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Preface

Tensor network (TN), a young mathematical tool of high vitality and great potential,
has been undergoing extremely rapid developments in the last two decades,
gaining tremendous success in condensed matter physics, atomic physics, quantum
information science, statistical physics, and so on. In this lecture notes, we focus
on the contraction algorithms of TN as well as some of the applications to the
simulations of quantum many-body systems. Starting from basic concepts and
definitions, we first explain the relations between TN and physical problems,
including the TN representations of classical partition functions, quantum many-
body states (by matrix product state, tree TN, and projected entangled pair state),
time evolution simulations, etc. These problems, which are challenging to solve,
can be transformed to TN contraction problems. We present then several paradigm
algorithms based on the ideas of the numerical renormalization group and/or
boundary states, including density matrix renormalization group, time-evolving
block decimation, coarse-graining/corner tensor renormalization group, and several
distinguished variational algorithms. Finally, we revisit the TN approaches from
the perspective of multi-linear algebra (also known as tensor algebra or tensor
decompositions) and quantum simulation. Despite the apparent differences in the
ideas and strategies of different TN algorithms, we aim at revealing the underlying
relations and resemblances in order to present a systematic picture to understand the
TN contraction approaches.
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Chapter 1 ®
Introduction Check for

Abstract One characteristic that defines us, human beings, is the curiosity of the
unknown. Since our birth, we have been trying to use any methods that human
brains can comprehend to explore the nature: to mimic, to understand, and to utilize
in a controlled and repeatable way. One of the most ancient means lies in the
nature herself, experiments, leading to tremendous achievements from the creation
of fire to the scissors of genes. Then comes mathematics, a new world we made
by numbers and symbols, where the nature is reproduced by laws and theorems
in an extremely simple, beautiful, and unprecedentedly accurate manner. With the
explosive development of digital sciences, computer was created. It provided us
the third way to investigate the nature, a digital world whose laws can be ruled by
ourselves with codes and algorithms to numerically mimic the real universe. In this
chapter, we briefly review the history of tensor network algorithms and the related
progresses made recently. The organization of our lecture notes is also presented.

1.1 Numeric Renormalization Group in One Dimension

Numerical simulation is one of the most important approaches in science, in
particular for the complicated problems beyond the reach of analytical solutions.
One distinguished example of the algorithms in physics as well as in chemistry is
ab initio principle calculation, which is based on density function theory (DFT) [1-
3]. It provides a reliable solution to simulate a wide range of materials that can be
described by the mean-field theories and/or single-particle approximations. Monte
Carlo method [4], named after a city famous of gambling in Monaco, is another
example that appeared in almost every corner of science. In contemporary physics,
however, there are still many “hard nuts to crack.” Specifically in quantum physics,
numerical simulation faces un-tackled issues for the systems with strong correla-
tions, which might lead to exciting and exotic phenomena like high-temperature
superconductivity [5, 6] and fractional excitations [7].

Tensor network (TN) methods in the context of many-body quantum systems
have been developed recently. One could however identify some precursors of them
in the seminal works of Kramers and Wannier [8, 9], Baxter [10, 11], Kelland [12],

© The Author(s) 2020 1
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Tsang [13], Nightingale and Blote [11], and Derrida [14, 15], as found by Nishino
[16-22]. Here we start their history from the Wilson numerical renormalization
group (NRG) [23]. The NRG aims at finding the ground state of a spin system.
The idea of the NRG is to start from a small system whose Hamiltonian can be
easily diagonalized. The system is then projected on few low-energy states of the
Hamiltonian. A new system is then constructed by adding several spins and a new
low-energy effective Hamiltonian is obtained working only in the subspace spanned
by the low-energy states of the previous step and the full Hilbert space of the new
spins. In this way the low-energy effective Hamiltonian can be diagonalized again
and its low-energy states can be used to construct a new restricted Hilbert space.
The procedure is then iterated. The original NRG has been improved, for example,
by combining it with the expansion theory [24-26]. As already shown in [23] the
NRG successfully tackles the Kondo problem in one dimension [27], however, its
accuracy is limited when applied to generic strongly correlated systems such as
Heisenberg chains.

In the nineties, White and Noack were able to relate the poor NRG accuracy
with the fact that it fails to consider properly the boundary conditions [28]. In 1992,
White proposed the famous density matrix renormalization group (DMRG) that is
as of today the most efficient and accurate algorithms for one-dimensional (1D)
models [29, 30]. White used the largest eigenvectors of the reduced density matrix
of a block as the states describing the relevant part of the low energy physics Hilbert
space. The reduced density matrix is obtained by explicitly constructing the ground
state of the system on a larger region. In other words, the space of one block is
renormalized by taking the rest of the system as an environment.

The simple idea of environment had revolutionary consequences in the RG-based
algorithms. Important generalizations of DMRG were then developed, including
the finite-temperature variants of matrix renormalization group [31-34], dynamic
DMRG algorithms [35-38], and corner transfer matrix renormalization group by
Nishino and Okunishi [16].!

About 10 years later, TN was re-introduced in its simplest form of matrix product
states (MPS) [14, 15,39—41] in the context of the theory of entanglement in quantum
many-body systems; see, e.g., [42—45].2 In this context, the MPS encodes the
coefficients of the wave-functions in a product of matrices, and is thus defined as
the contraction of a one-dimensional TN. Each elementary tensor has three indexes:
one physical index acting on the physical Hilbert space of the constituent, and
two auxiliary indexes that will be contracted. The MPS structure is chosen since
it represents the states whose entanglement only scales with the boundary of a
region rather than its volume, something called the “area law” of entanglement.
Furthermore, an MPS gives only finite correlations, thus is well suited to represent

IWe recommend a web page built by Tomotoshi Nishino, http://quattro.phys.sci.kobe-u.ac.jp/
dmrg.html, where one exhaustively can find the progresses related to DMRG.

2For the general theory of entanglement and its role in the physics of quantum many-body systems,
see for instance [46—49].
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the ground states of the gapped short-range Hamiltonians. The relation between
these two facts was evinced in seminal contributions [50-59] and led Verstraete and
Cirac to prove that MPS can provide faithful representations of the ground states of
1D gapped local Hamiltonian [60].

These results together with the previous works that identified the outcome of
converged DMRG simulations with an MPS description of the ground states [61]
allowed to better understand the impressive performances of DMRG in terms of
the correct scaling of entanglement of its underlying TN ansatz. The connection
between DMRG and MPS stands in the fact that the projector onto the effective
Hilbert space built along the DMRG iterations can be seen as an MPS. Thus, the
MPS in DMRG can be understood as not only a 1D state ansatz, but also a TN
representation of the RG flows ([40, 61-65], as recently reviewed in [66]).

These results from the quantum information community fueled the search for
better algorithms allowing to optimize variationally the MPS tensors in order
to target specific states [67]. In this broader scenario, DMRG can be seen as
an alternating-least-square optimization method. Alternative methods include the
imaginary-time evolution from an initial state encoded as in an MPS base of the
time-evolving block decimation (TEBD) [68-71] and time-dependent variational
principle of MPS [72]. Note that these two schemes can be generalized to simulate
also the short out-of-equilibrium evolution of a slightly entangled state. MPS has
been used beyond ground states, for example, in the context of finite-temperature
and low-energy excitations based on MPS or its transfer matrix [61, 73-77].

MPS has further been used to characterize state violating the area law of
entanglement, such as ground states of critical systems, and ground states of
Hamiltonian with long-range interactions [56, 78—86].

The relevance of MPS goes far beyond their use as a numerical ansatz. There
have been numerous analytical studies that have led to MPS exact solutions such
as the Affleck—Kennedy-Lieb—Tasaki (AKLT) state [87, 88], as well as its higher-
spin/higher-dimensional generalizations [39, 44, 89-92]. MPS has been crucial in
understanding the classification of topological phases in 1D [93]. Here we will not
talk about these important results, but we will focus on numerical applications even
though the theory of MPS is still in full development and constantly new fields
emerge such as the application of MPS to 1D quantum field theories [94].

1.2 Tensor Network States in Two Dimensions

The simulations of two-dimensional (2D) systems, where analytical solutions are
extremely rare and mean-field approximations often fail to capture the long-range
fluctuations, are much more complicated and tricky. For numeric simulations, exact
diagonalization can only access small systems; quantum Monte Carlo (QMC)
approaches are hindered by the notorious “negative sign” problem on frustrated
spin models and fermionic models away from half-filling, causing an exponential
increase of the computing time with the number of particles [95, 96].
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While very elegant and extremely powerful for 1D models, the 2D version of
DMRG [97-100] suffers several severe restrictions. The ground state obtained by
DMRG is an MPS that is essentially a 1D state representation, satisfying the 1D
area law of entanglement entropy [52, 53, 55, 101]. However, due to the lack of
alternative approaches, 2D DMRG is still one of the most important 2D algorithms,
producing a large number of astonishing works including discovering the numeric
evidence of quantum spin liquid [102—-104] on kagomé lattice (see, e.g., [105-110]).

Besides directly using DMRG in 2D, another natural way is to extend the MPS
representation, leading to the tensor product state [111], or projected entangled pair
state (PEPS) [112, 113]. While an MPS is made up of tensors aligned in a 1D chain,
a PEPS is formed by tensors located in a 2D lattice, forming a 2D TN. Thus, PEPS
can be regarded as one type of 2D tensor network states (TNS). Note the work of
Affleck et al. [114] can be considered as a prototype of PEPS.

The network structure of the PEPS allows us to construct 2D states that strictly
fulfill the area law of entanglement entropy [115]. It indicates that PEPS can
efficiently represent 2D gapped states, and even the critical and topological states,
with only finite bond dimensions. Examples include resonating valence bond states
[115-119] originally proposed by Anderson et al. for superconductivity [120-124],
string-net states [125—127] proposed by Wen et al. for gapped topological orders
[128-134], and so on.

The network structure makes PEPS so powerful that it can encode difficult
computational problems including non-deterministic polynomial (NP) hard ones
[115, 135, 136]. What is even more important for physics is that PEPS provides
an efficient representation as a variational ansatz for calculating ground states of
2D models. However, obeying the area law costs something else: the computational
complexity rises [115, 135, 137]. For instance, after having determined the ground
state (either by construction or variation), one usually wants to extract the physical
information by computing, e.g., energies, order parameters, or entanglement. For an
MPS, most of the tasks are matrix manipulations and products which can be easily
done by classical computers. For PEPS, one needs to contract a TN stretching in a
2D plain, unfortunately, most of which cannot be neither done exactly or nor even
efficiently. The reason for this complexity is what brings the physical advantage to
PEPS: the network structure. Thus, algorithms to compute the TN contractions need
to be developed.

Other than dealing with the PEPS, TN provides a general way to different
problems where the cost functions are written as the contraction of a TN. A cost
function is usually a scalar function, whose maximal or minimal point gives the
solution of the targeted optimization problem. For example, the cost function of the
ground-state simulation can be the energy (e.g., [138, 139]); for finite-temperature
simulations, it can be the partition function or free energy (e.g., [140, 141]); for the
dimension reduction problems, it can be the truncation error or the distance before
and after the reduction (e.g., [69, 142, 143]); for the supervised machine learning
problems, it can be the accuracy (e.g., [144]). TN can then be generally considered
as a specific mathematical structure of the parameters in the cost functions.
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Before reaching the TN algorithms, there are a few more things worth men-
tioning. MPS and PEPS are not the only TN representations in one or higher
dimensions. As a generalization of PEPS, projected entangled simplex state was
proposed, where certain redundancy from the local entanglement is integrated to
reach a better efficiency [145, 146]. Except for a chain or 2D lattice, TN can be
defined with some other geometries, such as trees or fractals. Tree TNS is one
example with non-trivial properties and applications [39, 89, 147-158]. Another
example is multi-scale entanglement renormalization ansatz (MERA) proposed by
Vidal [159-167], which is a powerful tool especially for studying critical systems
[168—173] and AdS/CFT theories ([174—180], see [181] for a general introduction
of CFT). TN has also been applied to compute exotic properties of the physical
models on fractal lattices [182, 183].

The second thing concerns the fact that some TNs can indeed be contracted
exactly. Tree TN is one example, since there is no loop of a tree graph. This might
be the reason that a tree TNS can only have a finite correlation length [151], thus
cannot efficiently access criticality in two dimensions. MERA modifies the tree in
a brilliant way, so that the criticality can be accessed without giving up the exactly
contractible structure [164]. Some other exactly contractible examples have also
been found, where exact contractibility is not due to the geometry, but due to some
algebraic properties of the local tensors [184, 185].

Thirdly, TN can represent operators, usually dubbed as TN operators. Generally
speaking, a TN state can be considered as a linear mapping from the physical Hilbert
space to a scalar given by the contraction of tensors. A TN operator is regarded
as a mapping from the bra to the ket Hilbert space. Many algorithms explicitly
employ the TN operator form, including the matrix product operator (MPO) for
representing 1D many-body operators and mixed states, and for simulating 1D
systems in and out-of-equilibrium [186—-196], tensor product operator (also called
projected entangled pair operators) in for higher-systems [140, 141, 143, 197-206],
and multiscale entangled renormalization ansatz [207-209].

1.3 Tensor Renormalization Group and Tensor Network
Algorithms

Since most of TNs cannot be contracted exactly (with #P-complete computational
complexity [136]), efficient algorithms are strongly desired. In 2007, Levin and
Nave generalized the NRG idea to TN and proposed tensor renormalization group
(TRG) approach [142]. TRG consists of two main steps in each RG iteration:
contraction and truncation. In the contraction step, the TN is deformed by singular
value decomposition (SVD) of matrix in such a way that certain adjacent tensors
can be contracted without changing the geometry of the TN graph. This procedure
reduces the number of tensors N to N/v, with v an integer that depends on the
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way of contracting. After reaching the fixed point, one tensor represents in fact
the contraction of infinite number of original tensors, which can be seen as the
approximation of the whole TN.

After each contraction, the dimensions of local tensors increase exponentially,
and then truncations are needed. To truncate in an optimized way, one should
consider the “environment,” a concept which appears in DMRG and is crucially
important in TRG-based schemes to determine how optimal the truncations are.
In the truncation step of Levin’s TRG, one only keeps the basis corresponding to
the x-largest singular values from the SVD in the contraction step, with x called
dimension cut-off. In other words, the environment of the truncation here is the
tensor that is decomposed by SVD. Such a local environment only permits local
optimizations of the truncations, which hinders the accuracy of Levin’s TRG on the
systems with long-range fluctuations. Nevertheless, TRG is still one of the most
important and computationally cheap approaches for both classical (e.g., Ising and
Potts models) and quantum (e.g., Heisenberg models) simulations in two and higher
dimensions [184, 210-227]. It is worth mentioning that for 3D classical models, the
accuracy of the TRG algorithms has surpassed other methods [221, 225], such as
QMC. Following the contraction-and-truncation idea, the further developments of
the TN contraction algorithms concern mainly two aspects: more reasonable ways
of contracting and more optimized ways of truncating.

While Levin’s TRG “coarse-grains” a TN in an exponential way (the number
of tensors decreases exponentially with the renormalization steps), Vidal’s TEBD
scheme [68—71] implements the TN contraction with the help of MPS in a linearized
way [189]. Then, instead of using the singular values of local tensors, one uses the
entanglement of the MPS to find the optimal truncation, meaning the environment is
a (non-local) MPS, leading to a better precision than Levin’s TRG. In this case, the
MPS at the fixed point is the dominant eigenstate of the transfer matrix of the TN.
Another group of TRG algorithms, called corner transfer matrix renormalization
group (CTMRG) [228], are based on the corner transfer matrix idea originally
proposed by Baxter in 1978 [229], and developed by Nishina and Okunishi in 1996
[16]. In CTMRG, the contraction reduces the number of tensors in a polynomial
way and the environment can be considered as a finite MPS defined on the boundary.
CTMRG has a compatible accuracy compared with TEBD.

With a certain way of contracting, there is still high flexibility of choosing the
environment, i.e., the reference to optimize the truncations. For example, Levin’s
TRG and its variants [142, 210-212, 214, 221], the truncations are optimized by
local environments. The second renormalization group proposed by Xie et al. [221,
230] employs TRG to consider the whole TN as the environments.

Besides the contractions of TNs, the concept of environment becomes more
important for the TNS update algorithms, where the central task is to optimize the
tensors for minimizing the cost function. According to the environment, the TNS
update algorithms are categorized as the simple [141, 143, 210, 221, 231, 232],
cluster [141, 231, 233, 234], and full update [221, 228, 230, 235-240]. The simple
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update uses local environment, hence has the highest efficiency but limited accuracy.
The full update considers the whole TN as the environment, thus has a high
accuracy. Though with a better treatment of the environment, one drawback of
the full update schemes is the expensive computational cost, which strongly limits
the dimensions of the tensors one can keep. The cluster update is a compromise
between simple and full update, where one considers a reasonable subsystem as the
environment for a balance between the efficiency and precision.

It is worth mentioning that TN encoding schemes are found to bear close
relations to the techniques in multi-linear algebra (MLA) (also known as tensor
decompositions or tensor algebra; see a review [241]). MLA was originally targeted
on developing high-order generalization of the linear algebra (e.g., the higher-order
version of singular value or eigenvalue decomposition [242-245]), and now has
been successfully used in a large number of fields, including data mining (e.g.,
[246-250]), image processing (e.g., [251-254]), machine learning (e.g., [255]), and
so on. The interesting connections between the fields of TN and MLA (for example,
tensor-train decomposition [256] and matrix product state representation) open new
paradigm for the interdisciplinary researches that cover a huge range in sciences.

1.4 Organization of Lecture Notes

Our lectures are organized as following. In Chap.?2, we will introduce the basic
concepts and definitions of tensor and TN states/operators, as well as their graphic
representations. Several frequently used architectures of TN states will be intro-
duced, including matrix product state, tree TN state, and PEPS. Then the general
form of TN, the gauge degrees of freedom, and the relations to quantum entangle-
ment will be discussed. Three special types of TNs that can be exactly contracted
will be exemplified in the end of this chapter.

In Chap. 3, the contraction algorithms for 2D TNs will be reviewed. We will start
with several physical problems that can be transformed to the 2D TN contractions,
including the statistics of classical models, observation of TN states, and the
ground-state/finite-temperature simulations of 1D quantum models. Three paradigm
algorithms, namely TRG, TEBD, and CTMRG, will be presented. These algorithms
will be further discussed from the aspect of the exactly contractible TNs.

In Chap. 4, we will concentrate on the algorithms of PEPS for simulating the
ground states of 2D quantum lattice models. Two general schemes will be explained,
which are the variational approaches and the imaginary-time evolution. According
to the choice of environment for updating the tensors, we will explain the simple,
cluster, and full update algorithms. Particularly in the full update, the contraction
algorithms of 2D TNs presented in Chap. 3 will play a key role to compute the non-
local environments.



