options
	comint-send-input, Shell Mode
	comint-show-maximum-output, Shell Mode
	comint-show-output, Shell Mode
	comint-stop-subjob, Shell Mode
	comint-strip-ctrl-m, Shell Mode
	comint-truncate-buffer, Shell Mode
	comint-use-prompt-regexp, Shell Prompts
	comint-write-output, Shell Mode
	command, Keys and Commands
	command history, Repeating Minibuffer Commands
	command line arguments, Command Line Arguments for Emacs Invocation
	command-history, Repeating Minibuffer Commands
	command-line-args, Command Line Arguments for Emacs Invocation
	comment-column, Options Controlling Comments
	comment-dwim, Comment Commands
	comment-end, Options Controlling Comments
	comment-indent-function, Options Controlling Comments
	comment-indent-new-line, Multiple Lines of Comments
	comment-kill, Comment Commands
	comment-multi-line, Multiple Lines of Comments
	comment-padding, Options Controlling Comments
	comment-region, Comment Commands
	comment-set-column, Options Controlling Comments
	comment-start, Options Controlling Comments
	comment-start-skip, Options Controlling Comments
	comments, Manipulating Comments
	comments on customized settings, Changing a Variable
	Common Lisp, Running an External Lisp
	compare files (in Dired), File Comparison with Dired
	compare-ignore-case, Comparing Files
	compare-ignore-whitespace, Comparing Files
	compare-windows, Comparing Files
	comparing 3 files (diff3), Comparing Files
	comparing files, Comparing Files
	compilation buffer, keeping point at end, Running Compilations under Emacs
	compilation errors, Running Compilations under Emacs
	Compilation mode, Compilation Mode
	compilation under MS-DOS, Subprocesses on MS-DOS
	compilation-auto-jump-to-first-error, Compilation Mode
	compilation-context-lines, Compilation Mode
	compilation-environment, Running Compilations under Emacs
	compilation-error-regexp-alist, Compilation Mode
	compilation-next-error, Compilation Mode
	compilation-next-file, Compilation Mode
	compilation-previous-error, Compilation Mode
	compilation-previous-file, Compilation Mode
	compilation-scroll-output, Running Compilations under Emacs
	compilation-skip-threshold, Compilation Mode
	compile, Running Compilations under Emacs
	compile (MS-DOS), Subprocesses on MS-DOS
	compile-command, Running Compilations under Emacs
	compile-goto-error, Compilation Mode
	complete key, Keys
	completion, Completion
	completion (Lisp symbols), Completion for Symbol Names
	completion (symbol names), Completion for Symbol Names, Tags Table Inquiries
	completion alternative, Completion
	completion list, Completion Commands
	completion style, How Completion Alternatives Are Chosen
	completion-at-point, Completion for Symbol Names, Shell Mode
	completion-auto-help, Completion Options
	completion-category-overrides, How Completion Alternatives Are Chosen
	completion-cycle-threshold, Completion Options
	completion-ignored-extensions, Completion Options
	completion-styles, How Completion Alternatives Are Chosen
	compose character, Unibyte Editing Mode
	compose-mail, Sending Mail
	compose-mail-other-frame, Sending Mail
	compose-mail-other-window, Sending Mail
	compressing files (in Dired), Operating on Files
	compression, Accessing Compressed Files
	Conf mode, Major Modes for Programming Languages
	confirm-kill-emacs, Exiting Emacs
	confirm-nonexistent-file-or-buffer, Completion Exit
	confirming in the minibuffer, Completion Exit
	conflicts, Merging Branches
	connecting to remote host, Remote Host Shell
	continuation line, Continuation Lines
	contributing to Emacs, Contributing to Emacs Development
	Control, Kinds of User Input
	control character, Kinds of User Input
	control characters on display, How Text Is Displayed
	converting text to upper or lower case, Case Conversion Commands
	Coptic calendar, Supported Calendar Systems
	copy, “Cut and Paste” Operations on Graphical Displays
	copy-dir-locals-to-file-locals, Specifying File Variables
	copy-dir-locals-to-file-locals-prop-line, Specifying File Variables
	copy-directory, Miscellaneous File Operations
	copy-file, Miscellaneous File Operations
	copy-file-locals-to-dir-locals, Per-Directory Local Variables
	copy-rectangle-to-register, Saving Rectangles in Registers
	copy-to-buffer, Accumulating Text
	copy-to-register, Saving Text in Registers
	copying files, Miscellaneous File Operations
	copying files (in Dired), Operating on Files
	copying text, Yanking
	CORBA IDL mode, C and Related Modes
	correcting spelling, Checking and Correcting Spelling
	count-lines-page, Pages
	count-text-lines, Nroff Mode
	count-words, Cursor Position Information
	count-words-region, Cursor Position Information
	CPerl mode, Major Modes for Programming Languages
	cpp-highlight-buffer, Other Commands for C Mode
	crashes, Auto-Saving: Protection Against Disasters
	create a text-based table, Creating a Table
	create-fontset-from-fontset-spec, Defining fontsets
	creating files, Visiting Files
	creating frames, Creating Frames
	CRiSP mode, Emulation
	crisp-mode, Emulation
	crisp-override-meta-x, Emulation
	cryptanalysis, Other Amusements
	CSSC, Supported Version Control Systems
	ctl-arrow, How Text Is Displayed
	ctl-x-4-map, Prefix Keymaps
	ctl-x-map, Prefix Keymaps
	CUA key bindings, CUA Bindings
	cua-enable-cua-keys, CUA Bindings
	cua-mode, CUA Bindings
	current buffer, Using Multiple Buffers
	current function name in mode line, Which Function Mode
	current-input-method, Selecting an Input Method
	current-language-environment, Language Environments
	cursor, Point
	cursor color, command-line argument, Window Color Options
	cursor face, Text Faces, Displaying the Cursor
	cursor in non-selected windows, Displaying the Cursor
	cursor location, Cursor Position Information
	cursor location, on MS-DOS, Text Files and Binary Files
	cursor motion, Changing the Location of Point
	cursor shape on MS-DOS, Display on MS-DOS
	cursor, blinking, Displaying the Cursor
	cursor-in-non-selected-windows, Displaying the Cursor
	cursor-type, Displaying the Cursor
	custom themes, Custom Themes
	custom themes, creating, Creating Custom Themes
	custom-buffer-done-kill, Changing a Variable
	custom-enabled-themes, Custom Themes
	custom-file, Saving Customizations
	custom-safe-themes, Custom Themes
	Custom-save, Changing a Variable
	custom-search-field, Browsing and Searching for Settings
	Custom-set, Changing a Variable
	custom-theme-directory, Custom Themes, Creating Custom Themes
	custom-theme-load-path, Custom Themes
	customizable variable, Easy Customization Interface
	customization, Customization
	customization buffer, Easy Customization Interface
	customization groups, Customization Groups
	customization of menu face, Standard Faces
	customize, Easy Customization Interface
	customize-apropos, Customizing Specific Items
	customize-browse, Browsing and Searching for Settings
	customize-changed, Customizing Specific Items
	customize-create-theme, Creating Custom Themes
	customize-face, Customizing Specific Items
	customize-group, Customizing Specific Items
	customize-option, Customizing Specific Items
	customize-saved, Customizing Specific Items
	customize-themes, Custom Themes
	customize-unsaved, Customizing Specific Items
	customizing faces, Customizing Faces
	customizing Lisp indentation, Customizing Lisp Indentation
	customizing variables, Changing a Variable
	cut, “Cut and Paste” Operations on Graphical Displays
	cut and paste, Glossary
	cutting text, Deletion and Killing
	CVS, Supported Version Control Systems
	cvs, VC Directory Mode
	CVS directory mode, VC Directory Mode
	CWarn mode, Other Commands for C Mode
	cwarn-mode, Other Commands for C Mode
	Cyrillic, International Character Set Support
	Czech, International Character Set Support

D
	d (Calendar mode), Displaying the Diary
	d (Dired), Deleting Files with Dired
	D (Dired), Operating on Files
	D (GDB Breakpoints buffer), Breakpoints Buffer
	D (GDB speedbar), Watch Expressions
	d (GDB threads buffer), Threads Buffer
	d (Rmail), Deleting Messages
	dabbrev-abbrev-char-regexp, Customizing Dynamic Abbreviation
	dabbrev-abbrev-skip-leading-regexp, Customizing Dynamic Abbreviation
	dabbrev-case-fold-search, Customizing Dynamic Abbreviation
	dabbrev-case-replace, Customizing Dynamic Abbreviation
	dabbrev-check-all-buffers, Dynamic Abbrev Expansion
	dabbrev-completion, Dynamic Abbrev Expansion
	dabbrev-expand, Dynamic Abbrev Expansion
	dabbrev-ignored-buffer-regexps, Dynamic Abbrev Expansion
	dabbrev-limit, Dynamic Abbrev Expansion
	daemon, Emacs, Using Emacs as a Server
	day of year, Miscellaneous Calendar Commands
	daylight saving time, Daylight Saving Time
	DBX, Running Debuggers Under Emacs
	dbx, Starting GUD
	dbx-mode-hook, GUD Customization
	dead character, Unibyte Editing Mode
	debbugs package, Reading Existing Bug Reports and Known Problems
	debug-on-event, Checklist for Bug Reports
	debug-on-quit, Checklist for Bug Reports
	debuggers, Running Debuggers Under Emacs
	debugging Emacs, tricks and techniques, Checklist for Bug Reports
	debugging X problems, Table of X Resources for Emacs
	debug_print, Checklist for Bug Reports
	decentralized version control, Decentralized vs Centralized Repositories
	decipher, Other Amusements
	decoding mail messages (Rmail), Rmail and Coding Systems
	decoding non-ASCII keyboard input on X, Coding Systems for Interprocess Communication
	decrease buffer face height, Text Scale
	decrypting files (in Dired), Operating on Files
	default argument, The Minibuffer
	default directory, Minibuffers for File Names, File Names
	default face, Text Faces
	default file name, File Names
	default-directory, File Names
	default-frame-alist, Frame Parameters
	default-input-method, Selecting an Input Method
	default-justification, Justification in Enriched Text
	default-value, Local Variables
	default.el file, not loading, Initial Options
	default.el, the default init file, The Emacs Initialization File
	define-abbrevs, Saving Abbrevs
	define-global-abbrev, Defining Abbrevs
	define-key, Rebinding Keys in Your Init File
	define-mode-abbrev, Defining Abbrevs
	defining keyboard macros, Keyboard Macros
	defuns, Moving by Defuns
	DEL (and major modes), Major Modes
	DEL (Dired), Deleting Files with Dired
	DEL (DocView mode), DocView Navigation
	DEL (Gnus Group mode), Using the Gnus Group Buffer
	DEL (Gnus Summary mode), Using the Gnus Summary Buffer
	DEL (MS-DOS), Keyboard Usage on MS-DOS
	DEL (programming modes), Major Modes for Programming Languages
	DEL (Rmail), Scrolling Within a Message
	DEL (View mode), View Mode
	DEL vs BACKSPACE, If DEL Fails to Delete
	Delete Selection mode, Operating on the Region
	delete-active-region, Operating on the Region
	delete-auto-save-files, Auto-Save Files
	delete-backward-char, Deletion
	delete-blank-lines, Blank Lines
	delete-by-moving-to-trash, Miscellaneous File Operations, Deleting Files with Dired
	delete-char, Deletion
	delete-dir-local-variable, Per-Directory Local Variables
	delete-file, Miscellaneous File Operations
	delete-file-local-variable, Specifying File Variables
	delete-file-local-variable-prop-line, Specifying File Variables
	delete-frame, Frame Commands
	delete-horizontal-space, Deletion
	delete-indentation, Indentation Commands
	delete-old-versions, Automatic Deletion of Backups
	delete-other-frames, Frame Commands
	delete-other-windows, Deleting and Rearranging Windows
	delete-rectangle, Rectangles
	delete-selection-mode, Operating on the Region
	delete-trailing-whitespace, Useless Whitespace
	delete-whitespace-rectangle, Rectangles
	delete-window, Deleting and Rearranging Windows
	deleting auto-save files, Flagging Many Files at Once
	deleting blank lines, Blank Lines
	deleting characters and lines, Erasing Text
	deleting files (in Dired), Deleting Files with Dired
	deleting rows and column in text-based tables, Table Rows and Columns
	deleting some backup files, Flagging Many Files at Once
	deletion, Deletion and Killing
	deletion (of files), Miscellaneous File Operations
	deletion (Rmail), Deleting Messages
	Delphi mode, Major Modes for Programming Languages
	describe-bindings, Other Help Commands
	describe-categories, Backslash in Regular Expressions
	describe-character-set, Charsets
	describe-coding-system, Coding Systems
	describe-copying, Help Files
	describe-distribution, Help Files
	describe-function, Help by Command or Variable Name
	describe-gnu-project, Help Files
	describe-input-method, Selecting an Input Method
	describe-key, Documentation for a Key
	describe-key-briefly, Documentation for a Key
	describe-language-environment, Language Environments
	describe-mode, Other Help Commands, Major Modes
	describe-no-warranty, Help Files
	describe-package, Keyword Search for Packages, Emacs Lisp Packages
	describe-prefix-bindings, Other Help Commands
	describe-text-properties, Editing Format Information
	describe-theme, Custom Themes
	describe-variable, Help by Command or Variable Name
	desktop, Saving Emacs Sessions
	desktop shortcut, MS-Windows, How to Start Emacs on MS-Windows
	desktop-change-dir, Saving Emacs Sessions
	desktop-clear, Saving Emacs Sessions
	desktop-clear-preserve-buffers-regexp, Saving Emacs Sessions
	desktop-globals-to-clear, Saving Emacs Sessions
	desktop-path, Saving Emacs Sessions
	desktop-restore-eager, Saving Emacs Sessions
	desktop-revert, Saving Emacs Sessions
	desktop-save, Saving Emacs Sessions
	desktop-save-mode, Saving Emacs Sessions
	Devanagari, International Character Set Support
	device for Emacs terminal I/O, Initial Options
	dialog boxes, Using Dialog Boxes
	Dialog X Resources (Lucid widgets), Lucid Menu And Dialog X Resources
	diary, The Diary, Displaying the Diary
	diary buffer, Diary Display
	diary file, The Diary File
	diary-anniversary, Special Diary Entries, Sexp Entries and the Fancy Diary Display
	diary-astro-day-number, Sexp Entries and the Fancy Diary Display
	diary-bahai-date, Sexp Entries and the Fancy Diary Display
	diary-bahai-entry-symbol, Diary Entries Using non-Gregorian Calendars
	diary-bahai-insert-entry, Diary Entries Using non-Gregorian Calendars
	diary-bahai-insert-monthly-entry, Diary Entries Using non-Gregorian Calendars
	diary-bahai-insert-yearly-entry, Diary Entries Using non-Gregorian Calendars
	diary-bahai-list-entries, Diary Entries Using non-Gregorian Calendars
	diary-bahai-mark-entries, Diary Entries Using non-Gregorian Calendars
	diary-block, Special Diary Entries
	diary-chinese-date, Sexp Entries and the Fancy Diary Display
	diary-comment-start, Fancy Diary Display
	diary-coptic-date, Sexp Entries and the Fancy Diary Display
	diary-cyclic, Special Diary Entries, Sexp Entries and the Fancy Diary Display
	diary-date, Sexp Entries and the Fancy Diary Display
	diary-date-forms, Customizing the Diary
	diary-day-of-year, Sexp Entries and the Fancy Diary Display
	diary-display-function, Diary Display
	diary-entry-marker, Customizing the Calendar
	diary-ethiopic-date, Sexp Entries and the Fancy Diary Display
	diary-fancy-display, Diary Display
	diary-file, The Diary File
	diary-float, Special Diary Entries, Sexp Entries and the Fancy Diary Display
	diary-french-date, Sexp Entries and the Fancy Diary Display
	diary-hebrew-birthday, Sexp Entries and the Fancy Diary Display
	diary-hebrew-date, Sexp Entries and the Fancy Diary Display
	diary-hebrew-entry-symbol, Diary Entries Using non-Gregorian Calendars
	diary-hebrew-insert-entry, Diary Entries Using non-Gregorian Calendars
	diary-hebrew-insert-monthly-entry, Diary Entries Using non-Gregorian Calendars
	diary-hebrew-insert-yearly-entry, Diary Entries Using non-Gregorian Calendars
	diary-hebrew-list-entries, Diary Entries Using non-Gregorian Calendars
	diary-hebrew-mark-entries, Diary Entries Using non-Gregorian Calendars
	diary-hebrew-omer, Sexp Entries and the Fancy Diary Display
	diary-hebrew-parasha, Sexp Entries and the Fancy Diary Display
	diary-hebrew-rosh-hodesh, Sexp Entries and the Fancy Diary Display
	diary-hebrew-sabbath-candles, Sexp Entries and the Fancy Diary Display
	diary-hebrew-yahrzeit, Sexp Entries and the Fancy Diary Display
	diary-include-other-diary-files, Fancy Diary Display
	diary-include-string, Fancy Diary Display
	diary-insert-anniversary-entry, Special Diary Entries
	diary-insert-block-entry, Special Diary Entries
	diary-insert-cyclic-entry, Special Diary Entries
	diary-insert-entry, Commands to Add to the Diary
	diary-insert-monthly-entry, Commands to Add to the Diary
	diary-insert-weekly-entry, Commands to Add to the Diary
	diary-insert-yearly-entry, Commands to Add to the Diary
	diary-islamic-date, Sexp Entries and the Fancy Diary Display
	diary-islamic-entry-symbol, Diary Entries Using non-Gregorian Calendars
	diary-islamic-insert-entry, Diary Entries Using non-Gregorian Calendars
	diary-islamic-insert-monthly-entry, Diary Entries Using non-Gregorian Calendars
	diary-islamic-insert-yearly-entry, Diary Entries Using non-Gregorian Calendars
	diary-islamic-list-entries, Diary Entries Using non-Gregorian Calendars
	diary-islamic-mark-entries, Diary Entries Using non-Gregorian Calendars
	diary-iso-date, Sexp Entries and the Fancy Diary Display
	diary-julian-date, Sexp Entries and the Fancy Diary Display
	diary-list-entries-hook, Fancy Diary Display
	diary-list-include-blanks, Diary Display
	diary-lunar-phases, Sexp Entries and the Fancy Diary Display
	diary-mail-days, Displaying the Diary
	diary-mail-entries, Displaying the Diary
	diary-mark-entries, Displaying the Diary
	diary-mark-entries-hook, Fancy Diary Display
	diary-mark-included-diary-files, Fancy Diary Display
	diary-mayan-date, Sexp Entries and the Fancy Diary Display
	diary-nongregorian-listing-hook, Diary Entries Using non-Gregorian Calendars
	diary-nongregorian-marking-hook, Diary Entries Using non-Gregorian Calendars
	diary-nonmarking-symbol, The Diary File
	diary-number-of-entries, Customizing the Diary
	diary-outlook-formats, Importing and Exporting Diary Entries
	diary-persian-date, Sexp Entries and the Fancy Diary Display
	diary-print-entries, Diary Display
	diary-print-entries-hook, Diary Display
	diary-remind, Sexp Entries and the Fancy Diary Display
	diary-sexp-entry-symbol, Sexp Entries and the Fancy Diary Display
	diary-show-all-entries, Displaying the Diary
	diary-show-holidays-flag, Customizing the Diary
	diary-simple-display, Diary Display
	diary-sort-entries, Fancy Diary Display
	diary-sunrise-sunset, Sexp Entries and the Fancy Diary Display
	diary-view-entries, Displaying the Diary
	diff, Comparing Files
	Diff Auto-Refine mode, Diff Mode
	Diff mode, Diff Mode
	diff-add-change-log-entries-other-window, Diff Mode
	diff-apply-hunk, Diff Mode
	diff-auto-refine-mode, Diff Mode
	diff-backup, Comparing Files
	diff-buffer-with-file, Comparing Files
	diff-context->unified, Diff Mode
	diff-ediff-patch, Diff Mode
	diff-file-kill, Diff Mode
	diff-file-next, Diff Mode
	diff-file-prev, Diff Mode
	diff-goto-source, Diff Mode
	diff-hunk-kill, Diff Mode
	diff-hunk-next, Diff Mode
	diff-hunk-prev, Diff Mode
	diff-mode, Diff Mode
	diff-refine-hunk, Diff Mode
	diff-restrict-view, Diff Mode
	diff-reverse-direction, Diff Mode
	diff-split-hunk, Diff Mode
	diff-switches, Comparing Files
	diff-unified->context, Diff Mode
	diff-update-on-the-fly, Diff Mode
	digest message, Digest Messages
	digit-argument, Numeric Arguments
	dir-locals-set-class-variables, Per-Directory Local Variables
	dir-locals-set-directory-class, Per-Directory Local Variables
	directional window selection, Convenience Features for Window Handling
	directories in buffer names, Making Buffer Names Unique
	directory header lines, Moving Over Subdirectories
	directory listing, File Directories
	directory listing on MS-DOS, Subprocesses on MS-DOS
	directory name abbreviation, File Name Aliases
	directory tracking, Directory Tracking
	directory where Emacs starts on MS-Windows, How to Start Emacs on MS-Windows
	directory-abbrev-alist, File Name Aliases
	directory-free-space-args, File Directories
	directory-free-space-program, File Directories
	directory-local variables, Per-Directory Local Variables
	Dired, Dired, the Directory Editor
	dired, Entering Dired
	Dired and version control, Other Dired Features
	Dired sorting, Updating the Dired Buffer
	Dired, and MS-Windows/MS-DOS, Emulation of ls on MS-Windows
	dired-at-point, Finding Files and URLs at Point
	dired-auto-revert-buffer, Updating the Dired Buffer
	dired-backup-diff, File Comparison with Dired
	dired-change-marks, Dired Marks vs. Flags
	dired-chown-program, Operating on Files
	dired-clean-directory, Flagging Many Files at Once
	dired-compare-directories, Other Dired Features
	dired-copy-filename-as-kill, Other Dired Features
	dired-copy-preserve-time, Operating on Files
	dired-create-directory, Other Dired Features
	dired-diff, File Comparison with Dired
	dired-display-file, Visiting Files in Dired
	dired-do-byte-compile, Operating on Files
	dired-do-chgrp, Operating on Files
	dired-do-chmod, Operating on Files
	dired-do-chown, Operating on Files
	dired-do-compress, Operating on Files
	dired-do-copy, Operating on Files
	dired-do-copy-regexp, Transforming File Names in Dired
	dired-do-delete, Operating on Files
	dired-do-flagged-delete, Deleting Files with Dired
	dired-do-hardlink, Operating on Files
	dired-do-hardlink-regexp, Transforming File Names in Dired
	dired-do-isearch, Other Dired Features
	dired-do-isearch-regexp, Other Dired Features
	dired-do-kill-lines, Updating the Dired Buffer
	dired-do-load, Operating on Files
	dired-do-print, Operating on Files
	dired-do-query-replace-regexp, Operating on Files
	dired-do-redisplay, Updating the Dired Buffer
	dired-do-rename, Operating on Files
	dired-do-rename-regexp, Transforming File Names in Dired
	dired-do-search, Operating on Files
	dired-do-shell-command, Shell Commands in Dired
	dired-do-symlink, Operating on Files
	dired-do-symlink-regexp, Transforming File Names in Dired
	dired-do-touch, Operating on Files
	dired-downcase, Transforming File Names in Dired
	dired-dwim-target, Operating on Files
	dired-find-file, Visiting Files in Dired
	dired-find-file-other-window, Visiting Files in Dired
	dired-flag-auto-save-files, Flagging Many Files at Once
	dired-flag-backup-files, Flagging Many Files at Once
	dired-flag-file-deletion, Deleting Files with Dired
	dired-flag-files-regexp, Flagging Many Files at Once
	dired-flag-garbage-files, Flagging Many Files at Once
	dired-garbage-files-regexp, Flagging Many Files at Once
	dired-goto-file, Navigation in the Dired Buffer
	dired-hide-all, Hiding Subdirectories
	dired-hide-subdir, Hiding Subdirectories
	dired-isearch-filenames, Navigation in the Dired Buffer
	dired-isearch-filenames-regexp, Navigation in the Dired Buffer
	dired-kept-versions, Flagging Many Files at Once
	dired-listing-switches, Entering Dired
	dired-listing-switches (MS-DOS), Subprocesses on MS-DOS
	dired-mark, Dired Marks vs. Flags
	dired-mark-directories, Dired Marks vs. Flags
	dired-mark-executables, Dired Marks vs. Flags
	dired-mark-files-containing-regexp, Dired Marks vs. Flags
	dired-mark-files-regexp, Dired Marks vs. Flags
	dired-mark-subdir-files, Dired Marks vs. Flags
	dired-mark-symlinks, Dired Marks vs. Flags
	dired-maybe-insert-subdir, Subdirectories in Dired
	dired-mouse-find-file-other-window, Visiting Files in Dired
	dired-next-dirline, Moving Over Subdirectories
	dired-next-marked-file, Dired Marks vs. Flags
	dired-next-subdir, Moving Over Subdirectories
	dired-other-frame, Entering Dired
	dired-other-window, Displaying in Another Window, Entering Dired
	dired-prev-dirline, Moving Over Subdirectories
	dired-prev-marked-file, Dired Marks vs. Flags
	dired-prev-subdir, Moving Over Subdirectories
	dired-recursive-copies, Operating on Files
	dired-recursive-deletes, Deleting Files with Dired
	dired-sort-toggle-or-edit, Updating the Dired Buffer
	dired-toggle-marks, Dired Marks vs. Flags
	dired-tree-down, Moving Over Subdirectories
	dired-tree-up, Moving Over Subdirectories
	dired-undo, Dired Marks vs. Flags
	dired-unmark, Dired Marks vs. Flags
	dired-unmark-all-files, Dired Marks vs. Flags
	dired-unmark-all-marks, Dired Marks vs. Flags
	dired-unmark-backward, Dired Marks vs. Flags
	dired-up-directory, Visiting Files in Dired
	dired-upcase, Transforming File Names in Dired
	dired-use-ls-dired, Entering Dired
	dired-view-file, Visiting Files in Dired
	dirs, Directory Tracking
	Dirtrack mode, Directory Tracking
	dirtrack-list, Directory Tracking
	dirtrack-mode, Directory Tracking
	disable window system, Initial Options
	disable-command, Disabling Commands
	disable-theme, Custom Themes
	disabled command, Disabling Commands
	disabling remote files, Remote Files
	DISPLAY environment variable, Specifying the Display Name
	display for Emacs frame, Initial Options
	display name (X Window System), Specifying the Display Name
	display of buffer size, Optional Mode Line Features
	display of line number, Optional Mode Line Features
	display-battery-mode, Optional Mode Line Features
	display-buffer, Displaying in Another Window, Displaying a Buffer in a Window, How display-buffer works
	display-buffer-reuse-frames, How display-buffer works
	display-hourglass, Customization of Display
	display-local-help, Help on Active Text and Tooltips
	display-time, Optional Mode Line Features
	display-time-24hr-format, Optional Mode Line Features
	display-time-mail-directory, Optional Mode Line Features
	display-time-mail-face, Optional Mode Line Features
	display-time-mail-file, Optional Mode Line Features
	display-time-use-mail-icon, Optional Mode Line Features
	dissociated-press, Other Amusements
	distributed version control, Decentralized vs Centralized Repositories
	dnd-open-file-other-window, Drag and Drop
	DNS mode, Major Modes for Programming Languages
	do-auto-save, Controlling Auto-Saving
	doc-view-cache-directory, DocView Conversion
	doc-view-clear-cache, DocView Conversion
	doc-view-continuous, DocView Navigation
	doc-view-enlarge, DocView Navigation
	doc-view-first-page, DocView Navigation
	doc-view-goto-page, DocView Navigation
	doc-view-kill-proc, DocView Conversion
	doc-view-kill-proc-and-buffer, DocView Conversion
	doc-view-last-page, DocView Navigation
	doc-view-minor-mode, Document Viewing
	doc-view-mode, Document Viewing
	doc-view-next-page, DocView Navigation
	doc-view-previous-page, DocView Navigation
	doc-view-reset-slice, DocView Slicing
	doc-view-resolution, DocView Navigation
	doc-view-scroll-down-or-previous-page, DocView Navigation
	doc-view-scroll-up-or-next-page, DocView Navigation
	doc-view-search, DocView Searching
	doc-view-search-backward, DocView Searching
	doc-view-set-slice, DocView Slicing
	doc-view-set-slice-using-mouse, DocView Slicing
	doc-view-show-tooltip, DocView Searching
	doc-view-shrink, DocView Navigation
	doc-view-toggle-display, Document Viewing
	DocTeX mode, TeX Mode
	doctex-mode, TeX Mode
	doctor, Other Amusements
	document viewer (DocView), Document Viewing
	documentation string, Documentation for a Key
	DocView mode, Document Viewing
	DOS applications, running from Emacs, Subprocesses on Windows 9X/ME and Windows NT/2K/XP
	DOS codepages, International Support on MS-DOS
	dos-codepage, International Support on MS-DOS
	dos-display-scancodes, Mouse Usage on MS-DOS
	dos-hyper-key, Keyboard Usage on MS-DOS
	dos-keypad-mode, Keyboard Usage on MS-DOS
	dos-mode25, Display on MS-DOS
	dos-mode4350, Display on MS-DOS
	dos-printer, Printing and MS-DOS
	dos-ps-printer, Printing and MS-DOS
	DOS-style end-of-line display, Recognizing Coding Systems
	dos-super-key, Keyboard Usage on MS-DOS
	DOS-to-Unix conversion of files, Text Files and Binary Files
	double clicks, Rebinding Mouse Buttons
	double slash in file name, Minibuffers for File Names
	double-click-fuzz, Rebinding Mouse Buttons
	double-click-time, Rebinding Mouse Buttons
	DOWN, Changing the Location of Point
	DOWN (minibuffer history), Minibuffer History
	down events, Rebinding Mouse Buttons
	down-list, Moving in the Parenthesis Structure
	downcase file names, Transforming File Names in Dired
	downcase-region, Case Conversion Commands
	downcase-word, Case Conversion Commands
	drag and drop, Drag and Drop
	drag and drop, Dired, Other Dired Features
	drag events, Rebinding Mouse Buttons
	drastic changes, Reverting a Buffer
	dribble file, Checklist for Bug Reports
	DSSSL mode, Major Modes for Programming Languages
	dunnet, Other Amusements
	Dutch, International Character Set Support
	DVI file, Document Viewing

E
	e (Dired), Visiting Files in Dired
	e (Rmail), Editing Within a Message
	e (View mode), View Mode
	Ebrowse, Tags Tables
	echo area, The Echo Area
	echo area message, The Echo Area
	echo-keystrokes, Customization of Display
	echoing, The Echo Area
	EDE (Emacs Development Environment), Emacs Development Environment
	Edebug, Checklist for Bug Reports
	edit-abbrevs, Examining and Editing Abbrevs
	edit-kbd-macro, Editing a Keyboard Macro
	edit-tab-stops, Tab Stops
	editable fields (customization buffer), Customization Groups
	editing binary files, Editing Binary Files
	editing in Picture mode, Basic Editing in Picture Mode
	editing level, recursive, Recursive Editing Levels
	EDITOR environment variable, Using Emacs as a Server
	EDT, Emulation
	edt-emulation-off, Emulation
	edt-emulation-on, Emulation
	Eldoc mode, Emacs Lisp Documentation Lookup
	eldoc-mode, Emacs Lisp Documentation Lookup
	Electric Indent mode, Convenience Features for Indentation
	Electric Pair mode, Matching Parentheses
	electric-indent-mode, Convenience Features for Indentation
	electric-layout-mode, Other Features Useful for Editing Programs
	electric-nroff-mode, Nroff Mode
	electric-pair-mode, Matching Parentheses
	Eliza, Other Amusements
	Emacs as a server, Using Emacs as a Server
	Emacs Development Environment, Emacs Development Environment
	EMACS environment variable, Interactive Subshell
	Emacs icon, a gnu, Icons
	Emacs initialization file, The Emacs Initialization File
	Emacs Lisp mode, Evaluating Emacs Lisp Expressions
	Emacs Lisp package, Emacs Lisp Packages
	Emacs Lisp package archive, Emacs Lisp Packages
	emacs-internal, coding system, Coding Systems
	emacs-lisp-mode, Evaluating Emacs Lisp Expressions
	emacs-lisp-mode-hook, Major Modes for Programming Languages
	emacs-version, Understanding Bug Reporting
	emacsclient, Using Emacs as a Server
	emacsclient invocation, Invoking emacsclient
	emacsclient options, emacsclient Options
	emacsclient, on MS-Windows, How to Start Emacs on MS-Windows
	emacsclient.exe, How to Start Emacs on MS-Windows
	emacsclientw.exe, How to Start Emacs on MS-Windows
	EMACS_SERVER_FILE environment variable, emacsclient Options
	email, Sending Mail
	Emerge, Merging Files with Emerge
	emerge-auto-advance, Submodes of Emerge
	emerge-buffers, Overview of Emerge
	emerge-buffers-with-ancestor, Overview of Emerge
	emerge-combine-versions-template, Combining the Two Versions
	emerge-files, Overview of Emerge
	emerge-files-with-ancestor, Overview of Emerge
	emerge-skip-prefers, Submodes of Emerge
	emerge-startup-hook, Fine Points of Emerge
	emulating other editors, Emulation
	emulation of Brief, Emulation
	enable-command, Disabling Commands
	enable-local-eval, Safety of File Variables
	enable-local-variables, Safety of File Variables
	enable-multibyte-characters, Disabling Multibyte Characters
	enable-recursive-minibuffers, Editing in the Minibuffer
	enable-theme, Custom Themes
	encoding of characters, International Character Set Support
	encrypted mails (reading in Rmail), Display of Messages
	encrypting files (in Dired), Operating on Files
	END, Changing the Location of Point
	end-of-buffer, Changing the Location of Point
	end-of-defun, Moving by Defuns
	end-of-line convention, mode-line indication, The Mode Line
	end-of-line conversion, Coding Systems
	end-of-line conversion on MS-DOS/MS-Windows, Text Files and Binary Files
	end-of-visual-line, Visual Line Mode
	enlarge-window, Deleting and Rearranging Windows
	enlarge-window-horizontally, Deleting and Rearranging Windows
	Enriched mode, Enriched Text
	enriched text, Enriched Text
	enriched-mode, Enriched Mode
	enriched-translations, Enriched Mode
	entering Emacs, Entering Emacs
	environment variables, Environment Variables
	environment variables for subshells, Interactive Subshell
	environment variables in file names, File Names
	eol-mnemonic-dos, Optional Mode Line Features
	eol-mnemonic-mac, Optional Mode Line Features
	eol-mnemonic-undecided, Optional Mode Line Features
	eol-mnemonic-unix, Optional Mode Line Features
	epa-dired-do-decrypt, Operating on Files
	epa-dired-do-encrypt, Operating on Files
	epa-dired-do-sign, Operating on Files
	epa-dired-do-verify, Operating on Files
	erasing characters and lines, Erasing Text
	error log, Running Compilations under Emacs
	error message, The Echo Area
	errors in init file, Initial Options
	ESC ESC ESC, Quitting and Aborting
	ESC replacing Meta key, Kinds of User Input
	esc-map, Prefix Keymaps
	escape sequences in files, Recognizing Coding Systems
	ESHELL environment variable, Interactive Subshell
	etags, Tags Tables
	etags program, Creating Tags Tables
	Ethiopic, International Character Set Support
	Ethiopic calendar, Supported Calendar Systems
	Euro sign, Language Environments
	European character sets, Unibyte Editing Mode
	eval-buffer, Evaluating Emacs Lisp Expressions
	eval-defun, Evaluating Emacs Lisp Expressions
	eval-expression, Evaluating Emacs Lisp Expressions
	eval-expression-debug-on-error, Evaluating Emacs Lisp Expressions
	eval-expression-print-length, Evaluating Emacs Lisp Expressions
	eval-expression-print-level, Evaluating Emacs Lisp Expressions
	eval-last-sexp, Evaluating Emacs Lisp Expressions
	eval-print-last-sexp, Lisp Interaction Buffers
	eval-region, Evaluating Emacs Lisp Expressions
	evaluate expression, command-line argument, Action Arguments
	exchange-point-and-mark, Setting the Mark
	exec-path, Running Shell Commands from Emacs
	execute-extended-command, Running Commands by Name
	exit-calendar, Miscellaneous Calendar Commands
	exit-language-environment-hook, Language Environments
	exit-recursive-edit, Recursive Editing Levels
	exiting, Exiting Emacs
	exiting recursive edit, Recursive Editing Levels
	expand-abbrev, Controlling Abbrev Expansion
	expand-region-abbrevs, Controlling Abbrev Expansion
	expanding subdirectories in Dired, Subdirectories in Dired
	expansion (of abbrevs), Abbrevs
	expansion of C macros, Other Commands for C Mode
	expansion of environment variables, File Names
	explicit-shell-file-name, Interactive Subshell
	expression, Expressions with Balanced Parentheses
	expunging (Rmail), Deleting Messages

F
	f (Dired), Visiting Files in Dired
	f (GDB threads buffer), Threads Buffer
	f (Rmail), Sending Replies
	F1, Help
	F10, The Menu Bar
	F10 (MS-Windows), Keyboard Usage on MS-Windows
	F2 1, Two-Column Editing
	F2 2, Two-Column Editing
	F2 b, Two-Column Editing
	F2 d, Two-Column Editing
	F2 RET, Two-Column Editing
	F2 s, Two-Column Editing
	F3, Basic Use
	F4, Basic Use
	f90-beginning-of-block, Motion Commands
	f90-end-of-block, Motion Commands
	f90-mode, Fortran Mode
	f90-next-block, Motion Commands
	f90-next-statement, Motion Commands
	f90-previous-block, Motion Commands
	f90-previous-statement, Motion Commands
	face at point, Introduction to International Character Sets
	face colors, setting, Colors for Faces
	facemenu-remove-all, Editing Format Information
	facemenu-remove-face-props, Editing Format Information
	facemenu-set-background, Faces in Enriched Text
	facemenu-set-bold, Faces in Enriched Text
	facemenu-set-bold-italic, Faces in Enriched Text
	facemenu-set-default, Faces in Enriched Text
	facemenu-set-face, Faces in Enriched Text
	facemenu-set-foreground, Faces in Enriched Text
	facemenu-set-italic, Faces in Enriched Text
	facemenu-set-underline, Faces in Enriched Text
	faces, Text Faces
	faces for highlighting query replace, Query Replace
	faces for highlighting search matches, Basics of Incremental Search
	faces under MS-DOS, Display on MS-DOS
	faces, customizing, Customizing Faces
	failed merges, Comparing Files
	Feedmail, Mail Sending
	ff-find-related-file, Other Commands for C Mode
	ff-related-file-alist, Other Commands for C Mode
	ffap, Finding Files and URLs at Point
	FFAP minor mode, Finding Files and URLs at Point
	ffap-menu, Finding Files and URLs at Point
	ffap-mode, Finding Files and URLs at Point
	ffap-next, Finding Files and URLs at Point
	file archives, File Archives
	file comparison (in Dired), File Comparison with Dired
	file database (locate), Dired and find
	file dates, Protection against Simultaneous Editing
	file directory, File Directories
	file local variables, Local Variables in Files
	file management, Dired, the Directory Editor
	file modes, Miscellaneous File Operations
	file name caching, File Name Cache
	file names, File Names
	file names on MS-Windows, File Names on MS-Windows
	file names under MS-DOS, File Names on MS-DOS
	file names under Windows 95/NT, File Names on MS-DOS
	file names with non-ASCII characters, Coding Systems for File Names
	file names, quote special characters, Quoted File Names
	file ownership, and backup, Copying vs. Renaming
	file permissions, Miscellaneous File Operations
	file selection dialog, Visiting Files
	file selection dialog, how to disable, Using Dialog Boxes
	file shadows, Shadowing Files
	file truenames, File Name Aliases
	file version in change log entries, Change Log Commands
	file, warning when size is large, Visiting Files
	file-based version control, Changeset-based vs File-based Version Control
	file-cache-add-directory, File Name Cache
	file-cache-minibuffer-complete, File Name Cache
	file-coding-system-alist, Recognizing Coding Systems
	file-name completion, on MS-Windows, File Names on MS-Windows
	file-name-buffer-file-type-alist, Text Files and Binary Files
	file-name-coding-system, Coding Systems for File Names
	file-name-shadow-mode, Minibuffers for File Names
	files, File Handling
	files, visiting and saving, Visiting Files
	filesets, Filesets
	filesets, VC, Basic Editing under Version Control
	filesets-add-buffer, Filesets
	filesets-init, Filesets
	filesets-remove-buffer, Filesets
	fill prefix, The Fill Prefix
	fill-column, Explicit Fill Commands
	fill-individual-paragraphs, The Fill Prefix
	fill-nobreak-predicate, Explicit Fill Commands
	fill-nonuniform-paragraphs, The Fill Prefix
	fill-paragraph, Explicit Fill Commands
	fill-prefix, The Fill Prefix
	fill-region, Explicit Fill Commands
	fill-region-as-paragraph, Explicit Fill Commands
	filling text, Filling Text
	find, File Name Cache
	find and Dired, Dired and find
	find Info manual by its file name, Other Help Commands
	find-alternate-file, Visiting Files
	find-dired, Dired and find
	find-file, Visiting Files
	find-file-at-point, Finding Files and URLs at Point
	find-file-existing-other-name, File Name Aliases
	find-file-hook, Visiting Files
	find-file-literally, Visiting Files
	find-file-not-found-functions, Visiting Files
	find-file-other-frame, Visiting Files
	find-file-other-window, Visiting Files, Displaying in Another Window
	find-file-read-only, Visiting Files
	find-file-read-only-other-frame, Creating Frames
	find-file-run-dired, Visiting Files
	find-file-suppress-same-file-warnings, File Name Aliases
	find-file-visit-truename, File Name Aliases
	find-file-wildcards, Visiting Files
	find-grep, Searching with Grep under Emacs
	find-grep-dired, Dired and find
	find-ls-option, Dired and find
	find-name-dired, Dired and find
	find-tag, Finding a Tag
	find-tag-marker-ring-length, Finding a Tag
	find-tag-other-frame, Finding a Tag
	find-tag-other-window, Displaying in Another Window, Finding a Tag
	find-tag-regexp, Finding a Tag
	finder, Keyword Search for Packages
	finder-by-keyword, Keyword Search for Packages
	finding file at point, Finding Files and URLs at Point
	finding files containing regexp matches (in Dired), Dired Marks vs. Flags
	finding strings within text, Searching and Replacement
	firewall, and accessing remote files, Remote Files
	fixing incorrectly decoded mail messages, Rmail and Coding Systems
	flagging files (in Dired), Deleting Files with Dired
	flagging many files for deletion (in Dired), Flagging Many Files at Once
	flush-lines, Other Search-and-Loop Commands
	Flyspell mode, Checking and Correcting Spelling
	flyspell-mode, Checking and Correcting Spelling
	flyspell-prog-mode, Checking and Correcting Spelling
	focus-follows-mouse, Frame Commands
	folding editing, Folding Editing
	foldout-exit-fold, Folding Editing
	foldout-mouse-modifiers, Folding Editing
	foldout-zoom-subtree, Folding Editing
	Follow mode, Follow Mode
	follow-mode, Follow Mode
	font antialiasing (MS Windows), Specifying Fonts on MS-Windows
	font backend selection (MS-Windows), Specifying Fonts on MS-Windows
	font for menus, Table of X Resources for Emacs
	Font Lock mode, Font Lock mode
	font name (X Window System), Font Specification Options
	font of character at point, Introduction to International Character Sets
	font properties (MS Windows gdi backend), Specifying Fonts on MS-Windows
	font properties (MS Windows), Specifying Fonts on MS-Windows
	font scripts (MS Windows), Specifying Fonts on MS-Windows
	font specification (MS Windows), Specifying Fonts on MS-Windows
	font Unicode subranges (MS Windows), Specifying Fonts on MS-Windows
	font-lock-add-keywords, Font Lock mode
	font-lock-beginning-of-syntax-function, Font Lock mode
	font-lock-maximum-decoration, Font Lock mode
	font-lock-mode, Font Lock mode
	font-lock-remove-keywords, Font Lock mode
	font-slant-table (MS-Windows), Specifying Fonts on MS-Windows
	font-weight-table (MS-Windows), Specifying Fonts on MS-Windows
	fontconfig, Fonts
	fonts, Fonts
	fonts and faces, Customizing Faces
	fonts for PostScript printing, Variables for PostScript Hardcopy
	fonts for various scripts, Fontsets
	fonts, emulating under MS-DOS, Display on MS-DOS
	fontsets, Fontsets
	fontsets, modifying, Modifying Fontsets
	foreground color, command-line argument, Window Color Options
	format-decode-buffer, Enriched Mode
	formfeed character, Pages
	Fortran 77 and Fortran 90, 95, 2003, 2008, Fortran Mode
	Fortran continuation lines, Continuation Lines
	Fortran fixed form and free form, Fortran Mode
	Fortran mode, Fortran Mode
	fortran-analyze-depth, Continuation Lines
	fortran-beginning-of-block, Motion Commands
	fortran-break-before-delimiters, Auto Fill in Fortran Mode
	fortran-check-all-num…, Variables for Fortran Indentation
	fortran-column-ruler, Checking Columns in Fortran
	fortran-column-ruler-fixed, Checking Columns in Fortran
	fortran-column-ruler-tabs, Checking Columns in Fortran
	fortran-comment-indent-char, Fortran Comments
	fortran-comment-indent-style, Fortran Comments
	fortran-comment-line-extra-indent, Fortran Comments
	fortran-comment-line-start, Fortran Comments
	fortran-comment-region, Fortran Comments
	fortran-continuation-indent, Variables for Fortran Indentation
	fortran-continuation-string, Continuation Lines
	fortran-directive-re, Fortran Comments
	fortran-do-indent, Variables for Fortran Indentation
	fortran-electric-line-number, Line Numbers
	fortran-end-of-block, Motion Commands
	fortran-if-indent, Variables for Fortran Indentation
	fortran-indent-subprogram, Fortran Indentation and Filling Commands
	fortran-join-line, Fortran Indentation and Filling Commands
	fortran-line-length, Checking Columns in Fortran
	fortran-line-number-indent, Line Numbers
	fortran-minimum-statement-indent…, Variables for Fortran Indentation
	fortran-mode, Fortran Mode
	fortran-next-statement, Motion Commands
	fortran-previous-statement, Motion Commands
	fortran-split-line, Fortran Indentation and Filling Commands
	fortran-strip-sequence-nos, Checking Columns in Fortran
	fortran-structure-indent, Variables for Fortran Indentation
	fortran-tab-mode-default, Continuation Lines
	fortran-window-create, Checking Columns in Fortran
	fortran-window-create-momentarily, Checking Columns in Fortran
	fortune cookies, Mail Amusements
	fortune-to-signature, Mail Amusements
	forward-button, Help Mode Commands
	forward-char, Changing the Location of Point
	forward-list, Moving in the Parenthesis Structure
	forward-page, Pages
	forward-paragraph, Paragraphs
	forward-sentence, Sentences
	forward-sexp, Expressions with Balanced Parentheses
	forward-text-line, Nroff Mode
	forward-word, Changing the Location of Point, Words
	forwarding a message, Sending Replies
	frame, The Organization of the Screen
	frame focus policy, MS-Windows, Miscellaneous Windows-specific features
	frame size under MS-DOS, Display on MS-DOS
	frame size, specifying default, Frame Parameters
	frame title, command-line argument, Frame Titles
	frame-configuration-to-register, Saving Window Configurations in Registers
	frames, Frames and Graphical Displays
	frames on MS-DOS, Display on MS-DOS
	French Revolutionary calendar, Supported Calendar Systems
	fringe face, Standard Faces
	fringe-mode, Window Fringes
	fringes, Window Fringes
	fringes, and continuation lines, Continuation Lines
	fringes, and unused line indication, Useless Whitespace
	fringes, for debugging, Source Buffers
	FTP, Remote Files
	fullheight, command-line argument, Options for Window Size and Position
	fullscreen, command-line argument, Options for Window Size and Position
	fullwidth, command-line argument, Options for Window Size and Position
	function key, Keymaps
	function, move to beginning or end, Moving by Defuns

G
	G (Dired), Operating on Files
	g (Dired), Updating the Dired Buffer
	g (Rmail), Multiple Rmail Files
	g char (Calendar mode), Converting From Other Calendars
	g d (Calendar mode), Specified Dates
	g D (Calendar mode), Specified Dates
	g m (Calendar mode), Converting from the Mayan Calendar
	g w (Calendar mode), Specified Dates
	gamma correction, Table of X Resources for Emacs
	gateway, and remote file access with ange-ftp, Remote Files
	GDB, Running Debuggers Under Emacs
	gdb, Starting GUD
	GDB User Interface layout, GDB User Interface Layout
	gdb-delete-breakpoint, Breakpoints Buffer
	gdb-delete-out-of-scope, Watch Expressions
	gdb-display-disassembly-for-thread, Threads Buffer
	gdb-display-locals-for-thread, Threads Buffer
	gdb-display-registers-for-thread, Threads Buffer
	gdb-display-stack-for-thread, Threads Buffer
	gdb-edit-value, Watch Expressions
	gdb-frames-select, Stack Buffer
	gdb-goto-breakpoint, Breakpoints Buffer
	gdb-gud-control-all-threads, Multithreaded Debugging
	gdb-many-windows, GDB User Interface Layout
	gdb-mode-hook, GUD Customization
	gdb-non-stop-setting, Multithreaded Debugging
	gdb-restore-windows, GDB User Interface Layout
	gdb-select-thread, Threads Buffer
	gdb-show-changed-values, Watch Expressions
	gdb-show-threads-by-default, Breakpoints Buffer
	gdb-speedbar-auto-raise, Watch Expressions
	gdb-stopped-hooks, Multithreaded Debugging
	gdb-switch-reasons, Multithreaded Debugging
	gdb-switch-when-another-stopped, Multithreaded Debugging
	gdb-thread-buffer-addresses, Threads Buffer
	gdb-thread-buffer-arguments, Threads Buffer
	gdb-thread-buffer-locations, Threads Buffer
	gdb-thread-buffer-verbose-names, Threads Buffer
	gdb-toggle-breakpoint, Breakpoints Buffer
	gdb-use-colon-colon-notation, Watch Expressions
	gdb-var-delete, Watch Expressions
	geometry of Emacs window, Options for Window Size and Position
	geometry, command-line argument, Options for Window Size and Position
	German, International Character Set Support
	getenv, Environment Variables
	getting help with keys, Help
	Ghostscript, use for PostScript printing, Printing and MS-Windows
	git, Supported Version Control Systems
	Glasses mode, Glasses minor mode
	Global Auto-Revert mode, Reverting a Buffer
	global keymap, Keymaps
	global mark, CUA Bindings
	global mark ring, The Global Mark Ring
	global substitution, Replacement Commands
	global-auto-revert-mode, Reverting a Buffer
	global-cwarn-mode, Other Commands for C Mode
	global-font-lock-mode, Font Lock mode
	global-hl-line-mode, Displaying the Cursor
	global-mark-ring-max, The Global Mark Ring
	global-set-key, Changing Key Bindings Interactively
	global-unset-key, Changing Key Bindings Interactively
	global-visual-line-mode, Visual Line Mode
	glyphless characters, How Text Is Displayed
	GNU Arch, Supported Version Control Systems
	Gnus, Gnus
	gnus, When Gnus Starts Up
	gnus-group-exit, Using the Gnus Group Buffer
	gnus-group-kill-group, Using the Gnus Group Buffer
	gnus-group-list-all-groups, Using the Gnus Group Buffer
	gnus-group-list-groups, Using the Gnus Group Buffer
	gnus-group-next-unread-group, Using the Gnus Group Buffer, Using the Gnus Summary Buffer
	gnus-group-prev-unread-group, Using the Gnus Group Buffer, Using the Gnus Summary Buffer
	gnus-group-read-group, Using the Gnus Group Buffer, Using the Gnus Summary Buffer
	gnus-group-unsubscribe-current-group, Using the Gnus Group Buffer
	gnus-summary-isearch-article, Using the Gnus Summary Buffer
	gnus-summary-next-unread-article, Using the Gnus Group Buffer, Using the Gnus Summary Buffer
	gnus-summary-prev-page, Using the Gnus Summary Buffer
	gnus-summary-prev-unread-article, Using the Gnus Group Buffer, Using the Gnus Summary Buffer
	gnus-summary-search-article-forward, Using the Gnus Summary Buffer
	GNUstep, Emacs and Mac OS / GNUstep
	Go Moku, Other Amusements
	gomoku, Other Amusements
	Goto Address mode, Activating URLs
	goto-address-at-point, Activating URLs
	goto-address-mode, Activating URLs
	goto-char, Changing the Location of Point
	goto-followup-to, Mail Header Editing
	goto-line, Changing the Location of Point, Creating and Selecting Buffers
	goto-reply-to, Mail Header Editing
	gpm-mouse-mode, Using a Mouse in Text Terminals
	graphic characters, Inserting Text
	Greek, International Character Set Support
	Gregorian calendar, Conversion To and From Other Calendars
	grep, Searching with Grep under Emacs
	grep (MS-DOS), Subprocesses on MS-DOS
	grep-find, Searching with Grep under Emacs
	grep-find-ignored-directories, Searching with Grep under Emacs
	grep-regexp-alist, Compilation Mode
	growing minibuffer, Editing in the Minibuffer
	GTK font pattern, Fonts
	GTK styles, GTK styles
	GTK widget classes, GTK Widget Names in Emacs
	GTK widget names, GTK widget names, GTK Widget Names in Emacs
	GTK+ resources, GTK resources
	GUD interaction buffer, Debugger Operation
	GUD library, Running Debuggers Under Emacs
	GUD Tooltip mode, Debugger Operation
	gud-cont, Commands of GUD
	gud-def, GUD Customization
	gud-down, Commands of GUD
	gud-finish, Commands of GUD
	gud-gdb, Starting GUD
	gud-gdb-command-name, GDB Graphical Interface
	gud-gdb-complete-command, Commands of GUD
	gud-jump, Commands of GUD
	gud-next, Commands of GUD
	gud-print, Commands of GUD
	gud-refresh, Commands of GUD
	gud-remove, Commands of GUD
	gud-step, Commands of GUD
	gud-stepi, Commands of GUD
	gud-tbreak, Commands of GUD
	gud-tooltip-echo-area, Debugger Operation
	gud-tooltip-mode, Debugger Operation
	gud-until, Commands of GUD
	gud-up, Commands of GUD
	gud-watch, Watch Expressions
	gud-xdb-directories, Starting GUD
	gzip, Accessing Compressed Files

H
	h (Calendar mode), Holidays
	H (Dired), Operating on Files
	h (Rmail), Making Summaries
	handwrite, PostScript Hardcopy
	handwriting, PostScript Hardcopy
	hanoi, Other Amusements
	hard links (creation), Miscellaneous File Operations
	hard links (in Dired), Operating on Files
	hard links (visiting), File Name Aliases
	hard newline, Hard and Soft Newlines
	hardcopy, Printing Hard Copies
	header (TeX mode), TeX Printing Commands
	header line (Dired), Moving Over Subdirectories
	headers (of mail message), Mail Header Fields
	heading lines (Outline mode), Format of Outlines
	Hebrew, International Character Set Support
	Hebrew calendar, Supported Calendar Systems
	height of minibuffer, Editing in the Minibuffer
	Help, Help
	help, Help
	help text, in GTK+ file chooser, Using Dialog Boxes
	help, viewing web pages, Help Mode Commands
	help-at-pt-display-when-idle, Help on Active Text and Tooltips
	help-command, Help
	help-follow, Help Mode Commands
	help-for-help, Help
	help-go-back, Help Mode Commands
	help-map, Prefix Keymaps
	help-with-tutorial, Basic Editing Commands
	hex editing, Editing Binary Files
	Hexl mode, Editing Binary Files
	hg, Supported Version Control Systems
	Hi Lock mode, Interactive Highlighting
	hi-lock-exclude-modes, Interactive Highlighting
	hi-lock-file-patterns-policy, Interactive Highlighting
	hi-lock-find-patterns, Interactive Highlighting
	hi-lock-mode, Interactive Highlighting
	hi-lock-write-interactive-patterns, Interactive Highlighting
	hidden files, in GTK+ file chooser, Using Dialog Boxes
	hide-body, Outline Visibility Commands
	hide-entry, Outline Visibility Commands
	Hide-ifdef mode, Other Commands for C Mode
	hide-ifdef-mode, Other Commands for C Mode
	hide-ifdef-shadow, Other Commands for C Mode
	hide-leaves, Outline Visibility Commands
	hide-other, Outline Visibility Commands
	hide-sublevels, Outline Visibility Commands
	hide-subtree, Outline Visibility Commands
	Hideshow mode, Hideshow minor mode
	hiding subdirectories (Dired), Hiding Subdirectories
	Highlight Changes mode, Interactive Highlighting
	highlight current line, Displaying the Cursor
	highlight-changes-mode, Interactive Highlighting
	highlight-lines-matching-regexp, Interactive Highlighting
	highlight-nonselected-windows, The Mark and the Region
	highlight-regexp, Interactive Highlighting
	highlighting by matching, Interactive Highlighting
	highlighting lines of text, Interactive Highlighting
	highlighting matching parentheses, Matching Parentheses
	highlighting region, Disabling Transient Mark Mode
	Hindi, International Character Set Support
	history of commands, Repeating Minibuffer Commands
	history of minibuffer input, Minibuffer History
	history reference, Shell History References
	history-delete-duplicates, Minibuffer History
	history-length, Minibuffer History
	hl-line-mode, Displaying the Cursor
	holiday forms, Customizing the Holidays
	holiday-bahai-holidays, Customizing the Holidays
	holiday-christian-holidays, Customizing the Holidays
	holiday-general-holidays, Customizing the Holidays
	holiday-hebrew-holidays, Customizing the Holidays
	holiday-islamic-holidays, Customizing the Holidays
	holiday-local-holidays, Customizing the Holidays
	holiday-oriental-holidays, Customizing the Holidays
	holiday-other-holidays, Customizing the Holidays
	holiday-solar-holidays, Customizing the Holidays
	holidays, Holidays
	HOME, Changing the Location of Point
	HOME directory on MS-Windows, HOME and Startup Directories on MS-Windows
	home directory shorthand, Minibuffers for File Names
	HOME directory under MS-DOS, File Names on MS-DOS
	hook, Hooks
	horizontal scrolling, Horizontal Scrolling
	hourglass pointer display, Customization of Display
	hourglass-delay, Customization of Display
	how-many, Other Search-and-Loop Commands
	hs-hide-all, Hideshow minor mode
	hs-hide-block, Hideshow minor mode
	hs-hide-comments-when-hiding-all, Hideshow minor mode
	hs-hide-level, Hideshow minor mode
	hs-isearch-open, Hideshow minor mode
	hs-minor-mode, Hideshow minor mode
	hs-show-all, Hideshow minor mode
	hs-show-block, Hideshow minor mode
	hs-show-region, Hideshow minor mode
	hs-special-modes-alist, Hideshow minor mode
	hscroll-margin, Horizontal Scrolling
	hscroll-step, Horizontal Scrolling
	HTML mode, SGML and HTML Modes
	html-mode, SGML and HTML Modes
	htmlfontify-buffer, Printing Hard Copies
	hungry deletion (C Mode), Hungry Delete Feature in C
	hunk, diff, Diff Mode
	Hyper (under MS-DOS), Keyboard Usage on MS-DOS
	hyperlink, Help Mode Commands
	hyperlinks, Following References with the Mouse

I
	i (Dired), Subdirectories in Dired
	i (Rmail), Multiple Rmail Files
	i a (Calendar mode), Special Diary Entries
	i b (Calendar mode), Special Diary Entries
	i c (Calendar mode), Special Diary Entries
	i d (Calendar mode), Commands to Add to the Diary
	i m (Calendar mode), Commands to Add to the Diary
	i w (Calendar mode), Commands to Add to the Diary
	i y (Calendar mode), Commands to Add to the Diary
	iCalendar support, Importing and Exporting Diary Entries
	icalendar-export-file, icalendar-export-region, Importing and Exporting Diary Entries
	icalendar-import-buffer, Importing and Exporting Diary Entries
	icalendar-import-file, Importing and Exporting Diary Entries
	Icomplete mode, Completion Options
	icomplete-mode, Completion Options
	Icon mode, Major Modes for Programming Languages
	iconifying, Exiting Emacs
	icons (X Window System), Icons
	icons, toolbar, Tool Bars
	IDL mode, C and Related Modes
	ielm, Lisp Interaction Buffers
	ignored file names, in completion, Completion Options
	image animation, Convenience Features for Finding Files
	image-dired, Viewing Image Thumbnails in Dired
	image-dired mode, Viewing Image Thumbnails in Dired
	image-dired-display-thumbs, Viewing Image Thumbnails in Dired
	image-dired-external-viewer, Viewing Image Thumbnails in Dired
	image-mode, Convenience Features for Finding Files
	image-toggle-animation, Convenience Features for Finding Files
	image-toggle-display, Convenience Features for Finding Files
	ImageMagick support, Convenience Features for Finding Files
	images, viewing, Convenience Features for Finding Files
	IMAP mailboxes, Retrieving Mail from Remote Mailboxes
	imenu, Imenu
	imenu-add-menubar-index, Imenu
	imenu-auto-rescan, Imenu
	imenu-sort-function, Imenu
	in-situ subdirectory (Dired), Subdirectories in Dired
	inbox file, Rmail Files and Inboxes
	incorrect fontification, Font Lock mode
	increase buffer face height, Text Scale
	increase-left-margin, Indentation in Enriched Text
	increment-register, Keeping Numbers in Registers
	incremental search, Incremental Search
	incremental search, input method interference, Input Methods
	indent-code-rigidly, Indenting Several Lines
	indent-for-tab-command, Indentation, Basic Program Indentation Commands
	indent-line-function, Basic Program Indentation Commands
	indent-pp-sexp, Indenting Several Lines
	indent-region, Indentation Commands
	indent-relative, Indentation Commands
	indent-rigidly, Indentation Commands
	indent-tabs-mode, Tabs vs. Spaces
	indent-tabs-mode (Fortran mode), Continuation Lines
	indentation, Indentation
	indentation for comments, Comment Commands
	indentation for programs, Indentation for Programs
	index of buffer definitions, Imenu
	indicate-buffer-boundaries, Displaying Boundaries
	indicate-empty-lines, Useless Whitespace
	indirect buffer, Indirect Buffers
	indirect buffers and outlines, Viewing One Outline in Multiple Views
	inferior process, Running Compilations under Emacs
	inferior processes under MS-DOS, Subprocesses on MS-DOS
	inferior-lisp-program, Running an External Lisp
	info, Other Help Commands
	Info, Other Help Commands
	Info-goto-emacs-command-node, Help by Command or Variable Name
	Info-goto-emacs-key-command-node, Documentation for a Key
	info-lookup-file, Info Documentation Lookup
	info-lookup-symbol, Other Help Commands, Info Documentation Lookup
	inhibit-eol-conversion, Recognizing Coding Systems
	inhibit-iso-escape-detection, Recognizing Coding Systems
	inhibit-startup-buffer-menu, Action Arguments
	inhibit-startup-screen, Entering Emacs, Initial Options
	init file, The Emacs Initialization File
	init file .emacs on MS-Windows, HOME and Startup Directories on MS-Windows
	init file, and non-ASCII characters, Disabling Multibyte Characters
	init file, default name under MS-DOS, File Names on MS-DOS
	init file, not loading, Initial Options
	initial options (command line), Command Line Arguments for Emacs Invocation
	initial-environment, Environment Variables
	initial-frame-alist, Frame Parameters
	initial-scratch-message, Lisp Interaction Buffers
	input event, Kinds of User Input
	input methods, Input Methods
	input methods, X, Table of X Resources for Emacs
	input with the keyboard, Kinds of User Input
	input-method-highlight-flag, Input Methods
	input-method-verbose-flag, Input Methods
	INSERT, Minor Modes
	insert file contents, command-line argument, Action Arguments
	insert Unicode character, Inserting Text
	insert-abbrevs, Saving Abbrevs
	insert-default-directory, Minibuffers for File Names, File Names
	insert-file, Miscellaneous File Operations
	insert-file-literally, Miscellaneous File Operations
	insert-kbd-macro, Naming and Saving Keyboard Macros
	insert-register, Saving Text in Registers
	inserted subdirectory (Dired), Subdirectories in Dired
	inserting blank lines, Blank Lines
	inserting matching parentheses, Matching Parentheses
	inserting rows and columns in text-based tables, Table Rows and Columns
	insertion, Inserting Text
	INSIDE_EMACS environment variable, Interactive Subshell
	Integrated development environment, Emacs Development Environment
	interactive highlighting, Interactive Highlighting
	internal border width, command-line argument, Internal and External Borders
	international characters in .emacs, Non-ASCII Characters in Init Files
	international files from DOS/Windows systems, Coding Systems
	international scripts, International Character Set Support
	international support (MS-DOS), International Support on MS-DOS
	interpreter-mode-alist, Choosing File Modes
	Intlfonts for PostScript printing, Variables for PostScript Hardcopy
	Intlfonts package, installation, Fontsets
	inverse-add-global-abbrev, Defining Abbrevs
	inverse-add-mode-abbrev, Defining Abbrevs
	invisible lines, Outline Mode
	invocation (command line arguments), Command Line Arguments for Emacs Invocation
	invoking Emacs from Windows Explorer, How to Start Emacs on MS-Windows
	IPA, International Character Set Support
	isearch, Incremental Search
	isearch-allow-scroll, Scrolling During Incremental Search
	isearch-backward, Basics of Incremental Search
	isearch-backward-regexp, Regular Expression Search
	isearch-del-char, Isearch Yanking
	isearch-forward, Basics of Incremental Search
	isearch-forward-regexp, Regular Expression Search
	isearch-forward-word, Word Search
	isearch-lazy-highlight, Repeating Incremental Search
	isearch-mode-map, Special Input for Incremental Search
	isearch-resume-in-command-history, Repeating Minibuffer Commands
	isearch-toggle-input-method, Special Input for Incremental Search
	isearch-toggle-specified-input-method, Special Input for Incremental Search
	isearch-yank-char, Isearch Yanking
	isearch-yank-kill, Isearch Yanking
	isearch-yank-line, Isearch Yanking
	isearch-yank-pop, Isearch Yanking
	isearch-yank-word-or-char, Isearch Yanking
	Islamic calendar, Supported Calendar Systems
	ISO commercial calendar, Supported Calendar Systems
	ISO Latin character sets, Unibyte Editing Mode
	iso-ascii library, Unibyte Editing Mode
	iso-gtex2iso, TeX Mode Miscellany
	iso-iso2gtex, TeX Mode Miscellany
	iso-iso2tex, TeX Mode Miscellany
	iso-tex2iso, TeX Mode Miscellany
	iso-transl library, Unibyte Editing Mode
	ispell, Checking and Correcting Spelling
	ispell program, Checking and Correcting Spelling
	ispell-buffer, Checking and Correcting Spelling
	ispell-change-dictionary, Checking and Correcting Spelling
	ispell-complete-word, Checking and Correcting Spelling
	ispell-complete-word-dict, Checking and Correcting Spelling
	ispell-dictionary, Checking and Correcting Spelling
	ispell-kill-ispell, Checking and Correcting Spelling
	ispell-local-dictionary, Checking and Correcting Spelling
	ispell-message, Mail Miscellany
	ispell-personal-dictionary, Checking and Correcting Spelling
	ispell-region, Checking and Correcting Spelling
	ispell-word, Checking and Correcting Spelling
	Iswitchb mode, Switching Between Buffers using Substrings
	iswitchb-mode, Switching Between Buffers using Substrings

J
	j (Dired), Navigation in the Dired Buffer
	j (Rmail), Moving Among Messages
	Japanese, International Character Set Support
	jar, File Archives
	Java class archives, File Archives
	Java mode, C and Related Modes
	Javascript mode, Major Modes for Programming Languages
	JDB, Running Debuggers Under Emacs
	jdb, Starting GUD
	jdb-mode-hook, GUD Customization
	Julian calendar, Supported Calendar Systems
	Julian day numbers, Supported Calendar Systems
	jump-to-register, Saving Positions in Registers
	just-in-time (JIT) font-lock, Font Lock mode
	just-one-space, Deletion
	justification, Explicit Fill Commands
	justification in text-based tables, Cell Justification

K
	k (Dired), Updating the Dired Buffer
	k (Rmail), Labels
	kbd, Rebinding Keys in Your Init File
	kbd-macro-query, Executing Macros with Variations
	keep-lines, Other Search-and-Loop Commands
	kept-new-versions, Automatic Deletion of Backups
	kept-old-versions, Automatic Deletion of Backups
	Kerberos POP authentication, Retrieving Mail from Remote Mailboxes
	key, Keys
	key bindings, Customizing Key Bindings
	key rebinding, permanent, The Emacs Initialization File
	key rebinding, this session, Changing Key Bindings Interactively
	key sequence, Keys
	keyboard input, Kinds of User Input
	keyboard macro, Keyboard Macros
	keyboard shortcuts, Glossary
	keyboard, MS-Windows, Keyboard Usage on MS-Windows
	keyboard-coding-system, Coding Systems for Terminal I/O
	keyboard-escape-quit, Quitting and Aborting
	keyboard-quit, Quitting and Aborting
	keymap, Keymaps
	keypad, Rebinding Function Keys
	keypad keys (MS-Windows), Keyboard Usage on MS-Windows
	keys stolen by window manager, Kinds of User Input
	kill DOS application, Subprocesses on Windows 9X/ME and Windows NT/2K/XP
	kill ring, Yanking
	kill-all-abbrevs, Defining Abbrevs
	kill-buffer, Killing Buffers
	kill-buffer-and-window, Deleting and Rearranging Windows
	kill-buffer-hook, Killing Buffers
	kill-compilation, Running Compilations under Emacs
	kill-do-not-save-duplicates, Options for Killing
	kill-emacs, Exiting Emacs
	kill-line, Killing by Lines
	kill-local-variable, Local Variables
	kill-matching-buffers, Killing Buffers
	kill-read-only-ok, Options for Killing
	kill-rectangle, Rectangles
	kill-region, Other Kill Commands
	kill-ring, The Kill Ring
	kill-ring-max, The Kill Ring
	kill-ring-save, Other Kill Commands
	kill-sentence, Sentences
	kill-sexp, Expressions with Balanced Parentheses
	kill-some-buffers, Killing Buffers
	kill-whole-line, Killing by Lines
	kill-word, Words
	killing buffers, Killing Buffers
	killing characters and lines, Erasing Text
	killing Emacs, Exiting Emacs
	killing expressions, Expressions with Balanced Parentheses
	killing rectangular areas of text, Rectangles
	killing text, Deletion and Killing
	kmacro-add-counter, The Keyboard Macro Counter
	kmacro-bind-to-key, Naming and Saving Keyboard Macros
	kmacro-cycle-ring-next, The Keyboard Macro Ring
	kmacro-cycle-ring-previous, The Keyboard Macro Ring
	kmacro-edit-lossage, Editing a Keyboard Macro
	kmacro-edit-macro, Editing a Keyboard Macro
	kmacro-end-and-call-macro, Basic Use
	kmacro-end-macro, Basic Use
	kmacro-end-or-call-macro, Basic Use
	kmacro-end-or-call-macro-repeat, The Keyboard Macro Ring
	kmacro-insert-counter, The Keyboard Macro Counter
	kmacro-name-last-macro, Naming and Saving Keyboard Macros
	kmacro-ring-max, The Keyboard Macro Ring
	kmacro-set-counter, The Keyboard Macro Counter
	kmacro-set-format, The Keyboard Macro Counter
	kmacro-start-macro, Basic Use
	kmacro-start-macro-or-insert-counter, Basic Use
	kmacro-step-edit-macro, Stepwise Editing a Keyboard Macro
	Korean, International Character Set Support

L
	L (Dired), Operating on Files
	l (Dired), Updating the Dired Buffer
	l (GDB threads buffer), Threads Buffer
	l (Gnus Group mode), Using the Gnus Group Buffer
	L (Gnus Group mode), Using the Gnus Group Buffer
	l (Rmail), Making Summaries
	label (Rmail), Labels
	landmark, Other Amusements
	landmark game, Other Amusements
	language environment, automatic selection on MS-DOS, International Support on MS-DOS
	language environments, Language Environments
	Lao, International Character Set Support
	large-file-warning-threshold, Visiting Files
	LaTeX mode, TeX Mode
	latex-block-names, LaTeX Editing Commands
	latex-electric-env-pair-mode, LaTeX Editing Commands
	latex-mode, TeX Mode
	latex-mode-hook, TeX Mode Miscellany
	latex-run-command, TeX Printing Commands
	Latin, International Character Set Support
	Latin-1 TeX encoding, TeX Mode Miscellany
	latin1-display, Undisplayable Characters
	lazy search highlighting, Repeating Incremental Search
	leaving Emacs, Exiting Emacs
	LEFT, Changing the Location of Point
	left-char, Changing the Location of Point
	left-word, Changing the Location of Point
	LessTif Widget X Resources, LessTif Menu X Resources
	lgrep, Searching with Grep under Emacs
	libraries, Libraries of Lisp Code for Emacs
	life, Other Amusements
	Life, Other Amusements
	line endings, Coding Systems
	line number commands, Cursor Position Information
	line number display, Optional Mode Line Features
	line spacing, Table of X Resources for Emacs
	line spacing, command-line argument, Other Display Options
	line truncation, and fringes, Continuation Lines, Line Truncation
	line wrapping, Continuation Lines
	line-move-visual, Changing the Location of Point
	line-number-display-limit, Optional Mode Line Features
	line-number-display-limit-width, Optional Mode Line Features
	line-number-mode, Optional Mode Line Features
	lines, highlighting, Interactive Highlighting
	links, Following References with the Mouse
	links (customization buffer), Customization Groups
	Linum mode, Minor Modes
	linum-mode, Minor Modes
	Lisp character syntax, Init File Syntax
	Lisp editing, Editing Programs
	Lisp files byte-compiled by XEmacs, Libraries of Lisp Code for Emacs
	Lisp files, and multibyte operation, Disabling Multibyte Characters
	Lisp mode, Running an External Lisp
	Lisp object syntax, Init File Syntax
	Lisp string syntax, Init File Syntax
	Lisp symbol completion, Completion for Symbol Names
	lisp-body-indent, Customizing Lisp Indentation
	lisp-eval-defun, Running an External Lisp
	lisp-indent-function property, Customizing Lisp Indentation
	lisp-indent-offset, Customizing Lisp Indentation
	lisp-interaction-mode, Lisp Interaction Buffers
	lisp-interaction-mode-hook, Major Modes for Programming Languages
	lisp-mode-hook, Major Modes for Programming Languages
	list commands, Moving in the Parenthesis Structure
	list-abbrevs, Examining and Editing Abbrevs
	list-bookmarks, Bookmarks
	list-buffers, Listing Existing Buffers
	list-character-sets, Charsets
	list-charset-chars, Charsets
	list-coding-systems, Coding Systems
	list-colors-display, Colors for Faces
	list-colors-sort, Colors for Faces
	list-command-history, Repeating Minibuffer Commands
	list-directory, File Directories
	list-directory-brief-switches, File Directories
	list-directory-verbose-switches, File Directories
	list-faces-display, Text Faces
	list-holidays, Holidays
	list-input-methods, Selecting an Input Method
	list-matching-lines, Other Search-and-Loop Commands
	list-packages, The Package Menu Buffer
	list-tags, Tags Table Inquiries
	listing current buffers, Listing Existing Buffers
	listing system fonts, Fonts
	load, Libraries of Lisp Code for Emacs
	load init file of another user, Initial Options
	load path for Emacs Lisp, Libraries of Lisp Code for Emacs
	load-dangerous-libraries, Libraries of Lisp Code for Emacs
	load-file, Libraries of Lisp Code for Emacs
	load-library, Libraries of Lisp Code for Emacs
	load-path, Libraries of Lisp Code for Emacs
	load-theme, Custom Themes
	loading Lisp code, Libraries of Lisp Code for Emacs
	loading Lisp libraries automatically, Init File Examples
	loading Lisp libraries, command-line argument, Action Arguments
	loading several files (in Dired), Operating on Files
	local keymap, Local Keymaps
	local variables, Local Variables
	local variables in files, Local Variables in Files
	local variables, for all files in a directory, Per-Directory Local Variables
	local-set-key, Changing Key Bindings Interactively
	local-unset-key, Changing Key Bindings Interactively
	locale, date format, Updating Time Stamps Automatically
	locale-charset-language-names, Language Environments
	locale-coding-system, Coding Systems for Interprocess Communication
	locale-language-names, Language Environments
	locale-preferred-coding-systems, Language Environments
	locales, Language Environments
	locate, Dired and find
	locate-command, Dired and find
	locate-with-filter, Dired and find
	location of point, Cursor Position Information
	locking (CVS), Options specific for CVS
	locking files, Protection against Simultaneous Editing
	locking, non-strict (RCS), Options for RCS and SCCS
	locking-based version, Merge-based vs lock-based Version Control
	locus, Compilation Mode
	Log Edit mode, Features of the Log Entry Buffer
	log File, types of, Types of Log File
	log-edit-done, Features of the Log Entry Buffer
	log-edit-insert-changelog, Features of the Log Entry Buffer
	log-edit-show-diff, Features of the Log Entry Buffer
	log-edit-show-files, Features of the Log Entry Buffer
	log-view-toggle-entry-display, VC Change Log
	logging keystrokes, Checklist for Bug Reports
	logical order, Bidirectional Editing
	long file names in DOS box under Windows 95/NT, File Names on MS-DOS
	looking for a subject in documentation, Help
	lpr usage under MS-DOS, Printing and MS-Windows
	lpr-add-switches, Printing Hard Copies
	lpr-buffer, Printing Hard Copies
	lpr-command (MS-DOS), Printing and MS-Windows
	lpr-commands, Printing Hard Copies
	lpr-headers-switches, Printing Hard Copies
	lpr-headers-switches (MS-DOS), Printing and MS-Windows
	lpr-printer-switch, Printing Hard Copies
	lpr-region, Printing Hard Copies
	lpr-switches, Printing Hard Copies
	lpr-switches (MS-DOS), Printing and MS-Windows
	LRM, Bidirectional Editing
	ls emulation, Emulation of ls on MS-Windows
	ls-lisp-dirs-first, Emulation of ls on MS-Windows
	ls-lisp-emulation, Emulation of ls on MS-Windows
	ls-lisp-format-time-list, Emulation of ls on MS-Windows
	ls-lisp-ignore-case, Emulation of ls on MS-Windows
	ls-lisp-support-shell-wildcards, Emulation of ls on MS-Windows
	ls-lisp-use-insert-directory-program, Emulation of ls on MS-Windows
	ls-lisp-use-localized-time-format, Emulation of ls on MS-Windows
	ls-lisp-verbosity, Emulation of ls on MS-Windows
	Lucid Widget X Resources, Lucid Menu And Dialog X Resources
	lunar-phases, Phases of the Moon
	lzh, File Archives

M
	M (Calendar mode), Phases of the Moon
	m (Calendar mode), Displaying the Diary
	m (Dired), Dired Marks vs. Flags
	M (Dired), Operating on Files
	m (Rmail), Sending Replies
	M-, Kinds of User Input
	M-!, Single Shell Commands
	M-$, Checking and Correcting Spelling
	M-$ (Dired), Hiding Subdirectories
	M-%, Query Replace
	M-% (Incremental search), Special Input for Incremental Search
	M-&, Single Shell Commands
	M-', Controlling Abbrev Expansion
	M-*, Finding a Tag
	M-,, Searching and Replacing with Tags Tables
	M--, Numeric Arguments
	M-- M-c, Case Conversion
	M-- M-l, Case Conversion
	M-- M-u, Case Conversion
	M-., Finding a Tag
	M-/, Dynamic Abbrev Expansion
	M-1, Numeric Arguments
	M-:, Evaluating Emacs Lisp Expressions
	M-;, Comment Commands
	M-<, Changing the Location of Point
	M-< (Calendar mode), Beginning or End of Week, Month or Year
	M-< (DocView mode), DocView Navigation
	M-<down> (Org Mode), Org Mode
	M-<left> (Org Mode), Org Mode
	M-<right> (Org Mode), Org Mode
	M-<up> (Org Mode), Org Mode
	M-=, Cursor Position Information
	M-= (Calendar mode), Counting Days
	M-= (Dired), File Comparison with Dired
	M->, Changing the Location of Point
	M-> (Calendar mode), Beginning or End of Week, Month or Year
	M-> (DocView mode), DocView Navigation
	M-? (Nroff mode), Nroff Mode
	M-? (Shell mode), Shell Mode
	M-@, Commands to Mark Textual Objects, Words
	M-a, Sentences
	M-a (C mode), C Mode Motion Commands
	M-a (Calendar mode), Beginning or End of Week, Month or Year
	M-b, Changing the Location of Point, Words
	M-c, Case Conversion Commands
	M-d, Words
	M-DEL, Words
	M-DEL (Dired), Dired Marks vs. Flags
	M-Drag-Mouse-1, Secondary Selection
	M-e, Sentences
	M-e (C mode), C Mode Motion Commands
	M-e (Calendar mode), Beginning or End of Week, Month or Year
	M-e (Incremental search), Repeating Incremental Search
	M-f, Changing the Location of Point, Words
	M-g g, Changing the Location of Point
	M-g M-g, Changing the Location of Point
	M-g M-n, Compilation Mode
	M-g n, Compilation Mode
	M-h, Paragraphs
	M-i, Indentation Commands
	M-j, Multiple Lines of Comments
	M-j b (Enriched mode), Justification in Enriched Text
	M-j c (Enriched mode), Justification in Enriched Text
	M-j l (Enriched mode), Justification in Enriched Text
	M-j r (Enriched mode), Justification in Enriched Text
	M-j u (Enriched mode), Justification in Enriched Text
	M-k, Sentences
	M-l, Case Conversion Commands
	M-LEFT, Changing the Location of Point
	M-m, Indentation Commands
	M-m (Rmail), Sending Replies
	M-Mouse-1, Secondary Selection
	M-Mouse-2, Secondary Selection
	M-Mouse-3, Secondary Selection
	M-n (Incremental search), Repeating Incremental Search
	M-n (Log Edit mode), Features of the Log Entry Buffer
	M-n (Man mode), Man Page Lookup
	M-n (minibuffer history), Minibuffer History
	M-n (Nroff mode), Nroff Mode
	M-n (Rmail), Moving Among Messages
	M-n (Shell mode), Shell History Ring
	M-o b (Enriched mode), Faces in Enriched Text
	M-o d (Enriched mode), Faces in Enriched Text
	M-o i (Enriched mode), Faces in Enriched Text
	M-o l (Enriched mode), Faces in Enriched Text
	M-o M-s (Text mode), Explicit Fill Commands
	M-o o (Enriched mode), Faces in Enriched Text
	M-o u (Enriched mode), Faces in Enriched Text
	M-p (Incremental search), Repeating Incremental Search
	M-p (Log Edit mode), Features of the Log Entry Buffer
	M-p (Man mode), Man Page Lookup
	M-p (minibuffer history), Minibuffer History
	M-p (Nroff mode), Nroff Mode
	M-p (Rmail), Moving Among Messages
	M-p (Shell mode), Shell History Ring
	M-q, Explicit Fill Commands
	M-q (C mode), Other Commands for C Mode
	M-q (Fortran mode), Fortran Indentation and Filling Commands
	M-r, Changing the Location of Point
	M-r (Log Edit mode), Features of the Log Entry Buffer
	M-r (minibuffer history), Minibuffer History
	M-r (Shell mode), Shell History Ring
	M-RIGHT, Changing the Location of Point
	M-S (Enriched mode), Justification in Enriched Text
	M-s (Gnus Summary mode), Using the Gnus Summary Buffer
	M-s (Log Edit mode), Features of the Log Entry Buffer
	M-s (minibuffer history), Minibuffer History
	M-s (Rmail), Moving Among Messages
	M-s a C-s (Dired), Other Dired Features
	M-s a M-C-s (Dired), Other Dired Features
	M-s C-e (Incremental search), Isearch Yanking
	M-s f C-s (Dired), Navigation in the Dired Buffer
	M-s f M-C-s (Dired), Navigation in the Dired Buffer
	M-s o, Other Search-and-Loop Commands
	M-s w, Word Search
	M-SPC, Deletion
	M-t, Transposing Text
	M-TAB, Completion for Symbol Names
	M-TAB (customization buffer), Changing a Variable
	M-TAB (Incremental search), Special Input for Incremental Search
	M-TAB (Picture mode), Picture Mode Tabs
	M-TAB (Text mode), Text Mode
	M-TAB vs Alt-TAB (MS-Windows), Keyboard Usage on MS-Windows
	M-TAB, (MS-Windows), Keyboard Usage on MS-Windows
	M-u, Case Conversion Commands
	M-v, Scrolling
	M-v (Calendar mode), Scrolling in the Calendar
	M-w, Other Kill Commands
	M-x, Running Commands by Name
	M-y, Yanking Earlier Kills
	M-y (Incremental search), Isearch Yanking
	M-z, Other Kill Commands
	M-\, Deletion
	M-^, Indentation Commands
	M-^ (Fortran mode), Fortran Indentation and Filling Commands
	M-`, The Menu Bar
	M-{, Paragraphs
	M-{ (Calendar mode), Motion by Standard Lengths of Time
	M-{ (Dired), Dired Marks vs. Flags
	M-|, Single Shell Commands
	M-}, Paragraphs
	M-} (Calendar mode), Motion by Standard Lengths of Time
	M-} (Dired), Dired Marks vs. Flags
	M-~, Commands for Saving Files
	M4 mode, Major Modes for Programming Languages
	Mac OS X, Emacs and Mac OS / GNUstep
	Macintosh, Emacs and Mac OS / GNUstep
	Macintosh end-of-line conversion, Coding Systems
	Macintosh key bindings, Emulation
	macro expansion in C, Other Commands for C Mode
	magic-fallback-mode-alist, Choosing File Modes
	magic-mode-alist, Choosing File Modes
	mail, Sending Mail
	mail (on mode line), Optional Mode Line Features
	mail aliases, Mail Aliases
	MAIL environment variable, Rmail Files and Inboxes
	Mail mode, Mail-Composition Methods
	mail signature, Mail Signature
	mail-abbrev-insert-alias, Mail Aliases
	mail-add-attachment, Mail Miscellany
	mail-citation-hook, Citing Mail
	mail-composition methods, Mail-Composition Methods
	mail-default-headers, Mail Header Fields
	mail-dont-reply-to-names, Sending Replies
	mail-fill-yanked-message, Citing Mail
	mail-from-style, Mail Header Fields
	mail-mode-hook, Mail Miscellany
	mail-other-window, Displaying in Another Window
	mail-personal-alias-file, Mail Aliases
	mail-setup-hook, Mail Miscellany
	mail-signature, Mail Signature
	mail-signature-file, Mail Signature
	mail-text, Mail Header Editing
	mail-user-agent, Mail-Composition Methods
	Mailclient, Mail Sending
	MAILHOST environment variable, Retrieving Mail from Remote Mailboxes
	mailrc file, Mail Aliases
	main border width, command-line argument, Internal and External Borders
	major modes, Major Modes
	major-mode, Major Modes
	make, Running Compilations under Emacs
	make-backup-file-name-function, Single or Numbered Backups
	make-backup-files, Backup Files
	make-frame-command, Creating Frames
	make-frame-on-display, Multiple Displays
	make-indirect-buffer, Indirect Buffers
	make-local-variable, Local Variables
	make-pointer-invisible, Customization of Display, Mouse Avoidance
	make-symbolic-link, Miscellaneous File Operations
	make-variable-buffer-local, Local Variables
	Makefile mode, Major Modes for Programming Languages
	making pictures out of text characters, Editing Pictures
	man page, Man Page Lookup
	man pages, and local file variables, Specifying File Variables
	Man-switches, Man Page Lookup
	manipulating paragraphs, Paragraphs
	manipulating sentences, Sentences
	manipulating text, Commands for Human Languages
	manual pages, on MS-DOS/MS-Windows, Man Page Lookup
	manual version backups, Options specific for CVS
	manual-entry, Man Page Lookup
	manuals, on-line, Other Help Commands
	Marathi, International Character Set Support
	mark, The Mark and the Region
	mark rectangle, Rectangles
	mark ring, The Mark Ring
	mark-defun, Moving by Defuns
	mark-even-if-inactive, Operating on the Region
	mark-page, Pages
	mark-paragraph, Paragraphs
	mark-ring-max, The Mark Ring
	mark-sexp, Commands to Mark Textual Objects, Expressions with Balanced Parentheses
	mark-whole-buffer, Commands to Mark Textual Objects
	mark-word, Commands to Mark Textual Objects, Words
	marking executable files (in Dired), Dired Marks vs. Flags
	marking many files (in Dired), Dired Marks vs. Flags
	marking sections of text, Commands to Mark Textual Objects
	marking subdirectories (in Dired), Dired Marks vs. Flags
	marking symbolic links (in Dired), Dired Marks vs. Flags
	matching parentheses, Matching Parentheses
	matching parenthesis and braces, moving to, Moving in the Parenthesis Structure
	max-mini-window-height, Editing in the Minibuffer
	maximized, command-line argument, Options for Window Size and Position
	maximum buffer size exceeded, error message, Visiting Files
	Mayan calendar, Supported Calendar Systems
	Mayan calendar round, Converting from the Mayan Calendar
	Mayan haab calendar, Converting from the Mayan Calendar
	Mayan long count, Converting from the Mayan Calendar
	Mayan tzolkin calendar, Converting from the Mayan Calendar
	memory full, Running out of Memory
	menu bar, The Menu Bar, Table of X Resources for Emacs
	menu bar access using keyboard (MS-Windows), Keyboard Usage on MS-Windows
	menu bar appearance, Standard Faces
	Menu Bar mode, Menu Bars
	menu face, no effect if customized, Standard Faces
	Menu X Resources (LessTif widgets), LessTif Menu X Resources
	Menu X Resources (Lucid widgets), Lucid Menu And Dialog X Resources
	menu-bar-mode, Menu Bars
	menu-bar-open, The Menu Bar
	Mercurial, Supported Version Control Systems
	merge buffer (Emerge), Overview of Emerge
	merges, failed, Comparing Files
	merging changes, Merging Branches
	merging files, Merging Files with Emerge
	merging-based version, Merge-based vs lock-based Version Control
	message, Sending Mail
	Message mode, Mail Commands
	Message mode for sending mail, Mail-Composition Methods
	message number, Basic Concepts of Rmail
	message-goto-bcc, Mail Header Editing
	message-goto-cc, Mail Header Editing
	message-goto-fcc, Mail Header Editing
	message-goto-subject, Mail Header Editing
	message-goto-to, Mail Header Editing
	message-insert-signature, Mail Signature
	message-kill-buffer-on-exit, Mail Sending
	message-log-max, The Echo Area
	message-send, Mail Sending
	message-send-and-exit, Mail Sending
	message-send-hook, Mail Sending
	message-tab, Mail Header Editing
	message-yank-original, Citing Mail
	message-yank-prefix, Citing Mail
	messages saved from echo area, The Echo Area
	Meta, Kinds of User Input
	Meta (under MS-DOS), Keyboard Usage on MS-DOS
	Meta commands and words, Words
	Metafont mode, Major Modes for Programming Languages
	MH mail interface, Mail-Composition Methods
	Microsoft Office file, Document Viewing
	Microsoft Windows, Emacs and Microsoft Windows/MS-DOS
	Midnight mode, Killing Buffers
	midnight-hook, Killing Buffers
	midnight-mode, Killing Buffers
	MIME, Mail Miscellany
	MIME messages (Rmail), Display of Messages
	minibuffer, The Echo Area, The Minibuffer
	minibuffer confirmation, Completion Exit
	minibuffer history, Minibuffer History
	minibuffer history, searching, Searching the Minibuffer
	minibuffer keymaps, Minibuffer Keymaps
	minibuffer-complete, Completion Commands
	minibuffer-complete-and-exit, Completion Exit
	minibuffer-complete-word, Completion Commands
	minibuffer-inactive-mode, Editing in the Minibuffer
	minibuffer-local-completion-map, Minibuffer Keymaps
	minibuffer-local-filename-completion-map, Minibuffer Keymaps
	minibuffer-local-filename-must-match-map, Minibuffer Keymaps
	minibuffer-local-map, Minibuffer Keymaps
	minibuffer-local-must-match-map, Minibuffer Keymaps
	minibuffer-local-ns-map, Minibuffer Keymaps
	minibuffer-prompt face, Standard Faces
	minibuffer-prompt-properties, Standard Faces
	minimizing, Exiting Emacs
	minimizing a frame at startup, Icons
	minor mode keymap, Local Keymaps
	minor modes, Minor Modes
	mistakes, correcting, Commands for Fixing Typos
	mml-attach-file, Mail Miscellany
	mode commands for minor modes, Minor Modes
	mode hook, Major Modes, Major Modes for Programming Languages
	mode line, The Mode Line
	mode line (MS-DOS), International Support on MS-DOS
	mode line, 3D appearance, Optional Mode Line Features
	mode line, mouse, Mode Line Mouse Commands
	mode, Abbrev, Abbrev Concepts
	mode, archive, File Archives
	mode, Auto Compression, Accessing Compressed Files
	mode, Auto Fill, Auto Fill Mode
	mode, Auto Save, Auto-Saving: Protection Against Disasters
	mode, Auto-Revert, Reverting a Buffer
	mode, AWK, C and Related Modes
	mode, C, C and Related Modes
	mode, C++, C and Related Modes
	mode, Column Number, Optional Mode Line Features
	mode, Comint, Shell Mode
	mode, Compilation, Compilation Mode
	mode, CORBA IDL, C and Related Modes
	mode, CRiSP, Emulation
	mode, Delete Selection, Operating on the Region
	mode, Diff Auto-Refine, Diff Mode
	mode, Dirtrack, Directory Tracking
	mode, DocTeX, TeX Mode
	mode, DocView, Document Viewing
	mode, Electric Indent, Convenience Features for Indentation
	mode, Emacs Lisp, Evaluating Emacs Lisp Expressions
	mode, Enriched, Enriched Text
	mode, Flyspell, Checking and Correcting Spelling
	mode, Follow, Follow Mode
	mode, Font Lock, Font Lock mode
	mode, Fortran, Fortran Mode
	mode, Glasses, Glasses minor mode
	mode, Global Auto-Revert, Reverting a Buffer
	mode, Goto Address, Activating URLs
	mode, GUD Tooltip, Debugger Operation
	mode, Hexl, Editing Binary Files
	mode, Hideshow, Hideshow minor mode
	mode, HTML, SGML and HTML Modes
	mode, Iswitchb, Switching Between Buffers using Substrings
	mode, Java, C and Related Modes
	mode, LaTeX, TeX Mode
	mode, Lisp, Running an External Lisp
	mode, Log Edit, Features of the Log Entry Buffer
	mode, Mail, Mail-Composition Methods
	mode, major, Major Modes
	mode, Menu Bar, Menu Bars
	mode, Message, Mail Commands
	mode, minor, Minor Modes
	mode, Mouse Wheel, Mouse Commands for Editing
	mode, MSB, Customizing Buffer Menus
	mode, nXML, Commands for Human Languages, SGML and HTML Modes
	mode, Objective C, C and Related Modes
	mode, Occur, Other Search-and-Loop Commands
	mode, Occur Edit, Other Search-and-Loop Commands
	mode, Org, Org Mode
	mode, Outline, Outline Mode
	mode, Overwrite, Minor Modes
	mode, Paragraph-Indent Text, Text Mode
	mode, Pike, C and Related Modes
	mode, Scheme, Running an External Lisp
	mode, Scroll Bar, Scroll Bars
	mode, Scroll-all, Convenience Features for Window Handling
	mode, Semantic, Semantic
	mode, SGML, SGML and HTML Modes
	mode, Shell, Shell Mode
	mode, SliTeX, TeX Mode
	mode, tar, File Archives
	mode, Term, Term Mode
	mode, TeX, TeX Mode
	mode, Text, Text Mode
	mode, thumbs, Convenience Features for Finding Files
	mode, Tool Bar, Tool Bars
	mode, Transient Mark, Disabling Transient Mark Mode
	mode, View, View Mode
	mode, Whitespace, Useless Whitespace
	mode, Winner, Convenience Features for Window Handling
	mode, XML, Commands for Human Languages
	mode-line-in-non-selected-windows, Optional Mode Line Features
	mode-require-final-newline, Customizing Saving of Files
	mode-specific-map, Prefix Keymaps
	modes for programming languages, Major Modes for Programming Languages
	modification dates, Updating Time Stamps Automatically
	modified (buffer), Visiting Files
	modifier keys, Kinds of User Input, Modifier Keys
	Modula2 mode, Major Modes for Programming Languages
	moon, phases of, Phases of the Moon
	Morse code, Other Amusements
	morse-region, Other Amusements
	Motif key bindings, Emulation
	mouse avoidance, Mouse Avoidance
	mouse button events, Rebinding Mouse Buttons
	mouse buttons (what they do), Mouse Commands for Editing
	mouse on mode line, Mode Line Mouse Commands
	mouse pointer, Customization of Display
	mouse pointer color, command-line argument, Window Color Options
	mouse support, Using a Mouse in Text Terminals
	mouse support under MS-DOS, Mouse Usage on MS-DOS
	mouse wheel, Mouse Commands for Editing
	Mouse Wheel minor mode, Mouse Commands for Editing
	mouse, and MS-Windows, Mouse Usage on MS-Windows
	mouse, dragging, Mouse Commands for Editing
	mouse, selecting text using, Mouse Commands for Editing
	mouse, set number of buttons, Mouse Usage on MS-DOS
	Mouse-1, Mouse Commands for Editing
	Mouse-1 (mode line), Mode Line Mouse Commands
	Mouse-1 (on buttons), Following References with the Mouse
	Mouse-1 (scroll bar), Mode Line Mouse Commands
	mouse-1-click-in-non-selected-windows, Following References with the Mouse
	Mouse-2, Mouse Commands for Editing
	Mouse-2 (GDB Breakpoints buffer), Breakpoints Buffer
	Mouse-2 (mode line), Mode Line Mouse Commands
	Mouse-2 (on buttons), Following References with the Mouse
	Mouse-3, Mouse Commands for Editing
	Mouse-3 (mode line), Mode Line Mouse Commands
	mouse-autoselect-window, Using Other Windows
	mouse-avoidance-mode, Mouse Avoidance
	mouse-buffer-menu, Customizing Buffer Menus
	mouse-choose-completion, Completion Commands
	mouse-drag-copy-region, Mouse Commands for Editing
	mouse-highlight, Following References with the Mouse
	mouse-save-then-kill, Mouse Commands for Editing
	mouse-scroll-min-lines, Mouse Commands for Editing
	mouse-secondary-save-then-kill, Secondary Selection
	mouse-set-point, Mouse Commands for Editing
	mouse-set-region, Mouse Commands for Editing
	mouse-set-secondary, Secondary Selection
	mouse-start-secondary, Secondary Selection
	mouse-wheel-follow-mouse, Mouse Commands for Editing
	mouse-wheel-mode, Mouse Commands for Editing
	mouse-wheel-progressive-speed, Mouse Commands for Editing
	mouse-wheel-scroll-amount, Mouse Commands for Editing
	mouse-yank-at-click, Mouse Commands for Editing
	mouse-yank-at-point, Mouse Commands for Editing
	mouse-yank-primary, Mouse Commands for Editing
	mouse-yank-secondary, Secondary Selection
	move to beginning or end of function, Moving by Defuns
	move-beginning-of-line, Changing the Location of Point
	move-end-of-line, Changing the Location of Point
	move-to-window-line-top-bottom, Changing the Location of Point
	movemail, Retrieving Mail from Remote Mailboxes
	movemail program, movemail program
	movement, Changing the Location of Point
	moving files (in Dired), Operating on Files
	moving inside the calendar, Movement in the Calendar
	moving point, Changing the Location of Point
	moving text, Yanking
	moving the cursor, Changing the Location of Point
	mpuz, Other Amusements
	MS-DOG, Emacs and MS-DOS
	MS-DOS end-of-line conversion, Coding Systems
	MS-DOS peculiarities, Emacs and MS-DOS
	MS-Windows codepages, International Support on MS-DOS
	MS-Windows keyboard shortcuts, Keyboard Usage on MS-Windows
	MS-Windows, and primary selection, Cut and Paste with Other Window Applications
	MS-Windows, Emacs peculiarities, Emacs and Microsoft Windows/MS-DOS
	MSB mode, Customizing Buffer Menus
	msb-mode, Customizing Buffer Menus
	msdos-set-mouse-buttons, Mouse Usage on MS-DOS
	MULE, International Character Set Support
	multi-occur, Other Search-and-Loop Commands
	multi-occur-in-matching-buffers, Other Search-and-Loop Commands
	multibyte characters, International Character Set Support
	multibyte operation, and Lisp files, Disabling Multibyte Characters
	multiple displays, Multiple Displays
	multiple views of outline, Viewing One Outline in Multiple Views
	multiple windows in Emacs, Multiple Windows
	multiple-file search and replace, Searching and Replacing with Tags Tables
	Multipurpose Internet Mail Extensions, Mail Miscellany
	Multithreaded debugging in GDB, Multithreaded Debugging

N
	n (DocView mode), DocView Navigation
	n (Gnus Group mode), Using the Gnus Group Buffer
	n (Gnus Summary mode), Using the Gnus Summary Buffer
	n (Rmail), Moving Among Messages
	narrow-to-defun, Narrowing
	narrow-to-page, Narrowing
	narrow-to-region, Narrowing
	narrowing, Narrowing
	narrowing, and line number display, Optional Mode Line Features
	nato-region, Other Amusements
	negative-argument, Numeric Arguments
	networked printers (MS-Windows), Printing and MS-Windows
	newline, Inserting Text
	newline-and-indent, Indentation Commands, Basic Program Indentation Commands
	newlines, hard and soft, Hard and Soft Newlines
	newsreader, Gnus
	next, Scrolling
	Next Error Follow mode, Compilation Mode
	next-buffer, Creating and Selecting Buffers
	next-completion, Completion Commands
	next-error, Compilation Mode
	next-error-follow-minor-mode, Compilation Mode
	next-error-highlight, Compilation Mode
	next-file, Tags Table Inquiries
	next-history-element, Minibuffer History
	next-line, Changing the Location of Point
	next-line-add-newlines, Changing the Location of Point
	next-logical-line, Visual Line Mode
	next-matching-history-element, Minibuffer History
	next-screen-context-lines, Scrolling
	NFS and quitting, Quitting and Aborting
	nil, Glossary
	no-conversion, coding system, Coding Systems
	nobreak-char-display, How Text Is Displayed
	non-ASCII characters in .emacs, Non-ASCII Characters in Init Files
	non-ASCII keys, binding, Non-ASCII Characters in Init Files
	non-breaking hyphen, How Text Is Displayed
	non-breaking space, How Text Is Displayed
	non-greedy regexp matching, Syntax of Regular Expressions
	non-integral number of lines in a window, Optional Mode Line Features
	non-selected windows, mode line appearance, Optional Mode Line Features
	Non-stop debugging in GDB, Multithreaded Debugging
	non-strict locking (RCS), Options for RCS and SCCS
	nonincremental search, Nonincremental Search
	normal hook, Hooks
	normal-erase-is-backspace, If DEL Fails to Delete
	normal-erase-is-backspace-mode, If DEL Fails to Delete
	normal-mode, Choosing File Modes
	not-modified, Commands for Saving Files
	nroff, Nroff Mode
	nroff-mode, Nroff Mode
	nroff-mode-hook, Nroff Mode
	ns-pop-up-frames, Windowing System Events under Mac OS / GNUstep
	ns-standard-fontset-spec, Defining fontsets
	NSA, Mail Amusements
	number-to-register, Keeping Numbers in Registers
	numeric arguments, Numeric Arguments
	nXML mode, Commands for Human Languages, SGML and HTML Modes
	nxml-mode, Commands for Human Languages, SGML and HTML Modes

O
	o (Calendar mode), Specified Dates
	o (Dired), Visiting Files in Dired
	O (Dired), Operating on Files
	o (Occur mode), Other Search-and-Loop Commands
	o (Rmail), Copying Messages Out to Files
	Objective C mode, C and Related Modes
	occur, Other Search-and-Loop Commands
	Occur Edit mode, Other Search-and-Loop Commands
	Occur mode, Other Search-and-Loop Commands
	octal escapes, How Text Is Displayed
	Octave mode, Major Modes for Programming Languages
	omer count, Sexp Entries and the Fancy Diary Display
	on-line manuals, Other Help Commands
	open file, Visiting Files
	open-dribble-file, Checklist for Bug Reports
	open-line, Blank Lines
	open-paren-in-column-0-is-defun-start, Left Margin Convention
	open-parenthesis in leftmost column, Left Margin Convention
	open-rectangle, Rectangles
	open-termscript, Checklist for Bug Reports
	OpenDocument file, Document Viewing
	operating on files in Dired, Operating on Files
	operations on a marked region, Operating on the Region
	options (command line), Command Line Arguments for Emacs Invocation
	Org agenda, Org as an organizer
	Org exporting, Org as an authoring system
	Org mode, Org Mode
	org-agenda, Org as an organizer
	org-agenda-file-to-front, Org as an organizer
	org-agenda-files, Org as an organizer
	org-cycle, Org Mode
	org-deadline, Org as an organizer
	org-export, Org as an authoring system
	org-metadown, Org Mode
	org-metaleft, Org Mode
	org-metaright, Org Mode
	org-metaup, Org Mode
	org-mode, Org Mode
	org-publish-project-alist, Org as an authoring system
	org-schedule, Org as an organizer
	org-shifttab, Org Mode
	org-todo, Org as an organizer
	org-todo-keywords, Org as an organizer
	organizer, Org Mode
	other editors, Emulation
	other-frame, Frame Commands
	other-window, Using Other Windows
	out of memory, Running out of Memory
	Outline mode, Outline Mode
	outline with multiple views, Viewing One Outline in Multiple Views
	outline-backward-same-level, Outline Motion Commands
	outline-forward-same-level, Outline Motion Commands
	outline-level, Format of Outlines
	outline-minor-mode, Outline Mode
	outline-minor-mode-prefix, Outline Mode
	outline-mode, Outline Mode
	outline-mode-hook, Outline Mode
	outline-next-visible-heading, Outline Motion Commands
	outline-previous-visible-heading, Outline Motion Commands
	outline-regexp, Format of Outlines
	outline-up-heading, Outline Motion Commands
	overflow-newline-into-fringe, Window Fringes
	overlays at character position, Editing Format Information
	overline-margin, Customization of Display
	override character terminal color support, Window Color Options
	Overwrite mode, Minor Modes
	overwrite-mode, Minor Modes

P
	p (Calendar mode), Converting To Other Calendars
	P (Dired), Operating on Files
	p (DocView mode), DocView Navigation
	p (Gnus Group mode), Using the Gnus Group Buffer
	p (Gnus Summary mode), Using the Gnus Summary Buffer
	p (Rmail), Moving Among Messages
	p d (Calendar mode), Miscellaneous Calendar Commands
	Package, Emacs Lisp Packages
	Package archive, Emacs Lisp Packages
	package directory, Package Files and Directory Layout
	package file, Package Files and Directory Layout
	package menu, The Package Menu Buffer
	package requirements, Package Installation
	package-archives, Package Installation
	package-directory-list, Package Files and Directory Layout
	package-enable-at-startup, Package Installation
	package-initialize, Package Installation
	package-install, Package Installation
	package-install-file, Package Files and Directory Layout
	package-load-list, Package Installation
	package-user-dir, Package Files and Directory Layout
	page-delimiter, Pages
	PageDown, Scrolling
	pages, Pages
	PageUp, Scrolling
	paging in Term mode, Term Mode
	paragraph, base direction, Bidirectional Editing
	Paragraph-Indent Text mode, Text Mode
	paragraph-indent-minor-mode, Text Mode
	paragraph-indent-text-mode, Text Mode
	paragraph-separate, Paragraphs
	paragraph-start, Paragraphs
	paragraphs, Paragraphs
	parasha, weekly, Sexp Entries and the Fancy Diary Display
	parentheses, displaying matches, Matching Parentheses
	parentheses, moving across, Moving in the Parenthesis Structure
	parenthesis in column zero and fontification, Font Lock mode
	parenthetical groupings, Moving in the Parenthesis Structure
	partial completion, How Completion Alternatives Are Chosen
	paste, “Cut and Paste” Operations on Graphical Displays
	pasting, Yanking
	patches, editing, Diff Mode
	patches, sending, Sending Patches for GNU Emacs
	PC key bindings, Emulation
	PC selection, Emulation
	PCL-CVS, VC Directory Mode
	PDB, Running Debuggers Under Emacs
	pdb, Starting GUD
	pdb-mode-hook, GUD Customization
	PDF file, Document Viewing
	per-buffer variables, Local Variables
	per-directory local variables, Per-Directory Local Variables
	Perl mode, Major Modes for Programming Languages
	Perldb, Running Debuggers Under Emacs
	perldb, Starting GUD
	perldb-mode-hook, GUD Customization
	Persian calendar, Supported Calendar Systems
	phases of the moon, Phases of the Moon
	Picture mode and rectangles, Picture Mode Rectangle Commands
	picture-backward-clear-column, Basic Editing in Picture Mode
	picture-backward-column, Basic Editing in Picture Mode
	picture-clear-column, Basic Editing in Picture Mode
	picture-clear-line, Basic Editing in Picture Mode
	picture-clear-rectangle, Picture Mode Rectangle Commands
	picture-clear-rectangle-to-register, Picture Mode Rectangle Commands
	picture-forward-column, Basic Editing in Picture Mode
	picture-mode, Editing Pictures
	picture-mode-hook, Editing Pictures
	picture-motion, Controlling Motion after Insert
	picture-motion-reverse, Controlling Motion after Insert
	picture-move-down, Basic Editing in Picture Mode
	picture-move-up, Basic Editing in Picture Mode
	picture-movement-down, Controlling Motion after Insert
	picture-movement-left, Controlling Motion after Insert
	picture-movement-ne, Controlling Motion after Insert
	picture-movement-nw, Controlling Motion after Insert
	picture-movement-right, Controlling Motion after Insert
	picture-movement-se, Controlling Motion after Insert
	picture-movement-sw, Controlling Motion after Insert
	picture-movement-up, Controlling Motion after Insert
	picture-newline, Basic Editing in Picture Mode
	picture-open-line, Basic Editing in Picture Mode
	picture-set-tab-stops, Picture Mode Tabs
	picture-tab, Picture Mode Tabs
	picture-tab-chars, Picture Mode Tabs
	picture-tab-search, Picture Mode Tabs
	picture-yank-rectangle, Picture Mode Rectangle Commands
	picture-yank-rectangle-from-register, Picture Mode Rectangle Commands
	pictures, Editing Pictures
	Pike mode, C and Related Modes
	plain-tex-mode, TeX Mode
	plain-tex-mode-hook, TeX Mode Miscellany
	planner, Org Mode
	point, Point
	point location, Cursor Position Information
	point location, on MS-DOS, Text Files and Binary Files
	point-to-register, Saving Positions in Registers
	Polish, International Character Set Support
	pong, Other Amusements
	Pong game, Other Amusements
	POP mailboxes, Retrieving Mail from Remote Mailboxes
	pop-global-mark, The Global Mark Ring
	pop-tag-mark, Finding a Tag
	pop-up-frames, How display-buffer works
	position and size of Emacs frame, Options for Window Size and Position
	PostScript file, Document Viewing
	PostScript mode, Major Modes for Programming Languages
	pr-interface, Printing Package
	prefer-coding-system, Recognizing Coding Systems
	prefix arguments, Numeric Arguments
	prefix key, Keys
	prepend-to-buffer, Accumulating Text
	prepend-to-register, Saving Text in Registers
	preprocessor highlighting, Other Commands for C Mode
	pretty-printer, Indentation for Programs
	previous-buffer, Creating and Selecting Buffers
	previous-completion, Completion Commands
	previous-history-element, Minibuffer History
	previous-line, Changing the Location of Point
	previous-logical-line, Visual Line Mode
	previous-matching-history-element, Minibuffer History
	primary Rmail file, Basic Concepts of Rmail
	primary selection, Setting the Mark, Cut and Paste with Other Window Applications
	print-buffer, Printing Hard Copies
	print-buffer (MS-DOS), Printing and MS-Windows
	print-region, Printing Hard Copies
	print-region (MS-DOS), Printing and MS-Windows
	print-region-function (MS-DOS), Printing and MS-Windows
	printer-name, Printing Hard Copies
	printer-name, (MS-DOS/MS-Windows), Printing and MS-Windows
	printing, Printing Hard Copies
	printing character, How Text Is Displayed
	printing files (in Dired), Operating on Files
	Printing package, Printing Package
	printing under MS-DOS, Subprocesses on MS-DOS
	prior, Scrolling
	Prog mode, Hooks
	prog-mode-hook, Major Modes
	program building, Compiling and Testing Programs
	program editing, Editing Programs, Hooks
	Prolog mode, Major Modes for Programming Languages
	prompt, The Minibuffer
	prompt, shell, Shell Prompts
	PS file, Document Viewing
	ps-despool, PostScript Hardcopy
	ps-font-family, Variables for PostScript Hardcopy
	ps-font-info-database, Variables for PostScript Hardcopy
	ps-font-size, Variables for PostScript Hardcopy
	ps-landscape-mode, Variables for PostScript Hardcopy
	ps-lpr-command, Variables for PostScript Hardcopy
	ps-lpr-command (MS-DOS), Printing and MS-Windows
	ps-lpr-switches, Variables for PostScript Hardcopy
	ps-lpr-switches (MS-DOS), Printing and MS-Windows
	ps-multibyte-buffer, Variables for PostScript Hardcopy
	ps-number-of-columns, Variables for PostScript Hardcopy
	ps-page-dimensions-database, Variables for PostScript Hardcopy
	ps-paper-type, Variables for PostScript Hardcopy
	ps-print-buffer, PostScript Hardcopy
	ps-print-buffer (MS-DOS), Printing and MS-Windows
	ps-print-buffer-with-faces, PostScript Hardcopy
	ps-print-color-p, Variables for PostScript Hardcopy
	ps-print-header, Variables for PostScript Hardcopy
	ps-print-region, PostScript Hardcopy
	ps-print-region-with-faces, PostScript Hardcopy
	ps-printer-name, Variables for PostScript Hardcopy
	ps-printer-name (MS-DOS), Printing and MS-Windows
	ps-spool-buffer, PostScript Hardcopy
	ps-spool-buffer (MS-DOS), Printing and MS-Windows
	ps-spool-buffer-with-faces, PostScript Hardcopy
	ps-spool-region, PostScript Hardcopy
	ps-spool-region-with-faces, PostScript Hardcopy
	ps-use-face-background, Variables for PostScript Hardcopy
	puzzles, Other Amusements
	pwd, File Names
	Python mode, Major Modes for Programming Languages

Q
	q (Calendar mode), Miscellaneous Calendar Commands
	q (Dired), Entering Dired
	Q (Dired), Operating on Files
	q (Gnus Group mode), Using the Gnus Group Buffer
	q (Gnus Summary mode), Using the Gnus Summary Buffer
	Q (Rmail summary), Editing in Summaries
	q (Rmail summary), Editing in Summaries
	q (Rmail), Basic Concepts of Rmail
	q (VC Directory), VC Directory Commands
	q (View mode), View Mode
	quail-set-keyboard-layout, Selecting an Input Method
	quail-show-key, Selecting an Input Method
	query replace, Query Replace
	query-replace, Query Replace
	query-replace-regexp, Query Replace
	quietly-read-abbrev-file, Saving Abbrevs
	quit-window, VC Directory Commands, Entering Dired
	quitting, Quitting and Aborting
	quitting (in search), Errors in Incremental Search
	quitting Emacs, Exiting Emacs
	quitting on MS-DOS, Keyboard Usage on MS-DOS
	quoted-insert, Inserting Text
	quoting, Inserting Text
	quoting file names, Quoted File Names

R
	R (Dired), Operating on Files
	r (GDB threads buffer), Threads Buffer
	r (Rmail), Sending Replies
	rar, File Archives
	raw-text, coding system, Coding Systems
	RCS, Supported Version Control Systems
	re-search-backward, Regular Expression Search
	re-search-forward, Regular Expression Search
	read-abbrev-file, Saving Abbrevs
	read-buffer-completion-ignore-case, Completion Options
	read-file-name-completion-ignore-case, Completion Options
	read-mail-command, Mail-Composition Methods
	read-only buffer, Miscellaneous Buffer Operations
	read-only text, killing, Options for Killing
	read-quoted-char-radix, Inserting Text
	reading mail, Reading Mail with Rmail
	rebinding keys, permanently, The Emacs Initialization File
	rebinding major mode keys, Rebinding Keys in Your Init File
	rebinding mouse buttons, Rebinding Mouse Buttons
	rebinding non-ASCII keys, Non-ASCII Characters in Init Files
	recenter, Recentering
	recenter-positions, Recentering
	recenter-redisplay, Recentering
	recenter-top-bottom, Recentering
	recentf-edit-list, Convenience Features for Finding Files
	recentf-mode, Convenience Features for Finding Files
	recentf-save-list, Convenience Features for Finding Files
	recode-file-name, Coding Systems for File Names
	recode-region, Specifying a Coding System for File Text
	recompile, Running Compilations under Emacs
	recover-file, Recovering Data from Auto-Saves
	recover-session, Recovering Data from Auto-Saves
	rectangle, Rectangles
	rectangle highlighting, CUA Bindings
	rectangles and Picture mode, Picture Mode Rectangle Commands
	recursive copying, Operating on Files
	recursive deletion, Deleting Files with Dired
	recursive editing level, Recursive Editing Levels
	recycle bin, Miscellaneous File Operations
	redefining keys, this session, Changing Key Bindings Interactively
	redo, Undo
	refreshing displayed files, Updating the Dired Buffer
	regexp, Syntax of Regular Expressions
	regexp search, Regular Expression Search
	region, The Mark and the Region
	region highlighting, Disabling Transient Mark Mode
	registered file, Concepts of Version Control
	registers, Registers
	registry, setting environment variables (MS-Windows), The MS-Windows System Registry
	registry, setting resources (MS-Windows), X Resources
	regular expression, Syntax of Regular Expressions
	related files, Other Commands for C Mode
	reload files, Saving Emacs Sessions
	remember editing session, Saving Emacs Sessions
	remote file access, Remote Files
	remote host, Remote Host Shell
	remote host, debugging on, Starting GUD
	remote repositories (CVS), Options specific for CVS
	remove indentation, Indentation Commands
	remove-hook, Hooks
	remove-untranslated-filesystem, Text Files and Binary Files
	rename-buffer, Miscellaneous Buffer Operations
	rename-file, Miscellaneous File Operations
	rename-uniquely, Miscellaneous Buffer Operations
	renaming files, Miscellaneous File Operations
	renaming files (in Dired), Operating on Files
	renaming version-controlled files, Deleting and Renaming Version-Controlled Files
	repeat, Repeating a Command
	repeat-complex-command, Repeating Minibuffer Commands
	repeating a command, Repeating a Command
	replace-regexp, Regexp Replacement
	replace-string, Unconditional Replacement
	replacement, Replacement Commands
	reply to a message, Sending Replies
	report-emacs-bug, Checklist for Bug Reports
	reporting bugs, Checklist for Bug Reports
	reposition-window, Recentering
	repository, Concepts of Version Control
	require-final-newline, Customizing Saving of Files
	reread a file, Reverting a Buffer
	resize-mini-windows, Editing in the Minibuffer
	resizing minibuffer, Editing in the Minibuffer
	resolving conflicts, Merging Branches
	resource files for GTK, GTK resources
	resource name, command-line argument, X Resources
	resource values, command-line argument, X Resources
	resources, X Resources
	restore session, Saving Emacs Sessions
	restriction, Narrowing
	RET, Inserting Text
	RET (completion in minibuffer), Completion Exit
	RET (Dired), Visiting Files in Dired
	RET (GDB Breakpoints buffer), Breakpoints Buffer
	RET (GDB speedbar), Watch Expressions
	RET (Help mode), Help Mode Commands
	RET (Occur mode), Other Search-and-Loop Commands
	RET (Shell mode), Shell Mode
	retrying a failed message, Sending Replies
	reveal-mode, Outline Visibility Commands
	reverse order in POP inboxes, Retrieving Mail from Remote Mailboxes
	reverse video, command-line argument, Window Color Options
	revert-buffer, Reverting a Buffer
	revert-buffer (Dired), Updating the Dired Buffer
	revert-buffer-with-coding-system, Specifying a Coding System for File Text
	revert-without-query, Reverting a Buffer
	revision, Concepts of Version Control
	revision ID, Concepts of Version Control
	revision ID in version control, Advanced Control in C-x v v
	revision tag, Revision Tags
	RGB triplet, Colors for Faces
	rgrep, Searching with Grep under Emacs
	RIGHT, Changing the Location of Point
	right-char, Changing the Location of Point
	right-to-left text, Bidirectional Editing
	right-word, Changing the Location of Point
	risky variable, Safety of File Variables
	RLM, Bidirectional Editing
	Rlogin, Remote Host Shell
	Rmail, Reading Mail with Rmail
	rmail, Reading Mail with Rmail
	Rmail file sorting, Sorting the Rmail File
	rmail-add-label, Labels
	rmail-automatic-folder-directives, Copying Messages Out to Files
	rmail-beginning-of-message, Scrolling Within a Message
	rmail-bury, Basic Concepts of Rmail
	rmail-continue, Sending Replies
	rmail-decode-mime-charset, Recognizing Coding Systems
	rmail-delete-after-output, Copying Messages Out to Files
	rmail-delete-backward, Deleting Messages
	rmail-delete-forward, Deleting Messages
	rmail-delete-message-hook, Deleting Messages
	rmail-displayed-headers, Display of Messages
	rmail-edit-current-message, Editing Within a Message
	rmail-edit-mode-hook, Editing Within a Message
	rmail-enable-mime, Display of Messages
	rmail-enable-mime-composing, Sending Replies
	rmail-end-of-message, Scrolling Within a Message
	rmail-epa-decrypt, Display of Messages
	rmail-expunge, Deleting Messages
	rmail-expunge-and-save, Basic Concepts of Rmail
	rmail-file-coding-system, Recognizing Coding Systems
	rmail-file-name, Basic Concepts of Rmail
	rmail-first-message, Moving Among Messages
	rmail-forward, Sending Replies
	rmail-get-new-mail, Multiple Rmail Files
	rmail-highlighted-headers, Display of Messages
	rmail-ignored-headers, Display of Messages
	rmail-inbox-list, Multiple Rmail Files
	rmail-input, Multiple Rmail Files
	rmail-kill-label, Labels
	rmail-last-message, Moving Among Messages
	rmail-mail, Sending Replies
	rmail-mail-new-frame, Sending Replies
	rmail-mime, Display of Messages
	rmail-mime-next-item, Display of Messages
	rmail-mime-previous-item, Display of Messages
	rmail-mime-toggle-hidden, Display of Messages
	rmail-mode, Reading Mail with Rmail
	rmail-mode-hook, Reading Mail with Rmail
	rmail-movemail-flags, Retrieving Mail from Remote Mailboxes
	rmail-movemail-program, movemail program
	rmail-movemail-search-path, movemail program
	rmail-next-labeled-message, Labels
	rmail-next-message, Moving Among Messages
	rmail-next-same-subject, Moving Among Messages
	rmail-next-undeleted-message, Moving Among Messages
	rmail-nonignored-headers, Display of Messages
	rmail-output, Copying Messages Out to Files
	rmail-output-as-seen, Copying Messages Out to Files
	rmail-output-body-to-file, Copying Messages Out to Files
	rmail-output-file-alist, Copying Messages Out to Files
	rmail-preserve-inbox, Rmail Files and Inboxes
	rmail-previous-labeled-message, Labels
	rmail-previous-message, Moving Among Messages
	rmail-previous-same-subject, Moving Among Messages
	rmail-previous-undeleted-message, Moving Among Messages
	rmail-primary-inbox-list, Rmail Files and Inboxes
	rmail-quit, Basic Concepts of Rmail
	rmail-redecode-body, Rmail and Coding Systems
	rmail-redisplay-summary, Editing in Summaries
	rmail-remote-password, Retrieving Mail from Remote Mailboxes
	rmail-remote-password-required, Retrieving Mail from Remote Mailboxes
	rmail-reply, Sending Replies
	rmail-resend, Sending Replies
	rmail-retry-failure, Sending Replies
	rmail-retry-ignored-headers, Sending Replies
	rmail-search, Moving Among Messages
	rmail-secondary-file-directory, Multiple Rmail Files
	rmail-secondary-file-regexp, Multiple Rmail Files
	rmail-show-message, Moving Among Messages
	rmail-sort-by-author, Sorting the Rmail File
	rmail-sort-by-correspondent, Sorting the Rmail File
	rmail-sort-by-date, Sorting the Rmail File
	rmail-sort-by-labels, Sorting the Rmail File
	rmail-sort-by-lines, Sorting the Rmail File
	rmail-sort-by-recipient, Sorting the Rmail File
	rmail-sort-by-subject, Sorting the Rmail File
	rmail-summary, Making Summaries
	rmail-summary-bury, Editing in Summaries
	rmail-summary-by-labels, Making Summaries
	rmail-summary-by-recipients, Making Summaries
	rmail-summary-by-regexp, Making Summaries
	rmail-summary-by-senders, Making Summaries
	rmail-summary-by-topic, Making Summaries
	rmail-summary-line-count-flag, Making Summaries
	rmail-summary-quit, Editing in Summaries
	rmail-summary-undelete-many, Editing in Summaries
	rmail-summary-window-size, Making Summaries
	rmail-summary-wipe, Editing in Summaries
	rmail-toggle-header, Display of Messages
	rmail-undelete-previous-message, Deleting Messages
	Romanian, International Character Set Support
	rosh hodesh, Sexp Entries and the Fancy Diary Display
	rot13 code, Reading Rot13 Messages
	rot13-other-window, Reading Rot13 Messages
	Ruby mode, Major Modes for Programming Languages
	run-lisp, Running an External Lisp
	run-scheme, Running an External Lisp
	runemacs.exe, How to Start Emacs on MS-Windows
	running a hook, Hooks
	running Lisp functions, Compiling and Testing Programs

