Conversational Git
Alan Hohn
October 19, 2013
Conversational Git
Chapter 1
Introduction
Why This Book
I recently had some close friends talk about their hesitation in adopting Git as opposed to continuing to work with Subversion. I’ve used Subversion for many years, and advocated for its use. I have since jumped wholeheartedly on the Git bandwagon, so I wanted to find a way to tell the story of why I made the switch and why I think so much of the open source community is now based around Git and Git-friendly sites like GitHub.
These friends are smart people, and if they’re not convinced about Git, the problem is not them; it’s that they haven’t seen the right argument yet. There’s so much content out there about Git, and much of it is written at a level that’s way higher than my expertise. But in a way, that’s an issue. When you’re first starting out learning something, the questions that you have are way different from the questions an experienced person has. Once you’ve won that knowledge, it’s almost impossible to go back and think about what it was like when you were first learning. That puts you in a bad position to explain to someone else who’s brand new.
Git seems particularly prone to this because it’s based on some pretty complex notions of how to think about version control. In particular, once you internalize the concept of the Directed Acyclic Graph (DAG) that underlies basically everything in Git, you tend to want to explain that to new people because (a) it can help you think about how Git works; and (b) it’s cool. Unfortunately, teaching Git from a DAG perspective is IMHO the worst way to teach it to new users because it suggests to them that they have to thoroughly understand complex concepts from graph theory to use Git effectively. There’s also no question that the Git help pages use Git-specific jargon, which really interferes with non-experts understanding what a command does.
Style and Motivation
I’m hoping in this book to adopt a style that will be accessible to new users. I’m writing in an informal style, with plenty of first- and second-person references. This is not a “dummies” book; I’m not going to talk down to you, and I’m not going to suggest that you shouldn’t learn complex concepts about Git. But I’m going to try to talk about how I use it and how I see it being used effectively.
When I first started learning Subversion, there was a book I found incredibly helpful, because it focused on why Subversion chose the copy-modify-merge model instead of the checkout-modify-checkin model. It did this by walking through the tool’s features in a way that followed real usage. I hope to present in a similar way.
I’m making a few assumptions about readers. The first is that readers know in general what version control tools are for, and therefore what Git is for. The second is that a reader of this book is familiar with Subversion or CVS, and is interested in knowing how a “distributed” version control system, and Git in particular, is different. If those assumptions don’t apply to you, I hope you still get value, but you might not get as much.
I’m calling this book “Conversational Git” both because I’m aiming for a conversational style and because, when learning a new language, a key goal is to be “conversational” – able to make basic small talk, even if not quite a native speaker.
Because I wrote this book in a conversational style, it’s verbose (like me!) and breezy. So I hope it’s a quick read. I do include a bunch of Git commands in here. If you choose to follow along running those commands, you’ll need to be consistent because some later things are based on some earlier things. However, when I read tutorials or books like this, I hate having to follow along typing commands, so I tried to write in such a way that you can just “get” what the commands are doing from the context. So don’t feel like you have to follow along to follow along, if you get my meaning.
For the same reason, the ratio of Git commands to text is somewhat lower than a typical tutorial. I’d rather spend a paragraph explaining or providing motivation for a one-line command than present all the possible switches for all the Git commands. That’s a different book, and Scott Chacon has done a much better job writing that one than I could anyway.
Why Not
I’m not writing this book to argue against Subversion in favor of Git. Like I said, I’ve used Subversion heavily for many years, and I still advocate for it when people are looking for version control tools. Where I compare Subversion and Git, it’s an attempt to discuss tradeoffs from the perspective of someone who likes both tools but tends to use Git by preference.
I’m also not writing this book to advocate for Git versus Mercurial or Bazaar. I’m not qualified to write that book.
Finally, I am not writing this book to refute people’s complaints about Git. In fact, one of the reasons I wanted to write it is because of Steve Bennett’s 10 things I hate about Git, because I agree with him! Using Git is not pain-free; I just happen to think it’s worth it.
Dogfooded
We’ll start the next chapter momentarily, but first, I want to point out that this book is dogfooded. It’s hosted as a Git repository on GitHub. So you can fork that repository and get your own copy of this book to modify. If you make changes, you can send me a pull request so I can merge your changes into my version. That whole workflow is an essential part of why Git has become so popular for open-source projects, and a key purpose of this book is explaining that workflow and why it’s so powerful.
The book is written using Markdown and processed using Jekyll. Much love to both those technologies and to GitHub Pages.
Chapter 2
Setup and Committing
Setting up Git
I’m not going to spend a lot of time talking about installing Git. The audience for this book is familiar with installing software and using a command line, and Git is sufficiently available on various operating systems that I’ll just assume that git --version on the command line doesn’t return command not found. I’m also going to assume UNIX syntax for other commands.
I’m also not going to talk about GUIs. There are great GUIs out there for Git, and of course support is built into IDEs. But the concepts are the same and the command line is clearer for learning purposes.
One setup item that is important is telling Git who we are. Git keeps permission to modify a repository (which might be a user name and password or an SSH key) separate from the information about who made the change. If we don’t configure it, Git will take that “author” information from our current username. That works but it’s more polite to others to make it accurate.
git config --global user.name "Your Name"
git config --global user.email "Your Email"
This creates a plain text file called .gitconfig in your home directory, with a couple lines in it.
Creating a repository
In a scratch directory, type:
git init repo
Assuming the directory repo didn’t exist, this makes it and puts a directory in it called .git with a bunch of files. This .git directory is the repository; we can move that directory anywhere else we want on the file system and that new location will become a Git repository by virtue of having that .git directory in it.
The .git directory has a file in it called config. This file works just like the .gitconfig in our home directory, but it applies only to this repository. You can, for example, have a different name and email address for a given repository.
Other than the .git directory, the rest of the content is ours to play with. This is our “working copy”, and the concept is pretty much the same as Subversion.
One other important Git configuration file is .gitignore. It’s a regular file, and you can have it at any level of the repository. Each line in the file is a pattern. As long as the pattern doesn’t start with / it applies recursively.