8 1 Introduction

In Chap.5, a special topic about the underlying relations between the TN
methods and the MLA will be given. We will start from the canonicalization
of MPS in one dimension, and then generalize to the super-orthogonalization of
PEPS in higher dimensions. The super-orthogonalization that gives the optimal
approximation of a tree PEPS in fact extends the Tucker decomposition from single
tensor to tree TN. Then the relation between the contraction of tree TNs and the
rank-1 decomposition will be discussed, which further leads to the “zero-loop”
approximation of the PEPS on the regular lattice. Finally, we will revisit the infinite
DMRG (iDMRG), infinite TEBD (iTEBD), and infinite CTMRG in a unified picture
indicated by the tensor ring decomposition, which is a higher-rank extension of the
rank-1 decomposition.

In Chap.6, we will revisit the TN simulations of quantum lattice models
from the ideas explained in Chap.5. Such a perspective, dubbed as quantum
entanglement simulation (QES), shows a unified picture for simulating one- and
higher-dimensional quantum models at both zero [234, 257] and finite [258]
temperatures. The QES implies an efficient way of investigating infinite-size many-
body systems by simulating few-body models with classical computers or artificial
quantum platforms. In Chap. 7, a brief summary is given.

As TN makes a fundamental language and efficient tool to a huge range of
subjects, which has been advancing in an extremely fast speed, we cannot cover
all the related progresses in this review. We will concentrate on the algorithms
for TN contractions and the closely related applications. The topics that are not
discussed or are only briefly mentioned in this review include: the hybridization
of TN with other methods such as density functional theories and ab initio
calculations in quantum chemistry [259-268], the dynamic mean-field theory
[269-278], and the expansion/perturbation theories [274, 279-284]; the TN algo-
rithms that are less related to the contraction problems such as time-dependent
variational principle [72, 285], the variational TN state methods [76, 240, 286—
291], and so on; the TN methods for interacting fermions [167, 266, 292-306],
quantum field theories [307-313], topological states and exotic phenomena in many-
body systems (e.g., [105, 106, 108, 110, 116-119, 125, 126, 306, 314-329]), the
open/dissipative systems [186, 190-192, 194, 330-334], quantum information and
quantum computation [44, 335-344], machine learning [144, 345-360], and other
classical computational problems [361-366]; the TN theories/algorithms with non-
trivial statistics and symmetries [125-127, 303, 309, 314, 319, 367-380]; several
latest improvements of the TN algorithms for higher efficiency and accuracy
[236, 239, 381-385].
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Chapter 2 ®
Tensor Network: Basic Definitions Chock or
and Properties

Abstract This chapter is to introduce some basic definitions and concepts of TN.
We will show that the TN can be used to represent quantum many-body states, where
we explain MPS in 1D and PEPS in 2D systems, as well as the generalizations to
thermal states and operators. The quantum entanglement properties of the TN states
including the area law of entanglement entropy will also be discussed. Finally, we
will present several special TNs that can be exactly contracted, and demonstrate the
difficulty of contracting TNs in general cases.

2.1 Scalar, Vector, Matrix, and Tensor

Generally speaking, a tensor is defined as a series of numbers labeled by N indexes,
with N called the order of the tensor.! In this context, a scalar, which is one number
and labeled by zero index, is a zeroth-order tensor. Many physical quantities are
scalars, including energy, free energy, magnetization, and so on. Graphically, we
use a dot to represent a scalar (Fig. 2.1).

A D-component vector consists of D numbers labeled by one index, and thus is
a first-order tensor. For example, one can write the state vector of a spin-1/2 in a
chosen basis (say the eigenstates of the spin operator Staly as

¥) = C110) + Call) = Y Csls), @.1)

s=0,1

with the coefficients C a two-component vector. Here, we use |0) and |1) to represent
spin up and down states. Graphically, we use a dot with one open bond to represent
a vector (Fig.2.1).

INote that in some references, N is called the tensor rank. Here, the word rank is used in another
meaning, which will be explained later.
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e ¢ = mamm

Fig. 2.1 From left to right, the graphic representations of a scalar, vector, matrix, and tensor

A matrix is in fact a second-order tensor. Considering two spins as an example,
the state vector can be written under an irreducible representation as a four-
dimensional vector. Instead, under the local basis of each spin, we write it as

1
W) = Co0l0)|0) + Co110)[1) + Ciol1)10) + Cia|)]1) = Y Cyuls)ls’), (2.2)

ss'=0

with C,y a matrix with two indexes. Here, one can see that the difference between a
(D x D) matrix and a D?>-component vector in our context is just the way of labeling
the tensor elements. Transferring among vector, matrix, and tensor like this will be
frequently used later. Graphically, we use a dot with two bonds to represent a matrix
and its two indexes (Fig.2.1).

It is then natural to define an N-th order tensor. Considering, e.g., N spins, the
2N coefficients can be written as an N-th order tensor C,” satisfying

1

W)=Y Cosylsi)...lsn). (2.3)

S1~-SN=0

Similarly, such a tensor can be reshaped into a 2V -component vector. Graphically,
an N-th order tensor is represented by a dot connected with N open bonds (Fig. 2.1).

In above, we use states of spin-1/2 as examples, where each index can take two
values. For a spin-S state, each index can take d = 25 + 1 values, with d called the
bond dimension. Besides quantum states, operators can also be written as tensors. A
spin-1/2 operator SY (@ = x, ¥, z) is a (2 x 2) matrix by fixing the basis, where we

have S;",x,mz = (sis§|S°‘ |s1s2). In the same way, an N-spin operator can be written
1°2

as a 2N-th order tensor, with N bra and N ket indexes.>

We would like to stress some conventions about the “indexes” of a tensor
(including matrix) and those of an operator. A tensor is just a group of numbers,
where their indexes are defined as the labels labeling the elements. Here, we always
put all indexes as the lower symbols, and the upper “indexes” of a tensor (if exist)
are just a part of the symbol to distinguish different tensors. For an operator which
is defined in a Hilbert space, it is represented by a hatted letter, and there will be

21f there is no confuse, we use the symbol without all its indexes to refer to a tensor for conciseness,
e.g., use C to represent Cy, g -

3Note that here, we do not distinguish bra and ket indexes deliberately in a tensor, if not necessary.
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»

Fig. 2.2 The graphic representation of the Schmidt decomposition (singular value decomposition
of a matrix). The positive-defined diagonal matrix A, which gives the entanglement spectrum
(Schmidt numbers), is defined on a virtual bond (dumb index) generated by the decomposition

o “true” indexes, meaning that both upper and lower “indexes” are just parts of the
symbol to distinguish different operators.

2.2 Tensor Network and Tensor Network States

2.2.1 A Simple Example of Two Spins and Schmidt
Decomposition

After introducing tensor (and its diagram representation), now we are going to talk
about TN, which is defined as the contraction of many tensors. Let us start with
the simplest situation, two spins, and consider to study the quantum entanglement
properties for instance. Quantum entanglement, mostly simplified as entanglement,
can be defined by the Schmidt decomposition [1-3] of the state (Fig.2.2) as

) = Z Cyy'l5)]s") Z ZUWWV;;/|s>|s/>, (2.4)

ss'=0 ss'=0a=1

where U and V are unitary matrices, A is a positive-defined diagonal matrix in
descending order,* and x is called the Schmidt rank. X is called the Schmidt
coefficients since in the new basis after the decomposition the state is written in
a summation of x product states as |1/f = Y 4 ralu)alv)a, with the new basis
Iua—z Usals) and|va—z sa

Graphically, we have a small TN, where we use green squares to represent the
unitary matrices U and V, and a red diamond to represent the diagonal matrix A.
There are two bonds in the graph shared by two objects, standing for the summations
(contractions) of the two indexes in Eq. (2.4), a and @’. Unlike s (or s”), the space of
the index a (or a’) is not from any physical Hilbert space. To distinguish these two
kinds, we call the indexes like s the physical indexes and those like a the geometrical
or virtual indexes. Meanwhile, since each physical index is only connected to one
tensor, it is also called an open bond.

4Sometime, X is treated directly as a x-component vector.
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Some simple observations can be made from the Schmidt decomposition.
Generally speaking, the index a (also @’ since A is diagonal) contracted in a TN carry
the quantum entanglement [4]. In quantum information sciences, entanglement is
regarded as a quantum version of correlation [4], which is crucially important to
understand the physical implications of TN. One usually uses the entanglement
entropy to measure the strength of the entanglement, which is defined as § =
—23°%_ | A21nA,. Since the state should be normalized, we have }"*_ 12 = 1. For
dim(a) = 1, obviously |¢) = Aq|u)1|v)1 is a product state with zero entanglement
S = 0 between the two spins. For dim(a) = y, the entanglement entropy S < In x,
where § takes its maximum if and only if Ay = --- = A,. In other words, the
dimension of a geometrical index determines the upper bound of the entanglement.

Instead of Schmidt decomposition, it is more convenient to use another language
to present later the algorithms: singular value decomposition (SVD), a matrix
decomposition in linear algebra. The Schmidt decomposition of a state is the SVD
of the coefficient matrix C, where A is called the singular value spectrum and its
dimension yx is called the rank of the matrix. In linear algebra, SVD gives the
optimal lower-rank approximations of a matrix, which is more useful to the TN
algorithms. Specifically speaking, with a given matrix C of rank-y, the task is to
find a rank- ¥ matrix C’ (¥ < x) that minimizes the norm

2
P =M-M|= > (My - M) (2.5)
AN
The optimal solution is given by the SVD as
x'—1
My =" UshradVy, (2.6)
a=0

In other words, M’ is the optimal rank- ' approximation of M, and the error is given
by

2.7

which will be called the truncation error in the TN algorithms.

2.2.2 Matrix Product State

Now we take a N-spin state as an example to explain the MPS, a simple but powerful
1D TN state. In an MPS, the coefficients are written as a TN given by the contraction
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Fig. 2.3 An impractical way to obtain an MPS from a many-body wave-function is to repetitively
use the SVD

of N tensors. Schollwdck in his review [S] provides a straightforward way to obtain
such a TN is by repetitively using SVD or QR decomposition (Fig. 2.3). First, we
group the first N — 1 indexes together as one large index, and write the coefficients as
a 2¥=1 x 2 matrix. Then implement SVD or any other decomposition (for example,
QR decomposition) as the contraction of C IN=11 and A[N]

N—-1 N
Cwsl'“SNflsN = Z C£1‘~~S1\},1,aN,1A£N}aN,1' (28)

aN-—1

Note that as a convention in this paper, we always put the physical indexes in front
of geometrical indexes and use a comma to separate them. For the tensor C!V 1,
one can do the similar thing by grouping the first N — 2 indexes and decompose
again as

Cyyoosy sy = Z CIN-2] AN-1 2.9

1""SN-2,AN-2""SN—1,AN-2aN—1"
aN-2

Then the total coefficients become the contraction of three tensors as

Coposyrsy =, CIV2 AN AlV] (2.10)

“SN-2,AN—-2" "SN—1,AN—-2AN—1" "SN,AN—-1"
aN—-2aN -1

Repeat decomposing in the above way until each tensor only contains one physical
index, we have the MPS representation of the state as

Coposyisy = ALl ARl ANl AN (2.11)

S1,a1° 782,414z SN—1,AN—2aN—1" "SN,AN—-1"
ap-+aN-1

One can see that an MPS is a TN formed by the contraction of N tensors.
Graphically, MPS is represented by a 1D graph with N open bonds. In fact, an
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SN SN

Fig. 2.4 The graphic representations of the matrix product states with open (left) and periodic
(right) boundary conditions

MPS given by Eq.(2.11) has open boundary condition, and can be generalized to
periodic boundary condition (Fig. 2.4) as

AWV (2.12)

A A[N 1]
SN-1SN S, aNal Sz alaz SN—1,AN-2aN—1""SN,AN—1aN’

Csy-.

where all tensors are third-order. Moreover, one can introduce translational invari-
ance to the MPS, ie., A"l = Aforn =1,2,---, N. We use X, dubbed as virtual
bond dimension of the MPS, to represent the dimension of each geometrical index.

MPS is an efficient representation of a many-body quantum state. For a N-spin
state, the number of the coefficients is 2V which increases exponentially with N. For
an MPS given by Eq. (2.12), it is easy to count that the total number of the elements
of all tensors is Nd x> which increases only linearly with N. The above way of
obtaining MPS with decompositions is also known as tensor train decomposition
(TTD) in MLA, and MPS is also called tensor-train form [6]. The main aim of TTD
is investigating the algorithms to obtain the optimal tensor-train form of a given
tensor, so that the number of parameters can be reduced with well-controlled errors.

In physics, the above procedure shows that any states can be written in an MPS,
as long as we do not limit the dimensions of the geometrical indexes. However, it
is extremely impractical and inefficient, since in principle, the dimensions of the
geometrical indexes {a} increase exponentially with N. In the following sections,
we will directly applying the mathematic form of the MPS without considering the
above procedure.

Now we introduce a simplified notation of MPS that has been widely used in
the community of physics. In fact with fixed physical indexes, the contractions of
geometrical indexes are just the inner products of matrices (this is how its name
comes from). In this sense, we write a quantum state given by Eq. (2.11) as

N
W) = TrAMART AW 5155 sy = 1 Tr TT AP s). (2.13)

n=1

tTr stands for summing over all shared indexes. The advantage of Eq. (2.13) is to
give a general formula for an MPS of either finite or infinite size, with either periodic
or open boundary condition.



2.2 Tensor Network and Tensor Network States 31
2.2.3 Affleck—Kennedy-Lieb-Tasaki State

MPS is not just a mathematic form. It can represent non-trivial physical states.
One important example can be found with AKLT model proposed in 1987, a
generalization of spin-1 Heisenberg model [7]. For 1D systems, Mermin—Wagner
theorem forbids any spontaneously breaking of continuous symmetries at finite
temperature with sufficiently short-range interactions. For the ground state of AKLT
model called AKLT state, it possesses the sparse anti-ferromagnetic order (Fig.2.5),
which provides a non-zero excitation gap under the framework of Mermin—Wagner
theorem. Moreover, AKTL state provides us a precious exactly solvable example to
understand edge states and (symmetry-protected) topological orders.

AKLT state can be exactly written in an MPS with y = 2 (see [8] for example).
Without losing generality, we assume periodic boundary condition. Let us begin
with the AKLT Hamiltonian that can be given by spin-1 operators as

. 1, 4 I A A 1
H= Z |:5S" “Spy1 + E(Sn Su)’ + §:| : 2.14)

n

By introducing the non-negative-defined projector Py(S, + §n+1) that projects the
neighboring spins to the subspace of S = 2, Eq.(2.14) can be rewritten in the
summation of projectors as

H=73 P+ (2.15)
n

Thus, the AKLT Hamiltonian is non-negative-defined, and its ground state lies in its
kernel space, satisfying H [YaxrT) = 0 with a zero energy.

Now we construct a wave-function which has a zero energy. As shown in Fig. 2.6,
we put on each site a projector that maps two (effective) spins-1/2 to a triplet, i.e.,

..Toio ‘T.L To.oiu
Fig. 2.5 One possible configuration of the sparse anti-ferromagnetic ordered state. A dot repre-

sents the S = 0 state. Without looking at all the S = O states, the spins are arranged in the
anti-ferromagnetic way

Fig. 2.6 An intuitive graphic representation of the AKLT state. The big circles representing S = 1
spins, and the small ones are effective § = % spins. Each pair of spin-1/2 connecting by a red bond
forms a singlet state. The two “free” spin-1/2 on the boundary give the edge state
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the physical spin-1, where the transformation of the basis obeys

[+) = |00) (2.16)
- 1

0) = — (|01 10Y), 2.17
|0) ﬁ(l ) +110)) (2.17)
|—) = |11). (2.18)

The corresponding projector is determined by the Clebsch—Gordan coefficients [9],
and is a (3 x 4) matrix. Here, we rewrite it as a (3 x 2 x 2) tensor, whose three
components (regarding to the first index) are the ascending, z-component, and
descending Pauli matrices of spin-1/2,

0 1 1 0 _ 0 0
+ z
= , = , = . 2.19
7 [o o} 7 [0—1] [1 o} @19
In the language of MPS, we have the tensor A satisfying

Ag,aa’ = O—(;;/a Alaa = U;a/v Az ua = Ua_a" (2.20)

Then we put another projector to map two spin-1/2 to a singlet, i.e., a spin-0 with

— 1
0) = —(|01) — [10)). (2.21)
0) 7 |01) — [10)
The projector is in fact a (2 x 2) identity with the choice of Eq. (2.19)
1 0
1= . 2.22
o Y] e2)

Now, the MPS of the AKLT state with periodic boundary condition (up to a
normalization factor) is obtained by Eq.(2.12), with every tensor A given by
Eq. (2.20). For such an MPS, every projector operator ﬁz(S‘n + 3‘,,+1) in the AKLT
Hamiltonian is always acted on a singlet, then we have H ['Yakrr) =0.

2.2.4 Tree Tensor Network State (TTNS) and Projected
Entangled Pair State (PEPS)

TTNS is a generalization of the MPS that can code more general entanglement
states. Unlike an MPS where the tensors are aligned in a 1D array, a TTNS is given

SHere, one has some degrees of freedom to choose different projectors, which is only up to a gauge
transformation. But once one projector is fixed, the other is also fixed.
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Fig. 2.7 The illustration of (a) and (b) two different TTNSs and (c) MERA

by a tree graph. Figure 2.7a, b shows two examples of TTNS with the coordination
number z = 3. The red bonds are the physical indexes and the black bonds are the
geometrical indexes connecting two adjacent tensors. The physical ones may locate
on each tensor or put on the boundary of the tree. A tree is a graph that has no
loops, which leads to many simple mathematical properties that parallel to those of
an MPS. For example, the partition function of a TTNS can be efficiently exactly
computed. A similar but more power TN state called MERA also has such a property
(Fig.2.7¢c). We will get back to this in Sect. 2.3.6. Note an MPS can be treated as a
tree with z = 2.

An important generalization to the TNs of loopy structures is known as projected
entangled pair state (PEPS), proposed by Verstraete and Cirac [10, 11]. The tensors
of a PEPS are located in, instead of a 1D chain or a tree graph, a d-dimensional
lattice, thus graphically forming a d-dimensional TN. An intuitive picture of PEPS
is given in Fig.2.8, i.e., the tensors can be understood as projectors that map the
physical spins into virtual ones. The virtual spins form the maximally entangled
state in a way determined by the geometry of the TN. Note that such an intuitive
picture was firstly proposed with PEPS [10], but it also applies to TTNS.

Similar to MPS, a TTNS or PEPS can be formally written as

@) = tTrl_[ Pllgy, (2.23)
n

where tTr means to sum over all geometrical indexes. Usually, we do not write
the formula of a TTNS or PEPS, but give the graph instead to clearly show the
contraction relations.

