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Chapter 1
Introduction

Angelika Bikner-Ahsbahs

In the 1970s and 1980s, mathematics education was established as a scientific dis-
cipline in German-speaking countries through a process of institutionalization at
universities, the foundation of scientific media, and a scientific society. This raised
the question of how far the didactics of mathematics had been developed as a
scientific discipline. This question was discussed intensely in the 1980s, with both
appreciative and critical reference to Kuhn and Masterman. In 1984, Hans-Georg
Steiner inaugurated a series of international conferences on Theories of Mathematics
Education (TME), pursuing a scientific program aimed at founding and developing
the didactics of mathematics as a scientific discipline. Chapter 2 will show how this
discussion was related to a discourse on theories. Chapters 3 and 4 will present two
theory strands from German-speaking countries: with reference to Peirce and
Wittgenstein, semiotic approaches are presented by Willi Dorfler and a contribution
to activity theory in the work of Joachim Lompscher is presented by Regina Bruder
and Oliver Schmitt.

Addressing some TME issues, a more bottom-up meta-theoretical approach is
investigated in the networking of theories approach today. Chapter 5 will expound
this approach and its relation to the TME program. In this chapter, the reader is also
invited to take up this line of thought and pursue the networking of the two
presented theoretical views (from Chaps. 3 and 4) in the analysis of an empirical
case study of learning fractions and in an examination of how meta-theoretical
reflections may result in comprehending the relation of the two theories and the
complexity of teaching and learning better. In Chap. 6, we will look back in a short
summary and look ahead, proposing some general issues for a future discourse in
the field.
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2 1 Introduction

Finally, a list of references and a specific list for further reading are offered.
Since this survey focuses mainly on the German community of mathematics edu-
cation, the references encompass many German publications.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
duplication, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, a link is provided to the Creative
Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.


http://creativecommons.org/licenses/by/4.0/

Chapter 2
Theories in Mathematics Education
as a Scientific Discipline

Angelika Bikner-Ahsbahs and Andreas Vohns

This first chapter of the survey addresses the historical situation of the community
of mathematics education in German-speaking countries from the 1970s to the
beginning 21st century and its discussion about the concept of theories related to
mathematics education as a scientific discipline both in German-speaking countries
and internationally.

2.1 How to Understand Theories and How They Relate
to Mathematics Education as a Scientific Discipline:
A Discussion in the 1980s

On an institutional and organizational level, the 1970s and early 1980s were a time
of great change for mathematics education in the former West Germany'—both in
school and as a research domain. The Institute for Didactics of Mathematics
(Institut fiir Didaktik der Mathematik, IDM) was founded in 1973 in Bielefeld as
the first research institute in a German-speaking country specifically dedicated to
mathematics education research. In 1975 the Society of Didactics of Mathematics

'For an overview including the development in Austria, see Dorfler (2013b); for an account on the
development in Eastern Germany, see Walsch (2003).
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4 2 Theories in Mathematics Education as a Scientific Discipline

(Gesellschaft fiir Didaktik der Mathematik, GDM) was founded as the scientific
society of mathematics educators in German-speaking countries (see Bauersfeld
et al. 1984, pp. 169—197; Toepell 2004).

The teachers’ colleges (Pddagogische Hochschulen), at that time the home of
many mathematics educators, were either integrated into full universities or
developed into universities of education that were entitled to award doctorates. The
Hamburg Treaty (Hamburger Abkommen, KMK 1964/71) adopted in 1964 by the
Standing Conference of Ministers of Education and Cultural Affairs (KMK) led to
considerable organizational changes within the German school system. The tradi-
tional Volksschule (a common school covering both primary and secondary edu-
cation, Grades 1-8) was abolished and led to an even more differentiated secondary
school system, establishing two types of secondary schools called Hauptschule and
Realschule in addition to the already established Gymnasium. The Hamburg Treaty
also abolished the designations of the school subjects dedicated to mathematics
education, which was traditionally called Rechnen (translates as “practical arith-
metic”) in the Volksschule and as Mathematik in Gymnasium (see Griesel 2001;
Miiller and Wittmann 1984, pp. 146-170).

Likewise, there was a strong interest in discussing how far mathematics edu-
cation had developed as a scientific discipline, as documented in both of the
German-language journals on mathematics education founded at that time: the
Zentralblatt fiir Didaktik der Mathematik (ZDM, founded in 1969) and the Journal
fiir Mathematik-Didaktik (JMD, founded in 1980). In these discussions, two main
aspects were addressed: the role and suitable concept of theories for mathematics
education and how mathematics education as a scientific discipline was to be
founded and could be further developed. However, both aspects are deeply
intertwined.

Issue 6 (1974) of ZDM was dedicated to a broad discussion of the current state of
the field of “Didactics of Mathematics”/mathematics education. The issue was
edited by Hans-Georg Steiner and included contributions from Bigalke (1974),
Freudenthal (1974), Griesel (1974), Otte (1974), and Wittmann (1974), among
others. These articles were focused around the questions of (1) how to conceptu-
alize the subject area or domain of discourse of mathematics education as a sci-
entific discipline, (2) how mathematics education may substantiate its scientific
character, and (3) how to frame its relation to reference disciplines, especially
mathematics, psychology, and educational science. While there has been a great
diversity in the approaches to these questions and, likewise, to the definitions of
“Didactics of Mathematics” given by the various authors, cautioning against
reductionist approaches seemed to be a common topic of these papers. That is, the
authors agreed upon the view that mathematics education cannot be meaningfully
conceptualized as a subdomain of mathematics, psychology, or educational science
alone.

The role of theory was more explicitly discussed about 10 years later in two
papers (Burscheid 1983; Bigalke 1984) and in two comments (Fischer 1983;
Steiner 1983) published in the JMD. As an example of the discussion about theory
at that time, we will convey the different positions in these papers in more detail.
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In 1983, Burscheid used the model of Kuhn and Masterman (see Kuhn 1970;
Masterman 1970) to explore the developmental stage of mathematics education as a
scientific discipline. He justified this approach by claiming that every science
represents its results through theories and therefore mathematics education as a
science is obliged to develop theories and make its results testable (Burscheid 1983,
p- 222). The model of Kuhn and Masterman describes scientific communities and
their development using paradigms. By investigating mainly natural sciences, Kuhn
has characterized a paradigm by four components:

1. Symbolic generalizations: “expressions, deployed without question or dissent...,
which can readily be cast in a logical form” (Kuhn 1970, p. 182) or a mathe-
matical model: in other words, scientific laws, e.g., Newton’s law of motion.

2. Metaphysical presumptions: as faith in specific models of thought or “shared
commitment to beliefs,” such as “heat is the kinetic energy of the constituent
parts of bodies” (ibid., p. 184).

3. Values: attitudes “more widely shared among different communities” (ibid.,
p. 184) than the first two components.

4. Exemplars: such as “concrete problem-solutions that students encounter from
the start of their scientific education” (ibid., p. 187): in other words, textbook or
laboratory examples.

Masterman (1970, p. 65) ordered these components by three types of paradigms:

(a) Metaphysical or meta-paradigms (refers to 2),
(b) Sociological paradigms (refers to 3), and
(c) Artefact or constructed paradigms (refers to 1 and 4).

Each paradigm shapes a disciplinary matrix according to which new knowledge
can be structured, legitimized, and imbedded into the discipline’s body of knowl-
edge. Referring to Masterman, Burscheid used these types of paradigms to identify
the scientific state of mathematics education in the development of four stages of a
scientific discipline (see Burscheid 1983, pp. 224-227):

1. Non-paradigmatic science,

2. Multi-paradigmatic science,

3. Dual-paradigmatic science, and

4. Mature or mono-paradigmatic science (ibid., p. 224, translatedz).

In the first stage, scientists originate the science by identifying its problems,
establishing typical solutions, and developing methods to be used. In this stage,
scientists struggle with the discipline’s basic assumptions and a kernel of ideas; for
instance, methodological questions of how validity can be justified and which
thought models are relevant. In this stage, paradigms begin to develop, resulting in
the building of scientific schools and shaping a multi-paradigm discipline. The
schools’ specific paradigms unfold locally within the single scientific group but do

2Any translation within this article has been conducted by the authors unless stated otherwise.
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not affect the discipline as a whole. In stage three, mature paradigms compete to
gain scientific hegemony in the field (Burscheid 1983, p. 226). The final stage is
that of a mature scientific discipline in which the whole community shares more or
less the same paradigm (ibid., p. 226).

Following the disciplinary matrix, Burscheid (pp. 226-236) identified paradigms
in mathematics education and features at that time, according to which different
scientific schools emerged and could be distinguished from one another, e.g.,
according to forms, levels, and types of schools, or according to reference disci-
plines such as mathematics, psychology, pedagogy, and sociology. The constructed
paradigms dealt in principle with establishing adequate theories in a discipline.
Concerning building theories, however, the transfer of the model of Masterman and
Kuhn was difficult to achieve because symbolic generalizations and/or scientific
laws can be built more easily in the natural sciences than in mathematics education.
This is because mathematics education is concerned with human beings who are
able to creatively decide and act in the teaching and learning processes. Burscheid
doubted that a general theory such as those in physics could ever be developed in
mathematics education (ibid., p. 233). However, his considerations led to the
conclusion that “there are single groups in the scientific community of mathematics
education which are determined by a disciplinary matrix.... That means that
mathematics education is [still] heading to a multi-paradigm science” (ibid., p. 234,
translated).

Burscheid’s analysis was immediately criticized from two perspectives. Fischer
(1983)° claimed that pitting mathematics education against the scientific develop-
ment of natural science is almost absurd because mathematics education has to do
with human beings (ibid., p. 241). In his view, “theory deficit” (ibid., p. 242,
translated) should not be regarded as a shortcoming but as a chance for all people
involved in education to emancipate themselves. The lack of impact on practice
should not be overcome by top-down measures from the outside but by involving
mathematics teachers bottom-up to develop their lessons linked to the development
of their personality and their schools (ibid., p. 242). Fischer did not criticize
Burscheid’s analysis per se, but rather the application of a model postulating that all
sciences must develop in the same way as the natural sciences towards a unifying
paradigm (Fischer 1983).