Committing
For the purpose of this book, all the changes we make will be small and silly. We may as well begin that way:
cd repo
echo "Hi there" > README
git add README
git commit -m "Initial"
For me, this is the first thing about Git that I miss when I use a different tool: “What do you mean I need to be connected to a server to commit changes?” This also presents an important “thinking difference” with Git. Your commits should be really, really small. There should be one commit for each independent idea in whatever work you’re doing. Do I obey that rule? No, I don’t; look at my logs and see for yourself. But it’s a good rule. There are lots of other ways to organize things in Git, so we don’t have to try to fit whole features into a single commit.
Staging
In fact, because Git wants your commits to be small, it behaves exactly opposite from Subversion. In Subversion, if you make changes to a repository and type svn commit, by default it will pick up all the changed files and assume you want to commit them. Git instead wants you to “stage” a file to show that you want it included in the commit. Nothing is staged for you automatically. Unfortunately, staging a file or files uses git add which kind of overloads that term, especially for Subversion users.
Let’s say we do this:
echo "Hi yourself" >> README
echo "Adding some content" > content01
git commit -m "README and content"
Nothing happens here except that Git tells us that we have changes that are not staged as well as an untracked file. This is irritating, there’s no way to pretend it isn’t. Git itself tells us in the message that we can get around this using git commit -a, but that won’t pick up the untracked file!
Since I’m writing a book about Git, I have to find a way to defend this behavior. The key thing to remember is that commits are supposed to be small. The Git folks realize that in the real world, a developer works on several things at once, files get changed, odd files are inadvertently created. Git is biased toward explicit behavior when it comes to choosing what files to commit, so we need to tell it exactly what files belong in this commit. We might do it like this:
git add .
git commit -m "README and content"
Note the period at the end of the git add command, telling Git to add any new and changed files in the current directory. The git add command is recursive, so this would also cover subdirectories.
Removing files
One more caveat: while this picks up added and modified files, it doesn’t pick up missing files (files that are being tracked by Git but don’t appear any longer in the working copy). This is scheduled to change in Git 2.0, but for now there’s a little extra work.
The command git rm is designed to stage a file for removal. It will also remove the file from our working copy. If there are lots of deleted files, and we deleted them with regular “rm” rather than the Git version, it’s a pain to do git rm with each one, so there’s one more version of the add command to help us:
touch bad01 bad02 bad03 bad04
git add .
git commit -m "Bad files"
rm bad*
git commit -m "Remove bad files"
Again we find that nothing happens because those changes weren’t staged. We can’t do git rm bad* because those files are already gone from the working copy. But we can do this:
git add -A
git commit -m "Remove bad files"
In Git 2.0, this staging of removed files will be the default and git add . will work for both cases.
Wrapping Up
The idea with staging is that Git expects us to identify explicitly what files we want it to commit, by “staging” them. When we stage a file, Git actually makes a copy of it in its own space in .git, and that’s what will be committed. The idea here is that as you work, you can add changes to a commit, and then finalize it with a message when you’re ready.
So far we’ve used Git as a single-person version control tool, but of course in the real-world it’s for collaboration by a team. This means we’ve got to start using Git commands that are designed to move commits between repositories. That’s for the next chapter.
Chapter 3
Clone, Push and Pull
Multiple Repositories
In Subversion, the only way we work with multiple repositories is through a mirror, which has to have exactly the same history to work correctly. Git is designed around multiple repositories; to help work on a project, you have to have not just a working copy but a “clone” of the whole repository so you can commit, push, and pull.
Like Subversion, a lot of teams using Git share a common repository located on some server. Rather than sending changes around to each other, which isn’t efficient, they instead send all their changes to a server and pull everyone’s changes from the server at once.
I’m not going to spend time talking about managing repositories on a server. It brings in a lot of issues with permissions, network accessibility, and those kinds of things. All I will say is that if you’re in the position of setting up Git for a team, and you’re responsible for managing the server repositories, do it through a tool like GitHub, Gitlab, or Atlassian Stash. The extra features you get, and the workflow it enables, are worth it, and it reduces the administrative burden of hosting Git. All three of those tools can be run on your own server and your repositories can be as private as you need them to be.
Anyway, to work with multiple repositories, Git doesn’t care where they are as long as it can get to them. Directories on a file system work just fine.
Bare Repositories
One thing I am forced to talk about is a “bare” repository. This is just a repository with no working copy. We’re going to be using “push” to send commits to a “remote” repository, and Git wants to make sure that we don’t mess up the remote repository’s working copy by doing that. So by default, it’s going to reject any push that isn’t targeted at a bare repository. Server repositories are always bare, so you won’t see this issue in real life.
I could make you create a new bare repository, but then we wouldn’t have the stuff from last chapter. Instead, a quick workaround; we’ll make a bare repository based on the non-bare one we created last time. This workaround also teaches an important command, clone.
Assuming we start back in our scratch directory (so if we’re still in repo, we need to do cd ..), do this:
git clone --bare repo shared
From here on out I’ll ignore repo and just talk about shared. Keep it around, though; we may do something neat with it later in the book.
Cloning
Last time we started with a brand new project, but only one person gets to make that first repository. Everyone else needs to clone it. This is important because it gets the whole history of changes that have been made, so when we make new changes and commit them, other people can apply them easily.
We’ll assume that now there are going to be two imaginary friends helping us on this project; call them Harry and Isabelle. They each need their own space to work.
git clone shared harry
git clone shared isabelle
shared is the “bare” repository we made a minute ago, and it has all the work we did in the last chapter. With these commands, we’re telling Git to copy that repository to a new one called harry (and another new one called isabelle). You can see for yourself that each of these new directories has a .git directory and each directory has the latest content in its working copy.
Each of these new repositories is a self-contained copy of the original repository. It points at its source, but it doesn’t need to reach back to get access to any history, any previous versions of files, or any branches. If we do git log in shared, harry, or isabelle, we’ll see exactly the same history, and git log is pulling this from each local .git directory.
In fact, we could now throw away the shared directory and continue committing to one or the other of these new repositories (and even pull content between them directly). But to be more realistic, we’ll pretend that shared is the single shared repository that both Harry and Isabelle can see.