Such a generalization makes a lot of senses in physics. One key factor regards
the area law of entanglement entropy [12—17] which we will talk about later in this
chapter. In the following as two straightforward examples, we show that PEPS can
indeed represents non-trivial physical states including nearest-neighbor resonating
valence bond (RVB) and Z, spin liquid states. Note these two types of states on
trees can be similarly defined by the corresponding TTNS.
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(a) (b)
©PO®
©OO@

Fig. 2.8 (a) An intuitive picture of the projected entangled pair state. The physical spins (big
circles) are projected to the virtual ones (small circles), which form the maximally entangled states
(red bonds). (b)—(d) Three kinds of frequently used PEPSs

2.2.5 PEPS Can Represent Non-trivial Many-Body States:
Examples

RVB state was firstly proposed by Anderson to explain the possible disordered
ground state of the Heisenberg model on triangular lattice [18, 19]. RVB state
is defined as the superposition of macroscopic configurations where all spins are
paired to form the singlet states (dimers). The strong fluctuations are expected to
restore all symmetries and lead to a spin liquid state without any local orders. The
distance between two spins in a dimer can be short range or long range. For nearest-
neighbor RVB, the dimers are only the nearest neighbors (Fig. 2.9, also see [20]).
RVB state is supposed to relate to high-7, copper-oxide-based superconductor.
By doping the singlet pairs, the insulating RVB state can translate to a charged
superconductive state [21-23].

For the nearest-neighbor situation, an RVB state (defined on an infinite square
lattice, for example) can be exactly written in a PEPS of x = 3. Without losing
generality, we take the translational invariance, i.e., the TN is formed by infinite
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Fig. 2.9 The nearest-neighbor RVB state is the superposition of all possible configurations of
nearest-neighbor singlets

/
/

copies of several inequivalent tensors. Two different ways have been proposed
to construct the nearest-neighbor RVB PEPS [24, 25]. In addition, Wang et al.
proposed a way to construct the PEPS with long-range dimers [26]. In the following,
we explain the way proposed by Verstraete et al. to construct the nearest-neighbor
one [24]. There are two inequivalent tensors: the tensor defined on each site whose
dimensions are (2 x 3 x 3 x 3 x 3) only has eight non-zero elements,

Po,0222 = Po,2022 = Po,22020 = Poooo0 =1 (2.24)
P 1222 = P1p122 = P12212 = Prooo1 =1 (2.25)

The two-dimensional index of P is a physical index with s = 0 representing spin
up and s = 1 spin down. The extra dimension for each of the other four geometrical
indexes is used for carrying the vacuum state. The tensor P is acting as projector
that maps the occupied geometrical index (either up or down) to a physical spin.
For example, P; 2122 means to map a virtual spin up which occupies the second
geometrical index to a real spin up. The rest elements are all zero, which means the
corresponding projections are forbidden.

Then a projector B is introduced for building spin singlets between two nearest-
neighbor sites connected by a shared geometrical bond in the RVB structure. B is a
(3 x 3) matrix with only three non-zero elements

Bor =1,Big=—1, By =1. (2.26)

Matrix B plays as a router, which only lets the singlet state defined as [10) — |10)
and vacuum state go through the path.

Then the infinite PEPS (iPEPS) of the nearest-neighbor RVB is given by the
contraction of infinite copies of P’s on the sites and B’s (Fig. 2.8) on the bonds as

|W)=Z 1_[ Ps,l,a,{a,zla;?a,‘l‘ 1_[ Ba}na}n l_[ |Sj>- (227)

{s,a} nesites mebonds jesites

After the contraction of all geometrical indexes, the state is the superposition of
all possible configurations consisting of nearest-neighbor dimers. This iPEPS looks
different from the one given in Eq. (2.23) but they are essentially the same, because
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one can contract the B’s into P’s so that the PEPS is only formed by tensors defined
on the sites.

Another example is the Z, spin liquid state, which is one of simplest string-net
states [27-29], firstly proposed by Levin and Wen to characterize gapped topological
orders [30]. Similarly with the picture of strings, the Z; state is the superposition of
all configurations of string loops. Writing such a state with TN, the tensor on each
vertex is (2 x 2 x 2 x 2) satisfying

1, ai+---+ay = even,

2.28
0, otherwise. ( )

The tensor P forces the fusion rules of the strings: the number of the strings
connecting to a vertex must be even, so that there are no loose ends and all strings
have to form loops. It is also called in some literatures the ice rule [31, 32] or Gauss’
law [33]. In addition, the square TN formed solely by the tensor P gives the famous
eight-vertex model, where the number “eight” corresponds to the eight non-zero
elements (i.e., allowed sting configurations) on a vertex [34].

The tensors B are defined on each bond to project the strings to spins, whose
non-zero elements are

Booo =1, By =1 (2.29)

The tensor B is a projector that maps the spin-up (spin-down) state to the occupied
(vacuum) state of a string.

2.2.6 Tensor Network Operators

The MPS or PEPS can be readily generalized from representations of states to those
of operators called MPO [35-42] or projected entangled pair operator (PEPO)® [43—
52]. Let us begin with MPO, which is also formed by the contraction of local tensors
as (Fig.2.10)

0=3 Wv[,ﬂ;,a,,anﬂ I5) (53 (2.30)

{s,a} n

Different from MPS, each tensor has two physical indexes, of which one is a
bra and the other is a ket index (Fig.2.11). An MPO may represent several non-
trivial physical models, for example, the Hamiltonian. Crosswhite and Bacon [53]
proposed a general way of constructing an MPO called automata. Now we show
how to construct the MPO of an Hamiltonian using the properties of a triangular

5Generally, a representation of an operator with a TN can be called tensor product operator (TPO).
MPO and PEPO are two examples.
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<brq|

|ket>

Fig. 2.10 The graphic representation of a matrix product operator, where the upward and
downward indexes represent the bra and ket space, respectively

Fig. 2.11 The graphic representation of a projected entangled pair operator, where the upward and
downward indexes represent the bra and ket space, respectively

MPO. Let us start from a general lower-triangular MPO satisfying W:[:"(])O = ¢l
W:[:"(])1 = B and W:Enlll = Al with Al*) B and €™ some d x d square
matrices. We can write Wl in a more explicit 2 x 2 block-wise form as

cinl o
[n] _
Wil — (BP“ A[”]>' 2.31)

If one puts such a Wl in Eq. (2.30), it will give the summation of all terms in the
form of

N
0 = ZAII] ®,_,®A[ﬂ*1] ®B["] ®C[n+1] ®---®C[N]
n=1

—

n— N
[[A"eB™e [] cYl (2.32)
1 ®i=1 ®j=n+1

I
M=

n
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with N the total number of tensors and [ [, the tensor product.’” Such a property can
be easily generalized to a W formed by D x D blocks.

Imposing Eq. (2.32), we can construct as an example the summation of one-site
local terms, i.e., ), X1 8 with

W[n]:( I 0>, (2.33)

with X" a d x d matrix and I the d x d identity.
If two-body terms are included, such as y_,, X" + 3" y"zIn+1 we have

I 00
whl = | zn o o]. (2.34)
xlnl ylnl

This can be obviously generalized to L-body terms. With open boundary conditions,
the left and right tensors are

will=(100), (2.35)
0

wiNl = 10]. (2.36)
I

Now we apply the above technique on a Hamiltonian of, e.g., the Ising model in
a transverse field

H=Y 88  +hy 8. (2.37)
n m
Its MPO is given by
I 00
with=|{ 8§ 0o0]. (2.38)
h8* 8¢ 1

TForn = 0, Al (or BIO, Cl91) does not exist but can be defined as a scalar 1, for simplicity of the
formula.

8Note that X["1] and X["2] are not defined in a same space with n; # ny, Thus, precisely speaking,
> here is the direct sum. We will not specify this when it causes no confuse.
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Such a way of constructing an MPO is very useful. Another example is the
Fourier transformatlon to the number operator of Hubbard model in momentum
space Ay = b bk The Fourier transformation is written as

N
> kbl b, (2.39)
m,n=1

with l;n (I;Z) the annihilation (creation) operator on the n-th site. The MPO
representation of such a Fourier transformation is given by

I 0 0 0

. bt eki 0 0
W, =1 " e 2.40
" b 0 efo (2:40)

b'h etk bt e=ikp [

with 7 the identical operator in the corresponding Hilbert space.

The MPO formulation also allows for a convenient and efficient representation
of the Hamiltonians with longer range interactions [54]. The geometrical bond
dimensions will in principle increase with the interaction length. Surprisingly,
a small dimension is needed to approximate the Hamiltonian with long-range
interactions that decay polynomially [46].

Besides, MPO can be used to represent the time evolution operator U(t) =e ™1
with Trotter—Suzuki decomposition, where t is a small positive number called
Trotter—Suzuki step [55, 56]. Such an MPO is very useful in calculating real,
imaginary, or even complex time evolutions, which we will present later in detail.
An MPO can also give a mixed state.

Similarly, PEPS can also be generalized to projected entangled pair operator
(PEPO, Fig.2.11), which on a square lattice, for instance, can be written as

0 Z 1_[ s[ns] ,alala} a4|5n)< /l (2.41)

{s,a} n

Each tensor has two physical indexes (bra and ket) and four geometrical indexes.
Each geometrical bond is shared by two adjacent tensors and will be contracted.

2.2.7 Tensor Network for Quantum Circuits

A special case of TN are quantum circuits [57]. Quantum circuits encode com-
putations made on qubits (or qudits in general). Figure 2.12 demonstrates the TN
representation of a quantum circuit made by unitary gates that act on a product state
of many constituents initialized as ﬂ® |0).
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10)
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Us Us

i,

Fig. 2.12 The TN representation of a quantum circuit. Two-body unitaries act on a product state
of a given number of constituents |0) ® - - - ® |0) and transform it into a target entangled state |/)

(@ ()

|0 10) - - - - (0]
0) : ., 0 : - - - - of
" U 1) 1 . ‘ ‘_ f of
|0 o

10)

Fig. 2.13 (a) The past casual cone of the red site. The unitary gate Us does not affect the reduced
density matrix of the red site. This is verified by computing explicitly p4 by tracing over all the
others constituents. (b) In the TN of p4, Us is contracted with UST , which gives an identity

An Example of Quantum Circuits In order to make contact with TN, we will
consider the specific case of quantum circuits where all the gates act on at most
two neighbors. An example of such circuit is the Trotterized evolution of a system
described by a nearest-neighbor Hamiltonian A= Zi’i 11 h i.i+1, where i, i41 label
the neighboring constituents of a one-dimensional system. The evolution operator
for a time ¢ is U(1) = exp(—i Hr), and can be decomposed into a sequence of
infinitesimal time evolution steps [58] (more details will be given in Sect. 3.1.3)

N
N t oA
U(t) = i —i—H| . 242
) NgnooeXP< iy ) (2.42)
In the limit, we can decompose the evolution into a product of two-body evolution

Ut) = li U(t); i1, 2.43
(t) ff})il,-l (Oiit1 (2.43)

where U,-,,'H(r) = exp(—itfzi,,-ﬂ) and T = t/N. This is obviously a quantum
circuit made by two-qubit gates with depth N. Conversely, any quantum circuit
naturally possesses an arrow of time, it transforms a product state into an entangled
state after a sequence of two-body gates.

Casual Cone One interesting concept in a quantum circuit is that of the causal cone
illustrated in Fig. 2.13, which becomes explicit with the TN representations. Given
a quantum circuit that prepares (i.e., evolves the initial state to) the state |y), we
can ask a question: which subset of the gates affect the reduced density matrix of a
certain subregion A of |¢)? This can be seen by constructing the reduced density
matrix of the subregion A po = trz|¥)(¥| with A the rest part of the system
besides A.
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The TN of the reduced density matrix is formed by a set of unitaries that define
the past causal cone of the region A (see the area between the green lines in
Fig. 2.13). The rest unitaries (for instance, the Us and its conjugate in the right sub-
figure of Fig. 2.13) will be eliminated in the TN of the reduced density matrix. The
contraction of the causal cone can thus be rephrased in terms of the multiplication
of a set of transfer matrices, each performing the computation from 7 to  — 1. The
maximal width of these transfer matrices defines the width of the causal cone, which
can be used as a good measure of the complexity of computing p4 [59]. The best
computational strategy one can find to compute exactly p4 will indeed always scale
exponentially with the width of the cone [57].

Unitary Tensor Networks and Quantum Circuits The simplest TN, the MP can
be interpreted as a sequential quantum circuit [60]. The idea is that one can think
of the MPS as a sequential interaction between each constituent (a d-level system)
an ancillary D-level system (the auxiliary gDit, red bonds). The first constituent
interacts (say the bottom one shown in Fig.2.14) and then sequentially all the
constituents interact with the same D-level system. With this choice, the past causal
cone of a constituent is made by all the MPS matrices below it. Interestingly in
the MPS case, the causal cone can be changed using the gauge transformations
(see Sect.2.4.2), something very different to what happens in two-dimensional
TNs. This amounts to finding appropriate unitary transformations acting on the
auxiliary degrees of freedom that allow to reorder the interactions between the
D-level system and the constituents. In such a way, a desired constituent can be
made to interact first, then followed by the others. An example of the causal cone
in the center gauge used in iDMRG calculation [61] is presented in Fig.2.15.
This idea allows to minimize the number of tensors in the causal cone of a given
region. However, the scaling of the computational cost of the contraction is not
affected by such a temporal reordering of the TN, since in this case the width of the
cone is bounded by one unitary in any gauge. The gauge choice just changes the
number of computational steps required to construct the desired p4. In the case that
A includes non-consecutive constituents, the width of the cone increases linearly
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Fig. 2.14 The MPS as a quantum circuit. Time flows from right to left so that the lowest
constituent is the first to interact with the auxiliary D-level system. Here we show the past causal
cone of a single constituent. Similarly, the past causal cone of A made by adjacent constituent has
the same form starting from the upper boundary of A
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Fig. 2.15 Using the gauge degrees of freedom of an MPS, we can modify its past causal cone
structure to make its region as small as possible, in such a way decreasing the computational
complexity of the actual computation of specific p4. A convenient choice is the center gauge used
in iDMRG

Fig. 2.16 The width of the causal cone increases as we increase the depth of the quantum circuit
generating the MPS state

with the number of constituents, and the complexity of computing p4 increases
exponentially with the number of constituents.

Again, the gauge degrees of freedom can be used to modify the structure of
the past causal cone of a certain spin. As an example, the iDMRG center gauge
is represented in Fig. 2.15.

An example of a TN with a larger past causal cone can be obtained by using more
than one layers of interactions. Now the support of the causal cone becomes larger
since it includes transfer matrices acting on two D-level systems (red bonds shown
in Fig. 2.16). Notice that this TN has loops but it still exactly contractible since the
width of the causal cone is still finite.

2.3 Tensor Networks that Can Be Contracted Exactly

2.3.1 Definition of Exactly Contractible Tensor Network States

The notion of the past causal cone can be used to classify TNSs based on the
complexity of computing their contractions. It is important to remember that the
complexity strongly depends on the object that we want to compute, not just the
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TN. For example, the complexity of an MPS for a N-qubit state scales only linearly
with N. However, to compute the n-site reduced density matrix, the cost scales
exponentially with n since the matrix itself is an exponentially large object. Here
we consider to compute scalar quantities, such as the observables of one- and two-
site operators.

We define the a TNS to be exactly contractible when it is allowed to compute
their contractions with a cost that is a polynomial to the elementary tensor
dimensions D. A more rigorous definition can be given in terms of their tree width
see, e.g., [57]. From the discussion of the previous section, it is clear that such
a TNS corresponds to a bounded causal cone for the reduced density matrix of
a local subregion. In order to show this, we now focus on the cost of computing
the expectation value of local operators and their correlation functions on a few
examples of TNSs.

The relevant objects are thus the reduced density matrix of a region A made of
a few consecutive spins, and the reduced density matrix of two disjoint blocks A
and A, of which each made of a few consecutive spins. Once we have the reduced
density matrices of such regions, we can compute arbitrary expectation values of
local operators by (&) =tr(pa0) and (ﬁAlﬁ;h) = IV(;OAIUAZﬁAlﬁAZ) with Oy,
™ ﬁ’gz arbitrary operators defined on the regions A, Ay, Aj.

2.3.2 MPS Wave-Functions

The simplest example of the computation of the expectation value of a local operator
is obtained by considering MPS wave-functions [8, 62]. Figure 2.17 shows an MPS
in the left-canonical form (see Sect.5.1.3 for more details). Rather than putting
the arrows of time, here we put the direction in which the tensors in the TN are
isometric. In other words, an identity is obtained by contracting the inward bonds
of a tensor in |¢) with the outward bonds of its conjugate in (| (Fig.2.18). Note
that |v) and (| have opposite arrows, by definition. These arrows are directly on
the legs of the tensors. The arrows in [y) are in the opposite direction than the time,
by comparing Fig.2.14 with Fig.2.18. The two figures indeed represent the MPS
in the same gauge. This means that the causal cone of an observable is on the right
of that observable, as shown on the second line of Fig.2.18, where all the tensors
on the left side are annihilated as a consequence of the isometric constraints. We

Fig. 2.17 The MPS wave-function representation in left-canonical form
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Fig. 2.18 The expectation value of a single-site operator with an MPS wave-function
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Fig. 2.19 Two-point correlation function of an MPS wave-function

immediately have that the causal cone has at most the width of two. The contraction
becomes a power of the transfer operator of the MPS E =), Al ® A'T, where A;
and A'" represent the MPS tensors and its complex conjugate. The MPS transfer
matrix E only acts on two auxiliary degrees of freedom. Using the property that E
is a completely positive map and thus has a fixed point [8], we can substitute the
transfer operator by its largest eigenvector v, leading to the final TN diagram that
encodes the expectation value of a local operator.

In Fig. 2.19, we show the TN representation of the expectation value of the two-
point correlation functions. Obviously, the past causal cone width is bounded by
two auxiliary sites. Note that in the second line, the directions of the arrows on the
right side are changed. This in general does not happen in more complicated TNs as
we will see in the next subsection. Before going there, we would like to comment
the properties of the two-point correlation functions of MPS. From the calculation
we have just performed, we see that they are encoded in powers of the transfer
matrix that evolve the system in the real space. If that matrix can be diagonalized,
we can immediately see that the correlation functions naturally decay exponentially
with the ratio of the first to the second eigenvalue. Related details can be found in
Sect.5.4.2.
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2.3.3 Tree Tensor Network Wave-Functions

An alternative kind of wave-functions are the TTNSs [63-69]. In a TTNS, one can
add the physical bond on each of the tensor, and use it as a many-body state defined
on a Caley-tree lattice [63]. Here, we will focus on the TTNS with physical bonds
only on the outer leafs of the tree.

The calculations with a TTNS normally correspond to the contraction of tree
TNs. A specific case of a two-to-one TTNS is illustrated in Fig. 2.20, named binary
Caley tree. This TN can be interpreted as a quantum state of multiple spins with
different boundary conditions. It can also be considered as a hierarchical TN, in
which each layer corresponds to a different level of coarse-graining renormalization
group (RG) transformation [64]. In the figure, different layers are colored differ-
ently. In the first layer, each tensor groups two spins into one and so on. The tree TN
can thus be interpreted a specific RG transformation. Once more, the arrows on the
tensors indicate the isometric property of each individual tensor that the directions
are opposite as the time, if we interpret the tree TN as a quantum circuit. Note again
that |v) and (1| have opposite arrows, by definition.