S
	S (Calendar mode), Times of Sunrise and Sunset
	s (Calendar mode), Displaying the Diary
	S (Dired), Operating on Files
	s (Dired), Updating the Dired Buffer
	s (Gnus Summary mode), Using the Gnus Summary Buffer
	s (Rmail), Basic Concepts of Rmail
	s (View mode), View Mode
	S-Mouse-2, Hideshow minor mode
	S-Mouse-3 (FFAP), Finding Files and URLs at Point
	S-TAB (customization buffer), Customization Groups
	S-TAB (Help mode), Help Mode Commands
	S-TAB (Org Mode), Org Mode
	safe-local-eval-forms, Safety of File Variables
	safe-local-variable-values, Safety of File Variables
	same-window-buffer-names, How display-buffer works
	same-window-regexps, How display-buffer works
	save-abbrevs, Saving Abbrevs
	save-buffer, Commands for Saving Files
	save-buffers-kill-terminal, Exiting Emacs
	save-interprogram-paste-before-kill, Using the Clipboard
	save-some-buffers, Commands for Saving Files
	saved echo area messages, The Echo Area
	saving a setting, Changing a Variable
	saving file name in a register, Keeping File Names in Registers
	saving files, Visiting Files
	saving keyboard macros, Naming and Saving Keyboard Macros
	saving number in a register, Keeping Numbers in Registers
	saving position in a register, Saving Positions in Registers
	saving rectangle in a register, Saving Rectangles in Registers
	saving sessions, Saving Emacs Sessions
	saving text in a register, Saving Text in Registers
	saving window configuration in a register, Saving Window Configurations in Registers
	SCCS, Supported Version Control Systems
	Scheme mode, Running an External Lisp
	scheme-mode, Running an External Lisp
	scheme-mode-hook, Major Modes for Programming Languages
	screen, The Organization of the Screen
	screen reader software, MS-Windows, Miscellaneous Windows-specific features
	script mode, Initial Options
	Scroll Bar mode, Scroll Bars
	Scroll-all mode, Convenience Features for Window Handling
	scroll-all-mode, Convenience Features for Window Handling, Emulation
	scroll-bar-mode, Scroll Bars
	scroll-bar-width, Scroll Bars
	scroll-command property, Scrolling
	scroll-conservatively, Automatic Scrolling
	scroll-down, Scrolling
	scroll-down-aggressively, Automatic Scrolling
	scroll-down-command, Scrolling
	scroll-down-line, Scrolling
	scroll-error-top-bottom, Scrolling
	scroll-left, Horizontal Scrolling
	scroll-margin, Automatic Scrolling
	scroll-other-window, Using Other Windows
	scroll-preserve-screen-position, Scrolling
	scroll-right, Horizontal Scrolling
	scroll-step, Automatic Scrolling
	scroll-up, Scrolling
	scroll-up-aggressively, Automatic Scrolling
	scroll-up-command, Scrolling
	scroll-up-line, Scrolling
	scrollbar width, Table of X Resources for Emacs
	scrolling, Scrolling
	scrolling all windows, Emulation
	scrolling in the calendar, Scrolling in the Calendar
	scrolling windows together, Convenience Features for Window Handling
	SDB, Running Debuggers Under Emacs
	sdb, Starting GUD
	sdb-mode-hook, GUD Customization
	search and replace in multiple files, Searching and Replacing with Tags Tables
	search and replace in multiple files (in Dired), Operating on Files
	search for a regular expression, Regular Expression Search
	search multiple files (in Dired), Operating on Files
	search ring, Repeating Incremental Search
	search-and-replace commands, Replacement Commands
	search-backward, Nonincremental Search
	search-forward, Nonincremental Search
	search-whitespace-regexp, Regular Expression Search
	searching, Searching and Replacement
	searching Dired buffers, Navigation in the Dired Buffer
	searching documentation efficiently, Help
	searching in Rmail, Moving Among Messages
	searching multiple files via Dired, Other Dired Features
	secondary selection, Secondary Selection
	sections of manual pages, Man Page Lookup
	select all, Commands to Mark Textual Objects
	select-active-regions, Cut and Paste with Other Window Applications
	select-frame-by-name, Non-Window Terminals
	selected buffer, Using Multiple Buffers
	selected window, Concepts of Emacs Windows
	selecting buffers in other windows, Displaying in Another Window
	selection, primary, Cut and Paste with Other Window Applications
	selective display, Selective Display
	selective undo, Undo
	selective-display-ellipses, Selective Display
	self-documentation, Help
	Semantic mode, Semantic
	Semantic package, Semantic
	send-invisible, Shell Mode
	send-mail-function, Mail Sending
	sending mail, Sending Mail
	sending patches for GNU Emacs, Sending Patches for GNU Emacs
	Sendmail, Mail Sending
	sendmail-coding-system, Choosing Coding Systems for Output, Mail Sending
	sentence-end, Sentences
	sentence-end-double-space, Sentences
	sentence-end-without-period, Sentences
	sentences, Sentences
	serial-term, Serial Terminal
	server file, emacsclient Options
	server, using Emacs as, Using Emacs as a Server
	server-edit, Invoking emacsclient
	server-eval-at, Using Emacs as a Server
	server-host, emacsclient Options
	server-kill-new-buffers, Invoking emacsclient
	server-name, Using Emacs as a Server
	server-port, emacsclient Options
	server-side fonts, Fonts
	server-start, Using Emacs as a Server
	server-temp-file-regexp, Invoking emacsclient
	server-use-tcp, emacsclient Options
	server-window, Invoking emacsclient
	set buffer face height, Text Scale
	set-buffer-file-coding-system, Specifying a Coding System for File Text
	set-buffer-process-coding-system, Coding Systems for Interprocess Communication
	set-face-background, Colors for Faces
	set-face-foreground, Colors for Faces
	set-file-modes, Miscellaneous File Operations
	set-file-name-coding-system, Coding Systems for File Names
	set-fill-column, Explicit Fill Commands
	set-fill-prefix, The Fill Prefix
	set-fontset-font, Modifying Fontsets
	set-frame-name, Non-Window Terminals
	set-fringe-style, Window Fringes
	set-goal-column, Changing the Location of Point
	set-input-method, Selecting an Input Method
	set-justification-center, Justification in Enriched Text
	set-justification-full, Justification in Enriched Text
	set-justification-left, Justification in Enriched Text
	set-justification-none, Justification in Enriched Text
	set-justification-right, Justification in Enriched Text
	set-keyboard-coding-system, Coding Systems for Terminal I/O
	set-language-environment, Language Environments
	set-language-environment-hook, Language Environments
	set-left-margin, Indentation in Enriched Text
	set-locale-environment, Language Environments
	set-mark-command, Setting the Mark
	set-mark-command-repeat-pop, The Mark Ring
	set-next-selection-coding-system, Coding Systems for Interprocess Communication
	set-right-margin, Indentation in Enriched Text
	set-selection-coding-system, Coding Systems for Interprocess Communication
	set-selective-display, Selective Display
	set-terminal-coding-system, Coding Systems for Terminal I/O
	set-variable, Examining and Setting Variables
	set-visited-file-name, Commands for Saving Files
	setenv, Environment Variables
	setq-default, Local Variables
	setting a mark, The Mark and the Region
	setting variables, Examining and Setting Variables
	settings, Easy Customization Interface
	settings, how to save, Changing a Variable
	sexp, Expressions with Balanced Parentheses
	sexp diary entries, Sexp Entries and the Fancy Diary Display
	SGML mode, SGML and HTML Modes
	sgml-attributes, SGML and HTML Modes
	sgml-close-tag, SGML and HTML Modes
	sgml-delete-tag, SGML and HTML Modes
	sgml-mode, SGML and HTML Modes
	sgml-name-8bit-mode, SGML and HTML Modes
	sgml-name-char, SGML and HTML Modes
	sgml-skip-tag-backward, SGML and HTML Modes
	sgml-skip-tag-forward, SGML and HTML Modes
	sgml-tag, SGML and HTML Modes
	sgml-tag-help, SGML and HTML Modes
	sgml-tags-invisible, SGML and HTML Modes
	sgml-validate, SGML and HTML Modes
	sgml-xml-mode, SGML and HTML Modes
	shadow files, Shadowing Files
	shadow-initialize, Shadowing Files
	shell, Interactive Subshell
	shell commands, Running Shell Commands from Emacs
	shell commands, Dired, Shell Commands in Dired
	SHELL environment variable, Interactive Subshell
	Shell mode, Shell Mode
	shell scripts, and local file variables, Specifying File Variables
	shell-backward-command, Shell Mode
	shell-cd-regexp, Directory Tracking
	shell-command, Single Shell Commands
	shell-command-default-error-buffer, Single Shell Commands
	shell-command-on-region, Single Shell Commands
	shell-command-regexp, Shell Mode
	shell-completion-execonly, Shell Mode Options
	shell-completion-fignore, Shell Mode
	shell-file-name, Single Shell Commands
	shell-forward-command, Shell Mode
	shell-input-ring-file-name, Shell History Ring
	shell-popd-regexp, Directory Tracking
	shell-prompt-pattern, Shell Prompts
	shell-pushd-dextract, Shell Mode Options
	shell-pushd-dunique, Shell Mode Options
	shell-pushd-regexp, Directory Tracking
	shell-pushd-tohome, Shell Mode Options
	Shell-script mode, Major Modes for Programming Languages
	shelves in version control, VC Directory Commands
	shift-selection, Setting the Mark, Shift Selection
	Show Paren mode, Matching Parentheses
	show-all, Outline Visibility Commands
	show-branches, Outline Visibility Commands
	show-children, Outline Visibility Commands
	show-entry, Outline Visibility Commands
	show-paren-mode, Matching Parentheses
	show-subtree, Outline Visibility Commands
	show-trailing-whitespace, Useless Whitespace
	showing hidden subdirectories (Dired), Hiding Subdirectories
	shrink-window-horizontally, Deleting and Rearranging Windows
	shrink-window-if-larger-than-buffer, Deleting and Rearranging Windows
	shy group, in regexp, Backslash in Regular Expressions
	signing files (in Dired), Operating on Files
	Simula mode, Major Modes for Programming Languages
	simulation of middle mouse button, Mouse Usage on MS-Windows
	simultaneous editing, Protection against Simultaneous Editing
	site init file, The Emacs Initialization File
	site-start.el file, not loading, Initial Options
	site-start.el, the site startup file, The Emacs Initialization File
	size of file, warning when visiting, Visiting Files
	size of minibuffer, Editing in the Minibuffer
	size-indication-mode, Optional Mode Line Features
	slashes repeated in file name, Minibuffers for File Names
	SliTeX mode, TeX Mode
	slitex-mode, TeX Mode
	slitex-mode-hook, TeX Mode Miscellany
	Slovak, International Character Set Support
	Slovenian, International Character Set Support
	slow display during scrolling, Font Lock mode
	small-temporary-file-directory, Backup Files
	Smerge mode, Comparing Files
	smerge-mode, Comparing Files
	SMTP, Mail Sending
	snake, Other Amusements
	Snake, Other Amusements
	soft hyphen, How Text Is Displayed
	soft newline, Hard and Soft Newlines
	solitaire, Other Amusements
	sort-columns, Sorting Text
	sort-fields, Sorting Text
	sort-fold-case, Sorting Text
	sort-lines, Sorting Text
	sort-numeric-base, Sorting Text
	sort-numeric-fields, Sorting Text
	sort-pages, Sorting Text
	sort-paragraphs, Sorting Text
	sorting, Sorting Text
	sorting diary entries, Fancy Diary Display
	sorting Dired buffer, Updating the Dired Buffer
	sorting Rmail file, Sorting the Rmail File
	Spanish, International Character Set Support
	SPC (Calendar mode), Miscellaneous Calendar Commands
	SPC (completion), Completion Commands
	SPC (Dired), Navigation in the Dired Buffer
	SPC (DocView mode), DocView Navigation
	SPC (GDB Breakpoints buffer), Breakpoints Buffer
	SPC (Gnus Group mode), Using the Gnus Group Buffer
	SPC (Gnus Summary mode), Using the Gnus Summary Buffer
	SPC (Rmail), Scrolling Within a Message
	SPC (View mode), View Mode
	specific version control system, Advanced Control in C-x v v
	specify default font from the command line, Font Specification Options
	specify end-of-line conversion, Specifying a Coding System for File Text
	specifying fullscreen for Emacs frame, Options for Window Size and Position
	speedbar, Speedbar Frames
	spell-checking the active region, Checking and Correcting Spelling
	spelling, checking and correcting, Checking and Correcting Spelling
	splash screen, Initial Options
	split-height-threshold, How display-buffer works
	split-line, Indentation Commands
	split-width-threshold, How display-buffer works
	split-window-below, Splitting Windows
	split-window-keep-point, Splitting Windows
	split-window-right, Splitting Windows
	splitting columns, Two-Column Editing
	splitting table cells, Commands for Table Cells
	spook, Mail Amusements
	standard colors on a character terminal, Window Color Options
	standard fontset, Defining fontsets
	standard-display-8bit, Unibyte Editing Mode
	standard-fontset-spec, Defining fontsets
	standard-indent, Indentation in Enriched Text
	start directory, MS-Windows, How to Start Emacs on MS-Windows
	start iconified, command-line argument, Icons
	starting Emacs, Entering Emacs
	starting Emacs on MS-Windows, How to Start Emacs on MS-Windows
	startup (command line arguments), Command Line Arguments for Emacs Invocation
	startup (init file), The Emacs Initialization File
	startup fontset, Defining fontsets
	startup message, Initial Options
	startup screen, Entering Emacs
	stashes in version control, VC Directory Commands
	string substitution, Replacement Commands
	string syntax, Init File Syntax
	string-insert-rectangle, Rectangles
	string-rectangle, Rectangles
	style (for indentation), Customizing C Indentation
	subdirectories in Dired, Subdirectories in Dired
	subprocesses on MS-Windows, Subprocesses on Windows 9X/ME and Windows NT/2K/XP
	subscribe groups, Using the Gnus Group Buffer
	subshell, Running Shell Commands from Emacs
	substitute-key-definition, Init File Examples
	subtree (Outline mode), Outline Visibility Commands
	Subversion, Supported Version Control Systems
	subword-mode, Other Commands for C Mode
	suggest-key-bindings, Running Commands by Name
	summary (Rmail), Summaries
	summing time intervals, Summing Time Intervals
	sunrise and sunset, Times of Sunrise and Sunset
	sunrise-sunset, Times of Sunrise and Sunset
	Super (under MS-DOS), Keyboard Usage on MS-DOS
	suspend-frame, Exiting Emacs, Frame Commands
	suspending, Exiting Emacs
	suspicious constructions in C, C++, Other Commands for C Mode
	SVN, Supported Version Control Systems
	switch buffers, Creating and Selecting Buffers
	switch-to-buffer, Creating and Selecting Buffers
	switch-to-buffer-other-frame, Creating and Selecting Buffers
	switch-to-buffer-other-window, Creating and Selecting Buffers, Displaying in Another Window
	switch-to-completions, Completion Commands
	switches (command line), Command Line Arguments for Emacs Invocation
	symbolic links (and version control), General Options
	symbolic links (creation in Dired), Operating on Files
	symbolic links (creation), Miscellaneous File Operations
	symbolic links (visiting), File Name Aliases
	synchronizing windows, Follow Mode
	synchronous X mode, Table of X Resources for Emacs
	syntax highlighting and coloring, Font Lock mode
	syntax of regexps, Syntax of Regular Expressions
	system-wide packages, Package Files and Directory Layout

T
	t, Glossary
	t (Calendar mode), Writing Calendar Files
	t (Dired), Dired Marks vs. Flags
	T (Dired), Operating on Files
	t (Rmail), Display of Messages
	TAB (and major modes), Major Modes
	TAB (completion), Completion Example, Completion Commands
	TAB (customization buffer), Customization Groups
	TAB (GUD), Commands of GUD
	TAB (Help mode), Help Mode Commands
	TAB (indentation), Indentation
	TAB (Message mode), Mail Header Editing
	TAB (Org Mode), Org Mode
	TAB (programming modes), Basic Program Indentation Commands
	TAB (Shell mode), Shell Mode
	TAB (Text mode), Text Mode
	tab stops, Tab Stops
	tab-always-indent, Convenience Features for Indentation
	tab-stop-list, Tab Stops
	tab-to-tab-stop, Indentation Commands
	tab-width, How Text Is Displayed, Tabs vs. Spaces
	tabify, Tabs vs. Spaces
	table creation, Creating a Table
	table dimensions, Table Miscellany
	table for HTML and LaTeX, Table Miscellany
	table mode, Editing Text-based Tables
	table recognition, Table Recognition
	table to text, Converting Between Plain Text and Tables
	table-backward-cell, Commands for Table Cells
	table-capture, Converting Between Plain Text and Tables
	table-cell-horizontal-chars, What is a Text-based Table?
	table-cell-intersection-char, What is a Text-based Table?
	table-cell-vertical-char, What is a Text-based Table?
	table-detect-cell-alignment, Cell Justification
	table-fixed-width-mode, Editing Text-based Tables
	table-forward-cell, Commands for Table Cells
	table-generate-source, Table Miscellany
	table-heighten-cell, Commands for Table Cells
	table-insert, Creating a Table
	table-insert-column, Table Rows and Columns
	table-insert-row, Table Rows and Columns
	table-insert-sequence, Table Miscellany
	table-justify, Cell Justification
	table-narrow-cell, Commands for Table Cells
	table-query-dimension, Table Miscellany
	table-recognize, Table Recognition
	table-recognize-cell, Table Recognition
	table-recognize-region, Table Recognition
	table-recognize-table, Table Recognition
	table-release, Converting Between Plain Text and Tables
	table-shorten-cell, Commands for Table Cells
	table-span-cell, Commands for Table Cells
	table-split-cell, Commands for Table Cells
	table-split-cell-horizontally, Commands for Table Cells
	table-split-cell-vertically, Commands for Table Cells
	table-unrecognize, Table Recognition
	table-unrecognize-cell, Table Recognition
	table-unrecognize-region, Table Recognition
	table-unrecognize-table, Table Recognition
	table-widen-cell, Commands for Table Cells
	tabs, Indentation
	tags and tag tables, Tags Tables
	tags for version control, Revision Tags
	tags, C++, Tags Tables
	tags-apropos, Tags Table Inquiries
	tags-apropos-additional-actions, Tags Table Inquiries
	tags-apropos-verbose, Tags Table Inquiries
	tags-based completion, Completion for Symbol Names
	tags-case-fold-search, Searching and Replacing with Tags Tables
	tags-file-name, Selecting a Tags Table
	tags-loop-continue, Searching and Replacing with Tags Tables
	tags-query-replace, Searching and Replacing with Tags Tables
	tags-search, Searching and Replacing with Tags Tables
	tags-table-list, Selecting a Tags Table
	tags-tag-face, Tags Table Inquiries
	Tar mode, File Archives
	Tcl mode, Major Modes for Programming Languages
	Telnet, Remote Host Shell
	temporary-file-directory, Backup Files
	term, Emacs Terminal Emulator
	TERM environment variable, Checklist for Bug Reports
	Term mode, Term Mode
	term-char-mode, Term Mode
	term-file-prefix, Terminal-specific Initialization
	term-line-mode, Term Mode
	term-pager-toggle, Term Mode
	term-setup-hook, Terminal-specific Initialization
	terminal emulators, mouse support, Using a Mouse in Text Terminals
	terminal, serial, Serial Terminal
	termscript file, Checklist for Bug Reports
	tetris, Other Amusements
	Tetris, Other Amusements
	TeX encoding, TeX Mode Miscellany
	TeX mode, TeX Mode
	tex-bibtex-command, TeX Printing Commands
	tex-bibtex-file, TeX Printing Commands
	tex-buffer, TeX Printing Commands
	tex-close-latex-block, LaTeX Editing Commands
	tex-compile, TeX Printing Commands
	tex-default-mode, TeX Mode
	tex-directory, TeX Printing Commands
	tex-dvi-print-command, TeX Printing Commands
	tex-dvi-view-command, TeX Printing Commands
	tex-file, TeX Printing Commands
	tex-insert-braces, TeX Editing Commands
	tex-insert-quote, TeX Editing Commands
	tex-kill-job, TeX Printing Commands
	tex-latex-block, LaTeX Editing Commands
	tex-main-file, TeX Printing Commands
	tex-mode, TeX Mode
	tex-mode-hook, TeX Mode Miscellany
	tex-print, TeX Printing Commands
	tex-recenter-output-buffer, TeX Printing Commands
	tex-region, TeX Printing Commands
	tex-run-command, TeX Printing Commands
	tex-shell-hook, TeX Mode Miscellany
	tex-start-commands, TeX Printing Commands
	tex-start-options, TeX Printing Commands
	tex-terminate-paragraph, TeX Editing Commands
	tex-validate-region, TeX Editing Commands
	tex-view, TeX Printing Commands
	TEXEDIT environment variable, Using Emacs as a Server
	TEXINPUTS environment variable, TeX Printing Commands
	text, Commands for Human Languages
	text and binary files on MS-DOS/MS-Windows, Text Files and Binary Files
	text buttons, Following References with the Mouse
	text colors, from command line, Window Color Options
	text cursor, Displaying the Cursor
	Text mode, Text Mode
	text properties at point, Introduction to International Character Sets
	text properties of characters, Editing Format Information
	text terminal, Non-Window Terminals
	text to table, Converting Between Plain Text and Tables
	text-based tables, Editing Text-based Tables
	text-based tables, splitting cells, Commands for Table Cells
	text-mode, Text Mode
	text-mode-hook, Major Modes, Text Mode
	text-scale-adjust, Text Scale
	text-scale-decrease, Text Scale
	text-scale-increase, Text Scale
	text-scale-mode, Text Scale
	text-scale-set, Text Scale
	text/enriched MIME format, Enriched Text
	Thai, International Character Set Support
	thumbs-mode, Convenience Features for Finding Files
	Tibetan, International Character Set Support
	time (on mode line), Optional Mode Line Features
	time intervals, summing, Summing Time Intervals
	time stamps, Updating Time Stamps Automatically
	time-stamp, Updating Time Stamps Automatically
	timeclock, Summing Time Intervals
	timeclock-ask-before-exiting, Summing Time Intervals
	timeclock-change, Summing Time Intervals
	timeclock-file, Summing Time Intervals
	timeclock-in, Summing Time Intervals
	timeclock-modeline-display, Summing Time Intervals
	timeclock-out, Summing Time Intervals
	timeclock-reread-log, Summing Time Intervals
	timeclock-when-to-leave, Summing Time Intervals
	timeclock-workday-remaining, Summing Time Intervals
	TLS encryption (Rmail), Retrieving Mail from Remote Mailboxes
	tmm-menubar, The Menu Bar
	TODO item, Org as an organizer
	toggle-debug-on-error, Checklist for Bug Reports
	toggle-enable-multibyte-characters, Disabling Multibyte Characters
	toggle-gdb-all-registers, Other GDB Buffers
	toggle-input-method, Selecting an Input Method
	toggle-read-only, Miscellaneous Buffer Operations
	toggle-scroll-bar, Scroll Bars
	toggle-truncate-lines, Line Truncation
	toggling marks (in Dired), Dired Marks vs. Flags
	tool bar, Table of X Resources for Emacs
	Tool Bar mode, Tool Bars
	Tool Bar position, Tool Bars
	Tool Bar style, Tool Bars
	tool-bar-mode, Tool Bars
	tool-bar-style, Tool Bars
	tooltip-delay, Tooltips
	tooltip-mode, Tooltips
	tooltips, Help on Active Text and Tooltips, Tooltips
	top level, The Mode Line
	top-level, Quitting and Aborting
	tower of Hanoi, Other Amusements
	TPU, Emulation
	tpu-edt-on, Emulation
	track-eol, Changing the Location of Point
	trailing whitespace, Useless Whitespace
	Tramp, Remote Files
	Transient Mark mode, Disabling Transient Mark Mode
	transient-mark-mode, Disabling Transient Mark Mode
	transpose-chars, Transposing Text
	transpose-lines, Transposing Text
	transpose-sexps, Expressions with Balanced Parentheses
	transpose-words, Transposing Text
	transposition of expressions, Expressions with Balanced Parentheses
	trash, Miscellaneous File Operations
	triple clicks, Rebinding Mouse Buttons
	truenames of files, File Name Aliases
	truncate-lines, Line Truncation
	truncate-partial-width-windows, Line Truncation, Splitting Windows
	truncation, Continuation Lines, Line Truncation
	tty-suppress-bold-inverse-default-colors, Customization of Display
	Turkish, International Character Set Support
	turn multibyte support on or off, Disabling Multibyte Characters
	two directories (in Dired), Operating on Files
	two-column editing, Two-Column Editing
	types of log file, Types of Log File
	typos, fixing, Commands for Fixing Typos

U
	u (Calendar mode), Holidays
	u (Dired deletion), Deleting Files with Dired
	u (Dired), Dired Marks vs. Flags
	U (Dired), Dired Marks vs. Flags
	u (Gnus Group mode), Using the Gnus Group Buffer
	u (Rmail), Deleting Messages
	ucs-insert, Inserting Text
	unbalanced parentheses and quotes, Commands for Editing with Parentheses
	uncomment-region, Comment Commands
	uncompression, Accessing Compressed Files
	undecided, coding system, Coding Systems
	undeletion (Rmail), Deleting Messages
	underline-minimum-offset, Customization of Display
	undigestify, Digest Messages
	undigestify-rmail-message, Digest Messages
	undisplayable characters, Introduction to International Character Sets
	undo, Undo
	undo limit, Undo
	undo-limit, Undo
	undo-only, Undo
	undo-outer-limit, Undo
	undo-strong-limit, Undo
	undoing window configuration changes, Convenience Features for Window Handling
	unexpand-abbrev, Controlling Abbrev Expansion
	unforward-rmail-message, Sending Replies
	unhighlight-regexp, Interactive Highlighting
	Unibyte operation, Unibyte Editing Mode
	unibyte operation, and Lisp files, Disabling Multibyte Characters
	unibyte-display-via-language-environment, Unibyte Editing Mode
	Unicode, Introduction to International Character Sets
	Unicode characters, inserting, Inserting Text
	unique buffer names, Making Buffer Names Unique
	uniquify-buffer-name-style, Making Buffer Names Unique
	universal-argument, Numeric Arguments
	universal-coding-system-argument, Specifying a Coding System for File Text
	unmarking files (in Dired), Dired Marks vs. Flags
	unmorse-region, Other Amusements
	unsubscribe groups, Using the Gnus Group Buffer
	untabify, Tabs vs. Spaces
	untranslated file system, Text Files and Binary Files
	unused lines, Useless Whitespace
	unzip archives, File Archives
	UP, Changing the Location of Point
	UP (minibuffer history), Minibuffer History
	up-list, TeX Editing Commands
	upcase file names, Transforming File Names in Dired
	upcase-region, Case Conversion Commands
	upcase-word, Case Conversion Commands
	updating Dired buffer, Updating the Dired Buffer
	URL, viewing in help, Help Mode Commands
	URLs, Following URLs
	URLs, activating, Activating URLs
	use-dialog-box, Using Dialog Boxes
	use-file-dialog, Using Dialog Boxes
	use-hard-newlines, Hard and Soft Newlines
	Usenet news, Gnus
	user name for remote file access, Remote Files
	user option, Easy Customization Interface
	user options, changing, Changing a Variable
	user-full-name, Mail Header Fields
	user-mail-address, Mail Header Fields, Init File Examples
	user-mail-address, initialization, General Variables
	UTF-8, Language Environments

V
	v (Dired), Visiting Files in Dired
	v (Rmail), Display of Messages
	variable, Variables
	variables, changing, Changing a Variable
	VC Directory buffer, VC Directory Mode
	VC filesets, Basic Editing under Version Control
	VC mode line indicator, Version Control and the Mode Line
	vc-annotate, Examining And Comparing Old Revisions
	vc-backend-header, Inserting Version Control Headers
	vc-command-messages, General Options
	vc-consult-headers, Inserting Version Control Headers, Options for RCS and SCCS
	vc-create-tag, Revision Tags
	vc-cvs-global-switches, Options specific for CVS
	vc-cvs-stay-local, The VC Directory Buffer, Options specific for CVS
	vc-delete-file, Deleting and Renaming Version-Controlled Files
	vc-diff, Examining And Comparing Old Revisions
	vc-diff-switches, Examining And Comparing Old Revisions
	vc-dir, VC Directory Mode
	vc-dir-mark, VC Directory Commands
	vc-dir-mark-all-files, VC Directory Commands
	vc-directory-exclusion-list, The VC Directory Buffer
	vc-ediff, Examining And Comparing Old Revisions
	vc-follow-symlinks, General Options
	vc-handled-backends, Customizing VC
	vc-insert-headers, Inserting Version Control Headers
	vc-log-mode-hook, Features of the Log Entry Buffer
	vc-log-show-limit, VC Change Log
	vc-make-backup-files, Backup Files, General Options
	vc-mistrust-permissions, Options for RCS and SCCS
	vc-next-action, Basic Editing under Version Control
	vc-path, General Options
	vc-print-log, VC Change Log
	vc-print-root-log, VC Change Log
	vc-pull, Pulling Changes into a Branch
	vc-register, Registering a File for Version Control
	vc-rename-file, Deleting and Renaming Version-Controlled Files
	vc-retrieve-tag, Revision Tags
	vc-revert, Undoing Version Control Actions
	vc-revert-show-diff, Undoing Version Control Actions
	vc-revision-other-window, Examining And Comparing Old Revisions
	vc-root-diff, Examining And Comparing Old Revisions
	vc-static-header-alist, Inserting Version Control Headers
	vc-stay-local, The VC Directory Buffer, Options specific for CVS
	vc-suppress-confirm, General Options
	vc-update-change-log, Change Logs and VC
	verifying digital signatures on files (in Dired), Operating on Files
	version control, Version Control
	version control log, Types of Log File
	version control status, Version Control and the Mode Line
	version-control, Single or Numbered Backups
	VERSION_CONTROL environment variable, Single or Numbered Backups
	vertical scroll bars, command-line argument, Other Display Options
	VHDL mode, Major Modes for Programming Languages
	vi, Emulation
	vi-mode, Emulation
	Vietnamese, International Character Set Support
	View mode, View Mode
	view-buffer, View Mode
	view-echo-area-messages, Other Help Commands
	view-emacs-debugging, Help Files
	view-emacs-FAQ, Help Files
	view-emacs-news, Help Files
	view-emacs-problems, Help Files
	view-emacs-todo, Help Files
	View-exit, View Mode
	view-external-packages, Help Files
	view-file, View Mode
	view-hello-file, Introduction to International Character Sets
	view-lossage, Other Help Commands
	view-order-manuals, Help Files
	View-quit, View Mode
	view-register, Registers
	viewing web pages in help, Help Mode Commands
	views of an outline, Viewing One Outline in Multiple Views
	vip-mode, Emulation
	viper-mode, Emulation
	visible-bell, Customization of Display
	visible-cursor, Displaying the Cursor
	visit-tags-table, Selecting a Tags Table
	visiting files, Visiting Files
	visiting files, command-line argument, Action Arguments
	Visual Line mode, Visual Line Mode
	visual order, Bidirectional Editing
	visual-line-mode, Visual Line Mode

W
	w (Dired), Other Dired Features
	w (Rmail), Copying Messages Out to Files
	w32-alt-is-meta, Keyboard Usage on MS-Windows
	w32-apps-modifier, Keyboard Usage on MS-Windows
	w32-capslock-is-shiftlock, Keyboard Usage on MS-Windows
	w32-charset-info-alist, Specifying Fonts on MS-Windows
	w32-enable-caps-lock, Keyboard Usage on MS-Windows
	w32-enable-num-lock, Keyboard Usage on MS-Windows
	w32-get-true-file-attributes, File Names on MS-Windows
	w32-grab-focus-on-raise, Miscellaneous Windows-specific features
	w32-lwindow-modifier, Keyboard Usage on MS-Windows
	w32-mouse-button-tolerance, Mouse Usage on MS-Windows
	w32-pass-alt-to-system, Keyboard Usage on MS-Windows
	w32-pass-extra-mouse-buttons-to-system, Mouse Usage on MS-Windows
	w32-pass-lwindow-to-system, Keyboard Usage on MS-Windows
	w32-pass-rwindow-to-system, Keyboard Usage on MS-Windows
	w32-quote-process-args, Subprocesses on Windows 9X/ME and Windows NT/2K/XP
	w32-recognize-altgr, Keyboard Usage on MS-Windows
	w32-register-hot-key, Keyboard Usage on MS-Windows
	w32-rwindow-modifier, Keyboard Usage on MS-Windows
	w32-scroll-lock-modifier, Keyboard Usage on MS-Windows
	w32-shell-execute, Subprocesses on Windows 9X/ME and Windows NT/2K/XP
	w32-standard-fontset-spec, Defining fontsets
	w32-swap-mouse-buttons, Mouse Usage on MS-Windows
	w32-unregister-hot-key, Keyboard Usage on MS-Windows
	w32-use-visible-system-caret, Miscellaneous Windows-specific features
	Watching expressions in GDB, Watch Expressions
	wdired mode, Editing the Dired Buffer
	wdired-change-to-wdired-mode, Editing the Dired Buffer
	wdired-finish-edit, Editing the Dired Buffer
	Web, Following URLs
	web pages, viewing in help, Help Mode Commands
	weeks, which day they start on, Beginning or End of Week, Month or Year
	what-cursor-position, Cursor Position Information, Introduction to International Character Sets
	what-line, Cursor Position Information
	what-page, Pages
	where-is, Documentation for a Key
	which-func-modes, Which Function Mode
	which-function-mode, Which Function Mode
	whitespace character, Indentation
	Whitespace mode, Useless Whitespace
	whitespace, trailing, Useless Whitespace
	whitespace-line-column, Useless Whitespace
	whitespace-mode, Useless Whitespace
	whitespace-style, Useless Whitespace
	wide block cursor, Displaying the Cursor
	widen, Narrowing
	widening, Narrowing
	widget-backward, Customization Groups
	widget-complete, Changing a Variable
	widget-forward, Customization Groups
	widgets at buffer position, Editing Format Information
	width and height of Emacs frame, Options for Window Size and Position
	width of the scroll bar, Scroll Bars
	wildcard characters in file names, Visiting Files
	Windmove package, Convenience Features for Window Handling
	windmove-default-keybindings, Convenience Features for Window Handling
	windmove-right, Convenience Features for Window Handling
	window configuration changes, undoing, Convenience Features for Window Handling
	window manager, keys stolen by, Kinds of User Input
	window-configuration-to-register, Saving Window Configurations in Registers
	window-min-height, Deleting and Rearranging Windows
	window-min-width, Deleting and Rearranging Windows
	Windows clipboard support, Mouse Usage on MS-DOS
	windows in Emacs, Multiple Windows
	Windows system menu, Keyboard Usage on MS-Windows
	windows, synchronizing, Follow Mode
	Winner mode, Convenience Features for Window Handling
	winner-mode, Convenience Features for Window Handling
	woman, Man Page Lookup
	word processing, Enriched Text
	word search, Word Search
	word wrap, Continuation Lines, Visual Line Mode
	word-search-backward, Word Search
	word-search-forward, Word Search
	words, Words
	words, case conversion, Case Conversion Commands
	WordStar, Emulation
	wordstar-mode, Emulation
	work file, Concepts of Version Control
	working tree, Concepts of Version Control
	World Wide Web, Following URLs
	wrapping, Continuation Lines
	write-abbrev-file, Saving Abbrevs
	write-file, Commands for Saving Files
	write-region, Miscellaneous File Operations
	write-region-inhibit-fsync, Customizing Saving of Files
	WYSIWYG, Enriched Text

X
	x (Calendar mode), Holidays
	x (Dired), Deleting Files with Dired
	X (Dired), Shell Commands in Dired
	x (Rmail), Deleting Messages
	X cutting and pasting, Cut and Paste with Other Window Applications
	X defaults file, Fonts
	X input methods, Table of X Resources for Emacs
	X Logical Font Description, Fonts
	X resources, X Resources
	X resources file, Fonts
	X selection, Cut and Paste with Other Window Applications
	x-gtk-file-dialog-help-text, Using Dialog Boxes
	x-gtk-show-hidden-files, Using Dialog Boxes
	x-gtk-use-system-tooltips, Tooltips
	x-mouse-click-focus-ignore-position, Mouse Commands for Editing
	x-select-enable-clipboard, Using the Clipboard
	x-select-enable-clipboard-manager, Using the Clipboard
	x-select-enable-primary, Using the Clipboard
	x-select-request-type, Coding Systems for Interprocess Communication
	x-stretch-cursor, Displaying the Cursor
	x-underline-at-descent-line, Customization of Display
	XDB, Running Debuggers Under Emacs
	xdb, Starting GUD
	xdb-mode-hook, GUD Customization
	XIM, Table of X Resources for Emacs
	XLFD, Fonts
	XML schema, SGML and HTML Modes
	xterm, Using a Mouse in Text Terminals

Y
	yahrzeits, Converting From Other Calendars, Sexp Entries and the Fancy Diary Display
	yank, Yanking
	yank-pop, Yanking Earlier Kills
	yank-pop-change-selection, Using the Clipboard
	yank-rectangle, Rectangles
	yanking, Yanking
	yanking previous kills, Yanking Earlier Kills

Z
	Z (Dired), Operating on Files
	zap-to-char, Other Kill Commands
	zip, File Archives
	Zmacs mode, Disabling Transient Mark Mode
	zone, Other Amusements
	zoo, File Archives
	zrgrep, Searching with Grep under Emacs

Chapter . Command-Line Options Index

Index

Symbols
	! (Dired), Shell Commands in Dired
	" (TeX mode), TeX Editing Commands
	# (Dired), Flagging Many Files at Once
	$ (Dired), Hiding Subdirectories
	$ in file names, File Names
	% & (Dired), Flagging Many Files at Once
	% C (Dired), Transforming File Names in Dired
	% d (Dired), Flagging Many Files at Once
	% g (Dired), Dired Marks vs. Flags
	% H (Dired), Transforming File Names in Dired
	% l (Dired), Transforming File Names in Dired
	% m (Dired), Dired Marks vs. Flags
	% R (Dired), Transforming File Names in Dired
	% S (Dired), Transforming File Names in Dired
	% u (Dired), Transforming File Names in Dired
	(in leftmost column, Left Margin Convention
	* ! (Dired), Dired Marks vs. Flags
	* % (Dired), Dired Marks vs. Flags
	* * (Dired), Dired Marks vs. Flags
	* / (Dired), Dired Marks vs. Flags
	* ? (Dired), Dired Marks vs. Flags
	* @ (Dired), Dired Marks vs. Flags
	* c (Dired), Dired Marks vs. Flags
	* C-n (Dired), Dired Marks vs. Flags
	* C-p (Dired), Dired Marks vs. Flags
	* DEL (Dired), Dired Marks vs. Flags
	* m (Dired), Dired Marks vs. Flags
	* s (Dired), Dired Marks vs. Flags
	* t (Dired), Dired Marks vs. Flags
	* u (Dired), Dired Marks vs. Flags
	Messages buffer, The Echo Area
	+ (Dired), Other Dired Features
	+ (DocView mode), DocView Navigation
	+linenum, Action Arguments
	- (DocView mode), DocView Navigation
	-bd, Window Color Options
	-bg, Window Color Options
	-bw, Internal and External Borders
	-chdir, Initial Options
	-cr, Window Color Options
	-d, Initial Options
	-D, Other Display Options
	-daemon, Initial Options
	-f, Action Arguments
	-fg, Window Color Options
	-fh, Options for Window Size and Position
	-fn, Font Specification Options
	-fs, Options for Window Size and Position
	-fw, Options for Window Size and Position
	-g, Options for Window Size and Position
	-ib, Internal and External Borders
	-l, Action Arguments
	-L, Action Arguments
	-lsp, Other Display Options
	-mm, Options for Window Size and Position
	-ms, Window Color Options
	-nbc, Other Display Options
	-nbi, Icons
	-nw, Initial Options
	-q, Initial Options
	-Q, Initial Options
	-r, Window Color Options
	-rv, Window Color Options
	-t, Initial Options
	-T, Frame Titles
	-u, Initial Options
	-vb, Other Display Options
	. (Calendar mode), Specified Dates
	. (Dired), Flagging Many Files at Once
	. (Rmail), Scrolling Within a Message
	.dir-locals.el file, Per-Directory Local Variables
	.emacs file, The Emacs Initialization File
	.mailrc file, Mail Aliases
	.newsrc file, When Gnus Starts Up
	.timelog file, Summing Time Intervals
	/ (Rmail), Scrolling Within a Message
	// in file name, Minibuffers for File Names
	2C-associate-buffer, Two-Column Editing
	2C-dissociate, Two-Column Editing
	2C-merge, Two-Column Editing
	2C-newline, Two-Column Editing
	2C-split, Two-Column Editing
	2C-two-columns, Two-Column Editing
	5x5, Other Amusements
	7z, File Archives
	8-bit display, Unibyte Editing Mode
	8-bit input, Unibyte Editing Mode
	:d (Dired), Operating on Files
	:e (Dired), Operating on Files
	:s (Dired), Operating on Files
	:v (Dired), Operating on Files
	< (Calendar mode), Scrolling in the Calendar
	< (Dired), Moving Over Subdirectories
	< (Rmail), Moving Among Messages
	= (Dired), File Comparison with Dired
	> (Calendar mode), Scrolling in the Calendar
	> (Dired), Moving Over Subdirectories
	> (Rmail), Moving Among Messages
	? (completion), Completion Commands
	^ (Dired), Visiting Files in Dired
	_emacs init file, MS-Windows, HOME and Startup Directories on MS-Windows
	~ (Dired), Flagging Many Files at Once
	~/.emacs file, The Emacs Initialization File
	~/.emacs.d/gtkrc file, GTK resources
	~/.gtkrc-2.0 file, GTK resources
	~/.Xdefaults file, X Resources
	~/.Xresources file, X Resources
	–/—/.-./.../., Other Amusements
	–background-color, Window Color Options
	–basic-display, Other Display Options
	–batch, Initial Options
	–border-color, Window Color Options
	–border-width, Internal and External Borders
	–chdir, Initial Options
	–color, Window Color Options
	–cursor-color, Window Color Options
	–daemon, Initial Options
	–debug-init, Initial Options
	–directory, Action Arguments
	–display, Initial Options
	–eval, Action Arguments
	–execute, Action Arguments
	–file, Action Arguments
	–find-file, Action Arguments
	–font, Font Specification Options
	–foreground-color, Window Color Options
	–fullheight, Options for Window Size and Position
	–fullscreen, Options for Window Size and Position
	–fullwidth, Options for Window Size and Position
	–funcall, Action Arguments
	–geometry, Options for Window Size and Position
	–help, Action Arguments
	–iconic, Icons
	–insert, Action Arguments
	–internal-border, Internal and External Borders
	–kill, Action Arguments
	–line-spacing, Other Display Options
	–load, Action Arguments
	–maximized, Options for Window Size and Position
	–mouse-color, Window Color Options
	–name, X Resources
	–no-bitmap-icon, Icons
	–no-blinking-cursor, Other Display Options
	–no-desktop, Initial Options
	–no-init-file, Initial Options
	–no-site-file, Initial Options
	–no-site-lisp, Initial Options
	–no-splash, Initial Options
	–no-window-system, Initial Options
	–quick, Initial Options
	–reverse-video, Window Color Options
	–script, Initial Options
	–terminal, Initial Options
	–title, Frame Titles
	–user, Initial Options
	–version, Action Arguments
	–vertical-scroll-bars, Other Display Options
	–visit, Action Arguments
	–xrm, X Resources
	‘?’ in display, Introduction to International Character Sets
	‘net use’, and printing on MS-Windows, Printing and MS-Windows

A
	a (Calendar mode), Holidays
	A (Dired), Operating on Files
	a (Rmail), Labels
	A and B buffers (Emerge), Overview of Emerge
	A k (Gnus Group mode), Using the Gnus Group Buffer
	A s (Gnus Group mode), Using the Gnus Group Buffer
	A u (Gnus Group mode), Using the Gnus Group Buffer
	A z (Gnus Group mode), Using the Gnus Group Buffer
	abbrev file, Saving Abbrevs
	Abbrev mode, Abbrev Concepts
	abbrev-all-caps, Controlling Abbrev Expansion
	abbrev-file-name, Saving Abbrevs
	abbrev-mode, Abbrev Concepts
	abbrev-prefix-mark, Controlling Abbrev Expansion
	abbrevs, Abbrevs
	abnormal hook, Hooks
	abort-recursive-edit, Quitting and Aborting
	aborting recursive edit, Quitting and Aborting
	accented characters, Unibyte Editing Mode
	accessible portion, Narrowing
	accumulating scattered text, Accumulating Text
	action options (command line), Command Line Arguments for Emacs Invocation
	active region, The Mark and the Region
	adaptive filling, Adaptive Filling
	adaptive-fill-first-line-regexp, Adaptive Filling
	adaptive-fill-function, Adaptive Filling
	adaptive-fill-mode, Adaptive Filling
	adaptive-fill-regexp, Adaptive Filling
	add-change-log-entry-other-window, Change Log Commands
	add-change-log-entry-other-window, in Diff mode, Diff Mode
	add-dir-local-variable, Per-Directory Local Variables
	add-file-local-variable, Specifying File Variables
	add-file-local-variable-prop-line, Specifying File Variables
	add-global-abbrev, Defining Abbrevs
	add-hook, Hooks
	add-log-always-start-new-record, Change Log Commands
	add-log-keep-changes-together, Change Log Commands
	add-mode-abbrev, Defining Abbrevs
	add-name-to-file, Miscellaneous File Operations
	add-untranslated-filesystem, Text Files and Binary Files
	Adding to the kill ring in Dired., Other Dired Features
	addpm, MS-Windows installation program, The MS-Windows System Registry
	adjust buffer face height, Text Scale
	aggressive scrolling, Automatic Scrolling
	alarm clock, Appointments
	alignment for comments, Comment Commands
	Alt key (MS-Windows), Keyboard Usage on MS-Windows
	Alt key invokes menu (Windows), Keyboard Usage on MS-Windows
	Alt-TAB vs M-TAB (MS-Windows), Keyboard Usage on MS-Windows
	ALTERNATE_EDITOR environment variable, emacsclient Options
	AltGr (MS-Windows), Keyboard Usage on MS-Windows
	AltGr key (MS-Windows), Keyboard Usage on MS-Windows
	ange-ftp, Remote Files
	ange-ftp-default-user, Remote Files
	ange-ftp-gateway-host, Remote Files
	ange-ftp-generate-anonymous-password, Remote Files
	ange-ftp-make-backup-files, Remote Files
	ange-ftp-smart-gateway, Remote Files
	animate, Other Amusements
	animate-birthday-present, Other Amusements
	animated images, Convenience Features for Finding Files
	anonymous FTP, Remote Files
	append-next-kill, Appending Kills
	append-to-buffer, Accumulating Text
	append-to-file, Accumulating Text
	append-to-register, Saving Text in Registers
	appending kills in the ring, Appending Kills
	apply-macro-to-region-lines, Basic Use
	appointment notification, Appointments
	appt-activate, Appointments
	appt-add, Appointments
	appt-audible, Appointments
	appt-delete, Appointments
	appt-delete-window-function, Appointments
	appt-disp-window-function, Appointments
	appt-display-diary, Appointments
	appt-display-duration, Appointments
	appt-display-format, Appointments
	appt-display-mode-line, Appointments
	appt-message-warning-time, Appointments
	appt-warning-time-regexp, Appointments
	apropos, Apropos
	apropos search results, order by score, Apropos
	apropos-command, Apropos
	apropos-do-all, Apropos
	apropos-documentation, Apropos
	apropos-documentation-sort-by-scores, Apropos
	apropos-sort-by-scores, Apropos
	apropos-value, Apropos
	apropos-variable, Apropos
	arc, File Archives
	Arch, Supported Version Control Systems
	Archive mode, File Archives
	arguments (command line), Command Line Arguments for Emacs Invocation
	arguments to commands, Numeric Arguments
	arrow keys, Changing the Location of Point
	ASCII, Kinds of User Input
	ASCII art, Commands for Human Languages
	ask-user-about-lock, Protection against Simultaneous Editing
	Asm mode, Asm Mode
	assembler mode, Asm Mode
	astronomical day numbers, Supported Calendar Systems
	async-shell-command, Single Shell Commands
	attached frame (of speedbar), Speedbar Frames
	attribute (Rmail), Labels
	attributes of mode line, changing, Optional Mode Line Features
	Auto Compression mode, Accessing Compressed Files
	Auto Fill mode, Auto Fill Mode
	Auto Save mode, Auto-Saving: Protection Against Disasters
	auto-coding-alist, Recognizing Coding Systems
	auto-coding-functions, Recognizing Coding Systems
	auto-coding-regexp-alist, Recognizing Coding Systems
	auto-compression-mode, Accessing Compressed Files
	auto-fill-mode, Auto Fill Mode
	auto-hscroll-mode, Horizontal Scrolling
	auto-mode-alist, Choosing File Modes
	auto-mode-case-fold, Choosing File Modes
	Auto-Revert mode, Reverting a Buffer
	auto-revert-check-vc-info, Version Control and the Mode Line
	auto-revert-interval, Reverting a Buffer
	auto-revert-mode, Reverting a Buffer
	auto-revert-tail-mode, Reverting a Buffer
	auto-save for remote files, Auto-Save Files
	auto-save-default, Controlling Auto-Saving
	auto-save-file-name-transforms, Auto-Save Files
	auto-save-interval, Controlling Auto-Saving
	auto-save-list-file-prefix, Recovering Data from Auto-Saves
	auto-save-mode, Controlling Auto-Saving
	auto-save-timeout, Controlling Auto-Saving
	auto-save-visited-file-name, Auto-Save Files
	autoload, Libraries of Lisp Code for Emacs
	autoload Lisp libraries, Init File Examples
	automatic version backups, Options specific for CVS
	avoiding mouse in the way of your typing, Mouse Avoidance
	AWK mode, C and Related Modes

B
	B (Dired), Operating on Files
	b (Rmail summary), Editing in Summaries
	b (Rmail), Basic Concepts of Rmail
	back end (version control), Supported Version Control Systems
	back reference, in regexp, Backslash in Regular Expressions
	back reference, in regexp replacement, Regexp Replacement
	back-to-indentation, Indentation Commands
	background color, Text Faces
	background color, command-line argument, Window Color Options
	background mode, on xterm, General Variables
	background syntax highlighting, Font Lock mode
	BACKSPACE vs DEL, If DEL Fails to Delete
	backtrace for bug reports, Checklist for Bug Reports
	backup file, Backup Files
	backup file names on MS-DOS, File Names on MS-DOS
	backup, and user-id, Copying vs. Renaming
	backup-by-copying, Copying vs. Renaming
	backup-by-copying-when-linked, Copying vs. Renaming
	backup-by-copying-when-mismatch, Copying vs. Renaming
	backup-by-copying-when-privileged-mismatch, Copying vs. Renaming
	backup-directory-alist, Single or Numbered Backups
	backup-enable-predicate, Backup Files
	backups for remote files, Remote Files
	backward-button, Help Mode Commands
	backward-char, Changing the Location of Point
	backward-delete-char-untabify, Major Modes for Programming Languages
	backward-kill-sentence, Sentences
	backward-kill-word, Words
	backward-list, Moving in the Parenthesis Structure
	backward-page, Pages
	backward-paragraph, Paragraphs
	backward-sentence, Sentences
	backward-sexp, Expressions with Balanced Parentheses
	backward-text-line, Nroff Mode
	backward-up-list, Moving in the Parenthesis Structure
	backward-word, Changing the Location of Point, Words
	Bahá'í calendar, Supported Calendar Systems
	balance-windows, Deleting and Rearranging Windows
	balanced expression, Expressions with Balanced Parentheses
	balloon help, Help on Active Text and Tooltips
	base buffer, Indirect Buffers
	base direction of paragraphs, Bidirectional Editing
	batch mode, Initial Options
	battery-mode-line-format, Optional Mode Line Features
	Bazaar, Supported Version Control Systems
	bdf-directory-list, Variables for PostScript Hardcopy
	beginning-of-buffer, Changing the Location of Point
	beginning-of-defun, Moving by Defuns
	beginning-of-visual-line, Visual Line Mode
	bibtex-mode, TeX Mode
	bidi-display-reordering, Bidirectional Editing
	bidi-paragraph-direction, Bidirectional Editing
	bidirectional editing, Bidirectional Editing
	binary files, on MS-DOS/MS-Windows, Text Files and Binary Files
	binary-overwrite-mode, Minor Modes
	binding, Keys and Commands
	binding keyboard macros, Naming and Saving Keyboard Macros
	binding keys, Changing Key Bindings Interactively
	blackbox, Other Amusements
	blank lines, Blank Lines
	blank lines in programs, Multiple Lines of Comments
	blink-cursor-alist, Displaying the Cursor
	blink-cursor-mode, Displaying the Cursor
	blink-matching-delay, Matching Parentheses
	blink-matching-paren, Matching Parentheses
	blink-matching-paren-distance, Matching Parentheses
	blinking cursor, Displaying the Cursor
	blinking cursor disable, command-line argument, Other Display Options
	body lines (Outline mode), Format of Outlines
	bookmark-delete, Bookmarks
	bookmark-insert, Bookmarks
	bookmark-insert-location, Bookmarks
	bookmark-jump, Bookmarks
	bookmark-load, Bookmarks
	bookmark-save, Bookmarks
	bookmark-save-flag, Bookmarks
	bookmark-search-size, Bookmarks
	bookmark-set, Bookmarks
	bookmark-write, Bookmarks
	bookmarks, Bookmarks
	border color, command-line argument, Window Color Options
	borders (X Window System), Internal and External Borders
	boredom, Other Amusements
	brace in column zero and fontification, Font Lock mode
	braces, moving across, Moving in the Parenthesis Structure
	branch (version control), Version Control Branches
	Brief emulation, Emulation
	browse-url, Help Mode Commands, Following URLs
	Browse-URL, Following URLs
	browse-url-at-mouse, Following URLs
	browse-url-at-point, Following URLs
	browse-url-browser-function, Following URLs
	browse-url-mailto-function, Following URLs
	BS (MS-DOS), Keyboard Usage on MS-DOS
	bs-show, Customizing Buffer Menus
	bubbles, Other Amusements
	buffer definitions index, Imenu
	buffer list, customizable, Customizing Buffer Menus
	buffer menu, Operating on Several Buffers, Customizing Buffer Menus
	buffer size display, Optional Mode Line Features
	buffer size, maximum, Using Multiple Buffers
	buffer-file-coding-system, Choosing Coding Systems for Output
	buffer-local hooks, Hooks
	buffer-menu, Operating on Several Buffers
	buffer-menu-other-window, Operating on Several Buffers
	buffer-read-only, Miscellaneous Buffer Operations
	buffer-stale-function, Adding Support for Auto-Reverting additional Buffers.
	buffers, Using Multiple Buffers
	bug tracker, Reading Existing Bug Reports and Known Problems
	bugs, Reporting Bugs
	building programs, Compiling and Testing Programs
	built-in package, The Package Menu Buffer
	button down events, Rebinding Mouse Buttons
	buttons, Following References with the Mouse
	buttons (customization buffer), Customization Groups
	buttons at buffer position, Editing Format Information
	bypassing init and default.el file, Initial Options
	byte code, Libraries of Lisp Code for Emacs
	byte-compiling several files (in Dired), Operating on Files
	bzr, Supported Version Control Systems

C
	C (Dired), Operating on Files
	c (Rmail), Sending Replies
	C editing, Editing Programs
	C mode, C and Related Modes
	C++ class browser, tags, Tags Tables
	C++ mode, C and Related Modes
	C-, Kinds of User Input
	C-/, Undo
	C-@, Setting the Mark
	C-a, Changing the Location of Point
	C-a (Calendar mode), Beginning or End of Week, Month or Year
	C-b, Changing the Location of Point
	C-b (Calendar mode), Motion by Standard Lengths of Time
	c-backslash-region, Other Commands for C Mode
	c-backward-conditional, C Mode Motion Commands
	c-beginning-of-defun, C Mode Motion Commands
	c-beginning-of-statement, C Mode Motion Commands
	C-BREAK (MS-DOS), Keyboard Usage on MS-DOS
	C-c ' (Picture mode), Controlling Motion after Insert
	C-c , j, Semantic
	C-c , J, Semantic
	C-c , l, Semantic
	C-c , SPC, Semantic
	C-c . (C mode), Customizing C Indentation
	C-c . (Picture mode), Controlling Motion after Insert
	C-c . (Shell mode), Shell History Ring
	C-c / (Picture mode), Controlling Motion after Insert
	C-c / (SGML mode), SGML and HTML Modes
	C-c 8 (SGML mode), SGML and HTML Modes
	C-c ; (Fortran mode), Fortran Comments
	C-c < (GUD), Commands of GUD
	C-c < (Picture mode), Controlling Motion after Insert
	C-c > (GUD), Commands of GUD
	C-c > (Picture mode), Controlling Motion after Insert
	C-c ? (SGML mode), SGML and HTML Modes
	C-c @ (Outline minor mode), Outline Mode
	C-c @ C-h, Hideshow minor mode
	C-c @ C-l, Hideshow minor mode
	C-c @ C-M-h, Hideshow minor mode
	C-c @ C-M-s, Hideshow minor mode
	C-c @ C-r, Hideshow minor mode
	C-c @ C-s, Hideshow minor mode
	C-c C-a (C mode), Electric C Characters
	C-c C-a (F90 mode), Motion Commands
	C-c C-a (Log Edit mode), Features of the Log Entry Buffer
	C-c C-a (Message mode), Mail Miscellany
	C-c C-a (Outline mode), Outline Visibility Commands
	C-c C-a (SGML mode), SGML and HTML Modes
	C-c C-a (Shell mode), Shell Mode
	C-c C-b (Help mode), Help Mode Commands
	C-c C-b (Message mode), Mail Header Editing
	C-c C-b (Outline mode), Outline Motion Commands
	C-c C-b (Picture mode), Controlling Motion after Insert
	C-c C-b (SGML mode), SGML and HTML Modes
	C-c C-b (Shell mode), Shell Mode
	C-c C-b (TeX mode), TeX Printing Commands
	C-c C-c (C mode), Comment Commands
	C-c C-c (customization buffer), Changing a Variable
	C-c C-c (Edit Abbrevs), Examining and Editing Abbrevs
	C-c C-c (Edit Tab Stops), Tab Stops
	C-c C-c (Log Edit mode), Features of the Log Entry Buffer
	C-c C-c (Message mode), Mail Sending
	C-c C-c (Outline mode), Outline Visibility Commands
	C-c C-c (Shell mode), Shell Mode
	C-c C-c (TeX mode), TeX Printing Commands
	C-c C-d (C Mode), Hungry Delete Feature in C
	C-c C-d (Fortran mode), Fortran Indentation and Filling Commands
	C-c C-d (GUD), Commands of GUD
	C-c C-d (Log Edit mode), Features of the Log Entry Buffer
	C-c C-d (Org Mode), Org as an organizer
	C-c C-d (Outline mode), Outline Visibility Commands
	C-c C-d (Picture mode), Basic Editing in Picture Mode
	C-c C-d (SGML mode), SGML and HTML Modes
	C-c C-DEL (C Mode), Hungry Delete Feature in C
	C-c C-DELETE (C Mode), Hungry Delete Feature in C
	C-c C-e (C mode), Other Commands for C Mode
	C-c C-e (F90 mode), Motion Commands
	C-c C-e (LaTeX mode), LaTeX Editing Commands
	C-c C-e (Org mode), Org as an authoring system
	C-c C-e (Outline mode), Outline Visibility Commands
	C-c C-e (Shell mode), Shell Mode
	C-c C-f (GUD), Commands of GUD
	C-c C-f (Log Edit mode), Features of the Log Entry Buffer
	C-c C-f (Outline mode), Outline Motion Commands
	C-c C-f (Picture mode), Controlling Motion after Insert
	C-c C-f (SGML mode), SGML and HTML Modes
	C-c C-f (Shell mode), Shell Mode
	C-c C-f (TeX mode), TeX Printing Commands
	C-c C-f C-b (Message mode), Mail Header Editing
	C-c C-f C-c (Message mode), Mail Header Editing
	C-c C-f C-f (Message mode), Mail Header Editing
	C-c C-f C-r (Message mode), Mail Header Editing
	C-c C-f C-s (Message mode), Mail Header Editing
	C-c C-f C-t (Message mode), Mail Header Editing
	C-c C-f C-w (Message mode), Mail Header Editing
	C-c C-i (GUD), Commands of GUD
	C-c C-i (Outline mode), Outline Visibility Commands
	C-c C-j (Term mode), Term Mode
	C-c C-k (Outline mode), Outline Visibility Commands
	C-c C-k (Picture mode), Picture Mode Rectangle Commands
	C-c C-k (Term mode), Term Mode
	C-c C-k (TeX mode), TeX Printing Commands
	C-c C-l (C mode), Electric C Characters
	C-c C-l (Calendar mode), Miscellaneous Calendar Commands
	C-c C-l (GUD), Commands of GUD
	C-c C-l (Outline mode), Outline Visibility Commands
	C-c C-l (Shell mode), Shell History Ring
	C-c C-l (TeX mode), TeX Printing Commands
	C-c C-n (C mode), C Mode Motion Commands
	C-c C-n (Fortran mode), Motion Commands
	C-c C-n (GUD), Commands of GUD
	C-c C-n (Outline mode), Outline Motion Commands
	C-c C-n (Rmail), Moving Among Messages
	C-c C-n (SGML mode), SGML and HTML Modes
	C-c C-n (Shell mode), Shell History Copying
	C-c C-o (LaTeX mode), LaTeX Editing Commands
	C-c C-o (Outline mode), Outline Visibility Commands
	C-c C-o (Shell mode), Shell Mode
	C-c C-p (C mode), C Mode Motion Commands
	C-c C-p (Fortran mode), Motion Commands
	C-c C-p (GUD), Commands of GUD
	C-c C-p (Outline mode), Outline Motion Commands
	C-c C-p (Rmail), Moving Among Messages
	C-c C-p (Shell mode), Shell History Copying
	C-c C-p (TeX mode), TeX Printing Commands
	C-c C-q (C mode), Commands for C Indentation
	C-c C-q (Message mode), Citing Mail
	C-c C-q (Outline mode), Outline Visibility Commands
	C-c C-q (Term mode), Term Mode
	C-c C-r (Fortran mode), Checking Columns in Fortran
	C-c C-r (GUD), Commands of GUD
	C-c C-r (Shell mode), Shell Mode
	C-c C-r (TeX mode), TeX Printing Commands
	C-c C-s (C mode), Other Commands for C Mode
	C-c C-s (GUD), Commands of GUD
	C-c C-s (Message mode), Mail Sending
	C-c C-s (Org Mode), Org as an organizer
	C-c C-s (Outline mode), Outline Visibility Commands
	C-c C-s (Shell mode), Shell Mode
	C-c C-t (GUD), Commands of GUD
	C-c C-t (Org Mode), Org as an organizer
	C-c C-t (Outline mode), Outline Visibility Commands
	C-c C-t (SGML mode), SGML and HTML Modes
	C-c C-u (C mode), C Mode Motion Commands
	C-c C-u (GUD), Commands of GUD
	C-c C-u (Outline mode), Outline Motion Commands
	C-c C-u (Shell mode), Shell Mode
	C-c C-v (SGML mode), SGML and HTML Modes
	C-c C-v (TeX mode), TeX Printing Commands
	C-c C-w (Fortran mode), Checking Columns in Fortran
	C-c C-w (Message mode), Mail Signature
	C-c C-w (Picture mode), Picture Mode Rectangle Commands
	C-c C-w (Shell mode), Shell Mode
	C-c C-x, Folding Editing
	C-c C-x (Picture mode), Picture Mode Rectangle Commands
	C-c C-x (Shell mode), Shell History Ring
	C-c C-y (Message mode), Citing Mail
	C-c C-y (Picture mode), Picture Mode Rectangle Commands
	C-c C-z, Folding Editing
	C-c C-z (Shell mode), Shell Mode
	C-c C-\ (C mode), Other Commands for C Mode
	C-c C-\ (Shell mode), Shell Mode
	C-c DEL (C Mode), Hungry Delete Feature in C
	C-c DELETE (C Mode), Hungry Delete Feature in C
	C-c RET (Goto Address mode), Activating URLs
	C-c RET (Shell mode), Shell History Copying
	C-c TAB (Picture mode), Picture Mode Tabs
	C-c TAB (SGML mode), SGML and HTML Modes
	C-c TAB (TeX mode), TeX Printing Commands
	C-c [(Enriched mode), Indentation in Enriched Text
	C-c [(Org Mode), Org as an organizer
	C-c \ (Picture mode), Controlling Motion after Insert
	C-c] (Enriched mode), Indentation in Enriched Text
	C-c ^ (Picture mode), Controlling Motion after Insert
	C-c ` (Picture mode), Controlling Motion after Insert
	C-c { (TeX mode), TeX Editing Commands
	C-c } (TeX mode), TeX Editing Commands
	c-context-line-break, Other Commands for C Mode
	C-d (Rmail), Deleting Messages
	C-d (Shell mode), Shell Mode
	c-default-style, Customizing C Indentation
	C-Down-Mouse-1, Customizing Buffer Menus
	C-e, Changing the Location of Point
	C-e (Calendar mode), Beginning or End of Week, Month or Year
	c-electric-backspace, Major Modes for Programming Languages
	c-end-of-defun, C Mode Motion Commands
	c-end-of-statement, C Mode Motion Commands
	C-f, Changing the Location of Point
	C-f (Calendar mode), Motion by Standard Lengths of Time
	c-fill-paragraph, Other Commands for C Mode
	c-forward-conditional, C Mode Motion Commands
	C-g, Quitting and Aborting
	C-g (Incremental search), Errors in Incremental Search
	C-g (MS-DOS), Keyboard Usage on MS-DOS
	c-guess, Customizing C Indentation
	c-guess-install, Customizing C Indentation
	C-h, Help
	C-h ., Help on Active Text and Tooltips
	C-h a, Apropos
	C-h b, Other Help Commands
	C-h c, Documentation for a Key
	C-h C, Coding Systems
	C-h C-c, Help Files
	C-h C-d, Help Files
	C-h C-e, Help Files
	C-h C-f, Help Files
	C-h C-h, Help
	C-h C-m, Help Files
	C-h C-n, Help Files
	C-h C-o, Help Files
	C-h C-p, Help Files
	C-h C-t, Help Files
	C-h C-w, Help Files
	C-h C-\, Selecting an Input Method
	C-h d, Apropos
	C-h e, Other Help Commands
	C-h f, Help by Command or Variable Name
	C-h F, Help by Command or Variable Name
	C-h g, Help Files
	C-h h, Introduction to International Character Sets
	C-h i, Other Help Commands
	C-h I, Selecting an Input Method
	C-h k, Documentation for a Key
	C-h K, Documentation for a Key
	C-h l, Other Help Commands
	C-h L, Language Environments
	C-h m, Other Help Commands, Major Modes
	C-h p, Keyword Search for Packages
	C-h P, Keyword Search for Packages
	C-h S, Other Help Commands, Info Documentation Lookup
	C-h t, Basic Editing Commands
	C-h v, Help by Command or Variable Name
	C-h w, Documentation for a Key
	c-hungry-delete-backwards, Hungry Delete Feature in C
	c-hungry-delete-forward, Hungry Delete Feature in C
	c-hungry-delete-key, Hungry Delete Feature in C
	c-indent-command, Basic Program Indentation Commands, Commands for C Indentation
	c-indent-defun, Commands for C Indentation
	c-indent-exp, Commands for C Indentation
	C-j, Indentation Commands
	C-j (and major modes), Major Modes
	C-j (indenting source code), Basic Program Indentation Commands
	C-j (Lisp Interaction mode), Lisp Interaction Buffers
	C-j (MS-DOS), Keyboard Usage on MS-DOS
	C-j (TeX mode), TeX Editing Commands
	C-k, Killing by Lines
	C-k (Gnus Group mode), Using the Gnus Group Buffer
	C-l, Recentering
	C-LEFT, Changing the Location of Point
	C-M-%, Query Replace
	C-M-., Finding a Tag
	C-M-/, Dynamic Abbrev Expansion
	C-M-@, Commands to Mark Textual Objects, Expressions with Balanced Parentheses
	C-M-a, Moving by Defuns
	C-M-b, Expressions with Balanced Parentheses
	C-M-c, Recursive Editing Levels
	C-M-d, Moving in the Parenthesis Structure
	C-M-d (Dired), Moving Over Subdirectories
	C-M-e, Moving by Defuns
	C-M-f, Expressions with Balanced Parentheses
	C-M-f (Rmail), Making Summaries
	C-M-h, Moving by Defuns
	C-M-h (C mode), Moving by Defuns
	C-M-i, Completion for Symbol Names
	C-M-i (customization buffer), Changing a Variable
	C-M-j, Multiple Lines of Comments
	C-M-j (Fortran mode), Fortran Indentation and Filling Commands
	C-M-k, Expressions with Balanced Parentheses
	C-M-l, Recentering
	C-M-l (Rmail), Making Summaries
	C-M-l (Shell mode), Shell Mode
	C-M-n, Moving in the Parenthesis Structure
	C-M-n (Dired), Moving Over Subdirectories
	C-M-n (Fortran mode), Motion Commands
	C-M-n (Rmail), Labels
	C-M-o, Indentation Commands
	C-M-p, Moving in the Parenthesis Structure
	C-M-p (Dired), Moving Over Subdirectories
	C-M-p (Fortran mode), Motion Commands
	C-M-p (Rmail), Labels
	C-M-q, Indenting Several Lines
	C-M-q (C mode), Commands for C Indentation
	C-M-q (Fortran mode), Fortran Indentation and Filling Commands
	C-M-r, Regular Expression Search
	C-M-r (Rmail), Making Summaries
	C-M-s, Regular Expression Search
	C-M-s (Rmail), Making Summaries
	C-M-SPC, Expressions with Balanced Parentheses
	C-M-t, Expressions with Balanced Parentheses
	C-M-t (Rmail), Making Summaries
	C-M-u, Moving in the Parenthesis Structure
	C-M-u (Dired), Moving Over Subdirectories
	C-M-v, Using Other Windows
	C-M-w, Appending Kills
	C-M-w (Incremental search), Isearch Yanking
	C-M-x (Emacs Lisp mode), Evaluating Emacs Lisp Expressions
	C-M-x (Lisp mode), Running an External Lisp
	C-M-x (Scheme mode), Running an External Lisp
	C-M-y (Incremental search), Isearch Yanking
	C-M-\, Indentation Commands
	c-macro-expand, Other Commands for C Mode
	c-mark-function, Moving by Defuns
	c-mode-hook, Major Modes for Programming Languages
	C-Mouse-1, Mouse Clicks for Menus
	C-Mouse-2, Mouse Clicks for Menus
	C-Mouse-2 (mode line), Splitting Windows
	C-mouse-2 (mode line), Mode Line Mouse Commands
	C-Mouse-2 (scroll bar), Splitting Windows
	C-Mouse-3, Mouse Clicks for Menus
	C-Mouse-3 (when menu bar is disabled), Menu Bars
	C-n, Changing the Location of Point
	C-n (Calendar mode), Motion by Standard Lengths of Time
	C-n (Dired), Navigation in the Dired Buffer
	C-o, Blank Lines
	C-o (Dired), Visiting Files in Dired
	C-o (Occur mode), Other Search-and-Loop Commands
	C-o (Rmail), Copying Messages Out to Files
	C-p, Changing the Location of Point
	C-p (Calendar mode), Motion by Standard Lengths of Time
	C-p (Dired), Navigation in the Dired Buffer
	C-q, Inserting Text
	C-r, Basics of Incremental Search
	C-RIGHT, Changing the Location of Point
	C-s, Basics of Incremental Search
	C-S-backspace, Killing by Lines
	C-S-Mouse-3 (FFAP), Finding Files and URLs at Point
	c-set-style, Customizing C Indentation
	c-show-syntactic-information, Other Commands for C Mode
	C-SPC, Setting the Mark
	C-SPC C-SPC, The Mark Ring, Disabling Transient Mark Mode
	C-t, Transposing Text
	C-t d (Image-Dired), Viewing Image Thumbnails in Dired
	C-TAB, File Name Cache
	c-tab-always-indent, Commands for C Indentation
	c-toggle-auto-newline, Electric C Characters
	c-toggle-electric-state, Electric C Characters
	c-toggle-hungry-state, Hungry Delete Feature in C
	C-u, Numeric Arguments
	C-u C-/, Undo
	C-u C-c C-w (Fortran mode), Checking Columns in Fortran
	C-u C-SPC, The Mark Ring
	C-u C-x C-x, Disabling Transient Mark Mode
	C-u C-x v =, Examining And Comparing Old Revisions
	C-u M-;, Comment Commands
	C-u TAB, Indenting Several Lines
	c-up-conditional, C Mode Motion Commands
	C-v, Scrolling
	C-v (Calendar mode), Scrolling in the Calendar
	C-w, Other Kill Commands
	C-w (Incremental search), Isearch Yanking
	C-x #, Invoking emacsclient
	C-x $, Selective Display
	C-x (, Basic Use
	C-x), Basic Use
	C-x +, Deleting and Rearranging Windows
	C-x -, Deleting and Rearranging Windows
	C-x ., The Fill Prefix
	C-x 0, Deleting and Rearranging Windows
	C-x 1, Deleting and Rearranging Windows
	C-x 2, Splitting Windows
	C-x 3, Splitting Windows
	C-x 4, Displaying in Another Window
	C-x 4 ., Finding a Tag
	C-x 4 0, Deleting and Rearranging Windows
	C-x 4 a, Change Log Commands
	C-x 4 b, Creating and Selecting Buffers
	C-x 4 b (Iswitchb mode), Switching Between Buffers using Substrings
	C-x 4 c, Indirect Buffers
	C-x 4 C-o, Displaying in Another Window
	C-x 4 C-o (Iswitchb mode), Switching Between Buffers using Substrings
	C-x 4 d, Entering Dired
	C-x 4 f, Visiting Files
	C-x 4 f (FFAP), Finding Files and URLs at Point
	C-x 4 m, Sending Mail
	C-x 5, Creating Frames
	C-x 5 ., Finding a Tag
	C-x 5 0, Frame Commands
	C-x 5 1, Frame Commands
	C-x 5 2, Creating Frames
	C-x 5 b, Creating and Selecting Buffers
	C-x 5 b (Iswitchb mode), Switching Between Buffers using Substrings
	C-x 5 d, Entering Dired
	C-x 5 f, Visiting Files
	C-x 5 f (FFAP), Finding Files and URLs at Point
	C-x 5 m, Sending Mail
	C-x 5 o, Frame Commands
	C-x 5 r, Creating Frames
	C-x 6 1, Two-Column Editing
	C-x 6 2, Two-Column Editing
	C-x 6 b, Two-Column Editing
	C-x 6 d, Two-Column Editing
	C-x 6 RET, Two-Column Editing
	C-x 6 s, Two-Column Editing
	C-x 8, Unibyte Editing Mode
	C-x 8 RET, Inserting Text
	C-x ;, Options Controlling Comments
	C-x <, Horizontal Scrolling
	C-x =, Cursor Position Information, Introduction to International Character Sets
	C-x >, Horizontal Scrolling
	C-x a g, Defining Abbrevs
	C-x a i g, Defining Abbrevs
	C-x a i l, Defining Abbrevs
	C-x a l, Defining Abbrevs
	C-x b, Creating and Selecting Buffers
	C-x b (Iswitchb mode), Switching Between Buffers using Substrings
	C-x C-+, Text Scale
	C-x C-0, Text Scale
	C-x C-=, Text Scale
	C-x C-a (GUD), Commands of GUD
	C-x C-a C-j (GUD), Commands of GUD
	C-x C-a C-w (GUD), Watch Expressions
	C-x C-b, Listing Existing Buffers
	C-x C-c, Exiting Emacs
	C-x C-c (customization buffer), Changing a Variable
	C-x C-d, File Directories
	C-x C-e, Evaluating Emacs Lisp Expressions
	C-x C-f, Visiting Files
	C-x C-f (FFAP), Finding Files and URLs at Point
	C-x C-k b, Naming and Saving Keyboard Macros
	C-x C-k C-a, The Keyboard Macro Counter
	C-x C-k C-c, The Keyboard Macro Counter
	C-x C-k C-e, Editing a Keyboard Macro
	C-x C-k C-f, The Keyboard Macro Counter
	C-x C-k C-i, The Keyboard Macro Counter
	C-x C-k C-k, The Keyboard Macro Ring
	C-x C-k C-n, The Keyboard Macro Ring
	C-x C-k C-p, The Keyboard Macro Ring
	C-x C-k e, Editing a Keyboard Macro
	C-x C-k l, Editing a Keyboard Macro
	C-x C-k n, Naming and Saving Keyboard Macros
	C-x C-k r, Basic Use
	C-x C-k RET, Editing a Keyboard Macro
	C-x C-k SPC, Stepwise Editing a Keyboard Macro
	C-x C-l, Case Conversion Commands
	C-x C-n, Changing the Location of Point
	C-x C-o, Blank Lines
	C-x C-p, Pages
	C-x C-q, Miscellaneous Buffer Operations
	C-x C-r, Visiting Files
	C-x C-r (FFAP), Finding Files and URLs at Point
	C-x C-s, Commands for Saving Files
	C-x C-s (Custom Themes buffer), Custom Themes
	C-x C-SPC, The Global Mark Ring
	C-x C-t, Transposing Text
	C-x C-u, Case Conversion Commands
	C-x C-v, Visiting Files
	C-x C-v (FFAP), Finding Files and URLs at Point
	C-x C-w, Commands for Saving Files
	C-x C-x, Setting the Mark
	C-x C-z, Running an External Lisp
	C-x C–, Text Scale
	C-x d, Entering Dired
	C-x d (FFAP), Finding Files and URLs at Point
	C-x DEL, Sentences
	C-x e, Basic Use
	C-x ESC ESC, Repeating Minibuffer Commands
	C-x f, Explicit Fill Commands
	C-x h, Commands to Mark Textual Objects
	C-x i, Miscellaneous File Operations
	C-x k, Killing Buffers
	C-x l, Pages
	C-x LEFT, Creating and Selecting Buffers
	C-x m, Sending Mail
	C-x n d, Narrowing
	C-x n n, Narrowing
	C-x n p, Narrowing
	C-x n w, Narrowing
	C-x o, Using Other Windows
	C-x q, Executing Macros with Variations
	C-x r +, Keeping Numbers in Registers
	C-x r b, Bookmarks
	C-x r c, Rectangles
	C-x r d, Rectangles
	C-x r f, Saving Window Configurations in Registers
	C-x r i, Saving Text in Registers
	C-x r j, Saving Positions in Registers
	C-x r k, Rectangles
	C-x r l, Bookmarks
	C-x r m, Bookmarks
	C-x r N, Rectangles
	C-x r n, Keeping Numbers in Registers
	C-x r o, Rectangles
	C-x r r, Saving Rectangles in Registers
	C-x r s, Saving Text in Registers
	C-x r SPC, Saving Positions in Registers
	C-x r t, Rectangles
	C-x r w, Saving Window Configurations in Registers
	C-x r y, Rectangles
	C-x RET, Introduction to International Character Sets
	C-x RET c, Specifying a Coding System for File Text
	C-x RET C-\, Selecting an Input Method
	C-x RET f, Specifying a Coding System for File Text
	C-x RET F, Coding Systems for File Names
	C-x RET k, Coding Systems for Terminal I/O
	C-x RET p, Coding Systems for Interprocess Communication
	C-x RET r, Specifying a Coding System for File Text
	C-x RET t, Coding Systems for Terminal I/O
	C-x RET x, Coding Systems for Interprocess Communication
	C-x RET X, Coding Systems for Interprocess Communication
	C-x RIGHT, Creating and Selecting Buffers
	C-x s, Commands for Saving Files
	C-x SPC, Commands of GUD
	C-x TAB, Indentation Commands
	C-x TAB (Enriched mode), Indentation in Enriched Text
	C-x u, Undo
	C-x v +, Pulling Changes into a Branch
	C-x v =, Examining And Comparing Old Revisions
	C-x v a, Change Logs and VC
	C-x v D, Examining And Comparing Old Revisions
	C-x v d, VC Directory Mode
	C-x v g, Examining And Comparing Old Revisions
	C-x v h, Inserting Version Control Headers
	C-x v i, Registering a File for Version Control
	C-x v l, VC Change Log
	C-x v r, Revision Tags
	C-x v s, Revision Tags
	C-x v u, Undoing Version Control Actions
	C-x v v, Basic Editing under Version Control
	C-x v ~, Examining And Comparing Old Revisions
	C-x w b, Interactive Highlighting
	C-x w h, Interactive Highlighting
	C-x w i, Interactive Highlighting
	C-x w l, Interactive Highlighting
	C-x w r, Interactive Highlighting
	C-x z, Repeating a Command
	C-x [, Pages
	C-x [(Calendar mode), Motion by Standard Lengths of Time
	C-x [(DocView mode), DocView Navigation
	C-x], Pages
	C-x] (Calendar mode), Motion by Standard Lengths of Time
	C-x] (DocView mode), DocView Navigation
	C-x ^, Deleting and Rearranging Windows
	C-x `, Compilation Mode
	C-x }, Deleting and Rearranging Windows
	C-y, Yanking
	C-y (Incremental search), Isearch Yanking
	C-z, Exiting Emacs
	C-z (X windows), Frame Commands
	C-\, Selecting an Input Method
	C-], Quitting and Aborting
	C-_, Undo
	C-_ (Dired), Dired Marks vs. Flags
	cache of file names, File Name Cache
	cal-html-css-default, Writing Calendar Files
	calendar, The Calendar and the Diary
	calendar and HTML, Writing Calendar Files
	calendar and LaTeX, Writing Calendar Files
	calendar layout, Customizing the Calendar
	calendar week numbers, Customizing the Calendar
	calendar, first day of week, Beginning or End of Week, Month or Year
	calendar-astro-goto-day-number, Converting From Other Calendars
	calendar-astro-print-day-number, Converting To Other Calendars
	calendar-backward-day, Motion by Standard Lengths of Time
	calendar-backward-month, Motion by Standard Lengths of Time
	calendar-backward-week, Motion by Standard Lengths of Time
	calendar-bahai-all-holidays-flag, Customizing the Holidays
	calendar-bahai-goto-date, Converting From Other Calendars
	calendar-bahai-print-date, Converting To Other Calendars
	calendar-beginning-of-month, Beginning or End of Week, Month or Year
	calendar-beginning-of-week, Beginning or End of Week, Month or Year
	calendar-beginning-of-year, Beginning or End of Week, Month or Year
	calendar-chinese-goto-date, Converting From Other Calendars
	calendar-chinese-print-date, Converting To Other Calendars
	calendar-christian-all-holidays-flag, Customizing the Holidays
	calendar-coptic-goto-date, Converting From Other Calendars
	calendar-coptic-print-date, Converting To Other Calendars
	calendar-count-days-region, Counting Days
	calendar-cursor-holidays, Holidays
	calendar-date-display-form, Date Display Format
	calendar-date-style, Date Formats
	calendar-daylight-savings-ends, Daylight Saving Time
	calendar-daylight-savings-ends-time, Daylight Saving Time
	calendar-daylight-savings-starts, Daylight Saving Time
	calendar-daylight-time-offset, Daylight Saving Time
	calendar-daylight-time-zone-name, Times of Sunrise and Sunset
	calendar-end-of-month, Beginning or End of Week, Month or Year
	calendar-end-of-week, Beginning or End of Week, Month or Year
	calendar-end-of-year, Beginning or End of Week, Month or Year
	calendar-ethiopic-goto-date, Converting From Other Calendars
	calendar-ethiopic-print-date, Converting To Other Calendars
	calendar-forward-day, Motion by Standard Lengths of Time
	calendar-forward-month, Motion by Standard Lengths of Time
	calendar-forward-week, Motion by Standard Lengths of Time
	calendar-forward-year, Motion by Standard Lengths of Time
	calendar-french-goto-date, Converting From Other Calendars
	calendar-french-print-date, Converting To Other Calendars
	calendar-goto-date, Specified Dates
	calendar-goto-day-of-year, Specified Dates
	calendar-goto-today, Specified Dates
	calendar-hebrew-all-holidays-flag, Customizing the Holidays
	calendar-hebrew-goto-date, Converting From Other Calendars
	calendar-hebrew-list-yahrzeits, Converting From Other Calendars
	calendar-hebrew-print-date, Converting To Other Calendars
	calendar-holiday-marker, Customizing the Calendar
	calendar-holidays, Customizing the Holidays
	calendar-initial-window-hook, Customizing the Calendar
	calendar-intermonth-text, Customizing the Calendar
	calendar-islamic-all-holidays-flag, Customizing the Holidays
	calendar-islamic-goto-date, Converting From Other Calendars
	calendar-islamic-print-date, Converting To Other Calendars
	calendar-iso-goto-date, Converting From Other Calendars
	calendar-iso-goto-week, Specified Dates, Converting From Other Calendars
	calendar-iso-print-date, Converting To Other Calendars
	calendar-julian-goto-date, Converting From Other Calendars
	calendar-julian-print-date, Converting To Other Calendars
	calendar-latitude, Times of Sunrise and Sunset
	calendar-list-holidays, Holidays
	calendar-load-hook, Customizing the Calendar
	calendar-location-name, Times of Sunrise and Sunset
	calendar-longitude, Times of Sunrise and Sunset
	calendar-lunar-phases, Phases of the Moon
	calendar-mark-diary-entries-flag, Displaying the Diary
	calendar-mark-holidays, Holidays
	calendar-mark-holidays-flag, Holidays
	calendar-mark-today, Customizing the Calendar
	calendar-mayan-goto-long-count-date, Converting from the Mayan Calendar
	calendar-mayan-next-calendar-round-date, Converting from the Mayan Calendar
	calendar-mayan-next-haab-date, Converting from the Mayan Calendar
	calendar-mayan-next-tzolkin-date, Converting from the Mayan Calendar
	calendar-mayan-previous-haab-date, Converting from the Mayan Calendar
	calendar-mayan-previous-tzolkin-date, Converting from the Mayan Calendar
	calendar-mayan-print-date, Converting To Other Calendars
	calendar-move-hook, Customizing the Calendar
	calendar-other-month, Specified Dates
	calendar-persian-goto-date, Converting From Other Calendars
	calendar-persian-print-date, Converting To Other Calendars
	calendar-print-day-of-year, Miscellaneous Calendar Commands
	calendar-print-other-dates, Converting To Other Calendars
	calendar-redraw, Miscellaneous Calendar Commands
	calendar-remove-frame-by-deleting, Miscellaneous Calendar Commands
	calendar-scroll-left, Scrolling in the Calendar
	calendar-scroll-left-three-months, Scrolling in the Calendar
	calendar-scroll-right, Scrolling in the Calendar
	calendar-scroll-right-three-months, Scrolling in the Calendar
	calendar-set-date-style, Date Formats
	calendar-standard-time-zone-name, Times of Sunrise and Sunset
	calendar-star-date, Customizing the Calendar
	calendar-sunrise-sunset, Times of Sunrise and Sunset
	calendar-time-display-form, Time Display Format
	calendar-time-zone, Times of Sunrise and Sunset
	calendar-today-invisible-hook, Customizing the Calendar
	calendar-today-marker, Customizing the Calendar
	calendar-today-visible-hook, Customizing the Calendar
	calendar-unmark, Holidays
	calendar-view-diary-initially-flag, Displaying the Diary
	calendar-view-holidays-initially-flag, Holidays
	calendar-week-start-day, Beginning or End of Week, Month or Year
	call Lisp functions, command-line argument, Action Arguments
	camel case, Glasses minor mode
	candle lighting times, Sexp Entries and the Fancy Diary Display
	capitalize-word, Case Conversion Commands
	capitalizing words, Case Conversion Commands
	case conversion, Case Conversion Commands
	case in completion, Completion Options
	case-fold-search, Searching and Case
	case-replace, Replace Commands and Case
	case-sensitivity and completion, Completion Options
	case-sensitivity and tags search, Searching and Replacing with Tags Tables
	categories of characters, Backslash in Regular Expressions
	cd, File Names
	cells, for text-based tables, What is a Text-based Table?
	Celtic, International Character Set Support
	center-line, Explicit Fill Commands
	centering, Explicit Fill Commands
	centralized version control, Decentralized vs Centralized Repositories
	change buffers, Creating and Selecting Buffers
	change Emacs directory, Initial Options
	change log, Change Logs
	Change Log mode, Change Log Commands
	change-log-merge, Change Log Commands
	change-log-mode, Change Log Commands
	change-log-version-info-enabled, Change Log Commands
	change-log-version-number-regexp-list, Change Log Commands
	change-major-mode-with-file-name, Choosing File Modes
	changes, undoing, Undo
	changeset-based version control, Changeset-based vs File-based Version Control
	changing file group (in Dired), Operating on Files
	changing file owner (in Dired), Operating on Files
	changing file permissions (in Dired), Operating on Files
	changing file time (in Dired), Operating on Files
	character set (keyboard), Kinds of User Input
	character set of character at point, Introduction to International Character Sets
	character syntax, Init File Syntax
	characters (in text), How Text Is Displayed
	characters in a certain charset, Charsets
	characters which belong to a specific language, Backslash in Regular Expressions
	characters with no font glyphs, How Text Is Displayed
	characters, inserting by name or code-point, Inserting Text
	charsets, Charsets
	check-parens, Commands for Editing with Parentheses
	checking out files, Concepts of Version Control
	checking spelling, Checking and Correcting Spelling
	checking syntax, Finding Syntax Errors On The Fly
	Chinese, International Character Set Support
	Chinese calendar, Supported Calendar Systems
	choose-completion, Completion Commands
	choosing a major mode, Choosing File Modes
	choosing a minor mode, Choosing File Modes
	ciphers, Other Amusements
	citing mail, Citing Mail
	class browser, C++, Tags Tables
	clean-buffer-list, Killing Buffers
	clear-rectangle, Rectangles
	click events, Rebinding Mouse Buttons
	client frame, emacsclient Options
	client-side fonts, Fonts
	clipboard, Using the Clipboard
	clipboard manager, Using the Clipboard
	clipboard-kill-region, Using the Clipboard
	clipboard-kill-ring-save, Using the Clipboard
	clipboard-yank, Using the Clipboard
	clone-indirect-buffer, Indirect Buffers
	clone-indirect-buffer-hook, Indirect Buffers
	clone-indirect-buffer-other-window, Indirect Buffers
	codepage, MS-DOS, International Support on MS-DOS
	coding, Specifying a File's Coding System
	coding systems, Coding Systems
	collision, Protection against Simultaneous Editing
	colon-double-space, Explicit Fill Commands
	color emulation on black-and-white printers, Variables for PostScript Hardcopy
	color name, Colors for Faces
	color of window, from command line, Window Color Options
	color scheme, Custom Themes
	Column Number mode, Optional Mode Line Features
	column-number-mode, Optional Mode Line Features
	columns (and rectangles), Rectangles
	columns (indentation), Indentation
	columns, splitting, Two-Column Editing
	Comint mode, Shell Mode
	comint-bol-or-process-mark, Shell Mode
	comint-completion-addsuffix, Shell Mode Options
	comint-completion-autolist, Shell Mode Options
	comint-completion-fignore, Shell Mode
	comint-completion-recexact, Shell Mode Options
	comint-continue-subjob, Shell Mode
	comint-copy-old-input, Shell History Copying
	comint-delchar-or-maybe-eof, Shell Mode
	comint-delete-output, Shell Mode
	comint-dynamic-list-filename…, Shell Mode
	comint-dynamic-list-input-ring, Shell History Ring
	comint-get-next-from-history, Shell History Ring
	comint-highlight-input face, Interactive Subshell
	comint-highlight-prompt face, Interactive Subshell
	comint-history-isearch-backward-regexp, Shell History Ring
	comint-input-autoexpand, Shell History References
	comint-input-ignoredups, Shell Mode Options
	comint-input-previous-argument, Shell History Ring
	comint-interrupt-subjob, Shell Mode
	comint-kill-input, Shell Mode
	comint-magic-space, Shell History References
	comint-move-point-for-output, Shell Mode Options
	comint-next-input, Shell History Ring
	comint-next-prompt, Shell History Copying
	comint-previous-input, Shell History Ring
	comint-previous-prompt, Shell History Copying
	comint-prompt-read-only, Shell Mode Options
	comint-quit-subjob, Shell Mode
	comint-run, Shell Mode
	comint-scroll-show-maximum-output, Shell Mode Options
	comint-scroll-to-bottom-on-input, Shell Mode Options
	comint-send-input, Shell Mode
	comint-show-maximum-output, Shell Mode
	comint-show-output, Shell Mode
	comint-stop-subjob, Shell Mode
	comint-strip-ctrl-m, Shell Mode
	comint-truncate-buffer, Shell Mode
	comint-use-prompt-regexp, Shell Prompts
	comint-write-output, Shell Mode
	command, Keys and Commands
	command history, Repeating Minibuffer Commands
	command line arguments, Command Line Arguments for Emacs Invocation
	command-history, Repeating Minibuffer Commands
	command-line-args, Command Line Arguments for Emacs Invocation
	comment-column, Options Controlling Comments
	comment-dwim, Comment Commands
	comment-end, Options Controlling Comments
	comment-indent-function, Options Controlling Comments
	comment-indent-new-line, Multiple Lines of Comments
	comment-kill, Comment Commands
	comment-multi-line, Multiple Lines of Comments
	comment-padding, Options Controlling Comments
	comment-region, Comment Commands
	comment-set-column, Options Controlling Comments
	comment-start, Options Controlling Comments
	comment-start-skip, Options Controlling Comments
	comments, Manipulating Comments
	comments on customized settings, Changing a Variable
	Common Lisp, Running an External Lisp
	compare files (in Dired), File Comparison with Dired
	compare-ignore-case, Comparing Files
	compare-ignore-whitespace, Comparing Files
	compare-windows, Comparing Files
	comparing 3 files (diff3), Comparing Files
	comparing files, Comparing Files
	compilation buffer, keeping point at end, Running Compilations under Emacs
	compilation errors, Running Compilations under Emacs
	Compilation mode, Compilation Mode
	compilation under MS-DOS, Subprocesses on MS-DOS
	compilation-auto-jump-to-first-error, Compilation Mode
	compilation-context-lines, Compilation Mode
	compilation-environment, Running Compilations under Emacs
	compilation-error-regexp-alist, Compilation Mode
	compilation-next-error, Compilation Mode
	compilation-next-file, Compilation Mode
	compilation-previous-error, Compilation Mode
	compilation-previous-file, Compilation Mode
	compilation-scroll-output, Running Compilations under Emacs
	compilation-skip-threshold, Compilation Mode
	compile, Running Compilations under Emacs
	compile (MS-DOS), Subprocesses on MS-DOS
	compile-command, Running Compilations under Emacs
	compile-goto-error, Compilation Mode
	complete key, Keys
	completion, Completion
	completion (Lisp symbols), Completion for Symbol Names
	completion (symbol names), Completion for Symbol Names, Tags Table Inquiries
	completion alternative, Completion
	completion list, Completion Commands
	completion style, How Completion Alternatives Are Chosen
	completion-at-point, Completion for Symbol Names, Shell Mode
	completion-auto-help, Completion Options
	completion-category-overrides, How Completion Alternatives Are Chosen
	completion-cycle-threshold, Completion Options
	completion-ignored-extensions, Completion Options
	completion-styles, How Completion Alternatives Are Chosen
	compose character, Unibyte Editing Mode
	compose-mail, Sending Mail
	compose-mail-other-frame, Sending Mail
	compose-mail-other-window, Sending Mail
	compressing files (in Dired), Operating on Files
	compression, Accessing Compressed Files
	Conf mode, Major Modes for Programming Languages
	confirm-kill-emacs, Exiting Emacs
	confirm-nonexistent-file-or-buffer, Completion Exit
	confirming in the minibuffer, Completion Exit
	conflicts, Merging Branches
	connecting to remote host, Remote Host Shell
	continuation line, Continuation Lines
	contributing to Emacs, Contributing to Emacs Development
	Control, Kinds of User Input
	control character, Kinds of User Input
	control characters on display, How Text Is Displayed
	converting text to upper or lower case, Case Conversion Commands
	Coptic calendar, Supported Calendar Systems
	copy, “Cut and Paste” Operations on Graphical Displays
	copy-dir-locals-to-file-locals, Specifying File Variables
	copy-dir-locals-to-file-locals-prop-line, Specifying File Variables
	copy-directory, Miscellaneous File Operations
	copy-file, Miscellaneous File Operations
	copy-file-locals-to-dir-locals, Per-Directory Local Variables
	copy-rectangle-to-register, Saving Rectangles in Registers
	copy-to-buffer, Accumulating Text
	copy-to-register, Saving Text in Registers
	copying files, Miscellaneous File Operations
	copying files (in Dired), Operating on Files
	copying text, Yanking
	CORBA IDL mode, C and Related Modes
	correcting spelling, Checking and Correcting Spelling
	count-lines-page, Pages
	count-text-lines, Nroff Mode
	count-words, Cursor Position Information
	count-words-region, Cursor Position Information
	CPerl mode, Major Modes for Programming Languages
	cpp-highlight-buffer, Other Commands for C Mode
	crashes, Auto-Saving: Protection Against Disasters
	create a text-based table, Creating a Table
	create-fontset-from-fontset-spec, Defining fontsets
	creating files, Visiting Files
	creating frames, Creating Frames
	CRiSP mode, Emulation
	crisp-mode, Emulation
	crisp-override-meta-x, Emulation
	cryptanalysis, Other Amusements
	CSSC, Supported Version Control Systems
	ctl-arrow, How Text Is Displayed
	ctl-x-4-map, Prefix Keymaps
	ctl-x-map, Prefix Keymaps
	CUA key bindings, CUA Bindings
	cua-enable-cua-keys, CUA Bindings
	cua-mode, CUA Bindings
	current buffer, Using Multiple Buffers
	current function name in mode line, Which Function Mode
	current-input-method, Selecting an Input Method
	current-language-environment, Language Environments
	cursor, Point
	cursor color, command-line argument, Window Color Options
	cursor face, Text Faces, Displaying the Cursor
	cursor in non-selected windows, Displaying the Cursor
	cursor location, Cursor Position Information
	cursor location, on MS-DOS, Text Files and Binary Files
	cursor motion, Changing the Location of Point
	cursor shape on MS-DOS, Display on MS-DOS
	cursor, blinking, Displaying the Cursor
	cursor-in-non-selected-windows, Displaying the Cursor
	cursor-type, Displaying the Cursor
	custom themes, Custom Themes
	custom themes, creating, Creating Custom Themes
	custom-buffer-done-kill, Changing a Variable
	custom-enabled-themes, Custom Themes
	custom-file, Saving Customizations
	custom-safe-themes, Custom Themes
	Custom-save, Changing a Variable
	custom-search-field, Browsing and Searching for Settings
	Custom-set, Changing a Variable
	custom-theme-directory, Custom Themes, Creating Custom Themes
	custom-theme-load-path, Custom Themes
	customizable variable, Easy Customization Interface
	customization, Customization
	customization buffer, Easy Customization Interface
	customization groups, Customization Groups
	customization of menu face, Standard Faces
	customize, Easy Customization Interface
	customize-apropos, Customizing Specific Items
	customize-browse, Browsing and Searching for Settings
	customize-changed, Customizing Specific Items
	customize-create-theme, Creating Custom Themes
	customize-face, Customizing Specific Items
	customize-group, Customizing Specific Items
	customize-option, Customizing Specific Items
	customize-saved, Customizing Specific Items
	customize-themes, Custom Themes
	customize-unsaved, Customizing Specific Items
	customizing faces, Customizing Faces
	customizing Lisp indentation, Customizing Lisp Indentation
	customizing variables, Changing a Variable
	cut, “Cut and Paste” Operations on Graphical Displays
	cut and paste, Glossary
	cutting text, Deletion and Killing
	CVS, Supported Version Control Systems
	cvs, VC Directory Mode
	CVS directory mode, VC Directory Mode
	CWarn mode, Other Commands for C Mode
	cwarn-mode, Other Commands for C Mode
	Cyrillic, International Character Set Support
	Czech, International Character Set Support

D
	d (Calendar mode), Displaying the Diary
	d (Dired), Deleting Files with Dired
	D (Dired), Operating on Files
	D (GDB Breakpoints buffer), Breakpoints Buffer
	D (GDB speedbar), Watch Expressions
	d (GDB threads buffer), Threads Buffer
	d (Rmail), Deleting Messages
	dabbrev-abbrev-char-regexp, Customizing Dynamic Abbreviation
	dabbrev-abbrev-skip-leading-regexp, Customizing Dynamic Abbreviation
	dabbrev-case-fold-search, Customizing Dynamic Abbreviation
	dabbrev-case-replace, Customizing Dynamic Abbreviation
	dabbrev-check-all-buffers, Dynamic Abbrev Expansion
	dabbrev-completion, Dynamic Abbrev Expansion
	dabbrev-expand, Dynamic Abbrev Expansion
	dabbrev-ignored-buffer-regexps, Dynamic Abbrev Expansion
	dabbrev-limit, Dynamic Abbrev Expansion
	daemon, Emacs, Using Emacs as a Server
	day of year, Miscellaneous Calendar Commands
	daylight saving time, Daylight Saving Time
	DBX, Running Debuggers Under Emacs
	dbx, Starting GUD
	dbx-mode-hook, GUD Customization
	dead character, Unibyte Editing Mode
	debbugs package, Reading Existing Bug Reports and Known Problems
	debug-on-event, Checklist for Bug Reports
	debug-on-quit, Checklist for Bug Reports
	debuggers, Running Debuggers Under Emacs
	debugging Emacs, tricks and techniques, Checklist for Bug Reports
	debugging X problems, Table of X Resources for Emacs
	debug_print, Checklist for Bug Reports
	decentralized version control, Decentralized vs Centralized Repositories
	decipher, Other Amusements
	decoding mail messages (Rmail), Rmail and Coding Systems
	decoding non-ASCII keyboard input on X, Coding Systems for Interprocess Communication
	decrease buffer face height, Text Scale
	decrypting files (in Dired), Operating on Files
	default argument, The Minibuffer
	default directory, Minibuffers for File Names, File Names
	default face, Text Faces
	default file name, File Names
	default-directory, File Names
	default-frame-alist, Frame Parameters
	default-input-method, Selecting an Input Method
	default-justification, Justification in Enriched Text
	default-value, Local Variables
	default.el file, not loading, Initial Options
	default.el, the default init file, The Emacs Initialization File
	define-abbrevs, Saving Abbrevs
	define-global-abbrev, Defining Abbrevs
	define-key, Rebinding Keys in Your Init File
	define-mode-abbrev, Defining Abbrevs
	defining keyboard macros, Keyboard Macros
	defuns, Moving by Defuns
	DEL (and major modes), Major Modes
	DEL (Dired), Deleting Files with Dired
	DEL (DocView mode), DocView Navigation
	DEL (Gnus Group mode), Using the Gnus Group Buffer
	DEL (Gnus Summary mode), Using the Gnus Summary Buffer
	DEL (MS-DOS), Keyboard Usage on MS-DOS
	DEL (programming modes), Major Modes for Programming Languages
	DEL (Rmail), Scrolling Within a Message
	DEL (View mode), View Mode
	DEL vs BACKSPACE, If DEL Fails to Delete
	Delete Selection mode, Operating on the Region
	delete-active-region, Operating on the Region
	delete-auto-save-files, Auto-Save Files
	delete-backward-char, Deletion
	delete-blank-lines, Blank Lines
	delete-by-moving-to-trash, Miscellaneous File Operations, Deleting Files with Dired
	delete-char, Deletion
	delete-dir-local-variable, Per-Directory Local Variables
	delete-file, Miscellaneous File Operations
	delete-file-local-variable, Specifying File Variables
	delete-file-local-variable-prop-line, Specifying File Variables
	delete-frame, Frame Commands
	delete-horizontal-space, Deletion
	delete-indentation, Indentation Commands
	delete-old-versions, Automatic Deletion of Backups
	delete-other-frames, Frame Commands
	delete-other-windows, Deleting and Rearranging Windows
	delete-rectangle, Rectangles
	delete-selection-mode, Operating on the Region
	delete-trailing-whitespace, Useless Whitespace
	delete-whitespace-rectangle, Rectangles
	delete-window, Deleting and Rearranging Windows
	deleting auto-save files, Flagging Many Files at Once
	deleting blank lines, Blank Lines
	deleting characters and lines, Erasing Text
	deleting files (in Dired), Deleting Files with Dired
	deleting rows and column in text-based tables, Table Rows and Columns
	deleting some backup files, Flagging Many Files at Once
	deletion, Deletion and Killing
	deletion (of files), Miscellaneous File Operations
	deletion (Rmail), Deleting Messages
	Delphi mode, Major Modes for Programming Languages
	describe-bindings, Other Help Commands
	describe-categories, Backslash in Regular Expressions
	describe-character-set, Charsets
	describe-coding-system, Coding Systems
	describe-copying, Help Files
	describe-distribution, Help Files
	describe-function, Help by Command or Variable Name
	describe-gnu-project, Help Files
	describe-input-method, Selecting an Input Method
	describe-key, Documentation for a Key
	describe-key-briefly, Documentation for a Key
	describe-language-environment, Language Environments
	describe-mode, Other Help Commands, Major Modes
	describe-no-warranty, Help Files
	describe-package, Keyword Search for Packages, Emacs Lisp Packages
	describe-prefix-bindings, Other Help Commands
	describe-text-properties, Editing Format Information
	describe-theme, Custom Themes
	describe-variable, Help by Command or Variable Name
	desktop, Saving Emacs Sessions
	desktop shortcut, MS-Windows, How to Start Emacs on MS-Windows
	desktop-change-dir, Saving Emacs Sessions
	desktop-clear, Saving Emacs Sessions
	desktop-clear-preserve-buffers-regexp, Saving Emacs Sessions
	desktop-globals-to-clear, Saving Emacs Sessions
	desktop-path, Saving Emacs Sessions
	desktop-restore-eager, Saving Emacs Sessions
	desktop-revert, Saving Emacs Sessions
	desktop-save, Saving Emacs Sessions
	desktop-save-mode, Saving Emacs Sessions
	Devanagari, International Character Set Support
	device for Emacs terminal I/O, Initial Options
	dialog boxes, Using Dialog Boxes
	Dialog X Resources (Lucid widgets), Lucid Menu And Dialog X Resources
	diary, The Diary, Displaying the Diary
	diary buffer, Diary Display
	diary file, The Diary File
	diary-anniversary, Special Diary Entries, Sexp Entries and the Fancy Diary Display
	diary-astro-day-number, Sexp Entries and the Fancy Diary Display
	diary-bahai-date, Sexp Entries and the Fancy Diary Display
	diary-bahai-entry-symbol, Diary Entries Using non-Gregorian Calendars
	diary-bahai-insert-entry, Diary Entries Using non-Gregorian Calendars
	diary-bahai-insert-monthly-entry, Diary Entries Using non-Gregorian Calendars
	diary-bahai-insert-yearly-entry, Diary Entries Using non-Gregorian Calendars
	diary-bahai-list-entries, Diary Entries Using non-Gregorian Calendars
	diary-bahai-mark-entries, Diary Entries Using non-Gregorian Calendars
	diary-block, Special Diary Entries
	diary-chinese-date, Sexp Entries and the Fancy Diary Display
	diary-comment-start, Fancy Diary Display
	diary-coptic-date, Sexp Entries and the Fancy Diary Display
	diary-cyclic, Special Diary Entries, Sexp Entries and the Fancy Diary Display
	diary-date, Sexp Entries and the Fancy Diary Display
	diary-date-forms, Customizing the Diary
	diary-day-of-year, Sexp Entries and the Fancy Diary Display
	diary-display-function, Diary Display
	diary-entry-marker, Customizing the Calendar
	diary-ethiopic-date, Sexp Entries and the Fancy Diary Display
	diary-fancy-display, Diary Display
	diary-file, The Diary File
	diary-float, Special Diary Entries, Sexp Entries and the Fancy Diary Display
	diary-french-date, Sexp Entries and the Fancy Diary Display
	diary-hebrew-birthday, Sexp Entries and the Fancy Diary Display
	diary-hebrew-date, Sexp Entries and the Fancy Diary Display
	diary-hebrew-entry-symbol, Diary Entries Using non-Gregorian Calendars
	diary-hebrew-insert-entry, Diary Entries Using non-Gregorian Calendars
	diary-hebrew-insert-monthly-entry, Diary Entries Using non-Gregorian Calendars
	diary-hebrew-insert-yearly-entry, Diary Entries Using non-Gregorian Calendars
	diary-hebrew-list-entries, Diary Entries Using non-Gregorian Calendars
	diary-hebrew-mark-entries, Diary Entries Using non-Gregorian Calendars
	diary-hebrew-omer, Sexp Entries and the Fancy Diary Display
	diary-hebrew-parasha, Sexp Entries and the Fancy Diary Display
	diary-hebrew-rosh-hodesh, Sexp Entries and the Fancy Diary Display
	diary-hebrew-sabbath-candles, Sexp Entries and the Fancy Diary Display
	diary-hebrew-yahrzeit, Sexp Entries and the Fancy Diary Display
	diary-include-other-diary-files, Fancy Diary Display
	diary-include-string, Fancy Diary Display
	diary-insert-anniversary-entry, Special Diary Entries
	diary-insert-block-entry, Special Diary Entries
	diary-insert-cyclic-entry, Special Diary Entries
	diary-insert-entry, Commands to Add to the Diary
	diary-insert-monthly-entry, Commands to Add to the Diary
	diary-insert-weekly-entry, Commands to Add to the Diary
	diary-insert-yearly-entry, Commands to Add to the Diary
	diary-islamic-date, Sexp Entries and the Fancy Diary Display
	diary-islamic-entry-symbol, Diary Entries Using non-Gregorian Calendars
	diary-islamic-insert-entry, Diary Entries Using non-Gregorian Calendars
	diary-islamic-insert-monthly-entry, Diary Entries Using non-Gregorian Calendars
	diary-islamic-insert-yearly-entry, Diary Entries Using non-Gregorian Calendars
	diary-islamic-list-entries, Diary Entries Using non-Gregorian Calendars
	diary-islamic-mark-entries, Diary Entries Using non-Gregorian Calendars
	diary-iso-date, Sexp Entries and the Fancy Diary Display
	diary-julian-date, Sexp Entries and the Fancy Diary Display
	diary-list-entries-hook, Fancy Diary Display
	diary-list-include-blanks, Diary Display
	diary-lunar-phases, Sexp Entries and the Fancy Diary Display
	diary-mail-days, Displaying the Diary
	diary-mail-entries, Displaying the Diary
	diary-mark-entries, Displaying the Diary
	diary-mark-entries-hook, Fancy Diary Display
	diary-mark-included-diary-files, Fancy Diary Display
	diary-mayan-date, Sexp Entries and the Fancy Diary Display
	diary-nongregorian-listing-hook, Diary Entries Using non-Gregorian Calendars
	diary-nongregorian-marking-hook, Diary Entries Using non-Gregorian Calendars
	diary-nonmarking-symbol, The Diary File
	diary-number-of-entries, Customizing the Diary
	diary-outlook-formats, Importing and Exporting Diary Entries
	diary-persian-date, Sexp Entries and the Fancy Diary Display
	diary-print-entries, Diary Display
	diary-print-entries-hook, Diary Display
	diary-remind, Sexp Entries and the Fancy Diary Display
	diary-sexp-entry-symbol, Sexp Entries and the Fancy Diary Display
	diary-show-all-entries, Displaying the Diary
	diary-show-holidays-flag, Customizing the Diary
	diary-simple-display, Diary Display
	diary-sort-entries, Fancy Diary Display
	diary-sunrise-sunset, Sexp Entries and the Fancy Diary Display
	diary-view-entries, Displaying the Diary
	diff, Comparing Files
	Diff Auto-Refine mode, Diff Mode
	Diff mode, Diff Mode
	diff-add-change-log-entries-other-window, Diff Mode
	diff-apply-hunk, Diff Mode
	diff-auto-refine-mode, Diff Mode
	diff-backup, Comparing Files
	diff-buffer-with-file, Comparing Files
	diff-context->unified, Diff Mode
	diff-ediff-patch, Diff Mode
	diff-file-kill, Diff Mode
	diff-file-next, Diff Mode
	diff-file-prev, Diff Mode
	diff-goto-source, Diff Mode
	diff-hunk-kill, Diff Mode
	diff-hunk-next, Diff Mode
	diff-hunk-prev, Diff Mode
	diff-mode, Diff Mode
	diff-refine-hunk, Diff Mode
	diff-restrict-view, Diff Mode
	diff-reverse-direction, Diff Mode
	diff-split-hunk, Diff Mode
	diff-switches, Comparing Files
	diff-unified->context, Diff Mode
	diff-update-on-the-fly, Diff Mode
	digest message, Digest Messages
	digit-argument, Numeric Arguments
	dir-locals-set-class-variables, Per-Directory Local Variables
	dir-locals-set-directory-class, Per-Directory Local Variables
	directional window selection, Convenience Features for Window Handling
	directories in buffer names, Making Buffer Names Unique
	directory header lines, Moving Over Subdirectories
	directory listing, File Directories
	directory listing on MS-DOS, Subprocesses on MS-DOS
	directory name abbreviation, File Name Aliases
	directory tracking, Directory Tracking
	directory where Emacs starts on MS-Windows, How to Start Emacs on MS-Windows
	directory-abbrev-alist, File Name Aliases
	directory-free-space-args, File Directories
	directory-free-space-program, File Directories
	directory-local variables, Per-Directory Local Variables
	Dired, Dired, the Directory Editor
	dired, Entering Dired
	Dired and version control, Other Dired Features
	Dired sorting, Updating the Dired Buffer
	Dired, and MS-Windows/MS-DOS, Emulation of ls on MS-Windows
	dired-at-point, Finding Files and URLs at Point
	dired-auto-revert-buffer, Updating the Dired Buffer
	dired-backup-diff, File Comparison with Dired
	dired-change-marks, Dired Marks vs. Flags
	dired-chown-program, Operating on Files
	dired-clean-directory, Flagging Many Files at Once
	dired-compare-directories, Other Dired Features
	dired-copy-filename-as-kill, Other Dired Features
	dired-copy-preserve-time, Operating on Files
	dired-create-directory, Other Dired Features
	dired-diff, File Comparison with Dired
	dired-display-file, Visiting Files in Dired
	dired-do-byte-compile, Operating on Files
	dired-do-chgrp, Operating on Files
	dired-do-chmod, Operating on Files
	dired-do-chown, Operating on Files
	dired-do-compress, Operating on Files
	dired-do-copy, Operating on Files
	dired-do-copy-regexp, Transforming File Names in Dired
	dired-do-delete, Operating on Files
	dired-do-flagged-delete, Deleting Files with Dired
	dired-do-hardlink, Operating on Files
	dired-do-hardlink-regexp, Transforming File Names in Dired
	dired-do-isearch, Other Dired Features
	dired-do-isearch-regexp, Other Dired Features
	dired-do-kill-lines, Updating the Dired Buffer
	dired-do-load, Operating on Files
	dired-do-print, Operating on Files
	dired-do-query-replace-regexp, Operating on Files
	dired-do-redisplay, Updating the Dired Buffer
	dired-do-rename, Operating on Files
	dired-do-rename-regexp, Transforming File Names in Dired
	dired-do-search, Operating on Files
	dired-do-shell-command, Shell Commands in Dired
	dired-do-symlink, Operating on Files
	dired-do-symlink-regexp, Transforming File Names in Dired
	dired-do-touch, Operating on Files
	dired-downcase, Transforming File Names in Dired
	dired-dwim-target, Operating on Files
	dired-find-file, Visiting Files in Dired
	dired-find-file-other-window, Visiting Files in Dired
	dired-flag-auto-save-files, Flagging Many Files at Once
	dired-flag-backup-files, Flagging Many Files at Once
	dired-flag-file-deletion, Deleting Files with Dired
	dired-flag-files-regexp, Flagging Many Files at Once
	dired-flag-garbage-files, Flagging Many Files at Once
	dired-garbage-files-regexp, Flagging Many Files at Once
	dired-goto-file, Navigation in the Dired Buffer
	dired-hide-all, Hiding Subdirectories
	dired-hide-subdir, Hiding Subdirectories
	dired-isearch-filenames, Navigation in the Dired Buffer
	dired-isearch-filenames-regexp, Navigation in the Dired Buffer
	dired-kept-versions, Flagging Many Files at Once
	dired-listing-switches, Entering Dired
	dired-listing-switches (MS-DOS), Subprocesses on MS-DOS
	dired-mark, Dired Marks vs. Flags
	dired-mark-directories, Dired Marks vs. Flags
	dired-mark-executables, Dired Marks vs. Flags
	dired-mark-files-containing-regexp, Dired Marks vs. Flags
	dired-mark-files-regexp, Dired Marks vs. Flags
	dired-mark-subdir-files, Dired Marks vs. Flags
	dired-mark-symlinks, Dired Marks vs. Flags
	dired-maybe-insert-subdir, Subdirectories in Dired
	dired-mouse-find-file-other-window, Visiting Files in Dired
	dired-next-dirline, Moving Over Subdirectories
	dired-next-marked-file, Dired Marks vs. Flags
	dired-next-subdir, Moving Over Subdirectories
	dired-other-frame, Entering Dired
	dired-other-window, Displaying in Another Window, Entering Dired
	dired-prev-dirline, Moving Over Subdirectories
	dired-prev-marked-file, Dired Marks vs. Flags
	dired-prev-subdir, Moving Over Subdirectories
	dired-recursive-copies, Operating on Files
	dired-recursive-deletes, Deleting Files with Dired
	dired-sort-toggle-or-edit, Updating the Dired Buffer
	dired-toggle-marks, Dired Marks vs. Flags
	dired-tree-down, Moving Over Subdirectories
	dired-tree-up, Moving Over Subdirectories
	dired-undo, Dired Marks vs. Flags
	dired-unmark, Dired Marks vs. Flags
	dired-unmark-all-files, Dired Marks vs. Flags
	dired-unmark-all-marks, Dired Marks vs. Flags
	dired-unmark-backward, Dired Marks vs. Flags
	dired-up-directory, Visiting Files in Dired
	dired-upcase, Transforming File Names in Dired
	dired-use-ls-dired, Entering Dired
	dired-view-file, Visiting Files in Dired
	dirs, Directory Tracking
	Dirtrack mode, Directory Tracking
	dirtrack-list, Directory Tracking
	dirtrack-mode, Directory Tracking
	disable window system, Initial Options
	disable-command, Disabling Commands
	disable-theme, Custom Themes
	disabled command, Disabling Commands
	disabling remote files, Remote Files
	DISPLAY environment variable, Specifying the Display Name
	display for Emacs frame, Initial Options
	display name (X Window System), Specifying the Display Name
	display of buffer size, Optional Mode Line Features
	display of line number, Optional Mode Line Features
	display-battery-mode, Optional Mode Line Features
	display-buffer, Displaying in Another Window, Displaying a Buffer in a Window, How display-buffer works
	display-buffer-reuse-frames, How display-buffer works
	display-hourglass, Customization of Display
	display-local-help, Help on Active Text and Tooltips
	display-time, Optional Mode Line Features
	display-time-24hr-format, Optional Mode Line Features
	display-time-mail-directory, Optional Mode Line Features
	display-time-mail-face, Optional Mode Line Features
	display-time-mail-file, Optional Mode Line Features
	display-time-use-mail-icon, Optional Mode Line Features
	dissociated-press, Other Amusements
	distributed version control, Decentralized vs Centralized Repositories
	dnd-open-file-other-window, Drag and Drop
	DNS mode, Major Modes for Programming Languages
	do-auto-save, Controlling Auto-Saving
	doc-view-cache-directory, DocView Conversion
	doc-view-clear-cache, DocView Conversion
	doc-view-continuous, DocView Navigation
	doc-view-enlarge, DocView Navigation
	doc-view-first-page, DocView Navigation
	doc-view-goto-page, DocView Navigation
	doc-view-kill-proc, DocView Conversion
	doc-view-kill-proc-and-buffer, DocView Conversion
	doc-view-last-page, DocView Navigation
	doc-view-minor-mode, Document Viewing
	doc-view-mode, Document Viewing
	doc-view-next-page, DocView Navigation
	doc-view-previous-page, DocView Navigation
	doc-view-reset-slice, DocView Slicing
	doc-view-resolution, DocView Navigation
	doc-view-scroll-down-or-previous-page, DocView Navigation
	doc-view-scroll-up-or-next-page, DocView Navigation
	doc-view-search, DocView Searching
	doc-view-search-backward, DocView Searching
	doc-view-set-slice, DocView Slicing
	doc-view-set-slice-using-mouse, DocView Slicing
	doc-view-show-tooltip, DocView Searching
	doc-view-shrink, DocView Navigation
	doc-view-toggle-display, Document Viewing
	DocTeX mode, TeX Mode
	doctex-mode, TeX Mode
	doctor, Other Amusements
	document viewer (DocView), Document Viewing
	documentation string, Documentation for a Key
	DocView mode, Document Viewing
	DOS applications, running from Emacs, Subprocesses on Windows 9X/ME and Windows NT/2K/XP
	DOS codepages, International Support on MS-DOS
	dos-codepage, International Support on MS-DOS
	dos-display-scancodes, Mouse Usage on MS-DOS
	dos-hyper-key, Keyboard Usage on MS-DOS
	dos-keypad-mode, Keyboard Usage on MS-DOS
	dos-mode25, Display on MS-DOS
	dos-mode4350, Display on MS-DOS
	dos-printer, Printing and MS-DOS
	dos-ps-printer, Printing and MS-DOS
	DOS-style end-of-line display, Recognizing Coding Systems
	dos-super-key, Keyboard Usage on MS-DOS
	DOS-to-Unix conversion of files, Text Files and Binary Files
	double clicks, Rebinding Mouse Buttons
	double slash in file name, Minibuffers for File Names
	double-click-fuzz, Rebinding Mouse Buttons
	double-click-time, Rebinding Mouse Buttons
	DOWN, Changing the Location of Point
	DOWN (minibuffer history), Minibuffer History
	down events, Rebinding Mouse Buttons
	down-list, Moving in the Parenthesis Structure
	downcase file names, Transforming File Names in Dired
	downcase-region, Case Conversion Commands
	downcase-word, Case Conversion Commands
	drag and drop, Drag and Drop
	drag and drop, Dired, Other Dired Features
	drag events, Rebinding Mouse Buttons
	drastic changes, Reverting a Buffer
	dribble file, Checklist for Bug Reports
	DSSSL mode, Major Modes for Programming Languages
	dunnet, Other Amusements
	Dutch, International Character Set Support
	DVI file, Document Viewing

E
	e (Dired), Visiting Files in Dired
	e (Rmail), Editing Within a Message
	e (View mode), View Mode
	Ebrowse, Tags Tables
	echo area, The Echo Area
	echo area message, The Echo Area
	echo-keystrokes, Customization of Display
	echoing, The Echo Area
	EDE (Emacs Development Environment), Emacs Development Environment
	Edebug, Checklist for Bug Reports
	edit-abbrevs, Examining and Editing Abbrevs
	edit-kbd-macro, Editing a Keyboard Macro
	edit-tab-stops, Tab Stops
	editable fields (customization buffer), Customization Groups
	editing binary files, Editing Binary Files
	editing in Picture mode, Basic Editing in Picture Mode
	editing level, recursive, Recursive Editing Levels
	EDITOR environment variable, Using Emacs as a Server
	EDT, Emulation
	edt-emulation-off, Emulation
	edt-emulation-on, Emulation
	Eldoc mode, Emacs Lisp Documentation Lookup
	eldoc-mode, Emacs Lisp Documentation Lookup
	Electric Indent mode, Convenience Features for Indentation
	Electric Pair mode, Matching Parentheses
	electric-indent-mode, Convenience Features for Indentation
	electric-layout-mode, Other Features Useful for Editing Programs
	electric-nroff-mode, Nroff Mode
	electric-pair-mode, Matching Parentheses
	Eliza, Other Amusements
	Emacs as a server, Using Emacs as a Server
	Emacs Development Environment, Emacs Development Environment
	EMACS environment variable, Interactive Subshell
	Emacs icon, a gnu, Icons
	Emacs initialization file, The Emacs Initialization File
	Emacs Lisp mode, Evaluating Emacs Lisp Expressions
	Emacs Lisp package, Emacs Lisp Packages
	Emacs Lisp package archive, Emacs Lisp Packages
	emacs-internal, coding system, Coding Systems
	emacs-lisp-mode, Evaluating Emacs Lisp Expressions
	emacs-lisp-mode-hook, Major Modes for Programming Languages
	emacs-version, Understanding Bug Reporting
	emacsclient, Using Emacs as a Server
	emacsclient invocation, Invoking emacsclient
	emacsclient options, emacsclient Options
	emacsclient, on MS-Windows, How to Start Emacs on MS-Windows
	emacsclient.exe, How to Start Emacs on MS-Windows
	emacsclientw.exe, How to Start Emacs on MS-Windows
	EMACS_SERVER_FILE environment variable, emacsclient Options
	email, Sending Mail
	Emerge, Merging Files with Emerge
	emerge-auto-advance, Submodes of Emerge
	emerge-buffers, Overview of Emerge
	emerge-buffers-with-ancestor, Overview of Emerge
	emerge-combine-versions-template, Combining the Two Versions
	emerge-files, Overview of Emerge
	emerge-files-with-ancestor, Overview of Emerge
	emerge-skip-prefers, Submodes of Emerge
	emerge-startup-hook, Fine Points of Emerge
	emulating other editors, Emulation
	emulation of Brief, Emulation
	enable-command, Disabling Commands
	enable-local-eval, Safety of File Variables
	enable-local-variables, Safety of File Variables
	enable-multibyte-characters, Disabling Multibyte Characters
	enable-recursive-minibuffers, Editing in the Minibuffer
	enable-theme, Custom Themes
	encoding of characters, International Character Set Support
	encrypted mails (reading in Rmail), Display of Messages
	encrypting files (in Dired), Operating on Files
	END, Changing the Location of Point
	end-of-buffer, Changing the Location of Point
	end-of-defun, Moving by Defuns
	end-of-line convention, mode-line indication, The Mode Line
	end-of-line conversion, Coding Systems
	end-of-line conversion on MS-DOS/MS-Windows, Text Files and Binary Files
	end-of-visual-line, Visual Line Mode
	enlarge-window, Deleting and Rearranging Windows
	enlarge-window-horizontally, Deleting and Rearranging Windows
	Enriched mode, Enriched Text
	enriched text, Enriched Text
	enriched-mode, Enriched Mode
	enriched-translations, Enriched Mode
	entering Emacs, Entering Emacs
	environment variables, Environment Variables
	environment variables for subshells, Interactive Subshell
	environment variables in file names, File Names
	eol-mnemonic-dos, Optional Mode Line Features
	eol-mnemonic-mac, Optional Mode Line Features
	eol-mnemonic-undecided, Optional Mode Line Features
	eol-mnemonic-unix, Optional Mode Line Features
	epa-dired-do-decrypt, Operating on Files
	epa-dired-do-encrypt, Operating on Files
	epa-dired-do-sign, Operating on Files
	epa-dired-do-verify, Operating on Files
	erasing characters and lines, Erasing Text
	error log, Running Compilations under Emacs
	error message, The Echo Area
	errors in init file, Initial Options
	ESC ESC ESC, Quitting and Aborting
	ESC replacing Meta key, Kinds of User Input
	esc-map, Prefix Keymaps
	escape sequences in files, Recognizing Coding Systems
	ESHELL environment variable, Interactive Subshell
	etags, Tags Tables
	etags program, Creating Tags Tables
	Ethiopic, International Character Set Support
	Ethiopic calendar, Supported Calendar Systems
	Euro sign, Language Environments
	European character sets, Unibyte Editing Mode
	eval-buffer, Evaluating Emacs Lisp Expressions
	eval-defun, Evaluating Emacs Lisp Expressions
	eval-expression, Evaluating Emacs Lisp Expressions
	eval-expression-debug-on-error, Evaluating Emacs Lisp Expressions
	eval-expression-print-length, Evaluating Emacs Lisp Expressions
	eval-expression-print-level, Evaluating Emacs Lisp Expressions
	eval-last-sexp, Evaluating Emacs Lisp Expressions
	eval-print-last-sexp, Lisp Interaction Buffers
	eval-region, Evaluating Emacs Lisp Expressions
	evaluate expression, command-line argument, Action Arguments
	exchange-point-and-mark, Setting the Mark
	exec-path, Running Shell Commands from Emacs
	execute-extended-command, Running Commands by Name
	exit-calendar, Miscellaneous Calendar Commands
	exit-language-environment-hook, Language Environments
	exit-recursive-edit, Recursive Editing Levels
	exiting, Exiting Emacs
	exiting recursive edit, Recursive Editing Levels
	expand-abbrev, Controlling Abbrev Expansion
	expand-region-abbrevs, Controlling Abbrev Expansion
	expanding subdirectories in Dired, Subdirectories in Dired
	expansion (of abbrevs), Abbrevs
	expansion of C macros, Other Commands for C Mode
	expansion of environment variables, File Names
	explicit-shell-file-name, Interactive Subshell
	expression, Expressions with Balanced Parentheses
	expunging (Rmail), Deleting Messages