Steiner (1983) also criticized the use of the models developed by Kuhn and
Masterman. He considered them to be not applicable to mathematics education in
principle, claiming that even for physics these models do not address specific
domains in suitable ways, and in his view domain specificity is in the core of
mathematics education (ibid., p. 246). Even more than Fischer, Steiner doubted that
mathematics education would develop towards a unifying single-paradigm science.
According to him, mathematics education has many facets and a systemic character

3Fischer also feared that if mathematics education developed towards a unifying paradigm, the
field would be more concerned with its own problems, as was the case with physics, and, finally,
would develop with its issues separated from societal concerns.
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with a responsibility to society. It is deeply connected to other disciplines and, in
contrast to physics, mathematics education must be thought of as being interdis-
ciplinary at its core. The scientific development of mathematics education should
not rely upon external categories of description and acceptance standards, but
should develop such categories itself (ibid., pp. 246-247), and, moreover, it should
consider the relation between theory and practice (ibid., p. 248).

Exactly such an analysis from the inside was proposed by Bigalke (1984) one
year later. He analysed the development of mathematics education as a scientific
discipline as well, but this time without using an external developmental model. He
proposed a “suitable theory concept” (ibid., p. 133, translated) for mathematics
education on the basis of nine theses. Bigalke urged a theoretical discussion and
reflection on epistemological issues of theory development. Mathematics education
should establish the principles and heuristics of its practice, specifically of its
research practice and theory development, on its own terms. Bigalke specifically
regarded it as a science that is committed to mathematics as a core area with
relations to other disciplines. He claimed that its scientific principles should be
created by “philosophical and theoretical reflections from tacit agreements about the
purpose, aims, and the style of learning mathematics as well as the problematisation
of its pre-requisites” (ibid., p. 142, translated).

Such principles are deeply intertwined with research programs and their theo-
rizing processes. Many examples taken from the German didactics of mathematics
were used to substantiate that Sneed’s and Stegmiiller’s understanding of theory
(see Jahnke 1978, pp. 70-90) fits mathematics education much better than the
restrictive notion of theory according to Masterman and Kuhn, specifically when
theories are regarded to inform practice. Bigalke (1984) described this theory
concept in the following way:

A theory in mathematics education is a structured entity shaped by propositions, values and
norms about learning mathematics. It consists of a kernel, which encompasses the unim-
peachable foundations and norms of the theory, and an empirical component which con-
tains all possible expansions of the kernel and all intended applications that arise from the
kernel and its expansions. This understanding of theory fosters scientific insight and sci-
entific practice in the area of mathematics education. (p. 152, translated)

Bigalke himself pointed out that this understanding of theory allows many
theories to exist side by side. It was clear to him that no collection of scientific
principles for mathematics education would result in a “canon” agreed to across the
whole scientific community. On the contrary, he considered a certain degree of
pluralism and diversity of principles and theories to be desirable or even necessary
(ibid., p. 142). Bigalke regarded theories as the link to the practice of teaching and
learning of mathematics as well as being inspired by this practice, founding
mathematics education as a scientific discipline in which theories may prove
themselves successful in research and practice (Bigalke 1984).
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2.2 Theories of Mathematics Education (TME):
A Program for Developing Mathematics Education
as a Scientific Discipline

Out of the previous presentation arose the result that the development of theories in
mathematics education cannot be cut off from clarifying the notion of theory and its
epistemological ground related to the scientific foundation of the field. Steiner
(1983) construed this kind of self-reflection as a genuine task in any scientific
discipline (see Steiner 1986) when he addressed the comprehensive task of
founding and further developing mathematics education as a scientific discipline
(see Steiner 1987c). At a post-conference meeting of ICMES in Adelaide in 1984,
the first of five conferences on the topic “Theories of Mathematics Education”
(TME) took place (Steiner et al. 1984; Steiner 1985, 1986). This topic is a devel-
opmental program consisting of three partly overlapping components”:

e Development of the dynamic regulating role of mathematics education as a
discipline with respect to the theory-practice interplay and interdisciplinary
cooperation.

e Development of a comprehensive view of mathematics education comprising
research, development, and practice by means of a systems approach.

e Meta-research and development of meta-knowledge with respect to mathe-
matics education as a discipline (emphasis in the original; Steiner 1985, p. 16).

Steiner characterized mathematics education as a complex referential system in
relation to the aim of implementing and optimizing teaching and learning of
mathematics in different social contexts (ibid., p. 11). He proposed taking this view
as “a meta-paradigm for the field” (ibid., p. 11; Steiner 1987a, p. 46), addressing the
necessity of “meta-research in the field.” According to Steiner, the field’s inherent
complexity evokes reduction of its complexity in favour of focusing on specific
aspects, such as curriculum development, classroom interaction, or content analysis.
According to Steiner, this complexity also creates a differential classification of
mathematics education as a “field of mathematics, as a special branch of episte-
mology, as an engineering science, as a sub-domain of pedagogy or general
didactics, as a social science, as a borderline science, as an applied science, as a

“This program was later reformulated by Steiner (1987a, p. 46):

— Identification and elaboration of basic problems in the orientation, foundation, methodology,
and organization of mathematics education as a discipline

— The development of a comprehensive approach to mathematics education in its totality when
viewed as an interactive system comprising research, development, and practice

— Self-referent research and meta-research related to mathematics education that provides
information about the state of the art—the situation, problems, and needs of the discipline-while
respecting national and regional differences.
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foundational science, etc.” (Steiner 1985, p. 11). Steiner required clarification of the
relations among all these views, including the principle of complementarity on all
layers, which means considering research and meta-research, concepts as objects
and concepts as tools (Steiner 1987a, p. 48, 1985, p. 15). He proposed under-
standing mathematics education as a human activity; hence, he added an activity
theory view to organize and order the field (Steiner 1985, p. 15). The interesting
point here is that Steiner implicitly adopted a specific theoretical view of the field
but points to the multiple perspectives in the field, which should be acknowledged
as its interdisciplinary core.

Steiner (1985) emphasized the need for the field to become aware of its own
processes of development of theories and models and investigate its means, rep-
resentations, and instruments. Epistemological considerations seemed important for
him, specifically concerning the role of theory and its application. In line with
Bigalke, he proposed considering Sneed’s view on theory as suitable for mathe-
matics education, since it encompasses a kernel of theory and an area of intended
applications to conceptualize applicability being a part of the very nature of theories
in mathematics education (ibid., p. 12).

In the first TME conference, theory was an important topic, specifically the
distinction between so-called borrowed and home-grown theories. Steiner’s com-
plementary view made him point to the danger of one-sidedness. In his view,
so-called borrowed theories are not just transferred and used but rather adapted to
the needs of mathematics education and its specific contexts. Home-grown theories
are able to address domain-specific needs but are subjected to the difficulty of
establishing suitable research methodologies on their own authority. The interdis-
ciplinary nature of mathematics education requires regulation among the perspec-
tives but also regulation of the balance between home-grown and borrowed theories
(Steiner 1985; Steiner et al. 1984).

So, what is Steiner’s specific contribution to the discussion of theories and
theory development? Like other colleagues, such as Bigalke, he has pointed to the
role of theories as being in the core of mathematics education as a scientific dis-
cipline, and he proposed the notion of theory developed by Sneed and Stegmiiller
(see Jahnke 1978, pp. 70-90) as being suitable for such an applied science. Steiner
proposed complementarity to be a guiding principle for the scientific field and
required investigating what complementarity means in each case of the field’s
topics. In this respect, the dialectic between borrowed theories and home-grown
theories is an integral part of the field that allows the discipline to develop from its
core and to be challenged from its periphery. In addition, Steiner emphasized that
mathematics education as a system should reflect about its own epistemological
basis, its own theory concepts and theory development, the relation between theory
and practice, and the interrelation among all its perspectives. He has added that the
specific view of mathematics education always incorporates some epistemological
model of how mathematics and teaching and learning of mathematics are under-
stood and that this is especially relevant for theories in mathematics education.
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2.3 Post-TME Period

In the following decade, from 1992 up to the beginning of the 21st century, the
discussion on theory concepts died down in the German community of mathematics
educators while the theoretical diversity in the field grew. Considering the two main
scientific journals, we identified scientific contributions from several theoretical
communities addressing three topics related to the TME program (without any
claim of completeness):

1. Methodology: methodological and thus theoretical aspects in interpretative
research (Beck and Jungwirth 1999), interviews in empirical research (Beck and
Maier 1993), multi-methods (Wellenreuther 1997); explaining in research
(Maier 1998), methodological considerations on TIMSS (Knoche and Lind
2000);

2. Methods in empirical research: e.g., two special issues of ZDM in 2003 edited
by Kaiser presented a number of methodical frameworks; and

3. Issues on meta-research about what mathematics education is, can, and should
include: considerations on paradigms and the notion of theory in interpretative
research (Maier and Beck 2001), comparison research (Kaiser 2000; Maier and
Steinbring 1998; Brandt and Krummheuer 2000; Jungwirth 1994), and mathe-
matics education as design science (Wittmann 1995) and as a fext science (Beck
and Maier 1994).

This short list indicates that—at that time—distinct theoretical communities
seemed to share the need for methodological and meta-theoretical reflection.
However, the German community of mathematics education as a whole did not—
and still does not—share a common paradigm. In order to provide deeper insight
into theory strands of German-speaking countries, two examples are presented.

The first one is the theory of learning activity that originates in activity theory
developed by Joachim Lompscher. It is used today in several educational subjects:
for example, Bruder has further developed and adapted this concept to the needs of
mathematics education, and she and Schmitt will present this theory strand. The
second theory strand is a specific view on semiotics presented by Ddrfler and
contrasted with Otte’s view on signs as a vehicle for doing mathematics as a human
activity.

The theory of learning activity provides a general educational theory that has
been borrowed then applied and adapted to mathematics education, while Dorfler
bases his work profoundly in the philosophies of Peirce and Wittgenstein and
reconstructs mathematics as a kind of game using diagrams in a more home-grown
way.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
4.0 International License (http:/creativecommons.org/licenses/by/4.0/), which permits use,
duplication, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, a link is provided to the Creative
Commons license and any changes made are indicated.


http://creativecommons.org/licenses/by/4.0/

2.3 Post-TME Period 11

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.