The expectation value of a one-site operator is in fact a tree TN shown in
Fig.2.21. We see that many of the tensors are completely contracted with their
Hermitian conjugates, which simply give identities. What are left is again a bounded
causal cone. If we now build an infinite TTNS made by infinitely many layers, and
assume the scale invariance, the multiplication of infinitely many power of the scale

Fig. 2.20 A binary TTNS made of several layers of third-order tensors. Different layers are
identified with different colors. The arrows flow in the opposite direction of the time while being
interpreted as a quantum circuit
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Fig. 2.21 The expectation value of a local operator of a TTNS. We see that after applying the
isometric properties of the tensors, the past causal cone of a single site has a bounded width. The
calculation again boils down to a calculation of transfer matrices. This time the transfer matrices
evolve between different layers of the tree

Fig. 2.22 The computation of the correlation function of two operators separated by a given
distance boils down to the computation of a certain power of transfer matrices. The computation
of the casual cone can be simplified in a sequential way, as depicted in the last two sub-figures

transfer matrix can be substituted with the corresponding fixed point, leading to a
very simple expression for the TN that encodes the expectation value of a single-site
operator.

Similarly, if we compute the correlation function of local operators at a given
distance, as shown in Fig. 2.22, we can once more get rid of the tensors outside the
casual cone. Rigorously we see that the causal cone width now increases to four
sites, since it consists of two different two-site branches. However, if we order the
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contraction as shown in the middle, we see that the contractions boil down again to a
two-site causal cone. Interestingly, since the computation of two-point correlations
at very large distance involves the power of transfer matrices that translate in scale
rather than in space, one would expect that these matrices are all the same (as a
consequence of scale-invariance, for example). Thus, we would get polynomially
decaying correlations [70].

2.3.4 MERA Wave-Functions

Until now, we have discussed with the TNs that, even if they can be embedded in
a 2D space, they contain no loops. In the context of network complexity theory,
they are called mean-field networks [71]. However, there are also TNs with loops
that are exactly contractible [57]. A particular case is that of a 1D MERA (and
its generalizations) [72-76]. The MERA is again a TN that can be embedded in
a 2D plane, and that is full of loops as seen in Fig.2.23. This TN has a very
peculiar structure, again, inspired from RG transformation [77]. MERA can also be
interpreted as a quantum circuit where the time evolves radially along the network,
once more opposite to the arrows that indicate the direction along which the tensors
are unitary. The MERA is a layered TN, with where layer (in different colors in
the figure) is composed by the appropriate contraction of some third-order tensors
(isometries) and some fourth-order tensors (disentangler). The concrete form of the

Fig. 2.23 The TN of MERA. The MERA has a hierarchical structure consisting of several layers
of disentanglers and isometries. The computational time flows from the center towards the edge
radially, when considering MERA as a quantum circuit. The unitary and isometric tensors and the
network geometry are chosen in order to guarantee that the width of the causal cone is bounded
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Fig. 2.25 Two-point correlation function in the MERA

network is not really important [76]. In this specific case we are plotting a two-to-
one MERA that was discussed in the original version of Ref. [75]. Interestingly, an
operator defined on at most two sites gives a bounded past causal cone as shown in
Figs.2.24 and 2.25.

As in the case of the TTNS, we can indeed perform the explicit calculation of
the past causal cone of a single-site operator (Fig.2.24). There we show the TN
contraction of the required expectation value, and then simplify it by taking into
account the contractions of the unitary and isometric tensors outside the casual cone
with a bounded width involving at most four auxiliary constituents.

The calculation of a two-point correlation function of local operators follows a
similar idea and leads to the contraction shown in Fig. 2.25. Once more, we see that
the computation of the two-point correlation function can be done exactly due to the
bounded width of the corresponding casual cone.

2.3.5 Sequentially Generated PEPS Wave-Functions

The MERA and TTNS can be generalized to two-dimensional lattices [64, 74]. The
generalization of MPS to 2D, on the other hand, gives rise to PEPS. In general, it
belongs to the 2D TN that cannot be exactly contracted [24, 78].
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Fig. 2.26 (a) A sequentially generated PEPS. All tensors but the central one (green in the figure)
are isometries, from the in-going bonds (marked with ingoing arrows) to the outgoing ones. The
central tensor represents a normalized vector on the Hilbert space constructed by the physical
Hilbert space and the four copies of auxiliary spaces, one for each of its legs. (b) The norm of such
PEPS, after implementing the isometric constraints, boils down to the norm of its central tensor

However for a subclass of PEPS, one can implement the contract exactly, which
is called sequentially generated PEPS [79]. Differently from the MERA where the
computation of the expectation value of any sufficiently local operator leads to a
bounded causal cone, sequentially generated PEPS has a central site, and the local
observables around the central site can be computed easily. However, the local
observables in other regions of the TN give larger causal cones. For example, we
represent in Fig. 2.26a sequentially generated PEPS for a 3 x 3 lattice. The norm
of the state is computed in (b), where the TN boils down to the norm of the central
tensor. Some of the reduced density matrices of the system are also easy to compute,
in particular those of the central site and its neighbors (Fig.2.27a). Other reduced
density matrices, such as those of spins close to the corners, are much harder to
compute. As illustrated in Fig.2.27b, the causal cone of a corner site in a 3 x 3
PEPS has a width 2. In general for an L x L PEPS, the casual cone would have a
width L /2.

Differently from MPS, the causal cone of a PEPS cannot be transformed by
performing a gauge transformation. However, as firstly observed by F. Cucchietti
(private communication), one can try to approximate a PEPS of a given causal cone
with another one of a different causal cone, by, for example, moving the center
site. This is not an exact operation, and the approximations involved in such a
transformation need to be addressed numerically. The systematic study of the effect
of these approximations has been studied recently in [80, 81]. In general, we have
to say that the contraction of a PEPS wave-function can only be performed exactly
with exponential resources. Therefore, efficient approximate contraction schemes
are necessary to deal with PEPS.
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(a)

Fig. 2.27 (a) The reduced density matrices of a PEPS that is sequentially generated containing
two consecutive spins (one of them is the central spin. (b) The reduced density matrix of a local
region far from the central site is generally hard to compute, since it can give rise to an arbitrarily
large causal cone. For the reduced density matrix of any of the corners with a L x L PEPS, which
is the most consuming case, it leads to a causal cone with a width up to L/2. That means the
computation is exponentially expensive with the size of the system

Fig. 2.28 If one starts with contracting an arbitrary bond, there will be a tensor with six bonds.
As the contraction goes on, the number of bonds increases linearly with the boundary 9 of the
contracted area, thus the memory increases exponentially as O (x?) with y the bond dimension

2.3.6 Exactly Contractible Tensor Networks

We have considered above, from the perspective of quantum circuits, whether a TNS
can be contracted exactly by the width of the casual cones. Below, we reconsider this
issue from the aspect of TN.

Normally, a TN cannot be contracted without approximation. Let us consider a
square TN, as shown in Fig.2.28. We start from contracting an arbitrary bond in
the TN (yellow shadow). Consequently, we obtain a new tensor with six bonds
that contains )(6 parameters (x is the bond dimension). To proceed, the bonds
adjacent to this tensor are probably a good choice to contract next. Then we will
have to restore a new tensor with eight bonds. As the contraction goes on, the
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Fig. 2.29 Two kinds of TNs that can be exactly contracted: (a) tree and (b) fractal TNs. In (b), the
shadow shows the Sierpifiski gasket, where the tensors are defined in the triangles

number of bonds increases linearly with the boundary 9 of the contracted area, thus
the memory increases exponentially as O (x?). For this reason, it is impossible to
exactly contract a TN, even if it only contains a small number of tensors. Thus,
approximations are inevitable. This computational difficulty is closely related to the
area law of entanglement entropy [17] (also see Sect.2.4.3), or the width of the
casual cone as in the case of PEPS. Below, we give three examples of TNs that can
be exactly contracted.

Tensor Networks on Tree Graphs We here consider a scalar tree TN (Fig. 2.29a)
with Ny, layers of third-order tensors. Some vectors are put on the outmost boundary.
An example that a tree TN may represent is an observable of a TTNS. A tree TN is
written as

N M,

Z= Z l—[ 1_[ Ta[:;r’lr,ll]»at1,m,2san.tt1,3 l_[ vL[li]’ (244)
k

{a} n=1m=1

with T the m-th tensor on the n-th layer, M,, the number of tensors of the n-th
layer, and v[¥! the k-th vectors on the boundary.

Now we contract each of the tensor on the N -th layer with the corresponding
two vectors on the boundary as

vy, = y_ Tvemlylkily o], (2.45)

az ayazaz Yay; “ap
ayaz

After the vectors are updated by the equation above, and the number of layers of the
tree TN becomes N — 1. The whole tree TN can be exactly contracted by repeating
this procedure.

We can see from the above contraction that if the graph does not contain any
loops, i.e., has a tree-like structure, the dimensions of the obtained tensors during
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the contraction will not increase unboundedly. Therefore, the TN defined on it can
be exactly contracted. This is again related to the area law of entanglement entropy
that a loop-free TN satisfies: to separate a tree-like TN into two disconnecting parts,
the number of bonds that needs to be cut is only one. Thus, the upper bond of
the entanglement entropy between these two parts is constant, determined by the
dimension of the bond that is cut. This is also consistent with the analyses based on
the maximal width of the casual cones.

Tensor Networks on Fractals Another example that can be exactly contracted is the
TN defined on the fractal called Sierpinski gasket (Fig.2.29b) (see, e.g., [82, 83]).
The TN can represent the partition function of the statistical model defined on the
Sierpifiski gasket, such as Ising and Potts model. As explained in Sec. II, the tensor
is given by the probability distribution of the three spins in a triangle.

Such a TN can be exactly contracted by iteratively contracting each three of the
tensors located in a same triangle as

Ta/|a2a3 = Z Tayb1by Tazboby Tazbsb, - (2.46)
b1bab3

After each round of contractions, the dimension of the tensors and the geometry
of the network keep unchanged, but the number of the tensors in the TN decreases
from N to N/3. It means we can exactly contract the whole TN by repeating the
above process.

Algebraically Contractible Tensor Networks The third example is called alge-
braically contractible TNs [84, 85]. The tensors that form the TN possess some
special algebraic properties, so that even the bond dimensions increase after each
contraction, the rank of the bonds is kept unchanged. It means one can introduce
some projectors to lower the bond dimension without causing any errors.

The simplest algebraically contractible TN is the one formed by the super-
diagonal tensor I defined as

15 ap = -+ =4dan,

2.47
0, otherwise. ( )

Loy, ay = {

1 is also called copy tensor, since it forces all its indexes to take a same value.

For a square TN of an arbitrary size formed by the fourth-order Is, obviously
we have its contraction Z = d with d the bond dimension. The reason is that the
contraction is the summation of only d non-zero values (each equals to 1).

To demonstrate its contraction, we will need one important property of the copy
tensor (Fig.2.30): if there are n > 1 bonds contracted between two copy tensors,
the contraction gives a copy tensor

Loy = ayocydbycy (2.48)
p—
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Fig. 2.30 The fusion rule of the copy tensor: the contraction of two copy tensors of N;-th and
N-th order gives a copy tensor of (N1 + N, — N)-th order, with N the number of the contracted
bonds

This property is called the fusion rule, and can be understood in the opposite way: a
copy tensor can be decomposed as the contraction of two copy tensors.

With the fusion rule, one will readily have the property for the dimension
reduction: if there are n > 1 bonds contracted between two copy tensors, the
contraction is identical after replacing the n bonds with one bond

Y Layeeree Ibyer = Y Lyl e (2.49)
cpeC c

In other words, the dimension of the contracting bonds can be exactly reduced
from x" to x. Applying this property to TN contraction, it means each time when
the bond dimension increases after contracting several tensors into one tensor, the
dimension can be exactly reduced to x, so that the contraction can continue until all
bonds are contracted.

From the TN of the copy tensors, a class of exactly contractible TN can be
defined, where the local tensor is the multiplication of the copy tensor by several
unitary tensors. Taking the square TN as example, we have

_ * *
Twarasas = 9, Xby Ioybabybs Uarhy Vasos Usyps Vit (2.50)
b1bab3by

with U and V two unitary matrices. X is an arbitrary d-dimensional vector that can
be understood as the “weights” (not necessarily to be positive to define the tensor).
After putting the tensors in the TN, all unitary matrices vanish to identities. Then
one can use the fusion rule of the copy tensor to exactly contract the TN, and the
contraction gives Z = ]_[b(X T with N7 the total number of tensors.

The unitary matrices are not trivial in physics. If we take d = 2 and

V2/2 V22
U=V = , 2.51
[ﬁ/z —v2/2 @D
the TN is in fact the inner product of the Z, topological state (see the definition of
Z, PEPS in Sect. 2.2.3). If one cuts the system into two subregions, all the unitary
matrices vanish into identities inside the bulk. However, those on the boundary will
survive, which could lead to exotic properties such as topological orders, edge states,
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and so on. Note that Z, state is only a special case. One can refer to a systematic
picture given by X. G. Wen called the string-net states [27-29].

2.4 Some Discussions

2.4.1 General Form of Tensor Network

One can see that a TN (state or operator) is defined as the contraction of certain
tensors {7} with a general form as

[n]
Ty = Z 1_[ Tsl sy alal- (2.52)

fa} n

The indexes {a} are geometrical indexes, each of which is shared normally two
tensors and will be contracted. The indexes {s} are open bonds, each of which
only belongs to one tensor. After contracting all the geometrical indexes, the TN
represents a .//"-th order tensor, with .4 the total number of the open indexes {s}.

Each tensor in the TN can possess different number of open or geometrical
indexes. For an MPS, each tensor has one open index (called physical bond) and
two geometrical indexes; for PEPS on square lattice, it has one open and four
geometrical indexes. For the generalizations of operators, the number of open
indexes is two for each tensor. It also allows hierarchical structure of the TN, such
as TTNS and MERA.

One special kind of the TN is the scalar TN with no open bonds, denoted as

zZ= Z]‘[Tana,zl . (2.53)

{a} n

It is very important because many physical problems can be transformed to
computing the contractions of scalar TNs. A scalar TN can be obtained from the
TNs that has open bonds, suchas Z = 3, Jsyor Z = 3 {A}ﬁ{s}, where Z
can be the cost function (e.g., energy or fidelity) to be maximized or minimized. The
TN contraction algorithms mainly deal with the scalar TNs.

2.4.2 Gauge Degrees of Freedom

For a given state, its TN representation is not unique. Let us take translational
invariant MPS as an example. One may insert a (full-rank) matrix U and its
inverse U~" on each of the virtual bonds and then contracted them, respectively,

into the two neighboring tensors. The tensors of new MPS become AE wal =



2.4 Some Discussions 55

oo UabAL'?[lb,Ua_,;/. In fact, we only put an identity / = UU™', thus do not
implement any changes to the MPS. However, the tensors that form the MPS change,
meaning the TN representation changes. It is also the case when inserting an matrix
and its inverse on any of the virtual bonds of a TN state, which changes the tensors
without changing the state itself. Such degrees of freedom is known as the gauge
degrees of freedom, and the transformations are called gauge transformations.

The gauge degrees of on the one hand may cause instability to TN simulations.
Algorithms for finite and infinite PEPS were proposed to fix the gauge to reach
higher stability [86—88]. On the other hand, one may use gauge transformation to
transform a TN state to a special form, so that, for instance, one can implement
truncations of local basis while minimizing the error non-locally [45, 89] (we will
go back to this issue later). Moreover, gauge transformation is closely related to
other theoretical properties such as the global symmetry of TN states, which has
been used to derive more compact TN representations [90], and to classify many-
body phases [91, 92] and to characterize non-conventional orders [93, 94], just to
name a few.

2.4.3 Tensor Network and Quantum Entanglement

The numerical methods based on TN face great challenges, primarily that the
dimension of the Hilbert space increases exponentially with the size. Such an
“exponential wall” has been treated in different ways by many numeric algorithms,
including the DFT methods [95] and QMC approaches [96].

The power of TN has been understood in the sense of quantum entanglement:
the entanglement structure of low-lying energy states can be efficiently encoded
in TNSs. It takes advantage of the fact that not all quantum states in the total
Hilbert space of a many-body system are equally relevant to the low-energy or low-
temperature physics. It has been found that the low-lying eigenstates of a gapped
Hamiltonian with local interactions obey the area law of the entanglement entropy
[97].

More precisely speaking, for a certain subregion & of the system, its reduced
density matrix is defined as p = Tre(0), with & denotes the spatial complement
of Z. The entanglement entropy is defined as

S(pz) = —Tr{pzlog(pz)}- (2.54)

Then the area law of the entanglement entropy [17, 98] reads

S(pz) = O(102)), (2.55)
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with [0Z| the size of the boundary. In particular, for a D-dimensional system, one
has

S=o0IP, (2.56)

with [ the length scale. This means that for 1D systems, S = const. The area law
suggests that the low-lying eigenstates stay in a “small corner” of the full Hilbert
space of the many-body system, and that they can be described by a much smaller
number of parameters. We shall stress that the locality of the interactions is not
sufficient to the area law. Vitagliano et al. show that simple 1D spin models can
exhibit volume law, where the entanglement entropy scales with the bulk [99, 100].

The area law of entanglement entropy is intimately connected to another fact that
a non-critical quantum system exhibits a finite correlation length. The correlation
functions between two blocks in a gapped system decay exponentially as a function
of the distance of the blocks [101], which is argued to lead to the area law. An
intuitive picture can be seen in Fig.2.31. Let us consider a 1D gapped quantum
system whose ground state |14 pc) possesses a correlation length &..,. By dividing
into three subregions A, B, and C, the reduced density operator p4¢ is obtained
when tracing out the block B, i.e., pac = Trg|¥asc)(¥apc| (see Fig.2.32). In

N

Fig. 2.31 Bipartition of a 1D system into two half chains. Significant quantum correlations in
gapped ground states occur only on short length scales

A e}
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Fig. 2.32 To argue the 1D area law, the chain is separated into three subsystems denoted by A,
B, and C. If the correlation length &, is much larger than the size of B (denoted by /4¢), the
reduced density matrix by tracing B approximately satisfies pac =~ pa ® poc
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the limit of large distance between A and C blocks with [4¢c > &.,r, One has the
reduced density matrix satisfying

pAC = Ppa ® pc, (2.57)

up to some exponentially small corrections. Then |/4pc) is a purification? of a
mixed state with the form |4 p,) ® [¥g,c) that has no correlations between A and
C; here B; and B, sit at the two ends of the block B, which together span the original
block.