One other note: since I mentioned git log, which as expected shows history, I should also mention git status. For the following chapters, you won’t see git status in the Git command stream because it would have broken up the flow of what I’m showing. That doesn’t mean it’s not important. It tells you all kinds of useful things, including what files you have that need to be committed and where you stand with respect to other repositories that you’re talking to.
Sharing Commits
Harry wants to make some changes:
cd harry
echo "Adding some more content" >> content01
echo "Second content" > content02
git add .
git commit -m "Harry content"
At this point, git log in harry will look different from git log in shared or isabelle. Not only the working copy in Harry’s directory, but his repository also is different from the others. In order for Isabelle to see Harry’s changes, he could send her the commit directly (via an email with a patch or something), but it’s much better for him to just push it to their shared repository.
git push
That was easy, because only Harry has made changes.
Now git log in harry and shared look exactly the same, but git log in Isabelle’s repository is out of date. She needs to get those changes. For once, the command makes sense; it’s the opposite of “push”, so it must be “pull”.
cd ../isabelle
git pull
Isabelle is now up to date. Here’s where we hit another important Git concept. What Isabelle just did is download a commit from the shared repository. That is, the whole changeset came along, with its author information, information about what files were changed, and information identifying the parent of the commit, so Git can apply it accurately. So Isabelle’s working copy is up-to-date, but her git log is also the same now as shared and harry.
(Note for the pedantic: here is where I am not going to talk about the DAG. Nor am I going to talk about how “pull” is “fetch” plus “merge” and what each of those does. Nor will I talk about local and remote references, or the difference between “master” and “origin/master”. Save that stuff for when we need it, which is very rarely if we use Git the way most people use it.)
Wrapping Up
So far this looks a lot like Subversion. Sure, we saved the change to a local repository first, and we called that a commit, but really the “push” was a lot like a Subversion commit, and “git pull” was a lot like “svn up”.
Of course, this is true! At the end of the day, we’re still managing files and the changes that we make to those files over time. But as we go along, we’ll get into situations where the behavior is a little different from Subversion, so it’s important to recognize that something “happened” when we did git commit, not just when we did git push and git pull.
Next time we’ll get into what happens in the far more likely case that Harry and Isabelle need to change things at the same time.
Chapter 4
Simultaneous changes
Teamwork
Of course, we could continue working like the previous chapter. Harry or Isabelle makes a change, pushes it, the other pulls it, and everyone is kept up to date. But in a real environment, Harry and Isabelle are going to be making changes at the same time.
Starting from the scratch directory again:
cd harry
echo "Third content" > content03
git add .
git commit -m "Third"
And meanwhile…
cd ../isabelle
echo "More second" >> content02
git add .
git commit -m "Second"
At this point, git log for Harry and Isabelle is different, and neither has pushed their change to shared. Whoever pushes first will “win” in the sense that the other will be responsible for dealing with the effects.
Let’s say Isabelle goes first:
git push
The Failed Push
Now Harry has an issue in that his local repository has a different history from the official history in shared. Git is conservative and won’t allow a “push” under these circumstances because it wants to be able to guarantee that the remote repository is safe and consistent.
So if Harry tries to push:
cd ../harry
git push
Back comes a message telling Harry that the push failed. Be grateful; in modern versions of Git there’s a nice “hint” that describes the problem very clearly. Before, we got cryptic error messages and we walked through the snow, uphill both ways, to get them.
This error isn’t really that bad of a problem; Harry just has to “pull” first.
git pull
Merging in Git
If you’ve used version control, you’re used to merging other people’s changes. You make your working copy look like it should to be the “next” version, and then you commit. We have the same goal with Git; the idea is to make the working copy look like it should, incorporating everyone’s changes.
But there is one important difference that comes from Git being distributed: we are merging commits, not just changes to files! So in one sense, even though I haven’t discussed branches yet, it’s like Harry just created a (nameless) branch, because now his commit history differs from isabelle and shared. (Isabelle got to shared first, so her commit history is the “official” one.)
Merging commits seems more complicated at first. But it’s one of the most important, powerful, and valuable features of Git. First, it allows us to commit changes even if we’re not connected to the server. Second, it’s actually much safer, because both Harry and Isabelle’s changes are saved and can be accessed separately forever. So if the merge is done wrong, we can more easily go back and figure out why and fix it.
Harry can’t continue with the history in his local repository differing from the “official” history; it’s interfering with his ability to bring in work from Isabelle. To sort things out, Git requires us to create a “merge commit”. This is a commit that combines Harry’s commits with the one he downloaded from the server.
The “merge commit” is needed because there has to be a single accepted sequence of commits. We are telling Git that even though Harry and Isabelle made changes in parallel, Git should think of Harry’s changes as happening “after” Isabelle’s. Another way to think of it is that Harry is promising Git that he has taken Isabelle’s work into account and made sure that both of their changes have been incorporated correctly.
For this example, you probably noticed that I intentionally made changes that were compatible and would not cause a conflict. As a result, we don’t have to do any conflict resolution. That particular pain is coming in the next chapter.
Because there are no conflicts, to make things as easy as possible, if Git knows how to launch an editor for us (e.g. EDITOR environment variable) it will open the editor with a pre-defined commit comment that explains the situation. All Harry has to do is to save the commit comment and exit the editor.
Successful Push
After Harry exits the editor, Git will have its one accepted sequence of commits (see git log for yourself to find out what that looks like) and Harry can push his changes to the server.
git push
When Isabelle does a pull, she will get Harry’s new changes:
cd ../isabelle
git pull
And at this point everyone’s git log is the same again. Of course, if Isabelle had made commits in the meantime, she would have to pull before pushing, and so on.
One Side Note
There are authors who advocate the use of the Git command rebase in order to avoid the use of the merge commit and simplify the change history in the log. There are times where rebase is appropriate (for example, where a planned feature moves from one version of a product to another). But I do not believe rebase should be used to avoid a merge commit. In my view, the fact that two people were working in the code base at the same time should be reflected in the commit history.