F
	f (Dired), Visiting Files in Dired
	f (GDB threads buffer), Threads Buffer
	f (Rmail), Sending Replies
	F1, Help
	F10, The Menu Bar
	F10 (MS-Windows), Keyboard Usage on MS-Windows
	F2 1, Two-Column Editing
	F2 2, Two-Column Editing
	F2 b, Two-Column Editing
	F2 d, Two-Column Editing
	F2 RET, Two-Column Editing
	F2 s, Two-Column Editing
	F3, Basic Use
	F4, Basic Use
	f90-beginning-of-block, Motion Commands
	f90-end-of-block, Motion Commands
	f90-mode, Fortran Mode
	f90-next-block, Motion Commands
	f90-next-statement, Motion Commands
	f90-previous-block, Motion Commands
	f90-previous-statement, Motion Commands
	face at point, Introduction to International Character Sets
	face colors, setting, Colors for Faces
	facemenu-remove-all, Editing Format Information
	facemenu-remove-face-props, Editing Format Information
	facemenu-set-background, Faces in Enriched Text
	facemenu-set-bold, Faces in Enriched Text
	facemenu-set-bold-italic, Faces in Enriched Text
	facemenu-set-default, Faces in Enriched Text
	facemenu-set-face, Faces in Enriched Text
	facemenu-set-foreground, Faces in Enriched Text
	facemenu-set-italic, Faces in Enriched Text
	facemenu-set-underline, Faces in Enriched Text
	faces, Text Faces
	faces for highlighting query replace, Query Replace
	faces for highlighting search matches, Basics of Incremental Search
	faces under MS-DOS, Display on MS-DOS
	faces, customizing, Customizing Faces
	failed merges, Comparing Files
	Feedmail, Mail Sending
	ff-find-related-file, Other Commands for C Mode
	ff-related-file-alist, Other Commands for C Mode
	ffap, Finding Files and URLs at Point
	FFAP minor mode, Finding Files and URLs at Point
	ffap-menu, Finding Files and URLs at Point
	ffap-mode, Finding Files and URLs at Point
	ffap-next, Finding Files and URLs at Point
	file archives, File Archives
	file comparison (in Dired), File Comparison with Dired
	file database (locate), Dired and find
	file dates, Protection against Simultaneous Editing
	file directory, File Directories
	file local variables, Local Variables in Files
	file management, Dired, the Directory Editor
	file modes, Miscellaneous File Operations
	file name caching, File Name Cache
	file names, File Names
	file names on MS-Windows, File Names on MS-Windows
	file names under MS-DOS, File Names on MS-DOS
	file names under Windows 95/NT, File Names on MS-DOS
	file names with non-ASCII characters, Coding Systems for File Names
	file names, quote special characters, Quoted File Names
	file ownership, and backup, Copying vs. Renaming
	file permissions, Miscellaneous File Operations
	file selection dialog, Visiting Files
	file selection dialog, how to disable, Using Dialog Boxes
	file shadows, Shadowing Files
	file truenames, File Name Aliases
	file version in change log entries, Change Log Commands
	file, warning when size is large, Visiting Files
	file-based version control, Changeset-based vs File-based Version Control
	file-cache-add-directory, File Name Cache
	file-cache-minibuffer-complete, File Name Cache
	file-coding-system-alist, Recognizing Coding Systems
	file-name completion, on MS-Windows, File Names on MS-Windows
	file-name-buffer-file-type-alist, Text Files and Binary Files
	file-name-coding-system, Coding Systems for File Names
	file-name-shadow-mode, Minibuffers for File Names
	files, File Handling
	files, visiting and saving, Visiting Files
	filesets, Filesets
	filesets, VC, Basic Editing under Version Control
	filesets-add-buffer, Filesets
	filesets-init, Filesets
	filesets-remove-buffer, Filesets
	fill prefix, The Fill Prefix
	fill-column, Explicit Fill Commands
	fill-individual-paragraphs, The Fill Prefix
	fill-nobreak-predicate, Explicit Fill Commands
	fill-nonuniform-paragraphs, The Fill Prefix
	fill-paragraph, Explicit Fill Commands
	fill-prefix, The Fill Prefix
	fill-region, Explicit Fill Commands
	fill-region-as-paragraph, Explicit Fill Commands
	filling text, Filling Text
	find, File Name Cache
	find and Dired, Dired and find
	find Info manual by its file name, Other Help Commands
	find-alternate-file, Visiting Files
	find-dired, Dired and find
	find-file, Visiting Files
	find-file-at-point, Finding Files and URLs at Point
	find-file-existing-other-name, File Name Aliases
	find-file-hook, Visiting Files
	find-file-literally, Visiting Files
	find-file-not-found-functions, Visiting Files
	find-file-other-frame, Visiting Files
	find-file-other-window, Visiting Files, Displaying in Another Window
	find-file-read-only, Visiting Files
	find-file-read-only-other-frame, Creating Frames
	find-file-run-dired, Visiting Files
	find-file-suppress-same-file-warnings, File Name Aliases
	find-file-visit-truename, File Name Aliases
	find-file-wildcards, Visiting Files
	find-grep, Searching with Grep under Emacs
	find-grep-dired, Dired and find
	find-ls-option, Dired and find
	find-name-dired, Dired and find
	find-tag, Finding a Tag
	find-tag-marker-ring-length, Finding a Tag
	find-tag-other-frame, Finding a Tag
	find-tag-other-window, Displaying in Another Window, Finding a Tag
	find-tag-regexp, Finding a Tag
	finder, Keyword Search for Packages
	finder-by-keyword, Keyword Search for Packages
	finding file at point, Finding Files and URLs at Point
	finding files containing regexp matches (in Dired), Dired Marks vs. Flags
	finding strings within text, Searching and Replacement
	firewall, and accessing remote files, Remote Files
	fixing incorrectly decoded mail messages, Rmail and Coding Systems
	flagging files (in Dired), Deleting Files with Dired
	flagging many files for deletion (in Dired), Flagging Many Files at Once
	flush-lines, Other Search-and-Loop Commands
	Flyspell mode, Checking and Correcting Spelling
	flyspell-mode, Checking and Correcting Spelling
	flyspell-prog-mode, Checking and Correcting Spelling
	focus-follows-mouse, Frame Commands
	folding editing, Folding Editing
	foldout-exit-fold, Folding Editing
	foldout-mouse-modifiers, Folding Editing
	foldout-zoom-subtree, Folding Editing
	Follow mode, Follow Mode
	follow-mode, Follow Mode
	font antialiasing (MS Windows), Specifying Fonts on MS-Windows
	font backend selection (MS-Windows), Specifying Fonts on MS-Windows
	font for menus, Table of X Resources for Emacs
	Font Lock mode, Font Lock mode
	font name (X Window System), Font Specification Options
	font of character at point, Introduction to International Character Sets
	font properties (MS Windows gdi backend), Specifying Fonts on MS-Windows
	font properties (MS Windows), Specifying Fonts on MS-Windows
	font scripts (MS Windows), Specifying Fonts on MS-Windows
	font specification (MS Windows), Specifying Fonts on MS-Windows
	font Unicode subranges (MS Windows), Specifying Fonts on MS-Windows
	font-lock-add-keywords, Font Lock mode
	font-lock-beginning-of-syntax-function, Font Lock mode
	font-lock-maximum-decoration, Font Lock mode
	font-lock-mode, Font Lock mode
	font-lock-remove-keywords, Font Lock mode
	font-slant-table (MS-Windows), Specifying Fonts on MS-Windows
	font-weight-table (MS-Windows), Specifying Fonts on MS-Windows
	fontconfig, Fonts
	fonts, Fonts
	fonts and faces, Customizing Faces
	fonts for PostScript printing, Variables for PostScript Hardcopy
	fonts for various scripts, Fontsets
	fonts, emulating under MS-DOS, Display on MS-DOS
	fontsets, Fontsets
	fontsets, modifying, Modifying Fontsets
	foreground color, command-line argument, Window Color Options
	format-decode-buffer, Enriched Mode
	formfeed character, Pages
	Fortran 77 and Fortran 90, 95, 2003, 2008, Fortran Mode
	Fortran continuation lines, Continuation Lines
	Fortran fixed form and free form, Fortran Mode
	Fortran mode, Fortran Mode
	fortran-analyze-depth, Continuation Lines
	fortran-beginning-of-block, Motion Commands
	fortran-break-before-delimiters, Auto Fill in Fortran Mode
	fortran-check-all-num…, Variables for Fortran Indentation
	fortran-column-ruler, Checking Columns in Fortran
	fortran-column-ruler-fixed, Checking Columns in Fortran
	fortran-column-ruler-tabs, Checking Columns in Fortran
	fortran-comment-indent-char, Fortran Comments
	fortran-comment-indent-style, Fortran Comments
	fortran-comment-line-extra-indent, Fortran Comments
	fortran-comment-line-start, Fortran Comments
	fortran-comment-region, Fortran Comments
	fortran-continuation-indent, Variables for Fortran Indentation
	fortran-continuation-string, Continuation Lines
	fortran-directive-re, Fortran Comments
	fortran-do-indent, Variables for Fortran Indentation
	fortran-electric-line-number, Line Numbers
	fortran-end-of-block, Motion Commands
	fortran-if-indent, Variables for Fortran Indentation
	fortran-indent-subprogram, Fortran Indentation and Filling Commands
	fortran-join-line, Fortran Indentation and Filling Commands
	fortran-line-length, Checking Columns in Fortran
	fortran-line-number-indent, Line Numbers
	fortran-minimum-statement-indent…, Variables for Fortran Indentation
	fortran-mode, Fortran Mode
	fortran-next-statement, Motion Commands
	fortran-previous-statement, Motion Commands
	fortran-split-line, Fortran Indentation and Filling Commands
	fortran-strip-sequence-nos, Checking Columns in Fortran
	fortran-structure-indent, Variables for Fortran Indentation
	fortran-tab-mode-default, Continuation Lines
	fortran-window-create, Checking Columns in Fortran
	fortran-window-create-momentarily, Checking Columns in Fortran
	fortune cookies, Mail Amusements
	fortune-to-signature, Mail Amusements
	forward-button, Help Mode Commands
	forward-char, Changing the Location of Point
	forward-list, Moving in the Parenthesis Structure
	forward-page, Pages
	forward-paragraph, Paragraphs
	forward-sentence, Sentences
	forward-sexp, Expressions with Balanced Parentheses
	forward-text-line, Nroff Mode
	forward-word, Changing the Location of Point, Words
	forwarding a message, Sending Replies
	frame, The Organization of the Screen
	frame focus policy, MS-Windows, Miscellaneous Windows-specific features
	frame size under MS-DOS, Display on MS-DOS
	frame size, specifying default, Frame Parameters
	frame title, command-line argument, Frame Titles
	frame-configuration-to-register, Saving Window Configurations in Registers
	frames, Frames and Graphical Displays
	frames on MS-DOS, Display on MS-DOS
	French Revolutionary calendar, Supported Calendar Systems
	fringe face, Standard Faces
	fringe-mode, Window Fringes
	fringes, Window Fringes
	fringes, and continuation lines, Continuation Lines
	fringes, and unused line indication, Useless Whitespace
	fringes, for debugging, Source Buffers
	FTP, Remote Files
	fullheight, command-line argument, Options for Window Size and Position
	fullscreen, command-line argument, Options for Window Size and Position
	fullwidth, command-line argument, Options for Window Size and Position
	function key, Keymaps
	function, move to beginning or end, Moving by Defuns

G
	G (Dired), Operating on Files
	g (Dired), Updating the Dired Buffer
	g (Rmail), Multiple Rmail Files
	g char (Calendar mode), Converting From Other Calendars
	g d (Calendar mode), Specified Dates
	g D (Calendar mode), Specified Dates
	g m (Calendar mode), Converting from the Mayan Calendar
	g w (Calendar mode), Specified Dates
	gamma correction, Table of X Resources for Emacs
	gateway, and remote file access with ange-ftp, Remote Files
	GDB, Running Debuggers Under Emacs
	gdb, Starting GUD
	GDB User Interface layout, GDB User Interface Layout
	gdb-delete-breakpoint, Breakpoints Buffer
	gdb-delete-out-of-scope, Watch Expressions
	gdb-display-disassembly-for-thread, Threads Buffer
	gdb-display-locals-for-thread, Threads Buffer
	gdb-display-registers-for-thread, Threads Buffer
	gdb-display-stack-for-thread, Threads Buffer
	gdb-edit-value, Watch Expressions
	gdb-frames-select, Stack Buffer
	gdb-goto-breakpoint, Breakpoints Buffer
	gdb-gud-control-all-threads, Multithreaded Debugging
	gdb-many-windows, GDB User Interface Layout
	gdb-mode-hook, GUD Customization
	gdb-non-stop-setting, Multithreaded Debugging
	gdb-restore-windows, GDB User Interface Layout
	gdb-select-thread, Threads Buffer
	gdb-show-changed-values, Watch Expressions
	gdb-show-threads-by-default, Breakpoints Buffer
	gdb-speedbar-auto-raise, Watch Expressions
	gdb-stopped-hooks, Multithreaded Debugging
	gdb-switch-reasons, Multithreaded Debugging
	gdb-switch-when-another-stopped, Multithreaded Debugging
	gdb-thread-buffer-addresses, Threads Buffer
	gdb-thread-buffer-arguments, Threads Buffer
	gdb-thread-buffer-locations, Threads Buffer
	gdb-thread-buffer-verbose-names, Threads Buffer
	gdb-toggle-breakpoint, Breakpoints Buffer
	gdb-use-colon-colon-notation, Watch Expressions
	gdb-var-delete, Watch Expressions
	geometry of Emacs window, Options for Window Size and Position
	geometry, command-line argument, Options for Window Size and Position
	German, International Character Set Support
	getenv, Environment Variables
	getting help with keys, Help
	Ghostscript, use for PostScript printing, Printing and MS-Windows
	git, Supported Version Control Systems
	Glasses mode, Glasses minor mode
	Global Auto-Revert mode, Reverting a Buffer
	global keymap, Keymaps
	global mark, CUA Bindings
	global mark ring, The Global Mark Ring
	global substitution, Replacement Commands
	global-auto-revert-mode, Reverting a Buffer
	global-cwarn-mode, Other Commands for C Mode
	global-font-lock-mode, Font Lock mode
	global-hl-line-mode, Displaying the Cursor
	global-mark-ring-max, The Global Mark Ring
	global-set-key, Changing Key Bindings Interactively
	global-unset-key, Changing Key Bindings Interactively
	global-visual-line-mode, Visual Line Mode
	glyphless characters, How Text Is Displayed
	GNU Arch, Supported Version Control Systems
	Gnus, Gnus
	gnus, When Gnus Starts Up
	gnus-group-exit, Using the Gnus Group Buffer
	gnus-group-kill-group, Using the Gnus Group Buffer
	gnus-group-list-all-groups, Using the Gnus Group Buffer
	gnus-group-list-groups, Using the Gnus Group Buffer
	gnus-group-next-unread-group, Using the Gnus Group Buffer, Using the Gnus Summary Buffer
	gnus-group-prev-unread-group, Using the Gnus Group Buffer, Using the Gnus Summary Buffer
	gnus-group-read-group, Using the Gnus Group Buffer, Using the Gnus Summary Buffer
	gnus-group-unsubscribe-current-group, Using the Gnus Group Buffer
	gnus-summary-isearch-article, Using the Gnus Summary Buffer
	gnus-summary-next-unread-article, Using the Gnus Group Buffer, Using the Gnus Summary Buffer
	gnus-summary-prev-page, Using the Gnus Summary Buffer
	gnus-summary-prev-unread-article, Using the Gnus Group Buffer, Using the Gnus Summary Buffer
	gnus-summary-search-article-forward, Using the Gnus Summary Buffer
	GNUstep, Emacs and Mac OS / GNUstep
	Go Moku, Other Amusements
	gomoku, Other Amusements
	Goto Address mode, Activating URLs
	goto-address-at-point, Activating URLs
	goto-address-mode, Activating URLs
	goto-char, Changing the Location of Point
	goto-followup-to, Mail Header Editing
	goto-line, Changing the Location of Point, Creating and Selecting Buffers
	goto-reply-to, Mail Header Editing
	gpm-mouse-mode, Using a Mouse in Text Terminals
	graphic characters, Inserting Text
	Greek, International Character Set Support
	Gregorian calendar, Conversion To and From Other Calendars
	grep, Searching with Grep under Emacs
	grep (MS-DOS), Subprocesses on MS-DOS
	grep-find, Searching with Grep under Emacs
	grep-find-ignored-directories, Searching with Grep under Emacs
	grep-regexp-alist, Compilation Mode
	growing minibuffer, Editing in the Minibuffer
	GTK font pattern, Fonts
	GTK styles, GTK styles
	GTK widget classes, GTK Widget Names in Emacs
	GTK widget names, GTK widget names, GTK Widget Names in Emacs
	GTK+ resources, GTK resources
	GUD interaction buffer, Debugger Operation
	GUD library, Running Debuggers Under Emacs
	GUD Tooltip mode, Debugger Operation
	gud-cont, Commands of GUD
	gud-def, GUD Customization
	gud-down, Commands of GUD
	gud-finish, Commands of GUD
	gud-gdb, Starting GUD
	gud-gdb-command-name, GDB Graphical Interface
	gud-gdb-complete-command, Commands of GUD
	gud-jump, Commands of GUD
	gud-next, Commands of GUD
	gud-print, Commands of GUD
	gud-refresh, Commands of GUD
	gud-remove, Commands of GUD
	gud-step, Commands of GUD
	gud-stepi, Commands of GUD
	gud-tbreak, Commands of GUD
	gud-tooltip-echo-area, Debugger Operation
	gud-tooltip-mode, Debugger Operation
	gud-until, Commands of GUD
	gud-up, Commands of GUD
	gud-watch, Watch Expressions
	gud-xdb-directories, Starting GUD
	gzip, Accessing Compressed Files

H
	h (Calendar mode), Holidays
	H (Dired), Operating on Files
	h (Rmail), Making Summaries
	handwrite, PostScript Hardcopy
	handwriting, PostScript Hardcopy
	hanoi, Other Amusements
	hard links (creation), Miscellaneous File Operations
	hard links (in Dired), Operating on Files
	hard links (visiting), File Name Aliases
	hard newline, Hard and Soft Newlines
	hardcopy, Printing Hard Copies
	header (TeX mode), TeX Printing Commands
	header line (Dired), Moving Over Subdirectories
	headers (of mail message), Mail Header Fields
	heading lines (Outline mode), Format of Outlines
	Hebrew, International Character Set Support
	Hebrew calendar, Supported Calendar Systems
	height of minibuffer, Editing in the Minibuffer
	Help, Help
	help, Help
	help text, in GTK+ file chooser, Using Dialog Boxes
	help, viewing web pages, Help Mode Commands
	help-at-pt-display-when-idle, Help on Active Text and Tooltips
	help-command, Help
	help-follow, Help Mode Commands
	help-for-help, Help
	help-go-back, Help Mode Commands
	help-map, Prefix Keymaps
	help-with-tutorial, Basic Editing Commands
	hex editing, Editing Binary Files
	Hexl mode, Editing Binary Files
	hg, Supported Version Control Systems
	Hi Lock mode, Interactive Highlighting
	hi-lock-exclude-modes, Interactive Highlighting
	hi-lock-file-patterns-policy, Interactive Highlighting
	hi-lock-find-patterns, Interactive Highlighting
	hi-lock-mode, Interactive Highlighting
	hi-lock-write-interactive-patterns, Interactive Highlighting
	hidden files, in GTK+ file chooser, Using Dialog Boxes
	hide-body, Outline Visibility Commands
	hide-entry, Outline Visibility Commands
	Hide-ifdef mode, Other Commands for C Mode
	hide-ifdef-mode, Other Commands for C Mode
	hide-ifdef-shadow, Other Commands for C Mode
	hide-leaves, Outline Visibility Commands
	hide-other, Outline Visibility Commands
	hide-sublevels, Outline Visibility Commands
	hide-subtree, Outline Visibility Commands
	Hideshow mode, Hideshow minor mode
	hiding subdirectories (Dired), Hiding Subdirectories
	Highlight Changes mode, Interactive Highlighting
	highlight current line, Displaying the Cursor
	highlight-changes-mode, Interactive Highlighting
	highlight-lines-matching-regexp, Interactive Highlighting
	highlight-nonselected-windows, The Mark and the Region
	highlight-regexp, Interactive Highlighting
	highlighting by matching, Interactive Highlighting
	highlighting lines of text, Interactive Highlighting
	highlighting matching parentheses, Matching Parentheses
	highlighting region, Disabling Transient Mark Mode
	Hindi, International Character Set Support
	history of commands, Repeating Minibuffer Commands
	history of minibuffer input, Minibuffer History
	history reference, Shell History References
	history-delete-duplicates, Minibuffer History
	history-length, Minibuffer History
	hl-line-mode, Displaying the Cursor
	holiday forms, Customizing the Holidays
	holiday-bahai-holidays, Customizing the Holidays
	holiday-christian-holidays, Customizing the Holidays
	holiday-general-holidays, Customizing the Holidays
	holiday-hebrew-holidays, Customizing the Holidays
	holiday-islamic-holidays, Customizing the Holidays
	holiday-local-holidays, Customizing the Holidays
	holiday-oriental-holidays, Customizing the Holidays
	holiday-other-holidays, Customizing the Holidays
	holiday-solar-holidays, Customizing the Holidays
	holidays, Holidays
	HOME, Changing the Location of Point
	HOME directory on MS-Windows, HOME and Startup Directories on MS-Windows
	home directory shorthand, Minibuffers for File Names
	HOME directory under MS-DOS, File Names on MS-DOS
	hook, Hooks
	horizontal scrolling, Horizontal Scrolling
	hourglass pointer display, Customization of Display
	hourglass-delay, Customization of Display
	how-many, Other Search-and-Loop Commands
	hs-hide-all, Hideshow minor mode
	hs-hide-block, Hideshow minor mode
	hs-hide-comments-when-hiding-all, Hideshow minor mode
	hs-hide-level, Hideshow minor mode
	hs-isearch-open, Hideshow minor mode
	hs-minor-mode, Hideshow minor mode
	hs-show-all, Hideshow minor mode
	hs-show-block, Hideshow minor mode
	hs-show-region, Hideshow minor mode
	hs-special-modes-alist, Hideshow minor mode
	hscroll-margin, Horizontal Scrolling
	hscroll-step, Horizontal Scrolling
	HTML mode, SGML and HTML Modes
	html-mode, SGML and HTML Modes
	htmlfontify-buffer, Printing Hard Copies
	hungry deletion (C Mode), Hungry Delete Feature in C
	hunk, diff, Diff Mode
	Hyper (under MS-DOS), Keyboard Usage on MS-DOS
	hyperlink, Help Mode Commands
	hyperlinks, Following References with the Mouse

I
	i (Dired), Subdirectories in Dired
	i (Rmail), Multiple Rmail Files
	i a (Calendar mode), Special Diary Entries
	i b (Calendar mode), Special Diary Entries
	i c (Calendar mode), Special Diary Entries
	i d (Calendar mode), Commands to Add to the Diary
	i m (Calendar mode), Commands to Add to the Diary
	i w (Calendar mode), Commands to Add to the Diary
	i y (Calendar mode), Commands to Add to the Diary
	iCalendar support, Importing and Exporting Diary Entries
	icalendar-export-file, icalendar-export-region, Importing and Exporting Diary Entries
	icalendar-import-buffer, Importing and Exporting Diary Entries
	icalendar-import-file, Importing and Exporting Diary Entries
	Icomplete mode, Completion Options
	icomplete-mode, Completion Options
	Icon mode, Major Modes for Programming Languages
	iconifying, Exiting Emacs
	icons (X Window System), Icons
	icons, toolbar, Tool Bars
	IDL mode, C and Related Modes
	ielm, Lisp Interaction Buffers
	ignored file names, in completion, Completion Options
	image animation, Convenience Features for Finding Files
	image-dired, Viewing Image Thumbnails in Dired
	image-dired mode, Viewing Image Thumbnails in Dired
	image-dired-display-thumbs, Viewing Image Thumbnails in Dired
	image-dired-external-viewer, Viewing Image Thumbnails in Dired
	image-mode, Convenience Features for Finding Files
	image-toggle-animation, Convenience Features for Finding Files
	image-toggle-display, Convenience Features for Finding Files
	ImageMagick support, Convenience Features for Finding Files
	images, viewing, Convenience Features for Finding Files
	IMAP mailboxes, Retrieving Mail from Remote Mailboxes
	imenu, Imenu
	imenu-add-menubar-index, Imenu
	imenu-auto-rescan, Imenu
	imenu-sort-function, Imenu
	in-situ subdirectory (Dired), Subdirectories in Dired
	inbox file, Rmail Files and Inboxes
	incorrect fontification, Font Lock mode
	increase buffer face height, Text Scale
	increase-left-margin, Indentation in Enriched Text
	increment-register, Keeping Numbers in Registers
	incremental search, Incremental Search
	incremental search, input method interference, Input Methods
	indent-code-rigidly, Indenting Several Lines
	indent-for-tab-command, Indentation, Basic Program Indentation Commands
	indent-line-function, Basic Program Indentation Commands
	indent-pp-sexp, Indenting Several Lines
	indent-region, Indentation Commands
	indent-relative, Indentation Commands
	indent-rigidly, Indentation Commands
	indent-tabs-mode, Tabs vs. Spaces
	indent-tabs-mode (Fortran mode), Continuation Lines
	indentation, Indentation
	indentation for comments, Comment Commands
	indentation for programs, Indentation for Programs
	index of buffer definitions, Imenu
	indicate-buffer-boundaries, Displaying Boundaries
	indicate-empty-lines, Useless Whitespace
	indirect buffer, Indirect Buffers
	indirect buffers and outlines, Viewing One Outline in Multiple Views
	inferior process, Running Compilations under Emacs
	inferior processes under MS-DOS, Subprocesses on MS-DOS
	inferior-lisp-program, Running an External Lisp
	info, Other Help Commands
	Info, Other Help Commands
	Info-goto-emacs-command-node, Help by Command or Variable Name
	Info-goto-emacs-key-command-node, Documentation for a Key
	info-lookup-file, Info Documentation Lookup
	info-lookup-symbol, Other Help Commands, Info Documentation Lookup
	inhibit-eol-conversion, Recognizing Coding Systems
	inhibit-iso-escape-detection, Recognizing Coding Systems
	inhibit-startup-buffer-menu, Action Arguments
	inhibit-startup-screen, Entering Emacs, Initial Options
	init file, The Emacs Initialization File
	init file .emacs on MS-Windows, HOME and Startup Directories on MS-Windows
	init file, and non-ASCII characters, Disabling Multibyte Characters
	init file, default name under MS-DOS, File Names on MS-DOS
	init file, not loading, Initial Options
	initial options (command line), Command Line Arguments for Emacs Invocation
	initial-environment, Environment Variables
	initial-frame-alist, Frame Parameters
	initial-scratch-message, Lisp Interaction Buffers
	input event, Kinds of User Input
	input methods, Input Methods
	input methods, X, Table of X Resources for Emacs
	input with the keyboard, Kinds of User Input
	input-method-highlight-flag, Input Methods
	input-method-verbose-flag, Input Methods
	INSERT, Minor Modes
	insert file contents, command-line argument, Action Arguments
	insert Unicode character, Inserting Text
	insert-abbrevs, Saving Abbrevs
	insert-default-directory, Minibuffers for File Names, File Names
	insert-file, Miscellaneous File Operations
	insert-file-literally, Miscellaneous File Operations
	insert-kbd-macro, Naming and Saving Keyboard Macros
	insert-register, Saving Text in Registers
	inserted subdirectory (Dired), Subdirectories in Dired
	inserting blank lines, Blank Lines
	inserting matching parentheses, Matching Parentheses
	inserting rows and columns in text-based tables, Table Rows and Columns
	insertion, Inserting Text
	INSIDE_EMACS environment variable, Interactive Subshell
	Integrated development environment, Emacs Development Environment
	interactive highlighting, Interactive Highlighting
	internal border width, command-line argument, Internal and External Borders
	international characters in .emacs, Non-ASCII Characters in Init Files
	international files from DOS/Windows systems, Coding Systems
	international scripts, International Character Set Support
	international support (MS-DOS), International Support on MS-DOS
	interpreter-mode-alist, Choosing File Modes
	Intlfonts for PostScript printing, Variables for PostScript Hardcopy
	Intlfonts package, installation, Fontsets
	inverse-add-global-abbrev, Defining Abbrevs
	inverse-add-mode-abbrev, Defining Abbrevs
	invisible lines, Outline Mode
	invocation (command line arguments), Command Line Arguments for Emacs Invocation
	invoking Emacs from Windows Explorer, How to Start Emacs on MS-Windows
	IPA, International Character Set Support
	isearch, Incremental Search
	isearch-allow-scroll, Scrolling During Incremental Search
	isearch-backward, Basics of Incremental Search
	isearch-backward-regexp, Regular Expression Search
	isearch-del-char, Isearch Yanking
	isearch-forward, Basics of Incremental Search
	isearch-forward-regexp, Regular Expression Search
	isearch-forward-word, Word Search
	isearch-lazy-highlight, Repeating Incremental Search
	isearch-mode-map, Special Input for Incremental Search
	isearch-resume-in-command-history, Repeating Minibuffer Commands
	isearch-toggle-input-method, Special Input for Incremental Search
	isearch-toggle-specified-input-method, Special Input for Incremental Search
	isearch-yank-char, Isearch Yanking
	isearch-yank-kill, Isearch Yanking
	isearch-yank-line, Isearch Yanking
	isearch-yank-pop, Isearch Yanking
	isearch-yank-word-or-char, Isearch Yanking
	Islamic calendar, Supported Calendar Systems
	ISO commercial calendar, Supported Calendar Systems
	ISO Latin character sets, Unibyte Editing Mode
	iso-ascii library, Unibyte Editing Mode
	iso-gtex2iso, TeX Mode Miscellany
	iso-iso2gtex, TeX Mode Miscellany
	iso-iso2tex, TeX Mode Miscellany
	iso-tex2iso, TeX Mode Miscellany
	iso-transl library, Unibyte Editing Mode
	ispell, Checking and Correcting Spelling
	ispell program, Checking and Correcting Spelling
	ispell-buffer, Checking and Correcting Spelling
	ispell-change-dictionary, Checking and Correcting Spelling
	ispell-complete-word, Checking and Correcting Spelling
	ispell-complete-word-dict, Checking and Correcting Spelling
	ispell-dictionary, Checking and Correcting Spelling
	ispell-kill-ispell, Checking and Correcting Spelling
	ispell-local-dictionary, Checking and Correcting Spelling
	ispell-message, Mail Miscellany
	ispell-personal-dictionary, Checking and Correcting Spelling
	ispell-region, Checking and Correcting Spelling
	ispell-word, Checking and Correcting Spelling
	Iswitchb mode, Switching Between Buffers using Substrings
	iswitchb-mode, Switching Between Buffers using Substrings

J
	j (Dired), Navigation in the Dired Buffer
	j (Rmail), Moving Among Messages
	Japanese, International Character Set Support
	jar, File Archives
	Java class archives, File Archives
	Java mode, C and Related Modes
	Javascript mode, Major Modes for Programming Languages
	JDB, Running Debuggers Under Emacs
	jdb, Starting GUD
	jdb-mode-hook, GUD Customization
	Julian calendar, Supported Calendar Systems
	Julian day numbers, Supported Calendar Systems
	jump-to-register, Saving Positions in Registers
	just-in-time (JIT) font-lock, Font Lock mode
	just-one-space, Deletion
	justification, Explicit Fill Commands
	justification in text-based tables, Cell Justification

K
	k (Dired), Updating the Dired Buffer
	k (Rmail), Labels
	kbd, Rebinding Keys in Your Init File
	kbd-macro-query, Executing Macros with Variations
	keep-lines, Other Search-and-Loop Commands
	kept-new-versions, Automatic Deletion of Backups
	kept-old-versions, Automatic Deletion of Backups
	Kerberos POP authentication, Retrieving Mail from Remote Mailboxes
	key, Keys
	key bindings, Customizing Key Bindings
	key rebinding, permanent, The Emacs Initialization File
	key rebinding, this session, Changing Key Bindings Interactively
	key sequence, Keys
	keyboard input, Kinds of User Input
	keyboard macro, Keyboard Macros
	keyboard shortcuts, Glossary
	keyboard, MS-Windows, Keyboard Usage on MS-Windows
	keyboard-coding-system, Coding Systems for Terminal I/O
	keyboard-escape-quit, Quitting and Aborting
	keyboard-quit, Quitting and Aborting
	keymap, Keymaps
	keypad, Rebinding Function Keys
	keypad keys (MS-Windows), Keyboard Usage on MS-Windows
	keys stolen by window manager, Kinds of User Input
	kill DOS application, Subprocesses on Windows 9X/ME and Windows NT/2K/XP
	kill ring, Yanking
	kill-all-abbrevs, Defining Abbrevs
	kill-buffer, Killing Buffers
	kill-buffer-and-window, Deleting and Rearranging Windows
	kill-buffer-hook, Killing Buffers
	kill-compilation, Running Compilations under Emacs
	kill-do-not-save-duplicates, Options for Killing
	kill-emacs, Exiting Emacs
	kill-line, Killing by Lines
	kill-local-variable, Local Variables
	kill-matching-buffers, Killing Buffers
	kill-read-only-ok, Options for Killing
	kill-rectangle, Rectangles
	kill-region, Other Kill Commands
	kill-ring, The Kill Ring
	kill-ring-max, The Kill Ring
	kill-ring-save, Other Kill Commands
	kill-sentence, Sentences
	kill-sexp, Expressions with Balanced Parentheses
	kill-some-buffers, Killing Buffers
	kill-whole-line, Killing by Lines
	kill-word, Words
	killing buffers, Killing Buffers
	killing characters and lines, Erasing Text
	killing Emacs, Exiting Emacs
	killing expressions, Expressions with Balanced Parentheses
	killing rectangular areas of text, Rectangles
	killing text, Deletion and Killing
	kmacro-add-counter, The Keyboard Macro Counter
	kmacro-bind-to-key, Naming and Saving Keyboard Macros
	kmacro-cycle-ring-next, The Keyboard Macro Ring
	kmacro-cycle-ring-previous, The Keyboard Macro Ring
	kmacro-edit-lossage, Editing a Keyboard Macro
	kmacro-edit-macro, Editing a Keyboard Macro
	kmacro-end-and-call-macro, Basic Use
	kmacro-end-macro, Basic Use
	kmacro-end-or-call-macro, Basic Use
	kmacro-end-or-call-macro-repeat, The Keyboard Macro Ring
	kmacro-insert-counter, The Keyboard Macro Counter
	kmacro-name-last-macro, Naming and Saving Keyboard Macros
	kmacro-ring-max, The Keyboard Macro Ring
	kmacro-set-counter, The Keyboard Macro Counter
	kmacro-set-format, The Keyboard Macro Counter
	kmacro-start-macro, Basic Use
	kmacro-start-macro-or-insert-counter, Basic Use
	kmacro-step-edit-macro, Stepwise Editing a Keyboard Macro
	Korean, International Character Set Support

L
	L (Dired), Operating on Files
	l (Dired), Updating the Dired Buffer
	l (GDB threads buffer), Threads Buffer
	l (Gnus Group mode), Using the Gnus Group Buffer
	L (Gnus Group mode), Using the Gnus Group Buffer
	l (Rmail), Making Summaries
	label (Rmail), Labels
	landmark, Other Amusements
	landmark game, Other Amusements
	language environment, automatic selection on MS-DOS, International Support on MS-DOS
	language environments, Language Environments
	Lao, International Character Set Support
	large-file-warning-threshold, Visiting Files
	LaTeX mode, TeX Mode
	latex-block-names, LaTeX Editing Commands
	latex-electric-env-pair-mode, LaTeX Editing Commands
	latex-mode, TeX Mode
	latex-mode-hook, TeX Mode Miscellany
	latex-run-command, TeX Printing Commands
	Latin, International Character Set Support
	Latin-1 TeX encoding, TeX Mode Miscellany
	latin1-display, Undisplayable Characters
	lazy search highlighting, Repeating Incremental Search
	leaving Emacs, Exiting Emacs
	LEFT, Changing the Location of Point
	left-char, Changing the Location of Point
	left-word, Changing the Location of Point
	LessTif Widget X Resources, LessTif Menu X Resources
	lgrep, Searching with Grep under Emacs
	libraries, Libraries of Lisp Code for Emacs
	life, Other Amusements
	Life, Other Amusements
	line endings, Coding Systems
	line number commands, Cursor Position Information
	line number display, Optional Mode Line Features
	line spacing, Table of X Resources for Emacs
	line spacing, command-line argument, Other Display Options
	line truncation, and fringes, Continuation Lines, Line Truncation
	line wrapping, Continuation Lines
	line-move-visual, Changing the Location of Point
	line-number-display-limit, Optional Mode Line Features
	line-number-display-limit-width, Optional Mode Line Features
	line-number-mode, Optional Mode Line Features
	lines, highlighting, Interactive Highlighting
	links, Following References with the Mouse
	links (customization buffer), Customization Groups
	Linum mode, Minor Modes
	linum-mode, Minor Modes
	Lisp character syntax, Init File Syntax
	Lisp editing, Editing Programs
	Lisp files byte-compiled by XEmacs, Libraries of Lisp Code for Emacs
	Lisp files, and multibyte operation, Disabling Multibyte Characters
	Lisp mode, Running an External Lisp
	Lisp object syntax, Init File Syntax
	Lisp string syntax, Init File Syntax
	Lisp symbol completion, Completion for Symbol Names
	lisp-body-indent, Customizing Lisp Indentation
	lisp-eval-defun, Running an External Lisp
	lisp-indent-function property, Customizing Lisp Indentation
	lisp-indent-offset, Customizing Lisp Indentation
	lisp-interaction-mode, Lisp Interaction Buffers
	lisp-interaction-mode-hook, Major Modes for Programming Languages
	lisp-mode-hook, Major Modes for Programming Languages
	list commands, Moving in the Parenthesis Structure
	list-abbrevs, Examining and Editing Abbrevs
	list-bookmarks, Bookmarks
	list-buffers, Listing Existing Buffers
	list-character-sets, Charsets
	list-charset-chars, Charsets
	list-coding-systems, Coding Systems
	list-colors-display, Colors for Faces
	list-colors-sort, Colors for Faces
	list-command-history, Repeating Minibuffer Commands
	list-directory, File Directories
	list-directory-brief-switches, File Directories
	list-directory-verbose-switches, File Directories
	list-faces-display, Text Faces
	list-holidays, Holidays
	list-input-methods, Selecting an Input Method
	list-matching-lines, Other Search-and-Loop Commands
	list-packages, The Package Menu Buffer
	list-tags, Tags Table Inquiries
	listing current buffers, Listing Existing Buffers
	listing system fonts, Fonts
	load, Libraries of Lisp Code for Emacs
	load init file of another user, Initial Options
	load path for Emacs Lisp, Libraries of Lisp Code for Emacs
	load-dangerous-libraries, Libraries of Lisp Code for Emacs
	load-file, Libraries of Lisp Code for Emacs
	load-library, Libraries of Lisp Code for Emacs
	load-path, Libraries of Lisp Code for Emacs
	load-theme, Custom Themes
	loading Lisp code, Libraries of Lisp Code for Emacs
	loading Lisp libraries automatically, Init File Examples
	loading Lisp libraries, command-line argument, Action Arguments
	loading several files (in Dired), Operating on Files
	local keymap, Local Keymaps
	local variables, Local Variables
	local variables in files, Local Variables in Files
	local variables, for all files in a directory, Per-Directory Local Variables
	local-set-key, Changing Key Bindings Interactively
	local-unset-key, Changing Key Bindings Interactively
	locale, date format, Updating Time Stamps Automatically
	locale-charset-language-names, Language Environments
	locale-coding-system, Coding Systems for Interprocess Communication
	locale-language-names, Language Environments
	locale-preferred-coding-systems, Language Environments
	locales, Language Environments
	locate, Dired and find
	locate-command, Dired and find
	locate-with-filter, Dired and find
	location of point, Cursor Position Information
	locking (CVS), Options specific for CVS
	locking files, Protection against Simultaneous Editing
	locking, non-strict (RCS), Options for RCS and SCCS
	locking-based version, Merge-based vs lock-based Version Control
	locus, Compilation Mode
	Log Edit mode, Features of the Log Entry Buffer
	log File, types of, Types of Log File
	log-edit-done, Features of the Log Entry Buffer
	log-edit-insert-changelog, Features of the Log Entry Buffer
	log-edit-show-diff, Features of the Log Entry Buffer
	log-edit-show-files, Features of the Log Entry Buffer
	log-view-toggle-entry-display, VC Change Log
	logging keystrokes, Checklist for Bug Reports
	logical order, Bidirectional Editing
	long file names in DOS box under Windows 95/NT, File Names on MS-DOS
	looking for a subject in documentation, Help
	lpr usage under MS-DOS, Printing and MS-Windows
	lpr-add-switches, Printing Hard Copies
	lpr-buffer, Printing Hard Copies
	lpr-command (MS-DOS), Printing and MS-Windows
	lpr-commands, Printing Hard Copies
	lpr-headers-switches, Printing Hard Copies
	lpr-headers-switches (MS-DOS), Printing and MS-Windows
	lpr-printer-switch, Printing Hard Copies
	lpr-region, Printing Hard Copies
	lpr-switches, Printing Hard Copies
	lpr-switches (MS-DOS), Printing and MS-Windows
	LRM, Bidirectional Editing
	ls emulation, Emulation of ls on MS-Windows
	ls-lisp-dirs-first, Emulation of ls on MS-Windows
	ls-lisp-emulation, Emulation of ls on MS-Windows
	ls-lisp-format-time-list, Emulation of ls on MS-Windows
	ls-lisp-ignore-case, Emulation of ls on MS-Windows
	ls-lisp-support-shell-wildcards, Emulation of ls on MS-Windows
	ls-lisp-use-insert-directory-program, Emulation of ls on MS-Windows
	ls-lisp-use-localized-time-format, Emulation of ls on MS-Windows
	ls-lisp-verbosity, Emulation of ls on MS-Windows
	Lucid Widget X Resources, Lucid Menu And Dialog X Resources
	lunar-phases, Phases of the Moon
	lzh, File Archives

M
	M (Calendar mode), Phases of the Moon
	m (Calendar mode), Displaying the Diary
	m (Dired), Dired Marks vs. Flags
	M (Dired), Operating on Files
	m (Rmail), Sending Replies
	M-, Kinds of User Input
	M-!, Single Shell Commands
	M-$, Checking and Correcting Spelling
	M-$ (Dired), Hiding Subdirectories
	M-%, Query Replace
	M-% (Incremental search), Special Input for Incremental Search
	M-&, Single Shell Commands
	M-', Controlling Abbrev Expansion
	M-*, Finding a Tag
	M-,, Searching and Replacing with Tags Tables
	M--, Numeric Arguments
	M-- M-c, Case Conversion
	M-- M-l, Case Conversion
	M-- M-u, Case Conversion
	M-., Finding a Tag
	M-/, Dynamic Abbrev Expansion
	M-1, Numeric Arguments
	M-:, Evaluating Emacs Lisp Expressions
	M-;, Comment Commands
	M-<, Changing the Location of Point
	M-< (Calendar mode), Beginning or End of Week, Month or Year
	M-< (DocView mode), DocView Navigation
	M-<down> (Org Mode), Org Mode
	M-<left> (Org Mode), Org Mode
	M-<right> (Org Mode), Org Mode
	M-<up> (Org Mode), Org Mode
	M-=, Cursor Position Information
	M-= (Calendar mode), Counting Days
	M-= (Dired), File Comparison with Dired
	M->, Changing the Location of Point
	M-> (Calendar mode), Beginning or End of Week, Month or Year
	M-> (DocView mode), DocView Navigation
	M-? (Nroff mode), Nroff Mode
	M-? (Shell mode), Shell Mode
	M-@, Commands to Mark Textual Objects, Words
	M-a, Sentences
	M-a (C mode), C Mode Motion Commands
	M-a (Calendar mode), Beginning or End of Week, Month or Year
	M-b, Changing the Location of Point, Words
	M-c, Case Conversion Commands
	M-d, Words
	M-DEL, Words
	M-DEL (Dired), Dired Marks vs. Flags
	M-Drag-Mouse-1, Secondary Selection
	M-e, Sentences
	M-e (C mode), C Mode Motion Commands
	M-e (Calendar mode), Beginning or End of Week, Month or Year
	M-e (Incremental search), Repeating Incremental Search
	M-f, Changing the Location of Point, Words
	M-g g, Changing the Location of Point
	M-g M-g, Changing the Location of Point
	M-g M-n, Compilation Mode
	M-g n, Compilation Mode
	M-h, Paragraphs
	M-i, Indentation Commands
	M-j, Multiple Lines of Comments
	M-j b (Enriched mode), Justification in Enriched Text
	M-j c (Enriched mode), Justification in Enriched Text
	M-j l (Enriched mode), Justification in Enriched Text
	M-j r (Enriched mode), Justification in Enriched Text
	M-j u (Enriched mode), Justification in Enriched Text
	M-k, Sentences
	M-l, Case Conversion Commands
	M-LEFT, Changing the Location of Point
	M-m, Indentation Commands
	M-m (Rmail), Sending Replies
	M-Mouse-1, Secondary Selection
	M-Mouse-2, Secondary Selection
	M-Mouse-3, Secondary Selection
	M-n (Incremental search), Repeating Incremental Search
	M-n (Log Edit mode), Features of the Log Entry Buffer
	M-n (Man mode), Man Page Lookup
	M-n (minibuffer history), Minibuffer History
	M-n (Nroff mode), Nroff Mode
	M-n (Rmail), Moving Among Messages
	M-n (Shell mode), Shell History Ring
	M-o b (Enriched mode), Faces in Enriched Text
	M-o d (Enriched mode), Faces in Enriched Text
	M-o i (Enriched mode), Faces in Enriched Text
	M-o l (Enriched mode), Faces in Enriched Text
	M-o M-s (Text mode), Explicit Fill Commands
	M-o o (Enriched mode), Faces in Enriched Text
	M-o u (Enriched mode), Faces in Enriched Text
	M-p (Incremental search), Repeating Incremental Search
	M-p (Log Edit mode), Features of the Log Entry Buffer
	M-p (Man mode), Man Page Lookup
	M-p (minibuffer history), Minibuffer History
	M-p (Nroff mode), Nroff Mode
	M-p (Rmail), Moving Among Messages
	M-p (Shell mode), Shell History Ring
	M-q, Explicit Fill Commands
	M-q (C mode), Other Commands for C Mode
	M-q (Fortran mode), Fortran Indentation and Filling Commands
	M-r, Changing the Location of Point
	M-r (Log Edit mode), Features of the Log Entry Buffer
	M-r (minibuffer history), Minibuffer History
	M-r (Shell mode), Shell History Ring
	M-RIGHT, Changing the Location of Point
	M-S (Enriched mode), Justification in Enriched Text
	M-s (Gnus Summary mode), Using the Gnus Summary Buffer
	M-s (Log Edit mode), Features of the Log Entry Buffer
	M-s (minibuffer history), Minibuffer History
	M-s (Rmail), Moving Among Messages
	M-s a C-s (Dired), Other Dired Features
	M-s a M-C-s (Dired), Other Dired Features
	M-s C-e (Incremental search), Isearch Yanking
	M-s f C-s (Dired), Navigation in the Dired Buffer
	M-s f M-C-s (Dired), Navigation in the Dired Buffer
	M-s o, Other Search-and-Loop Commands
	M-s w, Word Search
	M-SPC, Deletion
	M-t, Transposing Text
	M-TAB, Completion for Symbol Names
	M-TAB (customization buffer), Changing a Variable
	M-TAB (Incremental search), Special Input for Incremental Search
	M-TAB (Picture mode), Picture Mode Tabs
	M-TAB (Text mode), Text Mode
	M-TAB vs Alt-TAB (MS-Windows), Keyboard Usage on MS-Windows
	M-TAB, (MS-Windows), Keyboard Usage on MS-Windows
	M-u, Case Conversion Commands
	M-v, Scrolling
	M-v (Calendar mode), Scrolling in the Calendar
	M-w, Other Kill Commands
	M-x, Running Commands by Name
	M-y, Yanking Earlier Kills
	M-y (Incremental search), Isearch Yanking
	M-z, Other Kill Commands
	M-\, Deletion
	M-^, Indentation Commands
	M-^ (Fortran mode), Fortran Indentation and Filling Commands
	M-`, The Menu Bar
	M-{, Paragraphs
	M-{ (Calendar mode), Motion by Standard Lengths of Time
	M-{ (Dired), Dired Marks vs. Flags
	M-|, Single Shell Commands
	M-}, Paragraphs
	M-} (Calendar mode), Motion by Standard Lengths of Time
	M-} (Dired), Dired Marks vs. Flags
	M-~, Commands for Saving Files
	M4 mode, Major Modes for Programming Languages
	Mac OS X, Emacs and Mac OS / GNUstep
	Macintosh, Emacs and Mac OS / GNUstep
	Macintosh end-of-line conversion, Coding Systems
	Macintosh key bindings, Emulation
	macro expansion in C, Other Commands for C Mode
	magic-fallback-mode-alist, Choosing File Modes
	magic-mode-alist, Choosing File Modes
	mail, Sending Mail
	mail (on mode line), Optional Mode Line Features
	mail aliases, Mail Aliases
	MAIL environment variable, Rmail Files and Inboxes
	Mail mode, Mail-Composition Methods
	mail signature, Mail Signature
	mail-abbrev-insert-alias, Mail Aliases
	mail-add-attachment, Mail Miscellany
	mail-citation-hook, Citing Mail
	mail-composition methods, Mail-Composition Methods
	mail-default-headers, Mail Header Fields
	mail-dont-reply-to-names, Sending Replies
	mail-fill-yanked-message, Citing Mail
	mail-from-style, Mail Header Fields
	mail-mode-hook, Mail Miscellany
	mail-other-window, Displaying in Another Window
	mail-personal-alias-file, Mail Aliases
	mail-setup-hook, Mail Miscellany
	mail-signature, Mail Signature
	mail-signature-file, Mail Signature
	mail-text, Mail Header Editing
	mail-user-agent, Mail-Composition Methods
	Mailclient, Mail Sending
	MAILHOST environment variable, Retrieving Mail from Remote Mailboxes
	mailrc file, Mail Aliases
	main border width, command-line argument, Internal and External Borders
	major modes, Major Modes
	major-mode, Major Modes
	make, Running Compilations under Emacs
	make-backup-file-name-function, Single or Numbered Backups
	make-backup-files, Backup Files
	make-frame-command, Creating Frames
	make-frame-on-display, Multiple Displays
	make-indirect-buffer, Indirect Buffers
	make-local-variable, Local Variables
	make-pointer-invisible, Customization of Display, Mouse Avoidance
	make-symbolic-link, Miscellaneous File Operations
	make-variable-buffer-local, Local Variables
	Makefile mode, Major Modes for Programming Languages
	making pictures out of text characters, Editing Pictures
	man page, Man Page Lookup
	man pages, and local file variables, Specifying File Variables
	Man-switches, Man Page Lookup
	manipulating paragraphs, Paragraphs
	manipulating sentences, Sentences
	manipulating text, Commands for Human Languages
	manual pages, on MS-DOS/MS-Windows, Man Page Lookup
	manual version backups, Options specific for CVS
	manual-entry, Man Page Lookup
	manuals, on-line, Other Help Commands
	Marathi, International Character Set Support
	mark, The Mark and the Region
	mark rectangle, Rectangles
	mark ring, The Mark Ring
	mark-defun, Moving by Defuns
	mark-even-if-inactive, Operating on the Region
	mark-page, Pages
	mark-paragraph, Paragraphs
	mark-ring-max, The Mark Ring
	mark-sexp, Commands to Mark Textual Objects, Expressions with Balanced Parentheses
	mark-whole-buffer, Commands to Mark Textual Objects
	mark-word, Commands to Mark Textual Objects, Words
	marking executable files (in Dired), Dired Marks vs. Flags
	marking many files (in Dired), Dired Marks vs. Flags
	marking sections of text, Commands to Mark Textual Objects
	marking subdirectories (in Dired), Dired Marks vs. Flags
	marking symbolic links (in Dired), Dired Marks vs. Flags
	matching parentheses, Matching Parentheses
	matching parenthesis and braces, moving to, Moving in the Parenthesis Structure
	max-mini-window-height, Editing in the Minibuffer
	maximized, command-line argument, Options for Window Size and Position
	maximum buffer size exceeded, error message, Visiting Files
	Mayan calendar, Supported Calendar Systems
	Mayan calendar round, Converting from the Mayan Calendar
	Mayan haab calendar, Converting from the Mayan Calendar
	Mayan long count, Converting from the Mayan Calendar
	Mayan tzolkin calendar, Converting from the Mayan Calendar
	memory full, Running out of Memory
	menu bar, The Menu Bar, Table of X Resources for Emacs
	menu bar access using keyboard (MS-Windows), Keyboard Usage on MS-Windows
	menu bar appearance, Standard Faces
	Menu Bar mode, Menu Bars
	menu face, no effect if customized, Standard Faces
	Menu X Resources (LessTif widgets), LessTif Menu X Resources
	Menu X Resources (Lucid widgets), Lucid Menu And Dialog X Resources
	menu-bar-mode, Menu Bars
	menu-bar-open, The Menu Bar
	Mercurial, Supported Version Control Systems
	merge buffer (Emerge), Overview of Emerge
	merges, failed, Comparing Files
	merging changes, Merging Branches
	merging files, Merging Files with Emerge
	merging-based version, Merge-based vs lock-based Version Control
	message, Sending Mail
	Message mode, Mail Commands
	Message mode for sending mail, Mail-Composition Methods
	message number, Basic Concepts of Rmail
	message-goto-bcc, Mail Header Editing
	message-goto-cc, Mail Header Editing
	message-goto-fcc, Mail Header Editing
	message-goto-subject, Mail Header Editing
	message-goto-to, Mail Header Editing
	message-insert-signature, Mail Signature
	message-kill-buffer-on-exit, Mail Sending
	message-log-max, The Echo Area
	message-send, Mail Sending
	message-send-and-exit, Mail Sending
	message-send-hook, Mail Sending
	message-tab, Mail Header Editing
	message-yank-original, Citing Mail
	message-yank-prefix, Citing Mail
	messages saved from echo area, The Echo Area
	Meta, Kinds of User Input
	Meta (under MS-DOS), Keyboard Usage on MS-DOS
	Meta commands and words, Words
	Metafont mode, Major Modes for Programming Languages
	MH mail interface, Mail-Composition Methods
	Microsoft Office file, Document Viewing
	Microsoft Windows, Emacs and Microsoft Windows/MS-DOS
	Midnight mode, Killing Buffers
	midnight-hook, Killing Buffers
	midnight-mode, Killing Buffers
	MIME, Mail Miscellany
	MIME messages (Rmail), Display of Messages
	minibuffer, The Echo Area, The Minibuffer
	minibuffer confirmation, Completion Exit
	minibuffer history, Minibuffer History
	minibuffer history, searching, Searching the Minibuffer
	minibuffer keymaps, Minibuffer Keymaps
	minibuffer-complete, Completion Commands
	minibuffer-complete-and-exit, Completion Exit
	minibuffer-complete-word, Completion Commands
	minibuffer-inactive-mode, Editing in the Minibuffer
	minibuffer-local-completion-map, Minibuffer Keymaps
	minibuffer-local-filename-completion-map, Minibuffer Keymaps
	minibuffer-local-filename-must-match-map, Minibuffer Keymaps
	minibuffer-local-map, Minibuffer Keymaps
	minibuffer-local-must-match-map, Minibuffer Keymaps
	minibuffer-local-ns-map, Minibuffer Keymaps
	minibuffer-prompt face, Standard Faces
	minibuffer-prompt-properties, Standard Faces
	minimizing, Exiting Emacs
	minimizing a frame at startup, Icons
	minor mode keymap, Local Keymaps
	minor modes, Minor Modes
	mistakes, correcting, Commands for Fixing Typos
	mml-attach-file, Mail Miscellany
	mode commands for minor modes, Minor Modes
	mode hook, Major Modes, Major Modes for Programming Languages
	mode line, The Mode Line
	mode line (MS-DOS), International Support on MS-DOS
	mode line, 3D appearance, Optional Mode Line Features
	mode line, mouse, Mode Line Mouse Commands
	mode, Abbrev, Abbrev Concepts
	mode, archive, File Archives
	mode, Auto Compression, Accessing Compressed Files
	mode, Auto Fill, Auto Fill Mode
	mode, Auto Save, Auto-Saving: Protection Against Disasters
	mode, Auto-Revert, Reverting a Buffer
	mode, AWK, C and Related Modes
	mode, C, C and Related Modes
	mode, C++, C and Related Modes
	mode, Column Number, Optional Mode Line Features
	mode, Comint, Shell Mode
	mode, Compilation, Compilation Mode
	mode, CORBA IDL, C and Related Modes
	mode, CRiSP, Emulation
	mode, Delete Selection, Operating on the Region
	mode, Diff Auto-Refine, Diff Mode
	mode, Dirtrack, Directory Tracking
	mode, DocTeX, TeX Mode
	mode, DocView, Document Viewing
	mode, Electric Indent, Convenience Features for Indentation
	mode, Emacs Lisp, Evaluating Emacs Lisp Expressions
	mode, Enriched, Enriched Text
	mode, Flyspell, Checking and Correcting Spelling
	mode, Follow, Follow Mode
	mode, Font Lock, Font Lock mode
	mode, Fortran, Fortran Mode
	mode, Glasses, Glasses minor mode
	mode, Global Auto-Revert, Reverting a Buffer
	mode, Goto Address, Activating URLs
	mode, GUD Tooltip, Debugger Operation
	mode, Hexl, Editing Binary Files
	mode, Hideshow, Hideshow minor mode
	mode, HTML, SGML and HTML Modes
	mode, Iswitchb, Switching Between Buffers using Substrings
	mode, Java, C and Related Modes
	mode, LaTeX, TeX Mode
	mode, Lisp, Running an External Lisp
	mode, Log Edit, Features of the Log Entry Buffer
	mode, Mail, Mail-Composition Methods
	mode, major, Major Modes
	mode, Menu Bar, Menu Bars
	mode, Message, Mail Commands
	mode, minor, Minor Modes
	mode, Mouse Wheel, Mouse Commands for Editing
	mode, MSB, Customizing Buffer Menus
	mode, nXML, Commands for Human Languages, SGML and HTML Modes
	mode, Objective C, C and Related Modes
	mode, Occur, Other Search-and-Loop Commands
	mode, Occur Edit, Other Search-and-Loop Commands
	mode, Org, Org Mode
	mode, Outline, Outline Mode
	mode, Overwrite, Minor Modes
	mode, Paragraph-Indent Text, Text Mode
	mode, Pike, C and Related Modes
	mode, Scheme, Running an External Lisp
	mode, Scroll Bar, Scroll Bars
	mode, Scroll-all, Convenience Features for Window Handling
	mode, Semantic, Semantic
	mode, SGML, SGML and HTML Modes
	mode, Shell, Shell Mode
	mode, SliTeX, TeX Mode
	mode, tar, File Archives
	mode, Term, Term Mode
	mode, TeX, TeX Mode
	mode, Text, Text Mode
	mode, thumbs, Convenience Features for Finding Files
	mode, Tool Bar, Tool Bars
	mode, Transient Mark, Disabling Transient Mark Mode
	mode, View, View Mode
	mode, Whitespace, Useless Whitespace
	mode, Winner, Convenience Features for Window Handling
	mode, XML, Commands for Human Languages
	mode-line-in-non-selected-windows, Optional Mode Line Features
	mode-require-final-newline, Customizing Saving of Files
	mode-specific-map, Prefix Keymaps
	modes for programming languages, Major Modes for Programming Languages
	modification dates, Updating Time Stamps Automatically
	modified (buffer), Visiting Files
	modifier keys, Kinds of User Input, Modifier Keys
	Modula2 mode, Major Modes for Programming Languages
	moon, phases of, Phases of the Moon
	Morse code, Other Amusements
	morse-region, Other Amusements
	Motif key bindings, Emulation
	mouse avoidance, Mouse Avoidance
	mouse button events, Rebinding Mouse Buttons
	mouse buttons (what they do), Mouse Commands for Editing
	mouse on mode line, Mode Line Mouse Commands
	mouse pointer, Customization of Display
	mouse pointer color, command-line argument, Window Color Options
	mouse support, Using a Mouse in Text Terminals
	mouse support under MS-DOS, Mouse Usage on MS-DOS
	mouse wheel, Mouse Commands for Editing
	Mouse Wheel minor mode, Mouse Commands for Editing
	mouse, and MS-Windows, Mouse Usage on MS-Windows
	mouse, dragging, Mouse Commands for Editing
	mouse, selecting text using, Mouse Commands for Editing
	mouse, set number of buttons, Mouse Usage on MS-DOS
	Mouse-1, Mouse Commands for Editing
	Mouse-1 (mode line), Mode Line Mouse Commands
	Mouse-1 (on buttons), Following References with the Mouse
	Mouse-1 (scroll bar), Mode Line Mouse Commands
	mouse-1-click-in-non-selected-windows, Following References with the Mouse
	Mouse-2, Mouse Commands for Editing
	Mouse-2 (GDB Breakpoints buffer), Breakpoints Buffer
	Mouse-2 (mode line), Mode Line Mouse Commands
	Mouse-2 (on buttons), Following References with the Mouse
	Mouse-3, Mouse Commands for Editing
	Mouse-3 (mode line), Mode Line Mouse Commands
	mouse-autoselect-window, Using Other Windows
	mouse-avoidance-mode, Mouse Avoidance
	mouse-buffer-menu, Customizing Buffer Menus
	mouse-choose-completion, Completion Commands
	mouse-drag-copy-region, Mouse Commands for Editing
	mouse-highlight, Following References with the Mouse
	mouse-save-then-kill, Mouse Commands for Editing
	mouse-scroll-min-lines, Mouse Commands for Editing
	mouse-secondary-save-then-kill, Secondary Selection
	mouse-set-point, Mouse Commands for Editing
	mouse-set-region, Mouse Commands for Editing
	mouse-set-secondary, Secondary Selection
	mouse-start-secondary, Secondary Selection
	mouse-wheel-follow-mouse, Mouse Commands for Editing
	mouse-wheel-mode, Mouse Commands for Editing
	mouse-wheel-progressive-speed, Mouse Commands for Editing
	mouse-wheel-scroll-amount, Mouse Commands for Editing
	mouse-yank-at-click, Mouse Commands for Editing
	mouse-yank-at-point, Mouse Commands for Editing
	mouse-yank-primary, Mouse Commands for Editing
	mouse-yank-secondary, Secondary Selection
	move to beginning or end of function, Moving by Defuns
	move-beginning-of-line, Changing the Location of Point
	move-end-of-line, Changing the Location of Point
	move-to-window-line-top-bottom, Changing the Location of Point
	movemail, Retrieving Mail from Remote Mailboxes
	movemail program, movemail program
	movement, Changing the Location of Point
	moving files (in Dired), Operating on Files
	moving inside the calendar, Movement in the Calendar
	moving point, Changing the Location of Point
	moving text, Yanking
	moving the cursor, Changing the Location of Point
	mpuz, Other Amusements
	MS-DOG, Emacs and MS-DOS
	MS-DOS end-of-line conversion, Coding Systems
	MS-DOS peculiarities, Emacs and MS-DOS
	MS-Windows codepages, International Support on MS-DOS
	MS-Windows keyboard shortcuts, Keyboard Usage on MS-Windows
	MS-Windows, and primary selection, Cut and Paste with Other Window Applications
	MS-Windows, Emacs peculiarities, Emacs and Microsoft Windows/MS-DOS
	MSB mode, Customizing Buffer Menus
	msb-mode, Customizing Buffer Menus
	msdos-set-mouse-buttons, Mouse Usage on MS-DOS
	MULE, International Character Set Support
	multi-occur, Other Search-and-Loop Commands
	multi-occur-in-matching-buffers, Other Search-and-Loop Commands
	multibyte characters, International Character Set Support
	multibyte operation, and Lisp files, Disabling Multibyte Characters
	multiple displays, Multiple Displays
	multiple views of outline, Viewing One Outline in Multiple Views
	multiple windows in Emacs, Multiple Windows
	multiple-file search and replace, Searching and Replacing with Tags Tables
	Multipurpose Internet Mail Extensions, Mail Miscellany
	Multithreaded debugging in GDB, Multithreaded Debugging

N
	n (DocView mode), DocView Navigation
	n (Gnus Group mode), Using the Gnus Group Buffer
	n (Gnus Summary mode), Using the Gnus Summary Buffer
	n (Rmail), Moving Among Messages
	narrow-to-defun, Narrowing
	narrow-to-page, Narrowing
	narrow-to-region, Narrowing
	narrowing, Narrowing
	narrowing, and line number display, Optional Mode Line Features
	nato-region, Other Amusements
	negative-argument, Numeric Arguments
	networked printers (MS-Windows), Printing and MS-Windows
	newline, Inserting Text
	newline-and-indent, Indentation Commands, Basic Program Indentation Commands
	newlines, hard and soft, Hard and Soft Newlines
	newsreader, Gnus
	next, Scrolling
	Next Error Follow mode, Compilation Mode
	next-buffer, Creating and Selecting Buffers
	next-completion, Completion Commands
	next-error, Compilation Mode
	next-error-follow-minor-mode, Compilation Mode
	next-error-highlight, Compilation Mode
	next-file, Tags Table Inquiries
	next-history-element, Minibuffer History
	next-line, Changing the Location of Point
	next-line-add-newlines, Changing the Location of Point
	next-logical-line, Visual Line Mode
	next-matching-history-element, Minibuffer History
	next-screen-context-lines, Scrolling
	NFS and quitting, Quitting and Aborting
	nil, Glossary
	no-conversion, coding system, Coding Systems
	nobreak-char-display, How Text Is Displayed
	non-ASCII characters in .emacs, Non-ASCII Characters in Init Files
	non-ASCII keys, binding, Non-ASCII Characters in Init Files
	non-breaking hyphen, How Text Is Displayed
	non-breaking space, How Text Is Displayed
	non-greedy regexp matching, Syntax of Regular Expressions
	non-integral number of lines in a window, Optional Mode Line Features
	non-selected windows, mode line appearance, Optional Mode Line Features
	Non-stop debugging in GDB, Multithreaded Debugging
	non-strict locking (RCS), Options for RCS and SCCS
	nonincremental search, Nonincremental Search
	normal hook, Hooks
	normal-erase-is-backspace, If DEL Fails to Delete
	normal-erase-is-backspace-mode, If DEL Fails to Delete
	normal-mode, Choosing File Modes
	not-modified, Commands for Saving Files
	nroff, Nroff Mode
	nroff-mode, Nroff Mode
	nroff-mode-hook, Nroff Mode
	ns-pop-up-frames, Windowing System Events under Mac OS / GNUstep
	ns-standard-fontset-spec, Defining fontsets
	NSA, Mail Amusements
	number-to-register, Keeping Numbers in Registers
	numeric arguments, Numeric Arguments
	nXML mode, Commands for Human Languages, SGML and HTML Modes
	nxml-mode, Commands for Human Languages, SGML and HTML Modes

O
	o (Calendar mode), Specified Dates
	o (Dired), Visiting Files in Dired
	O (Dired), Operating on Files
	o (Occur mode), Other Search-and-Loop Commands
	o (Rmail), Copying Messages Out to Files
	Objective C mode, C and Related Modes
	occur, Other Search-and-Loop Commands
	Occur Edit mode, Other Search-and-Loop Commands
	Occur mode, Other Search-and-Loop Commands
	octal escapes, How Text Is Displayed
	Octave mode, Major Modes for Programming Languages
	omer count, Sexp Entries and the Fancy Diary Display
	on-line manuals, Other Help Commands
	open file, Visiting Files
	open-dribble-file, Checklist for Bug Reports
	open-line, Blank Lines
	open-paren-in-column-0-is-defun-start, Left Margin Convention
	open-parenthesis in leftmost column, Left Margin Convention
	open-rectangle, Rectangles
	open-termscript, Checklist for Bug Reports
	OpenDocument file, Document Viewing
	operating on files in Dired, Operating on Files
	operations on a marked region, Operating on the Region
	options (command line), Command Line Arguments for Emacs Invocation
	Org agenda, Org as an organizer
	Org exporting, Org as an authoring system
	Org mode, Org Mode
	org-agenda, Org as an organizer
	org-agenda-file-to-front, Org as an organizer
	org-agenda-files, Org as an organizer
	org-cycle, Org Mode
	org-deadline, Org as an organizer
	org-export, Org as an authoring system
	org-metadown, Org Mode
	org-metaleft, Org Mode
	org-metaright, Org Mode
	org-metaup, Org Mode
	org-mode, Org Mode
	org-publish-project-alist, Org as an authoring system
	org-schedule, Org as an organizer
	org-shifttab, Org Mode
	org-todo, Org as an organizer
	org-todo-keywords, Org as an organizer
	organizer, Org Mode
	other editors, Emulation
	other-frame, Frame Commands
	other-window, Using Other Windows
	out of memory, Running out of Memory
	Outline mode, Outline Mode
	outline with multiple views, Viewing One Outline in Multiple Views
	outline-backward-same-level, Outline Motion Commands
	outline-forward-same-level, Outline Motion Commands
	outline-level, Format of Outlines
	outline-minor-mode, Outline Mode
	outline-minor-mode-prefix, Outline Mode
	outline-mode, Outline Mode
	outline-mode-hook, Outline Mode
	outline-next-visible-heading, Outline Motion Commands
	outline-previous-visible-heading, Outline Motion Commands
	outline-regexp, Format of Outlines
	outline-up-heading, Outline Motion Commands
	overflow-newline-into-fringe, Window Fringes
	overlays at character position, Editing Format Information
	overline-margin, Customization of Display
	override character terminal color support, Window Color Options
	Overwrite mode, Minor Modes
	overwrite-mode, Minor Modes

P
	p (Calendar mode), Converting To Other Calendars
	P (Dired), Operating on Files
	p (DocView mode), DocView Navigation
	p (Gnus Group mode), Using the Gnus Group Buffer
	p (Gnus Summary mode), Using the Gnus Summary Buffer
	p (Rmail), Moving Among Messages
	p d (Calendar mode), Miscellaneous Calendar Commands
	Package, Emacs Lisp Packages
	Package archive, Emacs Lisp Packages
	package directory, Package Files and Directory Layout
	package file, Package Files and Directory Layout
	package menu, The Package Menu Buffer
	package requirements, Package Installation
	package-archives, Package Installation
	package-directory-list, Package Files and Directory Layout
	package-enable-at-startup, Package Installation
	package-initialize, Package Installation
	package-install, Package Installation
	package-install-file, Package Files and Directory Layout
	package-load-list, Package Installation
	package-user-dir, Package Files and Directory Layout
	page-delimiter, Pages
	PageDown, Scrolling
	pages, Pages
	PageUp, Scrolling
	paging in Term mode, Term Mode
	paragraph, base direction, Bidirectional Editing
	Paragraph-Indent Text mode, Text Mode
	paragraph-indent-minor-mode, Text Mode
	paragraph-indent-text-mode, Text Mode
	paragraph-separate, Paragraphs
	paragraph-start, Paragraphs
	paragraphs, Paragraphs
	parasha, weekly, Sexp Entries and the Fancy Diary Display
	parentheses, displaying matches, Matching Parentheses
	parentheses, moving across, Moving in the Parenthesis Structure
	parenthesis in column zero and fontification, Font Lock mode
	parenthetical groupings, Moving in the Parenthesis Structure
	partial completion, How Completion Alternatives Are Chosen
	paste, “Cut and Paste” Operations on Graphical Displays
	pasting, Yanking
	patches, editing, Diff Mode
	patches, sending, Sending Patches for GNU Emacs
	PC key bindings, Emulation
	PC selection, Emulation
	PCL-CVS, VC Directory Mode
	PDB, Running Debuggers Under Emacs
	pdb, Starting GUD
	pdb-mode-hook, GUD Customization
	PDF file, Document Viewing
	per-buffer variables, Local Variables
	per-directory local variables, Per-Directory Local Variables
	Perl mode, Major Modes for Programming Languages
	Perldb, Running Debuggers Under Emacs
	perldb, Starting GUD
	perldb-mode-hook, GUD Customization
	Persian calendar, Supported Calendar Systems
	phases of the moon, Phases of the Moon
	Picture mode and rectangles, Picture Mode Rectangle Commands
	picture-backward-clear-column, Basic Editing in Picture Mode
	picture-backward-column, Basic Editing in Picture Mode
	picture-clear-column, Basic Editing in Picture Mode
	picture-clear-line, Basic Editing in Picture Mode
	picture-clear-rectangle, Picture Mode Rectangle Commands
	picture-clear-rectangle-to-register, Picture Mode Rectangle Commands
	picture-forward-column, Basic Editing in Picture Mode
	picture-mode, Editing Pictures
	picture-mode-hook, Editing Pictures
	picture-motion, Controlling Motion after Insert
	picture-motion-reverse, Controlling Motion after Insert
	picture-move-down, Basic Editing in Picture Mode
	picture-move-up, Basic Editing in Picture Mode
	picture-movement-down, Controlling Motion after Insert
	picture-movement-left, Controlling Motion after Insert
	picture-movement-ne, Controlling Motion after Insert
	picture-movement-nw, Controlling Motion after Insert
	picture-movement-right, Controlling Motion after Insert
	picture-movement-se, Controlling Motion after Insert
	picture-movement-sw, Controlling Motion after Insert
	picture-movement-up, Controlling Motion after Insert
	picture-newline, Basic Editing in Picture Mode
	picture-open-line, Basic Editing in Picture Mode
	picture-set-tab-stops, Picture Mode Tabs
	picture-tab, Picture Mode Tabs
	picture-tab-chars, Picture Mode Tabs
	picture-tab-search, Picture Mode Tabs
	picture-yank-rectangle, Picture Mode Rectangle Commands
	picture-yank-rectangle-from-register, Picture Mode Rectangle Commands
	pictures, Editing Pictures
	Pike mode, C and Related Modes
	plain-tex-mode, TeX Mode
	plain-tex-mode-hook, TeX Mode Miscellany
	planner, Org Mode
	point, Point
	point location, Cursor Position Information
	point location, on MS-DOS, Text Files and Binary Files
	point-to-register, Saving Positions in Registers
	Polish, International Character Set Support
	pong, Other Amusements
	Pong game, Other Amusements
	POP mailboxes, Retrieving Mail from Remote Mailboxes
	pop-global-mark, The Global Mark Ring
	pop-tag-mark, Finding a Tag
	pop-up-frames, How display-buffer works
	position and size of Emacs frame, Options for Window Size and Position
	PostScript file, Document Viewing
	PostScript mode, Major Modes for Programming Languages
	pr-interface, Printing Package
	prefer-coding-system, Recognizing Coding Systems
	prefix arguments, Numeric Arguments
	prefix key, Keys
	prepend-to-buffer, Accumulating Text
	prepend-to-register, Saving Text in Registers
	preprocessor highlighting, Other Commands for C Mode
	pretty-printer, Indentation for Programs
	previous-buffer, Creating and Selecting Buffers
	previous-completion, Completion Commands
	previous-history-element, Minibuffer History
	previous-line, Changing the Location of Point
	previous-logical-line, Visual Line Mode
	previous-matching-history-element, Minibuffer History
	primary Rmail file, Basic Concepts of Rmail
	primary selection, Setting the Mark, Cut and Paste with Other Window Applications
	print-buffer, Printing Hard Copies
	print-buffer (MS-DOS), Printing and MS-Windows
	print-region, Printing Hard Copies
	print-region (MS-DOS), Printing and MS-Windows
	print-region-function (MS-DOS), Printing and MS-Windows
	printer-name, Printing Hard Copies
	printer-name, (MS-DOS/MS-Windows), Printing and MS-Windows
	printing, Printing Hard Copies
	printing character, How Text Is Displayed
	printing files (in Dired), Operating on Files
	Printing package, Printing Package
	printing under MS-DOS, Subprocesses on MS-DOS
	prior, Scrolling
	Prog mode, Hooks
	prog-mode-hook, Major Modes
	program building, Compiling and Testing Programs
	program editing, Editing Programs, Hooks
	Prolog mode, Major Modes for Programming Languages
	prompt, The Minibuffer
	prompt, shell, Shell Prompts
	PS file, Document Viewing
	ps-despool, PostScript Hardcopy
	ps-font-family, Variables for PostScript Hardcopy
	ps-font-info-database, Variables for PostScript Hardcopy
	ps-font-size, Variables for PostScript Hardcopy
	ps-landscape-mode, Variables for PostScript Hardcopy
	ps-lpr-command, Variables for PostScript Hardcopy
	ps-lpr-command (MS-DOS), Printing and MS-Windows
	ps-lpr-switches, Variables for PostScript Hardcopy
	ps-lpr-switches (MS-DOS), Printing and MS-Windows
	ps-multibyte-buffer, Variables for PostScript Hardcopy
	ps-number-of-columns, Variables for PostScript Hardcopy
	ps-page-dimensions-database, Variables for PostScript Hardcopy
	ps-paper-type, Variables for PostScript Hardcopy
	ps-print-buffer, PostScript Hardcopy
	ps-print-buffer (MS-DOS), Printing and MS-Windows
	ps-print-buffer-with-faces, PostScript Hardcopy
	ps-print-color-p, Variables for PostScript Hardcopy
	ps-print-header, Variables for PostScript Hardcopy
	ps-print-region, PostScript Hardcopy
	ps-print-region-with-faces, PostScript Hardcopy
	ps-printer-name, Variables for PostScript Hardcopy
	ps-printer-name (MS-DOS), Printing and MS-Windows
	ps-spool-buffer, PostScript Hardcopy
	ps-spool-buffer (MS-DOS), Printing and MS-Windows
	ps-spool-buffer-with-faces, PostScript Hardcopy
	ps-spool-region, PostScript Hardcopy
	ps-spool-region-with-faces, PostScript Hardcopy
	ps-use-face-background, Variables for PostScript Hardcopy
	puzzles, Other Amusements
	pwd, File Names
	Python mode, Major Modes for Programming Languages

Q
	q (Calendar mode), Miscellaneous Calendar Commands
	q (Dired), Entering Dired
	Q (Dired), Operating on Files
	q (Gnus Group mode), Using the Gnus Group Buffer
	q (Gnus Summary mode), Using the Gnus Summary Buffer
	Q (Rmail summary), Editing in Summaries
	q (Rmail summary), Editing in Summaries
	q (Rmail), Basic Concepts of Rmail
	q (VC Directory), VC Directory Commands
	q (View mode), View Mode
	quail-set-keyboard-layout, Selecting an Input Method
	quail-show-key, Selecting an Input Method
	query replace, Query Replace
	query-replace, Query Replace
	query-replace-regexp, Query Replace
	quietly-read-abbrev-file, Saving Abbrevs
	quit-window, VC Directory Commands, Entering Dired
	quitting, Quitting and Aborting
	quitting (in search), Errors in Incremental Search
	quitting Emacs, Exiting Emacs
	quitting on MS-DOS, Keyboard Usage on MS-DOS
	quoted-insert, Inserting Text
	quoting, Inserting Text
	quoting file names, Quoted File Names

R
	R (Dired), Operating on Files
	r (GDB threads buffer), Threads Buffer
	r (Rmail), Sending Replies
	rar, File Archives
	raw-text, coding system, Coding Systems
	RCS, Supported Version Control Systems
	re-search-backward, Regular Expression Search
	re-search-forward, Regular Expression Search
	read-abbrev-file, Saving Abbrevs
	read-buffer-completion-ignore-case, Completion Options
	read-file-name-completion-ignore-case, Completion Options
	read-mail-command, Mail-Composition Methods
	read-only buffer, Miscellaneous Buffer Operations
	read-only text, killing, Options for Killing
	read-quoted-char-radix, Inserting Text
	reading mail, Reading Mail with Rmail
	rebinding keys, permanently, The Emacs Initialization File
	rebinding major mode keys, Rebinding Keys in Your Init File
	rebinding mouse buttons, Rebinding Mouse Buttons
	rebinding non-ASCII keys, Non-ASCII Characters in Init Files
	recenter, Recentering
	recenter-positions, Recentering
	recenter-redisplay, Recentering
	recenter-top-bottom, Recentering
	recentf-edit-list, Convenience Features for Finding Files
	recentf-mode, Convenience Features for Finding Files
	recentf-save-list, Convenience Features for Finding Files
	recode-file-name, Coding Systems for File Names
	recode-region, Specifying a Coding System for File Text
	recompile, Running Compilations under Emacs
	recover-file, Recovering Data from Auto-Saves
	recover-session, Recovering Data from Auto-Saves
	rectangle, Rectangles
	rectangle highlighting, CUA Bindings
	rectangles and Picture mode, Picture Mode Rectangle Commands
	recursive copying, Operating on Files
	recursive deletion, Deleting Files with Dired
	recursive editing level, Recursive Editing Levels
	recycle bin, Miscellaneous File Operations
	redefining keys, this session, Changing Key Bindings Interactively
	redo, Undo
	refreshing displayed files, Updating the Dired Buffer
	regexp, Syntax of Regular Expressions
	regexp search, Regular Expression Search
	region, The Mark and the Region
	region highlighting, Disabling Transient Mark Mode
	registered file, Concepts of Version Control
	registers, Registers
	registry, setting environment variables (MS-Windows), The MS-Windows System Registry
	registry, setting resources (MS-Windows), X Resources
	regular expression, Syntax of Regular Expressions
	related files, Other Commands for C Mode
	reload files, Saving Emacs Sessions
	remember editing session, Saving Emacs Sessions
	remote file access, Remote Files
	remote host, Remote Host Shell
	remote host, debugging on, Starting GUD
	remote repositories (CVS), Options specific for CVS
	remove indentation, Indentation Commands
	remove-hook, Hooks
	remove-untranslated-filesystem, Text Files and Binary Files
	rename-buffer, Miscellaneous Buffer Operations
	rename-file, Miscellaneous File Operations
	rename-uniquely, Miscellaneous Buffer Operations
	renaming files, Miscellaneous File Operations
	renaming files (in Dired), Operating on Files
	renaming version-controlled files, Deleting and Renaming Version-Controlled Files
	repeat, Repeating a Command
	repeat-complex-command, Repeating Minibuffer Commands
	repeating a command, Repeating a Command
	replace-regexp, Regexp Replacement
	replace-string, Unconditional Replacement
	replacement, Replacement Commands
	reply to a message, Sending Replies
	report-emacs-bug, Checklist for Bug Reports
	reporting bugs, Checklist for Bug Reports
	reposition-window, Recentering
	repository, Concepts of Version Control
	require-final-newline, Customizing Saving of Files
	reread a file, Reverting a Buffer
	resize-mini-windows, Editing in the Minibuffer
	resizing minibuffer, Editing in the Minibuffer
	resolving conflicts, Merging Branches
	resource files for GTK, GTK resources
	resource name, command-line argument, X Resources
	resource values, command-line argument, X Resources
	resources, X Resources
	restore session, Saving Emacs Sessions
	restriction, Narrowing
	RET, Inserting Text
	RET (completion in minibuffer), Completion Exit
	RET (Dired), Visiting Files in Dired
	RET (GDB Breakpoints buffer), Breakpoints Buffer
	RET (GDB speedbar), Watch Expressions
	RET (Help mode), Help Mode Commands
	RET (Occur mode), Other Search-and-Loop Commands
	RET (Shell mode), Shell Mode
	retrying a failed message, Sending Replies
	reveal-mode, Outline Visibility Commands
	reverse order in POP inboxes, Retrieving Mail from Remote Mailboxes
	reverse video, command-line argument, Window Color Options
	revert-buffer, Reverting a Buffer
	revert-buffer (Dired), Updating the Dired Buffer
	revert-buffer-with-coding-system, Specifying a Coding System for File Text
	revert-without-query, Reverting a Buffer
	revision, Concepts of Version Control
	revision ID, Concepts of Version Control
	revision ID in version control, Advanced Control in C-x v v
	revision tag, Revision Tags
	RGB triplet, Colors for Faces
	rgrep, Searching with Grep under Emacs
	RIGHT, Changing the Location of Point
	right-char, Changing the Location of Point
	right-to-left text, Bidirectional Editing
	right-word, Changing the Location of Point
	risky variable, Safety of File Variables
	RLM, Bidirectional Editing
	Rlogin, Remote Host Shell
	Rmail, Reading Mail with Rmail
	rmail, Reading Mail with Rmail
	Rmail file sorting, Sorting the Rmail File
	rmail-add-label, Labels
	rmail-automatic-folder-directives, Copying Messages Out to Files
	rmail-beginning-of-message, Scrolling Within a Message
	rmail-bury, Basic Concepts of Rmail
	rmail-continue, Sending Replies
	rmail-decode-mime-charset, Recognizing Coding Systems
	rmail-delete-after-output, Copying Messages Out to Files
	rmail-delete-backward, Deleting Messages
	rmail-delete-forward, Deleting Messages
	rmail-delete-message-hook, Deleting Messages
	rmail-displayed-headers, Display of Messages
	rmail-edit-current-message, Editing Within a Message
	rmail-edit-mode-hook, Editing Within a Message
	rmail-enable-mime, Display of Messages
	rmail-enable-mime-composing, Sending Replies
	rmail-end-of-message, Scrolling Within a Message
	rmail-epa-decrypt, Display of Messages
	rmail-expunge, Deleting Messages
	rmail-expunge-and-save, Basic Concepts of Rmail
	rmail-file-coding-system, Recognizing Coding Systems
	rmail-file-name, Basic Concepts of Rmail
	rmail-first-message, Moving Among Messages
	rmail-forward, Sending Replies
	rmail-get-new-mail, Multiple Rmail Files
	rmail-highlighted-headers, Display of Messages
	rmail-ignored-headers, Display of Messages
	rmail-inbox-list, Multiple Rmail Files
	rmail-input, Multiple Rmail Files
	rmail-kill-label, Labels
	rmail-last-message, Moving Among Messages
	rmail-mail, Sending Replies
	rmail-mail-new-frame, Sending Replies
	rmail-mime, Display of Messages
	rmail-mime-next-item, Display of Messages
	rmail-mime-previous-item, Display of Messages
	rmail-mime-toggle-hidden, Display of Messages
	rmail-mode, Reading Mail with Rmail
	rmail-mode-hook, Reading Mail with Rmail
	rmail-movemail-flags, Retrieving Mail from Remote Mailboxes
	rmail-movemail-program, movemail program
	rmail-movemail-search-path, movemail program
	rmail-next-labeled-message, Labels
	rmail-next-message, Moving Among Messages
	rmail-next-same-subject, Moving Among Messages
	rmail-next-undeleted-message, Moving Among Messages
	rmail-nonignored-headers, Display of Messages
	rmail-output, Copying Messages Out to Files
	rmail-output-as-seen, Copying Messages Out to Files
	rmail-output-body-to-file, Copying Messages Out to Files
	rmail-output-file-alist, Copying Messages Out to Files
	rmail-preserve-inbox, Rmail Files and Inboxes
	rmail-previous-labeled-message, Labels
	rmail-previous-message, Moving Among Messages
	rmail-previous-same-subject, Moving Among Messages
	rmail-previous-undeleted-message, Moving Among Messages
	rmail-primary-inbox-list, Rmail Files and Inboxes
	rmail-quit, Basic Concepts of Rmail
	rmail-redecode-body, Rmail and Coding Systems
	rmail-redisplay-summary, Editing in Summaries
	rmail-remote-password, Retrieving Mail from Remote Mailboxes
	rmail-remote-password-required, Retrieving Mail from Remote Mailboxes
	rmail-reply, Sending Replies
	rmail-resend, Sending Replies
	rmail-retry-failure, Sending Replies
	rmail-retry-ignored-headers, Sending Replies
	rmail-search, Moving Among Messages
	rmail-secondary-file-directory, Multiple Rmail Files
	rmail-secondary-file-regexp, Multiple Rmail Files
	rmail-show-message, Moving Among Messages
	rmail-sort-by-author, Sorting the Rmail File
	rmail-sort-by-correspondent, Sorting the Rmail File
	rmail-sort-by-date, Sorting the Rmail File
	rmail-sort-by-labels, Sorting the Rmail File
	rmail-sort-by-lines, Sorting the Rmail File
	rmail-sort-by-recipient, Sorting the Rmail File
	rmail-sort-by-subject, Sorting the Rmail File
	rmail-summary, Making Summaries
	rmail-summary-bury, Editing in Summaries
	rmail-summary-by-labels, Making Summaries
	rmail-summary-by-recipients, Making Summaries
	rmail-summary-by-regexp, Making Summaries
	rmail-summary-by-senders, Making Summaries
	rmail-summary-by-topic, Making Summaries
	rmail-summary-line-count-flag, Making Summaries
	rmail-summary-quit, Editing in Summaries
	rmail-summary-undelete-many, Editing in Summaries
	rmail-summary-window-size, Making Summaries
	rmail-summary-wipe, Editing in Summaries
	rmail-toggle-header, Display of Messages
	rmail-undelete-previous-message, Deleting Messages
	Romanian, International Character Set Support
	rosh hodesh, Sexp Entries and the Fancy Diary Display
	rot13 code, Reading Rot13 Messages
	rot13-other-window, Reading Rot13 Messages
	Ruby mode, Major Modes for Programming Languages
	run-lisp, Running an External Lisp
	run-scheme, Running an External Lisp
	runemacs.exe, How to Start Emacs on MS-Windows
	running a hook, Hooks
	running Lisp functions, Compiling and Testing Programs

S
	S (Calendar mode), Times of Sunrise and Sunset
	s (Calendar mode), Displaying the Diary
	S (Dired), Operating on Files
	s (Dired), Updating the Dired Buffer
	s (Gnus Summary mode), Using the Gnus Summary Buffer
	s (Rmail), Basic Concepts of Rmail
	s (View mode), View Mode
	S-Mouse-2, Hideshow minor mode
	S-Mouse-3 (FFAP), Finding Files and URLs at Point
	S-TAB (customization buffer), Customization Groups
	S-TAB (Help mode), Help Mode Commands
	S-TAB (Org Mode), Org Mode
	safe-local-eval-forms, Safety of File Variables
	safe-local-variable-values, Safety of File Variables
	same-window-buffer-names, How display-buffer works
	same-window-regexps, How display-buffer works
	save-abbrevs, Saving Abbrevs
	save-buffer, Commands for Saving Files
	save-buffers-kill-terminal, Exiting Emacs
	save-interprogram-paste-before-kill, Using the Clipboard
	save-some-buffers, Commands for Saving Files
	saved echo area messages, The Echo Area
	saving a setting, Changing a Variable
	saving file name in a register, Keeping File Names in Registers
	saving files, Visiting Files
	saving keyboard macros, Naming and Saving Keyboard Macros
	saving number in a register, Keeping Numbers in Registers
	saving position in a register, Saving Positions in Registers
	saving rectangle in a register, Saving Rectangles in Registers
	saving sessions, Saving Emacs Sessions
	saving text in a register, Saving Text in Registers
	saving window configuration in a register, Saving Window Configurations in Registers
	SCCS, Supported Version Control Systems
	Scheme mode, Running an External Lisp
	scheme-mode, Running an External Lisp
	scheme-mode-hook, Major Modes for Programming Languages
	screen, The Organization of the Screen
	screen reader software, MS-Windows, Miscellaneous Windows-specific features
	script mode, Initial Options
	Scroll Bar mode, Scroll Bars
	Scroll-all mode, Convenience Features for Window Handling
	scroll-all-mode, Convenience Features for Window Handling, Emulation
	scroll-bar-mode, Scroll Bars
	scroll-bar-width, Scroll Bars
	scroll-command property, Scrolling
	scroll-conservatively, Automatic Scrolling
	scroll-down, Scrolling
	scroll-down-aggressively, Automatic Scrolling
	scroll-down-command, Scrolling
	scroll-down-line, Scrolling
	scroll-error-top-bottom, Scrolling
	scroll-left, Horizontal Scrolling
	scroll-margin, Automatic Scrolling
	scroll-other-window, Using Other Windows
	scroll-preserve-screen-position, Scrolling
	scroll-right, Horizontal Scrolling
	scroll-step, Automatic Scrolling
	scroll-up, Scrolling
	scroll-up-aggressively, Automatic Scrolling
	scroll-up-command, Scrolling
	scroll-up-line, Scrolling
	scrollbar width, Table of X Resources for Emacs
	scrolling, Scrolling
	scrolling all windows, Emulation
	scrolling in the calendar, Scrolling in the Calendar
	scrolling windows together, Convenience Features for Window Handling
	SDB, Running Debuggers Under Emacs
	sdb, Starting GUD
	sdb-mode-hook, GUD Customization
	search and replace in multiple files, Searching and Replacing with Tags Tables
	search and replace in multiple files (in Dired), Operating on Files
	search for a regular expression, Regular Expression Search
	search multiple files (in Dired), Operating on Files
	search ring, Repeating Incremental Search
	search-and-replace commands, Replacement Commands
	search-backward, Nonincremental Search
	search-forward, Nonincremental Search
	search-whitespace-regexp, Regular Expression Search
	searching, Searching and Replacement
	searching Dired buffers, Navigation in the Dired Buffer
	searching documentation efficiently, Help
	searching in Rmail, Moving Among Messages
	searching multiple files via Dired, Other Dired Features
	secondary selection, Secondary Selection
	sections of manual pages, Man Page Lookup
	select all, Commands to Mark Textual Objects
	select-active-regions, Cut and Paste with Other Window Applications
	select-frame-by-name, Non-Window Terminals
	selected buffer, Using Multiple Buffers
	selected window, Concepts of Emacs Windows
	selecting buffers in other windows, Displaying in Another Window
	selection, primary, Cut and Paste with Other Window Applications
	selective display, Selective Display
	selective undo, Undo
	selective-display-ellipses, Selective Display
	self-documentation, Help
	Semantic mode, Semantic
	Semantic package, Semantic
	send-invisible, Shell Mode
	send-mail-function, Mail Sending
	sending mail, Sending Mail
	sending patches for GNU Emacs, Sending Patches for GNU Emacs
	Sendmail, Mail Sending
	sendmail-coding-system, Choosing Coding Systems for Output, Mail Sending
	sentence-end, Sentences
	sentence-end-double-space, Sentences
	sentence-end-without-period, Sentences
	sentences, Sentences
	serial-term, Serial Terminal
	server file, emacsclient Options
	server, using Emacs as, Using Emacs as a Server
	server-edit, Invoking emacsclient
	server-eval-at, Using Emacs as a Server
	server-host, emacsclient Options
	server-kill-new-buffers, Invoking emacsclient
	server-name, Using Emacs as a Server
	server-port, emacsclient Options
	server-side fonts, Fonts
	server-start, Using Emacs as a Server
	server-temp-file-regexp, Invoking emacsclient
	server-use-tcp, emacsclient Options
	server-window, Invoking emacsclient
	set buffer face height, Text Scale
	set-buffer-file-coding-system, Specifying a Coding System for File Text
	set-buffer-process-coding-system, Coding Systems for Interprocess Communication
	set-face-background, Colors for Faces
	set-face-foreground, Colors for Faces
	set-file-modes, Miscellaneous File Operations
	set-file-name-coding-system, Coding Systems for File Names
	set-fill-column, Explicit Fill Commands
	set-fill-prefix, The Fill Prefix
	set-fontset-font, Modifying Fontsets
	set-frame-name, Non-Window Terminals
	set-fringe-style, Window Fringes
	set-goal-column, Changing the Location of Point
	set-input-method, Selecting an Input Method
	set-justification-center, Justification in Enriched Text
	set-justification-full, Justification in Enriched Text
	set-justification-left, Justification in Enriched Text
	set-justification-none, Justification in Enriched Text
	set-justification-right, Justification in Enriched Text
	set-keyboard-coding-system, Coding Systems for Terminal I/O
	set-language-environment, Language Environments
	set-language-environment-hook, Language Environments
	set-left-margin, Indentation in Enriched Text
	set-locale-environment, Language Environments
	set-mark-command, Setting the Mark
	set-mark-command-repeat-pop, The Mark Ring
	set-next-selection-coding-system, Coding Systems for Interprocess Communication
	set-right-margin, Indentation in Enriched Text
	set-selection-coding-system, Coding Systems for Interprocess Communication
	set-selective-display, Selective Display
	set-terminal-coding-system, Coding Systems for Terminal I/O
	set-variable, Examining and Setting Variables
	set-visited-file-name, Commands for Saving Files
	setenv, Environment Variables
	setq-default, Local Variables
	setting a mark, The Mark and the Region
	setting variables, Examining and Setting Variables
	settings, Easy Customization Interface
	settings, how to save, Changing a Variable
	sexp, Expressions with Balanced Parentheses
	sexp diary entries, Sexp Entries and the Fancy Diary Display
	SGML mode, SGML and HTML Modes
	sgml-attributes, SGML and HTML Modes
	sgml-close-tag, SGML and HTML Modes
	sgml-delete-tag, SGML and HTML Modes
	sgml-mode, SGML and HTML Modes
	sgml-name-8bit-mode, SGML and HTML Modes
	sgml-name-char, SGML and HTML Modes
	sgml-skip-tag-backward, SGML and HTML Modes
	sgml-skip-tag-forward, SGML and HTML Modes
	sgml-tag, SGML and HTML Modes
	sgml-tag-help, SGML and HTML Modes
	sgml-tags-invisible, SGML and HTML Modes
	sgml-validate, SGML and HTML Modes
	sgml-xml-mode, SGML and HTML Modes
	shadow files, Shadowing Files
	shadow-initialize, Shadowing Files
	shell, Interactive Subshell
	shell commands, Running Shell Commands from Emacs
	shell commands, Dired, Shell Commands in Dired
	SHELL environment variable, Interactive Subshell
	Shell mode, Shell Mode
	shell scripts, and local file variables, Specifying File Variables
	shell-backward-command, Shell Mode
	shell-cd-regexp, Directory Tracking
	shell-command, Single Shell Commands
	shell-command-default-error-buffer, Single Shell Commands
	shell-command-on-region, Single Shell Commands
	shell-command-regexp, Shell Mode
	shell-completion-execonly, Shell Mode Options
	shell-completion-fignore, Shell Mode
	shell-file-name, Single Shell Commands
	shell-forward-command, Shell Mode
	shell-input-ring-file-name, Shell History Ring
	shell-popd-regexp, Directory Tracking
	shell-prompt-pattern, Shell Prompts
	shell-pushd-dextract, Shell Mode Options
	shell-pushd-dunique, Shell Mode Options
	shell-pushd-regexp, Directory Tracking
	shell-pushd-tohome, Shell Mode Options
	Shell-script mode, Major Modes for Programming Languages
	shelves in version control, VC Directory Commands
	shift-selection, Setting the Mark, Shift Selection
	Show Paren mode, Matching Parentheses
	show-all, Outline Visibility Commands
	show-branches, Outline Visibility Commands
	show-children, Outline Visibility Commands
	show-entry, Outline Visibility Commands
	show-paren-mode, Matching Parentheses
	show-subtree, Outline Visibility Commands
	show-trailing-whitespace, Useless Whitespace
	showing hidden subdirectories (Dired), Hiding Subdirectories
	shrink-window-horizontally, Deleting and Rearranging Windows
	shrink-window-if-larger-than-buffer, Deleting and Rearranging Windows
	shy group, in regexp, Backslash in Regular Expressions
	signing files (in Dired), Operating on Files
	Simula mode, Major Modes for Programming Languages
	simulation of middle mouse button, Mouse Usage on MS-Windows
	simultaneous editing, Protection against Simultaneous Editing
	site init file, The Emacs Initialization File
	site-start.el file, not loading, Initial Options
	site-start.el, the site startup file, The Emacs Initialization File
	size of file, warning when visiting, Visiting Files
	size of minibuffer, Editing in the Minibuffer
	size-indication-mode, Optional Mode Line Features
	slashes repeated in file name, Minibuffers for File Names
	SliTeX mode, TeX Mode
	slitex-mode, TeX Mode
	slitex-mode-hook, TeX Mode Miscellany
	Slovak, International Character Set Support
	Slovenian, International Character Set Support
	slow display during scrolling, Font Lock mode
	small-temporary-file-directory, Backup Files
	Smerge mode, Comparing Files
	smerge-mode, Comparing Files
	SMTP, Mail Sending
	snake, Other Amusements
	Snake, Other Amusements
	soft hyphen, How Text Is Displayed
	soft newline, Hard and Soft Newlines
	solitaire, Other Amusements
	sort-columns, Sorting Text
	sort-fields, Sorting Text
	sort-fold-case, Sorting Text
	sort-lines, Sorting Text
	sort-numeric-base, Sorting Text
	sort-numeric-fields, Sorting Text
	sort-pages, Sorting Text
	sort-paragraphs, Sorting Text
	sorting, Sorting Text
	sorting diary entries, Fancy Diary Display
	sorting Dired buffer, Updating the Dired Buffer
	sorting Rmail file, Sorting the Rmail File
	Spanish, International Character Set Support
	SPC (Calendar mode), Miscellaneous Calendar Commands
	SPC (completion), Completion Commands
	SPC (Dired), Navigation in the Dired Buffer
	SPC (DocView mode), DocView Navigation
	SPC (GDB Breakpoints buffer), Breakpoints Buffer
	SPC (Gnus Group mode), Using the Gnus Group Buffer
	SPC (Gnus Summary mode), Using the Gnus Summary Buffer
	SPC (Rmail), Scrolling Within a Message
	SPC (View mode), View Mode
	specific version control system, Advanced Control in C-x v v
	specify default font from the command line, Font Specification Options
	specify end-of-line conversion, Specifying a Coding System for File Text
	specifying fullscreen for Emacs frame, Options for Window Size and Position
	speedbar, Speedbar Frames
	spell-checking the active region, Checking and Correcting Spelling
	spelling, checking and correcting, Checking and Correcting Spelling
	splash screen, Initial Options
	split-height-threshold, How display-buffer works
	split-line, Indentation Commands
	split-width-threshold, How display-buffer works
	split-window-below, Splitting Windows
	split-window-keep-point, Splitting Windows
	split-window-right, Splitting Windows
	splitting columns, Two-Column Editing
	splitting table cells, Commands for Table Cells
	spook, Mail Amusements
	standard colors on a character terminal, Window Color Options
	standard fontset, Defining fontsets
	standard-display-8bit, Unibyte Editing Mode
	standard-fontset-spec, Defining fontsets
	standard-indent, Indentation in Enriched Text
	start directory, MS-Windows, How to Start Emacs on MS-Windows
	start iconified, command-line argument, Icons
	starting Emacs, Entering Emacs
	starting Emacs on MS-Windows, How to Start Emacs on MS-Windows
	startup (command line arguments), Command Line Arguments for Emacs Invocation
	startup (init file), The Emacs Initialization File
	startup fontset, Defining fontsets
	startup message, Initial Options
	startup screen, Entering Emacs
	stashes in version control, VC Directory Commands
	string substitution, Replacement Commands
	string syntax, Init File Syntax
	string-insert-rectangle, Rectangles
	string-rectangle, Rectangles
	style (for indentation), Customizing C Indentation
	subdirectories in Dired, Subdirectories in Dired
	subprocesses on MS-Windows, Subprocesses on Windows 9X/ME and Windows NT/2K/XP
	subscribe groups, Using the Gnus Group Buffer
	subshell, Running Shell Commands from Emacs
	substitute-key-definition, Init File Examples
	subtree (Outline mode), Outline Visibility Commands
	Subversion, Supported Version Control Systems
	subword-mode, Other Commands for C Mode
	suggest-key-bindings, Running Commands by Name
	summary (Rmail), Summaries
	summing time intervals, Summing Time Intervals
	sunrise and sunset, Times of Sunrise and Sunset
	sunrise-sunset, Times of Sunrise and Sunset
	Super (under MS-DOS), Keyboard Usage on MS-DOS
	suspend-frame, Exiting Emacs, Frame Commands
	suspending, Exiting Emacs
	suspicious constructions in C, C++, Other Commands for C Mode
	SVN, Supported Version Control Systems
	switch buffers, Creating and Selecting Buffers
	switch-to-buffer, Creating and Selecting Buffers
	switch-to-buffer-other-frame, Creating and Selecting Buffers
	switch-to-buffer-other-window, Creating and Selecting Buffers, Displaying in Another Window
	switch-to-completions, Completion Commands
	switches (command line), Command Line Arguments for Emacs Invocation
	symbolic links (and version control), General Options
	symbolic links (creation in Dired), Operating on Files
	symbolic links (creation), Miscellaneous File Operations
	symbolic links (visiting), File Name Aliases
	synchronizing windows, Follow Mode
	synchronous X mode, Table of X Resources for Emacs
	syntax highlighting and coloring, Font Lock mode
	syntax of regexps, Syntax of Regular Expressions
	system-wide packages, Package Files and Directory Layout

T
	t, Glossary
	t (Calendar mode), Writing Calendar Files
	t (Dired), Dired Marks vs. Flags
	T (Dired), Operating on Files
	t (Rmail), Display of Messages
	TAB (and major modes), Major Modes
	TAB (completion), Completion Example, Completion Commands
	TAB (customization buffer), Customization Groups
	TAB (GUD), Commands of GUD
	TAB (Help mode), Help Mode Commands
	TAB (indentation), Indentation
	TAB (Message mode), Mail Header Editing
	TAB (Org Mode), Org Mode
	TAB (programming modes), Basic Program Indentation Commands
	TAB (Shell mode), Shell Mode
	TAB (Text mode), Text Mode
	tab stops, Tab Stops
	tab-always-indent, Convenience Features for Indentation
	tab-stop-list, Tab Stops
	tab-to-tab-stop, Indentation Commands
	tab-width, How Text Is Displayed, Tabs vs. Spaces
	tabify, Tabs vs. Spaces
	table creation, Creating a Table
	table dimensions, Table Miscellany
	table for HTML and LaTeX, Table Miscellany
	table mode, Editing Text-based Tables
	table recognition, Table Recognition
	table to text, Converting Between Plain Text and Tables
	table-backward-cell, Commands for Table Cells
	table-capture, Converting Between Plain Text and Tables
	table-cell-horizontal-chars, What is a Text-based Table?
	table-cell-intersection-char, What is a Text-based Table?
	table-cell-vertical-char, What is a Text-based Table?
	table-detect-cell-alignment, Cell Justification
	table-fixed-width-mode, Editing Text-based Tables
	table-forward-cell, Commands for Table Cells
	table-generate-source, Table Miscellany
	table-heighten-cell, Commands for Table Cells
	table-insert, Creating a Table
	table-insert-column, Table Rows and Columns
	table-insert-row, Table Rows and Columns
	table-insert-sequence, Table Miscellany
	table-justify, Cell Justification
	table-narrow-cell, Commands for Table Cells
	table-query-dimension, Table Miscellany
	table-recognize, Table Recognition
	table-recognize-cell, Table Recognition
	table-recognize-region, Table Recognition
	table-recognize-table, Table Recognition
	table-release, Converting Between Plain Text and Tables
	table-shorten-cell, Commands for Table Cells
	table-span-cell, Commands for Table Cells
	table-split-cell, Commands for Table Cells
	table-split-cell-horizontally, Commands for Table Cells
	table-split-cell-vertically, Commands for Table Cells
	table-unrecognize, Table Recognition
	table-unrecognize-cell, Table Recognition
	table-unrecognize-region, Table Recognition
	table-unrecognize-table, Table Recognition
	table-widen-cell, Commands for Table Cells
	tabs, Indentation
	tags and tag tables, Tags Tables
	tags for version control, Revision Tags
	tags, C++, Tags Tables
	tags-apropos, Tags Table Inquiries
	tags-apropos-additional-actions, Tags Table Inquiries
	tags-apropos-verbose, Tags Table Inquiries
	tags-based completion, Completion for Symbol Names
	tags-case-fold-search, Searching and Replacing with Tags Tables
	tags-file-name, Selecting a Tags Table
	tags-loop-continue, Searching and Replacing with Tags Tables
	tags-query-replace, Searching and Replacing with Tags Tables
	tags-search, Searching and Replacing with Tags Tables
	tags-table-list, Selecting a Tags Table
	tags-tag-face, Tags Table Inquiries
	Tar mode, File Archives
	Tcl mode, Major Modes for Programming Languages
	Telnet, Remote Host Shell
	temporary-file-directory, Backup Files
	term, Emacs Terminal Emulator
	TERM environment variable, Checklist for Bug Reports
	Term mode, Term Mode
	term-char-mode, Term Mode
	term-file-prefix, Terminal-specific Initialization
	term-line-mode, Term Mode
	term-pager-toggle, Term Mode
	term-setup-hook, Terminal-specific Initialization
	terminal emulators, mouse support, Using a Mouse in Text Terminals
	terminal, serial, Serial Terminal
	termscript file, Checklist for Bug Reports
	tetris, Other Amusements
	Tetris, Other Amusements
	TeX encoding, TeX Mode Miscellany
	TeX mode, TeX Mode
	tex-bibtex-command, TeX Printing Commands
	tex-bibtex-file, TeX Printing Commands
	tex-buffer, TeX Printing Commands
	tex-close-latex-block, LaTeX Editing Commands
	tex-compile, TeX Printing Commands
	tex-default-mode, TeX Mode
	tex-directory, TeX Printing Commands
	tex-dvi-print-command, TeX Printing Commands
	tex-dvi-view-command, TeX Printing Commands
	tex-file, TeX Printing Commands
	tex-insert-braces, TeX Editing Commands
	tex-insert-quote, TeX Editing Commands
	tex-kill-job, TeX Printing Commands
	tex-latex-block, LaTeX Editing Commands
	tex-main-file, TeX Printing Commands
	tex-mode, TeX Mode
	tex-mode-hook, TeX Mode Miscellany
	tex-print, TeX Printing Commands
	tex-recenter-output-buffer, TeX Printing Commands
	tex-region, TeX Printing Commands
	tex-run-command, TeX Printing Commands
	tex-shell-hook, TeX Mode Miscellany
	tex-start-commands, TeX Printing Commands
	tex-start-options, TeX Printing Commands
	tex-terminate-paragraph, TeX Editing Commands
	tex-validate-region, TeX Editing Commands
	tex-view, TeX Printing Commands
	TEXEDIT environment variable, Using Emacs as a Server
	TEXINPUTS environment variable, TeX Printing Commands
	text, Commands for Human Languages
	text and binary files on MS-DOS/MS-Windows, Text Files and Binary Files
	text buttons, Following References with the Mouse
	text colors, from command line, Window Color Options
	text cursor, Displaying the Cursor
	Text mode, Text Mode
	text properties at point, Introduction to International Character Sets
	text properties of characters, Editing Format Information
	text terminal, Non-Window Terminals
	text to table, Converting Between Plain Text and Tables
	text-based tables, Editing Text-based Tables
	text-based tables, splitting cells, Commands for Table Cells
	text-mode, Text Mode
	text-mode-hook, Major Modes, Text Mode
	text-scale-adjust, Text Scale
	text-scale-decrease, Text Scale
	text-scale-increase, Text Scale
	text-scale-mode, Text Scale
	text-scale-set, Text Scale
	text/enriched MIME format, Enriched Text
	Thai, International Character Set Support
	thumbs-mode, Convenience Features for Finding Files
	Tibetan, International Character Set Support
	time (on mode line), Optional Mode Line Features
	time intervals, summing, Summing Time Intervals
	time stamps, Updating Time Stamps Automatically
	time-stamp, Updating Time Stamps Automatically
	timeclock, Summing Time Intervals
	timeclock-ask-before-exiting, Summing Time Intervals
	timeclock-change, Summing Time Intervals
	timeclock-file, Summing Time Intervals
	timeclock-in, Summing Time Intervals
	timeclock-modeline-display, Summing Time Intervals
	timeclock-out, Summing Time Intervals
	timeclock-reread-log, Summing Time Intervals
	timeclock-when-to-leave, Summing Time Intervals
	timeclock-workday-remaining, Summing Time Intervals
	TLS encryption (Rmail), Retrieving Mail from Remote Mailboxes
	tmm-menubar, The Menu Bar
	TODO item, Org as an organizer
	toggle-debug-on-error, Checklist for Bug Reports
	toggle-enable-multibyte-characters, Disabling Multibyte Characters
	toggle-gdb-all-registers, Other GDB Buffers
	toggle-input-method, Selecting an Input Method
	toggle-read-only, Miscellaneous Buffer Operations
	toggle-scroll-bar, Scroll Bars
	toggle-truncate-lines, Line Truncation
	toggling marks (in Dired), Dired Marks vs. Flags
	tool bar, Table of X Resources for Emacs
	Tool Bar mode, Tool Bars
	Tool Bar position, Tool Bars
	Tool Bar style, Tool Bars
	tool-bar-mode, Tool Bars
	tool-bar-style, Tool Bars
	tooltip-delay, Tooltips
	tooltip-mode, Tooltips
	tooltips, Help on Active Text and Tooltips, Tooltips
	top level, The Mode Line
	top-level, Quitting and Aborting
	tower of Hanoi, Other Amusements
	TPU, Emulation
	tpu-edt-on, Emulation
	track-eol, Changing the Location of Point
	trailing whitespace, Useless Whitespace
	Tramp, Remote Files
	Transient Mark mode, Disabling Transient Mark Mode
	transient-mark-mode, Disabling Transient Mark Mode
	transpose-chars, Transposing Text
	transpose-lines, Transposing Text
	transpose-sexps, Expressions with Balanced Parentheses
	transpose-words, Transposing Text
	transposition of expressions, Expressions with Balanced Parentheses
	trash, Miscellaneous File Operations
	triple clicks, Rebinding Mouse Buttons
	truenames of files, File Name Aliases
	truncate-lines, Line Truncation
	truncate-partial-width-windows, Line Truncation, Splitting Windows
	truncation, Continuation Lines, Line Truncation
	tty-suppress-bold-inverse-default-colors, Customization of Display
	Turkish, International Character Set Support
	turn multibyte support on or off, Disabling Multibyte Characters
	two directories (in Dired), Operating on Files
	two-column editing, Two-Column Editing
	types of log file, Types of Log File
	typos, fixing, Commands for Fixing Typos

U
	u (Calendar mode), Holidays
	u (Dired deletion), Deleting Files with Dired
	u (Dired), Dired Marks vs. Flags
	U (Dired), Dired Marks vs. Flags
	u (Gnus Group mode), Using the Gnus Group Buffer
	u (Rmail), Deleting Messages
	ucs-insert, Inserting Text
	unbalanced parentheses and quotes, Commands for Editing with Parentheses
	uncomment-region, Comment Commands
	uncompression, Accessing Compressed Files
	undecided, coding system, Coding Systems
	undeletion (Rmail), Deleting Messages
	underline-minimum-offset, Customization of Display
	undigestify, Digest Messages
	undigestify-rmail-message, Digest Messages
	undisplayable characters, Introduction to International Character Sets
	undo, Undo
	undo limit, Undo
	undo-limit, Undo
	undo-only, Undo
	undo-outer-limit, Undo
	undo-strong-limit, Undo
	undoing window configuration changes, Convenience Features for Window Handling
	unexpand-abbrev, Controlling Abbrev Expansion
	unforward-rmail-message, Sending Replies
	unhighlight-regexp, Interactive Highlighting
	Unibyte operation, Unibyte Editing Mode
	unibyte operation, and Lisp files, Disabling Multibyte Characters
	unibyte-display-via-language-environment, Unibyte Editing Mode
	Unicode, Introduction to International Character Sets
	Unicode characters, inserting, Inserting Text
	unique buffer names, Making Buffer Names Unique
	uniquify-buffer-name-style, Making Buffer Names Unique
	universal-argument, Numeric Arguments
	universal-coding-system-argument, Specifying a Coding System for File Text
	unmarking files (in Dired), Dired Marks vs. Flags
	unmorse-region, Other Amusements
	unsubscribe groups, Using the Gnus Group Buffer
	untabify, Tabs vs. Spaces
	untranslated file system, Text Files and Binary Files
	unused lines, Useless Whitespace
	unzip archives, File Archives
	UP, Changing the Location of Point
	UP (minibuffer history), Minibuffer History
	up-list, TeX Editing Commands
	upcase file names, Transforming File Names in Dired
	upcase-region, Case Conversion Commands
	upcase-word, Case Conversion Commands
	updating Dired buffer, Updating the Dired Buffer
	URL, viewing in help, Help Mode Commands
	URLs, Following URLs
	URLs, activating, Activating URLs
	use-dialog-box, Using Dialog Boxes
	use-file-dialog, Using Dialog Boxes
	use-hard-newlines, Hard and Soft Newlines
	Usenet news, Gnus
	user name for remote file access, Remote Files
	user option, Easy Customization Interface
	user options, changing, Changing a Variable
	user-full-name, Mail Header Fields
	user-mail-address, Mail Header Fields, Init File Examples
	user-mail-address, initialization, General Variables
	UTF-8, Language Environments

V
	v (Dired), Visiting Files in Dired
	v (Rmail), Display of Messages
	variable, Variables
	variables, changing, Changing a Variable
	VC Directory buffer, VC Directory Mode
	VC filesets, Basic Editing under Version Control
	VC mode line indicator, Version Control and the Mode Line
	vc-annotate, Examining And Comparing Old Revisions
	vc-backend-header, Inserting Version Control Headers
	vc-command-messages, General Options
	vc-consult-headers, Inserting Version Control Headers, Options for RCS and SCCS
	vc-create-tag, Revision Tags
	vc-cvs-global-switches, Options specific for CVS
	vc-cvs-stay-local, The VC Directory Buffer, Options specific for CVS
	vc-delete-file, Deleting and Renaming Version-Controlled Files
	vc-diff, Examining And Comparing Old Revisions
	vc-diff-switches, Examining And Comparing Old Revisions
	vc-dir, VC Directory Mode
	vc-dir-mark, VC Directory Commands
	vc-dir-mark-all-files, VC Directory Commands
	vc-directory-exclusion-list, The VC Directory Buffer
	vc-ediff, Examining And Comparing Old Revisions
	vc-follow-symlinks, General Options
	vc-handled-backends, Customizing VC
	vc-insert-headers, Inserting Version Control Headers
	vc-log-mode-hook, Features of the Log Entry Buffer
	vc-log-show-limit, VC Change Log
	vc-make-backup-files, Backup Files, General Options
	vc-mistrust-permissions, Options for RCS and SCCS
	vc-next-action, Basic Editing under Version Control
	vc-path, General Options
	vc-print-log, VC Change Log
	vc-print-root-log, VC Change Log
	vc-pull, Pulling Changes into a Branch
	vc-register, Registering a File for Version Control
	vc-rename-file, Deleting and Renaming Version-Controlled Files
	vc-retrieve-tag, Revision Tags
	vc-revert, Undoing Version Control Actions
	vc-revert-show-diff, Undoing Version Control Actions
	vc-revision-other-window, Examining And Comparing Old Revisions
	vc-root-diff, Examining And Comparing Old Revisions
	vc-static-header-alist, Inserting Version Control Headers
	vc-stay-local, The VC Directory Buffer, Options specific for CVS
	vc-suppress-confirm, General Options
	vc-update-change-log, Change Logs and VC
	verifying digital signatures on files (in Dired), Operating on Files
	version control, Version Control
	version control log, Types of Log File
	version control status, Version Control and the Mode Line
	version-control, Single or Numbered Backups
	VERSION_CONTROL environment variable, Single or Numbered Backups
	vertical scroll bars, command-line argument, Other Display Options
	VHDL mode, Major Modes for Programming Languages
	vi, Emulation
	vi-mode, Emulation
	Vietnamese, International Character Set Support
	View mode, View Mode
	view-buffer, View Mode
	view-echo-area-messages, Other Help Commands
	view-emacs-debugging, Help Files
	view-emacs-FAQ, Help Files
	view-emacs-news, Help Files
	view-emacs-problems, Help Files
	view-emacs-todo, Help Files
	View-exit, View Mode
	view-external-packages, Help Files
	view-file, View Mode
	view-hello-file, Introduction to International Character Sets
	view-lossage, Other Help Commands
	view-order-manuals, Help Files
	View-quit, View Mode
	view-register, Registers
	viewing web pages in help, Help Mode Commands
	views of an outline, Viewing One Outline in Multiple Views
	vip-mode, Emulation
	viper-mode, Emulation
	visible-bell, Customization of Display
	visible-cursor, Displaying the Cursor
	visit-tags-table, Selecting a Tags Table
	visiting files, Visiting Files
	visiting files, command-line argument, Action Arguments
	Visual Line mode, Visual Line Mode
	visual order, Bidirectional Editing
	visual-line-mode, Visual Line Mode

W
	w (Dired), Other Dired Features
	w (Rmail), Copying Messages Out to Files
	w32-alt-is-meta, Keyboard Usage on MS-Windows
	w32-apps-modifier, Keyboard Usage on MS-Windows
	w32-capslock-is-shiftlock, Keyboard Usage on MS-Windows
	w32-charset-info-alist, Specifying Fonts on MS-Windows
	w32-enable-caps-lock, Keyboard Usage on MS-Windows
	w32-enable-num-lock, Keyboard Usage on MS-Windows
	w32-get-true-file-attributes, File Names on MS-Windows
	w32-grab-focus-on-raise, Miscellaneous Windows-specific features
	w32-lwindow-modifier, Keyboard Usage on MS-Windows
	w32-mouse-button-tolerance, Mouse Usage on MS-Windows
	w32-pass-alt-to-system, Keyboard Usage on MS-Windows
	w32-pass-extra-mouse-buttons-to-system, Mouse Usage on MS-Windows
	w32-pass-lwindow-to-system, Keyboard Usage on MS-Windows
	w32-pass-rwindow-to-system, Keyboard Usage on MS-Windows
	w32-quote-process-args, Subprocesses on Windows 9X/ME and Windows NT/2K/XP
	w32-recognize-altgr, Keyboard Usage on MS-Windows
	w32-register-hot-key, Keyboard Usage on MS-Windows
	w32-rwindow-modifier, Keyboard Usage on MS-Windows
	w32-scroll-lock-modifier, Keyboard Usage on MS-Windows
	w32-shell-execute, Subprocesses on Windows 9X/ME and Windows NT/2K/XP
	w32-standard-fontset-spec, Defining fontsets
	w32-swap-mouse-buttons, Mouse Usage on MS-Windows
	w32-unregister-hot-key, Keyboard Usage on MS-Windows
	w32-use-visible-system-caret, Miscellaneous Windows-specific features
	Watching expressions in GDB, Watch Expressions
	wdired mode, Editing the Dired Buffer
	wdired-change-to-wdired-mode, Editing the Dired Buffer
	wdired-finish-edit, Editing the Dired Buffer
	Web, Following URLs
	web pages, viewing in help, Help Mode Commands
	weeks, which day they start on, Beginning or End of Week, Month or Year
	what-cursor-position, Cursor Position Information, Introduction to International Character Sets
	what-line, Cursor Position Information
	what-page, Pages
	where-is, Documentation for a Key
	which-func-modes, Which Function Mode
	which-function-mode, Which Function Mode
	whitespace character, Indentation
	Whitespace mode, Useless Whitespace
	whitespace, trailing, Useless Whitespace
	whitespace-line-column, Useless Whitespace
	whitespace-mode, Useless Whitespace
	whitespace-style, Useless Whitespace
	wide block cursor, Displaying the Cursor
	widen, Narrowing
	widening, Narrowing
	widget-backward, Customization Groups
	widget-complete, Changing a Variable
	widget-forward, Customization Groups
	widgets at buffer position, Editing Format Information
	width and height of Emacs frame, Options for Window Size and Position
	width of the scroll bar, Scroll Bars
	wildcard characters in file names, Visiting Files
	Windmove package, Convenience Features for Window Handling
	windmove-default-keybindings, Convenience Features for Window Handling
	windmove-right, Convenience Features for Window Handling
	window configuration changes, undoing, Convenience Features for Window Handling
	window manager, keys stolen by, Kinds of User Input
	window-configuration-to-register, Saving Window Configurations in Registers
	window-min-height, Deleting and Rearranging Windows
	window-min-width, Deleting and Rearranging Windows
	Windows clipboard support, Mouse Usage on MS-DOS
	windows in Emacs, Multiple Windows
	Windows system menu, Keyboard Usage on MS-Windows
	windows, synchronizing, Follow Mode
	Winner mode, Convenience Features for Window Handling
	winner-mode, Convenience Features for Window Handling
	woman, Man Page Lookup
	word processing, Enriched Text
	word search, Word Search
	word wrap, Continuation Lines, Visual Line Mode
	word-search-backward, Word Search
	word-search-forward, Word Search
	words, Words
	words, case conversion, Case Conversion Commands
	WordStar, Emulation
	wordstar-mode, Emulation
	work file, Concepts of Version Control
	working tree, Concepts of Version Control
	World Wide Web, Following URLs
	wrapping, Continuation Lines
	write-abbrev-file, Saving Abbrevs
	write-file, Commands for Saving Files
	write-region, Miscellaneous File Operations
	write-region-inhibit-fsync, Customizing Saving of Files
	WYSIWYG, Enriched Text

X
	x (Calendar mode), Holidays
	x (Dired), Deleting Files with Dired
	X (Dired), Shell Commands in Dired
	x (Rmail), Deleting Messages
	X cutting and pasting, Cut and Paste with Other Window Applications
	X defaults file, Fonts
	X input methods, Table of X Resources for Emacs
	X Logical Font Description, Fonts
	X resources, X Resources
	X resources file, Fonts
	X selection, Cut and Paste with Other Window Applications
	x-gtk-file-dialog-help-text, Using Dialog Boxes
	x-gtk-show-hidden-files, Using Dialog Boxes
	x-gtk-use-system-tooltips, Tooltips
	x-mouse-click-focus-ignore-position, Mouse Commands for Editing
	x-select-enable-clipboard, Using the Clipboard
	x-select-enable-clipboard-manager, Using the Clipboard
	x-select-enable-primary, Using the Clipboard
	x-select-request-type, Coding Systems for Interprocess Communication
	x-stretch-cursor, Displaying the Cursor
	x-underline-at-descent-line, Customization of Display
	XDB, Running Debuggers Under Emacs
	xdb, Starting GUD
	xdb-mode-hook, GUD Customization
	XIM, Table of X Resources for Emacs
	XLFD, Fonts
	XML schema, SGML and HTML Modes
	xterm, Using a Mouse in Text Terminals

Y
	yahrzeits, Converting From Other Calendars, Sexp Entries and the Fancy Diary Display
	yank, Yanking
	yank-pop, Yanking Earlier Kills
	yank-pop-change-selection, Using the Clipboard
	yank-rectangle, Rectangles
	yanking, Yanking
	yanking previous kills, Yanking Earlier Kills

Z
	Z (Dired), Operating on Files
	zap-to-char, Other Kill Commands
	zip, File Archives
	Zmacs mode, Disabling Transient Mark Mode
	zone, Other Amusements
	zoo, File Archives
	zrgrep, Searching with Grep under Emacs

Chapter . Command and Function Index

Index

Symbols
	! (Dired), Shell Commands in Dired
	" (TeX mode), TeX Editing Commands
	# (Dired), Flagging Many Files at Once
	$ (Dired), Hiding Subdirectories
	$ in file names, File Names
	% & (Dired), Flagging Many Files at Once
	% C (Dired), Transforming File Names in Dired
	% d (Dired), Flagging Many Files at Once
	% g (Dired), Dired Marks vs. Flags
	% H (Dired), Transforming File Names in Dired
	% l (Dired), Transforming File Names in Dired
	% m (Dired), Dired Marks vs. Flags
	% R (Dired), Transforming File Names in Dired
	% S (Dired), Transforming File Names in Dired
	% u (Dired), Transforming File Names in Dired
	(in leftmost column, Left Margin Convention
	* ! (Dired), Dired Marks vs. Flags
	* % (Dired), Dired Marks vs. Flags
	* * (Dired), Dired Marks vs. Flags
	* / (Dired), Dired Marks vs. Flags
	* ? (Dired), Dired Marks vs. Flags
	* @ (Dired), Dired Marks vs. Flags
	* c (Dired), Dired Marks vs. Flags
	* C-n (Dired), Dired Marks vs. Flags
	* C-p (Dired), Dired Marks vs. Flags
	* DEL (Dired), Dired Marks vs. Flags
	* m (Dired), Dired Marks vs. Flags
	* s (Dired), Dired Marks vs. Flags
	* t (Dired), Dired Marks vs. Flags
	* u (Dired), Dired Marks vs. Flags
	Messages buffer, The Echo Area
	+ (Dired), Other Dired Features
	+ (DocView mode), DocView Navigation
	+linenum, Action Arguments
	- (DocView mode), DocView Navigation
	-bd, Window Color Options
	-bg, Window Color Options
	-bw, Internal and External Borders
	-chdir, Initial Options
	-cr, Window Color Options
	-d, Initial Options
	-D, Other Display Options
	-daemon, Initial Options
	-f, Action Arguments
	-fg, Window Color Options
	-fh, Options for Window Size and Position
	-fn, Font Specification Options
	-fs, Options for Window Size and Position
	-fw, Options for Window Size and Position
	-g, Options for Window Size and Position
	-ib, Internal and External Borders
	-l, Action Arguments
	-L, Action Arguments
	-lsp, Other Display Options
	-mm, Options for Window Size and Position
	-ms, Window Color Options
	-nbc, Other Display Options
	-nbi, Icons
	-nw, Initial Options
	-q, Initial Options
	-Q, Initial Options
	-r, Window Color Options
	-rv, Window Color Options
	-t, Initial Options
	-T, Frame Titles
	-u, Initial Options
	-vb, Other Display Options
	. (Calendar mode), Specified Dates
	. (Dired), Flagging Many Files at Once
	. (Rmail), Scrolling Within a Message
	.dir-locals.el file, Per-Directory Local Variables
	.emacs file, The Emacs Initialization File
	.mailrc file, Mail Aliases
	.newsrc file, When Gnus Starts Up
	.timelog file, Summing Time Intervals
	/ (Rmail), Scrolling Within a Message
	// in file name, Minibuffers for File Names
	2C-associate-buffer, Two-Column Editing
	2C-dissociate, Two-Column Editing
	2C-merge, Two-Column Editing
	2C-newline, Two-Column Editing
	2C-split, Two-Column Editing
	2C-two-columns, Two-Column Editing
	5x5, Other Amusements
	7z, File Archives
	8-bit display, Unibyte Editing Mode
	8-bit input, Unibyte Editing Mode
	:d (Dired), Operating on Files
	:e (Dired), Operating on Files
	:s (Dired), Operating on Files
	:v (Dired), Operating on Files
	< (Calendar mode), Scrolling in the Calendar
	< (Dired), Moving Over Subdirectories
	< (Rmail), Moving Among Messages
	= (Dired), File Comparison with Dired
	> (Calendar mode), Scrolling in the Calendar
	> (Dired), Moving Over Subdirectories
	> (Rmail), Moving Among Messages
	? (completion), Completion Commands
	^ (Dired), Visiting Files in Dired
	_emacs init file, MS-Windows, HOME and Startup Directories on MS-Windows
	~ (Dired), Flagging Many Files at Once
	~/.emacs file, The Emacs Initialization File
	~/.emacs.d/gtkrc file, GTK resources
	~/.gtkrc-2.0 file, GTK resources
	~/.Xdefaults file, X Resources
	~/.Xresources file, X Resources
	–/—/.-./.../., Other Amusements
	–background-color, Window Color Options
	–basic-display, Other Display Options
	–batch, Initial Options
	–border-color, Window Color Options
	–border-width, Internal and External Borders
	–chdir, Initial Options
	–color, Window Color Options
	–cursor-color, Window Color Options
	–daemon, Initial Options
	–debug-init, Initial Options
	–directory, Action Arguments
	–display, Initial Options
	–eval, Action Arguments
	–execute, Action Arguments
	–file, Action Arguments
	–find-file, Action Arguments
	–font, Font Specification Options
	–foreground-color, Window Color Options
	–fullheight, Options for Window Size and Position
	–fullscreen, Options for Window Size and Position
	–fullwidth, Options for Window Size and Position
	–funcall, Action Arguments
	–geometry, Options for Window Size and Position
	–help, Action Arguments
	–iconic, Icons
	–insert, Action Arguments
	–internal-border, Internal and External Borders
	–kill, Action Arguments
	–line-spacing, Other Display Options
	–load, Action Arguments
	–maximized, Options for Window Size and Position
	–mouse-color, Window Color Options
	–name, X Resources
	–no-bitmap-icon, Icons
	–no-blinking-cursor, Other Display Options
	–no-desktop, Initial Options
	–no-init-file, Initial Options
	–no-site-file, Initial Options
	–no-site-lisp, Initial Options
	–no-splash, Initial Options
	–no-window-system, Initial Options
	–quick, Initial Options
	–reverse-video, Window Color Options
	–script, Initial Options
	–terminal, Initial Options
	–title, Frame Titles
	–user, Initial Options
	–version, Action Arguments
	–vertical-scroll-bars, Other Display Options
	–visit, Action Arguments
	–xrm, X Resources
	‘?’ in display, Introduction to International Character Sets
	‘net use’, and printing on MS-Windows, Printing and MS-Windows

