

Location-Based
Information Systems

Developing Real-Time
Tracking Applications

CHAPMAN & HALL/CRC
COMPUTER and INFORMATION SCIENCE SERIES

Series Editor: Sartaj Sahni

PUBLISHED TITLES

ADVERSARIAL REASONING: COMPUTATIONAL
APPROACHES TO READING THE OPPONENT’S MIND
Alexander Kott and William M. McEneaney

DISTRIBUTED SENSOR NETWORKS
S. Sitharama Iyengar and Richard R. Brooks

DISTRIBUTED SYSTEMS: AN ALGORITHMIC APPROACH
Sukumar Ghosh

ENERGY EFFICIENT HARDWARE-SOFTWARE
CO-SYNTHESIS USING RECONFIGURABLE HARDWARE
Jingzhao Ou and Viktor K. Prasanna

FUNDEMENTALS OF NATURAL COMPUTING: BASIC
CONCEPTS, ALGORITHMS, AND APPLICATIONS
Leandro Nunes de Castro

HANDBOOK OF ALGORITHMS FOR WIRELESS
NETWORKING AND MOBILE COMPUTING
Azzedine Boukerche

HANDBOOK OF APPROXIMATION ALGORITHMS
AND METAHEURISTICS
Teofilo F. Gonzalez

HANDBOOK OF BIOINSPIRED ALGORITHMS
AND APPLICATIONS
Stephan Olariu and Albert Y. Zomaya

HANDBOOK OF COMPUTATIONAL MOLECULAR BIOLOGY
Srinivas Aluru

HANDBOOK OF DATA STRUCTURES AND APPLICATIONS
Dinesh P. Mehta and Sartaj Sahni

HANDBOOK OF DYNAMIC SYSTEM MODELING
Paul A. Fishwick

HANDBOOK OF PARALLEL COMPUTING: MODELS,
ALGORITHMS AND APPLICATIONS
Sanguthevar Rajasekaran and John Reif

HANDBOOK OF REAL-TIME AND EMBEDDED SYSTEMS
Insup Lee, Joseph Y-T. Leung, and Sang H. Son

HANDBOOK OF SCHEDULING: ALGORITHMS, MODELS,
AND PERFORMANCE ANALYSIS
Joseph Y.-T. Leung

HIGH PERFORMANCE COMPUTING IN REMOTE SENSING
Antonio J. Plaza and Chein-I Chang

INTRODUCTION TO NETWORK SECURITY
Douglas Jacobson

LOCATION-BASED INFORMATION SYSTEMS:
DEVELOPING REAL-TIME TRACKING APPLICATIONS
Miguel A. Labrador, Alfredo J. Pérez, and
Pedro M. Wightman

METHODS IN ALGORITHMIC ANALYSIS
Vladimir A. Dobrushkin

PERFORMANCE ANALYSIS OF QUEUING AND COMPUTER
NETWORKS
G. R. Dattatreya

THE PRACTICAL HANDBOOK OF INTERNET COMPUTING
Munindar P. Singh

SCALABLE AND SECURE INTERNET SERVICES AND
ARCHITECTURE
Cheng-Zhong Xu

SPECULATIVE EXECUTION IN HIGH PERFORMANCE
COMPUTER ARCHITECTURES
David Kaeli and Pen-Chung Yew

VEHICULAR NETWORKS: FROM THEORY TO PRACTICE
Stephan Olariu and Michele C. Weigle

Miguel A. Labrador
Alfredo J. Pérez

Pedro M. Wightman

Location-Based
Information Systems

Developing Real-Time
Tracking Applications

CHAPMAN & HALL/CRC
COMPUTER and INFORMATION SCIENCE SERIES

Series Editor: Sartaj Sahni

PUBLISHED TITLES

ADVERSARIAL REASONING: COMPUTATIONAL
APPROACHES TO READING THE OPPONENT’S MIND
Alexander Kott and William M. McEneaney

DISTRIBUTED SENSOR NETWORKS
S. Sitharama Iyengar and Richard R. Brooks

DISTRIBUTED SYSTEMS: AN ALGORITHMIC APPROACH
Sukumar Ghosh

ENERGY EFFICIENT HARDWARE-SOFTWARE
CO-SYNTHESIS USING RECONFIGURABLE HARDWARE
Jingzhao Ou and Viktor K. Prasanna

FUNDEMENTALS OF NATURAL COMPUTING: BASIC
CONCEPTS, ALGORITHMS, AND APPLICATIONS
Leandro Nunes de Castro

HANDBOOK OF ALGORITHMS FOR WIRELESS
NETWORKING AND MOBILE COMPUTING
Azzedine Boukerche

HANDBOOK OF APPROXIMATION ALGORITHMS
AND METAHEURISTICS
Teofilo F. Gonzalez

HANDBOOK OF BIOINSPIRED ALGORITHMS
AND APPLICATIONS
Stephan Olariu and Albert Y. Zomaya

HANDBOOK OF COMPUTATIONAL MOLECULAR BIOLOGY
Srinivas Aluru

HANDBOOK OF DATA STRUCTURES AND APPLICATIONS
Dinesh P. Mehta and Sartaj Sahni

HANDBOOK OF DYNAMIC SYSTEM MODELING
Paul A. Fishwick

HANDBOOK OF PARALLEL COMPUTING: MODELS,
ALGORITHMS AND APPLICATIONS
Sanguthevar Rajasekaran and John Reif

HANDBOOK OF REAL-TIME AND EMBEDDED SYSTEMS
Insup Lee, Joseph Y-T. Leung, and Sang H. Son

HANDBOOK OF SCHEDULING: ALGORITHMS, MODELS,
AND PERFORMANCE ANALYSIS
Joseph Y.-T. Leung

HIGH PERFORMANCE COMPUTING IN REMOTE SENSING
Antonio J. Plaza and Chein-I Chang

INTRODUCTION TO NETWORK SECURITY
Douglas Jacobson

LOCATION-BASED INFORMATION SYSTEMS:
DEVELOPING REAL-TIME TRACKING APPLICATIONS
Miguel A. Labrador, Alfredo J. Pérez, and
Pedro M. Wightman

METHODS IN ALGORITHMIC ANALYSIS
Vladimir A. Dobrushkin

PERFORMANCE ANALYSIS OF QUEUING AND COMPUTER
NETWORKS
G. R. Dattatreya

THE PRACTICAL HANDBOOK OF INTERNET COMPUTING
Munindar P. Singh

SCALABLE AND SECURE INTERNET SERVICES AND
ARCHITECTURE
Cheng-Zhong Xu

SPECULATIVE EXECUTION IN HIGH PERFORMANCE
COMPUTER ARCHITECTURES
David Kaeli and Pen-Chung Yew

VEHICULAR NETWORKS: FROM THEORY TO PRACTICE
Stephan Olariu and Michele C. Weigle

Miguel A. Labrador
Alfredo J. Pérez

Pedro M. Wightman

Location-Based
Information Systems

Developing Real-Time
Tracking Applications

Chapman & Hall/CRC
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2011 by Taylor & Francis Group, LLC
Chapman & Hall/CRC is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

International Standard Book Number-13: 978-1-4398-4854-8 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

The Open Access version of this book, available at www.taylorfrancis.com, has been made available
under a Creative Commons Attribution-Non Commercial-No Derivatives 4.0 license.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.crcpress.com
http://www.taylorandfrancis.com
www.taylorfrancis.com

Preface

Location-based services (LBS) are finally coming out of research labs and get-
ting into the hands of final users. It is fairly common to see cellular carriers
and private companies offering LBS to locate your children, friends, and sites
of interest, track assets, enhance the security of key personnel, help people
with disabilities use public transportation, guide tourists, and many others.
Location-based advertisement is becoming a very big business. Very soon users
will be receiving customized advertisements in their cellular phones according
to their current location. Military-related LBS systems have also been imple-
mented to provide real-time situational awareness. Soldiers are receiving alert
messages with additional information according to their current location. The
interesting aspect is that LBS applications are just starting to emerge and the
potential for growth the next several year is tremendous.

One common aspect of all these LBS applications is that they are built
on top of an infrastructure that includes not only the cellular phone and
the application that runs in it but also a communication network, a back
end application that runs in a server somewhere, and a series of supporting
servers and databases that together provide useful information back to the
user. This entire infrastructure on top of which many LBS applications can
be efficiently supported and run is what we call Location-Based Information
Systems (LBIS). LBIS are being developed to target problems in many, if not
all, sectors of the economy. In this regard, the timing of this book could not
be better.

Looking into the future, current research is bringing new refinements and
improvements and is pushing the technology even further. We can see LBIS
systems transforming into what is being called “Participatory Sensing” and
“Human-Centric Sensing” systems. In addition to having the location of the
user in real-time, the cellular phone could integrate and provide information
coming from other sensors or devices. For example, the user could be wear-
ing Bluetooth-based sensors to continuously measure his or her temperature,
heart rate, and other vital signals. Accelerometers are already integrated in
several cellular phones. They are very useful in determining the type of activ-
ity that the user is doing, which along with their vital signals could be used
in many health care-related applications. Cellular phones could also integrate
measurements from other types of sensors and be used to address large-scale
societal problems. For example, if all cellulars phone were equipped with air-
quality sensors, and all users participated in the application, we could have

v

vi

information about the pollution level in an entire city very easily. Similarly,
we should be able to easily determine the congestion level, travel times, etc.,
in most of our major roads. As you can see, the future of location-based in-
formation systems is very promising.

Book Origin and Overview

This book is the result of more than six years of research and development
in location-based information systems. This research involved the investigation
of new architectures, middleware, algorithms, protocols, mechanisms, etc., to
address particular problems related to the implementation of a variety of
location-based applications, mostly for the transportation industry and the
military. It is also the result of our active participation in the definition of the
Java ME Location API 2.0 as part of the JSR 293 working group. After all
these years, we thought it was time to include this topic into the mainstream
of courses in our university, so we prepared a junior-/senior-level course and
wrote this book to support it.

The book contains information and examples to implement a general real-
time location-based information system. In fact, all chapters of the book tar-
get the implementation of a general real-time tracking system example. It is
general in the sense that the system should be easily adapted to target any
application domain. Further, the incorporation of other sensors’s data to make
the system “participatory” or “human-centric” should be a straight-forward
extension.

The book consists of twelve chapters and one appendix. Chapter 1 in-
troduces the definition and classification of location-based services and the
types of LBS applications. It also describes the three most important location
provider architectures. This chapter describes an entire real-time tracking sys-
tem that will be used throughout the book as an example. Each subsequent
chapter of the book shows how to implement a piece of the tracking system
example. The chapter concludes with a description of the software architec-
ture we used to implement the tracking system and a look into the future,
including concepts such as participatory sensing and human-centric sensing.
Chapter 2 describes the hardware and software architectures of a typical cellu-
lar phone. Chapter 3 describes the Java Platform Micro Edition, or Java ME,
the Java platform for resource-constrained devices. The chapter includes the
description of the entire software stack: the Connected Limited Device Con-
figuration 1.1, the Mobile Information Device Profile 2.0, and the optional
packages. Chapter 4 shows how to create MIDlets, those Java-based programs
that comply with the Java ME platform. Some of the most important APIs
used in the development of MIDlets are also described there. The chapter also
touches on security and privacy issues and mechanisms. Chapter 5 is devoted
to other important programming aspects such as memory management, con-
currency, dynamic linking, and energy management, all especially important
for resource-constrained devices. Chapter 6 is about obtaining the user’s po-

vii

sition, the different technologies, systems, and players. At the end, the Java
Location API 2.0 is also described in detail. Chapter 7 is about relational and
geographical databases, how to define them, and how to store and retrieve
information from a cellular phone. Similarly, Chapter 8 covers the topic of
communications, or how to exchange data between the cellular phone and the
main application server. Chapter 9 explains how to create and use Web ser-
vices from cellular phones. Chapter 10 introduces the reader to the Google
Web Toolkit and how to use it to create system administration functions, such
as creating and deleting users, modifying the user information, and the like.
Chapter 11 shows how to display the location of the users in Google Maps
or Google Earth in real-time using the browser of any computer connected to
the Internet. Finally, Chapter 12 includes some examples of additional pro-
cessing functions at the cellular phone and the server meant to improve the
system’s performance and provide enhanced services. The Appendix A tells
the reader where to download all the software needed to implement the entire
location-based information system and guides the reader through the instal-
lation procedure.

Intended Audience

The book is intended for undergraduate students in their junior or senior
years, professors, researchers, and industry professionals interested in the de-
sign and implementation of location-based information systems. The book can
also be used as a reference book in a graduate class on the same topic.

Resources

A companion Website has been set up to provide additional information
and supporting material. The Website contains all software packages and ap-
plications utilized in the book as well as the PowerPoint slides and laboratory
examples utilized to teach the course CIS 4930 Location-Based Information
Systems at the University of South Florida (USF). All this material and more
can be found at http://www.csee.usf.edu/~labrador/LBIS.

Acknowledgments

We would like to acknowledge the financial support that we have received
from the federal Department of Transportation and the Florida Department
of Transportation through the National Center for Transit Research (NCTR),
AT&T, the National Science Foundation, and more recently, TeamTaclan.
Special thanks to Sprint, which has given us access to their development en-
vironment and A-GPS server, as well as considerable support in terms of
cellular phones and data plans for our research. They have supported our
research and development efforts on location-based information system over
the past six years. We would also like to acknowledge the help and support
of our research team mates Sean Barbeau, Phil Winters, Nevine Georggi, and

http://www.csee.usf.edu/

viii

Rafael Pérez, as well as the large number of past and current graduate and
undergraduate students who have worked in all our projects. We would also
like to thank the staff of Taylor and Francis, and Randi Cohen in particu-
lar, for their support during all the phases of the book. Finally, we want to
acknowledge our own families for their patience, support, and understanding
during all these months of continuous, hard work.

About the Authors

Miguel A. Labrador received the M.S. in Telecommunications and the
Ph.D. degree in Information Science with concentration in Telecommunica-
tions from the University of Pittsburgh, in 1994 and 2000, respectively. Since
2001, he has been with the University of South Florida, Tampa, where he
is currently an Associate Professor in the Department of Computer Science
and Engineering. Before joining USF, he worked at Telcordia Technologies,
Inc., New Jersey, in the Broadband Networking Group of the Professional
Services Business Unit. He has more than fifteen years of industry experience
in the telecommunications area. His research interests are in design and per-
formance evaluation of computer networks and communication protocols for
wired, wireless, and optical networks, energy-efficient mechanisms for wire-
less sensor networks, bandwidth estimation techniques, and location-based
services. He has published more than 50 technical and educational papers in
journals and conferences devoted to these topics. Dr. Labrador has served
as Technical Program Committee member of many IEEE conferences and is
currently member of the Editorial Board of Computer Communications and
the Journal of Network and Computer Applications, Elsevier Science. He is
the lead author of the book Topology Control in Wireless Sensor Networks,
Springer 2009 and served as guest editor of the special issue of Computer
Communications on “Advanced Location-Based Services.” Dr. Labrador is a
senior member of the IEEE Communications Society, and member of the ACM
SIGCOMM and SIGCSE, ASEE, and Beta Phi Mu honor society.

Alfredo J. Pérez received his B.S. in Systems Engineering from the
Universidad del Norte, in Barranquilla, Colombia, in 2006, and his M.S. is in
Computer Science from the University of South Florida in 2009, where he is a
Ph.D. candidate in the Department of Computer Science and Engineering. His
research interests are in the areas of mobile sensor networks, location-based
systems, evolutionary algorithms, and multi-objective optimization. Alfredo
is a member of the IEEE Computational Intelligence Society and member of
the Location Aware Information Systems Laboratory at USF.

Pedro M. Wightman received his B.Sc. in Systems Engineering from
the Universidad del Norte, in Barranquilla, Colombia, in 2004. He received
his M.S. and Ph.D. degrees in Computer Science and Engineering from the
University of South Florida in 2007 and 2010, respectively. Dr. Wightman
worked as an adjunct instructor at the Universidad del Norte during 2004

ix

and 2005 and since 2010, he has been with the Universidad del Norte, Bar-
ranquilla, where he is currently a Professor in the Department of Systems
Engineering. In 2005 he was selected to participate in the National Program
of Young Researchers in Colombia, sponsored by the Colombian Institute of
Science and Technology, Colciencias. In 2005, he was selected by the Universi-
dad del Norte to participate in the Teaching Formation Program, which gave
him the opportunity to start his doctorate. His research interests are in the
development of energy-efficient topology construction and topology mainte-
nance protocols for wireless sensor networks. Dr. Wightman is co-author of
the book Topology Control in Wireless Sensor Networks, Springer 2009. He is
a member of the IEEE Communication Society, and co-founder of CommNet,
the Communication Networks Group at USF.

Tampa Miguel A. Labrador
May 2010 Alfredo J. Pérez

Pedro M. Wightman

http://taylorandfrancis.com

Dedication

Dedicado a mi esposa Mariela, y a mis hijos Miguel Andrés y Daniel Ignacio.
Miguel A. Labrador

Dedicado a mis Padres, mis hermanas y a Rossana. Ad Maiorem Dei Gloriam.
Alfredo J. Pérez

Dedico este trabajo a mi familia por todo el apoyo que me han bridado desde
que tengo memoria, en especial a los Arango y a los Chiriboga.
Pedro M. Wightman

xi

http://taylorandfrancis.com

List of Figures

1.1 Network-based location provider architecture. 4
1.2 Mobile-based location provider architecture. 5
1.3 Location provider-based location provider architecture. . . . 6
1.4 A complete LBIS real-time tracking system example. 7
1.5 Client-side software architecture [19] c©2010 IEEE, Inc. In-

cluded here by permission. 9
1.6 Server-side software architecture [19] c©2010 IEEE, Inc. In-

cluded here by permission. 10
1.7 A high-level architecture for future location-based sensing in-

formation systems [46] c©2010 IEEE, Inc. Included here by
permission. 12

2.1 General architecture of a cellular phone. 16
2.2 A Java program flow of execution. 23

3.1 The family of Java platforms. 28
3.2 The Java ME platform. 29

4.1 The life cycle of a MIDlet. 39
4.2 The Hello World MIDlet in NetBeans’ cellular phone emulator. 41
4.3 Hierarchy of the most important classes in the user interface

package. 42

5.1 Threads’ state machine. 58
5.2 Energy consumption of UDP and TCP. Reproduced from [19]

c© 2003 IEEE, Inc. Included here by permission. 66

6.1 The GPS frame structure. 69
6.2 2D circular lateration. 70
6.3 The GSM cellular network architecture. 74
6.4 The GPRS cellular network architecture. 75

7.1 Rows and columns of the users’ table. 91
7.2 Design of the database of our LBIS tracking system example. 94
7.3 Creating a new database. 107
7.4 Defining the parameters of a new database. 107

xiii

xiv

7.5 Selecting the option to create a new table in a database. . . 108
7.6 Defining the name of the new table. 109
7.7 Creating new columns. 110
7.8 List of all columns. 110
7.9 General information about a primary key constraint. 111
7.10 Including the columns that are part of the primary key. . . . 111
7.11 Including a constraint for the zipcode column. 112
7.12 Obtaining the SQL script for the creation of the table. . . . 112
7.13 Opening the SQL execution module. 113
7.14 Executing SQL code to create a new table. 114
7.15 Executing a SQL query. 114

8.1 Hierarchical tree of inheritance of the Connection interface. 118
8.2 Hierarchical tree of inheritance of the javax.microedition.messaging

package. 131

9.1 The Web services paradigm. 140
9.2 The entire process and components of the Web services API. 142
9.3 Definition of Web service operations and parameters. 145
9.4 The Web service implementation code. 145
9.5 Design of the calculator MIDlet. 147
9.6 Design of the calculator form. 148
9.7 The calculator MIDlet. 149

10.1 The GWT development process. 161
10.2 The database model. 162
10.3 Creating a project for Eclipse using the GWT command line

tool. 163
10.4 Importing a GWT project in Eclipse. 164
10.5 Testing the GWT application. 165
10.6 Eclipse’s Package Explorer tree for the GWT project. 165
10.7 Window for creating a device. 171
10.8 The AJAX RPC approach. 172
10.9 Executing the DeviceServiceManager’s RPC call without

service implementation. 177
10.10 NetBeans’ window after the Web project is created. 178
10.11 Adding libraries to the project. 179
10.12 Configuring the GWT servlet. 181

11.1 Adding the Google Maps API into GWT. 185
11.2 Google Earth graphical user interface. 194
11.3 Creating a network link in Google Earth. 198
11.4 An active tracking session as shown in Google Earth. 199
11.5 Google Earth loaded in a Web application. 206

12.1 The distance-time-based critical point algorithm. 215

xv

12.2 Integration of WSNs and LBIS. 219

A.1 Administrator information and communication ports for
GlassFish. 223

A.2 Recommended options for the server. 224
A.3 Location of the files to be replaced in GlassFish. 225
A.4 Starting the application server. 226
A.5 Test Web page to check if the server is running correctly. . . 227
A.6 Administrator information. 228
A.7 Communication port. 229
A.8 Postgres’s administrator information and communication port

for PostGIS. 229
A.9 Option to create a new geographic database. 230
A.10 Name of the new geographic database. 230
A.11 Location of the JDBC drivers. 232
A.12 Location of the PostGIS and Postgres JDBC drivers in the

application server. 232
A.13 Administration console of the application server. 233
A.14 Location of the option for creating a connection pool in the

application server. 233
A.15 General information about the nature of the connection pool. 234
A.16 Upper section of the configuration parameters. 235
A.17 Lower section of the configuration parameters. 235
A.18 Testing the connection to the database from the connection

pool. 236
A.19 Location of the option for creating a connection pool on the

application server. 237
A.20 General information about the nature of the connection pool. 237
A.21 Addition of a server in NetBeans. 239
A.22 Selecting the type of server. 240
A.23 Registering a local server with the default domain. 240
A.24 Registering a remote server. 241
A.25 Location information of the remote server. 242
A.26 Adding the information of the server’s user administrator. . 242
A.27 Final view of the registration of the new server. 243
A.28 Installation of the GWT and the GWT Maps API. 244
A.29 Installation of the Eclipse IDE. 245
A.30 Select Java Platforms from the Tools menu. 247
A.31 The Add Platform window. 248
A.32 Selection of the proper type of platform. 248
A.33 Location of the Sprint WWT platform. 249
A.34 Selection of the Sprint WWT platform for inspection. 249
A.35 Final window of the installation process of the Sprint WWT. 250

http://taylorandfrancis.com

List of Tables

2.1 Summary of memory types, usage, and characteristics. . . . 20

xvii

http://taylorandfrancis.com

Contents

1 Introduction 1
1.1 Definition and Classification of LBS 2

1.1.1 Types of LBS Applications 2
1.2 Location Provider Architectures 3
1.3 A Complete LBIS Real-Time Tracking System Example . . . 6
1.4 Software Architecture . 8

1.4.1 Client-Side Software Architecture 9
1.4.2 Server-Side Software Architecture 10

1.5 A Brief Look into the Future 11
1.6 Organization of the Book . 13

2 The Mobile Phone 15
2.1 Introduction . 15
2.2 The Hardware Architecture 15

2.2.1 The Microprocessor 16
2.2.2 Digital Signal Processors (DSPs) 17
2.2.3 The GPS Receiver . 18
2.2.4 Memory . 18
2.2.5 Future Trends and Challenges 19

2.3 The Software Architecture 21
2.3.1 The Java ME Virtual Machine 22

2.3.1.1 The Execution Engine 23
2.3.1.2 The Heap . 24
2.3.1.3 The Garbage Collector 25
2.3.1.4 The Loader 25
2.3.1.5 The Verifier 25
2.3.1.6 The Thread Manager 26

2.4 The Mobile Phone and the LBIS Tracking System Example . 26

3 The Java Platform Micro Edition (Java ME) 27
3.1 Introduction . 27
3.2 The Java ME Platform . 28
3.3 The Connected Limited Device Configuration (CLDC) Layer

1.1 . 29
3.3.1 Java Programming Language and Virtual Machine Fea-

tures . 30

xix

xx Contents

3.3.2 Libraries and APIs . 30
3.4 The Mobile Information Device Profile (MIDP) Layer 2.0 . . 33
3.5 Optional Packages . 34
3.6 The Java ME Platform and the LBIS Tracking System Example 35

4 MIDlet Development 37
4.1 Introduction . 37
4.2 MIDlets . 37
4.3 A Hello World MIDlet . 39
4.4 The User Interface API . 40

4.4.1 Lists, Text Boxes, Forms, and Alerts 43
4.5 The Media API . 45
4.6 The Record Management System API 46

4.6.1 Working with Record Stores and Records 47
4.7 Security . 49

4.7.1 Information Security Goals and Mechanisms 49
4.7.2 MIDlet Security . 49
4.7.3 Network Security . 52

4.8 Privacy . 53
4.9 MIDlet Development and the LBIS Tracking System Example 54

5 Other Important Programming Aspects 55
5.1 Introduction . 55
5.2 Memory Management . 55
5.3 Concurrency . 56

5.3.1 Defining and Starting Threads 59
5.3.2 Stopping Threads . 60
5.3.3 Joining, Interrupting, and Sleeping Threads 60
5.3.4 Monitors and Locks 61
5.3.5 Waits and Notifications 63

5.4 Dynamic Linking . 64
5.5 Energy Management . 64
5.6 Other Important Programming Aspects and the LBIS Tracking

System Example . 66

6 Obtaining the User’s Position 67
6.1 Introduction . 67
6.2 The Global Positioning System (GPS) 67

6.2.1 The Format of the GPS Navigation Message 68
6.2.2 Lateration . 69

6.3 The GSM Cellular Network 73
6.3.1 Cell Identification or Cell ID 74
6.3.2 Enhanced Cell Identification 75
6.3.3 Enhanced Observed Time Difference (E-OTD) 75
6.3.4 Uplink-Time Difference of Arrival (U-TDoA) 75

Contents xxi

6.3.5 Assisted GPS (A-GPS) 76
6.4 Indoor Positioning Systems 77

6.4.1 Indoor Positioning Techniques 77
6.4.2 Skyhook’s Hybrid Positioning System (XPS) 79

6.5 The Location API 2.0 . 79
6.5.1 Improvements from Version 1.0 82

6.5.1.1 Criteria and LocationProvider 82
6.5.1.2 ProximityListener 83
6.5.1.3 Landmark and LandmarkStore 84

6.5.2 New Features . 84
6.5.2.1 Landmark Exchange Formats 84
6.5.2.2 Geocoding 84
6.5.2.3 Map User Interfaces 85
6.5.2.4 Navigation 85

6.6 Obtaining the User’s Position and the LBIS Tracking System
Example . 86

7 Storing and Retrieving the Data: The Database 87
7.1 Introduction . 87
7.2 Background . 87

7.2.1 Design of the LBIS Tracking System Database 89
7.2.2 Structure of a Relational Database 90
7.2.3 The Structure Query Language (SQL) 93

7.2.3.1 Data Definition Language (DDL) 93
7.2.3.2 Data Manipulation Language (DML) 97
7.2.3.3 Data Retrieval 98

7.2.4 PostGIS and Geographical Databases 99
7.2.4.1 Structure of PostGIS 100
7.2.4.2 Creating a Table with Geographical Columns 101
7.2.4.3 Inserting Geographical Data in a Table . . . 101
7.2.4.4 Retrieving Geographical Data 102
7.2.4.5 Useful Geometric Operators 102

7.3 Accessing the Database Using Java 103
7.3.1 Connecting to the Database via JDBC 103
7.3.2 Data Insertion . 104
7.3.3 Data Queries . 105

7.4 pgAdmin III: Postgres’s Database Administration Tool . . . 106
7.4.1 Creating a New Database 106
7.4.2 Creating a New Table Using the Wizard 106
7.4.3 Using the SQL Execution Module 113

7.5 The Database and the LBIS Tracking System Example . . . 115

xxii Contents

8 Sending and Receiving Data: Communications 117
8.1 Introduction . 117
8.2 The Generic Connection Framework (GCF) of the CDLC . . 117
8.3 The Mobile Information Device Profile (MIDP) 119

8.3.1 A TCP Client Example 120
8.3.2 A UDP Client Example 122
8.3.3 A Generic Server Example 123
8.3.4 A TCP Server Example 125
8.3.5 A UDP Server Example 127
8.3.6 A HyperText Transfer Protocol (HTTP) Example . . 129

8.4 The Wireless Messaging API (WMA) 131
8.4.1 A Multimedia Messaging Service Example 132

8.5 Communications and the LBIS Tracking System Example . . 134
8.5.1 A Java ME Tracking MIDlet Using UDP 134
8.5.2 Server-Side Application 137

9 Java ME Web Services 139
9.1 Introduction . 139
9.2 An Overview of Web Services 139
9.3 The Web Services API (WSA) 141

9.3.1 The JAX-RPC Package 142
9.3.2 The JAXP Package 143

9.4 A Web Service Example . 143
9.4.1 Web Service Creation 144
9.4.2 MIDlet Creation . 146

9.5 Web Services and the LBIS Tracking System Example 157

10 System Administration 159
10.1 Introduction . 159

10.1.1 The World Wide Web (WWW) 159
10.2 Google Web Toolkit . 160
10.3 Creating System Administration Functions 162

10.3.1 Client-Side Code . 163
10.3.1.1 Creating System Administration Functions . 169
10.3.1.2 Remote Procedure Calls in GWT 171

10.3.2 Server-Side Code . 177
10.3.3 Compiling and Deploying the Application with GWT 181

10.4 System Administration and the LBIS Tracking System Exam-
ple . 182

11 Data Visualization 183
11.1 Introduction . 183
11.2 Visualizing the Users’ Positions in Google Maps 183

11.2.1 Configuring the GWT Project 184

Contents xxiii

11.2.1.1 Import the Library into the GWT Eclipse
Project . 184

11.2.1.2 Configure the GWT Project .xml File 185
11.2.2 Client-Side Code . 186
11.2.3 Server-Side Code . 191

11.3 Google Earth . 193
11.3.1 KML Language . 194
11.3.2 Generating KML Documents Dynamically 195
11.3.3 Embedding Google Earth in a Web Application 199

11.3.3.1 The GWT JavaScript Native Interface 200
11.3.3.2 Loading Google Earth in a GWT Web Appli-

cation . 201
11.4 Data Visualization and the LBIS Tracking System Example 209

12 Processing the Data 211
12.1 Introduction . 211
12.2 Mobile Device-Side Processing 211
12.3 Server-Side Processing . 214

12.3.1 Finding the Closest Friend 214
12.3.2 Integration of LBIS and Wireless Sensor Networks for

Situational Awareness 218
12.4 Processing the Data and the LBIS Tracking System Example 220

A Installing the Software Development Environments (SDE) 221
A.1 Introduction . 221
A.2 Server-Side Software Development Environment 222

A.2.1 Sun Java Development Kit (JDK) Standard Edition . 222
A.2.2 GlassFish Application Server 222

A.2.2.1 Administrator Information and Communica-
tion Ports . 223

A.2.2.2 Recommended Options 223
A.2.2.3 Special File Replacement 225
A.2.2.4 Starting and Stopping the Application Server 225

A.2.3 Postgres . 226
A.2.3.1 Administrator Information 227
A.2.3.2 Communication Port 227

A.2.4 PostGIS . 228
A.2.4.1 Database Information 228

A.2.5 JDBC Drivers . 228
A.2.6 Registering the Database in the Server 231

A.2.6.1 Creating a Connection Pool 231
A.2.6.2 Creating a JDBC Resource 236

A.3 Server-Side Application Development Environment 238
A.3.1 Registering NetBeans 238

A.4 Client-Side Application Development Environment 241

xxiv Contents

A.4.1 Sun Java Development Kit 243
A.4.2 Google Web Toolkit (GWT) and the GWT Maps API 243
A.4.3 The Eclipse Integrated Development Environment . . 244
A.4.4 Installing the GWT in Eclipse 244

A.5 Mobile-Side Software Development Environment 245
A.5.1 Cellular Phone Emulators 246

A.5.1.1 Sprint Wireless Web Toolkit (SWWT) 246

Bibliography 251

Index 257

Acronyms

A-GPS: Assisted GPS

AJAX: Asynchronous JavaScript and XML

AMS: Application Management Software

AOT: Ahead of Time Compilation

API: Application Programming Interface

ARM: Advanced RISC Machines

ASP: Active Server Pages

BSC: Base Station Controller

BTS: Base Transceiver Station

CA: Certificate Authority

CDC: Connected Device Configuration

CDMA: Code Division Multiple Access

CLDC: Connected Limited Device Configuration

CPA: Critical Point Algorithm

CUT: Coordinated Universal Time

CSS: Cascade Style Sheet

DAC: Dynamic Adaptive Compilation

DBMS: Database Management System

DDL: Data Definition Language

DML: Data Manipulation Language

DOP: Dilution of Precision

DRAM: Dynamic RAM

DSP: Digital Signal Processor

E-OTD: Enhanced Observed Time Difference

GCF: Generic Connection Framework

GGSN: Gateway GPRS Support Node

GIS: Geographic Information System

xxv

xxvi Contents

GMSC: Gateway Mobile Services Switching Center

GR: GPRS Register

GPRS: General Packet Radio Service

GPS: Global Positioning System

GSM: Global System for Mobile Communications

GWT: Google Web Toolkit

HLR: Home Location Register

HOW: Hand-Over Word

HTTP: HyperText Transfer Protocol

IDE: Integrated Development Environment

IETF: Internet Engineering Task Force

ISDN: Integrated Services Digital Network

JAD: Java Application Descriptor

JAM: Java Application Manager

JAR: Java Archive Files

JAXP: Java API for XML Processing

JAX-RPC: Java API for XML-Based RPC

JCP: Java Community Process

JDBC: Java DataBase Connectivity

JDK: Java Development Kit

JIT: Just-in-Time Compilation

JNDI: Java Naming and Directory Interface

JSP: Java Servlet Pages

JSR: Java Specification Request

J2ME: Java 2 Micro Edition

JVM: Java Virtual Machine

KML: Keyhole Markup Language

KVM: Kilo Virtual Machine

LBIS: Location-Based Information Systems

LBS: Location-Based Services

LMU: Location Measurement Unit

MIDP: Mobile Information Device Profile

MIME: Multipurpose Internet Mail Extensions

MLC: Skyhook’s Mobile Location Client

Contents xxvii

MMAPI: Mobile Media API

MMS: Multimedia Messaging Service

MMU: Memory Management Unit

MS: Mobile Station

MSC: Mobile Services Switching Center

MSISDN: Mobile Subscriber ISDN Number

NSS: Network and Switching Subsystem

OGC: Open Geospatial Consortium

PDA: Personal Digital Assistant

PHP: Hypertext Preprocessor

RAM: Random Access Memory

RFC: Request for Comments

RISC: Reduced Instruction Set Computer

RMI: Remote Method Invocation

RMS: Record Management System

ROM: Read-Only Memory

RPC: Remote Procedure Call

SDK: Software Development Kit

RSS: Radio Subsystem

SDE: Software Development Environment

SEQUEL: Structured English Query Language

SGSN: Serving GPRS Support Node

SIM: Subscriber Identity Module

SMS: Short Message Service

SOAP: Simple Object Access Protocol

SPI: Service Provider Interface

SQL: Structured Query Language

SRAM: Static RAM

SSL: Secure Socket Layer

SWWT: Sprint Wireless Web Toolkit

TCP: Transport Control Protocol

TLM: Telemetry Word

TLS: Transport Layer Security

TTFF: Time to First Fix

xxviii Contents

TTP: Trusted Third Party

UDDI: Universal Description, Discovery, and Integration

UDP: User Datagram Protocol

URI: Uniform Resource Identifier

URL: Uniform Resource Locator

U-TDoA: Uplink-Time Difference of Arrival

VLR: Visitor Location Register

WKT: Well-Known Text

WLAN: Wireless Local Area Network

WMA: Wireless Messaging API

WPS: Skyhook’s Wi-Fi Positioning System

WSA: J2ME Web Services API

WSDL: Web Services Definition Language

WSN: Wireless Sensor Network

XML: eXtensible Markup Language

XPS: Skyhook’s Hybrid Positioning System

Chapter 1

Introduction

The availability and pervasiveness of powerful mobile phones along with ad-
vances in software development platforms, databases, positioning technology,
Geographic Information Systems (GIS), and communication networks have
led to the creation of Location-Based Information Systems (LBIS), which
promise to change the way we live. LBIS, consisting of GPS-enabled cellular
phones capable of interacting with other systems and databases, combine all
these technological advances to create a new breed of applications known as
Location-Based Services (LBS).

Global demand for location-based services continues to skyrocket because
of the availability of cellular phones, the new level of service these applications
provide, and the important role LBS will play in future software systems.
Once large, awkward devices owned only by the wealthy, mobile phones are
now becoming accessible to the majority of the world. In 2007, there were 3.25
billion mobile phone users, which is more than half the world’s population [53].
Market research also confirms that the world’s number of LBS subscribers
using Global Positioning System (GPS)-enabled cellular phones will grow from
12 million in 2006 to a projected 315 million in 2011 with North American
growth reaching 20 million users up from 500,000 users in 2006 [14, 15].

Creating LBS is very challenging, as there are many players involved and
many issues still unsolved. LBS have to deal with erroneous and variable in-
formation, as the accuracy of GPS fixes depends on the positioning system,
user location, weather conditions, interferences, and others. Cellular commu-
nication networks also introduce challenges due to the nature of the wireless
transmission where signals fade, transmissions disconnect, and errors in the
data occur. Cellular phones themselves introduce several challenges as well, as
they are very resource-constrained in terms of processing power, availability
of memory, and energy. LBIS need to be conscious about the limited resources
available in mobile devices. LBS, as part of a LBIS, interact with other sys-
tems and databases to retrieve context information and therefore, be able to
provide better information/responses to the user. Finally, cellular phone ap-
plications need to have a standard way to access position information and
interact with the rest of the system, regardless of the cellular phone manufac-
turer and cellular system.

This book is about location-based information systems. It describes the
technical components needed to create location-based services with emphasis

1

2 Location-Based Information Systems

on non-proprietary, available (free) solutions that work across different tech-
nologies and platforms.

The rest of this chapter includes a formal definition and classification of
location-based services, a description of the major architectures for location
providers, an example of a software architecture for LBIS, and the description
of a LBIS tracking system example with visualization capabilities that will be
used throughout the book to explain, with precise examples, how to implement
each of the individual pieces of a LBIS.

1.1 Definition and Classification of LBS

A location-based service is an application that provides users with infor-
mation based on the geographical position of the mobile device. This is one of
the main differentiating features of LBS systems with regard to other systems,
such as well-known enterprise systems, i.e., the system knows the physical loca-
tion of the mobile device (user). This minimal piece of additional information
opens up a whole new spectrum of possible applications in many domains.
Further, the location of the user is the major differentiator between first-
generation LBS applications and current ones, which provide more advanced
and useful information. A typical first-generation LBS application example
is the subscription-based service that provided traffic congestion notifications
to mobile users. In those applications, users had to choose the roads they
wanted to receive congestion notifications about using the service provider’s
Web page; however, since the user location was not available, a particular user
could receive a notification of congestion in I-75 in Tampa while being in a
business trip in California. On the other hand, current LBS applications will
never send this unwanted and irrelevant notification message.

The next section describes current types of LBS applications, which can
be categorized as reactive or proactive according to whether the response is
triggered by the user or automatically generated by the system.

1.1.1 Types of LBS Applications

A reactive LBS application is triggered by the user who, based on his cur-
rent location, queries the system in search of information. These applications
are of the request/response type in which the user queries the system, includ-
ing the current location, and the system responds with the specific information
after searching in other systems and databases. There are many examples of
reactive LBS applications:

• Finding a nearby restaurant, friend, or service such as taxis, ATMs, and
the like.

Introduction 3

• Obtaining directions to a place from the current location.

• Locating people nearby and display their locations on a map.

• Obtaining local weather information.

• Sending emergency notifications to police, insurance companies, roadside
assistance companies.

In proactive LBS applications, on the other hand, queries or actions are
automatically generated by the LBIS once a predefined set of conditions are
met. Since the user does not initiate the request of information, these types of
applications require the LBIS to continuously know the location of the user.
Conditions are included in the LBIS by the user according to his needs or
application needs. For example, a proactive LBS application will send you a
congestion notification about I-75 in Tampa only when you are close to it
or whenever the system knows that I-75 is in your route toward your final
destination. A similar proactive application will send you an alert message
anytime your children go beyond a pre-defined boundary. In addition to traffic
notifications and geofencing, there are many other examples of proactive LBS
applications:

• Fleet management.

• Real-time tracking of people and/or assets.

• Location-based advertising.

• Turn-by-turn navigation.

• Real-time friends location.

• Proximity-based actuation.

• Travel assistance device for riding public transportation and museum-
guided visits.

1.2 Location Provider Architectures

As said before, the location of the user is a fundamental piece of informa-
tion in the provision of location-based services. Therefore, it is important to
know the different players and techniques involved in the provision of loca-
tion information and their advantages and disadvantages in the development
of location-based services. According to who provides the location informa-
tion, the location provider architectures can be categorized as network-based,
mobile-based, and location provider-based.

4 Location-Based Information Systems

FIGURE 1.1: Network-based location provider architecture.

A network-based location provider is usually the same cellular network car-
rier, which locates the users and stores their locations in a server located within
its own network. Figure 1.1 shows a diagram of the network-based location
provider architecture. Using this type of location provider, a location-based
services provider needs to obtain permission (and possibly pay) for getting
access to user location information. The LBS application needs to include
mechanisms to query the location server and obtain the location information.
This type of location provider is the natural and preferred type of cellular
carriers, as they maintain ownership and control of the location information.
Further, it may be an additional source of income, as they may charge LBS
providers to get access to their location server, usually known as the Gateway
Mobile Location Center (GMLC).

Network-based location architectures have not contributed to acceler-
ate the development of LBS. First, this architecture forces cellular network
providers to install advanced (and costly) positioning technologies to provide
accurate user location information. In the United States, given the FCC man-
date to improve the accuracy of location information for 911 emergency ser-
vices, most cellular network providers have improved their positioning systems
over the coarse cell ID technique. However, this is not the case of many cellular
providers across the world. The second problem with this architecture is that
cellular carriers may limit the number of location fixes and/or the frequency
at which they can be queried and impose very expensive charges to query
the location server, limiting the development of certain applications. Further,
applications need to be aware of which users belong to which network-service
providers to query the appropriate server or servers.

In order to overcome the limitations explained above, a mobile-based lo-
cation provider architecture is also available. In this architecture, the LBS
provider also develops the application running in the client device, and the
client device has the capability of obtaining its location. This capability may
be through the use of an embedded Global Positioning System (GPS) chip,
in collaboration with the cellular network provider, or both at the same time.
Once the client obtains its location information, it uses either the data connec-
tivity through the cellular network via packet services like GPRS or any net-

Introduction 5

FIGURE 1.2: Mobile-based location provider architecture.

working interface to send the location information to the LBS service provider
server for storage and further processing according to the particular applica-
tion. The location server receives location updates and queries from the clients
and, after some filtering and additional processing, sends information back to
the client. It is worth mentioning that under this architecture, as shown in
Figure 1.2, clients are not limited to cellular phones. Any GPS-enabled client
with network connectivity can be part of the LBIS.

The main disadvantage of the mobile-based location provider architecture
is that it has the potential to flood the network with unnecessary information,
as different LBS providers implement their own applications and do not share
the location information. For example, a user of two LBS providers runs two
different applications in its client device, which may be obtaining the location
of the device at the same time and sending the same information to two
different servers. Although the first problem might be solved, including some
sort of location manager on behalf of all applications in the client device,
the second problem is harder to solve, as the same location information is
needed at two different locations. On the plus side, this architecture favors
the rapid development of LBS applications, as it imposes no major financial
nor technical barriers.

The third location provider architecture is the location provider-based ar-
chitecture, which is shown in Figure 1.3. This architecture is meant to solve
the flooding problem of the mobile-based architecture. Under the location
provider-based architecture, an independent entity collects users’ locations
using different methods and makes the information available in a server to
all LBS application providers. The independent entity’s business is to pro-
vide location information to LBS providers, information that can be obtained
querying the location server of the cellular network, as in the network-based
architecture, or using the model of the mobile-based architecture. This archi-
tecture is scalable and perhaps the best architecture for the wide development

6 Location-Based Information Systems

FIGURE 1.3: Location provider-based location provider architecture.

of LBS. However, provisions need to be in place to guarantee fair prices and
competition.

In this book, the focus will be on developing proactive LBS applications
using the mobile-based location provider architecture.

1.3 A Complete LBIS Real-Time Tracking System
Example

This section describes a Location-Based Information System (LBIS) that
will be used as an example throughout the book. It describes the different
components of the system and explains how each of these components work
and interact with each other.

The LBIS system example is a tracking application that can be used in
many application domains. The system follows (tracks) devices (people, cars,
machines, etc.) in real time to provide services such as tracking your children
and company executives as part of a security service, or similar, providing you
with timely and appropriate road congestion notifications, and many other
services like the ones outlined in Section 1.1.1. As said before, the application
is proactive and uses the mobile-based location provider architecture.

The LBIS tracking system example consists of the following five major
components, as shown in Figure 1.4:

• The positioning system.

• The client device.

• The transport network.

• The main control station.

Introduction 7

FIGURE 1.4: A complete LBIS real-time tracking system example.

• The servers.

The positioning system provides the location of the client device as re-
quested by the application. In the specific case of our tracking application,
the main positioning systems utilized are the GPS and the Assisted-GPS (A-
GPS) systems (more on positioning systems in Chapter 6). The client device
can be any device capable of 1) obtaining the location of the device, 2) running
the LBS application, and 3) communicating with the other components of the
LBIS. A typical example of a client device is a GPS-enabled cellular phone, or
a laptop with a GPS or embedded positioning system. The transport network
is the network that the LBIS system will use to exchange information among
the client devices, the servers, and the main control station. Normally, this
transport network corresponds to the data packet cellular network (GPRS
service), or any other IP-based networking technology available to the clients,
servers, and main control station, such as regular Ethernet (wired or wireless)
access networks connected to the Internet. The main control station can be
any desktop or laptop computer connected to the Internet. Its main function-
ality is to control (administer) the system and provide a visual representation
of the whereabouts of the LBIS clients in real time. For example, the main con-
trol station might be used for system administration tasks such as including
new users in the LBIS system, deleting users, modifying their information,
etc. It might also be used for control tasks such as establishing the virtual
boundary of a geofencing application. The control station will also serve as
the main monitoring station where to visualize the positions of the users in
real time. In addition, the main control station might serve as a device to
exchange bi-directional real-time information with the LBIS users, such as

8 Location-Based Information Systems

sending a text message to any of your children who trespassed the virtual
fence. Finally, the servers are machines where most of the intensive processing
operations take place. Among the most important servers in our LBIS track-
ing system example are the database server, where all the locations sent by
the clients are stored, the Geographic Information System (GIS), where these
locations are translated into known places and vice versa (geocoding and re-
verse geocoding), and the application server, where specialized applications
are run to enhance the service and provide better performance.

From the software point of view, our LBIS tracking system example uti-
lizes available and free software tools as well as standard protocols. The client
and server-based applications are programmed using the Java platform in its
three different versions, i.e., the Java Platform Micro Edition (Java ME) for
resource-constrained devices, the Java Standard Edition (Java SE) for power-
ful clients, and the Java Enterprise Edition (Java EE) for client-server enter-
prise applications. NetBeans is the main software development environment
utilized. Sun Microsystems’ GlassFish is used as the main application server
and Google’s Web Toolkit the main tool to develop dynamic Web-based appli-
cations. Google Maps or Google Earth are the main applications in the main
control station used to visualize and track the devices in real time. Postgres
and PostGIS are the databases utilized in the LBIS under consideration. Post-
gres is an object-relational database management system. PostGIS is an add-
on to Postgres that supports geographic objects. Finally, the tracking appli-
cation utilizes standardized communication protocols to transfer information.
As such, HTTP, TCP, UDP are the application and transport layer proto-
cols of choice. In terms of networking, the tracking application is IP-based, so
it should work without problems over any IP-based network, such as the In-
ternet, regardless of the underlying physical layer communications technology.
Appendix A contains a complete list of the software utilized in the LBIS track-
ing system example as well as specific information about all these components,
where to download them from, how to install them, etc. All the software can be
found in the book’s Website at http://www.csee.usf.edu/~labrador/LBIS.

1.4 Software Architecture

A software architecture includes all those software components that to-
gether make up the entire system. The architecture not only describes these
components and what they do, but also how they are related or connected
with each other. The LBIS tracking system example just described includes
two key components in terms of the system architecture: the mobile device,
or client-side, and the server-side where the application and databases reside
to receive, process, analyze, and store the data. These two components have
their own software architecture to support the system as a whole, including

http://www.csee.usf.edu/

Introduction 9

FIGURE 1.5: Client-side software architecture [19] c©2010 IEEE, Inc. Included
here by permission.

the relationship between them. These architectures, the client-side and the
server-side software architectures, are described next.

1.4.1 Client-Side Software Architecture

The client-side software architecture includes those software components
that reside in the mobile device, i.e., the cellular phone. Figure 1.5 shows an
example architecture that can be used to support all the functions required to
implement the client-side of our LBIS tracking system example. The architec-
ture sits on top of the mobile device’s operating system, which is not shown
in the figure. Since our application is developed using the Java programming
language, the Java virtual machine sits on top of the device’s operating system
and the Java programming platform sits on top of the virtual machine. In our
case, this platform corresponds to the Java Platform Micro Edition or Java
ME platform for resource-constrained devices. All these components are com-
mon to all Java-based applications and are explained in detail in Chapters 2
and 3.

The architecture shown in Figure 1.5 has the Java platform at the bot-
tom and the location-based application at the top, which is the application
that runs in the mobile device and possibly interacts with the user. Between
these two layers, the architecture presents several modules, each in charge of
performing specific functions. For example, it can be seen how the position-
ing data is obtained using the Location API included in the Java platform
and how these GPS fixes are passed up to the application, either directly or
through some other modules in charge of recalculating and estimating the po-

10 Location-Based Information Systems

FIGURE 1.6: Server-side software architecture [19] c©2010 IEEE, Inc. In-
cluded here by permission.

sition and making the position private. The GPS fixes can be sent from the
application to the server directly using the UDP transport layer protocol, or
they can be passed through some other modules in charge of saving energy
not transmitting unnecessary fixes (Critical Point Algorithm — explained in
Chapter 12), storing fixes temporarily not to lose them if the network momen-
tarily fails (Adaptive Location Buffering), and encrypting the GPS fixes and
data, if necessary. Finally, the architecture also shows a Session Management
module, which is in charge of getting the log-in information from the user
and establishing a new session with the server to store all the data from this
particular device and user. This information is sent to the system’s database
using the TCP transport layer protocol for reliability purposes.

1.4.2 Server-Side Software Architecture

The server-side software architecture shown in Figure 1.6 is similar to
the client-side architecture in the sense that the application server and the
location-aware application are located at the bottom and top of the architec-
ture performing similar functions as their client-side counterparts. Similarly,
some modules between these two layers are included to perform specific func-
tions such as the session manager, which receives the session information from
the mobile devices and stores that information in the relational database, and
the path prediction module, which predicts the user travel direction based
on past travel data. The sever has associated a relational database to store
all information about users, devices, and sessions, and a spatial database to

Introduction 11

support the storage of spatial information, such as the GPS fixes from all the
mobile devices. The location-based application here also responds to queries
sent from the “control station,” or main monitoring station, to obtain the
GPS fixes of a particular user or group of users and display their positions in
a graphical user interface in real time.

Additional literature on software architectures and middleware for
location-based services can be found in [38, 20, 18] and the references therein.

1.5 A Brief Look into the Future

The LBIS system described and implemented in this book is just the tip
of the iceberg. In addition to GPS fixes, the same system could be used to
send other type of data such as environmental data and/or personal health-
related data. This take us to the new topics of “Participatory Sensing” and
“Human-Centric Sensing.”

Participatory sensing is an application that, with the collaboration (par-
ticipation) of many users, could obtain large amounts of data capable of de-
termining or solving some large-scale societal problems. For example, imagine
that your cellular phone, in addition to a GPS chip, comes equipped with a
CO2 sensor that measures the level of pollution around you. If all the cellu-
lar phones in the system sent their positions and the pollution level to the
system’s database, we could obtain enough information to determine the pol-
lution index of a particular city or country. Not only that, it should be fairly
straightforward to determine which sectors of the city are more polluted than
others. The government could use this information to implement environmen-
tal policies, you could use these data to decide where to live, and where to
go to, and also at what time of the day, as the pollution index would change
according to the time of the day. Many more applications based on this con-
cept of participatory sensing can be developed. For example, instant traffic
congestion in major roads could be determined if all cars would be sending
their locations in real time. Popular sites, restaurants, and events to visit
could be easily found in real time. Other sensors could be integrated into a
cellular phone to collect data and solve other problems. More information on
participatory sensing can be found in [48, 54, 51, 44, 50] and the references
therein.

Human-centric sensing is more related to obtaining additional information
from a human being to solve a particular problem or improve somehow his or
her quality of life. This additional information is obtained in the same manner,
integrating specific sensors in the person’s cellular phone. For example, if in
addition to the user’s location, the cellular phone sends data coming from a 3D
accelerometer, the system should be able to determine what type of activity
the person is doing, for how long, etc., useful information to determine whether

12 Location-Based Information Systems

FIGURE 1.7: A high-level architecture for future location-based sensing in-
formation systems [46] c©2010 IEEE, Inc. Included here by permission.

the person is concerned about the amount of calories he or she is burning. If in
addition to accelerometer data, the cellular phone also transmits the person’s
temperature, pulse, and breathing depth the system could eventually warn the
user about a possible health problem while jogging. The same system could
be used by the caregiver of an old person to continuously monitor his/her
whereabouts and health condition. A system like this could potentially be
used to determine possible effects or the effectiveness of some medications.
Literature on human-centric sensing can be found in [41, 43, 24] and the
references therein.

As it can be seen, the possibilities are many. Whether it is participatory
sensing, human-centric sensing, or both combined, the integration of sensors
(mobile with your cellular phone or fixed through the use of wireless sen-
sor networks) into a location-based information system offers many ways to
help society and individuals. Figure 1.7 shows a high-level architecture of this
integrated system. Reference [46] describes and explains the software architec-
ture of this integrated system, which can be used in location-based services,
participatory sensing, and human-centric applications.

Introduction 13

1.6 Organization of the Book

The book is organized in a sequential manner so the reader obtains the
necessary knowledge to build the LBIS tracking system as needed. Chapter 2
starts describing the mobile phone in terms of hardware and software. This in-
formation is important because the application developer needs to understand
the resources and capabilities of these devices to develop good applications.
The following chapter is Chapter 3, which introduces the reader to the Java
Platform Micro Edition, or Java ME, and a summary of its most important
optional packages. Chapter 4 briefly describes the most important Applica-
tion Programming Interfaces (APIs) available to develop MIDlets, or applica-
tions, for the Java ME platform. Chapter 5 presents additional programming
concepts with emphasis on resource-constrained devices. Chapter 6 includes
information about positioning systems, the different systems and techniques
available to obtain the location of the client device. The chapter ends with
a detailed explanation of the Java ME Location API. Chapter 7 introduces
the reader to databases and explains how to set up a database and how to
interact with it, i.e., how to store and retrieve information. Chapter 8 is about
communications, or how to send and receive information through the network
using standard protocols. The reader is introduced to Web services for mo-
bile devices in Chapter 9. Web services is an important technology that has
been extended to mobile devices. Chapter 10 explains how to use the Google
Web Toolkit to implement system administration functions. How to visualize
the data in real time using Google Maps and Google Earth is explained in
Chapter 11. Chapter 12 describes client- and server-based applications meant
to enhance the service and improve the performance of the system. Finally,
Appendix A lists the software needed to develop the entire LBIS system as
well as download information and installation procedures.

http://taylorandfrancis.com

Chapter 2

The Mobile Phone

2.1 Introduction

Over the past several years, we have witnessed an impressive change in
the size and capabilities of cellular phones and their individual components.
First-generation cellular phones for analog cellular networks were very big
and for voice processing only. Today, on the other hand, with the advent
of digital networks and standard IP-based networking technologies, and the
technological advances and breakthroughs that we have witnessed in memory,
displays, cameras, batteries, microprocessors, digital signal processor, etc.,
cellular phones are integrated mobile multimedia devices capable of playing
and recording video, pictures, TV channels, and MP3 audio; interacting with
IP-based servers around the world using the packet radio and other wireless
networking interfaces and, of course, continue processing voice calls.