Later we’ll talk about feature branches, which are a much more elegant way to deal with routine and regular merging. When a feature branch is merged back into the “main line”, there will still be a “merge commit”, but only one for the whole feature.
Wrapping Up
At this point, this still looks a lot like Subversion at the surface. When I had new folks starting out with Subversion, I used to use this (approximate) rhyme, which I thought was clever but which never caught on:
Still this lesson you must get;
First you update, then you commit.
However, as I mentioned, the one really important difference is that Harry was able to commit code to his own repository the entire time, and was actually merging commits, not changed files. With Subversion, there are numerous occasions where you find out that an svn up is required before a commit is allowed.
With Subversion, that merging occurs when you have uncommitted changes in your working tree, and there’s no convenient way to store them so they don’t get damaged during the merge. (Of course, you can branch, but that’s also a server-side activity and a little bit of a pain given how frequently it happens.)
With Git, those files are safely committed; you never have to merge into a modified working copy.
In the next chapter, we’ll look at what happens in the inevitable case where the changes happen at the same time, to the same files.
Chapter 5
Constructive Conflict
A Conflict
This time, Harry and Isabelle both decide to add a line at the end of the same file. Starting from the scratch directory again:
cd harry
echo "Harry's line" >> content01
git commit -am "Harry"
git push
Notice that I added an a in front of the m in the git commit command. Because I’m not adding any new files, only updating modified files, and I know it’s safe to pick up all my changes in the commit, I can skip the separate git add step.
cd ../isabelle
echo "Isabelle's line" >> content01
git commit -am "Isabelle"
git push
As before, the push is rejected. As I mentioned the last time, Isabelle’s change is commited to the repository, so it’s not going anywhere. However, this time, when Isabelle does git pull to merge in the changes, Git doesn’t automatically kick off a “merge commit”; instead, it just reports a conflict and waits for us to do something.
Similar to Subversion, Git creates a “conflict” version of the original file, so now content01 is full of markers like <<<<<<<< HEAD. As you might have noticed from the times we used git log, Git uses hashes as labels for commits, so the file looks a little messy.
(A hash is a long alphanumeric string derived from some data, in this case the commit itself. Git uses them because they can be made without asking some central server for the “next sequence number” and are very likely to be unique.)
Push The Reset Button
Hopefully Isabelle can figure out what the file should look like. If not, it’s easy and safe to reset back to a point before the merge (try it):
git merge --abort
Back in the olden days before electricity, we did this with git reset --hard HEAD. It still worked. You will read in Git tutorials that the --hard option to HEAD can be unsafe because it modifies the working copy. This is not an issue for us, because we are smart enough to always pull only when all of our changes have been committed (or stashed). That’s a good rule to follow, because while git merge --abort will try to put your working copy back the way it was, and generally will succeed, if you’ve committed all of your changes you’re guaranteed to be able to get them back.
I haven’t introduced git reset yet. Why? Because Harry and Isabelle haven’t made any mistakes. They’re very good at their jobs. But they’ll make some eventually.
Finishing the merge
Finally Isabelle gets a chance to talk to Harry, and they decide that her line should come first. She does
git pull
again, and gets the conflict back, and this time she edits the file content01 to resolve the conflict.
After that she can just:
git commit -a
git push
Note that in this case Isabelle didn’t use the -m option to provide a message. This causes Git to pop up an editor with a merge message already built-in, plus a list of the files that were in conflict. That information then becomes part of the log.
At least for me, I use the -m switch to git commit about 0.1% of the time. It’s just as fast to type a message into the editor, plus in the editor view Git gives you one last chance to verify that the right stuff is being committed. If you don’t like what you see, you can simply exit the editor without saving and the commit will be canceled.
Git Stash
Unfortunately, life isn’t always easy. Isabelle might have been in the middle of a change when Harry really needed her to pull his changes and look at them. A commit in Git is small and cheap, so it would be OK for Isabelle to just commit her changes anyway and then come back and fix them later. But Isabelle has another option.
git stash creates what is essentially a temporary commit, but it doesn’t apply it to the working copy or upload it to the remote repository on a push. Instead, it keeps it in a special separate storage and returns the working copy to the previous “clean” state.
Let’s say things went down like this:
cd ../harry
git pull
echo "Third down and 10" >> content03
git commit -am "Down and distance"
git push
cd ../isabelle
echo "Third, Third Third" >> content03
At this point Isabelle wants to pull in Harry’s change, presumably to run it. (I know, we aren’t writing code, but pretend.) If she commits her change first, she’ll have to resolve the conflict before she gets a clean working copy with Harry’s changes. So instead:
git stash
git pull
The changes come in cleanly. After Isabelle is done and is ready to get her changes back, she does:
git stash pop
At this point she has to deal with the conflict, by editing the file as above and then committing the change.
Yes, the reference to “pop” means that the stash is a stack, and yes, that means it’s possible to have more than one commit on it. However, it’s not a good idea. In fact, while git stash is a good thing to know, feature branches typically make it unnecessary under normal circumstances.
Wrapping Up
If you’ve been following along perfectly (congratulations) you just need to edit content03 in Isabelle’s directory to remove the conflict tags, then do:
git add .
git commit -m "Resolve"
git push
cd ../harry
git pull
However, if you haven’t been following as closely but want to catch up, it’s entirely possible that you’ve got some conflicts or commits in either Harry’s or Isabelle’s repository that haven’t been resolved yet. Before we go on, you’ll want to make sure both sides have no remaining uncommitted changes and are up-to-date with each other. The file content doesn’t matter as I’ll avoid making any assumptions about how the conflicts were resolved.
Neither the workflow nor the capabilities in this chapter are different in Git from how they are in Subversion. Resolving conflicting changes is painful no matter what. As we work through subsequent chapters I hope to demonstrate some ways that successful Git projects use Git to control the pain of merging. At the very least, they are successful at putting that pain in a box so that they can decide when to experience it. They do this by getting away from making all changes on a single branch; in fact, most successful Git projects are extremely branch-happy.
In the next chapter we’ll make some branches.
Chapter 6
Branching Out
Yes, the chapter title puns seem to be getting worse as we go. Not really something I’m in control of.