A
	a (Calendar mode), Holidays
	A (Dired), Operating on Files
	a (Rmail), Labels
	A and B buffers (Emerge), Overview of Emerge
	A k (Gnus Group mode), Using the Gnus Group Buffer
	A s (Gnus Group mode), Using the Gnus Group Buffer
	A u (Gnus Group mode), Using the Gnus Group Buffer
	A z (Gnus Group mode), Using the Gnus Group Buffer
	abbrev file, Saving Abbrevs
	Abbrev mode, Abbrev Concepts
	abbrev-all-caps, Controlling Abbrev Expansion
	abbrev-file-name, Saving Abbrevs
	abbrev-mode, Abbrev Concepts
	abbrev-prefix-mark, Controlling Abbrev Expansion
	abbrevs, Abbrevs
	abnormal hook, Hooks
	abort-recursive-edit, Quitting and Aborting
	aborting recursive edit, Quitting and Aborting
	accented characters, Unibyte Editing Mode
	accessible portion, Narrowing
	accumulating scattered text, Accumulating Text
	action options (command line), Command Line Arguments for Emacs Invocation
	active region, The Mark and the Region
	adaptive filling, Adaptive Filling
	adaptive-fill-first-line-regexp, Adaptive Filling
	adaptive-fill-function, Adaptive Filling
	adaptive-fill-mode, Adaptive Filling
	adaptive-fill-regexp, Adaptive Filling
	add-change-log-entry-other-window, Change Log Commands
	add-change-log-entry-other-window, in Diff mode, Diff Mode
	add-dir-local-variable, Per-Directory Local Variables
	add-file-local-variable, Specifying File Variables
	add-file-local-variable-prop-line, Specifying File Variables
	add-global-abbrev, Defining Abbrevs
	add-hook, Hooks
	add-log-always-start-new-record, Change Log Commands
	add-log-keep-changes-together, Change Log Commands
	add-mode-abbrev, Defining Abbrevs
	add-name-to-file, Miscellaneous File Operations
	add-untranslated-filesystem, Text Files and Binary Files
	Adding to the kill ring in Dired., Other Dired Features
	addpm, MS-Windows installation program, The MS-Windows System Registry
	adjust buffer face height, Text Scale
	aggressive scrolling, Automatic Scrolling
	alarm clock, Appointments
	alignment for comments, Comment Commands
	Alt key (MS-Windows), Keyboard Usage on MS-Windows
	Alt key invokes menu (Windows), Keyboard Usage on MS-Windows
	Alt-TAB vs M-TAB (MS-Windows), Keyboard Usage on MS-Windows
	ALTERNATE_EDITOR environment variable, emacsclient Options
	AltGr (MS-Windows), Keyboard Usage on MS-Windows
	AltGr key (MS-Windows), Keyboard Usage on MS-Windows
	ange-ftp, Remote Files
	ange-ftp-default-user, Remote Files
	ange-ftp-gateway-host, Remote Files
	ange-ftp-generate-anonymous-password, Remote Files
	ange-ftp-make-backup-files, Remote Files
	ange-ftp-smart-gateway, Remote Files
	animate, Other Amusements
	animate-birthday-present, Other Amusements
	animated images, Convenience Features for Finding Files
	anonymous FTP, Remote Files
	append-next-kill, Appending Kills
	append-to-buffer, Accumulating Text
	append-to-file, Accumulating Text
	append-to-register, Saving Text in Registers
	appending kills in the ring, Appending Kills
	apply-macro-to-region-lines, Basic Use
	appointment notification, Appointments
	appt-activate, Appointments
	appt-add, Appointments
	appt-audible, Appointments
	appt-delete, Appointments
	appt-delete-window-function, Appointments
	appt-disp-window-function, Appointments
	appt-display-diary, Appointments
	appt-display-duration, Appointments
	appt-display-format, Appointments
	appt-display-mode-line, Appointments
	appt-message-warning-time, Appointments
	appt-warning-time-regexp, Appointments
	apropos, Apropos
	apropos search results, order by score, Apropos
	apropos-command, Apropos
	apropos-do-all, Apropos
	apropos-documentation, Apropos
	apropos-documentation-sort-by-scores, Apropos
	apropos-sort-by-scores, Apropos
	apropos-value, Apropos
	apropos-variable, Apropos
	arc, File Archives
	Arch, Supported Version Control Systems
	Archive mode, File Archives
	arguments (command line), Command Line Arguments for Emacs Invocation
	arguments to commands, Numeric Arguments
	arrow keys, Changing the Location of Point
	ASCII, Kinds of User Input
	ASCII art, Commands for Human Languages
	ask-user-about-lock, Protection against Simultaneous Editing
	Asm mode, Asm Mode
	assembler mode, Asm Mode
	astronomical day numbers, Supported Calendar Systems
	async-shell-command, Single Shell Commands
	attached frame (of speedbar), Speedbar Frames
	attribute (Rmail), Labels
	attributes of mode line, changing, Optional Mode Line Features
	Auto Compression mode, Accessing Compressed Files
	Auto Fill mode, Auto Fill Mode
	Auto Save mode, Auto-Saving: Protection Against Disasters
	auto-coding-alist, Recognizing Coding Systems
	auto-coding-functions, Recognizing Coding Systems
	auto-coding-regexp-alist, Recognizing Coding Systems
	auto-compression-mode, Accessing Compressed Files
	auto-fill-mode, Auto Fill Mode
	auto-hscroll-mode, Horizontal Scrolling
	auto-mode-alist, Choosing File Modes
	auto-mode-case-fold, Choosing File Modes
	Auto-Revert mode, Reverting a Buffer
	auto-revert-check-vc-info, Version Control and the Mode Line
	auto-revert-interval, Reverting a Buffer
	auto-revert-mode, Reverting a Buffer
	auto-revert-tail-mode, Reverting a Buffer
	auto-save for remote files, Auto-Save Files
	auto-save-default, Controlling Auto-Saving
	auto-save-file-name-transforms, Auto-Save Files
	auto-save-interval, Controlling Auto-Saving
	auto-save-list-file-prefix, Recovering Data from Auto-Saves
	auto-save-mode, Controlling Auto-Saving
	auto-save-timeout, Controlling Auto-Saving
	auto-save-visited-file-name, Auto-Save Files
	autoload, Libraries of Lisp Code for Emacs
	autoload Lisp libraries, Init File Examples
	automatic version backups, Options specific for CVS
	avoiding mouse in the way of your typing, Mouse Avoidance
	AWK mode, C and Related Modes

B
	B (Dired), Operating on Files
	b (Rmail summary), Editing in Summaries
	b (Rmail), Basic Concepts of Rmail
	back end (version control), Supported Version Control Systems
	back reference, in regexp, Backslash in Regular Expressions
	back reference, in regexp replacement, Regexp Replacement
	back-to-indentation, Indentation Commands
	background color, Text Faces
	background color, command-line argument, Window Color Options
	background mode, on xterm, General Variables
	background syntax highlighting, Font Lock mode
	BACKSPACE vs DEL, If DEL Fails to Delete
	backtrace for bug reports, Checklist for Bug Reports
	backup file, Backup Files
	backup file names on MS-DOS, File Names on MS-DOS
	backup, and user-id, Copying vs. Renaming
	backup-by-copying, Copying vs. Renaming
	backup-by-copying-when-linked, Copying vs. Renaming
	backup-by-copying-when-mismatch, Copying vs. Renaming
	backup-by-copying-when-privileged-mismatch, Copying vs. Renaming
	backup-directory-alist, Single or Numbered Backups
	backup-enable-predicate, Backup Files
	backups for remote files, Remote Files
	backward-button, Help Mode Commands
	backward-char, Changing the Location of Point
	backward-delete-char-untabify, Major Modes for Programming Languages
	backward-kill-sentence, Sentences
	backward-kill-word, Words
	backward-list, Moving in the Parenthesis Structure
	backward-page, Pages
	backward-paragraph, Paragraphs
	backward-sentence, Sentences
	backward-sexp, Expressions with Balanced Parentheses
	backward-text-line, Nroff Mode
	backward-up-list, Moving in the Parenthesis Structure
	backward-word, Changing the Location of Point, Words
	Bahá'í calendar, Supported Calendar Systems
	balance-windows, Deleting and Rearranging Windows
	balanced expression, Expressions with Balanced Parentheses
	balloon help, Help on Active Text and Tooltips
	base buffer, Indirect Buffers
	base direction of paragraphs, Bidirectional Editing
	batch mode, Initial Options
	battery-mode-line-format, Optional Mode Line Features
	Bazaar, Supported Version Control Systems
	bdf-directory-list, Variables for PostScript Hardcopy
	beginning-of-buffer, Changing the Location of Point
	beginning-of-defun, Moving by Defuns
	beginning-of-visual-line, Visual Line Mode
	bibtex-mode, TeX Mode
	bidi-display-reordering, Bidirectional Editing
	bidi-paragraph-direction, Bidirectional Editing
	bidirectional editing, Bidirectional Editing
	binary files, on MS-DOS/MS-Windows, Text Files and Binary Files
	binary-overwrite-mode, Minor Modes
	binding, Keys and Commands
	binding keyboard macros, Naming and Saving Keyboard Macros
	binding keys, Changing Key Bindings Interactively
	blackbox, Other Amusements
	blank lines, Blank Lines
	blank lines in programs, Multiple Lines of Comments
	blink-cursor-alist, Displaying the Cursor
	blink-cursor-mode, Displaying the Cursor
	blink-matching-delay, Matching Parentheses
	blink-matching-paren, Matching Parentheses
	blink-matching-paren-distance, Matching Parentheses
	blinking cursor, Displaying the Cursor
	blinking cursor disable, command-line argument, Other Display Options
	body lines (Outline mode), Format of Outlines
	bookmark-delete, Bookmarks
	bookmark-insert, Bookmarks
	bookmark-insert-location, Bookmarks
	bookmark-jump, Bookmarks
	bookmark-load, Bookmarks
	bookmark-save, Bookmarks
	bookmark-save-flag, Bookmarks
	bookmark-search-size, Bookmarks
	bookmark-set, Bookmarks
	bookmark-write, Bookmarks
	bookmarks, Bookmarks
	border color, command-line argument, Window Color Options
	borders (X Window System), Internal and External Borders
	boredom, Other Amusements
	brace in column zero and fontification, Font Lock mode
	braces, moving across, Moving in the Parenthesis Structure
	branch (version control), Version Control Branches
	Brief emulation, Emulation
	browse-url, Help Mode Commands, Following URLs
	Browse-URL, Following URLs
	browse-url-at-mouse, Following URLs
	browse-url-at-point, Following URLs
	browse-url-browser-function, Following URLs
	browse-url-mailto-function, Following URLs
	BS (MS-DOS), Keyboard Usage on MS-DOS
	bs-show, Customizing Buffer Menus
	bubbles, Other Amusements
	buffer definitions index, Imenu
	buffer list, customizable, Customizing Buffer Menus
	buffer menu, Operating on Several Buffers, Customizing Buffer Menus
	buffer size display, Optional Mode Line Features
	buffer size, maximum, Using Multiple Buffers
	buffer-file-coding-system, Choosing Coding Systems for Output
	buffer-local hooks, Hooks
	buffer-menu, Operating on Several Buffers
	buffer-menu-other-window, Operating on Several Buffers
	buffer-read-only, Miscellaneous Buffer Operations
	buffer-stale-function, Adding Support for Auto-Reverting additional Buffers.
	buffers, Using Multiple Buffers
	bug tracker, Reading Existing Bug Reports and Known Problems
	bugs, Reporting Bugs
	building programs, Compiling and Testing Programs
	built-in package, The Package Menu Buffer
	button down events, Rebinding Mouse Buttons
	buttons, Following References with the Mouse
	buttons (customization buffer), Customization Groups
	buttons at buffer position, Editing Format Information
	bypassing init and default.el file, Initial Options
	byte code, Libraries of Lisp Code for Emacs
	byte-compiling several files (in Dired), Operating on Files
	bzr, Supported Version Control Systems

C
	C (Dired), Operating on Files
	c (Rmail), Sending Replies
	C editing, Editing Programs
	C mode, C and Related Modes
	C++ class browser, tags, Tags Tables
	C++ mode, C and Related Modes
	C-, Kinds of User Input
	C-/, Undo
	C-@, Setting the Mark
	C-a, Changing the Location of Point
	C-a (Calendar mode), Beginning or End of Week, Month or Year
	C-b, Changing the Location of Point
	C-b (Calendar mode), Motion by Standard Lengths of Time
	c-backslash-region, Other Commands for C Mode
	c-backward-conditional, C Mode Motion Commands
	c-beginning-of-defun, C Mode Motion Commands
	c-beginning-of-statement, C Mode Motion Commands
	C-BREAK (MS-DOS), Keyboard Usage on MS-DOS
	C-c ' (Picture mode), Controlling Motion after Insert
	C-c , j, Semantic
	C-c , J, Semantic
	C-c , l, Semantic
	C-c , SPC, Semantic
	C-c . (C mode), Customizing C Indentation
	C-c . (Picture mode), Controlling Motion after Insert
	C-c . (Shell mode), Shell History Ring
	C-c / (Picture mode), Controlling Motion after Insert
	C-c / (SGML mode), SGML and HTML Modes
	C-c 8 (SGML mode), SGML and HTML Modes
	C-c ; (Fortran mode), Fortran Comments
	C-c < (GUD), Commands of GUD
	C-c < (Picture mode), Controlling Motion after Insert
	C-c > (GUD), Commands of GUD
	C-c > (Picture mode), Controlling Motion after Insert
	C-c ? (SGML mode), SGML and HTML Modes
	C-c @ (Outline minor mode), Outline Mode
	C-c @ C-h, Hideshow minor mode
	C-c @ C-l, Hideshow minor mode
	C-c @ C-M-h, Hideshow minor mode
	C-c @ C-M-s, Hideshow minor mode
	C-c @ C-r, Hideshow minor mode
	C-c @ C-s, Hideshow minor mode
	C-c C-a (C mode), Electric C Characters
	C-c C-a (F90 mode), Motion Commands
	C-c C-a (Log Edit mode), Features of the Log Entry Buffer
	C-c C-a (Message mode), Mail Miscellany
	C-c C-a (Outline mode), Outline Visibility Commands
	C-c C-a (SGML mode), SGML and HTML Modes
	C-c C-a (Shell mode), Shell Mode
	C-c C-b (Help mode), Help Mode Commands
	C-c C-b (Message mode), Mail Header Editing
	C-c C-b (Outline mode), Outline Motion Commands
	C-c C-b (Picture mode), Controlling Motion after Insert
	C-c C-b (SGML mode), SGML and HTML Modes
	C-c C-b (Shell mode), Shell Mode
	C-c C-b (TeX mode), TeX Printing Commands
	C-c C-c (C mode), Comment Commands
	C-c C-c (customization buffer), Changing a Variable
	C-c C-c (Edit Abbrevs), Examining and Editing Abbrevs
	C-c C-c (Edit Tab Stops), Tab Stops
	C-c C-c (Log Edit mode), Features of the Log Entry Buffer
	C-c C-c (Message mode), Mail Sending
	C-c C-c (Outline mode), Outline Visibility Commands
	C-c C-c (Shell mode), Shell Mode
	C-c C-c (TeX mode), TeX Printing Commands
	C-c C-d (C Mode), Hungry Delete Feature in C
	C-c C-d (Fortran mode), Fortran Indentation and Filling Commands
	C-c C-d (GUD), Commands of GUD
	C-c C-d (Log Edit mode), Features of the Log Entry Buffer
	C-c C-d (Org Mode), Org as an organizer
	C-c C-d (Outline mode), Outline Visibility Commands
	C-c C-d (Picture mode), Basic Editing in Picture Mode
	C-c C-d (SGML mode), SGML and HTML Modes
	C-c C-DEL (C Mode), Hungry Delete Feature in C
	C-c C-DELETE (C Mode), Hungry Delete Feature in C
	C-c C-e (C mode), Other Commands for C Mode
	C-c C-e (F90 mode), Motion Commands
	C-c C-e (LaTeX mode), LaTeX Editing Commands
	C-c C-e (Org mode), Org as an authoring system
	C-c C-e (Outline mode), Outline Visibility Commands
	C-c C-e (Shell mode), Shell Mode
	C-c C-f (GUD), Commands of GUD
	C-c C-f (Log Edit mode), Features of the Log Entry Buffer
	C-c C-f (Outline mode), Outline Motion Commands
	C-c C-f (Picture mode), Controlling Motion after Insert
	C-c C-f (SGML mode), SGML and HTML Modes
	C-c C-f (Shell mode), Shell Mode
	C-c C-f (TeX mode), TeX Printing Commands
	C-c C-f C-b (Message mode), Mail Header Editing
	C-c C-f C-c (Message mode), Mail Header Editing
	C-c C-f C-f (Message mode), Mail Header Editing
	C-c C-f C-r (Message mode), Mail Header Editing
	C-c C-f C-s (Message mode), Mail Header Editing
	C-c C-f C-t (Message mode), Mail Header Editing
	C-c C-f C-w (Message mode), Mail Header Editing
	C-c C-i (GUD), Commands of GUD
	C-c C-i (Outline mode), Outline Visibility Commands
	C-c C-j (Term mode), Term Mode
	C-c C-k (Outline mode), Outline Visibility Commands
	C-c C-k (Picture mode), Picture Mode Rectangle Commands
	C-c C-k (Term mode), Term Mode
	C-c C-k (TeX mode), TeX Printing Commands
	C-c C-l (C mode), Electric C Characters
	C-c C-l (Calendar mode), Miscellaneous Calendar Commands
	C-c C-l (GUD), Commands of GUD
	C-c C-l (Outline mode), Outline Visibility Commands
	C-c C-l (Shell mode), Shell History Ring
	C-c C-l (TeX mode), TeX Printing Commands
	C-c C-n (C mode), C Mode Motion Commands
	C-c C-n (Fortran mode), Motion Commands
	C-c C-n (GUD), Commands of GUD
	C-c C-n (Outline mode), Outline Motion Commands
	C-c C-n (Rmail), Moving Among Messages
	C-c C-n (SGML mode), SGML and HTML Modes
	C-c C-n (Shell mode), Shell History Copying
	C-c C-o (LaTeX mode), LaTeX Editing Commands
	C-c C-o (Outline mode), Outline Visibility Commands
	C-c C-o (Shell mode), Shell Mode
	C-c C-p (C mode), C Mode Motion Commands
	C-c C-p (Fortran mode), Motion Commands
	C-c C-p (GUD), Commands of GUD
	C-c C-p (Outline mode), Outline Motion Commands
	C-c C-p (Rmail), Moving Among Messages
	C-c C-p (Shell mode), Shell History Copying
	C-c C-p (TeX mode), TeX Printing Commands
	C-c C-q (C mode), Commands for C Indentation
	C-c C-q (Message mode), Citing Mail
	C-c C-q (Outline mode), Outline Visibility Commands
	C-c C-q (Term mode), Term Mode
	C-c C-r (Fortran mode), Checking Columns in Fortran
	C-c C-r (GUD), Commands of GUD
	C-c C-r (Shell mode), Shell Mode
	C-c C-r (TeX mode), TeX Printing Commands
	C-c C-s (C mode), Other Commands for C Mode
	C-c C-s (GUD), Commands of GUD
	C-c C-s (Message mode), Mail Sending
	C-c C-s (Org Mode), Org as an organizer
	C-c C-s (Outline mode), Outline Visibility Commands
	C-c C-s (Shell mode), Shell Mode
	C-c C-t (GUD), Commands of GUD
	C-c C-t (Org Mode), Org as an organizer
	C-c C-t (Outline mode), Outline Visibility Commands
	C-c C-t (SGML mode), SGML and HTML Modes
	C-c C-u (C mode), C Mode Motion Commands
	C-c C-u (GUD), Commands of GUD
	C-c C-u (Outline mode), Outline Motion Commands
	C-c C-u (Shell mode), Shell Mode
	C-c C-v (SGML mode), SGML and HTML Modes
	C-c C-v (TeX mode), TeX Printing Commands
	C-c C-w (Fortran mode), Checking Columns in Fortran
	C-c C-w (Message mode), Mail Signature
	C-c C-w (Picture mode), Picture Mode Rectangle Commands
	C-c C-w (Shell mode), Shell Mode
	C-c C-x, Folding Editing
	C-c C-x (Picture mode), Picture Mode Rectangle Commands
	C-c C-x (Shell mode), Shell History Ring
	C-c C-y (Message mode), Citing Mail
	C-c C-y (Picture mode), Picture Mode Rectangle Commands
	C-c C-z, Folding Editing
	C-c C-z (Shell mode), Shell Mode
	C-c C-\ (C mode), Other Commands for C Mode
	C-c C-\ (Shell mode), Shell Mode
	C-c DEL (C Mode), Hungry Delete Feature in C
	C-c DELETE (C Mode), Hungry Delete Feature in C
	C-c RET (Goto Address mode), Activating URLs
	C-c RET (Shell mode), Shell History Copying
	C-c TAB (Picture mode), Picture Mode Tabs
	C-c TAB (SGML mode), SGML and HTML Modes
	C-c TAB (TeX mode), TeX Printing Commands
	C-c [(Enriched mode), Indentation in Enriched Text
	C-c [(Org Mode), Org as an organizer
	C-c \ (Picture mode), Controlling Motion after Insert
	C-c] (Enriched mode), Indentation in Enriched Text
	C-c ^ (Picture mode), Controlling Motion after Insert
	C-c ` (Picture mode), Controlling Motion after Insert
	C-c { (TeX mode), TeX Editing Commands
	C-c } (TeX mode), TeX Editing Commands
	c-context-line-break, Other Commands for C Mode
	C-d (Rmail), Deleting Messages
	C-d (Shell mode), Shell Mode
	c-default-style, Customizing C Indentation
	C-Down-Mouse-1, Customizing Buffer Menus
	C-e, Changing the Location of Point
	C-e (Calendar mode), Beginning or End of Week, Month or Year
	c-electric-backspace, Major Modes for Programming Languages
	c-end-of-defun, C Mode Motion Commands
	c-end-of-statement, C Mode Motion Commands
	C-f, Changing the Location of Point
	C-f (Calendar mode), Motion by Standard Lengths of Time
	c-fill-paragraph, Other Commands for C Mode
	c-forward-conditional, C Mode Motion Commands
	C-g, Quitting and Aborting
	C-g (Incremental search), Errors in Incremental Search
	C-g (MS-DOS), Keyboard Usage on MS-DOS
	c-guess, Customizing C Indentation
	c-guess-install, Customizing C Indentation
	C-h, Help
	C-h ., Help on Active Text and Tooltips
	C-h a, Apropos
	C-h b, Other Help Commands
	C-h c, Documentation for a Key
	C-h C, Coding Systems
	C-h C-c, Help Files
	C-h C-d, Help Files
	C-h C-e, Help Files
	C-h C-f, Help Files
	C-h C-h, Help
	C-h C-m, Help Files
	C-h C-n, Help Files
	C-h C-o, Help Files
	C-h C-p, Help Files
	C-h C-t, Help Files
	C-h C-w, Help Files
	C-h C-\, Selecting an Input Method
	C-h d, Apropos
	C-h e, Other Help Commands
	C-h f, Help by Command or Variable Name
	C-h F, Help by Command or Variable Name
	C-h g, Help Files
	C-h h, Introduction to International Character Sets
	C-h i, Other Help Commands
	C-h I, Selecting an Input Method
	C-h k, Documentation for a Key
	C-h K, Documentation for a Key
	C-h l, Other Help Commands
	C-h L, Language Environments
	C-h m, Other Help Commands, Major Modes
	C-h p, Keyword Search for Packages
	C-h P, Keyword Search for Packages
	C-h S, Other Help Commands, Info Documentation Lookup
	C-h t, Basic Editing Commands
	C-h v, Help by Command or Variable Name
	C-h w, Documentation for a Key
	c-hungry-delete-backwards, Hungry Delete Feature in C
	c-hungry-delete-forward, Hungry Delete Feature in C
	c-hungry-delete-key, Hungry Delete Feature in C
	c-indent-command, Basic Program Indentation Commands, Commands for C Indentation
	c-indent-defun, Commands for C Indentation
	c-indent-exp, Commands for C Indentation
	C-j, Indentation Commands
	C-j (and major modes), Major Modes
	C-j (indenting source code), Basic Program Indentation Commands
	C-j (Lisp Interaction mode), Lisp Interaction Buffers
	C-j (MS-DOS), Keyboard Usage on MS-DOS
	C-j (TeX mode), TeX Editing Commands
	C-k, Killing by Lines
	C-k (Gnus Group mode), Using the Gnus Group Buffer
	C-l, Recentering
	C-LEFT, Changing the Location of Point
	C-M-%, Query Replace
	C-M-., Finding a Tag
	C-M-/, Dynamic Abbrev Expansion
	C-M-@, Commands to Mark Textual Objects, Expressions with Balanced Parentheses
	C-M-a, Moving by Defuns
	C-M-b, Expressions with Balanced Parentheses
	C-M-c, Recursive Editing Levels
	C-M-d, Moving in the Parenthesis Structure
	C-M-d (Dired), Moving Over Subdirectories
	C-M-e, Moving by Defuns
	C-M-f, Expressions with Balanced Parentheses
	C-M-f (Rmail), Making Summaries
	C-M-h, Moving by Defuns
	C-M-h (C mode), Moving by Defuns
	C-M-i, Completion for Symbol Names
	C-M-i (customization buffer), Changing a Variable
	C-M-j, Multiple Lines of Comments
	C-M-j (Fortran mode), Fortran Indentation and Filling Commands
	C-M-k, Expressions with Balanced Parentheses
	C-M-l, Recentering
	C-M-l (Rmail), Making Summaries
	C-M-l (Shell mode), Shell Mode
	C-M-n, Moving in the Parenthesis Structure
	C-M-n (Dired), Moving Over Subdirectories
	C-M-n (Fortran mode), Motion Commands
	C-M-n (Rmail), Labels
	C-M-o, Indentation Commands
	C-M-p, Moving in the Parenthesis Structure
	C-M-p (Dired), Moving Over Subdirectories
	C-M-p (Fortran mode), Motion Commands
	C-M-p (Rmail), Labels
	C-M-q, Indenting Several Lines
	C-M-q (C mode), Commands for C Indentation
	C-M-q (Fortran mode), Fortran Indentation and Filling Commands
	C-M-r, Regular Expression Search
	C-M-r (Rmail), Making Summaries
	C-M-s, Regular Expression Search
	C-M-s (Rmail), Making Summaries
	C-M-SPC, Expressions with Balanced Parentheses
	C-M-t, Expressions with Balanced Parentheses
	C-M-t (Rmail), Making Summaries
	C-M-u, Moving in the Parenthesis Structure
	C-M-u (Dired), Moving Over Subdirectories
	C-M-v, Using Other Windows
	C-M-w, Appending Kills
	C-M-w (Incremental search), Isearch Yanking
	C-M-x (Emacs Lisp mode), Evaluating Emacs Lisp Expressions
	C-M-x (Lisp mode), Running an External Lisp
	C-M-x (Scheme mode), Running an External Lisp
	C-M-y (Incremental search), Isearch Yanking
	C-M-\, Indentation Commands
	c-macro-expand, Other Commands for C Mode
	c-mark-function, Moving by Defuns
	c-mode-hook, Major Modes for Programming Languages
	C-Mouse-1, Mouse Clicks for Menus
	C-Mouse-2, Mouse Clicks for Menus
	C-Mouse-2 (mode line), Splitting Windows
	C-mouse-2 (mode line), Mode Line Mouse Commands
	C-Mouse-2 (scroll bar), Splitting Windows
	C-Mouse-3, Mouse Clicks for Menus
	C-Mouse-3 (when menu bar is disabled), Menu Bars
	C-n, Changing the Location of Point
	C-n (Calendar mode), Motion by Standard Lengths of Time
	C-n (Dired), Navigation in the Dired Buffer
	C-o, Blank Lines
	C-o (Dired), Visiting Files in Dired
	C-o (Occur mode), Other Search-and-Loop Commands
	C-o (Rmail), Copying Messages Out to Files
	C-p, Changing the Location of Point
	C-p (Calendar mode), Motion by Standard Lengths of Time
	C-p (Dired), Navigation in the Dired Buffer
	C-q, Inserting Text
	C-r, Basics of Incremental Search
	C-RIGHT, Changing the Location of Point
	C-s, Basics of Incremental Search
	C-S-backspace, Killing by Lines
	C-S-Mouse-3 (FFAP), Finding Files and URLs at Point
	c-set-style, Customizing C Indentation
	c-show-syntactic-information, Other Commands for C Mode
	C-SPC, Setting the Mark
	C-SPC C-SPC, The Mark Ring, Disabling Transient Mark Mode
	C-t, Transposing Text
	C-t d (Image-Dired), Viewing Image Thumbnails in Dired
	C-TAB, File Name Cache
	c-tab-always-indent, Commands for C Indentation
	c-toggle-auto-newline, Electric C Characters
	c-toggle-electric-state, Electric C Characters
	c-toggle-hungry-state, Hungry Delete Feature in C
	C-u, Numeric Arguments
	C-u C-/, Undo
	C-u C-c C-w (Fortran mode), Checking Columns in Fortran
	C-u C-SPC, The Mark Ring
	C-u C-x C-x, Disabling Transient Mark Mode
	C-u C-x v =, Examining And Comparing Old Revisions
	C-u M-;, Comment Commands
	C-u TAB, Indenting Several Lines
	c-up-conditional, C Mode Motion Commands
	C-v, Scrolling
	C-v (Calendar mode), Scrolling in the Calendar
	C-w, Other Kill Commands
	C-w (Incremental search), Isearch Yanking
	C-x #, Invoking emacsclient
	C-x $, Selective Display
	C-x (, Basic Use
	C-x), Basic Use
	C-x +, Deleting and Rearranging Windows
	C-x -, Deleting and Rearranging Windows
	C-x ., The Fill Prefix
	C-x 0, Deleting and Rearranging Windows
	C-x 1, Deleting and Rearranging Windows
	C-x 2, Splitting Windows
	C-x 3, Splitting Windows
	C-x 4, Displaying in Another Window
	C-x 4 ., Finding a Tag
	C-x 4 0, Deleting and Rearranging Windows
	C-x 4 a, Change Log Commands
	C-x 4 b, Creating and Selecting Buffers
	C-x 4 b (Iswitchb mode), Switching Between Buffers using Substrings
	C-x 4 c, Indirect Buffers
	C-x 4 C-o, Displaying in Another Window
	C-x 4 C-o (Iswitchb mode), Switching Between Buffers using Substrings
	C-x 4 d, Entering Dired
	C-x 4 f, Visiting Files
	C-x 4 f (FFAP), Finding Files and URLs at Point
	C-x 4 m, Sending Mail
	C-x 5, Creating Frames
	C-x 5 ., Finding a Tag
	C-x 5 0, Frame Commands
	C-x 5 1, Frame Commands
	C-x 5 2, Creating Frames
	C-x 5 b, Creating and Selecting Buffers
	C-x 5 b (Iswitchb mode), Switching Between Buffers using Substrings
	C-x 5 d, Entering Dired
	C-x 5 f, Visiting Files
	C-x 5 f (FFAP), Finding Files and URLs at Point
	C-x 5 m, Sending Mail
	C-x 5 o, Frame Commands
	C-x 5 r, Creating Frames
	C-x 6 1, Two-Column Editing
	C-x 6 2, Two-Column Editing
	C-x 6 b, Two-Column Editing
	C-x 6 d, Two-Column Editing
	C-x 6 RET, Two-Column Editing
	C-x 6 s, Two-Column Editing
	C-x 8, Unibyte Editing Mode
	C-x 8 RET, Inserting Text
	C-x ;, Options Controlling Comments
	C-x <, Horizontal Scrolling
	C-x =, Cursor Position Information, Introduction to International Character Sets
	C-x >, Horizontal Scrolling
	C-x a g, Defining Abbrevs
	C-x a i g, Defining Abbrevs
	C-x a i l, Defining Abbrevs
	C-x a l, Defining Abbrevs
	C-x b, Creating and Selecting Buffers
	C-x b (Iswitchb mode), Switching Between Buffers using Substrings
	C-x C-+, Text Scale
	C-x C-0, Text Scale
	C-x C-=, Text Scale
	C-x C-a (GUD), Commands of GUD
	C-x C-a C-j (GUD), Commands of GUD
	C-x C-a C-w (GUD), Watch Expressions
	C-x C-b, Listing Existing Buffers
	C-x C-c, Exiting Emacs
	C-x C-c (customization buffer), Changing a Variable
	C-x C-d, File Directories
	C-x C-e, Evaluating Emacs Lisp Expressions
	C-x C-f, Visiting Files
	C-x C-f (FFAP), Finding Files and URLs at Point
	C-x C-k b, Naming and Saving Keyboard Macros
	C-x C-k C-a, The Keyboard Macro Counter
	C-x C-k C-c, The Keyboard Macro Counter
	C-x C-k C-e, Editing a Keyboard Macro
	C-x C-k C-f, The Keyboard Macro Counter
	C-x C-k C-i, The Keyboard Macro Counter
	C-x C-k C-k, The Keyboard Macro Ring
	C-x C-k C-n, The Keyboard Macro Ring
	C-x C-k C-p, The Keyboard Macro Ring
	C-x C-k e, Editing a Keyboard Macro
	C-x C-k l, Editing a Keyboard Macro
	C-x C-k n, Naming and Saving Keyboard Macros
	C-x C-k r, Basic Use
	C-x C-k RET, Editing a Keyboard Macro
	C-x C-k SPC, Stepwise Editing a Keyboard Macro
	C-x C-l, Case Conversion Commands
	C-x C-n, Changing the Location of Point
	C-x C-o, Blank Lines
	C-x C-p, Pages
	C-x C-q, Miscellaneous Buffer Operations
	C-x C-r, Visiting Files
	C-x C-r (FFAP), Finding Files and URLs at Point
	C-x C-s, Commands for Saving Files
	C-x C-s (Custom Themes buffer), Custom Themes
	C-x C-SPC, The Global Mark Ring
	C-x C-t, Transposing Text
	C-x C-u, Case Conversion Commands
	C-x C-v, Visiting Files
	C-x C-v (FFAP), Finding Files and URLs at Point
	C-x C-w, Commands for Saving Files
	C-x C-x, Setting the Mark
	C-x C-z, Running an External Lisp
	C-x C–, Text Scale
	C-x d, Entering Dired
	C-x d (FFAP), Finding Files and URLs at Point
	C-x DEL, Sentences
	C-x e, Basic Use
	C-x ESC ESC, Repeating Minibuffer Commands
	C-x f, Explicit Fill Commands
	C-x h, Commands to Mark Textual Objects
	C-x i, Miscellaneous File Operations
	C-x k, Killing Buffers
	C-x l, Pages
	C-x LEFT, Creating and Selecting Buffers
	C-x m, Sending Mail
	C-x n d, Narrowing
	C-x n n, Narrowing
	C-x n p, Narrowing
	C-x n w, Narrowing
	C-x o, Using Other Windows
	C-x q, Executing Macros with Variations
	C-x r +, Keeping Numbers in Registers
	C-x r b, Bookmarks
	C-x r c, Rectangles
	C-x r d, Rectangles
	C-x r f, Saving Window Configurations in Registers
	C-x r i, Saving Text in Registers
	C-x r j, Saving Positions in Registers
	C-x r k, Rectangles
	C-x r l, Bookmarks
	C-x r m, Bookmarks
	C-x r N, Rectangles
	C-x r n, Keeping Numbers in Registers
	C-x r o, Rectangles
	C-x r r, Saving Rectangles in Registers
	C-x r s, Saving Text in Registers
	C-x r SPC, Saving Positions in Registers
	C-x r t, Rectangles
	C-x r w, Saving Window Configurations in Registers
	C-x r y, Rectangles
	C-x RET, Introduction to International Character Sets
	C-x RET c, Specifying a Coding System for File Text
	C-x RET C-\, Selecting an Input Method
	C-x RET f, Specifying a Coding System for File Text
	C-x RET F, Coding Systems for File Names
	C-x RET k, Coding Systems for Terminal I/O
	C-x RET p, Coding Systems for Interprocess Communication
	C-x RET r, Specifying a Coding System for File Text
	C-x RET t, Coding Systems for Terminal I/O
	C-x RET x, Coding Systems for Interprocess Communication
	C-x RET X, Coding Systems for Interprocess Communication
	C-x RIGHT, Creating and Selecting Buffers
	C-x s, Commands for Saving Files
	C-x SPC, Commands of GUD
	C-x TAB, Indentation Commands
	C-x TAB (Enriched mode), Indentation in Enriched Text
	C-x u, Undo
	C-x v +, Pulling Changes into a Branch
	C-x v =, Examining And Comparing Old Revisions
	C-x v a, Change Logs and VC
	C-x v D, Examining And Comparing Old Revisions
	C-x v d, VC Directory Mode
	C-x v g, Examining And Comparing Old Revisions
	C-x v h, Inserting Version Control Headers
	C-x v i, Registering a File for Version Control
	C-x v l, VC Change Log
	C-x v r, Revision Tags
	C-x v s, Revision Tags
	C-x v u, Undoing Version Control Actions
	C-x v v, Basic Editing under Version Control
	C-x v ~, Examining And Comparing Old Revisions
	C-x w b, Interactive Highlighting
	C-x w h, Interactive Highlighting
	C-x w i, Interactive Highlighting
	C-x w l, Interactive Highlighting
	C-x w r, Interactive Highlighting
	C-x z, Repeating a Command
	C-x [, Pages
	C-x [(Calendar mode), Motion by Standard Lengths of Time
	C-x [(DocView mode), DocView Navigation
	C-x], Pages
	C-x] (Calendar mode), Motion by Standard Lengths of Time
	C-x] (DocView mode), DocView Navigation
	C-x ^, Deleting and Rearranging Windows
	C-x `, Compilation Mode
	C-x }, Deleting and Rearranging Windows
	C-y, Yanking
	C-y (Incremental search), Isearch Yanking
	C-z, Exiting Emacs
	C-z (X windows), Frame Commands
	C-\, Selecting an Input Method
	C-], Quitting and Aborting
	C-_, Undo
	C-_ (Dired), Dired Marks vs. Flags
	cache of file names, File Name Cache
	cal-html-css-default, Writing Calendar Files
	calendar, The Calendar and the Diary
	calendar and HTML, Writing Calendar Files
	calendar and LaTeX, Writing Calendar Files
	calendar layout, Customizing the Calendar
	calendar week numbers, Customizing the Calendar
	calendar, first day of week, Beginning or End of Week, Month or Year
	calendar-astro-goto-day-number, Converting From Other Calendars
	calendar-astro-print-day-number, Converting To Other Calendars
	calendar-backward-day, Motion by Standard Lengths of Time
	calendar-backward-month, Motion by Standard Lengths of Time
	calendar-backward-week, Motion by Standard Lengths of Time
	calendar-bahai-all-holidays-flag, Customizing the Holidays
	calendar-bahai-goto-date, Converting From Other Calendars
	calendar-bahai-print-date, Converting To Other Calendars
	calendar-beginning-of-month, Beginning or End of Week, Month or Year
	calendar-beginning-of-week, Beginning or End of Week, Month or Year
	calendar-beginning-of-year, Beginning or End of Week, Month or Year
	calendar-chinese-goto-date, Converting From Other Calendars
	calendar-chinese-print-date, Converting To Other Calendars
	calendar-christian-all-holidays-flag, Customizing the Holidays
	calendar-coptic-goto-date, Converting From Other Calendars
	calendar-coptic-print-date, Converting To Other Calendars
	calendar-count-days-region, Counting Days
	calendar-cursor-holidays, Holidays
	calendar-date-display-form, Date Display Format
	calendar-date-style, Date Formats
	calendar-daylight-savings-ends, Daylight Saving Time
	calendar-daylight-savings-ends-time, Daylight Saving Time
	calendar-daylight-savings-starts, Daylight Saving Time
	calendar-daylight-time-offset, Daylight Saving Time
	calendar-daylight-time-zone-name, Times of Sunrise and Sunset
	calendar-end-of-month, Beginning or End of Week, Month or Year
	calendar-end-of-week, Beginning or End of Week, Month or Year
	calendar-end-of-year, Beginning or End of Week, Month or Year
	calendar-ethiopic-goto-date, Converting From Other Calendars
	calendar-ethiopic-print-date, Converting To Other Calendars
	calendar-forward-day, Motion by Standard Lengths of Time
	calendar-forward-month, Motion by Standard Lengths of Time
	calendar-forward-week, Motion by Standard Lengths of Time
	calendar-forward-year, Motion by Standard Lengths of Time
	calendar-french-goto-date, Converting From Other Calendars
	calendar-french-print-date, Converting To Other Calendars
	calendar-goto-date, Specified Dates
	calendar-goto-day-of-year, Specified Dates
	calendar-goto-today, Specified Dates
	calendar-hebrew-all-holidays-flag, Customizing the Holidays
	calendar-hebrew-goto-date, Converting From Other Calendars
	calendar-hebrew-list-yahrzeits, Converting From Other Calendars
	calendar-hebrew-print-date, Converting To Other Calendars
	calendar-holiday-marker, Customizing the Calendar
	calendar-holidays, Customizing the Holidays
	calendar-initial-window-hook, Customizing the Calendar
	calendar-intermonth-text, Customizing the Calendar
	calendar-islamic-all-holidays-flag, Customizing the Holidays
	calendar-islamic-goto-date, Converting From Other Calendars
	calendar-islamic-print-date, Converting To Other Calendars
	calendar-iso-goto-date, Converting From Other Calendars
	calendar-iso-goto-week, Specified Dates, Converting From Other Calendars
	calendar-iso-print-date, Converting To Other Calendars
	calendar-julian-goto-date, Converting From Other Calendars
	calendar-julian-print-date, Converting To Other Calendars
	calendar-latitude, Times of Sunrise and Sunset
	calendar-list-holidays, Holidays
	calendar-load-hook, Customizing the Calendar
	calendar-location-name, Times of Sunrise and Sunset
	calendar-longitude, Times of Sunrise and Sunset
	calendar-lunar-phases, Phases of the Moon
	calendar-mark-diary-entries-flag, Displaying the Diary
	calendar-mark-holidays, Holidays
	calendar-mark-holidays-flag, Holidays
	calendar-mark-today, Customizing the Calendar
	calendar-mayan-goto-long-count-date, Converting from the Mayan Calendar
	calendar-mayan-next-calendar-round-date, Converting from the Mayan Calendar
	calendar-mayan-next-haab-date, Converting from the Mayan Calendar
	calendar-mayan-next-tzolkin-date, Converting from the Mayan Calendar
	calendar-mayan-previous-haab-date, Converting from the Mayan Calendar
	calendar-mayan-previous-tzolkin-date, Converting from the Mayan Calendar
	calendar-mayan-print-date, Converting To Other Calendars
	calendar-move-hook, Customizing the Calendar
	calendar-other-month, Specified Dates
	calendar-persian-goto-date, Converting From Other Calendars
	calendar-persian-print-date, Converting To Other Calendars
	calendar-print-day-of-year, Miscellaneous Calendar Commands
	calendar-print-other-dates, Converting To Other Calendars
	calendar-redraw, Miscellaneous Calendar Commands
	calendar-remove-frame-by-deleting, Miscellaneous Calendar Commands
	calendar-scroll-left, Scrolling in the Calendar
	calendar-scroll-left-three-months, Scrolling in the Calendar
	calendar-scroll-right, Scrolling in the Calendar
	calendar-scroll-right-three-months, Scrolling in the Calendar
	calendar-set-date-style, Date Formats
	calendar-standard-time-zone-name, Times of Sunrise and Sunset
	calendar-star-date, Customizing the Calendar
	calendar-sunrise-sunset, Times of Sunrise and Sunset
	calendar-time-display-form, Time Display Format
	calendar-time-zone, Times of Sunrise and Sunset
	calendar-today-invisible-hook, Customizing the Calendar
	calendar-today-marker, Customizing the Calendar
	calendar-today-visible-hook, Customizing the Calendar
	calendar-unmark, Holidays
	calendar-view-diary-initially-flag, Displaying the Diary
	calendar-view-holidays-initially-flag, Holidays
	calendar-week-start-day, Beginning or End of Week, Month or Year
	call Lisp functions, command-line argument, Action Arguments
	camel case, Glasses minor mode
	candle lighting times, Sexp Entries and the Fancy Diary Display
	capitalize-word, Case Conversion Commands
	capitalizing words, Case Conversion Commands
	case conversion, Case Conversion Commands
	case in completion, Completion Options
	case-fold-search, Searching and Case
	case-replace, Replace Commands and Case
	case-sensitivity and completion, Completion Options
	case-sensitivity and tags search, Searching and Replacing with Tags Tables
	categories of characters, Backslash in Regular Expressions
	cd, File Names
	cells, for text-based tables, What is a Text-based Table?
	Celtic, International Character Set Support
	center-line, Explicit Fill Commands
	centering, Explicit Fill Commands
	centralized version control, Decentralized vs Centralized Repositories
	change buffers, Creating and Selecting Buffers
	change Emacs directory, Initial Options
	change log, Change Logs
	Change Log mode, Change Log Commands
	change-log-merge, Change Log Commands
	change-log-mode, Change Log Commands
	change-log-version-info-enabled, Change Log Commands
	change-log-version-number-regexp-list, Change Log Commands
	change-major-mode-with-file-name, Choosing File Modes
	changes, undoing, Undo
	changeset-based version control, Changeset-based vs File-based Version Control
	changing file group (in Dired), Operating on Files
	changing file owner (in Dired), Operating on Files
	changing file permissions (in Dired), Operating on Files
	changing file time (in Dired), Operating on Files
	character set (keyboard), Kinds of User Input
	character set of character at point, Introduction to International Character Sets
	character syntax, Init File Syntax
	characters (in text), How Text Is Displayed
	characters in a certain charset, Charsets
	characters which belong to a specific language, Backslash in Regular Expressions
	characters with no font glyphs, How Text Is Displayed
	characters, inserting by name or code-point, Inserting Text
	charsets, Charsets
	check-parens, Commands for Editing with Parentheses
	checking out files, Concepts of Version Control
	checking spelling, Checking and Correcting Spelling
	checking syntax, Finding Syntax Errors On The Fly
	Chinese, International Character Set Support
	Chinese calendar, Supported Calendar Systems
	choose-completion, Completion Commands
	choosing a major mode, Choosing File Modes
	choosing a minor mode, Choosing File Modes
	ciphers, Other Amusements
	citing mail, Citing Mail
	class browser, C++, Tags Tables
	clean-buffer-list, Killing Buffers
	clear-rectangle, Rectangles
	click events, Rebinding Mouse Buttons
	client frame, emacsclient Options
	client-side fonts, Fonts
	clipboard, Using the Clipboard
	clipboard manager, Using the Clipboard
	clipboard-kill-region, Using the Clipboard
	clipboard-kill-ring-save, Using the Clipboard
	clipboard-yank, Using the Clipboard
	clone-indirect-buffer, Indirect Buffers
	clone-indirect-buffer-hook, Indirect Buffers
	clone-indirect-buffer-other-window, Indirect Buffers
	codepage, MS-DOS, International Support on MS-DOS
	coding, Specifying a File's Coding System
	coding systems, Coding Systems
	collision, Protection against Simultaneous Editing
	colon-double-space, Explicit Fill Commands
	color emulation on black-and-white printers, Variables for PostScript Hardcopy
	color name, Colors for Faces
	color of window, from command line, Window Color Options
	color scheme, Custom Themes
	Column Number mode, Optional Mode Line Features
	column-number-mode, Optional Mode Line Features
	columns (and rectangles), Rectangles
	columns (indentation), Indentation
	columns, splitting, Two-Column Editing
	Comint mode, Shell Mode
	comint-bol-or-process-mark, Shell Mode
	comint-completion-addsuffix, Shell Mode Options
	comint-completion-autolist, Shell Mode Options
	comint-completion-fignore, Shell Mode
	comint-completion-recexact, Shell Mode Options
	comint-continue-subjob, Shell Mode
	comint-copy-old-input, Shell History Copying
	comint-delchar-or-maybe-eof, Shell Mode
	comint-delete-output, Shell Mode
	comint-dynamic-list-filename…, Shell Mode
	comint-dynamic-list-input-ring, Shell History Ring
	comint-get-next-from-history, Shell History Ring
	comint-highlight-input face, Interactive Subshell
	comint-highlight-prompt face, Interactive Subshell
	comint-history-isearch-backward-regexp, Shell History Ring
	comint-input-autoexpand, Shell History References
	comint-input-ignoredups, Shell Mode Options
	comint-input-previous-argument, Shell History Ring
	comint-interrupt-subjob, Shell Mode
	comint-kill-input, Shell Mode
	comint-magic-space, Shell History References
	comint-move-point-for-output, Shell Mode Options
	comint-next-input, Shell History Ring
	comint-next-prompt, Shell History Copying
	comint-previous-input, Shell History Ring
	comint-previous-prompt, Shell History Copying
	comint-prompt-read-only, Shell Mode Options
	comint-quit-subjob, Shell Mode
	comint-run, Shell Mode
	comint-scroll-show-maximum-output, Shell Mode Options
	comint-scroll-to-bottom-on-input, Shell Mode Options
	comint-send-input, Shell Mode
	comint-show-maximum-output, Shell Mode
	comint-show-output, Shell Mode
	comint-stop-subjob, Shell Mode
	comint-strip-ctrl-m, Shell Mode
	comint-truncate-buffer, Shell Mode
	comint-use-prompt-regexp, Shell Prompts
	comint-write-output, Shell Mode
	command, Keys and Commands
	command history, Repeating Minibuffer Commands
	command line arguments, Command Line Arguments for Emacs Invocation
	command-history, Repeating Minibuffer Commands
	command-line-args, Command Line Arguments for Emacs Invocation
	comment-column, Options Controlling Comments
	comment-dwim, Comment Commands
	comment-end, Options Controlling Comments
	comment-indent-function, Options Controlling Comments
	comment-indent-new-line, Multiple Lines of Comments
	comment-kill, Comment Commands
	comment-multi-line, Multiple Lines of Comments
	comment-padding, Options Controlling Comments
	comment-region, Comment Commands
	comment-set-column, Options Controlling Comments
	comment-start, Options Controlling Comments
	comment-start-skip, Options Controlling Comments
	comments, Manipulating Comments
	comments on customized settings, Changing a Variable
	Common Lisp, Running an External Lisp
	compare files (in Dired), File Comparison with Dired
	compare-ignore-case, Comparing Files
	compare-ignore-whitespace, Comparing Files
	compare-windows, Comparing Files
	comparing 3 files (diff3), Comparing Files
	comparing files, Comparing Files
	compilation buffer, keeping point at end, Running Compilations under Emacs
	compilation errors, Running Compilations under Emacs
	Compilation mode, Compilation Mode
	compilation under MS-DOS, Subprocesses on MS-DOS
	compilation-auto-jump-to-first-error, Compilation Mode
	compilation-context-lines, Compilation Mode
	compilation-environment, Running Compilations under Emacs
	compilation-error-regexp-alist, Compilation Mode
	compilation-next-error, Compilation Mode
	compilation-next-file, Compilation Mode
	compilation-previous-error, Compilation Mode
	compilation-previous-file, Compilation Mode
	compilation-scroll-output, Running Compilations under Emacs
	compilation-skip-threshold, Compilation Mode
	compile, Running Compilations under Emacs
	compile (MS-DOS), Subprocesses on MS-DOS
	compile-command, Running Compilations under Emacs
	compile-goto-error, Compilation Mode
	complete key, Keys
	completion, Completion
	completion (Lisp symbols), Completion for Symbol Names
	completion (symbol names), Completion for Symbol Names, Tags Table Inquiries
	completion alternative, Completion
	completion list, Completion Commands
	completion style, How Completion Alternatives Are Chosen
	completion-at-point, Completion for Symbol Names, Shell Mode
	completion-auto-help, Completion Options
	completion-category-overrides, How Completion Alternatives Are Chosen
	completion-cycle-threshold, Completion Options
	completion-ignored-extensions, Completion Options
	completion-styles, How Completion Alternatives Are Chosen
	compose character, Unibyte Editing Mode
	compose-mail, Sending Mail
	compose-mail-other-frame, Sending Mail
	compose-mail-other-window, Sending Mail
	compressing files (in Dired), Operating on Files
	compression, Accessing Compressed Files
	Conf mode, Major Modes for Programming Languages
	confirm-kill-emacs, Exiting Emacs
	confirm-nonexistent-file-or-buffer, Completion Exit
	confirming in the minibuffer, Completion Exit
	conflicts, Merging Branches
	connecting to remote host, Remote Host Shell
	continuation line, Continuation Lines
	contributing to Emacs, Contributing to Emacs Development
	Control, Kinds of User Input
	control character, Kinds of User Input
	control characters on display, How Text Is Displayed
	converting text to upper or lower case, Case Conversion Commands
	Coptic calendar, Supported Calendar Systems
	copy, “Cut and Paste” Operations on Graphical Displays
	copy-dir-locals-to-file-locals, Specifying File Variables
	copy-dir-locals-to-file-locals-prop-line, Specifying File Variables
	copy-directory, Miscellaneous File Operations
	copy-file, Miscellaneous File Operations
	copy-file-locals-to-dir-locals, Per-Directory Local Variables
	copy-rectangle-to-register, Saving Rectangles in Registers
	copy-to-buffer, Accumulating Text
	copy-to-register, Saving Text in Registers
	copying files, Miscellaneous File Operations
	copying files (in Dired), Operating on Files
	copying text, Yanking
	CORBA IDL mode, C and Related Modes
	correcting spelling, Checking and Correcting Spelling
	count-lines-page, Pages
	count-text-lines, Nroff Mode
	count-words, Cursor Position Information
	count-words-region, Cursor Position Information
	CPerl mode, Major Modes for Programming Languages
	cpp-highlight-buffer, Other Commands for C Mode
	crashes, Auto-Saving: Protection Against Disasters
	create a text-based table, Creating a Table
	create-fontset-from-fontset-spec, Defining fontsets
	creating files, Visiting Files
	creating frames, Creating Frames
	CRiSP mode, Emulation
	crisp-mode, Emulation
	crisp-override-meta-x, Emulation
	cryptanalysis, Other Amusements
	CSSC, Supported Version Control Systems
	ctl-arrow, How Text Is Displayed
	ctl-x-4-map, Prefix Keymaps
	ctl-x-map, Prefix Keymaps
	CUA key bindings, CUA Bindings
	cua-enable-cua-keys, CUA Bindings
	cua-mode, CUA Bindings
	current buffer, Using Multiple Buffers
	current function name in mode line, Which Function Mode
	current-input-method, Selecting an Input Method
	current-language-environment, Language Environments
	cursor, Point
	cursor color, command-line argument, Window Color Options
	cursor face, Text Faces, Displaying the Cursor
	cursor in non-selected windows, Displaying the Cursor
	cursor location, Cursor Position Information
	cursor location, on MS-DOS, Text Files and Binary Files
	cursor motion, Changing the Location of Point
	cursor shape on MS-DOS, Display on MS-DOS
	cursor, blinking, Displaying the Cursor
	cursor-in-non-selected-windows, Displaying the Cursor
	cursor-type, Displaying the Cursor
	custom themes, Custom Themes
	custom themes, creating, Creating Custom Themes
	custom-buffer-done-kill, Changing a Variable
	custom-enabled-themes, Custom Themes
	custom-file, Saving Customizations
	custom-safe-themes, Custom Themes
	Custom-save, Changing a Variable
	custom-search-field, Browsing and Searching for Settings
	Custom-set, Changing a Variable
	custom-theme-directory, Custom Themes, Creating Custom Themes
	custom-theme-load-path, Custom Themes
	customizable variable, Easy Customization Interface
	customization, Customization
	customization buffer, Easy Customization Interface
	customization groups, Customization Groups
	customization of menu face, Standard Faces
	customize, Easy Customization Interface
	customize-apropos, Customizing Specific Items
	customize-browse, Browsing and Searching for Settings
	customize-changed, Customizing Specific Items
	customize-create-theme, Creating Custom Themes
	customize-face, Customizing Specific Items
	customize-group, Customizing Specific Items
	customize-option, Customizing Specific Items
	customize-saved, Customizing Specific Items
	customize-themes, Custom Themes
	customize-unsaved, Customizing Specific Items
	customizing faces, Customizing Faces
	customizing Lisp indentation, Customizing Lisp Indentation
	customizing variables, Changing a Variable
	cut, “Cut and Paste” Operations on Graphical Displays
	cut and paste, Glossary
	cutting text, Deletion and Killing
	CVS, Supported Version Control Systems
	cvs, VC Directory Mode
	CVS directory mode, VC Directory Mode
	CWarn mode, Other Commands for C Mode
	cwarn-mode, Other Commands for C Mode
	Cyrillic, International Character Set Support
	Czech, International Character Set Support

D
	d (Calendar mode), Displaying the Diary
	d (Dired), Deleting Files with Dired
	D (Dired), Operating on Files
	D (GDB Breakpoints buffer), Breakpoints Buffer
	D (GDB speedbar), Watch Expressions
	d (GDB threads buffer), Threads Buffer
	d (Rmail), Deleting Messages
	dabbrev-abbrev-char-regexp, Customizing Dynamic Abbreviation
	dabbrev-abbrev-skip-leading-regexp, Customizing Dynamic Abbreviation
	dabbrev-case-fold-search, Customizing Dynamic Abbreviation
	dabbrev-case-replace, Customizing Dynamic Abbreviation
	dabbrev-check-all-buffers, Dynamic Abbrev Expansion
	dabbrev-completion, Dynamic Abbrev Expansion
	dabbrev-expand, Dynamic Abbrev Expansion
	dabbrev-ignored-buffer-regexps, Dynamic Abbrev Expansion
	dabbrev-limit, Dynamic Abbrev Expansion
	daemon, Emacs, Using Emacs as a Server
	day of year, Miscellaneous Calendar Commands
	daylight saving time, Daylight Saving Time
	DBX, Running Debuggers Under Emacs
	dbx, Starting GUD
	dbx-mode-hook, GUD Customization
	dead character, Unibyte Editing Mode
	debbugs package, Reading Existing Bug Reports and Known Problems
	debug-on-event, Checklist for Bug Reports
	debug-on-quit, Checklist for Bug Reports
	debuggers, Running Debuggers Under Emacs
	debugging Emacs, tricks and techniques, Checklist for Bug Reports
	debugging X problems, Table of X Resources for Emacs
	debug_print, Checklist for Bug Reports
	decentralized version control, Decentralized vs Centralized Repositories
	decipher, Other Amusements
	decoding mail messages (Rmail), Rmail and Coding Systems
	decoding non-ASCII keyboard input on X, Coding Systems for Interprocess Communication
	decrease buffer face height, Text Scale
	decrypting files (in Dired), Operating on Files
	default argument, The Minibuffer
	default directory, Minibuffers for File Names, File Names
	default face, Text Faces
	default file name, File Names
	default-directory, File Names
	default-frame-alist, Frame Parameters
	default-input-method, Selecting an Input Method
	default-justification, Justification in Enriched Text
	default-value, Local Variables
	default.el file, not loading, Initial Options
	default.el, the default init file, The Emacs Initialization File
	define-abbrevs, Saving Abbrevs
	define-global-abbrev, Defining Abbrevs
	define-key, Rebinding Keys in Your Init File
	define-mode-abbrev, Defining Abbrevs
	defining keyboard macros, Keyboard Macros
	defuns, Moving by Defuns
	DEL (and major modes), Major Modes
	DEL (Dired), Deleting Files with Dired
	DEL (DocView mode), DocView Navigation
	DEL (Gnus Group mode), Using the Gnus Group Buffer
	DEL (Gnus Summary mode), Using the Gnus Summary Buffer
	DEL (MS-DOS), Keyboard Usage on MS-DOS
	DEL (programming modes), Major Modes for Programming Languages
	DEL (Rmail), Scrolling Within a Message
	DEL (View mode), View Mode
	DEL vs BACKSPACE, If DEL Fails to Delete
	Delete Selection mode, Operating on the Region
	delete-active-region, Operating on the Region
	delete-auto-save-files, Auto-Save Files
	delete-backward-char, Deletion
	delete-blank-lines, Blank Lines
	delete-by-moving-to-trash, Miscellaneous File Operations, Deleting Files with Dired
	delete-char, Deletion
	delete-dir-local-variable, Per-Directory Local Variables
	delete-file, Miscellaneous File Operations
	delete-file-local-variable, Specifying File Variables
	delete-file-local-variable-prop-line, Specifying File Variables
	delete-frame, Frame Commands
	delete-horizontal-space, Deletion
	delete-indentation, Indentation Commands
	delete-old-versions, Automatic Deletion of Backups
	delete-other-frames, Frame Commands
	delete-other-windows, Deleting and Rearranging Windows
	delete-rectangle, Rectangles
	delete-selection-mode, Operating on the Region
	delete-trailing-whitespace, Useless Whitespace
	delete-whitespace-rectangle, Rectangles
	delete-window, Deleting and Rearranging Windows
	deleting auto-save files, Flagging Many Files at Once
	deleting blank lines, Blank Lines
	deleting characters and lines, Erasing Text
	deleting files (in Dired), Deleting Files with Dired
	deleting rows and column in text-based tables, Table Rows and Columns
	deleting some backup files, Flagging Many Files at Once
	deletion, Deletion and Killing
	deletion (of files), Miscellaneous File Operations
	deletion (Rmail), Deleting Messages
	Delphi mode, Major Modes for Programming Languages
	describe-bindings, Other Help Commands
	describe-categories, Backslash in Regular Expressions
	describe-character-set, Charsets
	describe-coding-system, Coding Systems
	describe-copying, Help Files
	describe-distribution, Help Files
	describe-function, Help by Command or Variable Name
	describe-gnu-project, Help Files
	describe-input-method, Selecting an Input Method
	describe-key, Documentation for a Key
	describe-key-briefly, Documentation for a Key
	describe-language-environment, Language Environments
	describe-mode, Other Help Commands, Major Modes
	describe-no-warranty, Help Files
	describe-package, Keyword Search for Packages, Emacs Lisp Packages
	describe-prefix-bindings, Other Help Commands
	describe-text-properties, Editing Format Information
	describe-theme, Custom Themes
	describe-variable, Help by Command or Variable Name
	desktop, Saving Emacs Sessions
	desktop shortcut, MS-Windows, How to Start Emacs on MS-Windows
	desktop-change-dir, Saving Emacs Sessions
	desktop-clear, Saving Emacs Sessions
	desktop-clear-preserve-buffers-regexp, Saving Emacs Sessions
	desktop-globals-to-clear, Saving Emacs Sessions
	desktop-path, Saving Emacs Sessions
	desktop-restore-eager, Saving Emacs Sessions
	desktop-revert, Saving Emacs Sessions
	desktop-save, Saving Emacs Sessions
	desktop-save-mode, Saving Emacs Sessions
	Devanagari, International Character Set Support
	device for Emacs terminal I/O, Initial Options
	dialog boxes, Using Dialog Boxes
	Dialog X Resources (Lucid widgets), Lucid Menu And Dialog X Resources
	diary, The Diary, Displaying the Diary
	diary buffer, Diary Display
	diary file, The Diary File
	diary-anniversary, Special Diary Entries, Sexp Entries and the Fancy Diary Display
	diary-astro-day-number, Sexp Entries and the Fancy Diary Display
	diary-bahai-date, Sexp Entries and the Fancy Diary Display
	diary-bahai-entry-symbol, Diary Entries Using non-Gregorian Calendars
	diary-bahai-insert-entry, Diary Entries Using non-Gregorian Calendars
	diary-bahai-insert-monthly-entry, Diary Entries Using non-Gregorian Calendars
	diary-bahai-insert-yearly-entry, Diary Entries Using non-Gregorian Calendars
	diary-bahai-list-entries, Diary Entries Using non-Gregorian Calendars
	diary-bahai-mark-entries, Diary Entries Using non-Gregorian Calendars
	diary-block, Special Diary Entries
	diary-chinese-date, Sexp Entries and the Fancy Diary Display
	diary-comment-start, Fancy Diary Display
	diary-coptic-date, Sexp Entries and the Fancy Diary Display
	diary-cyclic, Special Diary Entries, Sexp Entries and the Fancy Diary Display
	diary-date, Sexp Entries and the Fancy Diary Display
	diary-date-forms, Customizing the Diary
	diary-day-of-year, Sexp Entries and the Fancy Diary Display
	diary-display-function, Diary Display
	diary-entry-marker, Customizing the Calendar
	diary-ethiopic-date, Sexp Entries and the Fancy Diary Display
	diary-fancy-display, Diary Display
	diary-file, The Diary File
	diary-float, Special Diary Entries, Sexp Entries and the Fancy Diary Display
	diary-french-date, Sexp Entries and the Fancy Diary Display
	diary-hebrew-birthday, Sexp Entries and the Fancy Diary Display
	diary-hebrew-date, Sexp Entries and the Fancy Diary Display
	diary-hebrew-entry-symbol, Diary Entries Using non-Gregorian Calendars
	diary-hebrew-insert-entry, Diary Entries Using non-Gregorian Calendars
	diary-hebrew-insert-monthly-entry, Diary Entries Using non-Gregorian Calendars
	diary-hebrew-insert-yearly-entry, Diary Entries Using non-Gregorian Calendars
	diary-hebrew-list-entries, Diary Entries Using non-Gregorian Calendars
	diary-hebrew-mark-entries, Diary Entries Using non-Gregorian Calendars
	diary-hebrew-omer, Sexp Entries and the Fancy Diary Display
	diary-hebrew-parasha, Sexp Entries and the Fancy Diary Display
	diary-hebrew-rosh-hodesh, Sexp Entries and the Fancy Diary Display
	diary-hebrew-sabbath-candles, Sexp Entries and the Fancy Diary Display
	diary-hebrew-yahrzeit, Sexp Entries and the Fancy Diary Display
	diary-include-other-diary-files, Fancy Diary Display
	diary-include-string, Fancy Diary Display
	diary-insert-anniversary-entry, Special Diary Entries
	diary-insert-block-entry, Special Diary Entries
	diary-insert-cyclic-entry, Special Diary Entries
	diary-insert-entry, Commands to Add to the Diary
	diary-insert-monthly-entry, Commands to Add to the Diary
	diary-insert-weekly-entry, Commands to Add to the Diary
	diary-insert-yearly-entry, Commands to Add to the Diary
	diary-islamic-date, Sexp Entries and the Fancy Diary Display
	diary-islamic-entry-symbol, Diary Entries Using non-Gregorian Calendars
	diary-islamic-insert-entry, Diary Entries Using non-Gregorian Calendars
	diary-islamic-insert-monthly-entry, Diary Entries Using non-Gregorian Calendars
	diary-islamic-insert-yearly-entry, Diary Entries Using non-Gregorian Calendars
	diary-islamic-list-entries, Diary Entries Using non-Gregorian Calendars
	diary-islamic-mark-entries, Diary Entries Using non-Gregorian Calendars
	diary-iso-date, Sexp Entries and the Fancy Diary Display
	diary-julian-date, Sexp Entries and the Fancy Diary Display
	diary-list-entries-hook, Fancy Diary Display
	diary-list-include-blanks, Diary Display
	diary-lunar-phases, Sexp Entries and the Fancy Diary Display
	diary-mail-days, Displaying the Diary
	diary-mail-entries, Displaying the Diary
	diary-mark-entries, Displaying the Diary
	diary-mark-entries-hook, Fancy Diary Display
	diary-mark-included-diary-files, Fancy Diary Display
	diary-mayan-date, Sexp Entries and the Fancy Diary Display
	diary-nongregorian-listing-hook, Diary Entries Using non-Gregorian Calendars
	diary-nongregorian-marking-hook, Diary Entries Using non-Gregorian Calendars
	diary-nonmarking-symbol, The Diary File
	diary-number-of-entries, Customizing the Diary
	diary-outlook-formats, Importing and Exporting Diary Entries
	diary-persian-date, Sexp Entries and the Fancy Diary Display
	diary-print-entries, Diary Display
	diary-print-entries-hook, Diary Display
	diary-remind, Sexp Entries and the Fancy Diary Display
	diary-sexp-entry-symbol, Sexp Entries and the Fancy Diary Display
	diary-show-all-entries, Displaying the Diary
	diary-show-holidays-flag, Customizing the Diary
	diary-simple-display, Diary Display
	diary-sort-entries, Fancy Diary Display
	diary-sunrise-sunset, Sexp Entries and the Fancy Diary Display
	diary-view-entries, Displaying the Diary
	diff, Comparing Files
	Diff Auto-Refine mode, Diff Mode
	Diff mode, Diff Mode
	diff-add-change-log-entries-other-window, Diff Mode
	diff-apply-hunk, Diff Mode
	diff-auto-refine-mode, Diff Mode
	diff-backup, Comparing Files
	diff-buffer-with-file, Comparing Files
	diff-context->unified, Diff Mode
	diff-ediff-patch, Diff Mode
	diff-file-kill, Diff Mode
	diff-file-next, Diff Mode
	diff-file-prev, Diff Mode
	diff-goto-source, Diff Mode
	diff-hunk-kill, Diff Mode
	diff-hunk-next, Diff Mode
	diff-hunk-prev, Diff Mode
	diff-mode, Diff Mode
	diff-refine-hunk, Diff Mode
	diff-restrict-view, Diff Mode
	diff-reverse-direction, Diff Mode
	diff-split-hunk, Diff Mode
	diff-switches, Comparing Files
	diff-unified->context, Diff Mode
	diff-update-on-the-fly, Diff Mode
	digest message, Digest Messages
	digit-argument, Numeric Arguments
	dir-locals-set-class-variables, Per-Directory Local Variables
	dir-locals-set-directory-class, Per-Directory Local Variables
	directional window selection, Convenience Features for Window Handling
	directories in buffer names, Making Buffer Names Unique
	directory header lines, Moving Over Subdirectories
	directory listing, File Directories
	directory listing on MS-DOS, Subprocesses on MS-DOS
	directory name abbreviation, File Name Aliases
	directory tracking, Directory Tracking
	directory where Emacs starts on MS-Windows, How to Start Emacs on MS-Windows
	directory-abbrev-alist, File Name Aliases
	directory-free-space-args, File Directories
	directory-free-space-program, File Directories
	directory-local variables, Per-Directory Local Variables
	Dired, Dired, the Directory Editor
	dired, Entering Dired
	Dired and version control, Other Dired Features
	Dired sorting, Updating the Dired Buffer
	Dired, and MS-Windows/MS-DOS, Emulation of ls on MS-Windows
	dired-at-point, Finding Files and URLs at Point
	dired-auto-revert-buffer, Updating the Dired Buffer
	dired-backup-diff, File Comparison with Dired
	dired-change-marks, Dired Marks vs. Flags
	dired-chown-program, Operating on Files
	dired-clean-directory, Flagging Many Files at Once
	dired-compare-directories, Other Dired Features
	dired-copy-filename-as-kill, Other Dired Features
	dired-copy-preserve-time, Operating on Files
	dired-create-directory, Other Dired Features
	dired-diff, File Comparison with Dired
	dired-display-file, Visiting Files in Dired
	dired-do-byte-compile, Operating on Files
	dired-do-chgrp, Operating on Files
	dired-do-chmod, Operating on Files
	dired-do-chown, Operating on Files
	dired-do-compress, Operating on Files
	dired-do-copy, Operating on Files
	dired-do-copy-regexp, Transforming File Names in Dired
	dired-do-delete, Operating on Files
	dired-do-flagged-delete, Deleting Files with Dired
	dired-do-hardlink, Operating on Files
	dired-do-hardlink-regexp, Transforming File Names in Dired
	dired-do-isearch, Other Dired Features
	dired-do-isearch-regexp, Other Dired Features
	dired-do-kill-lines, Updating the Dired Buffer
	dired-do-load, Operating on Files
	dired-do-print, Operating on Files
	dired-do-query-replace-regexp, Operating on Files
	dired-do-redisplay, Updating the Dired Buffer
	dired-do-rename, Operating on Files
	dired-do-rename-regexp, Transforming File Names in Dired
	dired-do-search, Operating on Files
	dired-do-shell-command, Shell Commands in Dired
	dired-do-symlink, Operating on Files
	dired-do-symlink-regexp, Transforming File Names in Dired
	dired-do-touch, Operating on Files
	dired-downcase, Transforming File Names in Dired
	dired-dwim-target, Operating on Files
	dired-find-file, Visiting Files in Dired
	dired-find-file-other-window, Visiting Files in Dired
	dired-flag-auto-save-files, Flagging Many Files at Once
	dired-flag-backup-files, Flagging Many Files at Once
	dired-flag-file-deletion, Deleting Files with Dired
	dired-flag-files-regexp, Flagging Many Files at Once
	dired-flag-garbage-files, Flagging Many Files at Once
	dired-garbage-files-regexp, Flagging Many Files at Once
	dired-goto-file, Navigation in the Dired Buffer
	dired-hide-all, Hiding Subdirectories
	dired-hide-subdir, Hiding Subdirectories
	dired-isearch-filenames, Navigation in the Dired Buffer
	dired-isearch-filenames-regexp, Navigation in the Dired Buffer
	dired-kept-versions, Flagging Many Files at Once
	dired-listing-switches, Entering Dired
	dired-listing-switches (MS-DOS), Subprocesses on MS-DOS
	dired-mark, Dired Marks vs. Flags
	dired-mark-directories, Dired Marks vs. Flags
	dired-mark-executables, Dired Marks vs. Flags
	dired-mark-files-containing-regexp, Dired Marks vs. Flags
	dired-mark-files-regexp, Dired Marks vs. Flags
	dired-mark-subdir-files, Dired Marks vs. Flags
	dired-mark-symlinks, Dired Marks vs. Flags
	dired-maybe-insert-subdir, Subdirectories in Dired
	dired-mouse-find-file-other-window, Visiting Files in Dired
	dired-next-dirline, Moving Over Subdirectories
	dired-next-marked-file, Dired Marks vs. Flags
	dired-next-subdir, Moving Over Subdirectories
	dired-other-frame, Entering Dired
	dired-other-window, Displaying in Another Window, Entering Dired
	dired-prev-dirline, Moving Over Subdirectories
	dired-prev-marked-file, Dired Marks vs. Flags
	dired-prev-subdir, Moving Over Subdirectories
	dired-recursive-copies, Operating on Files
	dired-recursive-deletes, Deleting Files with Dired
	dired-sort-toggle-or-edit, Updating the Dired Buffer
	dired-toggle-marks, Dired Marks vs. Flags
	dired-tree-down, Moving Over Subdirectories
	dired-tree-up, Moving Over Subdirectories
	dired-undo, Dired Marks vs. Flags
	dired-unmark, Dired Marks vs. Flags
	dired-unmark-all-files, Dired Marks vs. Flags
	dired-unmark-all-marks, Dired Marks vs. Flags
	dired-unmark-backward, Dired Marks vs. Flags
	dired-up-directory, Visiting Files in Dired
	dired-upcase, Transforming File Names in Dired
	dired-use-ls-dired, Entering Dired
	dired-view-file, Visiting Files in Dired
	dirs, Directory Tracking
	Dirtrack mode, Directory Tracking
	dirtrack-list, Directory Tracking
	dirtrack-mode, Directory Tracking
	disable window system, Initial Options
	disable-command, Disabling Commands
	disable-theme, Custom Themes
	disabled command, Disabling Commands
	disabling remote files, Remote Files
	DISPLAY environment variable, Specifying the Display Name
	display for Emacs frame, Initial Options
	display name (X Window System), Specifying the Display Name
	display of buffer size, Optional Mode Line Features
	display of line number, Optional Mode Line Features
	display-battery-mode, Optional Mode Line Features
	display-buffer, Displaying in Another Window, Displaying a Buffer in a Window, How display-buffer works
	display-buffer-reuse-frames, How display-buffer works
	display-hourglass, Customization of Display
	display-local-help, Help on Active Text and Tooltips
	display-time, Optional Mode Line Features
	display-time-24hr-format, Optional Mode Line Features
	display-time-mail-directory, Optional Mode Line Features
	display-time-mail-face, Optional Mode Line Features
	display-time-mail-file, Optional Mode Line Features
	display-time-use-mail-icon, Optional Mode Line Features
	dissociated-press, Other Amusements
	distributed version control, Decentralized vs Centralized Repositories
	dnd-open-file-other-window, Drag and Drop
	DNS mode, Major Modes for Programming Languages
	do-auto-save, Controlling Auto-Saving
	doc-view-cache-directory, DocView Conversion
	doc-view-clear-cache, DocView Conversion
	doc-view-continuous, DocView Navigation
	doc-view-enlarge, DocView Navigation
	doc-view-first-page, DocView Navigation
	doc-view-goto-page, DocView Navigation
	doc-view-kill-proc, DocView Conversion
	doc-view-kill-proc-and-buffer, DocView Conversion
	doc-view-last-page, DocView Navigation
	doc-view-minor-mode, Document Viewing
	doc-view-mode, Document Viewing
	doc-view-next-page, DocView Navigation
	doc-view-previous-page, DocView Navigation
	doc-view-reset-slice, DocView Slicing
	doc-view-resolution, DocView Navigation
	doc-view-scroll-down-or-previous-page, DocView Navigation
	doc-view-scroll-up-or-next-page, DocView Navigation
	doc-view-search, DocView Searching
	doc-view-search-backward, DocView Searching
	doc-view-set-slice, DocView Slicing
	doc-view-set-slice-using-mouse, DocView Slicing
	doc-view-show-tooltip, DocView Searching
	doc-view-shrink, DocView Navigation
	doc-view-toggle-display, Document Viewing
	DocTeX mode, TeX Mode
	doctex-mode, TeX Mode
	doctor, Other Amusements
	document viewer (DocView), Document Viewing
	documentation string, Documentation for a Key
	DocView mode, Document Viewing
	DOS applications, running from Emacs, Subprocesses on Windows 9X/ME and Windows NT/2K/XP
	DOS codepages, International Support on MS-DOS
	dos-codepage, International Support on MS-DOS
	dos-display-scancodes, Mouse Usage on MS-DOS
	dos-hyper-key, Keyboard Usage on MS-DOS
	dos-keypad-mode, Keyboard Usage on MS-DOS
	dos-mode25, Display on MS-DOS
	dos-mode4350, Display on MS-DOS
	dos-printer, Printing and MS-DOS
	dos-ps-printer, Printing and MS-DOS
	DOS-style end-of-line display, Recognizing Coding Systems
	dos-super-key, Keyboard Usage on MS-DOS
	DOS-to-Unix conversion of files, Text Files and Binary Files
	double clicks, Rebinding Mouse Buttons
	double slash in file name, Minibuffers for File Names
	double-click-fuzz, Rebinding Mouse Buttons
	double-click-time, Rebinding Mouse Buttons
	DOWN, Changing the Location of Point
	DOWN (minibuffer history), Minibuffer History
	down events, Rebinding Mouse Buttons
	down-list, Moving in the Parenthesis Structure
	downcase file names, Transforming File Names in Dired
	downcase-region, Case Conversion Commands
	downcase-word, Case Conversion Commands
	drag and drop, Drag and Drop
	drag and drop, Dired, Other Dired Features
	drag events, Rebinding Mouse Buttons
	drastic changes, Reverting a Buffer
	dribble file, Checklist for Bug Reports
	DSSSL mode, Major Modes for Programming Languages
	dunnet, Other Amusements
	Dutch, International Character Set Support
	DVI file, Document Viewing

E
	e (Dired), Visiting Files in Dired
	e (Rmail), Editing Within a Message
	e (View mode), View Mode
	Ebrowse, Tags Tables
	echo area, The Echo Area
	echo area message, The Echo Area
	echo-keystrokes, Customization of Display
	echoing, The Echo Area
	EDE (Emacs Development Environment), Emacs Development Environment
	Edebug, Checklist for Bug Reports
	edit-abbrevs, Examining and Editing Abbrevs
	edit-kbd-macro, Editing a Keyboard Macro
	edit-tab-stops, Tab Stops
	editable fields (customization buffer), Customization Groups
	editing binary files, Editing Binary Files
	editing in Picture mode, Basic Editing in Picture Mode
	editing level, recursive, Recursive Editing Levels
	EDITOR environment variable, Using Emacs as a Server
	EDT, Emulation
	edt-emulation-off, Emulation
	edt-emulation-on, Emulation
	Eldoc mode, Emacs Lisp Documentation Lookup
	eldoc-mode, Emacs Lisp Documentation Lookup
	Electric Indent mode, Convenience Features for Indentation
	Electric Pair mode, Matching Parentheses
	electric-indent-mode, Convenience Features for Indentation
	electric-layout-mode, Other Features Useful for Editing Programs
	electric-nroff-mode, Nroff Mode
	electric-pair-mode, Matching Parentheses
	Eliza, Other Amusements
	Emacs as a server, Using Emacs as a Server
	Emacs Development Environment, Emacs Development Environment
	EMACS environment variable, Interactive Subshell
	Emacs icon, a gnu, Icons
	Emacs initialization file, The Emacs Initialization File
	Emacs Lisp mode, Evaluating Emacs Lisp Expressions
	Emacs Lisp package, Emacs Lisp Packages
	Emacs Lisp package archive, Emacs Lisp Packages
	emacs-internal, coding system, Coding Systems
	emacs-lisp-mode, Evaluating Emacs Lisp Expressions
	emacs-lisp-mode-hook, Major Modes for Programming Languages
	emacs-version, Understanding Bug Reporting
	emacsclient, Using Emacs as a Server
	emacsclient invocation, Invoking emacsclient
	emacsclient options, emacsclient Options
	emacsclient, on MS-Windows, How to Start Emacs on MS-Windows
	emacsclient.exe, How to Start Emacs on MS-Windows
	emacsclientw.exe, How to Start Emacs on MS-Windows
	EMACS_SERVER_FILE environment variable, emacsclient Options
	email, Sending Mail
	Emerge, Merging Files with Emerge
	emerge-auto-advance, Submodes of Emerge
	emerge-buffers, Overview of Emerge
	emerge-buffers-with-ancestor, Overview of Emerge
	emerge-combine-versions-template, Combining the Two Versions
	emerge-files, Overview of Emerge
	emerge-files-with-ancestor, Overview of Emerge
	emerge-skip-prefers, Submodes of Emerge
	emerge-startup-hook, Fine Points of Emerge
	emulating other editors, Emulation
	emulation of Brief, Emulation
	enable-command, Disabling Commands
	enable-local-eval, Safety of File Variables
	enable-local-variables, Safety of File Variables
	enable-multibyte-characters, Disabling Multibyte Characters
	enable-recursive-minibuffers, Editing in the Minibuffer
	enable-theme, Custom Themes
	encoding of characters, International Character Set Support
	encrypted mails (reading in Rmail), Display of Messages
	encrypting files (in Dired), Operating on Files
	END, Changing the Location of Point
	end-of-buffer, Changing the Location of Point
	end-of-defun, Moving by Defuns
	end-of-line convention, mode-line indication, The Mode Line
	end-of-line conversion, Coding Systems
	end-of-line conversion on MS-DOS/MS-Windows, Text Files and Binary Files
	end-of-visual-line, Visual Line Mode
	enlarge-window, Deleting and Rearranging Windows
	enlarge-window-horizontally, Deleting and Rearranging Windows
	Enriched mode, Enriched Text
	enriched text, Enriched Text
	enriched-mode, Enriched Mode
	enriched-translations, Enriched Mode
	entering Emacs, Entering Emacs
	environment variables, Environment Variables
	environment variables for subshells, Interactive Subshell
	environment variables in file names, File Names
	eol-mnemonic-dos, Optional Mode Line Features
	eol-mnemonic-mac, Optional Mode Line Features
	eol-mnemonic-undecided, Optional Mode Line Features
	eol-mnemonic-unix, Optional Mode Line Features
	epa-dired-do-decrypt, Operating on Files
	epa-dired-do-encrypt, Operating on Files
	epa-dired-do-sign, Operating on Files
	epa-dired-do-verify, Operating on Files
	erasing characters and lines, Erasing Text
	error log, Running Compilations under Emacs
	error message, The Echo Area
	errors in init file, Initial Options
	ESC ESC ESC, Quitting and Aborting
	ESC replacing Meta key, Kinds of User Input
	esc-map, Prefix Keymaps
	escape sequences in files, Recognizing Coding Systems
	ESHELL environment variable, Interactive Subshell
	etags, Tags Tables
	etags program, Creating Tags Tables
	Ethiopic, International Character Set Support
	Ethiopic calendar, Supported Calendar Systems
	Euro sign, Language Environments
	European character sets, Unibyte Editing Mode
	eval-buffer, Evaluating Emacs Lisp Expressions
	eval-defun, Evaluating Emacs Lisp Expressions
	eval-expression, Evaluating Emacs Lisp Expressions
	eval-expression-debug-on-error, Evaluating Emacs Lisp Expressions
	eval-expression-print-length, Evaluating Emacs Lisp Expressions
	eval-expression-print-level, Evaluating Emacs Lisp Expressions
	eval-last-sexp, Evaluating Emacs Lisp Expressions
	eval-print-last-sexp, Lisp Interaction Buffers
	eval-region, Evaluating Emacs Lisp Expressions
	evaluate expression, command-line argument, Action Arguments
	exchange-point-and-mark, Setting the Mark
	exec-path, Running Shell Commands from Emacs
	execute-extended-command, Running Commands by Name
	exit-calendar, Miscellaneous Calendar Commands
	exit-language-environment-hook, Language Environments
	exit-recursive-edit, Recursive Editing Levels
	exiting, Exiting Emacs
	exiting recursive edit, Recursive Editing Levels
	expand-abbrev, Controlling Abbrev Expansion
	expand-region-abbrevs, Controlling Abbrev Expansion
	expanding subdirectories in Dired, Subdirectories in Dired
	expansion (of abbrevs), Abbrevs
	expansion of C macros, Other Commands for C Mode
	expansion of environment variables, File Names
	explicit-shell-file-name, Interactive Subshell
	expression, Expressions with Balanced Parentheses
	expunging (Rmail), Deleting Messages

F
	f (Dired), Visiting Files in Dired
	f (GDB threads buffer), Threads Buffer
	f (Rmail), Sending Replies
	F1, Help
	F10, The Menu Bar
	F10 (MS-Windows), Keyboard Usage on MS-Windows
	F2 1, Two-Column Editing
	F2 2, Two-Column Editing
	F2 b, Two-Column Editing
	F2 d, Two-Column Editing
	F2 RET, Two-Column Editing
	F2 s, Two-Column Editing
	F3, Basic Use
	F4, Basic Use
	f90-beginning-of-block, Motion Commands
	f90-end-of-block, Motion Commands
	f90-mode, Fortran Mode
	f90-next-block, Motion Commands
	f90-next-statement, Motion Commands
	f90-previous-block, Motion Commands
	f90-previous-statement, Motion Commands
	face at point, Introduction to International Character Sets
	face colors, setting, Colors for Faces
	facemenu-remove-all, Editing Format Information
	facemenu-remove-face-props, Editing Format Information
	facemenu-set-background, Faces in Enriched Text
	facemenu-set-bold, Faces in Enriched Text
	facemenu-set-bold-italic, Faces in Enriched Text
	facemenu-set-default, Faces in Enriched Text
	facemenu-set-face, Faces in Enriched Text
	facemenu-set-foreground, Faces in Enriched Text
	facemenu-set-italic, Faces in Enriched Text
	facemenu-set-underline, Faces in Enriched Text
	faces, Text Faces
	faces for highlighting query replace, Query Replace
	faces for highlighting search matches, Basics of Incremental Search
	faces under MS-DOS, Display on MS-DOS
	faces, customizing, Customizing Faces
	failed merges, Comparing Files
	Feedmail, Mail Sending
	ff-find-related-file, Other Commands for C Mode
	ff-related-file-alist, Other Commands for C Mode
	ffap, Finding Files and URLs at Point
	FFAP minor mode, Finding Files and URLs at Point
	ffap-menu, Finding Files and URLs at Point
	ffap-mode, Finding Files and URLs at Point
	ffap-next, Finding Files and URLs at Point
	file archives, File Archives
	file comparison (in Dired), File Comparison with Dired
	file database (locate), Dired and find
	file dates, Protection against Simultaneous Editing
	file directory, File Directories
	file local variables, Local Variables in Files
	file management, Dired, the Directory Editor
	file modes, Miscellaneous File Operations
	file name caching, File Name Cache
	file names, File Names
	file names on MS-Windows, File Names on MS-Windows
	file names under MS-DOS, File Names on MS-DOS
	file names under Windows 95/NT, File Names on MS-DOS
	file names with non-ASCII characters, Coding Systems for File Names
	file names, quote special characters, Quoted File Names
	file ownership, and backup, Copying vs. Renaming
	file permissions, Miscellaneous File Operations
	file selection dialog, Visiting Files
	file selection dialog, how to disable, Using Dialog Boxes
	file shadows, Shadowing Files
	file truenames, File Name Aliases
	file version in change log entries, Change Log Commands
	file, warning when size is large, Visiting Files
	file-based version control, Changeset-based vs File-based Version Control
	file-cache-add-directory, File Name Cache
	file-cache-minibuffer-complete, File Name Cache
	file-coding-system-alist, Recognizing Coding Systems
	file-name completion, on MS-Windows, File Names on MS-Windows
	file-name-buffer-file-type-alist, Text Files and Binary Files
	file-name-coding-system, Coding Systems for File Names
	file-name-shadow-mode, Minibuffers for File Names
	files, File Handling
	files, visiting and saving, Visiting Files
	filesets, Filesets
	filesets, VC, Basic Editing under Version Control
	filesets-add-buffer, Filesets
	filesets-init, Filesets
	filesets-remove-buffer, Filesets
	fill prefix, The Fill Prefix
	fill-column, Explicit Fill Commands
	fill-individual-paragraphs, The Fill Prefix
	fill-nobreak-predicate, Explicit Fill Commands
	fill-nonuniform-paragraphs, The Fill Prefix
	fill-paragraph, Explicit Fill Commands
	fill-prefix, The Fill Prefix
	fill-region, Explicit Fill Commands
	fill-region-as-paragraph, Explicit Fill Commands
	filling text, Filling Text
	find, File Name Cache
	find and Dired, Dired and find
	find Info manual by its file name, Other Help Commands
	find-alternate-file, Visiting Files
	find-dired, Dired and find
	find-file, Visiting Files
	find-file-at-point, Finding Files and URLs at Point
	find-file-existing-other-name, File Name Aliases
	find-file-hook, Visiting Files
	find-file-literally, Visiting Files
	find-file-not-found-functions, Visiting Files
	find-file-other-frame, Visiting Files
	find-file-other-window, Visiting Files, Displaying in Another Window
	find-file-read-only, Visiting Files
	find-file-read-only-other-frame, Creating Frames
	find-file-run-dired, Visiting Files
	find-file-suppress-same-file-warnings, File Name Aliases
	find-file-visit-truename, File Name Aliases
	find-file-wildcards, Visiting Files
	find-grep, Searching with Grep under Emacs
	find-grep-dired, Dired and find
	find-ls-option, Dired and find
	find-name-dired, Dired and find
	find-tag, Finding a Tag
	find-tag-marker-ring-length, Finding a Tag
	find-tag-other-frame, Finding a Tag
	find-tag-other-window, Displaying in Another Window, Finding a Tag
	find-tag-regexp, Finding a Tag
	finder, Keyword Search for Packages
	finder-by-keyword, Keyword Search for Packages
	finding file at point, Finding Files and URLs at Point
	finding files containing regexp matches (in Dired), Dired Marks vs. Flags
	finding strings within text, Searching and Replacement
	firewall, and accessing remote files, Remote Files
	fixing incorrectly decoded mail messages, Rmail and Coding Systems
	flagging files (in Dired), Deleting Files with Dired
	flagging many files for deletion (in Dired), Flagging Many Files at Once
	flush-lines, Other Search-and-Loop Commands
	Flyspell mode, Checking and Correcting Spelling
	flyspell-mode, Checking and Correcting Spelling
	flyspell-prog-mode, Checking and Correcting Spelling
	focus-follows-mouse, Frame Commands
	folding editing, Folding Editing
	foldout-exit-fold, Folding Editing
	foldout-mouse-modifiers, Folding Editing
	foldout-zoom-subtree, Folding Editing
	Follow mode, Follow Mode
	follow-mode, Follow Mode
	font antialiasing (MS Windows), Specifying Fonts on MS-Windows
	font backend selection (MS-Windows), Specifying Fonts on MS-Windows
	font for menus, Table of X Resources for Emacs
	Font Lock mode, Font Lock mode
	font name (X Window System), Font Specification Options
	font of character at point, Introduction to International Character Sets
	font properties (MS Windows gdi backend), Specifying Fonts on MS-Windows
	font properties (MS Windows), Specifying Fonts on MS-Windows
	font scripts (MS Windows), Specifying Fonts on MS-Windows
	font specification (MS Windows), Specifying Fonts on MS-Windows
	font Unicode subranges (MS Windows), Specifying Fonts on MS-Windows
	font-lock-add-keywords, Font Lock mode
	font-lock-beginning-of-syntax-function, Font Lock mode
	font-lock-maximum-decoration, Font Lock mode
	font-lock-mode, Font Lock mode
	font-lock-remove-keywords, Font Lock mode
	font-slant-table (MS-Windows), Specifying Fonts on MS-Windows
	font-weight-table (MS-Windows), Specifying Fonts on MS-Windows
	fontconfig, Fonts
	fonts, Fonts
	fonts and faces, Customizing Faces
	fonts for PostScript printing, Variables for PostScript Hardcopy
	fonts for various scripts, Fontsets
	fonts, emulating under MS-DOS, Display on MS-DOS
	fontsets, Fontsets
	fontsets, modifying, Modifying Fontsets
	foreground color, command-line argument, Window Color Options
	format-decode-buffer, Enriched Mode
	formfeed character, Pages
	Fortran 77 and Fortran 90, 95, 2003, 2008, Fortran Mode
	Fortran continuation lines, Continuation Lines
	Fortran fixed form and free form, Fortran Mode
	Fortran mode, Fortran Mode
	fortran-analyze-depth, Continuation Lines
	fortran-beginning-of-block, Motion Commands
	fortran-break-before-delimiters, Auto Fill in Fortran Mode
	fortran-check-all-num…, Variables for Fortran Indentation
	fortran-column-ruler, Checking Columns in Fortran
	fortran-column-ruler-fixed, Checking Columns in Fortran
	fortran-column-ruler-tabs, Checking Columns in Fortran
	fortran-comment-indent-char, Fortran Comments
	fortran-comment-indent-style, Fortran Comments
	fortran-comment-line-extra-indent, Fortran Comments
	fortran-comment-line-start, Fortran Comments
	fortran-comment-region, Fortran Comments
	fortran-continuation-indent, Variables for Fortran Indentation
	fortran-continuation-string, Continuation Lines
	fortran-directive-re, Fortran Comments
	fortran-do-indent, Variables for Fortran Indentation
	fortran-electric-line-number, Line Numbers
	fortran-end-of-block, Motion Commands
	fortran-if-indent, Variables for Fortran Indentation
	fortran-indent-subprogram, Fortran Indentation and Filling Commands
	fortran-join-line, Fortran Indentation and Filling Commands
	fortran-line-length, Checking Columns in Fortran
	fortran-line-number-indent, Line Numbers
	fortran-minimum-statement-indent…, Variables for Fortran Indentation
	fortran-mode, Fortran Mode
	fortran-next-statement, Motion Commands
	fortran-previous-statement, Motion Commands
	fortran-split-line, Fortran Indentation and Filling Commands
	fortran-strip-sequence-nos, Checking Columns in Fortran
	fortran-structure-indent, Variables for Fortran Indentation
	fortran-tab-mode-default, Continuation Lines
	fortran-window-create, Checking Columns in Fortran
	fortran-window-create-momentarily, Checking Columns in Fortran
	fortune cookies, Mail Amusements
	fortune-to-signature, Mail Amusements
	forward-button, Help Mode Commands
	forward-char, Changing the Location of Point
	forward-list, Moving in the Parenthesis Structure
	forward-page, Pages
	forward-paragraph, Paragraphs
	forward-sentence, Sentences
	forward-sexp, Expressions with Balanced Parentheses
	forward-text-line, Nroff Mode
	forward-word, Changing the Location of Point, Words
	forwarding a message, Sending Replies
	frame, The Organization of the Screen
	frame focus policy, MS-Windows, Miscellaneous Windows-specific features
	frame size under MS-DOS, Display on MS-DOS
	frame size, specifying default, Frame Parameters
	frame title, command-line argument, Frame Titles
	frame-configuration-to-register, Saving Window Configurations in Registers
	frames, Frames and Graphical Displays
	frames on MS-DOS, Display on MS-DOS
	French Revolutionary calendar, Supported Calendar Systems
	fringe face, Standard Faces
	fringe-mode, Window Fringes
	fringes, Window Fringes
	fringes, and continuation lines, Continuation Lines
	fringes, and unused line indication, Useless Whitespace
	fringes, for debugging, Source Buffers
	FTP, Remote Files
	fullheight, command-line argument, Options for Window Size and Position
	fullscreen, command-line argument, Options for Window Size and Position
	fullwidth, command-line argument, Options for Window Size and Position
	function key, Keymaps
	function, move to beginning or end, Moving by Defuns

G
	G (Dired), Operating on Files
	g (Dired), Updating the Dired Buffer
	g (Rmail), Multiple Rmail Files
	g char (Calendar mode), Converting From Other Calendars
	g d (Calendar mode), Specified Dates
	g D (Calendar mode), Specified Dates
	g m (Calendar mode), Converting from the Mayan Calendar
	g w (Calendar mode), Specified Dates
	gamma correction, Table of X Resources for Emacs
	gateway, and remote file access with ange-ftp, Remote Files
	GDB, Running Debuggers Under Emacs
	gdb, Starting GUD
	GDB User Interface layout, GDB User Interface Layout
	gdb-delete-breakpoint, Breakpoints Buffer
	gdb-delete-out-of-scope, Watch Expressions
	gdb-display-disassembly-for-thread, Threads Buffer
	gdb-display-locals-for-thread, Threads Buffer
	gdb-display-registers-for-thread, Threads Buffer
	gdb-display-stack-for-thread, Threads Buffer
	gdb-edit-value, Watch Expressions
	gdb-frames-select, Stack Buffer
	gdb-goto-breakpoint, Breakpoints Buffer
	gdb-gud-control-all-threads, Multithreaded Debugging
	gdb-many-windows, GDB User Interface Layout
	gdb-mode-hook, GUD Customization
	gdb-non-stop-setting, Multithreaded Debugging
	gdb-restore-windows, GDB User Interface Layout
	gdb-select-thread, Threads Buffer
	gdb-show-changed-values, Watch Expressions
	gdb-show-threads-by-default, Breakpoints Buffer
	gdb-speedbar-auto-raise, Watch Expressions
	gdb-stopped-hooks, Multithreaded Debugging
	gdb-switch-reasons, Multithreaded Debugging
	gdb-switch-when-another-stopped, Multithreaded Debugging
	gdb-thread-buffer-addresses, Threads Buffer
	gdb-thread-buffer-arguments, Threads Buffer
	gdb-thread-buffer-locations, Threads Buffer
	gdb-thread-buffer-verbose-names, Threads Buffer
	gdb-toggle-breakpoint, Breakpoints Buffer
	gdb-use-colon-colon-notation, Watch Expressions
	gdb-var-delete, Watch Expressions
	geometry of Emacs window, Options for Window Size and Position
	geometry, command-line argument, Options for Window Size and Position
	German, International Character Set Support
	getenv, Environment Variables
	getting help with keys, Help
	Ghostscript, use for PostScript printing, Printing and MS-Windows
	git, Supported Version Control Systems
	Glasses mode, Glasses minor mode
	Global Auto-Revert mode, Reverting a Buffer
	global keymap, Keymaps
	global mark, CUA Bindings
	global mark ring, The Global Mark Ring
	global substitution, Replacement Commands
	global-auto-revert-mode, Reverting a Buffer
	global-cwarn-mode, Other Commands for C Mode
	global-font-lock-mode, Font Lock mode
	global-hl-line-mode, Displaying the Cursor
	global-mark-ring-max, The Global Mark Ring
	global-set-key, Changing Key Bindings Interactively
	global-unset-key, Changing Key Bindings Interactively
	global-visual-line-mode, Visual Line Mode
	glyphless characters, How Text Is Displayed
	GNU Arch, Supported Version Control Systems
	Gnus, Gnus
	gnus, When Gnus Starts Up
	gnus-group-exit, Using the Gnus Group Buffer
	gnus-group-kill-group, Using the Gnus Group Buffer
	gnus-group-list-all-groups, Using the Gnus Group Buffer
	gnus-group-list-groups, Using the Gnus Group Buffer
	gnus-group-next-unread-group, Using the Gnus Group Buffer, Using the Gnus Summary Buffer
	gnus-group-prev-unread-group, Using the Gnus Group Buffer, Using the Gnus Summary Buffer
	gnus-group-read-group, Using the Gnus Group Buffer, Using the Gnus Summary Buffer
	gnus-group-unsubscribe-current-group, Using the Gnus Group Buffer
	gnus-summary-isearch-article, Using the Gnus Summary Buffer
	gnus-summary-next-unread-article, Using the Gnus Group Buffer, Using the Gnus Summary Buffer
	gnus-summary-prev-page, Using the Gnus Summary Buffer
	gnus-summary-prev-unread-article, Using the Gnus Group Buffer, Using the Gnus Summary Buffer
	gnus-summary-search-article-forward, Using the Gnus Summary Buffer
	GNUstep, Emacs and Mac OS / GNUstep
	Go Moku, Other Amusements
	gomoku, Other Amusements
	Goto Address mode, Activating URLs
	goto-address-at-point, Activating URLs
	goto-address-mode, Activating URLs
	goto-char, Changing the Location of Point
	goto-followup-to, Mail Header Editing
	goto-line, Changing the Location of Point, Creating and Selecting Buffers
	goto-reply-to, Mail Header Editing
	gpm-mouse-mode, Using a Mouse in Text Terminals
	graphic characters, Inserting Text
	Greek, International Character Set Support
	Gregorian calendar, Conversion To and From Other Calendars
	grep, Searching with Grep under Emacs
	grep (MS-DOS), Subprocesses on MS-DOS
	grep-find, Searching with Grep under Emacs
	grep-find-ignored-directories, Searching with Grep under Emacs
	grep-regexp-alist, Compilation Mode
	growing minibuffer, Editing in the Minibuffer
	GTK font pattern, Fonts
	GTK styles, GTK styles
	GTK widget classes, GTK Widget Names in Emacs
	GTK widget names, GTK widget names, GTK Widget Names in Emacs
	GTK+ resources, GTK resources
	GUD interaction buffer, Debugger Operation
	GUD library, Running Debuggers Under Emacs
	GUD Tooltip mode, Debugger Operation
	gud-cont, Commands of GUD
	gud-def, GUD Customization
	gud-down, Commands of GUD
	gud-finish, Commands of GUD
	gud-gdb, Starting GUD
	gud-gdb-command-name, GDB Graphical Interface
	gud-gdb-complete-command, Commands of GUD
	gud-jump, Commands of GUD
	gud-next, Commands of GUD
	gud-print, Commands of GUD
	gud-refresh, Commands of GUD
	gud-remove, Commands of GUD
	gud-step, Commands of GUD
	gud-stepi, Commands of GUD
	gud-tbreak, Commands of GUD
	gud-tooltip-echo-area, Debugger Operation
	gud-tooltip-mode, Debugger Operation
	gud-until, Commands of GUD
	gud-up, Commands of GUD
	gud-watch, Watch Expressions
	gud-xdb-directories, Starting GUD
	gzip, Accessing Compressed Files

H
	h (Calendar mode), Holidays
	H (Dired), Operating on Files
	h (Rmail), Making Summaries
	handwrite, PostScript Hardcopy
	handwriting, PostScript Hardcopy
	hanoi, Other Amusements
	hard links (creation), Miscellaneous File Operations
	hard links (in Dired), Operating on Files
	hard links (visiting), File Name Aliases
	hard newline, Hard and Soft Newlines
	hardcopy, Printing Hard Copies
	header (TeX mode), TeX Printing Commands
	header line (Dired), Moving Over Subdirectories
	headers (of mail message), Mail Header Fields
	heading lines (Outline mode), Format of Outlines
	Hebrew, International Character Set Support
	Hebrew calendar, Supported Calendar Systems
	height of minibuffer, Editing in the Minibuffer
	Help, Help
	help, Help
	help text, in GTK+ file chooser, Using Dialog Boxes
	help, viewing web pages, Help Mode Commands
	help-at-pt-display-when-idle, Help on Active Text and Tooltips
	help-command, Help
	help-follow, Help Mode Commands
	help-for-help, Help
	help-go-back, Help Mode Commands
	help-map, Prefix Keymaps
	help-with-tutorial, Basic Editing Commands
	hex editing, Editing Binary Files
	Hexl mode, Editing Binary Files
	hg, Supported Version Control Systems
	Hi Lock mode, Interactive Highlighting
	hi-lock-exclude-modes, Interactive Highlighting
	hi-lock-file-patterns-policy, Interactive Highlighting
	hi-lock-find-patterns, Interactive Highlighting
	hi-lock-mode, Interactive Highlighting
	hi-lock-write-interactive-patterns, Interactive Highlighting
	hidden files, in GTK+ file chooser, Using Dialog Boxes
	hide-body, Outline Visibility Commands
	hide-entry, Outline Visibility Commands
	Hide-ifdef mode, Other Commands for C Mode
	hide-ifdef-mode, Other Commands for C Mode
	hide-ifdef-shadow, Other Commands for C Mode
	hide-leaves, Outline Visibility Commands
	hide-other, Outline Visibility Commands
	hide-sublevels, Outline Visibility Commands
	hide-subtree, Outline Visibility Commands
	Hideshow mode, Hideshow minor mode
	hiding subdirectories (Dired), Hiding Subdirectories
	Highlight Changes mode, Interactive Highlighting
	highlight current line, Displaying the Cursor
	highlight-changes-mode, Interactive Highlighting
	highlight-lines-matching-regexp, Interactive Highlighting
	highlight-nonselected-windows, The Mark and the Region
	highlight-regexp, Interactive Highlighting
	highlighting by matching, Interactive Highlighting
	highlighting lines of text, Interactive Highlighting
	highlighting matching parentheses, Matching Parentheses
	highlighting region, Disabling Transient Mark Mode
	Hindi, International Character Set Support
	history of commands, Repeating Minibuffer Commands
	history of minibuffer input, Minibuffer History
	history reference, Shell History References
	history-delete-duplicates, Minibuffer History
	history-length, Minibuffer History
	hl-line-mode, Displaying the Cursor
	holiday forms, Customizing the Holidays
	holiday-bahai-holidays, Customizing the Holidays
	holiday-christian-holidays, Customizing the Holidays
	holiday-general-holidays, Customizing the Holidays
	holiday-hebrew-holidays, Customizing the Holidays
	holiday-islamic-holidays, Customizing the Holidays
	holiday-local-holidays, Customizing the Holidays
	holiday-oriental-holidays, Customizing the Holidays
	holiday-other-holidays, Customizing the Holidays
	holiday-solar-holidays, Customizing the Holidays
	holidays, Holidays
	HOME, Changing the Location of Point
	HOME directory on MS-Windows, HOME and Startup Directories on MS-Windows
	home directory shorthand, Minibuffers for File Names
	HOME directory under MS-DOS, File Names on MS-DOS
	hook, Hooks
	horizontal scrolling, Horizontal Scrolling
	hourglass pointer display, Customization of Display
	hourglass-delay, Customization of Display
	how-many, Other Search-and-Loop Commands
	hs-hide-all, Hideshow minor mode
	hs-hide-block, Hideshow minor mode
	hs-hide-comments-when-hiding-all, Hideshow minor mode
	hs-hide-level, Hideshow minor mode
	hs-isearch-open, Hideshow minor mode
	hs-minor-mode, Hideshow minor mode
	hs-show-all, Hideshow minor mode
	hs-show-block, Hideshow minor mode
	hs-show-region, Hideshow minor mode
	hs-special-modes-alist, Hideshow minor mode
	hscroll-margin, Horizontal Scrolling
	hscroll-step, Horizontal Scrolling
	HTML mode, SGML and HTML Modes
	html-mode, SGML and HTML Modes
	htmlfontify-buffer, Printing Hard Copies
	hungry deletion (C Mode), Hungry Delete Feature in C
	hunk, diff, Diff Mode
	Hyper (under MS-DOS), Keyboard Usage on MS-DOS
	hyperlink, Help Mode Commands
	hyperlinks, Following References with the Mouse

I
	i (Dired), Subdirectories in Dired
	i (Rmail), Multiple Rmail Files
	i a (Calendar mode), Special Diary Entries
	i b (Calendar mode), Special Diary Entries
	i c (Calendar mode), Special Diary Entries
	i d (Calendar mode), Commands to Add to the Diary
	i m (Calendar mode), Commands to Add to the Diary
	i w (Calendar mode), Commands to Add to the Diary
	i y (Calendar mode), Commands to Add to the Diary
	iCalendar support, Importing and Exporting Diary Entries
	icalendar-export-file, icalendar-export-region, Importing and Exporting Diary Entries
	icalendar-import-buffer, Importing and Exporting Diary Entries
	icalendar-import-file, Importing and Exporting Diary Entries
	Icomplete mode, Completion Options
	icomplete-mode, Completion Options
	Icon mode, Major Modes for Programming Languages
	iconifying, Exiting Emacs
	icons (X Window System), Icons
	icons, toolbar, Tool Bars
	IDL mode, C and Related Modes
	ielm, Lisp Interaction Buffers
	ignored file names, in completion, Completion Options
	image animation, Convenience Features for Finding Files
	image-dired, Viewing Image Thumbnails in Dired
	image-dired mode, Viewing Image Thumbnails in Dired
	image-dired-display-thumbs, Viewing Image Thumbnails in Dired
	image-dired-external-viewer, Viewing Image Thumbnails in Dired
	image-mode, Convenience Features for Finding Files
	image-toggle-animation, Convenience Features for Finding Files
	image-toggle-display, Convenience Features for Finding Files
	ImageMagick support, Convenience Features for Finding Files
	images, viewing, Convenience Features for Finding Files
	IMAP mailboxes, Retrieving Mail from Remote Mailboxes
	imenu, Imenu
	imenu-add-menubar-index, Imenu
	imenu-auto-rescan, Imenu
	imenu-sort-function, Imenu
	in-situ subdirectory (Dired), Subdirectories in Dired
	inbox file, Rmail Files and Inboxes
	incorrect fontification, Font Lock mode
	increase buffer face height, Text Scale
	increase-left-margin, Indentation in Enriched Text
	increment-register, Keeping Numbers in Registers
	incremental search, Incremental Search
	incremental search, input method interference, Input Methods
	indent-code-rigidly, Indenting Several Lines
	indent-for-tab-command, Indentation, Basic Program Indentation Commands
	indent-line-function, Basic Program Indentation Commands
	indent-pp-sexp, Indenting Several Lines
	indent-region, Indentation Commands
	indent-relative, Indentation Commands
	indent-rigidly, Indentation Commands
	indent-tabs-mode, Tabs vs. Spaces
	indent-tabs-mode (Fortran mode), Continuation Lines
	indentation, Indentation
	indentation for comments, Comment Commands
	indentation for programs, Indentation for Programs
	index of buffer definitions, Imenu
	indicate-buffer-boundaries, Displaying Boundaries
	indicate-empty-lines, Useless Whitespace
	indirect buffer, Indirect Buffers
	indirect buffers and outlines, Viewing One Outline in Multiple Views
	inferior process, Running Compilations under Emacs
	inferior processes under MS-DOS, Subprocesses on MS-DOS
	inferior-lisp-program, Running an External Lisp
	info, Other Help Commands
	Info, Other Help Commands
	Info-goto-emacs-command-node, Help by Command or Variable Name
	Info-goto-emacs-key-command-node, Documentation for a Key
	info-lookup-file, Info Documentation Lookup
	info-lookup-symbol, Other Help Commands, Info Documentation Lookup
	inhibit-eol-conversion, Recognizing Coding Systems
	inhibit-iso-escape-detection, Recognizing Coding Systems
	inhibit-startup-buffer-menu, Action Arguments
	inhibit-startup-screen, Entering Emacs, Initial Options
	init file, The Emacs Initialization File
	init file .emacs on MS-Windows, HOME and Startup Directories on MS-Windows
	init file, and non-ASCII characters, Disabling Multibyte Characters
	init file, default name under MS-DOS, File Names on MS-DOS
	init file, not loading, Initial Options
	initial options (command line), Command Line Arguments for Emacs Invocation
	initial-environment, Environment Variables
	initial-frame-alist, Frame Parameters
	initial-scratch-message, Lisp Interaction Buffers
	input event, Kinds of User Input
	input methods, Input Methods
	input methods, X, Table of X Resources for Emacs
	input with the keyboard, Kinds of User Input
	input-method-highlight-flag, Input Methods
	input-method-verbose-flag, Input Methods
	INSERT, Minor Modes
	insert file contents, command-line argument, Action Arguments
	insert Unicode character, Inserting Text
	insert-abbrevs, Saving Abbrevs
	insert-default-directory, Minibuffers for File Names, File Names
	insert-file, Miscellaneous File Operations
	insert-file-literally, Miscellaneous File Operations
	insert-kbd-macro, Naming and Saving Keyboard Macros
	insert-register, Saving Text in Registers
	inserted subdirectory (Dired), Subdirectories in Dired
	inserting blank lines, Blank Lines
	inserting matching parentheses, Matching Parentheses
	inserting rows and columns in text-based tables, Table Rows and Columns
	insertion, Inserting Text
	INSIDE_EMACS environment variable, Interactive Subshell
	Integrated development environment, Emacs Development Environment
	interactive highlighting, Interactive Highlighting
	internal border width, command-line argument, Internal and External Borders
	international characters in .emacs, Non-ASCII Characters in Init Files
	international files from DOS/Windows systems, Coding Systems
	international scripts, International Character Set Support
	international support (MS-DOS), International Support on MS-DOS
	interpreter-mode-alist, Choosing File Modes
	Intlfonts for PostScript printing, Variables for PostScript Hardcopy
	Intlfonts package, installation, Fontsets
	inverse-add-global-abbrev, Defining Abbrevs
	inverse-add-mode-abbrev, Defining Abbrevs
	invisible lines, Outline Mode
	invocation (command line arguments), Command Line Arguments for Emacs Invocation
	invoking Emacs from Windows Explorer, How to Start Emacs on MS-Windows
	IPA, International Character Set Support
	isearch, Incremental Search
	isearch-allow-scroll, Scrolling During Incremental Search
	isearch-backward, Basics of Incremental Search
	isearch-backward-regexp, Regular Expression Search
	isearch-del-char, Isearch Yanking
	isearch-forward, Basics of Incremental Search
	isearch-forward-regexp, Regular Expression Search
	isearch-forward-word, Word Search
	isearch-lazy-highlight, Repeating Incremental Search
	isearch-mode-map, Special Input for Incremental Search
	isearch-resume-in-command-history, Repeating Minibuffer Commands
	isearch-toggle-input-method, Special Input for Incremental Search
	isearch-toggle-specified-input-method, Special Input for Incremental Search
	isearch-yank-char, Isearch Yanking
	isearch-yank-kill, Isearch Yanking
	isearch-yank-line, Isearch Yanking
	isearch-yank-pop, Isearch Yanking
	isearch-yank-word-or-char, Isearch Yanking
	Islamic calendar, Supported Calendar Systems
	ISO commercial calendar, Supported Calendar Systems
	ISO Latin character sets, Unibyte Editing Mode
	iso-ascii library, Unibyte Editing Mode
	iso-gtex2iso, TeX Mode Miscellany
	iso-iso2gtex, TeX Mode Miscellany
	iso-iso2tex, TeX Mode Miscellany
	iso-tex2iso, TeX Mode Miscellany
	iso-transl library, Unibyte Editing Mode
	ispell, Checking and Correcting Spelling
	ispell program, Checking and Correcting Spelling
	ispell-buffer, Checking and Correcting Spelling
	ispell-change-dictionary, Checking and Correcting Spelling
	ispell-complete-word, Checking and Correcting Spelling
	ispell-complete-word-dict, Checking and Correcting Spelling
	ispell-dictionary, Checking and Correcting Spelling
	ispell-kill-ispell, Checking and Correcting Spelling
	ispell-local-dictionary, Checking and Correcting Spelling
	ispell-message, Mail Miscellany
	ispell-personal-dictionary, Checking and Correcting Spelling
	ispell-region, Checking and Correcting Spelling
	ispell-word, Checking and Correcting Spelling
	Iswitchb mode, Switching Between Buffers using Substrings
	iswitchb-mode, Switching Between Buffers using Substrings

J
	j (Dired), Navigation in the Dired Buffer
	j (Rmail), Moving Among Messages
	Japanese, International Character Set Support
	jar, File Archives
	Java class archives, File Archives
	Java mode, C and Related Modes
	Javascript mode, Major Modes for Programming Languages
	JDB, Running Debuggers Under Emacs
	jdb, Starting GUD
	jdb-mode-hook, GUD Customization
	Julian calendar, Supported Calendar Systems
	Julian day numbers, Supported Calendar Systems
	jump-to-register, Saving Positions in Registers
	just-in-time (JIT) font-lock, Font Lock mode
	just-one-space, Deletion
	justification, Explicit Fill Commands
	justification in text-based tables, Cell Justification

K
	k (Dired), Updating the Dired Buffer
	k (Rmail), Labels
	kbd, Rebinding Keys in Your Init File
	kbd-macro-query, Executing Macros with Variations
	keep-lines, Other Search-and-Loop Commands
	kept-new-versions, Automatic Deletion of Backups
	kept-old-versions, Automatic Deletion of Backups
	Kerberos POP authentication, Retrieving Mail from Remote Mailboxes
	key, Keys
	key bindings, Customizing Key Bindings
	key rebinding, permanent, The Emacs Initialization File
	key rebinding, this session, Changing Key Bindings Interactively
	key sequence, Keys
	keyboard input, Kinds of User Input
	keyboard macro, Keyboard Macros
	keyboard shortcuts, Glossary
	keyboard, MS-Windows, Keyboard Usage on MS-Windows
	keyboard-coding-system, Coding Systems for Terminal I/O
	keyboard-escape-quit, Quitting and Aborting
	keyboard-quit, Quitting and Aborting
	keymap, Keymaps
	keypad, Rebinding Function Keys
	keypad keys (MS-Windows), Keyboard Usage on MS-Windows
	keys stolen by window manager, Kinds of User Input
	kill DOS application, Subprocesses on Windows 9X/ME and Windows NT/2K/XP
	kill ring, Yanking
	kill-all-abbrevs, Defining Abbrevs
	kill-buffer, Killing Buffers
	kill-buffer-and-window, Deleting and Rearranging Windows
	kill-buffer-hook, Killing Buffers
	kill-compilation, Running Compilations under Emacs
	kill-do-not-save-duplicates, Options for Killing
	kill-emacs, Exiting Emacs
	kill-line, Killing by Lines
	kill-local-variable, Local Variables
	kill-matching-buffers, Killing Buffers
	kill-read-only-ok, Options for Killing
	kill-rectangle, Rectangles
	kill-region, Other Kill Commands
	kill-ring, The Kill Ring
	kill-ring-max, The Kill Ring
	kill-ring-save, Other Kill Commands
	kill-sentence, Sentences
	kill-sexp, Expressions with Balanced Parentheses
	kill-some-buffers, Killing Buffers
	kill-whole-line, Killing by Lines
	kill-word, Words
	killing buffers, Killing Buffers
	killing characters and lines, Erasing Text
	killing Emacs, Exiting Emacs
	killing expressions, Expressions with Balanced Parentheses
	killing rectangular areas of text, Rectangles
	killing text, Deletion and Killing
	kmacro-add-counter, The Keyboard Macro Counter
	kmacro-bind-to-key, Naming and Saving Keyboard Macros
	kmacro-cycle-ring-next, The Keyboard Macro Ring
	kmacro-cycle-ring-previous, The Keyboard Macro Ring
	kmacro-edit-lossage, Editing a Keyboard Macro
	kmacro-edit-macro, Editing a Keyboard Macro
	kmacro-end-and-call-macro, Basic Use
	kmacro-end-macro, Basic Use
	kmacro-end-or-call-macro, Basic Use
	kmacro-end-or-call-macro-repeat, The Keyboard Macro Ring
	kmacro-insert-counter, The Keyboard Macro Counter
	kmacro-name-last-macro, Naming and Saving Keyboard Macros
	kmacro-ring-max, The Keyboard Macro Ring
	kmacro-set-counter, The Keyboard Macro Counter
	kmacro-set-format, The Keyboard Macro Counter
	kmacro-start-macro, Basic Use
	kmacro-start-macro-or-insert-counter, Basic Use
	kmacro-step-edit-macro, Stepwise Editing a Keyboard Macro
	Korean, International Character Set Support

L
	L (Dired), Operating on Files
	l (Dired), Updating the Dired Buffer
	l (GDB threads buffer), Threads Buffer
	l (Gnus Group mode), Using the Gnus Group Buffer
	L (Gnus Group mode), Using the Gnus Group Buffer
	l (Rmail), Making Summaries
	label (Rmail), Labels
	landmark, Other Amusements
	landmark game, Other Amusements
	language environment, automatic selection on MS-DOS, International Support on MS-DOS
	language environments, Language Environments
	Lao, International Character Set Support
	large-file-warning-threshold, Visiting Files
	LaTeX mode, TeX Mode
	latex-block-names, LaTeX Editing Commands
	latex-electric-env-pair-mode, LaTeX Editing Commands
	latex-mode, TeX Mode
	latex-mode-hook, TeX Mode Miscellany
	latex-run-command, TeX Printing Commands
	Latin, International Character Set Support
	Latin-1 TeX encoding, TeX Mode Miscellany
	latin1-display, Undisplayable Characters
	lazy search highlighting, Repeating Incremental Search
	leaving Emacs, Exiting Emacs
	LEFT, Changing the Location of Point
	left-char, Changing the Location of Point
	left-word, Changing the Location of Point
	LessTif Widget X Resources, LessTif Menu X Resources
	lgrep, Searching with Grep under Emacs
	libraries, Libraries of Lisp Code for Emacs
	life, Other Amusements
	Life, Other Amusements
	line endings, Coding Systems
	line number commands, Cursor Position Information
	line number display, Optional Mode Line Features
	line spacing, Table of X Resources for Emacs
	line spacing, command-line argument, Other Display Options
	line truncation, and fringes, Continuation Lines, Line Truncation
	line wrapping, Continuation Lines
	line-move-visual, Changing the Location of Point
	line-number-display-limit, Optional Mode Line Features
	line-number-display-limit-width, Optional Mode Line Features
	line-number-mode, Optional Mode Line Features
	lines, highlighting, Interactive Highlighting
	links, Following References with the Mouse
	links (customization buffer), Customization Groups
	Linum mode, Minor Modes
	linum-mode, Minor Modes
	Lisp character syntax, Init File Syntax
	Lisp editing, Editing Programs
	Lisp files byte-compiled by XEmacs, Libraries of Lisp Code for Emacs
	Lisp files, and multibyte operation, Disabling Multibyte Characters
	Lisp mode, Running an External Lisp
	Lisp object syntax, Init File Syntax
	Lisp string syntax, Init File Syntax
	Lisp symbol completion, Completion for Symbol Names
	lisp-body-indent, Customizing Lisp Indentation
	lisp-eval-defun, Running an External Lisp
	lisp-indent-function property, Customizing Lisp Indentation
	lisp-indent-offset, Customizing Lisp Indentation
	lisp-interaction-mode, Lisp Interaction Buffers
	lisp-interaction-mode-hook, Major Modes for Programming Languages
	lisp-mode-hook, Major Modes for Programming Languages
	list commands, Moving in the Parenthesis Structure
	list-abbrevs, Examining and Editing Abbrevs
	list-bookmarks, Bookmarks
	list-buffers, Listing Existing Buffers
	list-character-sets, Charsets
	list-charset-chars, Charsets
	list-coding-systems, Coding Systems
	list-colors-display, Colors for Faces
	list-colors-sort, Colors for Faces
	list-command-history, Repeating Minibuffer Commands
	list-directory, File Directories
	list-directory-brief-switches, File Directories
	list-directory-verbose-switches, File Directories
	list-faces-display, Text Faces
	list-holidays, Holidays
	list-input-methods, Selecting an Input Method
	list-matching-lines, Other Search-and-Loop Commands
	list-packages, The Package Menu Buffer
	list-tags, Tags Table Inquiries
	listing current buffers, Listing Existing Buffers
	listing system fonts, Fonts
	load, Libraries of Lisp Code for Emacs
	load init file of another user, Initial Options
	load path for Emacs Lisp, Libraries of Lisp Code for Emacs
	load-dangerous-libraries, Libraries of Lisp Code for Emacs
	load-file, Libraries of Lisp Code for Emacs
	load-library, Libraries of Lisp Code for Emacs
	load-path, Libraries of Lisp Code for Emacs
	load-theme, Custom Themes
	loading Lisp code, Libraries of Lisp Code for Emacs
	loading Lisp libraries automatically, Init File Examples
	loading Lisp libraries, command-line argument, Action Arguments
	loading several files (in Dired), Operating on Files
	local keymap, Local Keymaps
	local variables, Local Variables
	local variables in files, Local Variables in Files
	local variables, for all files in a directory, Per-Directory Local Variables
	local-set-key, Changing Key Bindings Interactively
	local-unset-key, Changing Key Bindings Interactively
	locale, date format, Updating Time Stamps Automatically
	locale-charset-language-names, Language Environments
	locale-coding-system, Coding Systems for Interprocess Communication
	locale-language-names, Language Environments
	locale-preferred-coding-systems, Language Environments
	locales, Language Environments
	locate, Dired and find
	locate-command, Dired and find
	locate-with-filter, Dired and find
	location of point, Cursor Position Information
	locking (CVS), Options specific for CVS
	locking files, Protection against Simultaneous Editing
	locking, non-strict (RCS), Options for RCS and SCCS
	locking-based version, Merge-based vs lock-based Version Control
	locus, Compilation Mode
	Log Edit mode, Features of the Log Entry Buffer
	log File, types of, Types of Log File
	log-edit-done, Features of the Log Entry Buffer
	log-edit-insert-changelog, Features of the Log Entry Buffer
	log-edit-show-diff, Features of the Log Entry Buffer
	log-edit-show-files, Features of the Log Entry Buffer
	log-view-toggle-entry-display, VC Change Log
	logging keystrokes, Checklist for Bug Reports
	logical order, Bidirectional Editing
	long file names in DOS box under Windows 95/NT, File Names on MS-DOS
	looking for a subject in documentation, Help
	lpr usage under MS-DOS, Printing and MS-Windows
	lpr-add-switches, Printing Hard Copies
	lpr-buffer, Printing Hard Copies
	lpr-command (MS-DOS), Printing and MS-Windows
	lpr-commands, Printing Hard Copies
	lpr-headers-switches, Printing Hard Copies
	lpr-headers-switches (MS-DOS), Printing and MS-Windows
	lpr-printer-switch, Printing Hard Copies
	lpr-region, Printing Hard Copies
	lpr-switches, Printing Hard Copies
	lpr-switches (MS-DOS), Printing and MS-Windows
	LRM, Bidirectional Editing
	ls emulation, Emulation of ls on MS-Windows
	ls-lisp-dirs-first, Emulation of ls on MS-Windows
	ls-lisp-emulation, Emulation of ls on MS-Windows
	ls-lisp-format-time-list, Emulation of ls on MS-Windows
	ls-lisp-ignore-case, Emulation of ls on MS-Windows
	ls-lisp-support-shell-wildcards, Emulation of ls on MS-Windows
	ls-lisp-use-insert-directory-program, Emulation of ls on MS-Windows
	ls-lisp-use-localized-time-format, Emulation of ls on MS-Windows
	ls-lisp-verbosity, Emulation of ls on MS-Windows
	Lucid Widget X Resources, Lucid Menu And Dialog X Resources
	lunar-phases, Phases of the Moon
	lzh, File Archives