Nonetheless, cellular phones continue to be different from other multimedia
devices, such as laptops or personal computers. Cellular phones continue to
be resource constrained in terms of memory, energy, and processing power,
which requires extra care and knowledge from the application developer. This
chapter is meant to provide this extra knowledge about the mobile phone,
describing its hardware and software architectures.

2.2 The Hardware Architecture

Figure 2.1 shows a general hardware architecture of a cellular phone. It
consists of a microprocessor, digital signal processor, memory, battery and
power control module, radio frequency (RF) interfaces, and peripherals, such
as keyboard, speakers, microphone, and display. A description of the most
important components of the architecture is included in the following sections.

15

16 Location-Based Information Systems

FIGURE 2.1: General architecture of a cellular phone.

2.2.1 The Microprocessor

The mobile phone market is dominated by Advanced RISC Machines
(ARM), a 32-bit architecture developed by ARM Limited [2]. It has become
very popular in mobile devices given its low power consumption. ARM proces-
sors are manufactured by ARM directly or by any company that licenses the
architecture. The most recent ARM family of microprocessors manufactured
by ARM Limited include the ARM9, ARM11, and Cortex.

The ARM9 family is very common today. They are based on the ARMv4T,
ARMv5TE, and ARMv5TEJ architectures. It is a general purpose 32-bit RISC
architecture with 5-stage pipeline, 16-KB cache for instructions, 16-KB cache
for data, and a memory management unit (MMU). It provides a typical com-
puting power of 200 MIPS at 180 MHz and also includes some enhanced
DSP extensions and instructions to better support digital signal processing
functions and multimedia applications. The ARM9E also supports Jazelle,
a technology that allows Java bytecode to be executed directly in the ARM
architecture. Jazelle provides significantly higher performance than a software-
only based Java Virtual Machine (JVM); it not only accelerates Java execution
by 8x but also reduces the power consumption by 80%. Popular devices using
the ARM9 family include the Nintendo DS, the SUN SPOT wireless sensor
network device, and several Sony-Ericsson cellular phones. Qualcomm, Texas
Instruments, Freescale, and Samsung are among many of the ARM9 licensees.

The Mobile Phone 17

The ARM11 family of processors is based on the ARMv6, ARMv6T2,
ARMv6K, and ARMv6KZ architectures. They include a 8-stage pipeline, vari-
able cache for instructions and data, and a MMU. These processors provide
740 MIPS at 532-665 MHz of computing power. The ARM11 family also sup-
ports Jazelle and includes the Thumb-2 technology for the first time. Thumb-2
technology expands the instruction set of the 16-bit set of Thumb with addi-
tional 32-bit instructions to handle bit-field manipulation, table branches, and
conditional execution. In addition, the ARM11 family includes Vector Float-
ing Point (VFP) technology that provides single- and double-precision floating
point computations, which are very useful in graphics and image processing
applications such as scaling, 2D and 3D transforms, font generation, and dig-
ital filters. Popular devices using the ARM11 family of processors include
Apple’s iPhone and iPod Touch and Motorola’s RAZR. Texas Instruments,
Nokia, and Qualcomm are among the most important licensees.

The Cortex family of processors utilizes the ARMv7 architecture, which
comes in three flavors. The ARMv7-A architecture is designed to support so-
phisticated, virtual memory-based OS and user applications. The ARMv7-R
architecture is designed for real-time systems. Finally, the ARMv7-M is opti-
mized for microcontroller and low-cost applications. All ARMv7 architectures
implement the Thumb-2 technology. The ARMv7-A architecture includes
NEON technology extensions, which are designed to address the demands
of high-performance, media intense applications such as video encode/decode,
3D graphics, speech processing, compressed audio decoding, image process-
ing, telephony, and sound synthesis. ARMv7 A and R architectures also in-
clude VFP technology and dynamic compiler support. The dynamic com-
piler supports Just-In-Time (JIT) compilation, Dynamic Adaptive Compila-
tion (DAC), and Ahead Of Time (AOT) compilation. The new iPhone 3GS
uses the Cortex A8 CPU, which runs at 833 MHz.

2.2.2 Digital Signal Processors (DSPs)

Digital Signal Processors are included in cellular phones to improve their
performance. DSPs are optimized processors to handle computationally in-
tensive and repetitive mathematical operations quickly such as Fast Fourier
Transforms, compression, and coding/decoding algorithms. Further, they are
programmable, so different algorithms can be implemented in the same chip.
Although general-purpose processors and DSP algorithms can be successfully
implemented in software, these solutions are not suitable for cellular phones
because of power supply and space limitations. A specialized DSP provides a
lower-cost solution with better performance and lower latency.

Texas Instruments is the world leader in the DSP market, although other
companies such as Lucent, Motorola, Analog Devices, NXP Semiconductors,
and Freescale have also been very active in this sector. TI offers several DSP
platforms, such as the DaVinci digital media processors, the series C5000
of low-power DSPs, and the series C6000, the most recent family of high-

18 Location-Based Information Systems

performance DSPs. The TI series C6000 supports floating point computations
and implements separate instruction and data caches as well as an 8-MB 2nd-
level cache. These models are capable of as many as 8000 MIPS, use very long
instruction word (VLIW) encoding, and perform eight operations per clock
cycle.

2.2.3 The GPS Receiver

The GPS receiver is a key hardware component for any LBIS utilizing the
mobile-based location provider architecture, like the real-time tracking sys-
tem example described in this book. The GPS receiver is important not only
because no position will be available to the application without it but also be-
cause of its features and performance. There is always the trade-off between
cost and quality, and the GPS chip is not the exception. Accuracy and energy
consumption are usually traded off for lower prices, so the chips can be inte-
grated in as many devices as possible. It is the application service provider’s
responsibility to test their applications in the supported devices and assess
whether the accuracy and performance provided by the GPS receiver meet
the application’s requirements or not. Bear in mind that some applications
need very precise GPS fixes while others may have more relaxed requirements
and cellular phones may provide very different levels of accuracy. Power con-
sumption is another important issue that application service providers should
look into. Having the GPS receiver always on and transmitting GPS fixes very
frequently will tend to drain the cellular phone’s battery very fast. Therefore,
some ways to make the application more energy efficient while meeting the
tracking requirements of the application need to be devised. (More on this in
Chapters 5 and 12.)

Nonetheless, this is one area where more technology advances are expected
very soon. For example, better receivers with parallel, hardware correlator ar-
chitectures can provide faster acquisition of satellite signals, more accurate
fixes, and lower power consumption. Further, they can also improve the re-
ceiver’s sensitivity, meaning that weaker satellite signals could be detected
and used to obtain GPS positions in places where we are not able now. One
example in this direction is the Broadcom BCM4715 single-chip GPS receiver,
which integrates all chip components in less than 30 mm2 and also supports
additional satellite constellations [23].

2.2.4 Memory

Cellular phones, as any other computer, utilize Read Only Memory (ROM)
and Random Access Memory (RAM). Information stored in ROM chips can-
not be modified once it is written and does not disappear if power is removed.
As such, ROM is utilized to store programs that need to be permanently stored
in the device. Most of the time, these programs are read from the ROM mem-

The Mobile Phone 19

ory and stored in RAM for execution. In cellular phones, the amount of ROM
is usually in the order of 64 MB or more.

RAM, on the other hand, is memory that can be utilized to read and
write. However, information in RAM is volatile, meaning that it is lost after
the power is switched off or not refreshed periodically. RAM is usually used to
store the programs to be executed and the variables related to them. Mobile
phones are usually equipped with 128 MB or more RAM memory. For exam-
ple, the very new Nexus One phone comes equipped with 512 MB of RAM.
There are two types of RAM: Static RAM, or SRAM, and Dynamic RAM, or
DRAM. Information in Static RAM is stored in flip-flops and as such it does
not need to be refreshed. On the positive side, SRAM is faster, more power
efficient, and easier to control than DRAM. However, it is more expensive. As
a result, SRAM has been used to improve the system’s performance utilizing
it in intermediate storage, such as cache, which consists of a small amount of
memory with fast access times for frequently used data. Dynamic RAM, on
the other hand, is less expensive, slower, and more hungry in terms of power
since it needs to be refreshed periodically. As such, it is mainly used as main
memory in computers.

Another type of non-volatile memory widely used in mobile devices is flash
memory. Flash memory comes in two flavors, NOR and NAND flash memory,
and depending on the type, it can be used for different purposes, i.e., as a
substitute for ROM or RAM, or as a hard drive. NOR-based flash memory
provides long erase and write times but full address and data buses, allowing
random access to any memory location. Compared with RAM, it provides
excellent read times. This makes it as a suitable replacement of ROM to store
more permanent programs and run them from there, or even RAM. NOR flash
memories present an endurance between 10,000 to 1,000,000 erase cycles.

NAND-based flash memory, on the other hand, presents faster erase and
write times and up to ten times better endurance than NOR flash memory,
but higher random access times. The main difference is that NAND flash
memory does not have an address bus capable of addressing memory locations
individually, and rather, data must be read in blocks. This design decision
makes NAND flash memory suitable as a secondary storage device such as
hard drives to store data and programs on a more permanent basis. Micro
SD cards are examples of NAND-based flash memories. As an example, the
new Nexus One cellular phones comes equipped with a 4 GB Micro SD card
expandable up to 32 GB.

Table 2.1 summarizes the types of memory available, their main use, and
characteristics.

2.2.5 Future Trends and Challenges

As explained before, cellular phones are becoming an integrated mobile
multimedia device capable of handling voice calls, media streams, and data
over multiple types of networking wireless interfaces. These and other new

20 Location-Based Information Systems

Memory Type Main use Characteristics
ROM Main memory for Read only

permanent programs
DRAM Main memory for program Slow and cheap

execution and variables
SRAM Cache for quick and Fast and expensive

repetitive access
Flash NOR ROM or DRAM replacement Long write times; excellent

read times; fully addressable
Flash NAND As a mass storage device Fast write times; block addressable

TABLE 2.1: Summary of memory types, usage, and characteristics.

capabilities have placed very strong demands for more computing power. At
the same time, there are similar demands in terms of making the device more
energy efficient, smaller, and cheaper. In the past, these challenges were ad-
dressed by making smaller and more energy efficient transistors, which satis-
fied the required increment of computing power. However, the integration of
more and more transistors into the same chip increased the energy consump-
tion.

In order to address these, sometimes contradicting, challenges of providing
more computing power while reducing the energy consumption, chip design-
ers have recently come up with several solutions, which are all derived from
Equation 2.1. This equation says that the power consumed by a processor is
proportional to the product of the square of the voltage V , the frequency of
operation f , and C, the capacitance being switched per clock cycle, which is
proportional to the number of transistors whose inputs change.

Power ∼ CV 2f (2.1)

According to Equation 2.1, one option to reduce energy consumption is
to make the chip slower by using a lower frequency; however, this alternative
reduces the chip’s speed, which goes against the trend of more computing
power. Similarly, the equation says that lowering the voltage of operation
reduces the energy consumption in a quadratic manner. This trend has been
pursued by chip manufacturers aggressively. Lower voltages of operation and
different modes of operation, e.g., sleep modes, are currently available in most
chips inside battery-powered devices, such as laptops and cellular phones.

However, new solutions are needed because as integration of more and more
transistors per area of chip continues, the power consumption and energy
dissipation become the dominant issues. One option is parallelism. Let us
go back to Equation 2.1 and assume that at voltage V1, the frequency of
operation is f1. If the voltage is divided by half (V2 = V1/2), the frequency
is also reduced by half (f2 = f1/2), but the power P1 is now reduced to
one-eighth of the original (P2 = C(V2)2f2 = C(V1/2(2)f1/2 = CV1f1/8). Of

The Mobile Phone 21

course, this comes at the expense of having a chip that is twice slower. If
another unit is now added to the chip, it would increase its capacitance C2

(by an amount that is less than 2C1) but would make the whole chip as fast
as it was before; however, the voltage needed to run the two units is reduced
by half, and the power is decreased by a factor of four! Therefore, important
power savings can be achieved by multiple or parallel processors while keeping
the computational power constant. Of course, this also brings new challenges,
such as finding more efficient ways to perform operations in parallel.

Other important trends in processors, digital signal processors, and mem-
ory are the following:

• Multi-core, multi-threading designs.

• Deeper pipelines to achieve more per cycle.

• More multimedia support not only for audio but also video, imaging,
graphics.

• Multimedia centric DSPs.

• More and better caches.

• Faster memories.

• Others.

2.3 The Software Architecture

Cellular phones, as any other computer, contain the following three layers
of software [42]:

• Application-level software.

• Middleware software.

• Low-level software.

Application-level software consists of all those programs running in the
device that are meaningful to the user. One example of an application-level
software is the tracking application described in Chapter 1, which is meant to
be developed using the Java programming platform for resource-constrained
devices.

Middleware software provides the application developer with easy to use
interfaces that automate commonly used tasks. It hides the developer from
the details of providing the specific service, much in the same way drivers

22 Location-Based Information Systems

do, but at a higher level. Middleware has the double effect of shortening the
application development time and reducing programming errors by offering
well-designed and proved service interfaces.

Finally, low-level software consists of the device’s operating system, the
drivers, and virtual machines. The operating system is in charge of coordinat-
ing the activities and assigning the resources of the computer in a controlled
fashion to all running applications. As such, the operating system is directly
attached to the hardware of the computer. Drivers are hardware-dependent-
specific programs utilized by the operating system to communicate with a
particular hardware device, such as a printer or a network interface card. Vir-
tual machines are an additional software layer on top of the operating system
that also executes computer programs. The importance of virtual machines is
that they make the applications operating system independent allowing real
portability of applications among computers. Virtual machines offer appli-
cations the same services and interfaces and hide the particularities of each
operating system. Of course, there must be a specific virtual machine for each
operating system. Since applications developed using the Java programming
language run on Java virtual machines, the following section describes the Java
virtual machine for resource-constrained devices, which is the most relevant
one to this book.

2.3.1 The Java ME Virtual Machine

The Java Virtual Machine (JVM) is in charge of the execution of compiled
programs that generate Java bytecode, which are a low-level, architecture-
independent representation of the program. Although there are many JVMs
available, they all support the same bytecode. This means that a Java ap-
plication potentially can run on any machine without modifications. Sun Mi-
crosystems has developed the Kilo Virtual Machine (KVM) and the Connected
Device Configuration (CDC) Hotspot VM for resource-constrained devices.
Other manufacturers have also implemented their own JVMs, which run on
specific hardware.

Figure 2.2 shows the entire Java programming flow of execution. At the
top, it is the application written in the Java programming language. These
.java files are passed through the Java compiler, which produces Java byte-
code or .jar files. The bytecode is executed in the virtual machine, which is
on top of the real operating system running on the device. It is worth men-
tioning that Java is not the only programming language that can be run in
the JVM. Any programming language that can be compiled into bytecode can
be run as well.

The Java ME virtual machine consists of the execution engine, the heap,
the stack, the garbage collector, the loader, the verifier, and the thread man-
ager. The description of these modules is based on Sun Microsystems’s Kilo
Virtual Machine (KVM), one of the most popular virtual machines built by
Sun for resource-constrained devices.

The Mobile Phone 23

FIGURE 2.2: A Java program flow of execution.

2.3.1.1 The Execution Engine

The execution engine is the module that executes the Java bytecodes. Each
Java method consists of a series of bytecodes that are executed in the execution
engine. Similar to low-level machine languages, each bytecode consists of the
operational code and the operands. The Java virtual machine has 200 standard
bytecodes that perform standard tasks such as load and store, arithmetic
functions, type conversions, push and pop stack operations, branching, method
invocation and return, and exception management, among the most important
ones.

The execution engine can be implemented as an interpreter, a compiler,
or a Java processor. As an interpreter, the Java execution engine reads each
bytecode at a time, translates it into machine code, and finally executes it in
the machine’s hardware. The main disadvantage of interpreters is speed, as
it usually takes longer to run an interpreted program than a compiled one.
Interpreters are slower because they have to analyze each statement in the
program each time it is executed and then perform the desired action. Inter-
preters continue to be the execution engine of choice for resource-constrained
devices.

The good thing about the Java programming language is that a high-
level language compilation, from Java code to bytecode, always takes place
before the code is run by the execution engine, regardless of how the execution
engine is implemented. This first compilation makes the Java interpreter more

24 Location-Based Information Systems

efficient, as the interpretation of bytecodes can be done in a more efficient
manner than the direct interpretation of the high-level Java language.

The execution engine can also be implemented as a compiler. In this case,
the bytecode is compiled by a bytecode compiler that translates the entire
code into machine’s language, which is then run in the hardware directly and
at once. Java compilers are faster because they avoid the translation process
on a bytecode by bytecode manner. Java bytecode is compiled into native
machine code and run in the hardware as any other compiled program.

The compilation of Java bytecode can be done before the program is run, a
process called static compilation, or at runtime, dynamic compilation. Static
compilation is the usual procedure in which the program is compiled entirely
offline and then the compiled program is run. Static compilation produces
high quality code but does not allow dynamic class loading and only runs on
a specific machine.

Dynamic compilation compiles Java code into native machine code at run-
time, on the fly. Therefore, it solves the problems of static compilation allow-
ing dynamic class loading and not being specific to a particular machine. The
performance of dynamic compilation heavily depends on the amount of meth-
ods that are repeatedly run, as each method is only compiled once. Keep in
mind that interpreting and executing is faster than compiling and executing.
Dynamic compilation is also known as Just-In-Time compilation (JIT).

Another option to improve Java’s performance is to use Java processors.
Instead of emulating the CPU in software, the Java virtual machine is imple-
mented entirely in hardware. In other words, the bytecodes that make up the
instruction set of the abstract machine become the instruction set of a specific
machine. Java processors have the advantage that many of the functions in
the virtual machine are optimized to run more efficiently in hardware.

2.3.1.2 The Heap

The heap is the memory area used by the Java virtual machine to store
data and code during runtime, i.e., perform dynamic memory allocations. The
heap is usually partitioned in two areas, one where the methods to be executed
are loaded, and one with the JVM stacks. The methods area is also called the
permanent area because it is outside of the garbage collector’s domain of
execution. The stacks, on the other hand, are within the garbage collected
area.

The Java virtual machine is a stack-based machine, as it carries out all
operations through a stack. The JVM creates a stack for each thread, and
each stack consists of frames where local variables and operands to execute a
method are stored. One frame can only be active at any given time. The JVM
has three pointers to handle the operation of the stacks. The stack pointer
points to the beginning of the active stack. The local pointer has the address
of the local variables. Finally, the frame pointer points to the beginning of

The Mobile Phone 25

the frame. Once a method is executed, the garbage collector claims the frame
space and makes it available for new methods.

2.3.1.3 The Garbage Collector

The garbage collector module is in charge of claiming the memory space
occupied by objects that are no longer referenced by the program. One of the
advantages of having a garbage collector is that it liberates the programmer
from the burden of knowing which objects have or have not been referenced.
On the down side, a garbage collector may introduce a performance penalty,
which may vary depending on the algorithm utilized.

The garbage collector included in the KVM is a simple, non-moving, single-
space mark-and-sweep garbage collector [58]. This means that the garbage
collector marks referenced objects and sweeps unreferenced or unused ones.

2.3.1.4 The Loader

The loader is the module in charge of loading the main classes of the
Java ME platform, optional APIs, and the application’s class files (MIDlet
Java Archive JAR files). It may be called at the beginning of the execution
or dynamically during the execution of the application. A conforming vir-
tual machine for resource-constrained devices does not support user-defined
class loaders; instead, for security reasons, it has to use a built-in “bootstrap”
class loader that cannot be overridden, replaced, or reconfigured [59]. Further,
MIDlets can load the classes included in their own JAR file only, ensuring that
applications running in the same device do not interfere with one another. This
means that the Java ME platform supports dynamic linking of classes that
are included in the application’s JAR file only; however, dynamically linking
classes from different JAR files is not allowed.

2.3.1.5 The Verifier

The verifier is the module that checks whether the loaded bytecode can be
safely run in the virtual machine. The verifier checks for bytecodes wrongly
typed, stack overflows and underflows, and correct branching of subroutines.
The conventional class verifier included in the Java SE virtual machine occu-
pies a minimum of 50 KB of binary code space and between 30 and 100 KB of
RAM at runtime [59]. These numbers, in addition to the CPU power required
to run these algorithms in real time, result very burdensome for resource-
constrained devices. As a result, an off-device preverification and runtime
verification approach were designed for the KVM.

The verification process takes place in two steps. In the first step, the class
file is run through a preverifier tool that is run in the developer’s worksta-
tion. This part of the verification process includes in the class an additional
attribute in a StackMap that, in the second step, the runtime verifier in the
resource-constrained device uses to perform the verification efficiently.

26 Location-Based Information Systems

2.3.1.6 The Thread Manager

Given that Java supports multithreading, a thread manager is needed to
coordinate the execution of all the threads created by the application. The
Java KVM also supports multithreading but does not support thread groups
or daemon threads.

2.4 The Mobile Phone and the LBIS Tracking System
Example

According to the description of the LBIS tracking system example pre-
sented in Chapter 1 and looking at Figure 1.4, it is very easy to know where
this chapter fits into the LBIS system: the mobile phone is the device that the
LBIS system will track. The device runs a client application that obtains the
device’s position using the GPS chip and transmits those fixes in real time to
the LBIS system servers for storage, processing, and visualization. This chap-
ter describes the most important hardware and software components that
make up a cellular phone, so software developers can develop robust and ad-
equate applications for the specific device.

Chapter 3

The Java Platform Micro Edition
(Java ME)

3.1 Introduction

The Java programming language consists of a family of Java platforms,
each targeting different types of devices and applications. Currently, there
are three platforms, the Java Enterprise Edition (Java EE) for server and
enterprise applications, the Java Standard Edition (Java SE) for desktops and
laptops, and the new Java Platform Micro Edition (Java ME) for resource-
constrained devices, as shown in Figure 3.1. The size of the stacks in the
figure represents the size of the libraries and, therefore, the footprint of the
platforms. The Java editions sit on top of a Java Virtual Machine (JVM) that
is also relative in size with the Java edition that it supports.

This chapter introduces the Java Platform Micro Edition (Java ME), for-
merly known as Java 2 Micro Edition (J2ME), the newest Java-based platform
for resource-constrained devices. The chapter describes the Java ME architec-
ture and its relevant configurations and profiles along with a brief description
of the optional packages and APIs available for mobile devices.

It is worth mentioning that the Java ME platform inherits the advantages
of the other Java-based platforms. First and foremost, it avoids the significant
problems that software developers face when porting applications from one
mobile phone to another. While still not a perfect “write-once-run-anywhere”
solution, Java ME applications run over a Java virtual machine that is op-
erating system independent. Therefore, Java ME applications should run on
any Java-enabled mobile device without substantial changes to the code or
structure of the program. Secondly, this newer Java platform is based on the
well-known and popular Java programming language, which eliminates the
steep learning curve of mastering a new language. Finally, there is a vast
number of cellular phones that support Java virtual machines and therefore
can run Java ME applications. These advantages have made Java ME an
excellent candidate for mobile application development.

27

28 Location-Based Information Systems

FIGURE 3.1: The family of Java platforms.

3.2 The Java ME Platform

The Java ME platform was designed for mobile devices and embedded sys-
tems, such as mobile phones, PDAs, and set-top boxes, those devices that are
constrained in terms of computational power, memory, and energy compared
with other computing devices such as laptops, desktops, servers, and worksta-
tions. For this reason, the Java ME platform has the smallest footprint and
runs over the thinest virtual machine of the Java family.

The architecture of the Java ME platform is shown in Figure 3.2. As it
can be seen, the architecture differentiates between different types of resource-
constrained devices. The left side of the architecture contains the layers for
those devices with a relative larger amount of resources, such as set-top boxes,
automobile navigation systems, and the like. The right side of the figure shows
the stack for more constrained devices, such as cellular phones, PDAs, and
pagers. The rest of this chapter is devoted to the right side of the architecture,
as it relates to our LBIS system tracking example using cellular phones.

Regardless of the size and the type of device, the architecture consists of
four layers. At the bottom, there is the Java Virtual Machine that sits on
top of the operating system running in the device. The JVM is in charge of
the execution of the Java compiled programs. Next is the configuration layer ,
which includes those Java classes specific to a particular class of devices. On
top of the configuration layer is the profile layer, which consists of the APIs

The Java Platform Micro Edition (Java ME) 29

FIGURE 3.2: The Java ME platform.

implementing the services supported by the specific configuration. These three
layers are required in all implementations. The last layer represents those
optional packages that implement specific APIs and classes needed by some
applications only; these optional packages are loaded in the device as needed.
A more detailed description of the configuration and profile layers follows
along with a brief description of the most important optional packages. The
Java virtual machine was already described in Chapter 2.

3.3 The Connected Limited Device Configuration (CLDC)
Layer 1.1

A Java ME configuration contains the Java libraries needed to support a
particular class of devices. As such, configurations specify the features of the
Java programming language, the features of the virtual machine, and the Java
APIs that are supported. The Java ME platform has two configurations, the
Connected Device Configuration (CDC) and the Connected Limited Device
Configuration (CLDC), which is the one supporting cellular phones and more
resource-constrained devices.

30 Location-Based Information Systems

The Connected Limited Device Configuration layer, currently Java Speci-
fication Request (JSR) 139 version 1.1, implements the minimum components
required to support small connected devices. It targets devices with 192 KB of
total memory, 16-bit or 32-bit processors, low power consumption, and inter-
mittent connectivity and limited bandwidth such as cellular phones, pagers,
PDAs, home appliances, and the like. The CDLC 1.1 specification contains
the components to support the Java programming language and virtual ma-
chine features, core Java libraries (java.lang.*, java.util.*), and APIs
for input/output, security, and networking.

3.3.1 Java Programming Language and Virtual Machine
Features

The CLDC 1.1 specification supersedes specification 1.0 introducing sev-
eral important new features and fixes. Among the most important new features
are the inclusion of floating point support with the classes Float and Double
and the redesign of the classes Calendar, Date, and Timezone, and the Thread
object to be more Java SE-compliant.

A Java virtual machine conforming to the CLDC 1.1 specification is com-
pliant with the Java virtual machine of the Java SE except for the following:

• No finalization of class instances: The method Object.finalize()
to finalize class instances is not included in the CLDC 1.1 libraries.

• Exception and error handling limitations: In CLDC 1.1 asyn-
chronous exceptions are not supported and error handling capabilities
are limited.

• User-defined class loaders: The CLDC 1.1 virtual machine does not
support user-defined class loaders; it only supports the “bootstraping”
class loader for security reasons.

• Thread groups and daemon threads: The CLDC 1.1 only supports
operations with individual thread objects.

• Class file verification: As explained in Section 2.3.1.5, the CLDC 1.1
specification supports off-line preverification and runtime verification
with stack maps.

3.3.2 Libraries and APIs

The CLDC 1.1 specification includes libraries that are a subset of the
standard Java SE and EE platforms, for upward compatibility, and a subset
of libraries that are specific to CLDC 1.1.

The classes derived from the Java SE platform are the following [59]:

The Java Platform Micro Edition (Java ME) 31

• System classes: These are classes that are essential to the Java pro-
gramming language, and they are included in the java.lang package.
The system classes included in the CLDC specification are the following:

– java.lang.Object

– java.lang.Class

– java.lang.Runtime

– java.lang.System

– java.lang.Thread

– java.lang.Runnable

– java.lang.String

– java.lang.StringBuffer

– java.lang.Throwable

• Data type classes: The following data type classes are supported:

– java.lang.Boolean

– java.lang.Byte

– java.lang.Short

– java.lang.Integer

– java.lang.Long

– java.lang.Float

– java.lang.Double

– java.lang.Character

• Collection classes: The package java.util supports the collection
classes java.util.Vector, java.util.Stack, java.util.Hashtable,
java.util.Enumeration, and two additional utility classes, the
java.util.Random class to generate random numbers and the
java.util.Math class that provides min, max, abs, ceil, and floor
functions.

• Input/output classes: The package java.io supports the following
classes:

– java.io.InputStream and java.io.OutputStream

– java.io.ByteArrayInputStream

– java.io.ByteArrayOutputStream

– java.io.DataInput and java.io.DataOutput

– java.io.DataInputStream and java.io.DataOutputStream

32 Location-Based Information Systems

– java.io.Reader and java.io.Writer

– java.io.InputStreamReader and java.io.OutputStreamWriter

– java.io.PrintStream

• Calendar and Time classes: The CLDC 1.1 specification only sup-
ports the java.util.Calendar, the java.util.TimeZone, and the
java.util.Date classes. To preserve more space, it only supports one
time zone, which is the GMT by default.

• Exception and Error classes: The list of exception classes is very
comprehensive to preserve upward compatibility with the Java SE and
EE platforms. The specification supports the following exception classes:

– java.util.Exception

– java.util.ArithmeticException

– java.util.ArrayIndexOutOfBouondsException

– java.util.ArrayStoreException

– java.util.ClassCastException

– java.util.ClassNotFoundException

– java.util.IllegalAccessException

– java.util.IllegalArgumentException

– java.util.IllegalMonitorStateException

– java.util.IllegalThreadStateException

– java.util.IndexOutOfBoundsException

– java.util.InstantiationException

– java.util.InterruptedException

– java.util.NegativeArraySizeException

– java.util.NullPointerException

– java.util.NumberFormatException

– java.util.RuntimeException

– java.util.SecurityException

– java.util.StringIndexOutOfBoundsException

– java.util.EmptyStackException

– java.util.NoSuchElementException

– java.io.EOFException

– java.io.InterruptedIOException

– java.oi.IOException

– java.io.UnsupportedEncodingException

The Java Platform Micro Edition (Java ME) 33

– java.oi.UTFDataFormatException

Error handling on the other hand is very limited. The CLDC 1.1
specification only supports the java.lang.NoClassDefFoundError,
java.lang.OutOfMemoryError, java.lang.VirtualMachineError, and
java.lang.Error classes.

The CLDC 1.1 specification also includes some CLDC specific classes de-
scribed within the Generic Connection Framework (GCF), meant to support
input/output and networking capabilities in a generalized and extensible man-
ner. The idea is to provide the minimum I/O and networking support needed
by all devices while opening the door for extending these capabilities and im-
plementing new ones as needed by specific devices and implementations. In
that manner, the very large footprint of code included in the Java SE platform
is reduced to fit in a small device. More details on the Generic Connection
Framework are included in Chapter 8, which is devoted to communications.

3.4 The Mobile Information Device Profile (MIDP)
Layer 2.0

If the CLDC is a contract between the device and the Java programming
language, the Mobile Information Device Profile is a contract between the Java
programming language and the application developer. The MIDP, currently
JSR 118 version 2.0, is the profile designed for the CLDC. Other profiles, such
as the Foundation Profile, the Personal Basis Profile, and the Personal profile
have been designed to work on top of the CDC configuration. These later
profiles will not be discussed here.

The MIDP 2.0 specification includes the minimum set of APIs required to
develop graphical and networked applications for resource-constrained mobile
devices. These applications, called MIDlets, are the mobile equivalent of the
applets developed under the Java SE platform. As applets, MIDlets can also
be downloaded from a Web server and installed and run in the mobile device.
MIDlets, by definition, are those applications that use only the APIs defined
in the MIDP and CLDC specifications.

The following list contains those APIs that are part of the MIDP 2.0
specification. They are part of the list of minimum requirements to develop
applications for resource-constrained devices. In other words, it is expected
that most applications will have a graphical user interface, communicate with
other applications or databases over a network, store data either locally or
remotely, secure the data transmissions, etc. The APIs included in the specifi-
cation are grouped according to the type of function they perform. Each API
consists of one or more packages as follows:

34 Location-Based Information Systems

• User Interface API: These APIs provide the functionality needed to
implement graphical user interfaces for the MIDlet application. They
are included in the javax.microedition.lcdui package.

• Game API: These APIs include a series of classes to de-
velop games for wireless devices. The classes are included in the
javax.microedition.lcdui.game package.

• Application Management API: These are the APIs used to in-
stall, update, and remove MIDlets. The classes are included in the
javax.microedition.midlet package.

• Networking API: Networking support as specified in the Generic Con-
nection Framework is provided by the networking APIs. The networking-
related classes are included in the javax.microedition.io package.
The networking APIs will be described in more detail in Chapter 8.

• Security API: These are the APIs used to protect the mobile
device and secure the communications. They are included in the
javax.microedition.pki package.

• Sound API: Packages javax.microedition.media and javax.
microedition.media.control provide the APIs related to media and
control types used with a player.

• Storage API: MIDP includes APIs to store and retrieve data in the
mobile device. The classes are included in the javax.microedition.rms
package.

These APIs will be further described in the following chapter or in those
chapters related to the topic of the API.

3.5 Optional Packages

The Java ME platform is very rich in terms of additional packages. These
packages, which are not part of the MIDP 2.0 specification, provide the func-
tionality needed to perform those tasks that are specific to some applications.
The optional packages, as seen in Figure 3.2, sit on top of the MIDP layer
and are loaded into the stack on demand as dictated by the applications. The
following list briefly describes some of the most important optional APIs.

• Mobile Media API (JSR 135): This API includes the functionality
to access and control multimedia resources and files. The sound API
part of the MIDP specification is a subset of this API.

The Java Platform Micro Edition (Java ME) 35

• Security and Trust Services API (JSR 177): This API provides
security services to make trusted mobile devices.

• Session Initiation Protocol API (JSR 180): The Session Initiation
Protocol is a signaling protocol to establish and manage multimedia
communications over IP networks. This API provides this functionality
to mobile devices.

• Mobile 3D Graphics API (JSR 184): This API is designed to
develop 3D graphic applications such as games, animated messages,
product visualization, etc. It is flexible enough to be used in resource-
constrained devices as well as higher-end devices with better color dis-
plays, DSP, floating point unit, etc.

• Event Tracking API (JSR 190): This API was designed to standard-
ize the tracking of application events in the mobile device and transmit
those events to a server maybe for billing purposes, update notification,
usage tracking, etc.

• Wireless Messaging API (JSR 120): The Wireless Messaging API
includes the interfaces to send and receive Short Message Service (SMS)
and Cell Broadcast Service (CBS). This API is described in more detail
in Chapter 8.

• Location API (JSR 293): This API defines methods to obtain the
mobile device’s position. This API is described in more detail in Chap-
ter 6.

• Java ME Web Services API (JSR 172): This API enables mobile
devices to use Web services. This API is described in more detail in
Chapter 9.

Except for those APIs that will be used in subsequent chapters in the
development of our LBIS tracking system example, these APIs will not be
described here any further. More information about these APIs can be found
in the Website of the Java Community Process at http://jcp.org.

3.6 The Java ME Platform and the LBIS Tracking
System Example

This chapter provides basic information about the Java ME platform. It
lists the components, features, classes, and APIs that are available to develop
the client application that will run in the cellular phones of the clients of

http://jcp.org/

36 Location-Based Information Systems

our LBIS tracking system example. This chapter is a brief guide to the pro-
grammer. The following chapters introduce the reader on how to use those
components and APIs to actually build MIDlets.

Chapter 4

MIDlet Development

4.1 Introduction

This chapter is devoted to MIDlets and those APIs that are commonly used
in the development of MIDlets. The chapter begins with general information
about MIDlets and the typical “Hello World” example. Then, the chapter in-
cludes example code to describe how to use the user interface, sound, security,
and storage APIs.

4.2 MIDlets

A MIDlet is a Java program compiled using the APIs included in the CLDC
and MIDP specifications. The compilation can be made using the command
line invoking the Java SE compiler javac with the appropriate classpath
option indicating the location of the CLDC and MIDP APIs, i.e., javac
-classpath path\CLDC-MIDP-API applicationName.java, or selecting the
appropriate compilation options in NetBeans or Eclipse.

Once the compilation of the MIDlet is successfully completed, there are
several additional steps before loading the application in a real device for test-
ing. First, the application should be debugged and tested in local emulators,
like the Mobility Pack that can be integrated into NetBeans, to debug and
test the graphical user interface and event handling functionalities. Second,
the application needs to be passed through the off-line preverifier, so it can
be later verified by the device when loaded. Third, the MIDlet’s source code
needs to be packaged. The packaging process creates two files, a Java Archive
file (JAR) that contains all the class files and resource files such as audio,
video, pictures, and data files, and a Java Application Descriptor (JAD) file.
The JAR file also contains the manifest file, which is generated by the JAR
tool and provides specific information about the MIDlet, such as the MIDlet
name, vendor, version, and configuration and profile utilized. The JAD file
contains additional information about the MIDlet, such as the URL and the
size of the MIDlet, useful information for the mobile device to decide whether

37

38 Location-Based Information Systems

to download the MIDlet or not. The preverification of the MIDlet as well as
the creation of the JAR, JAD, and manifest files is performed automatically
by NetBeans when the MIDlet is compiled and built. The preverifier is usually
part of the software development kit platform used to develop applications for
a specific vendor device or carrier, which includes all or most cellular phone
models of that particular carrier or device manufacturer. One example is the
Sprint Wireless Web Toolkit (SWWT), which can be integrated into NetBeans
as the device platform to be used by the compiler. The installation process of
the SWWT is described in the Appendix, Section A.5.1.1. Listings 4.1 and 4.2
show examples of a manifest and JAD files, respectively.

1 Manifest−Version : 1 . 0
2 Ant−Version : Apache Ant 1 . 7 . 0
3 Created−By : 1 . 6 . 0 _03−b05 (Sun Microsystems Inc .)
4 MIDlet −2: CalculatorWebService , , edu . cse . usf . book . ws .

CalculatorWebService
5 MIDlet −1: TCPTest , , edu . cse . usf . book . TCPTest
6 MIDlet−Vendor : Vendor
7 MIDlet−Name : TCPTest
8 MIDlet−Version : 1 . 0
9 MicroEdition−Configuration : CLDC −1.0

10 MicroEdition−Profile : MIDP −2.0

Listing 4.1: Content of a manifest file.

1 MIDlet −1: TCPTest , , edu . cse . usf . book . TCPTest
2 MIDlet −2: CalculatorWebService , , edu . cse . usf . book . ws .

CalculatorWebService
3 MIDlet−Jar−Size : 12747
4 MIDlet−Jar−URL : TCPTest . jar
5 MIDlet−Name : TCPTest
6 MIDlet−Vendor : Vendor
7 MIDlet−Version : 1 . 0
8 MicroEdition−Configuration : CLDC −1.0
9 MicroEdition−Profile : MIDP −2.0

Listing 4.2: Content of a JAD file.

All MIDlets have the same life cycle shown in Figure 4.1. When the appli-
cation is loaded, the constructor of the MIDlet is called and an instance of the
application is created. At that time the MIDlet is in the Paused state. Call-
ing the startApp() and pauseApp() methods cause the MIDlet to change its
state from Paused to Active and vice versa. During the lifetime of the MIDlet,
its state can change back and forth between these two states as many times as
necessary. When the MIDlet is no longer needed, the destroyApp() method
terminates the instance of the application.

The MIDP layer contains a piece of software called the Java Application
Manager (JAM) or Application Management Software (AMS) that manages
the MIDlets in the device, i.e., installs, updates, starts, removes, and pauses
the MIDlets.

MIDlet Development 39

FIGURE 4.1: The life cycle of a MIDlet.

4.3 A Hello World MIDlet

A MIDlet is an extension of the javax.microedition.midlet.MIDlet
class, which implements the methods that define the behavior of the MIDlet
such as startApp(), pauseApp(), and destroyApp() methods. The Hello
World MIDlet implementation shown in Listing 4.3 shows how to implement
this small application.

1 import javax . microedition . midlet . ∗ ;
2 import javax . microedition . lcdui . ∗ ;
3
4 public class HelloWorld extends MIDlet implements CommandListener {
5 private Command exitCommand ;
6 private TextBox tbox ;
7
8 // MIDlet constructor
9 public HelloWorld () {

10
11 // Create " Exit " Command
12 exitCommand = new Command (" Exit " , Command . Exit , 1) ;
13
14 // Create TextBox to display the output
15 tbox = new TextBox (" Hello World MIDlet " , " Hello , World !" , 15 , 0) ;
16
17 // Include the Exit Command in the interface and set its Listener
18 tbox . addCommand (exitCommand) ;
19 tbox . setCommandListener (this) ;
20
21 // Set the TextBox as the current screen
22 Display . getDisplay (this) . setCurrent (tbox) ;
23 }
24

40 Location-Based Information Systems

25 // The system calls this function to start the MIDlet
26 protected void startApp () {}
27
28 // The application is switched to the paused state
29 protected void pauseApp () {}
30
31 // The application is destroyed
32 protected void destroyApp () { boolean force}
33
34 // MIDlet destroys itself if user gives the Exit Command
35 public void commandAction (Command c , Displayable d) {
36 if (c==exitCommand) {
37 destroyApp (false) ;
38 notifyDestroyed {} ;
39 }
40 }
41 }

Listing 4.3: A Hello World MIDlet.

Let us digest this simple MIDlet. First of all, the application imports the
packages related to MIDlets and the user interface API. As a MIDlet, the
HelloWorld MIDlet extends the class javax.microedition.midlet.MIDlet
and implements the command listener to listen for commands. Then, the con-
structor is called by the Java Application Manager (JAM) to instantiate the
MIDlet. The application creates the Exit command as well as a text box and
screen to display the application’s text and command. The application then
implements the methods to start, pause, and destroy the MIDlet. As it can
be seen, this MIDlet does not take any action when the start and pause com-
mands are given by the user. However, it does reacts to the Exit command,
which utilizes the destroy method. Notice that the destroyApp() method has
the boolean false parameter. This means that the destroy request is not un-
conditional. In this case, the MIDlet may throw an exception and stay in the
current state of execution. If the parameter is true the request is uncondi-
tional, the MIDlet will free its resources, and the application will terminate.
Figure 4.2 shows the Hello World MIDlet as run in the cellular phone emulator
included in NetBeans.

4.4 The User Interface API

The package javax.microedition.lcdui contains most of the classes
and methods utilized in the design of graphical user interfaces. This section
presents the hierarchy of the classes included in the package as well as a brief
description of each of them.

The classes included in the user interface package follow the hierarchy
shown in Figure 4.3. At the highest level of the hierarchy, there is the Display
class. This class manages the display and input devices of the system. There
is only one instance of Display per MIDlet. A reference of that instance can

MIDlet Development 41

FIGURE 4.2: The Hello World MIDlet in NetBeans’ cellular phone emulator.

be obtained by calling the getDisplay() method. The class also contains
methods to retrieve the properties of the device and to request the display of
objects.

The Displayable object contains the user interface objects that are shown
in the display. The Display class setCurrent() and getCurrent() methods
are utilized to set and retrieve the current Displayable. Normally, the appli-
cation changes the current Displayable based on user action. If the current
Displayable is visible, the application is in the foreground ; otherwise, it is
said to be in the background.

A Displayable object may have listener and command objects associ-
ated with it through which the user interacts with the user interface of the
application. When the user selects a particular command, the application is
automatically notified. The application may react to user command notifica-
tions changing the current Displayable by another one. In other words, the
transition from one Displayable to another is controlled by the command
associated with the current Displayable. All Displayable objects have the
following properties:

42 Location-Based Information Systems

FIGURE 4.3: Hierarchy of the most important classes in the user interface
package.

• Zero or more commands associated with it.

• A CommandListener that is notified when the user issues a command.

• A title string to identify or name the object.

• A ticker object that shows scrolling text.

Commands provide users with a way to navigate through the Displayables
of an application. If a Displayable object has no command associated with
it, the user has no way to change the current Displayable. Commands are
added and removed using the addCommand() and removeCommand() methods.

All Commands have a string label, priority, and command type. The string
label can be short or long and represents the description that identifies
the command. The priority is a number that defines the importance of the
Commands of the same type on the same Displayable. The lower the num-
ber the higher the importance. More important Commands are displayed before
less important ones. There are six specific command types and two generic
command types, as follows:

• Specific command types:

– BACK: Goes back to the previous screen.

– OK: User accepts question or data in current screen.

– CANCEL: User rejects question or data in current screen.

MIDlet Development 43

– HELP: Activates online help.

– EXIT: Used to exit the application.

– STOP: Used to stop a process running on the current screen.

• Generic command types: Used to describe the intent of a Command
not described by the specific commands.

– ITEM: Relates to specific items of a Screen or the elements of a
Choice, e.g., “Delete” item in a List.

– SCREEN: Typically relates to all items of a Screen or elements of a
List.

Listing 4.4 shows an example that implements three Commands, two generic
commands, save and delete, and one specific command, the exit command.
The application responds to commands because the listener of the com-
mand is called. Listeners are registered using the setCommandListener()
method. An object must implement the commandAction() method of the
CommandListener interface to define itself as a listener.

1 class ExampleCommand extends Screen implements CommandListener {
2 Command save = new Command (" Save " , Command . SCREEN , 2} ;
3 Command delete = new Command (" Delete " , Command . SCREEN , 3} ;
4 Command exit = new Command (" Exit " , Command . EXIT , 4} ;
5 MIDlet midlet ;
6
7 public ExampleCommand (MIDlet mymidlet) {
8 midlet = mymidlet ;
9 setCommandListener (this) ;

10 addCommand (save) ;
11 addCommand (delete) ;
12 addCommand (exit) ;
13 }
14
15 public void commandAction (Command c , Displayable d) {
16 if (c == save) {
17 \\ Save data
18 }
19
20 else if (c == delete) {
21 \\ Delete data
22 }
23
24 else if (c == exit) {
25 \\ Exit the application
26 midlet . notifyDestroyed () ;
27 }
28 }
29 }

Listing 4.4: Implementing Commands for MIDlets.

4.4.1 Lists, Text Boxes, Forms, and Alerts

The Displayable class has two subclasses, the Canvas and the Screen
subclasses. The Canvas subclass contains objects that allow the developer

44 Location-Based Information Systems

to have precise control of what is drawn on the display. This is particularly
useful for those applications that need precise placement and control of graphic
elements. The Canvas subclass will not be described here any further.

The Screen subclass contains high-level objects that implement complete
user interface components such as lists, alerts, text boxes, and forms. The List
class is a Screen that displays a list of choice elements. Each element includes
a string and may have an icon. Lists can be implicit , exclusive, and multiple
choice. An implicit list is a list of items from which the user can select only
one of the elements. The system automatically handles the scrolling of the
selection as the user moves through the list. An exclusive list also allows the
user to select one element; however, it is presented as a list of radio buttons
that unselect any previously selected button when a new one is selected. A
multiple choice list allows the user to select one or more elements from the
list. Normally, check boxes are utilized in this list type.

Available methods to manipulate the list elements are the append(),
delete(), insert(), set(), getString(), and getImage() methods. The
type of list is selected using the interface class Choice, as follows:

List list = new List (String title , int listType , String []
stringElements , Image [] imageElements) ;

where listType can be IMPLICIT , EXCLUSIVE , or MULTIPLE ; stringElements
(imageElements) is the initial array of elements (images)

e . g . , List list = new List (‘ ‘ Email list ’ ’ , Choice . IMPLICIT , ‘ ‘
labrador@cse . usf . edu , ajperez@cse . usf . edu , pedrow@cse . usf . edu ’ ’ ,
null) ;

The TextBox class is a Screen that allows the user to input and edit
text. The maximum number of characters is defined by the application, which
can use the methods setMaxSize() and getMaxSize() to set and obtain the
maximum size. The application can also set input constraints to make sure the
user includes allowed characters. Available constraints are ANY, NUMERIC,
DECIMAL, PHONENUMBER, URL, and EMAILADDR. A TextBox must
have Commands associated with it; otherwise, the user will not be able to go
anywhere else. The following example code shows how a text box is created
with an editable email address:

TextBox tb = new TextBox (String title , String text , int maxSize , int
constraints) ;

e . g . , TextBox tb = new TextBox (‘ ‘ Enter Email ’ ’ , ‘ ‘ labrador@cse . usf .
edu ’ ’ , 30 , TextField . EMAILADDR) ;

A Form is a Screen that may contain StringItems, ImageItems,
DateFields, TextFields, Gauges, and ChoiceGroups, i.e., any of the sub-
classes of class Item, as shown in Figure 4.3. The Form can be manipu-
lated using the insert(), append(), delete(), set(), get(), size(), and
deleteAll() methods.

Alerts are Screens that can inform the user about errors and other ex-

MIDlet Development 45

ceptions, or as short informational notes and reminders. Alerts are displayed
for a certain amount of time given by the setTimeout() method, or modal,
which requires the user input to close the message. There are five AlertTypes:
ALARM, CONFIRMATION, ERROR, INFO, and WARNING. The following
code shows an example that creates an Alert.

Alert alert = new Alert (String title , String alertText , Image
alertImage , AlertType . XXX) ;

where XXX can be any of the alertType

e . g . , Alert alert = new Alert (‘ ‘ Warning ’ ’ , ‘ ‘ Delete all ? ’ ’ , null ,
AlertType . WARNING) ;

4.5 The Media API

The Media API was designed to support sound in resource-constrained
devices. It is a subset of the Mobile Media API (MMAPI), which is an optional
package intended for Java ME devices with advanced sound and multimedia
capabilities, such as PDAs, smartphones, and the like. The Mobile Media API
was created under the Java Specification Request 135. The rest of this section
focuses on the Media API.

The Media API was designed to support tone generation and media flow
controls with a low footprint audio playback. It is implemented in two pack-
ages, the javax.microedition.media package that contains a fully com-
patible subset of the classes included in the Mobile Media API, and the
javax.microedition.media.control, which defines the specific Control
types that can be used with a Player.

The Media API consists of three main components: Manager, Player, and
Controls. The class Manager is used by the applications to request Players
and supported content and protocols. The Player plays the media. A Control
is an interface utilized to implement the controls of the Player.

The createPlayer() method of the Manager class can create a Player in
two different ways. The first manner is shown in the following code:

Player Manager . createPlayer (String url)
where url specifies the protocol and content of the data as follows :

<protocol >:<content location>

e . g . , Player p = Manager . createPlayer (‘ ‘ http : // hello . wav ’ ’) ;

A Player can also be created to playback media from an inputStream, as
follows:

Player Manager . createPlayer (InputStream stream , String type) ;

46 Location-Based Information Systems

e . g . , InputStream istream = getClass () . getResourceAsStream (‘ ‘ hello . wav
’ ’) ;

Player p = Manager . createPlayer (istream , ‘ ‘ audio /X−wav ’ ’) ;
p . start () ;

where type can be any of the following:

• Wave audio files: audio/x-wav.

• AU audio files: audio/basic.

• MP3 audio files: audio/mpeg.

• MIDI files: audio/midi.

• Tone sequences: audio/x-tone-seq.

The start(), stop(), and close() are Player methods to start, stop,
and close the Player.

The Manager class can also be used to generate tones, very useful for many
applications given that sound is the only media supported by the Media API.
A single tone can be generated using the following code:

Manager . playTone (int note , int duration , int volume)

where volume is a value from 0 to 100 in which 100 represents the highest
volume supported by the hardware; duration is the duration of the tone in
milliseconds; and note defines the tone of the note. A note is given by a number
from 0 to 127. The formula to calculate a MIDI note given the frequency in
Hz is given by the following Equation:

note = (12× log2(f/440)) + 69 (4.1)

so, for example, frequency 440 Hz corresponds to note 69, which is MIDI note
A.

4.6 The Record Management System API

The Record Management System (RMS) is a simple record-oriented stor-
age space that allows MIDlets to persistently store and retrieve data in the
mobile device. The API is included in the package javax.microedition.rms.

The RMS uses the concept of record store, which is a collection of persistent
records. Records are arrays of bytes of different lengths and types within the
record store. Records are automatically identified by a recordId assigned by a
monotonically, increasing-by-one mechanism with no wrap-around provision.
Adjacent records in a record store do not necessarily have subsequent record

MIDlet Development 47

IDs. Record stores, on the other hand, are uniquely named using the name of
the MIDlet suite plus the name of the record store. MIDlet suites at the same
time are identified using the attributes MIDlet-Vendor and MIDlet-Name of
the application descriptor (JAD) file.

MIDlets within a MIDlet suite can create multiple record stores and access
one another’s record stores directly. MIDlets in different MIDlet suites can
share record stores using accessibility rules and authentication mechanisms.
These access controls are defined at the time the record store is created.

The RMS API ensures that record store operations are atomic, syn-
chronous, and serialized but does not include locking mechanisms. Therefore,
the API implementation guarantees no corruption of the data but the serial-
ization mechanism might give MIDlets access to the record in an undesired
sequence, producing unexpected results. As a result, it is the programmer’s
responsibility to design MIDlets appropriately, so they coordinate access when
multiple threads within the same MIDlet attempt to access the same record
simultaneously.

4.6.1 Working with Record Stores and Records

The RMS API has several methods to manipulate record stores and
records. The following list includes the methods available to work with record
stores:

• listRecordStores(): This method returns a String with an array of
the names of record stores owned by the MIDlet suite.

• deleteRecordStore(): This methods deletes a record store. MIDlet
suites can only delete their own record stores. If the record store is
currently open by a MIDlet when this method is called, or if the named
record store does not exist, a RecordStoreException will be thrown.
The method needs the recordStoreName as a parameter.

• openRecordStore(): This method allows to open a record store. The
method takes a String and a boolean parameters indicating the name
of the record store and whether the record should be created if it does not
exist, and returns an object of the type RecordStore. Once the record
store is opened, with this object the methods that provide information
about the record store can be used.

• closeRecordStore(): Closes the record store.

• getName(): This method returns a String with the name of the opened
or created record store.

• getNumRecords(): This methods returns an int with the number of
records in the record store.

48 Location-Based Information Systems

• getSize(): This method returns an int with the number of bytes in
the record store.

• getSizeAvailable(): This methods returns an int with the number of
additional bytes that the record store could use. It is worth mentioning
that this number represents a memory snapshot given by the system
to the requesting MIDlet but not a guarantee, as other MIDlets may
occupy memory as well.

• getNextRecordID(): This method returns an int with the recordId
of the next record to be added to the record store.

• getVersion(): This method returns an int with the version of the
record store. Each time a record store is modified (record added, modi-
fied, deleted), its version is incremented.

• getLastModified(): This methods returns a long with the time of the
modification made to the record store.

The methods available in the RMS API to manipulate individual records
are the following:

• addRecord(): This method adds a new record to the record store and
returns the new recordId. This is a blocking atomic operation; there-
fore, the method will not return until the record is written to persistent
storage.

• deleteRecord(): This method deletes the record with recordID from
the record store.

• getRecordSize(): This methods returns the number of bytes of the
data available in record recordID.

• getRecord(): This methods returns the data stored in the record
recordID.

• setRecord(): This method overwrites the data in record recordID with
the data provided here.

Before finalizing this section, it is important to emphasize the fact that
records are arrays of bytes; therefore, different data types must be con-
verted into and out of byte arrays. CDLC classes such as DataInputStream,
DataOutputStream, ByteArrayInputStream, and ByteArrayOutputStream
can be used for such purpose.

MIDlet Development 49

4.7 Security

This section provides an overview of the security mechanisms included in
the Java ME platform. In particular, this section lists the main security goals
and the available mechanisms available to achieve them, and includes a brief
description of MIDlet and networking security.

4.7.1 Information Security Goals and Mechanisms

Security is a very important aspect in any networked application, and LBS
applications are not the exception. Security is guided by the following goals
or principles:

• Confidentiality: Confidentiality is about the disclosure of information
only to authorized individuals or systems. Encryption is a common
mechanism used to provide confidentiality. An encryption mechanism
transforms the original data before being sent using a secret code or
secret key combination. Only the authorized receiver, with the appro-
priate key, can decrypt the message back to its original form upon its
reception. There are symmetric and asymmetric encryption mechanisms.
Symmetric mechanisms use the same secret key to encrypt and decrypt
the message. Asymmetric mechanisms use a public and a secret key. The
public key, which is publicly known, is used to encrypt the message by
anyone who desires to communicate with the owner of the secret key.

• Integrity: Integrity means that data cannot be modified without proper
authorization; it is keeping the information intact. Integrity is usu-
ally achieved by cryptographic methods plus additional information ap-
pended to the original message.