What Are Branches For
One of the things I love about Subversion compared to other systems I’ve used is how easy it is to branch. I’ve used version control systems where “branching” occurs at the item level, which isn’t really a branch at all. The way Subversion is architected internally, a branch is cheap because it’s a shallow copy of the repository state at a point in time.
At the same time, on my last big project using Subversion, we didn’t really find ourselves branching all that much. For the most part, a branch came about when it was time for a release, and we didn’t typically commit many changes on that branch afterwards. (I know, that sounds more like a tag, but (a) Subversion doesn’t care about “branch” versus “tag” semantic squabbles; and (b) we did commit on the branch sometimes.)
I worked for a while on a project that used Subversion for something called “feature branches”. The whole project was organized using a ticket system, and before you worked a ticket, you made a branch with that ticket number as the name, worked all your changes in there, and notified someone when you were done. It was good because the senior developers got to look over code changes and often had good suggestions for you to implement before they agreed to merge your change into the trunk. Peons like me didn’t ever commit to trunk.
Of course, I found a way to break it. I was working on a somewhat larger issue, and it took a little time to finish. By the time I got done, quite a bit of stuff had changed in trunk, and I wanted to make sure my files would merge cleanly and work. So I merged trunk into my branch, fixed some conflicts, and tested things out. Then I blithely submitted my ticket as ready for checkout. I don’t know what the senior developer had to do to merge my changes back into trunk, but I know that I got told not to ever do that again.
What’s interesting is that this happened years before I ever used Git for the first time, but for me it was the natural, obvious, “of course you do it that way” workflow. Production came from trunk, so before you mess it up, you do everything you can to make sure your changes are good changes.
This is the Git workflow! All the stuff about feature branches and pull requests is all based on the idea that in software development, we group related changes into features and we work those features in parallel, either as a team or individually. Like I said before, in Git we want commits to be as small as possible, so we use branches to group related commits into a feature so they can land in a product all at once.
One last Subversion note: even at the time, there was a way to do that merge and not break things the way I did. And later versions of Subversion add merge tracking that seems to work really well. But I think most people would agree that feature branches are handled amazingly well in Git compared to other tools.
Doing Some Branching
I wasted a bunch of space with that war story, so let’s get to actually doing some work in Git. Harry’s been given the task of putting Shakespeare quotes into the repository. Now that we’ve introduced feature branches, he starts by making one:
cd harry
git checkout -b shakespeare
It looks a little strange to use git checkout to make a new branch, but no stranger than using svn copy. I’m showing git checkout -b even though there is a git branch command that will do it, because git branch doesn’t switch to the new branch, and when you’re using feature branches you don’t need the hassle of remembering to switch before you commit changes.
Note that this command is a lot different from branching in Subversion using svn copy. In particular, we didn’t have to specify a “remote” URL. This branch is totally local to Harry’s Git repository. If you do git branch in Harry’s repository, you’ll see it, but if you do git branch in shared or isabelle you won’t.
This new branch is based off the latest work that Harry pulled. Harry can do all the work he wants here. Anything he commits will affect the shakespeare branch only, and will not affect the original branch (which is called master).
echo "Why man, he doth bestride the narrow world like a Colossus" > spear01
git add .
git commit -m "Cassius"
echo "But masters, remember that I am an ass" >> spear01
git commit -am "Dogberry"
At this point git log will show those two new commits, because Harry is still working in the feature branch.
Keeping Up To Date
In the meantime, Isabelle has been working on other changes. She hasn’t learned about feature branches yet:
cd ../isabelle
echo "This is no ordinary line" > content04
git add .
git commit -m "Fourth"
git push
Isabelle pushed her changes, and Harry wants them. However, he doesn’t want them in his feature branch; that branch is just for Shakespeare. So he switches back to master:
cd ../harry
git checkout master
git pull
If you’re following along, you’ll see that Git reports this as a “fast-forward”. No merge is taking place here. Also, you’ll notice that git log does not show our two Shakespeare related commits in the log, and the new spear01 file is not in the working copy.
Merging a Feature
Assuming Harry is done with Shakespeare for now, he’ll merge those changes in from the feature branch. He’s already in master, which is where he wants to be to merge in changes.
git merge shakespeare
Git brings up the editor to let us make a merge commit, and once we save and exit the editor window, the change happens. All the stuff I said previously about handling conflicts, aborting merges, all that stuff applies here as well.
Now that the changes are merged, we can push them:
git push
cd ../isabelle
git pull
cd ..
Now Isabelle has the changes too. She does not, however, have a copy of the shakespeare branch; she only gets the new file spear01 because it was merged into master. (She does have a master branch, of course. It got created when we cloned the shared repository for her.)
Wrapping Up
This was a really basic feature branch, and I didn’t show most of the best reasons why you might want to use one. Fortunately I’m using the natural numbers for these chapters, so I’m not likely to run out.
Even though this was a really basic feature branch, I don’t want anyone to lose sight of what we did here. Without ever using a remote server at all, we created a branch, committed some changes to it, and merged it back into the main line. Even that basic capability is enough to change the way that a developer works when they’re working multiple tasks at the same time (which of course is most of the time). A feature branch represents freedom from worrying about leaving the codebase in a broken state while you’re implementing something complex or risky. It also provides a quick way to context switch when you’re working multiple things. These benefits of feature branches exist whether or not you’re using Git, but the ability to make a feature branch while working disconnected is not something to be taken lightly.
Chapter 7
Remote Branches
I was under self-imposed pressure to make a chapter title pun, so of course I couldn’t think of one.
Better Feature Branches
There are a couple of flaws with what we did last time with feature branches. First, one of the benefits of version control is collaboration with others, but Harry selfishly kept his branch to himself and only shared his changes when he was done. Second, while Harry could commit changes to his feature branch, it only lived in his repository, which means if his computer died, his work would be gone.
This time, Harry is going to do some more Shakespeare quotes, but Isabelle is going to help. We still don’t want the changes to hit the main line until they’re ready, so they’re going to work together on a feature branch.