Chapter 3

Joachim Lompscher and His Activity
Theory Approach Focusing

on the Concept of Learning Activity
and How It Influences Contemporary
Research in Germany

Regina Bruder and Oliver Schmitt

3.1 Introduction

The concept of activity is a psychological construct that connects man and his
development to culture and society. This concept was shaped substantially by
Vygotsky, Leontiev, and Luria and developed further in the German-speaking
countries by Lompscher' in particular. The activity theory, which follows this line
of tradition, has often been assigned to social constructivist approaches (Giest and
Lompscher 2006, p. 231; Woolfolk 2008, p. 421). Lompscher elaborated the
concept of learning activity with regard to teaching practice and applied it to several

!Joachim Lompscher (1932-2005) is considered the “founder of educational psychology and of the
psychology of learning activities in the GDR” (Riickriem and Giest 2006, p. 161, translated). Focal
points of his academic work were the development of mental abilities, the training of learning
activities, the cultural-historical school of Soviet psychology and the associated activity theory, and
aspects of its development in the history of psychology. He studied psychology and education in
Moscow and defended his doctoral thesis in Leningrad in 1958 on the subject “On the under-
standing of children of some spatial relationships” (translated). He subsequently worked at the
Humboldt University of Berlin, moved to the German Central Institute of Psychology (DZPI) in
1962, and from 1966 was there in a leading position for practical teaching projects and issues in the
mental development of children. He habilitated in Leipzig in 1970 and was subsequently appointed
Professor of Educational Psychology at the Academy of Educational Sciences (APW) in Berlin.
After German reunification in 1991, he worked at the Institute of Learning and Teaching Research
at the University of Potsdam (For an obituary and bibliography, see Riickriem and Giest 2006).
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subjects. The core objective of teaching is the training of learning activity, which is
aimed at acquiring social knowledge and competence and requires specific means
under specially arranged conditions. The concepts of learning tasks and orientation
bases of learning actions are closely linked to the concept of learning activity. These
conceptual bases are briefly presented in Chap. 2, whilst Chap. 3 refers to current
applications of the activity theory in German-speaking research on teaching
methodologies.

Contemporary activity theory became an interdisciplinary discourse mainly
through the works of Engestrom in the field of the emerging labour research. This
line of research sees itself as an “intervention approach to the study of changes and
learning processes at work, in technology and organisations” (Engestrdom 2008,
p. 17, translated) and is based on the tradition of the cultural-historical activity
theory. In his theory and intervention methodology, Engestrom dealt with the
solution to practical social issues and, among other things, also provided valuable
impulses for the development of teaching staff in schools (Engestrom 2005).

Increased attention is also given to activity theory in international discussions on
teaching methodologies (see Mason and Johnston-Wilder 2004), with the
German-speaking countries contributing concepts such as describing the use of
digital tools in mathematics classes (see Ladel and Kortenkamp 2013).

3.2 Conceptual Bases

The central concept of activity has been described as “the specifically human form
of activity, of interaction with the world in which man changes it and himself at the
same time” (Giest and Lompscher 2006, p. 27, translated). Activity takes place
through the conscious influence of a subject on an object in order to shape the latter
in accordance with the motive of the activity. To this end, such actions (material or
spiritual) are performed within one activity line that each time realises certain
sub-goals through to the ultimate product of the activity. At the same time, the
concept of operation serves to further distinguish another form of subordinate
activity that differs from actions by the fact that operations result from concrete
conditions for action and pass in an automated manner without conscious control or
goal formation. These represent shortened actions.

In the course of their lives, humans, in their confrontations with the world,
develop various forms of activity, such as play, work, or learning activities that
feature different characteristics in each case. For schools and for didactic research,
the concept of learning activity has been of key importance. There, learning activity
has been understood “as the activity aimed specifically at acquiring social knowl-
edge and competence (learning topics) for which purpose specific means (learning
resources) under specially arranged conditions have to be adopted.” (Giest and
Lompscher 2006, p. 67, translated). According to Lompscher (1985), three essential
subjective requirements must be met on the part of the learners to achieve a learning
activity:
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e Concrete learning goals as individual mental anticipation of the desired results
and of the activity aimed at such results.
Learning motives as the motivational basis to perform certain activities.
Learning activities as:

Relatively closed and identifiable steps, structured in terms of time and logic, in the course
of the learning activity, which realise a concrete learning goal, are driven by certain
learning motives and are executed, according to concrete learning conditions, by the use of
external and internalised learning resources in a specific sequence of sub-actions each time.
(p. 46, translated)

The aim of school education has been without doubt to stimulate and promote
learning activities in the learner. For instance, for mathematics classes, tasks have
traditionally been perceived as a key creative resource of the teacher. Within the
framework of the activity theory, suitable learning tasks have been understood as
requests to perform learning actions (Bruder 2010, p. 115). There, a distinction has
been made between the requirements imposed by teachers in relation to the learning
topics and the learning tasks assigned by the learners to themselves. When planning
classes, attention should be paid to allow as much scope as possible “for the
construction of individually suitable learning tasks” (Bruder 2008, p. 52,
translated).

Learning actions implemented in learning activity can be of a very different
nature. According to Lompscher, various categories of learning actions can be
distinguished depending on the learning task dominating in a given learning situ-
ation. These include, for instance (Lompscher 1985):

e observing objects, processes and situations according to pre-set or indepen-
dently developed criteria;

e collecting, compiling, and processing data or materials for specific purposes and
under certain aspects;

e performing actions of a practical or concrete nature to manufacture a product or
to change it with regard to certain quality and effectiveness parameters;

e presenting circumstances orally and in writing for specific purposes whilst
considering certain conditions;...

e assessing and evaluating third-party or own performance or behaviour or a given
event with regard to certain measures of value;

e proving or refuting views in an arguing manner on the basis of certain positions,
findings or facts;

e solving problems of various structures and contents; and

e practising certain actions (p. 48, translated).

These actions can be developed and recalled by learners in different ways (level
of awareness and acquisition of an action). “One action can be performed at a level
of relatively unfocused trial and error behaviour, whereas another one would pro-
ceed as a target-oriented search, adequate as per circumstances, with purposeful
implementation of correlations recognised” (Lompscher 1985, p. 49, translated).
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This issue can be described in a more differentiated way through an analysis of
the structure of learning actions. Within an action, three different parts have been
distinguished: the orientation part, the performance part, and the control part (see
Giest and Lompscher 2006, p. 197). In the orientation part, an orientation basis is
formed as a provisional idea of a task (Galperin 1967, p. 376) on the basis of which
the action is eventually performed and the result of which is controlled with regard
to previous goals. The concept of orientation basis was developed by the Soviet
educationalist Galperin and extensively appreciated by didactic research in the
GDR, particularly by Lompscher. According to Lompscher, the following issues in
relation to requirements and the learning topic are relevant in the formation of the
orientation basis (Giest and Lompscher 2006):

What (requirement structure, sequence of sub-actions)

How (examination conditions, resources, methods, quality of the action)

Why (reason for the action, its inner connections)

What for (classification of the action in overall connections, possible conse-
quences, etc.) (p. 192, translated).

A distinction has basically been made between three different types of orienta-
tion (Giest and Lompscher 2006, pp. 192ff)—here reflecting the designations by
Bruder (2005, p. 243):

e Trial orientation (Probierorientierung) designates an incomplete orientation
basis entailing an action after trial and error; awareness of the procedure is very
limited only and a transfer is hardly possible on that basis.

e In pattern orientation (Musterorientierung), some aspects and conditions of a
requirement are recognised and associated with an example (pattern) already
solved; the orientation basis is complete but transferable to a delimited area
only, as no comprehension of the entire requirement class takes place.

e Field orientation (Feldorientierung) designates a complete general orientation
basis resulting from an independent analysis of the requirements of a given field
of knowledge or thematic field, which therefore allows for good transferability
of the knowledge and actions acquired to new requirements.

If the requirement is, for instance, about solving a linear equation, learners with
trial orientation would rather proceed by making transformations in an unsystematic
manner or perhaps guess the figures and possibly even be successful. With pattern
orientation they could also try to trace a systematic approach on the basis of an
example already known to them, which would possibly allow for limited trans-
ferability to similar examples. Finally, in case of a developed field orientation,
general strategies could be used, such as a separation between variable and constant
terms on both sides of the equation.

By means of learning actions, depending on the arrangement of the learning
environment, different orientation bases can be promoted in learners. Within the
scope of practising processes during introductions to solving quadratic equations,
the examining operation as to which type of equation is actually involved will
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become less important. Learners will be aware of what the current issue is about.
Schematic practising can therefore only bring assurance and automatisms in pro-
cessing algorithmic step sequences. Still, this does not lead to a transferable
acquisition of the object. So, for instance, when solving a given quadratic equation
within the scope of an aptitude test for vocational training, it will first have to be
recognised that indeed such a type of equation is involved. If such an assignment is
successful, the solution methods available will possibly be activated (development
of example-based orientation). Such a task will only make higher demands on
orientation building if the relevant equation type is still unknown or as part of
mixed exercises at a later date.

If solution methods (graphic solutions, calculation formulae) can be activated at
least at the level of example-based orientation, the relevant task can mostly be
solved, except for some calculation or presentation errors. If such recognition of the
equation type is not successful, various search processes are initiated, often with
incorrect schema assignments, or the attempt at solution is discontinued altogether.
In such a situation, intuitive reference is made to the basic concepts available and
even to everyday experiences in the form of empirical generalisations. This,
according to Nitsch (2015), would also explain, for instance, the differing stability
of error patterns, whilst competing example-based orientations are available, partly
incorrect or inadequate, which can be recalled depending on the context.

The approach of orientation bases yields important conclusions when consid-
ering a long-term development of fundamental mathematical competencies, such as
in mathematical argumentation. To achieve high quality in the training for learning
action “proving or refuting in an arguing manner” in mathematics classes,
knowledge relevant to action is required. In particular, such knowledge is necessary
as to which arguments are admissible in mathematics and which methods of con-
clusion are possible in order to be able to develop a field orientation for a pro-
cessing strategy in relation to a given proof-related task. If such background
knowledge is lacking, any transfer of this procedure, even with simple justifications
(are all rectangles trapezia, too?), to other mathematical contents, such as proofs of
divisibility, will hardly succeed. Instead, attempts are made to develop further
example-based orientation within the new scope. Here, in schematic practising
processes, the procedure is just transferred from one task to an analogous task,
without awareness of what the procedure actually consists of. Such reflection
processes with the building of knowledge are part of the training for a given
learning action (in stages) and a necessary prerequisite for developing field orien-
tation with the corresponding demands. If the demands remain at the level of
analogous tasks, there will be no need to develop orientations of a higher quality
and thus to advance the respective learning action.