It is well known that all possible purifications of a mixed state are equivalent
to each other up to a local unitary transformation on the virtual Hilbert space.
This naturally implies that there exists a unitary operation Up on the block B that
completely disentangles the left from the right part as

Ia®Up ® Ic|Vapc) = |¥an) ® |¥s.c)- (2.58)

UB implies that there exists a tensor By 4, With 0 < a,d’,s < x — 1 and basis
(v, (1w}, {|wC)}) defined on the Hilbert spaces belonging to A, B, C such
that

[Wac) =Y Boaw WD) WE). (2.59)

saa

This argument directly leads to the MPS description and gives a strong hint that
the ground states of a gapped Hamiltonian is well represented by an MPS of finite
bond dimensions, where B in Eq. (2.59) is analog to the tensor in an MPS. Let us
remark that every state of N spins has an exact MPS representation if we allow x
to grow exponentially with the number of spins [102]. The whole point of MPS is
that a ground state can typically be represented by an MPS where the dimension y
is small and scales at most polynomially with the number of spins: this is the reason
why MPS-based methods are more efficient than exact diagonalization.

For the 2D PEPS, it is more difficult to strictly justify the area law of entan-
glement entropy. However, we can make some sense of it from the following
aspects. One is the fact that PEPS can exactly represent some non-trivial 2D states
that satisfies the area law, such as the nearest-neighbor RVB and Z; spin liquid
mentioned above. Another is to count the dimension of the geometrical bonds 2
between two subsystems, from which the entanglement entropy satisfies an upper
bound as S < log 2.10

9Purification: Let p be a density matrix acting on a Hilbert space .4 of finite dimension n. Then
there exists a Hilbert space .73 and a pure state |Y/) € ¢4 ® 3 such that the partial trace of
| ) (| with respect to #3: p = Trg|y){¥|. We say that |¢) is the purification of 5.

100ne can see this with simply a flat entanglement spectrum, A,, = 1/ for any n.
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After dividing a PEPS into two subregions, one can see that the number of
geometrical bonds N, increase linearly with the length scale, i.e., N, ~ [. It means
the dimension & satisfies 2 ~ x!, and the upper bound of the entanglement entropy
fulfills the area law given by Eq. (2.56), which is

N8 (2.60)

However, as we will see later, such a property of PEPS is exactly the reason that
makes it computationally difficult.
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Chapter 3 )
Two-Dimensional Tensor Networks Chock or
and Contraction Algorithms

Abstract In this section, we will first demonstrate in Sect. 3.1 that many important
physical problems can be transformed to 2D TNs, and the central tasks become
to compute the corresponding TN contractions. From Sects.3.2 to 3.5, we will
then present several paradigm contraction algorithms of 2D TNs including TRG,
TEBD, and CTMRG. Relations to other distinguished algorithms and the exactly
contractible TNs will also be discussed.

3.1 From Physical Problems to Two-Dimensional Tensor
Networks

3.1.1 Classical Partition Functions

Partition function, which is a function of the variables of a thermodynamic state
such as temperature, volume, and etc., contains the statistical information of a
thermodynamic equilibrium system. From its derivatives of different orders, we can
calculate the energy, free energy, entropy, and so on. Levin and Nave pointed out
in Ref. [1] that the partition functions of statistical lattice models (such as Ising
and Potts models) with local interactions can be written in the form of TN. Without
losing generality, we take square lattice as an example.

Let us start from the simplest case: the classical Ising model on a single square
with only four sites. The four Ising spins denoted by s; (i = 1,2, 3, 4) locate on
the four corners of the square, as shown in Fig. 3.1a; each spin can be up or down,
represented by s; = 0 and 1, respectively. The classical Hamiltonian of such a
system reads

Hy 55535, = J (5152 + 5253 + 5354 + S451) — h(s1 + 52 + 53 + 54), (3.1)

with J the coupling constant and / the magnetic field.

© The Author(s) 2020 63
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Sz S3

s S,

(c)

Fig. 3.1 (a) Four Ising spins (blue balls with arrows) sitting on a single square, and the red lines
represent the interactions. The blue block is the tensor 7 (Eq. (3.2)), with the black lines denoting
the indexes of T'. (b) The graphic representation of the TN on a larger lattice with more than one
square. (¢) The TN construction of the partition function on infinite square lattice

When the model reaches the equilibrium at temperature T, the probability of each
possible spin configuration is determined by the Maxwell-Boltzmann factor

-B Hvls2s3s4 , (32)

TS1S2S3S4 =e

with the inverse temperature 8 = 1/T.! Obviously, Eq. (3.2) is a fourth-order tensor
T, where each element gives the probability of the corresponding configuration.

!In this paper, we set Boltzmann constant kg = 1 for convenience.
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The partition function is defined as the summation of the probability of all
configurations. In the language of tensor, it is obtained by simply summing over
all indexes as

Z= Z Tslszx354o (3.3)

S1525354

Let us proceed a little bit further by considering four squares, whose partition
function can be written in a TN with four tensors (Fig. 3.1b) as

Z= E Tslxzsés{ T5553s4s§ Tsé"séssxf, TSgS;SZPW' (3.4)
{ss'}

Each of the indexes {s'} inside the TN is shared by two tensors, representing the spin
that appears in both of the squares. The partition function is obtained by summing
over all indexes.

For the infinite square lattice, the probability of a certain spin configuration
(s1, 52, - - - ) is given by the product of infinite number of tensor elements as

—BHs —BH, —BH,
e ﬂ {s} — e B 51525354 @ B S4555657 ... — T5152S3S4TS4S5S637 - (35)

Then the partition function is given by the contraction of an infinite TN formed by
the copies of T (Eq. (3.2)) as

z=>Y 17w (3.6)

{s} n

where two indexes satisfy s! = s; if they refer to the same Ising spin. The graphic
representation of Eq. (3.6) is shown in Fig. 3.1c. One can see that on square lattice,
the TN still has the geometry of a square lattice. In fact, such a way will give a
TN that has a geometry of the dual lattice of the system, and the dual of the square
lattice is itself.

For the Q-state Potts model on square lattice, the partition function has the same
TN representation as that of the Ising model, except that the elements of the tensor
are given by the Boltzmann weight of the Potts model and the dimension of each
index is Q. Note that the Potts model with ¢ = 2 is equivalent to the Ising model.

Another example is the eight-vertex model proposed by Baxter in 1971 [2]. It is
one of the “ice-type” statistic lattice model, and can be considered as the classical
correspondence of the Z, spin liquid state. The tensor that gives the TN of the
partition function is also (2 x 2 x 2 x 2), whose non-zero elements are

1, si14+---+sy =even,

3.7
0, otherwise. 3.7)

Tsy.sy = {
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We shall remark that there are more than one ways to define the TN of the
partition function of a classical system. For example, when there only exist nearest-
neighbor couplings, one can define a matrix M,y = e ##s on each bond and put
on each site a super-digonal tensor I (or called copy tensor) defined as

L osi=--=sn;
Iy sy = . (3.8)
0, otherwise.

Then the TN of the partition function is the contraction of copies of M and I, and
possesses exactly the same geometry of the original lattice (instead of the dual one).

3.1.2 Quantum Observables

With a TN state, the computations of quantum observables as (| é|1//) and (¥ |v)
are the contraction of a scalar TN, where O can be any operator. For a 1D MPS,
this can be easily calculated, since one only needs to deal with a 1D TN stripe. For
2D PEPS, such calculations become contractions of 2D TNs. Taking (|y) as an
example, the TN of such an inner product is the contraction of the copies of the local
tensor (Fig. 3.1c) defined as

_ *
Ta1a2a3a4 - PS a”aé’a”a” Pv al a2a3a4

3.9)

N

with P the tensor of the PEPS and a; = (a;, a!'). There are no open indexes left and

the TN gives the scalar (y|1). The TN for computing the observable (O ) is similar.
The only difference is that we should substitute some small number of T,4,454,
in original TN of (¥ |yr) with “impurities” at the sites where the operators locate.
Taking one-body operator as an example, the “impurity” tensor on this site can be
defined as

T[l] == P>,< "o 1 //0 P/ ral (310)

ajazasaq S,aya,aza, §,a 02035’4
s,s’

In such a case, the single-site observables can be represented by the TN contrac-
tion of

(W|Oyy  tTe TWT], ;T

= 3.11
Wi [, T G-1h
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For some non-local observables, e.g., the correlation function, the contraction of
(¥| O Ol |yr) is nothing but adding another “impurity” by

N
(w0 Oy = 1 TWUITUITT T. (3.12)
ni.j

3.1.3 Ground-State and Finite-Temperature Simulations

Ground-state simulations of 1D quantum models with short-range interactions can
also be efficiently transferred to 2D TN contractions. When minimizing the energy

= WAV (3.13)

(V1Y)

where we write |Y/) as an MPS. Generally speaking, there are two ways to solve
the minimization problem: (1) simply treat all the tensor elements as variational
parameters; (2) simulate the imaginary-time evolution

—BH
W) = lim ——1¥) (3.14)

1 T S —
B=oo | e=PH|y) |

The first way can be realized by, e.g., Monte Carlo methods where one could
randomly change or choose the value of each tensor element to locate the minimal
of energy. One can also use the Newton method and solve the partial-derivative
equations dE/dx, = 0 with x,, standing for an arbitrary variational parameter.
Anyway, it is inevitable to calculate E (i.e., (1//|ﬁ |[Y) and (yr|y)) for most cases,
which is to contraction the corresponding TNs as explained above.

We shall stress that without TN, the dimension of the ground state (i.e., the
number of variational parameters) increases exponentially with the system size,
which makes the ground-state simulations impossible for large systems.

The second way of computing the ground state with imaginary-time evolution
is more or less like an “annealing” process. One starts from an arbitrarily chosen
initial state and acts the imaginary-time evolution operator on it. The “temperature”
is lowered a little for each step, until the state reaches a fixed point. Mathematically
speaking, by using Trotter-Suzuki decomposition, such an evolution is written in a
TN defined on (D + 1)-dimensional lattice, with D the dimension of the real space
of the model.

Here, we take a 1D chain as an example. We assume that the Hamiltonian only
contains at most nearest-neighbor couplings, which reads

H=Y hynt1. (3.15)
n
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with fln‘,,H containing the on-site and two-body interactions of the n-th and n+ 1-th
sites. It is useful to divide H into two groups, H = H® + H? as

H¢ = Z ]:ln,n+lv H® = Z fln,n+1' (3.16)

even n odd n

By doing so, each two terms in H¢ or H° commutes with each other. Then the
evolution operator U (t) for infinitesimal imaginary time T — 0 can be written as

U()=e ™ =0 | o (12) [ﬁe, ﬁ”] . (3.17)

If 7 is small enough, the high-order terms are negligible, and the evolution operator
becomes

U@ ~[[0@nns1, (3.18)

with the two-site evolution operator U sl = e~ THunt1

The above procedure is known as the first-order Trotter-Suzuki decomposition
[3-5]. Note that higher-order decomposition can also be adopted. For example, one
may use the second-order Trotter-Suzuki decomposition that is written as

—TtH 7%199 —tH? 7%1:18. (319)

With Eq. (3.18), the time evolution can be transferred to a TN, where the local
tensor is actually the coefficients of U(7), n+1, satisfying

r ot 2
Tsnsnﬂsr/lsr’lﬂ = (8,85, 11U (@ n.n+15n8n+1)- (3.20)

Such a TN is defined in a plain of two dimensions that corresponds to the spatial and
(real or imaginary) time, respectively. The initial state is located at the bottom of the
TN (B = 0) and its evolution is to do the TN contraction which can be efficiently
solved by TN algorithms (presented later).

In addition, one can readily see that the evolution of a 2D state leads to the
contraction of a 3D TN. Such a TN scheme provides a straightforward picture
to understand the equivalence between a (d + 1)-dimensional classical and a
d-dimensional quantum theory. Similarly, the finite-temperature simulations of
a quantum system can be transferred to TN contractions with Trotter-Suzuki

decomposition. For the density operator p(8) = e~# A , the TN is formed by the
same tensor given by Eq. (3.20).
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3.2 Tensor Renormalization Group

In 2007, Levin and Nave proposed TRG approach [1] to contract the TN of
2D classical lattice models. In 2008, Gu et al. further developed TRG to handle
2D quantum topological phases [6]. TRG can be considered as a coarse-graining
contraction algorithm. To introduce the TRG algorithm, let us consider a square TN
formed by infinite number of copies of a fourth-order tensor 74,434, (see the left
side of Fig. 3.2).

Contraction and Truncation The idea of TRG is to iteratively “coarse-grain” the
TN without changing the bond dimensions, the geometry of the network, and the
translational invariance. Such a process is realized by two local operations in each
iteration. Let us denote the tensor in the ¢-th iteration as 7®) (we take T© = T).
For obtaining T+ the first step is to decompose T by SVD in two different
ways (Fig.3.2) as

Ta(ll)aza3a4 = Z Ualazb Va3a4b7 (321)
b

Ta(ltzza3a4 = ZXa4a1bYa2a3b~ (3.22)
b

Note that the singular value spectrum can be handled by multiplying it with the
tensor(s), and the dimension of the new index satisfies dim(b) = x2 with x the
dimension of each bond of 7).

A
-+

Fig. 3.2 For an infinite square TN with translational invariance, the renormalization in the TRG
algorithm is realized by two local operations of the local tensor. After each iteration, the bond
dimensions of the tensor and the geometry of the network keep unchanged
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The purpose of the first step is to deform the TN, so that in the second step, a
new tensor 7+ can be obtained by contracting the four tensors that form a square
(Fig.3.2) as

(t41)
Tb1b2b3b4 <~ Z Vararby Yazazor Uasashs Xagayby- (3.23)

ayazazag

We use an arrow instead of the equal sign, because one may need to divide the
tensor by a proper number to keep the value of the elements from being divergent.
The arrows will be used in the same way below.

These two steps define the contraction strategy of TRG. By the first step, the
number of tensors in the TN (i.e., the size of the TN) increases from N to 2N,
and by the second step, it decreases from 2N to N /2. Thus, after ¢ times of each
iterations, the number of tensors decreases to the % of its original number. For this
reason, TRG is an exponential contraction algorithm.

Error and Environment The dimension of the tensor at the ¢-th iteration becomes
le, if no truncations are implemented. This means that truncations of the bond
dimensions are necessary. In its original proposal, the dimension is truncated by
only keeping the singular vectors of the x-largest singular values in Eq. (3.22). Then
the new tensor T+ obtained by Eq. (3.23) has exactly the same dimension as 7).

Each truncation will absolutely introduce some error, which is called the
truncation error. Consistent with Eq. (2.7), the truncation error is quantified by the

discarded singular values A as
[~ x2=1,2
b=x Ab

£ = T (3.24)
x==1,2
b=0 b
According to the linear algebra, ¢ in fact gives the error of the SVD given in
Eq. (3.22), meaning that such a truncation minimizes the error of reducing the rank
of T® which reads

x—1
€= |Ta(1[2¢2a3a4 - Z Ua1a2bVa3a4b|~ (3.25)
b=0

One may repeat the contraction-and-truncation process until 7®) converges. It
usually only takes ~10 steps, after which one in fact contract a TN of 2! tensors
to a single tensor.

The truncation is optimized according to the SVD of T®. Thus, T is called
the environment. In general, the tensor(s) that determines the truncations is called
the environment. It is a key factor to the accuracy and efficiency of the algorithm.
For those that use local environments, like TRG, the efficiency is relatively high
since the truncations are easy to compute. But, the accuracy is bounded since the
truncations are only optimized according to some local information (like in TRG
the local partitioning 7 ).
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One may choose other tensors or even the whole TN as the environment. In 2009,
Xie et al. proposed the second renormalization group (SRG) algorithm [7]. The
idea is in each truncation step of TRG, they define the global environment that is a
fourth-order tensor &z 11, = Yoy [ a"a”)aga” with 7@ the n-th tensor in
the z-th step and 7 the tensor to be truncated. & is the contraction of the whole TN
after getting rid of 7" and is computed by TRG. Then the truncation is obtained
not by the SVD of T but by the SVD of &. The word “second” in the name of
the algorithm comes from the fact that in each step of the original TRG, they use
a second TRG to calculate the environment. SRG is obviously more consuming,
but bears much higher accuracy than TRG. The balance between accuracy and
efficiency, which can be controlled by the choice of environment, is one main factor
to consider while developing or choosing the TN algorithms.

3.3 Corner Transfer Matrix Renormalization Group

In the 1960s, the corner transfer matrix (CTM) idea was developed originally by
Baxter in Refs. [8, 9] and a book [10]. Such ideas and methods have been applied
to various models, for example, the chiral Potts model [11-13], the 8-vertex model
[2, 14, 15], and to the 3D Ising model [16]. Combining CTM with DMRG, Nishino
and Okunishi proposed the CTMRG [17] in 1996 and applied it to several models
[17-27]. In 2009, Orts and Vidal further developed CTMRG to deal with TNs [28].
What they proposed to do is to put eight variational tensors to be optimized in
the algorithm, which are four corner transfer matrices C 2 ¢cBl ¢ and four
row (column) tensors R R R R onthe boundary, and then to contract the
tensors in the TN to these variational tensors in a specific order shown in Fig. 3.3.
The TN contraction is considered to be solved with the variational tensors when they
converge in this contraction process. Compared with the boundary-state methods in
the last subsection, the tensors in CTMRG define the states on both the boundaries
and corners.

Contraction In each iteration step of CTMRG, one choses two corner matrices on
the same side and the row tensor between them, e.g., Ct'1, 121, and R[?). The update
of these tensors (Fig. 3.4) follows

ol (11 pl]
l;zb/ < Z Cblbz h]alb’ ’ (326)
(2]
R52a4b~3 < Z szazbz T910293a4 ’ (327)
~12] 21 R3]
C53b/ < Z Cb3b4 h4azb/ ’ (328)

where l;z = (b, ay) and l;3 = (b3, ay).
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Fig. 3.3 Overview of the CTMRG contraction scheme. The tensors in the TN are contracted to
the variational tensors defined on the edges and corners
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Fig. 3.4 The first arrow shows absorbing tensors RU T and RB! to renew tensors C [”,~R[2],~and
ct in left operation. The second arrow shows the truncation of the enlarged bond of C tr R[Z],
and C2). Inset is the acquisition of the truncation matrix Z

After the contraction given above, it can be considered that one column of the
TN (as well as the corresponding row tensors R and R1) is contracted. Then one
chooses other corner matrices and row tensors (such as CI!, C, and Ry and
implement similar contractions. By iteratively doing so, the TN is contracted in the
way shown in Fig. 3.3.
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Note that for a finite TN, the initial corner matrices and row tensors should be
taken as the tensors locating on the boundary of the TN. For an infinite TN, they
can be initialized randomly, and the contraction should be iterated until the preset
convergence is reached.

CTMRG can be regarded as a polynomial contraction scheme. One can see that
the number of tensors that are contracted at each step is determined by the length of
the boundary of the TN at each iteration time. When contracting a 2D TN defined
on a (L x L) square lattice as an example, the length of each side is L — 2t at the ¢-th
step. The boundary length of the TN (i.e., the number of tensors contracted at the
t-th step) bears a linear relation with ¢ as 4(L — 2¢) — 4. For a 3D TN such as cubic
TN, the boundary length scales as 6(L — 21)? — 12(L — 2t) + 8, thus the CTMRG
for a 3D TN (if exists) gives a polynomial contraction.