Harry merged the previous changes in his shakespeare branch, but the branch itself is still around and he can just switch to it. (Different teams have different rules about keeping old feature branches around.)
cd harry
git checkout shakespeare
echo "Can the world buy such a jewel?" > spear02
git add .
git commit -m "Claudio"
This is the same as what we did last time, but at this point, Harry wants to back up his change and also let Isabelle work with him.
Pushing Feature Branches
Here we need to talk for a minute about how pushing works in Git. Up until now, we’ve gotten away with just saying git push because Git knew what we meant. It knew we wanted to push from harry or isabelle to shared, because that’s where we cloned from when we made those repositories in the first place.
Because Git is fully distributed, it needs to allow for the cases where a repository has lots of different upstream repositories. If we were helping to develop Linux, we might have branches for Linus’ main line, the current Red Hat main line, and many others. When we make a new branch, we need to tell Git which upstream repository this branch belongs to.
If while we’re switched over to shakespeare, we do “git push”, Git will tell us what I just said, but shorter. It will also tell us how to fix it. When we clone from a repository, that repository is automatically called “origin”. So the first time we push a new feature branch, we have a long command:
git push --set-upstream origin shakespeare
This tells Git to send the branch to “origin”, which is the label Git uses to refer to shared. It tells it that the feature branch should be called shakespeare on “origin” as well. From this point forward, regular git push will work fine.
The shakespeare branch exists on shared now, and we can pull changes to it just like we did before with our master branch.
Isabelle can now start helping Harry with Shakespeare:
cd ../isabelle
git pull
This is all that Isabelle has to do to get any new feature branches that have been pushed to shared. She can now switch to that branch and Git will be smart enough to make a local version of it:
git checkout shakespeare
echo "Yea, and a case to put it into" >> spear02
git commit -am "Benedick"
git push
Note that because Isabelle got her branch from “origin”, Git already knows where to push it.
Either Harry or Isabelle can merge the changes back into master when they’re done adding Shakespeare quotes:
git checkout master
git merge shakespeare
git push
cd ../harry
git pull
Wrapping Up
It’s not immediately apparent, but Git did something a little clever here. In the last chapter, we merged a couple Harry Shakespeare commits. (Harry is Bill Shakespeare’s direct patrilinear descendent, but don’t ask him about it, because then he won’t shut up.)
In this chapter, we used the same feature branch to make a couple new commits and then merged them. Because Git stores the parent of each commit, it can walk back through that history and notice that some of the commits from the shakespeare branch have already been merged. It doesn’t try to merge those again, which is good because it would find spurious “conflicts”. (Before Subversion had merge tracking it was painfully easy to make it create those spurious conflicts.)
We’ve still got at least one more chapter on feature branches, because we’ve been working again with the “happy path” where no one gets in another person’s way. We need to look at more realistic cases.
Chapter 8
Conflicts are a Feature, Not a Bug
Feature Branches with Conflicts
Straight to the Git this time.
First let’s make sure we’re clean.
cd harry
git checkout master
git pull
cd ../isabelle
git checkout master
git pull
Isabelle has some work to do and makes a feature branch.
git checkout -b hamlet
echo "Nymph, in your orisons. Be all my sins remember'd" > spear03
git add .
git commit -m "Hamlet and Ophelia"
git push --set-upstream origin hamlet
And meanwhile Harry is working too.
cd ../harry
git checkout -b julius
echo "The fault, dear Brutus, is not in our stars" > spear03
git add .
git commit -m "Cassius and Brutus"
git push --set-upstream origin julius
Even though they both created the same files, both are allowed to push to the shared repository because their changes are on feature branches. This is another important point about feature branches that makes them worth the trouble, even when the change is relatively small. They allow you to choose when to incur the pain of merging, and in the meantime allow you to work in peace.
Merging Feature Branches with Conflicts
Of course, at some point someone is going to have to merge this. Let’s make Harry do it, since he’s so smug about how well he knows his Shakespeare.
git checkout master
git pull
git merge origin/hamlet
So far so good; everything merges without incident. You’ll notice that the syntax changed a little; this is Git forcing us to be explicit. Because Harry’s never worked with the hamlet branch, he doesn’t really have a local hamlet branch, he just has the one he downloaded from shared. If you were to just say git merge hamlet Git provides a hint letting you know what to do.
Harry now has to merge in his own changes from julius:
git merge julius
That doesn’t work, because it’s trying to add a file that was added in a different commit, so we have a conflict.
Clean Merging Is Clean Living
At this point Harry could do the same thing we did last time with conflicts; just edit the conflicting file, make it look like it should, and do the commit. For this toy example, where we’re doing everything from the command line, that would be fine.
But in the real world, there are a couple issues with doing it that way. First, the change will be going directly into master without being tested. Second, most of the time, the person merging the feature branch into master has reviewed the code, but they’re not the author of it. It really should be the author of the feature branch who makes sure things are merged in the right way. Finally, for most projects using Git, merging into master is done automatically when someone has reviewed the change on a website and clicked “Merge”. That’s one of the primary purposes for tools like GitHub; to improve code review by reviewing smaller bits at a time, making review easy, and making it a part of the normal lifecycle of development.
The point is that when we’re merging into master, the merge should be clean, because that increases the chance that we’re going to get the change that we want. So instead of fixing the conflict in master, Harry is going to fix the conflict in the feature branch. This works in Git because Git does a really good job of keeping track of what commits have been merged into what branch.
git merge --abort
git checkout julius
git merge master
We get the same conflict, but from the other side – now we’re merging the Hamlet quote into the feature branch.
After Harry fixes the conflict:
git commit -am "Hamlet and Cassius"
git push
We choose to do a git push here because we updated the feature branch and want that update to be availble. Later, when we talk about how sites like GitHub work with this flow, this will be important.
git checkout master
git merge julius
git push
Not only does Git do the merge correctly, but it even recognizes it as a “fast-forward”. When we fixed the conflict in the branch, we made a merge commit, and that commit is “after” the commit that merged the Hamlet quote into master. If that sentence didn’t make sense, it’s because I didn’t explain it well; we’re getting into DAG territory and I’d rather focus on effects than architecture. The important thing is that this stuff just works and we can rely on it.