• Authenticity: Authenticity is about making sure that the message is
authentic, that it comes from the real source. Digital signatures using
asymmetric encryption are commonly used to provide authenticity.

• Availability: Availability means that information must be available
when needed. Availability considers physical as well as logical attacks
to the infrastructure such as failures of the electric power and denial of
service attacks, among others.

4.7.2 MIDlet Security

Let us start by saying that Java is a programming language designed with
security in mind. First of all, Java utilizes the“sandbox” model, which limits
the execution of untrusted applications to a closed area where they cannot

50 Location-Based Information Systems

affect the system if they do not behave as expected. Second, Java enforces
language semantics and eliminates programming errors at compilation time.
Further, the compiled bytecode is verified to make sure the application follows
all Java standards and was compiled correctly. Third, Java also has security
policies to ensure safe access to sensitive resources. These policies are enforced
by the Java security manager and the access controller. Finally, Java includes
authentication, authorization, and encryption mechanisms to guarantee in-
tegrity, privacy, and confidentiality.

Unfortunately, all these good features together cannot be offered in
resource-constrained devices; they occupy more memory space than the space
available in the device. As a result, a simplified security platform has been
developed for Java ME applications. Security mechanisms in Java ME are
included in the Connected Limited Device Configuration (CLDC) and the
Mobile Information Device Profile (MIDP) layers of the Java ME platform.
They include a thorough off-line verification process and an in-device fast veri-
fication algorithm, a simplified sandbox model in which applications only have
access to the classes supported by the device, and simplified security mech-
anisms such as authentication to trust signed MIDlets, protection domains,
security policies and enforcement, and the use of HTTPS (only available in
MIDP 2.0) to secure connections with remote machines. For the interested
reader, a comprehensive presentation of Java ME CLDC/MIDP security is
included in [27].

The MIDP 1.0 specification utilized the sandbox model in which all
MIDlets or MIDlet suites (more than one MIDlet packaged together) are run
in a sandbox, or a tightly controlled and separate environment where MIDlets
in separate MIDlet suites have access to restricted resources and do not in-
terfere with one another. The MIDP 2.0 specification expands this model and
includes the concepts of trusted MIDlet and protection domains.

An untrusted MIDlet suite is a MIDlet suite whose authenticity and in-
tegrity of the JAR file cannot be trusted by the device. Untrusted MIDlet
suites, such as those suites complying with the MIDP 1.0 specification, exe-
cute in the untrusted domain, which is a restricted environment where MIDlets
have access to security sensitive APIs only if they have explicit user permis-
sion. The following APIs are not security sensitive and can be used by un-
trusted MIDlets without the explicit confirmation from the user (with the
exception of the last two):

• javax.microedition.rms.

• javax.microedition.midlet.

• javax.microedition.lcdui.

• javax.microedition.lcdui.game.

• javax.microedition.media.

MIDlet Development 51

• javax.microedition.media.control.

• javax.microedition.io.HttpConnection (need user confirmation).

• javax.microedition.io.HttpsConnection (need user confirmation).

The MIDP 2.0 specification includes mechanisms to identify and trust a
MIDlet suite and introduces the concept of protection domains for trusted
MIDlet suites. A protection domain is a set of permissions associated with
a root certificate in the device. A specific domain can be defined in the de-
vice using the public key of the domain entity, e.g., a software development
company. Then, a MIDlet signed by the company, upon its verification in the
device, will be given access to all those resources included in the permissions
of the domain.

Digital signatures and authentication methods based on the Internet X.509
Public Key Infrastructure standard included in RFC 2459 [33] and the Internet
RFC 2437 “PKCS #1: RSA Cryptography Specifications, Version 2.0” [34] are
utilized to decide whether to trust or not a MIDlet suite. First, the MIDlet
suite is signed; then, at downloading time, it is authenticated. The entire
process consists of the following steps:

1. The sender creates a signing certificate. For this, the signer must know
the root certificates used in the device for authenticating MIDlet suites.
Thus, the sender needs to send its Distinguished Name (DN) and public
key to a Certificate Authority (CA) to obtain a RSA X.509 certificate.

2. The sender encodes and inserts the certificate or certificates, if more
than one CA is involved, into the application descriptor (JAD file) (See
Section 4.2).

3. The sender signs the JAR file with its private key according to the encod-
ing method included in RFC 2437. The signature is base64 encoded and
included in the application descriptor as a single MIDlet-Jar-RSA-SHA1
attribute without line breaks. The signature includes the JAR file but
not the JAD file. By signing the entire JAR file, the signature provides
MIDlet integrity.

4. The developer uploads the signed JAR file and the JAD file in a Website
where clients can download the application from.

5. The receiver (client) downloads the MIDlet suite over-the-air and checks
if the MIDlet-Jar-RSA-SHA1 attribute exists in the application descrip-
tor. If so, the device must verify the signer certificates and JAR sig-
nature; otherwise, the application is categorized and invoked as an un-
trusted MIDlet suite.

6. The receiver verifies the signer certificates by looking at the certificate
authorities involved in the certificates included in the JAD file and the

52 Location-Based Information Systems

root certificate authorities included in the device. The device first ex-
tracts the certificates from the MIDlet suite and validates them using
the process defined in RFC 2459. If the authentication fails, the JAR
installation is rejected.

7. The receiver now needs to verify the JAR signature. First, it gets the
signer’s public key from the verified signer certificate determined in the
last step. Second, it gets the MIDlet-Jar-RSA-SHA1 attribute from the
application descriptor. Third, the attribute is decoded from base64 to
a PKCS #1 signature, as specified in RFC 2437. Finally, the device
uses the signer’s public key, the signature included in the JAD file, and
the SHA-1 digest included in the JAR file to verify the signature. If
the verification fails, the receiver rejects the MIDlet suite and does not
install it.

As described before, certificates are utilized in MIDP 2.0 security for au-
thentication. The javax.microedition.pki package included in the basic
specification provides applications with the Certificate interface to work
with certificates through the following methods:

• getIssuer(): Returns the name of the issuer of the certificate.

• getNotAfter(): Returns the time in milliseconds after which the cer-
tificate is no longer valid.

• getNotBefore(): Returns the starting time of the certificate’s validity.

• getSerialNumber(): Returns the serial number of the certificate.

• getSigAlgName(): Returns the name of the algorithm used to sign the
certificate, as specified in RFC 2459.

• getSubject(): Returns the name of the certificate’s subject.

• getType(): Returns the type of the certificate, e.g., “X.509.”

• getVersion(): Returns the version number of the certificate.

4.7.3 Network Security

Security is very important for networked applications, like the ones in-
cluded in this book. In addition to the authentication and integrity features
provided in the MIDP 2.0 specification described before for MIDlet suites, the
specification also includes protocols to provide integrity and confidentiality to
networked applications, such as the Transport Layer Security (TLS) and its
predecessor the Secure Socket Layer (SSL) protocols commonly used over the
Internet. Both TLS and SSL encrypt the transport layer segments, i.e., UDP
and TCP segments, so they work on an end-to-end basis. TLS is described in
RFC 5246 [28].

MIDlet Development 53

The MIDP specification 2.0 defines the HttpsConnection and the
SecureConnection interfaces, which are extensions of the HttpConnection
and SocketConnection interfaces defined in Chapter 8. These interfaces are
used by client devices to exchange security information with the server and
establish a secure link between them.

The method getSecurityInfo() can be applied to an open connection
to fill a SecurityInfo object and obtain the protocol name and version,
cipher suite, and certificate of the connection. These can be obtained by calling
the getProtocolName(), getProtocolVersion(), getCipherSuite(), and
getServerCertificate() methods on the SecurityInfo object.

4.8 Privacy

Along with information security, privacy is of great concern to users of
location-based information systems. Imagine the users of our LBIS tracking
system example. The users are constantly sending their coordinates to the
server of the service provider! This means that the service provider knows
about all the places you have been into, the day of the week, the time of
the day, etc. Although a good service provider could use this information
to provide you with enhanced services, a bad service provider could used it
against you somehow. Therefore, unless approved by the user, the service
provider should not gather private information.

There are mechanisms available to provide privacy in location-based ap-
plications. Some of them are based on the idea of a trusted third party (TTP)
that acts as an anonymizer hiding the location and identity of the user to
the service provider. More recently, TTP-free schemes have appeared in the
literature given the weaknesses of this approach in terms of guaranteeing the
privacy of the user and the fact the the user now has to trust the TTP, which
may not act as he or she expects. TTP-free schemes work based on the idea
of perturbation or obfuscation. These schemes modify the real location of the
users in such a way that do not allow the service provider to know where
they exactly are while being able to obtain the service with desirable accu-
racy. More detailed information about privacy, current methods, and types of
attacks can be found in [22, 49].

It is important to realize that different applications have different privacy
and security requirements. For example, a real-time tracking application to
protect individuals needs to know the location of the users. In this case, users
must agree on being part of this service. At the same time, security is very
important because you do not want others to know where you are. A par-
ticipatory sensing application meant to collect noise samples does not need
to know who is sending the samples but needs to know the exact (or almost
exact) location of the users. Similarly, this application might need to have

54 Location-Based Information Systems

security mechanisms in place not to allow a stranger to change the noise level
transmitted from a particular location. Finally, a location-based service meant
to tell you the location of a restaurant close to you does not need to know
your exact location nor your identity. Further, security might not be a big
concern.

4.9 MIDlet Development and the LBIS Tracking System
Example

This chapter presents some of the most important APIs for the develop-
ment of MIDlets that require user interaction. However, the MIDlet running in
the cellular phones of the clients of our LBIS tracking system example do not
necessarily need to interact with the user. Some LBS will only need the MIDlet
to acquire the location of the device and transmit it to the service provider’s
server for storage, processing, and visualization. As such, this MIDlet could
run in the cellular phone’s background without the knowledge of the user. As
a result, the APIs to create graphical user interfaces, generate tones and play
media, and store information locally are not as useful in our case as for other
MIDlets. However, the section on security is extremely important.

The signature and verification procedure described in the security section
is the standard way of delivering and downloading applications in a secure
manner utilized by most companies and carriers. It guarantees the authentic-
ity of the application (developer) and its integrity. The client application of
our LBIS tracking system goes through the same uploading and downloading
signature and verification procedure. It is worth mentioning, though, that this
procedure might be slightly different from service provider to service provider,
and even non-existent in other platforms and carriers. The chapter ends with
a description of the mechanisms available to provide confidentiality over net-
work connections, which can also be used by our LBIS tracking system client,
and a brief note on privacy.

Chapter 5

Other Important Programming
Aspects

5.1 Introduction

This chapter covers other important concepts in the development of appli-
cations for resource-constrained devices. In particular, it touches on memory
management, concurrency, dynamic linking, and energy management concepts
in Java ME applications. Although these are important concepts to consider in
any application development, they are particularly important when program-
ming applications for cellular devices. The restricted availability of resources
makes programming less forgiving to certain errors and requires the efficient
use of those resources, so they can be shared by all applications.

5.2 Memory Management

Memory is a very limited resource in cellular phones, and therefore, it must
be managed and used appropriately. In terms of RAM memory, mobile devices
usually have two memory areas where variables and execution information
are stored, the stack and the heap. The stack is a data structure normally
associated with threads, as it is used to store information about the methods
called by the thread, such as the method’s local variables, the return address
and return value, and other information. As such, the stack is a very well
structured memory. On the other hand, the heap is a pool of non-structured
portion of memory for general use. One key difference between the stack and
the heap is that, while the memory allocated from the stack is managed by
the system, memory allocations from the heap are the responsibility of the
programmer.

The use of memory in resource-constrained devices can be improved fol-
lowing several programming guidelines, such as the following:

• Release memory as soon as possible; allocate memory as late
as possible: By releasing memory early, more memory is available for

55

56 Location-Based Information Systems

additional objects. At the same time, if the allocations are performed
as late as possible, chances are that memory space is available, as most
deallocations have been executed.

• Run programs from ROM when possible: In place execution saves
RAM memory.

• Select the right structure: Variables can be stored in native types
or inside other structures, such as objects. Using native structure saves
considerable amount of memory as the overhead around the object is
not needed.

• Declare variables in best order: Declaring variables in groups ac-
cording to the word alignment may also save some space, as the memory
can be more efficiently allocated.

• Use arrays instead of vectors: Vector uses objects, and therefore, it
needs more resources since it needs memory space for the variables and
for the object itself. The use of vector can be optimized if the vector is
initialized with the appropriate size and not using the system’s default
size.

• Consider using StringBuffer instead of String: Concatenating
data using String and the + operator consumes more memory than
StringBuffer and the append method, as it creates temporary objects.

• Use as few objects and classes as possible: Both reduce the memory
consumption.

• Deference objects: Set objects to null when they are no longer needed,
so they are garbage collected.

• Use the -g:none switch: Compiling without debugging information
increases performance and reduces the application footprint.

• Obfuscate code: Reduce names of packages, classes, methods, vari-
ables, etc. Some obfuscators can do this automatically.

• Less fragmentation: Use linear data structures and avoid creat-
ing/destructing objects very frequently. Both reduce heap fragmenta-
tion, which reduces the ability to create further objects.

5.3 Concurrency

Users take it for granted that computers can perform several tasks at the
same time. While this is true regardless of the computer, it is more so in cel-
lular phones given the real-time nature of the operations it has to perform.

Other Important Programming Aspects 57

Users expect the cellular phone to display images of the caller on the screen
while ringing the phone, check for keyboard to accept or dismiss the call, and
maybe consult your list of contacts while talking on the phone. Simultane-
ous tasks can be accomplished by using multitasking and/or multiprocessing.
Multiprocessing means that the computer has more than one processing unit
and therefore can assign tasks to different processors at the same time. This is
not usually the case in cellular phones. Multitasking, on the other hand, is the
time sharing of the processing unit. The operating system scheduler assigns
a time slice of the processing unit to a particular task and then switches to
another task, and so forth, so the computer gives the impression of working
on all the tasks at the same time.

Multitasking is achieved by means of processes and threads. A process is
considered as a self-contained execution environment, as the operating system
assigns processes their own resources, in particular, their own memory space.
Applications may run in a single process or multiple collaborating processes,
which communicate among them by means of inter-process communication
resources, such as sockets. For example, the Java virtual machine usually runs
as a single process. In this book, processes are not considered any further.

Threads are the fundamental units of program execution. Every applica-
tion runs in at least one process with at least one thread. However, in order to
perform multiple tasks at the same time, a process may create more than one
thread, each in charge of the execution of a sequential stream of instructions.
Threads also have their own execution environment or context, which utilizes
the process’s memory space and shares it with other threads. The context has
information about the thread, such as the content of the program counter to
know which instruction is being executed, the local variables, and the state of
the thread.

Ideally, a program executes multiple threads in parallel, each in charge
of executing one piece or one task of the entire program. Since the cellular
phone has one processor for code execution, the thread scheduling mechanism
switches from thread to thread so they all get a piece of the processor’s time.
This process, known as context switching , is performed by the scheduler, which
is part of the operating system or the Java virtual machine.

Threads can be in any of the following four states [57]:

• Running: The thread is executing code.

• Ready: The thread is allocated and ready to execute code.

• Suspended: The thread is waiting for an external event.

• Terminated: The thread finished execution.

Threads in Java are associated with an instance of the java.lang.Thread
class. The Thread class provides a large list of available methods [56]; how-
ever, the following subset includes the methods available in the Java ME
platform [30]:

58 Location-Based Information Systems

FIGURE 5.1: Threads’ state machine.

• Methods related to information about the threads:

– activeCount(): Returns the number of active threads.

– currentThread(): Returns a reference to the currently executing
thread object.

– getPriority(): Returns the priority of the current thread.

– setPriority(): Sets the priority of the current thread.

– isAlive(): Tests if the thread is alive.

• Methods to change the state of the threads:

– join(): Allows one thread to wait for the completion of another.

– run(): Starts a new thread.

– interrupt(): Interrupts the thread.

– sleep(): The currently executing thread ceases execution for a
specified amount of time.

– start(): The Java virtual machine invokes the run() method and
the thread begins execution.

– yield(): The currently executing thread object temporarily pauses
and allows other threads to execute.

Figure 5.1 shows a state diagram of the methods available in Java ME that
take the threads from one state to another.

Other Important Programming Aspects 59

5.3.1 Defining and Starting Threads

There are two ways to create a thread. The first way is to declare a class
that extends the Thread class. Listing 5.1 provides an example of how to
create a thread extending the Thread class.

1 public class MyWorkProcess extends Thread {
2 public void run () {
3 . . . // Here goes the thread ’s work
4 }
5 }
6
7 . . .
8 Thread MyThread = new MyWorkProcess () ; ;
9 MyThread . start () ;

10 . . .

Listing 5.1: Creating a thread extending the Thread class.

In the first part of the code, since the Thread class implements the
Runnable interface itself, MyWorkProcess, a subclass of Thread, overrides the
run() method. In the second part of the code, the thread is started by creating
an instance of the subclass and invoking its start() method.

A thread can also be created using the Runnable interface. First, a class
that implements the Runnable interface must be defined. The runnable inter-
face defines a run() method that includes the work to be performed by the
thread. Then, an instance of the new class is created and used to start the
new thread. Listing 5.2 shows this two-step process.

1 public class MyWorkProcess implements Runnable {
2 public void run () {
3 . . . // Here goes the thread ’s work
4 }
5 }
6
7 . . .
8 MyWorkProcess MyWork = new MyWorkProcess () ;
9 Thread MyThread = new Thread (MyWork) ;

10 MyThread . start () ;
11 . . .

Listing 5.2: Creating a thread using the Runnable interface.

Either way of starting a thread is functionally similar. However, in
resource-constrained devices, the second option may be preferable if the class
that implements the Runnable interface has already been defined and used
for other purposes. In this case, the overhead of defining an entirely new class
is avoided.

The Runnable interface can also be used as shown in Listing 5.3.

1 Runnable theInvoker = new Runnable () {
2 public void run () {
3 . . . // Here goes the thread ’s work
4 }
5 }
6 . . .

60 Location-Based Information Systems

7 Thread t = new Thread (theInvoker) ;
8 t . start () ;
9 . . .

Listing 5.3: Creating a thread using the Runnable interface.

5.3.2 Stopping Threads

The old stop() and suspend() methods to stop and suspend threads have
been deprecated because the former was shown to be unsafe when it unlocked
all the monitors that it had locked before, and the latter was shown to be
deadlock prone. One way to terminate a thread is to use a boolean variable
that will force the thread to exit the run() method by itself. Listing 5.4 shows
this operation, which includes the method quit() to change the value of the
boolean variable.

1 public class MyWorkProcess implements Runnable {
2 private boolean flag = false ;
3
4 public void run () {
5 while (! flag){
6 . . . // Here goes the thread ’s work
7 }
8 }
9

10 public void quit () {
11 flag = true ;
12 }
13 }

Listing 5.4: Terminating a thread.

5.3.3 Joining, Interrupting, and Sleeping Threads

If one thread uses the quit() method to stop another thread, it can use
the isAlive() method to make sure that the first thread actually stopped.
Further, the terminating thread can use the join() method to wait for the
terminated thread to actually terminate before proceeding, as shown in List-
ing 5.5.

1 . . .
2 MyWorkProcess . quit () ; // tell it to quit
3 MyWorkProcess . join () ; // wait until it does
4 . . .

Listing 5.5: Using the join() method.

The interrupt() method is available since CLDC 1.1 and can be used
to interrupt a thread. The sleep() method of the Thread object causes the
current thread to suspend execution for a specified period of time and makes
the processor available to other threads. Listing 5.6 prints the numbers from
0 to 3 five seconds apart using the sleep() method.

Other Important Programming Aspects 61

1 public class SleepExample implements Runnable {
2 public void run () {
3 for (i=0; i<=3; i++) {
4 Thread . sleep (5000) ;
5 System . out . println (i) ;
6 }
7 }
8 }

Listing 5.6: Putting a thread to sleep.

5.3.4 Monitors and Locks

Multithreading allows for the parallel execution of tasks, which reduces
the overall execution time and makes a better utilization of the hardware re-
sources. However, it also introduces new problems, the most important being
thread interference and memory consistency errors. Thread interference may
happen whenever multiple step operations coming from different threads act
on the same data. If the operations interleave or overlap, there is the chance
that the data may be changed in an erroneous order, producing unexpected,
wrong results. This effect is even possible in single statement operations as
those statements may be implemented in several steps by the virtual machine.
Memory consistency errors occur when different threads have inconsistent
views of what should be the same data. A common example of memory con-
sistency errors is as follows: imagine that threads A and B are running and
thread A has a statement to modify the content of a string and thread B has a
statement to print the string out in the screen. Since thread B is never notified
of the write operation of thread A, the value of the variable to be printed out
by thread B may well be the original string or the modified one.

Thread interferences and memory consistency errors can be avoided by
means of thread synchronization. Thread synchronization utilizes a construct
called a monitor to control which thread can read or write data at any given
time. Thread synchronization can be applied to both, objects and methods.
Objects are synchronized by using the synchronized keyword and they lock
the object in the entire block of code, as shown in Listing 5.7.

1 Object MyObject = new Object () ;
2 void MyFunction () {
3 synchronized (MyObject){ // Here the thread locks MyObject
4 . . . // operations on the object ; Here the thread holds the lock on

MyObject
5 . . . // Here the thread continues to hold the lock
6 } // Here the thread releases the lock

Listing 5.7: Thread synchronization.

Similarly, the synchronized word can be used to synchronize methods. In
this case, the lock includes the entire code within the method, as shown in
Listing 5.8.

62 Location-Based Information Systems

1 void synchronized MyFunction () { // Everything inside this block is
locked

2 . . . // Code implementing MyFunction ()
3 } // Lock is released

Listing 5.8: Synchronizing methods.

The use of synchronized methods solves thread interference and memory
consistency problems by 1) blocking or suspending all other threads invoking
the same synchronized object until the current one is finished changing it; and
2) guaranteeing that changes to the state of the object are visible to all other
threads. Listing 5.9 shows a simple example of synchronized methods. If two
threads call any of these methods at the same time, one of them will be forced
to wait until the other finishes modifying the synchronized object.

1 public class Counter {
2 private int counter = 0 ;
3
4 public synchronized int increment () {
5 counter++;
6 }
7
8 public synchronized int decrement () {
9 counter−−;

10 }
11
12 public synchronized int result () {
13 return counter ;
14 }
15 }

Listing 5.9: Example of synchronized methods.

Thread synchronization is not free and creates other problems. First, syn-
chronization does not guarantee the order in which the threads invoke the
methods; it just guarantees that only one thread at a time will be executing
the method. Second, thread synchronization introduces overhead, as locking
and unlocking data take time. Finally, thread synchronization can introduce
another problem: deadlocks. A deadlock occurs if two threads attempt to lock
objects that have been already locked by the others. The effect is that the
two threads are blocked forever, waiting for one another. Listing 5.10 shows
a deadlock example in which one thread using MyFunction1 locks MyObject1
but waits forever trying to lock MyObject2 because another thread using
MyFunction2 already locked MyObject2. Similarly, the second thread is also
in deadlock because it tries to lock MyObject1, which had already been locked
by the other thread.

1 Object MyObject1 = new Object () ;
2 Object MyObject2 = new Object () ;
3
4 void MyFunction1 () {
5 synchronized (MyObject1){ // Here the thread locks MyObject1 (

locked by MyFunction2)
6 synchronized (MyObject2){ // Here it tries to lock MyObject2
7 }

Other Important Programming Aspects 63

8 }
9 }

10
11 void MyFunction2 () {
12 synchronized (MyObject2){ // Here the thread locks MyObject2
13 synchronized (MyObject1){ // Here it tries to lock MyObject1 (

locked by MyFunction1)
14 }
15 }
16 }

Listing 5.10: Deadlock example.

A simple technique to avoid deadlocks is to lock objects in the same or-
der every time. For example, in Listing 5.10, the deadlock could have been
avoided if MyFunction2 had synchronized MyObject1 first. In general, it is
recommended to be careful about performing any operation that might take
a long time to execute while holding a lock.

5.3.5 Waits and Notifications

Sometimes the programmer wants one thread to wait for a particular event
before accessing the data, i.e., lock the synchronized object after the desired
event takes place. One appropriate solution is to suspend the thread until the
event occurs. One important aspect about suspending threads using regular
locks on objects in resource-constrained devices continue to consume CPU
cycles while the thread is suspended, and therefore drain the device’s battery.

The Java java.lang.Object class defines three methods to suspend and
wake up threads without spending energy. These are the wait(), notify(),
and notifyAll() methods. Listing 5.11 shows the use of the wait() and
notify() methods. The first part of the code shows one thread locking the
object MyObject before executing the wait() method. This is a requirement;
the thread must lock the object before invoking its wait() method. Once the
thread suspends itself, it implicitly releases the object, so it can be locked by
any other thread, and waits until a notification occurs or until a predefined
amount of time has elapsed (wait (time in milliseconds)), if it does not
want to wait indefinitely. The second part of the code shows another thread
that 1) locks the same object, 2) performs some operation on the object,
and 3) invokes the notify() method when finished. The notify() method
produces two actions. First, it makes the second thread to release the object,
and second, it notifies the other thread that the object was released. Upon
receiving this notification, the first thread wakes up and continues.

1 Object MyObject = new Object () ;
2
3 synchronized (MyObject) {
4 try {
5 MyObject . wait () ;
6 }
7 catch (InterruptExeption e) {
8 }
9 }

64 Location-Based Information Systems

10
11
12 synchronized (MyObject) {
13 . . . / Some operations on object
14 MyObject . notify () ; // or notifyAll ()
15 }

Listing 5.11: Suspending threads.

5.4 Dynamic Linking

Dynamic linking is another important topic for Java ME programmers.
With dynamic linking a programmer can develop libraries and provide services
to many applications. Libraries provide many benefits. For example, libraries
reduce application development time, as they are coded once but used many
times; libraries reduce programming errors, as they are very well developed
and tested before being used; libraries support the development of modular
applications; finally and very important, libraries can save plenty of memory
since many applications using the same library simultaneously only need one
copy of the library loaded in memory.

Most libraries are not executable programs though. Executables and li-
braries reference to each other by links through the process known as linking,
which is performed by the linker. Libraries can be linked either statically or
dynamically. In static linking libraries are instantiated at the starting time
of the calling program and stay in memory for as long as the program runs.
On the other hand, in dynamic linking libraries are loaded and unloaded as
needed, in a dynamic fashion. As explained in Section 2.3.1.4, for security rea-
sons, the Java ME platform supports dynamic linking of those libraries and
classes that are included in the application’s JAR file only.

5.5 Energy Management

Energy is another precious resource in cellular phones. Unfortunately, there
are no standardized APIs to manage energy-related properties and resources
in Java ME. For example, developers lack APIs to query and set properties
such as remaining battery level and screen brightness (e.g., off, dim, on, etc.),
or set the device or parts of the device in different energy modes such as
“off,” “Hibernate,” and “Sleep,” according to the application needs. For the
most part, the Java ME platform gives the responsibility of general energy

Other Important Programming Aspects 65

management of the processor, I/O, radio, and other components that might
affect general energy consumption of the device to the programmer.

The application developer for resource-constrained devices needs to make
appropriate decisions not to drain the device’s battery unnecessarily while
meeting the application’s requirements. For example, it has been shown that
the most expensive function in terms of energy consumption in resource-
constrained devices is communications [35]. Therefore, application develop-
ers need to pay close attention to this aspect when developing applications.
Consider our LBIS tracking system example described in Chapter 1. Real-
time tracking requires continuous transmissions of GPS fixes. One important
question is: from the energy consumption point of view, which communica-
tion protocol would be more adequate for the transmission of continuous GPS
fixes, TCP or UDP? The extra overhead of TCP plus the real-time nature
of the fixes makes UDP to be the protocol of choice. This simple choice can
make a big difference in terms of energy consumption. The authors of [19]
analyzed this aspect and compared the time TCP and UDP spent transmit-
ting while sending GPS fixes at different intervals. While they did not find
a major difference while transmitting fixes every second, the energy savings
were demonstrated using longer intervals. For example, Figure 5.2 shows the
behavior of TCP and UDP when transmitting GPS fixes every 10 seconds.
The energy savings by using UDP versus TCP are evident from the figure,
as TCP spends more time transmitting than UDP. While at 4-second trans-
mission intervals TCP and UDP have similar energy consumption (left part
of the figure), at 10-second transmission intervals the experiment reveals that
TCP consumes around 38% more energy than UDP. This is graphically shown
in the right part of the figure as shorter periods of UDP transmissions overlap
with those of TCP.

The question now is: how often is it necessary to send the fixes so that
the object can be tracked and the number of transmissions be reduced to
the minimum? In order to optimize the number of transmissions, it may be
better to include another application in the mobile device to decide when to
transmit the fixes. This is based on the fact that computing is considerably less
expensive in terms of energy consumption than transmitting, especially if the
extra CPU computations will also save some transmissions [35]. Chapter 12
treats this topic of processing the raw data to provide enhanced services or
increase the system’s performance further. In the same chapter, the Critical
Point Algorithm [16] is described in detail, which is a simple application meant
to reduce the number of GPS transmissions to reduce energy consumption
while allowing the system to track the mobile device in real time.

66 Location-Based Information Systems

FIGURE 5.2: Energy consumption of UDP and TCP. Reproduced from [19]
c© 2003 IEEE, Inc. Included here by permission.

5.6 Other Important Programming Aspects and the
LBIS Tracking System Example

This chapter touches on several programming aspects that are particularly
important when programming applications for cellular phones. As such, theses
aspects need to be considered when programming the client-side code for the
cellular phones of our LBIS tracking system example.

Chapter 6

Obtaining the User’s Position

6.1 Introduction

Obtaining the position of the end user’s device is fundamental to Loca-
tion Based Information Systems and Location-Based Services. This chapter
describes the most important positioning techniques available to localize end
devices in outdoor and indoor environments, with emphasis on the former.
It starts with the Global Positioning System (GPS) since this is the primary
system utilized by our LBIS tracking system example. Then, it continues with
the most important positioning technologies utilized in cellular networks, us-
ing a GSM cellular network as an example. Finally, the chapter closes with
a brief description of the most important positioning mechanisms for indoor
applications and a description of the Java ME Location API 2.0.

6.2 The Global Positioning System (GPS)

The Global Positioning System (GPS) is perhaps the most widely used and
ubiquitous system to obtain users’ positions. It is a complex and expensive
system made of three major segments: the Space Segment (SS), the Control
Segment (CS), and the User Segment (US). These three segments together
enable GPS receivers to determine their location, speed, direction, and time.

The Space Segment (SS) consists of the orbiting GPS satellites. A total
of 24 satellites, four satellites in six orbital planes centered on the Earth,
are needed so that at least six satellites can be detected by a GPS receiver
from almost anywhere on Earth. Currently, the constellation of GPS satellites
consists of 31 satellites; seven more have been added to provide redundant
signals and improve the precision of GPS receivers and the reliability and
availability of the system.

The Control Segment (CS) consists of several ground stations that track
and monitor the space segment and a main control station, located in Colorado
Springs, Colorado, that monitors and maintains the entire system. The main
control station is in charge of updating the on-board atomic clocks of the

67

68 Location-Based Information Systems

satellites and their ephemerides, or a table with the exact position of the
satellites in the sky. The ephemerides is later broadcast by the satellites and
used by GPS receivers to calculate their own positions.

The User Segment (US) is made up of all GPS receivers. A high-level
architecture of a GPS receiver consists of the receiving part, with an antenna
tuned to the frequencies of the GPS satellites, a main processor, and a crystal
oscillator. Depending on the receiver, they can monitor anywhere from 4 to 20
channels. The calculated position along with additional information derived
from the satellite signal may then be further processed to build other systems
such as stand-alone navigational systems or tracking applications like the one
described in this book.

6.2.1 The Format of the GPS Navigation Message

GPS satellites continuously broadcast a 1500-bit-long Navigation Message.
The message is broken down into five subframes 300 bits long, and each sub-
frame is divided into ten words 30 bit long each. As shown in Figure 6.1, words
1 and 2 of every subframe always contain the same information. Word 1 is the
Telemetry Word (TLM), which is used by the GPS receiver for synchroniza-
tion purposes. Word 2, the Hand-Over Word (HOW), also for synchronization
purposes, enables the receiver to identify the subframe. Words 3 to 10 of each
subframe contain the rest of the navigation message as follows:

• Subframe 1: Contains the satellite clock, week number, and clock cor-
rection data.

• Subframes 2 and 3: Include the ephemeris of the satellite, which con-
tains the satellite orbit.

• Subframes 4 and 5: Contain GPS system information and the al-
manac. The almanac contains information about every satellite in the
constellation, ionospheric data to correct ionospheric errors, and infor-
mation to translate the GPS time into the international time standard,
the Coordinated Universal Time (CUT). Each navigation message con-
tains 1/25th of the almanac (2 subframes), so a receiver needs 12.5
minutes to receive the entire almanac. The almanac is very important
because it helps GPS receivers to locate satellites.

GPS satellites transmit navigation messages at the very low transmission
rate of 50 bps, meaning that they transmit one navigation message every 30
seconds. This low transmission rate is one of the reasons why it takes so long
to obtain the first GPS fix, or Time to First Fix (TTFF). Regardless of how
fast the GPS receiver is able to lock onto the satellite signals, it takes 30
seconds in the worst case to receive the navigation message.

All GPS satellites use Code Division Multiple Access (CDMA) technology
to transmit the navigation messages. They all use the same two frequencies of

Obtaining the User’s Position 69

FIGURE 6.1: The GPS frame structure.

1.57542 GHz (L1 signal) and 1.2276 GHz (L2 signal) and encode the messages
using a high-rate pseudo-random code that is unique to each satellite. The
same codes are known to all GPS receivers, so they can decode the messages.
More detailed information about the GPS system can be found in [32].

6.2.2 Lateration

Lateration is the process of calculating the user’s position using distances
between entities. Figure 6.2 shows three lateration examples in which the
user’s position (x, y) is determined using one, two, and three anchors in a
two-dimensional system. Figure 6.2(a) shows the case in which the user only
knows the distance r1 to one anchor (X1, Y1). As it can be seen, the user can
be located anywhere around the perimeter of the circumference with center
(X1, Y1) and radius r1. Of course, the error with respect to the real position of
the user may be big, as the user may be located anywhere in the circumference.
With the introduction of a second anchor, the error is reduced, as shown in
Figure 6.2(b). Now, it is known that the user is located in either of the two
intersecting points, and the idea is to eliminate the incorrect point using other
methods, which is normally easy to do. However, the introduction of a third
anchor eliminates the ambiguity of the last method since the intersecting
point is unique. The position of the intersecting point can be found using
Pythagoras’ Theorem establishing the following system of equations

70 Location-Based Information Systems

FIGURE 6.2: 2D circular lateration.

√
(X1 − x)2 + (Y1 − y)2 = r1√
(X2 − x)2 + (Y2 − y)2 = r2√
(X3 − x)2 + (Y3 − y)2 = r3

(6.1)

and solving the system for (x, y). After some math manipulations, the same
system can be rewritten in matrix form as follows:

2×
[
X3 −X1 Y3 − Y1

X3 −X2 Y3 − Y2

] [
x
y

]
=
[

(r21 − r23)− (X2
1 −X2

3)− (Y 2
1 − Y 2

3)
(r22 − r23)− (X2

2 −X2
3)− (Y 2

2 − Y 2
3)

]
(6.2)

Extending this method to a three-dimensional space involves including the
third axis in the equations, as follows:√

(X1 − x)2 + (Y1 − y)2 + (Z1 − z)2 = r1√
(X2 − x)2 + (Y2 − y)2 + (Z2 − z)2 = r2√
(X3 − x)2 + (Y3 − y)2 + (Z3 − z)2 = r3

(6.3)

In the case of the GPS system, ri is the distance between the GPS receiver
and satellite i, (Xi, Yi, Zi) is satellite’s i position coordinates, which can be
calculated from the ephemerides, and (x, y, z) is the unknown position of the
user. Therefore, in its simplest form, finding the position of the GPS receiver
in a three-dimensional space consists of finding the distance between the GPS
receiver and the satellites and solving the system of Equations in 6.3.

The problem with this method is in the calculation of the distance between
the GPS receiver and the satellites. This distance is calculated by measuring
the time it takes the satellite signal to reach the receiver and multiplying
that time by the speed of light. The satellite navigation message contains
clock information that can be used by the GPS receiver to know exactly
the time at which the message was sent. The word exactly comes from the
fact that the satellites are equipped with very precise atomic clocks to set

Obtaining the User’s Position 71

these time stamps. However, in order to make GPS receivers affordable to
common users, they are not equipped with such precise clocks, and the time at
which the navigation message is received is measured using the GPS receiver’s
clock. Unfortunately, these two clocks are not synchronized and thus errors are
introduced in the distance estimation. Further, given the high speed of light,
small clock shifts can introduce large errors in the estimation. For example, a
1 µs clock shift introduces an error of 300 meters in the distance calculation.

In order to eliminate the error introduced by the lack of clock synchro-
nization between the satellites and the GPS receiver, this error is included as
an additional unknown variable in the system of equations. Now, the system
calculates a pseudo range p, which is equal to the real distance r plus an error
given by cδt, where c is the speed of light and δt is the time offset between the
receiver’s clock and the GPS system time. With four unknown variables, four
equations are needed to solve the problem; therefore, a fourth measurement
from a fourth satellite is included. This is the reason why four satellites is
the minimum number of anchors needed by a GPS receiver to calculate its
position in a three-dimensional space without synchronized clocks, or better
said, with GPS receivers equipped with inexpensive clocks. Therefore, the new
system of equations is as follows:√

(X1 − x)2 + (Y1 − y)2 + (Z1 − z)2 + cδt = p1√
(X2 − x)2 + (Y2 − y)2 + (Z2 − z)2 + cδt = p2√
(X3 − x)2 + (Y3 − y)2 + (Z3 − z)2 + cδt = p3√
(X4 − x)2 + (Y4 − y)2 + (Z4 − z)2 + cδt = p4

(6.4)

This system of non-linear equations can be solved by an iterative approxi-
mation process of least squares using Taylor series to convert the non-linear
equations into a system of linear ones. The mathematical procedure used
here to calculate the user position with errors follows the approach presented
in [55]. Other approaches can be found in [32, 37, 35].

The iterative method calculates estimated pseudo ranges p̂i as follows:√
(X1 − x̂)2 + (Y1 − ŷ)2 + (Z1 − ẑ)2 + cδ̂t = p̂1√
(X2 − x̂)2 + (Y2 − ŷ)2 + (Z2 − ẑ)2 + cδ̂t = p̂2√
(X3 − x̂)2 + (Y3 − ŷ)2 + (Z3 − ẑ)2 + cδ̂t = p̂3√
(X4 − x̂)2 + (Y4 − ŷ)2 + (Z4 − ẑ)2 + cδ̂t = p̂4

(6.5)

Then, it calculates the difference between the estimated pseudo ranges and
the exact ranges, and the following equations are obtained:

(ax1 −∆X)2 + (ay1 −∆Y)2 + (az1 −∆Z)2 − c∆t = p̂1 − p1

(ax2 −∆X)2 + (ay2 −∆Y)2 + (az2 −∆Z)2 − c∆t = p̂2 − p2

(ax3 −∆X)2 + (ay3 −∆Y)2 + (az3 −∆Z)2 − c∆t = p̂3 − p3

(ax4 −∆X)2 + (ay4 −∆Y)2 + (az4 −∆Z)2 − c∆t = p̂4 − p4

(6.6)

where

72 Location-Based Information Systems

axi = Xi−x̂
r̂i

ayi = Yi−ŷ
r̂i

azi = Zi−ẑ
r̂i

(6.7)

and

r̂i =
√

(Xi − x̂)2 + (Yi − ŷ)2 + (Zi − ẑ)2 (6.8)

for i = 1, 2, 3, 4, which results in a systems of equations of the form:
p̂1 − p1

p̂2 − p2

p̂3 − p3

p̂4 − p4

 =


ax1 ay1 az1 −c
ax2 ay2 az2 −c
ax3 ay3 az3 −c
ax4 ay4 az4 −c

×


∆x
∆y
∆z
∆t

 (6.9)

which can be solved for ∆x, ∆y, ∆z, and ∆t. Finally, the new position consid-
ering errors is calculated using Equations 6.10 and the procedure is repeated
until the desired precision is obtained.

x = x̂+ ∆x
y = ŷ + ∆y
z = ẑ + ∆z
δt = δ̂t+ ∆t

(6.10)

Since the lateration method relies on distance estimates to the anchors, in
order for the method to provide good accuracy, it is desirable to have non-
collinear anchors. In other words, if the anchors are very close to one another
and far from the user’s location, it will be necessary to have very precise
estimates of the distances for the trilateration method to give good results
since the range measurements will yield almost equal values. In this case,
the equations are not linearly independent anymore and the combination of
satellites cannot be used to calculate the GPS receiver’s position. This effect,
which is known as Dilution of Precision (DOP), is also calculated by the
GPS receiver in order to select the most appropriate satellites. The method
followed by the GPS receiver to calculate the DOP is very similar to the
one just explained for the calculation of the position. The details of these
calculations can be found in [32]. In general, when the satellites are close to
one another, the geometry is said to be weak and the DOP calculations result
in a high value. On the other hand, when the satellites are far apart, the
geometry is strong and the calculations provide a low DOP value. Therefore,
geometries with lower DOP values are better to calculate the GPS receiver’s
position.

Obtaining the User’s Position 73

6.3 The GSM Cellular Network

Cellular networks are an essential component in LBIS. As shown in Fig-
ure 1.4, cellular networks play an important role in the architecture of our
LBIS tracking system example, as they are used as a transport network con-
necting the end user to the Internet an vice versa. In addition, cellular net-
works can also play an important role in the estimation of the user’s position.
For these two reasons, this chapter briefly explains cellular networks using the
Global System for Mobile communications (GSM) network as an example,
and some of the most important mechanisms to estimate the user’s position.

Figure 6.3 depicts the main building blocks of the GSM cellular network
architecture. On the left side, there is the Radio Subsystem (RSS), which
includes the Base Station Controller (BSC), the Base Transceiver Station
(BTS), and the mobile users or Mobile Stations (MS). Each BTS consists of
what is commonly known as a cell, and they provide the radio access interface
to the MS located within the area of coverage of each particular cell. The
BSC is a device that manages a group of BTSs and provides connectivity
to those users who are roaming from one of its cells to another. The MS or
cellular phone, consists of hardware and software and the Subscriber Identity
Module (SIM) that contains all the information related to the user and the
GSM services subscribed.

The second part of the architecture is the Network and Switching Sub-
system (NSS), which consists of Mobile Services Switching Centers (MSC),
the Gateway MSC (GMSC), the Home Location Register (HLR), and the
Visitor Location Register (VLR). The MSC controls a group of BSCs in a
geographical region; they build the backbone of the GSM network. A MSC
sets up connections between the BSCs under its control and handles those
connections that require the participation of BSCs outside its geographical
region. The GMSC, as it name implies, is a gateway that connects the GSM
network to other communication networks, such as the Public Switched Tele-
phone Network (PSTN). The HLR is the database of the GSM system that
contains all user information, such as the MS number, subscribed services,
current location area, current MSC and VLR, and others. This information
is needed in order to localize a MS in the entire GSM network. The VLR is
a data base associated with each MSC that stores information of those users
who are being served by that particular MSC.

This particular architecture only provides channels for voice connections
as the network is not connected to any other data-oriented network. In order
to satisfy this requirement, GSM networks have been modified to offer data
connections through the General Packet Radio Service (GPRS). The GSM
network architecture, including the GPRS service is depicted in Figure 6.4.
As it can be seen, changes are included in the NSS with the introduction
of the Serving GPRS Support Node (SGSN) module, the Gateway GPRS

74 Location-Based Information Systems

FIGURE 6.3: The GSM cellular network architecture.

Support Node (GGSN) and the HLR/GR database that now also contains
the GPRS register (GR). As it can be seen, the BSCs direct voice calls to
the appropriate MSC so the calls follow the voice path and data calls to the
appropriate SGSN module so that they follow the data path. The mobile
device of our LBIS tracking system sends GPS fixes to the system server in
real time using the data path of the cellular network, or the GPRS service in
the case of a GSM-based network.

In addition to voice and data transport services, cellular networks also
utilize positioning technologies to know the whereabouts of the mobile users.
These cellular positioning mechanisms are described next.

6.3.1 Cell Identification or Cell ID

The Cell ID is the simplest localization method available in cellular net-
works. The HLR contains enough information to locate a mobile user in the
GSM network, such as the location area and MSC, and therefore the BSC
and final BTS serving the user. As a result, a query to the cellular network
looking for the location of a particular user using the Cell ID method returns
the position of the BTS.

The accuracy of the Cell ID method therefore depends on the known range
of the particular BTS serving the user at the time of the query. It can range
from a few hundred meters in urban areas to several kilometers in rural ar-

Obtaining the User’s Position 75

FIGURE 6.4: The GPRS cellular network architecture.

eas. This method, although fast and useful for some applications, is not very
accurate for the type of applications considered in this book.

6.3.2 Enhanced Cell Identification

The accuracy of the Cell ID method can be easily enhanced if the BTS
measures the time it takes a message to reach the user and come back, or the
round trip time (RTT). The round trip time can then be used to estimate the
distance at which the mobile user is from the BTS.

6.3.3 Enhanced Observed Time Difference (E-OTD)

This method is based on the broadcast of signals that that are periodically
generated by the BTSs and the constant monitoring of those signals performed
by the mobile stations. Upon receiving signals from enough BTSs, the mobile
terminal uses lateration to discover its position. This is, therefore, a terminal-
based positioning mechanism.

6.3.4 Uplink-Time Difference of Arrival (U-TDoA)

The Uplink-Time Difference of Arrival method is similar to the E-OTD
but more complicated because the calculations are performed by the BTSs

76 Location-Based Information Systems

based on signals transmitted by the mobile station. The main problem with
this method is that the mobile station does not transmit any signals while
in idle; therefore, the network has to 1) wait for the mobile station to begin
a transmission, i.e., a phone call, or 2) generate some signals that will make
the mobile station to respond. Even if the mobile station is in transmission
mode, the other problem is that only one BTS, the serving one, is capable of
listening to this particular mobile station. In order to support this method,
the network provider includes several Location Measurement Units (LMU) to
compile measurements from the mobile station and surrounding BTSs and
perform the calculations.

In reality, the U-TDoA and E-OTD methods are more complicated than
they look. LMUs need to make time offsets measurements between the BTSs
and mobile stations, and apply hyperbolic lateration techniques. Providing
more details about these two methods is out of the scope of this book. The
interested reader can find more information in [37].

6.3.5 Assisted GPS (A-GPS)

Contrary to E-OTD and U-TDoA, Assisted GPS is easier and cheaper
to implement in a GSM network. A-GPS is a combined solution whereby a
GPS-enabled mobile station and the cellular network collaborate to find the
user’s position. This collaboration translates into an improved accuracy over
the GPS system alone, better indoor coverage, shorter time to first fix, and
less power consumption at the receiver, all of them critical aspects in LBS
applications like the tracking application being used as an example in this
book.

The A-GPS method relies on assistant servers located in several parts of
the GSM network. The assistance provided by these servers is of two types. Ei-
ther the server provides information that the mobile station needs to perform
the calculations, or the server performs the calculations using information pro-
vided by the mobile station. In the former case, the server provides the mobile
station with information that the mobile station cannot obtain, such as the
almanac of the GPS satellites, more accurate clock information, and accurate
coordinates of the server or BTS. All this information can be used by the
mobile station to calculate its position, calculate it faster, and improve the
accuracy of the calculation. For example, almanac information allows the MS
to lock to the GPS satellites faster, reducing the TTFF. In the later case, the
server receives partial information from the MS and uses its computational
power and good satellite signals to compute the position on behalf of the MS.

Obtaining the User’s Position 77

6.4 Indoor Positioning Systems

Cellular phones using the GPS system rely on the good reception of the
radio signals from the GPS satellites. This is particularly challenging in indoor
environments where the satellite signals, because of obstructions, are of very
poor quality, if received at all. Under these conditions, some GPS-enabled
cellular phones might not be able to calculate their position. Although indoor
positioning systems have been designed to fill this gap, the integration and
collaboration between outdoor and indoor positioning systems so that the
mobile station can determine its position at any time in any place, is still an
active area of research.

This section briefly lists the most commonly known indoor positioning
systems and techniques. Then, it briefly describes Skyhook’s hybrid position-
ing system (XPS) as an example of a successful positioning system that may
seamlessly work in indoor and outdoor environments. Systems like Skyhook’s
complement the GPS system and provide an entire positioning solution for
LBS applications.

6.4.1 Indoor Positioning Techniques

Indoor positioning systems came about to solve the problem of weak GPS
signals and innacurate cellular positioning methods inside buildings. Although
many LBS applications have been designed for outside environments, there are
many applications that are confined within buildings, such as finding employ-
ees in large corporation buildings, inventories in warehouses and supermarkets,
security applications, and others. Among the most important indoor solutions
are those based on wireless local area networks (WLANs), fingerprinting, ul-
trasound, and RFIDs.

WLANs indoor systems utilize 802.11 WLAN access points as reference
points for localization. Access points transmit periodic beacon signals that
can be used by a mobile station to identify the access point with the best
signal quality, its location, and the distance from it. This information can
be used to calculate the position of the mobile device with different degrees
of accuracy. In proximity sensing, the mobile device adopts the position
of the closest access point as its position. This is a very simple indoor po-
sitioning system but suffers from accuracy problems, in particular for those
applications that require precise location information, such as security and
inventory. WLAN access points may cover an area of approximately 100 me-
ters. Proximity sensing is based on the cellular identification idea described
in Section 6.3.1.

Another WLAN solution is based on lateration, similar to outdoor po-
sitioning systems but using WLANs access points instead of BTSs. Mobile
devices can estimate their distances from the access points using the received

78 Location-Based Information Systems

signal strength of the beacons and apply lateration techniques, like the one
described in Section 6.2.2.

Fingerprinting is another solution to the indoor localization problem.
It is based on off-line measurements of the received signal strength in very
specific reference points within the space of interest. These measurements and
reference points are saved in a local database and utilized by the system to
find the location of the mobile device. The calculation of the position can be
done in the mobile device, in the server, or in the server but assisted by the
mobile device [37].

Ultrasound-based systems have also been utilized in indoor environ-
ments. These systems utilize radio frequency (RF) and ultrasound signals to
estimate the distance between a reference device and the mobile node. This
is based on the fact that ultrasound signals travel at a very different speed
than RF signals (approximately 1,243 Km/h versus 300,000 Km/s). Reference
devices installed in specific points in the area of interest transmit simultane-
ous RF beacons and ultrasound pulses periodically. Mobile devices equipped
with RF and ultrasound receivers estimate the distance of the mobile device
with respect to the reference device by time stamping the time at which each
signal is received. If you assume that the RF signal arrived at time t1 and
the ultrasound pulse arrived at time t2, with t2 > t1, using the concept of
the propagation delay of a signal, Equation 6.11 shows how to calculate the
distance between the reference device and the mobile node.

Pd(RF) = D
SoL

Pd(US) = D
SoS

t2 − t1 = Pd(US)− Pd(RF)

t2 − t1 = D(1
SoS −

1
SoL)

D = t2−t1
(1

SoS−
1

SoL)

(6.11)

where Pd(RF) is the propagation delay of the RF signal, Pd(US) is the prop-
agation delay of the ultrasound signal, SoL is the speed of light, SoS is the
speed of sound, and D is the distance between the devices.

One advantage of this system is that it eliminates the problem of clock
synchronization since it only uses the receiver’s clock. On the down side, al-
though ultrasound signals are able to go through walls and other obstacles,
they do not travel very far. One example of an ultrasound-based system is the
Cricket system developed by researchers at MIT [47].

There are many other indoor positioning systems. For example, the article
in [45] describes a positioning system that utilizes a mobile robot along with
RFID technology and Wi-Fi to track the location of items in a warehouse.
In [36], the MIT Cricket, Ekahau [3], Intel Place Lab [4], AeroScout [1], and
other indoor positioning systems are described in detail.

Obtaining the User’s Position 79

6.4.2 Skyhook’s Hybrid Positioning System (XPS)

XPS is a software-based positioning system that combines Wi-Fi access
points locations, GPS data, and cellular tower locations to provide 10-20 meter
accuracy positions in indoor and outdoor environments. XPS software consists
of two main components, the Mobile Location Client (MLC) and the XPS
Location Server. The MLC is a thin layer of software installed in the cellular
phone that lies between the applications running in the cellular phone and
the location service. Upon the application request, the MLC uses the signals
and location information of nearby Wi-Fi access points, cellular towers, and
the GPS system, and calculates the cellular phone’s position. In addition,
the MLC performs power management functions that optimize the amount of
energy needed to perform location estimations and the transmission of data to
the XPS Location Server. This autonomous model corresponds to the mobile-
based location provider architecture described in Section 1.2 and shown in
Figure 1.2.

The MLC can also off-load the calculation of the cellular phone’s position
on the XPS Location Server. Upon a location request from an application,
the MLC transmits the location information collected from the available po-
sitioning sources to the XPS Location Server where these data are processed.
Specialized algorithms and databases in the server combine this information
to provide fast and accurate positions to the mobile phones. This model cor-
responds to the location provider-based architecture described in Section 1.2
and shown in Figure 1.3, where Skyhook Wireless would play the role of the
location provider.

Skyhook Wireless possesses a massive databases of Wi-Fi access points and
cell towers and their real positions. Further, they have a procedure in place
to add access points to the database. As a reference, Apple’s iPhone and iPod
Touch utilize Skyhook’s positioning system. For more information about the
system, its coverage, security features, software, etc., the reader is referred
to the company’s Website at http://www.skyhookwireless.com/. Other
companies providing location data are Loc-Aid Technologies [5], Where [11],
Veriplace [10], Useful Networks [9], and TechnoCom [8].

6.5 The Location API 2.0

The Java ME Location API 1.0 (JSR 179) included the basic support
to obtain the position of the mobile device through the LocationProvider,
Criteria, and Location objects. The LocationProvider object, as its name
implies, is the provider of location data to the application. All interactions with
the underlying positioning technology are handled through this object. Since
there may be several positioning technology options through which a location

http://www.skyhookwireless.com/

80 Location-Based Information Systems

may be obtained, several location providers may exist. Criteria contains
the requirements of the application, such as the accuracy of the location,
if the speed and course of the mobile phone are also needed, and the like.
The cellular phone will return a LocationProvider that typically is able
to meet these criteria, or null if a LocationProvider meeting these criteria
does not exist. This process allows the mobile phone to return the “best”
positioning technology based on the applications needs. Finally, Location is
the object that contains the location data. The Location object contains
important information about the current location, including an encapsulated
QualifiedCoordinates class that contains information about the estimated
latitude, longitude, and altitude of the current position as well as estimated
horizontal and vertical accuracies associated with the calculated position. This
accuracy information is important, as it provides a mean to estimate how far
the calculated position is from the true geographic location of the device.
The Location object also includes information about the speed and course
of the mobile device, the time at which the position was calculated, and the
positioning method utilized in the calculation.

Listing 6.1 shows how to use these objects and the getLocation() method
to obtain the current location of the cellular phone using the Java ME location
API 1.0. The first part of the code sets the criteria needed by the application
and requests a LocationProvider. Once a LocationProvider is obtained,
the application can get information about the real-time location of the device
using the getLocation() method, which is shown in the second part of the
code.

1 try {
2 // Create a Criteria object to define desired selection criteria
3 Criteria cr = new Criteria () ;
4 cr . setHorizontalAccuracy (20) ; // Requests an estimated accuracy of 20

meters
5 cr . setSpeedAndCourseRequired (true) ; // Requests speed and course of

mobile device
6
7 // Requests a LocationProvider that meets these Criteria
8 LocationProvider lp = LocationProvider . getInstance (cr) ;
9 // Get the location , 60 seconds timeout

10 Location loc = lp . getLocation (60) ;
11 Coordinates coord = loc . getQualifiedCoordinates () ;
12 if (coord != null) {
13 // Include code that uses coordinates here
14 // ...
15 }
16 }
17 catch (LocationException e) {
18 // Could not retrieve location
19 }
20 catch (InterruptedException e) {
21 // Location retrieval interrupted
22 }

Listing 6.1: Obtaining the location.