In order to stimulate an orientation as far-reaching as possible at an early stage of
the learning process, i.e., the formation of a learning goal, a teaching strategy, going
back to Davydov (1990), of the rise from the abstract to the concrete has to be
developed. As a first interim result in the learning process, a so-called starting
abstract (Ausgangsabstraktum) is developed together with the learners, which
maps, relates, and anchors the essential characteristics of the learning topic and
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offers a framework for the continuation of the teaching process. The starting
abstract is thus “the result of learning activity already and as such the starting point
for rising to the concrete” when further working with concrete contents (Giest and
Lompscher 2006, p. 222, translated). Due to the heterogeneity of the learners, the
tasks assigned by the teacher, which first have to be transformed into individual
learning tasks, should allow for orientation at different levels to give the learners a
chance to reach the individual zone of the next development stage in terms of
Wygotskij (Bruder 2005, p. 243).

An approach to learning phenomena based on the activity theory by Lompscher
includes the following aspects (Lompscher 1990):

o the quality of the learning motives and goals at the activity level, which
determine the concrete purpose and process of the learning actions;

e the interrelations between the activity and action (and also operation) levels, for
instance, with regard to contradictions between activity motivation and concrete
situational action motives; and

e the cognitive, metacognitive, emotional, motivational and volitive regulation
bases, and the process structure of learning actions and learning outcomes (in
terms of psychological changes).

e This and other questions can be worked on at different analysis levels, starting
(1) with the most general components, relations and determinants of the
macrostructure of the activity, via (2) an analysis of concrete classes of learning
activities, such as learning from texts or solving problems with certain, although
different, categories of learners, through to 3. the microanalysis of elementary
components and processes based on performance of the action (p. If, translated).

3.3 Exemplary Applications of the Activity Theory

Applications of the activity theory in German-speaking countries primarily refer to
the analysis and formation of learning activities in connection with their corre-
sponding knowledge, abilities, and skills. In parallel, various types of competence
modelling on the basis of concepts of the activity theory have been performed or
operationalised for diagnosis.

A consistent implementation of the activity theory according to Lompscher and
in connection with Davydov was presented in the works on a theory of learning
tasks by Dietz and associates (reported in Briickner 2008).

Mann (1990) explained learning how to read and write and do arithmetic on the
basis of the activity theory and demonstrates how successful this approach has been
for the development of learning surroundings even for people with intellectual
disabilities.

The idea of the cognitive process as a unity of analysis and synthesis, going back
to Rubinstein (1973), was expanded by Lompscher to describe the structure of
mental abilities with the components mental operations and process qualities. The
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presentation by Lompscher (1975, p. 46) on the model interrelations between
analytical and synthetic operations in mental activities was taken up by Bruder and
Briickner (1989). According to this approach, identifying and realising mathe-
matical contents can be described as elementary actions on the basis of defined
mental operations. Empirical studies provide preliminary indications of evidence
that these two elementary actions can be distinguished and also of basic actions of a
more complex construction, such as describing and justifying each time in relation
to given mathematical concepts, connections, or processes (see Nitsch 2015). Such
a hierarchical approach to describing learning actions results in a heuristic con-
struction for learning and test tasks (see the general approach to the task theory in
Bruder 2003) which has already proven its worth in theoretical competence mod-
elling. These action hierarchies are currently being used in a project aimed at
describing the requirements for the central school-leaving examinations in Austria
in a four-stage competence structure model for action dimensions in operating,
modelling, and arguing (see Siller et al. 2015). Such a theoretical background was
also used for the construction of items within the scope of the project HEUREKO
on the empirical clarification of competence structures in a specific mathematical
context, notably the changes of representation of functional relationships (see
Nitsch et al. 2015).

Boehm (2013) used basic positions of the activity theory to establish curricular
objectives for mathematical modelling at Secondary Level 1. The theoretical
framework for the analysis of modelling activities that he elaborated allows for a
differentiated model description of the action elements in mathematical modelling.
This also includes the successful involvement and clarification of problem-solving
activities in modelling.

Mathematical problem-solving competence can be interpreted, from an activity
theory angle, as variously pronounced mental agility where mental agility repre-
sents a marked process quality of thinking [see the construct of process qualities in
Lompscher (1976)]. According to Lompscher (1972, p. 36), content and the pro-
gress of learning actions are decisive for the result. Bruder’s (2000) operating
principle in acquiring problem-solving competence was that through the acquisition
of knowledge about heuristic strategies and principles, insufficient mental agility
can partly be compensated. This approach was transferred to a teaching concept
about learning how to solve problems in four stages building on each other, and the
corresponding effects at student level have been empirically proven (Bruder and
Collet 2009; Collet and Bruder 2008).

Nitsch (2015) investigated typical difficulties of learning in changes of repre-
sentation of functional relationships and interpreted these as incomplete orientation
bases. Existing error patterns could be described as inadequate patterns. In this way,
and in connection with the concept of basic ideas (Vom Hofe 1995), a tentative
explanation is provided about mechanisms to activate certain mathematical (error-)
ideas.

In terms of orientation bases, there was a discussion in the 1970s both in the
GDR and in a Western response by critical psychology about whether another type
going beyond the field orientation should be added to the previously mentioned
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orientation types. The intention of this orientation type was to describe the creative
handling of open issues that did not already have any known or generally recog-
nised solutions at hand. Taking up this discussion and providing a response to the
teaching strategy of the rise from the abstract to the concrete, Schmitt (2013)
developed a concept to promote reflective knowledge (Fischer 2001; Skovsmose
1989) in mathematics classes in a targeted manner.

Feldt (2013) uses concepts of the activity theory as a background to conceptu-
alise minimum standards. The activity theory offers opportunities to operationalise
learning goals through its central concepts of learning action and learning task but
also through the construct of the acquisition quality of knowledge (see Pippig 1985)
in connection with the orientation bases of the learning actions. In particular, the
quality feature of availability of knowledge, which has been highly relevant in
conceptualising minimum standards, is being discussed with a view to a possible
gradation in the style of Sill and Sikora (2007) and is being further refined with
regard to such gradation.
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Chapter 4
Signs and Their Use: Peirce
and Wittgenstein

Willi Dorfler

4.1 Introductory Remarks

It is obvious that mathematicians throughout history have used signs of various
kinds, such as symbols, diagrams, graphs, and formulae, but they also occur in
everyday language and scientific language. The technical symbols and formulas of
mathematics have contributed in particular to its specific status, and many learning
difficulties have been attributed to these characteristics, which are viewed as turning
mathematics into a highly abstract and inaccessible field of scientific enquiry. Even
for the most basic mathematical activities such as arithmetic calculations, the use of
number symbols is unavoidable, and it can also be said that much of the strength
and relevance of mathematics for applications derives from its symbolic techniques.
One could express this by stating that the “formula” was one of the great cultural
inventions and intellectual innovations, comparable in its ramifications to those of
the wheel. The use of symbolic techniques within mathematics, such as in proofs,
needs no further discussion. It is also virtually impossible to translate mathematics
into any kind of vernacular, and most mathematical “narratives” are rather mis-
leading or missing the mathematical point. To understand mathematics, one has to
do it; this doing in a very deep sense is an activity with signs and based on signs, as
should become even clearer from the following considerations.

So far most people concerned in some way or the other with mathematics will
agree with what was stated above. Pronounced differences show up when one turns
to what one can term the meaning of the signs and symbols of mathematics. In the
common understanding, signs are used to designate something that is different from
and independent of the sign, namely, the object of the sign, and this object is
viewed as the source of the meaning of the sign. Often the signs are considered as
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being secondary to what they designate and arbitrary and neutral with respect to the
mathematical content. Their main use in this view is to communicate and express
the mathematical ideas. Hersh (1986, p. 19), for instance, compared mathematics
with music, where according to him the score has solely the role of noting the music
which is already there before the score. The signs and notations in this view have no
influence on invention and creation in mathematics or music. An extreme position
in this vein was taken by Brouwer see Shapiro (2000), who considered mathematics
to be a purely mental “construction” not dependent on any sign system. In a general
way, in all these positions of mathematical realism mathematical signs and nota-
tions have been viewed as describing what have been termed mathematical objects,
whatever those might be and wherever they might be located. Thus numerals denote
numbers and diagrams denote geometric objects. Only algebraic formulas have
sometimes been spared this descriptive role, yet they have then been reduced to a
purely technical means for calculations and proofs. I will not continue these
ontological and philosophical issues any further, but these short hints should serve
to make the possible impact of the views taken by Peirce and Wittgenstein more
conspicuous.

4.2 Charles Sanders Peirce

Peirce (1839-1914) was an American mathematician, logician, and philosopher.
From among his comprehensive works, only his fundamental work in semiotics can
very briefly be considered here. Peirce developed a complex and comprehensive
theory of signs by devising a multilevel categorization of signs, starting with the
differentiation into index, icon, and symbol. With Peirce, the sign in itself has a
triadic structure of “object-representamen-interpretant,” but we will not go into any
details here. Interestingly, for decades mathematics educators apparently have not
taken note of the potential of the theories presented by Peirce. Yet Peirce was
interested in educational questions and has written a very interesting draft for a
textbook on elementary arithmetic [see the two articles by Radu in Hoffmann
(2003)].

To the best of my knowledge, it was due to the initiative taken by Michael Otte
in some of his papers (see Otte 1997, 2011) that the relevance of the semiotics of
Peirce was recognized by a growing number of mathematics educators in Germany
and elsewhere. It is impossible to adequately present the work by Otte with regard
to Peirce here because it is very complex and comprehensive. He puts Peirce and
his semiotics into the context of philosophy, epistemology and ontology by relating
it to many other strands of thought in this realm but pays less attention to the
concrete mathematical activities on and with signs. Rather, the papers by Otte
furnish a powerful background and basis for more detailed investigations into/about
how and which signs are used in mathematics and especially in mathematics
learning. On the other hand, his papers show and explicate deliberations in Peirce
that may be more general and fundamental. But it is also sensible to investigate—as
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it will be done here—a Peircean notion, such as diagrammatic reasoning, inde-
pendently from other dimensions of Peircean semiotics and its philosophical ram-
ifications. In a pointed way, one could say that in Michael Otte the purview of a
sign is the whole of life, experience, and cognition, whereas here we focus on its
important role in doing and learning mathematics. To give the reader a flavour of
the work by Otte, it is instructive to cite from the abstracts of Otte (1997; my
translation from the German original) and of Otte (2011):

Peirce treats the concepts meaning, (natural) law, continuum—and some others like repre-
sentation or mind—as synonyms. By that they all acquire those paradoxical qualities which
have been since long discussed for the example of the continuum and which recently have
been addressed in different contexts, as in systems theory. The meaning of a sign, for
example, for sure cannot be separated from its application—what is already stipulated by the
Pragmatic Maxim of Peirce. On the other hand, it cannot be identified either with a single
application or with some well-defined set of applications but it rather rests on the general
conditions for possible applications. The notion of sign and the concept of the continuum are
the two pillars on which Peirce’s phenomenological epistemology is based. The latter shall
be elucidated first, through the relation to the history of mathematics; and second, through
the comparison with other phenomenological positions during the foundational crisis of
mathematics. The significance of mathematics results from the fact that in mathematics, the
two pillars mentioned most deeply confront each other. (Otte 1997, p. 175)