M
	M (Calendar mode), Phases of the Moon
	m (Calendar mode), Displaying the Diary
	m (Dired), Dired Marks vs. Flags
	M (Dired), Operating on Files
	m (Rmail), Sending Replies
	M-, Kinds of User Input
	M-!, Single Shell Commands
	M-$, Checking and Correcting Spelling
	M-$ (Dired), Hiding Subdirectories
	M-%, Query Replace
	M-% (Incremental search), Special Input for Incremental Search
	M-&, Single Shell Commands
	M-', Controlling Abbrev Expansion
	M-*, Finding a Tag
	M-,, Searching and Replacing with Tags Tables
	M--, Numeric Arguments
	M-- M-c, Case Conversion
	M-- M-l, Case Conversion
	M-- M-u, Case Conversion
	M-., Finding a Tag
	M-/, Dynamic Abbrev Expansion
	M-1, Numeric Arguments
	M-:, Evaluating Emacs Lisp Expressions
	M-;, Comment Commands
	M-<, Changing the Location of Point
	M-< (Calendar mode), Beginning or End of Week, Month or Year
	M-< (DocView mode), DocView Navigation
	M-<down> (Org Mode), Org Mode
	M-<left> (Org Mode), Org Mode
	M-<right> (Org Mode), Org Mode
	M-<up> (Org Mode), Org Mode
	M-=, Cursor Position Information
	M-= (Calendar mode), Counting Days
	M-= (Dired), File Comparison with Dired
	M->, Changing the Location of Point
	M-> (Calendar mode), Beginning or End of Week, Month or Year
	M-> (DocView mode), DocView Navigation
	M-? (Nroff mode), Nroff Mode
	M-? (Shell mode), Shell Mode
	M-@, Commands to Mark Textual Objects, Words
	M-a, Sentences
	M-a (C mode), C Mode Motion Commands
	M-a (Calendar mode), Beginning or End of Week, Month or Year
	M-b, Changing the Location of Point, Words
	M-c, Case Conversion Commands
	M-d, Words
	M-DEL, Words
	M-DEL (Dired), Dired Marks vs. Flags
	M-Drag-Mouse-1, Secondary Selection
	M-e, Sentences
	M-e (C mode), C Mode Motion Commands
	M-e (Calendar mode), Beginning or End of Week, Month or Year
	M-e (Incremental search), Repeating Incremental Search
	M-f, Changing the Location of Point, Words
	M-g g, Changing the Location of Point
	M-g M-g, Changing the Location of Point
	M-g M-n, Compilation Mode
	M-g n, Compilation Mode
	M-h, Paragraphs
	M-i, Indentation Commands
	M-j, Multiple Lines of Comments
	M-j b (Enriched mode), Justification in Enriched Text
	M-j c (Enriched mode), Justification in Enriched Text
	M-j l (Enriched mode), Justification in Enriched Text
	M-j r (Enriched mode), Justification in Enriched Text
	M-j u (Enriched mode), Justification in Enriched Text
	M-k, Sentences
	M-l, Case Conversion Commands
	M-LEFT, Changing the Location of Point
	M-m, Indentation Commands
	M-m (Rmail), Sending Replies
	M-Mouse-1, Secondary Selection
	M-Mouse-2, Secondary Selection
	M-Mouse-3, Secondary Selection
	M-n (Incremental search), Repeating Incremental Search
	M-n (Log Edit mode), Features of the Log Entry Buffer
	M-n (Man mode), Man Page Lookup
	M-n (minibuffer history), Minibuffer History
	M-n (Nroff mode), Nroff Mode
	M-n (Rmail), Moving Among Messages
	M-n (Shell mode), Shell History Ring
	M-o b (Enriched mode), Faces in Enriched Text
	M-o d (Enriched mode), Faces in Enriched Text
	M-o i (Enriched mode), Faces in Enriched Text
	M-o l (Enriched mode), Faces in Enriched Text
	M-o M-s (Text mode), Explicit Fill Commands
	M-o o (Enriched mode), Faces in Enriched Text
	M-o u (Enriched mode), Faces in Enriched Text
	M-p (Incremental search), Repeating Incremental Search
	M-p (Log Edit mode), Features of the Log Entry Buffer
	M-p (Man mode), Man Page Lookup
	M-p (minibuffer history), Minibuffer History
	M-p (Nroff mode), Nroff Mode
	M-p (Rmail), Moving Among Messages
	M-p (Shell mode), Shell History Ring
	M-q, Explicit Fill Commands
	M-q (C mode), Other Commands for C Mode
	M-q (Fortran mode), Fortran Indentation and Filling Commands
	M-r, Changing the Location of Point
	M-r (Log Edit mode), Features of the Log Entry Buffer
	M-r (minibuffer history), Minibuffer History
	M-r (Shell mode), Shell History Ring
	M-RIGHT, Changing the Location of Point
	M-S (Enriched mode), Justification in Enriched Text
	M-s (Gnus Summary mode), Using the Gnus Summary Buffer
	M-s (Log Edit mode), Features of the Log Entry Buffer
	M-s (minibuffer history), Minibuffer History
	M-s (Rmail), Moving Among Messages
	M-s a C-s (Dired), Other Dired Features
	M-s a M-C-s (Dired), Other Dired Features
	M-s C-e (Incremental search), Isearch Yanking
	M-s f C-s (Dired), Navigation in the Dired Buffer
	M-s f M-C-s (Dired), Navigation in the Dired Buffer
	M-s o, Other Search-and-Loop Commands
	M-s w, Word Search
	M-SPC, Deletion
	M-t, Transposing Text
	M-TAB, Completion for Symbol Names
	M-TAB (customization buffer), Changing a Variable
	M-TAB (Incremental search), Special Input for Incremental Search
	M-TAB (Picture mode), Picture Mode Tabs
	M-TAB (Text mode), Text Mode
	M-TAB vs Alt-TAB (MS-Windows), Keyboard Usage on MS-Windows
	M-TAB, (MS-Windows), Keyboard Usage on MS-Windows
	M-u, Case Conversion Commands
	M-v, Scrolling
	M-v (Calendar mode), Scrolling in the Calendar
	M-w, Other Kill Commands
	M-x, Running Commands by Name
	M-y, Yanking Earlier Kills
	M-y (Incremental search), Isearch Yanking
	M-z, Other Kill Commands
	M-\, Deletion
	M-^, Indentation Commands
	M-^ (Fortran mode), Fortran Indentation and Filling Commands
	M-`, The Menu Bar
	M-{, Paragraphs
	M-{ (Calendar mode), Motion by Standard Lengths of Time
	M-{ (Dired), Dired Marks vs. Flags
	M-|, Single Shell Commands
	M-}, Paragraphs
	M-} (Calendar mode), Motion by Standard Lengths of Time
	M-} (Dired), Dired Marks vs. Flags
	M-~, Commands for Saving Files
	M4 mode, Major Modes for Programming Languages
	Mac OS X, Emacs and Mac OS / GNUstep
	Macintosh, Emacs and Mac OS / GNUstep
	Macintosh end-of-line conversion, Coding Systems
	Macintosh key bindings, Emulation
	macro expansion in C, Other Commands for C Mode
	magic-fallback-mode-alist, Choosing File Modes
	magic-mode-alist, Choosing File Modes
	mail, Sending Mail
	mail (on mode line), Optional Mode Line Features
	mail aliases, Mail Aliases
	MAIL environment variable, Rmail Files and Inboxes
	Mail mode, Mail-Composition Methods
	mail signature, Mail Signature
	mail-abbrev-insert-alias, Mail Aliases
	mail-add-attachment, Mail Miscellany
	mail-citation-hook, Citing Mail
	mail-composition methods, Mail-Composition Methods
	mail-default-headers, Mail Header Fields
	mail-dont-reply-to-names, Sending Replies
	mail-fill-yanked-message, Citing Mail
	mail-from-style, Mail Header Fields
	mail-mode-hook, Mail Miscellany
	mail-other-window, Displaying in Another Window
	mail-personal-alias-file, Mail Aliases
	mail-setup-hook, Mail Miscellany
	mail-signature, Mail Signature
	mail-signature-file, Mail Signature
	mail-text, Mail Header Editing
	mail-user-agent, Mail-Composition Methods
	Mailclient, Mail Sending
	MAILHOST environment variable, Retrieving Mail from Remote Mailboxes
	mailrc file, Mail Aliases
	main border width, command-line argument, Internal and External Borders
	major modes, Major Modes
	major-mode, Major Modes
	make, Running Compilations under Emacs
	make-backup-file-name-function, Single or Numbered Backups
	make-backup-files, Backup Files
	make-frame-command, Creating Frames
	make-frame-on-display, Multiple Displays
	make-indirect-buffer, Indirect Buffers
	make-local-variable, Local Variables
	make-pointer-invisible, Customization of Display, Mouse Avoidance
	make-symbolic-link, Miscellaneous File Operations
	make-variable-buffer-local, Local Variables
	Makefile mode, Major Modes for Programming Languages
	making pictures out of text characters, Editing Pictures
	man page, Man Page Lookup
	man pages, and local file variables, Specifying File Variables
	Man-switches, Man Page Lookup
	manipulating paragraphs, Paragraphs
	manipulating sentences, Sentences
	manipulating text, Commands for Human Languages
	manual pages, on MS-DOS/MS-Windows, Man Page Lookup
	manual version backups, Options specific for CVS
	manual-entry, Man Page Lookup
	manuals, on-line, Other Help Commands
	Marathi, International Character Set Support
	mark, The Mark and the Region
	mark rectangle, Rectangles
	mark ring, The Mark Ring
	mark-defun, Moving by Defuns
	mark-even-if-inactive, Operating on the Region
	mark-page, Pages
	mark-paragraph, Paragraphs
	mark-ring-max, The Mark Ring
	mark-sexp, Commands to Mark Textual Objects, Expressions with Balanced Parentheses
	mark-whole-buffer, Commands to Mark Textual Objects
	mark-word, Commands to Mark Textual Objects, Words
	marking executable files (in Dired), Dired Marks vs. Flags
	marking many files (in Dired), Dired Marks vs. Flags
	marking sections of text, Commands to Mark Textual Objects
	marking subdirectories (in Dired), Dired Marks vs. Flags
	marking symbolic links (in Dired), Dired Marks vs. Flags
	matching parentheses, Matching Parentheses
	matching parenthesis and braces, moving to, Moving in the Parenthesis Structure
	max-mini-window-height, Editing in the Minibuffer
	maximized, command-line argument, Options for Window Size and Position
	maximum buffer size exceeded, error message, Visiting Files
	Mayan calendar, Supported Calendar Systems
	Mayan calendar round, Converting from the Mayan Calendar
	Mayan haab calendar, Converting from the Mayan Calendar
	Mayan long count, Converting from the Mayan Calendar
	Mayan tzolkin calendar, Converting from the Mayan Calendar
	memory full, Running out of Memory
	menu bar, The Menu Bar, Table of X Resources for Emacs
	menu bar access using keyboard (MS-Windows), Keyboard Usage on MS-Windows
	menu bar appearance, Standard Faces
	Menu Bar mode, Menu Bars
	menu face, no effect if customized, Standard Faces
	Menu X Resources (LessTif widgets), LessTif Menu X Resources
	Menu X Resources (Lucid widgets), Lucid Menu And Dialog X Resources
	menu-bar-mode, Menu Bars
	menu-bar-open, The Menu Bar
	Mercurial, Supported Version Control Systems
	merge buffer (Emerge), Overview of Emerge
	merges, failed, Comparing Files
	merging changes, Merging Branches
	merging files, Merging Files with Emerge
	merging-based version, Merge-based vs lock-based Version Control
	message, Sending Mail
	Message mode, Mail Commands
	Message mode for sending mail, Mail-Composition Methods
	message number, Basic Concepts of Rmail
	message-goto-bcc, Mail Header Editing
	message-goto-cc, Mail Header Editing
	message-goto-fcc, Mail Header Editing
	message-goto-subject, Mail Header Editing
	message-goto-to, Mail Header Editing
	message-insert-signature, Mail Signature
	message-kill-buffer-on-exit, Mail Sending
	message-log-max, The Echo Area
	message-send, Mail Sending
	message-send-and-exit, Mail Sending
	message-send-hook, Mail Sending
	message-tab, Mail Header Editing
	message-yank-original, Citing Mail
	message-yank-prefix, Citing Mail
	messages saved from echo area, The Echo Area
	Meta, Kinds of User Input
	Meta (under MS-DOS), Keyboard Usage on MS-DOS
	Meta commands and words, Words
	Metafont mode, Major Modes for Programming Languages
	MH mail interface, Mail-Composition Methods
	Microsoft Office file, Document Viewing
	Microsoft Windows, Emacs and Microsoft Windows/MS-DOS
	Midnight mode, Killing Buffers
	midnight-hook, Killing Buffers
	midnight-mode, Killing Buffers
	MIME, Mail Miscellany
	MIME messages (Rmail), Display of Messages
	minibuffer, The Echo Area, The Minibuffer
	minibuffer confirmation, Completion Exit
	minibuffer history, Minibuffer History
	minibuffer history, searching, Searching the Minibuffer
	minibuffer keymaps, Minibuffer Keymaps
	minibuffer-complete, Completion Commands
	minibuffer-complete-and-exit, Completion Exit
	minibuffer-complete-word, Completion Commands
	minibuffer-inactive-mode, Editing in the Minibuffer
	minibuffer-local-completion-map, Minibuffer Keymaps
	minibuffer-local-filename-completion-map, Minibuffer Keymaps
	minibuffer-local-filename-must-match-map, Minibuffer Keymaps
	minibuffer-local-map, Minibuffer Keymaps
	minibuffer-local-must-match-map, Minibuffer Keymaps
	minibuffer-local-ns-map, Minibuffer Keymaps
	minibuffer-prompt face, Standard Faces
	minibuffer-prompt-properties, Standard Faces
	minimizing, Exiting Emacs
	minimizing a frame at startup, Icons
	minor mode keymap, Local Keymaps
	minor modes, Minor Modes
	mistakes, correcting, Commands for Fixing Typos
	mml-attach-file, Mail Miscellany
	mode commands for minor modes, Minor Modes
	mode hook, Major Modes, Major Modes for Programming Languages
	mode line, The Mode Line
	mode line (MS-DOS), International Support on MS-DOS
	mode line, 3D appearance, Optional Mode Line Features
	mode line, mouse, Mode Line Mouse Commands
	mode, Abbrev, Abbrev Concepts
	mode, archive, File Archives
	mode, Auto Compression, Accessing Compressed Files
	mode, Auto Fill, Auto Fill Mode
	mode, Auto Save, Auto-Saving: Protection Against Disasters
	mode, Auto-Revert, Reverting a Buffer
	mode, AWK, C and Related Modes
	mode, C, C and Related Modes
	mode, C++, C and Related Modes
	mode, Column Number, Optional Mode Line Features
	mode, Comint, Shell Mode
	mode, Compilation, Compilation Mode
	mode, CORBA IDL, C and Related Modes
	mode, CRiSP, Emulation
	mode, Delete Selection, Operating on the Region
	mode, Diff Auto-Refine, Diff Mode
	mode, Dirtrack, Directory Tracking
	mode, DocTeX, TeX Mode
	mode, DocView, Document Viewing
	mode, Electric Indent, Convenience Features for Indentation
	mode, Emacs Lisp, Evaluating Emacs Lisp Expressions
	mode, Enriched, Enriched Text
	mode, Flyspell, Checking and Correcting Spelling
	mode, Follow, Follow Mode
	mode, Font Lock, Font Lock mode
	mode, Fortran, Fortran Mode
	mode, Glasses, Glasses minor mode
	mode, Global Auto-Revert, Reverting a Buffer
	mode, Goto Address, Activating URLs
	mode, GUD Tooltip, Debugger Operation
	mode, Hexl, Editing Binary Files
	mode, Hideshow, Hideshow minor mode
	mode, HTML, SGML and HTML Modes
	mode, Iswitchb, Switching Between Buffers using Substrings
	mode, Java, C and Related Modes
	mode, LaTeX, TeX Mode
	mode, Lisp, Running an External Lisp
	mode, Log Edit, Features of the Log Entry Buffer
	mode, Mail, Mail-Composition Methods
	mode, major, Major Modes
	mode, Menu Bar, Menu Bars
	mode, Message, Mail Commands
	mode, minor, Minor Modes
	mode, Mouse Wheel, Mouse Commands for Editing
	mode, MSB, Customizing Buffer Menus
	mode, nXML, Commands for Human Languages, SGML and HTML Modes
	mode, Objective C, C and Related Modes
	mode, Occur, Other Search-and-Loop Commands
	mode, Occur Edit, Other Search-and-Loop Commands
	mode, Org, Org Mode
	mode, Outline, Outline Mode
	mode, Overwrite, Minor Modes
	mode, Paragraph-Indent Text, Text Mode
	mode, Pike, C and Related Modes
	mode, Scheme, Running an External Lisp
	mode, Scroll Bar, Scroll Bars
	mode, Scroll-all, Convenience Features for Window Handling
	mode, Semantic, Semantic
	mode, SGML, SGML and HTML Modes
	mode, Shell, Shell Mode
	mode, SliTeX, TeX Mode
	mode, tar, File Archives
	mode, Term, Term Mode
	mode, TeX, TeX Mode
	mode, Text, Text Mode
	mode, thumbs, Convenience Features for Finding Files
	mode, Tool Bar, Tool Bars
	mode, Transient Mark, Disabling Transient Mark Mode
	mode, View, View Mode
	mode, Whitespace, Useless Whitespace
	mode, Winner, Convenience Features for Window Handling
	mode, XML, Commands for Human Languages
	mode-line-in-non-selected-windows, Optional Mode Line Features
	mode-require-final-newline, Customizing Saving of Files
	mode-specific-map, Prefix Keymaps
	modes for programming languages, Major Modes for Programming Languages
	modification dates, Updating Time Stamps Automatically
	modified (buffer), Visiting Files
	modifier keys, Kinds of User Input, Modifier Keys
	Modula2 mode, Major Modes for Programming Languages
	moon, phases of, Phases of the Moon
	Morse code, Other Amusements
	morse-region, Other Amusements
	Motif key bindings, Emulation
	mouse avoidance, Mouse Avoidance
	mouse button events, Rebinding Mouse Buttons
	mouse buttons (what they do), Mouse Commands for Editing
	mouse on mode line, Mode Line Mouse Commands
	mouse pointer, Customization of Display
	mouse pointer color, command-line argument, Window Color Options
	mouse support, Using a Mouse in Text Terminals
	mouse support under MS-DOS, Mouse Usage on MS-DOS
	mouse wheel, Mouse Commands for Editing
	Mouse Wheel minor mode, Mouse Commands for Editing
	mouse, and MS-Windows, Mouse Usage on MS-Windows
	mouse, dragging, Mouse Commands for Editing
	mouse, selecting text using, Mouse Commands for Editing
	mouse, set number of buttons, Mouse Usage on MS-DOS
	Mouse-1, Mouse Commands for Editing
	Mouse-1 (mode line), Mode Line Mouse Commands
	Mouse-1 (on buttons), Following References with the Mouse
	Mouse-1 (scroll bar), Mode Line Mouse Commands
	mouse-1-click-in-non-selected-windows, Following References with the Mouse
	Mouse-2, Mouse Commands for Editing
	Mouse-2 (GDB Breakpoints buffer), Breakpoints Buffer
	Mouse-2 (mode line), Mode Line Mouse Commands
	Mouse-2 (on buttons), Following References with the Mouse
	Mouse-3, Mouse Commands for Editing
	Mouse-3 (mode line), Mode Line Mouse Commands
	mouse-autoselect-window, Using Other Windows
	mouse-avoidance-mode, Mouse Avoidance
	mouse-buffer-menu, Customizing Buffer Menus
	mouse-choose-completion, Completion Commands
	mouse-drag-copy-region, Mouse Commands for Editing
	mouse-highlight, Following References with the Mouse
	mouse-save-then-kill, Mouse Commands for Editing
	mouse-scroll-min-lines, Mouse Commands for Editing
	mouse-secondary-save-then-kill, Secondary Selection
	mouse-set-point, Mouse Commands for Editing
	mouse-set-region, Mouse Commands for Editing
	mouse-set-secondary, Secondary Selection
	mouse-start-secondary, Secondary Selection
	mouse-wheel-follow-mouse, Mouse Commands for Editing
	mouse-wheel-mode, Mouse Commands for Editing
	mouse-wheel-progressive-speed, Mouse Commands for Editing
	mouse-wheel-scroll-amount, Mouse Commands for Editing
	mouse-yank-at-click, Mouse Commands for Editing
	mouse-yank-at-point, Mouse Commands for Editing
	mouse-yank-primary, Mouse Commands for Editing
	mouse-yank-secondary, Secondary Selection
	move to beginning or end of function, Moving by Defuns
	move-beginning-of-line, Changing the Location of Point
	move-end-of-line, Changing the Location of Point
	move-to-window-line-top-bottom, Changing the Location of Point
	movemail, Retrieving Mail from Remote Mailboxes
	movemail program, movemail program
	movement, Changing the Location of Point
	moving files (in Dired), Operating on Files
	moving inside the calendar, Movement in the Calendar
	moving point, Changing the Location of Point
	moving text, Yanking
	moving the cursor, Changing the Location of Point
	mpuz, Other Amusements
	MS-DOG, Emacs and MS-DOS
	MS-DOS end-of-line conversion, Coding Systems
	MS-DOS peculiarities, Emacs and MS-DOS
	MS-Windows codepages, International Support on MS-DOS
	MS-Windows keyboard shortcuts, Keyboard Usage on MS-Windows
	MS-Windows, and primary selection, Cut and Paste with Other Window Applications
	MS-Windows, Emacs peculiarities, Emacs and Microsoft Windows/MS-DOS
	MSB mode, Customizing Buffer Menus
	msb-mode, Customizing Buffer Menus
	msdos-set-mouse-buttons, Mouse Usage on MS-DOS
	MULE, International Character Set Support
	multi-occur, Other Search-and-Loop Commands
	multi-occur-in-matching-buffers, Other Search-and-Loop Commands
	multibyte characters, International Character Set Support
	multibyte operation, and Lisp files, Disabling Multibyte Characters
	multiple displays, Multiple Displays
	multiple views of outline, Viewing One Outline in Multiple Views
	multiple windows in Emacs, Multiple Windows
	multiple-file search and replace, Searching and Replacing with Tags Tables
	Multipurpose Internet Mail Extensions, Mail Miscellany
	Multithreaded debugging in GDB, Multithreaded Debugging

N
	n (DocView mode), DocView Navigation
	n (Gnus Group mode), Using the Gnus Group Buffer
	n (Gnus Summary mode), Using the Gnus Summary Buffer
	n (Rmail), Moving Among Messages
	narrow-to-defun, Narrowing
	narrow-to-page, Narrowing
	narrow-to-region, Narrowing
	narrowing, Narrowing
	narrowing, and line number display, Optional Mode Line Features
	nato-region, Other Amusements
	negative-argument, Numeric Arguments
	networked printers (MS-Windows), Printing and MS-Windows
	newline, Inserting Text
	newline-and-indent, Indentation Commands, Basic Program Indentation Commands
	newlines, hard and soft, Hard and Soft Newlines
	newsreader, Gnus
	next, Scrolling
	Next Error Follow mode, Compilation Mode
	next-buffer, Creating and Selecting Buffers
	next-completion, Completion Commands
	next-error, Compilation Mode
	next-error-follow-minor-mode, Compilation Mode
	next-error-highlight, Compilation Mode
	next-file, Tags Table Inquiries
	next-history-element, Minibuffer History
	next-line, Changing the Location of Point
	next-line-add-newlines, Changing the Location of Point
	next-logical-line, Visual Line Mode
	next-matching-history-element, Minibuffer History
	next-screen-context-lines, Scrolling
	NFS and quitting, Quitting and Aborting
	nil, Glossary
	no-conversion, coding system, Coding Systems
	nobreak-char-display, How Text Is Displayed
	non-ASCII characters in .emacs, Non-ASCII Characters in Init Files
	non-ASCII keys, binding, Non-ASCII Characters in Init Files
	non-breaking hyphen, How Text Is Displayed
	non-breaking space, How Text Is Displayed
	non-greedy regexp matching, Syntax of Regular Expressions
	non-integral number of lines in a window, Optional Mode Line Features
	non-selected windows, mode line appearance, Optional Mode Line Features
	Non-stop debugging in GDB, Multithreaded Debugging
	non-strict locking (RCS), Options for RCS and SCCS
	nonincremental search, Nonincremental Search
	normal hook, Hooks
	normal-erase-is-backspace, If DEL Fails to Delete
	normal-erase-is-backspace-mode, If DEL Fails to Delete
	normal-mode, Choosing File Modes
	not-modified, Commands for Saving Files
	nroff, Nroff Mode
	nroff-mode, Nroff Mode
	nroff-mode-hook, Nroff Mode
	ns-pop-up-frames, Windowing System Events under Mac OS / GNUstep
	ns-standard-fontset-spec, Defining fontsets
	NSA, Mail Amusements
	number-to-register, Keeping Numbers in Registers
	numeric arguments, Numeric Arguments
	nXML mode, Commands for Human Languages, SGML and HTML Modes
	nxml-mode, Commands for Human Languages, SGML and HTML Modes

O
	o (Calendar mode), Specified Dates
	o (Dired), Visiting Files in Dired
	O (Dired), Operating on Files
	o (Occur mode), Other Search-and-Loop Commands
	o (Rmail), Copying Messages Out to Files
	Objective C mode, C and Related Modes
	occur, Other Search-and-Loop Commands
	Occur Edit mode, Other Search-and-Loop Commands
	Occur mode, Other Search-and-Loop Commands
	octal escapes, How Text Is Displayed
	Octave mode, Major Modes for Programming Languages
	omer count, Sexp Entries and the Fancy Diary Display
	on-line manuals, Other Help Commands
	open file, Visiting Files
	open-dribble-file, Checklist for Bug Reports
	open-line, Blank Lines
	open-paren-in-column-0-is-defun-start, Left Margin Convention
	open-parenthesis in leftmost column, Left Margin Convention
	open-rectangle, Rectangles
	open-termscript, Checklist for Bug Reports
	OpenDocument file, Document Viewing
	operating on files in Dired, Operating on Files
	operations on a marked region, Operating on the Region
	options (command line), Command Line Arguments for Emacs Invocation
	Org agenda, Org as an organizer
	Org exporting, Org as an authoring system
	Org mode, Org Mode
	org-agenda, Org as an organizer
	org-agenda-file-to-front, Org as an organizer
	org-agenda-files, Org as an organizer
	org-cycle, Org Mode
	org-deadline, Org as an organizer
	org-export, Org as an authoring system
	org-metadown, Org Mode
	org-metaleft, Org Mode
	org-metaright, Org Mode
	org-metaup, Org Mode
	org-mode, Org Mode
	org-publish-project-alist, Org as an authoring system
	org-schedule, Org as an organizer
	org-shifttab, Org Mode
	org-todo, Org as an organizer
	org-todo-keywords, Org as an organizer
	organizer, Org Mode
	other editors, Emulation
	other-frame, Frame Commands
	other-window, Using Other Windows
	out of memory, Running out of Memory
	Outline mode, Outline Mode
	outline with multiple views, Viewing One Outline in Multiple Views
	outline-backward-same-level, Outline Motion Commands
	outline-forward-same-level, Outline Motion Commands
	outline-level, Format of Outlines
	outline-minor-mode, Outline Mode
	outline-minor-mode-prefix, Outline Mode
	outline-mode, Outline Mode
	outline-mode-hook, Outline Mode
	outline-next-visible-heading, Outline Motion Commands
	outline-previous-visible-heading, Outline Motion Commands
	outline-regexp, Format of Outlines
	outline-up-heading, Outline Motion Commands
	overflow-newline-into-fringe, Window Fringes
	overlays at character position, Editing Format Information
	overline-margin, Customization of Display
	override character terminal color support, Window Color Options
	Overwrite mode, Minor Modes
	overwrite-mode, Minor Modes

P
	p (Calendar mode), Converting To Other Calendars
	P (Dired), Operating on Files
	p (DocView mode), DocView Navigation
	p (Gnus Group mode), Using the Gnus Group Buffer
	p (Gnus Summary mode), Using the Gnus Summary Buffer
	p (Rmail), Moving Among Messages
	p d (Calendar mode), Miscellaneous Calendar Commands
	Package, Emacs Lisp Packages
	Package archive, Emacs Lisp Packages
	package directory, Package Files and Directory Layout
	package file, Package Files and Directory Layout
	package menu, The Package Menu Buffer
	package requirements, Package Installation
	package-archives, Package Installation
	package-directory-list, Package Files and Directory Layout
	package-enable-at-startup, Package Installation
	package-initialize, Package Installation
	package-install, Package Installation
	package-install-file, Package Files and Directory Layout
	package-load-list, Package Installation
	package-user-dir, Package Files and Directory Layout
	page-delimiter, Pages
	PageDown, Scrolling
	pages, Pages
	PageUp, Scrolling
	paging in Term mode, Term Mode
	paragraph, base direction, Bidirectional Editing
	Paragraph-Indent Text mode, Text Mode
	paragraph-indent-minor-mode, Text Mode
	paragraph-indent-text-mode, Text Mode
	paragraph-separate, Paragraphs
	paragraph-start, Paragraphs
	paragraphs, Paragraphs
	parasha, weekly, Sexp Entries and the Fancy Diary Display
	parentheses, displaying matches, Matching Parentheses
	parentheses, moving across, Moving in the Parenthesis Structure
	parenthesis in column zero and fontification, Font Lock mode
	parenthetical groupings, Moving in the Parenthesis Structure
	partial completion, How Completion Alternatives Are Chosen
	paste, “Cut and Paste” Operations on Graphical Displays
	pasting, Yanking
	patches, editing, Diff Mode
	patches, sending, Sending Patches for GNU Emacs
	PC key bindings, Emulation
	PC selection, Emulation
	PCL-CVS, VC Directory Mode
	PDB, Running Debuggers Under Emacs
	pdb, Starting GUD
	pdb-mode-hook, GUD Customization
	PDF file, Document Viewing
	per-buffer variables, Local Variables
	per-directory local variables, Per-Directory Local Variables
	Perl mode, Major Modes for Programming Languages
	Perldb, Running Debuggers Under Emacs
	perldb, Starting GUD
	perldb-mode-hook, GUD Customization
	Persian calendar, Supported Calendar Systems
	phases of the moon, Phases of the Moon
	Picture mode and rectangles, Picture Mode Rectangle Commands
	picture-backward-clear-column, Basic Editing in Picture Mode
	picture-backward-column, Basic Editing in Picture Mode
	picture-clear-column, Basic Editing in Picture Mode
	picture-clear-line, Basic Editing in Picture Mode
	picture-clear-rectangle, Picture Mode Rectangle Commands
	picture-clear-rectangle-to-register, Picture Mode Rectangle Commands
	picture-forward-column, Basic Editing in Picture Mode
	picture-mode, Editing Pictures
	picture-mode-hook, Editing Pictures
	picture-motion, Controlling Motion after Insert
	picture-motion-reverse, Controlling Motion after Insert
	picture-move-down, Basic Editing in Picture Mode
	picture-move-up, Basic Editing in Picture Mode
	picture-movement-down, Controlling Motion after Insert
	picture-movement-left, Controlling Motion after Insert
	picture-movement-ne, Controlling Motion after Insert
	picture-movement-nw, Controlling Motion after Insert
	picture-movement-right, Controlling Motion after Insert
	picture-movement-se, Controlling Motion after Insert
	picture-movement-sw, Controlling Motion after Insert
	picture-movement-up, Controlling Motion after Insert
	picture-newline, Basic Editing in Picture Mode
	picture-open-line, Basic Editing in Picture Mode
	picture-set-tab-stops, Picture Mode Tabs
	picture-tab, Picture Mode Tabs
	picture-tab-chars, Picture Mode Tabs
	picture-tab-search, Picture Mode Tabs
	picture-yank-rectangle, Picture Mode Rectangle Commands
	picture-yank-rectangle-from-register, Picture Mode Rectangle Commands
	pictures, Editing Pictures
	Pike mode, C and Related Modes
	plain-tex-mode, TeX Mode
	plain-tex-mode-hook, TeX Mode Miscellany
	planner, Org Mode
	point, Point
	point location, Cursor Position Information
	point location, on MS-DOS, Text Files and Binary Files
	point-to-register, Saving Positions in Registers
	Polish, International Character Set Support
	pong, Other Amusements
	Pong game, Other Amusements
	POP mailboxes, Retrieving Mail from Remote Mailboxes
	pop-global-mark, The Global Mark Ring
	pop-tag-mark, Finding a Tag
	pop-up-frames, How display-buffer works
	position and size of Emacs frame, Options for Window Size and Position
	PostScript file, Document Viewing
	PostScript mode, Major Modes for Programming Languages
	pr-interface, Printing Package
	prefer-coding-system, Recognizing Coding Systems
	prefix arguments, Numeric Arguments
	prefix key, Keys
	prepend-to-buffer, Accumulating Text
	prepend-to-register, Saving Text in Registers
	preprocessor highlighting, Other Commands for C Mode
	pretty-printer, Indentation for Programs
	previous-buffer, Creating and Selecting Buffers
	previous-completion, Completion Commands
	previous-history-element, Minibuffer History
	previous-line, Changing the Location of Point
	previous-logical-line, Visual Line Mode
	previous-matching-history-element, Minibuffer History
	primary Rmail file, Basic Concepts of Rmail
	primary selection, Setting the Mark, Cut and Paste with Other Window Applications
	print-buffer, Printing Hard Copies
	print-buffer (MS-DOS), Printing and MS-Windows
	print-region, Printing Hard Copies
	print-region (MS-DOS), Printing and MS-Windows
	print-region-function (MS-DOS), Printing and MS-Windows
	printer-name, Printing Hard Copies
	printer-name, (MS-DOS/MS-Windows), Printing and MS-Windows
	printing, Printing Hard Copies
	printing character, How Text Is Displayed
	printing files (in Dired), Operating on Files
	Printing package, Printing Package
	printing under MS-DOS, Subprocesses on MS-DOS
	prior, Scrolling
	Prog mode, Hooks
	prog-mode-hook, Major Modes
	program building, Compiling and Testing Programs
	program editing, Editing Programs, Hooks
	Prolog mode, Major Modes for Programming Languages
	prompt, The Minibuffer
	prompt, shell, Shell Prompts
	PS file, Document Viewing
	ps-despool, PostScript Hardcopy
	ps-font-family, Variables for PostScript Hardcopy
	ps-font-info-database, Variables for PostScript Hardcopy
	ps-font-size, Variables for PostScript Hardcopy
	ps-landscape-mode, Variables for PostScript Hardcopy
	ps-lpr-command, Variables for PostScript Hardcopy
	ps-lpr-command (MS-DOS), Printing and MS-Windows
	ps-lpr-switches, Variables for PostScript Hardcopy
	ps-lpr-switches (MS-DOS), Printing and MS-Windows
	ps-multibyte-buffer, Variables for PostScript Hardcopy
	ps-number-of-columns, Variables for PostScript Hardcopy
	ps-page-dimensions-database, Variables for PostScript Hardcopy
	ps-paper-type, Variables for PostScript Hardcopy
	ps-print-buffer, PostScript Hardcopy
	ps-print-buffer (MS-DOS), Printing and MS-Windows
	ps-print-buffer-with-faces, PostScript Hardcopy
	ps-print-color-p, Variables for PostScript Hardcopy
	ps-print-header, Variables for PostScript Hardcopy
	ps-print-region, PostScript Hardcopy
	ps-print-region-with-faces, PostScript Hardcopy
	ps-printer-name, Variables for PostScript Hardcopy
	ps-printer-name (MS-DOS), Printing and MS-Windows
	ps-spool-buffer, PostScript Hardcopy
	ps-spool-buffer (MS-DOS), Printing and MS-Windows
	ps-spool-buffer-with-faces, PostScript Hardcopy
	ps-spool-region, PostScript Hardcopy
	ps-spool-region-with-faces, PostScript Hardcopy
	ps-use-face-background, Variables for PostScript Hardcopy
	puzzles, Other Amusements
	pwd, File Names
	Python mode, Major Modes for Programming Languages

Q
	q (Calendar mode), Miscellaneous Calendar Commands
	q (Dired), Entering Dired
	Q (Dired), Operating on Files
	q (Gnus Group mode), Using the Gnus Group Buffer
	q (Gnus Summary mode), Using the Gnus Summary Buffer
	Q (Rmail summary), Editing in Summaries
	q (Rmail summary), Editing in Summaries
	q (Rmail), Basic Concepts of Rmail
	q (VC Directory), VC Directory Commands
	q (View mode), View Mode
	quail-set-keyboard-layout, Selecting an Input Method
	quail-show-key, Selecting an Input Method
	query replace, Query Replace
	query-replace, Query Replace
	query-replace-regexp, Query Replace
	quietly-read-abbrev-file, Saving Abbrevs
	quit-window, VC Directory Commands, Entering Dired
	quitting, Quitting and Aborting
	quitting (in search), Errors in Incremental Search
	quitting Emacs, Exiting Emacs
	quitting on MS-DOS, Keyboard Usage on MS-DOS
	quoted-insert, Inserting Text
	quoting, Inserting Text
	quoting file names, Quoted File Names

R
	R (Dired), Operating on Files
	r (GDB threads buffer), Threads Buffer
	r (Rmail), Sending Replies
	rar, File Archives
	raw-text, coding system, Coding Systems
	RCS, Supported Version Control Systems
	re-search-backward, Regular Expression Search
	re-search-forward, Regular Expression Search
	read-abbrev-file, Saving Abbrevs
	read-buffer-completion-ignore-case, Completion Options
	read-file-name-completion-ignore-case, Completion Options
	read-mail-command, Mail-Composition Methods
	read-only buffer, Miscellaneous Buffer Operations
	read-only text, killing, Options for Killing
	read-quoted-char-radix, Inserting Text
	reading mail, Reading Mail with Rmail
	rebinding keys, permanently, The Emacs Initialization File
	rebinding major mode keys, Rebinding Keys in Your Init File
	rebinding mouse buttons, Rebinding Mouse Buttons
	rebinding non-ASCII keys, Non-ASCII Characters in Init Files
	recenter, Recentering
	recenter-positions, Recentering
	recenter-redisplay, Recentering
	recenter-top-bottom, Recentering
	recentf-edit-list, Convenience Features for Finding Files
	recentf-mode, Convenience Features for Finding Files
	recentf-save-list, Convenience Features for Finding Files
	recode-file-name, Coding Systems for File Names
	recode-region, Specifying a Coding System for File Text
	recompile, Running Compilations under Emacs
	recover-file, Recovering Data from Auto-Saves
	recover-session, Recovering Data from Auto-Saves
	rectangle, Rectangles
	rectangle highlighting, CUA Bindings
	rectangles and Picture mode, Picture Mode Rectangle Commands
	recursive copying, Operating on Files
	recursive deletion, Deleting Files with Dired
	recursive editing level, Recursive Editing Levels
	recycle bin, Miscellaneous File Operations
	redefining keys, this session, Changing Key Bindings Interactively
	redo, Undo
	refreshing displayed files, Updating the Dired Buffer
	regexp, Syntax of Regular Expressions
	regexp search, Regular Expression Search
	region, The Mark and the Region
	region highlighting, Disabling Transient Mark Mode
	registered file, Concepts of Version Control
	registers, Registers
	registry, setting environment variables (MS-Windows), The MS-Windows System Registry
	registry, setting resources (MS-Windows), X Resources
	regular expression, Syntax of Regular Expressions
	related files, Other Commands for C Mode
	reload files, Saving Emacs Sessions
	remember editing session, Saving Emacs Sessions
	remote file access, Remote Files
	remote host, Remote Host Shell
	remote host, debugging on, Starting GUD
	remote repositories (CVS), Options specific for CVS
	remove indentation, Indentation Commands
	remove-hook, Hooks
	remove-untranslated-filesystem, Text Files and Binary Files
	rename-buffer, Miscellaneous Buffer Operations
	rename-file, Miscellaneous File Operations
	rename-uniquely, Miscellaneous Buffer Operations
	renaming files, Miscellaneous File Operations
	renaming files (in Dired), Operating on Files
	renaming version-controlled files, Deleting and Renaming Version-Controlled Files
	repeat, Repeating a Command
	repeat-complex-command, Repeating Minibuffer Commands
	repeating a command, Repeating a Command
	replace-regexp, Regexp Replacement
	replace-string, Unconditional Replacement
	replacement, Replacement Commands
	reply to a message, Sending Replies
	report-emacs-bug, Checklist for Bug Reports
	reporting bugs, Checklist for Bug Reports
	reposition-window, Recentering
	repository, Concepts of Version Control
	require-final-newline, Customizing Saving of Files
	reread a file, Reverting a Buffer
	resize-mini-windows, Editing in the Minibuffer
	resizing minibuffer, Editing in the Minibuffer
	resolving conflicts, Merging Branches
	resource files for GTK, GTK resources
	resource name, command-line argument, X Resources
	resource values, command-line argument, X Resources
	resources, X Resources
	restore session, Saving Emacs Sessions
	restriction, Narrowing
	RET, Inserting Text
	RET (completion in minibuffer), Completion Exit
	RET (Dired), Visiting Files in Dired
	RET (GDB Breakpoints buffer), Breakpoints Buffer
	RET (GDB speedbar), Watch Expressions
	RET (Help mode), Help Mode Commands
	RET (Occur mode), Other Search-and-Loop Commands
	RET (Shell mode), Shell Mode
	retrying a failed message, Sending Replies
	reveal-mode, Outline Visibility Commands
	reverse order in POP inboxes, Retrieving Mail from Remote Mailboxes
	reverse video, command-line argument, Window Color Options
	revert-buffer, Reverting a Buffer
	revert-buffer (Dired), Updating the Dired Buffer
	revert-buffer-with-coding-system, Specifying a Coding System for File Text
	revert-without-query, Reverting a Buffer
	revision, Concepts of Version Control
	revision ID, Concepts of Version Control
	revision ID in version control, Advanced Control in C-x v v
	revision tag, Revision Tags
	RGB triplet, Colors for Faces
	rgrep, Searching with Grep under Emacs
	RIGHT, Changing the Location of Point
	right-char, Changing the Location of Point
	right-to-left text, Bidirectional Editing
	right-word, Changing the Location of Point
	risky variable, Safety of File Variables
	RLM, Bidirectional Editing
	Rlogin, Remote Host Shell
	Rmail, Reading Mail with Rmail
	rmail, Reading Mail with Rmail
	Rmail file sorting, Sorting the Rmail File
	rmail-add-label, Labels
	rmail-automatic-folder-directives, Copying Messages Out to Files
	rmail-beginning-of-message, Scrolling Within a Message
	rmail-bury, Basic Concepts of Rmail
	rmail-continue, Sending Replies
	rmail-decode-mime-charset, Recognizing Coding Systems
	rmail-delete-after-output, Copying Messages Out to Files
	rmail-delete-backward, Deleting Messages
	rmail-delete-forward, Deleting Messages
	rmail-delete-message-hook, Deleting Messages
	rmail-displayed-headers, Display of Messages
	rmail-edit-current-message, Editing Within a Message
	rmail-edit-mode-hook, Editing Within a Message
	rmail-enable-mime, Display of Messages
	rmail-enable-mime-composing, Sending Replies
	rmail-end-of-message, Scrolling Within a Message
	rmail-epa-decrypt, Display of Messages
	rmail-expunge, Deleting Messages
	rmail-expunge-and-save, Basic Concepts of Rmail
	rmail-file-coding-system, Recognizing Coding Systems
	rmail-file-name, Basic Concepts of Rmail
	rmail-first-message, Moving Among Messages
	rmail-forward, Sending Replies
	rmail-get-new-mail, Multiple Rmail Files
	rmail-highlighted-headers, Display of Messages
	rmail-ignored-headers, Display of Messages
	rmail-inbox-list, Multiple Rmail Files
	rmail-input, Multiple Rmail Files
	rmail-kill-label, Labels
	rmail-last-message, Moving Among Messages
	rmail-mail, Sending Replies
	rmail-mail-new-frame, Sending Replies
	rmail-mime, Display of Messages
	rmail-mime-next-item, Display of Messages
	rmail-mime-previous-item, Display of Messages
	rmail-mime-toggle-hidden, Display of Messages
	rmail-mode, Reading Mail with Rmail
	rmail-mode-hook, Reading Mail with Rmail
	rmail-movemail-flags, Retrieving Mail from Remote Mailboxes
	rmail-movemail-program, movemail program
	rmail-movemail-search-path, movemail program
	rmail-next-labeled-message, Labels
	rmail-next-message, Moving Among Messages
	rmail-next-same-subject, Moving Among Messages
	rmail-next-undeleted-message, Moving Among Messages
	rmail-nonignored-headers, Display of Messages
	rmail-output, Copying Messages Out to Files
	rmail-output-as-seen, Copying Messages Out to Files
	rmail-output-body-to-file, Copying Messages Out to Files
	rmail-output-file-alist, Copying Messages Out to Files
	rmail-preserve-inbox, Rmail Files and Inboxes
	rmail-previous-labeled-message, Labels
	rmail-previous-message, Moving Among Messages
	rmail-previous-same-subject, Moving Among Messages
	rmail-previous-undeleted-message, Moving Among Messages
	rmail-primary-inbox-list, Rmail Files and Inboxes
	rmail-quit, Basic Concepts of Rmail
	rmail-redecode-body, Rmail and Coding Systems
	rmail-redisplay-summary, Editing in Summaries
	rmail-remote-password, Retrieving Mail from Remote Mailboxes
	rmail-remote-password-required, Retrieving Mail from Remote Mailboxes
	rmail-reply, Sending Replies
	rmail-resend, Sending Replies
	rmail-retry-failure, Sending Replies
	rmail-retry-ignored-headers, Sending Replies
	rmail-search, Moving Among Messages
	rmail-secondary-file-directory, Multiple Rmail Files
	rmail-secondary-file-regexp, Multiple Rmail Files
	rmail-show-message, Moving Among Messages
	rmail-sort-by-author, Sorting the Rmail File
	rmail-sort-by-correspondent, Sorting the Rmail File
	rmail-sort-by-date, Sorting the Rmail File
	rmail-sort-by-labels, Sorting the Rmail File
	rmail-sort-by-lines, Sorting the Rmail File
	rmail-sort-by-recipient, Sorting the Rmail File
	rmail-sort-by-subject, Sorting the Rmail File
	rmail-summary, Making Summaries
	rmail-summary-bury, Editing in Summaries
	rmail-summary-by-labels, Making Summaries
	rmail-summary-by-recipients, Making Summaries
	rmail-summary-by-regexp, Making Summaries
	rmail-summary-by-senders, Making Summaries
	rmail-summary-by-topic, Making Summaries
	rmail-summary-line-count-flag, Making Summaries
	rmail-summary-quit, Editing in Summaries
	rmail-summary-undelete-many, Editing in Summaries
	rmail-summary-window-size, Making Summaries
	rmail-summary-wipe, Editing in Summaries
	rmail-toggle-header, Display of Messages
	rmail-undelete-previous-message, Deleting Messages
	Romanian, International Character Set Support
	rosh hodesh, Sexp Entries and the Fancy Diary Display
	rot13 code, Reading Rot13 Messages
	rot13-other-window, Reading Rot13 Messages
	Ruby mode, Major Modes for Programming Languages
	run-lisp, Running an External Lisp
	run-scheme, Running an External Lisp
	runemacs.exe, How to Start Emacs on MS-Windows
	running a hook, Hooks
	running Lisp functions, Compiling and Testing Programs

S
	S (Calendar mode), Times of Sunrise and Sunset
	s (Calendar mode), Displaying the Diary
	S (Dired), Operating on Files
	s (Dired), Updating the Dired Buffer
	s (Gnus Summary mode), Using the Gnus Summary Buffer
	s (Rmail), Basic Concepts of Rmail
	s (View mode), View Mode
	S-Mouse-2, Hideshow minor mode
	S-Mouse-3 (FFAP), Finding Files and URLs at Point
	S-TAB (customization buffer), Customization Groups
	S-TAB (Help mode), Help Mode Commands
	S-TAB (Org Mode), Org Mode
	safe-local-eval-forms, Safety of File Variables
	safe-local-variable-values, Safety of File Variables
	same-window-buffer-names, How display-buffer works
	same-window-regexps, How display-buffer works
	save-abbrevs, Saving Abbrevs
	save-buffer, Commands for Saving Files
	save-buffers-kill-terminal, Exiting Emacs
	save-interprogram-paste-before-kill, Using the Clipboard
	save-some-buffers, Commands for Saving Files
	saved echo area messages, The Echo Area
	saving a setting, Changing a Variable
	saving file name in a register, Keeping File Names in Registers
	saving files, Visiting Files
	saving keyboard macros, Naming and Saving Keyboard Macros
	saving number in a register, Keeping Numbers in Registers
	saving position in a register, Saving Positions in Registers
	saving rectangle in a register, Saving Rectangles in Registers
	saving sessions, Saving Emacs Sessions
	saving text in a register, Saving Text in Registers
	saving window configuration in a register, Saving Window Configurations in Registers
	SCCS, Supported Version Control Systems
	Scheme mode, Running an External Lisp
	scheme-mode, Running an External Lisp
	scheme-mode-hook, Major Modes for Programming Languages
	screen, The Organization of the Screen
	screen reader software, MS-Windows, Miscellaneous Windows-specific features
	script mode, Initial Options
	Scroll Bar mode, Scroll Bars
	Scroll-all mode, Convenience Features for Window Handling
	scroll-all-mode, Convenience Features for Window Handling, Emulation
	scroll-bar-mode, Scroll Bars
	scroll-bar-width, Scroll Bars
	scroll-command property, Scrolling
	scroll-conservatively, Automatic Scrolling
	scroll-down, Scrolling
	scroll-down-aggressively, Automatic Scrolling
	scroll-down-command, Scrolling
	scroll-down-line, Scrolling
	scroll-error-top-bottom, Scrolling
	scroll-left, Horizontal Scrolling
	scroll-margin, Automatic Scrolling
	scroll-other-window, Using Other Windows
	scroll-preserve-screen-position, Scrolling
	scroll-right, Horizontal Scrolling
	scroll-step, Automatic Scrolling
	scroll-up, Scrolling
	scroll-up-aggressively, Automatic Scrolling
	scroll-up-command, Scrolling
	scroll-up-line, Scrolling
	scrollbar width, Table of X Resources for Emacs
	scrolling, Scrolling
	scrolling all windows, Emulation
	scrolling in the calendar, Scrolling in the Calendar
	scrolling windows together, Convenience Features for Window Handling
	SDB, Running Debuggers Under Emacs
	sdb, Starting GUD
	sdb-mode-hook, GUD Customization
	search and replace in multiple files, Searching and Replacing with Tags Tables
	search and replace in multiple files (in Dired), Operating on Files
	search for a regular expression, Regular Expression Search
	search multiple files (in Dired), Operating on Files
	search ring, Repeating Incremental Search
	search-and-replace commands, Replacement Commands
	search-backward, Nonincremental Search
	search-forward, Nonincremental Search
	search-whitespace-regexp, Regular Expression Search
	searching, Searching and Replacement
	searching Dired buffers, Navigation in the Dired Buffer
	searching documentation efficiently, Help
	searching in Rmail, Moving Among Messages
	searching multiple files via Dired, Other Dired Features
	secondary selection, Secondary Selection
	sections of manual pages, Man Page Lookup
	select all, Commands to Mark Textual Objects
	select-active-regions, Cut and Paste with Other Window Applications
	select-frame-by-name, Non-Window Terminals
	selected buffer, Using Multiple Buffers
	selected window, Concepts of Emacs Windows
	selecting buffers in other windows, Displaying in Another Window
	selection, primary, Cut and Paste with Other Window Applications
	selective display, Selective Display
	selective undo, Undo
	selective-display-ellipses, Selective Display
	self-documentation, Help
	Semantic mode, Semantic
	Semantic package, Semantic
	send-invisible, Shell Mode
	send-mail-function, Mail Sending
	sending mail, Sending Mail
	sending patches for GNU Emacs, Sending Patches for GNU Emacs
	Sendmail, Mail Sending
	sendmail-coding-system, Choosing Coding Systems for Output, Mail Sending
	sentence-end, Sentences
	sentence-end-double-space, Sentences
	sentence-end-without-period, Sentences
	sentences, Sentences
	serial-term, Serial Terminal
	server file, emacsclient Options
	server, using Emacs as, Using Emacs as a Server
	server-edit, Invoking emacsclient
	server-eval-at, Using Emacs as a Server
	server-host, emacsclient Options
	server-kill-new-buffers, Invoking emacsclient
	server-name, Using Emacs as a Server
	server-port, emacsclient Options
	server-side fonts, Fonts
	server-start, Using Emacs as a Server
	server-temp-file-regexp, Invoking emacsclient
	server-use-tcp, emacsclient Options
	server-window, Invoking emacsclient
	set buffer face height, Text Scale
	set-buffer-file-coding-system, Specifying a Coding System for File Text
	set-buffer-process-coding-system, Coding Systems for Interprocess Communication
	set-face-background, Colors for Faces
	set-face-foreground, Colors for Faces
	set-file-modes, Miscellaneous File Operations
	set-file-name-coding-system, Coding Systems for File Names
	set-fill-column, Explicit Fill Commands
	set-fill-prefix, The Fill Prefix
	set-fontset-font, Modifying Fontsets
	set-frame-name, Non-Window Terminals
	set-fringe-style, Window Fringes
	set-goal-column, Changing the Location of Point
	set-input-method, Selecting an Input Method
	set-justification-center, Justification in Enriched Text
	set-justification-full, Justification in Enriched Text
	set-justification-left, Justification in Enriched Text
	set-justification-none, Justification in Enriched Text
	set-justification-right, Justification in Enriched Text
	set-keyboard-coding-system, Coding Systems for Terminal I/O
	set-language-environment, Language Environments
	set-language-environment-hook, Language Environments
	set-left-margin, Indentation in Enriched Text
	set-locale-environment, Language Environments
	set-mark-command, Setting the Mark
	set-mark-command-repeat-pop, The Mark Ring
	set-next-selection-coding-system, Coding Systems for Interprocess Communication
	set-right-margin, Indentation in Enriched Text
	set-selection-coding-system, Coding Systems for Interprocess Communication
	set-selective-display, Selective Display
	set-terminal-coding-system, Coding Systems for Terminal I/O
	set-variable, Examining and Setting Variables
	set-visited-file-name, Commands for Saving Files
	setenv, Environment Variables
	setq-default, Local Variables
	setting a mark, The Mark and the Region
	setting variables, Examining and Setting Variables
	settings, Easy Customization Interface
	settings, how to save, Changing a Variable
	sexp, Expressions with Balanced Parentheses
	sexp diary entries, Sexp Entries and the Fancy Diary Display
	SGML mode, SGML and HTML Modes
	sgml-attributes, SGML and HTML Modes
	sgml-close-tag, SGML and HTML Modes
	sgml-delete-tag, SGML and HTML Modes
	sgml-mode, SGML and HTML Modes
	sgml-name-8bit-mode, SGML and HTML Modes
	sgml-name-char, SGML and HTML Modes
	sgml-skip-tag-backward, SGML and HTML Modes
	sgml-skip-tag-forward, SGML and HTML Modes
	sgml-tag, SGML and HTML Modes
	sgml-tag-help, SGML and HTML Modes
	sgml-tags-invisible, SGML and HTML Modes
	sgml-validate, SGML and HTML Modes
	sgml-xml-mode, SGML and HTML Modes
	shadow files, Shadowing Files
	shadow-initialize, Shadowing Files
	shell, Interactive Subshell
	shell commands, Running Shell Commands from Emacs
	shell commands, Dired, Shell Commands in Dired
	SHELL environment variable, Interactive Subshell
	Shell mode, Shell Mode
	shell scripts, and local file variables, Specifying File Variables
	shell-backward-command, Shell Mode
	shell-cd-regexp, Directory Tracking
	shell-command, Single Shell Commands
	shell-command-default-error-buffer, Single Shell Commands
	shell-command-on-region, Single Shell Commands
	shell-command-regexp, Shell Mode
	shell-completion-execonly, Shell Mode Options
	shell-completion-fignore, Shell Mode
	shell-file-name, Single Shell Commands
	shell-forward-command, Shell Mode
	shell-input-ring-file-name, Shell History Ring
	shell-popd-regexp, Directory Tracking
	shell-prompt-pattern, Shell Prompts
	shell-pushd-dextract, Shell Mode Options
	shell-pushd-dunique, Shell Mode Options
	shell-pushd-regexp, Directory Tracking
	shell-pushd-tohome, Shell Mode Options
	Shell-script mode, Major Modes for Programming Languages
	shelves in version control, VC Directory Commands
	shift-selection, Setting the Mark, Shift Selection
	Show Paren mode, Matching Parentheses
	show-all, Outline Visibility Commands
	show-branches, Outline Visibility Commands
	show-children, Outline Visibility Commands
	show-entry, Outline Visibility Commands
	show-paren-mode, Matching Parentheses
	show-subtree, Outline Visibility Commands
	show-trailing-whitespace, Useless Whitespace
	showing hidden subdirectories (Dired), Hiding Subdirectories
	shrink-window-horizontally, Deleting and Rearranging Windows
	shrink-window-if-larger-than-buffer, Deleting and Rearranging Windows
	shy group, in regexp, Backslash in Regular Expressions
	signing files (in Dired), Operating on Files
	Simula mode, Major Modes for Programming Languages
	simulation of middle mouse button, Mouse Usage on MS-Windows
	simultaneous editing, Protection against Simultaneous Editing
	site init file, The Emacs Initialization File
	site-start.el file, not loading, Initial Options
	site-start.el, the site startup file, The Emacs Initialization File
	size of file, warning when visiting, Visiting Files
	size of minibuffer, Editing in the Minibuffer
	size-indication-mode, Optional Mode Line Features
	slashes repeated in file name, Minibuffers for File Names
	SliTeX mode, TeX Mode
	slitex-mode, TeX Mode
	slitex-mode-hook, TeX Mode Miscellany
	Slovak, International Character Set Support
	Slovenian, International Character Set Support
	slow display during scrolling, Font Lock mode
	small-temporary-file-directory, Backup Files
	Smerge mode, Comparing Files
	smerge-mode, Comparing Files
	SMTP, Mail Sending
	snake, Other Amusements
	Snake, Other Amusements
	soft hyphen, How Text Is Displayed
	soft newline, Hard and Soft Newlines
	solitaire, Other Amusements
	sort-columns, Sorting Text
	sort-fields, Sorting Text
	sort-fold-case, Sorting Text
	sort-lines, Sorting Text
	sort-numeric-base, Sorting Text
	sort-numeric-fields, Sorting Text
	sort-pages, Sorting Text
	sort-paragraphs, Sorting Text
	sorting, Sorting Text
	sorting diary entries, Fancy Diary Display
	sorting Dired buffer, Updating the Dired Buffer
	sorting Rmail file, Sorting the Rmail File
	Spanish, International Character Set Support
	SPC (Calendar mode), Miscellaneous Calendar Commands
	SPC (completion), Completion Commands
	SPC (Dired), Navigation in the Dired Buffer
	SPC (DocView mode), DocView Navigation
	SPC (GDB Breakpoints buffer), Breakpoints Buffer
	SPC (Gnus Group mode), Using the Gnus Group Buffer
	SPC (Gnus Summary mode), Using the Gnus Summary Buffer
	SPC (Rmail), Scrolling Within a Message
	SPC (View mode), View Mode
	specific version control system, Advanced Control in C-x v v
	specify default font from the command line, Font Specification Options
	specify end-of-line conversion, Specifying a Coding System for File Text
	specifying fullscreen for Emacs frame, Options for Window Size and Position
	speedbar, Speedbar Frames
	spell-checking the active region, Checking and Correcting Spelling
	spelling, checking and correcting, Checking and Correcting Spelling
	splash screen, Initial Options
	split-height-threshold, How display-buffer works
	split-line, Indentation Commands
	split-width-threshold, How display-buffer works
	split-window-below, Splitting Windows
	split-window-keep-point, Splitting Windows
	split-window-right, Splitting Windows
	splitting columns, Two-Column Editing
	splitting table cells, Commands for Table Cells
	spook, Mail Amusements
	standard colors on a character terminal, Window Color Options
	standard fontset, Defining fontsets
	standard-display-8bit, Unibyte Editing Mode
	standard-fontset-spec, Defining fontsets
	standard-indent, Indentation in Enriched Text
	start directory, MS-Windows, How to Start Emacs on MS-Windows
	start iconified, command-line argument, Icons
	starting Emacs, Entering Emacs
	starting Emacs on MS-Windows, How to Start Emacs on MS-Windows
	startup (command line arguments), Command Line Arguments for Emacs Invocation
	startup (init file), The Emacs Initialization File
	startup fontset, Defining fontsets
	startup message, Initial Options
	startup screen, Entering Emacs
	stashes in version control, VC Directory Commands
	string substitution, Replacement Commands
	string syntax, Init File Syntax
	string-insert-rectangle, Rectangles
	string-rectangle, Rectangles
	style (for indentation), Customizing C Indentation
	subdirectories in Dired, Subdirectories in Dired
	subprocesses on MS-Windows, Subprocesses on Windows 9X/ME and Windows NT/2K/XP
	subscribe groups, Using the Gnus Group Buffer
	subshell, Running Shell Commands from Emacs
	substitute-key-definition, Init File Examples
	subtree (Outline mode), Outline Visibility Commands
	Subversion, Supported Version Control Systems
	subword-mode, Other Commands for C Mode
	suggest-key-bindings, Running Commands by Name
	summary (Rmail), Summaries
	summing time intervals, Summing Time Intervals
	sunrise and sunset, Times of Sunrise and Sunset
	sunrise-sunset, Times of Sunrise and Sunset
	Super (under MS-DOS), Keyboard Usage on MS-DOS
	suspend-frame, Exiting Emacs, Frame Commands
	suspending, Exiting Emacs
	suspicious constructions in C, C++, Other Commands for C Mode
	SVN, Supported Version Control Systems
	switch buffers, Creating and Selecting Buffers
	switch-to-buffer, Creating and Selecting Buffers
	switch-to-buffer-other-frame, Creating and Selecting Buffers
	switch-to-buffer-other-window, Creating and Selecting Buffers, Displaying in Another Window
	switch-to-completions, Completion Commands
	switches (command line), Command Line Arguments for Emacs Invocation
	symbolic links (and version control), General Options
	symbolic links (creation in Dired), Operating on Files
	symbolic links (creation), Miscellaneous File Operations
	symbolic links (visiting), File Name Aliases
	synchronizing windows, Follow Mode
	synchronous X mode, Table of X Resources for Emacs
	syntax highlighting and coloring, Font Lock mode
	syntax of regexps, Syntax of Regular Expressions
	system-wide packages, Package Files and Directory Layout

T
	t, Glossary
	t (Calendar mode), Writing Calendar Files
	t (Dired), Dired Marks vs. Flags
	T (Dired), Operating on Files
	t (Rmail), Display of Messages
	TAB (and major modes), Major Modes
	TAB (completion), Completion Example, Completion Commands
	TAB (customization buffer), Customization Groups
	TAB (GUD), Commands of GUD
	TAB (Help mode), Help Mode Commands
	TAB (indentation), Indentation
	TAB (Message mode), Mail Header Editing
	TAB (Org Mode), Org Mode
	TAB (programming modes), Basic Program Indentation Commands
	TAB (Shell mode), Shell Mode
	TAB (Text mode), Text Mode
	tab stops, Tab Stops
	tab-always-indent, Convenience Features for Indentation
	tab-stop-list, Tab Stops
	tab-to-tab-stop, Indentation Commands
	tab-width, How Text Is Displayed, Tabs vs. Spaces
	tabify, Tabs vs. Spaces
	table creation, Creating a Table
	table dimensions, Table Miscellany
	table for HTML and LaTeX, Table Miscellany
	table mode, Editing Text-based Tables
	table recognition, Table Recognition
	table to text, Converting Between Plain Text and Tables
	table-backward-cell, Commands for Table Cells
	table-capture, Converting Between Plain Text and Tables
	table-cell-horizontal-chars, What is a Text-based Table?
	table-cell-intersection-char, What is a Text-based Table?
	table-cell-vertical-char, What is a Text-based Table?
	table-detect-cell-alignment, Cell Justification
	table-fixed-width-mode, Editing Text-based Tables
	table-forward-cell, Commands for Table Cells
	table-generate-source, Table Miscellany
	table-heighten-cell, Commands for Table Cells
	table-insert, Creating a Table
	table-insert-column, Table Rows and Columns
	table-insert-row, Table Rows and Columns
	table-insert-sequence, Table Miscellany
	table-justify, Cell Justification
	table-narrow-cell, Commands for Table Cells
	table-query-dimension, Table Miscellany
	table-recognize, Table Recognition
	table-recognize-cell, Table Recognition
	table-recognize-region, Table Recognition
	table-recognize-table, Table Recognition
	table-release, Converting Between Plain Text and Tables
	table-shorten-cell, Commands for Table Cells
	table-span-cell, Commands for Table Cells
	table-split-cell, Commands for Table Cells
	table-split-cell-horizontally, Commands for Table Cells
	table-split-cell-vertically, Commands for Table Cells
	table-unrecognize, Table Recognition
	table-unrecognize-cell, Table Recognition
	table-unrecognize-region, Table Recognition
	table-unrecognize-table, Table Recognition
	table-widen-cell, Commands for Table Cells
	tabs, Indentation
	tags and tag tables, Tags Tables
	tags for version control, Revision Tags
	tags, C++, Tags Tables
	tags-apropos, Tags Table Inquiries
	tags-apropos-additional-actions, Tags Table Inquiries
	tags-apropos-verbose, Tags Table Inquiries
	tags-based completion, Completion for Symbol Names
	tags-case-fold-search, Searching and Replacing with Tags Tables
	tags-file-name, Selecting a Tags Table
	tags-loop-continue, Searching and Replacing with Tags Tables
	tags-query-replace, Searching and Replacing with Tags Tables
	tags-search, Searching and Replacing with Tags Tables
	tags-table-list, Selecting a Tags Table
	tags-tag-face, Tags Table Inquiries
	Tar mode, File Archives
	Tcl mode, Major Modes for Programming Languages
	Telnet, Remote Host Shell
	temporary-file-directory, Backup Files
	term, Emacs Terminal Emulator
	TERM environment variable, Checklist for Bug Reports
	Term mode, Term Mode
	term-char-mode, Term Mode
	term-file-prefix, Terminal-specific Initialization
	term-line-mode, Term Mode
	term-pager-toggle, Term Mode
	term-setup-hook, Terminal-specific Initialization
	terminal emulators, mouse support, Using a Mouse in Text Terminals
	terminal, serial, Serial Terminal
	termscript file, Checklist for Bug Reports
	tetris, Other Amusements
	Tetris, Other Amusements
	TeX encoding, TeX Mode Miscellany
	TeX mode, TeX Mode
	tex-bibtex-command, TeX Printing Commands
	tex-bibtex-file, TeX Printing Commands
	tex-buffer, TeX Printing Commands
	tex-close-latex-block, LaTeX Editing Commands
	tex-compile, TeX Printing Commands
	tex-default-mode, TeX Mode
	tex-directory, TeX Printing Commands
	tex-dvi-print-command, TeX Printing Commands
	tex-dvi-view-command, TeX Printing Commands
	tex-file, TeX Printing Commands
	tex-insert-braces, TeX Editing Commands
	tex-insert-quote, TeX Editing Commands
	tex-kill-job, TeX Printing Commands
	tex-latex-block, LaTeX Editing Commands
	tex-main-file, TeX Printing Commands
	tex-mode, TeX Mode
	tex-mode-hook, TeX Mode Miscellany
	tex-print, TeX Printing Commands
	tex-recenter-output-buffer, TeX Printing Commands
	tex-region, TeX Printing Commands
	tex-run-command, TeX Printing Commands
	tex-shell-hook, TeX Mode Miscellany
	tex-start-commands, TeX Printing Commands
	tex-start-options, TeX Printing Commands
	tex-terminate-paragraph, TeX Editing Commands
	tex-validate-region, TeX Editing Commands
	tex-view, TeX Printing Commands
	TEXEDIT environment variable, Using Emacs as a Server
	TEXINPUTS environment variable, TeX Printing Commands
	text, Commands for Human Languages
	text and binary files on MS-DOS/MS-Windows, Text Files and Binary Files
	text buttons, Following References with the Mouse
	text colors, from command line, Window Color Options
	text cursor, Displaying the Cursor
	Text mode, Text Mode
	text properties at point, Introduction to International Character Sets
	text properties of characters, Editing Format Information
	text terminal, Non-Window Terminals
	text to table, Converting Between Plain Text and Tables
	text-based tables, Editing Text-based Tables
	text-based tables, splitting cells, Commands for Table Cells
	text-mode, Text Mode
	text-mode-hook, Major Modes, Text Mode
	text-scale-adjust, Text Scale
	text-scale-decrease, Text Scale
	text-scale-increase, Text Scale
	text-scale-mode, Text Scale
	text-scale-set, Text Scale
	text/enriched MIME format, Enriched Text
	Thai, International Character Set Support
	thumbs-mode, Convenience Features for Finding Files
	Tibetan, International Character Set Support
	time (on mode line), Optional Mode Line Features
	time intervals, summing, Summing Time Intervals
	time stamps, Updating Time Stamps Automatically
	time-stamp, Updating Time Stamps Automatically
	timeclock, Summing Time Intervals
	timeclock-ask-before-exiting, Summing Time Intervals
	timeclock-change, Summing Time Intervals
	timeclock-file, Summing Time Intervals
	timeclock-in, Summing Time Intervals
	timeclock-modeline-display, Summing Time Intervals
	timeclock-out, Summing Time Intervals
	timeclock-reread-log, Summing Time Intervals
	timeclock-when-to-leave, Summing Time Intervals
	timeclock-workday-remaining, Summing Time Intervals
	TLS encryption (Rmail), Retrieving Mail from Remote Mailboxes
	tmm-menubar, The Menu Bar
	TODO item, Org as an organizer
	toggle-debug-on-error, Checklist for Bug Reports
	toggle-enable-multibyte-characters, Disabling Multibyte Characters
	toggle-gdb-all-registers, Other GDB Buffers
	toggle-input-method, Selecting an Input Method
	toggle-read-only, Miscellaneous Buffer Operations
	toggle-scroll-bar, Scroll Bars
	toggle-truncate-lines, Line Truncation
	toggling marks (in Dired), Dired Marks vs. Flags
	tool bar, Table of X Resources for Emacs
	Tool Bar mode, Tool Bars
	Tool Bar position, Tool Bars
	Tool Bar style, Tool Bars
	tool-bar-mode, Tool Bars
	tool-bar-style, Tool Bars
	tooltip-delay, Tooltips
	tooltip-mode, Tooltips
	tooltips, Help on Active Text and Tooltips, Tooltips
	top level, The Mode Line
	top-level, Quitting and Aborting
	tower of Hanoi, Other Amusements
	TPU, Emulation
	tpu-edt-on, Emulation
	track-eol, Changing the Location of Point
	trailing whitespace, Useless Whitespace
	Tramp, Remote Files
	Transient Mark mode, Disabling Transient Mark Mode
	transient-mark-mode, Disabling Transient Mark Mode
	transpose-chars, Transposing Text
	transpose-lines, Transposing Text
	transpose-sexps, Expressions with Balanced Parentheses
	transpose-words, Transposing Text
	transposition of expressions, Expressions with Balanced Parentheses
	trash, Miscellaneous File Operations
	triple clicks, Rebinding Mouse Buttons
	truenames of files, File Name Aliases
	truncate-lines, Line Truncation
	truncate-partial-width-windows, Line Truncation, Splitting Windows
	truncation, Continuation Lines, Line Truncation
	tty-suppress-bold-inverse-default-colors, Customization of Display
	Turkish, International Character Set Support
	turn multibyte support on or off, Disabling Multibyte Characters
	two directories (in Dired), Operating on Files
	two-column editing, Two-Column Editing
	types of log file, Types of Log File
	typos, fixing, Commands for Fixing Typos

U
	u (Calendar mode), Holidays
	u (Dired deletion), Deleting Files with Dired
	u (Dired), Dired Marks vs. Flags
	U (Dired), Dired Marks vs. Flags
	u (Gnus Group mode), Using the Gnus Group Buffer
	u (Rmail), Deleting Messages
	ucs-insert, Inserting Text
	unbalanced parentheses and quotes, Commands for Editing with Parentheses
	uncomment-region, Comment Commands
	uncompression, Accessing Compressed Files
	undecided, coding system, Coding Systems
	undeletion (Rmail), Deleting Messages
	underline-minimum-offset, Customization of Display
	undigestify, Digest Messages
	undigestify-rmail-message, Digest Messages
	undisplayable characters, Introduction to International Character Sets
	undo, Undo
	undo limit, Undo
	undo-limit, Undo
	undo-only, Undo
	undo-outer-limit, Undo
	undo-strong-limit, Undo
	undoing window configuration changes, Convenience Features for Window Handling
	unexpand-abbrev, Controlling Abbrev Expansion
	unforward-rmail-message, Sending Replies
	unhighlight-regexp, Interactive Highlighting
	Unibyte operation, Unibyte Editing Mode
	unibyte operation, and Lisp files, Disabling Multibyte Characters
	unibyte-display-via-language-environment, Unibyte Editing Mode
	Unicode, Introduction to International Character Sets
	Unicode characters, inserting, Inserting Text
	unique buffer names, Making Buffer Names Unique
	uniquify-buffer-name-style, Making Buffer Names Unique
	universal-argument, Numeric Arguments
	universal-coding-system-argument, Specifying a Coding System for File Text
	unmarking files (in Dired), Dired Marks vs. Flags
	unmorse-region, Other Amusements
	unsubscribe groups, Using the Gnus Group Buffer
	untabify, Tabs vs. Spaces
	untranslated file system, Text Files and Binary Files
	unused lines, Useless Whitespace
	unzip archives, File Archives
	UP, Changing the Location of Point
	UP (minibuffer history), Minibuffer History
	up-list, TeX Editing Commands
	upcase file names, Transforming File Names in Dired
	upcase-region, Case Conversion Commands
	upcase-word, Case Conversion Commands
	updating Dired buffer, Updating the Dired Buffer
	URL, viewing in help, Help Mode Commands
	URLs, Following URLs
	URLs, activating, Activating URLs
	use-dialog-box, Using Dialog Boxes
	use-file-dialog, Using Dialog Boxes
	use-hard-newlines, Hard and Soft Newlines
	Usenet news, Gnus
	user name for remote file access, Remote Files
	user option, Easy Customization Interface
	user options, changing, Changing a Variable
	user-full-name, Mail Header Fields
	user-mail-address, Mail Header Fields, Init File Examples
	user-mail-address, initialization, General Variables
	UTF-8, Language Environments

V
	v (Dired), Visiting Files in Dired
	v (Rmail), Display of Messages
	variable, Variables
	variables, changing, Changing a Variable
	VC Directory buffer, VC Directory Mode
	VC filesets, Basic Editing under Version Control
	VC mode line indicator, Version Control and the Mode Line
	vc-annotate, Examining And Comparing Old Revisions
	vc-backend-header, Inserting Version Control Headers
	vc-command-messages, General Options
	vc-consult-headers, Inserting Version Control Headers, Options for RCS and SCCS
	vc-create-tag, Revision Tags
	vc-cvs-global-switches, Options specific for CVS
	vc-cvs-stay-local, The VC Directory Buffer, Options specific for CVS
	vc-delete-file, Deleting and Renaming Version-Controlled Files
	vc-diff, Examining And Comparing Old Revisions
	vc-diff-switches, Examining And Comparing Old Revisions
	vc-dir, VC Directory Mode
	vc-dir-mark, VC Directory Commands
	vc-dir-mark-all-files, VC Directory Commands
	vc-directory-exclusion-list, The VC Directory Buffer
	vc-ediff, Examining And Comparing Old Revisions
	vc-follow-symlinks, General Options
	vc-handled-backends, Customizing VC
	vc-insert-headers, Inserting Version Control Headers
	vc-log-mode-hook, Features of the Log Entry Buffer
	vc-log-show-limit, VC Change Log
	vc-make-backup-files, Backup Files, General Options
	vc-mistrust-permissions, Options for RCS and SCCS
	vc-next-action, Basic Editing under Version Control
	vc-path, General Options
	vc-print-log, VC Change Log
	vc-print-root-log, VC Change Log
	vc-pull, Pulling Changes into a Branch
	vc-register, Registering a File for Version Control
	vc-rename-file, Deleting and Renaming Version-Controlled Files
	vc-retrieve-tag, Revision Tags
	vc-revert, Undoing Version Control Actions
	vc-revert-show-diff, Undoing Version Control Actions
	vc-revision-other-window, Examining And Comparing Old Revisions
	vc-root-diff, Examining And Comparing Old Revisions
	vc-static-header-alist, Inserting Version Control Headers
	vc-stay-local, The VC Directory Buffer, Options specific for CVS
	vc-suppress-confirm, General Options
	vc-update-change-log, Change Logs and VC
	verifying digital signatures on files (in Dired), Operating on Files
	version control, Version Control
	version control log, Types of Log File
	version control status, Version Control and the Mode Line
	version-control, Single or Numbered Backups
	VERSION_CONTROL environment variable, Single or Numbered Backups
	vertical scroll bars, command-line argument, Other Display Options
	VHDL mode, Major Modes for Programming Languages
	vi, Emulation
	vi-mode, Emulation
	Vietnamese, International Character Set Support
	View mode, View Mode
	view-buffer, View Mode
	view-echo-area-messages, Other Help Commands
	view-emacs-debugging, Help Files
	view-emacs-FAQ, Help Files
	view-emacs-news, Help Files
	view-emacs-problems, Help Files
	view-emacs-todo, Help Files
	View-exit, View Mode
	view-external-packages, Help Files
	view-file, View Mode
	view-hello-file, Introduction to International Character Sets
	view-lossage, Other Help Commands
	view-order-manuals, Help Files
	View-quit, View Mode
	view-register, Registers
	viewing web pages in help, Help Mode Commands
	views of an outline, Viewing One Outline in Multiple Views
	vip-mode, Emulation
	viper-mode, Emulation
	visible-bell, Customization of Display
	visible-cursor, Displaying the Cursor
	visit-tags-table, Selecting a Tags Table
	visiting files, Visiting Files
	visiting files, command-line argument, Action Arguments
	Visual Line mode, Visual Line Mode
	visual order, Bidirectional Editing
	visual-line-mode, Visual Line Mode

W
	w (Dired), Other Dired Features
	w (Rmail), Copying Messages Out to Files
	w32-alt-is-meta, Keyboard Usage on MS-Windows
	w32-apps-modifier, Keyboard Usage on MS-Windows
	w32-capslock-is-shiftlock, Keyboard Usage on MS-Windows
	w32-charset-info-alist, Specifying Fonts on MS-Windows
	w32-enable-caps-lock, Keyboard Usage on MS-Windows
	w32-enable-num-lock, Keyboard Usage on MS-Windows
	w32-get-true-file-attributes, File Names on MS-Windows
	w32-grab-focus-on-raise, Miscellaneous Windows-specific features
	w32-lwindow-modifier, Keyboard Usage on MS-Windows
	w32-mouse-button-tolerance, Mouse Usage on MS-Windows
	w32-pass-alt-to-system, Keyboard Usage on MS-Windows
	w32-pass-extra-mouse-buttons-to-system, Mouse Usage on MS-Windows
	w32-pass-lwindow-to-system, Keyboard Usage on MS-Windows
	w32-pass-rwindow-to-system, Keyboard Usage on MS-Windows
	w32-quote-process-args, Subprocesses on Windows 9X/ME and Windows NT/2K/XP
	w32-recognize-altgr, Keyboard Usage on MS-Windows
	w32-register-hot-key, Keyboard Usage on MS-Windows
	w32-rwindow-modifier, Keyboard Usage on MS-Windows
	w32-scroll-lock-modifier, Keyboard Usage on MS-Windows
	w32-shell-execute, Subprocesses on Windows 9X/ME and Windows NT/2K/XP
	w32-standard-fontset-spec, Defining fontsets
	w32-swap-mouse-buttons, Mouse Usage on MS-Windows
	w32-unregister-hot-key, Keyboard Usage on MS-Windows
	w32-use-visible-system-caret, Miscellaneous Windows-specific features
	Watching expressions in GDB, Watch Expressions
	wdired mode, Editing the Dired Buffer
	wdired-change-to-wdired-mode, Editing the Dired Buffer
	wdired-finish-edit, Editing the Dired Buffer
	Web, Following URLs
	web pages, viewing in help, Help Mode Commands
	weeks, which day they start on, Beginning or End of Week, Month or Year
	what-cursor-position, Cursor Position Information, Introduction to International Character Sets
	what-line, Cursor Position Information
	what-page, Pages
	where-is, Documentation for a Key
	which-func-modes, Which Function Mode
	which-function-mode, Which Function Mode
	whitespace character, Indentation
	Whitespace mode, Useless Whitespace
	whitespace, trailing, Useless Whitespace
	whitespace-line-column, Useless Whitespace
	whitespace-mode, Useless Whitespace
	whitespace-style, Useless Whitespace
	wide block cursor, Displaying the Cursor
	widen, Narrowing
	widening, Narrowing
	widget-backward, Customization Groups
	widget-complete, Changing a Variable
	widget-forward, Customization Groups
	widgets at buffer position, Editing Format Information
	width and height of Emacs frame, Options for Window Size and Position
	width of the scroll bar, Scroll Bars
	wildcard characters in file names, Visiting Files
	Windmove package, Convenience Features for Window Handling
	windmove-default-keybindings, Convenience Features for Window Handling
	windmove-right, Convenience Features for Window Handling
	window configuration changes, undoing, Convenience Features for Window Handling
	window manager, keys stolen by, Kinds of User Input
	window-configuration-to-register, Saving Window Configurations in Registers
	window-min-height, Deleting and Rearranging Windows
	window-min-width, Deleting and Rearranging Windows
	Windows clipboard support, Mouse Usage on MS-DOS
	windows in Emacs, Multiple Windows
	Windows system menu, Keyboard Usage on MS-Windows
	windows, synchronizing, Follow Mode
	Winner mode, Convenience Features for Window Handling
	winner-mode, Convenience Features for Window Handling
	woman, Man Page Lookup
	word processing, Enriched Text
	word search, Word Search
	word wrap, Continuation Lines, Visual Line Mode
	word-search-backward, Word Search
	word-search-forward, Word Search
	words, Words
	words, case conversion, Case Conversion Commands
	WordStar, Emulation
	wordstar-mode, Emulation
	work file, Concepts of Version Control
	working tree, Concepts of Version Control
	World Wide Web, Following URLs
	wrapping, Continuation Lines
	write-abbrev-file, Saving Abbrevs
	write-file, Commands for Saving Files
	write-region, Miscellaneous File Operations
	write-region-inhibit-fsync, Customizing Saving of Files
	WYSIWYG, Enriched Text

X
	x (Calendar mode), Holidays
	x (Dired), Deleting Files with Dired
	X (Dired), Shell Commands in Dired
	x (Rmail), Deleting Messages
	X cutting and pasting, Cut and Paste with Other Window Applications
	X defaults file, Fonts
	X input methods, Table of X Resources for Emacs
	X Logical Font Description, Fonts
	X resources, X Resources
	X resources file, Fonts
	X selection, Cut and Paste with Other Window Applications
	x-gtk-file-dialog-help-text, Using Dialog Boxes
	x-gtk-show-hidden-files, Using Dialog Boxes
	x-gtk-use-system-tooltips, Tooltips
	x-mouse-click-focus-ignore-position, Mouse Commands for Editing
	x-select-enable-clipboard, Using the Clipboard
	x-select-enable-clipboard-manager, Using the Clipboard
	x-select-enable-primary, Using the Clipboard
	x-select-request-type, Coding Systems for Interprocess Communication
	x-stretch-cursor, Displaying the Cursor
	x-underline-at-descent-line, Customization of Display
	XDB, Running Debuggers Under Emacs
	xdb, Starting GUD
	xdb-mode-hook, GUD Customization
	XIM, Table of X Resources for Emacs
	XLFD, Fonts
	XML schema, SGML and HTML Modes
	xterm, Using a Mouse in Text Terminals

Y
	yahrzeits, Converting From Other Calendars, Sexp Entries and the Fancy Diary Display
	yank, Yanking
	yank-pop, Yanking Earlier Kills
	yank-pop-change-selection, Using the Clipboard
	yank-rectangle, Rectangles
	yanking, Yanking
	yanking previous kills, Yanking Earlier Kills

Z
	Z (Dired), Operating on Files
	zap-to-char, Other Kill Commands
	zip, File Archives
	Zmacs mode, Disabling Transient Mark Mode
	zone, Other Amusements
	zoo, File Archives
	zrgrep, Searching with Grep under Emacs

Chapter . Variable Index

Index

Symbols
	! (Dired), Shell Commands in Dired
	" (TeX mode), TeX Editing Commands
	# (Dired), Flagging Many Files at Once
	$ (Dired), Hiding Subdirectories
	$ in file names, File Names
	% & (Dired), Flagging Many Files at Once
	% C (Dired), Transforming File Names in Dired
	% d (Dired), Flagging Many Files at Once
	% g (Dired), Dired Marks vs. Flags
	% H (Dired), Transforming File Names in Dired
	% l (Dired), Transforming File Names in Dired
	% m (Dired), Dired Marks vs. Flags
	% R (Dired), Transforming File Names in Dired
	% S (Dired), Transforming File Names in Dired
	% u (Dired), Transforming File Names in Dired
	(in leftmost column, Left Margin Convention
	* ! (Dired), Dired Marks vs. Flags
	* % (Dired), Dired Marks vs. Flags
	* * (Dired), Dired Marks vs. Flags
	* / (Dired), Dired Marks vs. Flags
	* ? (Dired), Dired Marks vs. Flags
	* @ (Dired), Dired Marks vs. Flags
	* c (Dired), Dired Marks vs. Flags
	* C-n (Dired), Dired Marks vs. Flags
	* C-p (Dired), Dired Marks vs. Flags
	* DEL (Dired), Dired Marks vs. Flags
	* m (Dired), Dired Marks vs. Flags
	* s (Dired), Dired Marks vs. Flags
	* t (Dired), Dired Marks vs. Flags
	* u (Dired), Dired Marks vs. Flags
	Messages buffer, The Echo Area
	+ (Dired), Other Dired Features
	+ (DocView mode), DocView Navigation
	+linenum, Action Arguments
	- (DocView mode), DocView Navigation
	-bd, Window Color Options
	-bg, Window Color Options
	-bw, Internal and External Borders
	-chdir, Initial Options
	-cr, Window Color Options
	-d, Initial Options
	-D, Other Display Options
	-daemon, Initial Options
	-f, Action Arguments
	-fg, Window Color Options
	-fh, Options for Window Size and Position
	-fn, Font Specification Options
	-fs, Options for Window Size and Position
	-fw, Options for Window Size and Position
	-g, Options for Window Size and Position
	-ib, Internal and External Borders
	-l, Action Arguments
	-L, Action Arguments
	-lsp, Other Display Options
	-mm, Options for Window Size and Position
	-ms, Window Color Options
	-nbc, Other Display Options
	-nbi, Icons
	-nw, Initial Options
	-q, Initial Options
	-Q, Initial Options
	-r, Window Color Options
	-rv, Window Color Options
	-t, Initial Options
	-T, Frame Titles
	-u, Initial Options
	-vb, Other Display Options
	. (Calendar mode), Specified Dates
	. (Dired), Flagging Many Files at Once
	. (Rmail), Scrolling Within a Message
	.dir-locals.el file, Per-Directory Local Variables
	.emacs file, The Emacs Initialization File
	.mailrc file, Mail Aliases
	.newsrc file, When Gnus Starts Up
	.timelog file, Summing Time Intervals
	/ (Rmail), Scrolling Within a Message
	// in file name, Minibuffers for File Names
	2C-associate-buffer, Two-Column Editing
	2C-dissociate, Two-Column Editing
	2C-merge, Two-Column Editing
	2C-newline, Two-Column Editing
	2C-split, Two-Column Editing
	2C-two-columns, Two-Column Editing
	5x5, Other Amusements
	7z, File Archives
	8-bit display, Unibyte Editing Mode
	8-bit input, Unibyte Editing Mode
	:d (Dired), Operating on Files
	:e (Dired), Operating on Files
	:s (Dired), Operating on Files
	:v (Dired), Operating on Files
	< (Calendar mode), Scrolling in the Calendar
	< (Dired), Moving Over Subdirectories
	< (Rmail), Moving Among Messages
	= (Dired), File Comparison with Dired
	> (Calendar mode), Scrolling in the Calendar
	> (Dired), Moving Over Subdirectories
	> (Rmail), Moving Among Messages
	? (completion), Completion Commands
	^ (Dired), Visiting Files in Dired
	_emacs init file, MS-Windows, HOME and Startup Directories on MS-Windows
	~ (Dired), Flagging Many Files at Once
	~/.emacs file, The Emacs Initialization File
	~/.emacs.d/gtkrc file, GTK resources
	~/.gtkrc-2.0 file, GTK resources
	~/.Xdefaults file, X Resources
	~/.Xresources file, X Resources
	–/—/.-./.../., Other Amusements
	–background-color, Window Color Options
	–basic-display, Other Display Options
	–batch, Initial Options
	–border-color, Window Color Options
	–border-width, Internal and External Borders
	–chdir, Initial Options
	–color, Window Color Options
	–cursor-color, Window Color Options
	–daemon, Initial Options
	–debug-init, Initial Options
	–directory, Action Arguments
	–display, Initial Options
	–eval, Action Arguments
	–execute, Action Arguments
	–file, Action Arguments
	–find-file, Action Arguments
	–font, Font Specification Options
	–foreground-color, Window Color Options
	–fullheight, Options for Window Size and Position
	–fullscreen, Options for Window Size and Position
	–fullwidth, Options for Window Size and Position
	–funcall, Action Arguments
	–geometry, Options for Window Size and Position
	–help, Action Arguments
	–iconic, Icons
	–insert, Action Arguments
	–internal-border, Internal and External Borders
	–kill, Action Arguments
	–line-spacing, Other Display Options
	–load, Action Arguments
	–maximized, Options for Window Size and Position
	–mouse-color, Window Color Options
	–name, X Resources
	–no-bitmap-icon, Icons
	–no-blinking-cursor, Other Display Options
	–no-desktop, Initial Options
	–no-init-file, Initial Options
	–no-site-file, Initial Options
	–no-site-lisp, Initial Options
	–no-splash, Initial Options
	–no-window-system, Initial Options
	–quick, Initial Options
	–reverse-video, Window Color Options
	–script, Initial Options
	–terminal, Initial Options
	–title, Frame Titles
	–user, Initial Options
	–version, Action Arguments
	–vertical-scroll-bars, Other Display Options
	–visit, Action Arguments
	–xrm, X Resources
	‘?’ in display, Introduction to International Character Sets
	‘net use’, and printing on MS-Windows, Printing and MS-Windows

A
	a (Calendar mode), Holidays
	A (Dired), Operating on Files
	a (Rmail), Labels
	A and B buffers (Emerge), Overview of Emerge
	A k (Gnus Group mode), Using the Gnus Group Buffer
	A s (Gnus Group mode), Using the Gnus Group Buffer
	A u (Gnus Group mode), Using the Gnus Group Buffer
	A z (Gnus Group mode), Using the Gnus Group Buffer
	abbrev file, Saving Abbrevs
	Abbrev mode, Abbrev Concepts
	abbrev-all-caps, Controlling Abbrev Expansion
	abbrev-file-name, Saving Abbrevs
	abbrev-mode, Abbrev Concepts
	abbrev-prefix-mark, Controlling Abbrev Expansion
	abbrevs, Abbrevs
	abnormal hook, Hooks
	abort-recursive-edit, Quitting and Aborting
	aborting recursive edit, Quitting and Aborting
	accented characters, Unibyte Editing Mode
	accessible portion, Narrowing
	accumulating scattered text, Accumulating Text
	action options (command line), Command Line Arguments for Emacs Invocation
	active region, The Mark and the Region
	adaptive filling, Adaptive Filling
	adaptive-fill-first-line-regexp, Adaptive Filling
	adaptive-fill-function, Adaptive Filling
	adaptive-fill-mode, Adaptive Filling
	adaptive-fill-regexp, Adaptive Filling
	add-change-log-entry-other-window, Change Log Commands
	add-change-log-entry-other-window, in Diff mode, Diff Mode
	add-dir-local-variable, Per-Directory Local Variables
	add-file-local-variable, Specifying File Variables
	add-file-local-variable-prop-line, Specifying File Variables
	add-global-abbrev, Defining Abbrevs
	add-hook, Hooks
	add-log-always-start-new-record, Change Log Commands
	add-log-keep-changes-together, Change Log Commands
	add-mode-abbrev, Defining Abbrevs
	add-name-to-file, Miscellaneous File Operations
	add-untranslated-filesystem, Text Files and Binary Files
	Adding to the kill ring in Dired., Other Dired Features
	addpm, MS-Windows installation program, The MS-Windows System Registry
	adjust buffer face height, Text Scale
	aggressive scrolling, Automatic Scrolling
	alarm clock, Appointments
	alignment for comments, Comment Commands
	Alt key (MS-Windows), Keyboard Usage on MS-Windows
	Alt key invokes menu (Windows), Keyboard Usage on MS-Windows
	Alt-TAB vs M-TAB (MS-Windows), Keyboard Usage on MS-Windows
	ALTERNATE_EDITOR environment variable, emacsclient Options
	AltGr (MS-Windows), Keyboard Usage on MS-Windows
	AltGr key (MS-Windows), Keyboard Usage on MS-Windows
	ange-ftp, Remote Files
	ange-ftp-default-user, Remote Files
	ange-ftp-gateway-host, Remote Files
	ange-ftp-generate-anonymous-password, Remote Files
	ange-ftp-make-backup-files, Remote Files
	ange-ftp-smart-gateway, Remote Files
	animate, Other Amusements
	animate-birthday-present, Other Amusements
	animated images, Convenience Features for Finding Files
	anonymous FTP, Remote Files
	append-next-kill, Appending Kills
	append-to-buffer, Accumulating Text
	append-to-file, Accumulating Text
	append-to-register, Saving Text in Registers
	appending kills in the ring, Appending Kills
	apply-macro-to-region-lines, Basic Use
	appointment notification, Appointments
	appt-activate, Appointments
	appt-add, Appointments
	appt-audible, Appointments
	appt-delete, Appointments
	appt-delete-window-function, Appointments
	appt-disp-window-function, Appointments
	appt-display-diary, Appointments
	appt-display-duration, Appointments
	appt-display-format, Appointments
	appt-display-mode-line, Appointments
	appt-message-warning-time, Appointments
	appt-warning-time-regexp, Appointments
	apropos, Apropos
	apropos search results, order by score, Apropos
	apropos-command, Apropos
	apropos-do-all, Apropos
	apropos-documentation, Apropos
	apropos-documentation-sort-by-scores, Apropos
	apropos-sort-by-scores, Apropos
	apropos-value, Apropos
	apropos-variable, Apropos
	arc, File Archives
	Arch, Supported Version Control Systems
	Archive mode, File Archives
	arguments (command line), Command Line Arguments for Emacs Invocation
	arguments to commands, Numeric Arguments
	arrow keys, Changing the Location of Point
	ASCII, Kinds of User Input
	ASCII art, Commands for Human Languages
	ask-user-about-lock, Protection against Simultaneous Editing
	Asm mode, Asm Mode
	assembler mode, Asm Mode
	astronomical day numbers, Supported Calendar Systems
	async-shell-command, Single Shell Commands
	attached frame (of speedbar), Speedbar Frames
	attribute (Rmail), Labels
	attributes of mode line, changing, Optional Mode Line Features
	Auto Compression mode, Accessing Compressed Files
	Auto Fill mode, Auto Fill Mode
	Auto Save mode, Auto-Saving: Protection Against Disasters
	auto-coding-alist, Recognizing Coding Systems
	auto-coding-functions, Recognizing Coding Systems
	auto-coding-regexp-alist, Recognizing Coding Systems
	auto-compression-mode, Accessing Compressed Files
	auto-fill-mode, Auto Fill Mode
	auto-hscroll-mode, Horizontal Scrolling
	auto-mode-alist, Choosing File Modes
	auto-mode-case-fold, Choosing File Modes
	Auto-Revert mode, Reverting a Buffer
	auto-revert-check-vc-info, Version Control and the Mode Line
	auto-revert-interval, Reverting a Buffer
	auto-revert-mode, Reverting a Buffer
	auto-revert-tail-mode, Reverting a Buffer
	auto-save for remote files, Auto-Save Files
	auto-save-default, Controlling Auto-Saving
	auto-save-file-name-transforms, Auto-Save Files
	auto-save-interval, Controlling Auto-Saving
	auto-save-list-file-prefix, Recovering Data from Auto-Saves
	auto-save-mode, Controlling Auto-Saving
	auto-save-timeout, Controlling Auto-Saving
	auto-save-visited-file-name, Auto-Save Files
	autoload, Libraries of Lisp Code for Emacs
	autoload Lisp libraries, Init File Examples
	automatic version backups, Options specific for CVS
	avoiding mouse in the way of your typing, Mouse Avoidance
	AWK mode, C and Related Modes

B
	B (Dired), Operating on Files
	b (Rmail summary), Editing in Summaries
	b (Rmail), Basic Concepts of Rmail
	back end (version control), Supported Version Control Systems
	back reference, in regexp, Backslash in Regular Expressions
	back reference, in regexp replacement, Regexp Replacement
	back-to-indentation, Indentation Commands
	background color, Text Faces
	background color, command-line argument, Window Color Options
	background mode, on xterm, General Variables
	background syntax highlighting, Font Lock mode
	BACKSPACE vs DEL, If DEL Fails to Delete
	backtrace for bug reports, Checklist for Bug Reports
	backup file, Backup Files
	backup file names on MS-DOS, File Names on MS-DOS
	backup, and user-id, Copying vs. Renaming
	backup-by-copying, Copying vs. Renaming
	backup-by-copying-when-linked, Copying vs. Renaming
	backup-by-copying-when-mismatch, Copying vs. Renaming
	backup-by-copying-when-privileged-mismatch, Copying vs. Renaming
	backup-directory-alist, Single or Numbered Backups
	backup-enable-predicate, Backup Files
	backups for remote files, Remote Files
	backward-button, Help Mode Commands
	backward-char, Changing the Location of Point
	backward-delete-char-untabify, Major Modes for Programming Languages
	backward-kill-sentence, Sentences
	backward-kill-word, Words
	backward-list, Moving in the Parenthesis Structure
	backward-page, Pages
	backward-paragraph, Paragraphs
	backward-sentence, Sentences
	backward-sexp, Expressions with Balanced Parentheses
	backward-text-line, Nroff Mode
	backward-up-list, Moving in the Parenthesis Structure
	backward-word, Changing the Location of Point, Words
	Bahá'í calendar, Supported Calendar Systems
	balance-windows, Deleting and Rearranging Windows
	balanced expression, Expressions with Balanced Parentheses
	balloon help, Help on Active Text and Tooltips
	base buffer, Indirect Buffers
	base direction of paragraphs, Bidirectional Editing
	batch mode, Initial Options
	battery-mode-line-format, Optional Mode Line Features
	Bazaar, Supported Version Control Systems
	bdf-directory-list, Variables for PostScript Hardcopy
	beginning-of-buffer, Changing the Location of Point
	beginning-of-defun, Moving by Defuns
	beginning-of-visual-line, Visual Line Mode
	bibtex-mode, TeX Mode
	bidi-display-reordering, Bidirectional Editing
	bidi-paragraph-direction, Bidirectional Editing
	bidirectional editing, Bidirectional Editing
	binary files, on MS-DOS/MS-Windows, Text Files and Binary Files
	binary-overwrite-mode, Minor Modes
	binding, Keys and Commands
	binding keyboard macros, Naming and Saving Keyboard Macros
	binding keys, Changing Key Bindings Interactively
	blackbox, Other Amusements
	blank lines, Blank Lines
	blank lines in programs, Multiple Lines of Comments
	blink-cursor-alist, Displaying the Cursor
	blink-cursor-mode, Displaying the Cursor
	blink-matching-delay, Matching Parentheses
	blink-matching-paren, Matching Parentheses
	blink-matching-paren-distance, Matching Parentheses
	blinking cursor, Displaying the Cursor
	blinking cursor disable, command-line argument, Other Display Options
	body lines (Outline mode), Format of Outlines
	bookmark-delete, Bookmarks
	bookmark-insert, Bookmarks
	bookmark-insert-location, Bookmarks
	bookmark-jump, Bookmarks
	bookmark-load, Bookmarks
	bookmark-save, Bookmarks
	bookmark-save-flag, Bookmarks
	bookmark-search-size, Bookmarks
	bookmark-set, Bookmarks
	bookmark-write, Bookmarks
	bookmarks, Bookmarks
	border color, command-line argument, Window Color Options
	borders (X Window System), Internal and External Borders
	boredom, Other Amusements
	brace in column zero and fontification, Font Lock mode
	braces, moving across, Moving in the Parenthesis Structure
	branch (version control), Version Control Branches
	Brief emulation, Emulation
	browse-url, Help Mode Commands, Following URLs
	Browse-URL, Following URLs
	browse-url-at-mouse, Following URLs
	browse-url-at-point, Following URLs
	browse-url-browser-function, Following URLs
	browse-url-mailto-function, Following URLs
	BS (MS-DOS), Keyboard Usage on MS-DOS
	bs-show, Customizing Buffer Menus
	bubbles, Other Amusements
	buffer definitions index, Imenu
	buffer list, customizable, Customizing Buffer Menus
	buffer menu, Operating on Several Buffers, Customizing Buffer Menus
	buffer size display, Optional Mode Line Features
	buffer size, maximum, Using Multiple Buffers
	buffer-file-coding-system, Choosing Coding Systems for Output
	buffer-local hooks, Hooks
	buffer-menu, Operating on Several Buffers
	buffer-menu-other-window, Operating on Several Buffers
	buffer-read-only, Miscellaneous Buffer Operations
	buffer-stale-function, Adding Support for Auto-Reverting additional Buffers.
	buffers, Using Multiple Buffers
	bug tracker, Reading Existing Bug Reports and Known Problems
	bugs, Reporting Bugs
	building programs, Compiling and Testing Programs
	built-in package, The Package Menu Buffer
	button down events, Rebinding Mouse Buttons
	buttons, Following References with the Mouse
	buttons (customization buffer), Customization Groups
	buttons at buffer position, Editing Format Information
	bypassing init and default.el file, Initial Options
	byte code, Libraries of Lisp Code for Emacs
	byte-compiling several files (in Dired), Operating on Files
	bzr, Supported Version Control Systems

C
	C (Dired), Operating on Files
	c (Rmail), Sending Replies
	C editing, Editing Programs
	C mode, C and Related Modes
	C++ class browser, tags, Tags Tables
	C++ mode, C and Related Modes
	C-, Kinds of User Input
	C-/, Undo
	C-@, Setting the Mark
	C-a, Changing the Location of Point
	C-a (Calendar mode), Beginning or End of Week, Month or Year
	C-b, Changing the Location of Point
	C-b (Calendar mode), Motion by Standard Lengths of Time
	c-backslash-region, Other Commands for C Mode
	c-backward-conditional, C Mode Motion Commands
	c-beginning-of-defun, C Mode Motion Commands
	c-beginning-of-statement, C Mode Motion Commands
	C-BREAK (MS-DOS), Keyboard Usage on MS-DOS
	C-c ' (Picture mode), Controlling Motion after Insert
	C-c , j, Semantic
	C-c , J, Semantic
	C-c , l, Semantic
	C-c , SPC, Semantic
	C-c . (C mode), Customizing C Indentation
	C-c . (Picture mode), Controlling Motion after Insert
	C-c . (Shell mode), Shell History Ring
	C-c / (Picture mode), Controlling Motion after Insert
	C-c / (SGML mode), SGML and HTML Modes
	C-c 8 (SGML mode), SGML and HTML Modes
	C-c ; (Fortran mode), Fortran Comments
	C-c < (GUD), Commands of GUD
	C-c < (Picture mode), Controlling Motion after Insert
	C-c > (GUD), Commands of GUD
	C-c > (Picture mode), Controlling Motion after Insert
	C-c ? (SGML mode), SGML and HTML Modes
	C-c @ (Outline minor mode), Outline Mode
	C-c @ C-h, Hideshow minor mode
	C-c @ C-l, Hideshow minor mode
	C-c @ C-M-h, Hideshow minor mode
	C-c @ C-M-s, Hideshow minor mode
	C-c @ C-r, Hideshow minor mode
	C-c @ C-s, Hideshow minor mode
	C-c C-a (C mode), Electric C Characters
	C-c C-a (F90 mode), Motion Commands
	C-c C-a (Log Edit mode), Features of the Log Entry Buffer
	C-c C-a (Message mode), Mail Miscellany
	C-c C-a (Outline mode), Outline Visibility Commands
	C-c C-a (SGML mode), SGML and HTML Modes
	C-c C-a (Shell mode), Shell Mode
	C-c C-b (Help mode), Help Mode Commands
	C-c C-b (Message mode), Mail Header Editing
	C-c C-b (Outline mode), Outline Motion Commands
	C-c C-b (Picture mode), Controlling Motion after Insert
	C-c C-b (SGML mode), SGML and HTML Modes
	C-c C-b (Shell mode), Shell Mode
	C-c C-b (TeX mode), TeX Printing Commands
	C-c C-c (C mode), Comment Commands
	C-c C-c (customization buffer), Changing a Variable
	C-c C-c (Edit Abbrevs), Examining and Editing Abbrevs
	C-c C-c (Edit Tab Stops), Tab Stops
	C-c C-c (Log Edit mode), Features of the Log Entry Buffer
	C-c C-c (Message mode), Mail Sending
	C-c C-c (Outline mode), Outline Visibility Commands
	C-c C-c (Shell mode), Shell Mode
	C-c C-c (TeX mode), TeX Printing Commands
	C-c C-d (C Mode), Hungry Delete Feature in C
	C-c C-d (Fortran mode), Fortran Indentation and Filling Commands
	C-c C-d (GUD), Commands of GUD
	C-c C-d (Log Edit mode), Features of the Log Entry Buffer
	C-c C-d (Org Mode), Org as an organizer
	C-c C-d (Outline mode), Outline Visibility Commands
	C-c C-d (Picture mode), Basic Editing in Picture Mode
	C-c C-d (SGML mode), SGML and HTML Modes
	C-c C-DEL (C Mode), Hungry Delete Feature in C
	C-c C-DELETE (C Mode), Hungry Delete Feature in C
	C-c C-e (C mode), Other Commands for C Mode
	C-c C-e (F90 mode), Motion Commands
	C-c C-e (LaTeX mode), LaTeX Editing Commands
	C-c C-e (Org mode), Org as an authoring system
	C-c C-e (Outline mode), Outline Visibility Commands
	C-c C-e (Shell mode), Shell Mode
	C-c C-f (GUD), Commands of GUD
	C-c C-f (Log Edit mode), Features of the Log Entry Buffer
	C-c C-f (Outline mode), Outline Motion Commands
	C-c C-f (Picture mode), Controlling Motion after Insert
	C-c C-f (SGML mode), SGML and HTML Modes
	C-c C-f (Shell mode), Shell Mode
	C-c C-f (TeX mode), TeX Printing Commands
	C-c C-f C-b (Message mode), Mail Header Editing
	C-c C-f C-c (Message mode), Mail Header Editing
	C-c C-f C-f (Message mode), Mail Header Editing
	C-c C-f C-r (Message mode), Mail Header Editing
	C-c C-f C-s (Message mode), Mail Header Editing
	C-c C-f C-t (Message mode), Mail Header Editing
	C-c C-f C-w (Message mode), Mail Header Editing
	C-c C-i (GUD), Commands of GUD
	C-c C-i (Outline mode), Outline Visibility Commands
	C-c C-j (Term mode), Term Mode
	C-c C-k (Outline mode), Outline Visibility Commands
	C-c C-k (Picture mode), Picture Mode Rectangle Commands
	C-c C-k (Term mode), Term Mode
	C-c C-k (TeX mode), TeX Printing Commands
	C-c C-l (C mode), Electric C Characters
	C-c C-l (Calendar mode), Miscellaneous Calendar Commands
	C-c C-l (GUD), Commands of GUD
	C-c C-l (Outline mode), Outline Visibility Commands
	C-c C-l (Shell mode), Shell History Ring
	C-c C-l (TeX mode), TeX Printing Commands
	C-c C-n (C mode), C Mode Motion Commands
	C-c C-n (Fortran mode), Motion Commands
	C-c C-n (GUD), Commands of GUD
	C-c C-n (Outline mode), Outline Motion Commands
	C-c C-n (Rmail), Moving Among Messages
	C-c C-n (SGML mode), SGML and HTML Modes
	C-c C-n (Shell mode), Shell History Copying
	C-c C-o (LaTeX mode), LaTeX Editing Commands
	C-c C-o (Outline mode), Outline Visibility Commands
	C-c C-o (Shell mode), Shell Mode
	C-c C-p (C mode), C Mode Motion Commands
	C-c C-p (Fortran mode), Motion Commands
	C-c C-p (GUD), Commands of GUD
	C-c C-p (Outline mode), Outline Motion Commands
	C-c C-p (Rmail), Moving Among Messages
	C-c C-p (Shell mode), Shell History Copying
	C-c C-p (TeX mode), TeX Printing Commands
	C-c C-q (C mode), Commands for C Indentation
	C-c C-q (Message mode), Citing Mail
	C-c C-q (Outline mode), Outline Visibility Commands
	C-c C-q (Term mode), Term Mode
	C-c C-r (Fortran mode), Checking Columns in Fortran
	C-c C-r (GUD), Commands of GUD
	C-c C-r (Shell mode), Shell Mode
	C-c C-r (TeX mode), TeX Printing Commands
	C-c C-s (C mode), Other Commands for C Mode
	C-c C-s (GUD), Commands of GUD
	C-c C-s (Message mode), Mail Sending
	C-c C-s (Org Mode), Org as an organizer
	C-c C-s (Outline mode), Outline Visibility Commands
	C-c C-s (Shell mode), Shell Mode
	C-c C-t (GUD), Commands of GUD
	C-c C-t (Org Mode), Org as an organizer
	C-c C-t (Outline mode), Outline Visibility Commands
	C-c C-t (SGML mode), SGML and HTML Modes
	C-c C-u (C mode), C Mode Motion Commands
	C-c C-u (GUD), Commands of GUD
	C-c C-u (Outline mode), Outline Motion Commands
	C-c C-u (Shell mode), Shell Mode
	C-c C-v (SGML mode), SGML and HTML Modes
	C-c C-v (TeX mode), TeX Printing Commands
	C-c C-w (Fortran mode), Checking Columns in Fortran
	C-c C-w (Message mode), Mail Signature
	C-c C-w (Picture mode), Picture Mode Rectangle Commands
	C-c C-w (Shell mode), Shell Mode
	C-c C-x, Folding Editing
	C-c C-x (Picture mode), Picture Mode Rectangle Commands
	C-c C-x (Shell mode), Shell History Ring
	C-c C-y (Message mode), Citing Mail
	C-c C-y (Picture mode), Picture Mode Rectangle Commands
	C-c C-z, Folding Editing
	C-c C-z (Shell mode), Shell Mode
	C-c C-\ (C mode), Other Commands for C Mode
	C-c C-\ (Shell mode), Shell Mode
	C-c DEL (C Mode), Hungry Delete Feature in C
	C-c DELETE (C Mode), Hungry Delete Feature in C
	C-c RET (Goto Address mode), Activating URLs
	C-c RET (Shell mode), Shell History Copying
	C-c TAB (Picture mode), Picture Mode Tabs
	C-c TAB (SGML mode), SGML and HTML Modes
	C-c TAB (TeX mode), TeX Printing Commands
	C-c [(Enriched mode), Indentation in Enriched Text
	C-c [(Org Mode), Org as an organizer
	C-c \ (Picture mode), Controlling Motion after Insert
	C-c] (Enriched mode), Indentation in Enriched Text
	C-c ^ (Picture mode), Controlling Motion after Insert
	C-c ` (Picture mode), Controlling Motion after Insert
	C-c { (TeX mode), TeX Editing Commands
	C-c } (TeX mode), TeX Editing Commands
	c-context-line-break, Other Commands for C Mode
	C-d (Rmail), Deleting Messages
	C-d (Shell mode), Shell Mode
	c-default-style, Customizing C Indentation
	C-Down-Mouse-1, Customizing Buffer Menus
	C-e, Changing the Location of Point
	C-e (Calendar mode), Beginning or End of Week, Month or Year
	c-electric-backspace, Major Modes for Programming Languages
	c-end-of-defun, C Mode Motion Commands
	c-end-of-statement, C Mode Motion Commands
	C-f, Changing the Location of Point
	C-f (Calendar mode), Motion by Standard Lengths of Time
	c-fill-paragraph, Other Commands for C Mode
	c-forward-conditional, C Mode Motion Commands
	C-g, Quitting and Aborting
	C-g (Incremental search), Errors in Incremental Search
	C-g (MS-DOS), Keyboard Usage on MS-DOS
	c-guess, Customizing C Indentation
	c-guess-install, Customizing C Indentation
	C-h, Help
	C-h ., Help on Active Text and Tooltips
	C-h a, Apropos
	C-h b, Other Help Commands
	C-h c, Documentation for a Key
	C-h C, Coding Systems
	C-h C-c, Help Files
	C-h C-d, Help Files
	C-h C-e, Help Files
	C-h C-f, Help Files
	C-h C-h, Help
	C-h C-m, Help Files
	C-h C-n, Help Files
	C-h C-o, Help Files
	C-h C-p, Help Files
	C-h C-t, Help Files
	C-h C-w, Help Files
	C-h C-\, Selecting an Input Method
	C-h d, Apropos
	C-h e, Other Help Commands
	C-h f, Help by Command or Variable Name
	C-h F, Help by Command or Variable Name
	C-h g, Help Files
	C-h h, Introduction to International Character Sets
	C-h i, Other Help Commands
	C-h I, Selecting an Input Method
	C-h k, Documentation for a Key
	C-h K, Documentation for a Key
	C-h l, Other Help Commands
	C-h L, Language Environments
	C-h m, Other Help Commands, Major Modes
	C-h p, Keyword Search for Packages
	C-h P, Keyword Search for Packages
	C-h S, Other Help Commands, Info Documentation Lookup
	C-h t, Basic Editing Commands
	C-h v, Help by Command or Variable Name
	C-h w, Documentation for a Key
	c-hungry-delete-backwards, Hungry Delete Feature in C
	c-hungry-delete-forward, Hungry Delete Feature in C
	c-hungry-delete-key, Hungry Delete Feature in C
	c-indent-command, Basic Program Indentation Commands, Commands for C Indentation
	c-indent-defun, Commands for C Indentation
	c-indent-exp, Commands for C Indentation
	C-j, Indentation Commands
	C-j (and major modes), Major Modes
	C-j (indenting source code), Basic Program Indentation Commands
	C-j (Lisp Interaction mode), Lisp Interaction Buffers
	C-j (MS-DOS), Keyboard Usage on MS-DOS
	C-j (TeX mode), TeX Editing Commands
	C-k, Killing by Lines
	C-k (Gnus Group mode), Using the Gnus Group Buffer
	C-l, Recentering
	C-LEFT, Changing the Location of Point
	C-M-%, Query Replace
	C-M-., Finding a Tag
	C-M-/, Dynamic Abbrev Expansion
	C-M-@, Commands to Mark Textual Objects, Expressions with Balanced Parentheses
	C-M-a, Moving by Defuns
	C-M-b, Expressions with Balanced Parentheses
	C-M-c, Recursive Editing Levels
	C-M-d, Moving in the Parenthesis Structure
	C-M-d (Dired), Moving Over Subdirectories
	C-M-e, Moving by Defuns
	C-M-f, Expressions with Balanced Parentheses
	C-M-f (Rmail), Making Summaries
	C-M-h, Moving by Defuns
	C-M-h (C mode), Moving by Defuns
	C-M-i, Completion for Symbol Names
	C-M-i (customization buffer), Changing a Variable
	C-M-j, Multiple Lines of Comments
	C-M-j (Fortran mode), Fortran Indentation and Filling Commands
	C-M-k, Expressions with Balanced Parentheses
	C-M-l, Recentering
	C-M-l (Rmail), Making Summaries
	C-M-l (Shell mode), Shell Mode
	C-M-n, Moving in the Parenthesis Structure
	C-M-n (Dired), Moving Over Subdirectories
	C-M-n (Fortran mode), Motion Commands
	C-M-n (Rmail), Labels
	C-M-o, Indentation Commands
	C-M-p, Moving in the Parenthesis Structure
	C-M-p (Dired), Moving Over Subdirectories
	C-M-p (Fortran mode), Motion Commands
	C-M-p (Rmail), Labels
	C-M-q, Indenting Several Lines
	C-M-q (C mode), Commands for C Indentation
	C-M-q (Fortran mode), Fortran Indentation and Filling Commands
	C-M-r, Regular Expression Search
	C-M-r (Rmail), Making Summaries
	C-M-s, Regular Expression Search
	C-M-s (Rmail), Making Summaries
	C-M-SPC, Expressions with Balanced Parentheses
	C-M-t, Expressions with Balanced Parentheses
	C-M-t (Rmail), Making Summaries
	C-M-u, Moving in the Parenthesis Structure
	C-M-u (Dired), Moving Over Subdirectories
	C-M-v, Using Other Windows
	C-M-w, Appending Kills
	C-M-w (Incremental search), Isearch Yanking
	C-M-x (Emacs Lisp mode), Evaluating Emacs Lisp Expressions
	C-M-x (Lisp mode), Running an External Lisp
	C-M-x (Scheme mode), Running an External Lisp
	C-M-y (Incremental search), Isearch Yanking
	C-M-\, Indentation Commands
	c-macro-expand, Other Commands for C Mode
	c-mark-function, Moving by Defuns
	c-mode-hook, Major Modes for Programming Languages
	C-Mouse-1, Mouse Clicks for Menus
	C-Mouse-2, Mouse Clicks for Menus
	C-Mouse-2 (mode line), Splitting Windows
	C-mouse-2 (mode line), Mode Line Mouse Commands
	C-Mouse-2 (scroll bar), Splitting Windows
	C-Mouse-3, Mouse Clicks for Menus
	C-Mouse-3 (when menu bar is disabled), Menu Bars
	C-n, Changing the Location of Point
	C-n (Calendar mode), Motion by Standard Lengths of Time
	C-n (Dired), Navigation in the Dired Buffer
	C-o, Blank Lines
	C-o (Dired), Visiting Files in Dired
	C-o (Occur mode), Other Search-and-Loop Commands
	C-o (Rmail), Copying Messages Out to Files
	C-p, Changing the Location of Point
	C-p (Calendar mode), Motion by Standard Lengths of Time
	C-p (Dired), Navigation in the Dired Buffer
	C-q, Inserting Text
	C-r, Basics of Incremental Search
	C-RIGHT, Changing the Location of Point
	C-s, Basics of Incremental Search
	C-S-backspace, Killing by Lines
	C-S-Mouse-3 (FFAP), Finding Files and URLs at Point
	c-set-style, Customizing C Indentation
	c-show-syntactic-information, Other Commands for C Mode
	C-SPC, Setting the Mark
	C-SPC C-SPC, The Mark Ring, Disabling Transient Mark Mode
	C-t, Transposing Text
	C-t d (Image-Dired), Viewing Image Thumbnails in Dired
	C-TAB, File Name Cache
	c-tab-always-indent, Commands for C Indentation
	c-toggle-auto-newline, Electric C Characters
	c-toggle-electric-state, Electric C Characters
	c-toggle-hungry-state, Hungry Delete Feature in C
	C-u, Numeric Arguments
	C-u C-/, Undo
	C-u C-c C-w (Fortran mode), Checking Columns in Fortran
	C-u C-SPC, The Mark Ring
	C-u C-x C-x, Disabling Transient Mark Mode
	C-u C-x v =, Examining And Comparing Old Revisions
	C-u M-;, Comment Commands
	C-u TAB, Indenting Several Lines
	c-up-conditional, C Mode Motion Commands
	C-v, Scrolling
	C-v (Calendar mode), Scrolling in the Calendar
	C-w, Other Kill Commands
	C-w (Incremental search), Isearch Yanking
	C-x #, Invoking emacsclient
	C-x $, Selective Display
	C-x (, Basic Use
	C-x), Basic Use
	C-x +, Deleting and Rearranging Windows
	C-x -, Deleting and Rearranging Windows
	C-x ., The Fill Prefix
	C-x 0, Deleting and Rearranging Windows
	C-x 1, Deleting and Rearranging Windows
	C-x 2, Splitting Windows
	C-x 3, Splitting Windows
	C-x 4, Displaying in Another Window
	C-x 4 ., Finding a Tag
	C-x 4 0, Deleting and Rearranging Windows
	C-x 4 a, Change Log Commands
	C-x 4 b, Creating and Selecting Buffers
	C-x 4 b (Iswitchb mode), Switching Between Buffers using Substrings
	C-x 4 c, Indirect Buffers
	C-x 4 C-o, Displaying in Another Window
	C-x 4 C-o (Iswitchb mode), Switching Between Buffers using Substrings
	C-x 4 d, Entering Dired
	C-x 4 f, Visiting Files
	C-x 4 f (FFAP), Finding Files and URLs at Point
	C-x 4 m, Sending Mail
	C-x 5, Creating Frames
	C-x 5 ., Finding a Tag
	C-x 5 0, Frame Commands
	C-x 5 1, Frame Commands
	C-x 5 2, Creating Frames
	C-x 5 b, Creating and Selecting Buffers
	C-x 5 b (Iswitchb mode), Switching Between Buffers using Substrings
	C-x 5 d, Entering Dired
	C-x 5 f, Visiting Files
	C-x 5 f (FFAP), Finding Files and URLs at Point
	C-x 5 m, Sending Mail
	C-x 5 o, Frame Commands
	C-x 5 r, Creating Frames
	C-x 6 1, Two-Column Editing
	C-x 6 2, Two-Column Editing
	C-x 6 b, Two-Column Editing
	C-x 6 d, Two-Column Editing
	C-x 6 RET, Two-Column Editing
	C-x 6 s, Two-Column Editing
	C-x 8, Unibyte Editing Mode
	C-x 8 RET, Inserting Text
	C-x ;, Options Controlling Comments
	C-x <, Horizontal Scrolling
	C-x =, Cursor Position Information, Introduction to International Character Sets
	C-x >, Horizontal Scrolling
	C-x a g, Defining Abbrevs
	C-x a i g, Defining Abbrevs
	C-x a i l, Defining Abbrevs
	C-x a l, Defining Abbrevs
	C-x b, Creating and Selecting Buffers
	C-x b (Iswitchb mode), Switching Between Buffers using Substrings
	C-x C-+, Text Scale
	C-x C-0, Text Scale
	C-x C-=, Text Scale
	C-x C-a (GUD), Commands of GUD
	C-x C-a C-j (GUD), Commands of GUD
	C-x C-a C-w (GUD), Watch Expressions
	C-x C-b, Listing Existing Buffers
	C-x C-c, Exiting Emacs
	C-x C-c (customization buffer), Changing a Variable
	C-x C-d, File Directories
	C-x C-e, Evaluating Emacs Lisp Expressions
	C-x C-f, Visiting Files
	C-x C-f (FFAP), Finding Files and URLs at Point
	C-x C-k b, Naming and Saving Keyboard Macros
	C-x C-k C-a, The Keyboard Macro Counter
	C-x C-k C-c, The Keyboard Macro Counter
	C-x C-k C-e, Editing a Keyboard Macro
	C-x C-k C-f, The Keyboard Macro Counter
	C-x C-k C-i, The Keyboard Macro Counter
	C-x C-k C-k, The Keyboard Macro Ring
	C-x C-k C-n, The Keyboard Macro Ring
	C-x C-k C-p, The Keyboard Macro Ring
	C-x C-k e, Editing a Keyboard Macro
	C-x C-k l, Editing a Keyboard Macro
	C-x C-k n, Naming and Saving Keyboard Macros
	C-x C-k r, Basic Use
	C-x C-k RET, Editing a Keyboard Macro
	C-x C-k SPC, Stepwise Editing a Keyboard Macro
	C-x C-l, Case Conversion Commands
	C-x C-n, Changing the Location of Point
	C-x C-o, Blank Lines
	C-x C-p, Pages
	C-x C-q, Miscellaneous Buffer Operations
	C-x C-r, Visiting Files
	C-x C-r (FFAP), Finding Files and URLs at Point
	C-x C-s, Commands for Saving Files
	C-x C-s (Custom Themes buffer), Custom Themes
	C-x C-SPC, The Global Mark Ring
	C-x C-t, Transposing Text
	C-x C-u, Case Conversion Commands
	C-x C-v, Visiting Files
	C-x C-v (FFAP), Finding Files and URLs at Point
	C-x C-w, Commands for Saving Files
	C-x C-x, Setting the Mark
	C-x C-z, Running an External Lisp
	C-x C–, Text Scale
	C-x d, Entering Dired
	C-x d (FFAP), Finding Files and URLs at Point
	C-x DEL, Sentences
	C-x e, Basic Use
	C-x ESC ESC, Repeating Minibuffer Commands
	C-x f, Explicit Fill Commands
	C-x h, Commands to Mark Textual Objects
	C-x i, Miscellaneous File Operations
	C-x k, Killing Buffers
	C-x l, Pages
	C-x LEFT, Creating and Selecting Buffers
	C-x m, Sending Mail
	C-x n d, Narrowing
	C-x n n, Narrowing
	C-x n p, Narrowing
	C-x n w, Narrowing
	C-x o, Using Other Windows
	C-x q, Executing Macros with Variations
	C-x r +, Keeping Numbers in Registers
	C-x r b, Bookmarks
	C-x r c, Rectangles
	C-x r d, Rectangles
	C-x r f, Saving Window Configurations in Registers
	C-x r i, Saving Text in Registers
	C-x r j, Saving Positions in Registers
	C-x r k, Rectangles
	C-x r l, Bookmarks
	C-x r m, Bookmarks
	C-x r N, Rectangles
	C-x r n, Keeping Numbers in Registers
	C-x r o, Rectangles
	C-x r r, Saving Rectangles in Registers
	C-x r s, Saving Text in Registers
	C-x r SPC, Saving Positions in Registers
	C-x r t, Rectangles
	C-x r w, Saving Window Configurations in Registers
	C-x r y, Rectangles
	C-x RET, Introduction to International Character Sets
	C-x RET c, Specifying a Coding System for File Text
	C-x RET C-\, Selecting an Input Method
	C-x RET f, Specifying a Coding System for File Text
	C-x RET F, Coding Systems for File Names
	C-x RET k, Coding Systems for Terminal I/O
	C-x RET p, Coding Systems for Interprocess Communication
	C-x RET r, Specifying a Coding System for File Text
	C-x RET t, Coding Systems for Terminal I/O
	C-x RET x, Coding Systems for Interprocess Communication
	C-x RET X, Coding Systems for Interprocess Communication
	C-x RIGHT, Creating and Selecting Buffers
	C-x s, Commands for Saving Files
	C-x SPC, Commands of GUD
	C-x TAB, Indentation Commands
	C-x TAB (Enriched mode), Indentation in Enriched Text
	C-x u, Undo
	C-x v +, Pulling Changes into a Branch
	C-x v =, Examining And Comparing Old Revisions
	C-x v a, Change Logs and VC
	C-x v D, Examining And Comparing Old Revisions
	C-x v d, VC Directory Mode
	C-x v g, Examining And Comparing Old Revisions
	C-x v h, Inserting Version Control Headers
	C-x v i, Registering a File for Version Control
	C-x v l, VC Change Log
	C-x v r, Revision Tags
	C-x v s, Revision Tags
	C-x v u, Undoing Version Control Actions
	C-x v v, Basic Editing under Version Control
	C-x v ~, Examining And Comparing Old Revisions
	C-x w b, Interactive Highlighting
	C-x w h, Interactive Highlighting
	C-x w i, Interactive Highlighting
	C-x w l, Interactive Highlighting
	C-x w r, Interactive Highlighting
	C-x z, Repeating a Command
	C-x [, Pages
	C-x [(Calendar mode), Motion by Standard Lengths of Time
	C-x [(DocView mode), DocView Navigation
	C-x], Pages
	C-x] (Calendar mode), Motion by Standard Lengths of Time
	C-x] (DocView mode), DocView Navigation
	C-x ^, Deleting and Rearranging Windows
	C-x `, Compilation Mode
	C-x }, Deleting and Rearranging Windows
	C-y, Yanking
	C-y (Incremental search), Isearch Yanking
	C-z, Exiting Emacs
	C-z (X windows), Frame Commands
	C-\, Selecting an Input Method
	C-], Quitting and Aborting
	C-_, Undo
	C-_ (Dired), Dired Marks vs. Flags
	cache of file names, File Name Cache
	cal-html-css-default, Writing Calendar Files
	calendar, The Calendar and the Diary
	calendar and HTML, Writing Calendar Files
	calendar and LaTeX, Writing Calendar Files
	calendar layout, Customizing the Calendar
	calendar week numbers, Customizing the Calendar
	calendar, first day of week, Beginning or End of Week, Month or Year
	calendar-astro-goto-day-number, Converting From Other Calendars
	calendar-astro-print-day-number, Converting To Other Calendars
	calendar-backward-day, Motion by Standard Lengths of Time
	calendar-backward-month, Motion by Standard Lengths of Time
	calendar-backward-week, Motion by Standard Lengths of Time
	calendar-bahai-all-holidays-flag, Customizing the Holidays
	calendar-bahai-goto-date, Converting From Other Calendars
	calendar-bahai-print-date, Converting To Other Calendars
	calendar-beginning-of-month, Beginning or End of Week, Month or Year
	calendar-beginning-of-week, Beginning or End of Week, Month or Year
	calendar-beginning-of-year, Beginning or End of Week, Month or Year
	calendar-chinese-goto-date, Converting From Other Calendars
	calendar-chinese-print-date, Converting To Other Calendars
	calendar-christian-all-holidays-flag, Customizing the Holidays
	calendar-coptic-goto-date, Converting From Other Calendars
	calendar-coptic-print-date, Converting To Other Calendars
	calendar-count-days-region, Counting Days
	calendar-cursor-holidays, Holidays
	calendar-date-display-form, Date Display Format
	calendar-date-style, Date Formats
	calendar-daylight-savings-ends, Daylight Saving Time
	calendar-daylight-savings-ends-time, Daylight Saving Time
	calendar-daylight-savings-starts, Daylight Saving Time
	calendar-daylight-time-offset, Daylight Saving Time
	calendar-daylight-time-zone-name, Times of Sunrise and Sunset
	calendar-end-of-month, Beginning or End of Week, Month or Year
	calendar-end-of-week, Beginning or End of Week, Month or Year
	calendar-end-of-year, Beginning or End of Week, Month or Year
	calendar-ethiopic-goto-date, Converting From Other Calendars
	calendar-ethiopic-print-date, Converting To Other Calendars
	calendar-forward-day, Motion by Standard Lengths of Time
	calendar-forward-month, Motion by Standard Lengths of Time
	calendar-forward-week, Motion by Standard Lengths of Time
	calendar-forward-year, Motion by Standard Lengths of Time
	calendar-french-goto-date, Converting From Other Calendars
	calendar-french-print-date, Converting To Other Calendars
	calendar-goto-date, Specified Dates
	calendar-goto-day-of-year, Specified Dates
	calendar-goto-today, Specified Dates
	calendar-hebrew-all-holidays-flag, Customizing the Holidays
	calendar-hebrew-goto-date, Converting From Other Calendars
	calendar-hebrew-list-yahrzeits, Converting From Other Calendars
	calendar-hebrew-print-date, Converting To Other Calendars
	calendar-holiday-marker, Customizing the Calendar
	calendar-holidays, Customizing the Holidays
	calendar-initial-window-hook, Customizing the Calendar
	calendar-intermonth-text, Customizing the Calendar
	calendar-islamic-all-holidays-flag, Customizing the Holidays
	calendar-islamic-goto-date, Converting From Other Calendars
	calendar-islamic-print-date, Converting To Other Calendars
	calendar-iso-goto-date, Converting From Other Calendars
	calendar-iso-goto-week, Specified Dates, Converting From Other Calendars
	calendar-iso-print-date, Converting To Other Calendars
	calendar-julian-goto-date, Converting From Other Calendars
	calendar-julian-print-date, Converting To Other Calendars
	calendar-latitude, Times of Sunrise and Sunset
	calendar-list-holidays, Holidays
	calendar-load-hook, Customizing the Calendar
	calendar-location-name, Times of Sunrise and Sunset
	calendar-longitude, Times of Sunrise and Sunset
	calendar-lunar-phases, Phases of the Moon
	calendar-mark-diary-entries-flag, Displaying the Diary
	calendar-mark-holidays, Holidays
	calendar-mark-holidays-flag, Holidays
	calendar-mark-today, Customizing the Calendar
	calendar-mayan-goto-long-count-date, Converting from the Mayan Calendar
	calendar-mayan-next-calendar-round-date, Converting from the Mayan Calendar
	calendar-mayan-next-haab-date, Converting from the Mayan Calendar
	calendar-mayan-next-tzolkin-date, Converting from the Mayan Calendar
	calendar-mayan-previous-haab-date, Converting from the Mayan Calendar
	calendar-mayan-previous-tzolkin-date, Converting from the Mayan Calendar
	calendar-mayan-print-date, Converting To Other Calendars
	calendar-move-hook, Customizing the Calendar
	calendar-other-month, Specified Dates
	calendar-persian-goto-date, Converting From Other Calendars
	calendar-persian-print-date, Converting To Other Calendars
	calendar-print-day-of-year, Miscellaneous Calendar Commands
	calendar-print-other-dates, Converting To Other Calendars
	calendar-redraw, Miscellaneous Calendar Commands
	calendar-remove-frame-by-deleting, Miscellaneous Calendar Commands
	calendar-scroll-left, Scrolling in the Calendar
	calendar-scroll-left-three-months, Scrolling in the Calendar
	calendar-scroll-right, Scrolling in the Calendar
	calendar-scroll-right-three-months, Scrolling in the Calendar
	calendar-set-date-style, Date Formats
	calendar-standard-time-zone-name, Times of Sunrise and Sunset
	calendar-star-date, Customizing the Calendar
	calendar-sunrise-sunset, Times of Sunrise and Sunset
	calendar-time-display-form, Time Display Format
	calendar-time-zone, Times of Sunrise and Sunset
	calendar-today-invisible-hook, Customizing the Calendar
	calendar-today-marker, Customizing the Calendar
	calendar-today-visible-hook, Customizing the Calendar
	calendar-unmark, Holidays
	calendar-view-diary-initially-flag, Displaying the Diary
	calendar-view-holidays-initially-flag, Holidays
	calendar-week-start-day, Beginning or End of Week, Month or Year
	call Lisp functions, command-line argument, Action Arguments
	camel case, Glasses minor mode
	candle lighting times, Sexp Entries and the Fancy Diary Display
	capitalize-word, Case Conversion Commands
	capitalizing words, Case Conversion Commands
	case conversion, Case Conversion Commands
	case in completion, Completion Options
	case-fold-search, Searching and Case
	case-replace, Replace Commands and Case
	case-sensitivity and completion, Completion Options
	case-sensitivity and tags search, Searching and Replacing with Tags Tables
	categories of characters, Backslash in Regular Expressions
	cd, File Names
	cells, for text-based tables, What is a Text-based Table?
	Celtic, International Character Set Support
	center-line, Explicit Fill Commands
	centering, Explicit Fill Commands
	centralized version control, Decentralized vs Centralized Repositories
	change buffers, Creating and Selecting Buffers
	change Emacs directory, Initial Options
	change log, Change Logs
	Change Log mode, Change Log Commands
	change-log-merge, Change Log Commands
	change-log-mode, Change Log Commands
	change-log-version-info-enabled, Change Log Commands
	change-log-version-number-regexp-list, Change Log Commands
	change-major-mode-with-file-name, Choosing File Modes
	changes, undoing, Undo
	changeset-based version control, Changeset-based vs File-based Version Control
	changing file group (in Dired), Operating on Files
	changing file owner (in Dired), Operating on Files
	changing file permissions (in Dired), Operating on Files
	changing file time (in Dired), Operating on Files
	character set (keyboard), Kinds of User Input
	character set of character at point, Introduction to International Character Sets
	character syntax, Init File Syntax
	characters (in text), How Text Is Displayed
	characters in a certain charset, Charsets
	characters which belong to a specific language, Backslash in Regular Expressions
	characters with no font glyphs, How Text Is Displayed
	characters, inserting by name or code-point, Inserting Text
	charsets, Charsets
	check-parens, Commands for Editing with Parentheses
	checking out files, Concepts of Version Control
	checking spelling, Checking and Correcting Spelling
	checking syntax, Finding Syntax Errors On The Fly
	Chinese, International Character Set Support
	Chinese calendar, Supported Calendar Systems
	choose-completion, Completion Commands
	choosing a major mode, Choosing File Modes
	choosing a minor mode, Choosing File Modes
	ciphers, Other Amusements
	citing mail, Citing Mail
	class browser, C++, Tags Tables
	clean-buffer-list, Killing Buffers
	clear-rectangle, Rectangles
	click events, Rebinding Mouse Buttons
	client frame, emacsclient Options
	client-side fonts, Fonts
	clipboard, Using the Clipboard
	clipboard manager, Using the Clipboard
	clipboard-kill-region, Using the Clipboard
	clipboard-kill-ring-save, Using the Clipboard
	clipboard-yank, Using the Clipboard
	clone-indirect-buffer, Indirect Buffers
	clone-indirect-buffer-hook, Indirect Buffers
	clone-indirect-buffer-other-window, Indirect Buffers
	codepage, MS-DOS, International Support on MS-DOS
	coding, Specifying a File's Coding System
	coding systems, Coding Systems
	collision, Protection against Simultaneous Editing
	colon-double-space, Explicit Fill Commands
	color emulation on black-and-white printers, Variables for PostScript Hardcopy
	color name, Colors for Faces
	color of window, from command line, Window Color Options
	color scheme, Custom Themes
	Column Number mode, Optional Mode Line Features
	column-number-mode, Optional Mode Line Features
	columns (and rectangles), Rectangles
	columns (indentation), Indentation
	columns, splitting, Two-Column Editing
	Comint mode, Shell Mode
	comint-bol-or-process-mark, Shell Mode
	comint-completion-addsuffix, Shell Mode Options
	comint-completion-autolist, Shell Mode Options
	comint-completion-fignore, Shell Mode
	comint-completion-recexact, Shell Mode Options
	comint-continue-subjob, Shell Mode
	comint-copy-old-input, Shell History Copying
	comint-delchar-or-maybe-eof, Shell Mode
	comint-delete-output, Shell Mode
	comint-dynamic-list-filename…, Shell Mode
	comint-dynamic-list-input-ring, Shell History Ring
	comint-get-next-from-history, Shell History Ring
	comint-highlight-input face, Interactive Subshell
	comint-highlight-prompt face, Interactive Subshell
	comint-history-isearch-backward-regexp, Shell History Ring
	comint-input-autoexpand, Shell History References
	comint-input-ignoredups, Shell Mode Options
	comint-input-previous-argument, Shell History Ring
	comint-interrupt-subjob, Shell Mode
	comint-kill-input, Shell Mode
	comint-magic-space, Shell History References
	comint-move-point-for-output, Shell Mode Options
	comint-next-input, Shell History Ring
	comint-next-prompt, Shell History Copying
	comint-previous-input, Shell History Ring
	comint-previous-prompt, Shell History Copying
	comint-prompt-read-only, Shell Mode Options
	comint-quit-subjob, Shell Mode
	comint-run, Shell Mode
	comint-scroll-show-maximum-output, Shell Mode Options
	comint-scroll-to-bottom-on-input, Shell Mode Options
	comint-send-input, Shell Mode
	comint-show-maximum-output, Shell Mode
	comint-show-output, Shell Mode
	comint-stop-subjob, Shell Mode
	comint-strip-ctrl-m, Shell Mode
	comint-truncate-buffer, Shell Mode
	comint-use-prompt-regexp, Shell Prompts
	comint-write-output, Shell Mode
	command, Keys and Commands
	command history, Repeating Minibuffer Commands
	command line arguments, Command Line Arguments for Emacs Invocation
	command-history, Repeating Minibuffer Commands
	command-line-args, Command Line Arguments for Emacs Invocation
	comment-column, Options Controlling Comments
	comment-dwim, Comment Commands
	comment-end, Options Controlling Comments
	comment-indent-function, Options Controlling Comments
	comment-indent-new-line, Multiple Lines of Comments
	comment-kill, Comment Commands
	comment-multi-line, Multiple Lines of Comments
	comment-padding, Options Controlling Comments
	comment-region, Comment Commands
	comment-set-column, Options Controlling Comments
	comment-start, Options Controlling Comments
	comment-start-skip, Options Controlling Comments
	comments, Manipulating Comments
	comments on customized settings, Changing a Variable
	Common Lisp, Running an External Lisp
	compare files (in Dired), File Comparison with Dired
	compare-ignore-case, Comparing Files
	compare-ignore-whitespace, Comparing Files
	compare-windows, Comparing Files
	comparing 3 files (diff3), Comparing Files
	comparing files, Comparing Files
	compilation buffer, keeping point at end, Running Compilations under Emacs
	compilation errors, Running Compilations under Emacs
	Compilation mode, Compilation Mode
	compilation under MS-DOS, Subprocesses on MS-DOS
	compilation-auto-jump-to-first-error, Compilation Mode
	compilation-context-lines, Compilation Mode
	compilation-environment, Running Compilations under Emacs
	compilation-error-regexp-alist, Compilation Mode
	compilation-next-error, Compilation Mode
	compilation-next-file, Compilation Mode
	compilation-previous-error, Compilation Mode
	compilation-previous-file, Compilation Mode
	compilation-scroll-output, Running Compilations under Emacs
	compilation-skip-threshold, Compilation Mode
	compile, Running Compilations under Emacs
	compile (MS-DOS), Subprocesses on MS-DOS
	compile-command, Running Compilations under Emacs
	compile-goto-error, Compilation Mode
	complete key, Keys
	completion, Completion
	completion (Lisp symbols), Completion for Symbol Names
	completion (symbol names), Completion for Symbol Names, Tags Table Inquiries
	completion alternative, Completion
	completion list, Completion Commands
	completion style, How Completion Alternatives Are Chosen
	completion-at-point, Completion for Symbol Names, Shell Mode
	completion-auto-help, Completion Options
	completion-category-overrides, How Completion Alternatives Are Chosen
	completion-cycle-threshold, Completion Options
	completion-ignored-extensions, Completion Options
	completion-styles, How Completion Alternatives Are Chosen
	compose character, Unibyte Editing Mode
	compose-mail, Sending Mail
	compose-mail-other-frame, Sending Mail
	compose-mail-other-window, Sending Mail
	compressing files (in Dired), Operating on Files
	compression, Accessing Compressed Files
	Conf mode, Major Modes for Programming Languages
	confirm-kill-emacs, Exiting Emacs
	confirm-nonexistent-file-or-buffer, Completion Exit
	confirming in the minibuffer, Completion Exit
	conflicts, Merging Branches
	connecting to remote host, Remote Host Shell
	continuation line, Continuation Lines
	contributing to Emacs, Contributing to Emacs Development
	Control, Kinds of User Input
	control character, Kinds of User Input
	control characters on display, How Text Is Displayed
	converting text to upper or lower case, Case Conversion Commands
	Coptic calendar, Supported Calendar Systems
	copy, “Cut and Paste” Operations on Graphical Displays
	copy-dir-locals-to-file-locals, Specifying File Variables
	copy-dir-locals-to-file-locals-prop-line, Specifying File Variables
	copy-directory, Miscellaneous File Operations
	copy-file, Miscellaneous File Operations
	copy-file-locals-to-dir-locals, Per-Directory Local Variables
	copy-rectangle-to-register, Saving Rectangles in Registers
	copy-to-buffer, Accumulating Text
	copy-to-register, Saving Text in Registers
	copying files, Miscellaneous File Operations
	copying files (in Dired), Operating on Files
	copying text, Yanking
	CORBA IDL mode, C and Related Modes
	correcting spelling, Checking and Correcting Spelling
	count-lines-page, Pages
	count-text-lines, Nroff Mode
	count-words, Cursor Position Information
	count-words-region, Cursor Position Information
	CPerl mode, Major Modes for Programming Languages
	cpp-highlight-buffer, Other Commands for C Mode
	crashes, Auto-Saving: Protection Against Disasters
	create a text-based table, Creating a Table
	create-fontset-from-fontset-spec, Defining fontsets
	creating files, Visiting Files
	creating frames, Creating Frames
	CRiSP mode, Emulation
	crisp-mode, Emulation
	crisp-override-meta-x, Emulation
	cryptanalysis, Other Amusements
	CSSC, Supported Version Control Systems
	ctl-arrow, How Text Is Displayed
	ctl-x-4-map, Prefix Keymaps
	ctl-x-map, Prefix Keymaps
	CUA key bindings, CUA Bindings
	cua-enable-cua-keys, CUA Bindings
	cua-mode, CUA Bindings
	current buffer, Using Multiple Buffers
	current function name in mode line, Which Function Mode
	current-input-method, Selecting an Input Method
	current-language-environment, Language Environments
	cursor, Point
	cursor color, command-line argument, Window Color Options
	cursor face, Text Faces, Displaying the Cursor
	cursor in non-selected windows, Displaying the Cursor
	cursor location, Cursor Position Information
	cursor location, on MS-DOS, Text Files and Binary Files
	cursor motion, Changing the Location of Point
	cursor shape on MS-DOS, Display on MS-DOS
	cursor, blinking, Displaying the Cursor
	cursor-in-non-selected-windows, Displaying the Cursor
	cursor-type, Displaying the Cursor
	custom themes, Custom Themes
	custom themes, creating, Creating Custom Themes
	custom-buffer-done-kill, Changing a Variable
	custom-enabled-themes, Custom Themes
	custom-file, Saving Customizations
	custom-safe-themes, Custom Themes
	Custom-save, Changing a Variable
	custom-search-field, Browsing and Searching for Settings
	Custom-set, Changing a Variable
	custom-theme-directory, Custom Themes, Creating Custom Themes
	custom-theme-load-path, Custom Themes
	customizable variable, Easy Customization Interface
	customization, Customization
	customization buffer, Easy Customization Interface
	customization groups, Customization Groups
	customization of menu face, Standard Faces
	customize, Easy Customization Interface
	customize-apropos, Customizing Specific Items
	customize-browse, Browsing and Searching for Settings
	customize-changed, Customizing Specific Items
	customize-create-theme, Creating Custom Themes
	customize-face, Customizing Specific Items
	customize-group, Customizing Specific Items
	customize-option, Customizing Specific Items
	customize-saved, Customizing Specific Items
	customize-themes, Custom Themes
	customize-unsaved, Customizing Specific Items
	customizing faces, Customizing Faces
	customizing Lisp indentation, Customizing Lisp Indentation
	customizing variables, Changing a Variable
	cut, “Cut and Paste” Operations on Graphical Displays
	cut and paste, Glossary
	cutting text, Deletion and Killing
	CVS, Supported Version Control Systems
	cvs, VC Directory Mode
	CVS directory mode, VC Directory Mode
	CWarn mode, Other Commands for C Mode
	cwarn-mode, Other Commands for C Mode
	Cyrillic, International Character Set Support
	Czech, International Character Set Support