The getLocation() function works well for applications that require lo-
cation information once. However, many location-based applications, such as

Obtaining the User’s Position 81

our real-time tracking application example, require a continuous knowledge
of the current location. For these applications, the LocationListener class
allows an application to obtain positioning data at a defined interval. As an
example, Listing 6.2 shows how to trigger the locationUpdate() method of
LocListener every 4 s.

As shown in the listing, the locationListener() method takes three pa-
rameters. The interval is the time between updates required (4 s in the
example). The timeout is the amount of time that the update is allowed to
be late, once the interval has elapsed. Therefore, an update is expected at
maximum every interval + timeout seconds. Finally, the maxAge value sets
how old the last location result can be in order to be used when a new loca-
tion request is made, which allows the implementation to reuse recent location
results. So, for example, a value of 0 implies that the implementation will cal-
culate new locations every time they are requested by the application and will
not reuse past location results.

1 public class LocListener implements LocationListener {
2
3 LocListener locListener = new LocListener () ;
4 int interval = 4 ; // Interval between location updates is 4 s
5 int timeout = 2 ; // Timeout after location request is 2 s
6 int maxAge = 2 ; // Maximum age allowed for a duplicate location value

to be returned is 2 s
7 lp . setLocationListener (locListener , interval , timeout , maxAge) ;
8 . . .
9 public void locationUpdated (LocationProvider provider , Location

location) {
10 // This code will be triggered with updated location data at the

defined interval
11 }
12 . . .
13 }

Listing 6.2: Obtaining the location at defined intervals.

On October 15, 2008, the final version of the Location API 2.0 was re-
leased. The specification was produced by the JSR 293 expert group, which
consisted of representatives from companies like IBM, Ericsson, Motorola, Re-
search in Motion, Nokia, Sony Ericsson, and others, telecommunication carries
like Sprint, SBC, Telecom Italia, Orange France, and China Mobile Commu-
nications, and the University of South Florida.

The JSR 293 improves the original JSR 179 Location API for the Java
ME specification and adds new features such as geocoding, mapping, naviga-
tion services, and landmark exchange, while maintaining backward application
compatibility. The new API consists of two major packages:

• javax.microedition.location: Contains the classes needed to re-
quest and obtain a location, such as Location, LocationProvider,
LocationListener, ProximityListener, GeographicArea, and the
like. This is the same package defined in JSR 179, but improved.

• javax.microedition.location.services: Contains the classes and in-

82 Location-Based Information Systems

terfaces related to location-based services, such as geocoding, maps, and
navigation. This is a completely new package.

6.5.1 Improvements from Version 1.0

This section describes some of the most important modifications included
in version 2.0 of the Java ME Location API.

6.5.1.1 Criteria and LocationProvider

Although the Criteria in version 1.0 was good in terms of hiding
the complexities of the different location technologies from the applica-
tion developer, the LocationProvider returned the “best” positioning tech-
nology available that met such criteria, which in some circumstances led
to ambiguous behaviors on different devices. For example, if the appli-
cation included conflicting values in the Criteria object such as setting
the PREFERRED POWER CONSUMPTION to LOW and the HORIZON-
TAL ACCURACY to 5 meters, the LocationProvider of one implementation
could give preference and choose A-GPS, while another implementation could
give higher priority to power consumption and choose Cell-ID. This ambiguity
put the burden on the application developer who needed to construct software
that handled a variety of cases on different devices based on the technology
type returned by that platform. This task was exacerbated by the large num-
ber of permutations of criterion settings compounded by new permutations for
different platforms and the increasing number of available positioning tech-
nologies on cellular phones, which defeated the desired simplicity of hiding
implementation details from the developer.

Version 2.0 of the Java ME Location API includes two solutions to this
problem. First, the Criteria object now supports priorities, from 1 to N,
for each criterion, with the lowest-numbered criterion (1) having the highest
priority. This reduces ambiguity since it allows the application developer to
clearly communicate to the device what criterion is the most important for
the application. Second, an array of prioritized location method constants,
or technology types defined in the Location object, can be used to spec-
ify the desired fallback order of positioning technologies to be used by the
LocationProvider. For example, a tracking application may wish to use GPS
as its preferred method and use cell signal-based positioning if GPS is not
available. Similarly, it can then use cell ID if cell signal-based positioning
is not available, and so forth. Listing 6.3 shows how to select this order of
positioning technologies.

1 int [] preferredLocationMethods = new int [3] ;
2 preferredLocationMethods [0] = MTE_SATELLITE ; // First preference of

positioning technology
3 preferredLocationMethods [1] = MTE_TIMEDIFFERENCE ; // Second preference
4 preferredLocationMethods [2] = MTE_CELLID ; // Third preference
5 LocationProvider lp = LocationProvider . getInstance (

preferredLocationMethods , parameters) ; // Get the LocationProvider

Obtaining the User’s Position 83

6 for given preferred location technologies

Listing 6.3: Setting the order of positioning technologies.

With this new feature application, developers can easily create their own
optimized application-specific positioning request sequences. This is a very
nice feature for those smart applications running on powerful devices equipped
with several wireless interfaces, as the application could switch positioning
technologies according to the user position, best networking technology avail-
able, and so forth.

6.5.1.2 ProximityListener

The ProximityListener included in version 1.0 also needed improvement
in several areas. First, when the ProximityListener was registered for a par-
ticular circular area, defined by a point and a radius, there was no method to
set or discover the periodic refresh rate used to check the real-time position of
the user against the registered position, or any other kind of communication
from the implementation, if the proximity was not detected. Instead, the ap-
plication had to wait until the implementation fired the proximityEvent()
method before taking action. Therefore, if the method did not fire when ex-
pected while testing on a real device, debugging the application was extremely
difficult. Causes for failure could vary from a momentarily dropped GPS sig-
nal, to a temporary loss in GPS accuracy, to a low refresh rate that could not
capture the devices entrance into the circular area prior to its exit. Secondly,
the ProximityListener lacked the ability to detect an exit from a particular
area, as it only allowed the detection of an entrance into the area. Lastly,
the only geographic shape supported by the ProximityListener was a circle,
represented by a point and a radius. There are many cases where the use of
a long rectangle area or an irregular polygon defined by multiple points is
desired.

Proximity detection has been greatly enhanced in version 2.0 of the
Java ME Location API. For example, an interval and timeout value can
be defined by the application when the ProximityEnterAndExitListener,
which has replaced the ProximityListener of version 1.0, is regis-
tered. Now, a new locationUpdated() method is called at a partic-
ular interval, so that the application can tell how frequently the de-
vice is checking proximity to the registered location. Further, the spec-
ification now supports the detection of departure from a specific area
through the same ProximityEnterAndExitListener. Finally, the new
specification allows the registration of different types of geographic ar-
eas, including CircularGeographicAreas, RectangleGeographicAreas, and
PolygonGeographicAreas. With this modification, any polygon that is rep-
resented in a server-side GIS database can now be directly transferred to
a mobile phone, constructed into a PolygonGeographicArea, and registered
with the ProximityEnterAndExitListener.

84 Location-Based Information Systems

6.5.1.3 Landmark and LandmarkStore

The Landmark and LandmarkStore also received an overhaul in version 2.0
to lend better support for future LBS applications. The Landmark now features
new fields such as author, identifier, and timestamp, and the LandmarkStore
has methods to search the store based on these properties. Wildcard searches
are also allowed. This expanded search ability should make it much easier for
applications to synchronize on-device landmarks with a database server and
keep track of record updates.

The new specification also supports a large on-device database that may
be accessed by multiple applications simultaneously. Further, it includes a
LandmarkStoreListener that can inform the application when the contents
of the LandmarkStore are modified by another thread or application. Pri-
vacy and security concerns are improved allowing LandmarkStores to be de-
clared as “private,” which can only be accessed by the application that created
the LandmarkStore. In contrast, in version 1.0, LandmarkStores were always
shared among all applications running on the device. Public LandmarkStores
are still allowed and encouraged in version 2.0 for publicly available landmark
datasets that can be shared among applications, such as a points-of-interest
database.

6.5.2 New Features

Version 2.0 also includes several completely new features that will sig-
nificantly accelerate software development for handsets as well as improve
interoperability between mobile devices and server-side systems. These fea-
tures provide basic location-aware services to third-party application develop-
ers that would otherwise have to manually code.

6.5.2.1 Landmark Exchange Formats

The “Landmark Exchange Formats” is a new feature, implemented in an
ExchangeFormatFactory, meant to improve the area of interoperability. In
version 1.0, Landmarks existed primarily inside a single device and were cre-
ated and accessed by the same single application. This approach made it dif-
ficult to share landmarks among other mobile phones or desktop applications,
or downloaded from Websites. In version 2.0, the ExchangeFormatFactory
supports multiple exchange formats that promote interaction between mobile
phones and with desktop or server applications. This ability allows users to
share favorite places via e-mail or text-messages and applications to share
landmarks via communication on specific ports.

6.5.2.2 Geocoding

Location API Version 2.0 provides three categories of services derived
from new ServiceProvider and ServiceListener superinterfaces: Geocod-

Obtaining the User’s Position 85

ing, Maps, and Navigation. Geocoding, or the translation of address informa-
tion into latitude and longitude, as well as reverse geocoding, or the transla-
tion of latitude and longitude information into an address, are both supported
through a GeocodingServiceProvider. This is a very important feature for
interactions with the user, since positioning technologies provide coordinate
information (i.e., “Latitude = 28.058425, Longitude = 82.416170”), which is
not meaningful to the end user, and users provide location information in the
form of an address (i.e., “4202 E. Fowler Ave. Tampa, FL 33620”), which
is not useful to software and positioning technologies. Geocoding and reverse
geocoding bridge the gap between the end user and the positioning technology
and enable fluid user interaction with applications.

6.5.2.3 Map User Interfaces

Another important new feature is the ability to display location informa-
tion in the form of a map. Version 2.0 features a MapServiceProvider that
allows software developers to rapidly build solutions that include rendering
map information, including landmarks and routes, to the mobile phone screen.
This feature has various levels of control. If the application simply wants to
show something on a map to the user, a single function call will hand over
control to the MapServiceProvider, which will then show the map to the
user in its default format.

If the application wants more control over what is rendered to the screen,
there is also an option to retrieve a BaseMap from the MapServiceProvider
and then render this information, along with various MapOverlays, to a
graphics object defined by the application. Through the manipulation of
MapOverlays, the application can add or remove certain related features on
a map, such as showing only restaurant or museum attractions to the user.

6.5.2.4 Navigation

Navigation is perhaps one of the most significant new features included
in version 2.0. It relates to the ability to easily add real-time guidance and
directions to any mobile application. The NavigationServiceProvider sup-
ports two primary modes of operation. If applications simply want to use
a turnkey navigation solution, it can make a simple call and allow the ser-
vice provider to take control of the user interface as well as application flow
to navigate to a particular location. For applications that want to handle
the navigation logic and have more control over the navigation process, the
NavigationServiceProvider can act as a route planner that returns a new
Route object that contains all the information an application needs to navi-
gate. Both methods allow the use of NavigationServicePreferences, which
can specify anything from a mode of transportation preference (including
walking and public transit), a desire to obtain the route with the least traffic,
certain geographic areas to avoid, and voice or text directions.

The Route object, which consists of RouteSegments, allows more queries,

86 Location-Based Information Systems

so that an application can determine whether it is suitable for its use, including
whether costs such as toll roads are involved, total travel time, and total
distance. If the application chooses to control the actual navigation process,
the RouteSegments contain the instructions as well as the locations where the
instructions should be given. These features allow application developers to
focus on creating a better navigation application instead of worrying about
the logistics of planning a route and getting the geographic data to the cellular
phone.

More details and example code about versions 1.0 and 2.0 of the Java ME
platform Location APIs can be found in [12, 13, 17].

6.6 Obtaining the User’s Position and the LBIS Tracking
System Example

This chapter is crucial for our LBIS tracking system example, and for
that matter, to any location-based application. These systems are all about
location. This chapter explains the different indoor and outdoor positioning
systems available and how the mobile station’s position can be determined.
At the end, the chapter describes the Java ME Location APIs 1.0 and 2.0,
of prime importance in the development of Java ME-based location-based
applications. Through the use of these APIs, the GPS-enabled clients of our
LBIS tracking system obtain their locations in real time. Chapter 8 includes
a complete example of 1) a MIDlet that uses the location API to obtain the
location of the mobile device and sends it to the server using the UDP protocol,
and 2) a server UDP-based application that receives the locations.

Chapter 7

Storing and Retrieving the Data: The
Database

7.1 Introduction

One of the key elements of any information system is the data and, more
specifically, how it is structured, stored, accessed, and maintained, in order to
offer a reliable, flexible, and fast service. The database management system
(DBMS) plays a key role in all these aspects.

In this chapter, a brief introduction about databases and DBMSs is given,
with an emphasis on the fundamental elements of relational databases. The
basic commands of the Structured Query Language (SQL) to define, manip-
ulate, and query the database are also described using Postgres 8.3’s DBMS
as an example. In addition, the chapter briefly explains on how to work with
geographical information using PostGIS, Postgres’ extension for managing
geographic elements.

7.2 Background

Databases have been around since computer systems started to manage
large amounts of data. Initial applications, most of them related to “deductive
question-answering systems” [26], had very application-dependent data banks,
tailored to work for specific programs and with not many reusable elements.
This fact halted standardization for many years.

In general, a database is an integrated collection of logically related records.
Some initial database approaches focused on the optimal physical representa-
tion of the data, using tree-like data structures or networks of data, which had
the drawback that, sometimes, users had to navigate through a large portion
of the dataset to obtain the desired information. It was not until the work of
Edgar Codd [26] that the use of tables and the foundations for a very effi-
cient way to search and retrieve data from the database were proposed. This

87

88 Location-Based Information Systems

database model, called the relational model, is still the most commonly used
scheme to build databases.

However, it is important to notice that the definition of databases goes
beyond the mere storage of data. Databases involve different layers that create
and separate the user from the complex representation of the data in the actual
storage hardware in order to work at a higher level of abstraction. This is the
concept of a Database Management Systems (DBMS), defined as the set of
applications and data that allows the definition, implementation, access, and
maintenance of the data in a database.

More formally, a DBMS is the union of subsystems that support all the
functionalities related to the administration and usage of a database. A DBMS
usually consists of the following core elements [52]:

• The “hard” database: The set of files or data structures that contain
the data. This element deals with the internal data structure and the
physical representation of the data in the database.

• The model: The definition of the structure and nature of the data
to be stored in the system. There are different models for designing
databases: networks, relational, object-oriented, etc. As mentioned be-
fore, this chapter focuses on the relational model.

• The database engine: All the programs that have direct access to
manipulate the database. This element executes all the operations re-
quested by the users and also maintains the physical structure of the
database in optimal conditions in order to guarantee the integrity of the
data and the rapid access to it.

• The data definition and manipulation languages: The program-
ming languages that provide the communication channel between the
user and the database engine to implement the database model and have
access to the stored data. This chapter focuses on the SQL language,
including its sub-languages, the Data Definition Language (DDL) and
Data Manipulation Language (DML).

• The data administration system: The group of applications that
allow the database manager to control the accessibility, security, backup,
and all administrative operations that a DBMS needs in order to provide
an effective service to its users.

• The user application program: The interface that facilitates all the
operations that the user can perform via “wizards,” menus, automated
tasks, visual representation of the data or models, etc.

Database management systems offer a robust solution for storing and re-
trieving large amounts of data in a very efficient way. Databases differentiate
from data storage in plain files in several key aspects. For example, files alone

Storing and Retrieving the Data: The Database 89

neither structure the data being stored in any way nor guarantee relationships
across files, leaving the door open for data inconsistency, duplication of data,
etc. Also, most of the major DBMS platforms, offer far more ways to access
and protect the data from unauthorized users.

7.2.1 Design of the LBIS Tracking System Database

The design of a database depends exclusively on the requirements of the
information system being implemented. These requirements define the nature
and use of the stored data and their relationships. The design of the database
for our LBIS tracking system example will be general enough to cover the
basic requirements of a system that stores geographical tracking data from a
group of users. Next, a more detailed description of the scenario:

• There is a group of users that will be geographically tracked via GPS-
enabled mobile devices.

• Each user corresponds to a single individual. Each mobile device is also
unique.

• The system must maintain basic information about the users: name,
address, date of birth, social security number, and identification number.

• The system must maintain basic information about the devices: serial
number, model, manufacturer, and year.

• The devices are not used exclusively by a single user.

• The period of time in which a user is being tracked is not predefined or
slotted, and its duration is variable.

• The tracking data must include the different positions and the time of
occurrences associated to a user and the device used.

This description is enough to define a database structure that models this
scenario. First, it is evident that the lists of users and devices are not the
same because a device can be used by different users; however, a single device
can be used only by one user in a certain instant of time. The period of time
in which a user makes exclusive use of a device will be defined as a shift.
Second, based on the specifications, it can be concluded that the shifts do
not have a constant length of time, so the initial and final dates and times
must be registered. If a user changes devices, it will be considered a different
shift for the user. Finally, it is clear that a single user cannot be doing two
simultaneous shifts with the same device, but a single user may be carrying
more than one device at the same time; however, there will be an individual
shift per each device being used by the user.

The next section introduces the basic elements of a relational database and
builds the database that models the example scenario, based on the previous
requirements.

90 Location-Based Information Systems

7.2.2 Structure of a Relational Database

Relational databases are the most commonly used databases nowadays.
This term was defined for the first time in 1970 by Edgar Codd [26], who
worked at IBM. The idea behind the design of relational databases is that all
data with related parameters are grouped together. In addition, it considers
that data in different groups can be related, and a relationship between groups
can be established based on shared common parameters.

The following list includes the main elements of a typical relational
database, contextualized with the terms used in the SQL language, which
will be introduced later:

• Table.

• Column.

• Row or Register.

• Key and Foreign Key.

• View or Query.

A table is the structure that models and stores the data in the database.
Ideally, each table contains related data, such as information about users, or
information about the devices, and so on. A database can have as many tables
as needed.

The data stored in a table usually have more that one dimension, or do-
mains. Each domain is related to a specific piece of the data. For example, a
user has several different pieces of information, such as name, date of birth,
address, etc. Each one of these is a domain in the definition of an individ-
ual and has different data types. For example, the name and the address are
strings of characters, and the birth date is a date with a defined format. A
domain is commonly known as a column, making reference to a table repre-
sentation of the data, as seen in Figure 7.1. The order of the columns on the
table is very important in order to determine the meaning of that parameter
in the definition of the individuals.

Another aspect of the columns is that, in order to define accurately each
of the fields of the columns, constraints can be added to guarantee logically
correct values within certain boundaries. For example, the gender of a person
can only be male or female; any other value is not valid.

Once the columns of a table have been defined, the individual instances of
information of this type that are stored in the table are called the rows of the
table. For example, the information related to each individual in the system
is contained in a single row in the users’ table. A table can have as many rows
as necessary in order to keep all the instances of information of that type.
Each one of the rows must be unique in order to guarantee congruence on the
database. For example, if a user is registered twice in the table, it is possible

Storing and Retrieving the Data: The Database 91

FIGURE 7.1: Rows and columns of the users’ table.

that the shifts be assigned to one or the other row without distinction, losing
consistency on the information.

Once the data are stored, a database must guarantee that each row can
be accessed directly, without inconsistencies. For example, using the name of
a person is not enough to identify the person in a unique way, or else imagine
looking for a “John Smith” in the social security database. Each table must
have a primary key , which is the minimal set of columns that allow the unique
identification of each row. In the case of the social security database, the social
security number would be the primary key given that each number belongs to
one individual only. In some cases, more than one column might be necessary.
For example, in order to identify a certain shift in our example database,
you would need the identifier of the person, the device’s serial number, and
the date in which the shift started. None of these three columns alone would
determine a unique shift, which turns these columns into the primary key of
the shift table.

Despite the fact that in many cases a natural selection for a person’s
primary key would be the social security number, the use of this number for
identification in a non-governmental database is a very critical topic for many
people due to privacy concerns. If this number must be stored in the database,
a recommended solution to avoid the access of this number is to create another
unique valid identifier only for the specific application. For example, the unique
identifier number that students have in a university database does not reveal
their private information and the number is meaningless outside the context
of the university.

All possible combinations of columns that identify, in a unique manner, a
single row is called a candidate key. Just one of the candidates is selected to
be the primary key, but the other candidates can also be used for querying
information. For this example, if a user has both a unique company identifier

92 Location-Based Information Systems

and a social security number in the database, and the first one is the primary
key, the social security number is a candidate key because it will produce a
unique row if queried.

In some cases, a table needs to make cross-references to elements that exist
in the same table or in other tables. For example, each shift requires the def-
inition of the user working in that shift, which must be unique because each
shift makes reference to a single person. In that case, the shift table must
include all the columns that identify a person and a device in a unique man-
ner, in other words, the person’s identifier. The set of columns that contains
the primary key of an element in another table is called a foreign key . It is
important to mention that a foreign key cannot replace the primary key of the
table because a foreign key is not necessarily unique in the table in which it is
being used as a reference. For example, a person can perform many shifts, so
a single one cannot be determined by the sole person’s identifier, so it would
violate the uniqueness requirement of a primary key.

The benefit of using a foreign key is that it avoids the repetition of data
among tables. For example, the row with the information of a person may in-
clude a lot of information that is not relevant to the shifts table. If somebody’s
personal information is needed, it is enough to have the person’s identifier to
retrieve it. In addition, the foreign key controls congruence of the data. If the
name of a person is stored in different tables, a misspelled name one time
would make the registers different. Furthermore, if a person changes his or
her name, this modification would need to be updated in every single table,
making the administration of the system more cumbersome.

The process of updating a foreign key includes several options, which de-
pend on the relationship between the key and the row where it is referenced.
For instance, if a device is removed from the devices’ table, do all the shifts re-
lated to that device need to be deleted as well? What about the tracking data
if the device and shifts are deleted? The Data Definition Language (DDL)
(more on this later) provides the following options when the foreign key of a
table is updated or deleted:

• RESTRICT: Avoids the elimination of the row if it is an active foreign
key.

• NO ACTION: Throws an error when it finds the cross-reference.

• CASCADE: Delete the original row and the one in which the foreign
key is referenced.

• SET NULL: Changes the value of the foreign key to NULL in the row
where the foreign key is referenced.

• SET DEFAULT: Changes the value of the foreign key to the DEFAULT
value.

In the case of the last two options, the operation will not succeed if the
foreign key does not support the value NULL or the default value, respectively.

Storing and Retrieving the Data: The Database 93

Usually, when a user consults the database, not all columns of the table
are required to answer the question. This subset of data from a table is called
a query or a view . A single query may involve more than one table if the data
for the desired view is spread across different tables, for example, the name
of the persons, the serial numbers, and makers of all the devices that were
used on shifts during the month of August. In this example, the name of the
person is only in the users’ table, and the maker of the devices is only in the
devices’ table.

Queries are definitely one of the most common operations over a database
because they allow access to the stored data. The result of a query can be
defined as a “virtual table” or view of the data, which shows only part of the
total data stored in the tables, the data that satisfies a very specific need of
information. More details about queries are included in the following section
where the SQL language is introduced.

7.2.3 The Structure Query Language (SQL)

The Structured Query Language is the language for working with relational
databases. This language was created in 1974 by Donald D. Chamberlin and
Raymond Boyce [25] while working at IBM. The original name was SEQUEL
(Structured English Query Language) and was created to provide a stan-
dard language for operations in relational databases. The complete language
is formed by three sub-languages:

• SQL: Used for the definition of queries.

• Data Manipulation Language (DML): Allows the addition, modi-
fication, and deletion of data in the tables.

• Data Definition Language (DDL): Allows the creation, modifica-
tion, and deletion of the tables.

The illustration of the different functionalities of the languages will be
shown in the context of the database for the LBIS tracking system example
and the functionality of the previously defined scenario. The structure of the
database is shown in Figure 7.2. Depending on the system and the require-
ments of the problem to solve, more information can be included, or part
of the example can be modified to match your own system. The intention is
to provide a general structure that could be adapted to a wide spectrum of
applications. All the scripts used in this chapter are valid for Postgres 8.3.

7.2.3.1 Data Definition Language (DDL)

The first step in the creation of a database is to define the structure of
the information, which is the definition of the structure of the tables. This
design depends entirely on the particular needs of the information system
being developed. Listing 7.1 shows the script that creates the basic structure

94 Location-Based Information Systems

FIGURE 7.2: Design of the database of our LBIS tracking system example.

of a table that holds information about the users: unique identifier, social
security number, full name (first, middle, and last name), date of birth, and
full address.

1 CREATE TABLE users (
2 id INTEGER ,
3 ssn INTEGER ,
4 first_name VARCHAR (20)
5 CONSTRAINT first_name_not_null NOT NULL ,
6 mid_name VARCHAR (20) ,
7 last_name VARCHAR (20)
8 CONSTRAINT last_name_not_null NOT NULL ,
9 birth_date DATE ,

10 address VARCHAR (50)
11 CONSTRAINT address_not_null NOT NULL ,
12 city VARCHAR (20) DEFAULT ’ TAMPA ’
13 CONSTRAINT city_not_null NOT NULL ,
14 zipcode bigint DEFAULT 33620
15 CONSTRAINT zip_not_null NOT NULL ,
16 state VARCHAR (2) DEFAULT ’FL ’
17 CONSTRAINT state_not_null NOT NULL
18 CONSTRAINT state_check
19 CHECK (state IN (’FL ’ , ’GA ’ , ’AL ’)) ,
20 CONSTRAINT users_pk
21 PRIMARY KEY (id) ,
22 CONSTRAINT user_city_fk
23 FOREIGN KEY (city , zipcode , state)
24 REFERENCES cities_table (city , zipcode , state)
25 ON UPDATE CASCADE ON DELETE SET DEFAULT
26) TABLESPACE pg_default ;

Listing 7.1: Structure of the users’ table.

Storing and Retrieving the Data: The Database 95

Notice that the enumeration of the fields is not enough to define a person’s
row or register. This is because there are some constraints given by the nature
of the data being stored. For example, most of the data needed cannot be
null, like the first and last name of the person, or the name of the city, state,
and zip code where the person was born. These last three fields are especially
important because they are a foreign key for the cities table, where these
three items will be checked against to avoid a false statement. In addition, the
table includes the restriction that the only valid states in a user’s address are
Florida, Georgia, and Alabama. The last line has the following dual effect. If a
new user is being included in the database, upon the submission of the infor-
mation, the ON UPDATE CASCADE part of the code goes to the cities table
table and checks whether the city, zip code, and state included in the submit-
ted information are valid, i.e., are included in the cities table, which it is
assumed to be completely populated. If one or more of these three fields are
deleted from the cities table, the ON DELETE SET DEFAULT part of the code
replaces those fields in the users table with the default information, which is
“Tampa,” “FL,” and “33620.”

The primary key of the users table is the id column, which is defined as an
INTEGER data type. The value of this column contains a unique identification
number for the user. This column is included based on the comment made in
Section 7.2.2 about the privacy issue of using the social security number of a
person in a database. Now, in order to avoid a manual assignment of this num-
ber and the extra work of looking for an unused number, it is recommended
to assign that task to the database, which it can do automatically.

There are different ways to automatically assign unique numbers using the
database. For example, Postgres includes a data type called SERIAL, which
performs this mission. However, given that it is not an standard data type,
it may bring compatibility problems if the database is changed to other plat-
forms. In that case, the best way to do it is to use a SEQUENCE element, which
performs a similar function and it is supported by all mayor database engines.
The following script, Listing 7.2, shows how to create a sequence of unique
numbers in Postgres.

1 CREATE SEQUENCE user_seq
2 INCREMENT 1
3 MINVALUE 0
4 MAXVALUE 9223372036854775807
5 START 1
6 CACHE 1 ;
7 ALTER TABLE user_seq OWNER TO postgres ;

Listing 7.2: Creating unique sequence numbers in Postgres.

The script is very simple. It says that the sequence will start with the
number 1, and will be incremented by 1 each time. The maximum value is a
BIGINT. The CACHE parameter defines the number of values that the database
will calculate a priori and will be ready for assignment. This accelerates the
data insertion process. Another option not used in this example is CYCLE,

96 Location-Based Information Systems

which start the sequence again once the maximum or the minimum value is
reached, depending on the direction of the increment. If the CYCLE option is
not selected and the sequence reaches the final possible value, the database
generates an error.

The next value of a sequence is obtained using the nextval(’user seq’)
function. Every time this function is used, the database returns the next value
of the sequence, and the value of the sequence is modified, being either in-
creased or decreased, depending on the sign of the increment.

Now let us assume that the table needs to be changed. The following
examples illustrate the syntax of the functions available to modify an existing
table:

• Add a column: Some users have a suffix on their name (Jr., II, etc.).

ALTER TABLE users

ADD suffix VARCHAR(5);

• Change data type: There are some users whose last name is longer
than 20 characters.

ALTER TABLE users

ALTER last_name TYPE VARCHAR(30);

• Add a new constraint: The date of birth should be greater than June
1950.

ALTER TABLE users

ADD CONSTRAINT date_constraint

CHECK (birth_date > ’1950-06-30’);

• Delete constraint: The constraint on the states for the birthplace is
not required anymore.

ALTER TABLE users

DROP CONSTRAINT state_check;

• Delete a column: Middle name column is not needed.

ALTER TABLE users

DROP COLUMN mid_name;

Finally, when a table is no longer necessary, it can be removed using the
DROP TABLE users; command, which in this case deletes the users’ table.

If a table to be deleted is being referenced by foreign key constraints, then
the word CASCADE needs to be included in the script in order to tell Postgres
that all the foreign key constraints must be dropped as well, such as in the
case of the command DROP TABLE cities table CASCADE;.

Storing and Retrieving the Data: The Database 97

7.2.3.2 Data Manipulation Language (DML)

Once the tables are created, the next step is to insert data in them. List-
ing 7.3 shows the SQL script to do just that.

1 INSERT INTO users
2 (id , ssn , first_name , last_name ,
3 suffix , birth_date , address , city , zipcode ,
4 state)
5 VALUES (nextval (’ user_seq ’) , 123456789 , ’ John ’ , ’ Smith ’ ,
6 NULL , ’ 1980 -01 -01 ’ , ’ 12345 W 1 st . ’ , ’ Orlando ’ , 32830 ,
7 DEFAULT) ;

Listing 7.3: Populating the database.

Notice that the identifier of the user is automatically generated by Postgres
using the nextval function. In addition, this person does not have a suffix, so
that field has no data. In that case, the reserved word NULL is used to represent
a void field. Remember that the NULL cannot be inserted on those columns
with a NOT NULL constraint. Also, note that the state where the person was
born is defined as a default value, which is Florida, by using the DEFAULT
reserved word.

The DML also allows for the modification of data already in a table, as
shown in Listing 7.4. The following example updates the data of the register
just inserted in the table, which now includes a suffix on the name and modifies
the name of the city of birth.

1 UPDATE users u
2 SET u . suffix = ’Jr . ’ , u . city = ’ Tampa ’
3 WHERE u . id = 321 ;

Listing 7.4: Modifying data.

In the previous script, the user had to provide the data to be included in
the record. However, it is possible that the data already existed somewhere
else in the database. In this case, it can be retrieved from another table and
included in the updated register. The following example (Listing 7.5) updates
the user identifier of a person in a certain shift. The identifier of the new user
is obtained based on the social security number of the person, which is stored
on the users’ table.

1 UPDATE shifts s
2 SET s . user_id =
3 (SELECT u . id FROM users u
4 WHERE u . ssn = 123456789)
5 WHERE s . shift_id = 9001;

Listing 7.5: Querying and modifying data.

In previous examples, just one record was affected because the WHERE state-
ment returns a single register. However, it is possible to modify more than one
record. Let us assume that each user is assigned to a certain office location of

98 Location-Based Information Systems

the company, and that there is a certain device that is used exclusively by the
people in that office. All the people who have used that device will be assigned
to that specific office. The code in Listing 7.6 shows how to modify the of-
fice identifier of all those users who used the device 9876, which was assigned
to another office. The code within parenthesis returns the user identifiers of
those users who used device 9876, and the first part of the code sets the office
identifier of all those users to 9002. This code assumes that the user id in
the shifts table is a foreign key to the users table and that the users table
has an office id item.

1 UPDATE users us
2 SET us . office_id = 9002
3 WHERE us . id IN
4 (SELECT DISTINCT s . user_id
5 FROM shifts s
6 WHERE s . device_id = ’ 9876 ’) ;

Listing 7.6: Modifying multiple registers.

The DISTINCT parameter modifies the query in such a way that it only
retrieves the different values stored in those columns despite the fact that
there could be several repetitions of that value. In the example, a user may
have had several shifts with a particular device, so obtaining the original list
of users would include repetitions. The DISTINCT parameter would make sure
that each different identifier just appears once in the query result. This is
useful, for example, to reduce the number of users that will be updated in the
previous script.

The final example covers the case in which the data are no longer required.
In this case, the DML offers the option to delete a set of registers from a table.
The following example shows how the city of Topeka, Kansas, is deleted from
the table of cities in the database.

1 DELETE
2 FROM cities_table
3 WHERE city = ’ Topeka ’ AND state = ’KS ’ ;

Listing 7.7: Deleting data.

As before, the WHERE clause is included to define a target set of registers
based on the result of a query. If the deleted rows are being referenced as
foreign keys in another table, the deletion policy already defined in the table
will take care of the cross-referenced rows.

7.2.3.3 Data Retrieval

Once the database is populated with data, the most common operation
is to consult it. As it was shown in some of the data manipulation examples
before, data retrieval is used to define the target registers to perform the
manipulation. This section focuses on the data retrieval process and provides
basic script structures for consulting the database.

Storing and Retrieving the Data: The Database 99

The SELECT clause is the command that allows data retrieval. For example,
if a list of all users is required, the SELECT * FROM users command will
retrieve all the columns of every row.

More specific queries can be performed since not all the retrieved data
using this command might be needed. For example, Listing 7.8 shows the
script used to retrieve the identifiers and full names of those users whose first
name is John.

1 SELECT u . id , u . first_name , u . mid_name , u . last_name
2 FROM users u
3 WHERE u . first_name = ’ John ’ ;

Listing 7.8: Querying the database for specific users.

Another interesting query is to obtain a list of the date, serial number, and
maker of the device of all the shifts in which the user ’John Smith’ partici-
pated. Assuming that his identifier number is known, this operation involves
the users, shifts, and devices tables. From the first table, the personal
information can be obtained. From the second table, the association between
the user and the device and the date of the shift can be obtained. Finally, the
third table provides the information about the maker of the device. The script
is shown in Listing 7.9.

1 SELECT u . id , u . first_name , u . last_name , s . device_id , d . maker
2 FROM users u , shifts s , devices d
3 WHERE u . id = s . user_id AND s . device_id = d . id AND u . id = 321 ;

Listing 7.9: Querying from different tables.

SQL offers the option to create very complex SELECT clauses using the JOIN
clause, which allows to select data from different tables. A good reference to
look for more details on this command and the structure of the scripts, can
be found in the Postgres’s documentation at http://www.postgresql.org/
docs/.

7.2.4 PostGIS and Geographical Databases

PostGIS is an extension of the PostgresSQL server that adds function-
ality to work with geographical objects. This product was developed by the
company Refractions Research as part of a project in spatial databases. Post-
GIS is available to the public via the GNU-GPL open source license from the
company’s Website at http://www.refractions.net/products/postgis/.

The main advantage of PostGIS is that it implements OpenGIS very
closely, which is an open standard for GIS systems created by the Open
Geospatial Consortium, Inc. (OGC) (http://www.opengeospatial.org/).
The OpenGIS standard defines basic geometric types and functions in both
an abstract fashion and real implementations on actual languages in or-
der to offer foundations for interoperability among different GIS applica-

http://www.opengeospatial.org/
http://www.refractions.net/
http://www.postgresql.org/

100 Location-Based Information Systems

tions. PostGIS has been certified to be compliant with the “Typed and Func-
tions” specified in the “Simple Features Specification for SQL” documents
that define the minimum specifications of an SQL implementation of the
standard. The OpenGIS standards can be found in the OGC Website at
http://www.opengeospatial.org/standards/is.

7.2.4.1 Structure of PostGIS

As mentioned before, PostGIS follows the OpenGIS standard, more
specifically, the section called “OpenGIS Implementation Specification for
Geographic Information — Simple Feature Access — Part 2: SQL Option,”
which defines the basic structure and functionalities that an implementation
of OpenGIS in SQL should have. This part of the standard can be found in
the Web page http://www.opengeospatial.org/standards/sfs.

The document defines the basic SQL operations to store, retrieve, query,
and update data with non-spatial and spatial attributes, or geometry-valued
attributes, and the set of functions that can be applied to these objects. Fur-
thermore, OpenGIS defines that any database with geometric data in any of
its tables need to have extra metadata tables with information about the geo-
metric type columns. The standard considers two cases: if the geometry data
types have been predefined or not. In the second case, the structure of the new
data types must be defined in new metadata tables, while in the first case, the
database already has them defined natively. The metadata tables, as defined
by OpenGIS, are the following:

• The geometry columns table stores all the columns with geometric data
in the database, including the geometry type.

• The spatial ref sys table contains the set of available coordinate sys-
tems and transformations for geometry objects. This is necessary to have
a correct interpretation of the geometry, based on the selected model.

• The feature table stores a collection of features or geometry types.
The columns of the feature table represent geometric valued attributes
while rows represent individual features. The geometry of a feature is
one of its feature attributes. While logically a geometric data type, a
column with geometric information in a regular table is implemented as
a foreign key to a geometry table.

• The geometry table stores the instances of geometric objects, which
may be implemented using either standard SQL numeric types or SQL
binary types.

PostGIS predefines all the geographical data types described in the stan-
dard and also includes 674 functions for geometric objects, which not only
makes it compliant with the standard but also extends it considerably.

http://www.opengeospatial.org/
http://www.opengeospatial.org/

Storing and Retrieving the Data: The Database 101

7.2.4.2 Creating a Table with Geographical Columns

Based on our LBIS tracking system example, the tracking table features
a geometric type column that contains the GPS fixes (points) collected from
the mobile devices in their respective shifts. Listing 7.10 shows how to create
the tracking table, including the mentioned column.

1 CREATE TABLE tracking (
2 tracking_id INTEGER ,
3 shift_id INTEGER
4 CONSTRAINT shift_id_not_null NOT NULL ,
5 date_collection date
6 CONSTRAINT date_coll_not_null NOT NULL ,
7 date_insertion date
8 CONSTRAINT date_ins_not_null NOT NULL ,
9 CONSTRAINT tracking_pk

10 PRIMARY KEY (tracking_id) ,
11 CONSTRAINT shift_id_fk
12 FOREIGN KEY (shift_id)
13 REFERENCES shifts (shift_id)
14 ON UPDATE CASCADE ON DELETE CASCADE
15) TABLESPACE pg_default ;
16
17 SELECT AddGeometryColumn (’ tracking ’ , ’ tracking_point ’ ,
18 32661 , ’ POINT ’ , 2) ;
19
20 ALTER TABLE tracking
21 ADD CONSTRAINT tracking_point_valid_check
22 CHECK (isvalid (tracking_point)) ;

Listing 7.10: Creating a table with a geometric type column.

The first section of the code works as a regular SQL table creation sentence.
However, no geometric column has been included. This is because the geomet-
ric column has to be added using the PostGIS function AddGeometryColumn(),
as shown in the second section of the code. The parameters of this function are
the name of the table in which the new column will be added, the name of the
new column, the reference number of the spatial reference system which, for
the platform presented in this book, has been decided to be the EPSG:32661
WGS 84/UPS North, the type of geometry (a point), and the number of di-
mensions of the geometric object. The last part of the code adds a constraint
that checks for the validity of the coordinates.

PostGIS will not only insert the new column on the destination table, but
it will also create an entry on the metadata table geometry columns with the
data of the new column.

7.2.4.3 Inserting Geographical Data in a Table

Once the table has been created, including the geometric column, then the
database is ready to be used. Listing 7.11 shows how to insert a point in the
tracking table of the example.

1 INSERT INTO tracking
2 (tracking_id , shift_id , tracking_point , date_collection ,

date_insertion)

102 Location-Based Information Systems

3 VALUES
4 (nextval (’ tracking_seq ’) , 999 , GeomFromText (’ POINT (1.9845 49.8543) ’ ,

32661) , ’ 2009 -01 -02 ’ , ’ 2009 -01 -01 ’) ;

Listing 7.11: Inserting a point in the tracking table.

The function GeomFromText(..) is the one in charge of generating the
geometric object. It receives two parameters, the “Well-Known-Text” (WKT)
description of the geometric object and the respective spatial reference system.

7.2.4.4 Retrieving Geographical Data

Retrieving geometric data from a table can be performed as shown in
Listing 7.12, which is meant to obtain all the points and collection time from
a certain shift.

1 SELECT AsText (t . tracking_point) AS trackingpoint , t . date_collection
2 FROM tracking t
3 WHERE t . shift_id = 999 ;

Listing 7.12: Retrieving geometric data.

In this example, the function AsText(..) is used to transform the internal
representation of the geometric object into a WKT format that can be easily
read.

7.2.4.5 Useful Geometric Operators

The following list contains the operators used to perform basic operations
between geometric objects:

• && : This operator tells whether the bounding box of one geometry
intersects the bounding box of another. The example in Listing 7.13
returns the identifier of the shift and the time of collection of all points
contained in a defined polygon.

1 SELECT t . shift_id , t . date_collection
2 FROM tracking t
3 WHERE t . tracking_point && GeomFromText (’ POLYGON ((...)) ’ ,−1) ;

Listing 7.13: Use of the && operator.

• =̃ : This operator tests whether two geometries are geometrically iden-
tical. The example in Listing 7.14 returns all points that match the
definition provided in the GeomFromText() function.

1 SELECT AsText (t . tracking_point) AS trackingpoint , t .
date_collection

2 FROM tracking t
3 WHERE t . tracking_point ˜= GeomFromText (’ POINT ((...)) ’ ,−1) ;

Listing 7.14: Use of the =̃ operator.

Storing and Retrieving the Data: The Database 103

• = : This operator tests whether the bounding boxes of two geometries
are the same, without taking into account the geometry of the elements.

More detailed explanation and additional operators can be found in [7].

7.3 Accessing the Database Using Java

Previous sections show how to create, modify, and query databases, and
how to work with geometric objects using PostGIS. This section explains
how to connect with the database and insert and retrieve data using Java.
All of these operations are possible due to the Java Data Base Connectivity
(JDBC) API, which allows communication between a Java application and a
database. It is important to mention that the code that shows these operations
in this section is implemented in the server part of the LBIS system, i.e.,
the application in the server connects, inserts, and retrieves data from the
database, which is located in the same machine.

7.3.1 Connecting to the Database via JDBC

This section shows how to connect to the database using JDBC using the
Java EE platform. Listing 7.15 shows the example code to accomplish this. The
first two lines of code are the ones in charge of creating the connection with
the database. The parameter in the second command is the one in charge of
defining the source of the data. It is very important that the name provided
be the same as the one defined for the database in the JDBC resources in
the server. The third command declares and opens the connection. At this
point, the connection is ready to perform common operations on the database,
therefore the code to insert, retrieve, delete, etc., data must be inserted here.
After all the operations on the database are executed, the connection must be
closed. The last command performs this task. Finally, if any of the commands
cannot be executed due to an error, an exception will be thrown. The exception
can be caught using a try-catch block as shown in the example, or by declaring
that the containing method be in charge of handling and returning any possible
exception.

1 try{
2
3 javax . naming . InitialContext ic = new javax . naming . InitialContext () ;
4
5 javax . sql . DataSource dataSource =
6 (javax . sql . DataSource) ic . lookup (" jdbc / lbsbook ") ;
7
8 Connection lbs_book = dataSource . getConnection () ;
9

10 // All operations on the databases are defined here !

104 Location-Based Information Systems

11
12 lbs_book . close () ;
13
14 } catch (Exception ex){ex . printStack () ;}

Listing 7.15: Connecting to the databse using JDBC.

7.3.2 Data Insertion

Once the connection has been opened, the application can perform all the
necessary operations on the database. Listing 7.16 shows an example code to
insert data in the database, more specifically, it includes a tracking point in
the tracking table.

The first line creates a template script called preparedStatement in
which the values of certain parameters are defined in the following lines. The
preparedStatement has variable and fixed parameters. The variable param-
eters are defined by including a question mark (’?’) in the definition of the
script. The values are then assigned based on the order of appearance of the
question marks in the statement. In this example, four columns are selected
to be variable: the collection date of the coordinate, the identifier of the shift,
the position collected, and the insertion date of this row in the database. The
two fixed parameters are the identifier of the tracking point, which is gener-
ated based on a sequence element previously defined, and the geographical
reference system.

1 PreparedStatement insertStatement =
2 lbs_book . prepareStatement (" INSERT INTO tracking
3 (tracking_id , date_collection , shift_id , tracking_point ,

date_insertion)
4 VALUES
5 (nextval (’ tracking_seq ’) ,? ,? , ST_GeomFromText (? ,32661) ,?) ") ;
6
7 insertStatement . setTimestamp (1 , new java . sql . Timestamp (timefix)) ;
8
9 insertStatement . setLong (2 , shift_id) ;

10
11 String coordinate = " POINT ("+XLong+" "+YLat+")" ;
12 insertStatement . setString (3 , coordinate) ;
13
14 insertStatement . setTimestamp (4 , new java . sql . Timestamp (new Date () .

getTime ())) ;
15
16 insertStatement . executeUpdate () ;

Listing 7.16: Inserting a tracking point in the database.

The executeUpdate() method is used for all commands that modify the
database, like CREATE, INSERT, UPDATE, and DELETE. This method returns an
integer value that represents the number of rows that were affected by the
execution of the SQL statement in the database.

Storing and Retrieving the Data: The Database 105

7.3.3 Data Queries

The third operation is data retrieval, which is executed using the
executeQuery() method. Given that data retrieval brings data back from
the database, they must be stored in a data structure, which in Java is called
ResultSet. This structure automatically organizes the data in the columns
defined on the query statement.

The code in Listing 7.17 illustrates how to define and execute a query,
and how to access the data brought from the database. In this example a
regular statement is used instead of the prepared statement already shown in
the previous example. The result of the query will show the identifier, first,
and last name of all the users whose identifier is less that 2001.

1 // Open the connection with the database
2
3 Statement stmt = lbs_book . createStatement () ;
4 ResultSet rs ;
5
6 rs = stmt . executeQuery (" SELECT id , first_name , last_name
7 FROM users WHERE id < 2001 ") ;
8
9 while (rs . next ()) {

10 int id = rs . getInt (1) ;
11 String firstName = rs . getString (" first_name ") ;
12 String lastName = rs . getString (" last_name ") ;
13 System . out . println (id + ‘ ‘ , ’’ + firstName + ‘ ‘ ’’ +
14 lastName + "\n") ;
15 }
16
17 // Close the connection with the database

Listing 7.17: Querying the database.

The first two lines create a statement object from the open con-
nection lbs book and the ResultSet object. The third line invokes the
executeQuery() method, which receives the statement and returns the set
of rows obtained from the query. These rows are stored in the ResultSet
variable. The while statement will go over all the elements in the ResultSet
object. Different methods can be used to access the data from each column
of the row. For example, the method getString(.) returns a string, the
method getInt(.) returns an integer value, and others for different data
types. All these methods identify a column by the name of the column,
as it was defined on the query statement, or by the column index, which
is a range of values starting at 1. In the case where the query uses ta-
ble name aliases (e.g., SELECT u.id from users u), it is recommended to
assign aliases to the columns (e.g., SELECT u.id users id from users u).
For more information about the different methods to read the data from
the ResultSet object, visit the documentation of the Java SE platform at
http://java.sun.com/javase/6/docs/api/java/sql/ResultSet.html.

http://java.sun.com/

106 Location-Based Information Systems

7.4 pgAdmin III: Postgres’s Database Administration
Tool

The default installation of Postgres includes pgAdmin III, an administra-
tion tool to manage and interact with the database. This section briefly de-
scribes this tool with three examples that show how to create a new database,
how to add tables to it using the wizard interface, and how to use the SQL
execution module to run SQL code.

7.4.1 Creating a New Database

The first step is to open the pgAdmin tool. This application can be found
in the start menu folder of Postgres. Once the tool is open, the Postgres icon
can be identified in the left-hand menu, which represents the database system
as a whole. Although the example shows how to work with a local database
server, the tool can also be used to manage remote databases.

The following step is to open a connection with the database server to
have access to the databases. Double-click on the database server icon and
wait until it connects to the server. Once the connection is made, the tool
displays all the components of the database system: databases, users, groups,
and tables.

In order to create a new database, click onDatabases in the object browser.
The system should respond displaying all the existing databases. Right-click
on Databases and select the option New Database, as shown in Figure 7.3.
A new window appears (see Figure 7.4) to define the parameters of the new
database. In this example, three parameters are defined: name of the database,
owner user, and the template of the database. As it can be seen from the
figure, the name chosen for the new database is lbsbook. Remember that it is
recommended to write the name of the databases in lowercase letters when
working in Postgres. The owner of the database is defined as the postgres
user, which is the administrator of the system. Finally, the template postgis
template is used. The selection of this option guarantees the use of geometrical
information and its respective functions; it creates all spatial variables and the
metadata tables.

7.4.2 Creating a New Table Using the Wizard

Once the database has been created, the following steps show how to create
new tables:

1. Under Databases in the object browser window, select the database in
which you want to add the new table. If a red “x” sign appears on the
database name, it means that the server has no connection with that

Storing and Retrieving the Data: The Database 107

FIGURE 7.3: Creating a new database.

FIGURE 7.4: Defining the parameters of a new database.

108 Location-Based Information Systems

FIGURE 7.5: Selecting the option to create a new table in a database.

database. Click once on the name of the database of choice to start the
connection with the database.

2. Under the database name of choice, click on the “+” sign next to
Schemas. If you do not see Schemas, click on the “+” sign next to
the database of choice.

3. Click on the “+” sign next to Public.

4. Right-click on Tables and select the New table ... option from the floating
menu, as shown in Figure 7.5.

5. The new window asks for the general parameters of the new table. The
table “devices” is created including this name in the Properties tab, as
shown in Figure 7.6.

6. To define the columns, click on the Columns tab, as in Figure 7.7. Click
on the Add button. In the new window, define the characteristics of the
new column such as name, data type, and if the variable accepts NULL
values or not. At the end of the process, all the columns will be listed
in the Columns tab, as shown in Figure 7.8.

7. Table constraints are included using the Constraints tab. Select the type
of constraint that you would like to add and click on the Add button. In
the case of a primary key constraint being added, the new window has
two tabs. The first one is to define the name of the constraint. The second
tab is to define the columns that will be part of the primary key. The

Storing and Retrieving the Data: The Database 109

FIGURE 7.6: Defining the name of the new table.

first one receives the name of the constraint, as shown in Figure 7.9.
Click on the Columns tab in order to define the columns. From the
dropbox menu, select the columns, one at a time, and click on the Add
button, as shown in Figure 7.10.

8. To define more general constraints, like the ones that define limits for
values in certain columns, instead of adding a “primary key” constraint,
select a “check” constraint and click on the Add button. A new window
will ask you to define the name of the constraint and the logical evalu-
ation of the constraint. For example, Figure 7.11 shows hot to limit the
value of the “zipcode” column in the “cities table” table to be less than
99999.

9. After creating all columns and constraints, pgAdmin allows you to see
the resultant SQL script that would replicate a table with the exact same
characteristics of the one the wizard just created. This code can be seen
in the SQL tab in the New Table window, as shown in Figure 7.12.

The next section describes how to work directly with SQL scripts using
the pgAdmin tool.

110 Location-Based Information Systems

FIGURE 7.7: Creating new columns.

FIGURE 7.8: List of all columns.

Storing and Retrieving the Data: The Database 111

FIGURE 7.9: General information about a primary key constraint.

FIGURE 7.10: Including the columns that are part of the primary key.

112 Location-Based Information Systems

FIGURE 7.11: Including a constraint for the zipcode column.

FIGURE 7.12: Obtaining the SQL script for the creation of the table.

Storing and Retrieving the Data: The Database 113

FIGURE 7.13: Opening the SQL execution module.

7.4.3 Using the SQL Execution Module

In order to execute SQL code using the pgAdmin tool, the first step is to
select the database on which the operations will be executed. Select a database
by clicking on the database icon. Once the database has been selected, the
icon marked in Figure 7.13 will turn active. That icon will open the SQL
execution module of the pgAdmin tool. Once you click on it, a new window
with the execution module appears, showing in the title of the window the
selected database and the server in which the database is located.

The upper left-hand section of the window is the one in which the SQL
code is written and executed. The upper right-hand section works as a scratch
paper to copy, paste, and modify SQL code without affecting the one to be
executed. The lower section of the window is dedicated to show the results of
the execution of the SQL code. Figure 7.14 shows the results of executing the
SQL code on the right hand section. In order to execute the code, click on the
green arrow icon in Figure 7.15.

114 Location-Based Information Systems

FIGURE 7.14: Executing SQL code to create a new table.

FIGURE 7.15: Executing a SQL query.

Storing and Retrieving the Data: The Database 115

7.5 The Database and the LBIS Tracking System
Example

This chapter describes how to design, create, modify, manipulate, and
query a database in support of a LBIS. It shows how to perform these tasks
using the command and graphical user interface of the Postgres DBMS. The
database used to store all the information related to the LBIS tracking system
example is used as an example.

http://taylorandfrancis.com

Chapter 8

Sending and Receiving Data:
Communications

8.1 Introduction

Communications is a critical aspect in most of todays’ systems, and
location-based information systems are not the exception. Applications (and
users) need to send queries and receive responses in real-time, update data,
interact with other machines and databases, etc. Today’s applications are
networked applications; they send and receive data over wired and wireless
networks.

In order to offer a common ground for the diverse group of existing de-
vices, Java ME defines a layered stack of libraries that are directly related
to the capabilities of the devices. This chapter describes these libraries along
with the most important objects and functionalities offered by the Java ME
platform in support of data communications: The Connected Limited Device
Configuration (CLDC), the Mobile Information Device Profile (MIDP), and
the Wireless Messaging API (WMA).

8.2 The Generic Connection Framework (GCF) of the
CDLC

As noted in Chapter 3, general and extensible classes are defined
in the Generic Connection Framework (GCF) of the CLDC specification
to support networking capabilities. The GCF, which is included in the
javax.microedition.io package, includes the Connection interface, which
is the foundation object for all other communication interfaces defined
within the framework. The Connector object acts as a “factory” of con-
nections, i.e., instead of using different abstractions for specific forms of
communications, a general abstraction is defined that does not define any
type of network connection. Instead, the static method open() of the class
javax.microedition.io.Connector is used to create all connections using

117

118 Location-Based Information Systems

FIGURE 8.1: Hierarchical tree of inheritance of the Connection interface.

a string as an input parameter that describes the target. The string, which
must conform to the URL format as described in RFC 2396 [21], is used as
follows:

{ scheme } : [{ target }] [{ params }]
{ scheme } ://{ user }{ : password@ }{ host }{ : port }{/ url−path }{ ; parameters }

where scheme defines the communication protocol, for example, datagram,
HTTP, TCP, etc.; user and password are used when the connection requires
the verification of the user; host, :port, and /url-path identify the exact address
of the destination of the communication, like an IP address, a certain com-
munication port, and a path to reach the desired resource; and params allow
for the definition of parameters and their values in a format ";param=val",
where param is the name of the parameter and val is the value.

Figure 8.1 shows the inheritance tree of all objects that are related to
communication operations that depend directly on the Connection interface
implemented at the CLDC level. The following list briefly describes the func-
tionalities of all these elements [59]:

• InputConnection: This interface includes the openInputStream() and
openDataInputStream() methods that return the InputStream and
DataInputStream of the device from which data can be read. These
methods allow for serial communication between the devices.

• OutputConnection: This interface includes the openOutputStream()
and openDataOutputStream() methods that return the OutputStream

Sending and Receiving Data: Communications 119

and DataOutputStream of the device to which data can be written.
These methods allow for serial communication between the devices.

• StreamConnection: This connection type combines the InputConnection
and OutputConnection interfaces to implement two-way communica-
tion interfaces.

• ContentConnection: This connection type is an interface based on the
StreamConnection interface and provides basic information contained
in HTTP connections such as the content type, encoding, and metadata
length.