Truncation One can see that after the contraction in each iteration step, the bond
dimensions of the variational tensors increase. Truncations are then in need to
prevent the excessive growth of the bond dimensions. In Ref. [28], the truncation
is obtained by inserting a pair of isometries V and V7 in the enlarged bonds. A
reasonable (but not the only choice) of V for translational invariant TN is to consider
the eigenvalue decomposition on the sum of corner transfer matrices as

AT AL ~[2]5
Z Cop Cop T Z Gy € b’b Z »Ab Vb’b (3.29)
b

b=0

Only the x largest eigenvalues are preserved. Therefore, V is a matrix of the
dimension Dy X x, where D is the bond dimension of 7" and x is the dimension
cut-off. We then truncate CIH, R?), and CI?! using V as

(1] ATy
Chpy = Z Chast Vit (3.30)
[2] Rl
Rb2a4b3 - Z b2a4b3 beZ b3b3 (331)
by.b3
[2] ~[21 .
Cb3bi - Z Cb 3b) bsb% (3.32)

Error and Environment Same as TRG or TEBD, the truncations are obtained by
the matrix decompositions of certain tensors that define the environment. From
Eq. (3.29), the environment in CTMRG is the loop formed by the corner matrices
and row tensors. Note that symmetries might be considered to accelerate the
computation. For example, one may take Cl!l = P2l = ¢Bl = ¥ and
R = R2I = RBI = RI4l when the TN has rotational and reflection symmetries
(T arazas = Ta’lagagag after any permutation of the indexes).
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3.4 Time-Evolving Block Decimation: Linearized
Contraction and Boundary-State Methods

The TEBD algorithm by Vidal was developed originally for simulating the time
evolution of 1D quantum models [29-31]. The (finite and infinite) TEBD algorithm
has been widely applied to varieties of issues, such as criticality in quantum
many-body systems (e.g., [32-34]), the topological phases [35], the many-body
localization [36-38], and the thermodynamic property of quantum many-body
systems [39-45].

In the language of TN, TEBD solves the TN contraction problems in a linearized
manner, and the truncation is calculated in the context of an MPS. In the following,
let us explain the infinite TEBD (iTEBD) algorithm [31] (Fig. 3.5) by still taking
the infinite square TN formed by the copies of a fourth-order tensor 7 as an
example. In each step, a row of tensors (which can be regarded as an MPO) are
contracted to an MPS |y). Inevitably, the bond dimensions of the tensors in the MPS
will increase exponentially as the contractions proceed. Therefore, truncations are
necessary to prevent the bond dimensions diverging. The truncations are determined
by minimizing the distance between the MPSs before and after the truncation. After
the MPS |y) converges, the TN contraction becomes (Y| ), which can be exactly
and easily computed.

Contraction We use is two-site translational invariant MPS, which is formed by the
tensors A and B on the sites and the spectrum A and I” on the bonds as

Z e Aan—l Asn—lsan—lan Fan Bsnsanan+l Aan+1 . (333)
{a}

In each step of iTEBD, the contraction is given by

As,&ﬁ’ <~ Z sts’b’As’,aa’v Bs,&d/ <~ Z sts’b’ Bs’,aa’y (334)

Lo fok
e -

Fig. 3.5 The illustration of the contraction and truncation of the iTEBD algorithm. In each
iteration step, a row of tensors in the TN are contracted to the MPS, and truncations by SVD
are implemented so that the bond dimensions of the MPS keep unchanged
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where the new virtual bonds are entangled, satisfying a = (b, a) and a’ = (b', a’).
Meanwhile, the spectrum is also updated as

Aé < Aalb, F&/ < Fa’lb’v (335)

where 1 is a vector with 1;, = 1 for any b.

It is readily to see that the number of tensors in iTEBD will be reduced linearly
as tN, with ¢t the number of the contraction-and-truncation steps and N — 00
the number of the columns of the TN. Therefore, iTEBD (also finite TEBD) can
be considered as a linearized contraction algorithm, in contrast to the exponential
contraction algorithm like TRG.

Truncation Truncations are needed when the dimensions of the virtual bonds
exceed the preset dimension cut-off x. In the original version of iTEBD [31], the
truncations are done by local SVDs. To truncate the virtual bond a, for example,
one defines a matrix by contracting the tensors and spectrum connected to the target
bond as

Myay 50y = Y Aay Asy.ara T By iy Ad - (3.36)
a

Then, perform SVD on M, keeping only the x-largest singular values and the
corresponding basis as

x—1
Mslfll,szﬁz = Z Usl,fllara Vsz,a52~ (3.37)
a=0

The spectrum I” is updated by the singular values of the above SVD. The tensors A
and B are also updated as

Ay da = (A) WUy, dar Bsyaa = Vepaa(Aa) 7 (3.38)

Till now, the truncation of the spectrum I" and the corresponding virtual bond have
been completed. Any spectra and virtual bonds can be truncated similarly.

Error and Environment Similar to TRG and SRG, the environment of the original
iTEBD is M in Eq. (3.37), and the error is measured by the discarded singular values
of M. Thus, iTEBD seems to only use local information to optimize the truncations.
What is amazing is that when the MPO is unitary or near unitary, the MPS converges
to a so-called canonical form [46, 47]. The truncations are then optimal by taking
the whole MPS as the environment. If the MPO is far from being unitary, Oris and
Vidal proposed the canonicalization algorithm [47] to transform the MPS into the
canonical form before truncating. We will talk about this issue in detail in the next
section.
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Boundary-State Methods: Density Matrix Renormalization Group and Variational
Matrix Product State The iTEBD can be understood as a boundary-state method.
One may consider one row of tensors in the TN as an MPO (see Sect.2.2.6
and Fig.2.10), where the vertical bonds are the “physical” indexes and the bonds
shared by two adjacent tensors are the geometrical indexes. This MPO is also
called the transfer operator or transfer MPO of the TN. The converged MPS is
in fact the dominant eigenstate of the MPO.> While the MPO represents a physical
Hamiltonian or the imaginary-time evolution operator (see Sect.3.1), the MPS is
the ground state. For more general situations, e.g., the TN represents a 2D partition
function or the inner product of two 2D PEPSs, the MPS can be understood as
the boundary state of the TN (or the PEPS) [48-50]. The contraction of the 2D
infinite TN becomes computing the boundary state, i.e., the dominant eigenstate
(and eigenvalue) of the transfer MPO.

The boundary-state scheme gives several non-trivial physical and algorithmic
implications [48-52], including the underlying resemblance between iTEBD and
the famous infinite DMRG (iDMRG) [53]. DMRG [54, 55] follows the idea of
Wilson’s NRG [56], and solves the ground states and low-lying excitations of
1D or quasi-1D Hamiltonians (see several reviews [57-60]); originally it has no
direct relations to TN contraction problems. After the MPS and MPO become
well understood, DMRG was re-interpreted in a manner that is more close to TN
(see a review by Schollwock [57]). In particular for simulating the ground states
of infinite-size 1D systems, the underlying connections between the iDMRG and
iTEBD were discussed by McCulloch [53]. As argued above, the contraction of
a TN can be computed by solving the dominant eigenstate of its transfer MPO.
The eigenstates reached by iDMRG and iTEBD are the same state up to a gauge
transformation (note the gauge degrees of freedom of MPS will be discussed in
Sect. 2.4.2). Considering that DMRG mostly is not used to compute TN contractions
and there are already several understanding reviews, we skip the technical details
of the DMRG algorithms here. One may refer to the papers mentioned above if
interested. However, later we will revisit iDMRG in the clue of multi-linear algebra.

Variational matrix product state (VMPS) method is a variational version of
DMRG for (but not limited to) calculating the ground states of 1D systems with
periodic boundary condition [61]. Compared with DMRG, VMPS is more directly
related to TN contraction problems. In the following, we explain VMPS by solving
the contraction of the infinite square TN. As discussed above, it is equivalent to
solve the dominant eigenvector (denoted by [1)) of the infinite MPO (denoted by
rfzo) that is formed by a row of tensors in the TN. The task is to minimize (y|o|v¥)
under the constraint (y|yr) = 1. The eigenstate |) written in the form of an MPS.

The tensors in |i) are optimized on by one. For instance, to optimize the n-th
tensor, all other tensors are kept unchanged and considered as constants. Such a local
minimization problem becomes Helt |T,) = ENS |T,) with & the eigenvalue.

2For simplicity, we assume the MPO gives an Hermitian operator so that its eigenstates and
eigenvalues are well-defined.
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Fig. 3.6 The illustration of (a) He'F and (b) N¢/ in the variational matrix product state method

HeIT is given by a sixth-th order tensor defined by contracting all tensors in (Y |p|)
except for the n-th tensor and its conjugate (Fig. 3.6a). Similarly, N7 s also given
by a sixth-th order tensor defined by contracting all tensors in (i|1r) except for
the n-th tensor and its conjugate (Fig. 3.6b). Again, the VMPS is different from the
MPS obtained by TEBD only up to a gauge transformation.

Note that the boundary-state methods are not limited to solving TN contractions.
An example is the time-dependent variational principle (TDVP). The basic idea of
TDVP was proposed by Dirac in 1930 [62], and then it was cooperated with the
formulation of Hamiltonian [63] and action function [64]. For more details, one
could refer to a review by Langhoff et al. [65]. In 2011, TDVP was developed
to simulate the time evolution of many-body systems with the help of MPS [66].
Since TDVP (and some other algorithms) concerns directly a quantum Hamiltonian
instead of the TN contraction, we skip giving more details of these methods in this

paper.

3.5 Transverse Contraction and Folding Trick

For the boundary-state methods introduced above, the boundary states are defined
in the real space. Taking iTEBD for the real-time evolution as an example, the
contraction is implemented along the time direction, which is to do the time
evolution in an explicit way. It is quite natural to consider implementing the
contraction along the other direction. In the following, we will introduce the
transverse contraction and the folding trick proposed and investigated in Refs. [67—
69]. The motivation of transverse contraction is to avoid the explicit simulation of
the time-dependent state |y (7)) that might be difficult to capture due to the fast
growth of its entanglement.

Transverse Contraction Let us consider to calculate the average of a one-body
operator o(t) = (W (¢t)|o|y¥(¢)) with |y (7)) that is a quantum state of infinite size
evolved to the time ¢. The TN representing o(¢) is given in the left part of Fig. 3.7,
where the green squares give the initial MPS |1/ (0)) and its conjugate, the yellow
diamond is 0, and the TN formed by the green circles represents the evolution
itH

operator ¢''” and its conjugate (see how to define the TN in Sect. 3.1.3).
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‘Q>

Fig. 3.7 Transverse contraction of the TN for a local expectation value (O (t))

To pgrform the transverse contraction, we treat each column of the TN as an
MPO 7. Then as shown in the right part of Fig.3.7, the main task of computing
o(t) is to solve the dominant eigenstate |¢) (normalized) of .7, which is an MPS
illustrated by the purple squares. One may solve this eigenstate problems by any of
the boundary-state methods (TEBD, DMRG, etc.). With |¢), o(#) can be exactly and
efficiently calculated as

o(t) = (W ®loly @) _ (¢1T|9) (3.39)

WOW®) (9| T1)

with 9; is the column that contains the operator 6. Note that the length of |¢) (i.e.,
the number of tensors in the MPS) is proportional to the time ¢, thus one should use
the finite-size versions of the boundary-state methods. It should also be noted that
7 may not be Hermitian. In this case, one should not use |¢) and its conjugate, but
compute the left and right eigenstates of .7 instead.

Interestingly, similar ideas of the transverse contraction appeared long before
the concept of TN emerged. For instance, transfer matrix renormalization group
(TMRG) [70-73] can be used to simulate the finite-temperature properties of a 1D
system. The idea of TMRG is to utilize DMRG to calculate the dominant eigenstate
of the transfer matrix (similar to .77). In correspondence with the TN terminology,
it is to use DMRG to compute |¢) from the TN that defines the imaginary-time
evolution. We will skip of the details of TMRG since it is not directly related to TN.
One may refer the related references if interested.
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Fig. 3.8 The illustration of the folding trick

Folding Trick The main bottleneck of a boundary-state method concerns the
entanglement of the boundary state. In other words, the methods will become
inefficient when the entanglement of the boundary state grows too large. One
example is the real-time simulation of a 1D chain, where the entanglement entropy
increases linearly with time. Solely with the transverse contraction, it will not
essentially solve this problem. Taking the imaginary-time evolution as an example,
it has been shown that with the dual symmetry of space and time, the boundary
states in the space and time directions possess the same entanglement [69, 74].

In Ref. [67], the folding trick was proposed. The idea is to “fold” the TN before
the transverse contraction (Fig.3.8). In the folded TN, each tensor is the tensor
product of the original tensor and its conjugate. The length of the folded TN in
the time direction is half of the original TN, and so is the length of the boundary
state.

The previous work [67] on the dynamic simulations of 1D spin chains showed
that the entanglement of the boundary state is in fact reduced compared with that
of the boundary state without folding. This suggests that the folding trick provides
a more efficient representation of the entanglement structure of the boundary state.
The authors of Ref. [67] suggested an intuitive picture to understand the folding
trick. Consider a product state as the initial state at # — 0 and a single localized
excitation at the position x that propagates freely with velocity v. By evolving for
a time ¢, only (x &£ vt) sites will become entangled. With the folding trick, the
evolutions (that are unitary) besides the (x & vt) sites will not take effects since they
are folded with the conjugates and become identities. Thus the spins outside (x L vt)
will remain product state and will not contribute entanglement to the boundary state.
In short, one key factor to consider here is the entanglement structure, i.e., the fact
that the TN is formed by unitaries. The transverse contraction with the folding trick
is a convincing example to show that the efficiency of contracting a TN can be
improved by properly designing the contraction way according to the entanglement
structure of the TN.
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3.6 Relations to Exactly Contractible Tensor Networks
and Entanglement Renormalization

The TN algorithms explained above are aimed at dealing with contracting optimally
the TN that cannot be exactly contracted. Then a question arises: Is a classical com-
puter really able to handle these TNs? In the following, we show that by explicitly
putting the isometries for truncations inside, the TNs that are contracted in these
algorithms become eventually exactly contractible, dubbed as exactly contractible
TN (ECTN). Different algorithms lead to different ECTN. That means the algorithm
will show a high performance if the TN can be accurately approximated by the
corresponding ETNC.

Figure 3.9 shows the ECTN emerging in the plaquette renormalization [75] or
higher-order TRG (HOTRG) algorithms [76]. Take the contraction of a TN (formed
by the copies of tensor 7') on square lattice as an example. In each iteration step, four
nearest-neighbor T's in a square are contracted together, which leads to a new square
TN formed by tensors (71) with larger bond dimensions. Then, isometries (yellow

R Bl
. n

Fig. 3.9 The exactly contractible TN in the HOTRG algorithm
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triangles) are inserted in the TN to truncate the bond dimensions (the truncations
are in the same spirit of those in CTMRG, see Fig.3.4). Let us not contract the
isometries with the tensors, but leave them there inside the TN. Still, we can move
on to the next iteration, where we contract four 7W’s (each of which is formed
by four 7 and the isometries, see the dark-red plaques in Fig. 3.9) and obtain more
isometries for truncating the bond dimensions of 7!, By repeating this process
for several times, one can see that tree TNs appear on the boundaries of the coarse-
grained plaques. Inside the 4-by-4 plaques (light red shadow), we have the two-layer
tree TNs formed by three isometries. In the 8-by-8 plaques, the tree TN has three
layers with seven isometries. These tree TNs separate the original TN into different
plaques, so that it can be exactly contracted, similar to the fractal TNs introduced in
Sect.2.3.6.

In the iTEBD algorithm [29-31, 47] (Fig.3.10), one starts with an initial MPS
(dark-blue squares). In each iteration, one tensor (light blue circles) in the TN
is contracted with the tensor in the MPS and then the bonds are truncated by
isometries (yellow triangles). Globally seeing, the isometries separate the TN into
many “tubes” (red shadow) that are connected only at the top. The length of the tubes
equals to the number of the iteration steps in iTEBD. Obviously, this TN is exactly
contractible. Such a tube-like structure also appears in the contraction algorithms
based on PEPS.

For the CTMRG algorithm [28], the corresponding ECTN is a little bit com-
plicated (see one quarter of it in Fig.3.11). The initial row (column) tensors and
the corner transfer matrices are represented by the pink and green squares. In each

Fig. 3.10 The exactly contractible TN in the iTEBD algorithm
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Fig. 3.11 A part of the exactly contractible TN in the CTMRG algorithm

iteration step, the tensors (light blue circles) located most outside are contracted
to the row (column) tensors and the corner transfer matrices, and isometries
are introduced to truncate the bond dimensions. Globally seeing the picture, the
isometries separate the TN into a tree-like structure (red shadow), which is exactly
contractible.

For these three algorithms, each of them gives an ECTN that is formed by two
part: the tensors in the original TN and the isometries that make the TN exactly
contractible. After optimizing the isometries, the original TN is approximated by
the ECTN. The structure of the ECTN depends mainly on the contraction strategy
and the way of optimizing the isometries depends on the chosen environment.

The ECTN picture shows us explicitly how the correlations and entanglement are
approximated in different algorithms. Roughly speaking, the correlation properties
can be read from the minimal distance of the path in the ECTN that connects
two certain sites, and the (bipartite) entanglement can be read from the number
of bonds that cross the boundary of the bipartition. How well the structure suits
the correlations and entanglement should be a key factor of the performance of a
TN contraction algorithm. Meanwhile, this picture can assist us to develop new
algorithms by designing the ECTN and taking the whole ECTN as the environment
for optimizing the isometries. These issues still need further investigations.

The unification of the TN contraction and the ECTN has been explicitly utilized
in the TN renormalization (TNR) algorithm [77, 78], where both isometries and



References 83

unitaries (called disentangler) are put into the TN to make it exactly contractible.
Then instead of tree TNs or MPSs, one will have MERAs (see Fig.2.7c, for
example) inside which can better capture the entanglement of critical systems.

3.7 A Shot Summary

In this section, we have discussed about several contraction approaches for dealing
with 2D TNs. Applying these algorithms, many challenging problems can be
efficiently solved, including the ground-state and finite-temperature simulations of
1D quantum systems, and the simulations of 2D classical statistic models. Such
algorithms consist of two key ingredients: contractions (local operations of tensors)
and truncations. The local contraction determines the way how the TN is contracted
step by step, or in other words, how the entanglement information is kept according
to the ECTN structure. Different (local or global) contractions may lead to different
computational costs, thus optimizing the contraction sequence is necessary in many
cases [67, 79, 80]. The truncation is the approximation to discard less important
basis so that the computational costs are properly bounded. One essential concept
in the truncations is “environment,” which plays the role of the reference when
determining the weights of the basis. Thus, the choice of environment concerns
the balance between the accuracy and efficiency of a TN algorithm.
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Chapter 4 )
Tensor Network Approaches Qs
for Higher-Dimensional Quantum Lattice
Models

Abstract In this section, we will show several representative TN approaches for
simulating the quantum lattice models in (d > 1) dimensions. We will mainly
use the language of TN contractions. One may refer to several existing reviews
(Schollwock, Ann Phys 326:96-192, 2011; Verstraete et al., Adv Phys 57:143—
224, 2008; Cirac and Verstraete, J] Phys A Math Theor 42:504004, 2009; Orts,
Ann Phys 349:117, 2014; Haegeman and Verstraete, Ann Rev Condens Matter Phys
8(1):355-406, 2017) for more exhaustive understanding on the TN simulations for
quantum problems. We will focus on the algorithms based on PEPS, and show the
key roles that the 2D TN contraction algorithms presented in Sect.3 play in the
higher-dimensional cases.