One of the most salient arguments in favour of a semiotic approach... claims that semiotics
is most appropriate for treating the interaction between socio-cultural and objective aspects
of knowledge problems. If we want to take such claims seriously, however, we have to
revise our basic conceptions about reality, existence, cognition, and cultural development.
The semiotic evolutionary realism of Charles S. Peirce provides—or appears to provide—
an appropriate basis for such intentions. Man is a sign, Peirce famously said, and “thought
is more without us than within. It is we that are in it, rather than it in any of us” (Peirce CP
8.256). As there is no thought without a sign, we have to accept thoughts, concepts,
theories, or works of art as realities sui generis. Concepts or theories have to be recognized
as real before we ask for their meaning or relevance. (Otte 2011, p. 313)

An important early contribution to the dissemination of the semiotics of Peirce
was Hoffmann (Hoffmann 2005a), which explicated many aspects of Peircean
semiotics, especially with emphasis on mathematics. A related work is that by
Stjernfelt (2000), which also contains very worthwhile interpretations of ideas and
notions in Peirce. Much of this work was concerned with Peirce’s general sign
theory and its philosophical dimensions. Within mathematics education, in addition
to the triadic structure of sign, the notion of diagram and diagrammatic thinking was
mainly exploited. It should be noted that for Peirce, signs always possessed an
object that they explored in an ongoing semiotic process; the only exception was
diagrams, for which Peirce allowed the object to be fictional or ideal, especially
with respect to mathematics. Before concentrating on the concept of diagrammatic
thinking, which appears to be of special value for mathematics and the learning of
mathematics, some more references on the work on (Peircean) semiotics within
German mathematics education are included: Hoffmann (2003, 2005), Hoffmann
et al. (2005), Kadunz (2010, 2015). Of course, on an international level semiotics in
general and Peircean notions in particular have also received growing attention.
Some publications illustrate this ever-extending tendency: Rotman (2000); the
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contributions to special issues in the journals ESM, ZDM, and JMD by authors
including Presmeg, Saenz-Ludlow, and Radford; and Radford et al. (2008). In
addition to the publications that have an explicit focus on semiotics, one could refer
to the vast literature on visualization and representation. Yet because in these the
signs have mostly been considered in their descriptive and representational function
(see below), this is beyond the scope of this contribution. In addition to Peirce, there
have been other semiotic traditions and theories which have been exploited in
mathematics education; for instance, Duval (1995). We now turn to the notion of
diagram and diagrammatic thinking in the form of a liberal interpretation of the
ideas of Peirce based on Dérfler (2004, 2006, 2008), where one can find a host of
examples for diagrams and diagrammatic reasoning.

4.3 Diagrams and Diagrammatic Thinking

Peirce (3.363 in Collected Papers, this means paragraph 363 in Volume 3 according
to the standard way of citing from the papers by Peirce) made the following
comment, among others, on a basic feature of mathematics:

It has long been a puzzle how it could be that, on the one hand, mathematics is purely
deductive in its nature, and draws its conclusions apodictically, while on the other hand, it
presents as rich and apparently unending a series of surprising discoveries as any obser-
vational science. Various have been the attempts to solve the paradox by breaking down
one or other of these assertions, but without success. The truth, however, appears to be that
all deductive reasoning, even simple syllogism, involves an element of observation;
namely, deduction consists in constructing an icon or diagram the relations of whose parts
shall present a complete analogy with those of the parts of the object of reasoning, of
experimenting upon this image in the imagination, and of observing the result so as to
discover unnoticed and hidden relations among the parts.... As for algebra, the very idea of
the art is that it presents formulae, which can be manipulated and that by observing the
effects of such manipulation we find properties not to be otherwise discerned. In such
manipulation, we are guided by previous discoveries, which are embodied in general
formulae. These are patterns, which we have the right to imitate in our procedure, and are
the icons par excellence of algebra.

I have chosen to stick to the term diagram as it has been used by Peirce and
others, though I am aware that this term might cause some misunderstandings and
arouse false expectations. First of all, the reader should dismiss all geometric
connotations. This can be seen from the above reference to Peirce, who includes
formulas of all kinds in his notion of diagram (or icon). What is important are the
spatial structure of a diagram, the spatial relationships of its parts to one another,
and the operations and transformations of and with the diagrams. The constitutive
parts of a diagram can be any kind of inscriptions such including letters, numerals,
special signs, or geometric figures.

Peirce did not nor will I give a general definition of the notion of diagram.
Instead, several descriptive features of diagrams are presented. Diagrams are based
on a kind of permanent inscription (paper, sand, screen, etc.). Those inscriptions are
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mostly planar, but some are 3-dimensional, such as models of geometric solids or
manipulatives in school mathematics. Mathematics at all levels abounds with such
inscriptions: number lines, Venn diagrams, geometric figures, Cartesian graphs,
point-line graphs, arrow diagrams (mappings), arrows in the Gaussian plane or as
vectors, and commutative diagrams (category theory); but there are also inscriptions
with a less geometric flavour: arithmetic or algebraic terms, function terms, frac-
tions, decimal fractions, algebraic formulas, polynomials, matrices, systems of
linear equations, continued fractions, and many more. There are features common
to some of these inscriptions that contribute to their diagrammatic quality as it is
understood here. However, I emphasize that not every inscription that occurs in
mathematical reasoning, learning, or teaching has a diagrammatic quality. Quite a
few of what are taken as visualizations or representations of mathematical notions
and ideas do not qualify as diagrams since they lack some of the essential features.
This is mostly the precise operative structure that for genuine diagrams permits and
invites their investigation and exploration as mathematical objects. Some widely
shared qualities of diagrams, or rather of inscriptions when used as diagrams, are
proposed in the following:

e Diagrammatic inscriptions have a structure consisting of a specific spatial
arrangement of and spatial relationships among their parts and elements. This
structure often has a conventional character.

e Based on this diagrammatic structure, there are rule-governed operations on and
with the inscriptions by transforming, composing, decomposing, or combining
them (calculations in arithmetic and algebra, constructions in geometry, and
derivations in formal logic). These operations and transformations could be
called the internal meaning of the respective diagram (compare to Wittgenstein
on meaning). Depending on the operations and transformations applied, an
inscription might give rise to essentially different diagrams. Thus, a triangular
inscription will be a general or isosceles triangle, depending on which of those
properties is used in diagrammatic arguments; this is similar to the same card
playing different roles in different card games.

e Another set of conventionalized rules governs the application and interpretation
of the diagram within and outside of mathematics, i.e., what the diagram can be
taken to denote or model. These rules could be termed the external or referential
meaning (algebraic terms standing for calculations with numbers or a graph
depicting a network or a social structure). The two meanings closely inform and
depend on each other.

e Diagrammatic inscriptions express (or can be viewed as expressing) relation-
ships by their very structure, from which those relationships must be inferred
based on the given operation rules. Diagrams are not to be understood in a
figurative but rather in a relational sense (such as a circle expressing the relation
of its peripheral points to the midpoint).

e There is a type-token relationship between the individual and specific material
inscription and the diagram of which it is an instance (such as between a written
letter and the letter as such).
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Operations with diagrammatic inscriptions are based on the perceptive activity
of the individual (such as pattern recognition) that turns mathematics into a
perceptive and material activity.

Diagrammatic reasoning is a rule-based but inventive and constructive manip-
ulation of diagrams for investigating their properties and relationships.
Diagrammatic reasoning is not mechanistic or purely algorithmic; it is imagi-
native and creative. Analogy: the music of Bach is based on strict rules of
counterpoint but is highly creative and variegated.

Many steps and arguments of diagrammatic reasoning have no referential
meaning, nor do they need any.

In diagrammatic reasoning the focus is on the diagrammatic inscriptions irre-
spective of what their referential meaning might be. The objects of diagram-
matic reasoning are the diagrams themselves and their established properties.
Diagrammatic inscriptions arise from many sources and for many purposes: as
models of structures and processes, by deliberate design and construction, by
idealization and abstraction from experiential reality, etc., and they are used
accordingly for many purposes.

Efficient and successful diagrammatic reasoning presupposes intensive and
extensive experience with manipulating diagrams. A comprehensive “inven-
tory” of diagrams, their properties, and relationships supports and facilitates the
creative and inventive usage of diagrams. An analogy: expert chess players have
command over a great supply of chess diagrams that guide their strategic
problem solving. Consequence: learning mathematics has to comprise dia-
grammatic knowledge of a great variety.

Diagrams can be viewed as ideograms, such as those in Chinese writing sys-
tems. They are not translations from any natural language or abbreviations of
names and definitions; by their diagrammatic structure, they “directly” present
(to the initiated user!) their intended meaning. The latter usually is a system of
relationships (between the elements or the parts of the diagram) and of opera-
tions and transformations.

Diagrams are composed of signs of different characters in the sense of Peirce.
There are icons, indices, and symbols as well, and a whole diagram has iconic
and symbolic functionality if in itself it is considered to be a sign in the sense of
Peirce.

To be understood and used appropriately, diagrams need to be described in

natural language and specific terms relating to the diagram. These descriptions and
explanations cannot be substituted for the diagram and its various uses, however. In
relation to the diagram and its intended relations and operations, this is a
meta-language about the diagrams, which also focuses attention and interest on its
relevant aspects and activities. It is similar to the way in which the legend on a map
of a city explains how to use that map appropriately. Generally, diagrams are
imbedded in a complex context and discourse, which is better viewed as a social
practice.
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e Diagrams are extra-linguistic signs. One cannot speak the diagram, but one can
speak about the diagram. In this sense, diagrams are irreducible entities of
mathematics (there is no mathematics without “formulas”), yet their properties
can be named by words and formulated as theorems. Thus, on the other hand
(specialized) language (as extension of natural language) is equally
indispensable.

As a final remark: it would be misleading to consider diagrams as mathematical
objects. They are the objects and the means of mathematical activity for which we
do not have to view them as designating mathematical objects. This emphasis on
activity and concrete operations with signs leads us to Wittgenstein’s views.