• StreamConnectionNotifier: This interface provides the method
acceptAndOpen() that waits for other devices, or clients, to request
a stream connection. Once the request is received, it starts a new
StreamConnection to establish the connection between the devices. The
connection must be closed once the communication link is no longer
needed.

• DatagramConnection: This interface provides several methods to handle
the input/output of datagrams such as receive (Datagram datagram),
send (Datagram datagram), getMaximumLength(), and methods to
create new datagrams. The Datagram data type contains the data buffer
and the address associated with it.

8.3 The Mobile Information Device Profile (MIDP)

The MIDP provides a second level of communication in the Java ME hi-
erarchy with a more specific set of functionalities according to the individual
capabilities and resources of the mobile devices. The protocols implemented in
these libraries support the most important transport layer protocols used in
the Internet, the Transport Control Protocol (TCP) and the User Datagram
Protocol (UDP), which allow the devices to establish direct connections with
resources available in any network.

The MIDP also includes specific support for HTTP connections but with
more functionalities than the ones provided by the ContentConnection in-
terface. Figure 8.1 shows the updated hierarchy of the Connection interface
with the new objects.

The following list includes the new elements introduced in the MIDP and
a short description of their function:

• SocketConnection: This interface, based on the StreamConnection,
provides the functionality of a full-duplex TCP connection between two
devices.

120 Location-Based Information Systems

• ServerSocketConnection: This interface provides the functionality of
a TCP server waiting for TCP connection requests from clients and
creating a StreamConnection when the request is accepted. It is based
on the StreamConnectionNotifier.

• UDPDatagramConnection: This interface provides the methods for
communication using the UDP protocol. It is based on the
DatagramConnection.

• HTTPConnection: This interface, based on the ContentConnection, pro-
vides the methods that allow HTTP connections.

Listing 8.1 shows the usage of the Connector class including examples
with different protocols.

1 // HTTP Connection
2 HTTPConnection client =
3 (HTTPConnection) Connector . open (" http :// www . wikipedia . com /

Topology_control ") ;
4
5 // Socket Connection
6 SocketConnection client =
7 (SocketConnection) Connector . open (" socket ://131.131.2.149:5555 ") ;
8
9 // Datagram Connection

10 DatagramConnection client =
11 (DatagramConnection) Connector . open (" datagram ://131.131.2.149:5556 "

) ;
12
13 // Server Socket Connection
14 ServerSocketConnection server =
15 (ServerSocketConnection) Connector . open (" socket ://:2500 ") ;

Listing 8.1: Use of the Connector class to create connections with different
protocols.

Please notice that when creating a server socket connection, the Connector
class needs to define the type of protocol and the port in which the application
will be listening for incoming connections.

The following sections provide specific examples that show how to use
these interfaces. In particular, examples are included to show how to imple-
ment TCP and UDP clients and servers and how to use the HTTP protocol.
The examples are based on a mobile device that sends data to a server peri-
odically and a server that receives such data. Code is included to implement
one TCP and one UDP client, and a server application that implements both
TCP and UDP listeners. As expected, the mobile device clients will be using
the libraries available in Java ME while the server applications will use the
libraries available in the Java Enterprise Edition (Java EE) platform.

8.3.1 A TCP Client Example

The Transport Control Protocol (TCP) is the transport layer protocol of
choice for data-oriented transactions in which the reliability of the data are

Sending and Receiving Data: Communications 121

more important than the delay within which the data need to be received.
TCP has embedded mechanisms to guarantee the reception of the segments
as well as flow and congestion control mechanisms. Acknowledgment packets
and sequence numbers are included in the protocol to detect and retransmit
missing segments. While TCP’s flow control mechanism guarantees that a fast
transmitter does not overwhelm the receiver, its congestion control mechanism
dynamically changes the sender’s transmission rate according to network con-
ditions so network resources are used more efficiently. TCP is a connection-
oriented protocol meaning that before sending user’s data the sender and the
receiver need to agree on the communication parameters to use and estab-
lish a connection. This connection establishment process is accomplished by
the well-known three-way handshake procedure. More on TCP can be found
in [39].

Listing 8.2 shows the implementation of the TCP client. The most impor-
tant parts of the code are

• The creation of the SocketConnection sockConn using the method
Connector.open(). Notice that the connection is only established
once, which is controlled by the conditional statement if(sockConn ==
null).

• The creation of the output stream outstream. The output stream object
is used to send the data through the socket.

• Formatting the information that will travel through the socket. TCP
sockets receive information contained in an array of bytes.

• Sending the data using the write() method of the output stream.

• For most communication operations, it is necessary to define try-catch
blocks to catch exceptions. In this example, all errors are printed on the
default output device, which is usually the screen.

1 SocketConnection sockConn ;
2
3 public void tcpSend () {
4
5 String serverName = " 131.131.2.149 " ;
6 String serverPort = " 5555 " ;
7
8 // Send data via TCP
9 if (sockConn == null){

10 try
11 {
12 sockConn = (SocketConnection) Connector . open (" socket :// "

+ serverName + ":" + serverPort) ;
13
14 } catch (IOException ex){
15 System . out . println (" Could not create connection : " +

ex) ;
16 }
17 try

122 Location-Based Information Systems

18 {
19 sockConn . setSocketOption (SocketConnection . KEEPALIVE , 1) ;
20 } catch (IOException ex)
21 {
22 System . out . println (" Could not set socket option : " +

ex) ;
23 }
24
25 try{
26
27 outstream = sockConn . openOutputStream () ;
28
29 } catch (IOException ex){
30 System . out . println (" Could not open socket stream : " + ex)

;
31 }
32 }
33
34 // get the payload
35 byte [] data = getPayload () . getBytes () ;
36
37 try
38 {
39
40 outstream . write (data) ;
41
42 } catch (IOException ex){
43 System . out . println (" Could not write to socket stream : " + ex) ;
44 }
45 }

Listing 8.2: Example of a TCP client.

8.3.2 A UDP Client Example

Listing 8.3 shows the code corresponding to a UDP client. The following
list comments on the most important statements:

• The creation of the socket dc using the Connector.open() method.

• Formating the data in an array of bytes.

• Preparing the datagram.

• Sending the data using the send() method of the connection class.

• Closing the socket.

• This client does not contain any individual try-catch blocks inside the
code because it is defined to return any exception to the process that
invoked this method. It is assumed that the invoking process will have
this call inside a try-catch block.

1 UDPDatagramConnection dc ;
2
3 public void udpSend () throws Exception {
4

Sending and Receiving Data: Communications 123

5 String serverName = " 131.131.2.149 " ;
6 String serverPort = " 5555 " ;
7
8 // Send data via UDP
9 if (dc == null){

10 dc = (UDPDatagramConnection) Connector . open (" datagram :// " +
serverName +

11 ":" + serverPort) ;
12 }
13
14 byte [] data = getPayload () . getBytes () ;
15
16 Datagram dg = dc . newDatagram (data , data . length) ;
17
18 dc . send (dg) ;
19
20 dc . close () ;
21 // You could leave the UDP socket open to avoid extra overhead
22 }

Listing 8.3: Example of a UDP client.

8.3.3 A Generic Server Example

This example shows the design of the ListenerManager, a server’s gen-
eral connection manager designed to handle both TCP and UDP connections
running in the Sun Java Application Server. The idea is to define and control
the listeners in a single class instead of having to start each service from a
different class. Listing 8.4 shows the implementation of the ListenerManager
while Listings 8.5 and 8.7 show the individual listeners for TCP and UDP
connections.

The following list comments on the most important lines of the implemen-
tation of the ListenerManager included in Listing 8.4:

• The implementation of the ServletContextListener interface de-
clares two methods: the contextInitialized() method and the
contextDestroyed() method. When the Sun Java Application Server
loads your server application and such application has a class imple-
menting the ServletContextListener interface, the server executes the
lines within the contextInitialized() method. Also, when the server
unloads the application, it executes the contextDestroyed() method.

• The creation of an instance of a TCPTestServer accepts connection re-
quests and starts threads; each of these threads manages the communi-
cation with a different single client. The parameter for the constructor
of this class is the TCP port that the server uses to listen for incoming
connections. All exceptions from the TCP server socket creation process
are caught in the external try-catch statement.

• The creation of an instance of a UDPTestServer receives all the incoming
messages from UDP clients. The parameters of this class are the UDP
port that the socket uses to listen for incoming messages and a name

124 Location-Based Information Systems

(description) of the UDP socket. Remember that UDP is an unreliable
protocol and there is no sense of connection, as in TCP.

• Given that this code runs on the server, the definition of a Logger object
is useful to keep record of all errors that occur during the execution of
the server application, instead of printing the errors on the screen.

1 package cse . usf . edu . lbsbook . comm ;
2
3 import java . io . IOException ;
4 import java . util . logging . Level ;
5 import java . util . logging . Logger ;
6 import javax . servlet . ServletContextEvent ;
7 import javax . servlet . ServletContextListener ;
8
9

10 public class ListenerManager implements ServletContextListener {
11
12 private static TCPTestServer theTCPServer ;
13 private static UDPTestReceiver theUDPReceiver ;
14
15 public ListenerManager ()
16 {
17 }
18
19 public void contextInitialized (ServletContextEvent sce)
20 {
21 try{
22 theTCPServer = new TCPTestServer (31686) ;
23 theTCPServer . start () ;
24 try
25 {
26 theUDPReceiver = new UDPTestReceiver (2029 , " lbsbook ") ;
27 theUDPReceiver . start () ;
28 } catch (Exception ex) {
29 Logger . getLogger (ListenerManager . class . getName ()) .

log (Level . SEVERE , null , ex) ;
30 }
31
32 } catch (IOException ioex){
33 Logger . getLogger (ListenerManager . class . getName ()) . log (

Level . SEVERE , null , ioex) ;
34 }
35 }
36
37 public void contextDestroyed (ServletContextEvent sce)
38 {
39 if (theTCPServer != null && theTCPServer . isAlive ())
40 {
41 theTCPServer . shutdown () ;
42 theTCPServer = null ;
43 }
44
45 if (theUDPReceiver != null && theUDPReceiver . isAlive ())
46 {
47 theUDPReceiver . shutdown () ;
48 theUDPReceiver = null ;
49 }
50 }
51 }

Listing 8.4: Example of the generic server application for both TCP and UDP.

Sending and Receiving Data: Communications 125

8.3.4 A TCP Server Example

A TCP listener needs two classes, the ServerSocket that waits for con-
nection requests and the structure that contains the socket that is used to
maintain the connection between client and server, which in this example is
called ConnectionDump.

Listing 8.5 shows the example code of the class TCPTestServer, which
instantiates the ServerSocket object, and the data structure that contains
all the ConnectionDump objects. Notice that the TCPTestServer is a Thread,
so it runs in the background because there is no way of knowing in advance
when a user is going to ask for a connection; otherwise, this waiting process
would block the process until a connection is received.

The constructor of the class creates the new ServerSocket and assigns the
communication port defined in the parameter. The next line uses the method
setSoTimeout() to trigger a java.net.SocketTimeoutException exception
if the socket does not receive any incoming messages during the defined period
of time; however, despite the exception, the socket continues to be active.

The run() method is the heart of the TCP server. The first line creates an
auxiliary socket of which the only mission is to receive the new socket created
by the method serv socket.accept() when an incoming connection request
is accepted. When a new connection is created, the socket is added to the
dump list data structure that holds all open connections. The finally block
contains a piece of code that is always executed in case that an exception
occurs, which in this example nullifies the temporary socket and terminates
the cycle.

1 public class TCPTestServer extends Thread {
2
3 private final int port ;
4 private ServerSocket serv_socket ;
5 private LinkedList<ConnectionDump> dump_list ;
6
7
8 public TCPTestServer (int port) throws IOException {
9 this . port = port ;

10 this . serv_socket = new ServerSocket (port) ;
11 this . serv_socket . setSoTimeout (10∗1000) ; // set blocking timeout

for accept () call
12 this . dump_list = new LinkedList<ConnectionDump >() ;
13 }
14
15 public void run () {
16 Socket tmp_socket = new Socket () ;
17
18 while (this . serv_socket != null){
19 try{
20
21 tmp_socket = this . serv_socket . accept () ; // this blocks

for 10 seconds .
22
23 if (tmp_socket . isConnected ()){
24
25 this . dump_list . add (new ConnectionDump (tmp_socket)) ;
26
27 }

126 Location-Based Information Systems

28
29 } catch (IOException _) {}
30
31 finally {
32 tmp_socket = null ;
33 }
34 }
35 }
36
37 public void shutdown () { . . . }
38
39 protected class ConnectionDump extends Thread { . . . }
40 }

Listing 8.5: Example of the listener class for TCP connections.

Inside the TCPTestServer the code includes the definition of the protected
class called ConnectionDump. Listing 8.6 presents the main operations on this
object.

Each ConnectionDump object has a Socket, an InputStream, and a
boolean value active that keeps the main cycle running. In the construc-
tor method, the socket is received as a parameter and is assigned to the local
variable sock. After that, the input stream is obtained for that socket to allow
the reception of incoming data from the sender device.

In the run() method, the main cycle runs while the value of the boolean
variable is true. On each instance of the cycle, a new array of bytes is declared,
which receives the data from the method read() of the instream variable.
This example prints the data on the default output device just to show that
it is now accessible for use in the application. If an exception is generated
during this process, the cycle stops and calls the shutdown() method. The
implementation of this method is not defined in this example.

1 protected class ConnectionDump extends Thread {
2
3 Socket sock ;
4 InputStream instream ;
5 boolean active ;
6
7 public ConnectionDump (Socket sock){
8 this . sock = sock ;
9 if (sock . isConnected ()){

10 try{
11 this . instream = sock . getInputStream () ;
12 } catch (IOException ioex){
13 Logger . getLogger (ConnectionDump . class . getName ()) . log

(Level . SEVERE , null , ioex) ;
14 }
15 }
16 this . active = true ;
17 this . start () ;
18 }
19
20 public void run () {
21 while (active){
22 try{
23 byte [] b = new byte [1 2 4] ;
24 this . instream . read (b) ; // bytes read from the stream
25 Logger . getLogger (ConnectionDump . class . getName ()) . log (

Sending and Receiving Data: Communications 127

Level . INFO , " TCPTestServer - incoming string :" +
new String (b)) ;

26 } catch (IOException ioex){
27 Logger . getLogger (ConnectionDump . class . getName ()) . log (

Level . SEVERE , null , ioex) ;
28 this . shutdown () ;
29 }
30 }
31 }
32
33 public void shutdown () { . . . }
34 }

Listing 8.6: Example of the class that models individual TCP connections
once accepted.

8.3.5 A UDP Server Example

The User Datagram Protocol (UDP) protocol is the transport layer pro-
tocol of choice for real-time applications such as voice and video-based appli-
cations in which the timeliness is more important than the reliability of the
data. Real-time applications do not suffer much if a few segments are lost in
their way to the destination; however, these packets need to reach the receiver
within a certain period of time to maintain the real-time nature of the trans-
mission. Contrary to the TCP protocol, UDP is connectionless, unreliable (no
acknowledgment packets and sequence numbers), and does not include any
flow and congestion control mechanism.

Because of its connectionless nature, the UDP protocol does not need any
special structure to maintain a connection with any other device; UDP can
receive segments from any source as long as those packets are addressed to
the receiver in the defined communication port. This allows to have a simpler
structure than the one needed for TCP connections.

Listing 8.7 presents the main method of the UDP server class, the
UDPTestReceiver. This class uses a DatagramSocket and a temporary
DatagramPacket that receives the message obtained by the receive()
method of the datagram socket. In addition, this class also defines a tem-
porary array of bytes that is only useful for defining the size of the longest
possible payload of a datagram for this application, a boolean variable that
keeps the main cycle running, and a string variable that represents the name
of the server. This last one is useful in case there is more than one UDP socket
running.

In the construction method, the new datagram socket is created using the
communication port defined in the parameter of the function and a socket
timeout is defined to notify the lack of activity from the clients. In addition,
the name of the UDP server is received as a parameter.

In the run() method, the cycle keeps running while the boolean value of
the variable active is true. Inside the cycle the method receive() blocks
the thread until a new message arrives or when the timeout expires. Once
the message is received, the payload is dumped into a string variable which

128 Location-Based Information Systems

makes the data accessible to the application. When the cycle ends, the socket
is closed and nullified. The methods isActive() and setActive() return and
assign values to the active variable, respectively.

1 public class UDPTestReceiver extends Thread
2 {
3 DatagramSocket myUDPReceiver ;
4 boolean active = true ;
5
6 byte [] recBytes = new byte [1 5 0] ;
7 DatagramPacket receptorPacket = new DatagramPacket (recBytes , 1 50) ;
8
9 private String name ;

10
11 public UDPTestReceiver (int port , String name) throws Exception
12 {
13 myUDPReceiver = new DatagramSocket (port) ;
14 myUDPReceiver . setSoTimeout (10∗1000) ;
15 this . name = name ;
16 }
17
18
19 public void run ()
20 {
21 while (active)
22 {
23 try
24 {
25
26 myUDPReceiver . receive (receptorPacket) ;
27
28 String receivedData = new String (receptorPacket . getData

()) ;
29 Logger . getLogger (UDPTestReceiver . class . getName ()) . log (

Level . INFO , name+" UDP Received Data ->"+receivedData)
;

30 }
31 catch (SocketTimeoutException e)
32 {
33
34 }
35 catch (Exception e)
36 {
37 Logger . getLogger (UDPTestReceiver . class . getName ()) . log (

Level . SEVERE , null , e) ;
38 }
39 }
40
41 myUDPReceiver . close () ;
42 myUDPReceiver = null ;
43 }
44
45 public boolean isActive () { . . . }
46
47 public void setActive (boolean active) { . . . }
48 }

Listing 8.7: Example of the server application for UDP.

Sending and Receiving Data: Communications 129

8.3.6 A HyperText Transfer Protocol (HTTP) Example

The HTTP protocol is an application layer protocol that allows sharing
hypermedia documents based on the client-server model. The main idea be-
hind this protocol is to create a lightweight information system platform for
accessing and managing the mixture of plain text, images, video, sound, and
links to other hypermedia files that are now common in the Web. The only
assumption that HTTP does is that it works over a reliable transport layer
protocol, like TCP.

The protocol works based on a request-reply model. The most common
case of use of HTTP is when the client sends a GET message requesting a
certain element, and then it is delivered by the server. The most common
example of this case is the use of an Internet browser in which each Web page
is requested via GET messages. Another option is the POST message that
allows the user to upload content into the HTTP server, like when filling an
HTML form. The following example focus on the request of information.

The example included in this section (Listing 8.8) shows a very basic
Web browser that obtains the context of plain HTML or text files from
HTTP servers. The code, which is derived from an example found in http://
developers.sun.com/mobility/midp/articles/network/, uses an HTTP
connection to allow the application to download the content of a file, if the
size of the file is available. The URL address is obtained from a text field in
the GUI of the application; for example, http://www.page.com/index.htm.
The code includes two methods: the commandAction() method that is invoked
when the ok option is clicked on the cellular phone and the getSimplePage()
method that creates the connection and obtains the content of the remote
file. This last method is executed inside a thread in order to liberate the
commandAction() method from waiting until the communication is finished.

In a HTTP connection, there is more information about the nature of the
data being sent, like the size of the file or the type of content (MIME type), so
the user can interpret it more accurately. In this example, the size of the file
is obtained and the code reads that exact number of bytes from the server. If
the size is not known, it reads data until the server closes the communication.

1 public class BasicBrowser extends MIDlet implements CommandListener {
2
3 private boolean midletPaused = false ;
4
5 private Command exitCommand ;
6 private Command okCommand ;
7 private Form form ;
8 private StringItem stringItem ;
9 private TextField textField ;

10
11 /* *
12 * The HelloMIDlet constructor .
13 */
14 public HelloMIDlet () {
15 }
16
17 public void commandAction (Command command , Displayable displayable) {

http://www.page.com/
http://developers.sun.com/
http://developers.sun.com/

130 Location-Based Information Systems

18 if (displayable == form) {
19 if (command == exitCommand) {
20 exitMIDlet () ;
21 } else if (command == okCommand) {
22 try {
23 Thread t = new Thread () {
24 public void run () {
25 try{
26 getSimplePage (textField . getString ()) ;
27 } catch (IOException ex){
28 ex . printStackTrace () ;
29 }
30 }
31 } ;
32 t . start () ;
33 } catch (Exception e) {
34 e . printStackTrace () ;
35 }
36 }
37 }
38 }
39
40 private void getSimplePage (String url) throws IOException {
41
42 StringBuffer buffer = new StringBuffer () ;
43 InputStream the_input_stream ;
44 HttpConnection the_connection ;
45
46 try {
47 int i = 0 ;
48 long tam = 0 ;
49 int a_byte = 0 ;
50 the_connection = (HttpConnection) Connector . open (url) ;
51 the_input_stream = the_connection . openInputStream () ;
52 tam = the_connection . getLength () ;
53
54 if (tam != −1) {
55 for (i = 0 ; i < tam ; i++)
56 if ((a_byte = the_input_stream . read ()) != −1) {
57 buffer . append ((char) a_byte) ;
58 }
59 stringItem . setText ("\n The code of the webpage is :\ n" + buffer

. toString ()) ;
60 } else {
61 stringItem . setText ("\n Sorry but the entered URL is not

supported .") ;
62 }
63
64 } finally {
65 the_input_stream . close () ;
66 the_connection . close () ;
67 }
68 }

Listing 8.8: Example of an HTTP connection.

Sending and Receiving Data: Communications 131

FIGURE 8.2: Hierarchical tree of inheritance of the
javax.microedition.messaging package.

8.4 The Wireless Messaging API (WMA)

This section describes the Wireless Messaging API, which provides the
messaging capability to mobile devices using the cellular network. This API,
developed by the JSR 205 expert group, includes two widely used messag-
ing services: the Short Messaging Service (SMS), which exchanges text-only
messages, and the Multimedia Messaging Service (MMS), which extends the
capabilities of the SMS messages by allowing embedded multimedia content
in the message.

The WMA is based on the Generic Connection Framework specified
in the CLDC, as it can be seen from Figure 8.2. The following list
contains the main components of the messaging API, as defined in the
javax.microedition.messaging package:

• MessageConnection: Interface based on the basic Connection interface.
It creates the connection between two devices and allows the transmis-
sion of a message.

• Message: This interface is designed to model a basic message object.
The WMA defines three types of messages:

– BynaryMessage: This interface models a message with a binary
array of data.

– TextMessage: This interface models a text message.

– MultipartMessage: This interface defines a message that can also
carry multimedia content, or a MMS message.

• MessagePart: This class models a MultipartMessage object. This ob-
ject contains the definition of the message content according to the

132 Location-Based Information Systems

MIME standard and the data related to the content, either binary or
text.

• MessageListener: This interface defines a mechanism to notify that
a new message has arrived. The main idea behind this element is to
acknowledge the independence between the notification of the arrival
of a message and the actual reception of the message that includes
bringing the information to the device in order to avoid blocking the
MessageListener from other notifications.

Addressing in the messaging domain is different compared to the one used
in TCP or UDP because it directly depends on the type of message. For
example, the destination address in a SMS messages is identified by the num-
ber registered in the SIM card of the cellular phone, also known as the Mobile
Subscriber Integrated Services Digital Network Number (MSISDN). In the case
of MMS messages, the destination address can assume multiple formats: an
e-mail address, phone number, IPv4, or IPv6 IP addresses.

Listing 8.9 shows how to define addresses for SMS and MMS in WMA.
In both cases, it is important to identify the communication port that will
receive the message. In the case of SMS, a numeric port is required. It is
recommended to use values from the 49152–65635 range because smaller values
might have been reserved for other applications. In the case of MMS, the
application identifier is a string of up to 32 characters that uniquely identifies
your application.

1 String appID = getAppProperty (" MmsAppID ") ;
2 String address = " mms ://+555123456: " + appID ;
3 int sms_port = getAppProperty (" SmsAppCommPort ") ;
4
5 // SMS message
6 (MessageConnection) Connector . open (" sms ://+555123456 "+sms_port) ;
7
8 // MMS message
9 (MessageConnection) Connector . open (address) ;

Listing 8.9: Example of how to define addresses for SMS and MMS in WMA.

The getAppProperty() method obtains values from parameters of the
applications, which are defined in the JAD file of the application. The following
example shows how to define the application parameters:

SmsAppCommPort : 51234
MmsAppID : wma_example_app

8.4.1 A Multimedia Messaging Service Example

Listing 8.10 shows an application that sends MMS messages. The appli-
cation opens a new connection before sending every message to avoid having
an idle thread running when no messages are being sent. The sender sends a

Sending and Receiving Data: Communications 133

single-part multipart message as a basic example, which contains the location
information of the mobile device. The code assumes that there is a method
called getLocationInfo() that obtains the new location of the device from
a location provider object.

The first step is to create the connection. It is assumed that the client
opens a server connection that allows the device to send messages to different
users. Then, a new multi-part message is created, specifying the address of
the receiver, which in this case is an e-mail address. After that, the location
of the node is included in the message. Finally, the message is sent and the
connection is closed.

1 final public void sendMessage (
2 Thread th = new Thread () {
3 public void run () {
4 MessageConnection connection=null ;
5 String appID = getAppProperty (" MmsAppID ") ;
6 try
7 {
8 String address=" mms :// lbsbook@mail . usf . edu " ;
9

10 // Establishing connection
11 connection=(MessageConnection) Connector . open (" mms ://: "+appID

) ;
12
13 // Create a multipart message
14 MultipartMessage message=(MultipartMessage) connection .

newMessage (MessageConnection . MULTIPART_MESSAGE , address)
;

15
16 message . setSubject (" LOCATIONUPDATE ") ;
17
18 MessagePart locationPart=new MessagePart (getLocationInfo () .

getBytes () ,
19 " text / html " , " id :2 " , " text " , null) ;
20
21 message . addMessagePart (locationPart) ;
22
23 connection . send (message) ;
24
25 } catch (Exception e){ // Handle exception }
26
27 if (connection != null)
28 {
29 try {
30 connection . close () ;
31 } catch (Exception e){// Handle exception }
32 }
33 }
34 } ;
35 th . start () ;
36 }

Listing 8.10: Example of the construction and sending process of a MMS
message.

The synchronous version of the receiver and more information about
the WMA can be found in http://developers.sun.com/mobility/midp/
articles/wma2/.

http://developers.sun.com/

134 Location-Based Information Systems

8.5 Communications and the LBIS Tracking System
Example

This chapter describes the different communication options available in
Java ME to send and receive data over a network. It describes how to use the
reliable TCP protocol, the unreliable UDP protocol, the HTTP application
layer protocol, and the messaging service in a general way, i.e., to send and
receive any type of data. In the case of the LBIS tracking system example,
clients will use the UDP protocol to send the GPS fixes to the server. The
following sections explain two projects: A Java ME project that obtains the
mobile device’s locations and sends them to the server via UDP, and a server
application that receives the messages sent by the mobile device.

8.5.1 A Java ME Tracking MIDlet Using UDP

The first project is created using NetBeans in the following way. Open Net-
Beans, go to the menu File→ NewProject and on the left side of the dialog
box (Categories list), click on Java ME. After this, click on Mobile Application
in the Projects list. Click Next and in the following dialog box, and write down
the project’s name and location. In this example, the project’s name and loca-
tion are both CommChapter. Uncheck the Create Hello MIDlet option and click
Next. In the next dialog box, select as Emulator Platform Sun Java Wireless
Toolkit 2.5.2 for CLDC. Select CLDC-1.1 in the Device Configuration option
and MIDP-2.1 in the Device Profile option. Click Finish.

Now create the package cse.usf.edu.lbsbook.comm. In order to do this,
right click over the name of the project (CommChapter) in the Projects Window
(in the upper left side of the screen, below the toolbox, if you don’t see it,
click on the menu Window → Projects). Create a new MIDlet inside the
cse.usf.edu.lbsbook.comm package called LocationUDPExample. To create
the MIDlet, right click on the package’s name in the Projects Window and in
the menu that is shown, click New →MIDlet. Now copy the code shown in
Listing 8.11.

1 package cse . usf . edu . lbsbook . comm ;
2
3 import javax . microedition . midlet . ∗ ;
4 import javax . microedition . lcdui . ∗ ;
5
6 // Packages for Location API
7 import javax . microedition . location . LocationException ;
8 import javax . microedition . location . Coordinates ;
9 import javax . microedition . location . Criteria ;

10 import javax . microedition . location . LocationProvider ;
11
12 // Packages for Communication
13 import java . io . OutputStream ;
14 import javax . microedition . io . Connector ;
15 import javax . microedition . io . Datagram ;

Sending and Receiving Data: Communications 135

16 import javax . microedition . io . SocketConnection ;
17 import javax . microedition . io . UDPDatagramConnection ;
18
19 public class LocationUDPExample extends MIDlet implements

CommandListener {
20 private boolean midletPaused = false ;
21 private boolean midletStopped = false ;
22
23 private LocationProvider lp ;
24 private Thread myThread ;
25
26 private UDPDatagramConnection datagramConnection ;
27 protected SocketConnection sockConn ;
28 protected OutputStream outstream ;
29
30 String serv_address = " 127.0.0.1 " ;
31 String serv_port = " 2029 " ;
32
33 private Command exitCommand ;
34 private Command okCommand ;
35 private Display display ;
36 private TextField textField ;
37 private Form form ;
38
39 public LocationUDPExample () {
40 form = new Form (" Send Location info via UDP ") ;
41 String t = " This is a Test on Sending locations via UDP " ;
42 form . append (t) ;
43 display = getDisplay () ;
44 okCommand = new Command (" Send " , Command . SCREEN , 1) ;
45 exitCommand = new Command (" Exit " , Command . SCREEN , 2) ;
46
47 textField = new TextField (" Information Sent " , "" , 30 , TextField .

ANY) ;
48
49 form . addCommand (okCommand) ;
50 form . addCommand (exitCommand) ;
51 form . setCommandListener (this) ;
52
53 form . append (textField) ;
54 }
55
56 private void initialize () {
57 // Include these lines inside the initialize method
58 Criteria cr = new Criteria () ;
59 cr . setHorizontalAccuracy (30) ;
60 try {
61 lp = LocationProvider . getInstance (cr) ;
62 }
63 catch (Exception ex)
64 {
65 java . lang . System . out . println (" Error getting Location Provider

: " + ex) ;
66 }
67 }
68
69 public void commandAction (Command command , Displayable displayable

){
70 if (displayable == form){
71 if (command == exitCommand){
72 destroyApp (false) ;
73 notifyDestroyed () ;
74 }
75 else if (command == okCommand){
76 myThread = new Thread () { public void run () {
77 try {
78 updateLocation () ;

136 Location-Based Information Systems

79 }
80 catch (Exception ex){
81
82 }
83 }} ;
84 myThread . start () ;}
85 }
86 }
87
88 public Display getDisplay () {
89 return Display . getDisplay (this) ;
90 }
91
92 public void exitMIDlet () {
93 destroyApp (true) ;
94 notifyDestroyed () ;
95 }
96
97 public void startApp () {
98 if (midletPaused) {
99 resumeMIDlet () ;

100 } else {
101 initialize () ;
102 startMIDlet () ;
103 }
104 midletPaused = false ;
105 }
106
107 public void resumeMIDlet () {
108 midletPaused = false ;
109 }
110 public void startMIDlet () {
111 display . setCurrent (form) ;
112 }
113 public void pauseApp () {
114 midletPaused = true ;
115 }
116
117 public void destroyApp (boolean unconditional) {
118 midletStopped = true ;
119 }
120
121 public void udpLocationSend (String location) throws Exception {
122 // Sending the location data using UDP
123 if (datagramConnection == null){
124 datagramConnection = (UDPDatagramConnection) Connector .

open (" datagram :// " + serv_address + ":" + serv_port) ;
125 }
126 byte [] data = location . getBytes () ;
127 Datagram dg = datagramConnection . newDatagram (data , data . length

) ;
128
129 datagramConnection . send (dg) ;
130 datagramConnection . close () ;
131 datagramConnection = null ;
132 }
133
134 public void updateLocation () throws Exception
135 {
136 try {
137 javax . microedition . location . Location l = lp . getLocation (30)

;
138 Coordinates c = l . getQualifiedCoordinates () ;
139 if (c != null)
140 {
141 try
142 {

Sending and Receiving Data: Communications 137

143 String sentString = ""+c . getLatitude ()+" -"+c .
getLongitude ()+" -"+ System . currentTimeMillis ()+" -"
;

144 udpLocationSend (sentString) ;
145 textField . setString (sentString) ;
146 }
147 catch (Exception ex)
148 {
149 }
150 }
151 }
152 catch (LocationException ex)
153 {
154 ex . printStackTrace () ;
155 } catch (InterruptedException ex)
156 {
157 ex . printStackTrace () ;
158 }
159 }
160 }

Listing 8.11: A tracking MIDLet example using the UDP protocols

When the user selects the Send command, the application obtains the
last location from the LocationProvider and sends it along with the current
time of the device in the updateLocation() method. The information sent to
the server is also shown in a textfield. In order to test this, run the emulator
and load a location file by clicking in the menu MIDlet → External events
and then in the window that appears, go to the Location tab and click on
the Browser button. Select the xml file with the locations and click Open.
Then in the location tab click the green play button. Now every time the user
presses the Send command (lower right side of the emulator’s phone screen),
the location sent should appear in the text field. This code assumes that the
UDP server is in the same machine (listening in the local address 127.0.0.1)
and uses the UDP port 2029.

8.5.2 Server-Side Application

This section explains the server side project to be deployed in the Sun
Java Application Server. It is assumed that the reader has installed the Sun
Java Application Server and registered it with the NetBeans IDE. Specific
information on how to perform these tasks can be found in Appendix A.

The first step is to create an application to be deployed in the Sun
Java Application Server. To do this, open NetBeans and go to the menu
File → NewProject. In the dialog box, on the left side of the dialog box
(Categories list), click on Java Web and after this, click on Web Application
in the Projects list. Click Next and in the dialog box write the name of the
project as ServerExample, choose the registered Sun Java Application Server
to deploy the project, and click Next and Finish.

Create a new package called cse.usf.edu.lbsbook.comm and create in
this package three classes with the code shown in Listings 8.4, 8.5, and 8.7.

138 Location-Based Information Systems

Please remember that the code shown in Listing 8.5 is complete when you
write the protected class shown in Listing 8.6.

The last step involves the registration of the ListenerManager class in the
application’s descriptor. To do this, double-click on the web.xml file in your
NetBeans’ project (it should be under Configuration files in the Project’s tree).
Then on the General Tab, look for Web Application Listeners and click on the
Add button. Look for the ListenerManager class and click Ok. Click now on
the Save button in the toolbox to save the changes to the xml file.

A Web listener is needed because in these types of projects there
are no main() methods. When the Web application loads/unloads, the
ServletContextListener interface allows you to initialize and start the TCP
and UDP server classes. At this point, build and deploy your application.

Now, run your Java ME client and start sending locations to the server. If
everything works as expected, you should see the incoming data in the server’s
log, which is visible in NetBeans in the output window or inside the server
console (in your Web browser).

Chapter 9

Java ME Web Services

9.1 Introduction

This chapter provides an overview of Web services and describes the Java
Platform Micro Edition (Java ME) Web Services API (WSA) to support Web
services in resource-constrained devices, such as cellular telephones, PDAs,
and the like.

9.2 An Overview of Web Services

Web services were created to allow any networked client find applications
located anywhere in the Internet and use them as if they were locally installed
applications, regardless of the platform and architecture where these applica-
tions were created and deployed. In order for this concept to be a reality,
several rules were put in place so that a client application located in Tampa
could actually access and use a Web service in a machine located in Spain.
These rules pertain to the following four critical aspects:

1. Web service application development and deployment: Applica-
tion developers need to develop and deploy their applications (services)
in such a way that they can be accessed and used by all clients. The
nature of the Java language and the use of the Java Platform Enterprise
Edition (Java EE) for the development and deployment of applications
address this aspect.

2. Describing Web services: This second aspect defines how remote
services are described, which is included in the Web Services Definition
Language (WSDL) specification 1.1. For example, a WSDL file describes
the service itself, what it does, how to use its methods, and where it can
be found in the Internet.

3. Finding Web services: The third aspect has to do with finding services
over the Internet. This aspect was solved by the creation of the Universal

139

140 Location-Based Information Systems

FIGURE 9.1: The Web services paradigm.

Description, Discovery, and Integration (UDDI) registry, a centralized
registry used by developers to post their services and by clients to find
them.

4. Connecting and using Web services: This fourth aspect includes
the use of specific protocols and markup languages to connect clients to
Web services providers and exchange information. Among them are the
HTTP protocol, the Simple Object Access Protocol (SOAP), the Remote
Procedure Call (RPC), and the eXtensible Markup Language (XML).

Figure 9.1 shows the steps and entities involved in the creation and use of
Web services. The entire process begins when the service provider or developer
who designs the Web service application creates the XML-based WSDL doc-
ument, registers the Web service in the UDDI registry, and finally makes the
service available in its Web server. The UDDI registry, as explained before, is a
repository of WSDL files that clients use to find Web services. The client goes
to the registry and downloads the WSDL file of the Web service that provides
the functionality of interest. The developer of the client uses the WSDL file
to generate a stub that contains the code needed by the client application to
make calls to the remote Web service. This code, which is added to the client
application, handles all messaging details between the client and the server as
well as the response to the client application. The stub is a very important

Java ME Web Services 141

piece of the application because it hides all communication details from the
programmer. For example, the stub sets up an HTTP connection with the
remote server and sends a remote procedure call over the HTTP connection
using the Simple Object Access Protocol (SOAP). Normally, the stub code is
automatically generated by a stub generator.

Two of the most important features of Web services is that 1) they use
standard protocols and mechanisms that are currently in use in the Inter-
net, and 2) the fact that the stub code hides from the programmer all the
complexities of connections and data transmissions between client and server.
On the down side, Web services introduce several inefficiencies since XML
and SOAP require respectable processing power and memory and extra band-
width due to excessive protocol overhead. This is particularly important for
resource-constrained devices sending data over bandwidth-limited communi-
cations channels.

9.3 The Web Services API (WSA)

Given the success of Web services in powerful, wired computers, the JSR
172 expert group also developed an API to support Web services on resource-
constrained devices using the Java Platform Micro Edition (Java ME) based
on the Connected Device Configuration (CDC) and the Connected Limited
Device Configuration (CLDC 1.0 and CLDC 1.1).

The WSA includes two optional packages to the Java ME platform. The
first one is the Java API for XML-based RPC (JAX-RPC) package, which
allows mobile devices to access remote XML-based Web services. JAX-RPC
is a Java API for interacting with SOAP-based Web services. This package,
which is a subset of the JAX-RPC specification for the Java SE platform, is
a remote procedure call implementation in the Java programming language.

The second package, Java API for XML Processing (JAXP), adds XML
parsing capabilities to the platform. Given the widely use of XML-structured
data for clients to interact with servers over the Internet, it makes sense to
include an optional package that provides this parsing capability for all ap-
plications instead of adding the same code in each application. This package
is a subset of the JSR 063 Java API for XML Processing (JAXP) that meets
platform size and performance requirements.

The entire process and components of the WSA are shown in Figure 9.2.
A MIDlet running on top of the MIDP and CLDC makes use of the JAXP
API to handle XML documents. The same application uses the JAX-RPC
API to access a Web service over the network utilizing the stub and the
Service Provider Interface (SPI) of the runtime. It is worth mentioning that
the application only interacts with the stub; the stub interacts with the SPI
and runtime on behalf of the application.

142 Location-Based Information Systems

FIGURE 9.2: The entire process and components of the Web services API.

9.3.1 The JAX-RPC Package

This API includes the javax.microedition.xml.rpc, javax.xml.rpc,
javax.xml.namespace, and javax.rmi subset of packages, which contain all
the classes and interfaces that make up the stub, SPI, and runtime.

The stub makes requests to the runtime and receives service responses
through the service provider interface. Once the stub is generated from the
WSDL description of the service, the application has to instantiate an instance
of the stub by creating a new instance of the stub class generated by the stub
generator. This instance of the stub is then used to perform the following
functions:

• Set the properties of the stub to invoke an RPC. The stub calls the
setProperty() method of the Operation class to set property values
for an RPC invocation. The stub is also responsible to make appropri-
ate format conversions of the values. The following property values are
defined:

– Stub.ENDPOINT ADDRESS PROPERTY: Address of the service end-
point.

– Stub.PASSWORD PROPERTY: Password for authentication purposes.

Java ME Web Services 143

– Stub.USERNAME PROPERTY: Username for authentication purposes.

– Stub.SESSION MAINTAIN PROPERTY: Indicates if a client wants to
participate in a session with a service endpoint.

– Operation.SOAPACTION URI PROPERTY: Uniform Resource Identi-
fier (URI) to use for HTTP SOAPAction header

• Create objects describing the input and return parameters. The classes
Type, Element, and ComplexType are used by the stub to describe the
input and return parameter of an operation with the runtime.

• Create an Operation object representing an invocation of an RPC. The
stub uses the Operation class to describe an RPC invocation to the
runtime.

• Encode the input parameter values. The parameters being passed to the
runtime are encoded in an array of Object.

• Invoke the RPC. The invoke method is utilized by the stub to execute
an RPC. The Object array contains the parameter values of the call.

• Decode the return parameter values. The return values received in the
Object array are decoded and passed back to the calling application.

The runtime contains all the functionality needed to transfer data to and
from the server in a completely transparent manner. In other words, the
method and its arguments are encoded and sent, and then received and de-
coded by the stub and the runtime on behalf of the application. Normally,
the MIDlet and the stub reside in the device’s memory, but the runtime, all
JSR 172 components, and Java ME platform components, are embedded in
the device.

9.3.2 The JAXP Package

This API includes the javax.xml.parsers, org.xmal.sax.helpers, and
org.xmal.sax subset of packages that are used to parse XML documents.

9.4 A Web Service Example

This section describes how to develop and deploy a simple Web service
that makes simple calculations. The idea is to develop a client application for
the mobile device that will ask the user to enter two parameters and the type
of operation to perform. The parameters are integer numbers and the valid
operations are sum, subtraction, multiplication, and division. Upon receiving

144 Location-Based Information Systems

the inputs from the user, the client application will invoke a Web service that
resides in a specific server and pass the input parameters and operation. The
Web service will perform the calculation and send the result back to the client,
which will be shown in the screen.

The Web service development process is very much automated in Net-
Beans. The calculator Web service example described above will be developed
in two parts. First, the Web service will be created; then, the MIDlet.

9.4.1 Web Service Creation

The first step is to create a new project in NetBeans. Open NetBeans
and click on File→NewProject... From the Categories list, select Web, and
from the Projects list, select Web Application. Write in the name of your
project, and click Next and Finish. The second step is to create a pack-
age for the project. For this, select the project just created from the list of
projects in the Project’s tab and right click on it. Select New→Java Package,
write in the name and click Finish. Once the project and package are cre-
ated, the third step is to create the Web service. For this, select the project,
right click on it, and select New→Web Service. Write in the name of the Web
service, select the package just created, and click Finish. In our example,
the name of the project is LbsBook and the name given to the Web ser-
vice is ServerCalculatorService. After that, the default configuration page
appears to define the operations of the Web service. In our example, these
operations are sum, subtraction, multiplication, and division, and the input
and output parameters are of type integer. Click on the Add Operation button
to define the operations and parameters. At the end, you should have a screen
like the one shown in Figure 9.3.

Once the operations and parameters are set, you can click on the Source
button to leave the design screen and see the code that NetBeans automati-
cally creates for you. As you can see from Figure 9.4, NetBeans creates almost
all the code for you; further, it indicates where you need to include the ad-
ditional code needed to implement your functions (sum, subtract, multiply,
divide). The figure shows only the code needed to implement the sum function.

Once the code of your functions is included, save the changes, and right
click on the service to Clean and Build your project and then repeat it
to Undeploy and Deploy it. As part of these processes, NetBeans creates
the WSDL file automatically for you. Listing 9.1 shows part of the WSDL
file of the calculator Web service. The WSDL file is automatically saved
in the http://IPadd:port/ProjectName/WebServiceName?wsdl link, where
IPadd is the IP address of the machine, port is the port number defined for
Glassfish, ProjectName of your project, and WebServiceName is the name of
your Web service. The entire path can be found in NetBeans by right click-
ing on the service and choosing Properties. In our case, the entire path is
http://localhost:12796/LbsBook/ServerCalculatorService?wsdl.

http://localhost:12796/
http://IPadd:port/

Java ME Web Services 145

FIGURE 9.3: Definition of Web service operations and parameters.

FIGURE 9.4: The Web service implementation code.

146 Location-Based Information Systems

This ends the Web service creation process. Now, it is the time to develop
the MIDlet that will be installed and run in the mobile device, the client of
the Web service calculator.

1 <?xml version=”1.0” encoding=”UTF−8” ?>
2 <!−− Published by JAX−WS RI at http : // jax−ws . dev . java . net . RI ’ s

version is
3 JAX−WS RI 2.1 .3 .1− hudson−417−SNAPSHOT .
4 −−>
5 <!−− Generated by JAX−WS RI at http : // jax−ws . dev . java . net . RI ’ s

version is
6 JAX−WS RI 2.1 .3 .1− hudson−417−SNAPSHOT .
7 −−>
8 <definitions xmlns : wsu=”http : // docs . oasis−open . org / wss /2004/01/ oasis

−200401−wss−
9 wssecurity−utility −1.0. xsd ” xmlns : soap=”http : // schemas . xmlsoap . org /

wsdl / soap /”
10 xmlns : tns=”http : // services . client . book . edu . usf . cse /” xmlns : xsd=”http

: // www . w3 . org /2001/ XMLSchema ”
11 xmlns=”http : // schemas . xmlsoap . org / wsdl /” targetNamespace=”http : //

services . client . book . edu . usf . cse /”
12 name=”ServerCalculatorService”>
13 − <types>
14 − <xsd : schema>
15 <xsd : import namespace=”http : // services . client . book . edu . usf . cse /”
16 schemaLocation=”http : // localhost :12796/ LbsBook /

ServerCalculatorService ? xsd=1” />
17 </xsd : schema>
18 </types>
19 − <message name=”calculateSum”>
20 <part name=”parameters ” element=”tns : calculateSum ” />
21 </message>
22 − <message name=”calculateSumResponse”>
23 <part name=”parameters ” element=”tns : calculateSumResponse ” />
24 </message>
25 − <message name=”calculateSub”>
26 <part name=”parameters ” element=”tns : calculateSub ” />
27 </message>
28 . . .

Listing 9.1: The WSDL file of the calculator Web service.

9.4.2 MIDlet Creation

In order to create the MIDlet, create a new project using the Mobility
option and the MIDP Application option in NetBeans. Write in the name and
click Finish. As before, create a new Java package for the project just created.
To do this, right click on the project name, select New Java Package, write in
its name and click Finish. Now, select Project and right click on it to select
New Java ME Web Service Client. In the same screen, provide the URL of the
WSDL document that NetBeans created for you when you finished creating
the server part (see last section). Based on this WSDL document, NetBeans
maps the WSDL definitions to Java representation and the XML data types
to Java types to create a skeleton application for you. The skeleton code, along
with the additional code that needs to be included so that the MIDlet gets the
data (operands) and command from the user and sends them to the service
using the stub interface, is included in Listing 9.2.

Java ME Web Services 147

FIGURE 9.5: Design of the calculator MIDlet.

At this time, you should see a screen like the one shown in Figure 9.5,
which shows the Flow screen in NetBeans to design the flow of tasks for
the calculator example. As it can be seen, upon starting the MIDlet, it goes
directly to show the form to the user, and the form has two commands, one
that implements the Add operation and one for the Subtract operation. The
form is shown in Figure 9.6. Once the MIDlet is ready and run, it should look
like the one shown in Figure 9.7.

1 package edu . cse . usf . book . ws ;
2
3 import java . rmi . RemoteException ;
4 import javax . microedition . midlet . ∗ ;
5 import javax . microedition . lcdui . ∗ ;
6
7 public class CalculatorWebService extends MIDlet implements

CommandListener {
8
9 private boolean midletPaused = false ;

10
11 //<editor−fold defaultstate=”collapsed ” desc=” Generated Fields ”>
12 private Form form ;
13 private TextField textField ;
14 private TextField textField1 ;
15 private TextField textField2 ;
16 private Command okCommand ;
17 private Command okCommand1 ;
18 //</editor−fold>
19
20 /∗∗
21 ∗ The CalculatorWebService constructor .
22 ∗/
23 public CalculatorWebService () {
24 }
25
26 //<editor−fold defaultstate=”collapsed ” desc=” Generated Methods

”>
27 //</editor−fold>
28

148 Location-Based Information Systems

FIGURE 9.6: Design of the calculator form.

29 //<editor−fold defaultstate=”collapsed ” desc=” Generated Method :
initialize ”>

30 /∗∗
31 ∗ Initilizes the application .
32 ∗ It is called only once when the MIDlet is started . The method

is called before the <code>startMIDlet </code> method .
33 ∗/
34 private void initialize () {
35 // write pre−initialize user code here
36
37 // write post−initialize user code here
38 }
39 //</editor−fold>
40
41 //<editor−fold defaultstate=”collapsed ” desc=” Generated Method :

startMIDlet ”>
42 /∗∗
43 ∗ Performs an action assigned to the Mobile Device − MIDlet

Started point .
44 ∗/
45 public void startMIDlet () {
46 // write pre−action user code here
47 switchDisplayable (null , getForm ()) ;
48 // write post−action user code here
49 }
50 //</editor−fold>
51

Java ME Web Services 149

FIGURE 9.7: The calculator MIDlet.

52 //<editor−fold defaultstate=”collapsed ” desc=” Generated Method :
resumeMIDlet ”>

53 /∗∗
54 ∗ Performs an action assigned to the Mobile Device − MIDlet

Resumed point .
55 ∗/
56 public void resumeMIDlet () {
57 // write pre−action user code here
58
59 // write post−action user code here
60 }
61 //</editor−fold>
62
63 //<editor−fold defaultstate=”collapsed ” desc=” Generated Method :

switchDisplayable ”>
64 /∗∗
65 ∗ Switches a current displayable in a display . The <code>display

</code> instance is taken from <code>getDisplay </code> method
. This method is used by all actions in the design for
switching displayable .

66 ∗ @param alert the Alert which is temporarily set to the display ;
if <code>null</code >, then <code>nextDisplayable </code> is

set immediately
67 ∗ @param nextDisplayable the Displayable to be set

150 Location-Based Information Systems

68 ∗/
69 public void switchDisplayable (Alert alert , Displayable

nextDisplayable) {
70 // write pre−switch user code here
71 Display display = getDisplay () ;
72 if (alert == null) {
73 display . setCurrent (nextDisplayable) ;
74 } else {
75 display . setCurrent (alert , nextDisplayable) ;
76 }
77 // write post−switch user code here
78 }
79 //</editor−fold>
80
81 //<editor−fold defaultstate=”collapsed ” desc=” Generated Getter :

form ”>
82 /∗∗
83 ∗ Returns an initiliazed instance of form component .
84 ∗ @return the initialized component instance
85 ∗/
86 public Form getForm () {
87 if (form == null) {
88 // write pre−init user code here
89 form = new Form (” form ” , new Item [] { getTextField () ,

getTextField1 () , getTextField2 () }) ;
90 form . addCommand (getOkCommand ()) ;
91 form . addCommand (getOkCommand1 ()) ;
92 form . setCommandListener (this) ;
93 // write post−init user code here
94 }
95 return form ;
96 }
97 //</editor−fold>
98
99 //<editor−fold defaultstate=”collapsed ” desc=” Generated Method :

commandAction for Displayables ”>
100 /∗∗
101 ∗ Called by a system to indicated that a command has been invoked

on a particular displayable .
102 ∗ @param command the Command that was invoked
103 ∗ @param displayable the Displayable where the command was

invoked
104 ∗/
105 public void commandAction (Command command , Displayable displayable

) {
106 // write pre−action user code here
107 if (displayable == form) {
108 if (command == okCommand) {
109 // write pre−action user code here
110
111 // write post−action user code here
112
113 Runnable theInvoker = new Runnable () {
114 public void run () {
115 int op1 = Integer . parseInt (textField .

getString ()) ;
116 int op2 = Integer . parseInt (textField1 .

getString ()) ;
117 ServerCalculatorService_Stub

remoteCalculator = new
ServerCalculatorService_Stub () ;

118 int op3 ;
119 try
120 {
121 op3 = remoteCalculator . calculateSum (

op1 , op2) ;
122 textField2 . setString (””+ op3) ;

Java ME Web Services 151

123 }
124 catch (RemoteException ex) {
125 ex . printStackTrace () ;
126 textField2 . setString (ex . getMessage ()) ;
127 }
128 }
129 } ;
130
131 Thread t = new Thread (theInvoker) ;
132 t . start () ;
133 } else if (command == okCommand1) {
134 // write pre−action user code here
135
136 // write post−action user code here
137 }
138 }
139 // write post−action user code here
140 }
141 //</editor−fold>
142
143 //<editor−fold defaultstate=”collapsed ” desc=” Generated Getter :

textField ”>
144 /∗∗
145 ∗ Returns an initiliazed instance of textField component .
146 ∗ @return the initialized component instance
147 ∗/
148 public TextField getTextField () {
149 if (textField == null) {
150 // write pre−init user code here
151 textField = new TextField (” Operand 1” , null , 32 , TextField

. ANY) ;
152 // write post−init user code here
153 }
154 return textField ;
155 }
156 //</editor−fold>
157
158 //<editor−fold defaultstate=”collapsed ” desc=” Generated Getter :

textField1 ”>
159 /∗∗
160 ∗ Returns an initiliazed instance of textField1 component .
161 ∗ @return the initialized component instance
162 ∗/
163 public TextField getTextField1 () {
164 if (textField1 == null) {
165 // write pre−init user code here
166 textField1 = new TextField (” Operand 2” , null , 32 ,

TextField . ANY) ;
167 // write post−init user code here
168 }
169 return textField1 ;
170 }
171 //</editor−fold>
172
173 //<editor−fold defaultstate=”collapsed ” desc=” Generated Getter :

textField2 ”>
174 /∗∗
175 ∗ Returns an initiliazed instance of textField2 component .
176 ∗ @return the initialized component instance
177 ∗/
178 public TextField getTextField2 () {
179 if (textField2 == null) {
180 // write pre−init user code here
181 textField2 = new TextField (” Result ” , null , 32 , TextField .

ANY) ;
182 // write post−init user code here
183 }

152 Location-Based Information Systems

184 return textField2 ;
185 }
186 //</editor−fold>
187
188 //<editor−fold defaultstate=”collapsed ” desc=” Generated Getter :

okCommand ”>
189 /∗∗
190 ∗ Returns an initiliazed instance of okCommand component .
191 ∗ @return the initialized component instance
192 ∗/
193 public Command getOkCommand () {
194 if (okCommand == null) {
195 // write pre−init user code here
196 okCommand = new Command (” Add ” , Command . OK , 0) ;
197 // write post−init user code here
198 }
199 return okCommand ;
200 }
201 //</editor−fold>
202
203 //<editor−fold defaultstate=”collapsed ” desc=” Generated Getter :

okCommand1 ”>
204 /∗∗
205 ∗ Returns an initiliazed instance of okCommand1 component .
206 ∗ @return the initialized component instance
207 ∗/
208 public Command getOkCommand1 () {
209 if (okCommand1 == null) {
210 // write pre−init user code here
211 okCommand1 = new Command (” Substract ” , Command . OK , 0) ;
212 // write post−init user code here
213 }
214 return okCommand1 ;
215 }
216 //</editor−fold>
217
218 /∗∗
219 ∗ Returns a display instance .
220 ∗ @return the display instance .
221 ∗/
222 public Display getDisplay () {
223 return Display . getDisplay (this) ;
224 }
225
226 /∗∗
227 ∗ Exits MIDlet .
228 ∗/
229 public void exitMIDlet () {
230 switchDisplayable (null , null) ;
231 destroyApp (true) ;
232 notifyDestroyed () ;
233 }
234
235 /∗∗
236 ∗ Called when MIDlet is started .
237 ∗ Checks whether the MIDlet have been already started and

initialize / starts or resumes the MIDlet .
238 ∗/
239 public void startApp () {
240 if (midletPaused) {
241 resumeMIDlet () ;
242 } else {
243 initialize () ;
244 startMIDlet () ;
245 }
246 midletPaused = false ;
247 }

Java ME Web Services 153

248
249 /∗∗
250 ∗ Called when MIDlet is paused .
251 ∗/
252 public void pauseApp () {
253 midletPaused = true ;
254 }
255
256 /∗∗
257 ∗ Called to signal the MIDlet to terminate .
258 ∗ @param unconditional if true , then the MIDlet has to be

unconditionally terminated and all resources has to be
released .