4.1 Variational Approaches of Projected-Entangled Pair
State

Without losing generality, we consider a 2D quantum system with nearest-neighbor
coupling on an infinite square lattice as an example. The ground state can be
represented by an iPEPS (see Sect.2.2.4). Similar to MPS (Sect. 3.1.3), the central
task is to minimize the energy

= W), @

(Ylv)

There are in general two ways to do the minimization. One way proposed firstly
by Verstraete and Cirac [1] is considering the elements in the tensors as variational
parameters. The tensors in the TN are updated one by one. In a similar spirit as the
boundary-state methods (see Sect. 3.4), the key of this approach is to transform the
global minimization to local ones, where one tensor (say Pl see the PEPS form in
Eq. (2.23), Sect. 2.2.4) is updated by a local minimization problem

plilt feff plil
= — . 4.2
plili yeff plil (4.2
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Fig. 4.1 The illustration of L4
H¢T in Eq. (4.2)

H¢!7 is an “effective” Hamiltonian by computing (1#|H |¥/) but after taking P 17 in
(| and PUlin |y) out. Figure 4.1 depicts H¢'T where H is written as an infinite
PEPO (iPEPO, also see Sect.2.2.6 for PEPO) for a better illustration. Similarly,
Ne/T is defined by computing (y|y) but after taking PU1™ and PI] out.

Obviously, the computations of both H¢/ and N7 are in fact to contract the
corresponding 2D TN’s where the 2D TN contraction algorithms are needed. In
[2], Corboz used CTMRG (see [3] or Sect. 3.3) to compute the contractions. In [4],
Vanderstraeten et al. further developed this idea to a gradient method, where the
gradient is calculated by implementing similar 2D TN contractions. The gradient is
given as

0E __ 3WIHW) /W) _ e WIAIY)  WIHIY)
gPUIT 9 PUTT B (W) (Wly)?

dplini (V).

By imposing the normalization condition (y/|¢) = 1 and shifting the ground-state
energy to zero by H < H — (Y|H|{), the gradient is simplified as

S piE = 20pu (VIHIY). (43)

Thus the gradient is computed by contracting the TN of (/| H |v) after taking P
out.

The gradient method is consistent with the effective Hamiltonian schemes. In
fact, one has aaflf = 2H¢// Plil_ At the minimal point, the gradient should vanish

a?’F = 0. It means 2H%/ Plil = 0, i.e., P!/l is the dominant eigenstate of HeT

with a zero eigenvalue. Considering the ground-state energy is shifted to zero, PI!
is the ground state of the effective Hamiltonian H¢/7 .
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Note that the infinite PEPO (iPEPO) representation is not enforced to define
HeT In fact, it is not easy to obtain the iPEPO of an arbitrary 2D (or 3D)
Hamiltonian. The usual way is to start from the summation form of the Hamiltonian
H = 3 I:Ii j» and compute the contribution to B¢ from each I:Ii ; separately [2].
Each term is computed by contracting a 2D TN, where one can reuse the results to
improve the efficiency.

Following the same clue (minimizing E), algorithms were proposed to combine
TN with the QMC methods [5-9]. Still let us focus on those based on PEPS. One
may transform Eq. (4.1) as

_ Ysg WSH(S'IHIS)W(S)

E
s W(S)?

, (4.4)

where § = (s1,82,---) goes through all spin configurations and W(S) =
(s1s2---|) is the coefficient of the iPEPS for the given configuration. QMC
sampling can be implemented by defining the weight function as W(S)? and the
estimator E(S) as

w(s’ N
E©S) =) W((S)) (S'1HIS), (4.5)
S/

so that the energy becomes

E=(ES) =) W(S)?E®). (4.6)
S

It is easy to see that the normalization condition of the weights )¢ W(S$)? =1is
satisfied.

The task becomes to compute W (S) and (S’ |ﬁ |.S) with different configurations.
The computation of (S’ |I-AI |S) is relatively easy since |S) and |S’) are just two
product states. The computation of W(S) is more tricky. When |v¢) is a PEPS on
a square lattice, W(S) is a 2D scalar TN by fixing all the physical indexes of the
PEPS as

w(s) =tTr [ ] P, 4.7
n

where RY[:] is a fourth-order tensor that only has the geometrical index.! The n-th
physical index is taken as s,. Considering that most of the configurations are not
translationally invariant, such QMC-TN methods are usually applied to finite-size
models. One may use the finite TN version of the algorithms reviewed in Sect. 3.

'One may refer to Eq. (2.23) to better understand Eq. (4.7).
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4.2 Imaginary-Time Evolution Methods

Another way to compute the ground-state iPEPS is to do imaginary-time evolution,
analog to the MPS methods presented in Sect. 3.1.3. For a d-dimensional quantum
model, its ground-state simulation can be considered as computing the contraction
of a (d + 1)-dimensional TN.

Firstly, let us show how the evolution operator for an infinitesimal imaginary-
time step T can be written as an iPEPO, which is in fact one layer of the 3D TN
(Fig.4.2). The evolution of the iPEPS is to put the iPEPS at the bottom and to
contract the TN layer by layer to it.

To proceed, we divide the local Hamiltonians on the square lattice into four
group: Heo = Yoyenig AU 4 UL F, = S AT
HU-Ji+LJ] Heo = Y oven i odd AU+ gUGi+L ] gpd H,, =
D odd i, even j AU+ gli-ji+1.71 One can see that each two terms in one group
commute to each other. The evolution operator for an infinitesimal imaginary-time
step (r — 0) then can be written as

U = exp(—tH) (4.8)

= exp (—tﬁ[e’e]> exp (—II:][O‘O]) exp (—II:I[e"’]) exp (—tﬁ[”'e]> +0 (rz) .

Fig. 4.2 The evolution of a PEPS can be mapped to the contraction of a 3D TN
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Let us assume translational invariance to the Hamiltonian, i.e., Hl-/1 = Fltwol,
The element of two-body evolution operator is a fourth-order tensor Uy, =
1 i

(slfs}| exp(—rI:I[lw”]) |s;s ;). Implement SVD or QR decomposition on U (4.2) as
Us,-sjs,fs;. = Z Lsislf,aRSjs},a' 4.9)
o

Then the two tensors T'! and TR that form the iPEPO of U is obtained as

[L] —
Tss’,a1a2a3a4 = Lssl ,aj le §2,d) LS2S3,a3 LS3s’,a4 ,

e 4.10)
[R] _ '
Tss’,alaza_ga4 = Rssi,a1 Rsy52,a3 Rssy,a3 Rz ay -

515253

The four Ls (or Rs) in TX (or T8y correspond to the evolution operators of the
two-body terms in Aleel flool fleol and floel jp Eq. (4.9), respectively (see
the left part of Fig. 4.2).

While the TN for the imaginary-time evolution with the iPEPO is a cubic TN,
one may directly use the tensor U, which also gives a 3D but not cubic TN. Without
losing generality, we in the following will use the iPEPO to present the algorithms
for contraction a cubic TN. The algorithm can be readily applied to deal with
the statistic models on cubic lattice or other problems that can be written as the
contraction of a cubic TN.

The evolution U |[r) is to contract the iPEPO (one layer of the tensors) to the
iPEPS. In accordance to the translational invariance of the iPEPO, the iPEPS is also
formed by two inequivalent tensors (denoted by PIX1 and PIR1), Locally, the tensors
in the evolved iPEPS are given as

~[L] Z [L]
YO[]OQO[30{4 - ss’ a1a2a3a4 A ,o o030’ (4'11)

Pl Z Pt 4.12)
S&]&z&;&;; - ss’ a1a2a3a4 S ,a1a0304° :

with the composite indexes &, = (ay, o) (x = 1,2, 3,4). Obviously, the bond
dimensions of the new tensors are increased by dim(a,) times. It is necessary to
preset a dimension cut-off x: when the bond dimensions become larger than y,
approximations will be introduced to reduce the dimensions back to x. One then
can iterate the evolution of the iPEPS with bounded computational cost. After the
iPEPS converges, it is considered that the ground state is reached. Therefore, one
key step in the imaginary-time schemes (as well as the similar contraction schemes
of 3D TN’s) is to find the optimal truncations of the enlarged bonds. In the following,
we will concentrate on the truncation of bond dimensions, and present three kinds of
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scheme known as full, simple, and cluster updates according to which environment
the truncations are optimized [10].2

4.3 Full, Simple, and Cluster Update Schemes

For truncating the dimensions of the geometrical bonds of an iPEPS, the task is to
minimize the distance between the iPEPSs before and after the truncation, i.e.,

e=1¥) — [¥)l. (4.13)

With the normalization condition of the iPEPSs, the problem can be reduced to the
maximization of the fidelity

= (Y |y). (4.14)

As discussed in Sect. 3.1.2, & is in fact a scalar TN.

Full Update Among the three kinds of update schemes, full update seems to be the
most natural and reasonable, in which the truncation is optimized referring to the
whole iPEPS [10-16]. Let us consider a translationally invariant iPEPS. For square
lattice, the iPEPS is formed by the infinite copies of two tensors P/ and PIRI
located on the two sub-lattices, respectively. Their evolution is given by Eq. (4.10).
We use P4 and PIR] to denote the tensors with enlarged bond dimensions. Below,
we follow Ref. [13] to explain the truncation process. To truncate the fourth bond
a4 of the tensor, for example, one firstly defines the tensor M by contracting a pair
of P11 and PIR]

L R
M, 5 a0 oa'as —}j pl] IRl (4.15)
slalazag,sza]%% S1,010020304 92 000304

Note that P!Z) and PRI share the bond @, that is to be truncated. Compute the
environment tensor M€ by contracting the TN of 2 after taking a pair of PI1 and
PRI out from the TN. ./ is in fact an eighth-order tensor of the same dimensions
as M. Decompose M¢ by SVD as

R]
Me —E [ . 4.1
$101G203,520 @54 Alalazm a O‘Vszo/laéa; a (4.16)

2The definition of the update schemes also apply to finite-size PEPS and the variational methods;
for example, the variational methods which contract the whole TN to update the (i)PEPS are also
called full update.
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Define a new matrix as M = A2V IRlppyILIA1/2 gnd decompose it by SVD as
M ~ VLI AVIR] by taking only the x-largest singular values and singular vectors.
Finally, two tensors are updated by P = Al/2yILIT A=1/2yI[RIT 3pq pIR] —
Al2yIRI p=1/2y[L] One can check

R
~ Z plR] (4.17)
Sla1a2a3 52(1 Olzﬂtg S1, ot10£20(3(¥4 52 &, a2a3a4

with the dimension of the shared bond dim(«4) = yx. We shall stress that Eq. (4.17)
is not the SVD of M; the decomposition and truncation are optimized by the SVD
of M*, hence is a non-local optimization.

With the formula given above, the task is to compute the environment tensor
M¢ by the contraction algorithms of 2D TN’s. In Ref. [13], the authors developed
the SRG, where M*¢ is computed by a modified version of TRG algorithm [17].
Other options include iTEBD [15], CTMRG [12], etc. Note that how to define
the environment as well as how to truncate by the environment may have subtle
differences in different works. The spirit is the same, which is to minimize the
fidelity in Eq. (4.14) referring to the whole iPEPS.

Simple Update A much more efficient way known as the simple update was
proposed by Jiang et al. [18]; it uses local environment to determine the truncations,
providing an extremely efficient algorithm to simulate the 2D ground states. As
shown in Fig. 2.8c, the iPEPS used in the simple update is formed by the tensors on
the site and the spectra on the bonds: two tensors P! and PRI Jocated on the two
sub-lattices, and AT A[z], AB! and A4 on the four inequivalent geometrical bonds
of each tensor. The evolution of the tensors in such an iPEPS is given by Eq. (4.10).

i1 should be simultaneously evolved as Al (u w) = = Iy Ao, With I, = 1.

To truncate the fourth geometrical bond of P!l (and PIRl), for example, we
construct a new tensor by contracting P2 and PRl and the adjacent spectra as

My, 618283.5.d, ahay = Z 51, a1a2a3a4 r[2Ri1a2a3a4)‘¢[x11])‘c[x221)‘a3 )‘gij/;%[izz]/ig/ig]'
(4.18)
Then implement SVD on M as
X
gy ult o WUl (4.19)

5101 G2a3,520) A5, s1@16003,0" Y 5@ ahal.a
a=1
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where one takes only the x-largest singular values and the basis. P!! and PR are
updated as

~ -1 /. -1 /. -1
Pl = O8) 02 (02)”
S1,010203¢ sjaponas,a o] o2 o3

~ -1 /. -1 /. —1
piRl _ylRl ()\[.”) (A@) (A[}]) .
§2,01003¢ SR Q03,0 o %) a3

The spectrum A4 is updated by A in the SVD.

The above procedure truncates dim(¢4) to the dimension cut-off x, which can be
readily applied to truncate any other bonds. According to the discussion about SVD
in Sect. 2.2.1, the environment is the two tensors and the adjacent spectra As in M,
where the As play the role of an “effective” environment that approximate the true
environment (M¢ in the full update). From this viewpoint, the simple update uses
local environment. Later by borrowing from the idea of the orthogonal form of the
iPEPS on Bethe lattices [19-26], it was realized that the environment of the simple
update is the iPEPS on the infinite trees [27-29], not just several tensors. We will
talk about this in detail in the next chapter from the perspective of the multi-linear
algebra.

(4.20)

Cluster Update By keeping the same dimension cut-off, the simple update is
much more efficient than the full update. On the other hand, obviously, the full
update possesses higher accuracy than the simple update by considering better the
environment. The cluster update is between the simple and full updates, which is
more flexible to balance between the efficiency and accuracy [10, 27, 30].

One way is to choose a finite cluster of the infinite TN and define the environment
tensor by contracting the finite TN after taking a pair of PIL1 and PIR] out. One
can consider to firstly use the simple update to obtain the spectra and put them
on the boundary of the cluster [30]. This is equivalent to using a new boundary
condition [27, 29], different from the open or periodic boundary conditions of a finite
cluster. Surely, the bigger the cluster becomes, more accurate but more consuming
the computation will be. One may also consider an infinite-size cluster, which is
formed by a certain number of rows of the tensors in the TN [10]. Again, both the
accuracy and computational cost will in general increase with the number of rows.
With infinite rows, such a cluster update naturally becomes the full update. Despite
the progresses, there are still many open questions, for example, how to best balance
the efficiency and accuracy in the cluster update.

4.4 Summary of the Tensor Network Algorithms in Higher
Dimensions

In this section, we mainly focused on the iPEPS algorithm that simulates the ground
states of 2D lattice models. The key step is to compute the environment tensor,
which is to contract the corresponding TN. For several special cases such as trees
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and fractal lattices, the environment tensor corresponds to an exactly contractible
TN, and thus can be computed efficiently (see Sect.2.3.6). For the regular lattices
such as square lattice, the environment tensor is computed by the TN contraction
algorithms, which is normally the most consuming step in the iPEPS approaches.

The key concepts and ideas, such as environment, (simple, cluster, and full)
update schemes, and the use of SVD, can be similarly applied to finite-size cases
[31, 32], the finite-temperature simulations [27, 28, 33-39], and real-time simula-
tions [31, 40] in two dimensions. The computational cost of the TN approaches
is quite sensitive to the spatial dimensions of the system. The simulations of 3D
quantum systems are much more consuming than the 2D cases, where the task
becomes to contract the 4D TN. The 4D TN contraction is extremely consuming,
one may consider to generalize the simple update [29, 41], or to construct finite-size
effective Hamiltonians that mimic the infinite 3D quantum models [29, 42]

Many technical details of the approaches can be flexibly modified according
to the problems under consideration. For example, the iPEPO formulation is very
useful when computing a 3D statistic model, which is to contract the corresponding
3D TN. As for the imaginary-time evolution, it is usually more efficient to use
the two-body evolution operators (see, e.g., [12, 18]) rather than the iPEPO.
The environment is not necessarily defined by the tensors; it can be defined by
contracting everything of the TN except for the aimed geometrical bond [28, 33].
The contraction order also significantly affects the efficiency and accuracy. One may
consider to use the “single-layer” picture [10, 31], or an “intersected” optimized
contraction scheme [43].
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Chapter 5 ®
Tensor Network Contraction Chock or
and Multi-Linear Algebra

Abstract This chapter is aimed at understanding TN algorithms from the per-
spective of MLA. In Sect.5.1, we start from a simple example with a 1D TN
stripe, which can be “contracted” by solving the eigenvalue decomposition of
matrices. This relates to several important MPS techniques such as canonicaliza-
tion (Ords and Vidal, Phys Rev B 78:155117, 2008) that enables to implement
optimal truncations of the bond dimensions of MPSs (Sect.5.1.1). In Sect. 5.2,
we discuss about super-orthogonalization (Ran et al., Phys Rev B 86:134429,
2012) inspired by Tucker decomposition (De Lathauwer et al., SIAM J Matrix
Anal Appl 21(4):1324-1342, 2000) in MLA, which is also a higher-dimensional
generalization of canonicalization; it is proposed to implement optimal truncations
of the iPEPSs defined on trees. In Sect.5.3.1, we explain based on the rank-1
decomposition (De Lathauwer et al., STAM J Matrix Anal Appl 21:1253-1278,
2000) that super-orthogonalization in fact provides the “loopless approximation” of
the iPEPSs on regular lattices (Ran et al., Phys Rev B 88:064407, 2013); it explains
how the approximations in the simple update algorithm works for the ground-state
simulations on 2D regular lattices (Jiang et al., Phys Rev Lett 101:090603, 2008).
In Sect. 5.4, we will discuss tensor ring decomposition (TRD) (Ran, Phys Rev E
93:053310, 2016), which is a rank-N generalization of the rank-1 decomposition.
TRD naturally provides a unified description of iDMRG (White, Phys Rev Lett
69:2863, 1992; Phys Rev B 48:10345-10356, 1993; McCulloch, Infinite size density
matrix renormalization group, revisited, 2008. arXiv:0804.2509), iTEBD (Vidal,
Phys Rev Lett 98:070201, 2007), and CTMRG (Orus and Vidal, Phys Rev B
80:094403, 2009; Fishman et al., Faster methods for contracting infinite 2D tensor
networks, 2017. arXiv:1711.05881) when considering the contractions of 2D TNss.

5.1 A Simple Example of Solving Tensor Network
Contraction by Eigenvalue Decomposition

As discussed in the previous sections, the TN algorithms are understood mostly
based on the linear algebra, such as eigenvalue and singular value decompositions.
Since the elementary building block of a TN is a tensor, it is very natural to think
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about using the MLA to understand and develop TN algorithms. MLA is also known
as tensor decompositions or tensor algebra [1]. It is a highly inter-disciplinary
subject. One of its tasks is to generalize the techniques in the linear algebra to
higher-order tensors. For instance, one key question is how to define the rank of
a tensor and how to determine its optimal lower-rank approximation. This is exactly
what we need in the TN algorithms.