D
	d (Calendar mode), Displaying the Diary
	d (Dired), Deleting Files with Dired
	D (Dired), Operating on Files
	D (GDB Breakpoints buffer), Breakpoints Buffer
	D (GDB speedbar), Watch Expressions
	d (GDB threads buffer), Threads Buffer
	d (Rmail), Deleting Messages
	dabbrev-abbrev-char-regexp, Customizing Dynamic Abbreviation
	dabbrev-abbrev-skip-leading-regexp, Customizing Dynamic Abbreviation
	dabbrev-case-fold-search, Customizing Dynamic Abbreviation
	dabbrev-case-replace, Customizing Dynamic Abbreviation
	dabbrev-check-all-buffers, Dynamic Abbrev Expansion
	dabbrev-completion, Dynamic Abbrev Expansion
	dabbrev-expand, Dynamic Abbrev Expansion
	dabbrev-ignored-buffer-regexps, Dynamic Abbrev Expansion
	dabbrev-limit, Dynamic Abbrev Expansion
	daemon, Emacs, Using Emacs as a Server
	day of year, Miscellaneous Calendar Commands
	daylight saving time, Daylight Saving Time
	DBX, Running Debuggers Under Emacs
	dbx, Starting GUD
	dbx-mode-hook, GUD Customization
	dead character, Unibyte Editing Mode
	debbugs package, Reading Existing Bug Reports and Known Problems
	debug-on-event, Checklist for Bug Reports
	debug-on-quit, Checklist for Bug Reports
	debuggers, Running Debuggers Under Emacs
	debugging Emacs, tricks and techniques, Checklist for Bug Reports
	debugging X problems, Table of X Resources for Emacs
	debug_print, Checklist for Bug Reports
	decentralized version control, Decentralized vs Centralized Repositories
	decipher, Other Amusements
	decoding mail messages (Rmail), Rmail and Coding Systems
	decoding non-ASCII keyboard input on X, Coding Systems for Interprocess Communication
	decrease buffer face height, Text Scale
	decrypting files (in Dired), Operating on Files
	default argument, The Minibuffer
	default directory, Minibuffers for File Names, File Names
	default face, Text Faces
	default file name, File Names
	default-directory, File Names
	default-frame-alist, Frame Parameters
	default-input-method, Selecting an Input Method
	default-justification, Justification in Enriched Text
	default-value, Local Variables
	default.el file, not loading, Initial Options
	default.el, the default init file, The Emacs Initialization File
	define-abbrevs, Saving Abbrevs
	define-global-abbrev, Defining Abbrevs
	define-key, Rebinding Keys in Your Init File
	define-mode-abbrev, Defining Abbrevs
	defining keyboard macros, Keyboard Macros
	defuns, Moving by Defuns
	DEL (and major modes), Major Modes
	DEL (Dired), Deleting Files with Dired
	DEL (DocView mode), DocView Navigation
	DEL (Gnus Group mode), Using the Gnus Group Buffer
	DEL (Gnus Summary mode), Using the Gnus Summary Buffer
	DEL (MS-DOS), Keyboard Usage on MS-DOS
	DEL (programming modes), Major Modes for Programming Languages
	DEL (Rmail), Scrolling Within a Message
	DEL (View mode), View Mode
	DEL vs BACKSPACE, If DEL Fails to Delete
	Delete Selection mode, Operating on the Region
	delete-active-region, Operating on the Region
	delete-auto-save-files, Auto-Save Files
	delete-backward-char, Deletion
	delete-blank-lines, Blank Lines
	delete-by-moving-to-trash, Miscellaneous File Operations, Deleting Files with Dired
	delete-char, Deletion
	delete-dir-local-variable, Per-Directory Local Variables
	delete-file, Miscellaneous File Operations
	delete-file-local-variable, Specifying File Variables
	delete-file-local-variable-prop-line, Specifying File Variables
	delete-frame, Frame Commands
	delete-horizontal-space, Deletion
	delete-indentation, Indentation Commands
	delete-old-versions, Automatic Deletion of Backups
	delete-other-frames, Frame Commands
	delete-other-windows, Deleting and Rearranging Windows
	delete-rectangle, Rectangles
	delete-selection-mode, Operating on the Region
	delete-trailing-whitespace, Useless Whitespace
	delete-whitespace-rectangle, Rectangles
	delete-window, Deleting and Rearranging Windows
	deleting auto-save files, Flagging Many Files at Once
	deleting blank lines, Blank Lines
	deleting characters and lines, Erasing Text
	deleting files (in Dired), Deleting Files with Dired
	deleting rows and column in text-based tables, Table Rows and Columns
	deleting some backup files, Flagging Many Files at Once
	deletion, Deletion and Killing
	deletion (of files), Miscellaneous File Operations
	deletion (Rmail), Deleting Messages
	Delphi mode, Major Modes for Programming Languages
	describe-bindings, Other Help Commands
	describe-categories, Backslash in Regular Expressions
	describe-character-set, Charsets
	describe-coding-system, Coding Systems
	describe-copying, Help Files
	describe-distribution, Help Files
	describe-function, Help by Command or Variable Name
	describe-gnu-project, Help Files
	describe-input-method, Selecting an Input Method
	describe-key, Documentation for a Key
	describe-key-briefly, Documentation for a Key
	describe-language-environment, Language Environments
	describe-mode, Other Help Commands, Major Modes
	describe-no-warranty, Help Files
	describe-package, Keyword Search for Packages, Emacs Lisp Packages
	describe-prefix-bindings, Other Help Commands
	describe-text-properties, Editing Format Information
	describe-theme, Custom Themes
	describe-variable, Help by Command or Variable Name
	desktop, Saving Emacs Sessions
	desktop shortcut, MS-Windows, How to Start Emacs on MS-Windows
	desktop-change-dir, Saving Emacs Sessions
	desktop-clear, Saving Emacs Sessions
	desktop-clear-preserve-buffers-regexp, Saving Emacs Sessions
	desktop-globals-to-clear, Saving Emacs Sessions
	desktop-path, Saving Emacs Sessions
	desktop-restore-eager, Saving Emacs Sessions
	desktop-revert, Saving Emacs Sessions
	desktop-save, Saving Emacs Sessions
	desktop-save-mode, Saving Emacs Sessions
	Devanagari, International Character Set Support
	device for Emacs terminal I/O, Initial Options
	dialog boxes, Using Dialog Boxes
	Dialog X Resources (Lucid widgets), Lucid Menu And Dialog X Resources
	diary, The Diary, Displaying the Diary
	diary buffer, Diary Display
	diary file, The Diary File
	diary-anniversary, Special Diary Entries, Sexp Entries and the Fancy Diary Display
	diary-astro-day-number, Sexp Entries and the Fancy Diary Display
	diary-bahai-date, Sexp Entries and the Fancy Diary Display
	diary-bahai-entry-symbol, Diary Entries Using non-Gregorian Calendars
	diary-bahai-insert-entry, Diary Entries Using non-Gregorian Calendars
	diary-bahai-insert-monthly-entry, Diary Entries Using non-Gregorian Calendars
	diary-bahai-insert-yearly-entry, Diary Entries Using non-Gregorian Calendars
	diary-bahai-list-entries, Diary Entries Using non-Gregorian Calendars
	diary-bahai-mark-entries, Diary Entries Using non-Gregorian Calendars
	diary-block, Special Diary Entries
	diary-chinese-date, Sexp Entries and the Fancy Diary Display
	diary-comment-start, Fancy Diary Display
	diary-coptic-date, Sexp Entries and the Fancy Diary Display
	diary-cyclic, Special Diary Entries, Sexp Entries and the Fancy Diary Display
	diary-date, Sexp Entries and the Fancy Diary Display
	diary-date-forms, Customizing the Diary
	diary-day-of-year, Sexp Entries and the Fancy Diary Display
	diary-display-function, Diary Display
	diary-entry-marker, Customizing the Calendar
	diary-ethiopic-date, Sexp Entries and the Fancy Diary Display
	diary-fancy-display, Diary Display
	diary-file, The Diary File
	diary-float, Special Diary Entries, Sexp Entries and the Fancy Diary Display
	diary-french-date, Sexp Entries and the Fancy Diary Display
	diary-hebrew-birthday, Sexp Entries and the Fancy Diary Display
	diary-hebrew-date, Sexp Entries and the Fancy Diary Display
	diary-hebrew-entry-symbol, Diary Entries Using non-Gregorian Calendars
	diary-hebrew-insert-entry, Diary Entries Using non-Gregorian Calendars
	diary-hebrew-insert-monthly-entry, Diary Entries Using non-Gregorian Calendars
	diary-hebrew-insert-yearly-entry, Diary Entries Using non-Gregorian Calendars
	diary-hebrew-list-entries, Diary Entries Using non-Gregorian Calendars
	diary-hebrew-mark-entries, Diary Entries Using non-Gregorian Calendars
	diary-hebrew-omer, Sexp Entries and the Fancy Diary Display
	diary-hebrew-parasha, Sexp Entries and the Fancy Diary Display
	diary-hebrew-rosh-hodesh, Sexp Entries and the Fancy Diary Display
	diary-hebrew-sabbath-candles, Sexp Entries and the Fancy Diary Display
	diary-hebrew-yahrzeit, Sexp Entries and the Fancy Diary Display
	diary-include-other-diary-files, Fancy Diary Display
	diary-include-string, Fancy Diary Display
	diary-insert-anniversary-entry, Special Diary Entries
	diary-insert-block-entry, Special Diary Entries
	diary-insert-cyclic-entry, Special Diary Entries
	diary-insert-entry, Commands to Add to the Diary
	diary-insert-monthly-entry, Commands to Add to the Diary
	diary-insert-weekly-entry, Commands to Add to the Diary
	diary-insert-yearly-entry, Commands to Add to the Diary
	diary-islamic-date, Sexp Entries and the Fancy Diary Display
	diary-islamic-entry-symbol, Diary Entries Using non-Gregorian Calendars
	diary-islamic-insert-entry, Diary Entries Using non-Gregorian Calendars
	diary-islamic-insert-monthly-entry, Diary Entries Using non-Gregorian Calendars
	diary-islamic-insert-yearly-entry, Diary Entries Using non-Gregorian Calendars
	diary-islamic-list-entries, Diary Entries Using non-Gregorian Calendars
	diary-islamic-mark-entries, Diary Entries Using non-Gregorian Calendars
	diary-iso-date, Sexp Entries and the Fancy Diary Display
	diary-julian-date, Sexp Entries and the Fancy Diary Display
	diary-list-entries-hook, Fancy Diary Display
	diary-list-include-blanks, Diary Display
	diary-lunar-phases, Sexp Entries and the Fancy Diary Display
	diary-mail-days, Displaying the Diary
	diary-mail-entries, Displaying the Diary
	diary-mark-entries, Displaying the Diary
	diary-mark-entries-hook, Fancy Diary Display
	diary-mark-included-diary-files, Fancy Diary Display
	diary-mayan-date, Sexp Entries and the Fancy Diary Display
	diary-nongregorian-listing-hook, Diary Entries Using non-Gregorian Calendars
	diary-nongregorian-marking-hook, Diary Entries Using non-Gregorian Calendars
	diary-nonmarking-symbol, The Diary File
	diary-number-of-entries, Customizing the Diary
	diary-outlook-formats, Importing and Exporting Diary Entries
	diary-persian-date, Sexp Entries and the Fancy Diary Display
	diary-print-entries, Diary Display
	diary-print-entries-hook, Diary Display
	diary-remind, Sexp Entries and the Fancy Diary Display
	diary-sexp-entry-symbol, Sexp Entries and the Fancy Diary Display
	diary-show-all-entries, Displaying the Diary
	diary-show-holidays-flag, Customizing the Diary
	diary-simple-display, Diary Display
	diary-sort-entries, Fancy Diary Display
	diary-sunrise-sunset, Sexp Entries and the Fancy Diary Display
	diary-view-entries, Displaying the Diary
	diff, Comparing Files
	Diff Auto-Refine mode, Diff Mode
	Diff mode, Diff Mode
	diff-add-change-log-entries-other-window, Diff Mode
	diff-apply-hunk, Diff Mode
	diff-auto-refine-mode, Diff Mode
	diff-backup, Comparing Files
	diff-buffer-with-file, Comparing Files
	diff-context->unified, Diff Mode
	diff-ediff-patch, Diff Mode
	diff-file-kill, Diff Mode
	diff-file-next, Diff Mode
	diff-file-prev, Diff Mode
	diff-goto-source, Diff Mode
	diff-hunk-kill, Diff Mode
	diff-hunk-next, Diff Mode
	diff-hunk-prev, Diff Mode
	diff-mode, Diff Mode
	diff-refine-hunk, Diff Mode
	diff-restrict-view, Diff Mode
	diff-reverse-direction, Diff Mode
	diff-split-hunk, Diff Mode
	diff-switches, Comparing Files
	diff-unified->context, Diff Mode
	diff-update-on-the-fly, Diff Mode
	digest message, Digest Messages
	digit-argument, Numeric Arguments
	dir-locals-set-class-variables, Per-Directory Local Variables
	dir-locals-set-directory-class, Per-Directory Local Variables
	directional window selection, Convenience Features for Window Handling
	directories in buffer names, Making Buffer Names Unique
	directory header lines, Moving Over Subdirectories
	directory listing, File Directories
	directory listing on MS-DOS, Subprocesses on MS-DOS
	directory name abbreviation, File Name Aliases
	directory tracking, Directory Tracking
	directory where Emacs starts on MS-Windows, How to Start Emacs on MS-Windows
	directory-abbrev-alist, File Name Aliases
	directory-free-space-args, File Directories
	directory-free-space-program, File Directories
	directory-local variables, Per-Directory Local Variables
	Dired, Dired, the Directory Editor
	dired, Entering Dired
	Dired and version control, Other Dired Features
	Dired sorting, Updating the Dired Buffer
	Dired, and MS-Windows/MS-DOS, Emulation of ls on MS-Windows
	dired-at-point, Finding Files and URLs at Point
	dired-auto-revert-buffer, Updating the Dired Buffer
	dired-backup-diff, File Comparison with Dired
	dired-change-marks, Dired Marks vs. Flags
	dired-chown-program, Operating on Files
	dired-clean-directory, Flagging Many Files at Once
	dired-compare-directories, Other Dired Features
	dired-copy-filename-as-kill, Other Dired Features
	dired-copy-preserve-time, Operating on Files
	dired-create-directory, Other Dired Features
	dired-diff, File Comparison with Dired
	dired-display-file, Visiting Files in Dired
	dired-do-byte-compile, Operating on Files
	dired-do-chgrp, Operating on Files
	dired-do-chmod, Operating on Files
	dired-do-chown, Operating on Files
	dired-do-compress, Operating on Files
	dired-do-copy, Operating on Files
	dired-do-copy-regexp, Transforming File Names in Dired
	dired-do-delete, Operating on Files
	dired-do-flagged-delete, Deleting Files with Dired
	dired-do-hardlink, Operating on Files
	dired-do-hardlink-regexp, Transforming File Names in Dired
	dired-do-isearch, Other Dired Features
	dired-do-isearch-regexp, Other Dired Features
	dired-do-kill-lines, Updating the Dired Buffer
	dired-do-load, Operating on Files
	dired-do-print, Operating on Files
	dired-do-query-replace-regexp, Operating on Files
	dired-do-redisplay, Updating the Dired Buffer
	dired-do-rename, Operating on Files
	dired-do-rename-regexp, Transforming File Names in Dired
	dired-do-search, Operating on Files
	dired-do-shell-command, Shell Commands in Dired
	dired-do-symlink, Operating on Files
	dired-do-symlink-regexp, Transforming File Names in Dired
	dired-do-touch, Operating on Files
	dired-downcase, Transforming File Names in Dired
	dired-dwim-target, Operating on Files
	dired-find-file, Visiting Files in Dired
	dired-find-file-other-window, Visiting Files in Dired
	dired-flag-auto-save-files, Flagging Many Files at Once
	dired-flag-backup-files, Flagging Many Files at Once
	dired-flag-file-deletion, Deleting Files with Dired
	dired-flag-files-regexp, Flagging Many Files at Once
	dired-flag-garbage-files, Flagging Many Files at Once
	dired-garbage-files-regexp, Flagging Many Files at Once
	dired-goto-file, Navigation in the Dired Buffer
	dired-hide-all, Hiding Subdirectories
	dired-hide-subdir, Hiding Subdirectories
	dired-isearch-filenames, Navigation in the Dired Buffer
	dired-isearch-filenames-regexp, Navigation in the Dired Buffer
	dired-kept-versions, Flagging Many Files at Once
	dired-listing-switches, Entering Dired
	dired-listing-switches (MS-DOS), Subprocesses on MS-DOS
	dired-mark, Dired Marks vs. Flags
	dired-mark-directories, Dired Marks vs. Flags
	dired-mark-executables, Dired Marks vs. Flags
	dired-mark-files-containing-regexp, Dired Marks vs. Flags
	dired-mark-files-regexp, Dired Marks vs. Flags
	dired-mark-subdir-files, Dired Marks vs. Flags
	dired-mark-symlinks, Dired Marks vs. Flags
	dired-maybe-insert-subdir, Subdirectories in Dired
	dired-mouse-find-file-other-window, Visiting Files in Dired
	dired-next-dirline, Moving Over Subdirectories
	dired-next-marked-file, Dired Marks vs. Flags
	dired-next-subdir, Moving Over Subdirectories
	dired-other-frame, Entering Dired
	dired-other-window, Displaying in Another Window, Entering Dired
	dired-prev-dirline, Moving Over Subdirectories
	dired-prev-marked-file, Dired Marks vs. Flags
	dired-prev-subdir, Moving Over Subdirectories
	dired-recursive-copies, Operating on Files
	dired-recursive-deletes, Deleting Files with Dired
	dired-sort-toggle-or-edit, Updating the Dired Buffer
	dired-toggle-marks, Dired Marks vs. Flags
	dired-tree-down, Moving Over Subdirectories
	dired-tree-up, Moving Over Subdirectories
	dired-undo, Dired Marks vs. Flags
	dired-unmark, Dired Marks vs. Flags
	dired-unmark-all-files, Dired Marks vs. Flags
	dired-unmark-all-marks, Dired Marks vs. Flags
	dired-unmark-backward, Dired Marks vs. Flags
	dired-up-directory, Visiting Files in Dired
	dired-upcase, Transforming File Names in Dired
	dired-use-ls-dired, Entering Dired
	dired-view-file, Visiting Files in Dired
	dirs, Directory Tracking
	Dirtrack mode, Directory Tracking
	dirtrack-list, Directory Tracking
	dirtrack-mode, Directory Tracking
	disable window system, Initial Options
	disable-command, Disabling Commands
	disable-theme, Custom Themes
	disabled command, Disabling Commands
	disabling remote files, Remote Files
	DISPLAY environment variable, Specifying the Display Name
	display for Emacs frame, Initial Options
	display name (X Window System), Specifying the Display Name
	display of buffer size, Optional Mode Line Features
	display of line number, Optional Mode Line Features
	display-battery-mode, Optional Mode Line Features
	display-buffer, Displaying in Another Window, Displaying a Buffer in a Window, How display-buffer works
	display-buffer-reuse-frames, How display-buffer works
	display-hourglass, Customization of Display
	display-local-help, Help on Active Text and Tooltips
	display-time, Optional Mode Line Features
	display-time-24hr-format, Optional Mode Line Features
	display-time-mail-directory, Optional Mode Line Features
	display-time-mail-face, Optional Mode Line Features
	display-time-mail-file, Optional Mode Line Features
	display-time-use-mail-icon, Optional Mode Line Features
	dissociated-press, Other Amusements
	distributed version control, Decentralized vs Centralized Repositories
	dnd-open-file-other-window, Drag and Drop
	DNS mode, Major Modes for Programming Languages
	do-auto-save, Controlling Auto-Saving
	doc-view-cache-directory, DocView Conversion
	doc-view-clear-cache, DocView Conversion
	doc-view-continuous, DocView Navigation
	doc-view-enlarge, DocView Navigation
	doc-view-first-page, DocView Navigation
	doc-view-goto-page, DocView Navigation
	doc-view-kill-proc, DocView Conversion
	doc-view-kill-proc-and-buffer, DocView Conversion
	doc-view-last-page, DocView Navigation
	doc-view-minor-mode, Document Viewing
	doc-view-mode, Document Viewing
	doc-view-next-page, DocView Navigation
	doc-view-previous-page, DocView Navigation
	doc-view-reset-slice, DocView Slicing
	doc-view-resolution, DocView Navigation
	doc-view-scroll-down-or-previous-page, DocView Navigation
	doc-view-scroll-up-or-next-page, DocView Navigation
	doc-view-search, DocView Searching
	doc-view-search-backward, DocView Searching
	doc-view-set-slice, DocView Slicing
	doc-view-set-slice-using-mouse, DocView Slicing
	doc-view-show-tooltip, DocView Searching
	doc-view-shrink, DocView Navigation
	doc-view-toggle-display, Document Viewing
	DocTeX mode, TeX Mode
	doctex-mode, TeX Mode
	doctor, Other Amusements
	document viewer (DocView), Document Viewing
	documentation string, Documentation for a Key
	DocView mode, Document Viewing
	DOS applications, running from Emacs, Subprocesses on Windows 9X/ME and Windows NT/2K/XP
	DOS codepages, International Support on MS-DOS
	dos-codepage, International Support on MS-DOS
	dos-display-scancodes, Mouse Usage on MS-DOS
	dos-hyper-key, Keyboard Usage on MS-DOS
	dos-keypad-mode, Keyboard Usage on MS-DOS
	dos-mode25, Display on MS-DOS
	dos-mode4350, Display on MS-DOS
	dos-printer, Printing and MS-DOS
	dos-ps-printer, Printing and MS-DOS
	DOS-style end-of-line display, Recognizing Coding Systems
	dos-super-key, Keyboard Usage on MS-DOS
	DOS-to-Unix conversion of files, Text Files and Binary Files
	double clicks, Rebinding Mouse Buttons
	double slash in file name, Minibuffers for File Names
	double-click-fuzz, Rebinding Mouse Buttons
	double-click-time, Rebinding Mouse Buttons
	DOWN, Changing the Location of Point
	DOWN (minibuffer history), Minibuffer History
	down events, Rebinding Mouse Buttons
	down-list, Moving in the Parenthesis Structure
	downcase file names, Transforming File Names in Dired
	downcase-region, Case Conversion Commands
	downcase-word, Case Conversion Commands
	drag and drop, Drag and Drop
	drag and drop, Dired, Other Dired Features
	drag events, Rebinding Mouse Buttons
	drastic changes, Reverting a Buffer
	dribble file, Checklist for Bug Reports
	DSSSL mode, Major Modes for Programming Languages
	dunnet, Other Amusements
	Dutch, International Character Set Support
	DVI file, Document Viewing

E
	e (Dired), Visiting Files in Dired
	e (Rmail), Editing Within a Message
	e (View mode), View Mode
	Ebrowse, Tags Tables
	echo area, The Echo Area
	echo area message, The Echo Area
	echo-keystrokes, Customization of Display
	echoing, The Echo Area
	EDE (Emacs Development Environment), Emacs Development Environment
	Edebug, Checklist for Bug Reports
	edit-abbrevs, Examining and Editing Abbrevs
	edit-kbd-macro, Editing a Keyboard Macro
	edit-tab-stops, Tab Stops
	editable fields (customization buffer), Customization Groups
	editing binary files, Editing Binary Files
	editing in Picture mode, Basic Editing in Picture Mode
	editing level, recursive, Recursive Editing Levels
	EDITOR environment variable, Using Emacs as a Server
	EDT, Emulation
	edt-emulation-off, Emulation
	edt-emulation-on, Emulation
	Eldoc mode, Emacs Lisp Documentation Lookup
	eldoc-mode, Emacs Lisp Documentation Lookup
	Electric Indent mode, Convenience Features for Indentation
	Electric Pair mode, Matching Parentheses
	electric-indent-mode, Convenience Features for Indentation
	electric-layout-mode, Other Features Useful for Editing Programs
	electric-nroff-mode, Nroff Mode
	electric-pair-mode, Matching Parentheses
	Eliza, Other Amusements
	Emacs as a server, Using Emacs as a Server
	Emacs Development Environment, Emacs Development Environment
	EMACS environment variable, Interactive Subshell
	Emacs icon, a gnu, Icons
	Emacs initialization file, The Emacs Initialization File
	Emacs Lisp mode, Evaluating Emacs Lisp Expressions
	Emacs Lisp package, Emacs Lisp Packages
	Emacs Lisp package archive, Emacs Lisp Packages
	emacs-internal, coding system, Coding Systems
	emacs-lisp-mode, Evaluating Emacs Lisp Expressions
	emacs-lisp-mode-hook, Major Modes for Programming Languages
	emacs-version, Understanding Bug Reporting
	emacsclient, Using Emacs as a Server
	emacsclient invocation, Invoking emacsclient
	emacsclient options, emacsclient Options
	emacsclient, on MS-Windows, How to Start Emacs on MS-Windows
	emacsclient.exe, How to Start Emacs on MS-Windows
	emacsclientw.exe, How to Start Emacs on MS-Windows
	EMACS_SERVER_FILE environment variable, emacsclient Options
	email, Sending Mail
	Emerge, Merging Files with Emerge
	emerge-auto-advance, Submodes of Emerge
	emerge-buffers, Overview of Emerge
	emerge-buffers-with-ancestor, Overview of Emerge
	emerge-combine-versions-template, Combining the Two Versions
	emerge-files, Overview of Emerge
	emerge-files-with-ancestor, Overview of Emerge
	emerge-skip-prefers, Submodes of Emerge
	emerge-startup-hook, Fine Points of Emerge
	emulating other editors, Emulation
	emulation of Brief, Emulation
	enable-command, Disabling Commands
	enable-local-eval, Safety of File Variables
	enable-local-variables, Safety of File Variables
	enable-multibyte-characters, Disabling Multibyte Characters
	enable-recursive-minibuffers, Editing in the Minibuffer
	enable-theme, Custom Themes
	encoding of characters, International Character Set Support
	encrypted mails (reading in Rmail), Display of Messages
	encrypting files (in Dired), Operating on Files
	END, Changing the Location of Point
	end-of-buffer, Changing the Location of Point
	end-of-defun, Moving by Defuns
	end-of-line convention, mode-line indication, The Mode Line
	end-of-line conversion, Coding Systems
	end-of-line conversion on MS-DOS/MS-Windows, Text Files and Binary Files
	end-of-visual-line, Visual Line Mode
	enlarge-window, Deleting and Rearranging Windows
	enlarge-window-horizontally, Deleting and Rearranging Windows
	Enriched mode, Enriched Text
	enriched text, Enriched Text
	enriched-mode, Enriched Mode
	enriched-translations, Enriched Mode
	entering Emacs, Entering Emacs
	environment variables, Environment Variables
	environment variables for subshells, Interactive Subshell
	environment variables in file names, File Names
	eol-mnemonic-dos, Optional Mode Line Features
	eol-mnemonic-mac, Optional Mode Line Features
	eol-mnemonic-undecided, Optional Mode Line Features
	eol-mnemonic-unix, Optional Mode Line Features
	epa-dired-do-decrypt, Operating on Files
	epa-dired-do-encrypt, Operating on Files
	epa-dired-do-sign, Operating on Files
	epa-dired-do-verify, Operating on Files
	erasing characters and lines, Erasing Text
	error log, Running Compilations under Emacs
	error message, The Echo Area
	errors in init file, Initial Options
	ESC ESC ESC, Quitting and Aborting
	ESC replacing Meta key, Kinds of User Input
	esc-map, Prefix Keymaps
	escape sequences in files, Recognizing Coding Systems
	ESHELL environment variable, Interactive Subshell
	etags, Tags Tables
	etags program, Creating Tags Tables
	Ethiopic, International Character Set Support
	Ethiopic calendar, Supported Calendar Systems
	Euro sign, Language Environments
	European character sets, Unibyte Editing Mode
	eval-buffer, Evaluating Emacs Lisp Expressions
	eval-defun, Evaluating Emacs Lisp Expressions
	eval-expression, Evaluating Emacs Lisp Expressions
	eval-expression-debug-on-error, Evaluating Emacs Lisp Expressions
	eval-expression-print-length, Evaluating Emacs Lisp Expressions
	eval-expression-print-level, Evaluating Emacs Lisp Expressions
	eval-last-sexp, Evaluating Emacs Lisp Expressions
	eval-print-last-sexp, Lisp Interaction Buffers
	eval-region, Evaluating Emacs Lisp Expressions
	evaluate expression, command-line argument, Action Arguments
	exchange-point-and-mark, Setting the Mark
	exec-path, Running Shell Commands from Emacs
	execute-extended-command, Running Commands by Name
	exit-calendar, Miscellaneous Calendar Commands
	exit-language-environment-hook, Language Environments
	exit-recursive-edit, Recursive Editing Levels
	exiting, Exiting Emacs
	exiting recursive edit, Recursive Editing Levels
	expand-abbrev, Controlling Abbrev Expansion
	expand-region-abbrevs, Controlling Abbrev Expansion
	expanding subdirectories in Dired, Subdirectories in Dired
	expansion (of abbrevs), Abbrevs
	expansion of C macros, Other Commands for C Mode
	expansion of environment variables, File Names
	explicit-shell-file-name, Interactive Subshell
	expression, Expressions with Balanced Parentheses
	expunging (Rmail), Deleting Messages

F
	f (Dired), Visiting Files in Dired
	f (GDB threads buffer), Threads Buffer
	f (Rmail), Sending Replies
	F1, Help
	F10, The Menu Bar
	F10 (MS-Windows), Keyboard Usage on MS-Windows
	F2 1, Two-Column Editing
	F2 2, Two-Column Editing
	F2 b, Two-Column Editing
	F2 d, Two-Column Editing
	F2 RET, Two-Column Editing
	F2 s, Two-Column Editing
	F3, Basic Use
	F4, Basic Use
	f90-beginning-of-block, Motion Commands
	f90-end-of-block, Motion Commands
	f90-mode, Fortran Mode
	f90-next-block, Motion Commands
	f90-next-statement, Motion Commands
	f90-previous-block, Motion Commands
	f90-previous-statement, Motion Commands
	face at point, Introduction to International Character Sets
	face colors, setting, Colors for Faces
	facemenu-remove-all, Editing Format Information
	facemenu-remove-face-props, Editing Format Information
	facemenu-set-background, Faces in Enriched Text
	facemenu-set-bold, Faces in Enriched Text
	facemenu-set-bold-italic, Faces in Enriched Text
	facemenu-set-default, Faces in Enriched Text
	facemenu-set-face, Faces in Enriched Text
	facemenu-set-foreground, Faces in Enriched Text
	facemenu-set-italic, Faces in Enriched Text
	facemenu-set-underline, Faces in Enriched Text
	faces, Text Faces
	faces for highlighting query replace, Query Replace
	faces for highlighting search matches, Basics of Incremental Search
	faces under MS-DOS, Display on MS-DOS
	faces, customizing, Customizing Faces
	failed merges, Comparing Files
	Feedmail, Mail Sending
	ff-find-related-file, Other Commands for C Mode
	ff-related-file-alist, Other Commands for C Mode
	ffap, Finding Files and URLs at Point
	FFAP minor mode, Finding Files and URLs at Point
	ffap-menu, Finding Files and URLs at Point
	ffap-mode, Finding Files and URLs at Point
	ffap-next, Finding Files and URLs at Point
	file archives, File Archives
	file comparison (in Dired), File Comparison with Dired
	file database (locate), Dired and find
	file dates, Protection against Simultaneous Editing
	file directory, File Directories
	file local variables, Local Variables in Files
	file management, Dired, the Directory Editor
	file modes, Miscellaneous File Operations
	file name caching, File Name Cache
	file names, File Names
	file names on MS-Windows, File Names on MS-Windows
	file names under MS-DOS, File Names on MS-DOS
	file names under Windows 95/NT, File Names on MS-DOS
	file names with non-ASCII characters, Coding Systems for File Names
	file names, quote special characters, Quoted File Names
	file ownership, and backup, Copying vs. Renaming
	file permissions, Miscellaneous File Operations
	file selection dialog, Visiting Files
	file selection dialog, how to disable, Using Dialog Boxes
	file shadows, Shadowing Files
	file truenames, File Name Aliases
	file version in change log entries, Change Log Commands
	file, warning when size is large, Visiting Files
	file-based version control, Changeset-based vs File-based Version Control
	file-cache-add-directory, File Name Cache
	file-cache-minibuffer-complete, File Name Cache
	file-coding-system-alist, Recognizing Coding Systems
	file-name completion, on MS-Windows, File Names on MS-Windows
	file-name-buffer-file-type-alist, Text Files and Binary Files
	file-name-coding-system, Coding Systems for File Names
	file-name-shadow-mode, Minibuffers for File Names
	files, File Handling
	files, visiting and saving, Visiting Files
	filesets, Filesets
	filesets, VC, Basic Editing under Version Control
	filesets-add-buffer, Filesets
	filesets-init, Filesets
	filesets-remove-buffer, Filesets
	fill prefix, The Fill Prefix
	fill-column, Explicit Fill Commands
	fill-individual-paragraphs, The Fill Prefix
	fill-nobreak-predicate, Explicit Fill Commands
	fill-nonuniform-paragraphs, The Fill Prefix
	fill-paragraph, Explicit Fill Commands
	fill-prefix, The Fill Prefix
	fill-region, Explicit Fill Commands
	fill-region-as-paragraph, Explicit Fill Commands
	filling text, Filling Text
	find, File Name Cache
	find and Dired, Dired and find
	find Info manual by its file name, Other Help Commands
	find-alternate-file, Visiting Files
	find-dired, Dired and find
	find-file, Visiting Files
	find-file-at-point, Finding Files and URLs at Point
	find-file-existing-other-name, File Name Aliases
	find-file-hook, Visiting Files
	find-file-literally, Visiting Files
	find-file-not-found-functions, Visiting Files
	find-file-other-frame, Visiting Files
	find-file-other-window, Visiting Files, Displaying in Another Window
	find-file-read-only, Visiting Files
	find-file-read-only-other-frame, Creating Frames
	find-file-run-dired, Visiting Files
	find-file-suppress-same-file-warnings, File Name Aliases
	find-file-visit-truename, File Name Aliases
	find-file-wildcards, Visiting Files
	find-grep, Searching with Grep under Emacs
	find-grep-dired, Dired and find
	find-ls-option, Dired and find
	find-name-dired, Dired and find
	find-tag, Finding a Tag
	find-tag-marker-ring-length, Finding a Tag
	find-tag-other-frame, Finding a Tag
	find-tag-other-window, Displaying in Another Window, Finding a Tag
	find-tag-regexp, Finding a Tag
	finder, Keyword Search for Packages
	finder-by-keyword, Keyword Search for Packages
	finding file at point, Finding Files and URLs at Point
	finding files containing regexp matches (in Dired), Dired Marks vs. Flags
	finding strings within text, Searching and Replacement
	firewall, and accessing remote files, Remote Files
	fixing incorrectly decoded mail messages, Rmail and Coding Systems
	flagging files (in Dired), Deleting Files with Dired
	flagging many files for deletion (in Dired), Flagging Many Files at Once
	flush-lines, Other Search-and-Loop Commands
	Flyspell mode, Checking and Correcting Spelling
	flyspell-mode, Checking and Correcting Spelling
	flyspell-prog-mode, Checking and Correcting Spelling
	focus-follows-mouse, Frame Commands
	folding editing, Folding Editing
	foldout-exit-fold, Folding Editing
	foldout-mouse-modifiers, Folding Editing
	foldout-zoom-subtree, Folding Editing
	Follow mode, Follow Mode
	follow-mode, Follow Mode
	font antialiasing (MS Windows), Specifying Fonts on MS-Windows
	font backend selection (MS-Windows), Specifying Fonts on MS-Windows
	font for menus, Table of X Resources for Emacs
	Font Lock mode, Font Lock mode
	font name (X Window System), Font Specification Options
	font of character at point, Introduction to International Character Sets
	font properties (MS Windows gdi backend), Specifying Fonts on MS-Windows
	font properties (MS Windows), Specifying Fonts on MS-Windows
	font scripts (MS Windows), Specifying Fonts on MS-Windows
	font specification (MS Windows), Specifying Fonts on MS-Windows
	font Unicode subranges (MS Windows), Specifying Fonts on MS-Windows
	font-lock-add-keywords, Font Lock mode
	font-lock-beginning-of-syntax-function, Font Lock mode
	font-lock-maximum-decoration, Font Lock mode
	font-lock-mode, Font Lock mode
	font-lock-remove-keywords, Font Lock mode
	font-slant-table (MS-Windows), Specifying Fonts on MS-Windows
	font-weight-table (MS-Windows), Specifying Fonts on MS-Windows
	fontconfig, Fonts
	fonts, Fonts
	fonts and faces, Customizing Faces
	fonts for PostScript printing, Variables for PostScript Hardcopy
	fonts for various scripts, Fontsets
	fonts, emulating under MS-DOS, Display on MS-DOS
	fontsets, Fontsets
	fontsets, modifying, Modifying Fontsets
	foreground color, command-line argument, Window Color Options
	format-decode-buffer, Enriched Mode
	formfeed character, Pages
	Fortran 77 and Fortran 90, 95, 2003, 2008, Fortran Mode
	Fortran continuation lines, Continuation Lines
	Fortran fixed form and free form, Fortran Mode
	Fortran mode, Fortran Mode
	fortran-analyze-depth, Continuation Lines
	fortran-beginning-of-block, Motion Commands
	fortran-break-before-delimiters, Auto Fill in Fortran Mode
	fortran-check-all-num…, Variables for Fortran Indentation
	fortran-column-ruler, Checking Columns in Fortran
	fortran-column-ruler-fixed, Checking Columns in Fortran
	fortran-column-ruler-tabs, Checking Columns in Fortran
	fortran-comment-indent-char, Fortran Comments
	fortran-comment-indent-style, Fortran Comments
	fortran-comment-line-extra-indent, Fortran Comments
	fortran-comment-line-start, Fortran Comments
	fortran-comment-region, Fortran Comments
	fortran-continuation-indent, Variables for Fortran Indentation
	fortran-continuation-string, Continuation Lines
	fortran-directive-re, Fortran Comments
	fortran-do-indent, Variables for Fortran Indentation
	fortran-electric-line-number, Line Numbers
	fortran-end-of-block, Motion Commands
	fortran-if-indent, Variables for Fortran Indentation
	fortran-indent-subprogram, Fortran Indentation and Filling Commands
	fortran-join-line, Fortran Indentation and Filling Commands
	fortran-line-length, Checking Columns in Fortran
	fortran-line-number-indent, Line Numbers
	fortran-minimum-statement-indent…, Variables for Fortran Indentation
	fortran-mode, Fortran Mode
	fortran-next-statement, Motion Commands
	fortran-previous-statement, Motion Commands
	fortran-split-line, Fortran Indentation and Filling Commands
	fortran-strip-sequence-nos, Checking Columns in Fortran
	fortran-structure-indent, Variables for Fortran Indentation
	fortran-tab-mode-default, Continuation Lines
	fortran-window-create, Checking Columns in Fortran
	fortran-window-create-momentarily, Checking Columns in Fortran
	fortune cookies, Mail Amusements
	fortune-to-signature, Mail Amusements
	forward-button, Help Mode Commands
	forward-char, Changing the Location of Point
	forward-list, Moving in the Parenthesis Structure
	forward-page, Pages
	forward-paragraph, Paragraphs
	forward-sentence, Sentences
	forward-sexp, Expressions with Balanced Parentheses
	forward-text-line, Nroff Mode
	forward-word, Changing the Location of Point, Words
	forwarding a message, Sending Replies
	frame, The Organization of the Screen
	frame focus policy, MS-Windows, Miscellaneous Windows-specific features
	frame size under MS-DOS, Display on MS-DOS
	frame size, specifying default, Frame Parameters
	frame title, command-line argument, Frame Titles
	frame-configuration-to-register, Saving Window Configurations in Registers
	frames, Frames and Graphical Displays
	frames on MS-DOS, Display on MS-DOS
	French Revolutionary calendar, Supported Calendar Systems
	fringe face, Standard Faces
	fringe-mode, Window Fringes
	fringes, Window Fringes
	fringes, and continuation lines, Continuation Lines
	fringes, and unused line indication, Useless Whitespace
	fringes, for debugging, Source Buffers
	FTP, Remote Files
	fullheight, command-line argument, Options for Window Size and Position
	fullscreen, command-line argument, Options for Window Size and Position
	fullwidth, command-line argument, Options for Window Size and Position
	function key, Keymaps
	function, move to beginning or end, Moving by Defuns

G
	G (Dired), Operating on Files
	g (Dired), Updating the Dired Buffer
	g (Rmail), Multiple Rmail Files
	g char (Calendar mode), Converting From Other Calendars
	g d (Calendar mode), Specified Dates
	g D (Calendar mode), Specified Dates
	g m (Calendar mode), Converting from the Mayan Calendar
	g w (Calendar mode), Specified Dates
	gamma correction, Table of X Resources for Emacs
	gateway, and remote file access with ange-ftp, Remote Files
	GDB, Running Debuggers Under Emacs
	gdb, Starting GUD
	GDB User Interface layout, GDB User Interface Layout
	gdb-delete-breakpoint, Breakpoints Buffer
	gdb-delete-out-of-scope, Watch Expressions
	gdb-display-disassembly-for-thread, Threads Buffer
	gdb-display-locals-for-thread, Threads Buffer
	gdb-display-registers-for-thread, Threads Buffer
	gdb-display-stack-for-thread, Threads Buffer
	gdb-edit-value, Watch Expressions
	gdb-frames-select, Stack Buffer
	gdb-goto-breakpoint, Breakpoints Buffer
	gdb-gud-control-all-threads, Multithreaded Debugging
	gdb-many-windows, GDB User Interface Layout
	gdb-mode-hook, GUD Customization
	gdb-non-stop-setting, Multithreaded Debugging
	gdb-restore-windows, GDB User Interface Layout
	gdb-select-thread, Threads Buffer
	gdb-show-changed-values, Watch Expressions
	gdb-show-threads-by-default, Breakpoints Buffer
	gdb-speedbar-auto-raise, Watch Expressions
	gdb-stopped-hooks, Multithreaded Debugging
	gdb-switch-reasons, Multithreaded Debugging
	gdb-switch-when-another-stopped, Multithreaded Debugging
	gdb-thread-buffer-addresses, Threads Buffer
	gdb-thread-buffer-arguments, Threads Buffer
	gdb-thread-buffer-locations, Threads Buffer
	gdb-thread-buffer-verbose-names, Threads Buffer
	gdb-toggle-breakpoint, Breakpoints Buffer
	gdb-use-colon-colon-notation, Watch Expressions
	gdb-var-delete, Watch Expressions
	geometry of Emacs window, Options for Window Size and Position
	geometry, command-line argument, Options for Window Size and Position
	German, International Character Set Support
	getenv, Environment Variables
	getting help with keys, Help
	Ghostscript, use for PostScript printing, Printing and MS-Windows
	git, Supported Version Control Systems
	Glasses mode, Glasses minor mode
	Global Auto-Revert mode, Reverting a Buffer
	global keymap, Keymaps
	global mark, CUA Bindings
	global mark ring, The Global Mark Ring
	global substitution, Replacement Commands
	global-auto-revert-mode, Reverting a Buffer
	global-cwarn-mode, Other Commands for C Mode
	global-font-lock-mode, Font Lock mode
	global-hl-line-mode, Displaying the Cursor
	global-mark-ring-max, The Global Mark Ring
	global-set-key, Changing Key Bindings Interactively
	global-unset-key, Changing Key Bindings Interactively
	global-visual-line-mode, Visual Line Mode
	glyphless characters, How Text Is Displayed
	GNU Arch, Supported Version Control Systems
	Gnus, Gnus
	gnus, When Gnus Starts Up
	gnus-group-exit, Using the Gnus Group Buffer
	gnus-group-kill-group, Using the Gnus Group Buffer
	gnus-group-list-all-groups, Using the Gnus Group Buffer
	gnus-group-list-groups, Using the Gnus Group Buffer
	gnus-group-next-unread-group, Using the Gnus Group Buffer, Using the Gnus Summary Buffer
	gnus-group-prev-unread-group, Using the Gnus Group Buffer, Using the Gnus Summary Buffer
	gnus-group-read-group, Using the Gnus Group Buffer, Using the Gnus Summary Buffer
	gnus-group-unsubscribe-current-group, Using the Gnus Group Buffer
	gnus-summary-isearch-article, Using the Gnus Summary Buffer
	gnus-summary-next-unread-article, Using the Gnus Group Buffer, Using the Gnus Summary Buffer
	gnus-summary-prev-page, Using the Gnus Summary Buffer
	gnus-summary-prev-unread-article, Using the Gnus Group Buffer, Using the Gnus Summary Buffer
	gnus-summary-search-article-forward, Using the Gnus Summary Buffer
	GNUstep, Emacs and Mac OS / GNUstep
	Go Moku, Other Amusements
	gomoku, Other Amusements
	Goto Address mode, Activating URLs
	goto-address-at-point, Activating URLs
	goto-address-mode, Activating URLs
	goto-char, Changing the Location of Point
	goto-followup-to, Mail Header Editing
	goto-line, Changing the Location of Point, Creating and Selecting Buffers
	goto-reply-to, Mail Header Editing
	gpm-mouse-mode, Using a Mouse in Text Terminals
	graphic characters, Inserting Text
	Greek, International Character Set Support
	Gregorian calendar, Conversion To and From Other Calendars
	grep, Searching with Grep under Emacs
	grep (MS-DOS), Subprocesses on MS-DOS
	grep-find, Searching with Grep under Emacs
	grep-find-ignored-directories, Searching with Grep under Emacs
	grep-regexp-alist, Compilation Mode
	growing minibuffer, Editing in the Minibuffer
	GTK font pattern, Fonts
	GTK styles, GTK styles
	GTK widget classes, GTK Widget Names in Emacs
	GTK widget names, GTK widget names, GTK Widget Names in Emacs
	GTK+ resources, GTK resources
	GUD interaction buffer, Debugger Operation
	GUD library, Running Debuggers Under Emacs
	GUD Tooltip mode, Debugger Operation
	gud-cont, Commands of GUD
	gud-def, GUD Customization
	gud-down, Commands of GUD
	gud-finish, Commands of GUD
	gud-gdb, Starting GUD
	gud-gdb-command-name, GDB Graphical Interface
	gud-gdb-complete-command, Commands of GUD
	gud-jump, Commands of GUD
	gud-next, Commands of GUD
	gud-print, Commands of GUD
	gud-refresh, Commands of GUD
	gud-remove, Commands of GUD
	gud-step, Commands of GUD
	gud-stepi, Commands of GUD
	gud-tbreak, Commands of GUD
	gud-tooltip-echo-area, Debugger Operation
	gud-tooltip-mode, Debugger Operation
	gud-until, Commands of GUD
	gud-up, Commands of GUD
	gud-watch, Watch Expressions
	gud-xdb-directories, Starting GUD
	gzip, Accessing Compressed Files

H
	h (Calendar mode), Holidays
	H (Dired), Operating on Files
	h (Rmail), Making Summaries
	handwrite, PostScript Hardcopy
	handwriting, PostScript Hardcopy
	hanoi, Other Amusements
	hard links (creation), Miscellaneous File Operations
	hard links (in Dired), Operating on Files
	hard links (visiting), File Name Aliases
	hard newline, Hard and Soft Newlines
	hardcopy, Printing Hard Copies
	header (TeX mode), TeX Printing Commands
	header line (Dired), Moving Over Subdirectories
	headers (of mail message), Mail Header Fields
	heading lines (Outline mode), Format of Outlines
	Hebrew, International Character Set Support
	Hebrew calendar, Supported Calendar Systems
	height of minibuffer, Editing in the Minibuffer
	Help, Help
	help, Help
	help text, in GTK+ file chooser, Using Dialog Boxes
	help, viewing web pages, Help Mode Commands
	help-at-pt-display-when-idle, Help on Active Text and Tooltips
	help-command, Help
	help-follow, Help Mode Commands
	help-for-help, Help
	help-go-back, Help Mode Commands
	help-map, Prefix Keymaps
	help-with-tutorial, Basic Editing Commands
	hex editing, Editing Binary Files
	Hexl mode, Editing Binary Files
	hg, Supported Version Control Systems
	Hi Lock mode, Interactive Highlighting
	hi-lock-exclude-modes, Interactive Highlighting
	hi-lock-file-patterns-policy, Interactive Highlighting
	hi-lock-find-patterns, Interactive Highlighting
	hi-lock-mode, Interactive Highlighting
	hi-lock-write-interactive-patterns, Interactive Highlighting
	hidden files, in GTK+ file chooser, Using Dialog Boxes
	hide-body, Outline Visibility Commands
	hide-entry, Outline Visibility Commands
	Hide-ifdef mode, Other Commands for C Mode
	hide-ifdef-mode, Other Commands for C Mode
	hide-ifdef-shadow, Other Commands for C Mode
	hide-leaves, Outline Visibility Commands
	hide-other, Outline Visibility Commands
	hide-sublevels, Outline Visibility Commands
	hide-subtree, Outline Visibility Commands
	Hideshow mode, Hideshow minor mode
	hiding subdirectories (Dired), Hiding Subdirectories
	Highlight Changes mode, Interactive Highlighting
	highlight current line, Displaying the Cursor
	highlight-changes-mode, Interactive Highlighting
	highlight-lines-matching-regexp, Interactive Highlighting
	highlight-nonselected-windows, The Mark and the Region
	highlight-regexp, Interactive Highlighting
	highlighting by matching, Interactive Highlighting
	highlighting lines of text, Interactive Highlighting
	highlighting matching parentheses, Matching Parentheses
	highlighting region, Disabling Transient Mark Mode
	Hindi, International Character Set Support
	history of commands, Repeating Minibuffer Commands
	history of minibuffer input, Minibuffer History
	history reference, Shell History References
	history-delete-duplicates, Minibuffer History
	history-length, Minibuffer History
	hl-line-mode, Displaying the Cursor
	holiday forms, Customizing the Holidays
	holiday-bahai-holidays, Customizing the Holidays
	holiday-christian-holidays, Customizing the Holidays
	holiday-general-holidays, Customizing the Holidays
	holiday-hebrew-holidays, Customizing the Holidays
	holiday-islamic-holidays, Customizing the Holidays
	holiday-local-holidays, Customizing the Holidays
	holiday-oriental-holidays, Customizing the Holidays
	holiday-other-holidays, Customizing the Holidays
	holiday-solar-holidays, Customizing the Holidays
	holidays, Holidays
	HOME, Changing the Location of Point
	HOME directory on MS-Windows, HOME and Startup Directories on MS-Windows
	home directory shorthand, Minibuffers for File Names
	HOME directory under MS-DOS, File Names on MS-DOS
	hook, Hooks
	horizontal scrolling, Horizontal Scrolling
	hourglass pointer display, Customization of Display
	hourglass-delay, Customization of Display
	how-many, Other Search-and-Loop Commands
	hs-hide-all, Hideshow minor mode
	hs-hide-block, Hideshow minor mode
	hs-hide-comments-when-hiding-all, Hideshow minor mode
	hs-hide-level, Hideshow minor mode
	hs-isearch-open, Hideshow minor mode
	hs-minor-mode, Hideshow minor mode
	hs-show-all, Hideshow minor mode
	hs-show-block, Hideshow minor mode
	hs-show-region, Hideshow minor mode
	hs-special-modes-alist, Hideshow minor mode
	hscroll-margin, Horizontal Scrolling
	hscroll-step, Horizontal Scrolling
	HTML mode, SGML and HTML Modes
	html-mode, SGML and HTML Modes
	htmlfontify-buffer, Printing Hard Copies
	hungry deletion (C Mode), Hungry Delete Feature in C
	hunk, diff, Diff Mode
	Hyper (under MS-DOS), Keyboard Usage on MS-DOS
	hyperlink, Help Mode Commands
	hyperlinks, Following References with the Mouse

I
	i (Dired), Subdirectories in Dired
	i (Rmail), Multiple Rmail Files
	i a (Calendar mode), Special Diary Entries
	i b (Calendar mode), Special Diary Entries
	i c (Calendar mode), Special Diary Entries
	i d (Calendar mode), Commands to Add to the Diary
	i m (Calendar mode), Commands to Add to the Diary
	i w (Calendar mode), Commands to Add to the Diary
	i y (Calendar mode), Commands to Add to the Diary
	iCalendar support, Importing and Exporting Diary Entries
	icalendar-export-file, icalendar-export-region, Importing and Exporting Diary Entries
	icalendar-import-buffer, Importing and Exporting Diary Entries
	icalendar-import-file, Importing and Exporting Diary Entries
	Icomplete mode, Completion Options
	icomplete-mode, Completion Options
	Icon mode, Major Modes for Programming Languages
	iconifying, Exiting Emacs
	icons (X Window System), Icons
	icons, toolbar, Tool Bars
	IDL mode, C and Related Modes
	ielm, Lisp Interaction Buffers
	ignored file names, in completion, Completion Options
	image animation, Convenience Features for Finding Files
	image-dired, Viewing Image Thumbnails in Dired
	image-dired mode, Viewing Image Thumbnails in Dired
	image-dired-display-thumbs, Viewing Image Thumbnails in Dired
	image-dired-external-viewer, Viewing Image Thumbnails in Dired
	image-mode, Convenience Features for Finding Files
	image-toggle-animation, Convenience Features for Finding Files
	image-toggle-display, Convenience Features for Finding Files
	ImageMagick support, Convenience Features for Finding Files
	images, viewing, Convenience Features for Finding Files
	IMAP mailboxes, Retrieving Mail from Remote Mailboxes
	imenu, Imenu
	imenu-add-menubar-index, Imenu
	imenu-auto-rescan, Imenu
	imenu-sort-function, Imenu
	in-situ subdirectory (Dired), Subdirectories in Dired
	inbox file, Rmail Files and Inboxes
	incorrect fontification, Font Lock mode
	increase buffer face height, Text Scale
	increase-left-margin, Indentation in Enriched Text
	increment-register, Keeping Numbers in Registers
	incremental search, Incremental Search
	incremental search, input method interference, Input Methods
	indent-code-rigidly, Indenting Several Lines
	indent-for-tab-command, Indentation, Basic Program Indentation Commands
	indent-line-function, Basic Program Indentation Commands
	indent-pp-sexp, Indenting Several Lines
	indent-region, Indentation Commands
	indent-relative, Indentation Commands
	indent-rigidly, Indentation Commands
	indent-tabs-mode, Tabs vs. Spaces
	indent-tabs-mode (Fortran mode), Continuation Lines
	indentation, Indentation
	indentation for comments, Comment Commands
	indentation for programs, Indentation for Programs
	index of buffer definitions, Imenu
	indicate-buffer-boundaries, Displaying Boundaries
	indicate-empty-lines, Useless Whitespace
	indirect buffer, Indirect Buffers
	indirect buffers and outlines, Viewing One Outline in Multiple Views
	inferior process, Running Compilations under Emacs
	inferior processes under MS-DOS, Subprocesses on MS-DOS
	inferior-lisp-program, Running an External Lisp
	info, Other Help Commands
	Info, Other Help Commands
	Info-goto-emacs-command-node, Help by Command or Variable Name
	Info-goto-emacs-key-command-node, Documentation for a Key
	info-lookup-file, Info Documentation Lookup
	info-lookup-symbol, Other Help Commands, Info Documentation Lookup
	inhibit-eol-conversion, Recognizing Coding Systems
	inhibit-iso-escape-detection, Recognizing Coding Systems
	inhibit-startup-buffer-menu, Action Arguments
	inhibit-startup-screen, Entering Emacs, Initial Options
	init file, The Emacs Initialization File
	init file .emacs on MS-Windows, HOME and Startup Directories on MS-Windows
	init file, and non-ASCII characters, Disabling Multibyte Characters
	init file, default name under MS-DOS, File Names on MS-DOS
	init file, not loading, Initial Options
	initial options (command line), Command Line Arguments for Emacs Invocation
	initial-environment, Environment Variables
	initial-frame-alist, Frame Parameters
	initial-scratch-message, Lisp Interaction Buffers
	input event, Kinds of User Input
	input methods, Input Methods
	input methods, X, Table of X Resources for Emacs
	input with the keyboard, Kinds of User Input
	input-method-highlight-flag, Input Methods
	input-method-verbose-flag, Input Methods
	INSERT, Minor Modes
	insert file contents, command-line argument, Action Arguments
	insert Unicode character, Inserting Text
	insert-abbrevs, Saving Abbrevs
	insert-default-directory, Minibuffers for File Names, File Names
	insert-file, Miscellaneous File Operations
	insert-file-literally, Miscellaneous File Operations
	insert-kbd-macro, Naming and Saving Keyboard Macros
	insert-register, Saving Text in Registers
	inserted subdirectory (Dired), Subdirectories in Dired
	inserting blank lines, Blank Lines
	inserting matching parentheses, Matching Parentheses
	inserting rows and columns in text-based tables, Table Rows and Columns
	insertion, Inserting Text
	INSIDE_EMACS environment variable, Interactive Subshell
	Integrated development environment, Emacs Development Environment
	interactive highlighting, Interactive Highlighting
	internal border width, command-line argument, Internal and External Borders
	international characters in .emacs, Non-ASCII Characters in Init Files
	international files from DOS/Windows systems, Coding Systems
	international scripts, International Character Set Support
	international support (MS-DOS), International Support on MS-DOS
	interpreter-mode-alist, Choosing File Modes
	Intlfonts for PostScript printing, Variables for PostScript Hardcopy
	Intlfonts package, installation, Fontsets
	inverse-add-global-abbrev, Defining Abbrevs
	inverse-add-mode-abbrev, Defining Abbrevs
	invisible lines, Outline Mode
	invocation (command line arguments), Command Line Arguments for Emacs Invocation
	invoking Emacs from Windows Explorer, How to Start Emacs on MS-Windows
	IPA, International Character Set Support
	isearch, Incremental Search
	isearch-allow-scroll, Scrolling During Incremental Search
	isearch-backward, Basics of Incremental Search
	isearch-backward-regexp, Regular Expression Search
	isearch-del-char, Isearch Yanking
	isearch-forward, Basics of Incremental Search
	isearch-forward-regexp, Regular Expression Search
	isearch-forward-word, Word Search
	isearch-lazy-highlight, Repeating Incremental Search
	isearch-mode-map, Special Input for Incremental Search
	isearch-resume-in-command-history, Repeating Minibuffer Commands
	isearch-toggle-input-method, Special Input for Incremental Search
	isearch-toggle-specified-input-method, Special Input for Incremental Search
	isearch-yank-char, Isearch Yanking
	isearch-yank-kill, Isearch Yanking
	isearch-yank-line, Isearch Yanking
	isearch-yank-pop, Isearch Yanking
	isearch-yank-word-or-char, Isearch Yanking
	Islamic calendar, Supported Calendar Systems
	ISO commercial calendar, Supported Calendar Systems
	ISO Latin character sets, Unibyte Editing Mode
	iso-ascii library, Unibyte Editing Mode
	iso-gtex2iso, TeX Mode Miscellany
	iso-iso2gtex, TeX Mode Miscellany
	iso-iso2tex, TeX Mode Miscellany
	iso-tex2iso, TeX Mode Miscellany
	iso-transl library, Unibyte Editing Mode
	ispell, Checking and Correcting Spelling
	ispell program, Checking and Correcting Spelling
	ispell-buffer, Checking and Correcting Spelling
	ispell-change-dictionary, Checking and Correcting Spelling
	ispell-complete-word, Checking and Correcting Spelling
	ispell-complete-word-dict, Checking and Correcting Spelling
	ispell-dictionary, Checking and Correcting Spelling
	ispell-kill-ispell, Checking and Correcting Spelling
	ispell-local-dictionary, Checking and Correcting Spelling
	ispell-message, Mail Miscellany
	ispell-personal-dictionary, Checking and Correcting Spelling
	ispell-region, Checking and Correcting Spelling
	ispell-word, Checking and Correcting Spelling
	Iswitchb mode, Switching Between Buffers using Substrings
	iswitchb-mode, Switching Between Buffers using Substrings

J
	j (Dired), Navigation in the Dired Buffer
	j (Rmail), Moving Among Messages
	Japanese, International Character Set Support
	jar, File Archives
	Java class archives, File Archives
	Java mode, C and Related Modes
	Javascript mode, Major Modes for Programming Languages
	JDB, Running Debuggers Under Emacs
	jdb, Starting GUD
	jdb-mode-hook, GUD Customization
	Julian calendar, Supported Calendar Systems
	Julian day numbers, Supported Calendar Systems
	jump-to-register, Saving Positions in Registers
	just-in-time (JIT) font-lock, Font Lock mode
	just-one-space, Deletion
	justification, Explicit Fill Commands
	justification in text-based tables, Cell Justification

K
	k (Dired), Updating the Dired Buffer
	k (Rmail), Labels
	kbd, Rebinding Keys in Your Init File
	kbd-macro-query, Executing Macros with Variations
	keep-lines, Other Search-and-Loop Commands
	kept-new-versions, Automatic Deletion of Backups
	kept-old-versions, Automatic Deletion of Backups
	Kerberos POP authentication, Retrieving Mail from Remote Mailboxes
	key, Keys
	key bindings, Customizing Key Bindings
	key rebinding, permanent, The Emacs Initialization File
	key rebinding, this session, Changing Key Bindings Interactively
	key sequence, Keys
	keyboard input, Kinds of User Input
	keyboard macro, Keyboard Macros
	keyboard shortcuts, Glossary
	keyboard, MS-Windows, Keyboard Usage on MS-Windows
	keyboard-coding-system, Coding Systems for Terminal I/O
	keyboard-escape-quit, Quitting and Aborting
	keyboard-quit, Quitting and Aborting
	keymap, Keymaps
	keypad, Rebinding Function Keys
	keypad keys (MS-Windows), Keyboard Usage on MS-Windows
	keys stolen by window manager, Kinds of User Input
	kill DOS application, Subprocesses on Windows 9X/ME and Windows NT/2K/XP
	kill ring, Yanking
	kill-all-abbrevs, Defining Abbrevs
	kill-buffer, Killing Buffers
	kill-buffer-and-window, Deleting and Rearranging Windows
	kill-buffer-hook, Killing Buffers
	kill-compilation, Running Compilations under Emacs
	kill-do-not-save-duplicates, Options for Killing
	kill-emacs, Exiting Emacs
	kill-line, Killing by Lines
	kill-local-variable, Local Variables
	kill-matching-buffers, Killing Buffers
	kill-read-only-ok, Options for Killing
	kill-rectangle, Rectangles
	kill-region, Other Kill Commands
	kill-ring, The Kill Ring
	kill-ring-max, The Kill Ring
	kill-ring-save, Other Kill Commands
	kill-sentence, Sentences
	kill-sexp, Expressions with Balanced Parentheses
	kill-some-buffers, Killing Buffers
	kill-whole-line, Killing by Lines
	kill-word, Words
	killing buffers, Killing Buffers
	killing characters and lines, Erasing Text
	killing Emacs, Exiting Emacs
	killing expressions, Expressions with Balanced Parentheses
	killing rectangular areas of text, Rectangles
	killing text, Deletion and Killing
	kmacro-add-counter, The Keyboard Macro Counter
	kmacro-bind-to-key, Naming and Saving Keyboard Macros
	kmacro-cycle-ring-next, The Keyboard Macro Ring
	kmacro-cycle-ring-previous, The Keyboard Macro Ring
	kmacro-edit-lossage, Editing a Keyboard Macro
	kmacro-edit-macro, Editing a Keyboard Macro
	kmacro-end-and-call-macro, Basic Use
	kmacro-end-macro, Basic Use
	kmacro-end-or-call-macro, Basic Use
	kmacro-end-or-call-macro-repeat, The Keyboard Macro Ring
	kmacro-insert-counter, The Keyboard Macro Counter
	kmacro-name-last-macro, Naming and Saving Keyboard Macros
	kmacro-ring-max, The Keyboard Macro Ring
	kmacro-set-counter, The Keyboard Macro Counter
	kmacro-set-format, The Keyboard Macro Counter
	kmacro-start-macro, Basic Use
	kmacro-start-macro-or-insert-counter, Basic Use
	kmacro-step-edit-macro, Stepwise Editing a Keyboard Macro
	Korean, International Character Set Support

L
	L (Dired), Operating on Files
	l (Dired), Updating the Dired Buffer
	l (GDB threads buffer), Threads Buffer
	l (Gnus Group mode), Using the Gnus Group Buffer
	L (Gnus Group mode), Using the Gnus Group Buffer
	l (Rmail), Making Summaries
	label (Rmail), Labels
	landmark, Other Amusements
	landmark game, Other Amusements
	language environment, automatic selection on MS-DOS, International Support on MS-DOS
	language environments, Language Environments
	Lao, International Character Set Support
	large-file-warning-threshold, Visiting Files
	LaTeX mode, TeX Mode
	latex-block-names, LaTeX Editing Commands
	latex-electric-env-pair-mode, LaTeX Editing Commands
	latex-mode, TeX Mode
	latex-mode-hook, TeX Mode Miscellany
	latex-run-command, TeX Printing Commands
	Latin, International Character Set Support
	Latin-1 TeX encoding, TeX Mode Miscellany
	latin1-display, Undisplayable Characters
	lazy search highlighting, Repeating Incremental Search
	leaving Emacs, Exiting Emacs
	LEFT, Changing the Location of Point
	left-char, Changing the Location of Point
	left-word, Changing the Location of Point
	LessTif Widget X Resources, LessTif Menu X Resources
	lgrep, Searching with Grep under Emacs
	libraries, Libraries of Lisp Code for Emacs
	life, Other Amusements
	Life, Other Amusements
	line endings, Coding Systems
	line number commands, Cursor Position Information
	line number display, Optional Mode Line Features
	line spacing, Table of X Resources for Emacs
	line spacing, command-line argument, Other Display Options
	line truncation, and fringes, Continuation Lines, Line Truncation
	line wrapping, Continuation Lines
	line-move-visual, Changing the Location of Point
	line-number-display-limit, Optional Mode Line Features
	line-number-display-limit-width, Optional Mode Line Features
	line-number-mode, Optional Mode Line Features
	lines, highlighting, Interactive Highlighting
	links, Following References with the Mouse
	links (customization buffer), Customization Groups
	Linum mode, Minor Modes
	linum-mode, Minor Modes
	Lisp character syntax, Init File Syntax
	Lisp editing, Editing Programs
	Lisp files byte-compiled by XEmacs, Libraries of Lisp Code for Emacs
	Lisp files, and multibyte operation, Disabling Multibyte Characters
	Lisp mode, Running an External Lisp
	Lisp object syntax, Init File Syntax
	Lisp string syntax, Init File Syntax
	Lisp symbol completion, Completion for Symbol Names
	lisp-body-indent, Customizing Lisp Indentation
	lisp-eval-defun, Running an External Lisp
	lisp-indent-function property, Customizing Lisp Indentation
	lisp-indent-offset, Customizing Lisp Indentation
	lisp-interaction-mode, Lisp Interaction Buffers
	lisp-interaction-mode-hook, Major Modes for Programming Languages
	lisp-mode-hook, Major Modes for Programming Languages
	list commands, Moving in the Parenthesis Structure
	list-abbrevs, Examining and Editing Abbrevs
	list-bookmarks, Bookmarks
	list-buffers, Listing Existing Buffers
	list-character-sets, Charsets
	list-charset-chars, Charsets
	list-coding-systems, Coding Systems
	list-colors-display, Colors for Faces
	list-colors-sort, Colors for Faces
	list-command-history, Repeating Minibuffer Commands
	list-directory, File Directories
	list-directory-brief-switches, File Directories
	list-directory-verbose-switches, File Directories
	list-faces-display, Text Faces
	list-holidays, Holidays
	list-input-methods, Selecting an Input Method
	list-matching-lines, Other Search-and-Loop Commands
	list-packages, The Package Menu Buffer
	list-tags, Tags Table Inquiries
	listing current buffers, Listing Existing Buffers
	listing system fonts, Fonts
	load, Libraries of Lisp Code for Emacs
	load init file of another user, Initial Options
	load path for Emacs Lisp, Libraries of Lisp Code for Emacs
	load-dangerous-libraries, Libraries of Lisp Code for Emacs
	load-file, Libraries of Lisp Code for Emacs
	load-library, Libraries of Lisp Code for Emacs
	load-path, Libraries of Lisp Code for Emacs
	load-theme, Custom Themes
	loading Lisp code, Libraries of Lisp Code for Emacs
	loading Lisp libraries automatically, Init File Examples
	loading Lisp libraries, command-line argument, Action Arguments
	loading several files (in Dired), Operating on Files
	local keymap, Local Keymaps
	local variables, Local Variables
	local variables in files, Local Variables in Files
	local variables, for all files in a directory, Per-Directory Local Variables
	local-set-key, Changing Key Bindings Interactively
	local-unset-key, Changing Key Bindings Interactively
	locale, date format, Updating Time Stamps Automatically
	locale-charset-language-names, Language Environments
	locale-coding-system, Coding Systems for Interprocess Communication
	locale-language-names, Language Environments
	locale-preferred-coding-systems, Language Environments
	locales, Language Environments
	locate, Dired and find
	locate-command, Dired and find
	locate-with-filter, Dired and find
	location of point, Cursor Position Information
	locking (CVS), Options specific for CVS
	locking files, Protection against Simultaneous Editing
	locking, non-strict (RCS), Options for RCS and SCCS
	locking-based version, Merge-based vs lock-based Version Control
	locus, Compilation Mode
	Log Edit mode, Features of the Log Entry Buffer
	log File, types of, Types of Log File
	log-edit-done, Features of the Log Entry Buffer
	log-edit-insert-changelog, Features of the Log Entry Buffer
	log-edit-show-diff, Features of the Log Entry Buffer
	log-edit-show-files, Features of the Log Entry Buffer
	log-view-toggle-entry-display, VC Change Log
	logging keystrokes, Checklist for Bug Reports
	logical order, Bidirectional Editing
	long file names in DOS box under Windows 95/NT, File Names on MS-DOS
	looking for a subject in documentation, Help
	lpr usage under MS-DOS, Printing and MS-Windows
	lpr-add-switches, Printing Hard Copies
	lpr-buffer, Printing Hard Copies
	lpr-command (MS-DOS), Printing and MS-Windows
	lpr-commands, Printing Hard Copies
	lpr-headers-switches, Printing Hard Copies
	lpr-headers-switches (MS-DOS), Printing and MS-Windows
	lpr-printer-switch, Printing Hard Copies
	lpr-region, Printing Hard Copies
	lpr-switches, Printing Hard Copies
	lpr-switches (MS-DOS), Printing and MS-Windows
	LRM, Bidirectional Editing
	ls emulation, Emulation of ls on MS-Windows
	ls-lisp-dirs-first, Emulation of ls on MS-Windows
	ls-lisp-emulation, Emulation of ls on MS-Windows
	ls-lisp-format-time-list, Emulation of ls on MS-Windows
	ls-lisp-ignore-case, Emulation of ls on MS-Windows
	ls-lisp-support-shell-wildcards, Emulation of ls on MS-Windows
	ls-lisp-use-insert-directory-program, Emulation of ls on MS-Windows
	ls-lisp-use-localized-time-format, Emulation of ls on MS-Windows
	ls-lisp-verbosity, Emulation of ls on MS-Windows
	Lucid Widget X Resources, Lucid Menu And Dialog X Resources
	lunar-phases, Phases of the Moon
	lzh, File Archives

M
	M (Calendar mode), Phases of the Moon
	m (Calendar mode), Displaying the Diary
	m (Dired), Dired Marks vs. Flags
	M (Dired), Operating on Files
	m (Rmail), Sending Replies
	M-, Kinds of User Input
	M-!, Single Shell Commands
	M-$, Checking and Correcting Spelling
	M-$ (Dired), Hiding Subdirectories
	M-%, Query Replace
	M-% (Incremental search), Special Input for Incremental Search
	M-&, Single Shell Commands
	M-', Controlling Abbrev Expansion
	M-*, Finding a Tag
	M-,, Searching and Replacing with Tags Tables
	M--, Numeric Arguments
	M-- M-c, Case Conversion
	M-- M-l, Case Conversion
	M-- M-u, Case Conversion
	M-., Finding a Tag
	M-/, Dynamic Abbrev Expansion
	M-1, Numeric Arguments
	M-:, Evaluating Emacs Lisp Expressions
	M-;, Comment Commands
	M-<, Changing the Location of Point
	M-< (Calendar mode), Beginning or End of Week, Month or Year
	M-< (DocView mode), DocView Navigation
	M-<down> (Org Mode), Org Mode
	M-<left> (Org Mode), Org Mode
	M-<right> (Org Mode), Org Mode
	M-<up> (Org Mode), Org Mode
	M-=, Cursor Position Information
	M-= (Calendar mode), Counting Days
	M-= (Dired), File Comparison with Dired
	M->, Changing the Location of Point
	M-> (Calendar mode), Beginning or End of Week, Month or Year
	M-> (DocView mode), DocView Navigation
	M-? (Nroff mode), Nroff Mode
	M-? (Shell mode), Shell Mode
	M-@, Commands to Mark Textual Objects, Words
	M-a, Sentences
	M-a (C mode), C Mode Motion Commands
	M-a (Calendar mode), Beginning or End of Week, Month or Year
	M-b, Changing the Location of Point, Words
	M-c, Case Conversion Commands
	M-d, Words
	M-DEL, Words
	M-DEL (Dired), Dired Marks vs. Flags
	M-Drag-Mouse-1, Secondary Selection
	M-e, Sentences
	M-e (C mode), C Mode Motion Commands
	M-e (Calendar mode), Beginning or End of Week, Month or Year
	M-e (Incremental search), Repeating Incremental Search
	M-f, Changing the Location of Point, Words
	M-g g, Changing the Location of Point
	M-g M-g, Changing the Location of Point
	M-g M-n, Compilation Mode
	M-g n, Compilation Mode
	M-h, Paragraphs
	M-i, Indentation Commands
	M-j, Multiple Lines of Comments
	M-j b (Enriched mode), Justification in Enriched Text
	M-j c (Enriched mode), Justification in Enriched Text
	M-j l (Enriched mode), Justification in Enriched Text
	M-j r (Enriched mode), Justification in Enriched Text
	M-j u (Enriched mode), Justification in Enriched Text
	M-k, Sentences
	M-l, Case Conversion Commands
	M-LEFT, Changing the Location of Point
	M-m, Indentation Commands
	M-m (Rmail), Sending Replies
	M-Mouse-1, Secondary Selection
	M-Mouse-2, Secondary Selection
	M-Mouse-3, Secondary Selection
	M-n (Incremental search), Repeating Incremental Search
	M-n (Log Edit mode), Features of the Log Entry Buffer
	M-n (Man mode), Man Page Lookup
	M-n (minibuffer history), Minibuffer History
	M-n (Nroff mode), Nroff Mode
	M-n (Rmail), Moving Among Messages
	M-n (Shell mode), Shell History Ring
	M-o b (Enriched mode), Faces in Enriched Text
	M-o d (Enriched mode), Faces in Enriched Text
	M-o i (Enriched mode), Faces in Enriched Text
	M-o l (Enriched mode), Faces in Enriched Text
	M-o M-s (Text mode), Explicit Fill Commands
	M-o o (Enriched mode), Faces in Enriched Text
	M-o u (Enriched mode), Faces in Enriched Text
	M-p (Incremental search), Repeating Incremental Search
	M-p (Log Edit mode), Features of the Log Entry Buffer
	M-p (Man mode), Man Page Lookup
	M-p (minibuffer history), Minibuffer History
	M-p (Nroff mode), Nroff Mode
	M-p (Rmail), Moving Among Messages
	M-p (Shell mode), Shell History Ring
	M-q, Explicit Fill Commands
	M-q (C mode), Other Commands for C Mode
	M-q (Fortran mode), Fortran Indentation and Filling Commands
	M-r, Changing the Location of Point
	M-r (Log Edit mode), Features of the Log Entry Buffer
	M-r (minibuffer history), Minibuffer History
	M-r (Shell mode), Shell History Ring
	M-RIGHT, Changing the Location of Point
	M-S (Enriched mode), Justification in Enriched Text
	M-s (Gnus Summary mode), Using the Gnus Summary Buffer
	M-s (Log Edit mode), Features of the Log Entry Buffer
	M-s (minibuffer history), Minibuffer History
	M-s (Rmail), Moving Among Messages
	M-s a C-s (Dired), Other Dired Features
	M-s a M-C-s (Dired), Other Dired Features
	M-s C-e (Incremental search), Isearch Yanking
	M-s f C-s (Dired), Navigation in the Dired Buffer
	M-s f M-C-s (Dired), Navigation in the Dired Buffer
	M-s o, Other Search-and-Loop Commands
	M-s w, Word Search
	M-SPC, Deletion
	M-t, Transposing Text
	M-TAB, Completion for Symbol Names
	M-TAB (customization buffer), Changing a Variable
	M-TAB (Incremental search), Special Input for Incremental Search
	M-TAB (Picture mode), Picture Mode Tabs
	M-TAB (Text mode), Text Mode
	M-TAB vs Alt-TAB (MS-Windows), Keyboard Usage on MS-Windows
	M-TAB, (MS-Windows), Keyboard Usage on MS-Windows
	M-u, Case Conversion Commands
	M-v, Scrolling
	M-v (Calendar mode), Scrolling in the Calendar
	M-w, Other Kill Commands
	M-x, Running Commands by Name
	M-y, Yanking Earlier Kills
	M-y (Incremental search), Isearch Yanking
	M-z, Other Kill Commands
	M-\, Deletion
	M-^, Indentation Commands
	M-^ (Fortran mode), Fortran Indentation and Filling Commands
	M-`, The Menu Bar
	M-{, Paragraphs
	M-{ (Calendar mode), Motion by Standard Lengths of Time
	M-{ (Dired), Dired Marks vs. Flags
	M-|, Single Shell Commands
	M-}, Paragraphs
	M-} (Calendar mode), Motion by Standard Lengths of Time
	M-} (Dired), Dired Marks vs. Flags
	M-~, Commands for Saving Files
	M4 mode, Major Modes for Programming Languages
	Mac OS X, Emacs and Mac OS / GNUstep
	Macintosh, Emacs and Mac OS / GNUstep
	Macintosh end-of-line conversion, Coding Systems
	Macintosh key bindings, Emulation
	macro expansion in C, Other Commands for C Mode
	magic-fallback-mode-alist, Choosing File Modes
	magic-mode-alist, Choosing File Modes
	mail, Sending Mail
	mail (on mode line), Optional Mode Line Features
	mail aliases, Mail Aliases
	MAIL environment variable, Rmail Files and Inboxes
	Mail mode, Mail-Composition Methods
	mail signature, Mail Signature
	mail-abbrev-insert-alias, Mail Aliases
	mail-add-attachment, Mail Miscellany
	mail-citation-hook, Citing Mail
	mail-composition methods, Mail-Composition Methods
	mail-default-headers, Mail Header Fields
	mail-dont-reply-to-names, Sending Replies
	mail-fill-yanked-message, Citing Mail
	mail-from-style, Mail Header Fields
	mail-mode-hook, Mail Miscellany
	mail-other-window, Displaying in Another Window
	mail-personal-alias-file, Mail Aliases
	mail-setup-hook, Mail Miscellany
	mail-signature, Mail Signature
	mail-signature-file, Mail Signature
	mail-text, Mail Header Editing
	mail-user-agent, Mail-Composition Methods
	Mailclient, Mail Sending
	MAILHOST environment variable, Retrieving Mail from Remote Mailboxes
	mailrc file, Mail Aliases
	main border width, command-line argument, Internal and External Borders
	major modes, Major Modes
	major-mode, Major Modes
	make, Running Compilations under Emacs
	make-backup-file-name-function, Single or Numbered Backups
	make-backup-files, Backup Files
	make-frame-command, Creating Frames
	make-frame-on-display, Multiple Displays
	make-indirect-buffer, Indirect Buffers
	make-local-variable, Local Variables
	make-pointer-invisible, Customization of Display, Mouse Avoidance
	make-symbolic-link, Miscellaneous File Operations
	make-variable-buffer-local, Local Variables
	Makefile mode, Major Modes for Programming Languages
	making pictures out of text characters, Editing Pictures
	man page, Man Page Lookup
	man pages, and local file variables, Specifying File Variables
	Man-switches, Man Page Lookup
	manipulating paragraphs, Paragraphs
	manipulating sentences, Sentences
	manipulating text, Commands for Human Languages
	manual pages, on MS-DOS/MS-Windows, Man Page Lookup
	manual version backups, Options specific for CVS
	manual-entry, Man Page Lookup
	manuals, on-line, Other Help Commands
	Marathi, International Character Set Support
	mark, The Mark and the Region
	mark rectangle, Rectangles
	mark ring, The Mark Ring
	mark-defun, Moving by Defuns
	mark-even-if-inactive, Operating on the Region
	mark-page, Pages
	mark-paragraph, Paragraphs
	mark-ring-max, The Mark Ring
	mark-sexp, Commands to Mark Textual Objects, Expressions with Balanced Parentheses
	mark-whole-buffer, Commands to Mark Textual Objects
	mark-word, Commands to Mark Textual Objects, Words
	marking executable files (in Dired), Dired Marks vs. Flags
	marking many files (in Dired), Dired Marks vs. Flags
	marking sections of text, Commands to Mark Textual Objects
	marking subdirectories (in Dired), Dired Marks vs. Flags
	marking symbolic links (in Dired), Dired Marks vs. Flags
	matching parentheses, Matching Parentheses
	matching parenthesis and braces, moving to, Moving in the Parenthesis Structure
	max-mini-window-height, Editing in the Minibuffer
	maximized, command-line argument, Options for Window Size and Position
	maximum buffer size exceeded, error message, Visiting Files
	Mayan calendar, Supported Calendar Systems
	Mayan calendar round, Converting from the Mayan Calendar
	Mayan haab calendar, Converting from the Mayan Calendar
	Mayan long count, Converting from the Mayan Calendar
	Mayan tzolkin calendar, Converting from the Mayan Calendar
	memory full, Running out of Memory
	menu bar, The Menu Bar, Table of X Resources for Emacs
	menu bar access using keyboard (MS-Windows), Keyboard Usage on MS-Windows
	menu bar appearance, Standard Faces
	Menu Bar mode, Menu Bars
	menu face, no effect if customized, Standard Faces
	Menu X Resources (LessTif widgets), LessTif Menu X Resources
	Menu X Resources (Lucid widgets), Lucid Menu And Dialog X Resources
	menu-bar-mode, Menu Bars
	menu-bar-open, The Menu Bar
	Mercurial, Supported Version Control Systems
	merge buffer (Emerge), Overview of Emerge
	merges, failed, Comparing Files
	merging changes, Merging Branches
	merging files, Merging Files with Emerge
	merging-based version, Merge-based vs lock-based Version Control
	message, Sending Mail
	Message mode, Mail Commands
	Message mode for sending mail, Mail-Composition Methods
	message number, Basic Concepts of Rmail
	message-goto-bcc, Mail Header Editing
	message-goto-cc, Mail Header Editing
	message-goto-fcc, Mail Header Editing
	message-goto-subject, Mail Header Editing
	message-goto-to, Mail Header Editing
	message-insert-signature, Mail Signature
	message-kill-buffer-on-exit, Mail Sending
	message-log-max, The Echo Area
	message-send, Mail Sending
	message-send-and-exit, Mail Sending
	message-send-hook, Mail Sending
	message-tab, Mail Header Editing
	message-yank-original, Citing Mail
	message-yank-prefix, Citing Mail
	messages saved from echo area, The Echo Area
	Meta, Kinds of User Input
	Meta (under MS-DOS), Keyboard Usage on MS-DOS
	Meta commands and words, Words
	Metafont mode, Major Modes for Programming Languages
	MH mail interface, Mail-Composition Methods
	Microsoft Office file, Document Viewing
	Microsoft Windows, Emacs and Microsoft Windows/MS-DOS
	Midnight mode, Killing Buffers
	midnight-hook, Killing Buffers
	midnight-mode, Killing Buffers
	MIME, Mail Miscellany
	MIME messages (Rmail), Display of Messages
	minibuffer, The Echo Area, The Minibuffer
	minibuffer confirmation, Completion Exit
	minibuffer history, Minibuffer History
	minibuffer history, searching, Searching the Minibuffer
	minibuffer keymaps, Minibuffer Keymaps
	minibuffer-complete, Completion Commands
	minibuffer-complete-and-exit, Completion Exit
	minibuffer-complete-word, Completion Commands
	minibuffer-inactive-mode, Editing in the Minibuffer
	minibuffer-local-completion-map, Minibuffer Keymaps
	minibuffer-local-filename-completion-map, Minibuffer Keymaps
	minibuffer-local-filename-must-match-map, Minibuffer Keymaps
	minibuffer-local-map, Minibuffer Keymaps
	minibuffer-local-must-match-map, Minibuffer Keymaps
	minibuffer-local-ns-map, Minibuffer Keymaps
	minibuffer-prompt face, Standard Faces
	minibuffer-prompt-properties, Standard Faces
	minimizing, Exiting Emacs
	minimizing a frame at startup, Icons
	minor mode keymap, Local Keymaps
	minor modes, Minor Modes
	mistakes, correcting, Commands for Fixing Typos
	mml-attach-file, Mail Miscellany
	mode commands for minor modes, Minor Modes
	mode hook, Major Modes, Major Modes for Programming Languages
	mode line, The Mode Line
	mode line (MS-DOS), International Support on MS-DOS
	mode line, 3D appearance, Optional Mode Line Features
	mode line, mouse, Mode Line Mouse Commands
	mode, Abbrev, Abbrev Concepts
	mode, archive, File Archives
	mode, Auto Compression, Accessing Compressed Files
	mode, Auto Fill, Auto Fill Mode
	mode, Auto Save, Auto-Saving: Protection Against Disasters
	mode, Auto-Revert, Reverting a Buffer
	mode, AWK, C and Related Modes
	mode, C, C and Related Modes
	mode, C++, C and Related Modes
	mode, Column Number, Optional Mode Line Features
	mode, Comint, Shell Mode
	mode, Compilation, Compilation Mode
	mode, CORBA IDL, C and Related Modes
	mode, CRiSP, Emulation
	mode, Delete Selection, Operating on the Region
	mode, Diff Auto-Refine, Diff Mode
	mode, Dirtrack, Directory Tracking
	mode, DocTeX, TeX Mode
	mode, DocView, Document Viewing
	mode, Electric Indent, Convenience Features for Indentation
	mode, Emacs Lisp, Evaluating Emacs Lisp Expressions
	mode, Enriched, Enriched Text
	mode, Flyspell, Checking and Correcting Spelling
	mode, Follow, Follow Mode
	mode, Font Lock, Font Lock mode
	mode, Fortran, Fortran Mode
	mode, Glasses, Glasses minor mode
	mode, Global Auto-Revert, Reverting a Buffer
	mode, Goto Address, Activating URLs
	mode, GUD Tooltip, Debugger Operation
	mode, Hexl, Editing Binary Files
	mode, Hideshow, Hideshow minor mode
	mode, HTML, SGML and HTML Modes
	mode, Iswitchb, Switching Between Buffers using Substrings
	mode, Java, C and Related Modes
	mode, LaTeX, TeX Mode
	mode, Lisp, Running an External Lisp
	mode, Log Edit, Features of the Log Entry Buffer
	mode, Mail, Mail-Composition Methods
	mode, major, Major Modes
	mode, Menu Bar, Menu Bars
	mode, Message, Mail Commands
	mode, minor, Minor Modes
	mode, Mouse Wheel, Mouse Commands for Editing
	mode, MSB, Customizing Buffer Menus
	mode, nXML, Commands for Human Languages, SGML and HTML Modes
	mode, Objective C, C and Related Modes
	mode, Occur, Other Search-and-Loop Commands
	mode, Occur Edit, Other Search-and-Loop Commands
	mode, Org, Org Mode
	mode, Outline, Outline Mode
	mode, Overwrite, Minor Modes
	mode, Paragraph-Indent Text, Text Mode
	mode, Pike, C and Related Modes
	mode, Scheme, Running an External Lisp
	mode, Scroll Bar, Scroll Bars
	mode, Scroll-all, Convenience Features for Window Handling
	mode, Semantic, Semantic
	mode, SGML, SGML and HTML Modes
	mode, Shell, Shell Mode
	mode, SliTeX, TeX Mode
	mode, tar, File Archives
	mode, Term, Term Mode
	mode, TeX, TeX Mode
	mode, Text, Text Mode
	mode, thumbs, Convenience Features for Finding Files
	mode, Tool Bar, Tool Bars
	mode, Transient Mark, Disabling Transient Mark Mode
	mode, View, View Mode
	mode, Whitespace, Useless Whitespace
	mode, Winner, Convenience Features for Window Handling
	mode, XML, Commands for Human Languages
	mode-line-in-non-selected-windows, Optional Mode Line Features
	mode-require-final-newline, Customizing Saving of Files
	mode-specific-map, Prefix Keymaps
	modes for programming languages, Major Modes for Programming Languages
	modification dates, Updating Time Stamps Automatically
	modified (buffer), Visiting Files
	modifier keys, Kinds of User Input, Modifier Keys
	Modula2 mode, Major Modes for Programming Languages
	moon, phases of, Phases of the Moon
	Morse code, Other Amusements
	morse-region, Other Amusements
	Motif key bindings, Emulation
	mouse avoidance, Mouse Avoidance
	mouse button events, Rebinding Mouse Buttons
	mouse buttons (what they do), Mouse Commands for Editing
	mouse on mode line, Mode Line Mouse Commands
	mouse pointer, Customization of Display
	mouse pointer color, command-line argument, Window Color Options
	mouse support, Using a Mouse in Text Terminals
	mouse support under MS-DOS, Mouse Usage on MS-DOS
	mouse wheel, Mouse Commands for Editing
	Mouse Wheel minor mode, Mouse Commands for Editing
	mouse, and MS-Windows, Mouse Usage on MS-Windows
	mouse, dragging, Mouse Commands for Editing
	mouse, selecting text using, Mouse Commands for Editing
	mouse, set number of buttons, Mouse Usage on MS-DOS
	Mouse-1, Mouse Commands for Editing
	Mouse-1 (mode line), Mode Line Mouse Commands
	Mouse-1 (on buttons), Following References with the Mouse
	Mouse-1 (scroll bar), Mode Line Mouse Commands
	mouse-1-click-in-non-selected-windows, Following References with the Mouse
	Mouse-2, Mouse Commands for Editing
	Mouse-2 (GDB Breakpoints buffer), Breakpoints Buffer
	Mouse-2 (mode line), Mode Line Mouse Commands
	Mouse-2 (on buttons), Following References with the Mouse
	Mouse-3, Mouse Commands for Editing
	Mouse-3 (mode line), Mode Line Mouse Commands
	mouse-autoselect-window, Using Other Windows
	mouse-avoidance-mode, Mouse Avoidance
	mouse-buffer-menu, Customizing Buffer Menus
	mouse-choose-completion, Completion Commands
	mouse-drag-copy-region, Mouse Commands for Editing
	mouse-highlight, Following References with the Mouse
	mouse-save-then-kill, Mouse Commands for Editing
	mouse-scroll-min-lines, Mouse Commands for Editing
	mouse-secondary-save-then-kill, Secondary Selection
	mouse-set-point, Mouse Commands for Editing
	mouse-set-region, Mouse Commands for Editing
	mouse-set-secondary, Secondary Selection
	mouse-start-secondary, Secondary Selection
	mouse-wheel-follow-mouse, Mouse Commands for Editing
	mouse-wheel-mode, Mouse Commands for Editing
	mouse-wheel-progressive-speed, Mouse Commands for Editing
	mouse-wheel-scroll-amount, Mouse Commands for Editing
	mouse-yank-at-click, Mouse Commands for Editing
	mouse-yank-at-point, Mouse Commands for Editing
	mouse-yank-primary, Mouse Commands for Editing
	mouse-yank-secondary, Secondary Selection
	move to beginning or end of function, Moving by Defuns
	move-beginning-of-line, Changing the Location of Point
	move-end-of-line, Changing the Location of Point
	move-to-window-line-top-bottom, Changing the Location of Point
	movemail, Retrieving Mail from Remote Mailboxes
	movemail program, movemail program
	movement, Changing the Location of Point
	moving files (in Dired), Operating on Files
	moving inside the calendar, Movement in the Calendar
	moving point, Changing the Location of Point
	moving text, Yanking
	moving the cursor, Changing the Location of Point
	mpuz, Other Amusements
	MS-DOG, Emacs and MS-DOS
	MS-DOS end-of-line conversion, Coding Systems
	MS-DOS peculiarities, Emacs and MS-DOS
	MS-Windows codepages, International Support on MS-DOS
	MS-Windows keyboard shortcuts, Keyboard Usage on MS-Windows
	MS-Windows, and primary selection, Cut and Paste with Other Window Applications
	MS-Windows, Emacs peculiarities, Emacs and Microsoft Windows/MS-DOS
	MSB mode, Customizing Buffer Menus
	msb-mode, Customizing Buffer Menus
	msdos-set-mouse-buttons, Mouse Usage on MS-DOS
	MULE, International Character Set Support
	multi-occur, Other Search-and-Loop Commands
	multi-occur-in-matching-buffers, Other Search-and-Loop Commands
	multibyte characters, International Character Set Support
	multibyte operation, and Lisp files, Disabling Multibyte Characters
	multiple displays, Multiple Displays
	multiple views of outline, Viewing One Outline in Multiple Views
	multiple windows in Emacs, Multiple Windows
	multiple-file search and replace, Searching and Replacing with Tags Tables
	Multipurpose Internet Mail Extensions, Mail Miscellany
	Multithreaded debugging in GDB, Multithreaded Debugging

N
	n (DocView mode), DocView Navigation
	n (Gnus Group mode), Using the Gnus Group Buffer
	n (Gnus Summary mode), Using the Gnus Summary Buffer
	n (Rmail), Moving Among Messages
	narrow-to-defun, Narrowing
	narrow-to-page, Narrowing
	narrow-to-region, Narrowing
	narrowing, Narrowing
	narrowing, and line number display, Optional Mode Line Features
	nato-region, Other Amusements
	negative-argument, Numeric Arguments
	networked printers (MS-Windows), Printing and MS-Windows
	newline, Inserting Text
	newline-and-indent, Indentation Commands, Basic Program Indentation Commands
	newlines, hard and soft, Hard and Soft Newlines
	newsreader, Gnus
	next, Scrolling
	Next Error Follow mode, Compilation Mode
	next-buffer, Creating and Selecting Buffers
	next-completion, Completion Commands
	next-error, Compilation Mode
	next-error-follow-minor-mode, Compilation Mode
	next-error-highlight, Compilation Mode
	next-file, Tags Table Inquiries
	next-history-element, Minibuffer History
	next-line, Changing the Location of Point
	next-line-add-newlines, Changing the Location of Point
	next-logical-line, Visual Line Mode
	next-matching-history-element, Minibuffer History
	next-screen-context-lines, Scrolling
	NFS and quitting, Quitting and Aborting
	nil, Glossary
	no-conversion, coding system, Coding Systems
	nobreak-char-display, How Text Is Displayed
	non-ASCII characters in .emacs, Non-ASCII Characters in Init Files
	non-ASCII keys, binding, Non-ASCII Characters in Init Files
	non-breaking hyphen, How Text Is Displayed
	non-breaking space, How Text Is Displayed
	non-greedy regexp matching, Syntax of Regular Expressions
	non-integral number of lines in a window, Optional Mode Line Features
	non-selected windows, mode line appearance, Optional Mode Line Features
	Non-stop debugging in GDB, Multithreaded Debugging
	non-strict locking (RCS), Options for RCS and SCCS
	nonincremental search, Nonincremental Search
	normal hook, Hooks
	normal-erase-is-backspace, If DEL Fails to Delete
	normal-erase-is-backspace-mode, If DEL Fails to Delete
	normal-mode, Choosing File Modes
	not-modified, Commands for Saving Files
	nroff, Nroff Mode
	nroff-mode, Nroff Mode
	nroff-mode-hook, Nroff Mode
	ns-pop-up-frames, Windowing System Events under Mac OS / GNUstep
	ns-standard-fontset-spec, Defining fontsets
	NSA, Mail Amusements
	number-to-register, Keeping Numbers in Registers
	numeric arguments, Numeric Arguments
	nXML mode, Commands for Human Languages, SGML and HTML Modes
	nxml-mode, Commands for Human Languages, SGML and HTML Modes

O
	o (Calendar mode), Specified Dates
	o (Dired), Visiting Files in Dired
	O (Dired), Operating on Files
	o (Occur mode), Other Search-and-Loop Commands
	o (Rmail), Copying Messages Out to Files
	Objective C mode, C and Related Modes
	occur, Other Search-and-Loop Commands
	Occur Edit mode, Other Search-and-Loop Commands
	Occur mode, Other Search-and-Loop Commands
	octal escapes, How Text Is Displayed
	Octave mode, Major Modes for Programming Languages
	omer count, Sexp Entries and the Fancy Diary Display
	on-line manuals, Other Help Commands
	open file, Visiting Files
	open-dribble-file, Checklist for Bug Reports
	open-line, Blank Lines
	open-paren-in-column-0-is-defun-start, Left Margin Convention
	open-parenthesis in leftmost column, Left Margin Convention
	open-rectangle, Rectangles
	open-termscript, Checklist for Bug Reports
	OpenDocument file, Document Viewing
	operating on files in Dired, Operating on Files
	operations on a marked region, Operating on the Region
	options (command line), Command Line Arguments for Emacs Invocation
	Org agenda, Org as an organizer
	Org exporting, Org as an authoring system
	Org mode, Org Mode
	org-agenda, Org as an organizer
	org-agenda-file-to-front, Org as an organizer
	org-agenda-files, Org as an organizer
	org-cycle, Org Mode
	org-deadline, Org as an organizer
	org-export, Org as an authoring system
	org-metadown, Org Mode
	org-metaleft, Org Mode
	org-metaright, Org Mode
	org-metaup, Org Mode
	org-mode, Org Mode
	org-publish-project-alist, Org as an authoring system
	org-schedule, Org as an organizer
	org-shifttab, Org Mode
	org-todo, Org as an organizer
	org-todo-keywords, Org as an organizer
	organizer, Org Mode
	other editors, Emulation
	other-frame, Frame Commands
	other-window, Using Other Windows
	out of memory, Running out of Memory
	Outline mode, Outline Mode
	outline with multiple views, Viewing One Outline in Multiple Views
	outline-backward-same-level, Outline Motion Commands
	outline-forward-same-level, Outline Motion Commands
	outline-level, Format of Outlines
	outline-minor-mode, Outline Mode
	outline-minor-mode-prefix, Outline Mode
	outline-mode, Outline Mode
	outline-mode-hook, Outline Mode
	outline-next-visible-heading, Outline Motion Commands
	outline-previous-visible-heading, Outline Motion Commands
	outline-regexp, Format of Outlines
	outline-up-heading, Outline Motion Commands
	overflow-newline-into-fringe, Window Fringes
	overlays at character position, Editing Format Information
	overline-margin, Customization of Display
	override character terminal color support, Window Color Options
	Overwrite mode, Minor Modes
	overwrite-mode, Minor Modes

P
	p (Calendar mode), Converting To Other Calendars
	P (Dired), Operating on Files
	p (DocView mode), DocView Navigation
	p (Gnus Group mode), Using the Gnus Group Buffer
	p (Gnus Summary mode), Using the Gnus Summary Buffer
	p (Rmail), Moving Among Messages
	p d (Calendar mode), Miscellaneous Calendar Commands
	Package, Emacs Lisp Packages
	Package archive, Emacs Lisp Packages
	package directory, Package Files and Directory Layout
	package file, Package Files and Directory Layout
	package menu, The Package Menu Buffer
	package requirements, Package Installation
	package-archives, Package Installation
	package-directory-list, Package Files and Directory Layout
	package-enable-at-startup, Package Installation
	package-initialize, Package Installation
	package-install, Package Installation
	package-install-file, Package Files and Directory Layout
	package-load-list, Package Installation
	package-user-dir, Package Files and Directory Layout
	page-delimiter, Pages
	PageDown, Scrolling
	pages, Pages
	PageUp, Scrolling
	paging in Term mode, Term Mode
	paragraph, base direction, Bidirectional Editing
	Paragraph-Indent Text mode, Text Mode
	paragraph-indent-minor-mode, Text Mode
	paragraph-indent-text-mode, Text Mode
	paragraph-separate, Paragraphs
	paragraph-start, Paragraphs
	paragraphs, Paragraphs
	parasha, weekly, Sexp Entries and the Fancy Diary Display
	parentheses, displaying matches, Matching Parentheses
	parentheses, moving across, Moving in the Parenthesis Structure
	parenthesis in column zero and fontification, Font Lock mode
	parenthetical groupings, Moving in the Parenthesis Structure
	partial completion, How Completion Alternatives Are Chosen
	paste, “Cut and Paste” Operations on Graphical Displays
	pasting, Yanking
	patches, editing, Diff Mode
	patches, sending, Sending Patches for GNU Emacs
	PC key bindings, Emulation
	PC selection, Emulation
	PCL-CVS, VC Directory Mode
	PDB, Running Debuggers Under Emacs
	pdb, Starting GUD
	pdb-mode-hook, GUD Customization
	PDF file, Document Viewing
	per-buffer variables, Local Variables
	per-directory local variables, Per-Directory Local Variables
	Perl mode, Major Modes for Programming Languages
	Perldb, Running Debuggers Under Emacs
	perldb, Starting GUD
	perldb-mode-hook, GUD Customization
	Persian calendar, Supported Calendar Systems
	phases of the moon, Phases of the Moon
	Picture mode and rectangles, Picture Mode Rectangle Commands
	picture-backward-clear-column, Basic Editing in Picture Mode
	picture-backward-column, Basic Editing in Picture Mode
	picture-clear-column, Basic Editing in Picture Mode
	picture-clear-line, Basic Editing in Picture Mode
	picture-clear-rectangle, Picture Mode Rectangle Commands
	picture-clear-rectangle-to-register, Picture Mode Rectangle Commands
	picture-forward-column, Basic Editing in Picture Mode
	picture-mode, Editing Pictures
	picture-mode-hook, Editing Pictures
	picture-motion, Controlling Motion after Insert
	picture-motion-reverse, Controlling Motion after Insert
	picture-move-down, Basic Editing in Picture Mode
	picture-move-up, Basic Editing in Picture Mode
	picture-movement-down, Controlling Motion after Insert
	picture-movement-left, Controlling Motion after Insert
	picture-movement-ne, Controlling Motion after Insert
	picture-movement-nw, Controlling Motion after Insert
	picture-movement-right, Controlling Motion after Insert
	picture-movement-se, Controlling Motion after Insert
	picture-movement-sw, Controlling Motion after Insert
	picture-movement-up, Controlling Motion after Insert
	picture-newline, Basic Editing in Picture Mode
	picture-open-line, Basic Editing in Picture Mode
	picture-set-tab-stops, Picture Mode Tabs
	picture-tab, Picture Mode Tabs
	picture-tab-chars, Picture Mode Tabs
	picture-tab-search, Picture Mode Tabs
	picture-yank-rectangle, Picture Mode Rectangle Commands
	picture-yank-rectangle-from-register, Picture Mode Rectangle Commands
	pictures, Editing Pictures
	Pike mode, C and Related Modes
	plain-tex-mode, TeX Mode
	plain-tex-mode-hook, TeX Mode Miscellany
	planner, Org Mode
	point, Point
	point location, Cursor Position Information
	point location, on MS-DOS, Text Files and Binary Files
	point-to-register, Saving Positions in Registers
	Polish, International Character Set Support
	pong, Other Amusements
	Pong game, Other Amusements
	POP mailboxes, Retrieving Mail from Remote Mailboxes
	pop-global-mark, The Global Mark Ring
	pop-tag-mark, Finding a Tag
	pop-up-frames, How display-buffer works
	position and size of Emacs frame, Options for Window Size and Position
	PostScript file, Document Viewing
	PostScript mode, Major Modes for Programming Languages
	pr-interface, Printing Package
	prefer-coding-system, Recognizing Coding Systems
	prefix arguments, Numeric Arguments
	prefix key, Keys
	prepend-to-buffer, Accumulating Text
	prepend-to-register, Saving Text in Registers
	preprocessor highlighting, Other Commands for C Mode
	pretty-printer, Indentation for Programs
	previous-buffer, Creating and Selecting Buffers
	previous-completion, Completion Commands
	previous-history-element, Minibuffer History
	previous-line, Changing the Location of Point
	previous-logical-line, Visual Line Mode
	previous-matching-history-element, Minibuffer History
	primary Rmail file, Basic Concepts of Rmail
	primary selection, Setting the Mark, Cut and Paste with Other Window Applications
	print-buffer, Printing Hard Copies
	print-buffer (MS-DOS), Printing and MS-Windows
	print-region, Printing Hard Copies
	print-region (MS-DOS), Printing and MS-Windows
	print-region-function (MS-DOS), Printing and MS-Windows
	printer-name, Printing Hard Copies
	printer-name, (MS-DOS/MS-Windows), Printing and MS-Windows
	printing, Printing Hard Copies
	printing character, How Text Is Displayed
	printing files (in Dired), Operating on Files
	Printing package, Printing Package
	printing under MS-DOS, Subprocesses on MS-DOS
	prior, Scrolling
	Prog mode, Hooks
	prog-mode-hook, Major Modes
	program building, Compiling and Testing Programs
	program editing, Editing Programs, Hooks
	Prolog mode, Major Modes for Programming Languages
	prompt, The Minibuffer
	prompt, shell, Shell Prompts
	PS file, Document Viewing
	ps-despool, PostScript Hardcopy
	ps-font-family, Variables for PostScript Hardcopy
	ps-font-info-database, Variables for PostScript Hardcopy
	ps-font-size, Variables for PostScript Hardcopy
	ps-landscape-mode, Variables for PostScript Hardcopy
	ps-lpr-command, Variables for PostScript Hardcopy
	ps-lpr-command (MS-DOS), Printing and MS-Windows
	ps-lpr-switches, Variables for PostScript Hardcopy
	ps-lpr-switches (MS-DOS), Printing and MS-Windows
	ps-multibyte-buffer, Variables for PostScript Hardcopy
	ps-number-of-columns, Variables for PostScript Hardcopy
	ps-page-dimensions-database, Variables for PostScript Hardcopy
	ps-paper-type, Variables for PostScript Hardcopy
	ps-print-buffer, PostScript Hardcopy
	ps-print-buffer (MS-DOS), Printing and MS-Windows
	ps-print-buffer-with-faces, PostScript Hardcopy
	ps-print-color-p, Variables for PostScript Hardcopy
	ps-print-header, Variables for PostScript Hardcopy
	ps-print-region, PostScript Hardcopy
	ps-print-region-with-faces, PostScript Hardcopy
	ps-printer-name, Variables for PostScript Hardcopy
	ps-printer-name (MS-DOS), Printing and MS-Windows
	ps-spool-buffer, PostScript Hardcopy
	ps-spool-buffer (MS-DOS), Printing and MS-Windows
	ps-spool-buffer-with-faces, PostScript Hardcopy
	ps-spool-region, PostScript Hardcopy
	ps-spool-region-with-faces, PostScript Hardcopy
	ps-use-face-background, Variables for PostScript Hardcopy
	puzzles, Other Amusements
	pwd, File Names
	Python mode, Major Modes for Programming Languages

Q
	q (Calendar mode), Miscellaneous Calendar Commands
	q (Dired), Entering Dired
	Q (Dired), Operating on Files
	q (Gnus Group mode), Using the Gnus Group Buffer
	q (Gnus Summary mode), Using the Gnus Summary Buffer
	Q (Rmail summary), Editing in Summaries
	q (Rmail summary), Editing in Summaries
	q (Rmail), Basic Concepts of Rmail
	q (VC Directory), VC Directory Commands
	q (View mode), View Mode
	quail-set-keyboard-layout, Selecting an Input Method
	quail-show-key, Selecting an Input Method
	query replace, Query Replace
	query-replace, Query Replace
	query-replace-regexp, Query Replace
	quietly-read-abbrev-file, Saving Abbrevs
	quit-window, VC Directory Commands, Entering Dired
	quitting, Quitting and Aborting
	quitting (in search), Errors in Incremental Search
	quitting Emacs, Exiting Emacs
	quitting on MS-DOS, Keyboard Usage on MS-DOS
	quoted-insert, Inserting Text
	quoting, Inserting Text
	quoting file names, Quoted File Names

R
	R (Dired), Operating on Files
	r (GDB threads buffer), Threads Buffer
	r (Rmail), Sending Replies
	rar, File Archives
	raw-text, coding system, Coding Systems
	RCS, Supported Version Control Systems
	re-search-backward, Regular Expression Search
	re-search-forward, Regular Expression Search
	read-abbrev-file, Saving Abbrevs
	read-buffer-completion-ignore-case, Completion Options
	read-file-name-completion-ignore-case, Completion Options
	read-mail-command, Mail-Composition Methods
	read-only buffer, Miscellaneous Buffer Operations
	read-only text, killing, Options for Killing
	read-quoted-char-radix, Inserting Text
	reading mail, Reading Mail with Rmail
	rebinding keys, permanently, The Emacs Initialization File
	rebinding major mode keys, Rebinding Keys in Your Init File
	rebinding mouse buttons, Rebinding Mouse Buttons
	rebinding non-ASCII keys, Non-ASCII Characters in Init Files
	recenter, Recentering
	recenter-positions, Recentering
	recenter-redisplay, Recentering
	recenter-top-bottom, Recentering
	recentf-edit-list, Convenience Features for Finding Files
	recentf-mode, Convenience Features for Finding Files
	recentf-save-list, Convenience Features for Finding Files
	recode-file-name, Coding Systems for File Names
	recode-region, Specifying a Coding System for File Text
	recompile, Running Compilations under Emacs
	recover-file, Recovering Data from Auto-Saves
	recover-session, Recovering Data from Auto-Saves
	rectangle, Rectangles
	rectangle highlighting, CUA Bindings
	rectangles and Picture mode, Picture Mode Rectangle Commands
	recursive copying, Operating on Files
	recursive deletion, Deleting Files with Dired
	recursive editing level, Recursive Editing Levels
	recycle bin, Miscellaneous File Operations
	redefining keys, this session, Changing Key Bindings Interactively
	redo, Undo
	refreshing displayed files, Updating the Dired Buffer
	regexp, Syntax of Regular Expressions
	regexp search, Regular Expression Search
	region, The Mark and the Region
	region highlighting, Disabling Transient Mark Mode
	registered file, Concepts of Version Control
	registers, Registers
	registry, setting environment variables (MS-Windows), The MS-Windows System Registry
	registry, setting resources (MS-Windows), X Resources
	regular expression, Syntax of Regular Expressions
	related files, Other Commands for C Mode
	reload files, Saving Emacs Sessions
	remember editing session, Saving Emacs Sessions
	remote file access, Remote Files
	remote host, Remote Host Shell
	remote host, debugging on, Starting GUD
	remote repositories (CVS), Options specific for CVS
	remove indentation, Indentation Commands
	remove-hook, Hooks
	remove-untranslated-filesystem, Text Files and Binary Files
	rename-buffer, Miscellaneous Buffer Operations
	rename-file, Miscellaneous File Operations
	rename-uniquely, Miscellaneous Buffer Operations
	renaming files, Miscellaneous File Operations
	renaming files (in Dired), Operating on Files
	renaming version-controlled files, Deleting and Renaming Version-Controlled Files
	repeat, Repeating a Command
	repeat-complex-command, Repeating Minibuffer Commands
	repeating a command, Repeating a Command
	replace-regexp, Regexp Replacement
	replace-string, Unconditional Replacement
	replacement, Replacement Commands
	reply to a message, Sending Replies
	report-emacs-bug, Checklist for Bug Reports
	reporting bugs, Checklist for Bug Reports
	reposition-window, Recentering
	repository, Concepts of Version Control
	require-final-newline, Customizing Saving of Files
	reread a file, Reverting a Buffer
	resize-mini-windows, Editing in the Minibuffer
	resizing minibuffer, Editing in the Minibuffer
	resolving conflicts, Merging Branches
	resource files for GTK, GTK resources
	resource name, command-line argument, X Resources
	resource values, command-line argument, X Resources
	resources, X Resources
	restore session, Saving Emacs Sessions
	restriction, Narrowing
	RET, Inserting Text
	RET (completion in minibuffer), Completion Exit
	RET (Dired), Visiting Files in Dired
	RET (GDB Breakpoints buffer), Breakpoints Buffer
	RET (GDB speedbar), Watch Expressions
	RET (Help mode), Help Mode Commands
	RET (Occur mode), Other Search-and-Loop Commands
	RET (Shell mode), Shell Mode
	retrying a failed message, Sending Replies
	reveal-mode, Outline Visibility Commands
	reverse order in POP inboxes, Retrieving Mail from Remote Mailboxes
	reverse video, command-line argument, Window Color Options
	revert-buffer, Reverting a Buffer
	revert-buffer (Dired), Updating the Dired Buffer
	revert-buffer-with-coding-system, Specifying a Coding System for File Text
	revert-without-query, Reverting a Buffer
	revision, Concepts of Version Control
	revision ID, Concepts of Version Control
	revision ID in version control, Advanced Control in C-x v v
	revision tag, Revision Tags
	RGB triplet, Colors for Faces
	rgrep, Searching with Grep under Emacs
	RIGHT, Changing the Location of Point
	right-char, Changing the Location of Point
	right-to-left text, Bidirectional Editing
	right-word, Changing the Location of Point
	risky variable, Safety of File Variables
	RLM, Bidirectional Editing
	Rlogin, Remote Host Shell
	Rmail, Reading Mail with Rmail
	rmail, Reading Mail with Rmail
	Rmail file sorting, Sorting the Rmail File
	rmail-add-label, Labels
	rmail-automatic-folder-directives, Copying Messages Out to Files
	rmail-beginning-of-message, Scrolling Within a Message
	rmail-bury, Basic Concepts of Rmail
	rmail-continue, Sending Replies
	rmail-decode-mime-charset, Recognizing Coding Systems
	rmail-delete-after-output, Copying Messages Out to Files
	rmail-delete-backward, Deleting Messages
	rmail-delete-forward, Deleting Messages
	rmail-delete-message-hook, Deleting Messages
	rmail-displayed-headers, Display of Messages
	rmail-edit-current-message, Editing Within a Message
	rmail-edit-mode-hook, Editing Within a Message
	rmail-enable-mime, Display of Messages
	rmail-enable-mime-composing, Sending Replies
	rmail-end-of-message, Scrolling Within a Message
	rmail-epa-decrypt, Display of Messages
	rmail-expunge, Deleting Messages
	rmail-expunge-and-save, Basic Concepts of Rmail
	rmail-file-coding-system, Recognizing Coding Systems
	rmail-file-name, Basic Concepts of Rmail
	rmail-first-message, Moving Among Messages
	rmail-forward, Sending Replies
	rmail-get-new-mail, Multiple Rmail Files
	rmail-highlighted-headers, Display of Messages
	rmail-ignored-headers, Display of Messages
	rmail-inbox-list, Multiple Rmail Files
	rmail-input, Multiple Rmail Files
	rmail-kill-label, Labels
	rmail-last-message, Moving Among Messages
	rmail-mail, Sending Replies
	rmail-mail-new-frame, Sending Replies
	rmail-mime, Display of Messages
	rmail-mime-next-item, Display of Messages
	rmail-mime-previous-item, Display of Messages
	rmail-mime-toggle-hidden, Display of Messages
	rmail-mode, Reading Mail with Rmail
	rmail-mode-hook, Reading Mail with Rmail
	rmail-movemail-flags, Retrieving Mail from Remote Mailboxes
	rmail-movemail-program, movemail program
	rmail-movemail-search-path, movemail program
	rmail-next-labeled-message, Labels
	rmail-next-message, Moving Among Messages
	rmail-next-same-subject, Moving Among Messages
	rmail-next-undeleted-message, Moving Among Messages
	rmail-nonignored-headers, Display of Messages
	rmail-output, Copying Messages Out to Files
	rmail-output-as-seen, Copying Messages Out to Files
	rmail-output-body-to-file, Copying Messages Out to Files
	rmail-output-file-alist, Copying Messages Out to Files
	rmail-preserve-inbox, Rmail Files and Inboxes
	rmail-previous-labeled-message, Labels
	rmail-previous-message, Moving Among Messages
	rmail-previous-same-subject, Moving Among Messages
	rmail-previous-undeleted-message, Moving Among Messages
	rmail-primary-inbox-list, Rmail Files and Inboxes
	rmail-quit, Basic Concepts of Rmail
	rmail-redecode-body, Rmail and Coding Systems
	rmail-redisplay-summary, Editing in Summaries
	rmail-remote-password, Retrieving Mail from Remote Mailboxes
	rmail-remote-password-required, Retrieving Mail from Remote Mailboxes
	rmail-reply, Sending Replies
	rmail-resend, Sending Replies
	rmail-retry-failure, Sending Replies
	rmail-retry-ignored-headers, Sending Replies
	rmail-search, Moving Among Messages
	rmail-secondary-file-directory, Multiple Rmail Files
	rmail-secondary-file-regexp, Multiple Rmail Files
	rmail-show-message, Moving Among Messages
	rmail-sort-by-author, Sorting the Rmail File
	rmail-sort-by-correspondent, Sorting the Rmail File
	rmail-sort-by-date, Sorting the Rmail File
	rmail-sort-by-labels, Sorting the Rmail File
	rmail-sort-by-lines, Sorting the Rmail File
	rmail-sort-by-recipient, Sorting the Rmail File
	rmail-sort-by-subject, Sorting the Rmail File
	rmail-summary, Making Summaries
	rmail-summary-bury, Editing in Summaries
	rmail-summary-by-labels, Making Summaries
	rmail-summary-by-recipients, Making Summaries
	rmail-summary-by-regexp, Making Summaries
	rmail-summary-by-senders, Making Summaries
	rmail-summary-by-topic, Making Summaries
	rmail-summary-line-count-flag, Making Summaries
	rmail-summary-quit, Editing in Summaries
	rmail-summary-undelete-many, Editing in Summaries
	rmail-summary-window-size, Making Summaries
	rmail-summary-wipe, Editing in Summaries
	rmail-toggle-header, Display of Messages
	rmail-undelete-previous-message, Deleting Messages
	Romanian, International Character Set Support
	rosh hodesh, Sexp Entries and the Fancy Diary Display
	rot13 code, Reading Rot13 Messages
	rot13-other-window, Reading Rot13 Messages
	Ruby mode, Major Modes for Programming Languages
	run-lisp, Running an External Lisp
	run-scheme, Running an External Lisp
	runemacs.exe, How to Start Emacs on MS-Windows
	running a hook, Hooks
	running Lisp functions, Compiling and Testing Programs