259 ∗/
260 public void destroyApp (boolean unconditional) {
261 }
262
263 }

Listing 9.2: The entire Web service client.

As said before, the stub is automatically generated by a stub generator,
which in this case is included in NetBeans. This stub handles the communica-
tion part with the server hiding all these details from the program developer.
Listing 9.3 shows the stub for the calculator example.

1 import javax . xml . rpc . JAXRPCException ;
2 import javax . xml . namespace . QName ;
3 import javax . microedition . xml . rpc . Operation ;
4 import javax . microedition . xml . rpc . Type ;
5 import javax . microedition . xml . rpc . ComplexType ;
6 import javax . microedition . xml . rpc . Element ;
7
8 public class ServerCalculatorService_Stub implements

ServerCalculatorService , javax . xml . rpc . Stub {
9

10 private String [] _propertyNames ;
11 private Object [] _propertyValues ;
12
13 public ServerCalculatorService_Stub () {
14 _propertyNames = new String [] { ENDPOINT_ADDRESS_PROPERTY } ;
15 _propertyValues = new Object [] { ” http : // localhost :12796/

LbsBook / ServerCalculatorService ” } ;
16 }
17
18 public void _setProperty (String name , Object value) {
19 int size = _propertyNames . length ;
20 for (int i = 0 ; i < size ; ++i) {
21 if (_propertyNames [i] . equals (name)) {
22 _propertyValues [i] = value ;
23 return ;
24 }
25 }
26 String [] newPropNames = new String [size + 1] ;
27 System . arraycopy (_propertyNames , 0 , newPropNames , 0 , size) ;
28 _propertyNames = newPropNames ;
29 Object [] newPropValues = new Object [size + 1] ;
30 System . arraycopy (_propertyValues , 0 , newPropValues , 0 , size) ;
31 _propertyValues = newPropValues ;
32
33 _propertyNames [size] = name ;
34 _propertyValues [size] = value ;
35 }
36

154 Location-Based Information Systems

37 public Object _getProperty (String name) {
38 for (int i = 0 ; i < _propertyNames . length ; ++i) {
39 if (_propertyNames [i] . equals (name)) {
40 return _propertyValues [i] ;
41 }
42 }
43 if (ENDPOINT_ADDRESS_PROPERTY . equals (name) | |

USERNAME_PROPERTY . equals (name) | | PASSWORD_PROPERTY . equals
(name)) {

44 return null ;
45 }
46 if (SESSION_MAINTAIN_PROPERTY . equals (name)) {
47 return new Boolean (false) ;
48 }
49 throw new JAXRPCException (” Stub does not recognize property : ”

+ name) ;
50 }
51
52 protected void _prepOperation (Operation op) {
53 for (int i = 0 ; i < _propertyNames . length ; ++i) {
54 op . setProperty (_propertyNames [i] , _propertyValues [i] .

toString ()) ;
55 }
56 }
57
58 public int calculateMul (int op1 , int op2) throws java . rmi .

RemoteException {
59 Object inputObject [] = new Object [] {
60 new Integer (op1) ,
61 new Integer (op2)
62 } ;
63
64 Operation op = Operation . newInstance (

_qname_operation_calculateMul , _type_calculateMul ,
_type_calculateMulResponse) ;

65 _prepOperation (op) ;
66 op . setProperty (Operation . SOAPACTION_URI_PROPERTY , ””) ;
67 Object resultObj ;
68 try {
69 resultObj = op . invoke (inputObject) ;
70 } catch (JAXRPCException e) {
71 Throwable cause = e . getLinkedCause () ;
72 if (cause instanceof java . rmi . RemoteException) {
73 throw (java . rmi . RemoteException) cause ;
74 }
75 throw e ;
76 }
77
78 return ((Integer) ((Object []) resultObj) [0]) . intValue () ;
79 }
80
81 public int calculateSub (int op1 , int op2) throws java . rmi .

RemoteException {
82 Object inputObject [] = new Object [] {
83 new Integer (op1) ,
84 new Integer (op2)
85 } ;
86
87 Operation op = Operation . newInstance (

_qname_operation_calculateSub , _type_calculateSub ,
_type_calculateSubResponse) ;

88 _prepOperation (op) ;
89 op . setProperty (Operation . SOAPACTION_URI_PROPERTY , ””) ;
90 Object resultObj ;
91 try {
92 resultObj = op . invoke (inputObject) ;
93 } catch (JAXRPCException e) {

Java ME Web Services 155

94 Throwable cause = e . getLinkedCause () ;
95 if (cause instanceof java . rmi . RemoteException) {
96 throw (java . rmi . RemoteException) cause ;
97 }
98 throw e ;
99 }

100
101 return ((Integer) ((Object []) resultObj) [0]) . intValue () ;
102 }
103
104 public int calculateDiv (int op1 , int op2) throws java . rmi .

RemoteException {
105 Object inputObject [] = new Object [] {
106 new Integer (op1) ,
107 new Integer (op2)
108 } ;
109
110 Operation op = Operation . newInstance (

_qname_operation_calculateDiv , _type_calculateDiv ,
_type_calculateDivResponse) ;

111 _prepOperation (op) ;
112 op . setProperty (Operation . SOAPACTION_URI_PROPERTY , ””) ;
113 Object resultObj ;
114 try {
115 resultObj = op . invoke (inputObject) ;
116 } catch (JAXRPCException e) {
117 Throwable cause = e . getLinkedCause () ;
118 if (cause instanceof java . rmi . RemoteException) {
119 throw (java . rmi . RemoteException) cause ;
120 }
121 throw e ;
122 }
123
124 return ((Integer) ((Object []) resultObj) [0]) . intValue () ;
125 }
126
127 public int calculateSum (int op1 , int op2) throws java . rmi .

RemoteException {
128 Object inputObject [] = new Object [] {
129 new Integer (op1) ,
130 new Integer (op2)
131 } ;
132
133 Operation op = Operation . newInstance (

_qname_operation_calculateSum , _type_calculateSum ,
_type_calculateSumResponse) ;

134 _prepOperation (op) ;
135 op . setProperty (Operation . SOAPACTION_URI_PROPERTY , ””) ;
136 Object resultObj ;
137 try {
138 resultObj = op . invoke (inputObject) ;
139 } catch (JAXRPCException e) {
140 Throwable cause = e . getLinkedCause () ;
141 if (cause instanceof java . rmi . RemoteException) {
142 throw (java . rmi . RemoteException) cause ;
143 }
144 throw e ;
145 }
146
147 return ((Integer) ((Object []) resultObj) [0]) . intValue () ;
148 }
149
150 protected static final QName _qname_operation_calculateDiv = new

QName (” http : // services . client . book . edu . usf . cse /” , ”
calculateDiv ”) ;

151 protected static final QName _qname_operation_calculateSub = new

156 Location-Based Information Systems

QName (” http : // services . client . book . edu . usf . cse /” , ”
calculateSub ”) ;

152 protected static final QName _qname_operation_calculateSum = new
QName (” http : // services . client . book . edu . usf . cse /” , ”
calculateSum ”) ;

153 protected static final QName _qname_operation_calculateMul = new
QName (” http : // services . client . book . edu . usf . cse /” , ”
calculateMul ”) ;

154 protected static final QName _qname_calculateMulResponse = new
QName (” http : // services . client . book . edu . usf . cse /” , ”
calculateMulResponse ”) ;

155 protected static final QName _qname_calculateDiv = new QName (”
http : // services . client . book . edu . usf . cse /” , ” calculateDiv ”) ;

156 protected static final QName _qname_calculateSub = new QName (”
http : // services . client . book . edu . usf . cse /” , ” calculateSub ”) ;

157 protected static final QName _qname_calculateSum = new QName (”
http : // services . client . book . edu . usf . cse /” , ” calculateSum ”) ;

158 protected static final QName _qname_calculateDivResponse = new
QName (” http : // services . client . book . edu . usf . cse /” , ”
calculateDivResponse ”) ;

159 protected static final QName _qname_calculateMul = new QName (”
http : // services . client . book . edu . usf . cse /” , ” calculateMul ”) ;

160 protected static final QName _qname_calculateSubResponse = new
QName (” http : // services . client . book . edu . usf . cse /” , ”
calculateSubResponse ”) ;

161 protected static final QName _qname_calculateSumResponse = new
QName (” http : // services . client . book . edu . usf . cse /” , ”
calculateSumResponse ”) ;

162 protected static final Element _type_calculateDivResponse ;
163 protected static final Element _type_calculateSum ;
164 protected static final Element _type_calculateMul ;
165 protected static final Element _type_calculateSubResponse ;
166 protected static final Element _type_calculateDiv ;
167 protected static final Element _type_calculateSub ;
168 protected static final Element _type_calculateSumResponse ;
169 protected static final Element _type_calculateMulResponse ;
170
171 static {
172 _type_calculateMulResponse = new Element (

_qname_calculateMulResponse , _complexType (new Element [] {
173 new Element (new QName (”” , ” return ”) , Type . INT) }) , 1 ,

1 , false) ;
174 _type_calculateDiv = new Element (_qname_calculateDiv ,

_complexType (new Element [] {
175 new Element (new QName (”” , ” op1 ”) , Type . INT) ,
176 new Element (new QName (”” , ” op2 ”) , Type . INT) }) , 1 , 1 ,

false) ;
177 _type_calculateSub = new Element (_qname_calculateSub ,

_complexType (new Element [] {
178 new Element (new QName (”” , ” op1 ”) , Type . INT) ,
179 new Element (new QName (”” , ” op2 ”) , Type . INT) }) , 1 , 1 ,

false) ;
180 _type_calculateSum = new Element (_qname_calculateSum ,

_complexType (new Element [] {
181 new Element (new QName (”” , ” op1 ”) , Type . INT) ,
182 new Element (new QName (”” , ” op2 ”) , Type . INT) }) , 1 , 1 ,

false) ;
183 _type_calculateDivResponse = new Element (

_qname_calculateDivResponse , _complexType (new Element [] {
184 new Element (new QName (”” , ” return ”) , Type . INT) }) , 1 ,

1 , false) ;
185 _type_calculateMul = new Element (_qname_calculateMul ,

_complexType (new Element [] {
186 new Element (new QName (”” , ” op1 ”) , Type . INT) ,
187 new Element (new QName (”” , ” op2 ”) , Type . INT) }) , 1 , 1 ,

false) ;

Java ME Web Services 157

188 _type_calculateSubResponse = new Element (
_qname_calculateSubResponse , _complexType (new Element [] {

189 new Element (new QName (”” , ” return ”) , Type . INT) }) , 1 ,
1 , false) ;

190 _type_calculateSumResponse = new Element (
_qname_calculateSumResponse , _complexType (new Element [] {

191 new Element (new QName (”” , ” return ”) , Type . INT) }) , 1 ,
1 , false) ;

192 }
193
194 private static ComplexType _complexType (Element [] elements) {
195 ComplexType result = new ComplexType () ;
196 result . elements = elements ;
197 return result ;
198 }
199 }

Listing 9.3: The stub of the Web service calculator example.

9.5 Web Services and the LBIS Tracking System
Example

Web services are not very related to our LBIS tracking system example
application. In fact, they are not used at all in the system. Web services are
included in the book because they are very popular and important in many
business applications, which are now extending the services to the very large
population of mobile phone users.

http://taylorandfrancis.com

Chapter 10

System Administration

10.1 Introduction

The LBIS tracking system example described in Chapter 1 includes a
“main control station” connected to the Internet to administer the system
and visualize the users’ positions in real time. This chapter explains how to
implement system administration functions such as including new users and
devices in the system, deleting them, etc., using popular Web 2.0 tools. The
chapter begins with a brief introduction of the World Wide Web (WWW)
that explains the evolution of Web pages, which at the same time leads to the
Google Web Toolkit (GWT). The following sections show the development
process to add administrative functions using GWT. As an example, they
show how to create (add) a device in the system from the main control sta-
tion. This process implies software development for the client (i.e., the control
station) and the server. Chapter 11 builds on top of this chapter showing how
to visualize the data in the main control station using the same Web tools.

10.1.1 The World Wide Web (WWW)

The WWW, or Web, is a system of interlinked documents distributed
throughout the Internet to share information in an automated manner. The
Web has become one of the most successful applications in the Internet, and
it has evolved from static hyperlinked documents to interactive applications,
providing e-commerce, mapping, multimedia, and social networking services,
among others. The Web is made of the following components:

• Web page: A document that consists of Web objects.

• Web object: A file that is available in a Web server. Each Web object
is addressable by a single Uniform Resource Locator (URL).

• Web server: A computer that maintains Web objects and utilizes the
HTTP protocol to transfer Web objects to Web clients.

• Web client: Any computer program that utilizes the HTTP protocol
to obtain or provide Web objects. Web clients can be Web browsers but
can also be any computer program that utilizes the HTTP protocol.

159

160 Location-Based Information Systems

• HyperText Transfer Protocol (HTTP): A request/response ap-
plication layer protocol that interconnects Web clients to Web serves.
HTTP is a stateless protocol, meaning that there is no concept of session
in the protocol. The current version of the protocol is described in RFC
2616 [29].

• HyperText Markup Language (HTML): Defines the markup lan-
guage for Web pages. A Web browser utilizes the HTML contained in a
Web page to render the page and show it in the screen. HTML code can
embed client-side scripting code that the Web browser executes when it
loads the Web page. Normally, this code is JavaScript.

The Web has evolved considerably over the past years. The initial Web was
specified by the components described above, and Web development was per-
formed by simply writing Web pages using the HTML language. Web browsers
for the first time presented HTML-based information in a very nice and sim-
ple way. However, the information presented in Web browsers was static and
when electronic commerce became popular, it was clear that a more dynamic
approach to generate content was needed. Then, technologies like PHP (Hy-
pertext Preprocessor), Java Servlet Pages (JSP), Active Server Pages (ASP),
and some others became popular. These new languages allowed the creation
of scripting procedures that a Web server would utilize to generate pages
upon HTTP requests, therefore supporting dynamic page generation. At the
same time, software companies began producing technology to execute code
on the client side (Web browsers). As a result of this effort, client-side script-
ing languages were developed. Examples of these languages and frameworks
are JavaScript, Flash, and Java applets. Consequently, current Website pages
are made of static and dynamic code in both client and server sides. One
popular framework to create this class of interactive Web applications is the
Google Web Toolkit, which will be utilized in this chapter to create system
administration functions for our LBIS tracking system example.

10.2 Google Web Toolkit

The Google Web Toolkit (GWT) is a framework to create dynamic and
interactive Web applications. Applications developed using the toolkit have
the following major characteristics:

• Code is written using the Java programming language.

• Parts of a GWT application execute in the Web client and other parts
in the Web server.

• The GWT compiles the Web client code written in Java to JavaScript.

System Administration 161

FIGURE 10.1: The GWT development process.

• The GWT code that executes in the Web client runs in JavaScript.

• GWT generates code that is compatible with most popular Web
browsers.

A GWT-based application consists of client-side code and the server-side
code. The client-side code is developed utilizing the Eclipse IDE and the GWT.
The server-side code is developed in NetBeans. When both client and server-
side codes are completed and tested, the client-side code is compiled using
the GWT and copied to the server-side application so it can be deployed in
the Internet. Figure 10.1 shows the GWT development process, which is the
basis for the development of both system administration functions and data
visualization. The following sections explains how to use this framework to
implement a “create device” system administration function.

162 Location-Based Information Systems

FIGURE 10.2: The database model.

In order to implement the “create device” function, a database needs to be
designed and implemented. Figure 10.2 shows the relational database model
utilized to support this application, which consists of the following tables:

• Fielduser: Stores information about the users of the system.

• Device: Stores information about the devices of the system.

• Fieldsession: Stores information about the sessions that are active/in-
active in the system.

• Tracking: Stores information about a device’s position in a field session.

10.3 Creating System Administration Functions

This part of the book guides the reader through the process shown in
Figure 10.1 to create a system administration function. The example consists
of the code that will run in the control station and the server of the system
to add new devices into the database of the system. The implementation
of similar administrative functions such as deleting and updating devices,
creating, updating, and deleting users, etc., are left to the reader, as they can
be implemented following the same procedure.

System Administration 163

FIGURE 10.3: Creating a project for Eclipse using the GWT command line
tool.

10.3.1 Client-Side Code

The goal of the client-side code is to create a GUI to enter the data of the
new device using the Web browser in the main control station and submit the
data to the server so the new information is stored. As shown in Figure 10.1,
the client-side part of the application is developed using the Eclipse IDE.
Therefore, the first step for the development of a client-side GUI is to create a
project for Eclipse using GWT. This is accomplished by opening a Windows
command line window in the directory where GWT 1.5.3 is installed and
writing:

projectCreator −eclipse LbsBookGWT −out LbsBookGWT

applicationCreator −eclipse LbsBookGWT −out LbsBookGWT cse . usf . edu .
book . client . GwtBook

The option -eclipse tells the applicationCreator tool that the files are
going to be generated for Eclipse. LbsBookGWT is the project name. The -out
option tells the tool to place the generated files in the LbsBookGWT directory.
Finally, the cse.usf.edu.book.client.GwtBook is the name of the package
that will contain all the standard classes of the application. Figure 10.3 shows
the execution and results of the command.

Once the project is created, the next step is to import it into the Eclipse’s
workspace. In order to do this, open the Eclipse IDE, select your workspace
location and click on the menu File→Import. In the next screen, select
the root directory of the project (the path to the directory created by the
applicationCreator). Make sure the checkbox that says Copy projects into
workspace is checked. This option copies the project’s directory into your cur-

164 Location-Based Information Systems

(a) Import window. (b) Selecting the project to import.

FIGURE 10.4: Importing a GWT project in Eclipse.

rent workspace. All the changes to the project will be done over this copy.
Figure 10.4 shows how to import the project. To check that the project was
successfully imported, go to the main menu and select Run→Run. If every-
thing is configured correctly you should see the screen shown in Figure 10.5.
This application provides the skeleton code for you to develop your own appli-
cation. At this point, the GWT application runs as a Java application that can
be modified, debugged, executed, and when ready, compiled into JavaScript
code.

Let us explore the source code of the skeleton application. If you look at
the Eclipse’s IDE, the upper left corner should show the Package Explorer,
which shows the project’s tree structure. This tree is created automatically
by Eclipse and should look similar to the one shown in Figure 10.6.

There are two packages shown under the src subtree. These are

• cse.usf.edu.book: This package contains, under its public folder, all
the Web pages and images (static content) that will be utilized by
the project. These are local resources. The package also contains the
GwtBook.gwt.xml file, which has information that the GWT shell and
compiler utilize to link libraries and define the main entry point (the
class that executes first) of the application. This file will be explored
later.

• cse.usf.edu.book.client: This package contains the Java source code
of the client-side application. In this package, the file GwtBook.java

System Administration 165

FIGURE 10.5: Testing the GWT application.

FIGURE 10.6: Eclipse’s Package Explorer tree for the GWT project.

166 Location-Based Information Systems

serves as the entry point of the application and it is the file that the
toolkit executes when the GWT shell runs.

Let us explore the content of the GwtBook.gwt.xml file first, which is
shown in Listing 10.1. This file is like the application descriptor, as it contains
information that the GWT shell and compiler utilize to link libraries and
start the application. Line 4 tells the GWT to import all the defaults classes
of the GWT framework. Line 9 selects the stylesheet that the application will
utilize for the look and feel of the GUI components. Line 17 tells the GWT
shell what is the main class of the application, which is the file that executes
when the browser loads the Web page. GwtBook.gwt.xml contains references
to extra modules for the application. We will come back to this file when we
add Google Maps in the next chapter.

1 <module>
2
3 < ! -- Inherit the core Web Toolkit stuff .

-->
4 < i n h e r i t s name=’ com . google . gwt . user . User ’/>
5
6 < ! -- Inherit the default GWT style sheet . You can change

-->
7 < ! -- the theme of your GWT application by uncommenting

-->
8 < ! -- any one of the following lines .

-->
9 < i n h e r i t s name=’ com . google . gwt . user . theme . standard . Standard ’/>

10 < ! -- < i n h e r i t s name=’ com . google . gwt . user . theme . chrome . Chrome ’/>
-->

11 < ! -- < i n h e r i t s name=’ com . google . gwt . user . theme . dark . Dark ’/>
-->

12
13 < ! -- Other module inherits

-->
14
15
16 < ! -- Specify the app entry point class .

-->
17 <entry−point c l a s s=’ cse . usf . edu . book . client . GwtBook ’/>
18
19 < ! -- Specify the application specific style sheet .

-->
20 <s t y l e s h e e t s r c=’ GwtBook . css ’ />
21
22 </module>

Listing 10.1: The GwtBook.gwt.xml page.

Listing 10.2 shows the content of the GwtBook.html file, which can be ac-
cessed by double-clicking on the cse.usf.edu.book\public folder. This file
contains the code that loads the GWT module in the browser and invokes
the application (i.e., our GwtBook application), which is included in line 22
of the listing. All the final JavaScript code for the GWT client application
is contained in several of these .js files. The cse.usf.edu.book.GwtBook.
nocache.js file shown in the listing is the one that is loaded first and depend-
ing on the browser, it will invoke other .js files. GWT keeps browser compat-
ibility by automatically compiling JavaScript code for the most popular Web

System Administration 167

browsers (See Figure 10.1). The good thing is that this is done automatically
and the developer does not have to worry about browser compatibility issues.

1 < ! DOCTYPE HTML PUBLIC " -// W3C // DTD HTML 4.01 Transitional // EN ">
2 < ! -- The HTML 4.01 Transitional DOCTYPE declaration -->
3 < ! -- above set at the top of the file will set -->
4 < ! -- the browser ’s rendering engine into -->
5 <!-- " Quirks Mode ". Replacing this declaration -->
6 <!-- with a " Standards Mode " doctype is supported , -->
7 <!-- but may lead to some differences in layout . -->
8
9 <html >

10 <head >
11 < meta http - equiv =" content - type " content =" text / html ; charset = UTF

-8" >
12 <!-- -->
13 <!-- Any title is fine -->
14 <!-- -->
15 <title > GwtBook </ title >
16
17 <!-- -->
18 <!-- This script loads your compiled module . -->
19 <!-- If you add any GWT meta tags , they must -->
20 <!-- be added before this line . -->
21 <!-- -->
22 < script type =" text / javascript " language =" javascript " src =" cse . usf .

edu . book . GwtBook . nocache . js " > </ script >
23 </ head >
24
25 <!-- -->
26 <!-- The body can have arbitrary html , or -->
27 <!-- you can leave the body empty if you want -->
28 <!-- to create a completely dynamic UI . -->
29 <!-- -->
30 <body >
31
32 <!-- OPTIONAL: include this if you want history support -->
33 < iframe src =" javascript: " id =" __gwt_historyFrame " tabIndex = ’ -1 ’

style =" position:absolute ; width:0 ; height:0 ; border:0 " > </ iframe >
34
35 </ body >
36 </ html >

Listing 10.2: The GwtBook.html file.

Listing 10.3 shows the content of the GwtBook.css file, which defines the
style to be utilized.

1 /∗∗ Add css rules here for your application . ∗/
2
3 /∗∗ Example rules used by the template application (remove for your

app) ∗/
4 . pc−template−btn {
5 display: block ;
6 font−size: 16 pt
7 }
8
9 #pc−template−img {

10 margin−top: 20 px ;
11 }

Listing 10.3: The GwtBook.css file.

168 Location-Based Information Systems

The final file to be explored is the GwtBook.java file located under the
cse.usf.edu.book.client package, which implements the client-side appli-
cation in the Java programming language. This code, which is shown in List-
ing 10.4, implements the application shown in Figure 10.5.

It is important to mention again that the files containing List-
ings 10.1, 10.2, 10.3, and 10.4 are created automatically by Eclipse when the
project is created. The importance of these files is that they serve as skeletons
to build your own application. In this section, it will be shown how to use
(modify) these skeleton files to develop a system administration application
to create or add devices in the LBIS tracking system. This application re-
quires a window that will ask the system administrator for the new device
information, a button to submit the information, and the code to actually
submit the information to the server. This will be accomplished by modifying
or replacing the onModuleLoad() method included in Listing 10.4 with the
code that will show the new window requesting the new device information.
As it will be shown later, this new code is the one included in Listing 10.10,
which implements the window shown in Figure 10.7.

1 package cse . usf . edu . book . client ;
2
3 import com . google . gwt . core . client . EntryPoint ;
4 import com . google . gwt . user . client . ui . Button ;
5 import com . google . gwt . user . client . ui . ClickListener ;
6 import com . google . gwt . user . client . ui . DialogBox ;
7 import com . google . gwt . user . client . ui . Image ;
8 import com . google . gwt . user . client . ui . RootPanel ;
9 import com . google . gwt . user . client . ui . VerticalPanel ;

10 import com . google . gwt . user . client . ui . Widget ;
11
12 public class GwtBook implements EntryPoint {
13 public void onModuleLoad () {
14 Image img = new Image (" http :// code . google . com / webtoolkit / logo -185

x175 . png ") ;
15 Button button = new Button (" Click me ") ;
16 // We can add style names
17 button . addStyleName ("pc - template - btn ") ;
18 // or we can set an id on a specific element for styling
19 img . getElement () . setId ("pc - template - img ") ;
20 VerticalPanel vPanel = new VerticalPanel () ;
21 vPanel . setWidth (" 100% ") ;
22 vPanel . setHorizontalAlignment (VerticalPanel . ALIGN_CENTER) ;
23 vPanel . add (img) ;
24 vPanel . add (button) ;
25 // Add image and button to the RootPanel
26 RootPanel . get () . add (vPanel) ;
27 // Create the dialog box
28 final DialogBox dialogBox = new DialogBox () ;
29 dialogBox . setText (" Welcome to GWT !") ;
30 dialogBox . setAnimationEnabled (true) ;
31 Button closeButton = new Button (" close ") ;
32 VerticalPanel dialogVPanel = new VerticalPanel () ;
33 dialogVPanel . setWidth (" 100% ") ;
34 dialogVPanel . setHorizontalAlignment (VerticalPanel . ALIGN_CENTER) ;
35 dialogVPanel . add (closeButton) ;
36
37 closeButton . addClickListener (new ClickListener () {
38 public void onClick (Widget sender)
39 {

System Administration 169

40 dialogBox . hide () ;
41 }}) ;
42 // Set the contents of the Widget
43 dialogBox . setWidget (dialogVPanel) ;
44 button . addClickListener (new ClickListener () {
45 public void onClick (Widget sender)
46 {
47 dialogBox . center () ;
48 dialogBox . show () ;
49 }}) ;
50 }
51 }

Listing 10.4: The GwtBook.java file.

Listing 10.4 also shows how the event-based GWT code works and executes
as a response to an event. In the listing, there are two examples of events added
to buttons. For example, line 15 shows how to instantiate a button. The code
associated with a click event on this button is added between lines 44 and 48.
The button.addClickListener in line 44 adds a listener for click events on
the button. The manager of the event here is added as an anonymous class
that implements the ClickListener interface (new ClickListener()...).
When the user clicks the Click me button, the ClickListener.onClick()
method executes. The code here centers a dialog box and shows it on the
screen.

Although most events are triggered by the user when he or she clicks on a
button or moves the mouse over some object, there are events that do not rely
on GUI events, such as when some data is received from the server, or when a
timer expires. GWT provides a complete set of widgets and GUI elements to
reutilize for these purposes. The complete set of widgets in GWT 1.5.3 can be
found in Google’s Website http://code.google.com/docreader/ searching
for GWT 1.5.3 and DeviceWidgetGallery.

10.3.1.1 Creating System Administration Functions

This section shows how to implement a “create device” system admin-
istration function using the automatically generated skeleton files described
before. The process to implement other administrative functions is the same.

In order to create or add a new device in the system, it is imperative to
create a window to request the new information from the system administra-
tor and submit it. The code that creates this window and the window itself
are shown in Listing 10.5 and Figure 10.7, respectively. To create the code
that implements the window, right click on the cse.usf.edu.book.client
package and click New→Class. In the dialog box, write in the name text field
CreateDevice and click Finish. Now copy the content of Listing 10.5 in this
file. In the code, line 7 states that the class extends the Composite class, which
groups several user interface components. In other words, unless the elements
of the Composite class are exposed with public methods, the whole composite
behaves as a whole. This creates a user interface object for adding devices. A
class that extends Composite can be added to any panel or dialog box.

170 Location-Based Information Systems

Let us explore the code further. The method initializeComponents() in
line 21 instantiates all the GUI components (panel, button, labels, and text
fields). While the method setLayout() in line 29 adds the components to the
AbsolutePanel, the setProperties() method in line 37 sets their properties
such as the height and width of each of the objects. This method also adds a
ClickListener to the button. When the user clicks on this button, the code
executes the createDevice() method, which is the one that makes the remote
procedure call to the server. For now, this part of the code is left blank. First,
it is important to understand how to make RPC calls in GWT.

1 package cse . usf . edu . book . client ;
2
3 import com . google . gwt . core . client . GWT ;
4 import com . google . gwt . user . client . ∗ ;
5 import com . google . gwt . user . client . ui . ∗ ;
6
7 public class CreateDevice extends Composite {
8 private AbsolutePanel backgroundPanel = null ;
9 private Button createDevice = null ;

10 private Label deviceNameLabel = null ;
11 private Label serialNumberLabel = null ;
12 private TextBox deviceNameField = null ;
13 private TextBox serialNumberField = null ;
14
15 public CreateDevice () {
16 super () ;
17 initializeComponents () ;
18 setLayout () ;
19 setProperties () ;
20 }
21 protected void initializeComponents () {
22 backgroundPanel = new AbsolutePanel () ;
23 createDevice = new Button () ;
24 deviceNameLabel = new Label () ;
25 serialNumberLabel = new Label () ;
26 deviceNameField = new TextBox () ;
27 serialNumberField = new TextBox () ;
28 }
29 protected void setLayout () {
30 initWidget (backgroundPanel) ;
31 backgroundPanel . add (createDevice , 150 ,101) ;
32 backgroundPanel . add (deviceNameLabel , 30 ,28) ;
33 backgroundPanel . add (serialNumberLabel , 29 ,56) ;
34 backgroundPanel . add (deviceNameField , 180 ,28) ;
35 backgroundPanel . add (serialNumberField , 180 ,56) ;
36 }
37 protected void setProperties () {
38 setHeight (" 170 ") ;
39 setWidth (" 400 ") ;
40 backgroundPanel . setWidth (" 400 ") ;
41 createDevice . setText (" Create Device ") ;
42 createDevice . addClickListener (new ClickListener () {
43 public void onClick (Widget sender)
44 {
45 createDevice () ;
46 }}) ;
47 createDevice . setHeight (" 25 ") ;
48 createDevice . setWidth (" 120 ") ;
49 deviceNameLabel . setText (" Device Name ") ;
50 deviceNameLabel . setWidth (" 146 ") ;
51 serialNumberLabel . setText (" Serial Number ") ;
52 serialNumberLabel . setWidth (" 100 ") ;

System Administration 171

FIGURE 10.7: Window for creating a device.

53 deviceNameField . setHeight (" 23 ") ;
54 deviceNameField . setWidth (" 167 ") ;
55 serialNumberField . setHeight (" 23 ") ;
56 serialNumberField . setWidth (" 168 ") ;
57 }
58 public void createDevice () {
59
60 }
61 }

Listing 10.5: Code for creating a device.

10.3.1.2 Remote Procedure Calls in GWT

GWT provides an easy approach to make RPC calls to the server. The
approach is based on AJAX or Asynchronous JavaScript and XML, which
allows the client to send and retrieve data to and from the sever without
interfering with the display and the behavior of the existing Web page. In
other words, the asynchronous part of the approach does not block the client
until the response from the RPC method arrives, but it continues to execute
whichever statement comes after the RPC method invocation.

The AJAX-based RPC invocation approach provided by GWT is shown
in Figure 10.8. The framework consists of the following elements:

• Service interface: This interface abstracts the methods that can be
invoked by a client when calling a Web object. Each service interface
defines the functions that the system implements. Here, a service in-
terface to implement system administration functions related to devices
will be developed. The interface will be used by the client-side applica-
tion to invoke the function and by the server-side of the application to
listen to those invocations and actually implement the function.

• Asynchronous interface: This interface abstracts the methods that
are actually invoked by the client. This asynchronous interface is needed
to manage the responses from the server without blocking the Web
browser. This interface is related to the service interface defined before.

• Client-side service implementation: This component is the class

172 Location-Based Information Systems

FIGURE 10.8: The AJAX RPC approach.

that actually invokes the RPC procedure by the framework. This class
is automatically generated by the GWT and implements the data seri-
alization over HTTP.

• Server-side service implementation: This class implements the ser-
vice interface and it is the class that executes in the server when a client
invokes a method of the RPC service interface.

• Java GWT serializable objects (optional): A service interface can
have as invocation parameters objects that are GWT serializable. These
objects can be created by the programmer. A service interface method
can also return one of these serializable objects.

A serializable object is an object that can be transmitted and received
by the client-side and server-side applications in the same form without the
programmer’s intervention in coding and decoding it from its state to a byte
stream and vice versa. In GWT, a type is serializable if

• The type is a primitive variable, such as char, byte, short, int, long,
boolean, float, or double.

• The type is an instance of the String, Date, or a primitive wrapper such
as Character, Byte, Short, Integer, Long, Boolean, Float, or Double.

System Administration 173

• The type is an enumeration. Enumeration constants are serialized as a
name only; none of the field values are serialized.

• The type is an array of serializable types (including other serializable
arrays).

• The type is a serializable user-defined class.

• The type has at least one serializable subclass.

For a user-defined class to be GWT serializable, it must comply with at
least one of the following rules:

• It can be assigned to IsSerializable or Serializable, either because
it directly implements one of these interfaces or because it derives from
a superclass that does.

• All non-final, non-transient instance fields are themselves serializable.

• As of GWT 1.5, it must have a default (zero argument) constructor
(with any access modifier) or no constructor at all.

Following the model shown in Figure 10.8, a serializable Device class will
be created first that will contain the necessary information to create a device
in the system. Then, the service interface and its serializable version will be
created. Finally, the code that will implement the createDevice() method
will be shown.

The code that implements the serializable Device class is shown in List-
ing 10.6. To create this class, create a package for the class by first going to
the Package Explorer, right-clicking on the cse.usf.edu.book.client pack-
age and clicking on New→Package. Write down the new package’s name as
cse.usf.edu.book.client.entities. Now create the Device class in this
package as explained before and copy the content of Listing 10.6. As it can
be seen from the listing, the class includes the set and get methods to set and
get the identifier, name, and serial number of the devices.

1 package cse . usf . edu . book . client . entities ;
2
3 import com . google . gwt . user . client . rpc . IsSerializable ;
4
5 public class Device implements IsSerializable
6 {
7 private int deviceId ;
8 private String deviceName ;
9 private String serialNumber ;

10
11 public Device () {
12 }
13 public void setDeviceId (int val){
14 this . deviceId = val ;
15 }
16 public void setDeviceName (String name){
17 this . deviceName = name ;

174 Location-Based Information Systems

18 }
19 public void setSerialNumber (String number){
20 this . serialNumber = number ;
21 }
22 public int getDeviceId () {
23 return deviceId ;
24 }
25 public String getDeviceName () {
26 return deviceName ;
27 }
28 public String getSerialNumber () {
29 return serialNumber ;
30 }
31 }

Listing 10.6: The Device.java GWT serializable class.

The next step is to create the GWT service interface. In order to
do this, create a new package called cse.usf.edu.book.client.services
and then create a new interface under the created package and call it
DeviceServiceManager. Then, copy the contents of Listing 10.7 to this in-
terface. For an interface to be a GWT service interface, it has to extend the
RemoteService interface provided by the GWT framework. Also, the type of
the interface must be serializable.

Notice that the code included in Listing 10.7 defines several system ad-
ministration functions related to the devices only, i.e., create, delete, and
edit a device. Here, as an example, it will be shown how to implement the
createDevice() method only, as the process to implement the other functions
is the same. Also, notice that many other system administration functions can
be included in the system. For example, you might want to implement similar
functions to manage users and sessions. For these, separate service interfaces
can be defined and implemented in the same manner. Defining these interfaces
separately is recommended to keep the functionality of the system modular.
In addition to system administration functions, you may also want to define
and implement operational interfaces. For example, the LBIS tracking system
example is meant to track users in real time; therefore, an interface to handle
tracking-related functions such as update, add, and delete GPS fixes, can also
be defined and implemented in the same manner. This is the approach used
in the next chapter to obtain the fixes from the server and display them in
Google Maps.

1 package cse . usf . edu . book . client . services ;
2
3 import com . google . gwt . user . client . rpc . RemoteService ;
4 import cse . usf . edu . book . client . entities . Device ;
5
6 public interface DeviceServiceManager extends RemoteService {
7 public Boolean createDevice (Device dev) ;
8 public Boolean deleteDevice (Device dev) ;
9 public Boolean editDevice (Device dev) ;

10 public Device [] getAllDevices () ;
11 }

Listing 10.7: The DeviceServiceManager.java GWT service interface.

System Administration 175

Now, you must create the asynchronous interface. To do this, create a
new interface with the same name as the original service interface but add
to the end of the name the suffix Async. Listing 10.8 shows the resulting
asynchronous interface. The methods of the asynchronous interface are called
the same as the service interface; however, they do not return any value; the
AsynCallback object that is added as a parameter of the method will manage
the response.

1 package cse . usf . edu . book . client . services ;
2
3 import com . google . gwt . user . client . rpc . AsyncCallback ;
4 import cse . usf . edu . book . client . entities . Device ;
5
6 public interface DeviceServiceManagerAsync {
7 public void createDevice (Device dev , AsyncCallback callback) ;
8 public void deleteDevice (Device dev , AsyncCallback callback) ;
9 public void editDevice (Device dev , AsyncCallback callback) ;

10 public void getAllDevices (AsyncCallback callback) ;
11 }

Listing 10.8: The DeviceServiceManagerAsync.java asynchronous GWT
service interface.

Now that the code for the required interfaces has been written, it is time
to write the code that actually performs the RPC and manages the response
back from the server. Please notice that in Listing 10.5, line 58, there was
no code in the method createDevice(). This is the code that will perform
the call to the server using the interfaces created above. The code is shown
in Listing 10.9. The code to create other objects (update, delete, and retrieve
devices) is left to the readers as a coding exercise.

This code has the following parts:

• Proxy creation: The proxy is created in line 3 by the factory method
GWT.create() using the service interface and returning an object that
implements the asynchronous service interface. The proxy transmits the
objects using HTTP, hiding the details from the programmer.

• Remote service location set up: A remote service location is set
up in lines 5–7 where the URL of the Web object that implements the
RPC service is located. The ServiceDefTarget is an interface defined in
the com.google.gwt.user.client.rpc package, which was imported at
the beginning of Listing 10.5. The endpoint.setServiceEntryPoint()
method is one of the methods provided by the ServiceDefTarget in-
terface.

• Response manager: A response manager is set up between lines 9
and 29 where the callback object is created. AsyncCallback is an inter-
face that implements two methods. The first, which is onSuccess(),
is executed when the RPC is completed with success. The other,
onFailure(), is executed if there is a communication failure with the
server.

176 Location-Based Information Systems

• Object preparation and RPC service invocation: This is done
between lines 31 and 34. Line 34 is the line that actually performs the
RPC call.

1 public void createDevice ()
2 {
3 DeviceServiceManagerAsync theDeviceManager = (

DeviceServiceManagerAsync) GWT . create (DeviceServiceManager .
class) ;

4
5 ServiceDefTarget endpoint = (ServiceDefTarget) theDeviceManager ;
6 String remoteServiceURL = " http ://192.168.0.2:8080/ Lbsbook /

services / DeviceManager " ;
7 endpoint . setServiceEntryPoint (remoteServiceURL) ;
8
9 AsyncCallback callback = new AsyncCallback ()

10 {
11 public void onSuccess (Object result)
12 {
13 Boolean res = (Boolean) result ;
14
15 if (res . booleanValue ())
16 {
17 Window . alert (" Device Added with Success ") ;
18 }
19 else
20 {
21 Window . alert (" The device could not be added . There has

been an error in the database ") ;
22 }
23 }
24
25 public void onFailure (Throwable caught)
26 {
27 Window . alert (" An Internal Error has ocurred : " + caught .

getMessage ()) ;
28 }
29 } ;
30
31 Device dev = new Device () ;
32 dev . setDeviceName (this . deviceNameField . getText ()) ;
33 dev . setSerialNumber (this . serialNumberField . getText ()) ;
34 theDeviceManager . createDevice (dev , callback) ;
35 }

Listing 10.9: The createDevice() method of the CreateDevice.java class.

The last step calls for the modification of the onModuleLoad() method of
the GwtBook.java file included in Listing 10.4. This method must be entirely
replaced by the code in Listing 10.10 to implement our application. This code
loads when it starts the CreateDevice composite. Now, if you run the appli-
cation from Eclipse and click the Create Device button, the result should be
like the one shown in Figure 10.9.

1
2 public void onModuleLoad () {
3 VerticalPanel vPanel = new VerticalPanel () ;
4 vPanel . setWidth (" 100% ") ;
5 vPanel . setHorizontalAlignment (VerticalPanel . ALIGN_CENTER) ;
6 // Add image and button to the RootPanel
7 RootPanel . get () . add (vPanel) ;

System Administration 177

FIGURE 10.9: Executing the DeviceServiceManager’s RPC call without ser-
vice implementation.

8
9 // Create the CreateDevice Widget

10
11 CreateDevice theNewDevice = new CreateDevice () ;
12
13 // Create the dialog box
14 final DialogBox dialogBox = new DialogBox () ;
15 dialogBox . setText (" Create a Device ") ;
16 dialogBox . setAnimationEnabled (true) ;
17 dialogBox . add (theNewDevice) ;
18 dialogBox . center () ;
19 dialogBox . show () ;
20 }

Listing 10.10: Modifying the onModuleLoad() method for showing the
CreateDevice.java composite.

This finalizes the client-side code and the code needed to invoke the remote
service. The next section shows how to create the server-side code.

10.3.2 Server-Side Code

The server-side code consists of the same serializable class and the im-
plementation of the same service interface defined in the client code. The
service implementation includes the methods that, upon the invocation from
the client, implement the requested functions in the server, in this case, create

178 Location-Based Information Systems

FIGURE 10.10: NetBeans’ window after the Web project is created.

a new device in the system. As explained before, this code is developed in
NetBeans.

The first step is to create a new project. In NetBeans, click on menu
File→New, select Java Web from the Categories list, and Web Application
from the Projects list. Then, click Next. In the next dialog box, write in the
project name (LbsBook in our case), and click Next. In the next screen, select
Glassfish V2 from the server combo box and click Finish.

The second step is to add the GWT library to your project. Once the
project is created, you should see a screen like the one shown in Figure 10.10.
Now, in the Projects tab (upper left), right-click on LbsBook and select
Properties. Then, select the option Libraries from the Categories. You
should see a screen like the one shown in Figure 10.11. In this screen, click on
Add JAR/Folder. Now go to your GWT installation directory and select the
file called gwt-servlet.jar. Click Open and OK.

The next step is to create the same Device serializable class that was
created for the client. In order to do so, a new package needs to be created
with the same name, i.e., cse.usf.edu.book.client.entities, and include
the same code utilized in the client-side code, which is included in Listing 10.6.
To create the package, right-click on Source Package in the Project panel, and
click on New→Java Package. After the package is created, go to the Project
panel, right-click on the package, and click on New→Java Class to create the
new class.

The next step is to create the corresponding service interface, the

System Administration 179

FIGURE 10.11: Adding libraries to the project.

one that upon the request from the client will create a new device
in the database. In order to do this, create a package with the same
name as the package that contains the service interface in the client
(cse.usf.edu.book.client.services) and also create the implementation
class. This time, name it exactly as you named the service interface of the
client but with the Impl at the end, i.e., DeviceServiceManagerImpl.

The final step is to write the code that will implement the
method specified in the service, i.e., the createDevice() method of the
DeviceServiceManager interface. This code is shown in Listing 10.11 and ex-
plained next. See that in line 12 of the code, the DeviceServiceManagerImp
is extending the RemoteServiceServlet class. Further, the class implements
the methods of our GWT interface.

Another important part of the code is related to the database. For exam-
ple, the code within lines 16 and 18 use a JDBC resource of the server to
obtain a connection to the database. To insert the device’s information into
the database, the PreparedStatement object is created in line 19 in which the
device’s identifier is generated using a SQL sequence generator. Lines 20–21
insert the device’s name and serial number into the PreparedStatement ob-
ject and line 22 executes the update to the database. If there are no errors, the
code should return true. Else, an exemption is thrown in the server and the
code returns false. This code assumes that you have created a JDBC resource
to connect to the database, which is explained in Section A.2.6.2.

1 package cse . usf . edu . book . client . services ;
2

180 Location-Based Information Systems

3 import com . google . gwt . user . server . rpc . RemoteServiceServlet ;
4 import cse . usf . edu . book . client . entities . Device ;
5 import java . sql . Connection ;
6 import java . sql . PreparedStatement ;
7 import java . sql . SQLException ;
8 import java . util . logging . Level ;
9 import java . util . logging . Logger ;

10 import javax . naming . NamingException ;
11
12 public class DevicerServiceManagerImpl extends RemoteServiceServlet

implements DeviceServiceManager {
13
14 public Boolean createDevice (Device dev){
15 try{
16 javax . naming . InitialContext ic = new javax . naming

. InitialContext () ;
17 javax . sql . DataSource dataSource = (javax . sql .

DataSource) ic . lookup (" jdbc / lbsbook ") ;
18 Connection conn = dataSource . getConnection () ;
19 PreparedStatement insertStatement = conn .

prepareStatement (" insert into tracking (
deviceid , devicename , serialnumber) values (
nextval (’ dev_seq ’) ,? ,?) ") ;

20 insertStatement . setString (1 , dev . getDeviceName ()) ;
21 insertStatement . setString (2 , dev . getSerialNumber ()

) ;
22 insertStatement . executeUpdate () ;
23 conn . close () ;
24 return true ;
25 }
26 catch (NamingException ex){
27 Logger . getLogger (DevicerServiceManagerImpl . class .

getName ()) . log (Level . SEVERE , null , ex) ;
28 }
29 catch (SQLException ex){
30 Logger . getLogger (DevicerServiceManagerImpl . class .

getName ()) . log (Level . SEVERE , null , ex) ;
31 }
32 return false ;
33 }
34
35 public Boolean deleteDevice (Device dev) {
36 throw new UnsupportedOperationException (" Not supported yet .") ;
37 }
38
39 public Boolean editDevice (Device dev) {
40 throw new UnsupportedOperationException (" Not supported yet .") ;
41 }
42
43 public Device [] getAllDevices () {
44 throw new UnsupportedOperationException (" Not supported yet .") ;
45 }
46 }

Listing 10.11: Server-side GWT service implementation.

The next step is to register the implementation class with the server. GWT
services are an extension of the Java Servlets technology. Therefore, they work
above the servlet layer. In order to register the server, go to the Project
panel, click on the + sign of the label Configuration and double click over
the web.xml file. After that, a page that contains the configuration of the ap-
plication appears on the right side. Click on the Servlets button and click the
Add Servlet Element button. In the window, write GwtDeviceManager in the

System Administration 181

FIGURE 10.12: Configuring the GWT servlet.

Name textfield. In the Servlet class, click on the Browse button and look
for the DeviceServiceManagerImpl.java class. In URL Pattern(s), write
/services/DeviceManager. This name makes part of the endpoint address
for the service invocation in the GWT application (line 6 in Listing 10.9).
Click OK and now you should see a screen like the one shown in Figure 10.12.
At this point, the application is ready to be deployed and tested.

To deploy the application, go to the Projects panel, right click on the
project, and choose the Clean and Build option. After the building process
is completed, go again to the Projects panel, right click on the project, and
choose the Deploy option.

In order to test the application, go to Eclipse and run the GWT applica-
tion. Fill in the text fields and click on the Create Device button. If everything
is working correctly, you should see a dialog box stating that the information
was successfully saved.

10.3.3 Compiling and Deploying the Application with GWT

Now that the client and server codes have been developed and tested, it is
time to compile the application with GWT and deploy it along with the Web
Project. The following steps indicate how to accomplish this:

1. Compile the Eclipse project with GWT: Run the Eclipse project
as explained in the previous section (Figure 10.9) and click on the
Compile/Browse button.

182 Location-Based Information Systems

2. Copy the compiled files to the Web project application: Using
the Windows Explorer, go to the Eclipse’s GWT project location (e.g.,
C:\Documents and Settings\ajperez4\workspace\LbsBookGWT) and
copy the folder www to the Web folder of the NetBeans project (e.g., C:
\DocumentsandSettings\ajperez4\MyDocuments\NetBeansProjects\
LbsBook).

3. Build and Deploy: Using NetBeans, build the Web project and deploy
it as it was shown in the previous section.

After the Web application has been deployed, it can be executed from
a Web browser. In our case the URL to use would be http://192.168.0.
2:8080/LbsBook/www/GwtBook.html, which consists of the path where the
application resides in the server with IP address 192.168.0.2.

10.4 System Administration and the LBIS Tracking Sys-
tem Example

This chapter teaches how to implement system administration functions
using the Google Web Toolkit framework. The LBIS tracking system exam-
ple described in Chapter 1 needs to implement some system administration
functions in order to maintain the system. Functions like creating new users,
devices, sessions; modifying the current information; retrieving such informa-
tion, etc., can be implemented using this framework. Under this framework,
the system administrator can use the Web browser of his/her preference from
a computer connected to the Internet, in our case the “main control station,”
to send and receive data from the database of the system, which is located in
one of the servers. This chapter shows how to implement a function to add
devices to the system. More important than the function itself is the fact that
the process to implement it can be followed to create any other one.

http://192.168.0.2:8080/
http://192.168.0.2:8080/

Chapter 11

Data Visualization

11.1 Introduction

The LBIS tracking system example described in Chapter 1 includes a
“main control station” connected to the Internet to visualize the positions
of the users in real time. Instead of showing plain coordinate numbers, it is
definitively more practical and useful to display the users in a graphical inter-
face, such as a map. This chapter explains how to use the Google Web Toolkit
framework described in Chapter 10 along with Google Maps and Google Earth
to visualize (track) users in real time. As in the case of system administration
functions, this process also implies software development for the client (i.e.,
the control station) and the server.

11.2 Visualizing the Users’ Positions in Google Maps

This section show how to use the GWT framework to create a Web appli-
cation that will allow the continuous monitoring of the positions of the active
users of the system in a Google Maps interface. In our specific LBIS tracking
system example, this application is meant to run in the main control station;
however, as a Web application, it can be run in any computer connected to
the Internet.

The development of this Web application follows the same procedure de-
scribed in Chapter 10 to develop the “create device” system administration
function using the GWT framework (see Section 10.2 and Figure 10.1). In
general, there must be a client-side software to query the server for the GPS
fixes in a periodic manner and a server-side software with a service interface
to listen and respond to these queries. Once the GPS fixes are received in
the control station, the client-side software uses the Google Maps interface to
display the fixes on the map.

183

184 Location-Based Information Systems

11.2.1 Configuring the GWT Project

One of the main differences between the Web application developed in
Chapter 10 to create a device in the system and this Web application to
visualize the users in Google Maps is the use of the latter. Therefore, after
the GWT project is created in Eclipse, as shown in Section 10.3.1, the GWT
needs to be configured to utilize the Google Maps API. This configuration is
accomplished with the following steps:

1. Sign up for a Google Maps key: Google Maps require you to
sign up for a Google Maps key, which can be obtained from http:
//code.google.com/apis/maps/. You should sign up for two keys, one
for developing the application and the other one for deploying it. First,
sign up for a key for the developing domain http://localhost:8888/,
which will be utilized to develop and test the application within the
GWT browser. Then, obtain another key for the production domain,
which is the URL where the application will be deployed, in our case
http://192.168.0.2:8080/.

2. Download the Google Maps API library for GWT: The Google
Maps API is a JavaScript API, but there is a project that en-
capsulates the JavaScript API for using it in GWT. This library
(gwt-maps-1.0.4.zip) can be downloaded from Google’s Website at
http://code.google.com/p/gwt-google-apis/ or from the book’s
Website at http://www.csee.usf.edu/~labrador/LBIS.

3. Import the library into the GWT Eclipse Project: Once the .zip
file has been downloaded and extracted, the gwt-maps.jar file has to
be added to the GWT project.

4. Configure the GWT project .xml file and develop your code:
Add the map module in the GWT .xml file and configure it using the
development API key that was obtained in step 1.

The first two steps are self-explanatory following the directions in their
respective Websites. The last two steps are explained next.

11.2.1.1 Import the Library into the GWT Eclipse Project

To import the Google Maps API library into the GWT Eclipse project,
open Eclipse, go to the Package Explorer, right click on the project’s name
and click on Properties. Once the window appears, on the left panel select
the Java Build Path, and then click on the Libraries tab panel. You should
see a window like the one shown in Figure 11.1. Now click on Add external
JAR, and find the gwt-maps.jar file that you downloaded. Click Open and
then OK.

http://www.csee.usf.edu/
http://code.google.com/
http://192.168.0.2:8080/
http://localhost:8888/
http://code.google.com/

Data Visualization 185

FIGURE 11.1: Adding the Google Maps API into GWT.

11.2.1.2 Configure the GWT Project .xml File

In order to configure the GWT project .xml file, open the GwtBook.gwt.xml
file and modify the file so it looks like the file shown in Listing 11.1. This is
the same file utilized in Chapter 10 shown in Figure 10.6 and Listing 10.1.
Two new lines have been added to the configuration file. The first one, which
is line 12, links the GWT maps library to the project. The second line, line
20, inserts the Google Maps key. The key obtained in the previous step for
the development and testing domain http://localhost:8080 should replace
the characters that come after key= in line 20. After this, the software devel-
opment process can be initiated following the process sketched in Figure 10.1,
the same process used in Chapter 10 to develop the system administration
“create device” function.

1 <module>
2 < ! -- Inherit the core Web Toolkit stuff .

-->
3 < i n h e r i t s name=’ com . google . gwt . user . User ’/>
4
5 < ! -- Inherit the default GWT style sheet . You can change

-->
6 < ! -- the theme of your GWT application by uncommenting

-->
7 < ! -- any one of the following lines .

-->
8 < i n h e r i t s name=’ com . google . gwt . user . theme . standard . Standard ’/>
9 < ! -- < i n h e r i t s name=’ com . google . gwt . user . theme . chrome . Chrome ’/>

-->

http://localhost:8080

186 Location-Based Information Systems

10 < ! -- < i n h e r i t s name=’ com . google . gwt . user . theme . dark . Dark ’/>
-->

11
12 < i n h e r i t s name=’ com . google . gwt . maps . GoogleMaps ’/>
13
14 < ! -- Other module inherits

-->
15 < ! -- Specify the app entry point class .

-->
16 <entry−point c l a s s=’ cse . usf . edu . book . client . GwtBook ’/>
17
18 < ! -- Specify the application specific style sheet .

-->
19 <s t y l e s h e e t s r c=’ GwtBook . css ’ />
20 <s c r i p t s r c=" http: // maps . google . com / maps ? gwt =1& amp ; file = api & amp ;v

=2& amp ; key =
ABQIAAAAMjJ4YSAY1XGY632iJMQNUhQUHfw7juUOIptNf38LMYliOu -5
YBTsUf_Ylw - SdAb_GUxMQM_j7owt1g "/>

21 </module>

Listing 11.1: Configuring GWT project to utilize Google Maps.

11.2.2 Client-Side Code

This section develops the software to display the positions of the active
sessions in a Google Maps interface in the main control station. Every 10
seconds, this application will invoke a GWT service to obtain the last positions
of the active users in the system and display them in the Google Maps GUI.