4.4 Wittgenstein: Meaning as Use

The Austrian philosopher Ludwig Wittgenstein (1889-1951) dedicated a great part
of his work to the philosophy of mathematics (e.g., Wittgenstein 1999), proposing
radically alternative views on the basic character of mathematics. Together with
other features of his writings, this might have prevented any notable recognition
within mathematics education. Therefore, this contribution will (also) try to alert the
community of mathematics education to the potential of the ideas of Wittgenstein
which might (also) influence general attitudes and basic orientations of the concrete
teaching in the classroom. A caveat is, of course, that only a few aspects can be
treated here and these in only a rather superficial way. The interested reader is
referred to Dorfler (2013a, 2014) and the vast literature on Wittgenstein’s philos-
ophy of mathematics, for instance, Kienzler (1997) or Miihlhélzer (2010).
Contrary to the traditional view, Wittgenstein views the meaning of many signs,
words, and symbols in general and of mathematics as well to reside in the use made
of those signs in what he calls language games or sign games. Thus, signs do not
express a meaning that exists independently of the sign game and that is given by
something outside of the sign game that the signs refer to and denote. For math-
ematics, then, the meaning of the signs, symbols, and diagrams does not come from
outside of mathematics but is created by a great variety of activities with the signs
within mathematics. This resonates very closely with the diagrammatic reasoning
described above (though Peirce would hold that thereby some independent “object”
is investigated, contrary to the position taken by Wittgenstein, which is strongly
non-metaphysical and anti-platonistic). Wittgenstein introduces the metaphor of
mathematics as a game, in particular by pointing to chess. In chess, the figures
receive all their meaning from the rules of the game, and they do not refer to
anything outside of the system of rules. The figures correspond to the signs in
mathematics and the game rules correspond to the rules in mathematics for cal-
culating, manipulating, and deriving (i.e., the diagrammatic rules in the above
sense). This game metaphor helps to solve many puzzles in math: Consider the
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“number” zero. There has been and continues to be a great deal of discussion about
what this sign denotes and how it could designate a number. In the Wittgensteinian
sense, the meaning of “0” is determined and presented by the rules for how we
calculate with it; 5+ 0 =15 or 0 X 6 = 0, for example, reflect the origin of zero
from the place value systems. Thus, there is no mystery and no miracle about zero if
you do not ask questions that are outside the purview of math (what Wittgenstein in
a telling way calls the prose of mathematics). Very similar considerations apply to
the empty set, the “number” —1 and first and foremost to i, the imaginary unit which
simply is determined by the rule that i X i = —1. It is a very helpful and sober way
of thinking in this way to consider the respective number systems as number games
where the meaning of the number signs flows from how they are calculated and not
from a mystical reference, say, to “nothing” or negative or imaginary magnitudes.
About those mathematical entities we can only know what is shown to us by the
results of the calculations within the number games.

To pursue this line of thinking further, we turn to the notion of grammar and
grammatical proposition as used by Wittgenstein. He says that mathematical
propositions do not describe factual situations as do propositions in science because
there are no independent mathematical objects those propositions could be about. In
his view, mathematical propositions are instead rules for how to use the terms and
signs involved in their formulation as they are developed within the various sign
games of mathematics. Or to put in still another way, in mathematics the propo-
sitions are used as rules, e.g., in proofs and calculations, though in mathematical
prose they are interpreted as accounts of mathematical facts in a mathematical
world. Examples for nonmathematical grammatical propositions would be: “White
is brighter than black,” “Every rod has a length,” “Nothing can be red and blue at
the same place,” or “Every finite set has a number.” Every arithmetic “fact” in this
view is just another rule and not the description of an eternal and absolute truth
about numbers. The concerns of many philosophers and sociologists about the
status of, say, “2 + 2 = 4” dissolve when one takes this as a rule, which of course
then can neither be verified nor falsified in an empirical interpretation. For
Wittgenstein, the whole notion of truth against this background makes no sense
since rules are neither true nor false. Rules have to be accepted; they require
consent, which is often motivated by a kind of practicability and viability. Rules are
outside of all aspects of time (in addition to questions such as when they were
established or abolished) or at least this is the way we use rules. Think again of
chess as a metaphor for the sign games of mathematics. The rules of chess usually
are not viewed as being true or eternal, and one can refuse to accept them but then
one will not be playing chess anymore. Such a view fundamentally changes one’s
attitudes and relations to mathematics and the learning of mathematics. The practice
and fluency in sign games is now the centrepiece and not the mental grasp of ideal
and abstract objects or of “ideas” which are just denoted and represented by the
mathematical signs. The learner has to indulge in the mathematical “games”
whereby meaning and understanding gradually will develop. In mathematics,
meaning cannot be imported from outside but emerges inside it through manifold
activities. Wittgenstein was often blamed for the apparent conventional and thus
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possibly arbitrary character of mathematics derived from his views. Yet to counter
this, one can point to the fact that many basic rules (axioms) are motivated by
practical or theoretical demands and that many other rules are then derived from
given ones by proofs and calculations. On the other hand, there is in fact a great
liberty regarding the rules according to which one wants to do the mathematics and
this holds as well for the logic involved.

As Wittgenstein says, mathematics can be viewed as the grammar or the
grammatical study of its signs and terms. This proves especially helpful wherever a
notion of the “infinite” turns up, which notoriously poses great obstacles for
learners. Historically it is interesting that Leibniz remarked that for his infinitesi-
mals such as dx, one should not look for referents, that is, objects that are denoted
by them. He took the view that they are completely determined by the rules gov-
erning how to operate with them. These rules, on the other hand, were motivated by
the problems that Leibniz wanted to solve. In Wittgenstein’s terms, the infinitesi-
mals make sense and have meaning within the sign game developed by Leibniz but
are meaningless outside of it. Similarly, a chess figure has no isolated meaning as
such, no absolute meaning independent of the whole game and its rules. Meaning
always depends on the respective language game or sign game and also reference of
the signs to objects will be controlled by the language game. An extreme case in
mathematics is the notion of infinite set and infinite cardinal number. It might be
difficult for the learner to take a naive Platonist stance viewing set theory as
descriptive of a universe of prefabricated sets (as in Godel or in Deiser 2010). With
Wittgenstein, one can interpret set theory as one possible answer to the question of
how one could sensibly talk about infinity. That not every such talk is sensible was
shown by the well-known paradoxes. The definitions and the propositions of set
theory then are the rules within a language game that develop the grammar of
“infinity,” and as is known, different such grammars are possible and sensible.
Researching the infinite then becomes the more mundane activity of exploring rule
systems in regard to their consequences, which is still a wonderful intellectual
achievement. The “infinitely large” becomes part of the prose of math. Again we
find that it is not some external object (infinite set) that regulates how mathematics
is done but mathematics itself that determines how one can view the infinite, which
in a way emerges in the respective language game. It should be clear that such
views and attitudes bring mathematics back to the purview of human beings, which
does not make it any easier to learn but possibly arouses less fear and anxiety about
an inaccessible realm far beyond one’s reach.

The final notion in Wittgenstein to be mentioned briefly is that of “norm” or
“paradigm.” In connection with the notions of language game, grammar, and rule
use, it permits the dissolution of some of the notorious enigmas ascribed to
mathematics: the necessity or unavoidability of mathematics. Mathematics cannot
be otherwise and alternatives are not conceivable as is possible for statements, say,
about nature. There is no change in mathematics, mathematics is timeless, and its
propositions are eternally true and they are exactly true, not only approximately.
Furthermore, there is the puzzle of the applicability of mathematics to nature,
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though the latter is seen as categorically different from mathematics. The way out of
many of these enigmas proposed by Wittgenstein is to recognize that mathematical
notions and propositions in many cases are used as a norm, as a measuring stick
against which something is judged and evaluated. We use established arithmetic
rules to judge the correctness of calculations and of counting: Only what conforms
to the rules is considered to be acceptable. Those arithmetic propositions and
relations are not used as descriptions of eternally true properties of numbers but as
templates to carry out and to check the correctness of other calculations, even if the
prose tells us otherwise. The mathematical circle, or the mathematical sphere in this
sense, is not used as an object but again as a rule to which something to be called a
circle or a sphere has to conform. Those uses of math are not descriptive but rather
prescriptive or evaluative. Again as with rules, norms or paradigms have no truth
value and all the conundrums about mathematical objects for them simply do not
make sense. It is the use made of mathematics that makes it timeless, eternal,
apodictic, necessary, and, in a trivial sense, true, since that truth results from
accepting something as a rule, a norm, or a paradigm. Mathematical propositions
are not used as descriptions of facts but are used as rules for description. There is
therefore no need to ascribe to them or to mathematical objects any ontological
status, since their “reality” resides in their uses within the sign games of mathe-
matics. At least this Wittgenstein would very likely agree with.

4.5 Conclusion

The main purpose of this contribution is to arouse more interest in the views on
mathematics and mathematical activity proposed by Peirce and especially
Wittgenstein, whose ideas were often overlooked within math education. For some
possible consequences of Wittgensteinian ideas for learning mathematics, see
Dorfler (2014). A common theme for both of these men is that human intellectual
and linguistic activity is fundamentally based on signs of all sorts, and this applies
all the more to mathematics. The signs are not just a means or a tool for mathe-
matical activity and creativity, but they are essential and constitutive for mathe-
matics, its notions, and propositions and their meanings. Thus for Peirce, to learn
mathematics would be to acquire expertise in diagrammatic reasoning, and for
Wittgenstein, it would be to participate in the many various sign games and their
techniques. In both cases, which are closely related, it is of great importance to stick
meticulously to established rules. This holds for pure mathematics and its proof
techniques and for the manifold ways of applying mathematics to other fields.
Importantly, mathematics is thereby fundamentally shown to be a deeply social and
socially shared cultural activity and product: sign activity can be executed with
others and shown to others in a public form. This is very different from imagining
mathematics as a kind of abstract and mental activity.
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Chapter 5

Networking of Theories in the Tradition
of TME

Angelika Bikner-Ahsbahs

5.1 The Networking of Theories Approach

During the last decade, the discussion on theory development has been reconsid-
ered, for example, by Prediger (2010), in the networking of theories approach
worked out by a group of European researchers' coming from Germany, Italy,
Spain, Israel, France, and (at the beginning also from) the UK. The growing
complexity of the field and an increase of the diversity of theories motivated this
work (see Dreyfus 2009). The aim was to find a scientifically based way of dealing
with different theories in research. The current state of the art on the networking of
theories approach has been published in a recent book, illustrated by empirical case
studies (Bikner-Ahsbahs et al. 2014), and in methodological articles (Kidron and
Bikner-Ahsbahs 2012; Bikner-Ahsbahs and Prediger 2010; Prediger et al. 2008;
Dreyfus 2009).