S
	S (Calendar mode), Times of Sunrise and Sunset
	s (Calendar mode), Displaying the Diary
	S (Dired), Operating on Files
	s (Dired), Updating the Dired Buffer
	s (Gnus Summary mode), Using the Gnus Summary Buffer
	s (Rmail), Basic Concepts of Rmail
	s (View mode), View Mode
	S-Mouse-2, Hideshow minor mode
	S-Mouse-3 (FFAP), Finding Files and URLs at Point
	S-TAB (customization buffer), Customization Groups
	S-TAB (Help mode), Help Mode Commands
	S-TAB (Org Mode), Org Mode
	safe-local-eval-forms, Safety of File Variables
	safe-local-variable-values, Safety of File Variables
	same-window-buffer-names, How display-buffer works
	same-window-regexps, How display-buffer works
	save-abbrevs, Saving Abbrevs
	save-buffer, Commands for Saving Files
	save-buffers-kill-terminal, Exiting Emacs
	save-interprogram-paste-before-kill, Using the Clipboard
	save-some-buffers, Commands for Saving Files
	saved echo area messages, The Echo Area
	saving a setting, Changing a Variable
	saving file name in a register, Keeping File Names in Registers
	saving files, Visiting Files
	saving keyboard macros, Naming and Saving Keyboard Macros
	saving number in a register, Keeping Numbers in Registers
	saving position in a register, Saving Positions in Registers
	saving rectangle in a register, Saving Rectangles in Registers
	saving sessions, Saving Emacs Sessions
	saving text in a register, Saving Text in Registers
	saving window configuration in a register, Saving Window Configurations in Registers
	SCCS, Supported Version Control Systems
	Scheme mode, Running an External Lisp
	scheme-mode, Running an External Lisp
	scheme-mode-hook, Major Modes for Programming Languages
	screen, The Organization of the Screen
	screen reader software, MS-Windows, Miscellaneous Windows-specific features
	script mode, Initial Options
	Scroll Bar mode, Scroll Bars
	Scroll-all mode, Convenience Features for Window Handling
	scroll-all-mode, Convenience Features for Window Handling, Emulation
	scroll-bar-mode, Scroll Bars
	scroll-bar-width, Scroll Bars
	scroll-command property, Scrolling
	scroll-conservatively, Automatic Scrolling
	scroll-down, Scrolling
	scroll-down-aggressively, Automatic Scrolling
	scroll-down-command, Scrolling
	scroll-down-line, Scrolling
	scroll-error-top-bottom, Scrolling
	scroll-left, Horizontal Scrolling
	scroll-margin, Automatic Scrolling
	scroll-other-window, Using Other Windows
	scroll-preserve-screen-position, Scrolling
	scroll-right, Horizontal Scrolling
	scroll-step, Automatic Scrolling
	scroll-up, Scrolling
	scroll-up-aggressively, Automatic Scrolling
	scroll-up-command, Scrolling
	scroll-up-line, Scrolling
	scrollbar width, Table of X Resources for Emacs
	scrolling, Scrolling
	scrolling all windows, Emulation
	scrolling in the calendar, Scrolling in the Calendar
	scrolling windows together, Convenience Features for Window Handling
	SDB, Running Debuggers Under Emacs
	sdb, Starting GUD
	sdb-mode-hook, GUD Customization
	search and replace in multiple files, Searching and Replacing with Tags Tables
	search and replace in multiple files (in Dired), Operating on Files
	search for a regular expression, Regular Expression Search
	search multiple files (in Dired), Operating on Files
	search ring, Repeating Incremental Search
	search-and-replace commands, Replacement Commands
	search-backward, Nonincremental Search
	search-forward, Nonincremental Search
	search-whitespace-regexp, Regular Expression Search
	searching, Searching and Replacement
	searching Dired buffers, Navigation in the Dired Buffer
	searching documentation efficiently, Help
	searching in Rmail, Moving Among Messages
	searching multiple files via Dired, Other Dired Features
	secondary selection, Secondary Selection
	sections of manual pages, Man Page Lookup
	select all, Commands to Mark Textual Objects
	select-active-regions, Cut and Paste with Other Window Applications
	select-frame-by-name, Non-Window Terminals
	selected buffer, Using Multiple Buffers
	selected window, Concepts of Emacs Windows
	selecting buffers in other windows, Displaying in Another Window
	selection, primary, Cut and Paste with Other Window Applications
	selective display, Selective Display
	selective undo, Undo
	selective-display-ellipses, Selective Display
	self-documentation, Help
	Semantic mode, Semantic
	Semantic package, Semantic
	send-invisible, Shell Mode
	send-mail-function, Mail Sending
	sending mail, Sending Mail
	sending patches for GNU Emacs, Sending Patches for GNU Emacs
	Sendmail, Mail Sending
	sendmail-coding-system, Choosing Coding Systems for Output, Mail Sending
	sentence-end, Sentences
	sentence-end-double-space, Sentences
	sentence-end-without-period, Sentences
	sentences, Sentences
	serial-term, Serial Terminal
	server file, emacsclient Options
	server, using Emacs as, Using Emacs as a Server
	server-edit, Invoking emacsclient
	server-eval-at, Using Emacs as a Server
	server-host, emacsclient Options
	server-kill-new-buffers, Invoking emacsclient
	server-name, Using Emacs as a Server
	server-port, emacsclient Options
	server-side fonts, Fonts
	server-start, Using Emacs as a Server
	server-temp-file-regexp, Invoking emacsclient
	server-use-tcp, emacsclient Options
	server-window, Invoking emacsclient
	set buffer face height, Text Scale
	set-buffer-file-coding-system, Specifying a Coding System for File Text
	set-buffer-process-coding-system, Coding Systems for Interprocess Communication
	set-face-background, Colors for Faces
	set-face-foreground, Colors for Faces
	set-file-modes, Miscellaneous File Operations
	set-file-name-coding-system, Coding Systems for File Names
	set-fill-column, Explicit Fill Commands
	set-fill-prefix, The Fill Prefix
	set-fontset-font, Modifying Fontsets
	set-frame-name, Non-Window Terminals
	set-fringe-style, Window Fringes
	set-goal-column, Changing the Location of Point
	set-input-method, Selecting an Input Method
	set-justification-center, Justification in Enriched Text
	set-justification-full, Justification in Enriched Text
	set-justification-left, Justification in Enriched Text
	set-justification-none, Justification in Enriched Text
	set-justification-right, Justification in Enriched Text
	set-keyboard-coding-system, Coding Systems for Terminal I/O
	set-language-environment, Language Environments
	set-language-environment-hook, Language Environments
	set-left-margin, Indentation in Enriched Text
	set-locale-environment, Language Environments
	set-mark-command, Setting the Mark
	set-mark-command-repeat-pop, The Mark Ring
	set-next-selection-coding-system, Coding Systems for Interprocess Communication
	set-right-margin, Indentation in Enriched Text
	set-selection-coding-system, Coding Systems for Interprocess Communication
	set-selective-display, Selective Display
	set-terminal-coding-system, Coding Systems for Terminal I/O
	set-variable, Examining and Setting Variables
	set-visited-file-name, Commands for Saving Files
	setenv, Environment Variables
	setq-default, Local Variables
	setting a mark, The Mark and the Region
	setting variables, Examining and Setting Variables
	settings, Easy Customization Interface
	settings, how to save, Changing a Variable
	sexp, Expressions with Balanced Parentheses
	sexp diary entries, Sexp Entries and the Fancy Diary Display
	SGML mode, SGML and HTML Modes
	sgml-attributes, SGML and HTML Modes
	sgml-close-tag, SGML and HTML Modes
	sgml-delete-tag, SGML and HTML Modes
	sgml-mode, SGML and HTML Modes
	sgml-name-8bit-mode, SGML and HTML Modes
	sgml-name-char, SGML and HTML Modes
	sgml-skip-tag-backward, SGML and HTML Modes
	sgml-skip-tag-forward, SGML and HTML Modes
	sgml-tag, SGML and HTML Modes
	sgml-tag-help, SGML and HTML Modes
	sgml-tags-invisible, SGML and HTML Modes
	sgml-validate, SGML and HTML Modes
	sgml-xml-mode, SGML and HTML Modes
	shadow files, Shadowing Files
	shadow-initialize, Shadowing Files
	shell, Interactive Subshell
	shell commands, Running Shell Commands from Emacs
	shell commands, Dired, Shell Commands in Dired
	SHELL environment variable, Interactive Subshell
	Shell mode, Shell Mode
	shell scripts, and local file variables, Specifying File Variables
	shell-backward-command, Shell Mode
	shell-cd-regexp, Directory Tracking
	shell-command, Single Shell Commands
	shell-command-default-error-buffer, Single Shell Commands
	shell-command-on-region, Single Shell Commands
	shell-command-regexp, Shell Mode
	shell-completion-execonly, Shell Mode Options
	shell-completion-fignore, Shell Mode
	shell-file-name, Single Shell Commands
	shell-forward-command, Shell Mode
	shell-input-ring-file-name, Shell History Ring
	shell-popd-regexp, Directory Tracking
	shell-prompt-pattern, Shell Prompts
	shell-pushd-dextract, Shell Mode Options
	shell-pushd-dunique, Shell Mode Options
	shell-pushd-regexp, Directory Tracking
	shell-pushd-tohome, Shell Mode Options
	Shell-script mode, Major Modes for Programming Languages
	shelves in version control, VC Directory Commands
	shift-selection, Setting the Mark, Shift Selection
	Show Paren mode, Matching Parentheses
	show-all, Outline Visibility Commands
	show-branches, Outline Visibility Commands
	show-children, Outline Visibility Commands
	show-entry, Outline Visibility Commands
	show-paren-mode, Matching Parentheses
	show-subtree, Outline Visibility Commands
	show-trailing-whitespace, Useless Whitespace
	showing hidden subdirectories (Dired), Hiding Subdirectories
	shrink-window-horizontally, Deleting and Rearranging Windows
	shrink-window-if-larger-than-buffer, Deleting and Rearranging Windows
	shy group, in regexp, Backslash in Regular Expressions
	signing files (in Dired), Operating on Files
	Simula mode, Major Modes for Programming Languages
	simulation of middle mouse button, Mouse Usage on MS-Windows
	simultaneous editing, Protection against Simultaneous Editing
	site init file, The Emacs Initialization File
	site-start.el file, not loading, Initial Options
	site-start.el, the site startup file, The Emacs Initialization File
	size of file, warning when visiting, Visiting Files
	size of minibuffer, Editing in the Minibuffer
	size-indication-mode, Optional Mode Line Features
	slashes repeated in file name, Minibuffers for File Names
	SliTeX mode, TeX Mode
	slitex-mode, TeX Mode
	slitex-mode-hook, TeX Mode Miscellany
	Slovak, International Character Set Support
	Slovenian, International Character Set Support
	slow display during scrolling, Font Lock mode
	small-temporary-file-directory, Backup Files
	Smerge mode, Comparing Files
	smerge-mode, Comparing Files
	SMTP, Mail Sending
	snake, Other Amusements
	Snake, Other Amusements
	soft hyphen, How Text Is Displayed
	soft newline, Hard and Soft Newlines
	solitaire, Other Amusements
	sort-columns, Sorting Text
	sort-fields, Sorting Text
	sort-fold-case, Sorting Text
	sort-lines, Sorting Text
	sort-numeric-base, Sorting Text
	sort-numeric-fields, Sorting Text
	sort-pages, Sorting Text
	sort-paragraphs, Sorting Text
	sorting, Sorting Text
	sorting diary entries, Fancy Diary Display
	sorting Dired buffer, Updating the Dired Buffer
	sorting Rmail file, Sorting the Rmail File
	Spanish, International Character Set Support
	SPC (Calendar mode), Miscellaneous Calendar Commands
	SPC (completion), Completion Commands
	SPC (Dired), Navigation in the Dired Buffer
	SPC (DocView mode), DocView Navigation
	SPC (GDB Breakpoints buffer), Breakpoints Buffer
	SPC (Gnus Group mode), Using the Gnus Group Buffer
	SPC (Gnus Summary mode), Using the Gnus Summary Buffer
	SPC (Rmail), Scrolling Within a Message
	SPC (View mode), View Mode
	specific version control system, Advanced Control in C-x v v
	specify default font from the command line, Font Specification Options
	specify end-of-line conversion, Specifying a Coding System for File Text
	specifying fullscreen for Emacs frame, Options for Window Size and Position
	speedbar, Speedbar Frames
	spell-checking the active region, Checking and Correcting Spelling
	spelling, checking and correcting, Checking and Correcting Spelling
	splash screen, Initial Options
	split-height-threshold, How display-buffer works
	split-line, Indentation Commands
	split-width-threshold, How display-buffer works
	split-window-below, Splitting Windows
	split-window-keep-point, Splitting Windows
	split-window-right, Splitting Windows
	splitting columns, Two-Column Editing
	splitting table cells, Commands for Table Cells
	spook, Mail Amusements
	standard colors on a character terminal, Window Color Options
	standard fontset, Defining fontsets
	standard-display-8bit, Unibyte Editing Mode
	standard-fontset-spec, Defining fontsets
	standard-indent, Indentation in Enriched Text
	start directory, MS-Windows, How to Start Emacs on MS-Windows
	start iconified, command-line argument, Icons
	starting Emacs, Entering Emacs
	starting Emacs on MS-Windows, How to Start Emacs on MS-Windows
	startup (command line arguments), Command Line Arguments for Emacs Invocation
	startup (init file), The Emacs Initialization File
	startup fontset, Defining fontsets
	startup message, Initial Options
	startup screen, Entering Emacs
	stashes in version control, VC Directory Commands
	string substitution, Replacement Commands
	string syntax, Init File Syntax
	string-insert-rectangle, Rectangles
	string-rectangle, Rectangles
	style (for indentation), Customizing C Indentation
	subdirectories in Dired, Subdirectories in Dired
	subprocesses on MS-Windows, Subprocesses on Windows 9X/ME and Windows NT/2K/XP
	subscribe groups, Using the Gnus Group Buffer
	subshell, Running Shell Commands from Emacs
	substitute-key-definition, Init File Examples
	subtree (Outline mode), Outline Visibility Commands
	Subversion, Supported Version Control Systems
	subword-mode, Other Commands for C Mode
	suggest-key-bindings, Running Commands by Name
	summary (Rmail), Summaries
	summing time intervals, Summing Time Intervals
	sunrise and sunset, Times of Sunrise and Sunset
	sunrise-sunset, Times of Sunrise and Sunset
	Super (under MS-DOS), Keyboard Usage on MS-DOS
	suspend-frame, Exiting Emacs, Frame Commands
	suspending, Exiting Emacs
	suspicious constructions in C, C++, Other Commands for C Mode
	SVN, Supported Version Control Systems
	switch buffers, Creating and Selecting Buffers
	switch-to-buffer, Creating and Selecting Buffers
	switch-to-buffer-other-frame, Creating and Selecting Buffers
	switch-to-buffer-other-window, Creating and Selecting Buffers, Displaying in Another Window
	switch-to-completions, Completion Commands
	switches (command line), Command Line Arguments for Emacs Invocation
	symbolic links (and version control), General Options
	symbolic links (creation in Dired), Operating on Files
	symbolic links (creation), Miscellaneous File Operations
	symbolic links (visiting), File Name Aliases
	synchronizing windows, Follow Mode
	synchronous X mode, Table of X Resources for Emacs
	syntax highlighting and coloring, Font Lock mode
	syntax of regexps, Syntax of Regular Expressions
	system-wide packages, Package Files and Directory Layout

T
	t, Glossary
	t (Calendar mode), Writing Calendar Files
	t (Dired), Dired Marks vs. Flags
	T (Dired), Operating on Files
	t (Rmail), Display of Messages
	TAB (and major modes), Major Modes
	TAB (completion), Completion Example, Completion Commands
	TAB (customization buffer), Customization Groups
	TAB (GUD), Commands of GUD
	TAB (Help mode), Help Mode Commands
	TAB (indentation), Indentation
	TAB (Message mode), Mail Header Editing
	TAB (Org Mode), Org Mode
	TAB (programming modes), Basic Program Indentation Commands
	TAB (Shell mode), Shell Mode
	TAB (Text mode), Text Mode
	tab stops, Tab Stops
	tab-always-indent, Convenience Features for Indentation
	tab-stop-list, Tab Stops
	tab-to-tab-stop, Indentation Commands
	tab-width, How Text Is Displayed, Tabs vs. Spaces
	tabify, Tabs vs. Spaces
	table creation, Creating a Table
	table dimensions, Table Miscellany
	table for HTML and LaTeX, Table Miscellany
	table mode, Editing Text-based Tables
	table recognition, Table Recognition
	table to text, Converting Between Plain Text and Tables
	table-backward-cell, Commands for Table Cells
	table-capture, Converting Between Plain Text and Tables
	table-cell-horizontal-chars, What is a Text-based Table?
	table-cell-intersection-char, What is a Text-based Table?
	table-cell-vertical-char, What is a Text-based Table?
	table-detect-cell-alignment, Cell Justification
	table-fixed-width-mode, Editing Text-based Tables
	table-forward-cell, Commands for Table Cells
	table-generate-source, Table Miscellany
	table-heighten-cell, Commands for Table Cells
	table-insert, Creating a Table
	table-insert-column, Table Rows and Columns
	table-insert-row, Table Rows and Columns
	table-insert-sequence, Table Miscellany
	table-justify, Cell Justification
	table-narrow-cell, Commands for Table Cells
	table-query-dimension, Table Miscellany
	table-recognize, Table Recognition
	table-recognize-cell, Table Recognition
	table-recognize-region, Table Recognition
	table-recognize-table, Table Recognition
	table-release, Converting Between Plain Text and Tables
	table-shorten-cell, Commands for Table Cells
	table-span-cell, Commands for Table Cells
	table-split-cell, Commands for Table Cells
	table-split-cell-horizontally, Commands for Table Cells
	table-split-cell-vertically, Commands for Table Cells
	table-unrecognize, Table Recognition
	table-unrecognize-cell, Table Recognition
	table-unrecognize-region, Table Recognition
	table-unrecognize-table, Table Recognition
	table-widen-cell, Commands for Table Cells
	tabs, Indentation
	tags and tag tables, Tags Tables
	tags for version control, Revision Tags
	tags, C++, Tags Tables
	tags-apropos, Tags Table Inquiries
	tags-apropos-additional-actions, Tags Table Inquiries
	tags-apropos-verbose, Tags Table Inquiries
	tags-based completion, Completion for Symbol Names
	tags-case-fold-search, Searching and Replacing with Tags Tables
	tags-file-name, Selecting a Tags Table
	tags-loop-continue, Searching and Replacing with Tags Tables
	tags-query-replace, Searching and Replacing with Tags Tables
	tags-search, Searching and Replacing with Tags Tables
	tags-table-list, Selecting a Tags Table
	tags-tag-face, Tags Table Inquiries
	Tar mode, File Archives
	Tcl mode, Major Modes for Programming Languages
	Telnet, Remote Host Shell
	temporary-file-directory, Backup Files
	term, Emacs Terminal Emulator
	TERM environment variable, Checklist for Bug Reports
	Term mode, Term Mode
	term-char-mode, Term Mode
	term-file-prefix, Terminal-specific Initialization
	term-line-mode, Term Mode
	term-pager-toggle, Term Mode
	term-setup-hook, Terminal-specific Initialization
	terminal emulators, mouse support, Using a Mouse in Text Terminals
	terminal, serial, Serial Terminal
	termscript file, Checklist for Bug Reports
	tetris, Other Amusements
	Tetris, Other Amusements
	TeX encoding, TeX Mode Miscellany
	TeX mode, TeX Mode
	tex-bibtex-command, TeX Printing Commands
	tex-bibtex-file, TeX Printing Commands
	tex-buffer, TeX Printing Commands
	tex-close-latex-block, LaTeX Editing Commands
	tex-compile, TeX Printing Commands
	tex-default-mode, TeX Mode
	tex-directory, TeX Printing Commands
	tex-dvi-print-command, TeX Printing Commands
	tex-dvi-view-command, TeX Printing Commands
	tex-file, TeX Printing Commands
	tex-insert-braces, TeX Editing Commands
	tex-insert-quote, TeX Editing Commands
	tex-kill-job, TeX Printing Commands
	tex-latex-block, LaTeX Editing Commands
	tex-main-file, TeX Printing Commands
	tex-mode, TeX Mode
	tex-mode-hook, TeX Mode Miscellany
	tex-print, TeX Printing Commands
	tex-recenter-output-buffer, TeX Printing Commands
	tex-region, TeX Printing Commands
	tex-run-command, TeX Printing Commands
	tex-shell-hook, TeX Mode Miscellany
	tex-start-commands, TeX Printing Commands
	tex-start-options, TeX Printing Commands
	tex-terminate-paragraph, TeX Editing Commands
	tex-validate-region, TeX Editing Commands
	tex-view, TeX Printing Commands
	TEXEDIT environment variable, Using Emacs as a Server
	TEXINPUTS environment variable, TeX Printing Commands
	text, Commands for Human Languages
	text and binary files on MS-DOS/MS-Windows, Text Files and Binary Files
	text buttons, Following References with the Mouse
	text colors, from command line, Window Color Options
	text cursor, Displaying the Cursor
	Text mode, Text Mode
	text properties at point, Introduction to International Character Sets
	text properties of characters, Editing Format Information
	text terminal, Non-Window Terminals
	text to table, Converting Between Plain Text and Tables
	text-based tables, Editing Text-based Tables
	text-based tables, splitting cells, Commands for Table Cells
	text-mode, Text Mode
	text-mode-hook, Major Modes, Text Mode
	text-scale-adjust, Text Scale
	text-scale-decrease, Text Scale
	text-scale-increase, Text Scale
	text-scale-mode, Text Scale
	text-scale-set, Text Scale
	text/enriched MIME format, Enriched Text
	Thai, International Character Set Support
	thumbs-mode, Convenience Features for Finding Files
	Tibetan, International Character Set Support
	time (on mode line), Optional Mode Line Features
	time intervals, summing, Summing Time Intervals
	time stamps, Updating Time Stamps Automatically
	time-stamp, Updating Time Stamps Automatically
	timeclock, Summing Time Intervals
	timeclock-ask-before-exiting, Summing Time Intervals
	timeclock-change, Summing Time Intervals
	timeclock-file, Summing Time Intervals
	timeclock-in, Summing Time Intervals
	timeclock-modeline-display, Summing Time Intervals
	timeclock-out, Summing Time Intervals
	timeclock-reread-log, Summing Time Intervals
	timeclock-when-to-leave, Summing Time Intervals
	timeclock-workday-remaining, Summing Time Intervals
	TLS encryption (Rmail), Retrieving Mail from Remote Mailboxes
	tmm-menubar, The Menu Bar
	TODO item, Org as an organizer
	toggle-debug-on-error, Checklist for Bug Reports
	toggle-enable-multibyte-characters, Disabling Multibyte Characters
	toggle-gdb-all-registers, Other GDB Buffers
	toggle-input-method, Selecting an Input Method
	toggle-read-only, Miscellaneous Buffer Operations
	toggle-scroll-bar, Scroll Bars
	toggle-truncate-lines, Line Truncation
	toggling marks (in Dired), Dired Marks vs. Flags
	tool bar, Table of X Resources for Emacs
	Tool Bar mode, Tool Bars
	Tool Bar position, Tool Bars
	Tool Bar style, Tool Bars
	tool-bar-mode, Tool Bars
	tool-bar-style, Tool Bars
	tooltip-delay, Tooltips
	tooltip-mode, Tooltips
	tooltips, Help on Active Text and Tooltips, Tooltips
	top level, The Mode Line
	top-level, Quitting and Aborting
	tower of Hanoi, Other Amusements
	TPU, Emulation
	tpu-edt-on, Emulation
	track-eol, Changing the Location of Point
	trailing whitespace, Useless Whitespace
	Tramp, Remote Files
	Transient Mark mode, Disabling Transient Mark Mode
	transient-mark-mode, Disabling Transient Mark Mode
	transpose-chars, Transposing Text
	transpose-lines, Transposing Text
	transpose-sexps, Expressions with Balanced Parentheses
	transpose-words, Transposing Text
	transposition of expressions, Expressions with Balanced Parentheses
	trash, Miscellaneous File Operations
	triple clicks, Rebinding Mouse Buttons
	truenames of files, File Name Aliases
	truncate-lines, Line Truncation
	truncate-partial-width-windows, Line Truncation, Splitting Windows
	truncation, Continuation Lines, Line Truncation
	tty-suppress-bold-inverse-default-colors, Customization of Display
	Turkish, International Character Set Support
	turn multibyte support on or off, Disabling Multibyte Characters
	two directories (in Dired), Operating on Files
	two-column editing, Two-Column Editing
	types of log file, Types of Log File
	typos, fixing, Commands for Fixing Typos

U
	u (Calendar mode), Holidays
	u (Dired deletion), Deleting Files with Dired
	u (Dired), Dired Marks vs. Flags
	U (Dired), Dired Marks vs. Flags
	u (Gnus Group mode), Using the Gnus Group Buffer
	u (Rmail), Deleting Messages
	ucs-insert, Inserting Text
	unbalanced parentheses and quotes, Commands for Editing with Parentheses
	uncomment-region, Comment Commands
	uncompression, Accessing Compressed Files
	undecided, coding system, Coding Systems
	undeletion (Rmail), Deleting Messages
	underline-minimum-offset, Customization of Display
	undigestify, Digest Messages
	undigestify-rmail-message, Digest Messages
	undisplayable characters, Introduction to International Character Sets
	undo, Undo
	undo limit, Undo
	undo-limit, Undo
	undo-only, Undo
	undo-outer-limit, Undo
	undo-strong-limit, Undo
	undoing window configuration changes, Convenience Features for Window Handling
	unexpand-abbrev, Controlling Abbrev Expansion
	unforward-rmail-message, Sending Replies
	unhighlight-regexp, Interactive Highlighting
	Unibyte operation, Unibyte Editing Mode
	unibyte operation, and Lisp files, Disabling Multibyte Characters
	unibyte-display-via-language-environment, Unibyte Editing Mode
	Unicode, Introduction to International Character Sets
	Unicode characters, inserting, Inserting Text
	unique buffer names, Making Buffer Names Unique
	uniquify-buffer-name-style, Making Buffer Names Unique
	universal-argument, Numeric Arguments
	universal-coding-system-argument, Specifying a Coding System for File Text
	unmarking files (in Dired), Dired Marks vs. Flags
	unmorse-region, Other Amusements
	unsubscribe groups, Using the Gnus Group Buffer
	untabify, Tabs vs. Spaces
	untranslated file system, Text Files and Binary Files
	unused lines, Useless Whitespace
	unzip archives, File Archives
	UP, Changing the Location of Point
	UP (minibuffer history), Minibuffer History
	up-list, TeX Editing Commands
	upcase file names, Transforming File Names in Dired
	upcase-region, Case Conversion Commands
	upcase-word, Case Conversion Commands
	updating Dired buffer, Updating the Dired Buffer
	URL, viewing in help, Help Mode Commands
	URLs, Following URLs
	URLs, activating, Activating URLs
	use-dialog-box, Using Dialog Boxes
	use-file-dialog, Using Dialog Boxes
	use-hard-newlines, Hard and Soft Newlines
	Usenet news, Gnus
	user name for remote file access, Remote Files
	user option, Easy Customization Interface
	user options, changing, Changing a Variable
	user-full-name, Mail Header Fields
	user-mail-address, Mail Header Fields, Init File Examples
	user-mail-address, initialization, General Variables
	UTF-8, Language Environments

V
	v (Dired), Visiting Files in Dired
	v (Rmail), Display of Messages
	variable, Variables
	variables, changing, Changing a Variable
	VC Directory buffer, VC Directory Mode
	VC filesets, Basic Editing under Version Control
	VC mode line indicator, Version Control and the Mode Line
	vc-annotate, Examining And Comparing Old Revisions
	vc-backend-header, Inserting Version Control Headers
	vc-command-messages, General Options
	vc-consult-headers, Inserting Version Control Headers, Options for RCS and SCCS
	vc-create-tag, Revision Tags
	vc-cvs-global-switches, Options specific for CVS
	vc-cvs-stay-local, The VC Directory Buffer, Options specific for CVS
	vc-delete-file, Deleting and Renaming Version-Controlled Files
	vc-diff, Examining And Comparing Old Revisions
	vc-diff-switches, Examining And Comparing Old Revisions
	vc-dir, VC Directory Mode
	vc-dir-mark, VC Directory Commands
	vc-dir-mark-all-files, VC Directory Commands
	vc-directory-exclusion-list, The VC Directory Buffer
	vc-ediff, Examining And Comparing Old Revisions
	vc-follow-symlinks, General Options
	vc-handled-backends, Customizing VC
	vc-insert-headers, Inserting Version Control Headers
	vc-log-mode-hook, Features of the Log Entry Buffer
	vc-log-show-limit, VC Change Log
	vc-make-backup-files, Backup Files, General Options
	vc-mistrust-permissions, Options for RCS and SCCS
	vc-next-action, Basic Editing under Version Control
	vc-path, General Options
	vc-print-log, VC Change Log
	vc-print-root-log, VC Change Log
	vc-pull, Pulling Changes into a Branch
	vc-register, Registering a File for Version Control
	vc-rename-file, Deleting and Renaming Version-Controlled Files
	vc-retrieve-tag, Revision Tags
	vc-revert, Undoing Version Control Actions
	vc-revert-show-diff, Undoing Version Control Actions
	vc-revision-other-window, Examining And Comparing Old Revisions
	vc-root-diff, Examining And Comparing Old Revisions
	vc-static-header-alist, Inserting Version Control Headers
	vc-stay-local, The VC Directory Buffer, Options specific for CVS
	vc-suppress-confirm, General Options
	vc-update-change-log, Change Logs and VC
	verifying digital signatures on files (in Dired), Operating on Files
	version control, Version Control
	version control log, Types of Log File
	version control status, Version Control and the Mode Line
	version-control, Single or Numbered Backups
	VERSION_CONTROL environment variable, Single or Numbered Backups
	vertical scroll bars, command-line argument, Other Display Options
	VHDL mode, Major Modes for Programming Languages
	vi, Emulation
	vi-mode, Emulation
	Vietnamese, International Character Set Support
	View mode, View Mode
	view-buffer, View Mode
	view-echo-area-messages, Other Help Commands
	view-emacs-debugging, Help Files
	view-emacs-FAQ, Help Files
	view-emacs-news, Help Files
	view-emacs-problems, Help Files
	view-emacs-todo, Help Files
	View-exit, View Mode
	view-external-packages, Help Files
	view-file, View Mode
	view-hello-file, Introduction to International Character Sets
	view-lossage, Other Help Commands
	view-order-manuals, Help Files
	View-quit, View Mode
	view-register, Registers
	viewing web pages in help, Help Mode Commands
	views of an outline, Viewing One Outline in Multiple Views
	vip-mode, Emulation
	viper-mode, Emulation
	visible-bell, Customization of Display
	visible-cursor, Displaying the Cursor
	visit-tags-table, Selecting a Tags Table
	visiting files, Visiting Files
	visiting files, command-line argument, Action Arguments
	Visual Line mode, Visual Line Mode
	visual order, Bidirectional Editing
	visual-line-mode, Visual Line Mode

W
	w (Dired), Other Dired Features
	w (Rmail), Copying Messages Out to Files
	w32-alt-is-meta, Keyboard Usage on MS-Windows
	w32-apps-modifier, Keyboard Usage on MS-Windows
	w32-capslock-is-shiftlock, Keyboard Usage on MS-Windows
	w32-charset-info-alist, Specifying Fonts on MS-Windows
	w32-enable-caps-lock, Keyboard Usage on MS-Windows
	w32-enable-num-lock, Keyboard Usage on MS-Windows
	w32-get-true-file-attributes, File Names on MS-Windows
	w32-grab-focus-on-raise, Miscellaneous Windows-specific features
	w32-lwindow-modifier, Keyboard Usage on MS-Windows
	w32-mouse-button-tolerance, Mouse Usage on MS-Windows
	w32-pass-alt-to-system, Keyboard Usage on MS-Windows
	w32-pass-extra-mouse-buttons-to-system, Mouse Usage on MS-Windows
	w32-pass-lwindow-to-system, Keyboard Usage on MS-Windows
	w32-pass-rwindow-to-system, Keyboard Usage on MS-Windows
	w32-quote-process-args, Subprocesses on Windows 9X/ME and Windows NT/2K/XP
	w32-recognize-altgr, Keyboard Usage on MS-Windows
	w32-register-hot-key, Keyboard Usage on MS-Windows
	w32-rwindow-modifier, Keyboard Usage on MS-Windows
	w32-scroll-lock-modifier, Keyboard Usage on MS-Windows
	w32-shell-execute, Subprocesses on Windows 9X/ME and Windows NT/2K/XP
	w32-standard-fontset-spec, Defining fontsets
	w32-swap-mouse-buttons, Mouse Usage on MS-Windows
	w32-unregister-hot-key, Keyboard Usage on MS-Windows
	w32-use-visible-system-caret, Miscellaneous Windows-specific features
	Watching expressions in GDB, Watch Expressions
	wdired mode, Editing the Dired Buffer
	wdired-change-to-wdired-mode, Editing the Dired Buffer
	wdired-finish-edit, Editing the Dired Buffer
	Web, Following URLs
	web pages, viewing in help, Help Mode Commands
	weeks, which day they start on, Beginning or End of Week, Month or Year
	what-cursor-position, Cursor Position Information, Introduction to International Character Sets
	what-line, Cursor Position Information
	what-page, Pages
	where-is, Documentation for a Key
	which-func-modes, Which Function Mode
	which-function-mode, Which Function Mode
	whitespace character, Indentation
	Whitespace mode, Useless Whitespace
	whitespace, trailing, Useless Whitespace
	whitespace-line-column, Useless Whitespace
	whitespace-mode, Useless Whitespace
	whitespace-style, Useless Whitespace
	wide block cursor, Displaying the Cursor
	widen, Narrowing
	widening, Narrowing
	widget-backward, Customization Groups
	widget-complete, Changing a Variable
	widget-forward, Customization Groups
	widgets at buffer position, Editing Format Information
	width and height of Emacs frame, Options for Window Size and Position
	width of the scroll bar, Scroll Bars
	wildcard characters in file names, Visiting Files
	Windmove package, Convenience Features for Window Handling
	windmove-default-keybindings, Convenience Features for Window Handling
	windmove-right, Convenience Features for Window Handling
	window configuration changes, undoing, Convenience Features for Window Handling
	window manager, keys stolen by, Kinds of User Input
	window-configuration-to-register, Saving Window Configurations in Registers
	window-min-height, Deleting and Rearranging Windows
	window-min-width, Deleting and Rearranging Windows
	Windows clipboard support, Mouse Usage on MS-DOS
	windows in Emacs, Multiple Windows
	Windows system menu, Keyboard Usage on MS-Windows
	windows, synchronizing, Follow Mode
	Winner mode, Convenience Features for Window Handling
	winner-mode, Convenience Features for Window Handling
	woman, Man Page Lookup
	word processing, Enriched Text
	word search, Word Search
	word wrap, Continuation Lines, Visual Line Mode
	word-search-backward, Word Search
	word-search-forward, Word Search
	words, Words
	words, case conversion, Case Conversion Commands
	WordStar, Emulation
	wordstar-mode, Emulation
	work file, Concepts of Version Control
	working tree, Concepts of Version Control
	World Wide Web, Following URLs
	wrapping, Continuation Lines
	write-abbrev-file, Saving Abbrevs
	write-file, Commands for Saving Files
	write-region, Miscellaneous File Operations
	write-region-inhibit-fsync, Customizing Saving of Files
	WYSIWYG, Enriched Text

X
	x (Calendar mode), Holidays
	x (Dired), Deleting Files with Dired
	X (Dired), Shell Commands in Dired
	x (Rmail), Deleting Messages
	X cutting and pasting, Cut and Paste with Other Window Applications
	X defaults file, Fonts
	X input methods, Table of X Resources for Emacs
	X Logical Font Description, Fonts
	X resources, X Resources
	X resources file, Fonts
	X selection, Cut and Paste with Other Window Applications
	x-gtk-file-dialog-help-text, Using Dialog Boxes
	x-gtk-show-hidden-files, Using Dialog Boxes
	x-gtk-use-system-tooltips, Tooltips
	x-mouse-click-focus-ignore-position, Mouse Commands for Editing
	x-select-enable-clipboard, Using the Clipboard
	x-select-enable-clipboard-manager, Using the Clipboard
	x-select-enable-primary, Using the Clipboard
	x-select-request-type, Coding Systems for Interprocess Communication
	x-stretch-cursor, Displaying the Cursor
	x-underline-at-descent-line, Customization of Display
	XDB, Running Debuggers Under Emacs
	xdb, Starting GUD
	xdb-mode-hook, GUD Customization
	XIM, Table of X Resources for Emacs
	XLFD, Fonts
	XML schema, SGML and HTML Modes
	xterm, Using a Mouse in Text Terminals

Y
	yahrzeits, Converting From Other Calendars, Sexp Entries and the Fancy Diary Display
	yank, Yanking
	yank-pop, Yanking Earlier Kills
	yank-pop-change-selection, Using the Clipboard
	yank-rectangle, Rectangles
	yanking, Yanking
	yanking previous kills, Yanking Earlier Kills

Z
	Z (Dired), Operating on Files
	zap-to-char, Other Kill Commands
	zip, File Archives
	Zmacs mode, Disabling Transient Mark Mode
	zone, Other Amusements
	zoo, File Archives
	zrgrep, Searching with Grep under Emacs

Chapter . Concept Index

Index

Symbols
	! (Dired), Shell Commands in Dired
	" (TeX mode), TeX Editing Commands
	# (Dired), Flagging Many Files at Once
	$ (Dired), Hiding Subdirectories
	$ in file names, File Names
	% & (Dired), Flagging Many Files at Once
	% C (Dired), Transforming File Names in Dired
	% d (Dired), Flagging Many Files at Once
	% g (Dired), Dired Marks vs. Flags
	% H (Dired), Transforming File Names in Dired
	% l (Dired), Transforming File Names in Dired
	% m (Dired), Dired Marks vs. Flags
	% R (Dired), Transforming File Names in Dired
	% S (Dired), Transforming File Names in Dired
	% u (Dired), Transforming File Names in Dired
	(in leftmost column, Left Margin Convention
	* ! (Dired), Dired Marks vs. Flags
	* % (Dired), Dired Marks vs. Flags
	* * (Dired), Dired Marks vs. Flags
	* / (Dired), Dired Marks vs. Flags
	* ? (Dired), Dired Marks vs. Flags
	* @ (Dired), Dired Marks vs. Flags
	* c (Dired), Dired Marks vs. Flags
	* C-n (Dired), Dired Marks vs. Flags
	* C-p (Dired), Dired Marks vs. Flags
	* DEL (Dired), Dired Marks vs. Flags
	* m (Dired), Dired Marks vs. Flags
	* s (Dired), Dired Marks vs. Flags
	* t (Dired), Dired Marks vs. Flags
	* u (Dired), Dired Marks vs. Flags
	Messages buffer, The Echo Area
	+ (Dired), Other Dired Features
	+ (DocView mode), DocView Navigation
	+linenum, Action Arguments
	- (DocView mode), DocView Navigation
	-bd, Window Color Options
	-bg, Window Color Options
	-bw, Internal and External Borders
	-chdir, Initial Options
	-cr, Window Color Options
	-d, Initial Options
	-D, Other Display Options
	-daemon, Initial Options
	-f, Action Arguments
	-fg, Window Color Options
	-fh, Options for Window Size and Position
	-fn, Font Specification Options
	-fs, Options for Window Size and Position
	-fw, Options for Window Size and Position
	-g, Options for Window Size and Position
	-ib, Internal and External Borders
	-l, Action Arguments
	-L, Action Arguments
	-lsp, Other Display Options
	-mm, Options for Window Size and Position
	-ms, Window Color Options
	-nbc, Other Display Options
	-nbi, Icons
	-nw, Initial Options
	-q, Initial Options
	-Q, Initial Options
	-r, Window Color Options
	-rv, Window Color Options
	-t, Initial Options
	-T, Frame Titles
	-u, Initial Options
	-vb, Other Display Options
	. (Calendar mode), Specified Dates
	. (Dired), Flagging Many Files at Once
	. (Rmail), Scrolling Within a Message
	.dir-locals.el file, Per-Directory Local Variables
	.emacs file, The Emacs Initialization File
	.mailrc file, Mail Aliases
	.newsrc file, When Gnus Starts Up
	.timelog file, Summing Time Intervals
	/ (Rmail), Scrolling Within a Message
	// in file name, Minibuffers for File Names
	2C-associate-buffer, Two-Column Editing
	2C-dissociate, Two-Column Editing
	2C-merge, Two-Column Editing
	2C-newline, Two-Column Editing
	2C-split, Two-Column Editing
	2C-two-columns, Two-Column Editing
	5x5, Other Amusements
	7z, File Archives
	8-bit display, Unibyte Editing Mode
	8-bit input, Unibyte Editing Mode
	:d (Dired), Operating on Files
	:e (Dired), Operating on Files
	:s (Dired), Operating on Files
	:v (Dired), Operating on Files
	< (Calendar mode), Scrolling in the Calendar
	< (Dired), Moving Over Subdirectories
	< (Rmail), Moving Among Messages
	= (Dired), File Comparison with Dired
	> (Calendar mode), Scrolling in the Calendar
	> (Dired), Moving Over Subdirectories
	> (Rmail), Moving Among Messages
	? (completion), Completion Commands
	^ (Dired), Visiting Files in Dired
	_emacs init file, MS-Windows, HOME and Startup Directories on MS-Windows
	~ (Dired), Flagging Many Files at Once
	~/.emacs file, The Emacs Initialization File
	~/.emacs.d/gtkrc file, GTK resources
	~/.gtkrc-2.0 file, GTK resources
	~/.Xdefaults file, X Resources
	~/.Xresources file, X Resources
	–/—/.-./.../., Other Amusements
	–background-color, Window Color Options
	–basic-display, Other Display Options
	–batch, Initial Options
	–border-color, Window Color Options
	–border-width, Internal and External Borders
	–chdir, Initial Options
	–color, Window Color Options
	–cursor-color, Window Color Options
	–daemon, Initial Options
	–debug-init, Initial Options
	–directory, Action Arguments
	–display, Initial Options
	–eval, Action Arguments
	–execute, Action Arguments
	–file, Action Arguments
	–find-file, Action Arguments
	–font, Font Specification Options
	–foreground-color, Window Color Options
	–fullheight, Options for Window Size and Position
	–fullscreen, Options for Window Size and Position
	–fullwidth, Options for Window Size and Position
	–funcall, Action Arguments
	–geometry, Options for Window Size and Position
	–help, Action Arguments
	–iconic, Icons
	–insert, Action Arguments
	–internal-border, Internal and External Borders
	–kill, Action Arguments
	–line-spacing, Other Display Options
	–load, Action Arguments
	–maximized, Options for Window Size and Position
	–mouse-color, Window Color Options
	–name, X Resources
	–no-bitmap-icon, Icons
	–no-blinking-cursor, Other Display Options
	–no-desktop, Initial Options
	–no-init-file, Initial Options
	–no-site-file, Initial Options
	–no-site-lisp, Initial Options
	–no-splash, Initial Options
	–no-window-system, Initial Options
	–quick, Initial Options
	–reverse-video, Window Color Options
	–script, Initial Options
	–terminal, Initial Options
	–title, Frame Titles
	–user, Initial Options
	–version, Action Arguments
	–vertical-scroll-bars, Other Display Options
	–visit, Action Arguments
	–xrm, X Resources
	‘?’ in display, Introduction to International Character Sets
	‘net use’, and printing on MS-Windows, Printing and MS-Windows

A
	a (Calendar mode), Holidays
	A (Dired), Operating on Files
	a (Rmail), Labels
	A and B buffers (Emerge), Overview of Emerge
	A k (Gnus Group mode), Using the Gnus Group Buffer
	A s (Gnus Group mode), Using the Gnus Group Buffer
	A u (Gnus Group mode), Using the Gnus Group Buffer
	A z (Gnus Group mode), Using the Gnus Group Buffer
	abbrev file, Saving Abbrevs
	Abbrev mode, Abbrev Concepts
	abbrev-all-caps, Controlling Abbrev Expansion
	abbrev-file-name, Saving Abbrevs
	abbrev-mode, Abbrev Concepts
	abbrev-prefix-mark, Controlling Abbrev Expansion
	abbrevs, Abbrevs
	abnormal hook, Hooks
	abort-recursive-edit, Quitting and Aborting
	aborting recursive edit, Quitting and Aborting
	accented characters, Unibyte Editing Mode
	accessible portion, Narrowing
	accumulating scattered text, Accumulating Text
	action options (command line), Command Line Arguments for Emacs Invocation
	active region, The Mark and the Region
	adaptive filling, Adaptive Filling
	adaptive-fill-first-line-regexp, Adaptive Filling
	adaptive-fill-function, Adaptive Filling
	adaptive-fill-mode, Adaptive Filling
	adaptive-fill-regexp, Adaptive Filling
	add-change-log-entry-other-window, Change Log Commands
	add-change-log-entry-other-window, in Diff mode, Diff Mode
	add-dir-local-variable, Per-Directory Local Variables
	add-file-local-variable, Specifying File Variables
	add-file-local-variable-prop-line, Specifying File Variables
	add-global-abbrev, Defining Abbrevs
	add-hook, Hooks
	add-log-always-start-new-record, Change Log Commands
	add-log-keep-changes-together, Change Log Commands
	add-mode-abbrev, Defining Abbrevs
	add-name-to-file, Miscellaneous File Operations
	add-untranslated-filesystem, Text Files and Binary Files
	Adding to the kill ring in Dired., Other Dired Features
	addpm, MS-Windows installation program, The MS-Windows System Registry
	adjust buffer face height, Text Scale
	aggressive scrolling, Automatic Scrolling
	alarm clock, Appointments
	alignment for comments, Comment Commands
	Alt key (MS-Windows), Keyboard Usage on MS-Windows
	Alt key invokes menu (Windows), Keyboard Usage on MS-Windows
	Alt-TAB vs M-TAB (MS-Windows), Keyboard Usage on MS-Windows
	ALTERNATE_EDITOR environment variable, emacsclient Options
	AltGr (MS-Windows), Keyboard Usage on MS-Windows
	AltGr key (MS-Windows), Keyboard Usage on MS-Windows
	ange-ftp, Remote Files
	ange-ftp-default-user, Remote Files
	ange-ftp-gateway-host, Remote Files
	ange-ftp-generate-anonymous-password, Remote Files
	ange-ftp-make-backup-files, Remote Files
	ange-ftp-smart-gateway, Remote Files
	animate, Other Amusements
	animate-birthday-present, Other Amusements
	animated images, Convenience Features for Finding Files
	anonymous FTP, Remote Files
	append-next-kill, Appending Kills
	append-to-buffer, Accumulating Text
	append-to-file, Accumulating Text
	append-to-register, Saving Text in Registers
	appending kills in the ring, Appending Kills
	apply-macro-to-region-lines, Basic Use
	appointment notification, Appointments
	appt-activate, Appointments
	appt-add, Appointments
	appt-audible, Appointments
	appt-delete, Appointments
	appt-delete-window-function, Appointments
	appt-disp-window-function, Appointments
	appt-display-diary, Appointments
	appt-display-duration, Appointments
	appt-display-format, Appointments
	appt-display-mode-line, Appointments
	appt-message-warning-time, Appointments
	appt-warning-time-regexp, Appointments
	apropos, Apropos
	apropos search results, order by score, Apropos
	apropos-command, Apropos
	apropos-do-all, Apropos
	apropos-documentation, Apropos
	apropos-documentation-sort-by-scores, Apropos
	apropos-sort-by-scores, Apropos
	apropos-value, Apropos
	apropos-variable, Apropos
	arc, File Archives
	Arch, Supported Version Control Systems
	Archive mode, File Archives
	arguments (command line), Command Line Arguments for Emacs Invocation
	arguments to commands, Numeric Arguments
	arrow keys, Changing the Location of Point
	ASCII, Kinds of User Input
	ASCII art, Commands for Human Languages
	ask-user-about-lock, Protection against Simultaneous Editing
	Asm mode, Asm Mode
	assembler mode, Asm Mode
	astronomical day numbers, Supported Calendar Systems
	async-shell-command, Single Shell Commands
	attached frame (of speedbar), Speedbar Frames
	attribute (Rmail), Labels
	attributes of mode line, changing, Optional Mode Line Features
	Auto Compression mode, Accessing Compressed Files
	Auto Fill mode, Auto Fill Mode
	Auto Save mode, Auto-Saving: Protection Against Disasters
	auto-coding-alist, Recognizing Coding Systems
	auto-coding-functions, Recognizing Coding Systems
	auto-coding-regexp-alist, Recognizing Coding Systems
	auto-compression-mode, Accessing Compressed Files
	auto-fill-mode, Auto Fill Mode
	auto-hscroll-mode, Horizontal Scrolling
	auto-mode-alist, Choosing File Modes
	auto-mode-case-fold, Choosing File Modes
	Auto-Revert mode, Reverting a Buffer
	auto-revert-check-vc-info, Version Control and the Mode Line
	auto-revert-interval, Reverting a Buffer
	auto-revert-mode, Reverting a Buffer
	auto-revert-tail-mode, Reverting a Buffer
	auto-save for remote files, Auto-Save Files
	auto-save-default, Controlling Auto-Saving
	auto-save-file-name-transforms, Auto-Save Files
	auto-save-interval, Controlling Auto-Saving
	auto-save-list-file-prefix, Recovering Data from Auto-Saves
	auto-save-mode, Controlling Auto-Saving
	auto-save-timeout, Controlling Auto-Saving
	auto-save-visited-file-name, Auto-Save Files
	autoload, Libraries of Lisp Code for Emacs
	autoload Lisp libraries, Init File Examples
	automatic version backups, Options specific for CVS
	avoiding mouse in the way of your typing, Mouse Avoidance
	AWK mode, C and Related Modes

B
	B (Dired), Operating on Files
	b (Rmail summary), Editing in Summaries
	b (Rmail), Basic Concepts of Rmail
	back end (version control), Supported Version Control Systems
	back reference, in regexp, Backslash in Regular Expressions
	back reference, in regexp replacement, Regexp Replacement
	back-to-indentation, Indentation Commands
	background color, Text Faces
	background color, command-line argument, Window Color Options
	background mode, on xterm, General Variables
	background syntax highlighting, Font Lock mode
	BACKSPACE vs DEL, If DEL Fails to Delete
	backtrace for bug reports, Checklist for Bug Reports
	backup file, Backup Files
	backup file names on MS-DOS, File Names on MS-DOS
	backup, and user-id, Copying vs. Renaming
	backup-by-copying, Copying vs. Renaming
	backup-by-copying-when-linked, Copying vs. Renaming
	backup-by-copying-when-mismatch, Copying vs. Renaming
	backup-by-copying-when-privileged-mismatch, Copying vs. Renaming
	backup-directory-alist, Single or Numbered Backups
	backup-enable-predicate, Backup Files
	backups for remote files, Remote Files
	backward-button, Help Mode Commands
	backward-char, Changing the Location of Point
	backward-delete-char-untabify, Major Modes for Programming Languages
	backward-kill-sentence, Sentences
	backward-kill-word, Words
	backward-list, Moving in the Parenthesis Structure
	backward-page, Pages
	backward-paragraph, Paragraphs
	backward-sentence, Sentences
	backward-sexp, Expressions with Balanced Parentheses
	backward-text-line, Nroff Mode
	backward-up-list, Moving in the Parenthesis Structure
	backward-word, Changing the Location of Point, Words
	Bahá'í calendar, Supported Calendar Systems
	balance-windows, Deleting and Rearranging Windows
	balanced expression, Expressions with Balanced Parentheses
	balloon help, Help on Active Text and Tooltips
	base buffer, Indirect Buffers
	base direction of paragraphs, Bidirectional Editing
	batch mode, Initial Options
	battery-mode-line-format, Optional Mode Line Features
	Bazaar, Supported Version Control Systems
	bdf-directory-list, Variables for PostScript Hardcopy
	beginning-of-buffer, Changing the Location of Point
	beginning-of-defun, Moving by Defuns
	beginning-of-visual-line, Visual Line Mode
	bibtex-mode, TeX Mode
	bidi-display-reordering, Bidirectional Editing
	bidi-paragraph-direction, Bidirectional Editing
	bidirectional editing, Bidirectional Editing
	binary files, on MS-DOS/MS-Windows, Text Files and Binary Files
	binary-overwrite-mode, Minor Modes
	binding, Keys and Commands
	binding keyboard macros, Naming and Saving Keyboard Macros
	binding keys, Changing Key Bindings Interactively
	blackbox, Other Amusements
	blank lines, Blank Lines
	blank lines in programs, Multiple Lines of Comments
	blink-cursor-alist, Displaying the Cursor
	blink-cursor-mode, Displaying the Cursor
	blink-matching-delay, Matching Parentheses
	blink-matching-paren, Matching Parentheses
	blink-matching-paren-distance, Matching Parentheses
	blinking cursor, Displaying the Cursor
	blinking cursor disable, command-line argument, Other Display Options
	body lines (Outline mode), Format of Outlines
	bookmark-delete, Bookmarks
	bookmark-insert, Bookmarks
	bookmark-insert-location, Bookmarks
	bookmark-jump, Bookmarks
	bookmark-load, Bookmarks
	bookmark-save, Bookmarks
	bookmark-save-flag, Bookmarks
	bookmark-search-size, Bookmarks
	bookmark-set, Bookmarks
	bookmark-write, Bookmarks
	bookmarks, Bookmarks
	border color, command-line argument, Window Color Options
	borders (X Window System), Internal and External Borders
	boredom, Other Amusements
	brace in column zero and fontification, Font Lock mode
	braces, moving across, Moving in the Parenthesis Structure
	branch (version control), Version Control Branches
	Brief emulation, Emulation
	browse-url, Help Mode Commands, Following URLs
	Browse-URL, Following URLs
	browse-url-at-mouse, Following URLs
	browse-url-at-point, Following URLs
	browse-url-browser-function, Following URLs
	browse-url-mailto-function, Following URLs
	BS (MS-DOS), Keyboard Usage on MS-DOS
	bs-show, Customizing Buffer Menus
	bubbles, Other Amusements
	buffer definitions index, Imenu
	buffer list, customizable, Customizing Buffer Menus
	buffer menu, Operating on Several Buffers, Customizing Buffer Menus
	buffer size display, Optional Mode Line Features
	buffer size, maximum, Using Multiple Buffers
	buffer-file-coding-system, Choosing Coding Systems for Output
	buffer-local hooks, Hooks
	buffer-menu, Operating on Several Buffers
	buffer-menu-other-window, Operating on Several Buffers
	buffer-read-only, Miscellaneous Buffer Operations
	buffer-stale-function, Adding Support for Auto-Reverting additional Buffers.
	buffers, Using Multiple Buffers
	bug tracker, Reading Existing Bug Reports and Known Problems
	bugs, Reporting Bugs
	building programs, Compiling and Testing Programs
	built-in package, The Package Menu Buffer
	button down events, Rebinding Mouse Buttons
	buttons, Following References with the Mouse
	buttons (customization buffer), Customization Groups
	buttons at buffer position, Editing Format Information
	bypassing init and default.el file, Initial Options
	byte code, Libraries of Lisp Code for Emacs
	byte-compiling several files (in Dired), Operating on Files
	bzr, Supported Version Control Systems

C
	C (Dired), Operating on Files
	c (Rmail), Sending Replies
	C editing, Editing Programs
	C mode, C and Related Modes
	C++ class browser, tags, Tags Tables
	C++ mode, C and Related Modes
	C-, Kinds of User Input
	C-/, Undo
	C-@, Setting the Mark
	C-a, Changing the Location of Point
	C-a (Calendar mode), Beginning or End of Week, Month or Year
	C-b, Changing the Location of Point
	C-b (Calendar mode), Motion by Standard Lengths of Time
	c-backslash-region, Other Commands for C Mode
	c-backward-conditional, C Mode Motion Commands
	c-beginning-of-defun, C Mode Motion Commands
	c-beginning-of-statement, C Mode Motion Commands
	C-BREAK (MS-DOS), Keyboard Usage on MS-DOS
	C-c ' (Picture mode), Controlling Motion after Insert
	C-c , j, Semantic
	C-c , J, Semantic
	C-c , l, Semantic
	C-c , SPC, Semantic
	C-c . (C mode), Customizing C Indentation
	C-c . (Picture mode), Controlling Motion after Insert
	C-c . (Shell mode), Shell History Ring
	C-c / (Picture mode), Controlling Motion after Insert
	C-c / (SGML mode), SGML and HTML Modes
	C-c 8 (SGML mode), SGML and HTML Modes
	C-c ; (Fortran mode), Fortran Comments
	C-c < (GUD), Commands of GUD
	C-c < (Picture mode), Controlling Motion after Insert
	C-c > (GUD), Commands of GUD
	C-c > (Picture mode), Controlling Motion after Insert
	C-c ? (SGML mode), SGML and HTML Modes
	C-c @ (Outline minor mode), Outline Mode
	C-c @ C-h, Hideshow minor mode
	C-c @ C-l, Hideshow minor mode
	C-c @ C-M-h, Hideshow minor mode
	C-c @ C-M-s, Hideshow minor mode
	C-c @ C-r, Hideshow minor mode
	C-c @ C-s, Hideshow minor mode
	C-c C-a (C mode), Electric C Characters
	C-c C-a (F90 mode), Motion Commands
	C-c C-a (Log Edit mode), Features of the Log Entry Buffer
	C-c C-a (Message mode), Mail Miscellany
	C-c C-a (Outline mode), Outline Visibility Commands
	C-c C-a (SGML mode), SGML and HTML Modes
	C-c C-a (Shell mode), Shell Mode
	C-c C-b (Help mode), Help Mode Commands
	C-c C-b (Message mode), Mail Header Editing
	C-c C-b (Outline mode), Outline Motion Commands
	C-c C-b (Picture mode), Controlling Motion after Insert
	C-c C-b (SGML mode), SGML and HTML Modes
	C-c C-b (Shell mode), Shell Mode
	C-c C-b (TeX mode), TeX Printing Commands
	C-c C-c (C mode), Comment Commands
	C-c C-c (customization buffer), Changing a Variable
	C-c C-c (Edit Abbrevs), Examining and Editing Abbrevs
	C-c C-c (Edit Tab Stops), Tab Stops
	C-c C-c (Log Edit mode), Features of the Log Entry Buffer
	C-c C-c (Message mode), Mail Sending
	C-c C-c (Outline mode), Outline Visibility Commands
	C-c C-c (Shell mode), Shell Mode
	C-c C-c (TeX mode), TeX Printing Commands
	C-c C-d (C Mode), Hungry Delete Feature in C
	C-c C-d (Fortran mode), Fortran Indentation and Filling Commands
	C-c C-d (GUD), Commands of GUD
	C-c C-d (Log Edit mode), Features of the Log Entry Buffer
	C-c C-d (Org Mode), Org as an organizer
	C-c C-d (Outline mode), Outline Visibility Commands
	C-c C-d (Picture mode), Basic Editing in Picture Mode
	C-c C-d (SGML mode), SGML and HTML Modes
	C-c C-DEL (C Mode), Hungry Delete Feature in C
	C-c C-DELETE (C Mode), Hungry Delete Feature in C
	C-c C-e (C mode), Other Commands for C Mode
	C-c C-e (F90 mode), Motion Commands
	C-c C-e (LaTeX mode), LaTeX Editing Commands
	C-c C-e (Org mode), Org as an authoring system
	C-c C-e (Outline mode), Outline Visibility Commands
	C-c C-e (Shell mode), Shell Mode
	C-c C-f (GUD), Commands of GUD
	C-c C-f (Log Edit mode), Features of the Log Entry Buffer
	C-c C-f (Outline mode), Outline Motion Commands
	C-c C-f (Picture mode), Controlling Motion after Insert
	C-c C-f (SGML mode), SGML and HTML Modes
	C-c C-f (Shell mode), Shell Mode
	C-c C-f (TeX mode), TeX Printing Commands
	C-c C-f C-b (Message mode), Mail Header Editing
	C-c C-f C-c (Message mode), Mail Header Editing
	C-c C-f C-f (Message mode), Mail Header Editing
	C-c C-f C-r (Message mode), Mail Header Editing
	C-c C-f C-s (Message mode), Mail Header Editing
	C-c C-f C-t (Message mode), Mail Header Editing
	C-c C-f C-w (Message mode), Mail Header Editing
	C-c C-i (GUD), Commands of GUD
	C-c C-i (Outline mode), Outline Visibility Commands
	C-c C-j (Term mode), Term Mode
	C-c C-k (Outline mode), Outline Visibility Commands
	C-c C-k (Picture mode), Picture Mode Rectangle Commands
	C-c C-k (Term mode), Term Mode
	C-c C-k (TeX mode), TeX Printing Commands
	C-c C-l (C mode), Electric C Characters
	C-c C-l (Calendar mode), Miscellaneous Calendar Commands
	C-c C-l (GUD), Commands of GUD
	C-c C-l (Outline mode), Outline Visibility Commands
	C-c C-l (Shell mode), Shell History Ring
	C-c C-l (TeX mode), TeX Printing Commands
	C-c C-n (C mode), C Mode Motion Commands
	C-c C-n (Fortran mode), Motion Commands
	C-c C-n (GUD), Commands of GUD
	C-c C-n (Outline mode), Outline Motion Commands
	C-c C-n (Rmail), Moving Among Messages
	C-c C-n (SGML mode), SGML and HTML Modes
	C-c C-n (Shell mode), Shell History Copying
	C-c C-o (LaTeX mode), LaTeX Editing Commands
	C-c C-o (Outline mode), Outline Visibility Commands
	C-c C-o (Shell mode), Shell Mode
	C-c C-p (C mode), C Mode Motion Commands
	C-c C-p (Fortran mode), Motion Commands
	C-c C-p (GUD), Commands of GUD
	C-c C-p (Outline mode), Outline Motion Commands
	C-c C-p (Rmail), Moving Among Messages
	C-c C-p (Shell mode), Shell History Copying
	C-c C-p (TeX mode), TeX Printing Commands
	C-c C-q (C mode), Commands for C Indentation
	C-c C-q (Message mode), Citing Mail
	C-c C-q (Outline mode), Outline Visibility Commands
	C-c C-q (Term mode), Term Mode
	C-c C-r (Fortran mode), Checking Columns in Fortran
	C-c C-r (GUD), Commands of GUD
	C-c C-r (Shell mode), Shell Mode
	C-c C-r (TeX mode), TeX Printing Commands
	C-c C-s (C mode), Other Commands for C Mode
	C-c C-s (GUD), Commands of GUD
	C-c C-s (Message mode), Mail Sending
	C-c C-s (Org Mode), Org as an organizer
	C-c C-s (Outline mode), Outline Visibility Commands
	C-c C-s (Shell mode), Shell Mode
	C-c C-t (GUD), Commands of GUD
	C-c C-t (Org Mode), Org as an organizer
	C-c C-t (Outline mode), Outline Visibility Commands
	C-c C-t (SGML mode), SGML and HTML Modes
	C-c C-u (C mode), C Mode Motion Commands
	C-c C-u (GUD), Commands of GUD
	C-c C-u (Outline mode), Outline Motion Commands
	C-c C-u (Shell mode), Shell Mode
	C-c C-v (SGML mode), SGML and HTML Modes
	C-c C-v (TeX mode), TeX Printing Commands
	C-c C-w (Fortran mode), Checking Columns in Fortran
	C-c C-w (Message mode), Mail Signature
	C-c C-w (Picture mode), Picture Mode Rectangle Commands
	C-c C-w (Shell mode), Shell Mode
	C-c C-x, Folding Editing
	C-c C-x (Picture mode), Picture Mode Rectangle Commands
	C-c C-x (Shell mode), Shell History Ring
	C-c C-y (Message mode), Citing Mail
	C-c C-y (Picture mode), Picture Mode Rectangle Commands
	C-c C-z, Folding Editing
	C-c C-z (Shell mode), Shell Mode
	C-c C-\ (C mode), Other Commands for C Mode
	C-c C-\ (Shell mode), Shell Mode
	C-c DEL (C Mode), Hungry Delete Feature in C
	C-c DELETE (C Mode), Hungry Delete Feature in C
	C-c RET (Goto Address mode), Activating URLs
	C-c RET (Shell mode), Shell History Copying
	C-c TAB (Picture mode), Picture Mode Tabs
	C-c TAB (SGML mode), SGML and HTML Modes
	C-c TAB (TeX mode), TeX Printing Commands
	C-c [(Enriched mode), Indentation in Enriched Text
	C-c [(Org Mode), Org as an organizer
	C-c \ (Picture mode), Controlling Motion after Insert
	C-c] (Enriched mode), Indentation in Enriched Text
	C-c ^ (Picture mode), Controlling Motion after Insert
	C-c ` (Picture mode), Controlling Motion after Insert
	C-c { (TeX mode), TeX Editing Commands
	C-c } (TeX mode), TeX Editing Commands
	c-context-line-break, Other Commands for C Mode
	C-d (Rmail), Deleting Messages
	C-d (Shell mode), Shell Mode
	c-default-style, Customizing C Indentation
	C-Down-Mouse-1, Customizing Buffer Menus
	C-e, Changing the Location of Point
	C-e (Calendar mode), Beginning or End of Week, Month or Year
	c-electric-backspace, Major Modes for Programming Languages
	c-end-of-defun, C Mode Motion Commands
	c-end-of-statement, C Mode Motion Commands
	C-f, Changing the Location of Point
	C-f (Calendar mode), Motion by Standard Lengths of Time
	c-fill-paragraph, Other Commands for C Mode
	c-forward-conditional, C Mode Motion Commands
	C-g, Quitting and Aborting
	C-g (Incremental search), Errors in Incremental Search
	C-g (MS-DOS), Keyboard Usage on MS-DOS
	c-guess, Customizing C Indentation
	c-guess-install, Customizing C Indentation
	C-h, Help
	C-h ., Help on Active Text and Tooltips
	C-h a, Apropos
	C-h b, Other Help Commands
	C-h c, Documentation for a Key
	C-h C, Coding Systems
	C-h C-c, Help Files
	C-h C-d, Help Files
	C-h C-e, Help Files
	C-h C-f, Help Files
	C-h C-h, Help
	C-h C-m, Help Files
	C-h C-n, Help Files
	C-h C-o, Help Files
	C-h C-p, Help Files
	C-h C-t, Help Files
	C-h C-w, Help Files
	C-h C-\, Selecting an Input Method
	C-h d, Apropos
	C-h e, Other Help Commands
	C-h f, Help by Command or Variable Name
	C-h F, Help by Command or Variable Name
	C-h g, Help Files
	C-h h, Introduction to International Character Sets
	C-h i, Other Help Commands
	C-h I, Selecting an Input Method
	C-h k, Documentation for a Key
	C-h K, Documentation for a Key
	C-h l, Other Help Commands
	C-h L, Language Environments
	C-h m, Other Help Commands, Major Modes
	C-h p, Keyword Search for Packages
	C-h P, Keyword Search for Packages
	C-h S, Other Help Commands, Info Documentation Lookup
	C-h t, Basic Editing Commands
	C-h v, Help by Command or Variable Name
	C-h w, Documentation for a Key
	c-hungry-delete-backwards, Hungry Delete Feature in C
	c-hungry-delete-forward, Hungry Delete Feature in C
	c-hungry-delete-key, Hungry Delete Feature in C
	c-indent-command, Basic Program Indentation Commands, Commands for C Indentation
	c-indent-defun, Commands for C Indentation
	c-indent-exp, Commands for C Indentation
	C-j, Indentation Commands
	C-j (and major modes), Major Modes
	C-j (indenting source code), Basic Program Indentation Commands
	C-j (Lisp Interaction mode), Lisp Interaction Buffers
	C-j (MS-DOS), Keyboard Usage on MS-DOS
	C-j (TeX mode), TeX Editing Commands
	C-k, Killing by Lines
	C-k (Gnus Group mode), Using the Gnus Group Buffer
	C-l, Recentering
	C-LEFT, Changing the Location of Point
	C-M-%, Query Replace
	C-M-., Finding a Tag
	C-M-/, Dynamic Abbrev Expansion
	C-M-@, Commands to Mark Textual Objects, Expressions with Balanced Parentheses
	C-M-a, Moving by Defuns
	C-M-b, Expressions with Balanced Parentheses
	C-M-c, Recursive Editing Levels
	C-M-d, Moving in the Parenthesis Structure
	C-M-d (Dired), Moving Over Subdirectories
	C-M-e, Moving by Defuns
	C-M-f, Expressions with Balanced Parentheses
	C-M-f (Rmail), Making Summaries
	C-M-h, Moving by Defuns
	C-M-h (C mode), Moving by Defuns
	C-M-i, Completion for Symbol Names
	C-M-i (customization buffer), Changing a Variable
	C-M-j, Multiple Lines of Comments
	C-M-j (Fortran mode), Fortran Indentation and Filling Commands
	C-M-k, Expressions with Balanced Parentheses
	C-M-l, Recentering
	C-M-l (Rmail), Making Summaries
	C-M-l (Shell mode), Shell Mode
	C-M-n, Moving in the Parenthesis Structure
	C-M-n (Dired), Moving Over Subdirectories
	C-M-n (Fortran mode), Motion Commands
	C-M-n (Rmail), Labels
	C-M-o, Indentation Commands
	C-M-p, Moving in the Parenthesis Structure
	C-M-p (Dired), Moving Over Subdirectories
	C-M-p (Fortran mode), Motion Commands
	C-M-p (Rmail), Labels
	C-M-q, Indenting Several Lines
	C-M-q (C mode), Commands for C Indentation
	C-M-q (Fortran mode), Fortran Indentation and Filling Commands
	C-M-r, Regular Expression Search
	C-M-r (Rmail), Making Summaries
	C-M-s, Regular Expression Search
	C-M-s (Rmail), Making Summaries
	C-M-SPC, Expressions with Balanced Parentheses
	C-M-t, Expressions with Balanced Parentheses
	C-M-t (Rmail), Making Summaries
	C-M-u, Moving in the Parenthesis Structure
	C-M-u (Dired), Moving Over Subdirectories
	C-M-v, Using Other Windows
	C-M-w, Appending Kills
	C-M-w (Incremental search), Isearch Yanking
	C-M-x (Emacs Lisp mode), Evaluating Emacs Lisp Expressions
	C-M-x (Lisp mode), Running an External Lisp
	C-M-x (Scheme mode), Running an External Lisp
	C-M-y (Incremental search), Isearch Yanking
	C-M-\, Indentation Commands
	c-macro-expand, Other Commands for C Mode
	c-mark-function, Moving by Defuns
	c-mode-hook, Major Modes for Programming Languages
	C-Mouse-1, Mouse Clicks for Menus
	C-Mouse-2, Mouse Clicks for Menus
	C-Mouse-2 (mode line), Splitting Windows
	C-mouse-2 (mode line), Mode Line Mouse Commands
	C-Mouse-2 (scroll bar), Splitting Windows
	C-Mouse-3, Mouse Clicks for Menus
	C-Mouse-3 (when menu bar is disabled), Menu Bars
	C-n, Changing the Location of Point
	C-n (Calendar mode), Motion by Standard Lengths of Time
	C-n (Dired), Navigation in the Dired Buffer
	C-o, Blank Lines
	C-o (Dired), Visiting Files in Dired
	C-o (Occur mode), Other Search-and-Loop Commands
	C-o (Rmail), Copying Messages Out to Files
	C-p, Changing the Location of Point
	C-p (Calendar mode), Motion by Standard Lengths of Time
	C-p (Dired), Navigation in the Dired Buffer
	C-q, Inserting Text
	C-r, Basics of Incremental Search
	C-RIGHT, Changing the Location of Point
	C-s, Basics of Incremental Search
	C-S-backspace, Killing by Lines
	C-S-Mouse-3 (FFAP), Finding Files and URLs at Point
	c-set-style, Customizing C Indentation
	c-show-syntactic-information, Other Commands for C Mode
	C-SPC, Setting the Mark
	C-SPC C-SPC, The Mark Ring, Disabling Transient Mark Mode
	C-t, Transposing Text
	C-t d (Image-Dired), Viewing Image Thumbnails in Dired
	C-TAB, File Name Cache
	c-tab-always-indent, Commands for C Indentation
	c-toggle-auto-newline, Electric C Characters
	c-toggle-electric-state, Electric C Characters
	c-toggle-hungry-state, Hungry Delete Feature in C
	C-u, Numeric Arguments
	C-u C-/, Undo
	C-u C-c C-w (Fortran mode), Checking Columns in Fortran
	C-u C-SPC, The Mark Ring
	C-u C-x C-x, Disabling Transient Mark Mode
	C-u C-x v =, Examining And Comparing Old Revisions
	C-u M-;, Comment Commands
	C-u TAB, Indenting Several Lines
	c-up-conditional, C Mode Motion Commands
	C-v, Scrolling
	C-v (Calendar mode), Scrolling in the Calendar
	C-w, Other Kill Commands
	C-w (Incremental search), Isearch Yanking
	C-x #, Invoking emacsclient
	C-x $, Selective Display
	C-x (, Basic Use
	C-x), Basic Use
	C-x +, Deleting and Rearranging Windows
	C-x -, Deleting and Rearranging Windows
	C-x ., The Fill Prefix
	C-x 0, Deleting and Rearranging Windows
	C-x 1, Deleting and Rearranging Windows
	C-x 2, Splitting Windows
	C-x 3, Splitting Windows
	C-x 4, Displaying in Another Window
	C-x 4 ., Finding a Tag
	C-x 4 0, Deleting and Rearranging Windows
	C-x 4 a, Change Log Commands
	C-x 4 b, Creating and Selecting Buffers
	C-x 4 b (Iswitchb mode), Switching Between Buffers using Substrings
	C-x 4 c, Indirect Buffers
	C-x 4 C-o, Displaying in Another Window
	C-x 4 C-o (Iswitchb mode), Switching Between Buffers using Substrings
	C-x 4 d, Entering Dired
	C-x 4 f, Visiting Files
	C-x 4 f (FFAP), Finding Files and URLs at Point
	C-x 4 m, Sending Mail
	C-x 5, Creating Frames
	C-x 5 ., Finding a Tag
	C-x 5 0, Frame Commands
	C-x 5 1, Frame Commands
	C-x 5 2, Creating Frames
	C-x 5 b, Creating and Selecting Buffers
	C-x 5 b (Iswitchb mode), Switching Between Buffers using Substrings
	C-x 5 d, Entering Dired
	C-x 5 f, Visiting Files
	C-x 5 f (FFAP), Finding Files and URLs at Point
	C-x 5 m, Sending Mail
	C-x 5 o, Frame Commands
	C-x 5 r, Creating Frames
	C-x 6 1, Two-Column Editing
	C-x 6 2, Two-Column Editing
	C-x 6 b, Two-Column Editing
	C-x 6 d, Two-Column Editing
	C-x 6 RET, Two-Column Editing
	C-x 6 s, Two-Column Editing
	C-x 8, Unibyte Editing Mode
	C-x 8 RET, Inserting Text
	C-x ;, Options Controlling Comments
	C-x <, Horizontal Scrolling
	C-x =, Cursor Position Information, Introduction to International Character Sets
	C-x >, Horizontal Scrolling
	C-x a g, Defining Abbrevs
	C-x a i g, Defining Abbrevs
	C-x a i l, Defining Abbrevs
	C-x a l, Defining Abbrevs
	C-x b, Creating and Selecting Buffers
	C-x b (Iswitchb mode), Switching Between Buffers using Substrings
	C-x C-+, Text Scale
	C-x C-0, Text Scale
	C-x C-=, Text Scale
	C-x C-a (GUD), Commands of GUD
	C-x C-a C-j (GUD), Commands of GUD
	C-x C-a C-w (GUD), Watch Expressions
	C-x C-b, Listing Existing Buffers
	C-x C-c, Exiting Emacs
	C-x C-c (customization buffer), Changing a Variable
	C-x C-d, File Directories
	C-x C-e, Evaluating Emacs Lisp Expressions
	C-x C-f, Visiting Files
	C-x C-f (FFAP), Finding Files and URLs at Point
	C-x C-k b, Naming and Saving Keyboard Macros
	C-x C-k C-a, The Keyboard Macro Counter
	C-x C-k C-c, The Keyboard Macro Counter
	C-x C-k C-e, Editing a Keyboard Macro
	C-x C-k C-f, The Keyboard Macro Counter
	C-x C-k C-i, The Keyboard Macro Counter
	C-x C-k C-k, The Keyboard Macro Ring
	C-x C-k C-n, The Keyboard Macro Ring
	C-x C-k C-p, The Keyboard Macro Ring
	C-x C-k e, Editing a Keyboard Macro
	C-x C-k l, Editing a Keyboard Macro
	C-x C-k n, Naming and Saving Keyboard Macros
	C-x C-k r, Basic Use
	C-x C-k RET, Editing a Keyboard Macro
	C-x C-k SPC, Stepwise Editing a Keyboard Macro
	C-x C-l, Case Conversion Commands
	C-x C-n, Changing the Location of Point
	C-x C-o, Blank Lines
	C-x C-p, Pages
	C-x C-q, Miscellaneous Buffer Operations
	C-x C-r, Visiting Files
	C-x C-r (FFAP), Finding Files and URLs at Point
	C-x C-s, Commands for Saving Files
	C-x C-s (Custom Themes buffer), Custom Themes
	C-x C-SPC, The Global Mark Ring
	C-x C-t, Transposing Text
	C-x C-u, Case Conversion Commands
	C-x C-v, Visiting Files
	C-x C-v (FFAP), Finding Files and URLs at Point
	C-x C-w, Commands for Saving Files
	C-x C-x, Setting the Mark
	C-x C-z, Running an External Lisp
	C-x C–, Text Scale
	C-x d, Entering Dired
	C-x d (FFAP), Finding Files and URLs at Point
	C-x DEL, Sentences
	C-x e, Basic Use
	C-x ESC ESC, Repeating Minibuffer Commands
	C-x f, Explicit Fill Commands
	C-x h, Commands to Mark Textual Objects
	C-x i, Miscellaneous File Operations
	C-x k, Killing Buffers
	C-x l, Pages
	C-x LEFT, Creating and Selecting Buffers
	C-x m, Sending Mail
	C-x n d, Narrowing
	C-x n n, Narrowing
	C-x n p, Narrowing
	C-x n w, Narrowing
	C-x o, Using Other Windows
	C-x q, Executing Macros with Variations
	C-x r +, Keeping Numbers in Registers
	C-x r b, Bookmarks
	C-x r c, Rectangles
	C-x r d, Rectangles
	C-x r f, Saving Window Configurations in Registers
	C-x r i, Saving Text in Registers
	C-x r j, Saving Positions in Registers
	C-x r k, Rectangles
	C-x r l, Bookmarks
	C-x r m, Bookmarks
	C-x r N, Rectangles
	C-x r n, Keeping Numbers in Registers
	C-x r o, Rectangles
	C-x r r, Saving Rectangles in Registers
	C-x r s, Saving Text in Registers
	C-x r SPC, Saving Positions in Registers
	C-x r t, Rectangles
	C-x r w, Saving Window Configurations in Registers
	C-x r y, Rectangles
	C-x RET, Introduction to International Character Sets
	C-x RET c, Specifying a Coding System for File Text
	C-x RET C-\, Selecting an Input Method
	C-x RET f, Specifying a Coding System for File Text
	C-x RET F, Coding Systems for File Names
	C-x RET k, Coding Systems for Terminal I/O
	C-x RET p, Coding Systems for Interprocess Communication
	C-x RET r, Specifying a Coding System for File Text
	C-x RET t, Coding Systems for Terminal I/O
	C-x RET x, Coding Systems for Interprocess Communication
	C-x RET X, Coding Systems for Interprocess Communication
	C-x RIGHT, Creating and Selecting Buffers
	C-x s, Commands for Saving Files
	C-x SPC, Commands of GUD
	C-x TAB, Indentation Commands
	C-x TAB (Enriched mode), Indentation in Enriched Text
	C-x u, Undo
	C-x v +, Pulling Changes into a Branch
	C-x v =, Examining And Comparing Old Revisions
	C-x v a, Change Logs and VC
	C-x v D, Examining And Comparing Old Revisions
	C-x v d, VC Directory Mode
	C-x v g, Examining And Comparing Old Revisions
	C-x v h, Inserting Version Control Headers
	C-x v i, Registering a File for Version Control
	C-x v l, VC Change Log
	C-x v r, Revision Tags
	C-x v s, Revision Tags
	C-x v u, Undoing Version Control Actions
	C-x v v, Basic Editing under Version Control
	C-x v ~, Examining And Comparing Old Revisions
	C-x w b, Interactive Highlighting
	C-x w h, Interactive Highlighting
	C-x w i, Interactive Highlighting
	C-x w l, Interactive Highlighting
	C-x w r, Interactive Highlighting
	C-x z, Repeating a Command
	C-x [, Pages
	C-x [(Calendar mode), Motion by Standard Lengths of Time
	C-x [(DocView mode), DocView Navigation
	C-x], Pages
	C-x] (Calendar mode), Motion by Standard Lengths of Time
	C-x] (DocView mode), DocView Navigation
	C-x ^, Deleting and Rearranging Windows
	C-x `, Compilation Mode
	C-x }, Deleting and Rearranging Windows
	C-y, Yanking
	C-y (Incremental search), Isearch Yanking
	C-z, Exiting Emacs
	C-z (X windows), Frame Commands
	C-\, Selecting an Input Method
	C-], Quitting and Aborting
	C-_, Undo
	C-_ (Dired), Dired Marks vs. Flags
	cache of file names, File Name Cache
	cal-html-css-default, Writing Calendar Files
	calendar, The Calendar and the Diary
	calendar and HTML, Writing Calendar Files
	calendar and LaTeX, Writing Calendar Files
	calendar layout, Customizing the Calendar
	calendar week numbers, Customizing the Calendar
	calendar, first day of week, Beginning or End of Week, Month or Year
	calendar-astro-goto-day-number, Converting From Other Calendars
	calendar-astro-print-day-number, Converting To Other Calendars
	calendar-backward-day, Motion by Standard Lengths of Time
	calendar-backward-month, Motion by Standard Lengths of Time
	calendar-backward-week, Motion by Standard Lengths of Time
	calendar-bahai-all-holidays-flag, Customizing the Holidays
	calendar-bahai-goto-date, Converting From Other Calendars
	calendar-bahai-print-date, Converting To Other Calendars
	calendar-beginning-of-month, Beginning or End of Week, Month or Year
	calendar-beginning-of-week, Beginning or End of Week, Month or Year
	calendar-beginning-of-year, Beginning or End of Week, Month or Year
	calendar-chinese-goto-date, Converting From Other Calendars
	calendar-chinese-print-date, Converting To Other Calendars
	calendar-christian-all-holidays-flag, Customizing the Holidays
	calendar-coptic-goto-date, Converting From Other Calendars
	calendar-coptic-print-date, Converting To Other Calendars
	calendar-count-days-region, Counting Days
	calendar-cursor-holidays, Holidays
	calendar-date-display-form, Date Display Format
	calendar-date-style, Date Formats
	calendar-daylight-savings-ends, Daylight Saving Time
	calendar-daylight-savings-ends-time, Daylight Saving Time
	calendar-daylight-savings-starts, Daylight Saving Time
	calendar-daylight-time-offset, Daylight Saving Time
	calendar-daylight-time-zone-name, Times of Sunrise and Sunset
	calendar-end-of-month, Beginning or End of Week, Month or Year
	calendar-end-of-week, Beginning or End of Week, Month or Year
	calendar-end-of-year, Beginning or End of Week, Month or Year
	calendar-ethiopic-goto-date, Converting From Other Calendars
	calendar-ethiopic-print-date, Converting To Other Calendars
	calendar-forward-day, Motion by Standard Lengths of Time
	calendar-forward-month, Motion by Standard Lengths of Time
	calendar-forward-week, Motion by Standard Lengths of Time
	calendar-forward-year, Motion by Standard Lengths of Time
	calendar-french-goto-date, Converting From Other Calendars
	calendar-french-print-date, Converting To Other Calendars
	calendar-goto-date, Specified Dates
	calendar-goto-day-of-year, Specified Dates
	calendar-goto-today, Specified Dates
	calendar-hebrew-all-holidays-flag, Customizing the Holidays
	calendar-hebrew-goto-date, Converting From Other Calendars
	calendar-hebrew-list-yahrzeits, Converting From Other Calendars
	calendar-hebrew-print-date, Converting To Other Calendars
	calendar-holiday-marker, Customizing the Calendar
	calendar-holidays, Customizing the Holidays
	calendar-initial-window-hook, Customizing the Calendar
	calendar-intermonth-text, Customizing the Calendar
	calendar-islamic-all-holidays-flag, Customizing the Holidays
	calendar-islamic-goto-date, Converting From Other Calendars
	calendar-islamic-print-date, Converting To Other Calendars
	calendar-iso-goto-date, Converting From Other Calendars
	calendar-iso-goto-week, Specified Dates, Converting From Other Calendars
	calendar-iso-print-date, Converting To Other Calendars
	calendar-julian-goto-date, Converting From Other Calendars
	calendar-julian-print-date, Converting To Other Calendars
	calendar-latitude, Times of Sunrise and Sunset
	calendar-list-holidays, Holidays
	calendar-load-hook, Customizing the Calendar
	calendar-location-name, Times of Sunrise and Sunset
	calendar-longitude, Times of Sunrise and Sunset
	calendar-lunar-phases, Phases of the Moon
	calendar-mark-diary-entries-flag, Displaying the Diary
	calendar-mark-holidays, Holidays
	calendar-mark-holidays-flag, Holidays
	calendar-mark-today, Customizing the Calendar
	calendar-mayan-goto-long-count-date, Converting from the Mayan Calendar
	calendar-mayan-next-calendar-round-date, Converting from the Mayan Calendar
	calendar-mayan-next-haab-date, Converting from the Mayan Calendar
	calendar-mayan-next-tzolkin-date, Converting from the Mayan Calendar
	calendar-mayan-previous-haab-date, Converting from the Mayan Calendar
	calendar-mayan-previous-tzolkin-date, Converting from the Mayan Calendar
	calendar-mayan-print-date, Converting To Other Calendars
	calendar-move-hook, Customizing the Calendar
	calendar-other-month, Specified Dates
	calendar-persian-goto-date, Converting From Other Calendars
	calendar-persian-print-date, Converting To Other Calendars
	calendar-print-day-of-year, Miscellaneous Calendar Commands
	calendar-print-other-dates, Converting To Other Calendars
	calendar-redraw, Miscellaneous Calendar Commands
	calendar-remove-frame-by-deleting, Miscellaneous Calendar Commands
	calendar-scroll-left, Scrolling in the Calendar
	calendar-scroll-left-three-months, Scrolling in the Calendar
	calendar-scroll-right, Scrolling in the Calendar
	calendar-scroll-right-three-months, Scrolling in the Calendar
	calendar-set-date-style, Date Formats
	calendar-standard-time-zone-name, Times of Sunrise and Sunset
	calendar-star-date, Customizing the Calendar
	calendar-sunrise-sunset, Times of Sunrise and Sunset
	calendar-time-display-form, Time Display Format
	calendar-time-zone, Times of Sunrise and Sunset
	calendar-today-invisible-hook, Customizing the Calendar
	calendar-today-marker, Customizing the Calendar
	calendar-today-visible-hook, Customizing the Calendar
	calendar-unmark, Holidays
	calendar-view-diary-initially-flag, Displaying the Diary
	calendar-view-holidays-initially-flag, Holidays
	calendar-week-start-day, Beginning or End of Week, Month or Year
	call Lisp functions, command-line argument, Action Arguments
	camel case, Glasses minor mode
	candle lighting times, Sexp Entries and the Fancy Diary Display
	capitalize-word, Case Conversion Commands
	capitalizing words, Case Conversion Commands
	case conversion, Case Conversion Commands
	case in completion, Completion Options
	case-fold-search, Searching and Case
	case-replace, Replace Commands and Case
	case-sensitivity and completion, Completion Options
	case-sensitivity and tags search, Searching and Replacing with Tags Tables
	categories of characters, Backslash in Regular Expressions
	cd, File Names
	cells, for text-based tables, What is a Text-based Table?
	Celtic, International Character Set Support
	center-line, Explicit Fill Commands
	centering, Explicit Fill Commands
	centralized version control, Decentralized vs Centralized Repositories
	change buffers, Creating and Selecting Buffers
	change Emacs directory, Initial Options
	change log, Change Logs
	Change Log mode, Change Log Commands
	change-log-merge, Change Log Commands
	change-log-mode, Change Log Commands
	change-log-version-info-enabled, Change Log Commands
	change-log-version-number-regexp-list, Change Log Commands
	change-major-mode-with-file-name, Choosing File Modes
	changes, undoing, Undo
	changeset-based version control, Changeset-based vs File-based Version Control
	changing file group (in Dired), Operating on Files
	changing file owner (in Dired), Operating on Files
	changing file permissions (in Dired), Operating on Files
	changing file time (in Dired), Operating on Files
	character set (keyboard), Kinds of User Input
	character set of character at point, Introduction to International Character Sets
	character syntax, Init File Syntax
	characters (in text), How Text Is Displayed
	characters in a certain charset, Charsets
	characters which belong to a specific language, Backslash in Regular Expressions
	characters with no font glyphs, How Text Is Displayed
	characters, inserting by name or code-point, Inserting Text
	charsets, Charsets
	check-parens, Commands for Editing with Parentheses
	checking out files, Concepts of Version Control
	checking spelling, Checking and Correcting Spelling
	checking syntax, Finding Syntax Errors On The Fly
	Chinese, International Character Set Support
	Chinese calendar, Supported Calendar Systems
	choose-completion, Completion Commands
	choosing a major mode, Choosing File Modes
	choosing a minor mode, Choosing File Modes
	ciphers, Other Amusements
	citing mail, Citing Mail
	class browser, C++, Tags Tables
	clean-buffer-list, Killing Buffers
	clear-rectangle, Rectangles
	click events, Rebinding Mouse Buttons
	client frame, emacsclient Options
	client-side fonts, Fonts
	clipboard, Using the Clipboard
	clipboard manager, Using the Clipboard
	clipboard-kill-region, Using the Clipboard
	clipboard-kill-ring-save, Using the Clipboard
	clipboard-yank, Using the Clipboard
	clone-indirect-buffer, Indirect Buffers
	clone-indirect-buffer-hook, Indirect Buffers
	clone-indirect-buffer-other-window, Indirect Buffers
	codepage, MS-DOS, International Support on MS-DOS
	coding, Specifying a File's Coding System
	coding systems, Coding Systems
	collision, Protection against Simultaneous Editing
	colon-double-space, Explicit Fill Commands
	color emulation on black-and-white printers, Variables for PostScript Hardcopy
	color name, Colors for Faces
	color of window, from command line, Window Color Options
	color scheme, Custom Themes
	Column Number mode, Optional Mode Line Features
	column-number-mode, Optional Mode Line Features
	columns (and rectangles), Rectangles
	columns (indentation), Indentation
	columns, splitting, Two-Column Editing
	Comint mode, Shell Mode
	comint-bol-or-process-mark, Shell Mode
	comint-completion-addsuffix, Shell Mode Options
	comint-completion-autolist, Shell Mode Options
	comint-completion-fignore, Shell Mode
	comint-completion-recexact, Shell Mode Options
	comint-continue-subjob, Shell Mode
	comint-copy-old-input, Shell History Copying
	comint-delchar-or-maybe-eof, Shell Mode
	comint-delete-output, Shell Mode
	comint-dynamic-list-filename…, Shell Mode
	comint-dynamic-list-input-ring, Shell History Ring
	comint-get-next-from-history, Shell History Ring
	comint-highlight-input face, Interactive Subshell
	comint-highlight-prompt face, Interactive Subshell
	comint-history-isearch-backward-regexp, Shell History Ring
	comint-input-autoexpand, Shell History References
	comint-input-ignoredups, Shell Mode Options
	comint-input-previous-argument, Shell History Ring
	comint-interrupt-subjob, Shell Mode
	comint-kill-input, Shell Mode
	comint-magic-space, Shell History References
	comint-move-point-for-output, Shell Mode Options
	comint-next-input, Shell History Ring
	comint-next-prompt, Shell History Copying
	comint-previous-input, Shell History Ring
	comint-previous-prompt, Shell History Copying
	comint-prompt-read-only, Shell Mode Options
	comint-quit-subjob, Shell Mode
	comint-run, Shell Mode
	comint-scroll-show-maximum-output, Shell Mode Options
	comint-scroll-to-bottom-on-input, Shell Mode Options
	comint-send-input, Shell Mode
	comint-show-maximum-output, Shell Mode
	comint-show-output, Shell Mode
	comint-stop-subjob, Shell Mode
	comint-strip-ctrl-m, Shell Mode
	comint-truncate-buffer, Shell Mode
	comint-use-prompt-regexp, Shell Prompts
	comint-write-output, Shell Mode
	command, Keys and Commands
	command history, Repeating Minibuffer Commands
	command line arguments, Command Line Arguments for Emacs Invocation
	command-history, Repeating Minibuffer Commands
	command-line-args, Command Line Arguments for Emacs Invocation
	comment-column, Options Controlling Comments
	comment-dwim, Comment Commands
	comment-end, Options Controlling Comments
	comment-indent-function, Options Controlling Comments
	comment-indent-new-line, Multiple Lines of Comments
	comment-kill, Comment Commands
	comment-multi-line, Multiple Lines of Comments
	comment-padding, Options Controlling Comments
	comment-region, Comment Commands
	comment-set-column, Options Controlling Comments
	comment-start, Options Controlling Comments
	comment-start-skip, Options Controlling Comments
	comments, Manipulating Comments
	comments on customized settings, Changing a Variable
	Common Lisp, Running an External Lisp
	compare files (in Dired), File Comparison with Dired
	compare-ignore-case, Comparing Files
	compare-ignore-whitespace, Comparing Files
	compare-windows, Comparing Files
	comparing 3 files (diff3), Comparing Files
	comparing files, Comparing Files
	compilation buffer, keeping point at end, Running Compilations under Emacs
	compilation errors, Running Compilations under Emacs
	Compilation mode, Compilation Mode
	compilation under MS-DOS, Subprocesses on MS-DOS
	compilation-auto-jump-to-first-error, Compilation Mode
	compilation-context-lines, Compilation Mode
	compilation-environment, Running Compilations under Emacs
	compilation-error-regexp-alist, Compilation Mode
	compilation-next-error, Compilation Mode
	compilation-next-file, Compilation Mode
	compilation-previous-error, Compilation Mode
	compilation-previous-file, Compilation Mode
	compilation-scroll-output, Running Compilations under Emacs
	compilation-skip-threshold, Compilation Mode
	compile, Running Compilations under Emacs
	compile (MS-DOS), Subprocesses on MS-DOS
	compile-command, Running Compilations under Emacs
	compile-goto-error, Compilation Mode
	complete key, Keys
	completion, Completion
	completion (Lisp symbols), Completion for Symbol Names
	completion (symbol names), Completion for Symbol Names, Tags Table Inquiries
	completion alternative, Completion
	completion list, Completion Commands
	completion style, How Completion Alternatives Are Chosen
	completion-at-point, Completion for Symbol Names, Shell Mode
	completion-auto-help, Completion Options
	completion-category-overrides, How Completion Alternatives Are Chosen
	completion-cycle-threshold, Completion Options
	completion-ignored-extensions, Completion Options
	completion-styles, How Completion Alternatives Are Chosen
	compose character, Unibyte Editing Mode
	compose-mail, Sending Mail
	compose-mail-other-frame, Sending Mail
	compose-mail-other-window, Sending Mail
	compressing files (in Dired), Operating on Files
	compression, Accessing Compressed Files
	Conf mode, Major Modes for Programming Languages
	confirm-kill-emacs, Exiting Emacs
	confirm-nonexistent-file-or-buffer, Completion Exit
	confirming in the minibuffer, Completion Exit
	conflicts, Merging Branches
	connecting to remote host, Remote Host Shell
	continuation line, Continuation Lines
	contributing to Emacs, Contributing to Emacs Development
	Control, Kinds of User Input
	control character, Kinds of User Input
	control characters on display, How Text Is Displayed
	converting text to upper or lower case, Case Conversion Commands
	Coptic calendar, Supported Calendar Systems
	copy, “Cut and Paste” Operations on Graphical Displays
	copy-dir-locals-to-file-locals, Specifying File Variables
	copy-dir-locals-to-file-locals-prop-line, Specifying File Variables
	copy-directory, Miscellaneous File Operations
	copy-file, Miscellaneous File Operations
	copy-file-locals-to-dir-locals, Per-Directory Local Variables
	copy-rectangle-to-register, Saving Rectangles in Registers
	copy-to-buffer, Accumulating Text
	copy-to-register, Saving Text in Registers
	copying files, Miscellaneous File Operations
	copying files (in Dired), Operating on Files
	copying text, Yanking
	CORBA IDL mode, C and Related Modes
	correcting spelling, Checking and Correcting Spelling
	count-lines-page, Pages
	count-text-lines, Nroff Mode
	count-words, Cursor Position Information
	count-words-region, Cursor Position Information
	CPerl mode, Major Modes for Programming Languages
	cpp-highlight-buffer, Other Commands for C Mode
	crashes, Auto-Saving: Protection Against Disasters
	create a text-based table, Creating a Table
	create-fontset-from-fontset-spec, Defining fontsets
	creating files, Visiting Files
	creating frames, Creating Frames
	CRiSP mode, Emulation
	crisp-mode, Emulation
	crisp-override-meta-x, Emulation
	cryptanalysis, Other Amusements
	CSSC, Supported Version Control Systems
	ctl-arrow, How Text Is Displayed
	ctl-x-4-map, Prefix Keymaps
	ctl-x-map, Prefix Keymaps
	CUA key bindings, CUA Bindings
	cua-enable-cua-keys, CUA Bindings
	cua-mode, CUA Bindings
	current buffer, Using Multiple Buffers
	current function name in mode line, Which Function Mode
	current-input-method, Selecting an Input Method
	current-language-environment, Language Environments
	cursor, Point
	cursor color, command-line argument, Window Color Options
	cursor face, Text Faces, Displaying the Cursor
	cursor in non-selected windows, Displaying the Cursor
	cursor location, Cursor Position Information
	cursor location, on MS-DOS, Text Files and Binary Files
	cursor motion, Changing the Location of Point
	cursor shape on MS-DOS, Display on MS-DOS
	cursor, blinking, Displaying the Cursor
	cursor-in-non-selected-windows, Displaying the Cursor
	cursor-type, Displaying the Cursor
	custom themes, Custom Themes
	custom themes, creating, Creating Custom Themes
	custom-buffer-done-kill, Changing a Variable
	custom-enabled-themes, Custom Themes
	custom-file, Saving Customizations
	custom-safe-themes, Custom Themes
	Custom-save, Changing a Variable
	custom-search-field, Browsing and Searching for Settings
	Custom-set, Changing a Variable
	custom-theme-directory, Custom Themes, Creating Custom Themes
	custom-theme-load-path, Custom Themes
	customizable variable, Easy Customization Interface
	customization, Customization
	customization buffer, Easy Customization Interface
	customization groups, Customization Groups
	customization of menu face, Standard Faces
	customize, Easy Customization Interface
	customize-apropos, Customizing Specific Items
	customize-browse, Browsing and Searching for Settings
	customize-changed, Customizing Specific Items
	customize-create-theme, Creating Custom Themes
	customize-face, Customizing Specific Items
	customize-group, Customizing Specific Items
	customize-option, Customizing Specific Items
	customize-saved, Customizing Specific Items
	customize-themes, Custom Themes
	customize-unsaved, Customizing Specific Items
	customizing faces, Customizing Faces
	customizing Lisp indentation, Customizing Lisp Indentation
	customizing variables, Changing a Variable
	cut, “Cut and Paste” Operations on Graphical Displays
	cut and paste, Glossary
	cutting text, Deletion and Killing
	CVS, Supported Version Control Systems
	cvs, VC Directory Mode
	CVS directory mode, VC Directory Mode
	CWarn mode, Other Commands for C Mode
	cwarn-mode, Other Commands for C Mode
	Cyrillic, International Character Set Support
	Czech, International Character Set Support

D
	d (Calendar mode), Displaying the Diary
	d (Dired), Deleting Files with Dired
	D (Dired), Operating on Files
	D (GDB Breakpoints buffer), Breakpoints Buffer
	D (GDB speedbar), Watch Expressions
	d (GDB threads buffer), Threads Buffer
	d (Rmail), Deleting Messages
	dabbrev-abbrev-char-regexp, Customizing Dynamic Abbreviation
	dabbrev-abbrev-skip-leading-regexp, Customizing Dynamic Abbreviation
	dabbrev-case-fold-search, Customizing Dynamic Abbreviation
	dabbrev-case-replace, Customizing Dynamic Abbreviation
	dabbrev-check-all-buffers, Dynamic Abbrev Expansion
	dabbrev-completion, Dynamic Abbrev Expansion
	dabbrev-expand, Dynamic Abbrev Expansion
	dabbrev-ignored-buffer-regexps, Dynamic Abbrev Expansion
	dabbrev-limit, Dynamic Abbrev Expansion
	daemon, Emacs, Using Emacs as a Server
	day of year, Miscellaneous Calendar Commands
	daylight saving time, Daylight Saving Time
	DBX, Running Debuggers Under Emacs
	dbx, Starting GUD
	dbx-mode-hook, GUD Customization
	dead character, Unibyte Editing Mode
	debbugs package, Reading Existing Bug Reports and Known Problems
	debug-on-event, Checklist for Bug Reports
	debug-on-quit, Checklist for Bug Reports
	debuggers, Running Debuggers Under Emacs
	debugging Emacs, tricks and techniques, Checklist for Bug Reports
	debugging X problems, Table of X Resources for Emacs
	debug_print, Checklist for Bug Reports
	decentralized version control, Decentralized vs Centralized Repositories
	decipher, Other Amusements
	decoding mail messages (Rmail), Rmail and Coding Systems
	decoding non-ASCII keyboard input on X, Coding Systems for Interprocess Communication
	decrease buffer face height, Text Scale
	decrypting files (in Dired), Operating on Files
	default argument, The Minibuffer
	default directory, Minibuffers for File Names, File Names
	default face, Text Faces
	default file name, File Names
	default-directory, File Names
	default-frame-alist, Frame Parameters
	default-input-method, Selecting an Input Method
	default-justification, Justification in Enriched Text
	default-value, Local Variables
	default.el file, not loading, Initial Options
	default.el, the default init file, The Emacs Initialization File
	define-abbrevs, Saving Abbrevs
	define-global-abbrev, Defining Abbrevs
	define-key, Rebinding Keys in Your Init File
	define-mode-abbrev, Defining Abbrevs
	defining keyboard macros, Keyboard Macros
	defuns, Moving by Defuns
	DEL (and major modes), Major Modes
	DEL (Dired), Deleting Files with Dired
	DEL (DocView mode), DocView Navigation
	DEL (Gnus Group mode), Using the Gnus Group Buffer
	DEL (Gnus Summary mode), Using the Gnus Summary Buffer
	DEL (MS-DOS), Keyboard Usage on MS-DOS
	DEL (programming modes), Major Modes for Programming Languages
	DEL (Rmail), Scrolling Within a Message
	DEL (View mode), View Mode
	DEL vs BACKSPACE, If DEL Fails to Delete
	Delete Selection mode, Operating on the Region
	delete-active-region, Operating on the Region
	delete-auto-save-files, Auto-Save Files
	delete-backward-char, Deletion
	delete-blank-lines, Blank Lines
	delete-by-moving-to-trash, Miscellaneous File Operations, Deleting Files with Dired
	delete-char, Deletion
	delete-dir-local-variable, Per-Directory Local Variables
	delete-file, Miscellaneous File Operations
	delete-file-local-variable, Specifying File Variables
	delete-file-local-variable-prop-line, Specifying File Variables
	delete-frame, Frame Commands
	delete-horizontal-space, Deletion
	delete-indentation, Indentation Commands
	delete-old-versions, Automatic Deletion of Backups
	delete-other-frames, Frame Commands
	delete-other-windows, Deleting and Rearranging Windows
	delete-rectangle, Rectangles
	delete-selection-mode, Operating on the Region
	delete-trailing-whitespace, Useless Whitespace
	delete-whitespace-rectangle, Rectangles
	delete-window, Deleting and Rearranging Windows
	deleting auto-save files, Flagging Many Files at Once
	deleting blank lines, Blank Lines
	deleting characters and lines, Erasing Text
	deleting files (in Dired), Deleting Files with Dired
	deleting rows and column in text-based tables, Table Rows and Columns
	deleting some backup files, Flagging Many Files at Once
	deletion, Deletion and Killing
	deletion (of files), Miscellaneous File Operations
	deletion (Rmail), Deleting Messages
	Delphi mode, Major Modes for Programming Languages
	describe-bindings, Other Help Commands
	describe-categories, Backslash in Regular Expressions
	describe-character-set, Charsets
	describe-coding-system, Coding Systems
	describe-copying, Help Files
	describe-distribution, Help Files
	describe-function, Help by Command or Variable Name
	describe-gnu-project, Help Files
	describe-input-method, Selecting an Input Method
	describe-key, Documentation for a Key
	describe-key-briefly, Documentation for a Key
	describe-language-environment, Language Environments
	describe-mode, Other Help Commands, Major Modes
	describe-no-warranty, Help Files
	describe-package, Keyword Search for Packages, Emacs Lisp Packages
	describe-prefix-bindings, Other Help Commands
	describe-text-properties, Editing Format Information
	describe-theme, Custom Themes
	describe-variable, Help by Command or Variable Name
	desktop, Saving Emacs Sessions
	desktop shortcut, MS-Windows, How to Start Emacs on MS-Windows
	desktop-change-dir, Saving Emacs Sessions
	desktop-clear, Saving Emacs Sessions
	desktop-clear-preserve-buffers-regexp, Saving Emacs Sessions
	desktop-globals-to-clear, Saving Emacs Sessions
	desktop-path, Saving Emacs Sessions
	desktop-restore-eager, Saving Emacs Sessions
	desktop-revert, Saving Emacs Sessions
	desktop-save, Saving Emacs Sessions
	desktop-save-mode, Saving Emacs Sessions
	Devanagari, International Character Set Support
	device for Emacs terminal I/O, Initial Options
	dialog boxes, Using Dialog Boxes
	Dialog X Resources (Lucid widgets), Lucid Menu And Dialog X Resources
	diary, The Diary, Displaying the Diary
	diary buffer, Diary Display
	diary file, The Diary File
	diary-anniversary, Special Diary Entries, Sexp Entries and the Fancy Diary Display
	diary-astro-day-number, Sexp Entries and the Fancy Diary Display
	diary-bahai-date, Sexp Entries and the Fancy Diary Display
	diary-bahai-entry-symbol, Diary Entries Using non-Gregorian Calendars
	diary-bahai-insert-entry, Diary Entries Using non-Gregorian Calendars
	diary-bahai-insert-monthly-entry, Diary Entries Using non-Gregorian Calendars
	diary-bahai-insert-yearly-entry, Diary Entries Using non-Gregorian Calendars
	diary-bahai-list-entries, Diary Entries Using non-Gregorian Calendars
	diary-bahai-mark-entries, Diary Entries Using non-Gregorian Calendars
	diary-block, Special Diary Entries
	diary-chinese-date, Sexp Entries and the Fancy Diary Display
	diary-comment-start, Fancy Diary Display
	diary-coptic-date, Sexp Entries and the Fancy Diary Display
	diary-cyclic, Special Diary Entries, Sexp Entries and the Fancy Diary Display
	diary-date, Sexp Entries and the Fancy Diary Display
	diary-date-forms, Customizing the Diary
	diary-day-of-year, Sexp Entries and the Fancy Diary Display
	diary-display-function, Diary Display
	diary-entry-marker, Customizing the Calendar
	diary-ethiopic-date, Sexp Entries and the Fancy Diary Display
	diary-fancy-display, Diary Display
	diary-file, The Diary File
	diary-float, Special Diary Entries, Sexp Entries and the Fancy Diary Display
	diary-french-date, Sexp Entries and the Fancy Diary Display
	diary-hebrew-birthday, Sexp Entries and the Fancy Diary Display
	diary-hebrew-date, Sexp Entries and the Fancy Diary Display
	diary-hebrew-entry-symbol, Diary Entries Using non-Gregorian Calendars
	diary-hebrew-insert-entry, Diary Entries Using non-Gregorian Calendars
	diary-hebrew-insert-monthly-entry, Diary Entries Using non-Gregorian Calendars
	diary-hebrew-insert-yearly-entry, Diary Entries Using non-Gregorian Calendars
	diary-hebrew-list-entries, Diary Entries Using non-Gregorian Calendars
	diary-hebrew-mark-entries, Diary Entries Using non-Gregorian Calendars
	diary-hebrew-omer, Sexp Entries and the Fancy Diary Display
	diary-hebrew-parasha, Sexp Entries and the Fancy Diary Display
	diary-hebrew-rosh-hodesh, Sexp Entries and the Fancy Diary Display
	diary-hebrew-sabbath-candles, Sexp Entries and the Fancy Diary Display
	diary-hebrew-yahrzeit, Sexp Entries and the Fancy Diary Display
	diary-include-other-diary-files, Fancy Diary Display
	diary-include-string, Fancy Diary Display
	diary-insert-anniversary-entry, Special Diary Entries
	diary-insert-block-entry, Special Diary Entries
	diary-insert-cyclic-entry, Special Diary Entries
	diary-insert-entry, Commands to Add to the Diary
	diary-insert-monthly-entry, Commands to Add to the Diary
	diary-insert-weekly-entry, Commands to Add to the Diary
	diary-insert-yearly-entry, Commands to Add to the Diary
	diary-islamic-date, Sexp Entries and the Fancy Diary Display
	diary-islamic-entry-symbol, Diary Entries Using non-Gregorian Calendars
	diary-islamic-insert-entry, Diary Entries Using non-Gregorian Calendars
	diary-islamic-insert-monthly-entry, Diary Entries Using non-Gregorian Calendars
	diary-islamic-insert-yearly-entry, Diary Entries Using non-Gregorian Calendars
	diary-islamic-list-entries, Diary Entries Using non-Gregorian Calendars
	diary-islamic-mark-entries, Diary Entries Using non-Gregorian Calendars
	diary-iso-date, Sexp Entries and the Fancy Diary Display
	diary-julian-date, Sexp Entries and the Fancy Diary Display
	diary-list-entries-hook, Fancy Diary Display
	diary-list-include-blanks, Diary Display
	diary-lunar-phases, Sexp Entries and the Fancy Diary Display
	diary-mail-days, Displaying the Diary
	diary-mail-entries, Displaying the Diary
	diary-mark-entries, Displaying the Diary
	diary-mark-entries-hook, Fancy Diary Display
	diary-mark-included-diary-files, Fancy Diary Display
	diary-mayan-date, Sexp Entries and the Fancy Diary Display
	diary-nongregorian-listing-hook, Diary Entries Using non-Gregorian Calendars
	diary-nongregorian-marking-hook, Diary Entries Using non-Gregorian Calendars
	diary-nonmarking-symbol, The Diary File
	diary-number-of-entries, Customizing the Diary
	diary-outlook-formats, Importing and Exporting Diary Entries
	diary-persian-date, Sexp Entries and the Fancy Diary Display
	diary-print-entries, Diary Display
	diary-print-entries-hook, Diary Display
	diary-remind, Sexp Entries and the Fancy Diary Display
	diary-sexp-entry-symbol, Sexp Entries and the Fancy Diary Display
	diary-show-all-entries, Displaying the Diary
	diary-show-holidays-flag, Customizing the Diary
	diary-simple-display, Diary Display
	diary-sort-entries, Fancy Diary Display
	diary-sunrise-sunset, Sexp Entries and the Fancy Diary Display
	diary-view-entries, Displaying the Diary
	diff, Comparing Files
	Diff Auto-Refine mode, Diff Mode
	Diff mode, Diff Mode
	diff-add-change-log-entries-other-window, Diff Mode
	diff-apply-hunk, Diff Mode
	diff-auto-refine-mode, Diff Mode
	diff-backup, Comparing Files
	diff-buffer-with-file, Comparing Files
	diff-context->unified, Diff Mode
	diff-ediff-patch, Diff Mode
	diff-file-kill, Diff Mode
	diff-file-next, Diff Mode
	diff-file-prev, Diff Mode
	diff-goto-source, Diff Mode
	diff-hunk-kill, Diff Mode
	diff-hunk-next, Diff Mode
	diff-hunk-prev, Diff Mode
	diff-mode, Diff Mode
	diff-refine-hunk, Diff Mode
	diff-restrict-view, Diff Mode
	diff-reverse-direction, Diff Mode
	diff-split-hunk, Diff Mode
	diff-switches, Comparing Files
	diff-unified->context, Diff Mode
	diff-update-on-the-fly, Diff Mode
	digest message, Digest Messages
	digit-argument, Numeric Arguments
	dir-locals-set-class-variables, Per-Directory Local Variables
	dir-locals-set-directory-class, Per-Directory Local Variables
	directional window selection, Convenience Features for Window Handling
	directories in buffer names, Making Buffer Names Unique
	directory header lines, Moving Over Subdirectories
	directory listing, File Directories
	directory listing on MS-DOS, Subprocesses on MS-DOS
	directory name abbreviation, File Name Aliases
	directory tracking, Directory Tracking
	directory where Emacs starts on MS-Windows, How to Start Emacs on MS-Windows
	directory-abbrev-alist, File Name Aliases
	directory-free-space-args, File Directories
	directory-free-space-program, File Directories
	directory-local variables, Per-Directory Local Variables
	Dired, Dired, the Directory Editor
	dired, Entering Dired
	Dired and version control, Other Dired Features
	Dired sorting, Updating the Dired Buffer
	Dired, and MS-Windows/MS-DOS, Emulation of ls on MS-Windows
	dired-at-point, Finding Files and URLs at Point
	dired-auto-revert-buffer, Updating the Dired Buffer
	dired-backup-diff, File Comparison with Dired
	dired-change-marks, Dired Marks vs. Flags
	dired-chown-program, Operating on Files
	dired-clean-directory, Flagging Many Files at Once
	dired-compare-directories, Other Dired Features
	dired-copy-filename-as-kill, Other Dired Features
	dired-copy-preserve-time, Operating on Files
	dired-create-directory, Other Dired Features
	dired-diff, File Comparison with Dired
	dired-display-file, Visiting Files in Dired
	dired-do-byte-compile, Operating on Files
	dired-do-chgrp, Operating on Files
	dired-do-chmod, Operating on Files
	dired-do-chown, Operating on Files
	dired-do-compress, Operating on Files
	dired-do-copy, Operating on Files
	dired-do-copy-regexp, Transforming File Names in Dired
	dired-do-delete, Operating on Files
	dired-do-flagged-delete, Deleting Files with Dired
	dired-do-hardlink, Operating on Files
	dired-do-hardlink-regexp, Transforming File Names in Dired
	dired-do-isearch, Other Dired Features
	dired-do-isearch-regexp, Other Dired Features
	dired-do-kill-lines, Updating the Dired Buffer
	dired-do-load, Operating on Files
	dired-do-print, Operating on Files
	dired-do-query-replace-regexp, Operating on Files
	dired-do-redisplay, Updating the Dired Buffer
	dired-do-rename, Operating on Files
	dired-do-rename-regexp, Transforming File Names in Dired
	dired-do-search, Operating on Files
	dired-do-shell-command, Shell Commands in Dired
	dired-do-symlink, Operating on Files
	dired-do-symlink-regexp, Transforming File Names in Dired
	dired-do-touch, Operating on Files
	dired-downcase, Transforming File Names in Dired
	dired-dwim-target, Operating on Files
	dired-find-file, Visiting Files in Dired
	dired-find-file-other-window, Visiting Files in Dired
	dired-flag-auto-save-files, Flagging Many Files at Once
	dired-flag-backup-files, Flagging Many Files at Once
	dired-flag-file-deletion, Deleting Files with Dired
	dired-flag-files-regexp, Flagging Many Files at Once
	dired-flag-garbage-files, Flagging Many Files at Once
	dired-garbage-files-regexp, Flagging Many Files at Once
	dired-goto-file, Navigation in the Dired Buffer
	dired-hide-all, Hiding Subdirectories
	dired-hide-subdir, Hiding Subdirectories
	dired-isearch-filenames, Navigation in the Dired Buffer
	dired-isearch-filenames-regexp, Navigation in the Dired Buffer
	dired-kept-versions, Flagging Many Files at Once
	dired-listing-switches, Entering Dired
	dired-listing-switches (MS-DOS), Subprocesses on MS-DOS
	dired-mark, Dired Marks vs. Flags
	dired-mark-directories, Dired Marks vs. Flags
	dired-mark-executables, Dired Marks vs. Flags
	dired-mark-files-containing-regexp, Dired Marks vs. Flags
	dired-mark-files-regexp, Dired Marks vs. Flags
	dired-mark-subdir-files, Dired Marks vs. Flags
	dired-mark-symlinks, Dired Marks vs. Flags
	dired-maybe-insert-subdir, Subdirectories in Dired
	dired-mouse-find-file-other-window, Visiting Files in Dired
	dired-next-dirline, Moving Over Subdirectories
	dired-next-marked-file, Dired Marks vs. Flags
	dired-next-subdir, Moving Over Subdirectories
	dired-other-frame, Entering Dired
	dired-other-window, Displaying in Another Window, Entering Dired
	dired-prev-dirline, Moving Over Subdirectories
	dired-prev-marked-file, Dired Marks vs. Flags
	dired-prev-subdir, Moving Over Subdirectories
	dired-recursive-copies, Operating on Files
	dired-recursive-deletes, Deleting Files with Dired
	dired-sort-toggle-or-edit, Updating the Dired Buffer
	dired-toggle-marks, Dired Marks vs. Flags
	dired-tree-down, Moving Over Subdirectories
	dired-tree-up, Moving Over Subdirectories
	dired-undo, Dired Marks vs. Flags
	dired-unmark, Dired Marks vs. Flags
	dired-unmark-all-files, Dired Marks vs. Flags
	dired-unmark-all-marks, Dired Marks vs. Flags
	dired-unmark-backward, Dired Marks vs. Flags
	dired-up-directory, Visiting Files in Dired
	dired-upcase, Transforming File Names in Dired
	dired-use-ls-dired, Entering Dired
	dired-view-file, Visiting Files in Dired
	dirs, Directory Tracking
	Dirtrack mode, Directory Tracking
	dirtrack-list, Directory Tracking
	dirtrack-mode, Directory Tracking
	disable window system, Initial Options
	disable-command, Disabling Commands
	disable-theme, Custom Themes
	disabled command, Disabling Commands
	disabling remote files, Remote Files
	DISPLAY environment variable, Specifying the Display Name
	display for Emacs frame, Initial Options
	display name (X Window System), Specifying the Display Name
	display of buffer size, Optional Mode Line Features
	display of line number, Optional Mode Line Features
	display-battery-mode, Optional Mode Line Features
	display-buffer, Displaying in Another Window, Displaying a Buffer in a Window, How display-buffer works
	display-buffer-reuse-frames, How display-buffer works
	display-hourglass, Customization of Display
	display-local-help, Help on Active Text and Tooltips
	display-time, Optional Mode Line Features
	display-time-24hr-format, Optional Mode Line Features
	display-time-mail-directory, Optional Mode Line Features
	display-time-mail-face, Optional Mode Line Features
	display-time-mail-file, Optional Mode Line Features
	display-time-use-mail-icon, Optional Mode Line Features
	dissociated-press, Other Amusements
	distributed version control, Decentralized vs Centralized Repositories
	dnd-open-file-other-window, Drag and Drop
	DNS mode, Major Modes for Programming Languages
	do-auto-save, Controlling Auto-Saving
	doc-view-cache-directory, DocView Conversion
	doc-view-clear-cache, DocView Conversion
	doc-view-continuous, DocView Navigation
	doc-view-enlarge, DocView Navigation
	doc-view-first-page, DocView Navigation
	doc-view-goto-page, DocView Navigation
	doc-view-kill-proc, DocView Conversion
	doc-view-kill-proc-and-buffer, DocView Conversion
	doc-view-last-page, DocView Navigation
	doc-view-minor-mode, Document Viewing
	doc-view-mode, Document Viewing
	doc-view-next-page, DocView Navigation
	doc-view-previous-page, DocView Navigation
	doc-view-reset-slice, DocView Slicing
	doc-view-resolution, DocView Navigation
	doc-view-scroll-down-or-previous-page, DocView Navigation
	doc-view-scroll-up-or-next-page, DocView Navigation
	doc-view-search, DocView Searching
	doc-view-search-backward, DocView Searching
	doc-view-set-slice, DocView Slicing
	doc-view-set-slice-using-mouse, DocView Slicing
	doc-view-show-tooltip, DocView Searching
	doc-view-shrink, DocView Navigation
	doc-view-toggle-display, Document Viewing
	DocTeX mode, TeX Mode
	doctex-mode, TeX Mode
	doctor, Other Amusements
	document viewer (DocView), Document Viewing
	documentation string, Documentation for a Key
	DocView mode, Document Viewing
	DOS applications, running from Emacs, Subprocesses on Windows 9X/ME and Windows NT/2K/XP
	DOS codepages, International Support on MS-DOS
	dos-codepage, International Support on MS-DOS
	dos-display-scancodes, Mouse Usage on MS-DOS
	dos-hyper-key, Keyboard Usage on MS-DOS
	dos-keypad-mode, Keyboard Usage on MS-DOS
	dos-mode25, Display on MS-DOS
	dos-mode4350, Display on MS-DOS
	dos-printer, Printing and MS-DOS
	dos-ps-printer, Printing and MS-DOS
	DOS-style end-of-line display, Recognizing Coding Systems
	dos-super-key, Keyboard Usage on MS-DOS
	DOS-to-Unix conversion of files, Text Files and Binary Files
	double clicks, Rebinding Mouse Buttons
	double slash in file name, Minibuffers for File Names
	double-click-fuzz, Rebinding Mouse Buttons
	double-click-time, Rebinding Mouse Buttons
	DOWN, Changing the Location of Point
	DOWN (minibuffer history), Minibuffer History
	down events, Rebinding Mouse Buttons
	down-list, Moving in the Parenthesis Structure
	downcase file names, Transforming File Names in Dired
	downcase-region, Case Conversion Commands
	downcase-word, Case Conversion Commands
	drag and drop, Drag and Drop
	drag and drop, Dired, Other Dired Features
	drag events, Rebinding Mouse Buttons
	drastic changes, Reverting a Buffer
	dribble file, Checklist for Bug Reports
	DSSSL mode, Major Modes for Programming Languages
	dunnet, Other Amusements
	Dutch, International Character Set Support
	DVI file, Document Viewing

E
	e (Dired), Visiting Files in Dired
	e (Rmail), Editing Within a Message
	e (View mode), View Mode
	Ebrowse, Tags Tables
	echo area, The Echo Area
	echo area message, The Echo Area
	echo-keystrokes, Customization of Display
	echoing, The Echo Area
	EDE (Emacs Development Environment), Emacs Development Environment
	Edebug, Checklist for Bug Reports
	edit-abbrevs, Examining and Editing Abbrevs
	edit-kbd-macro, Editing a Keyboard Macro
	edit-tab-stops, Tab Stops
	editable fields (customization buffer), Customization Groups
	editing binary files, Editing Binary Files
	editing in Picture mode, Basic Editing in Picture Mode
	editing level, recursive, Recursive Editing Levels
	EDITOR environment variable, Using Emacs as a Server
	EDT, Emulation
	edt-emulation-off, Emulation
	edt-emulation-on, Emulation
	Eldoc mode, Emacs Lisp Documentation Lookup
	eldoc-mode, Emacs Lisp Documentation Lookup
	Electric Indent mode, Convenience Features for Indentation
	Electric Pair mode, Matching Parentheses
	electric-indent-mode, Convenience Features for Indentation
	electric-layout-mode, Other Features Useful for Editing Programs
	electric-nroff-mode, Nroff Mode
	electric-pair-mode, Matching Parentheses
	Eliza, Other Amusements
	Emacs as a server, Using Emacs as a Server
	Emacs Development Environment, Emacs Development Environment
	EMACS environment variable, Interactive Subshell
	Emacs icon, a gnu, Icons
	Emacs initialization file, The Emacs Initialization File
	Emacs Lisp mode, Evaluating Emacs Lisp Expressions
	Emacs Lisp package, Emacs Lisp Packages
	Emacs Lisp package archive, Emacs Lisp Packages
	emacs-internal, coding system, Coding Systems
	emacs-lisp-mode, Evaluating Emacs Lisp Expressions
	emacs-lisp-mode-hook, Major Modes for Programming Languages
	emacs-version, Understanding Bug Reporting
	emacsclient, Using Emacs as a Server
	emacsclient invocation, Invoking emacsclient
	emacsclient options, emacsclient Options
	emacsclient, on MS-Windows, How to Start Emacs on MS-Windows
	emacsclient.exe, How to Start Emacs on MS-Windows
	emacsclientw.exe, How to Start Emacs on MS-Windows
	EMACS_SERVER_FILE environment variable, emacsclient Options
	email, Sending Mail
	Emerge, Merging Files with Emerge
	emerge-auto-advance, Submodes of Emerge
	emerge-buffers, Overview of Emerge
	emerge-buffers-with-ancestor, Overview of Emerge
	emerge-combine-versions-template, Combining the Two Versions
	emerge-files, Overview of Emerge
	emerge-files-with-ancestor, Overview of Emerge
	emerge-skip-prefers, Submodes of Emerge
	emerge-startup-hook, Fine Points of Emerge
	emulating other editors, Emulation
	emulation of Brief, Emulation
	enable-command, Disabling Commands
	enable-local-eval, Safety of File Variables
	enable-local-variables, Safety of File Variables
	enable-multibyte-characters, Disabling Multibyte Characters
	enable-recursive-minibuffers, Editing in the Minibuffer
	enable-theme, Custom Themes
	encoding of characters, International Character Set Support
	encrypted mails (reading in Rmail), Display of Messages
	encrypting files (in Dired), Operating on Files
	END, Changing the Location of Point
	end-of-buffer, Changing the Location of Point
	end-of-defun, Moving by Defuns
	end-of-line convention, mode-line indication, The Mode Line
	end-of-line conversion, Coding Systems
	end-of-line conversion on MS-DOS/MS-Windows, Text Files and Binary Files
	end-of-visual-line, Visual Line Mode
	enlarge-window, Deleting and Rearranging Windows
	enlarge-window-horizontally, Deleting and Rearranging Windows
	Enriched mode, Enriched Text
	enriched text, Enriched Text
	enriched-mode, Enriched Mode
	enriched-translations, Enriched Mode
	entering Emacs, Entering Emacs
	environment variables, Environment Variables
	environment variables for subshells, Interactive Subshell
	environment variables in file names, File Names
	eol-mnemonic-dos, Optional Mode Line Features
	eol-mnemonic-mac, Optional Mode Line Features
	eol-mnemonic-undecided, Optional Mode Line Features
	eol-mnemonic-unix, Optional Mode Line Features
	epa-dired-do-decrypt, Operating on Files
	epa-dired-do-encrypt, Operating on Files
	epa-dired-do-sign, Operating on Files
	epa-dired-do-verify, Operating on Files
	erasing characters and lines, Erasing Text
	error log, Running Compilations under Emacs
	error message, The Echo Area
	errors in init file, Initial Options
	ESC ESC ESC, Quitting and Aborting
	ESC replacing Meta key, Kinds of User Input
	esc-map, Prefix Keymaps
	escape sequences in files, Recognizing Coding Systems
	ESHELL environment variable, Interactive Subshell
	etags, Tags Tables
	etags program, Creating Tags Tables
	Ethiopic, International Character Set Support
	Ethiopic calendar, Supported Calendar Systems
	Euro sign, Language Environments
	European character sets, Unibyte Editing Mode
	eval-buffer, Evaluating Emacs Lisp Expressions
	eval-defun, Evaluating Emacs Lisp Expressions
	eval-expression, Evaluating Emacs Lisp Expressions
	eval-expression-debug-on-error, Evaluating Emacs Lisp Expressions
	eval-expression-print-length, Evaluating Emacs Lisp Expressions
	eval-expression-print-level, Evaluating Emacs Lisp Expressions
	eval-last-sexp, Evaluating Emacs Lisp Expressions
	eval-print-last-sexp, Lisp Interaction Buffers
	eval-region, Evaluating Emacs Lisp Expressions
	evaluate expression, command-line argument, Action Arguments
	exchange-point-and-mark, Setting the Mark
	exec-path, Running Shell Commands from Emacs
	execute-extended-command, Running Commands by Name
	exit-calendar, Miscellaneous Calendar Commands
	exit-language-environment-hook, Language Environments
	exit-recursive-edit, Recursive Editing Levels
	exiting, Exiting Emacs
	exiting recursive edit, Recursive Editing Levels
	expand-abbrev, Controlling Abbrev Expansion
	expand-region-abbrevs, Controlling Abbrev Expansion
	expanding subdirectories in Dired, Subdirectories in Dired
	expansion (of abbrevs), Abbrevs
	expansion of C macros, Other Commands for C Mode
	expansion of environment variables, File Names
	explicit-shell-file-name, Interactive Subshell
	expression, Expressions with Balanced Parentheses
	expunging (Rmail), Deleting Messages