Let us start by creating the initial tracking component without getting
the data from the server. For this, create a new class in the package name
cse.usf.edu.book.client and call it TrackingWindow. The content of the
class is shown in Listing 11.2. This is similar to the CreateDevice class of the
previous chapter (see Listing 10.5), and as such, the TrackingWindow class
also extends the Composite class. Line 14 declares the MapWidget object that
will be used as the base map. The MapWidget component is the basic class
for the maps in the Google Maps GWT library. All the objects that will be
shown in the map utilize this component in some fashion. The API allows
to add markers, points, polylines, and polygons. Since the interest here is to
show the active sessions in the system, the example code shows how to add a
marker.

In the code, lines 22–23 create a marker to be added to the map. The
marker is added in line 25, the map is centered in the coordinates of the
marker (line 27), and line 26 sets the zoom level to 14. Line 32 instantiates
a MapWidget object and the next line adds it to the background panel of
the class. Lines 48 and 49 set the dimensions of the map and lines 50–51
add the controls to the map, which are the map type (map, satellite) and
the large map control (zoom level and map movement). Finally, line 54 is
the updateActiveSessions() method that should make the RPC call to the
server and obtain the latest positions of the active sessions in the system. The
code implementing this method is included later.

Data Visualization 187

1 package cse . usf . edu . book . client ;
2
3 import com . google . gwt . maps . client . MapWidget ;
4 import com . google . gwt . maps . client . control . LargeMapControl ;
5 import com . google . gwt . maps . client . control . MapTypeControl ;
6 import com . google . gwt . maps . client . geom . LatLng ;
7 import com . google . gwt . maps . client . overlay . Marker ;
8 import com . google . gwt . user . client . ∗ ;
9 import com . google . gwt . user . client . ui . ∗ ;

10
11 public class TrackingWindow extends Composite {
12
13 private AbsolutePanel backgroundPanel = null ;
14 private MapWidget theMapWidget = null ;
15
16 public TrackingWindow () {
17 super () ;
18 initializeComponents () ;
19 setLayout () ;
20 setProperties () ;
21
22 LatLng coordinates = LatLng . newInstance (28 .055166 , −82.413511) ;
23 Marker theNewMarker = new Marker (coordinates) ;
24
25 theMapWidget . addOverlay (theNewMarker) ;
26 theMapWidget . setZoomLevel (14) ;
27 theMapWidget . setCenter (coordinates) ;
28 }
29
30 protected void initializeComponents () {
31 backgroundPanel = new AbsolutePanel () ;
32 theMapWidget = new MapWidget () ;
33 backgroundPanel . add (theMapWidget , 1 , 1) ;
34 }
35
36 protected void setLayout () {
37 initWidget (backgroundPanel) ;
38
39 }
40
41 protected void setProperties () {
42 setHeight (" 600 ") ;
43 setWidth (" 800 ") ;
44
45 backgroundPanel . setHeight (" 600 ") ;
46 backgroundPanel . setWidth (" 800 ") ;
47
48 theMapWidget . setHeight (" 600 ") ;
49 theMapWidget . setWidth (" 800 ") ;
50 theMapWidget . addControl (new LargeMapControl ()) ;
51 theMapWidget . addControl (new MapTypeControl ()) ;
52 }
53
54 public void updateActiveSessions ()
55 {
56
57 }
58 }

Listing 11.2: The client-side tracking component.

The next step is to create the classes and interfaces needed to obtain the
GPS fixes from the server using GWT’s remote procedure calls. As in the
example included in the last chapter, a serializable class (TrackingUpdate
class) and two interfaces (the service interface and the asynchronous in-

188 Location-Based Information Systems

terface) have to be created. As shown at the end of Listing 11.2, the
updateActiveSessions() method will be used to invoke the server and man-
age the response; this method is invoked periodically to obtain the current
position of the users and show updated information on the Google map. GWT
provides the class Timer to perform actions periodically.

Let us start with the TrackingUpdate serializable class, which is shown in
Listing 11.3. Just as with the Device class example included in Listing 10.6,
the class TrackingUpdate implements the IsSerializable interface, which is
placed in the cse.usf.edu.book.client.entities package. This time, the
class contains methods to set and get the session id, username, and coordi-
nates.

1 package cse . usf . edu . book . client . entities ;
2
3 import com . google . gwt . user . client . rpc . IsSerializable ;
4
5 public class TrackingUpdate implements IsSerializable {
6 private double latitude ;
7 private double longitude ;
8 private int sessionid ;
9 private String username ;

10
11 public TrackingUpdate () {
12
13 }
14 public int getsessionId () {
15 return sessionid ;
16 }
17 public String getUsername () {
18 return username ;
19 }
20 public double getLatitude () {
21 return latitude ;
22 }
23 public double getLongitude () {
24 return longitude ;
25 }
26 public void setSessionid (int sessionid){
27 this . sessionid = sessionid ;
28 }
29 public void setUsername (String usr){
30 this . username = usr ;
31 }
32 public void setLatitude (double lat){
33 this . latitude = lat ;
34 }
35 public void setLongitude (double lng){
36 this . longitude = lng ;
37 }
38 }

Listing 11.3: The TrackingUpdate serializable class.

The next step is to define and write the service and asynchronous
interfaces, this time not to perform system administration functions
but to get GPS fixes. These interfaces, which are now named as
TrackingServiceManager and TrackingServiceManagerAsync, are included
in the cse.usf.edu.book.client.services package. The new interfaces con-
sist of one method, the getTrackingUpdates() method, which returns an

Data Visualization 189

array of TrackingUpdate objects. The interfaces are shown in Listings 11.4
and 11.5, respectively.

1 package cse . usf . edu . book . client . services ;
2
3 import com . google . gwt . user . client . rpc . RemoteService ;
4 import cse . usf . edu . book . client . entities . TrackingUpdate ;
5
6 public interface TrackingServiceManager extends RemoteService {
7 public TrackingUpdate [] getTrackingUpdates () ;
8 }

Listing 11.4: The TrackingServiceManager service interface.

1 package cse . usf . edu . book . client . services ;
2
3 import com . google . gwt . user . client . rpc . AsyncCallback ;
4
5 import cse . usf . edu . book . client . entities . TrackingUpdate ;
6
7 public interface TrackingServiceManagerAsync {
8 public void getTrackingUpdates (AsyncCallback callback) ;
9 }

Listing 11.5: The TrackingServiceManager asynchronous interface.

Once the classes and interfaces have been written, the next step is to write
the updateActiveSessions() method included at the end of Listing 11.2.
The code of this function obtains the locations of the active users in the
system and places those locations in Google Maps. The function is shown in
Listing 11.6.

1 public void updateActiveSessions ()
2 {
3 TrackingServiceManagerAsync theTrackingManager = (

TrackingServiceManagerAsync) GWT . create (
TrackingServiceManager . class) ;

4
5 ServiceDefTarget endpoint = (ServiceDefTarget)

theTrackingManager ;
6 String remoteServiceURL = " http ://192.168.0.2:8080/ Lbsbook /

services / TrackingManager " ;
7 endpoint . setServiceEntryPoint (remoteServiceURL) ;
8
9 AsyncCallback callback = new AsyncCallback () {

10 public void onSuccess (Object result){
11 TrackingUpdate theUpdates [] = (TrackingUpdate []) result ;
12 if (theUpdates != null)
13 {
14 theMapWidget . clearOverlays () ;
15
16 for (int i = 0 ; i < theUpdates . length ; i++)
17 {
18 final LatLng coordinates = LatLng . newInstance (theUpdates

[i] . getLatitude () , theUpdates [i] . getLongitude ()) ;
19 final String theString = " Username : "+theUpdates [i] .

getUsername ()+"
 Session id :"+theUpdates [i] .
getsessionId () ;

20 Marker theNewMarker = new Marker (coordinates) ;
21

190 Location-Based Information Systems

22 MarkerClickHandler theHandler = new MarkerClickHandler ()
{

23 public void onClick (MarkerClickEvent event) {
24 theMapWidget . getInfoWindow () . open (coordinates , new

InfoWindowContent (theString)) ;
25 }
26 } ;
27
28 theNewMarker . addMarkerClickHandler (theHandler) ;
29 theMapWidget . addOverlay (theNewMarker) ;
30 }
31 }
32 }
33
34 public void onFailure (Throwable caught){
35 Window . alert (" An Internal Error has ocurred : " + caught .

getMessage ()) ;
36 }
37 } ;
38
39 theTrackingManager . getTrackingUpdates (callback) ;
40 }

Listing 11.6: The updateActiveSessions() method.

As shown in the previous chapter, the updateActiveSessions() method
creates the proxy (line 3), sets up the remote service location (lines 5–7), sets
up the manager of the response (lines 9–37), and invokes the service (line 39).
The code between lines 11 and 29 updates the map.

Line 11 obtains the TrackingUpdate vector that the RPC call returns.
Line 14 deletes all the previous overlays of the map, and the code between
lines 18 and 29 creates a new marker. This example creates a marker per
active session in the system; also a click event per marker is added between
lines 22 - 26. The event will open a window above the marker that displays
the username and the session identifier.

The only part missing from the GWT client is the Timer that will fire
the updateActiveSessions() method periodically. This code is shown in
Listing 11.7. The timer is a way to schedule repetitive events in GWT.
In the code, the trackingTimer object is set up to fire and invoke the
updateActiveSessions() method every 10000 milliseconds (10 seconds).
This code should be included in the initializeComponents() method of the
client-side tracking component code presented in Listing 11.2. This finalizes
the client-side code.

1 // this code assumes that there is a field in the class called
trackingTimer .

2 // to do this , add the following field Timer trackingTimer to the
class .

3
4 protected void initializeComponents () {
5 backgroundPanel = new AbsolutePanel () ;
6 theMapWidget = new MapWidget () ;
7 backgroundPanel . add (theMapWidget , 1 ,1) ;
8
9 trackingTimer = new Timer ()

10 {
11 public void run ()

Data Visualization 191

12 {
13 updateActiveSessions () ;
14 }
15 } ;
16 trackingTimer . scheduleRepeating (10000) ;
17 }

Listing 11.7: Modifying the initializeComponents() method to initialize
the timer.

11.2.3 Server-Side Code

The next step is to create the service implementation in the server. In order
to create the service in the server, we need to almost replicate the packages,
classes, and interfaces built for the client (see Figure 10.8). The main difference
is that the service interface implementation will contain the code to execute
the service, in this case, query the database and return the list of GPS fixes.

The first step is to create the serializabe class TrackingUpdate with the
methods to set and get the GPS fixes. In order to do this, open your Net-
Beans project and create the cse.usf.edu.book.client.entities package
and include the code presented in Listing 11.3. The second step is to cre-
ate the cse.usf.edu.book.client.services package and the service in-
terface TrackingServiceManager exactly as shown in Listing 11.4. The fi-
nal step is to implement the service interface, which is given by the class
TrackingServiceManagerImpl, also named exactly as its client counter-
part but with the suffix “Impl.” This class includes the code that imple-
ments the methods defined in the service, as shown in Listing 11.8. In this
case, the service interface implementation only includes one method, the
getTrackingUpdates() method.

The job of the implementation is to invoke the database and retrieve the
last location and session information of all the active sessions in the system.
Once it obtains the information from the database, it returns a vector of
TrackingUpdate that the GWT application utilizes to update the locations
in the map. The code for the service implementation is shown in Listing 11.8.
Also the postgis-1.3.3.jar library needs to be added to the project. This
file is found in the JDBC folder of your PostgreSQL installation.

1 package cse . usf . edu . book . client . services ;
2
3 import com . google . gwt . user . server . rpc . RemoteServiceServlet ;
4 import cse . usf . edu . book . client . entities . TrackingUpdate ;
5 import java . sql . Connection ;
6 import java . sql . PreparedStatement ;
7 import java . sql . ResultSet ;
8 import java . sql . SQLException ;
9 import java . util . Iterator ;

10 import java . util . LinkedList ;
11 import java . util . List ;
12 import java . util . logging . Level ;
13 import java . util . logging . Logger ;
14 import javax . naming . NamingException ;

192 Location-Based Information Systems

15 import org . postgis . Point ;
16
17 public class TrackingServiceManagerImpl extends RemoteServiceServlet

implements TrackingServiceManager {
18
19 public TrackingUpdate [] getTrackingUpdates ()
20 {
21 try{
22 javax . naming . InitialContext ic = new javax . naming .

InitialContext () ;
23 javax . sql . DataSource dataSource = (javax . sql . DataSource) ic .

lookup (" jdbc / lbsbook ") ;
24 Connection theConnection = dataSource . getConnection () ;
25
26 PreparedStatement queryStatement = theConnection . prepareStatement

(" select fieldsession . sessionid as sesid , fielduser . username
as uname , ST_AsText (tracking . position) as pos from
fieldsession , tracking , fielduser , (select max (idtracking) as
idtrack from fieldsession , tracking where fieldsession .
datestop is NULL and fieldsession . sessionid = tracking .
sessionid group by fieldsession . sessionid) as s2 "+

27 " where fieldsession . datestop is NULL and fieldsession . sessionid =
tracking . sessionid and "+

28 " tracking . idtracking = s2 . idtrack and fieldsession . iduser =
fielduser . iduser ") ;

29 ResultSet rs = queryStatement . executeQuery () ;
30 List returnList = new LinkedList () ;
31 while (rs . next ()){
32 TrackingUpdate newUpdate = new TrackingUpdate () ;
33 newUpdate . setSessionid (rs . getInt (" sesid ")) ;
34 newUpdate . setUsername (rs . getString (" uname ")) ;
35
36 Point theNewPoint = new Point (rs . getString (" pos ")) ;
37
38 newUpdate . setLongitude (theNewPoint . getX ()) ;
39 newUpdate . setLatitude (theNewPoint . getY ()) ;
40 returnList . add (newUpdate) ;
41 }
42 theConnection . close () ;
43 if (! returnList . isEmpty ())
44 {
45 TrackingUpdate theReturnVector [] = new TrackingUpdate [

returnList . size ()] ;
46 int i = 0 ;
47 for (Iterator it = returnList . iterator () ; it . hasNext () ;)
48 {
49 TrackingUpdate theUpdate = (TrackingUpdate) it . next () ;
50 theReturnVector [i] = theUpdate ;
51 i++;
52 }
53 return theReturnVector ;
54 }
55 return null ;
56 }
57 catch (NamingException ex){
58 Logger . getLogger (DevicerServiceManagerImpl . class . getName ()) .

log (Level . SEVERE , null , ex) ;
59 }
60 catch (SQLException ex){
61 Logger . getLogger (DevicerServiceManagerImpl . class . getName ()) .

log (Level . SEVERE , null , ex) ;
62 }
63 return null ;
64 }
65 }

Listing 11.8: Server-side tracking service implementation.

Data Visualization 193

This code connects to the database in lines 22–24. After the connection has
been established, it prepares a query in lines 26–28 to obtain the last location
from all active sessions. In the database model, a session is active if the value
of the datestop field is NULL. Since the location of all the sessions is kept
in the tracking list, the query performs a subquery in the from statement of
the query to retrieve the maximum idtracking for all active sessions, which
would be the identification of the last GPS fix received from every active
session. This result is then joined with the session, tracking, and fielduser
tables to obtain the following fields:

• sessionid: Obtained from the fieldsession table.

• username: Obtained from the fielduser table after joined with the field-
session table on the iduser.

• location: Obtained after joining the s2 subquery (see query statement
in Listing 11.8) table (on idtracking) with the tracking table and field-
session (on sessionid).

Lines 31–41 obtain the information for each of the sessions and place that
information in a TrackingUpdate object. In the query, the location is obtained
as a String and the coordinates have to be converted into a double value.
This is performed in line 36 where the Point object (from the PostGIS library)
obtains the location as String from the ResultSet and converts it into double
value (line 38 for longitude and line 39 for latitude). Since the size of the
ResultSet is unknown (the number of active sessions), the information is
placed in a LinkedList. After this, the information is placed in a vector that
is returned to the GWT application (lines 47–53).

Once the client and server side codes have been developed and tested, they
can be compiled, tested, and deployed with GWT. For this, follow the same
process explained in Section 10.3.3.

11.3 Google Earth

The GPS fixes of active users can also be displayed in a Google Earth
GUI. Google Earth is a 3D mapping application designed as a geographical
browser to show maps, satellite images, and location data in an interactive
fashion. Just as with Google Maps, Google Earth allows to place overlays on
the maps with the advantage of being able to show those overlays in 3D. An
example of the Google Earth GUI is shown in Figure 11.2.

Google Earth can show customized information over the globe’s surface
using an XML schema originally called Keyhole Markup Language (KML).
Designed by Keyhole, Inc., KML became an Open Geospatial Consortium

194 Location-Based Information Systems

FIGURE 11.2: Google Earth graphical user interface.

(OGC) standard in April 2008. This section briefly explains KML and the
process to show the location information of the active sessions of our LBIS
tracking system example in Google Earth.

11.3.1 KML Language

KML is a markup language designed to encode information to be shown in
an Earth browser [6]. Similar to HTML, KML is an XML language formed by a
hierarchy of tags with nested elements and attributes. With KML, placemarks
describing geographical places (e.g., restaurants, hospitals, houses) can be
created. Also, it can be utilized to show tracking journeys (e.g., hurricanes,
cars) and to share information among several geographical data providers
(e.g., NOAA, NASA, UNESCO, Smithsonian, Google). As with HTML, KML
documents are written in plain text, following a specification. The following
list includes the most important tags available in KML:

• <kml>...< /kml>: Declares the root element of a KML file. It is
used to define the namespace of the file. The content of the KML file
must be placed within these tags. Before the <kml> tag, the <?xml
version=“1.0′′ encoding=“UTF-8′′? > must be placed, as these tags de-
fine the XML version and the encoding of the document.

• <Document>...< /Document>: The Document tag defines a con-
tainer for features and styles. A style is an attribute that assigns the
look of a feature. As styles can be shared among features, this tag de-
fines the shared styles for the features. In Google Earth, a feature is

Data Visualization 195

an object that can be shown in the globe. Such features form the KML
document.

• <Folder>...< /Folder>: Allow to arrange features in a hierarchical
fashion. Folders can be contained in other folders and also within a
Document tag. Folders are optional and a document can be made up of
several folders.

• <Placemark>...< /Placemark>: A Placemark is a feature that is
associated with a Geometry. The Placemark is the basic object that can
be shown and georeferenced in Google Earth. The basic Placemark is a
placemark with a Point geometry and an icon that marks a coordinate
in the globe. Placemarks may have other geometries such as a Line or
a Polygon, and even be associated with collections of basic geometries,
forming a even more complex geometry, such as a building.

Listing 11.9 shows a simple example of a KML document that puts a
placemark in the coordinates of the University of South Florida. To see this
in Google Earth, save the code using Notepad with a .kml extension, open
Google Earth, go to the menu File→Open, and open the file. This KML file
will be the basis for creating a dynamic script that will generate a KML
document on demand, as explained in the next section.

1 <? xml version=" 1.0 " encoding=" UTF -8 "?>
2 <kml xmlns=" http: // www . opengis . net / kml /2.2 ">
3 <Document>
4 <Placemark>
5 <name>University of South Florida , Tampa Campus</name>
6 <de s c r i p t i o n>A Placemark showing USF Campus</ d e s c r i p t i o n>
7 <Point>
8 <coo rd ina t e s>−82.413511 ,28.055166 ,0</ coo rd ina t e s>
9 </Point>

10 </Placemark>
11 </Document>
12 </kml>

Listing 11.9: A simple KML file example.

11.3.2 Generating KML Documents Dynamically

Using the example in Listing 11.9, this section explains how to generate
this KML document in a dynamic fashion. The first step is to create a servlet
to generate the KML document. In order to do this, open your NetBeans
project, right-click in the project’s name in the Projects panel, and select
New→Servlet. In the dialog box that appears, write KMLTrackingServlet in
the Class Name text field. In the package select the cse.usf.book.client.
services. In the next dialog box write in KMLTrackingServlet as the servlet
name and /services/KMLTrackingServlet in URL pattern(s). Click Finish
to create the servlet. NetBeans automatically creates and open a new Java
file, which is shown in Listing 11.10.

196 Location-Based Information Systems

1 package cse . usf . book . client . services ;
2
3 import java . io . IOException ;
4 import java . io . PrintWriter ;
5 import javax . servlet . ServletException ;
6 import javax . servlet . http . HttpServlet ;
7 import javax . servlet . http . HttpServletRequest ;
8 import javax . servlet . http . HttpServletResponse ;
9

10
11 public class KMLTrackingServlet extends HttpServlet {
12
13 protected void processRequest (HttpServletRequest request ,

HttpServletResponse response)
14 throws ServletException , IOException {
15 response . setContentType (" text / html ; charset = UTF -8 ") ;
16 PrintWriter out = response . getWriter () ;
17 try {
18 /* TODO output your page here
19 out . println (" < html >") ;
20 out . println (" < head >") ;
21 out . println (" < title > Servlet NewServlet </ title >") ;
22 out . println (" </ head >") ;
23 out . println (" < body >") ;
24 out . println (" < h1 > Servlet NewServlet at " + request .

getContextPath () + " </ h1 >") ;
25 out . println (" </ body >") ;
26 out . println (" </ html >") ;
27 */
28 } finally {
29 out . close () ;
30 }
31 }
32
33 @Override
34 protected void doGet (HttpServletRequest request ,

HttpServletResponse response)
35 throws ServletException , IOException {
36 processRequest (request , response) ;
37 }
38
39
40 @Override
41 protected void doPost (HttpServletRequest request ,

HttpServletResponse response)
42 throws ServletException , IOException {
43 processRequest (request , response) ;
44 }
45
46 @Override
47 public String getServletInfo () {
48 return " Short description " ;
49 }
50 }

Listing 11.10: Creating the KMLTrackingServlet servlet to generate KML
documents dynamically.

Once the servlet is created, the next step is to write its processRequest()
method. The code is similar to the code for the getTrackingUpdates()
method in Listing 11.8. The main difference is that this method generates
a KML feed instead of returning a GWT serializable vector. Listing 11.11
shows the code that produces the KML output.

Data Visualization 197

1 protected void processRequest (HttpServletRequest request ,
HttpServletResponse response)

2 throws ServletException , IOException {
3 response . setContentType (" text / html ; charset = UTF -8 ") ;
4 PrintWriter out = response . getWriter () ;
5 try{
6 response . setContentType (" application / vnd . google - earth . kml +

xml ") ;
7
8 out . write (" <? xml version =\"1.0\" encoding =\" UTF -8\"? > ") ;
9 out . write (" < kml xmlns =\" http :// www . opengis . net / kml /2.2\" > "

) ;
10
11 List returnList = getDBTrackingUpdates () ;
12
13 if ((returnList != null) && (! returnList . isEmpty ()))
14 {
15 out . write (" < Document >") ;
16 out . write (" < Folder >") ;
17 out . write (" <name > Active Tracking Sessions </ name >") ;
18 out . write (" <open >1 </ open >") ;
19 out . write (" < description > Contains the active sessions in

the Tracking system </ description >") ;
20
21 String thePlacemarkString = "" ;
22 for (Iterator it = returnList . iterator () ; it . hasNext () ;)
23 {
24 TrackingUpdate theUpdate = (TrackingUpdate) it . next

() ;
25
26 thePlacemarkString = " < Placemark >" ;
27 thePlacemarkString = thePlacemarkString + " <name >"+

theUpdate . getUsername ()+" </ name >" ;
28 thePlacemarkString = thePlacemarkString + " <

description >"+theUpdate . getUsername ()+" with
sessionid : "+theUpdate . getsessionId ()+" </
description >" ;

29 thePlacemarkString = thePlacemarkString+" < Point ><
coordinates >"+theUpdate . getLongitude ()+" ,"+
theUpdate . getLatitude ()+" ,"+0+" </ coordinates > </
Point >" ;

30 thePlacemarkString = thePlacemarkString + " </
Placemark >" ;

31
32 out . write (thePlacemarkString) ;
33 }
34 out . write (" </ Folder >") ;
35 out . write (" </ Document >") ;
36 out . write (" </ kml >") ;
37 }
38 else
39 {
40 out . write (" </ kml >") ;
41 }
42 out . close () ;
43 }
44 finally
45 {
46 out . close () ;
47 }
48 }

Listing 11.11: The processRequest() method of the KML servlet.

The code begins by setting the content type for the servlet’s response,
which is "application/vnd.google-earth.kml+xml" for Google Earth (line

198 Location-Based Information Systems

FIGURE 11.3: Creating a network link in Google Earth.

6). Lines 8 and 9 write to the output stream the header of the KML file.
Since the code that obtains the information from the database is similar to
that of Listing 11.8 (getTrackingUpdates()), this method has been named
getDBTrackingUpdates(), which returns a list of TrackingUpdates objects.
The function returns NULL if there is a database connection error and an
empty list if there are no active sessions in the system. On the other hand, if
there is at least one active session, then the for loop iterates over the list (lines
22–33) and writes a placemark per active session in the system. Within that
loop, line 28 adds the username plus the session identifier as the placemark’s
description and line 29 sets the location’s coordinates for the placemark. Fi-
nally, line 32 writes the placemark to the output stream.

Now that the KML is generated, the next step is to replace the
processRequest() method that was created automatically by NetBeans in
Listing 11.10 with this one (Listing 11.11). Then, Clean and Build the appli-
cation, and Deploy it.

The last step is to create a Network Link so the Google Earth client in
the main control station can obtain a feed of GPS fixes from the server and
display them. Open Google Earth and go to the menu Add→Network Link.
In the dialog box that appears (Figure 11.3), write in the name text field
LBS Book Network Link and the URL of your KML tracking service in the

Data Visualization 199

FIGURE 11.4: An active tracking session as shown in Google Earth.

Link text field (for us it is http://192.168.0.2:8080/LbsBook/services/
KMLTrackingServlet). Then, click on the Refresh panel. There are two ma-
jor options that instruct Google Earth when to update the network link. One
is by time and the other is by a change in the view. For a time-based option, se-
lect in the When combo box of the Time-Based Refresh, then the Periodically
option and set the time to update. In this example, the time was set to 10
seconds. Now click Ok. If there are active sessions in your tracking system,
they should be shown like in Figure 11.4 and refreshed every 10 seconds. The
View-Based Refresh option allows you to refresh the view every time there is
a change in it.

11.3.3 Embedding Google Earth in a Web Application

Last section shows how to display the GPS fixes of the active sessions in
the system in a Google Earth GUI. However, the placemarks, once displayed,
are static and can’t be manipulated to provide additional information. For
example, you may want to click on one of those placemarks and see the build-
ings and landmarks around it, as if you were standing there, walking in the
street. The Google Earth API (http://code.google.com/apis/earth/) and
the Google Earth Plugin were developed for this purpose.

The Google Earth API is a JavaScript programming interface utilized to
program Google Earth as if it was a complement of your application. The
programming interface is a complement to the KML language that allows to

http://code.google.com/
http://192.168.0.2:8080/

200 Location-Based Information Systems

control events in Google Earth, which cannot be done by KML only. This
last section of the chapter explains how to embed Google Earth into a Web
application with the GWT. In order to do this, one of the advanced concepts
of the GWT needs to be explained: the GWT JavaScript Native Interface.

11.3.3.1 The GWT JavaScript Native Interface

The GWT JavaScript Native Interface is one of the most advanced con-
cepts of the GWT. It allows you to write methods in JavaScript and invoke
these methods from Java GWT code and vice versa, i.e., call Java GWT meth-
ods from JavaScript code. Listing 11.12 shows an example of JavaScript code
embedded into Java GWT. The code has the following characteristics:

• The name of the method is addNumbers().

• The JavaScript code is written within the characters /*-{ and }-*/.

• The scope of the method is private, meaning that this native code can
be invoked within the class and instances of this class only. As with reg-
ular Java methods, native methods can have any of the three modifying
scopes: public, private, or protected.

1 private int addNumbers (int op1 , op2)
2 /* -{
3 return op1 + op2 ;
4 }- */ ;

Listing 11.12: A native JavaScript GWT method.

In order to invoke Java methods from JavaScript, the following method
signature has to be used [31]:

[instance-expr.]@class-name::method-name(param)(arguments)
where:

• [instance-expr.]: Instance of the class that has the method the code is
invoking. The instance is always mandatory unless the code is invoking
a static method.

• class-name::method-name: Class and method signature for the method
that is going to be invoked.

• param: Types of each of the parameters that are passed to the method.
Each of the parameters is separated by a semicolon (;). Depending on
the type, its signature can be as:

– boolean: Z.

– int: I.

– double: D.

Data Visualization 201

– [type]: Where type is a primitive type signature.

– any object: Lpackage/object. Here package is separated by back-
slash (e.g., java.lang.String becomes Ljava/lang/String).

• arguments: The argument list, comma-separated.

Two remaining aspects that need to be mentioned from the JavaScript
native interface are the variables that refer to the browser and the document.
These are

• $wnd: Refers to the Window JavaScript element properties and meth-
ods. It is utilized to call the browser’s methods and external JavaScript
libraries associated with the project.

• $doc: Refers to the HTML elements in the page.

11.3.3.2 Loading Google Earth in a GWT Web Application

This section explains how to load Google Earth from a GWT Web ap-
plication. The main idea is to modify the visualization application to utilize
Google Earth as a mapping platform instead of Google Maps. The appli-
cation will invoke the server every 10 seconds to update the location in-
formation and use the code developed in this section to add the updated
locations to the Google Earth globe. The code included in this section is
based on the code developed by Samuel Charron, which is available at http:
//earth-api-samples.googlecode.com/svn/trunk/demos/gwt-earth/. It
assumes that the Google Earth Plugin is installed and a Google Maps API
key is available (see Section 11.2.1).

Let us start by modifying the project’s HTML and css (cascade style
sheet1) files to include the following:

• In your project’s HTML file (created in Section 10.3.1 and shown in
Listing 10.2) include the following lines to import the Google Earth
API to your document:

1 <head>
2
3
4 <script src=" http :// www . google . com / jsapi ? hl = en & key =

YOUR_GWT_KEY "></script>
5 <script>google . load (" earth " , "1") ;</ script>
6 </head>

• In your project’s css file (created in Section 10.3.1 and shown in List-
ing 10.3) include the following lines to setup the starting size of the div
element for the Google Earth Globe:

1CSS files contain the styles of all HTML objects.

http://earth-api-samples.googlecode.com
http://earth-api-samples.googlecode.com

202 Location-Based Information Systems

1 . map3dcontainer {
2 border : 1px solid silver ;
3 height : 500 px ;
4 }
5
6 . map3d {
7 height : 100%;
8 }

Using the GWT JavaScript native interface, the code that initializes
Google Earth is invoked. The idea is to wrap it up in a Widget that can
be utilized as a GUI component for any screen that you need. Therefore, this
Widget can be part of other GUI components and be shown in the browser.
Listing 11.13 shows the Widget code that loads the GWT globe.

1 package cse . usf . edu . book . client ;
2
3 import java . util . ArrayList ;
4
5 import com . google . gwt . core . client . GWT ;
6 import com . google . gwt . core . client . JavaScriptObject ;
7 import com . google . gwt . user . client . ∗ ;
8 import com . google . gwt . user . client . ui . ∗ ;
9

10 public class GoogleEarthTrackingWidget extends Widget
11 {
12 private JavaScriptObject ge ;
13 public static int globeId = 0 ;
14 private ArrayList pluginReadyListeners = new ArrayList () ;
15
16 public GoogleEarthTrackingWidget ()
17 {
18 HTML html = new HTML (
19 " < div class =’ map3dcontainer ’ id =’ map3dcontainer " + globeId + "

’>" +
20 " < div class =’ map3d ’ id =’ map3d " + globeId + " ’></ div > </ div >") ;
21 setElement (html . getElement ()) ;
22 }
23
24 public void init () {
25 initializeGoogleEarth (globeId) ;
26 globeId++;
27 }
28
29 public void addGELoadedListener (GELoadedListener listener)
30 {
31 this . pluginReadyListeners . add (listener) ;
32 }
33
34 public void ready (JavaScriptObject ge) {
35 for (int i = 0 ; i < pluginReadyListeners . size () ; ++i) {
36 ((GELoadedListener) pluginReadyListeners . get (i)) . geReady (ge) ;
37 }
38 }
39
40 private native void initializeGoogleEarth (int id) /* -{
41 var instance = this ;
42
43 function initCB (obj)
44 {
45 ge = obj ;
46 ge . getWindow () . setVisibility (true);

Data Visualization 203

47
48 instance . @cse . usf . edu . book . client . GoogleEarthTrackingWidget ::

ready (Lcom / google / gwt / core / client / JavaScriptObject ;) (ge);
49
50 var navControl = ge . getNavigationControl () ;
51 navControl . setVisibility (ge . VISIBILITY_SHOW);
52 }
53
54 function failureCB (object)
55 {
56 alert (’ load failed : ’+ object);
57 }
58 $wnd . google . earth . createInstance ($doc . getElementById (" map3d " + id) ,

initCB , failureCB);
59 }- */ ;
60
61 }

Listing 11.13: Google Earth GWT Widget.

Let us explore the code. The code extends the Widget class, creating a
custom-designed user interface object. The constructor of this method (lines
16–22) creates an HTML component. The HTML component creates two new
div elements called map3dcontainer+globeId and map3d+globeId on the fly.
Notice that these two lines in the class property invoke the map3dcontainer
and the map3d css element classes in the project’s css file (see Listing 10.3).
After this, line 21 sets the element of the Widget to be the element defined
by the HTML code.

Lines 29–39 show how to implement a listener to make sure Google Earth
has been loaded correctly. To create this listener, you need to create an inter-
face called GELoadedListener (shown in Listing 11.14). With this in mind,
the method addGELoadedListener() (lines 29–32) adds a GELoadedListener
object to the array of listeners and the ready() method (lines 34–38) fires the
geReady() method of all the listeners once Google Earth has been loaded.

1 package cse . usf . edu . book . client ;
2
3 import com . google . gwt . core . client . JavaScriptObject ;
4
5 public interface GELoadedListener {
6
7 public void geReady (JavaScriptObject ge) ;
8 }

Listing 11.14: The GELoadedListener interface.

The next part of the code is the native method that performs the Google
Earth’s invocation. This method is the initializeGoogleEarth() method
(lines 40–59). This code declares the functions (initCB) and (failureCB)
that Google Earth will fire upon loading. The initCB JavaScript function
sets the Globe to be visible, and invokes the ready() function (calling the
Java GWT ready function from the JavaScript native code), which then fires
the geReady() method of the listeners. The failureCB function shows an
alert on the screen if Google Earth fails to load. Finally, line 58 invokes the
Google Earth API function that loads Google Earth. This JavaScript function

204 Location-Based Information Systems

has three parameters, which are the elements where the globe will be added,
and the two JavaScript functions (initCB and failureCB).

Now it is time to write a class that extends the Composite class and utilizes
the already developed Google Earth widget. When completed, this class will
perform the same functionality as Listing 11.2, invoking the server to update
the locations and showing them in the Google Earth Globe.

Initially, create a class named GoogleEarthTrackingWindow under the
package cse.usf.edu.book.client and copy the code included in List-
ing 11.15. Line 18 states that the GoogleEarthTrackingWindow class ex-
tends the Composite GWT object and implements the GELoadedListener
class. This class has four fields, which are a vertical panel (line 20), a
GoogleEarthTracking widget (line 21), a timer (line 22), and a vector of
GWT features (line 24). This vector is utilized to store the placemarks for
the locations created by Google Earth through the native methods shown in
Listing 11.17.

Lines 26–32 contain the constructor of the GoogleEarthTrackingWindow
class and create a new instance of the GoogleEarthTracking class. The most
important part of this method is in line 30 where the code adds the current
class as a listener of the gew object. When loaded successfully, the gew object
fires the geReady() method (lines 34–45), which activates a timer (lines 37–
44) to invoke the updateActiveSessions() method every ten seconds (as
stated in line 44). Finally, the updateActiveSessions() method (lines 47–
50) invokes the server to obtain the updated locations of those active sessions
in the system.

After this, the next step is to modify the onLoadMethod(), as shown in
Listing 11.16, to create an instance of GoogleEarthTrackingWindow and load
it in the browser. Remember that the onLoadMethod() is the entry point,
i.e., the main method, of the Web application. This listing modifies the en-
try point of the application so it loads the GoogleEarthTrackingWindow
when the client Web application starts. Line 7 creates an instance of the
GoogleEarthTrackingWindow and the next two lines set the size of such
Composite. Finally, save the files and run the project in the GWT browser.
You should see an image like the one shown in Figure 11.5. In this code,
the timer that invokes the updateActiveSessions() method is triggered af-
ter the Google Earth is successfully loaded in the browser. If you try to add
something else to the globe before it is loaded, an unexpected behavior may
occur.

Please notice that we are using the same service interface defined in the
last section for the client-side code with Google Maps. That is why in the
code the class GoogleEarthTrackingWindow imports the TrackingUpdate,
TrackingServiceManager, and the TrackingServiceManagerAsync classes.

1 package cse . usf . edu . book . client ;
2
3 import java . util . Vector ;
4

Data Visualization 205

5 import com . google . gwt . core . client . GWT ;
6 import com . google . gwt . core . client . JavaScriptObject ;
7 import com . google . gwt . user . client . Timer ;
8 import com . google . gwt . user . client . Window ;
9 import com . google . gwt . user . client . rpc . AsyncCallback ;

10 import com . google . gwt . user . client . rpc . ServiceDefTarget ;
11 import com . google . gwt . user . client . ui . Composite ;
12 import com . google . gwt . user . client . ui . VerticalPanel ;
13
14 import cse . usf . edu . book . client . entities . TrackingUpdate ;
15 import cse . usf . edu . book . client . services . TrackingServiceManager ;
16 import cse . usf . edu . book . client . services . TrackingServiceManagerAsync ;
17
18 public class GoogleEarthTrackingWindow extends Composite implements

GELoadedListener
19 {
20 private VerticalPanel vp = new VerticalPanel () ;
21 public GoogleEarthTrackingWidget gew = new GoogleEarthTrackingWidget

() ;
22 private Timer trackingTimer = null ;
23
24 public Vector gwtFeatures = new Vector () ;
25
26 public GoogleEarthTrackingWindow ()
27 {
28 vp . add (gew) ;
29 vp . setCellHeight (gew , " 500 px ") ;
30 gew . addGELoadedListener (this) ;
31 initWidget (vp) ;
32 }
33
34 public void geReady (JavaScriptObject ge)
35 {
36 updateActiveSessions () ;
37 trackingTimer = new Timer ()
38 {
39 public void run ()
40 {
41 updateActiveSessions () ;
42 }
43 } ;
44 trackingTimer . scheduleRepeating (10000) ;
45 }
46
47 public void updateActiveSessions () ;
48 {
49
50 }
51 }

Listing 11.15: The GoogleEarthTrackingWindow Composite class.

1 public void onModuleLoad () {
2 AbsolutePanel theTest = new AbsolutePanel () ;
3 theTest . setSize (" 95% " , " 95% ") ;
4
5 RootPanel . get () . add (theTest) ;
6
7 GoogleEarthTrackingWindow gew = new GoogleEarthTrackingWindow () ;
8 gew . setHeight (" 500 px ") ;
9 gew . setWidth (" 700 px ") ;

10
11 theTest . add (gew , 0 , 0) ;
12 gew . gew . init () ;
13

206 Location-Based Information Systems

FIGURE 11.5: Google Earth loaded in a Web application.

14 theTest . setVisible (true) ;
15 }

Listing 11.16: Modifying the onModuleLoad() method.

At this point, the GoogleEarthTrackingWindow class can be further de-
veloped to show the users in real time. The first step to do this is to modify the
GoogleEarthTrackingWidget class by adding the code shown in Listing 11.17.
This code has two new native methods, the addPlacemark() method for
adding a feature to the globe and the removePlacemark() method to remove
a feature from the globe.

The addPlacemark() method of the GoogleEarthTrackingWidget creates
and shows placemarks in the Google Earth globe. This method is a native
JavaScript method that returns (as shown in line 1) a JavasScriptObject.
This object is just an abstraction of an object that is created within a na-
tive method. In this particular method, the returned JavaScriptObject rep-
resents a newly created placemark in the Google Earth globe. The refer-
ence is needed, so it can be used later to remove it from the map. The
addPlacemark() method receives three parameters, which are the latitude,
longitude, and the caption for the placemark. Line 4 creates a new instance
of a placemark, line 5 sets its caption, and line 6 adds the placemark as a
feature of the Google Earth globe. At this point, the placemark has neither
its location nor its style. The style for the placemark is created between lines
9 and 13, where a red circle as the icon for the placemark is selected. The

Data Visualization 207

location for the placemark is created between lines 17 and 19 and added to
the placemark in line 21. Finally, line 22 returns a newly created instance of
a placemark. The second method in this listing is the removePlacemark()
method, which receives a JavaScriptObject as a parameter instance that
represents a previously created placemark. The removal of such placemark is
finally performed by the code in line 28.

1 public native JavaScriptObject addPlacemark (double latitude , double
longitude , String caption)

2 /* -{
3
4 var placemark = ge . createPlacemark (’ ’) ;
5 placemark . setName (caption);
6 ge . getFeatures () . appendChild (placemark);
7
8 // Create style map for placemark
9 var icon = ge . createIcon (’ ’) ;

10 icon . setHref (’ http :// maps . google . com / mapfiles / kml / paddle / red -
circle . png ’);

11 var style = ge . createStyle (’ ’) ;
12 style . getIconStyle () . setIcon (icon);
13 placemark . setStyleSelector (style);
14
15 // Create point
16
17 var point = ge . createPoint (’ ’) ;
18 point . setLatitude (latitude);
19 point . setLongitude (longitude);
20
21 placemark . setGeometry (point);
22 return placemark ;
23
24 }- */ ;
25
26 public native void removePlacemark (JavaScriptObject obj)
27 /* -{
28 ge . getFeatures () . removeChild (obj);
29 }- */ ;

Listing 11.17: Adding and removing features using the native interface.

The next step is to write the code to invoke the server, get location updates,
and show the updated locations in the globe. This is similar to the code that
was developed in Listing 11.6, but instead of adding such locations to the
map, this code will add them to the globe. The code is shown in Listing 11.18.
Notice that since the changes have been done in the GWT client application,
there is no need to change the service’s implementation code in the server.
At this point, you should be able to run the GWT client application and get
location updates to be added to the Globe every 10 seconds.

Listing 11.18 shows the updateActiveSessions() method of the
GoogleEarthTrackingWindow. This code updates the locations invoking a
service at the server. There are three major parts: Lines 3–7 create the end-
point (destination address) of the service to be invoked; lines 9–34 show the
code that executes when there is a successful invocation of the remote service
(onSuccess() method) or there is a failure in the invocation (onFailure());
line 37 performs the service invocation to the server.

208 Location-Based Information Systems

Let’s take a look at the onSuccess() method (lines 10–28). The first line
in the method (line 11) casts the returned result of the remote procedure
as an array of TrackingUpdate objects. If the array is not null, then all
previous placemarks shown in the Google Earth globe are removed. This is
performed between lines 14–18 of the listing, where the gwFeatures vector
is traversed and each of the JavaScriptObject instances stored in the vec-
tor are obtained and removed from the globle (line 17). Remember that the
JavaScriptObject instances represent placemarks created using the native
methods of the GoogleEarthTrackingWidget class. After each of the place-
marks is removed from the globe, all the objects of the gwtFeatures vec-
tor (line 20) are also removed. Finally, between lines 22 and 27, each of the
tracking updates is added to the Google Earth globe, where the placemarks’
locations are given by the coordinates obtained from the server and the place-
marks’ captions are the usernames (line 24). The newly created placemarks
are also stored in the gwtFeatures vector (line 25).

1 public void updateActiveSessions ()
2 {
3 TrackingServiceManagerAsync theTrackingManager = (

TrackingServiceManagerAsync) GWT . create (TrackingServiceManager
. class) ;

4
5 ServiceDefTarget endpoint = (ServiceDefTarget) theTrackingManager ;
6 String remoteServiceURL = " http ://192.168.0.2:8080/ Lbsbook /

services / TrackingManager " ;
7 endpoint . setServiceEntryPoint (remoteServiceURL) ;
8
9 AsyncCallback callback = new AsyncCallback () {

10 public void onSuccess (Object result){
11 TrackingUpdate theUpdates [] = (TrackingUpdate []) result ;
12 if (theUpdates != null)
13 {
14 for (int i = 0 ; i < gwtFeatures . size () ; i++)
15 {
16 JavaScriptObject thePrevLoc = (JavaScriptObject)

gwtFeatures . get (i) ;
17 gew . removePlacemark (thePrevLoc) ;
18 }
19
20 gwtFeatures . removeAllElements () ;
21
22 for (int i = 0 ; i < theUpdates . length ; i++)
23 {
24 JavaScriptObject theNewPlacemark = gew . addPlacemark (

theUpdates [i] . getLatitude () , theUpdates [i] .
getLongitude () , theUpdates [i] . getUsername ()) ;

25 gwtFeatures . add (theNewPlacemark) ;
26 }
27 }
28 }
29
30 public void onFailure (Throwable caught)
31 {
32 Window . alert (" An Internal Error has ocurred : " + caught .

getMessage ()) ;
33 trackingTimer . cancel () ;
34 }
35 } ;
36

Data Visualization 209

37 theTrackingManager . getTrackingUpdates (callback) ;
38 }

Listing 11.18: The updateActiveSessions() method for updating locations
in Google Earth.

11.4 Data Visualization and the LBIS Tracking System
Example

This chapter describes how to show the active sessions in the LBIS sys-
tem in a Google Map or Google Earth graphical user interface. The main
control station queries the database in the server to obtain and display the
active sessions in the interface in real time. This query-response method is ex-
ecuted, at a pre-established frequency, using the Google Web Toolkit, which
facilitates the transfer of information between client and server hiding from
the programmer all the low-level details of such transfers. Implementing the
visualization capabilities described in this chapter allow emergency officers,
caregivers, parents, guardians, etc., to visualize the users of the system in real
time in a very compelling graphical interface from any computer connected to
the Internet.

http://taylorandfrancis.com

Chapter 12

Processing the Data

12.1 Introduction

Location-based applications provide services based on the geographical lo-
cation of the device. In order to provide enhanced LBS services or to provide
the services in a more efficient manner, LBIS perform some data processing
to transform that data into information and run algorithms to improve its
performance. According to the software architecture described in Section 1.4,
this data processing can be done in a local fashion (mobile device-side pro-
cessing), as shown in Figure 1.5, in a remote machine (server-side processing),
as shown in Figure 1.6, or in a combined or collaborative fashion between the
mobile device and the server.

The decision on where to do the processing depends on the application, the
service, and the resources needed. Some applications require local processing
to provide immediate feedback to the user. Some other applications require
this processing to be performed in a more powerful machine because of the
mobile device’s limitations on computing power, memory, communication, and
energy. Further, data availability is also an aspect to consider since the data
might not be available locally.

This chapter provides examples of data processing in the mobile device
and the server. The first example performs local data processing to reduce
the communication and energy costs of sending unnecessary GPS fixes to the
server. Then, two examples of data processing in the server are included to
show how to enhance the LBS service beyond real-time tracking.

12.2 Mobile Device-Side Processing

Consider our LBS tracking system example and assume that to track a
device in real time the application in the mobile device sends position data to
the server every second, i.e., 24*3600 = 86400 position updates to the server
every day. This has strong implications in terms of 1) energy consumption in
the mobile device, 2) bandwidth consumption, which is costly and scarce in

211

212 Location-Based Information Systems

cellular networks, and 3) data storage in the server. And this is for one device
only!

Assume that the device does not move 50% of the day. Does the applica-
tion really need to send all the GPS fixes to track the device? Definitively,
not. In this case, approximately 43200 unnecesary position updates would be
sent on a daily basis! Now, assume that the device moves, but it remains in a
800 square meters area the entire day. Is it necessary to send all the position
updates to keep track of this device if all you need to know is whether the
device goes beyond this particular area? Is it necessary to send all the fixes if
you know that the device is not changing its direction and you know how fast
it is moving? The answers to these questions seem to be no. The challenge is
to design and implement position update algorithms that would reduce the
number of updates, and therefore, reduce network traffic (save scarce band-
width and reduce communication costs), save energy, and reduce the server
overhead while being able to accurately track the device. These algorithms,
which are implemented in the mobile device tracking application to filter out
unnecessary position updates, are named here as Critical Point Algorithms
(CPA) [16].

CPA can be implemented in many different ways. In this chapter, one of
those possible implementations is shown, which uses the distance and time
traveled by the device and the accuracy of the fixes to make the decision as
to whether to send or not a GPS fix to the server. The algorithm, which is
shown in Listing 12.1, works as follows. Initially, when the tracking applica-
tion is started in the mobile device, the first valid position that the mobile
device calculates is marked as a critical point and sent to the server. After
this, the distance from every valid position to the last critical point is calcu-
lated. If the distance is greater than some distance threshold, then the last
valid coordinate is marked as critical and sent to the server. If the distance is
less than the threshold, then the algorithm compares the horizontal diluted
of precision (HDOP) values of the last critical position and the last valid
position. A lower HDOP value means less error, and therefore better accu-
racy. If the last valid position is more accurate than the last critical point,
then the position is marked as critical and sent to the server. If the GPS re-
ceiver does not provide the HDOP data directly, the location API provides the
getHorizontalAccuracyy() method, which is a good substitute, as shown in
Listing 12.1.

If neither of the two conditions described above marks the last valid posi-
tion as critical point, then the elapsed time from the last critical position to
this last valid position is calculated. If the elapsed time is greater than a time
threshold, then the last valid coordinate is marked as critical and sent to the
server.

1 // This code assumes that there is a valid position called
lastCriticalLocation

2 // which represents the last position sent to the server .
3 // distThresshold is a double value in meters > 0.

Processing the Data 213

4 // timeThresshold is a time in milliseconds thresshold > 0.
5
6 public boolean distanceBasedCP (Location lastValidLocation)
7 {
8 QualifiedCoordinates theLastCriticalPoint = lastCriticalLocation .

getQualifiedCoordinates () ;
9 QualifiedCoordinates theValidLastCoordinates = lastValidLocation .

getQualifiedCoordinates () ;
10
11 if (theLastCriticalPoint . distance (theValidLastCoordinates) >

distThresshold)
12 {
13 lastCriticalLocation = lastValidLocation ;
14 return true ;
15 }
16 else if (theValidLastCoordinates . getHorizontalAccuracy () <

theLastCriticalPoint . getHorizontalAccuracy ())
17 {
18 lastCriticalLocation = lastValidLocation ;
19 return true ;
20 }
21 else if (lastValidLocation . getTimestamp () − lastCriticalLocation .

getTimestamp () > timeThresshold)
22 {
23 lastCriticalLocation = lastValidLocation ;
24 return true ;
25 }
26 return false ;
27 }

Listing 12.1: The distance-time-based critical point algorithm.

The distance threshold plays an important role in the algorithm: if the dis-
tance threshold is set too high, then the mobile device will send very few fixes
to the LBIS server, and therefore, it will be very difficult to track the device
accurately. Further, it may imply a long time between critical points, which
might be critical for some real-time applications. For example, by the time
the system gets a critical point, it might be too late to provide the intended
service. On the other hand, if the distance threshold is set too low, then many
unnecessary position updates will be sent, wasting precious resources.

Figure 12.1 shows the effect of applying the critical point algorithm in an
application used to track an individual while walking through the Tampa cam-
pus of the University of South Florida. In this example, the distance threshold
was set to 20 meters and the time threshold to 30 seconds. This means that
the device will send a position update every second only if it is moving at
a rate faster than 20 m/s (72 Km/h) or every 30 seconds in the worst case.
Figure 12.1(a) shows all the GPS fixes calculated by the device and sent to the
server without the CPA; a total of 386 GPS fixes recorded in a seven-minute
walk. Figure 12.1(b) shows the same walk but using the CPA algorithm. In
this case, only 20 fixes (roughly 5%) from all recorded ones were marked as
critical points and sent to the server. This algorithm was also tested while
moving in cars. In that scenario, it marked between 20%–30% of all the fixes
as critical and still allowed to track the vehicle during the entire trip.

Of course, different policies and threshold values could be implemented.
The beauty of the critical point algorithm presented above is that it is totally

214 Location-Based Information Systems

customizable, as these values can be easily changed according to the specific
needs of the application.

12.3 Server-Side Processing

Server-side processing is usually performed to enhance the service beyond
simple tracking. In this section, two examples of server-side processing are
described, one to find the closest friend to the user’s location, and one to
provide situational awareness.

12.3.1 Finding the Closest Friend

In addition to tracking a user in real time, a location-based information
system could provide a service that, upon the user’s request, will return the
position and name of the closest friend to the user’s location. The user may
want to know whether there is a friend close enough to have lunch with, or
maybe to ask for help during an emergency. This is a very general application,
as “friend” can be replaced by restaurant, attraction, movie theater, hospital,
etc.

This enhancement to the service can be implemented by a servlet that
would query the database in search of the active sessions in the system. The
query would take as parameters the location of the device that is invoking
the service and return all active sessions with the distances in meters to that
location. Once the result of the query is obtained, the algorithm would iterate
over the result and find the nearest session. Then it would return a string with
the session information to the device that invoked the service. The following
paragraphs describe how to implement this enhanced service.

The first step is to create a servlet. To do this, right-click on the project
name in the Project panel. In the menu that appears, click on New→Servlet.
In the dialog box that appears, write NearestSessionServlet in the Class
Name text field. In the package, select the cse.usf.book.client.services,
which is the package that was created as part of the server-side code in
Chapter 10, Section 10.3.2. In the next dialog box, write in servlet name
NearestSession, and in URL pattern(s) write /services/Nearest. Click
Finish to create the servlet. NetBeans should open a new Java file as shown
in Listing 12.2.

1 package cse . usf . book . client . services ;
2
3 import java . io . IOException ;
4 import java . io . PrintWriter ;
5 import javax . servlet . ServletException ;
6 import javax . servlet . http . HttpServlet ;
7 import javax . servlet . http . HttpServletRequest ;

Processing the Data 215

(a) Trip without the CPA algorithm. Position updates are
sent to the server every second.

(b) Trip with the CPA algorithm. Only critical points are
sent to the server.

FIGURE 12.1: The distance-time-based critical point algorithm.

216 Location-Based Information Systems

8 import javax . servlet . http . HttpServletResponse ;
9

10
11 public class NeaerestSessionServlet extends HttpServlet {
12
13 protected void processRequest (HttpServletRequest request ,

HttpServletResponse response)
14 throws ServletException , IOException {
15 response . setContentType (” text / html ; charset=UTF−8”) ;
16 PrintWriter out = response . getWriter () ;
17 try {
18 /∗ TODO output your page here
19 out . println (”<html >”) ;
20 out . println (”<head >”) ;
21 out . println (”<title>Servlet NewServlet </title >”) ;
22 out . println (”</head >”) ;
23 out . println (”<body >”) ;
24 out . println (”<h1>Servlet NewServlet at ” + request .

getContextPath () + ”</h1>”) ;
25 out . println (”</body >”) ;
26 out . println (”</html >”) ;
27 ∗/
28 } finally {
29 out . close () ;
30 }
31 }
32
33 @Override
34 protected void doGet (HttpServletRequest request ,

HttpServletResponse response)
35 throws ServletException , IOException {
36 processRequest (request , response) ;
37 }
38
39
40 @Override
41 protected void doPost (HttpServletRequest request ,

HttpServletResponse response)
42 throws ServletException , IOException {
43 processRequest (request , response) ;
44 }
45
46 @Override
47 public String getServletInfo () {
48 return ” Short description ” ;
49 }
50
51 }

Listing 12.2: Server-side servlet example.

Now, modify the processRequest() method as shown in Listing 12.3.
Using the database model described in Chapter 7, the query finds the last
received locations from all the active sessions in the system and for each
one it calculates the distance to the location passed by the request. The
query is shown between lines 22 and 29, which utilizes the PostGIS function
ST distance sphere(). This PostGIS function returns the distance in me-
ters between two locations that are in the same spherical model. The query
contains a subquery in the ”from” statement to obtain the identifier of the
last received location per session. The result of the subquery is utilized as a
table to join with the others and obtain the username, location, and session
information. Lines 31 and 32 set the values of the parameters in the query.

Processing the Data 217

Once it is executed (line 34), the code iterates over the result of the query to
obtain the nearest session (lines 47–49). Finally, line 53 writes the information
to the output stream.