Wrapping Up
At this point, I’ve introduced the basic workflow for Git, including feature branches. There are lots more Git commands, and I probably need a few more chapters to cover some other things, but the vast majority of the time these commands are the only Git commands I use (including git log and git status that I mentioned earlier).
Is the Git approach more complex in some ways than similar functions with Subversion? Definitely. In some ways they’re very similar; if you use feature branches, you have to think about when to make them and when to merge them, and you have to remember what branch you’re on before you commit code. But Git has the extra steps of committing to a local repository.
The benefit you get for that, in addition to being able to work disconnected, is that merging becomes much more about combining commits rather than combining changes into files in the working copy. Not only is that safer and easier to abort, it makes it easier for Git to track what’s been merged so you can merge from any angle and get intelligent results.
Next chapter we’ll talk about what happens when it all goes wrong; recovering from mistakes.
Chapter 9
Be Not Led Astray
When It Goes Wrong
When I started learning Subversion, it didn’t take long before I had to perform that familiar Google search to find out how to “undo” a commit. The general answer for Subversion is that it’s possible, but it’s far easier to just fix whatever is wrong and make a new commit.
That’s very good advice for Git as well. It’s easy to get hung up trying to find a clever Git solution. Especially because Git is so complicated and powerful, there are ways to go back and rewrite history. But to paraphrase Jurassic Park, just because you can doesn’t mean you should.
In particular, anything you’ve pushed should be treated as gospel. Push additional commits to fix issues; don’t try to get clever with stuff you push.
Some Easy Fixes
If you don’t like a change you made to a file and want the most recent committed version back, use git checkout:
cd harry
echo "I broke this file" > spear01
git checkout spear01
If you made a typo in a commit message and you haven’t pushed it yet, you can use git commit --amend:
echo "As pretty a piece of flesh as any in Messina" > spear04
git add .
git commit -m "Dogbert"
git commit --amend -m "Dogberry"
As I mentioned before, we can leave off the commit message and Git will launch an editor.
More Substantial Changes
If you “staged” a file for commit with git add, and you need to make more changes to it before you commit it, just change it and do git add again. But if you realize it shouldn’t be committed at all:
echo "Tempfile" > temp01
echo "Good change" > content05
git add .
If we did a commit now, the temp file would get committed. (This, by the way, is why I avoid using git commit -m in real life; better to let Git launch an editor and review what will be committed.)
git reset temp01
git commit -m "Good only"
If we had just said git reset without parameters both our changes would have been unstaged.
While we’re at it we can add temp files to .gitignore so this doesn’t happen again:
echo "temp*" > .gitignore
git add .
git commit -m "ignore"
Note that even though we did git add . again, temp01 didn’t get picked up this time. The addition to .gitignore takes effect immediately, even before we commit it.
If we really hosed up our working copy, we can get it back easily:
rm -fr *
git reset --hard
In this case --hard means, “it’s OK to update my working copy”. This is of course a bit dangerous because we lose all uncommitted changes. Also, temp01 of course didn’t come back.
Even Bigger Changes
So far we haven’t had to fix anything that was actually committed. Again, where possible, a non-Git solution is better; you can always fix the working copy and make a new commit.
That’s not always easy; you may have destroyed the correct version of the file and want to get it back. If you’re using GitHub or some other on-line tool, you can navigate history and copy/paste. But that’s a cop out.
To reach back into history, we need to tell Git what commit we’re interested in. With all the branching, merging, pushing, and pulling, Git doesn’t have a single authoritative place to store commits, so it can’t number them from 1 to n like Subversion. Instead it uses a hash. You can see that hash in git log and you can use it as a unique way to refer to a commit; just copy/paste or type the first few characters and Git will know which one you mean.
But usually when we need to reach back into history, we just want to refer to “the commit before the last one” or “two commits ago”. Git uses the term HEAD to refer to the most recent commit, and HEAD@{1} to the one before that, and so on. So we don’t need to go look up the hash in the history to get to it.
A simple example:
echo "broken" > content01
git commit -am "Breaking it is easy to do"
git checkout HEAD@{1} content01
git commit -am "Fixing isn't much harder"
Another:
echo "broke" > content02
git commit -am "Ain't got no home"
echo "broker" > content02
git commit -am "A no place to roam"
git checkout HEAD@{2} content02
git commit -am "And I sing like a frog"
Wrapping Up
So far we’ve listed ways to fix most things we could do wrong. There are lots of ways in Git to do exactly what I did here, but I like these ways better because they’re the least intrusive way to do it; for the most part we just use Git to get back the content we want, then make a new commit to fix the repository. This is good because there’s less chance of error and because, except for git commit --amend, these commits are safe even if we already pushed the bad change.
When we start working with branches, there’s a couple more ways things could go wrong. The techniques provided here will get us out of a lot of those situations, too, but they may not be the most elegant way to get out. Next chapter I’ll talk about better ways to handle those issues.
Chapter 10
Serious Issues
What Did I Just Do?
The one consistent thing about mistakes is that realization happens about 100ms too late. Whether it’s committing to the wrong branch, merging to the wrong branch, or some other problem, “messing up” your repository is the worst feeling.
The most important thing with Git is when this happens, don’t panic, and don’t push. Anything can be fixed, but it’ll be fixed a lot easier if it hasn’t been pushed yet.
Committing to the Wrong Branch
When you’re switching around between master and feature branches, it’s easy to commit to the wrong branch. Environments like Eclipse will tell you what branch a given repository is on, but that doesn’t mean it doesn’t happen.
If you just need to redo a commit, with a different branch as target, it’s pretty easy.
cd harry
git checkout -b much-ado
echo "Were she other than as she is, she were unhandsome" >> spear02
git add .
git commit -m "Benedick"
git checkout master
echo "But being no other but as she is, I do not like her" >> spear03
git commit -am "Benedick continues"
We switched back to master probably for some good reason. Then we forgot we switched and went back to making commits that belong on our feature branch.