F
	f (Dired), Visiting Files in Dired
	f (GDB threads buffer), Threads Buffer
	f (Rmail), Sending Replies
	F1, Help
	F10, The Menu Bar
	F10 (MS-Windows), Keyboard Usage on MS-Windows
	F2 1, Two-Column Editing
	F2 2, Two-Column Editing
	F2 b, Two-Column Editing
	F2 d, Two-Column Editing
	F2 RET, Two-Column Editing
	F2 s, Two-Column Editing
	F3, Basic Use
	F4, Basic Use
	f90-beginning-of-block, Motion Commands
	f90-end-of-block, Motion Commands
	f90-mode, Fortran Mode
	f90-next-block, Motion Commands
	f90-next-statement, Motion Commands
	f90-previous-block, Motion Commands
	f90-previous-statement, Motion Commands
	face at point, Introduction to International Character Sets
	face colors, setting, Colors for Faces
	facemenu-remove-all, Editing Format Information
	facemenu-remove-face-props, Editing Format Information
	facemenu-set-background, Faces in Enriched Text
	facemenu-set-bold, Faces in Enriched Text
	facemenu-set-bold-italic, Faces in Enriched Text
	facemenu-set-default, Faces in Enriched Text
	facemenu-set-face, Faces in Enriched Text
	facemenu-set-foreground, Faces in Enriched Text
	facemenu-set-italic, Faces in Enriched Text
	facemenu-set-underline, Faces in Enriched Text
	faces, Text Faces
	faces for highlighting query replace, Query Replace
	faces for highlighting search matches, Basics of Incremental Search
	faces under MS-DOS, Display on MS-DOS
	faces, customizing, Customizing Faces
	failed merges, Comparing Files
	Feedmail, Mail Sending
	ff-find-related-file, Other Commands for C Mode
	ff-related-file-alist, Other Commands for C Mode
	ffap, Finding Files and URLs at Point
	FFAP minor mode, Finding Files and URLs at Point
	ffap-menu, Finding Files and URLs at Point
	ffap-mode, Finding Files and URLs at Point
	ffap-next, Finding Files and URLs at Point
	file archives, File Archives
	file comparison (in Dired), File Comparison with Dired
	file database (locate), Dired and find
	file dates, Protection against Simultaneous Editing
	file directory, File Directories
	file local variables, Local Variables in Files
	file management, Dired, the Directory Editor
	file modes, Miscellaneous File Operations
	file name caching, File Name Cache
	file names, File Names
	file names on MS-Windows, File Names on MS-Windows
	file names under MS-DOS, File Names on MS-DOS
	file names under Windows 95/NT, File Names on MS-DOS
	file names with non-ASCII characters, Coding Systems for File Names
	file names, quote special characters, Quoted File Names
	file ownership, and backup, Copying vs. Renaming
	file permissions, Miscellaneous File Operations
	file selection dialog, Visiting Files
	file selection dialog, how to disable, Using Dialog Boxes
	file shadows, Shadowing Files
	file truenames, File Name Aliases
	file version in change log entries, Change Log Commands
	file, warning when size is large, Visiting Files
	file-based version control, Changeset-based vs File-based Version Control
	file-cache-add-directory, File Name Cache
	file-cache-minibuffer-complete, File Name Cache
	file-coding-system-alist, Recognizing Coding Systems
	file-name completion, on MS-Windows, File Names on MS-Windows
	file-name-buffer-file-type-alist, Text Files and Binary Files
	file-name-coding-system, Coding Systems for File Names
	file-name-shadow-mode, Minibuffers for File Names
	files, File Handling
	files, visiting and saving, Visiting Files
	filesets, Filesets
	filesets, VC, Basic Editing under Version Control
	filesets-add-buffer, Filesets
	filesets-init, Filesets
	filesets-remove-buffer, Filesets
	fill prefix, The Fill Prefix
	fill-column, Explicit Fill Commands
	fill-individual-paragraphs, The Fill Prefix
	fill-nobreak-predicate, Explicit Fill Commands
	fill-nonuniform-paragraphs, The Fill Prefix
	fill-paragraph, Explicit Fill Commands
	fill-prefix, The Fill Prefix
	fill-region, Explicit Fill Commands
	fill-region-as-paragraph, Explicit Fill Commands
	filling text, Filling Text
	find, File Name Cache
	find and Dired, Dired and find
	find Info manual by its file name, Other Help Commands
	find-alternate-file, Visiting Files
	find-dired, Dired and find
	find-file, Visiting Files
	find-file-at-point, Finding Files and URLs at Point
	find-file-existing-other-name, File Name Aliases
	find-file-hook, Visiting Files
	find-file-literally, Visiting Files
	find-file-not-found-functions, Visiting Files
	find-file-other-frame, Visiting Files
	find-file-other-window, Visiting Files, Displaying in Another Window
	find-file-read-only, Visiting Files
	find-file-read-only-other-frame, Creating Frames
	find-file-run-dired, Visiting Files
	find-file-suppress-same-file-warnings, File Name Aliases
	find-file-visit-truename, File Name Aliases
	find-file-wildcards, Visiting Files
	find-grep, Searching with Grep under Emacs
	find-grep-dired, Dired and find
	find-ls-option, Dired and find
	find-name-dired, Dired and find
	find-tag, Finding a Tag
	find-tag-marker-ring-length, Finding a Tag
	find-tag-other-frame, Finding a Tag
	find-tag-other-window, Displaying in Another Window, Finding a Tag
	find-tag-regexp, Finding a Tag
	finder, Keyword Search for Packages
	finder-by-keyword, Keyword Search for Packages
	finding file at point, Finding Files and URLs at Point
	finding files containing regexp matches (in Dired), Dired Marks vs. Flags
	finding strings within text, Searching and Replacement
	firewall, and accessing remote files, Remote Files
	fixing incorrectly decoded mail messages, Rmail and Coding Systems
	flagging files (in Dired), Deleting Files with Dired
	flagging many files for deletion (in Dired), Flagging Many Files at Once
	flush-lines, Other Search-and-Loop Commands
	Flyspell mode, Checking and Correcting Spelling
	flyspell-mode, Checking and Correcting Spelling
	flyspell-prog-mode, Checking and Correcting Spelling
	focus-follows-mouse, Frame Commands
	folding editing, Folding Editing
	foldout-exit-fold, Folding Editing
	foldout-mouse-modifiers, Folding Editing
	foldout-zoom-subtree, Folding Editing
	Follow mode, Follow Mode
	follow-mode, Follow Mode
	font antialiasing (MS Windows), Specifying Fonts on MS-Windows
	font backend selection (MS-Windows), Specifying Fonts on MS-Windows
	font for menus, Table of X Resources for Emacs
	Font Lock mode, Font Lock mode
	font name (X Window System), Font Specification Options
	font of character at point, Introduction to International Character Sets
	font properties (MS Windows gdi backend), Specifying Fonts on MS-Windows
	font properties (MS Windows), Specifying Fonts on MS-Windows
	font scripts (MS Windows), Specifying Fonts on MS-Windows
	font specification (MS Windows), Specifying Fonts on MS-Windows
	font Unicode subranges (MS Windows), Specifying Fonts on MS-Windows
	font-lock-add-keywords, Font Lock mode
	font-lock-beginning-of-syntax-function, Font Lock mode
	font-lock-maximum-decoration, Font Lock mode
	font-lock-mode, Font Lock mode
	font-lock-remove-keywords, Font Lock mode
	font-slant-table (MS-Windows), Specifying Fonts on MS-Windows
	font-weight-table (MS-Windows), Specifying Fonts on MS-Windows
	fontconfig, Fonts
	fonts, Fonts
	fonts and faces, Customizing Faces
	fonts for PostScript printing, Variables for PostScript Hardcopy
	fonts for various scripts, Fontsets
	fonts, emulating under MS-DOS, Display on MS-DOS
	fontsets, Fontsets
	fontsets, modifying, Modifying Fontsets
	foreground color, command-line argument, Window Color Options
	format-decode-buffer, Enriched Mode
	formfeed character, Pages
	Fortran 77 and Fortran 90, 95, 2003, 2008, Fortran Mode
	Fortran continuation lines, Continuation Lines
	Fortran fixed form and free form, Fortran Mode
	Fortran mode, Fortran Mode
	fortran-analyze-depth, Continuation Lines
	fortran-beginning-of-block, Motion Commands
	fortran-break-before-delimiters, Auto Fill in Fortran Mode
	fortran-check-all-num…, Variables for Fortran Indentation
	fortran-column-ruler, Checking Columns in Fortran
	fortran-column-ruler-fixed, Checking Columns in Fortran
	fortran-column-ruler-tabs, Checking Columns in Fortran
	fortran-comment-indent-char, Fortran Comments
	fortran-comment-indent-style, Fortran Comments
	fortran-comment-line-extra-indent, Fortran Comments
	fortran-comment-line-start, Fortran Comments
	fortran-comment-region, Fortran Comments
	fortran-continuation-indent, Variables for Fortran Indentation
	fortran-continuation-string, Continuation Lines
	fortran-directive-re, Fortran Comments
	fortran-do-indent, Variables for Fortran Indentation
	fortran-electric-line-number, Line Numbers
	fortran-end-of-block, Motion Commands
	fortran-if-indent, Variables for Fortran Indentation
	fortran-indent-subprogram, Fortran Indentation and Filling Commands
	fortran-join-line, Fortran Indentation and Filling Commands
	fortran-line-length, Checking Columns in Fortran
	fortran-line-number-indent, Line Numbers
	fortran-minimum-statement-indent…, Variables for Fortran Indentation
	fortran-mode, Fortran Mode
	fortran-next-statement, Motion Commands
	fortran-previous-statement, Motion Commands
	fortran-split-line, Fortran Indentation and Filling Commands
	fortran-strip-sequence-nos, Checking Columns in Fortran
	fortran-structure-indent, Variables for Fortran Indentation
	fortran-tab-mode-default, Continuation Lines
	fortran-window-create, Checking Columns in Fortran
	fortran-window-create-momentarily, Checking Columns in Fortran
	fortune cookies, Mail Amusements
	fortune-to-signature, Mail Amusements
	forward-button, Help Mode Commands
	forward-char, Changing the Location of Point
	forward-list, Moving in the Parenthesis Structure
	forward-page, Pages
	forward-paragraph, Paragraphs
	forward-sentence, Sentences
	forward-sexp, Expressions with Balanced Parentheses
	forward-text-line, Nroff Mode
	forward-word, Changing the Location of Point, Words
	forwarding a message, Sending Replies
	frame, The Organization of the Screen
	frame focus policy, MS-Windows, Miscellaneous Windows-specific features
	frame size under MS-DOS, Display on MS-DOS
	frame size, specifying default, Frame Parameters
	frame title, command-line argument, Frame Titles
	frame-configuration-to-register, Saving Window Configurations in Registers
	frames, Frames and Graphical Displays
	frames on MS-DOS, Display on MS-DOS
	French Revolutionary calendar, Supported Calendar Systems
	fringe face, Standard Faces
	fringe-mode, Window Fringes
	fringes, Window Fringes
	fringes, and continuation lines, Continuation Lines
	fringes, and unused line indication, Useless Whitespace
	fringes, for debugging, Source Buffers
	FTP, Remote Files
	fullheight, command-line argument, Options for Window Size and Position
	fullscreen, command-line argument, Options for Window Size and Position
	fullwidth, command-line argument, Options for Window Size and Position
	function key, Keymaps
	function, move to beginning or end, Moving by Defuns

G
	G (Dired), Operating on Files
	g (Dired), Updating the Dired Buffer
	g (Rmail), Multiple Rmail Files
	g char (Calendar mode), Converting From Other Calendars
	g d (Calendar mode), Specified Dates
	g D (Calendar mode), Specified Dates
	g m (Calendar mode), Converting from the Mayan Calendar
	g w (Calendar mode), Specified Dates
	gamma correction, Table of X Resources for Emacs
	gateway, and remote file access with ange-ftp, Remote Files
	GDB, Running Debuggers Under Emacs
	gdb, Starting GUD
	GDB User Interface layout, GDB User Interface Layout
	gdb-delete-breakpoint, Breakpoints Buffer
	gdb-delete-out-of-scope, Watch Expressions
	gdb-display-disassembly-for-thread, Threads Buffer
	gdb-display-locals-for-thread, Threads Buffer
	gdb-display-registers-for-thread, Threads Buffer
	gdb-display-stack-for-thread, Threads Buffer
	gdb-edit-value, Watch Expressions
	gdb-frames-select, Stack Buffer
	gdb-goto-breakpoint, Breakpoints Buffer
	gdb-gud-control-all-threads, Multithreaded Debugging
	gdb-many-windows, GDB User Interface Layout
	gdb-mode-hook, GUD Customization
	gdb-non-stop-setting, Multithreaded Debugging
	gdb-restore-windows, GDB User Interface Layout
	gdb-select-thread, Threads Buffer
	gdb-show-changed-values, Watch Expressions
	gdb-show-threads-by-default, Breakpoints Buffer
	gdb-speedbar-auto-raise, Watch Expressions
	gdb-stopped-hooks, Multithreaded Debugging
	gdb-switch-reasons, Multithreaded Debugging
	gdb-switch-when-another-stopped, Multithreaded Debugging
	gdb-thread-buffer-addresses, Threads Buffer
	gdb-thread-buffer-arguments, Threads Buffer
	gdb-thread-buffer-locations, Threads Buffer
	gdb-thread-buffer-verbose-names, Threads Buffer
	gdb-toggle-breakpoint, Breakpoints Buffer
	gdb-use-colon-colon-notation, Watch Expressions
	gdb-var-delete, Watch Expressions
	geometry of Emacs window, Options for Window Size and Position
	geometry, command-line argument, Options for Window Size and Position
	German, International Character Set Support
	getenv, Environment Variables
	getting help with keys, Help
	Ghostscript, use for PostScript printing, Printing and MS-Windows
	git, Supported Version Control Systems
	Glasses mode, Glasses minor mode
	Global Auto-Revert mode, Reverting a Buffer
	global keymap, Keymaps
	global mark, CUA Bindings
	global mark ring, The Global Mark Ring
	global substitution, Replacement Commands
	global-auto-revert-mode, Reverting a Buffer
	global-cwarn-mode, Other Commands for C Mode
	global-font-lock-mode, Font Lock mode
	global-hl-line-mode, Displaying the Cursor
	global-mark-ring-max, The Global Mark Ring
	global-set-key, Changing Key Bindings Interactively
	global-unset-key, Changing Key Bindings Interactively
	global-visual-line-mode, Visual Line Mode
	glyphless characters, How Text Is Displayed
	GNU Arch, Supported Version Control Systems
	Gnus, Gnus
	gnus, When Gnus Starts Up
	gnus-group-exit, Using the Gnus Group Buffer
	gnus-group-kill-group, Using the Gnus Group Buffer
	gnus-group-list-all-groups, Using the Gnus Group Buffer
	gnus-group-list-groups, Using the Gnus Group Buffer
	gnus-group-next-unread-group, Using the Gnus Group Buffer, Using the Gnus Summary Buffer
	gnus-group-prev-unread-group, Using the Gnus Group Buffer, Using the Gnus Summary Buffer
	gnus-group-read-group, Using the Gnus Group Buffer, Using the Gnus Summary Buffer
	gnus-group-unsubscribe-current-group, Using the Gnus Group Buffer
	gnus-summary-isearch-article, Using the Gnus Summary Buffer
	gnus-summary-next-unread-article, Using the Gnus Group Buffer, Using the Gnus Summary Buffer
	gnus-summary-prev-page, Using the Gnus Summary Buffer
	gnus-summary-prev-unread-article, Using the Gnus Group Buffer, Using the Gnus Summary Buffer
	gnus-summary-search-article-forward, Using the Gnus Summary Buffer
	GNUstep, Emacs and Mac OS / GNUstep
	Go Moku, Other Amusements
	gomoku, Other Amusements
	Goto Address mode, Activating URLs
	goto-address-at-point, Activating URLs
	goto-address-mode, Activating URLs
	goto-char, Changing the Location of Point
	goto-followup-to, Mail Header Editing
	goto-line, Changing the Location of Point, Creating and Selecting Buffers
	goto-reply-to, Mail Header Editing
	gpm-mouse-mode, Using a Mouse in Text Terminals
	graphic characters, Inserting Text
	Greek, International Character Set Support
	Gregorian calendar, Conversion To and From Other Calendars
	grep, Searching with Grep under Emacs
	grep (MS-DOS), Subprocesses on MS-DOS
	grep-find, Searching with Grep under Emacs
	grep-find-ignored-directories, Searching with Grep under Emacs
	grep-regexp-alist, Compilation Mode
	growing minibuffer, Editing in the Minibuffer
	GTK font pattern, Fonts
	GTK styles, GTK styles
	GTK widget classes, GTK Widget Names in Emacs
	GTK widget names, GTK widget names, GTK Widget Names in Emacs
	GTK+ resources, GTK resources
	GUD interaction buffer, Debugger Operation
	GUD library, Running Debuggers Under Emacs
	GUD Tooltip mode, Debugger Operation
	gud-cont, Commands of GUD
	gud-def, GUD Customization
	gud-down, Commands of GUD
	gud-finish, Commands of GUD
	gud-gdb, Starting GUD
	gud-gdb-command-name, GDB Graphical Interface
	gud-gdb-complete-command, Commands of GUD
	gud-jump, Commands of GUD
	gud-next, Commands of GUD
	gud-print, Commands of GUD
	gud-refresh, Commands of GUD
	gud-remove, Commands of GUD
	gud-step, Commands of GUD
	gud-stepi, Commands of GUD
	gud-tbreak, Commands of GUD
	gud-tooltip-echo-area, Debugger Operation
	gud-tooltip-mode, Debugger Operation
	gud-until, Commands of GUD
	gud-up, Commands of GUD
	gud-watch, Watch Expressions
	gud-xdb-directories, Starting GUD
	gzip, Accessing Compressed Files

H
	h (Calendar mode), Holidays
	H (Dired), Operating on Files
	h (Rmail), Making Summaries
	handwrite, PostScript Hardcopy
	handwriting, PostScript Hardcopy
	hanoi, Other Amusements
	hard links (creation), Miscellaneous File Operations
	hard links (in Dired), Operating on Files
	hard links (visiting), File Name Aliases
	hard newline, Hard and Soft Newlines
	hardcopy, Printing Hard Copies
	header (TeX mode), TeX Printing Commands
	header line (Dired), Moving Over Subdirectories
	headers (of mail message), Mail Header Fields
	heading lines (Outline mode), Format of Outlines
	Hebrew, International Character Set Support
	Hebrew calendar, Supported Calendar Systems
	height of minibuffer, Editing in the Minibuffer
	Help, Help
	help, Help
	help text, in GTK+ file chooser, Using Dialog Boxes
	help, viewing web pages, Help Mode Commands
	help-at-pt-display-when-idle, Help on Active Text and Tooltips
	help-command, Help
	help-follow, Help Mode Commands
	help-for-help, Help
	help-go-back, Help Mode Commands
	help-map, Prefix Keymaps
	help-with-tutorial, Basic Editing Commands
	hex editing, Editing Binary Files
	Hexl mode, Editing Binary Files
	hg, Supported Version Control Systems
	Hi Lock mode, Interactive Highlighting
	hi-lock-exclude-modes, Interactive Highlighting
	hi-lock-file-patterns-policy, Interactive Highlighting
	hi-lock-find-patterns, Interactive Highlighting
	hi-lock-mode, Interactive Highlighting
	hi-lock-write-interactive-patterns, Interactive Highlighting
	hidden files, in GTK+ file chooser, Using Dialog Boxes
	hide-body, Outline Visibility Commands
	hide-entry, Outline Visibility Commands
	Hide-ifdef mode, Other Commands for C Mode
	hide-ifdef-mode, Other Commands for C Mode
	hide-ifdef-shadow, Other Commands for C Mode
	hide-leaves, Outline Visibility Commands
	hide-other, Outline Visibility Commands
	hide-sublevels, Outline Visibility Commands
	hide-subtree, Outline Visibility Commands
	Hideshow mode, Hideshow minor mode
	hiding subdirectories (Dired), Hiding Subdirectories
	Highlight Changes mode, Interactive Highlighting
	highlight current line, Displaying the Cursor
	highlight-changes-mode, Interactive Highlighting
	highlight-lines-matching-regexp, Interactive Highlighting
	highlight-nonselected-windows, The Mark and the Region
	highlight-regexp, Interactive Highlighting
	highlighting by matching, Interactive Highlighting
	highlighting lines of text, Interactive Highlighting
	highlighting matching parentheses, Matching Parentheses
	highlighting region, Disabling Transient Mark Mode
	Hindi, International Character Set Support
	history of commands, Repeating Minibuffer Commands
	history of minibuffer input, Minibuffer History
	history reference, Shell History References
	history-delete-duplicates, Minibuffer History
	history-length, Minibuffer History
	hl-line-mode, Displaying the Cursor
	holiday forms, Customizing the Holidays
	holiday-bahai-holidays, Customizing the Holidays
	holiday-christian-holidays, Customizing the Holidays
	holiday-general-holidays, Customizing the Holidays
	holiday-hebrew-holidays, Customizing the Holidays
	holiday-islamic-holidays, Customizing the Holidays
	holiday-local-holidays, Customizing the Holidays
	holiday-oriental-holidays, Customizing the Holidays
	holiday-other-holidays, Customizing the Holidays
	holiday-solar-holidays, Customizing the Holidays
	holidays, Holidays
	HOME, Changing the Location of Point
	HOME directory on MS-Windows, HOME and Startup Directories on MS-Windows
	home directory shorthand, Minibuffers for File Names
	HOME directory under MS-DOS, File Names on MS-DOS
	hook, Hooks
	horizontal scrolling, Horizontal Scrolling
	hourglass pointer display, Customization of Display
	hourglass-delay, Customization of Display
	how-many, Other Search-and-Loop Commands
	hs-hide-all, Hideshow minor mode
	hs-hide-block, Hideshow minor mode
	hs-hide-comments-when-hiding-all, Hideshow minor mode
	hs-hide-level, Hideshow minor mode
	hs-isearch-open, Hideshow minor mode
	hs-minor-mode, Hideshow minor mode
	hs-show-all, Hideshow minor mode
	hs-show-block, Hideshow minor mode
	hs-show-region, Hideshow minor mode
	hs-special-modes-alist, Hideshow minor mode
	hscroll-margin, Horizontal Scrolling
	hscroll-step, Horizontal Scrolling
	HTML mode, SGML and HTML Modes
	html-mode, SGML and HTML Modes
	htmlfontify-buffer, Printing Hard Copies
	hungry deletion (C Mode), Hungry Delete Feature in C
	hunk, diff, Diff Mode
	Hyper (under MS-DOS), Keyboard Usage on MS-DOS
	hyperlink, Help Mode Commands
	hyperlinks, Following References with the Mouse

I
	i (Dired), Subdirectories in Dired
	i (Rmail), Multiple Rmail Files
	i a (Calendar mode), Special Diary Entries
	i b (Calendar mode), Special Diary Entries
	i c (Calendar mode), Special Diary Entries
	i d (Calendar mode), Commands to Add to the Diary
	i m (Calendar mode), Commands to Add to the Diary
	i w (Calendar mode), Commands to Add to the Diary
	i y (Calendar mode), Commands to Add to the Diary
	iCalendar support, Importing and Exporting Diary Entries
	icalendar-export-file, icalendar-export-region, Importing and Exporting Diary Entries
	icalendar-import-buffer, Importing and Exporting Diary Entries
	icalendar-import-file, Importing and Exporting Diary Entries
	Icomplete mode, Completion Options
	icomplete-mode, Completion Options
	Icon mode, Major Modes for Programming Languages
	iconifying, Exiting Emacs
	icons (X Window System), Icons
	icons, toolbar, Tool Bars
	IDL mode, C and Related Modes
	ielm, Lisp Interaction Buffers
	ignored file names, in completion, Completion Options
	image animation, Convenience Features for Finding Files
	image-dired, Viewing Image Thumbnails in Dired
	image-dired mode, Viewing Image Thumbnails in Dired
	image-dired-display-thumbs, Viewing Image Thumbnails in Dired
	image-dired-external-viewer, Viewing Image Thumbnails in Dired
	image-mode, Convenience Features for Finding Files
	image-toggle-animation, Convenience Features for Finding Files
	image-toggle-display, Convenience Features for Finding Files
	ImageMagick support, Convenience Features for Finding Files
	images, viewing, Convenience Features for Finding Files
	IMAP mailboxes, Retrieving Mail from Remote Mailboxes
	imenu, Imenu
	imenu-add-menubar-index, Imenu
	imenu-auto-rescan, Imenu
	imenu-sort-function, Imenu
	in-situ subdirectory (Dired), Subdirectories in Dired
	inbox file, Rmail Files and Inboxes
	incorrect fontification, Font Lock mode
	increase buffer face height, Text Scale
	increase-left-margin, Indentation in Enriched Text
	increment-register, Keeping Numbers in Registers
	incremental search, Incremental Search
	incremental search, input method interference, Input Methods
	indent-code-rigidly, Indenting Several Lines
	indent-for-tab-command, Indentation, Basic Program Indentation Commands
	indent-line-function, Basic Program Indentation Commands
	indent-pp-sexp, Indenting Several Lines
	indent-region, Indentation Commands
	indent-relative, Indentation Commands
	indent-rigidly, Indentation Commands
	indent-tabs-mode, Tabs vs. Spaces
	indent-tabs-mode (Fortran mode), Continuation Lines
	indentation, Indentation
	indentation for comments, Comment Commands
	indentation for programs, Indentation for Programs
	index of buffer definitions, Imenu
	indicate-buffer-boundaries, Displaying Boundaries
	indicate-empty-lines, Useless Whitespace
	indirect buffer, Indirect Buffers
	indirect buffers and outlines, Viewing One Outline in Multiple Views
	inferior process, Running Compilations under Emacs
	inferior processes under MS-DOS, Subprocesses on MS-DOS
	inferior-lisp-program, Running an External Lisp
	info, Other Help Commands
	Info, Other Help Commands
	Info-goto-emacs-command-node, Help by Command or Variable Name
	Info-goto-emacs-key-command-node, Documentation for a Key
	info-lookup-file, Info Documentation Lookup
	info-lookup-symbol, Other Help Commands, Info Documentation Lookup
	inhibit-eol-conversion, Recognizing Coding Systems
	inhibit-iso-escape-detection, Recognizing Coding Systems
	inhibit-startup-buffer-menu, Action Arguments
	inhibit-startup-screen, Entering Emacs, Initial Options
	init file, The Emacs Initialization File
	init file .emacs on MS-Windows, HOME and Startup Directories on MS-Windows
	init file, and non-ASCII characters, Disabling Multibyte Characters
	init file, default name under MS-DOS, File Names on MS-DOS
	init file, not loading, Initial Options
	initial options (command line), Command Line Arguments for Emacs Invocation
	initial-environment, Environment Variables
	initial-frame-alist, Frame Parameters
	initial-scratch-message, Lisp Interaction Buffers
	input event, Kinds of User Input
	input methods, Input Methods
	input methods, X, Table of X Resources for Emacs
	input with the keyboard, Kinds of User Input
	input-method-highlight-flag, Input Methods
	input-method-verbose-flag, Input Methods
	INSERT, Minor Modes
	insert file contents, command-line argument, Action Arguments
	insert Unicode character, Inserting Text
	insert-abbrevs, Saving Abbrevs
	insert-default-directory, Minibuffers for File Names, File Names
	insert-file, Miscellaneous File Operations
	insert-file-literally, Miscellaneous File Operations
	insert-kbd-macro, Naming and Saving Keyboard Macros
	insert-register, Saving Text in Registers
	inserted subdirectory (Dired), Subdirectories in Dired
	inserting blank lines, Blank Lines
	inserting matching parentheses, Matching Parentheses
	inserting rows and columns in text-based tables, Table Rows and Columns
	insertion, Inserting Text
	INSIDE_EMACS environment variable, Interactive Subshell
	Integrated development environment, Emacs Development Environment
	interactive highlighting, Interactive Highlighting
	internal border width, command-line argument, Internal and External Borders
	international characters in .emacs, Non-ASCII Characters in Init Files
	international files from DOS/Windows systems, Coding Systems
	international scripts, International Character Set Support
	international support (MS-DOS), International Support on MS-DOS
	interpreter-mode-alist, Choosing File Modes
	Intlfonts for PostScript printing, Variables for PostScript Hardcopy
	Intlfonts package, installation, Fontsets
	inverse-add-global-abbrev, Defining Abbrevs
	inverse-add-mode-abbrev, Defining Abbrevs
	invisible lines, Outline Mode
	invocation (command line arguments), Command Line Arguments for Emacs Invocation
	invoking Emacs from Windows Explorer, How to Start Emacs on MS-Windows
	IPA, International Character Set Support
	isearch, Incremental Search
	isearch-allow-scroll, Scrolling During Incremental Search
	isearch-backward, Basics of Incremental Search
	isearch-backward-regexp, Regular Expression Search
	isearch-del-char, Isearch Yanking
	isearch-forward, Basics of Incremental Search
	isearch-forward-regexp, Regular Expression Search
	isearch-forward-word, Word Search
	isearch-lazy-highlight, Repeating Incremental Search
	isearch-mode-map, Special Input for Incremental Search
	isearch-resume-in-command-history, Repeating Minibuffer Commands
	isearch-toggle-input-method, Special Input for Incremental Search
	isearch-toggle-specified-input-method, Special Input for Incremental Search
	isearch-yank-char, Isearch Yanking
	isearch-yank-kill, Isearch Yanking
	isearch-yank-line, Isearch Yanking
	isearch-yank-pop, Isearch Yanking
	isearch-yank-word-or-char, Isearch Yanking
	Islamic calendar, Supported Calendar Systems
	ISO commercial calendar, Supported Calendar Systems
	ISO Latin character sets, Unibyte Editing Mode
	iso-ascii library, Unibyte Editing Mode
	iso-gtex2iso, TeX Mode Miscellany
	iso-iso2gtex, TeX Mode Miscellany
	iso-iso2tex, TeX Mode Miscellany
	iso-tex2iso, TeX Mode Miscellany
	iso-transl library, Unibyte Editing Mode
	ispell, Checking and Correcting Spelling
	ispell program, Checking and Correcting Spelling
	ispell-buffer, Checking and Correcting Spelling
	ispell-change-dictionary, Checking and Correcting Spelling
	ispell-complete-word, Checking and Correcting Spelling
	ispell-complete-word-dict, Checking and Correcting Spelling
	ispell-dictionary, Checking and Correcting Spelling
	ispell-kill-ispell, Checking and Correcting Spelling
	ispell-local-dictionary, Checking and Correcting Spelling
	ispell-message, Mail Miscellany
	ispell-personal-dictionary, Checking and Correcting Spelling
	ispell-region, Checking and Correcting Spelling
	ispell-word, Checking and Correcting Spelling
	Iswitchb mode, Switching Between Buffers using Substrings
	iswitchb-mode, Switching Between Buffers using Substrings

J
	j (Dired), Navigation in the Dired Buffer
	j (Rmail), Moving Among Messages
	Japanese, International Character Set Support
	jar, File Archives
	Java class archives, File Archives
	Java mode, C and Related Modes
	Javascript mode, Major Modes for Programming Languages
	JDB, Running Debuggers Under Emacs
	jdb, Starting GUD
	jdb-mode-hook, GUD Customization
	Julian calendar, Supported Calendar Systems
	Julian day numbers, Supported Calendar Systems
	jump-to-register, Saving Positions in Registers
	just-in-time (JIT) font-lock, Font Lock mode
	just-one-space, Deletion
	justification, Explicit Fill Commands
	justification in text-based tables, Cell Justification

K
	k (Dired), Updating the Dired Buffer
	k (Rmail), Labels
	kbd, Rebinding Keys in Your Init File
	kbd-macro-query, Executing Macros with Variations
	keep-lines, Other Search-and-Loop Commands
	kept-new-versions, Automatic Deletion of Backups
	kept-old-versions, Automatic Deletion of Backups
	Kerberos POP authentication, Retrieving Mail from Remote Mailboxes
	key, Keys
	key bindings, Customizing Key Bindings
	key rebinding, permanent, The Emacs Initialization File
	key rebinding, this session, Changing Key Bindings Interactively
	key sequence, Keys
	keyboard input, Kinds of User Input
	keyboard macro, Keyboard Macros
	keyboard shortcuts, Glossary
	keyboard, MS-Windows, Keyboard Usage on MS-Windows
	keyboard-coding-system, Coding Systems for Terminal I/O
	keyboard-escape-quit, Quitting and Aborting
	keyboard-quit, Quitting and Aborting
	keymap, Keymaps
	keypad, Rebinding Function Keys
	keypad keys (MS-Windows), Keyboard Usage on MS-Windows
	keys stolen by window manager, Kinds of User Input
	kill DOS application, Subprocesses on Windows 9X/ME and Windows NT/2K/XP
	kill ring, Yanking
	kill-all-abbrevs, Defining Abbrevs
	kill-buffer, Killing Buffers
	kill-buffer-and-window, Deleting and Rearranging Windows
	kill-buffer-hook, Killing Buffers
	kill-compilation, Running Compilations under Emacs
	kill-do-not-save-duplicates, Options for Killing
	kill-emacs, Exiting Emacs
	kill-line, Killing by Lines
	kill-local-variable, Local Variables
	kill-matching-buffers, Killing Buffers
	kill-read-only-ok, Options for Killing
	kill-rectangle, Rectangles
	kill-region, Other Kill Commands
	kill-ring, The Kill Ring
	kill-ring-max, The Kill Ring
	kill-ring-save, Other Kill Commands
	kill-sentence, Sentences
	kill-sexp, Expressions with Balanced Parentheses
	kill-some-buffers, Killing Buffers
	kill-whole-line, Killing by Lines
	kill-word, Words
	killing buffers, Killing Buffers
	killing characters and lines, Erasing Text
	killing Emacs, Exiting Emacs
	killing expressions, Expressions with Balanced Parentheses
	killing rectangular areas of text, Rectangles
	killing text, Deletion and Killing
	kmacro-add-counter, The Keyboard Macro Counter
	kmacro-bind-to-key, Naming and Saving Keyboard Macros
	kmacro-cycle-ring-next, The Keyboard Macro Ring
	kmacro-cycle-ring-previous, The Keyboard Macro Ring
	kmacro-edit-lossage, Editing a Keyboard Macro
	kmacro-edit-macro, Editing a Keyboard Macro
	kmacro-end-and-call-macro, Basic Use
	kmacro-end-macro, Basic Use
	kmacro-end-or-call-macro, Basic Use
	kmacro-end-or-call-macro-repeat, The Keyboard Macro Ring
	kmacro-insert-counter, The Keyboard Macro Counter
	kmacro-name-last-macro, Naming and Saving Keyboard Macros
	kmacro-ring-max, The Keyboard Macro Ring
	kmacro-set-counter, The Keyboard Macro Counter
	kmacro-set-format, The Keyboard Macro Counter
	kmacro-start-macro, Basic Use
	kmacro-start-macro-or-insert-counter, Basic Use
	kmacro-step-edit-macro, Stepwise Editing a Keyboard Macro
	Korean, International Character Set Support

L
	L (Dired), Operating on Files
	l (Dired), Updating the Dired Buffer
	l (GDB threads buffer), Threads Buffer
	l (Gnus Group mode), Using the Gnus Group Buffer
	L (Gnus Group mode), Using the Gnus Group Buffer
	l (Rmail), Making Summaries
	label (Rmail), Labels
	landmark, Other Amusements
	landmark game, Other Amusements
	language environment, automatic selection on MS-DOS, International Support on MS-DOS
	language environments, Language Environments
	Lao, International Character Set Support
	large-file-warning-threshold, Visiting Files
	LaTeX mode, TeX Mode
	latex-block-names, LaTeX Editing Commands
	latex-electric-env-pair-mode, LaTeX Editing Commands
	latex-mode, TeX Mode
	latex-mode-hook, TeX Mode Miscellany
	latex-run-command, TeX Printing Commands
	Latin, International Character Set Support
	Latin-1 TeX encoding, TeX Mode Miscellany
	latin1-display, Undisplayable Characters
	lazy search highlighting, Repeating Incremental Search
	leaving Emacs, Exiting Emacs
	LEFT, Changing the Location of Point
	left-char, Changing the Location of Point
	left-word, Changing the Location of Point
	LessTif Widget X Resources, LessTif Menu X Resources
	lgrep, Searching with Grep under Emacs
	libraries, Libraries of Lisp Code for Emacs
	life, Other Amusements
	Life, Other Amusements
	line endings, Coding Systems
	line number commands, Cursor Position Information
	line number display, Optional Mode Line Features
	line spacing, Table of X Resources for Emacs
	line spacing, command-line argument, Other Display Options
	line truncation, and fringes, Continuation Lines, Line Truncation
	line wrapping, Continuation Lines
	line-move-visual, Changing the Location of Point
	line-number-display-limit, Optional Mode Line Features
	line-number-display-limit-width, Optional Mode Line Features
	line-number-mode, Optional Mode Line Features
	lines, highlighting, Interactive Highlighting
	links, Following References with the Mouse
	links (customization buffer), Customization Groups
	Linum mode, Minor Modes
	linum-mode, Minor Modes
	Lisp character syntax, Init File Syntax
	Lisp editing, Editing Programs
	Lisp files byte-compiled by XEmacs, Libraries of Lisp Code for Emacs
	Lisp files, and multibyte operation, Disabling Multibyte Characters
	Lisp mode, Running an External Lisp
	Lisp object syntax, Init File Syntax
	Lisp string syntax, Init File Syntax
	Lisp symbol completion, Completion for Symbol Names
	lisp-body-indent, Customizing Lisp Indentation
	lisp-eval-defun, Running an External Lisp
	lisp-indent-function property, Customizing Lisp Indentation
	lisp-indent-offset, Customizing Lisp Indentation
	lisp-interaction-mode, Lisp Interaction Buffers
	lisp-interaction-mode-hook, Major Modes for Programming Languages
	lisp-mode-hook, Major Modes for Programming Languages
	list commands, Moving in the Parenthesis Structure
	list-abbrevs, Examining and Editing Abbrevs
	list-bookmarks, Bookmarks
	list-buffers, Listing Existing Buffers
	list-character-sets, Charsets
	list-charset-chars, Charsets
	list-coding-systems, Coding Systems
	list-colors-display, Colors for Faces
	list-colors-sort, Colors for Faces
	list-command-history, Repeating Minibuffer Commands
	list-directory, File Directories
	list-directory-brief-switches, File Directories
	list-directory-verbose-switches, File Directories
	list-faces-display, Text Faces
	list-holidays, Holidays
	list-input-methods, Selecting an Input Method
	list-matching-lines, Other Search-and-Loop Commands
	list-packages, The Package Menu Buffer
	list-tags, Tags Table Inquiries
	listing current buffers, Listing Existing Buffers
	listing system fonts, Fonts
	load, Libraries of Lisp Code for Emacs
	load init file of another user, Initial Options
	load path for Emacs Lisp, Libraries of Lisp Code for Emacs
	load-dangerous-libraries, Libraries of Lisp Code for Emacs
	load-file, Libraries of Lisp Code for Emacs
	load-library, Libraries of Lisp Code for Emacs
	load-path, Libraries of Lisp Code for Emacs
	load-theme, Custom Themes
	loading Lisp code, Libraries of Lisp Code for Emacs
	loading Lisp libraries automatically, Init File Examples
	loading Lisp libraries, command-line argument, Action Arguments
	loading several files (in Dired), Operating on Files
	local keymap, Local Keymaps
	local variables, Local Variables
	local variables in files, Local Variables in Files
	local variables, for all files in a directory, Per-Directory Local Variables
	local-set-key, Changing Key Bindings Interactively
	local-unset-key, Changing Key Bindings Interactively
	locale, date format, Updating Time Stamps Automatically
	locale-charset-language-names, Language Environments
	locale-coding-system, Coding Systems for Interprocess Communication
	locale-language-names, Language Environments
	locale-preferred-coding-systems, Language Environments
	locales, Language Environments
	locate, Dired and find
	locate-command, Dired and find
	locate-with-filter, Dired and find
	location of point, Cursor Position Information
	locking (CVS), Options specific for CVS
	locking files, Protection against Simultaneous Editing
	locking, non-strict (RCS), Options for RCS and SCCS
	locking-based version, Merge-based vs lock-based Version Control
	locus, Compilation Mode
	Log Edit mode, Features of the Log Entry Buffer
	log File, types of, Types of Log File
	log-edit-done, Features of the Log Entry Buffer
	log-edit-insert-changelog, Features of the Log Entry Buffer
	log-edit-show-diff, Features of the Log Entry Buffer
	log-edit-show-files, Features of the Log Entry Buffer
	log-view-toggle-entry-display, VC Change Log
	logging keystrokes, Checklist for Bug Reports
	logical order, Bidirectional Editing
	long file names in DOS box under Windows 95/NT, File Names on MS-DOS
	looking for a subject in documentation, Help
	lpr usage under MS-DOS, Printing and MS-Windows
	lpr-add-switches, Printing Hard Copies
	lpr-buffer, Printing Hard Copies
	lpr-command (MS-DOS), Printing and MS-Windows
	lpr-commands, Printing Hard Copies
	lpr-headers-switches, Printing Hard Copies
	lpr-headers-switches (MS-DOS), Printing and MS-Windows
	lpr-printer-switch, Printing Hard Copies
	lpr-region, Printing Hard Copies
	lpr-switches, Printing Hard Copies
	lpr-switches (MS-DOS), Printing and MS-Windows
	LRM, Bidirectional Editing
	ls emulation, Emulation of ls on MS-Windows
	ls-lisp-dirs-first, Emulation of ls on MS-Windows
	ls-lisp-emulation, Emulation of ls on MS-Windows
	ls-lisp-format-time-list, Emulation of ls on MS-Windows
	ls-lisp-ignore-case, Emulation of ls on MS-Windows
	ls-lisp-support-shell-wildcards, Emulation of ls on MS-Windows
	ls-lisp-use-insert-directory-program, Emulation of ls on MS-Windows
	ls-lisp-use-localized-time-format, Emulation of ls on MS-Windows
	ls-lisp-verbosity, Emulation of ls on MS-Windows
	Lucid Widget X Resources, Lucid Menu And Dialog X Resources
	lunar-phases, Phases of the Moon
	lzh, File Archives

M
	M (Calendar mode), Phases of the Moon
	m (Calendar mode), Displaying the Diary
	m (Dired), Dired Marks vs. Flags
	M (Dired), Operating on Files
	m (Rmail), Sending Replies
	M-, Kinds of User Input
	M-!, Single Shell Commands
	M-$, Checking and Correcting Spelling
	M-$ (Dired), Hiding Subdirectories
	M-%, Query Replace
	M-% (Incremental search), Special Input for Incremental Search
	M-&, Single Shell Commands
	M-', Controlling Abbrev Expansion
	M-*, Finding a Tag
	M-,, Searching and Replacing with Tags Tables
	M--, Numeric Arguments
	M-- M-c, Case Conversion
	M-- M-l, Case Conversion
	M-- M-u, Case Conversion
	M-., Finding a Tag
	M-/, Dynamic Abbrev Expansion
	M-1, Numeric Arguments
	M-:, Evaluating Emacs Lisp Expressions
	M-;, Comment Commands
	M-<, Changing the Location of Point
	M-< (Calendar mode), Beginning or End of Week, Month or Year
	M-< (DocView mode), DocView Navigation
	M-<down> (Org Mode), Org Mode
	M-<left> (Org Mode), Org Mode
	M-<right> (Org Mode), Org Mode
	M-<up> (Org Mode), Org Mode
	M-=, Cursor Position Information
	M-= (Calendar mode), Counting Days
	M-= (Dired), File Comparison with Dired
	M->, Changing the Location of Point
	M-> (Calendar mode), Beginning or End of Week, Month or Year
	M-> (DocView mode), DocView Navigation
	M-? (Nroff mode), Nroff Mode
	M-? (Shell mode), Shell Mode
	M-@, Commands to Mark Textual Objects, Words
	M-a, Sentences
	M-a (C mode), C Mode Motion Commands
	M-a (Calendar mode), Beginning or End of Week, Month or Year
	M-b, Changing the Location of Point, Words
	M-c, Case Conversion Commands
	M-d, Words
	M-DEL, Words
	M-DEL (Dired), Dired Marks vs. Flags
	M-Drag-Mouse-1, Secondary Selection
	M-e, Sentences
	M-e (C mode), C Mode Motion Commands
	M-e (Calendar mode), Beginning or End of Week, Month or Year
	M-e (Incremental search), Repeating Incremental Search
	M-f, Changing the Location of Point, Words
	M-g g, Changing the Location of Point
	M-g M-g, Changing the Location of Point
	M-g M-n, Compilation Mode
	M-g n, Compilation Mode
	M-h, Paragraphs
	M-i, Indentation Commands
	M-j, Multiple Lines of Comments
	M-j b (Enriched mode), Justification in Enriched Text
	M-j c (Enriched mode), Justification in Enriched Text
	M-j l (Enriched mode), Justification in Enriched Text
	M-j r (Enriched mode), Justification in Enriched Text
	M-j u (Enriched mode), Justification in Enriched Text
	M-k, Sentences
	M-l, Case Conversion Commands
	M-LEFT, Changing the Location of Point
	M-m, Indentation Commands
	M-m (Rmail), Sending Replies
	M-Mouse-1, Secondary Selection
	M-Mouse-2, Secondary Selection
	M-Mouse-3, Secondary Selection
	M-n (Incremental search), Repeating Incremental Search
	M-n (Log Edit mode), Features of the Log Entry Buffer
	M-n (Man mode), Man Page Lookup
	M-n (minibuffer history), Minibuffer History
	M-n (Nroff mode), Nroff Mode
	M-n (Rmail), Moving Among Messages
	M-n (Shell mode), Shell History Ring
	M-o b (Enriched mode), Faces in Enriched Text
	M-o d (Enriched mode), Faces in Enriched Text
	M-o i (Enriched mode), Faces in Enriched Text
	M-o l (Enriched mode), Faces in Enriched Text
	M-o M-s (Text mode), Explicit Fill Commands
	M-o o (Enriched mode), Faces in Enriched Text
	M-o u (Enriched mode), Faces in Enriched Text
	M-p (Incremental search), Repeating Incremental Search
	M-p (Log Edit mode), Features of the Log Entry Buffer
	M-p (Man mode), Man Page Lookup
	M-p (minibuffer history), Minibuffer History
	M-p (Nroff mode), Nroff Mode
	M-p (Rmail), Moving Among Messages
	M-p (Shell mode), Shell History Ring
	M-q, Explicit Fill Commands
	M-q (C mode), Other Commands for C Mode
	M-q (Fortran mode), Fortran Indentation and Filling Commands
	M-r, Changing the Location of Point
	M-r (Log Edit mode), Features of the Log Entry Buffer
	M-r (minibuffer history), Minibuffer History
	M-r (Shell mode), Shell History Ring
	M-RIGHT, Changing the Location of Point
	M-S (Enriched mode), Justification in Enriched Text
	M-s (Gnus Summary mode), Using the Gnus Summary Buffer
	M-s (Log Edit mode), Features of the Log Entry Buffer
	M-s (minibuffer history), Minibuffer History
	M-s (Rmail), Moving Among Messages
	M-s a C-s (Dired), Other Dired Features
	M-s a M-C-s (Dired), Other Dired Features
	M-s C-e (Incremental search), Isearch Yanking
	M-s f C-s (Dired), Navigation in the Dired Buffer
	M-s f M-C-s (Dired), Navigation in the Dired Buffer
	M-s o, Other Search-and-Loop Commands
	M-s w, Word Search
	M-SPC, Deletion
	M-t, Transposing Text
	M-TAB, Completion for Symbol Names
	M-TAB (customization buffer), Changing a Variable
	M-TAB (Incremental search), Special Input for Incremental Search
	M-TAB (Picture mode), Picture Mode Tabs
	M-TAB (Text mode), Text Mode
	M-TAB vs Alt-TAB (MS-Windows), Keyboard Usage on MS-Windows
	M-TAB, (MS-Windows), Keyboard Usage on MS-Windows
	M-u, Case Conversion Commands
	M-v, Scrolling
	M-v (Calendar mode), Scrolling in the Calendar
	M-w, Other Kill Commands
	M-x, Running Commands by Name
	M-y, Yanking Earlier Kills
	M-y (Incremental search), Isearch Yanking
	M-z, Other Kill Commands
	M-\, Deletion
	M-^, Indentation Commands
	M-^ (Fortran mode), Fortran Indentation and Filling Commands
	M-`, The Menu Bar
	M-{, Paragraphs
	M-{ (Calendar mode), Motion by Standard Lengths of Time
	M-{ (Dired), Dired Marks vs. Flags
	M-|, Single Shell Commands
	M-}, Paragraphs
	M-} (Calendar mode), Motion by Standard Lengths of Time
	M-} (Dired), Dired Marks vs. Flags
	M-~, Commands for Saving Files
	M4 mode, Major Modes for Programming Languages
	Mac OS X, Emacs and Mac OS / GNUstep
	Macintosh, Emacs and Mac OS / GNUstep
	Macintosh end-of-line conversion, Coding Systems
	Macintosh key bindings, Emulation
	macro expansion in C, Other Commands for C Mode
	magic-fallback-mode-alist, Choosing File Modes
	magic-mode-alist, Choosing File Modes
	mail, Sending Mail
	mail (on mode line), Optional Mode Line Features
	mail aliases, Mail Aliases
	MAIL environment variable, Rmail Files and Inboxes
	Mail mode, Mail-Composition Methods
	mail signature, Mail Signature
	mail-abbrev-insert-alias, Mail Aliases
	mail-add-attachment, Mail Miscellany
	mail-citation-hook, Citing Mail
	mail-composition methods, Mail-Composition Methods
	mail-default-headers, Mail Header Fields
	mail-dont-reply-to-names, Sending Replies
	mail-fill-yanked-message, Citing Mail
	mail-from-style, Mail Header Fields
	mail-mode-hook, Mail Miscellany
	mail-other-window, Displaying in Another Window
	mail-personal-alias-file, Mail Aliases
	mail-setup-hook, Mail Miscellany
	mail-signature, Mail Signature
	mail-signature-file, Mail Signature
	mail-text, Mail Header Editing
	mail-user-agent, Mail-Composition Methods
	Mailclient, Mail Sending
	MAILHOST environment variable, Retrieving Mail from Remote Mailboxes
	mailrc file, Mail Aliases
	main border width, command-line argument, Internal and External Borders
	major modes, Major Modes
	major-mode, Major Modes
	make, Running Compilations under Emacs
	make-backup-file-name-function, Single or Numbered Backups
	make-backup-files, Backup Files
	make-frame-command, Creating Frames
	make-frame-on-display, Multiple Displays
	make-indirect-buffer, Indirect Buffers
	make-local-variable, Local Variables
	make-pointer-invisible, Customization of Display, Mouse Avoidance
	make-symbolic-link, Miscellaneous File Operations
	make-variable-buffer-local, Local Variables
	Makefile mode, Major Modes for Programming Languages
	making pictures out of text characters, Editing Pictures
	man page, Man Page Lookup
	man pages, and local file variables, Specifying File Variables
	Man-switches, Man Page Lookup
	manipulating paragraphs, Paragraphs
	manipulating sentences, Sentences
	manipulating text, Commands for Human Languages
	manual pages, on MS-DOS/MS-Windows, Man Page Lookup
	manual version backups, Options specific for CVS
	manual-entry, Man Page Lookup
	manuals, on-line, Other Help Commands
	Marathi, International Character Set Support
	mark, The Mark and the Region
	mark rectangle, Rectangles
	mark ring, The Mark Ring
	mark-defun, Moving by Defuns
	mark-even-if-inactive, Operating on the Region
	mark-page, Pages
	mark-paragraph, Paragraphs
	mark-ring-max, The Mark Ring
	mark-sexp, Commands to Mark Textual Objects, Expressions with Balanced Parentheses
	mark-whole-buffer, Commands to Mark Textual Objects
	mark-word, Commands to Mark Textual Objects, Words
	marking executable files (in Dired), Dired Marks vs. Flags
	marking many files (in Dired), Dired Marks vs. Flags
	marking sections of text, Commands to Mark Textual Objects
	marking subdirectories (in Dired), Dired Marks vs. Flags
	marking symbolic links (in Dired), Dired Marks vs. Flags
	matching parentheses, Matching Parentheses
	matching parenthesis and braces, moving to, Moving in the Parenthesis Structure
	max-mini-window-height, Editing in the Minibuffer
	maximized, command-line argument, Options for Window Size and Position
	maximum buffer size exceeded, error message, Visiting Files
	Mayan calendar, Supported Calendar Systems
	Mayan calendar round, Converting from the Mayan Calendar
	Mayan haab calendar, Converting from the Mayan Calendar
	Mayan long count, Converting from the Mayan Calendar
	Mayan tzolkin calendar, Converting from the Mayan Calendar
	memory full, Running out of Memory
	menu bar, The Menu Bar, Table of X Resources for Emacs
	menu bar access using keyboard (MS-Windows), Keyboard Usage on MS-Windows
	menu bar appearance, Standard Faces
	Menu Bar mode, Menu Bars
	menu face, no effect if customized, Standard Faces
	Menu X Resources (LessTif widgets), LessTif Menu X Resources
	Menu X Resources (Lucid widgets), Lucid Menu And Dialog X Resources
	menu-bar-mode, Menu Bars
	menu-bar-open, The Menu Bar
	Mercurial, Supported Version Control Systems
	merge buffer (Emerge), Overview of Emerge
	merges, failed, Comparing Files
	merging changes, Merging Branches
	merging files, Merging Files with Emerge
	merging-based version, Merge-based vs lock-based Version Control
	message, Sending Mail
	Message mode, Mail Commands
	Message mode for sending mail, Mail-Composition Methods
	message number, Basic Concepts of Rmail
	message-goto-bcc, Mail Header Editing
	message-goto-cc, Mail Header Editing
	message-goto-fcc, Mail Header Editing
	message-goto-subject, Mail Header Editing
	message-goto-to, Mail Header Editing
	message-insert-signature, Mail Signature
	message-kill-buffer-on-exit, Mail Sending
	message-log-max, The Echo Area
	message-send, Mail Sending
	message-send-and-exit, Mail Sending
	message-send-hook, Mail Sending
	message-tab, Mail Header Editing
	message-yank-original, Citing Mail
	message-yank-prefix, Citing Mail
	messages saved from echo area, The Echo Area
	Meta, Kinds of User Input
	Meta (under MS-DOS), Keyboard Usage on MS-DOS
	Meta commands and words, Words
	Metafont mode, Major Modes for Programming Languages
	MH mail interface, Mail-Composition Methods
	Microsoft Office file, Document Viewing
	Microsoft Windows, Emacs and Microsoft Windows/MS-DOS
	Midnight mode, Killing Buffers
	midnight-hook, Killing Buffers
	midnight-mode, Killing Buffers
	MIME, Mail Miscellany
	MIME messages (Rmail), Display of Messages
	minibuffer, The Echo Area, The Minibuffer
	minibuffer confirmation, Completion Exit
	minibuffer history, Minibuffer History
	minibuffer history, searching, Searching the Minibuffer
	minibuffer keymaps, Minibuffer Keymaps
	minibuffer-complete, Completion Commands
	minibuffer-complete-and-exit, Completion Exit
	minibuffer-complete-word, Completion Commands
	minibuffer-inactive-mode, Editing in the Minibuffer
	minibuffer-local-completion-map, Minibuffer Keymaps
	minibuffer-local-filename-completion-map, Minibuffer Keymaps
	minibuffer-local-filename-must-match-map, Minibuffer Keymaps
	minibuffer-local-map, Minibuffer Keymaps
	minibuffer-local-must-match-map, Minibuffer Keymaps
	minibuffer-local-ns-map, Minibuffer Keymaps
	minibuffer-prompt face, Standard Faces
	minibuffer-prompt-properties, Standard Faces
	minimizing, Exiting Emacs
	minimizing a frame at startup, Icons
	minor mode keymap, Local Keymaps
	minor modes, Minor Modes
	mistakes, correcting, Commands for Fixing Typos
	mml-attach-file, Mail Miscellany
	mode commands for minor modes, Minor Modes
	mode hook, Major Modes, Major Modes for Programming Languages
	mode line, The Mode Line
	mode line (MS-DOS), International Support on MS-DOS
	mode line, 3D appearance, Optional Mode Line Features
	mode line, mouse, Mode Line Mouse Commands
	mode, Abbrev, Abbrev Concepts
	mode, archive, File Archives
	mode, Auto Compression, Accessing Compressed Files
	mode, Auto Fill, Auto Fill Mode
	mode, Auto Save, Auto-Saving: Protection Against Disasters
	mode, Auto-Revert, Reverting a Buffer
	mode, AWK, C and Related Modes
	mode, C, C and Related Modes
	mode, C++, C and Related Modes
	mode, Column Number, Optional Mode Line Features
	mode, Comint, Shell Mode
	mode, Compilation, Compilation Mode
	mode, CORBA IDL, C and Related Modes
	mode, CRiSP, Emulation
	mode, Delete Selection, Operating on the Region
	mode, Diff Auto-Refine, Diff Mode
	mode, Dirtrack, Directory Tracking
	mode, DocTeX, TeX Mode
	mode, DocView, Document Viewing
	mode, Electric Indent, Convenience Features for Indentation
	mode, Emacs Lisp, Evaluating Emacs Lisp Expressions
	mode, Enriched, Enriched Text
	mode, Flyspell, Checking and Correcting Spelling
	mode, Follow, Follow Mode
	mode, Font Lock, Font Lock mode
	mode, Fortran, Fortran Mode
	mode, Glasses, Glasses minor mode
	mode, Global Auto-Revert, Reverting a Buffer
	mode, Goto Address, Activating URLs
	mode, GUD Tooltip, Debugger Operation
	mode, Hexl, Editing Binary Files
	mode, Hideshow, Hideshow minor mode
	mode, HTML, SGML and HTML Modes
	mode, Iswitchb, Switching Between Buffers using Substrings
	mode, Java, C and Related Modes
	mode, LaTeX, TeX Mode
	mode, Lisp, Running an External Lisp
	mode, Log Edit, Features of the Log Entry Buffer
	mode, Mail, Mail-Composition Methods
	mode, major, Major Modes
	mode, Menu Bar, Menu Bars
	mode, Message, Mail Commands
	mode, minor, Minor Modes
	mode, Mouse Wheel, Mouse Commands for Editing
	mode, MSB, Customizing Buffer Menus
	mode, nXML, Commands for Human Languages, SGML and HTML Modes
	mode, Objective C, C and Related Modes
	mode, Occur, Other Search-and-Loop Commands
	mode, Occur Edit, Other Search-and-Loop Commands
	mode, Org, Org Mode
	mode, Outline, Outline Mode
	mode, Overwrite, Minor Modes
	mode, Paragraph-Indent Text, Text Mode
	mode, Pike, C and Related Modes
	mode, Scheme, Running an External Lisp
	mode, Scroll Bar, Scroll Bars
	mode, Scroll-all, Convenience Features for Window Handling
	mode, Semantic, Semantic
	mode, SGML, SGML and HTML Modes
	mode, Shell, Shell Mode
	mode, SliTeX, TeX Mode
	mode, tar, File Archives
	mode, Term, Term Mode
	mode, TeX, TeX Mode
	mode, Text, Text Mode
	mode, thumbs, Convenience Features for Finding Files
	mode, Tool Bar, Tool Bars
	mode, Transient Mark, Disabling Transient Mark Mode
	mode, View, View Mode
	mode, Whitespace, Useless Whitespace
	mode, Winner, Convenience Features for Window Handling
	mode, XML, Commands for Human Languages
	mode-line-in-non-selected-windows, Optional Mode Line Features
	mode-require-final-newline, Customizing Saving of Files
	mode-specific-map, Prefix Keymaps
	modes for programming languages, Major Modes for Programming Languages
	modification dates, Updating Time Stamps Automatically
	modified (buffer), Visiting Files
	modifier keys, Kinds of User Input, Modifier Keys
	Modula2 mode, Major Modes for Programming Languages
	moon, phases of, Phases of the Moon
	Morse code, Other Amusements
	morse-region, Other Amusements
	Motif key bindings, Emulation
	mouse avoidance, Mouse Avoidance
	mouse button events, Rebinding Mouse Buttons
	mouse buttons (what they do), Mouse Commands for Editing
	mouse on mode line, Mode Line Mouse Commands
	mouse pointer, Customization of Display
	mouse pointer color, command-line argument, Window Color Options
	mouse support, Using a Mouse in Text Terminals
	mouse support under MS-DOS, Mouse Usage on MS-DOS
	mouse wheel, Mouse Commands for Editing
	Mouse Wheel minor mode, Mouse Commands for Editing
	mouse, and MS-Windows, Mouse Usage on MS-Windows
	mouse, dragging, Mouse Commands for Editing
	mouse, selecting text using, Mouse Commands for Editing
	mouse, set number of buttons, Mouse Usage on MS-DOS
	Mouse-1, Mouse Commands for Editing
	Mouse-1 (mode line), Mode Line Mouse Commands
	Mouse-1 (on buttons), Following References with the Mouse
	Mouse-1 (scroll bar), Mode Line Mouse Commands
	mouse-1-click-in-non-selected-windows, Following References with the Mouse
	Mouse-2, Mouse Commands for Editing
	Mouse-2 (GDB Breakpoints buffer), Breakpoints Buffer
	Mouse-2 (mode line), Mode Line Mouse Commands
	Mouse-2 (on buttons), Following References with the Mouse
	Mouse-3, Mouse Commands for Editing
	Mouse-3 (mode line), Mode Line Mouse Commands
	mouse-autoselect-window, Using Other Windows
	mouse-avoidance-mode, Mouse Avoidance
	mouse-buffer-menu, Customizing Buffer Menus
	mouse-choose-completion, Completion Commands
	mouse-drag-copy-region, Mouse Commands for Editing
	mouse-highlight, Following References with the Mouse
	mouse-save-then-kill, Mouse Commands for Editing
	mouse-scroll-min-lines, Mouse Commands for Editing
	mouse-secondary-save-then-kill, Secondary Selection
	mouse-set-point, Mouse Commands for Editing
	mouse-set-region, Mouse Commands for Editing
	mouse-set-secondary, Secondary Selection
	mouse-start-secondary, Secondary Selection
	mouse-wheel-follow-mouse, Mouse Commands for Editing
	mouse-wheel-mode, Mouse Commands for Editing
	mouse-wheel-progressive-speed, Mouse Commands for Editing
	mouse-wheel-scroll-amount, Mouse Commands for Editing
	mouse-yank-at-click, Mouse Commands for Editing
	mouse-yank-at-point, Mouse Commands for Editing
	mouse-yank-primary, Mouse Commands for Editing
	mouse-yank-secondary, Secondary Selection
	move to beginning or end of function, Moving by Defuns
	move-beginning-of-line, Changing the Location of Point
	move-end-of-line, Changing the Location of Point
	move-to-window-line-top-bottom, Changing the Location of Point
	movemail, Retrieving Mail from Remote Mailboxes
	movemail program, movemail program
	movement, Changing the Location of Point
	moving files (in Dired), Operating on Files
	moving inside the calendar, Movement in the Calendar
	moving point, Changing the Location of Point
	moving text, Yanking
	moving the cursor, Changing the Location of Point
	mpuz, Other Amusements
	MS-DOG, Emacs and MS-DOS
	MS-DOS end-of-line conversion, Coding Systems
	MS-DOS peculiarities, Emacs and MS-DOS
	MS-Windows codepages, International Support on MS-DOS
	MS-Windows keyboard shortcuts, Keyboard Usage on MS-Windows
	MS-Windows, and primary selection, Cut and Paste with Other Window Applications
	MS-Windows, Emacs peculiarities, Emacs and Microsoft Windows/MS-DOS
	MSB mode, Customizing Buffer Menus
	msb-mode, Customizing Buffer Menus
	msdos-set-mouse-buttons, Mouse Usage on MS-DOS
	MULE, International Character Set Support
	multi-occur, Other Search-and-Loop Commands
	multi-occur-in-matching-buffers, Other Search-and-Loop Commands
	multibyte characters, International Character Set Support
	multibyte operation, and Lisp files, Disabling Multibyte Characters
	multiple displays, Multiple Displays
	multiple views of outline, Viewing One Outline in Multiple Views
	multiple windows in Emacs, Multiple Windows
	multiple-file search and replace, Searching and Replacing with Tags Tables
	Multipurpose Internet Mail Extensions, Mail Miscellany
	Multithreaded debugging in GDB, Multithreaded Debugging

N
	n (DocView mode), DocView Navigation
	n (Gnus Group mode), Using the Gnus Group Buffer
	n (Gnus Summary mode), Using the Gnus Summary Buffer
	n (Rmail), Moving Among Messages
	narrow-to-defun, Narrowing
	narrow-to-page, Narrowing
	narrow-to-region, Narrowing
	narrowing, Narrowing
	narrowing, and line number display, Optional Mode Line Features
	nato-region, Other Amusements
	negative-argument, Numeric Arguments
	networked printers (MS-Windows), Printing and MS-Windows
	newline, Inserting Text
	newline-and-indent, Indentation Commands, Basic Program Indentation Commands
	newlines, hard and soft, Hard and Soft Newlines
	newsreader, Gnus
	next, Scrolling
	Next Error Follow mode, Compilation Mode
	next-buffer, Creating and Selecting Buffers
	next-completion, Completion Commands
	next-error, Compilation Mode
	next-error-follow-minor-mode, Compilation Mode
	next-error-highlight, Compilation Mode
	next-file, Tags Table Inquiries
	next-history-element, Minibuffer History
	next-line, Changing the Location of Point
	next-line-add-newlines, Changing the Location of Point
	next-logical-line, Visual Line Mode
	next-matching-history-element, Minibuffer History
	next-screen-context-lines, Scrolling
	NFS and quitting, Quitting and Aborting
	nil, Glossary
	no-conversion, coding system, Coding Systems
	nobreak-char-display, How Text Is Displayed
	non-ASCII characters in .emacs, Non-ASCII Characters in Init Files
	non-ASCII keys, binding, Non-ASCII Characters in Init Files
	non-breaking hyphen, How Text Is Displayed
	non-breaking space, How Text Is Displayed
	non-greedy regexp matching, Syntax of Regular Expressions
	non-integral number of lines in a window, Optional Mode Line Features
	non-selected windows, mode line appearance, Optional Mode Line Features
	Non-stop debugging in GDB, Multithreaded Debugging
	non-strict locking (RCS), Options for RCS and SCCS
	nonincremental search, Nonincremental Search
	normal hook, Hooks
	normal-erase-is-backspace, If DEL Fails to Delete
	normal-erase-is-backspace-mode, If DEL Fails to Delete
	normal-mode, Choosing File Modes
	not-modified, Commands for Saving Files
	nroff, Nroff Mode
	nroff-mode, Nroff Mode
	nroff-mode-hook, Nroff Mode
	ns-pop-up-frames, Windowing System Events under Mac OS / GNUstep
	ns-standard-fontset-spec, Defining fontsets
	NSA, Mail Amusements
	number-to-register, Keeping Numbers in Registers
	numeric arguments, Numeric Arguments
	nXML mode, Commands for Human Languages, SGML and HTML Modes
	nxml-mode, Commands for Human Languages, SGML and HTML Modes

O
	o (Calendar mode), Specified Dates
	o (Dired), Visiting Files in Dired
	O (Dired), Operating on Files
	o (Occur mode), Other Search-and-Loop Commands
	o (Rmail), Copying Messages Out to Files
	Objective C mode, C and Related Modes
	occur, Other Search-and-Loop Commands
	Occur Edit mode, Other Search-and-Loop Commands
	Occur mode, Other Search-and-Loop Commands
	octal escapes, How Text Is Displayed
	Octave mode, Major Modes for Programming Languages
	omer count, Sexp Entries and the Fancy Diary Display
	on-line manuals, Other Help Commands
	open file, Visiting Files
	open-dribble-file, Checklist for Bug Reports
	open-line, Blank Lines
	open-paren-in-column-0-is-defun-start, Left Margin Convention
	open-parenthesis in leftmost column, Left Margin Convention
	open-rectangle, Rectangles
	open-termscript, Checklist for Bug Reports
	OpenDocument file, Document Viewing
	operating on files in Dired, Operating on Files
	operations on a marked region, Operating on the Region
	options (command line), Command Line Arguments for Emacs Invocation
	Org agenda, Org as an organizer
	Org exporting, Org as an authoring system
	Org mode, Org Mode
	org-agenda, Org as an organizer
	org-agenda-file-to-front, Org as an organizer
	org-agenda-files, Org as an organizer
	org-cycle, Org Mode
	org-deadline, Org as an organizer
	org-export, Org as an authoring system
	org-metadown, Org Mode
	org-metaleft, Org Mode
	org-metaright, Org Mode
	org-metaup, Org Mode
	org-mode, Org Mode
	org-publish-project-alist, Org as an authoring system
	org-schedule, Org as an organizer
	org-shifttab, Org Mode
	org-todo, Org as an organizer
	org-todo-keywords, Org as an organizer
	organizer, Org Mode
	other editors, Emulation
	other-frame, Frame Commands
	other-window, Using Other Windows
	out of memory, Running out of Memory
	Outline mode, Outline Mode
	outline with multiple views, Viewing One Outline in Multiple Views
	outline-backward-same-level, Outline Motion Commands
	outline-forward-same-level, Outline Motion Commands
	outline-level, Format of Outlines
	outline-minor-mode, Outline Mode
	outline-minor-mode-prefix, Outline Mode
	outline-mode, Outline Mode
	outline-mode-hook, Outline Mode
	outline-next-visible-heading, Outline Motion Commands
	outline-previous-visible-heading, Outline Motion Commands
	outline-regexp, Format of Outlines
	outline-up-heading, Outline Motion Commands
	overflow-newline-into-fringe, Window Fringes
	overlays at character position, Editing Format Information
	overline-margin, Customization of Display
	override character terminal color support, Window Color Options
	Overwrite mode, Minor Modes
	overwrite-mode, Minor Modes

P
	p (Calendar mode), Converting To Other Calendars
	P (Dired), Operating on Files
	p (DocView mode), DocView Navigation
	p (Gnus Group mode), Using the Gnus Group Buffer
	p (Gnus Summary mode), Using the Gnus Summary Buffer
	p (Rmail), Moving Among Messages
	p d (Calendar mode), Miscellaneous Calendar Commands
	Package, Emacs Lisp Packages
	Package archive, Emacs Lisp Packages
	package directory, Package Files and Directory Layout
	package file, Package Files and Directory Layout
	package menu, The Package Menu Buffer
	package requirements, Package Installation
	package-archives, Package Installation
	package-directory-list, Package Files and Directory Layout
	package-enable-at-startup, Package Installation
	package-initialize, Package Installation
	package-install, Package Installation
	package-install-file, Package Files and Directory Layout
	package-load-list, Package Installation
	package-user-dir, Package Files and Directory Layout
	page-delimiter, Pages
	PageDown, Scrolling
	pages, Pages
	PageUp, Scrolling
	paging in Term mode, Term Mode
	paragraph, base direction, Bidirectional Editing
	Paragraph-Indent Text mode, Text Mode
	paragraph-indent-minor-mode, Text Mode
	paragraph-indent-text-mode, Text Mode
	paragraph-separate, Paragraphs
	paragraph-start, Paragraphs
	paragraphs, Paragraphs
	parasha, weekly, Sexp Entries and the Fancy Diary Display
	parentheses, displaying matches, Matching Parentheses
	parentheses, moving across, Moving in the Parenthesis Structure
	parenthesis in column zero and fontification, Font Lock mode
	parenthetical groupings, Moving in the Parenthesis Structure
	partial completion, How Completion Alternatives Are Chosen
	paste, “Cut and Paste” Operations on Graphical Displays
	pasting, Yanking
	patches, editing, Diff Mode
	patches, sending, Sending Patches for GNU Emacs
	PC key bindings, Emulation
	PC selection, Emulation
	PCL-CVS, VC Directory Mode
	PDB, Running Debuggers Under Emacs
	pdb, Starting GUD
	pdb-mode-hook, GUD Customization
	PDF file, Document Viewing
	per-buffer variables, Local Variables
	per-directory local variables, Per-Directory Local Variables
	Perl mode, Major Modes for Programming Languages
	Perldb, Running Debuggers Under Emacs
	perldb, Starting GUD
	perldb-mode-hook, GUD Customization
	Persian calendar, Supported Calendar Systems
	phases of the moon, Phases of the Moon
	Picture mode and rectangles, Picture Mode Rectangle Commands
	picture-backward-clear-column, Basic Editing in Picture Mode
	picture-backward-column, Basic Editing in Picture Mode
	picture-clear-column, Basic Editing in Picture Mode
	picture-clear-line, Basic Editing in Picture Mode
	picture-clear-rectangle, Picture Mode Rectangle Commands
	picture-clear-rectangle-to-register, Picture Mode Rectangle Commands
	picture-forward-column, Basic Editing in Picture Mode
	picture-mode, Editing Pictures
	picture-mode-hook, Editing Pictures
	picture-motion, Controlling Motion after Insert
	picture-motion-reverse, Controlling Motion after Insert
	picture-move-down, Basic Editing in Picture Mode
	picture-move-up, Basic Editing in Picture Mode
	picture-movement-down, Controlling Motion after Insert
	picture-movement-left, Controlling Motion after Insert
	picture-movement-ne, Controlling Motion after Insert
	picture-movement-nw, Controlling Motion after Insert
	picture-movement-right, Controlling Motion after Insert
	picture-movement-se, Controlling Motion after Insert
	picture-movement-sw, Controlling Motion after Insert
	picture-movement-up, Controlling Motion after Insert
	picture-newline, Basic Editing in Picture Mode
	picture-open-line, Basic Editing in Picture Mode
	picture-set-tab-stops, Picture Mode Tabs
	picture-tab, Picture Mode Tabs
	picture-tab-chars, Picture Mode Tabs
	picture-tab-search, Picture Mode Tabs
	picture-yank-rectangle, Picture Mode Rectangle Commands
	picture-yank-rectangle-from-register, Picture Mode Rectangle Commands
	pictures, Editing Pictures
	Pike mode, C and Related Modes
	plain-tex-mode, TeX Mode
	plain-tex-mode-hook, TeX Mode Miscellany
	planner, Org Mode
	point, Point
	point location, Cursor Position Information
	point location, on MS-DOS, Text Files and Binary Files
	point-to-register, Saving Positions in Registers
	Polish, International Character Set Support
	pong, Other Amusements
	Pong game, Other Amusements
	POP mailboxes, Retrieving Mail from Remote Mailboxes
	pop-global-mark, The Global Mark Ring
	pop-tag-mark, Finding a Tag
	pop-up-frames, How display-buffer works
	position and size of Emacs frame, Options for Window Size and Position
	PostScript file, Document Viewing
	PostScript mode, Major Modes for Programming Languages
	pr-interface, Printing Package
	prefer-coding-system, Recognizing Coding Systems
	prefix arguments, Numeric Arguments
	prefix key, Keys
	prepend-to-buffer, Accumulating Text
	prepend-to-register, Saving Text in Registers
	preprocessor highlighting, Other Commands for C Mode
	pretty-printer, Indentation for Programs
	previous-buffer, Creating and Selecting Buffers
	previous-completion, Completion Commands
	previous-history-element, Minibuffer History
	previous-line, Changing the Location of Point
	previous-logical-line, Visual Line Mode
	previous-matching-history-element, Minibuffer History
	primary Rmail file, Basic Concepts of Rmail
	primary selection, Setting the Mark, Cut and Paste with Other Window Applications
	print-buffer, Printing Hard Copies
	print-buffer (MS-DOS), Printing and MS-Windows
	print-region, Printing Hard Copies
	print-region (MS-DOS), Printing and MS-Windows
	print-region-function (MS-DOS), Printing and MS-Windows
	printer-name, Printing Hard Copies
	printer-name, (MS-DOS/MS-Windows), Printing and MS-Windows
	printing, Printing Hard Copies
	printing character, How Text Is Displayed
	printing files (in Dired), Operating on Files
	Printing package, Printing Package
	printing under MS-DOS, Subprocesses on MS-DOS
	prior, Scrolling
	Prog mode, Hooks
	prog-mode-hook, Major Modes
	program building, Compiling and Testing Programs
	program editing, Editing Programs, Hooks
	Prolog mode, Major Modes for Programming Languages
	prompt, The Minibuffer
	prompt, shell, Shell Prompts
	PS file, Document Viewing
	ps-despool, PostScript Hardcopy
	ps-font-family, Variables for PostScript Hardcopy
	ps-font-info-database, Variables for PostScript Hardcopy
	ps-font-size, Variables for PostScript Hardcopy
	ps-landscape-mode, Variables for PostScript Hardcopy
	ps-lpr-command, Variables for PostScript Hardcopy
	ps-lpr-command (MS-DOS), Printing and MS-Windows
	ps-lpr-switches, Variables for PostScript Hardcopy
	ps-lpr-switches (MS-DOS), Printing and MS-Windows
	ps-multibyte-buffer, Variables for PostScript Hardcopy
	ps-number-of-columns, Variables for PostScript Hardcopy
	ps-page-dimensions-database, Variables for PostScript Hardcopy
	ps-paper-type, Variables for PostScript Hardcopy
	ps-print-buffer, PostScript Hardcopy
	ps-print-buffer (MS-DOS), Printing and MS-Windows
	ps-print-buffer-with-faces, PostScript Hardcopy
	ps-print-color-p, Variables for PostScript Hardcopy
	ps-print-header, Variables for PostScript Hardcopy
	ps-print-region, PostScript Hardcopy
	ps-print-region-with-faces, PostScript Hardcopy
	ps-printer-name, Variables for PostScript Hardcopy
	ps-printer-name (MS-DOS), Printing and MS-Windows
	ps-spool-buffer, PostScript Hardcopy
	ps-spool-buffer (MS-DOS), Printing and MS-Windows
	ps-spool-buffer-with-faces, PostScript Hardcopy
	ps-spool-region, PostScript Hardcopy
	ps-spool-region-with-faces, PostScript Hardcopy
	ps-use-face-background, Variables for PostScript Hardcopy
	puzzles, Other Amusements
	pwd, File Names
	Python mode, Major Modes for Programming Languages

Q
	q (Calendar mode), Miscellaneous Calendar Commands
	q (Dired), Entering Dired
	Q (Dired), Operating on Files
	q (Gnus Group mode), Using the Gnus Group Buffer
	q (Gnus Summary mode), Using the Gnus Summary Buffer
	Q (Rmail summary), Editing in Summaries
	q (Rmail summary), Editing in Summaries
	q (Rmail), Basic Concepts of Rmail
	q (VC Directory), VC Directory Commands
	q (View mode), View Mode
	quail-set-keyboard-layout, Selecting an Input Method
	quail-show-key, Selecting an Input Method
	query replace, Query Replace
	query-replace, Query Replace
	query-replace-regexp, Query Replace
	quietly-read-abbrev-file, Saving Abbrevs
	quit-window, VC Directory Commands, Entering Dired
	quitting, Quitting and Aborting
	quitting (in search), Errors in Incremental Search
	quitting Emacs, Exiting Emacs
	quitting on MS-DOS, Keyboard Usage on MS-DOS
	quoted-insert, Inserting Text
	quoting, Inserting Text
	quoting file names, Quoted File Names

R
	R (Dired), Operating on Files
	r (GDB threads buffer), Threads Buffer
	r (Rmail), Sending Replies
	rar, File Archives
	raw-text, coding system, Coding Systems
	RCS, Supported Version Control Systems
	re-search-backward, Regular Expression Search
	re-search-forward, Regular Expression Search
	read-abbrev-file, Saving Abbrevs
	read-buffer-completion-ignore-case, Completion Options
	read-file-name-completion-ignore-case, Completion Options
	read-mail-command, Mail-Composition Methods
	read-only buffer, Miscellaneous Buffer Operations
	read-only text, killing, Options for Killing
	read-quoted-char-radix, Inserting Text
	reading mail, Reading Mail with Rmail
	rebinding keys, permanently, The Emacs Initialization File
	rebinding major mode keys, Rebinding Keys in Your Init File
	rebinding mouse buttons, Rebinding Mouse Buttons
	rebinding non-ASCII keys, Non-ASCII Characters in Init Files
	recenter, Recentering
	recenter-positions, Recentering
	recenter-redisplay, Recentering
	recenter-top-bottom, Recentering
	recentf-edit-list, Convenience Features for Finding Files
	recentf-mode, Convenience Features for Finding Files
	recentf-save-list, Convenience Features for Finding Files
	recode-file-name, Coding Systems for File Names
	recode-region, Specifying a Coding System for File Text
	recompile, Running Compilations under Emacs
	recover-file, Recovering Data from Auto-Saves
	recover-session, Recovering Data from Auto-Saves
	rectangle, Rectangles
	rectangle highlighting, CUA Bindings
	rectangles and Picture mode, Picture Mode Rectangle Commands
	recursive copying, Operating on Files
	recursive deletion, Deleting Files with Dired
	recursive editing level, Recursive Editing Levels
	recycle bin, Miscellaneous File Operations
	redefining keys, this session, Changing Key Bindings Interactively
	redo, Undo
	refreshing displayed files, Updating the Dired Buffer
	regexp, Syntax of Regular Expressions
	regexp search, Regular Expression Search
	region, The Mark and the Region
	region highlighting, Disabling Transient Mark Mode
	registered file, Concepts of Version Control
	registers, Registers
	registry, setting environment variables (MS-Windows), The MS-Windows System Registry
	registry, setting resources (MS-Windows), X Resources
	regular expression, Syntax of Regular Expressions
	related files, Other Commands for C Mode
	reload files, Saving Emacs Sessions
	remember editing session, Saving Emacs Sessions
	remote file access, Remote Files
	remote host, Remote Host Shell
	remote host, debugging on, Starting GUD
	remote repositories (CVS), Options specific for CVS
	remove indentation, Indentation Commands
	remove-hook, Hooks
	remove-untranslated-filesystem, Text Files and Binary Files
	rename-buffer, Miscellaneous Buffer Operations
	rename-file, Miscellaneous File Operations
	rename-uniquely, Miscellaneous Buffer Operations
	renaming files, Miscellaneous File Operations
	renaming files (in Dired), Operating on Files
	renaming version-controlled files, Deleting and Renaming Version-Controlled Files
	repeat, Repeating a Command
	repeat-complex-command, Repeating Minibuffer Commands
	repeating a command, Repeating a Command
	replace-regexp, Regexp Replacement
	replace-string, Unconditional Replacement
	replacement, Replacement Commands
	reply to a message, Sending Replies
	report-emacs-bug, Checklist for Bug Reports
	reporting bugs, Checklist for Bug Reports
	reposition-window, Recentering
	repository, Concepts of Version Control
	require-final-newline, Customizing Saving of Files
	reread a file, Reverting a Buffer
	resize-mini-windows, Editing in the Minibuffer
	resizing minibuffer, Editing in the Minibuffer
	resolving conflicts, Merging Branches
	resource files for GTK, GTK resources
	resource name, command-line argument, X Resources
	resource values, command-line argument, X Resources
	resources, X Resources
	restore session, Saving Emacs Sessions
	restriction, Narrowing
	RET, Inserting Text
	RET (completion in minibuffer), Completion Exit
	RET (Dired), Visiting Files in Dired
	RET (GDB Breakpoints buffer), Breakpoints Buffer
	RET (GDB speedbar), Watch Expressions
	RET (Help mode), Help Mode Commands
	RET (Occur mode), Other Search-and-Loop Commands
	RET (Shell mode), Shell Mode
	retrying a failed message, Sending Replies
	reveal-mode, Outline Visibility Commands
	reverse order in POP inboxes, Retrieving Mail from Remote Mailboxes
	reverse video, command-line argument, Window Color Options
	revert-buffer, Reverting a Buffer
	revert-buffer (Dired), Updating the Dired Buffer
	revert-buffer-with-coding-system, Specifying a Coding System for File Text
	revert-without-query, Reverting a Buffer
	revision, Concepts of Version Control
	revision ID, Concepts of Version Control
	revision ID in version control, Advanced Control in C-x v v
	revision tag, Revision Tags
	RGB triplet, Colors for Faces
	rgrep, Searching with Grep under Emacs
	RIGHT, Changing the Location of Point
	right-char, Changing the Location of Point
	right-to-left text, Bidirectional Editing
	right-word, Changing the Location of Point
	risky variable, Safety of File Variables
	RLM, Bidirectional Editing
	Rlogin, Remote Host Shell
	Rmail, Reading Mail with Rmail
	rmail, Reading Mail with Rmail
	Rmail file sorting, Sorting the Rmail File
	rmail-add-label, Labels
	rmail-automatic-folder-directives, Copying Messages Out to Files
	rmail-beginning-of-message, Scrolling Within a Message
	rmail-bury, Basic Concepts of Rmail
	rmail-continue, Sending Replies
	rmail-decode-mime-charset, Recognizing Coding Systems
	rmail-delete-after-output, Copying Messages Out to Files
	rmail-delete-backward, Deleting Messages
	rmail-delete-forward, Deleting Messages
	rmail-delete-message-hook, Deleting Messages
	rmail-displayed-headers, Display of Messages
	rmail-edit-current-message, Editing Within a Message
	rmail-edit-mode-hook, Editing Within a Message
	rmail-enable-mime, Display of Messages
	rmail-enable-mime-composing, Sending Replies
	rmail-end-of-message, Scrolling Within a Message
	rmail-epa-decrypt, Display of Messages
	rmail-expunge, Deleting Messages
	rmail-expunge-and-save, Basic Concepts of Rmail
	rmail-file-coding-system, Recognizing Coding Systems
	rmail-file-name, Basic Concepts of Rmail
	rmail-first-message, Moving Among Messages
	rmail-forward, Sending Replies
	rmail-get-new-mail, Multiple Rmail Files
	rmail-highlighted-headers, Display of Messages
	rmail-ignored-headers, Display of Messages
	rmail-inbox-list, Multiple Rmail Files
	rmail-input, Multiple Rmail Files
	rmail-kill-label, Labels
	rmail-last-message, Moving Among Messages
	rmail-mail, Sending Replies
	rmail-mail-new-frame, Sending Replies
	rmail-mime, Display of Messages
	rmail-mime-next-item, Display of Messages
	rmail-mime-previous-item, Display of Messages
	rmail-mime-toggle-hidden, Display of Messages
	rmail-mode, Reading Mail with Rmail
	rmail-mode-hook, Reading Mail with Rmail
	rmail-movemail-flags, Retrieving Mail from Remote Mailboxes
	rmail-movemail-program, movemail program
	rmail-movemail-search-path, movemail program
	rmail-next-labeled-message, Labels
	rmail-next-message, Moving Among Messages
	rmail-next-same-subject, Moving Among Messages
	rmail-next-undeleted-message, Moving Among Messages
	rmail-nonignored-headers, Display of Messages
	rmail-output, Copying Messages Out to Files
	rmail-output-as-seen, Copying Messages Out to Files
	rmail-output-body-to-file, Copying Messages Out to Files
	rmail-output-file-alist, Copying Messages Out to Files
	rmail-preserve-inbox, Rmail Files and Inboxes
	rmail-previous-labeled-message, Labels
	rmail-previous-message, Moving Among Messages
	rmail-previous-same-subject, Moving Among Messages
	rmail-previous-undeleted-message, Moving Among Messages
	rmail-primary-inbox-list, Rmail Files and Inboxes
	rmail-quit, Basic Concepts of Rmail
	rmail-redecode-body, Rmail and Coding Systems
	rmail-redisplay-summary, Editing in Summaries
	rmail-remote-password, Retrieving Mail from Remote Mailboxes
	rmail-remote-password-required, Retrieving Mail from Remote Mailboxes
	rmail-reply, Sending Replies
	rmail-resend, Sending Replies
	rmail-retry-failure, Sending Replies
	rmail-retry-ignored-headers, Sending Replies
	rmail-search, Moving Among Messages
	rmail-secondary-file-directory, Multiple Rmail Files
	rmail-secondary-file-regexp, Multiple Rmail Files
	rmail-show-message, Moving Among Messages
	rmail-sort-by-author, Sorting the Rmail File
	rmail-sort-by-correspondent, Sorting the Rmail File
	rmail-sort-by-date, Sorting the Rmail File
	rmail-sort-by-labels, Sorting the Rmail File
	rmail-sort-by-lines, Sorting the Rmail File
	rmail-sort-by-recipient, Sorting the Rmail File
	rmail-sort-by-subject, Sorting the Rmail File
	rmail-summary, Making Summaries
	rmail-summary-bury, Editing in Summaries
	rmail-summary-by-labels, Making Summaries
	rmail-summary-by-recipients, Making Summaries
	rmail-summary-by-regexp, Making Summaries
	rmail-summary-by-senders, Making Summaries
	rmail-summary-by-topic, Making Summaries
	rmail-summary-line-count-flag, Making Summaries
	rmail-summary-quit, Editing in Summaries
	rmail-summary-undelete-many, Editing in Summaries
	rmail-summary-window-size, Making Summaries
	rmail-summary-wipe, Editing in Summaries
	rmail-toggle-header, Display of Messages
	rmail-undelete-previous-message, Deleting Messages
	Romanian, International Character Set Support
	rosh hodesh, Sexp Entries and the Fancy Diary Display
	rot13 code, Reading Rot13 Messages
	rot13-other-window, Reading Rot13 Messages
	Ruby mode, Major Modes for Programming Languages
	run-lisp, Running an External Lisp
	run-scheme, Running an External Lisp
	runemacs.exe, How to Start Emacs on MS-Windows
	running a hook, Hooks
	running Lisp functions, Compiling and Testing Programs

S
	S (Calendar mode), Times of Sunrise and Sunset
	s (Calendar mode), Displaying the Diary
	S (Dired), Operating on Files
	s (Dired), Updating the Dired Buffer
	s (Gnus Summary mode), Using the Gnus Summary Buffer
	s (Rmail), Basic Concepts of Rmail
	s (View mode), View Mode
	S-Mouse-2, Hideshow minor mode
	S-Mouse-3 (FFAP), Finding Files and URLs at Point
	S-TAB (customization buffer), Customization Groups
	S-TAB (Help mode), Help Mode Commands
	S-TAB (Org Mode), Org Mode
	safe-local-eval-forms, Safety of File Variables
	safe-local-variable-values, Safety of File Variables
	same-window-buffer-names, How display-buffer works
	same-window-regexps, How display-buffer works
	save-abbrevs, Saving Abbrevs
	save-buffer, Commands for Saving Files
	save-buffers-kill-terminal, Exiting Emacs
	save-interprogram-paste-before-kill, Using the Clipboard
	save-some-buffers, Commands for Saving Files
	saved echo area messages, The Echo Area
	saving a setting, Changing a Variable
	saving file name in a register, Keeping File Names in Registers
	saving files, Visiting Files
	saving keyboard macros, Naming and Saving Keyboard Macros
	saving number in a register, Keeping Numbers in Registers
	saving position in a register, Saving Positions in Registers
	saving rectangle in a register, Saving Rectangles in Registers
	saving sessions, Saving Emacs Sessions
	saving text in a register, Saving Text in Registers
	saving window configuration in a register, Saving Window Configurations in Registers
	SCCS, Supported Version Control Systems
	Scheme mode, Running an External Lisp
	scheme-mode, Running an External Lisp
	scheme-mode-hook, Major Modes for Programming Languages
	screen, The Organization of the Screen
	screen reader software, MS-Windows, Miscellaneous Windows-specific features
	script mode, Initial Options
	Scroll Bar mode, Scroll Bars
	Scroll-all mode, Convenience Features for Window Handling
	scroll-all-mode, Convenience Features for Window Handling, Emulation
	scroll-bar-mode, Scroll Bars
	scroll-bar-width, Scroll Bars
	scroll-command property, Scrolling
	scroll-conservatively, Automatic Scrolling
	scroll-down, Scrolling
	scroll-down-aggressively, Automatic Scrolling
	scroll-down-command, Scrolling
	scroll-down-line, Scrolling
	scroll-error-top-bottom, Scrolling
	scroll-left, Horizontal Scrolling
	scroll-margin, Automatic Scrolling
	scroll-other-window, Using Other Windows
	scroll-preserve-screen-position, Scrolling
	scroll-right, Horizontal Scrolling
	scroll-step, Automatic Scrolling
	scroll-up, Scrolling
	scroll-up-aggressively, Automatic Scrolling
	scroll-up-command, Scrolling
	scroll-up-line, Scrolling
	scrollbar width, Table of X Resources for Emacs
	scrolling, Scrolling
	scrolling all windows, Emulation
	scrolling in the calendar, Scrolling in the Calendar
	scrolling windows together, Convenience Features for Window Handling
	SDB, Running Debuggers Under Emacs
	sdb, Starting GUD
	sdb-mode-hook, GUD Customization
	search and replace in multiple files, Searching and Replacing with Tags Tables
	search and replace in multiple files (in Dired), Operating on Files
	search for a regular expression, Regular Expression Search
	search multiple files (in Dired), Operating on Files
	search ring, Repeating Incremental Search
	search-and-replace commands, Replacement Commands
	search-backward, Nonincremental Search
	search-forward, Nonincremental Search
	search-whitespace-regexp, Regular Expression Search
	searching, Searching and Replacement
	searching Dired buffers, Navigation in the Dired Buffer
	searching documentation efficiently, Help
	searching in Rmail, Moving Among Messages
	searching multiple files via Dired, Other Dired Features
	secondary selection, Secondary Selection
	sections of manual pages, Man Page Lookup
	select all, Commands to Mark Textual Objects
	select-active-regions, Cut and Paste with Other Window Applications
	select-frame-by-name, Non-Window Terminals
	selected buffer, Using Multiple Buffers
	selected window, Concepts of Emacs Windows
	selecting buffers in other windows, Displaying in Another Window
	selection, primary, Cut and Paste with Other Window Applications
	selective display, Selective Display
	selective undo, Undo
	selective-display-ellipses, Selective Display
	self-documentation, Help
	Semantic mode, Semantic
	Semantic package, Semantic
	send-invisible, Shell Mode
	send-mail-function, Mail Sending
	sending mail, Sending Mail
	sending patches for GNU Emacs, Sending Patches for GNU Emacs
	Sendmail, Mail Sending
	sendmail-coding-system, Choosing Coding Systems for Output, Mail Sending
	sentence-end, Sentences
	sentence-end-double-space, Sentences
	sentence-end-without-period, Sentences
	sentences, Sentences
	serial-term, Serial Terminal
	server file, emacsclient Options
	server, using Emacs as, Using Emacs as a Server
	server-edit, Invoking emacsclient
	server-eval-at, Using Emacs as a Server
	server-host, emacsclient Options
	server-kill-new-buffers, Invoking emacsclient
	server-name, Using Emacs as a Server
	server-port, emacsclient Options
	server-side fonts, Fonts
	server-start, Using Emacs as a Server
	server-temp-file-regexp, Invoking emacsclient
	server-use-tcp, emacsclient Options
	server-window, Invoking emacsclient
	set buffer face height, Text Scale
	set-buffer-file-coding-system, Specifying a Coding System for File Text
	set-buffer-process-coding-system, Coding Systems for Interprocess Communication
	set-face-background, Colors for Faces
	set-face-foreground, Colors for Faces
	set-file-modes, Miscellaneous File Operations
	set-file-name-coding-system, Coding Systems for File Names
	set-fill-column, Explicit Fill Commands
	set-fill-prefix, The Fill Prefix
	set-fontset-font, Modifying Fontsets
	set-frame-name, Non-Window Terminals
	set-fringe-style, Window Fringes
	set-goal-column, Changing the Location of Point
	set-input-method, Selecting an Input Method
	set-justification-center, Justification in Enriched Text
	set-justification-full, Justification in Enriched Text
	set-justification-left, Justification in Enriched Text
	set-justification-none, Justification in Enriched Text
	set-justification-right, Justification in Enriched Text
	set-keyboard-coding-system, Coding Systems for Terminal I/O
	set-language-environment, Language Environments
	set-language-environment-hook, Language Environments
	set-left-margin, Indentation in Enriched Text
	set-locale-environment, Language Environments
	set-mark-command, Setting the Mark
	set-mark-command-repeat-pop, The Mark Ring
	set-next-selection-coding-system, Coding Systems for Interprocess Communication
	set-right-margin, Indentation in Enriched Text
	set-selection-coding-system, Coding Systems for Interprocess Communication
	set-selective-display, Selective Display
	set-terminal-coding-system, Coding Systems for Terminal I/O
	set-variable, Examining and Setting Variables
	set-visited-file-name, Commands for Saving Files
	setenv, Environment Variables
	setq-default, Local Variables
	setting a mark, The Mark and the Region
	setting variables, Examining and Setting Variables
	settings, Easy Customization Interface
	settings, how to save, Changing a Variable
	sexp, Expressions with Balanced Parentheses
	sexp diary entries, Sexp Entries and the Fancy Diary Display
	SGML mode, SGML and HTML Modes
	sgml-attributes, SGML and HTML Modes
	sgml-close-tag, SGML and HTML Modes
	sgml-delete-tag, SGML and HTML Modes
	sgml-mode, SGML and HTML Modes
	sgml-name-8bit-mode, SGML and HTML Modes
	sgml-name-char, SGML and HTML Modes
	sgml-skip-tag-backward, SGML and HTML Modes
	sgml-skip-tag-forward, SGML and HTML Modes
	sgml-tag, SGML and HTML Modes
	sgml-tag-help, SGML and HTML Modes
	sgml-tags-invisible, SGML and HTML Modes
	sgml-validate, SGML and HTML Modes
	sgml-xml-mode, SGML and HTML Modes
	shadow files, Shadowing Files
	shadow-initialize, Shadowing Files
	shell, Interactive Subshell
	shell commands, Running Shell Commands from Emacs
	shell commands, Dired, Shell Commands in Dired
	SHELL environment variable, Interactive Subshell
	Shell mode, Shell Mode
	shell scripts, and local file variables, Specifying File Variables
	shell-backward-command, Shell Mode
	shell-cd-regexp, Directory Tracking
	shell-command, Single Shell Commands
	shell-command-default-error-buffer, Single Shell Commands
	shell-command-on-region, Single Shell Commands
	shell-command-regexp, Shell Mode
	shell-completion-execonly, Shell Mode Options
	shell-completion-fignore, Shell Mode
	shell-file-name, Single Shell Commands
	shell-forward-command, Shell Mode
	shell-input-ring-file-name, Shell History Ring
	shell-popd-regexp, Directory Tracking
	shell-prompt-pattern, Shell Prompts
	shell-pushd-dextract, Shell Mode Options
	shell-pushd-dunique, Shell Mode Options
	shell-pushd-regexp, Directory Tracking
	shell-pushd-tohome, Shell Mode Options
	Shell-script mode, Major Modes for Programming Languages
	shelves in version control, VC Directory Commands
	shift-selection, Setting the Mark, Shift Selection
	Show Paren mode, Matching Parentheses
	show-all, Outline Visibility Commands
	show-branches, Outline Visibility Commands
	show-children, Outline Visibility Commands
	show-entry, Outline Visibility Commands
	show-paren-mode, Matching Parentheses
	show-subtree, Outline Visibility Commands
	show-trailing-whitespace, Useless Whitespace
	showing hidden subdirectories (Dired), Hiding Subdirectories
	shrink-window-horizontally, Deleting and Rearranging Windows
	shrink-window-if-larger-than-buffer, Deleting and Rearranging Windows
	shy group, in regexp, Backslash in Regular Expressions
	signing files (in Dired), Operating on Files
	Simula mode, Major Modes for Programming Languages
	simulation of middle mouse button, Mouse Usage on MS-Windows
	simultaneous editing, Protection against Simultaneous Editing
	site init file, The Emacs Initialization File
	site-start.el file, not loading, Initial Options
	site-start.el, the site startup file, The Emacs Initialization File
	size of file, warning when visiting, Visiting Files
	size of minibuffer, Editing in the Minibuffer
	size-indication-mode, Optional Mode Line Features
	slashes repeated in file name, Minibuffers for File Names
	SliTeX mode, TeX Mode
	slitex-mode, TeX Mode
	slitex-mode-hook, TeX Mode Miscellany
	Slovak, International Character Set Support
	Slovenian, International Character Set Support
	slow display during scrolling, Font Lock mode
	small-temporary-file-directory, Backup Files
	Smerge mode, Comparing Files
	smerge-mode, Comparing Files
	SMTP, Mail Sending
	snake, Other Amusements
	Snake, Other Amusements
	soft hyphen, How Text Is Displayed
	soft newline, Hard and Soft Newlines
	solitaire, Other Amusements
	sort-columns, Sorting Text
	sort-fields, Sorting Text
	sort-fold-case, Sorting Text
	sort-lines, Sorting Text
	sort-numeric-base, Sorting Text
	sort-numeric-fields, Sorting Text
	sort-pages, Sorting Text
	sort-paragraphs, Sorting Text
	sorting, Sorting Text
	sorting diary entries, Fancy Diary Display
	sorting Dired buffer, Updating the Dired Buffer
	sorting Rmail file, Sorting the Rmail File
	Spanish, International Character Set Support
	SPC (Calendar mode), Miscellaneous Calendar Commands
	SPC (completion), Completion Commands
	SPC (Dired), Navigation in the Dired Buffer
	SPC (DocView mode), DocView Navigation
	SPC (GDB Breakpoints buffer), Breakpoints Buffer
	SPC (Gnus Group mode), Using the Gnus Group Buffer
	SPC (Gnus Summary mode), Using the Gnus Summary Buffer
	SPC (Rmail), Scrolling Within a Message
	SPC (View mode), View Mode
	specific version control system, Advanced Control in C-x v v
	specify default font from the command line, Font Specification Options
	specify end-of-line conversion, Specifying a Coding System for File Text
	specifying fullscreen for Emacs frame, Options for Window Size and Position
	speedbar, Speedbar Frames
	spell-checking the active region, Checking and Correcting Spelling
	spelling, checking and correcting, Checking and Correcting Spelling
	splash screen, Initial Options
	split-height-threshold, How display-buffer works
	split-line, Indentation Commands
	split-width-threshold, How display-buffer works
	split-window-below, Splitting Windows
	split-window-keep-point, Splitting Windows
	split-window-right, Splitting Windows
	splitting columns, Two-Column Editing
	splitting table cells, Commands for Table Cells
	spook, Mail Amusements
	standard colors on a character terminal, Window Color Options
	standard fontset, Defining fontsets
	standard-display-8bit, Unibyte Editing Mode
	standard-fontset-spec, Defining fontsets
	standard-indent, Indentation in Enriched Text
	start directory, MS-Windows, How to Start Emacs on MS-Windows
	start iconified, command-line argument, Icons
	starting Emacs, Entering Emacs
	starting Emacs on MS-Windows, How to Start Emacs on MS-Windows
	startup (command line arguments), Command Line Arguments for Emacs Invocation
	startup (init file), The Emacs Initialization File
	startup fontset, Defining fontsets
	startup message, Initial Options
	startup screen, Entering Emacs
	stashes in version control, VC Directory Commands
	string substitution, Replacement Commands
	string syntax, Init File Syntax
	string-insert-rectangle, Rectangles
	string-rectangle, Rectangles
	style (for indentation), Customizing C Indentation
	subdirectories in Dired, Subdirectories in Dired
	subprocesses on MS-Windows, Subprocesses on Windows 9X/ME and Windows NT/2K/XP
	subscribe groups, Using the Gnus Group Buffer
	subshell, Running Shell Commands from Emacs
	substitute-key-definition, Init File Examples
	subtree (Outline mode), Outline Visibility Commands
	Subversion, Supported Version Control Systems
	subword-mode, Other Commands for C Mode
	suggest-key-bindings, Running Commands by Name
	summary (Rmail), Summaries
	summing time intervals, Summing Time Intervals
	sunrise and sunset, Times of Sunrise and Sunset
	sunrise-sunset, Times of Sunrise and Sunset
	Super (under MS-DOS), Keyboard Usage on MS-DOS
	suspend-frame, Exiting Emacs, Frame Commands
	suspending, Exiting Emacs
	suspicious constructions in C, C++, Other Commands for C Mode
	SVN, Supported Version Control Systems
	switch buffers, Creating and Selecting Buffers
	switch-to-buffer, Creating and Selecting Buffers
	switch-to-buffer-other-frame, Creating and Selecting Buffers
	switch-to-buffer-other-window, Creating and Selecting Buffers, Displaying in Another Window
	switch-to-completions, Completion Commands
	switches (command line), Command Line Arguments for Emacs Invocation
	symbolic links (and version control), General Options
	symbolic links (creation in Dired), Operating on Files
	symbolic links (creation), Miscellaneous File Operations
	symbolic links (visiting), File Name Aliases
	synchronizing windows, Follow Mode
	synchronous X mode, Table of X Resources for Emacs
	syntax highlighting and coloring, Font Lock mode
	syntax of regexps, Syntax of Regular Expressions
	system-wide packages, Package Files and Directory Layout

T
	t, Glossary
	t (Calendar mode), Writing Calendar Files
	t (Dired), Dired Marks vs. Flags
	T (Dired), Operating on Files
	t (Rmail), Display of Messages
	TAB (and major modes), Major Modes
	TAB (completion), Completion Example, Completion Commands
	TAB (customization buffer), Customization Groups
	TAB (GUD), Commands of GUD
	TAB (Help mode), Help Mode Commands
	TAB (indentation), Indentation
	TAB (Message mode), Mail Header Editing
	TAB (Org Mode), Org Mode
	TAB (programming modes), Basic Program Indentation Commands
	TAB (Shell mode), Shell Mode
	TAB (Text mode), Text Mode
	tab stops, Tab Stops
	tab-always-indent, Convenience Features for Indentation
	tab-stop-list, Tab Stops
	tab-to-tab-stop, Indentation Commands
	tab-width, How Text Is Displayed, Tabs vs. Spaces
	tabify, Tabs vs. Spaces
	table creation, Creating a Table
	table dimensions, Table Miscellany
	table for HTML and LaTeX, Table Miscellany
	table mode, Editing Text-based Tables
	table recognition, Table Recognition
	table to text, Converting Between Plain Text and Tables
	table-backward-cell, Commands for Table Cells
	table-capture, Converting Between Plain Text and Tables
	table-cell-horizontal-chars, What is a Text-based Table?
	table-cell-intersection-char, What is a Text-based Table?
	table-cell-vertical-char, What is a Text-based Table?
	table-detect-cell-alignment, Cell Justification
	table-fixed-width-mode, Editing Text-based Tables
	table-forward-cell, Commands for Table Cells
	table-generate-source, Table Miscellany
	table-heighten-cell, Commands for Table Cells
	table-insert, Creating a Table
	table-insert-column, Table Rows and Columns
	table-insert-row, Table Rows and Columns
	table-insert-sequence, Table Miscellany
	table-justify, Cell Justification
	table-narrow-cell, Commands for Table Cells
	table-query-dimension, Table Miscellany
	table-recognize, Table Recognition
	table-recognize-cell, Table Recognition
	table-recognize-region, Table Recognition
	table-recognize-table, Table Recognition
	table-release, Converting Between Plain Text and Tables
	table-shorten-cell, Commands for Table Cells
	table-span-cell, Commands for Table Cells
	table-split-cell, Commands for Table Cells
	table-split-cell-horizontally, Commands for Table Cells
	table-split-cell-vertically, Commands for Table Cells
	table-unrecognize, Table Recognition
	table-unrecognize-cell, Table Recognition
	table-unrecognize-region, Table Recognition
	table-unrecognize-table, Table Recognition
	table-widen-cell, Commands for Table Cells
	tabs, Indentation
	tags and tag tables, Tags Tables
	tags for version control, Revision Tags
	tags, C++, Tags Tables
	tags-apropos, Tags Table Inquiries
	tags-apropos-additional-actions, Tags Table Inquiries
	tags-apropos-verbose, Tags Table Inquiries
	tags-based completion, Completion for Symbol Names
	tags-case-fold-search, Searching and Replacing with Tags Tables
	tags-file-name, Selecting a Tags Table
	tags-loop-continue, Searching and Replacing with Tags Tables
	tags-query-replace, Searching and Replacing with Tags Tables
	tags-search, Searching and Replacing with Tags Tables
	tags-table-list, Selecting a Tags Table
	tags-tag-face, Tags Table Inquiries
	Tar mode, File Archives
	Tcl mode, Major Modes for Programming Languages
	Telnet, Remote Host Shell
	temporary-file-directory, Backup Files
	term, Emacs Terminal Emulator
	TERM environment variable, Checklist for Bug Reports
	Term mode, Term Mode
	term-char-mode, Term Mode
	term-file-prefix, Terminal-specific Initialization
	term-line-mode, Term Mode
	term-pager-toggle, Term Mode
	term-setup-hook, Terminal-specific Initialization
	terminal emulators, mouse support, Using a Mouse in Text Terminals
	terminal, serial, Serial Terminal
	termscript file, Checklist for Bug Reports
	tetris, Other Amusements
	Tetris, Other Amusements
	TeX encoding, TeX Mode Miscellany
	TeX mode, TeX Mode
	tex-bibtex-command, TeX Printing Commands
	tex-bibtex-file, TeX Printing Commands
	tex-buffer, TeX Printing Commands
	tex-close-latex-block, LaTeX Editing Commands
	tex-compile, TeX Printing Commands
	tex-default-mode, TeX Mode
	tex-directory, TeX Printing Commands
	tex-dvi-print-command, TeX Printing Commands
	tex-dvi-view-command, TeX Printing Commands
	tex-file, TeX Printing Commands
	tex-insert-braces, TeX Editing Commands
	tex-insert-quote, TeX Editing Commands
	tex-kill-job, TeX Printing Commands
	tex-latex-block, LaTeX Editing Commands
	tex-main-file, TeX Printing Commands
	tex-mode, TeX Mode
	tex-mode-hook, TeX Mode Miscellany
	tex-print, TeX Printing Commands
	tex-recenter-output-buffer, TeX Printing Commands
	tex-region, TeX Printing Commands
	tex-run-command, TeX Printing Commands
	tex-shell-hook, TeX Mode Miscellany
	tex-start-commands, TeX Printing Commands
	tex-start-options, TeX Printing Commands
	tex-terminate-paragraph, TeX Editing Commands
	tex-validate-region, TeX Editing Commands
	tex-view, TeX Printing Commands
	TEXEDIT environment variable, Using Emacs as a Server
	TEXINPUTS environment variable, TeX Printing Commands
	text, Commands for Human Languages
	text and binary files on MS-DOS/MS-Windows, Text Files and Binary Files
	text buttons, Following References with the Mouse
	text colors, from command line, Window Color Options
	text cursor, Displaying the Cursor
	Text mode, Text Mode
	text properties at point, Introduction to International Character Sets
	text properties of characters, Editing Format Information
	text terminal, Non-Window Terminals
	text to table, Converting Between Plain Text and Tables
	text-based tables, Editing Text-based Tables
	text-based tables, splitting cells, Commands for Table Cells
	text-mode, Text Mode
	text-mode-hook, Major Modes, Text Mode
	text-scale-adjust, Text Scale
	text-scale-decrease, Text Scale
	text-scale-increase, Text Scale
	text-scale-mode, Text Scale
	text-scale-set, Text Scale
	text/enriched MIME format, Enriched Text
	Thai, International Character Set Support
	thumbs-mode, Convenience Features for Finding Files
	Tibetan, International Character Set Support
	time (on mode line), Optional Mode Line Features
	time intervals, summing, Summing Time Intervals
	time stamps, Updating Time Stamps Automatically
	time-stamp, Updating Time Stamps Automatically
	timeclock, Summing Time Intervals
	timeclock-ask-before-exiting, Summing Time Intervals
	timeclock-change, Summing Time Intervals
	timeclock-file, Summing Time Intervals
	timeclock-in, Summing Time Intervals
	timeclock-modeline-display, Summing Time Intervals
	timeclock-out, Summing Time Intervals
	timeclock-reread-log, Summing Time Intervals
	timeclock-when-to-leave, Summing Time Intervals
	timeclock-workday-remaining, Summing Time Intervals
	TLS encryption (Rmail), Retrieving Mail from Remote Mailboxes
	tmm-menubar, The Menu Bar
	TODO item, Org as an organizer
	toggle-debug-on-error, Checklist for Bug Reports
	toggle-enable-multibyte-characters, Disabling Multibyte Characters
	toggle-gdb-all-registers, Other GDB Buffers
	toggle-input-method, Selecting an Input Method
	toggle-read-only, Miscellaneous Buffer Operations
	toggle-scroll-bar, Scroll Bars
	toggle-truncate-lines, Line Truncation
	toggling marks (in Dired), Dired Marks vs. Flags
	tool bar, Table of X Resources for Emacs
	Tool Bar mode, Tool Bars
	Tool Bar position, Tool Bars
	Tool Bar style, Tool Bars
	tool-bar-mode, Tool Bars
	tool-bar-style, Tool Bars
	tooltip-delay, Tooltips
	tooltip-mode, Tooltips
	tooltips, Help on Active Text and Tooltips, Tooltips
	top level, The Mode Line
	top-level, Quitting and Aborting
	tower of Hanoi, Other Amusements
	TPU, Emulation
	tpu-edt-on, Emulation
	track-eol, Changing the Location of Point
	trailing whitespace, Useless Whitespace
	Tramp, Remote Files
	Transient Mark mode, Disabling Transient Mark Mode
	transient-mark-mode, Disabling Transient Mark Mode
	transpose-chars, Transposing Text
	transpose-lines, Transposing Text
	transpose-sexps, Expressions with Balanced Parentheses
	transpose-words, Transposing Text
	transposition of expressions, Expressions with Balanced Parentheses
	trash, Miscellaneous File Operations
	triple clicks, Rebinding Mouse Buttons
	truenames of files, File Name Aliases
	truncate-lines, Line Truncation
	truncate-partial-width-windows, Line Truncation, Splitting Windows
	truncation, Continuation Lines, Line Truncation
	tty-suppress-bold-inverse-default-colors, Customization of Display
	Turkish, International Character Set Support
	turn multibyte support on or off, Disabling Multibyte Characters
	two directories (in Dired), Operating on Files
	two-column editing, Two-Column Editing
	types of log file, Types of Log File
	typos, fixing, Commands for Fixing Typos

U
	u (Calendar mode), Holidays
	u (Dired deletion), Deleting Files with Dired
	u (Dired), Dired Marks vs. Flags
	U (Dired), Dired Marks vs. Flags
	u (Gnus Group mode), Using the Gnus Group Buffer
	u (Rmail), Deleting Messages
	ucs-insert, Inserting Text
	unbalanced parentheses and quotes, Commands for Editing with Parentheses
	uncomment-region, Comment Commands
	uncompression, Accessing Compressed Files
	undecided, coding system, Coding Systems
	undeletion (Rmail), Deleting Messages
	underline-minimum-offset, Customization of Display
	undigestify, Digest Messages
	undigestify-rmail-message, Digest Messages
	undisplayable characters, Introduction to International Character Sets
	undo, Undo
	undo limit, Undo
	undo-limit, Undo
	undo-only, Undo
	undo-outer-limit, Undo
	undo-strong-limit, Undo
	undoing window configuration changes, Convenience Features for Window Handling
	unexpand-abbrev, Controlling Abbrev Expansion
	unforward-rmail-message, Sending Replies
	unhighlight-regexp, Interactive Highlighting
	Unibyte operation, Unibyte Editing Mode
	unibyte operation, and Lisp files, Disabling Multibyte Characters
	unibyte-display-via-language-environment, Unibyte Editing Mode
	Unicode, Introduction to International Character Sets
	Unicode characters, inserting, Inserting Text
	unique buffer names, Making Buffer Names Unique
	uniquify-buffer-name-style, Making Buffer Names Unique
	universal-argument, Numeric Arguments
	universal-coding-system-argument, Specifying a Coding System for File Text
	unmarking files (in Dired), Dired Marks vs. Flags
	unmorse-region, Other Amusements
	unsubscribe groups, Using the Gnus Group Buffer
	untabify, Tabs vs. Spaces
	untranslated file system, Text Files and Binary Files
	unused lines, Useless Whitespace
	unzip archives, File Archives
	UP, Changing the Location of Point
	UP (minibuffer history), Minibuffer History
	up-list, TeX Editing Commands
	upcase file names, Transforming File Names in Dired
	upcase-region, Case Conversion Commands
	upcase-word, Case Conversion Commands
	updating Dired buffer, Updating the Dired Buffer
	URL, viewing in help, Help Mode Commands
	URLs, Following URLs
	URLs, activating, Activating URLs
	use-dialog-box, Using Dialog Boxes
	use-file-dialog, Using Dialog Boxes
	use-hard-newlines, Hard and Soft Newlines
	Usenet news, Gnus
	user name for remote file access, Remote Files
	user option, Easy Customization Interface
	user options, changing, Changing a Variable
	user-full-name, Mail Header Fields
	user-mail-address, Mail Header Fields, Init File Examples
	user-mail-address, initialization, General Variables
	UTF-8, Language Environments

V
	v (Dired), Visiting Files in Dired
	v (Rmail), Display of Messages
	variable, Variables
	variables, changing, Changing a Variable
	VC Directory buffer, VC Directory Mode
	VC filesets, Basic Editing under Version Control
	VC mode line indicator, Version Control and the Mode Line
	vc-annotate, Examining And Comparing Old Revisions
	vc-backend-header, Inserting Version Control Headers
	vc-command-messages, General Options
	vc-consult-headers, Inserting Version Control Headers, Options for RCS and SCCS
	vc-create-tag, Revision Tags
	vc-cvs-global-switches, Options specific for CVS
	vc-cvs-stay-local, The VC Directory Buffer, Options specific for CVS
	vc-delete-file, Deleting and Renaming Version-Controlled Files
	vc-diff, Examining And Comparing Old Revisions
	vc-diff-switches, Examining And Comparing Old Revisions
	vc-dir, VC Directory Mode
	vc-dir-mark, VC Directory Commands
	vc-dir-mark-all-files, VC Directory Commands
	vc-directory-exclusion-list, The VC Directory Buffer
	vc-ediff, Examining And Comparing Old Revisions
	vc-follow-symlinks, General Options
	vc-handled-backends, Customizing VC
	vc-insert-headers, Inserting Version Control Headers
	vc-log-mode-hook, Features of the Log Entry Buffer
	vc-log-show-limit, VC Change Log
	vc-make-backup-files, Backup Files, General Options
	vc-mistrust-permissions, Options for RCS and SCCS
	vc-next-action, Basic Editing under Version Control
	vc-path, General Options
	vc-print-log, VC Change Log
	vc-print-root-log, VC Change Log
	vc-pull, Pulling Changes into a Branch
	vc-register, Registering a File for Version Control
	vc-rename-file, Deleting and Renaming Version-Controlled Files
	vc-retrieve-tag, Revision Tags
	vc-revert, Undoing Version Control Actions
	vc-revert-show-diff, Undoing Version Control Actions
	vc-revision-other-window, Examining And Comparing Old Revisions
	vc-root-diff, Examining And Comparing Old Revisions
	vc-static-header-alist, Inserting Version Control Headers
	vc-stay-local, The VC Directory Buffer, Options specific for CVS
	vc-suppress-confirm, General Options
	vc-update-change-log, Change Logs and VC
	verifying digital signatures on files (in Dired), Operating on Files
	version control, Version Control
	version control log, Types of Log File
	version control status, Version Control and the Mode Line
	version-control, Single or Numbered Backups
	VERSION_CONTROL environment variable, Single or Numbered Backups
	vertical scroll bars, command-line argument, Other Display Options
	VHDL mode, Major Modes for Programming Languages
	vi, Emulation
	vi-mode, Emulation
	Vietnamese, International Character Set Support
	View mode, View Mode
	view-buffer, View Mode
	view-echo-area-messages, Other Help Commands
	view-emacs-debugging, Help Files
	view-emacs-FAQ, Help Files
	view-emacs-news, Help Files
	view-emacs-problems, Help Files
	view-emacs-todo, Help Files
	View-exit, View Mode
	view-external-packages, Help Files
	view-file, View Mode
	view-hello-file, Introduction to International Character Sets
	view-lossage, Other Help Commands
	view-order-manuals, Help Files
	View-quit, View Mode
	view-register, Registers
	viewing web pages in help, Help Mode Commands
	views of an outline, Viewing One Outline in Multiple Views
	vip-mode, Emulation
	viper-mode, Emulation
	visible-bell, Customization of Display
	visible-cursor, Displaying the Cursor
	visit-tags-table, Selecting a Tags Table
	visiting files, Visiting Files
	visiting files, command-line argument, Action Arguments
	Visual Line mode, Visual Line Mode
	visual order, Bidirectional Editing
	visual-line-mode, Visual Line Mode

W
	w (Dired), Other Dired Features
	w (Rmail), Copying Messages Out to Files
	w32-alt-is-meta, Keyboard Usage on MS-Windows
	w32-apps-modifier, Keyboard Usage on MS-Windows
	w32-capslock-is-shiftlock, Keyboard Usage on MS-Windows
	w32-charset-info-alist, Specifying Fonts on MS-Windows
	w32-enable-caps-lock, Keyboard Usage on MS-Windows
	w32-enable-num-lock, Keyboard Usage on MS-Windows
	w32-get-true-file-attributes, File Names on MS-Windows
	w32-grab-focus-on-raise, Miscellaneous Windows-specific features
	w32-lwindow-modifier, Keyboard Usage on MS-Windows
	w32-mouse-button-tolerance, Mouse Usage on MS-Windows
	w32-pass-alt-to-system, Keyboard Usage on MS-Windows
	w32-pass-extra-mouse-buttons-to-system, Mouse Usage on MS-Windows
	w32-pass-lwindow-to-system, Keyboard Usage on MS-Windows
	w32-pass-rwindow-to-system, Keyboard Usage on MS-Windows
	w32-quote-process-args, Subprocesses on Windows 9X/ME and Windows NT/2K/XP
	w32-recognize-altgr, Keyboard Usage on MS-Windows
	w32-register-hot-key, Keyboard Usage on MS-Windows
	w32-rwindow-modifier, Keyboard Usage on MS-Windows
	w32-scroll-lock-modifier, Keyboard Usage on MS-Windows
	w32-shell-execute, Subprocesses on Windows 9X/ME and Windows NT/2K/XP
	w32-standard-fontset-spec, Defining fontsets
	w32-swap-mouse-buttons, Mouse Usage on MS-Windows
	w32-unregister-hot-key, Keyboard Usage on MS-Windows
	w32-use-visible-system-caret, Miscellaneous Windows-specific features
	Watching expressions in GDB, Watch Expressions
	wdired mode, Editing the Dired Buffer
	wdired-change-to-wdired-mode, Editing the Dired Buffer
	wdired-finish-edit, Editing the Dired Buffer
	Web, Following URLs
	web pages, viewing in help, Help Mode Commands
	weeks, which day they start on, Beginning or End of Week, Month or Year
	what-cursor-position, Cursor Position Information, Introduction to International Character Sets
	what-line, Cursor Position Information
	what-page, Pages
	where-is, Documentation for a Key
	which-func-modes, Which Function Mode
	which-function-mode, Which Function Mode
	whitespace character, Indentation
	Whitespace mode, Useless Whitespace
	whitespace, trailing, Useless Whitespace
	whitespace-line-column, Useless Whitespace
	whitespace-mode, Useless Whitespace
	whitespace-style, Useless Whitespace
	wide block cursor, Displaying the Cursor
	widen, Narrowing
	widening, Narrowing
	widget-backward, Customization Groups
	widget-complete, Changing a Variable
	widget-forward, Customization Groups
	widgets at buffer position, Editing Format Information
	width and height of Emacs frame, Options for Window Size and Position
	width of the scroll bar, Scroll Bars
	wildcard characters in file names, Visiting Files
	Windmove package, Convenience Features for Window Handling
	windmove-default-keybindings, Convenience Features for Window Handling
	windmove-right, Convenience Features for Window Handling
	window configuration changes, undoing, Convenience Features for Window Handling
	window manager, keys stolen by, Kinds of User Input
	window-configuration-to-register, Saving Window Configurations in Registers
	window-min-height, Deleting and Rearranging Windows
	window-min-width, Deleting and Rearranging Windows
	Windows clipboard support, Mouse Usage on MS-DOS
	windows in Emacs, Multiple Windows
	Windows system menu, Keyboard Usage on MS-Windows
	windows, synchronizing, Follow Mode
	Winner mode, Convenience Features for Window Handling
	winner-mode, Convenience Features for Window Handling
	woman, Man Page Lookup
	word processing, Enriched Text
	word search, Word Search
	word wrap, Continuation Lines, Visual Line Mode
	word-search-backward, Word Search
	word-search-forward, Word Search
	words, Words
	words, case conversion, Case Conversion Commands
	WordStar, Emulation
	wordstar-mode, Emulation
	work file, Concepts of Version Control
	working tree, Concepts of Version Control
	World Wide Web, Following URLs
	wrapping, Continuation Lines
	write-abbrev-file, Saving Abbrevs
	write-file, Commands for Saving Files
	write-region, Miscellaneous File Operations
	write-region-inhibit-fsync, Customizing Saving of Files
	WYSIWYG, Enriched Text

X
	x (Calendar mode), Holidays
	x (Dired), Deleting Files with Dired
	X (Dired), Shell Commands in Dired
	x (Rmail), Deleting Messages
	X cutting and pasting, Cut and Paste with Other Window Applications
	X defaults file, Fonts
	X input methods, Table of X Resources for Emacs
	X Logical Font Description, Fonts
	X resources, X Resources
	X resources file, Fonts
	X selection, Cut and Paste with Other Window Applications
	x-gtk-file-dialog-help-text, Using Dialog Boxes
	x-gtk-show-hidden-files, Using Dialog Boxes
	x-gtk-use-system-tooltips, Tooltips
	x-mouse-click-focus-ignore-position, Mouse Commands for Editing
	x-select-enable-clipboard, Using the Clipboard
	x-select-enable-clipboard-manager, Using the Clipboard
	x-select-enable-primary, Using the Clipboard
	x-select-request-type, Coding Systems for Interprocess Communication
	x-stretch-cursor, Displaying the Cursor
	x-underline-at-descent-line, Customization of Display
	XDB, Running Debuggers Under Emacs
	xdb, Starting GUD
	xdb-mode-hook, GUD Customization
	XIM, Table of X Resources for Emacs
	XLFD, Fonts
	XML schema, SGML and HTML Modes
	xterm, Using a Mouse in Text Terminals

Y
	yahrzeits, Converting From Other Calendars, Sexp Entries and the Fancy Diary Display
	yank, Yanking
	yank-pop, Yanking Earlier Kills
	yank-pop-change-selection, Using the Clipboard
	yank-rectangle, Rectangles
	yanking, Yanking
	yanking previous kills, Yanking Earlier Kills

Z
	Z (Dired), Operating on Files
	zap-to-char, Other Kill Commands
	zip, File Archives
	Zmacs mode, Disabling Transient Mark Mode
	zone, Other Amusements
	zoo, File Archives
	zrgrep, Searching with Grep under Emacs

OEBPS/Images/cover01038.gif
GNU EMACS
MANUAL