To invoke this code, you will have to use an HTTP client. To test this ex-
ample, clean, build, and deploy the project and open your browser. Write
the URL http://your_server:your_port/LbsBook/services/services/
Nearest?lat=-82.6&lng=28, where your_server:your_port is the IP ad-
dress of the server where the application is deployed.

1 // this code asumes that it is executed inside a servlet .
2 // it takes as parameters the latitude and longitude from the request
3 // and returns the information of the nearest session to the request .
4
5 protected void processRequest (HttpServletRequest request ,

HttpServletResponse response)
6 throws ServletException , IOException {
7 response . setContentType (” text / html ; charset=UTF−8”) ;
8 PrintWriter out = response . getWriter () ;
9

10 double distance = Double . MAX_VALUE ;
11 TrackingUpdate theClosestOne = new TrackingUpdate () ;
12 try
13 {
14 try{
15 javax . naming . InitialContext ic = new javax . naming .

InitialContext () ;
16 javax . sql . DataSource dataSource = (javax . sql . DataSource) ic .

lookup (” jdbc / lbsbook ”) ;
17 Connection theConnection = dataSource . getConnection () ;
18
19 double latitude = Double . parseDouble (request . getParameter (” lat

”)) ;
20 double longitude = Double . parseDouble (request . getParameter (” lng

”)) ;
21
22 PreparedStatement queryStatement = theConnection .

prepareStatement (” select fieldsession . sessionid as sesid ,
fielduser . username as uname , ST_AsText (tracking . position)
as pos , ST_distance_sphere (tracking . position ,
ST_GeomFromText (’ POINT (? ?) ’ , 32661)) as distance ”+

23 ” from fieldsession , tracking , fielduser , (select max (idtracking)
as idtrack ”+

24 ” from fieldsession ,
tracking ”+

25 ” where fieldsession .
datestop is NULL
and fieldsession .
sessionid =
tracking . sessionid
”+

” group by
fieldsession .
sessionid) as s2 ”+

26 ” where fieldsession . datestop is NULL and ”+
27 ” fieldsession . sessionid = tracking . sessionid and ”+
28 ” tracking . idtracking = s2 . idtrack and ”+
29 ” fieldsession . iduser = fielduser . iduser ”) ;
30
31 queryStatement . setDouble (1 , longitude) ;
32 queryStatement . setDouble (2 , latitude) ;
33
34 ResultSet rs = queryStatement . executeQuery () ;

http://your_server:your_port/

218 Location-Based Information Systems

35
36 double d_temp = 0 . 0 ;
37 while (rs . next ())
38 {
39 d_temp = rs . getDouble (” distance ”) ;
40 if (d_temp < distance)
41 {
42 theClosestOne . setSessionid (rs . getInt (” sesid ”)) ;
43 theClosestOne . setUsername (rs . getString (” uname ”)) ;
44 Point theNewPoint = new Point (rs . getString (” pos ”)) ;
45
46 theClosestOne . setLongitude (theNewPoint . getX ()) ;
47 theClosestOne . setLatitude (theNewPoint . getY ()) ;
48 distance = d_temp ;
49 }
50 }
51
52 String theReturnString = ”<”;
53 theReturnString = theReturnString + ”;”+ theClosestOne .

getUsername ()+”;”+ theClosestOne . getsessionId ()+”;”+
theClosestOne . getLongitude ()+”;”+ theClosestOne . getLatitude ()
+”>”;

54 out . write (theReturnString) ;
55 }
56 catch (NamingException ex){
57 Logger . getLogger (DevicerServiceManagerImpl . class . getName ()) . log (

Level . SEVERE , null , ex) ;
58 }
59 catch (SQLException ex){
60 Logger . getLogger (DevicerServiceManagerImpl . class .

getName ()) . log (Level . SEVERE , null , ex) ;
61 }
62 }
63 finally
64 {
65 out . close () ;
66 }
67 }

Listing 12.3: Server-side processing example.

As the reader can easily realize, there are many types of enhanced ser-
vices that can be provided doing some processing in the server. The “find
the closest friend” service is just one example. Other examples include traf-
fic alert notifications with or without alternate routes, situational awareness
alerts, geofencing services for people with Alzheimer’s disease, geofencing ser-
vice to watch your children, location-based advertisement, finding restaurants,
hospitals, services, etc., emergency services, fleet and asset management, pet
tracking, roadside assistance, navigation, city sightseeing, and many others.
The next section provides details of an enhanced service for situational aware-
ness.

12.3.2 Integration of LBIS and Wireless Sensor Networks for
Situational Awareness

Wireless sensor networks (WSNs) are self-configured, infrastructureless
wireless networks made of small and cheap devices equipped with specialized
sensors used to collect data from the environment and send it to a reporting

Processing the Data 219

FIGURE 12.2: Integration of WSNs and LBIS.

site where the data can be observed and analyzed [35, 40]. Usually, WSNs are
utilized to monitor a variable of interest in a remote environment or in dan-
gerous places for human beings. The idea is to deploy (maybe throwing) many
WSN nodes in the area of interest and use the network in a disposable man-
ner until it dies. Given the cheap nature of the devices, WSN nodes are very
constrained in terms of computational, memory, energy, and communication
capabilities, similar to cellular phones.

Normally, WSNs are static, meaning that once the WSN devices are de-
ployed in the area of interest, they do not move. Although some mobile wire-
less sensor networks exist, they are complex and usually restricted to a rather
small number of nodes and applications. The concept of participatory sensing
described in Chapter 1 can be seen as a mobile version of a possibly very large
wireless sensor network.

There are many applications in which WSNs can be used. WSNs have
been used in transportation to measure traffic conditions; in environmental
applications to monitor for gases, air pollution, water levels, etc.; in disaster
prevention to monitor the possibility of mudslides; in military and security
applications to detect intruders; in engineering applications to monitor bridge
structures; in home automation applications; in health care to monitor pa-
tients; in industry to monitor manufacturing processes, etc.

This section shows how WSNs can be integrated into a LBIS in a military
setting to provide situational awareness to mobile users (soldiers). Figure 12.2
shows the basic architecture of a WSN and its integration into a LBIS system.
The WSN nodes are equipped with infrared sensors for intrusion detection.
The nodes are deployed in such a linear manner that the infrared sensors build

220 Location-Based Information Systems

a “virtual” fence in a specific area. Upon an intrusion, the sensors notify the
base station, which at the same time takes a picture with a Web camera. The
base station then assembles a message with the notification and the picture
and sends it to the LBIS server. At the same time, the LBIS system has been
tracking the soldiers in real time, so it knows the whereabouts of each soldier in
the system. Upon receiving the intrusion notification from the wireless sensor
network, the LBIS server takes two actions. First, it immediately sends the
notification to the “main control station,” so 24/7 monitoring personnel knows
about the situation instantly. Second, the LBIS server finds all the soldiers
within a radius of 200 meters from the virtual fence (WSN) and sends the
same notification to all of them, so they also know at the same time that an
intrusion has occurred. Further, since they also receive the picture, they also
know the type of intrusion.

12.4 Processing the Data and the LBIS Tracking System
Example

The relationship of this chapter with our LBIS tracking system example is
straightforward and direct. Without any data processing at the mobile device
and the server, we could not be able to improve the performance of the system
nor provide a reasonable service to the end users. One example of processing at
the mobile device was given as well as two examples of server-side processing
to enhance the service beyond plain tracking.

Many other processing possibilities exist, in particular at the server-side,
given that the back-end of the LBIS system, 1) can store user data for a long
time and therefore has access to historical data about the users, and 2) may
have access to different databases located anywhere in the world where to
obtain additional information pertaining the service. For example, imagine
that the service is meant to provide users with real-time traffic congestion
notifications. Once a particular user has been tracked for a long time, historical
travel data of that particular user can be utilized to predict where the user is
heading once he or she begins a new trip. With that prediction, the system can
query real-time traffic databases and obtain congestion information about the
roads the user is about to use. With all that information the system can send
notifications to the user way before he or she hits a congested road. Further,
the system could also calculate and provide the user with alternate routes.

Appendix A

Installing the Software Development
Environments (SDE)

A.1 Introduction

This appendix lists the software and hardware components required to im-
plement the LBIS tracking system example described in this book. It guides
the reader through the software installation process in order to have the ap-
plication development environment ready.

In the following sections, this appendix describes the installation procedure
of the software components needed in the server as well as the development
environments needed to develop applications for different mobile devices, in
the following order:

• Server: The server is the component in the architecture where the data
from all clients is stored and where additional intensive computations
can be performed; therefore, it needs a database and an application
server.

• Server-side application development environment: This corre-
sponds to the Java development environment for servers. Server-side
applications perform data analysis and run computationally intensive
algorithms to enhance the system’s performance and provide additional
services to the user.

• Client-side application development environment: It consists of
the Java development environment for regular computers, such as desk-
tops, laptops, etc., i.e., computers without memory, energy, and com-
puting power limitations.

• Mobile-side application development environment: This consist
of the Java development environment for resource-constraint devices,
such as cellular phones, PDAs, and the like.

The installation assumes that the server has Windows XP Service Pack
3 installed, with at least 1 GB of RAM, and the user has administration
permissions.

221

222 Location-Based Information Systems

A.2 Server-Side Software Development Environment

The server is the core of the system, as it provides two fundamental re-
sources for all applications: storage space and computational power. The server
will be used as the main repository for all the information generated by the
different LBS clients. In addition, server-side applications will be run in this
machine for further data processing and analysis, visualization, and decision
making, such as providing real-time feedback to the users. In order to perform
these tasks, the server needs to be equipped with a database for storage and
an application server to develop and run applications for data analysis. The
following list contains the software that needs to be installed in the server:

• Sun Java Development Kit Standard Edition, or Java SE, version 6,
update 13 or better.

• Sun Glassfish Enterprise Server V 2.1 or better.

• Postgres 8.3.7-1 or better.

• Postgis 1.3.6-1 or better (check compatibility with current Postgres ver-
sion).

• JDBC version 3 drivers for Postgres.

In the following, the installation process of each of these items is explained.
Given that most of these software packages have their own application in-
staller, this appendix will focus only on those steps where the user is asked to
define parameters that are critical for the correct installation of the environ-
ment.

A.2.1 Sun Java Development Kit (JDK) Standard Edition

The first component to be installed is the Sun JDK SE. The installer
can be downloaded from Sun’s Website at http://java.sun.com/javase/
downloads/ or from the book’s Website at http://www.csee.usf.edu/

~labrador/LBIS.
The installation process of this software is self-explanatory; it only requires

to double-click on the icon of the executable file.

A.2.2 GlassFish Application Server

The next component to be installed is GlassFish, the application server.
The installer can be downloaded from https://glassfish.dev.java.net/
public/downloadsindex.html or from the book’s Website.

The installation process of this component is mostly self-explanatory, with
the exception of the following steps:

https://glassfish.dev.java.net/
http://www.csee.usf.edu/
http://java.sun.com/

Installing the Software Development Environments (SDE) 223

FIGURE A.1: Administrator information and communication ports for
GlassFish.

A.2.2.1 Administrator Information and Communication Ports

In this step, as shown in Figure A.1, the user is required to define the user
name and password of the administrator of the server. In addition, the server
requires the definition of three communication ports:

• Admin port: This port is used for the administrator to configure
the server: registering applications, installing available resources like
databases, etc. The default value for this port is 4848.

• HTTP port: This port is used by the clients to access their applica-
tions. The default value for this port is 8080.

• HTTPS port: This port is used by the clients to access their appli-
cations in a secure manner, implementing an encryption scheme. The
default value for this port is 8181.

A.2.2.2 Recommended Options

The server requires the administrator to define a series of options for gen-
eral performance. These options, as shown in Figure A.2, are the following:

• Upgrade from Previous Version: If this option is chosen, the server

224 Location-Based Information Systems

FIGURE A.2: Recommended options for the server.

will import the settings from an existing installation. Here, it is assumed
that the server has never had GlassFish installed before; therefore, this
option is left unchanged.

• Enable Updatecenter Client: If checked, this option allows the server
to install updates automatically. This option is left unchecked to have
more control and avoid conflicts with existing applications.

• Create Desktop Shortcut to Autodeploy Folder: This option allows
the administrator to deploy applications directly to the server. In the
proposed platform, the application deployment will be performed using
NetBeans, so the shortcut is not selected.

• Add bin directory to PATH: This option allows the administrator
to execute the configuration tools of the server from the command line
without having to find the application server’s folder in the machine.

• Create Windows Service: This option allows the administrator to
control the server from the Windows services options. This option was
not selected to keep manual control of the server activity.

Installing the Software Development Environments (SDE) 225

FIGURE A.3: Location of the files to be replaced in GlassFish.

A.2.2.3 Special File Replacement

During the GlassFish installation process, it was detected that the current
version had problems working with the Java Persistence API in Postgres.
Given that this problem was not present in previous versions, it was solved
replacing the two files related with these operations. The correct files, which
are included in the Website of the book, are the following:

• toplink-essentials.jar

• toplink-essentials-agent.jar

These files are located in the lib folder of the server installation, e.g.,
C:\Program Files\glassfish-v2ur2\lib or C:\Sun\AppServer\lib, as shown in
Figure A.3. If you are not completely sure about replacing these files, you can
always change the names of the current files as a backup measure.

A.2.2.4 Starting and Stopping the Application Server

Once the application server has been installed, it is time to get it started.
Based on the recommended options previously mentioned, it is assumed that
the user will be using the command line. The command that allows the user
to control the activity of the server is asadmin. It can be used as a command
with a list of parameters, or when called alone, it opens a shell environment
where more than one command can be executed in the server.

226 Location-Based Information Systems

FIGURE A.4: Starting the application server.

In the example shown in Figure A.4, the second option was used. Even
though the asadmin program was added on the PATH, it was decided to go
directly to the folder that contains the application just to show its location in
the server’s folders. Once asadmin is run and the shell environment is active,
the application server is started by typing the following command:

start-domain <name of the domain>

By default, the application server creates an initial domain called domain1,
which is the one used in the example. During the process, the shell shows a
list of available services with their respective ports, such as the administra-
tion console, regular and secure Web applications, available Web content, and
others.

In order to test whether the server was started correctly and is up
and running, you can open the server’s initial Web page from your fa-
vorite browser, as shown in Figure A.5, by typing the following URL http:
//<server’sIPaddress>:8080.

Similarly, the command to stop the application server is the following:

stop-domain <name of the domain>

A.2.3 Postgres

Postgres is one of the most popular databases in the market today, not
only because is a free open source program but also because is one the most

Installing the Software Development Environments (SDE) 227

FIGURE A.5: Test Web page to check if the server is running correctly.

robust and reliable databases available. The installer’s executable file can be
downloaded from http://www.postgresql.org/download/.

The installation process of this database is very simple and self-explanatory
for the most part. Just two steps require some extra attention: the adminis-
trator information and the communication ports. This information is critical
to connect the database with the application server.

A.2.3.1 Administrator Information

In this step, Postgres creates a superuser for the database named
postgres. In Windows, this user has total control over the operation of the
database and is responsible for all activities executed in the database.

If there is no previous version of Postgres installed in the server, the pro-
gram just asks for a new password, as shown in Figure A.6. In other cases, it
requires the password of the existing postgres superuser.

A.2.3.2 Communication Port

In this step, the installer asks you to define the communication port that
Postgres will use to listen for connections. By default, Postgres uses port 5432,
as shown in Figure A.7. This port is necessary to register the database as a
resource in the application server.

http://www.postgresql.org/

228 Location-Based Information Systems

FIGURE A.6: Administrator information.

A.2.4 PostGIS

PostGIS is an extension that adds support for geographic objects to the
Postgres object-relational database necessary to store and manage the location
of the mobile clients. The installer’s executable file can be downloaded from
http://postgis.refractions.net/download/.

The installation process of PostGIS creates a template table in Postgres
that contains the appropriate definition of the data types and large set of
functions for processing geographic information. Based on this template, the
user can create the tables of its own geographic information system.

In order to create the template table, the installer requires the user to
include the information of the database administrator and the communication
port, as shown in Figure A.8.

A.2.4.1 Database Information

PostGIS also offers the option to create a geographic (spatial) database
during the installation process. Figures A.9 and A.10 show how to select this
option and name the new database, respectively.

A.2.5 JDBC Drivers

In order for the application server to connect with the databases, the ap-
propriate JDBC drivers need to be installed. It is important to make sure that
the version of the drivers is compatible with the version of Postgres installed

http://postgis.refractions.net/

Installing the Software Development Environments (SDE) 229

FIGURE A.7: Communication port.

FIGURE A.8: Postgres’s administrator information and communication port
for PostGIS.

230 Location-Based Information Systems

FIGURE A.9: Option to create a new geographic database.

FIGURE A.10: Name of the new geographic database.

Installing the Software Development Environments (SDE) 231

in your machine. The JDBC drivers for Postgres are a single jar file that can
be downloaded from http://jdbc.postgresql.org/download.html.

The drivers of PostGIS are automatically installed in the JDBC folder of
Postgres, as shown in Figure A.11.

Both Postgres and PostGIS jar files must be copied into the server’s
folders to make them available. The path where these files must be
copied is, as shown in Figure A.12, on the external libraries of the
domain where the applications will be running, in this case domain1
C:\Sun\AppServer\domains\domain1\lib\ext.

A.2.6 Registering the Database in the Server

At this point, the application server, the database, and the drivers have
been installed. However, they still do not know about the existence of each
other. Thus, the next step is to register the database in the list of resources
of the application server.

Assuming that the application server has been already started, the
first step is to log-in in GlassFish’s administration console. The login
screen, shown in Figure A.13, is accessed by typing the URL http://
<IPaddressoftheserver>:4848 in the browser of your preference.

The installation of the database in the server requires two steps:

• Creating a connection pool: This element is in charge of defining the
access to the database by setting variables like the maximum number
of concurrent connections, timeout for disconnection, location of the
database, administrator information, communication port, etc.

• Creating a JDBC resource: This element is in charge of defining
the database as a resource for the applications that will be running
in the server. The idea of having these two elements separately is to
procure independence between the application and the actual database,
so changes can be done to the second one without virtually changing
anything in the applications.

These two elements can be found in the tree of options in the Common
Tasks panel, located on the left side of the administration console. From the
initial tree of options, go to Resources. From the options that appear under
Resources, click on JDBC. After this click, the options that refer to connection
pools and JDBC resources will appear, as shown in Figure A.14.

A.2.6.1 Creating a Connection Pool

The first step is to create a connection pool that will serve as the access
door for the database. From the Common Tasks panel, select the Connection
Pools option, as shown in Figure A.14.

The panel on the right shows the existing connection pools. To create a

http://jdbc.postgresql.org/

232 Location-Based Information Systems

FIGURE A.11: Location of the JDBC drivers.

FIGURE A.12: Location of the PostGIS and Postgres JDBC drivers in the
application server.

Installing the Software Development Environments (SDE) 233

FIGURE A.13: Administration console of the application server.

FIGURE A.14: Location of the option for creating a connection pool in the
application server.

234 Location-Based Information Systems

FIGURE A.15: General information about the nature of the connection pool.

new one, click on the New... button on the top row of the table. The next
window requires the user to define the following three parameters, as shown
in Figure A.15:

• Name of the connection pool: Define a name for the connection pool,
e.g., lbsbook.

• Resource type: Select javax.sqlDataSource.

• Database vendor: Select PostgreSQL.

The next step offers the user many options, as shown in Figures A.16
and A.17. For this installation, most of the variables will be set to their de-
fault values, except the following parameters from the lower section of the
configuration parameters, as it can be seen in Figure A.17:

• DatabaseName: Write the name of the database created when in-
stalling PostGIS.

• Password: Write the password of the Postgres superuser.

• PortNumber: Write 5432 or the port number you defined when in-
stalling Postgres.

• User: Write Postgres.

Installing the Software Development Environments (SDE) 235

FIGURE A.16: Upper section of the configuration parameters.

FIGURE A.17: Lower section of the configuration parameters.

236 Location-Based Information Systems

FIGURE A.18: Testing the connection to the database from the connection
pool.

Once this last step is finished, the connection pool is created. Now it is
time to check whether the connection can effectively connect to the database.
From the table of connection pools, click on the one that you just created. It
will show a panel similar to the one with all the configuration options, except
for a pair of buttons on top of the right panel: Load Defaults and Ping. To test
the connection to the database, click on the Ping button. The panel should
change and look like the one showed in Figure A.18.

A.2.6.2 Creating a JDBC Resource

The process to create a JDBC resource is much simpler than the one used
to create a connection pool. The first step is to click on the option JDBC
Resources on the left-side panel of the administration console, just above
the Connection Pools option. Once you click on the option, a table with the
existing JDBC resources appears in the right-side panel. Click on the button
New..., in the top row of this table, as shown in Figure A.19.

The next window asks the user for the following general information about
the JDBC resource, as shown in Figure A.20:

• Java Naming and Directory Interface (JNDI) Name: Define a
name for the JDBC Resource name. Even though in theory it could be
any name, experience working with the platform suggests to start the

Installing the Software Development Environments (SDE) 237

FIGURE A.19: Location of the option for creating a connection pool on the
application server.

FIGURE A.20: General information about the nature of the connection pool.

238 Location-Based Information Systems

name with the prefix jdbs_. In this installation, the name of the resource
will be jdbs_lbsbook.

• Pool Name: Select the connection pool that you just created. In this
example: lbsbook.

• Description: Write a short description of the resource.

• Enable: Check the resource to be enabled.

Once the JDBC resource is created, the server installation is complete, as
all common resources needed by all applications housed in the server are now
available. The next section describes the installation procedure of the software
components needed to develop server-side applications.

A.3 Server-Side Application Development Environment

Applications running in the server are part of the proposed architecture
because they utilize the data stored in the server’s database and the server’s
computational power to process and analyze that data and take some actions,
such as providing real-time feedback to the users. Therefore, in addition to
the database, drivers, etc., the server needs to have the application develop-
ment environment to develop these applications, which includes the following
components:

• Sun Java Development Kit, version 6, update 13 or better.

• NetBeans 6.5.1 or better, with all Java platforms (including Java En-
terprise Edition, or Java EE and the different GlassFish application
servers).

Both installers are self-explanatory. The installation of the Sun JDK is the
same described in Section A.2.1. One aspect to consider is that the installa-
tion of NetBeans gives you the option to also install the application server
GlassFish and the Apache server. In order to have more control over the lo-
cation of the folders, versions, etc., without having to depend on NetBeans, it
is recommended to make these installations separately, i.e., install NetBeans
only. To make this decision, you must select the customized installation option.
This version of the installation shows the list of components to be installed
with NetBeans. From that list, uncheck GlassFish and the Apache server.

A.3.1 Registering NetBeans

The machine utilized to develop the server-side applications needs a way to
deploy the application files into the server. NetBeans offers this functionality

Installing the Software Development Environments (SDE) 239

FIGURE A.21: Addition of a server in NetBeans.

when the server is registered as a service. This subsection describes this regis-
tration process in those cases where NetBeans is installed in the same server
machine and in a different machine. This process consists of the following five
steps:

1. The first step of the registration process is to get to the Service tab on the
left-sided panel of NetBeans’ main window. From that list of services,
right-click on Servers and select the option Add Server, as shown in
Figure A.21.

2. In the Add Server Instance window, NetBeans shows a lists of possible
application servers that it supports. Select GlassFish V.2, as shown in
Figure A.22.

3. The next window shows the different options to install a server. In the
case of a locally installed application server, there are two possible op-
tions: Register Local Default Domain and Register Local Domain. The
first option will register the default domain. In this case, the system
automatically knows the directory (path) of the default domain. If you
have more than one domain in the server, then select the second option
and provide the location of the folder and the administration commu-
nication port of the specific domain to register. In this installation, the
default option was selected, as shown in Figure A.23.

4. If the server is installed in another computer, select the option Register
Remote Domain, as shown in Figure A.24. The next step requires the
user to define the location of the server and the administration commu-
nication port, as shown in Figure A.25.

240 Location-Based Information Systems

FIGURE A.22: Selecting the type of server.

FIGURE A.23: Registering a local server with the default domain.

Installing the Software Development Environments (SDE) 241

FIGURE A.24: Registering a remote server.

5. Once the location of the server has been defined (in both cases of local
and remote servers), NetBeans requires the information of the server’s
user administrator, as shown in Figure A.26. After this step, click on
the Finish button to finalize the installation process.

If the installation is successful, the new server should be included in the
server’s list. In addition, it must show a small green arrow under the GlassFish
icon to show that the connection with the sever was successful, as shown in
Figure A.27.

A.4 Client-Side Application Development Environment

This section describes the installation procedure of those components
needed to develop applications that will run on powerful devices, such as
PCs, laptops, and the like. These components are the following:

• Sun Java Development Kit, version 6, update 13 or better.

• Google Web Toolkit 1.5.3 (recommended version).

• Google Web Toolkit Maps API.

• Eclipse Ganynemede, Europe or current (check compatibility).

242 Location-Based Information Systems

FIGURE A.25: Location information of the remote server.

FIGURE A.26: Adding the information of the server’s user administrator.

Installing the Software Development Environments (SDE) 243

FIGURE A.27: Final view of the registration of the new server.

A.4.1 Sun Java Development Kit

The installation of the Sun JDK is the same described for the server in
Section A.2.1; therefore, it will not be repeated here.

A.4.2 Google Web Toolkit (GWT) and the GWT Maps API

The Google Web Toolkit is a module that compiles applications written in
Java into JavaScript, so they can be embedded in Web pages. The GWT Maps
API, on the other hand, provides GWT with interfaces to include functional-
ities from Google Maps. This is very convenient and useful for location-based
services because this API makes it possible to display the geographical infor-
mation obtained from the mobile clients in a Google Map.

The GWT version 1.5.3 used in this book is not the most updated ver-
sion, but it is recommended because it creates a folder with the compiled files
that will be included in the server applications. This functionality is no longer
available in the current versions of GWT. The GWT version 1.5.3 is avail-
able for download from the book’s Website at http://www.csee.usf.edu/

~labrador/LBIS or from http://code.google.com/webtoolkit/versions.
html. The GWT Maps API can be downloaded from the book’s Website as
well as from http://code.google.com/p/gwt-google-apis/.

The installation process of the GWT and GWT Maps API consists of ex-
tracting the files in the developer’s computer. It is recommended that a known
and accessible folder is selected for the location of these files. Figure A.28
shows a possible path to save the extracted files of these two applications.

http://code.google.com/
http://code.google.com/
http://www.csee.usf.edu/

244 Location-Based Information Systems

FIGURE A.28: Installation of the GWT and the GWT Maps API.

A.4.3 The Eclipse Integrated Development Environment

Eclipse is an integrated development environment (IDE) tool very similar
to NetBeans. It is recommended to use Eclipse in the developer’s computer
because the GWT was originally designed by Google to work with this IDE.
Therefore, there are no integration or compatibility issues and it runs very
smoothly. This program can be downloaded from the books’s Website or from
http://www.eclipse.org/downloads/.

The installer file of Eclipse consists of a compressed file that contains a
folder with the application. Thus, the installation process consists of extract-
ing the files and running the Eclipse executable file. Figure A.29 shows the
recommended path for the extraction of the folder with the IDE.

A.4.4 Installing the GWT in Eclipse

Chapter 10 describes in more detail how the Google Web Toolkit and
Eclipse work together to create the client application. All is needed is to create
a folder where to copy and decompress the gwt-windows-1.5.3.zip file. The
procedure to create a GWT project for Eclipse is described in Chapter 10,
Section 10.3.1.

http://www.eclipse.org/

Installing the Software Development Environments (SDE) 245

FIGURE A.29: Installation of the Eclipse IDE.

A.5 Mobile-Side Software Development Environment

This section describes the installation procedure of those components
needed to develop applications that will run on resource-constrained devices,
such as cellular telephones, PDAs, and the like. These components are the
following:

• Sun Java Development Kit, version 6, update 13 or better.

• NetBeans 6.5.1 or better, with all Java platforms (including Java Plat-
form Micro Edition, or Java ME).

• Cellular phones emulators.

– Generic cellular phone emulator included in NetBeans.
– Sprint Wireless Web Toolkit (or Sprint SDK).

• Apple Quicktime standalone, version 7.6 or better.

The procedures to install the Sun JDK and NetBeans will not be repeated
here. Please refer to the instructions given in Sections A.2.1 and A.3.

246 Location-Based Information Systems

A.5.1 Cellular Phone Emulators

When the complete Java version of NetBeans is installed, it includes the
Java ME Software Development Kit (Java ME SDK), which includes the Java
ME platform to develop applications for resource-constrained mobile devices.
However, the configuration of this platform changes from device to device,
depending on the manufacturer.

When a new application is being developed, it is a good idea to check the
level of compliance of the application in different target devices. Cellular phone
emulators provide an easy way to test the application in different platforms
without having to install it in several different physical devices.

Java ME provides generic cellular phone platforms with all the implemen-
tations of the Java ME CLDC and MIDP defined up to date (CLDC 1.0,
CLDC 1.1, and MIDP 1.0, MIDP 2.0, MIDP 2.1) and also four different cel-
lular phone layouts: gray-scale phone, color phone, cellular phone with media
hotkeys in the keyboard, and a full QWERTY keyboard model.

In addition to these generic options, some cellular phone manufacturers
and operators provide model-specific emulators for commercial devices, so
applications can be tested using the real capabilities of the specific models.

The following section shows how to install and use the set of platforms
provided by the cellular phone operator Sprint. The selection of this specific set
of platforms is completely optional. The purpose of this section is to show how
to register these new modules in NetBeans to be used later in the development
of the mobile device application.

A.5.1.1 Sprint Wireless Web Toolkit (SWWT)

The Sprint Wireless Web Toolkit is the set of Java ME libraries needed to
develop applications for most of Sprint’s mobile phones. This tool is very useful
for developers because they have exact images of the libraries that exist in the
phones, so the applications can be tested for compatibility among different
models. The book’s Website (http://www.csee.usf.edu/~labrador/LBIS)
contains a compressed executable file, which is the installer application.

Even though the process is very straightforward, it is very important to
know that the Java Development Kit must be installed in the machine. In
addition, if the developer is going to create multimedia applications, the in-
stallation of Apple’s Quicktime is recommended. The installer for Quicktime
is also included in the book’s Website, and the installation process is self-
explanatory.

The process to install the Java ME module included in the Sprint WWT
in NetBeans consists of the following six steps:

1. The first step is to open NetBeans and click on Tools and Java Platforms,
as shown in Figure A.30.

2. Once the Java Platforms window is open, click on the button Add Plat-
form, as shown in Figure A.31.

http://www.csee.usf.edu/

Installing the Software Development Environments (SDE) 247

FIGURE A.30: Select Java Platforms from the Tools menu.

3. The Add Platform window offers a series of options for different kinds
of platforms. Select the option Java ME MIDP Platform Emulator, as
shown in Figure A.32.

4. Once the option is selected, NetBeans will try to find the new platform.
If the program cannot find it, NetBeans will show you a file selection
window. Find the folder where the Sprint WWT was installed and select
the folder, as shown in Figure A.33.

5. Once the folder is selected, click Open. Now the Add Platform window
will show the Sprint WWT platform folder as pendent for detection, as
shown in Figure A.34. NetBeans will inspect for Java ME platforms in
the folder. Click Next to continue with the installation process.

6. The detection process will recognize all the available emulators that the
Sprint WWT offers, as shown in Figure A.35. Once the detection process
is finished, click on the Finish button to finalize the installation process.

248 Location-Based Information Systems

FIGURE A.31: The Add Platform window.

FIGURE A.32: Selection of the proper type of platform.

Installing the Software Development Environments (SDE) 249

FIGURE A.33: Location of the Sprint WWT platform.

FIGURE A.34: Selection of the Sprint WWT platform for inspection.

250 Location-Based Information Systems

FIGURE A.35: Final window of the installation process of the Sprint WWT.

Bibliography

[1] AeroScout. http://www.aeroscout.com/.

[2] ARM Limited. http://www.arm.com/.

[3] Ekahau. http://www.ekahau.com/.

[4] Intel Place Lab. http://www.placelab.org/.

[5] Loc-Aid Technologies, Inc. http://www.loc-aid.net/portal/.

[6] Open Geospatial Consortium KML 2.2. Open Geospatial Consortium
Inc. 2008.

[7] PostGIS 1.5.0 Manual. Available for download online at
http://postgis.refractions.net/docs/.

[8] TechnoCom. http://www.technocom-wireless.com/.

[9] Useful Networks. http://www.useful-networks.com/.

[10] Veriplace. http://www.veriplace.com/.

[11] Where. http://www.where.com/.

[12] JSR 179 Location API for J2ME. Technical report, Java Community
Process/JSR 179 Expert Group, 2006.

[13] JSR 293 Location API 2.0. Technical report, Java Community Pro-
cess/JSR 293 Expert Group, 2008.

[14] ABI. GPS-Enabled Location-Based Services (LBS) Subscribers Will
Total 315 Million in Five Years. ABI Research, available online
at: http://www.abiresearch.com/abiprdisplay.jsp?pressid=731, Septem-
ber 2006.

[15] ABI. Personal Locator Services to Reach More Than 20 Million
North American Consumers by 2011. ABI Research, available online
at: http://www.abiresearch.com/abiprdisplay.jsp?pressid=766, November
2006.

251

http://www.abiresearch.com/
http://www.abiresearch.com/
http://www.where.com/
http://www.veriplace.com/
http://www.useful-networks.com/
http://www.technocom-wireless.com/
http://www.placelab.org/
http://www.ekahau.com/
http://www.arm.com/
http://www.loc-aid.net/
http://www.aeroscout.com/
http://postgis.refractions.net/

252 Location-Based Information Systems

[16] S. Barbeau, M. A. Labrador, A. Perez, P. Winters, N. Georggi, D. Aguilar,
and R. Perez. Dynamic Management of Real-Time Location Data on
GPS-Enabled Mobile Phones. In Proceedings of Ubicomm, 2008.

[17] S. Barbeau, M. A. Labrador, P. Winters, R. Perez, and N. Georggi. Loca-
tion API 2.0 for J2ME — A New Standard in Location for Java-enabled
Mobile Phones. Computer Communications, Vol. 1, No. 6:1091–1103,
2008.

[18] S. Barbeau, M. A. Labrador, P. Winters, R. Perez, and N. L. Georggi.
A General Architecture in Support of Interactive, Multimedia, Location-
based Mobile Applications. IEEE Communications Magazine, pages 156–
163, November 2006.

[19] S. Barbeau, R. Perez, M. A. Labrador, A. Perez, P. Winters, and
N. Georggi. LAISYC — A Location-Aware Framework to Support In-
telligent Real-time Applications for GPS-Enabled Mobile Phones. IEEE
Pervasive Computing (to appear), 2009.

[20] P. Bellavista and A. Corradi. The Handbook of Mobile Middleware. Auer-
bach Publications, 2006.

[21] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identi-
fiers (URI): Generic Syntax. IETF, RFC 2396, August 1998.

[22] C. Bettini, S. Jajodia, P. Samarati, and S. X. Wang (Eds.). Privacy in
Location-Based Applications. Springer, 2009.

[23] Broadcom. BCM4751 Product Page. http://bit.ly/ceoJcP.

[24] A. T. Campbell, N. D. Lane, E. Miluzzo, R. A. Peterson, H. Lu, X. Zheng,
M. Musolesi, K. Fodor, S. B. Eisenman, and G.-S. Ahn. The Rise of
People-Centric Sensing. IEEE Internet Computing, pages 12–21, Ju-
ly/August 2008.

[25] D. D. Chamberlin and R. F. Boyce. SEQUEL: A Structured English
Query language. In Proceedings of the ACM SIGFIDET (now SIGMOD)
Workshop on Data Description, Access and Control, pages 249–264, 1974.

[26] E. F. Codd. A Relational Model of Data for Large Shared Data Banks.
Communications of the ACM, 13(6):377–387, 1970.

[27] M. Debbabi, M. Saleh, C. Talhi, and S. Zhioua. Embedded Java Security.
Springer, 2007.

[28] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.2. IETF, RFC 5246, August 2008.

[29] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berness-Lee. Hypertext Transfer Protocol — HTTP/1.1. IETF, RFC
2616, June 2009.

http://bit.ly/

Installing the Software Development Environments (SDE) 253

[30] E. Giguere. Using Threads in J2ME Applications. In
http://developers.sun.com/mobility/midp/articles/threading2/.

[31] Google. Google Web Toolkit Developer’s Guide Version 1.5. http:
//code.google.com/docreader/\#p=google-web-toolkit-doc-1-5\
&s=google-web-toolkit-doc-1-5\&t=DevGuideJavaFromJavaScript.

[32] M. S. Grewal, L. R. Weill, and A. P. Andrews. Global Positioning Sys-
tems, Inertial Navigation, and Integration. John Wiley & Sons, 2007.

[33] R. Housley, W. Ford, W. Polk, and D. Solo. Internet X.509 Public Key
Infrastructure — Certificate and CRL Profile. IETF, RFC 2459, January
1999.

[34] B. Kaliski and J. Staddon. PKCS #1: RSA Cryptography Specifications,
Version 2.0. IETF, RFC 2437, October 1998.

[35] H. Karl and A. Willig. Protocols and Architectures for Wireless Sensor
Networks. Wiley, 2006.

[36] K. W. Kolodziej and J. Hjelm. Local Positioning Systems: LBS Applica-
tions and Services. Taylor & Francis, 2006.

[37] A. Kupper. Location-Based Services: Fundamentals and Operation. John
Wiley & Sons, 2005.

[38] A. Kupper, G. Treu, and C. Linnhoff-Popien. TraX: A Device-Centric
Middleware Framework for Location-Based Services. IEEE Communica-
tioins Magazine, Vol. 44, No. 9:114–120, 2006.

[39] J. Kurose and K. Ross. Computer Networking: A Top Down Approach
Featuring the Internet. Pearson, 2008.

[40] M. A. Labrador and P. M. Wightman. Topology Control in Wireless
Sensor Networks. Springer, 2009.

[41] H. Lu, W. Pan, N. D. Lane, T. Choudhury, and A. T. Campbell. Sound-
Sense: Scalable Sound Sensing for People-Centric Sensing Applications
on Mobile Phones. In Proceedings of 7th ACM Conference on Mobile
Systems, Applications, and Services (MobiSys), 2009.

[42] T. Mikkonen. Programming Mobile Devices — An Introduction for Prac-
titioners. Wiley, 2007.

[43] E. Miluzzo, N. D. Lane, K. Fodor, R. A. Peterson, H. Lu, M. Musolesi,
S. B. Eisenman, X. Zheng, and A. T. Campbell. Sensing Meets Mo-
bile Social Networks: The Design, Implementation and Evaluation of the
CenceMe Application. In Proceedings of International Workshop on Ur-
ban, Community, and Social Applications of Networked Sensing Systems
(UrbanSense), 2008.

http://code.google.com/
http://code.google.com/
http://developers.sun.com/

254 Location-Based Information Systems

[44] M. Mun, S. Reddy, K. Shilton, N. Yau, P. Boda, J. Burke, D. Estrin,
M. Hansen, E. Howard, and R. West. PEIR, the Personal Environmen-
tal Impact Report, as a Platform for Participatory Sensing Systems Re-
search. In Proceedings of the 7th Annual International Conference on
Mobile Systems, Applications and Services, Mobisys, 2009.

[45] A. Patil, J. Munson, D. Wood, and A. Colin. Bluebot: Asset Tracking
Via Robotic Location Crawling. Computer Communications, Vol. 1, No.
6:1067–1077, 2008.

[46] A. J. Perez, M. A. Labrador, and S. Barbeau. G-Sense: A Scalable Ar-
chitecture for Global Sensing and Monitoring. IEEE Networks Magazine,
24, No. 4:57–64, 2010.

[47] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan. The Cricket
Location-Support System. In Proceedings of ACM Mobicom, 2000.

[48] N. Ramanathan, T. Schoelhammer, E. Kohler, K. Whitehouse, T. Har-
mon, and D. Estrin. Suelo: Human-assisted Sensing for Exploratory Soil
Monitoring Studies. In Proceedings of the 7th ACM Conference on Em-
bedded Networked Sensor Systems (SenSys), 2009.

[49] D. Rebollo-Monedero, J. Forne, A. Solanas, and A. Martinez-Balleste.
Private Location-Based Information Retrieval through User Collabora-
tion. Computer Communications, 33(6):762–774, April 2010.

[50] S. Reddy, K. Shilton, J. Burke, D. Estrin, M. Hansen, and M. Srivastava.
Evaluating Participation and Performance in Participatory Sensing. In
Proceedings of International Workshop on Urban, Community, and Social
Applications of Networked Sensing Systems (UrbanSense), 2008.

[51] S. Reddy, K. Shilton, J. Burke, D. Estrin, M. Hansen, and M. Srivastava.
Using Context Annotated Mobility Profiles to Recruit Data Collectors in
Participatory Sensing. In Proceedings of the 4th International Symposium
on Location and Context Awareness (LOCA), 2009.

[52] G. Riccardi. Principles of Database Systems with Internet and Java Ap-
plications. Addison Wesley, 2001.

[53] K. Ridley. Global Mobile Phone Use to Hit
Record 3.25 Billion. Reuters, available online at:
http://www.reuters.com/article/email/idUSL2712199720070627, June
2007.

[54] J. Ryder, B. Longstaff, S. Reddy, and D. Estrin. Ambulation: A Tool for
Monitoring Mobility Patterns Over Time Using Mobile Phones. In Pro-
ceedings of IEEE International Conference on Social Computing: Work-
shop on Social Computing with Mobile Phones and Sensors: Modeling,
Sensing and Sharing, 2009.

http://www.reuters.com/

Installing the Software Development Environments (SDE) 255

[55] J. Schiller and A. Voisard. Location-Based Services. Morgan Kaufmann,
2004.

[56] Sun. The Class Thread. http://java.sun.com/javase/6/docs/api/
java/lang/Thread.html.

[57] Sun. The Java Tutorials: Concurrency. http://java.sun.com/docs/
books/tutorial/essential/concurrency/index.html.

[58] Sun. J2ME Building Blocks for Mobile Devices — White Paper on KVM
and the Connected, Limited Device Configuration (CLDC). Sun Mi-
crosystems, 2000.

[59] Sun. Connected, Limited Device Configuration Specification Version 1.1.
Sun Microsystems, 2003.

http://java.sun.com/
http://java.sun.com/

http://taylorandfrancis.com

Index

Active server pages, 160
Alert screen, 44
Application management software,

38
Assisted GPS, 76
Authenticity, 49
Availability, 49

Base station controller, 73
Base transceiver station, 73

Canvas class, 43
Cascade style sheet, 201
Cell identification, 74
Cellular phone emulators, 246
Cellular phone microprocessors, 16
Certificate authority, 51
Commands, 42
Concurrency, 56
Confidentiality, 49
Connected limited device

configuration, 29
Context switching, 57
Creating a connection pool, 231
Creating a JDBC resource, 236
Critical point algorithm, 212

Data definition language, 88, 93
Data manipulation language, 88, 93
Database management system

(DBMS), 88
Deadlock, 62
Dilution of precision, 72
Displayables, 42
Dynamic compilation, 24
Dynamic linking, 64
Dynamic RAM, 19

Encryption, 49
Energy management, 64
Enhanced cell identification, 75
Enhanced observed time difference,

75
Exclusive list, 44
Execution engine, 23

Fingerprinting, 78
Flash memory, 19
Foreign key, 92
Form screen, 44

Garbage collector, 25
Gateway GPRS support node, 74
Gateway mobile location center, 4
General packet radio service, 73
Generic connection framework, 33,

117
Geocoding, 8, 84
Geofencing, 3
Google Earth API, 199
Google Maps API library, 184
Google Maps keys, 184
Google Web Toolkit, 160
Google Web Toolkit JavaScript

Native Interface, 200
GPRS register, 74
GPS Almanac, 68
GPS ephemerides, 68
GPS frame hand-over word, 68
GPS frame telemetry word, 68
GPS navigation message, 68
GSM cellular network, 73
GWT development process, 161

Heap, 24, 55

257

258 Location-Based Information Systems

Home location register, 73
HTTP example, 129
Human-centric sensing, 11
Hypertext preprocessor, 160
Hypertext transfer protocol (HTTP),

129

Implicit list, 44
Indoor positioning systems, 77
Installing Eclipse’s IDE, 244
Installing JDBC drivers, 228
Installing PostGIS, 228
Installing Postgres, 226
Installing Sprint Wireless Web

Toolkit, 246
Installing the GlassFish’s application

server, 222
Installing the Google Web Toolkit

(GWT), 243
Installing the GWT in Eclipse, 244
Installing the GWT Maps API, 243
Installing the server-side software

development environment,
222

Installing the Sun Java Development
Kit SE, 222

Integrity, 49

Java API for XML processing
(JAXP), 141

Java API for XML-based RPC
(JAX-RPC), 141

Java application descriptor, 37
Java application manager, 38
Java bytecode, 22
Java database connectivity (JDBC),

103
Java ME configuration layer, 28
Java ME platform, 28
Java ME virtual machine, 22
Java platform micro edition (Java

ME), 27
Java servlet pages, 160
Just-in-time compilation (JIT), 24

Keyhole markup language, 193

KML Language, 194

Lateration, 69
List class, 44
Loader, 25
Location based service, 2
Location measurement units, 76
Location provider architectures, 3
Location provider-based

architecture, 5

Manifest file, 37
Media API, 45
Media API controls, 45
Media API Player, 45
Memory consistency errors, 61
Memory management, 55
MIDlets, 37
MIDlets and applets, 33
MIDlets life cycle, 38
Mobile based location provider

architecture, 4
Mobile information device profile, 33
Mobile media API, 45
Mobile services switching center, 73
Monitors and locks, 61
Multimedia messaging example, 131
Multimedia messaging service

example, 132
Multiple choice list, 44
Multiprocessing, 57
Multitasking, 57

Network and switching subsystem, 73
Network-based location provider

architecture, 4

Obfuscation, 53

Packaging, 37
Participatory sensing, 11
Perturbation, 53
PostGIS, 99
Primary key, 91
Privacy, 53
Proactive LBS application, 3

Installing the Software Development Environments (SDE) 259

Processes and threads, 57
Protection domain, 50
Proximity sensing, 77

Queries and views, 93

Radio subsystem, 73
Random access memory, 18
Reactive LBS application, 2
Read-only memory, 18
Record management system API, 46
Record store, 46
Records and record stores, 47
Registering NetBeans, 238
Registering the database in the

server, 231
Relational database, 90
Reverse geocoding, 8, 85

Sandbox model, 50
Screen class, 43
Service provider interface, 141
Serving GPRS support node, 73
Short messaging service, 131
Stack, 24, 55
Static compilation, 24
Static linking, 64
Static RAM, 19
Structure query language, 93
Subscriber identity module, 73
Symmetric and asymmetric

encryption, 49

TCP client example, 120
TCP server example, 125
TextBox class, 44
Thread interference, 61
Thread manager, 26
Thread notifications, 63
Thread synchronization, 61
Thread waits, 63
Time to first fix, 68
Transport control protocol (TCP),

120
Trusted MIDlet, 50
Trusted third party, 53

UDP client example, 122
UDP server example, 127
Ultrasound-based positioning

systems, 78
Uniform resource locator, 159
Universal description, discovery, and

integration (UDDI) registry,
140

Uplink-time difference of arrival, 75
User datagram protocol (UDP), 127
User interface API, 40

Verifier, 25
Visitor location register, 73

Web client, 159
Web object, 159
Web page, 159
Web server, 159
Web service example, 143
Web services, 139
Web services API, 141
Web services definition language, 139
Wireless messaging API, 131
Wireless sensor network, 218

	Cover
	Half Title
	Title Page
	Copyright Page
	Preface
	Dedication
	List of Figures
	List of Tables
	Table of Contents
	1: Introduction
	1.1 Definition and Classification of LBS
	1.1.1 Types of LBS Applications

	1.2 Location Provider Architectures
	1.3 A Complete LBIS Real-Time Tracking System Example
	1.4 Software Architecture
	1.4.1 Client-Side Software Architecture
	1.4.2 Server-Side Software Architecture

	1.5 A Brief Look into the Future
	1.6 Organization of the Book

	2: The Mobile Phone
	2.1 Introduction
	2.2 The Hardware Architecture
	2.2.1 The Microprocessor
	2.2.2 Digital Signal Processors (DSPs)
	2.2.3 The GPS Receiver
	2.2.4 Memory
	2.2.5 Future Trends and Challenges

	2.3 The Software Architecture
	2.3.1 The Java ME Virtual Machine
	2.3.1.1 The Execution Engine
	2.3.1.2 The Heap
	2.3.1.3 The Garbage Collector
	2.3.1.4 The Loader
	2.3.1.5 The Verifier
	2.3.1.6 The Thread Manager

	2.4 The Mobile Phone and the LBIS Tracking System Example

	3: The Java Platform Micro Edition (Java ME)
	3.1 Introduction
	3.2 The Java ME Platform
	3.3 The Connected Limited Device Configuration (CLDC) Layer 1.1
	3.3.1 Java Programming Language and Virtual Machine Features
	3.3.2 Libraries and APIs

	3.4 The Mobile Information Device Profile (MIDP) Layer 2.0
	3.5 Optional Packages
	3.6 The Java ME Platform and the LBIS Tracking System Example

	4: MIDlet Development
	4.1 Introduction
	4.2 MIDlets
	4.3 A Hello World MIDlet
	4.4 The User Interface API
	4.4.1 Lists, Text Boxes, Forms, and Alerts

	4.5 The Media API
	4.6 The Record Management System API
	4.6.1 Working with Record Stores and Records

	4.7 Security
	4.7.1 Information Security Goals and Mechanisms
	4.7.2 MIDlet Security
	4.7.3 Network Security

	4.8 Privacy
	4.9 MIDlet Development and the LBIS Tracking System Example

	5: Other Important Programming Aspects
	5.1 Introduction
	5.2 Memory Management
	5.3 Concurrency
	5.3.1 Defining and Starting Threads
	5.3.2 Stopping Threads
	5.3.3 Joining, Interrupting, and Sleeping Threads
	5.3.4 Monitors and Locks
	5.3.5 Waits and Notifications

	5.4 Dynamic Linking
	5.5 Energy Management
	5.6 Other Important Programming Aspects and the LBIS Tracking System Example

	6: Obtaining the User's Position
	6.1 Introduction
	6.2 The Global Positioning System (GPS)
	6.2.1 The Format of the GPS Navigation Message
	6.2.2 Lateration

	6.3 The GSM Cellular Network
	6.3.1 Cell Identification or Cell ID
	6.3.2 Enhanced Cell Identification
	6.3.3 Enhanced Observed Time Difference (E-OTD)
	6.3.4 Uplink-Time Difference of Arrival (U-TDoA)
	6.3.5 Assisted GPS (A-GPS)

	6.4 Indoor Positioning Systems
	6.4.1 Indoor Positioning Techniques
	6.4.2 Skyhook's Hybrid Positioning System (XPS)

	6.5 The Location API 2.0
	6.5.1 Improvements from Version 1.0
	6.5.1.1 Criteria and LocationProvider
	6.5.1.2 ProximityListener
	6.5.1.3 Landmark and LandmarkStore

	6.5.2 New Features
	6.5.2.1 Landmark Exchange Formats
	6.5.2.2 Geocoding
	6.5.2.3 Map User Interfaces
	6.5.2.4 Navigation

	6.6 Obtaining the User's Position and the LBIS Tracking System Example

	7: Storing and Retrieving the Data: The Database
	7.1 Introduction
	7.2 Background
	7.2.1 Design of the LBIS Tracking System Database
	7.2.2 Structure of a Relational Database
	7.2.3 The Structure Query Language (SQL)
	7.2.3.1 Data Definition Language (DDL)
	7.2.3.2 Data Manipulation Language (DML)
	7.2.3.3 Data Retrieval

	7.2.4 PostGIS and Geographical Databases
	7.2.4.1 Structure of PostGIS
	7.2.4.2 Creating a Table with Geographical Columns
	7.2.4.3 Inserting Geographical Data in a Table
	7.2.4.4 Retrieving Geographical Data
	7.2.4.5 Useful Geometric Operators

	7.3 Accessing the Database Using Java
	7.3.1 Connecting to the Database via JDBC
	7.3.2 Data Insertion
	7.3.3 Data Queries

	7.4 pgAdmin III: Postgres's Database Administration Tool
	7.4.1 Creating a New Database
	7.4.2 Creating a New Table Using the Wizard
	7.4.3 Using the SQL Execution Module

	7.5 The Database and the LBIS Tracking System Example

	8: Sending and Receiving Data: Communications
	8.1 Introduction
	8.2 The Generic Connection Framework (GCF) of the CDLC
	8.3 The Mobile Information Device Profile (MIDP)
	8.3.1 A TCP Client Example
	8.3.2 A UDP Client Example
	8.3.3 A Generic Server Example
	8.3.4 A TCP Server Example
	8.3.5 A UDP Server Example
	8.3.6 A HyperText Transfer Protocol (HTTP) Example

	8.4 The Wireless Messaging API (WMA)
	8.4.1 A Multimedia Messaging Service Example

	8.5 Communications and the LBIS Tracking System Example
	8.5.1 A Java ME Tracking MIDlet Using UDP

	8.5.2 Server-Side Application

	9: Java ME Web Services
	9.1 Introduction
	9.2 An Overview of Web Services
	9.3 The Web Services API (WSA)
	9.3.1 The JAX-RPC Package
	9.3.2 The JAXP Package

	9.4 A Web Service Example
	9.4.1 Web Service Creation
	9.4.2 MIDlet Creation

	9.5 Web Services and the LBIS Tracking System Example

	10: System Administration
	10.1 Introduction
	10.1.1 The World Wide Web (WWW)

	10.2 Google Web Toolkit
	10.3 Creating System Administration Functions
	10.3.1 Client-Side Code
	10.3.1.1 Creating System Administration Functions
	10.3.1.2 Remote Procedure Calls in GWT

	10.3.2 Server-Side Code
	10.3.3 Compiling and Deploying the Application with GWT

	10.4 System Administration and the LBIS Tracking System Example

	11: Data Visualization
	11.1 Introduction
	11.2 Visualizing the Users' Positions in Google Maps
	11.2.1 Conguring the GWT Project
	11.2.1.1 Import the Library into the GWT Eclipse Project
	11.2.1.2 Configure the GWT Project .xml File

	11.2.2 Client-Side Code
	11.2.3 Server-Side Code

	11.3 Google Earth
	11.3.1 KML Language
	11.3.2 Generating KML Documents Dynamically
	11.3.3 Embedding Google Earth in a Web Application
	11.3.3.1 The GWT JavaScript Native Interface
	11.3.3.2 Loading Google Earth in a GWT Web Application

	11.4 Data Visualization and the LBIS Tracking System Example

	12: Processing the Data
	12.1 Introduction
	12.2 Mobile Device-Side Processing
	12.3 Server-Side Processing
	12.3.1 Finding the Closest Friend
	12.3.2 Integration of LBIS and Wireless Sensor Networks for Situational Awareness

	12.4 Processing the Data and the LBIS Tracking System Example

	A Installing the Software Development Environments (SDE)
	A.1 Introduction
	A.2 Server-Side Software Development Environment
	A.2.1 Sun Java Development Kit (JDK) Standard Edition
	A.2.2 GlassFish Application Server
	A.2.2.1 Administrator Information and Communication Ports
	A.2.2.2 Recommended Options
	A.2.2.3 Special File Replacement
	A.2.2.4 Starting and Stopping the Application Server

	A.2.3 Postgres
	A.2.3.1 Administrator Information
	A.2.3.2 Communication Port

	A.2.4 PostGIS
	A.2.4.1 Database Information

	A.2.5 JDBC Drivers
	A.2.6 Registering the Database in the Server
	A.2.6.1 Creating a Connection Pool
	A.2.6.2 Creating a JDBC Resource

	A.3 Server-Side Application Development Environment
	A.3.1 Registering NetBeans

	A.4 Client-Side Application Development Environment
	A.4.1 Sun Java Development Kit
	A.4.2 Google Web Toolkit (GWT) and the GWT Maps API
	A.4.3 The Eclipse Integrated Development Environment
	A.4.4 Installing the GWT in Eclipse

	A.5 Mobile-Side Software Development Environment
	A.5.1 Cellular Phone Emulators
	A.5.1.1 Sprint Wireless Web Toolkit (SWWT)

	Bibliography
	Index