In this case, we don’t want that commit to apply to master at all. We need to rewind master to the point before that commit, but in a way that keeps the change in our working copy so we can apply it to the branch.
git reset --soft HEAD^
We used reset rather than checkout this time. Last time we were content to just make a new commit after undoing the bad stuff. This time we want that commit to have never happened, because it would be confusing to people to see a “Much Ado” commit on master before that feature branch got merged in.
We also used --soft, which wasn’t strictly necessary, but it’s a nice touch because it leaves our “staged” changes. This means we can redo the commit without having to worry about doing git add or git commit -a. Don’t worry about this kind of touch while you’re learning Git; it’s the kind of thing that comes naturally over time. The more mistakes you make, the faster you get to learn the different ways to fix them.
One other thing: here I used yet another way to refer to “the commit just before the last one”. It’s exactly the same as HEAD@{1} but I wanted to show you both because you’ll see them both.
Now that we’ve backed out the commit, we can switch branches and commit it where it belongs.
git checkout much-ado
git commit -m "Benedick continues"
Merging in Traffic
You probably don’t care, but what happened to the original “Benedick continues” commit, the one that we committed to master and then backed out? It didn’t go anywhere. Really, all we did was just change the history for master so it no longer included that commit. That commit is still floating out there but it no longer belongs to any branch.
That’s another one of those “architecture versus effect” questions. In my opinion, we should behave as if that commit is gone, because while we could use some esoteric command to retrieve it, there’s just no value in doing so.
Similarly, what happens if we merge a bunch of commits when we didn’t mean to? We do exactly the same thing to fix it.
Let’s say that Harry thinks he wants to merge his feature branch into master:
git checkout master
git merge much-ado
At this point the marketing guy shows up and tells him that the feature needs to wait until version 2.0 because they plan a price increase then and need to justify it. Harry needs to get that feature out of master. He doesn’t remember how many commits were in that feature branch, so he does git log and finds the last “good” commit. In my repository, that’s 391590ed0605807042eb0dbd0eb9054396a5ec1a; you’ll have to look up your own.
git reset --hard 391590
It makes sense to use --hard here because we want Git to also update the working copy. It’s safe because those commits are stil available on the feature branch. In fact, if the marketing guy were to show up and say he just remembered that he promised that feature in the next release after all, Harry could just git merge much-ado again and everything would be back where it was a moment ago.
What If I Pushed?
That example worked because Harry had not pushed the change to shared yet. But that’s not very realistic. I still maintain that the best solution is just to get the files back to the right state and make a new commit. But in some particular, probably rare situations, that might not be preferred. What about cases where someone committed personal information to the repository? It’s not OK to just leave that sitting around in an old version.
Let’s re-merge in much-ado so we have something to back out:
git merge much-ado
Same as before, we start by fixing our own repository first.
git reset --hard 391590
Now we need to push this change to shared, but it’s not a regular fast-forward any more, so Git will reject it. This is one case where it’s justified to do a “forced” push:
git push -f
You can believe me that the right thing happened, or you can cd over to Isabelle’s repository, make sure master is checked out, and git pull. The latest “Much Ado” commits won’t be brought in and they won’t appear in the log.
Wrapping Up
The stuff in this chapter is the Git equivalent of surgery, and it should be as rare as surgery. Even though the commands are short, these changes were relatively complicated to envision. However, these kinds of fixes are complicated in any version control software, and they’d be practically impossible in some tools I’ve used. Git lets you do this, but as I said before, it doesn’t mean you should.
Those familiar with Git will notice that I stayed away from rebase in this whole discussion. Rebase and its merge companion cherry-pick would have let us choose to keep some commits from history (or some commits from a merge) and skip others. They also allow editing commits way back in time, or editing commits as they’re merged in.
However, I also recognize that most teams using Git have that one person who gets into the details of the tool and learns the magic. On some teams, with some tools, I’ve been that person. I also know that most people are not that person, and it seems silly to me to pretend that someone should learn how to rebase or cherry-pick to use Git.
Chapter 11
Flow
Workflow with Git
I’ve presented a lot of topics around using Git on a project. I’ve advocated for the use of feature branches. What’s left is to talk about how to get started using Git on a typical project, including both tools and workflow.
Tools
I mentioned at the beginning that I wouldn’t talk about setting up shared repositories on a server, because that kind of thing is best handled in a GitHub-like tool. (There are many examples: GitHub itself, Gitlab, Gitorious, Atlassian Stash.) Any of those tools can be used on the Internet or installed on a local server. They provide user management and repository management. They allow authorized users to push to and pull from shared repositories, typically using SSH (ideally using key-based authentication) or HTTP/S.
So they take away a lot of the pain of setting up a server to host Git. But they also enable a Git workflow with feature branches, in a number of important ways:
Agile tells us to value working software and interactions between people. The workflow that GitHub-like tools enable is one where small changes can be quickly and easily built, tested and reviewed before being integrated. I’m indebted to Scott Chacon for describing how GitHub does their own development work; it’s a very lucid, detailed explanation that’s well worth reading.
Workflow
So once you’ve picked a tool and installed it, the other big question is, how will your team use Git as part of your workflow? Does everything have to be on a feature branch, or is it OK to commit to master for hotfixes? Will your team have to maintain branches for older versions and backport high priority fixes? Do you need an intermediate branch for your next “unstable” version, as described in Git Flow?
Each team will identify its own answer to these questions, as well as decisions like what backlog / ticket system will be used to manage work, and whether it will be used for all work or only for problem reporting.
Conclusion
There are tradeoffs in deciding to use Git as opposed to any other version control tool. There may be a learning curve for some members of the team, or a need to convince leadership of the value of introducing yet another tool.
Just as in a change from a checkout-modify-checkin to a copy-modify-merge model, there is a conceptual change. With copy-modify-merge, we had the new idea that people could change the same file at the same time and wait until commit time to resolve conflicts. With distributed version control, commit and merge are kept completely separate, so committing and branching becomes as cheap as possible and we have total control over when to merge.
Whether Git is worth the tradeoff is a per-team and per-person decision. My hope is that this book has been an enjoyable read and helped to make the concepts clearer so the tradeoff decision can be made for the right reasons.
Conversational Git