The idea of the networking of theories is based on four assumptions
(Bikner-Ahsbahs 2009):

1. Regarding the diversity of theories as a form of scientific richness,
2. Acknowledging the specificity of theories,

3. Looking for the connectivity of theories and research results,

4. Developing theory and theory use to inform practice. (p. 7).
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and Ingolf Schéfer.
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The networking of theories allows for explicitly working with different theories
in order to benefit from their theoretical strengths with a specific focus on informing
practice as well as being inspired by empirical situations of practice. To network
theories means to build relations among theories. This approach is not a new idea.
There are forerunners: for example, in 1992, Bauersfeld presented an integrated
analysis of a teaching and learning situation using various theoretical approaches
(1992b). He has also used strategies to compare and contrast radical constructivism
and activity theory in order to clarify their (in-) compatibility (1992a). In 1998,
Maier and Steinbring published a comparison of two theoretical approaches on
processes of understanding based on the same empirical episode. These examples
show that German researchers used the strategies of comparing theoretical
approaches and integrating theoretical aspects to comprehend practice. Such
strategies, called networking strategies, have been systematized, resulting in a
landscape of four pairs of complementary strategies (Fig. 5.1). This landscape
orders these strategies according to their potential for integration between two
poles, non-relation of ignoring other theories, and unification of theories globally.

The first two pairs (understanding and making understandable, comparing and
contrasting), acknowledge the theories’ identities and the diversity of the theories as
a resource in the field. They point to the basic necessity of understanding theories.
This first pair may take place in a deepened way while comparing and contrasting
theories. The second pair, comparing and contrasting, leads to awareness of dif-
ferences and commonalities, thus learning from other perspectives. The third pair,
combining and coordinating, is a step towards bridging theories. Its strategies allow
working with different theories to build a conceptual framework or include com-
plementary views into researching a problem. The fourth pair, locally integrating
and synthesizing, leads to more comprehensive theoretical frameworks. Local
integration may occur when a concept can be interpreted from different theoretical
views, thus integrating the concept into other theories. Synthesizing is meant when
two or more theories can be imbedded into a more holistic theoretical framework.
While there are some cases of local integration, a case of synthesizing has not yet
been achieved (see Bikner-Ahsbahs and Prediger 2010).

During the last decade, research methods using networking of theories have been
developed in a number of projects. These methods encompass repeated exchanges

Networking Strategies

Deepening understanding of own and other theories degree of integration

| I—

integrating
locally

ignoring
other others L k !
theories making
under- combining
standable

Fig. 5.1 Networking strategies (Prediger et al. 2008, p. 170; Bikner-Ahsbahs and Prediger 2010,
p. 492)
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of experiments or analyses from various views, using networking strategies to
connect theories, establishing a common ground, doing complementary analyses,
implementing inclusive methodologies, and producing common methodological
and theoretical reflections (Bikner-Ahsbahs 2009; see Bikner-Ahsbahs and Kidron
2015; Artigue and Mariotti 2014).

In contrast to TME, the foundation of a scientific discipline is not directly
addressed in the networking of theories approach. Contribution to such a foundation
is done by research connecting theories to solve problems and by additional
meta-research of final reflections on methodologies and research results. For
example, in Kidron et al. (2014), the notions of context were compared and con-
trasted in the theories “Abstraction in Context” (AiC), “Theory of Didactic
Situations” (TDS), and “Anthropological Theory of the Didactic” (ATD). Since all
three theories share an epistemological sensitivity, the comparison of the three
relevant concepts, context in AiC, milieu in TDS and dialectic media-milieu in
ATD, was related to the epistemological nature of the theories and made it possible
to sharpen the notions of the three contextual concepts by comparing and con-
trasting their role in the theories. More generally, this case study showed three ways
in which such a broad concept as “context” can be theoretically specified: as a core
concept in TDS, as a developmental concept to answer the question of how media
and milieu are interrelated in ATD, and as a variable counterpart of the theoretical
core of abstraction processes in AiC.

Empirical research within the networking approach has also led to new kinds of
theoretical concepts lying at the boundary of theories. These boundary concepts
(see Akkermann and Bakker 2011) make sense from different theoretical views,
mainly in complementary ways. For example, the “epistemological gap” (Sabena
et al. 2014)? is a phenomenon that may appear when the epistemic view of the
teacher and that of the students differ in that the students do not have access to the
same epistemological resources as the teacher. In their example, a student explored
the graph of the exponential function and how it develops for big x towards infinity.
Using an asymptotic gesture, he described the way the slope of the graph increases
towards infinity. His resource consisted of observing the graph on the computer
screen; the teacher, however, asked for a proof of contradiction for the statement
that the graph of the function could not have an asymptote. The student’s episte-
mological view was based on perception and the teacher’s epistemological view
was based on logical arguments. They shaped an epistemological gap that the
student could not bridge by himself. Two theoretical concepts were used in the
analysis, the semiotic bundle concept and the concept of interest-dense situation.
Both concepts integrated into a common methodology allowed for characterising
and identifying this epistemological gap (Sabena et al. 2014).

From a theoretical point of view, Burscheid and Struve (1988) have already described such an
epistemological (teaching-learning) gap as the gap between the empirical theory of the students
and a more logical theoretical background of the teacher.
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Networking of theories has been developed as a research practice to solve
problems that are so complex that more than one theory should be considered. It
tries to handle the complexity of teaching and learning in research and to avoid
simplistic interpretations. In contrast to TME, the networking of theories builds on
concrete research taking into account different theoretical perspectives, reflecting
the methodological processes and the epistemological basis.

Advancing the field is not an explicit issue of the networking of theories, but it
can be a result of research conducted through a networking of theories approach. In
this way, advancing the field does not happen in big steps but as a very slow
process, layer by layer, based on research in the very same research process. As
Artigue and Bosch (2014) have outlined, the meta-knowledge gained has not yet
reached the level of theoretical or meta-theoretical knowledge so far; it is more a
kind of craft knowledge enriched by methodological strategies. These strategies
encompass meta-research, which clarifies theories and their assumptions, phe-
nomena and concepts. Thus, the networking of theories further develops theories
and the scientific dialogues that take place between researchers from distinct theory
cultures (Kidron and Monaghan 2012).

5.2 The Networking of Theories and the Philosophy
of the TME Program

The networking of theories was already foreshadowed in a discussion in the Topic
Area on TME of ICME 5, just before the first TME conference, summarized by
Steiner (1986):

The ensuing discussion was basically concerned with a comparison of theoretical positions
represented by two contributions concentrating on commonalities and differences between
“information” and ‘“knowledge.”... In general, it was agreed that confronting and com-
paring different methods for interpretation and analysis of phenomena and problems in
mathematics education is a worthwhile task and one to be worked at more intensely in
future activities of TME. (p. 296)

Moving to the present day, the networking of theories approach has gone much
further. It has developed strategies of meta-research building on the research itself as
an additional research practice. Such strategies do not observe the field to identify
basic problems to be addressed, and they do not offer big lines of theory develop-
ment, but they do add a deep methodological reflection addressing complexity in the
research practice. The new knowledge that has been produced consists of tiny but
sustainable steps. In line with Bigalke and Steiner, it respects the diversity of theories
as richness in the field. Thus, the disciplinary matrix of Kuhn and Masterman and
specifically their developmental phases are not considered to be a suitable model for
the field. Contextual and hence theoretical diversity, in the sense of networking of
theories, provides rich insight mainly into research practices. The networking of
theories approach may further develop theories and theory concepts and in this way
advance the field. A unifying paradigm is explicitly excluded. Since this approach is
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a methodological and practical one leading to new kinds of concepts at the boundary
of theories but also to new kinds of questions addressing complementarity, the
advancement of the field may be reached through dialogue (Kidron and Monagham
2012). Research is not restricted to home-grown theories but research by networking
of theories may develop the field in a home-grown way.

What is the potential to advance the field in the sense of TME if we practice
networking of theories as a normal research practice? The reader is invited to
engage in a networking of theories case and reflect on issues of TME. The example
case will be on learning fractions. It will be analysed from the two theoretical
perspectives presented before. The two analyses will then be networked to clarify
the complementary nature of the two theories.

5.3 An Example of Networking the Two Theoretical
Approaches

In a sixth grade class (partly presented in Bikner-Ahsbahs 2005, pp. 234-243, see
Bikner-Ahsbahs 2001) the teacher implemented the following task to introduce the
concept of fractions for the first time, giving the students three equal bars of
chocolate represented as rectangles:

Four students want to distribute three equal bars of the same chocolate in a fair way among
them. How do they manage it? Find at least one distribution.

The students were supposed to work in groups and present their solutions to the
class afterwards. Some of the distributions are shown in Figs. 5.2, 5.3, 5.4, 5.5, 5.6
and 5.7 (each student is represented by a different pattern).

In the class, a discussion about sameness and fairness took place. For example:
Does everyone get the same in the distribution of Fig. 5.4 even though one gets
three small pieces while the others get only one bigger piece each? In a similar way,
sameness was discussed for the distributions in Figs. 5.5 and 5.7. The first implicit
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rule appeared to be: The pieces are the same when they can be substituted by the
others. This was shown by the teacher in the diagram in Fig. 5.8 on the blackboard.

However, in Fig. 5.7 this was difficult to achieve. So the rule was changed to:
The pieces are the same when they represent the same amount of chocolate. So why
did the piece at the bottom of the second rectangle in Fig. 5.7 show the same
amount of chocolate as the long parts in the first and the third rectangle? The answer
was quickly found: one quarter of the same bars were always of the same amount
no matter what shape the quarters have and how they are positioned. But now
another question arose: What does everyone get? Three quarters of one bar? In
Fig. 5.4, this seemed right for the parts with stripes, but not for the parts with
circles. The latter parts rather were described as “three quarters of three bars,” while
other students said that they were “one quarter of three bars.” This again caused a
lively discussion about the question: Are three quarters of one bar the same as one
quarter of three bars (and three quarters of three bars)? The subsequent discussion
showed emotional engagement. Those students who interpreted the preposition of
as taken away from were convinced that three quarters of one bar was not the same
as one quarter of three bars because if just one quarter was taken, it was much less
than three quarters. The whole as a variable entity was not yet built. One quarter or
three quarters were regarded as pieces of an absolute size and not of a relative size
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Fig. 5.9 Three quarters of
one big bar (three small bars)
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according to the related entity. Rosa had a nice idea about changing the size of the
bar (Bikner-Ahsbahs 2005):

Rosa If we now, if we now join all the three bars together and then we would take
from them three quarters [emphasized], that would be foo much [empha-
sized]. This does not work if one would get three quarters of three bars.
(p. 242, translated)

She joined the three bars, getting one big bar (represented by double arrows).
Three quarters of this big bar would then be much more than just one quarter of the
big bar (Figs. 5.9 and 5.10).

Thus, it became clear that in Fig. 5.4 the part with circles is one quarter of a big
bar and that this was the same as three quarters of a small bar, still considering it to
be a part that is taken away. This was still not acceptable for those students who
regarded one quarter as an absolute size. One quarter as a relation between the part
and the whole needed further exploration with variable entities, for example varying
the size of the whole and investigating what one quarter of means.

5.4 The Sign-Game View’

The task has initiated an activity by setting the rule to achieve a fair distribution of
the chocolate bars represented in the rectangles to be used. The students invented
diagrams of distributions showing “the spatial relationships of its parts to one
another and the operations and transformations of and with the diagrams” (Dorfler,
Sect. 4.3) and inventing the rule that being the same means to be able to substitute
the parts (Fig. 5.8). Based on the rule, they used “inventive and constructive
manipulation of diagrams to investigate their properties and relationships.” (ibid.,
Sect. 4.3). The students compared their solutions and tried to understand the diagram
in a social activity, expressing their interpretations “in natural language and specific
terms relating to the diagram,” (ibid., Sect. 4.3) such as one quarter or three quarters

*We will use quotes to refer to Dérfler’s text of Chap. 4 in this book.
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in the different figures. “These descriptions and explanations cannot be substituted
for the diagram and its various uses, however. In relation to the diagram and its
intended relations and operations, this [language] is a meta-language about the
diagrams, which also focuses attention and interest on its relevant aspects and
activities.” (ibid., Sect. 4.3) These aspects and activities consist of the various ways
in which three quarters are expressed by diagrams and what they mean compared to
each other. However, it also shows that language may result in difficulties; for
example, in the question, “Are three quarters of one bar the same as one quarter of
three bars and three quarters of three bars?” While the diagrams seemed to be clear,
the natural language of the students was not yet conventionalized; hence, the diffi-
culty arose from the differences in the interpretation of what quarter of/from means.
Exactly this aspect points to another difficulty the students had: regarding one or
three quarters as a relationship between the part and the whole. The diagrams pre-
sented above do not show this aspect to be relevant. Rosa seemed to be aware of this
relationship and invented a way of working with the diagram by changing the size of
the whole bar. She began to build the whole as a variable entity by pushing the three
bars together to achieve one big bar (Figs. 5.9 and 5.10). It is this action on the
diagrams that shows what one quarter of a big bar means, and according to the
original rule this is the same as three quarters of one small bar (Figs. 5.9 and 5.10).
However, another rule must be added or disclosed by the students: one quarter or
three quarters do not have an absolute size but must be used with reference to the
whole. Rosa’s action shows that “the signs (see Figs. 5.1,5.2,5.3,5.4,5.5,5.6,5.7,
5.8, 5.9 and 5.10) are not just a means or a tool for mathematical activity and
creativity, but they are essential and constitutive for mathematics, its notions, and
propositions and their meanings” and “‘sign activity can be executed with others and
shown to others in a public form.” (ibid., Sect. 4.5). The students are engaged in a
“sign game” with the help of the teachers accepting and inventing rules; thus
developing mathematical meaning represented in processes of diagramming.

5.5 The Learning Activity View”

An activity theory view looks at the students’ actions while working on the task.
Analyses are normally imbedded in the students’ learning biography in school
focusing on the current situation and the teacher’s intentions and actions. A global
view of planning the course of instruction is as relevant as the local view of the
ways the teacher supports students in orienting and conducting the task. When
choosing the task above, the teacher has to be aware of the cultural historical
content which the task allows students to learn by the initiated learning actions. The
question to be answered is what knowledge is a prerequisite and, hence, is or should
be available.

*I thank Regina Bruder and Oliver Schmitt for their assistance in the analysis of the example.
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In the given task, the students are supposed to learn the concept of a fraction,
which is represented by figurative diagrams. While preparing this task, the teacher
should insure that the necessary knowledge is available for carrying out the task,
e.g., by implementing calculations for the area of rectangles. The task is supposed
to initiate a learning action with the goal of finding out which equal parts of the
chocolate bars the four people may get. As a resource, material chocolate bars may
be offered and then transformed into iconic representations. This transformation
might be introduced by the teacher as a helpful tool allowing mental ways of trying
out and manipulating and finally transferring the results back to the real situation
again.

Two basic acquisition actions are aimed at identifying and realizing fractions.
First, the students begin to realize the fraction % with the help of diagrams and
identify other representations while comparing the students’ solutions. The teacher
systematizes the students’ explorations during the class discourse to assist them in
building a pattern or even field orientation for working with similar tasks. This is
shown in the discussion about how far three single quarters of the chocolate bar
correspond to one piece of % of a bar. The teacher mediates between the knowledge
the students have in mind and the knowledge that has been culturally given.

For further instruction, the teacher could use tasks for identifying and realizing
fractions in terms of rectangular things or diagrams similar to the ones used before.
Solving similar tasks with diagrams of a different shape such as a circle need not be
successful based on pattern orientation, but might be a starting point for general-
izing the knowledge about representing fractions.

5.6 Comparison of Both Approaches

The sign use approach built on Peirce and Wittgenstein focuses on the slow
development of mathematical meaning being situated in manipulating diagrams, its
perceivable changes, and diagrammatic reasoning. “This is very different from
imagining math as a kind of abstract and mental activity.” (Ddrfler, in this survey,
Sect. 4.5). Although people speak about these diagrams, the mathematical ideas are
expressed in the diagrams and not built by mental constructions or images of
people. The strength of this approach is its sensitivity towards which diagrams and
their development can express mathematical ideas in certain rule-based ways. In the
situation above, the part-whole relation of a fraction is diagrammatically unclear
since there is only one kind of entity representing the whole. Diagrams and acting
with diagrams belong to the kernel of this theoretical approach. Intended applica-
tions may consider what kind of acting on diagrams can express which specific
mathematical meanings, how language about diagrams is used, and, hence, how
sign games can be shaped by people and social groups.

The theory of learning activity is also based on acting, but not with a focus on
diagrams to be acted on but more on the subjects who are acting on the diagrams
as resources to achieve specific cultural knowledge. Two basic actions are
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distinguished, identifying and realizing, which can be initiated by tasks. Taking
pattern or field orientations into account allows for foreseeing what kinds of tasks
the students might solve successfully. Initiating a learning activity does not only
focus on the current task situation but requires also taking past learning experience
and future goals into account. Tools, e.g., diagrams, do not belong to the kernel of
the theory. Its kernel encompasses the concept of activity and how a learning
activity can be shaped, initiated by tasks, and created by the learner with the help of
the teacher. The teacher’s role is crucial. Referring to the example above, one
intended application is concerned with the problem of which further tasks the
teacher can choose in order to assist the students in building the concept of % to be
represented by various shapes. The strength of this approach is its prescriptive
nature for initiating learning activities, while diagrams may serve one kind of
resource among others.

While both approaches share the sensitivity towards acting, the core concepts
(e.g., diagram) of the one theory lie more in the periphery of the other (e.g., as a
resources for a learning activity). If we take a networking of theories view and
coordinate the analyses by using the two theoretical views, the empirical situation
presented may be investigated according to two complementary questions: (1) what
and how can acting with diagrams express mathematical ideas and (2) how can a
task with certain goals be designed to initiate basic actions, such as identifying and
realizing in a specific stage of the course of instruction, that are built on prior
knowledge and preparing future goals to achieve cultural knowledge. Thus, both
approaches complement each other and may enrich each other to inform practice
(see TME program): coming from the learning activity we may zoom into (see
Jungwirth 2009 cited by Prediger et al. 2009, p. 1532) diagram use, and coming
from diagram use we may zoom out (ibid., p. 1532) to embed the diagram use into
the whole course of the learning activity.
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Chapter 6
Summary and Looking Ahead

Angelika Bikner-Ahsbahs and Andreas Vohns

A vivid discussion about the theory concepts and the role of theory in mathematics
education began at the end of the 1970s. This was embedded into a broader dis-
course about the nature of the “Didaktik der Mathematik” (“Didactics of
Mathematics”/mathematics education) and its core subject: the mathematics to be
learned and taught. In the 1980s, different theory traditions began to develop in
research in the German field, while some meta-theoretical considerations emerged
from research within specific paradigms. This German discussion was re-addressed
during the TME conferences beginning in 1984, where Steiner presented a program
(the TME program) for the foundation of mathematics education as a scientific
discipline on an international level. The Networking of Theories approach, estab-
lished in 2006 to deal with the growing diversity of theories in Europe, can be
regarded as a “spiritual TME-successor.” It had forerunners in the German field:
early examples in the German community stem from Bauersfeld, and Steiner has
documented that already the TME conferences had provided space for the dialogue
about comparing and contrasting theories in the field. Two theory strands with
scientific routes in German-speaking traditions were presented. These theoretical
approaches were networked in a case of learning fractions to investigate how they
could be related. This case shows the theories’ complementary nature, providing a
micro-view on a specific moment within a larger view on the learning activity.

What can we learn from this survey for the future of teaching and learning
mathematics in Germany and internationally?
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e The discussion on suitable theory concepts and how they may be developed in a
home-grown way goes on and should be renewed again and again.

e This discussion is deeply interrelated to the nature and the development of
mathematics education as a scientific discipline. As the TME program has
stressed, the awareness of what mathematics education is about should be raised
and kept alive, reconsidering and deliberating relevant topics/problems and
relating them to the practice of teaching and learning mathematics, which is ever
changing.

e There seems to be a scientific necessity for meta-theoretical considerations,
whether within a theory culture or across theory cultures in mathematics edu-
cation; top down, such as was proposed by the TME program; or bottom up by
research with the networking of theories approach. How this practice will go on
will depend on the kinds of problems to be explored in the field.

e The two theories presented are not only analysis tools fitting a suitable aim and
theory concept, they also have a past history of which the community of
mathematics education should be aware—this holds true for many theories in
mathematics education.

e [t is worthwhile to reconsider ideas from past research in order to learn more
about continuity and change in our scientific discipline and the practice of
teaching and learning, in each country as well as internationally.
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