Let us begin with a trivial example by simply considering the trace of the product
of N number of (¥ x x) matrices M as

N
T/ = Te(MNIMP ™) = T [T M™, (5.1

n=1

with M" = M. In the language of TN, this can be regarded as a 1D TN with
periodic boundary condition. For simplicity, we assume that the dominant eigenstate
of M is unique.

Allow us to firstly use a clumsy way to do the calculation: contract the shared
bonds one by one from left to right. For each contraction, the computational cost is
0()(3), thus the total cost is O(NX3).

Now let us be smarter by using the eigenvalue decomposition (assume it exists
for M) in the linear algebra, which reads

M =UAU", (5.2)
where A are diagonal and U is unitary satisfying UUT = UTU = I. Substituting
Eq. (5.2) into (5.1), we can readily have the contraction as

Tel =Tr(UAUTUAUT - - UAUT) =Te(UANUT) = Z AN (53)

The dominant computational cost is around O ( X3)-
In the limit of N — oo, things become even easier, where we have

Tr.# = hm Ao Z(A()) = A}, (5.4

where Ay is the largest eigenvalue, and we have limN_,oo(ﬁ—g)N =0fora > 0.1t
means all the contributions except for the dominant eigenvalue vanish when the TN
is infinitely long. What we should do is just to compute the dominant eigenvalue.
The efficiency can be further improved by numerous more mature techniques (such
as Lanczos algorithm).
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5.1.1 Canonicalization of Matrix Product State

Before considering a 2D TN, let us take some more advantages of the eigenvalue
decomposition on the 1D TN’s, which is closely related to the canonicalization
of MPS proposed by Orids and Vidal for non-unitary evolution of MPS [2]. The
utilization of canonicalization is mainly in two aspects: locating optimal truncations
of the MPS, and fixing the gauge degrees of freedom of the MPS for better stability
and efficiency.

5.1.2 Canonical Form and Globally Optimal Truncations of
MPS

As discussed in the above chapter, when using iTEBD to contract a TN, one needs
to find the optimal truncations of the virtual bonds of the MPS. In other words, the
problem is how to optimally reduce the dimension of an MPS.

The globally optimal truncation can be down in the following expensive way.
Let us divide the MPS into two parts by cutting the bond that is to be truncated
(Fig.5.1). Then, if we contract all the virtual bonds on the left-hand side and reshape
all the physical indexes there into one index, we will obtain a large matrix denoted
as L..5, o, that has one big physical and one virtual index. Another matrix denoted
as R} 1., Can be obtained by doing the same thing on the right hand side. The
conjugate of R is taken there to obey some conventions.

Then, by contracting the virtual bond and doing SVD as

ZLMS”’a”R:nJrl“"“ _ZL “Sn a/)\'u 971+l /’ (55)
an

the virtual bond dimension is optimally reduced to x by only taking the -
largest singular values and the corresponding vectors. The truncation error that
is minimized is the distance between the MPS before and after the truncation.
Therefore, the truncation is optimal globally concerning the whole MPS as the
environment.

‘I I II I lﬂﬂh

Fig. 5.1 An impractical scheme to get the global optimal truncation of the virtual bond (red).
First, the MPS is cut into two parts. All the indexes on each side of the cut are grouped into one
big index. Then by contracting the virtual bond and doing the SVD, the virtual bond dimension is
optimally reduced to x by only taking the y-largest singular values and the corresponding vectors




102 5 Tensor Network Contraction and Multi-Linear Algebra

—0— A o~ B o A - B |-o—
A r A r A

Fig. 5.2 The MPS with two-site translational invariance

In practice, we do not implement the SVD above. It is actually the decomposition
of the whole wave-function, which is exponentially expensive. Canonicalization
provides an efficient way to realize the SVD through only local operations.

Considering an infinite MPS with two-site translational invariance (Fig. 5.2); it is
formed by the tensors A and B as well as the diagonal matrices A and I” as

Z U Aan—lAsn—l»an—lan Fan Bsnsanan-H Aan+l = tTr( o AAFBA e ) (56)
{a}

This is the MPS used in the iTEBD algorithm (see Sect. 3.4 and Fig. 3.5). Note that
all argument can be readily generalized to the infinite MPSs with n-site translational
invariance, or even to the finite MPSs.

An MPS is in the canonical form if the tensors satisfy

D AaAsaa AfAL g = larar, (5.7)
sa

D Asaalull gy Iy = laar, (5.8)
sa

> TuBi o T B yur = lavar, (5.9)
sa

> BowaAaB g Ay = Luar, (5.10)
sa

where A and I are positive-defined (Fig.5.3). Equations (5.7)—-(5.10) are called
the canonical conditions of the MPS. Note there will be 2n equations with n-site
translational invariance, meaning that each inequivalent tensor will obey to two (left
and right) conditions.

In the canonical form, A or I' directly give the singular values by cutting
the MPS on the corresponding bond. To see this, let us calculate Eq. (5.5) from
a canonical MPS. From the canonical conditions, matrices L and R are unitary,
satisfying LTL = I and RT R = I (the physical indexes are contracted). Meanwhile,
A (or I') is positive-defined, thus L, A (or I") and R of a canonical MPS directly
define the SVD, and A or I" is indeed the singular value spectrum. Then the optimal
truncations of the virtual bonds are reached by simply keeping yx-largest values of
A and the corresponding basis of the neighboring tensors. This is true when cutting
any one of the bonds of the MPS. From the uniqueness of SVD, Egs. (5.7) and (5.8)
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Fig. 5.3 Four canonical conditions of an MPS
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leads to a unique MPS representation, thus such a form is called “canonical’. In
other words, the canonicalization fixes the gauge degrees of freedom of the MPS.

For any finite MPS, the uniqueness is robust. For an infinite MPS, there will be
some additional complexity. Let us define the left and right transfer matrices M*
and MR of as

L _ .
Mam{azaé = ZAalAssHIGZA AS Jaldy (5.11)
s
* *
Matgjaras = 2o AsaasTonAS g T (5.12)

Then the canonical conditions (Eq.(5.7)) say that the identity is the left (right)
eigenvector of ML (MR), satisfying

_ 1L
Z aya ala |axd) =A Iazaé9 (5.13)
aya)

__ 1R
Z way ula (acah — A Ia1ai9 (5.14)
ara)

with AL (AR) the eigenvalue.
Similar eigenvalue equations can be obtained from the canonical conditions
associated to the tensor B, where we have the transfer matrices as

L — % k
Nala{azaé = Z Loy Bs.ayar Iy BS d|ab’ (5.15)
S
* *
Narajosss = 2 Boaras Aan B 1 Ay (5.16)
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Now the canonical conditions are given by four eigenvalue equations and can be
reinterpreted as the following: with an infinite MPS formed by A, B, A and I, it is
canonical when the identity is the eigenvector of its transfer matrices.

Simply from the canonical conditions, it does not require the “identity” to be
dominant eigenvector. However, if the identity is not the dominant one, the canonical
conditions will become unstable under an arbitrarily small noise. Below, we will
show that the canonicalization algorithm assures that the identity is the leading
eigenvector, since it transforms the leading eigenvector to an identity. In addition,
if the dominant eigenvector of M~ and MR (also N* and N¥) is degenerate, the
canonical form will not be unique. See Ref. [2] for more details.

5.1.3 Canonicalization Algorithm and Some Related Topics

Considering the iTEBD algorithm [3] (see Sect. 3.4), while the MPO represents a
unitary operator, the canonical form of the MPS will be reserved by the evolution
(contraction). For the imaginary-time evolution, the MPO is near-unitary. For the
Trotter step t — 0, the MPO approaches to be an identity. It turns out that in
this case, the MPS will be canonicalized by the evolution in the standard iTEBD
algorithm. When the MPO is non-unitary (e.g., when contracting the TN of a 2D
statistic model) [2], the MPS will not be canonical, and the canonicalization might
be needed to better truncate the bond dimensions of the MPS.

Canonicalization Algorithm An algorithm to canonicalize an arbitrary MPS was
proposed by Orts and Vidal [2]. The idea is to compute the first eigenvectors of the
transfer matrices, and introduce proper gauge transformations on the virtual bonds
that map the leading eigenvector to identity.

Let us take the gauge transformations on the virtual bonds between A and B as
an example. Firstly, compute the dominant left eigenvector v’ of the matrix NX M~
and similarly the dominant right eigenvector v¥ of the matrix N® MR . Then, reshape

vl and v¥ as two matrices and decompose them symmetrically as

R _ *
valdi = E Xalai/xaiai” 5.17)
af
L _ *
valﬂi - Yalai/ allai/' (5.18)

X and Y can be calculated using eigenvalue decomposition, i.e., v8 = WDWT with
X =Ww+/D.

Insert the identities X1 X and YY ! on the virtual bond as shown in Fig.5.4,
then we get a new matrix . = XI'Y on this bond. Apply SVD on .# as .# =
ur VT, where we have the updated spectrum I” on this bond. Meanwhile, we obtain
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Fig. 5.4 The illustration of the canonical transformations

the gauge transformations to update A and B as % = X~ 'U and ¥ = Viy~!,
where the transformations are implemented as

ASlydluz <~ ZAsl,alaOZ/aaz, (5.19)
a
le,alaz <~ Z Bs1,aa2%1a- (520)
a

Implement the same steps given above on the virtual bonds between B and A, then
the MPS is transformed to the canonical form.

Variants of the Canonical Form From the canonical form of an MPS, one can define
the left or right-canonical forms. Define the follow tensors

ALy = AaAgaa, (5.21)
AR = Asaa T, (5.22)
Bl = TuBs s (5.23)
Bf 0 = Bsaa Aa, (5.24)
AM = AaAgaa T (5.25)

The left-canonical MPS is defined by AL and B’ as

{Tr(--- ALBLAEBE ... (5.26)
Similarly, the right-canonical MPS is defined by AR and BR as

tTr(--- ARBRARBR .., (5.27)
The central-orthogonal MPS is defined as

{Tr(--- ALBLAMBRAR ...y, (5.28)
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One can easily check that these MPSs and the canonical MPS can be transformed to
each other by gauge transformations.

From the canonical conditions, A, AR, BL and BR are non-square orthogonal
matrices (e.g., Y, Ai . a,ASLf'; o = larar), called isometries. AM is called the central
tensor of the central-orthogonal MPS. This MPS form is the state ansatz behind the
DMRG algorithm [4, 5], and is very useful in TN-based methods (see, for example,
the works of McCulloch [6, 7]). For instance, when applying DMRG to solve 1D
quantum model, the tensors A" and B’ define a left-to-right RG flow that optimally
compresses the Hilbert space of the left part of the chain. AR and BR define a right-
to-left RG flow similarly. The central tensor between these two RG flows is in fact
the ground state of the effective Hamiltonian given by the RG flows of DMRG.
Note that the canonical MPS is also called the central canonical form, where the
directions of the RG flows can be switched arbitrarily by gauge transformations,
thus there is no need to define the directions of the flows or a specific center.

Relations to Tensor Train Decomposition It is worth mentioning the TTD [8]
proposed in the field of MLA. As argued in Chap.2, one advantage of MPS is
it lowers the number of parameters from an exponential size dependence to a
polynomial one. Let us consider a similar problem: for a N-th order tensor that has
d" parameters, how to find its optimal MPS representation, where there are only
[2dx + (N —2)d x?] parameters? TTD was proposed for this aim: by decomposing
a tensor into a tensor-train form that is similar to a finite open MPS, the number
of parameters becomes linearly relying to the order of the original tensor. The
TTD algorithm shares many similar ideas with MPS and the related algorithms
(especially DMRG which was proposed about two decades earlier). The aim of TTD
is also similar to the truncation tasks in the TN algorithms, which is to compress the
number of parameters.

5.2 Super-Orthogonalization and Tucker Decomposition

As discussed in the above section, the canonical form of an MPS brings a lot
of advantages, such as determining the entanglement and the optimal truncations
of the virtual bond dimensions by local transformations. The canonical form can
be readily generalized to the iPEPSs on trees. Can we also define the canonical
form for the iPEPSs in higher-dimensional regular lattices, such as square lattice
(Fig.5.5)? If this can be done, we would know how to find the globally optimal
transformations that reduces the bond dimensions of the iPEPS, just like what we
can do with an MPS. Due to the complexity of 2d TN’s, unfortunately, there is
no such a form in general. In the following, we explain the super-orthogonal form
of iPEPS proposed in 2012 [9], which applies the canonical form of tree iPEPS
to the iPEPS on regular lattices. The super-orthogonalization is a generalization
of the Tucker decomposition (a higher-order generalization of matrix SVD) [10],
providing a zero-loop approximation scheme [11] to define the entanglement and
truncate the bond dimensions.
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Fig. 5.5 The first two figures show the iPEPS on tree and square lattices, with two-site transla-
tional invariance. The last one shows the super-orthogonal conditions

5.2.1 Super-Orthogonalization

Let us start from the iPEPS on the (infinite) Bethe lattice with the coordination
number z = 4. It is formed by two tensors P and Q on the sites as well as four
spectra A® (k = 1,2,3,4) on the bonds, as illustrated in Fig.5.5. Here, we still
take the two-site translational invariance for simplicity.

There are eight super-orthogonal conditions, of which four associate to the tensor
P and four to Q. For P, the conditions are

>y PS,...ak...f{;,__al,c___]_[AgZ)Ag?*:QM, ~vVk), (529

S eAp—10k+10 n#k

where all the bonds along with the corresponding spectra are contracted except
for ai. It means that by putting a; as one index and all the rest as another, the
k-rectangular matrix S® defined as

s® = Psa | [ AP, (5.30)

SeeQ—1 Ak Ak
n#k

is an isometry, satisfying S®TS® = . The super-orthogonal conditions of the
tensor Q are defined in the same way. A% is dubbed super-orthogonal spectrum
when the super-orthogonal conditions are fulfilled.

In the canonicalization of MPS, the vectors on the virtual bonds give the
bipartite entanglement defined by Eq. (5.5). Meanwhile, the bond dimensions can
be optimally reduced by discarding certain smallest elements of the spectrum.
In the super-orthogonalization, this is not always true for iPEPSs. For example,
given a translational invariant iPEPS defined on a tree (or called Bethe lattice,
see Fig.5.5a) [12-19], the super-orthogonal spectrum indeed gives the bipartite
entanglement spectrum by cutting the system at the corresponding place. However,
when considering loopy lattices, such as the iPEPS defined on a square lattice
(Fig. 5.5b), this will no longer be true. Instead, the super-orthogonal spectrum
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provides an approximation of the entanglement of the iPEPS by optimally ignoring
the loops. One can still truncate the bond dimensions according to the super-
orthogonal spectrum, giving in fact the simple update (see Sect. 4.3). We will discuss
the loopless approximation in detail in Sect. 5.3 using the rank-1 decomposition.

5.2.2 Super-Orthogonalization Algorithm

Any PEPS can be transformed to the super-orthogonal form by iteratively imple-
menting proper gauge transformations on the virtual bonds [9]. The algorithm
consists of two steps. Firstly, compute the reduced matrix . ® of the k-rectangular
matrix of the tensor P (Eq. (5.30)) as

w (k) ()%
%akai - Z Z Ssu-ak,lakJrlm’ak SS"'ak—lak+1“',al,(' (531)

S Qk—1 k41

Compared with the super-orthogonal conditions in Eq.(5.29), one can see that
#® = I when the PEPS is super-orthogonal. Similarly, we define the reduced
matrix .4 ® of the tensor Q.

When the PEPS is not super-orthogonal, .#® and .#® are not identities but
Hermitian matrices. Decompose them as . ®) = X® x®©7 and 0 = y©y®OT
Then, insert the identities X (k)[X (k)]_l and Y(k)[Y (l‘)]_l on the virtual bonds to
perform gauge transformations along four directions as shown in Fig.5.6. Then,
we can use SVD to renew the four spectra by X0 AR y®T — @ A@y®T
Meanwhile, we transform the tensors as

k)1=1 7;()
Py g < Z Psv"'a/’("'[x( )]a//caz/{'Ua;Q/ak’ (5.32)
@ag
k)1=1 yy R)*
Qs < D Qo LY VL Vi (5.33)
@ag

—_————

O <D<

Ty K@ i)
XAT T

Fig. 5.6 The illustrations of gauge transformations in the super-orthogonalization algorithm
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Compared with the canonicalization algorithm of MPS, one can see that the
gauge transformations in the super-orthogonalization algorithm are quite similar.
The difference is that one cannot transform a PEPS into the super-orthogonal form
by a single step, since the transformation on one bond might cause some deviation
from obeying the super-orthogonal conditions on other bonds. Thus, the above
procedure should be iterated until all the tensors and spectra converge.

5.2.3 Super-Orthogonalization and Dimension Reduction by
Tucker Decomposition

Such an iterative scheme is closely related to the Tucker decomposition in MLA
[10]. Tucker decomposition is considered as a generalization of (matrix) SVD to
higher-order tensors, thus it is also called higher-order or multi-linear SVD. The
aim is to find the optimal reductions of the bond dimensions for a single tensor.

Let us define the k-reduced matrix of a tensor 7' as

(k) _ %
My = Y Taeaiaar-To o da (5.34)

ay-ak—1 Qg1

where all except the k-th indexes are contracted. The Tucker decomposition
(Fig.5.7) of atensor T has the form as

Toay = 9 Soibye | JUS), (5.35)

ayaz--- k

where the following conditions should be satisfied:

s Unitarity. U® are unitary matrices satisfying UOU®T = .
* All-orthogonality. For any k, the k-reduced matrix M® of the tensor S is
diagonal, satisfying

mM© =roy
k

aa a Laal - (5.36)
* Ordering. For any k, the elements of I"® in the k-reduced matrix are positive-
defined and in the descending order, satisfying I > I'7 > ---.

Fig. 5.7 The illustrations of
Tucker decomposition
(Eq. (5.35))
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From these conditions, one can see that the tensor 7 is decomposed as the
contraction of another tensor S with several unitary matrices. S is called the core
tensor. In other words, the optimal lower-rank approximation of the tensor can be
simply obtained by

Taray Z Sb1by-- ]_[U(fl),k (5.37)

ajay--=0

where we only take the first x terms in the summation of each index.
Such an approximations can be understood in terms of the SVD of matrices.
Applying the conditions of the k-reduced matrix of 7', we have
(k) _ k) (k) (R)F
My Z Upir Ty U (5.38)

a a bk
by

Since U™ is unitary and I"® is positive-defined and in the descending order,
the above equation is exactly the eigenvalue decomposition of M®). From the
relation between the SVD of a matrix and the eigenvalue decomposition of its
reduced matrix, we can see that U ® and I'® in fact give the SVD of the matrix

Tay - ap—yapsy -+ ar 38

k) y,(k
Ta1~~-ak71ak+1~-,ak = Zyal“'uk—lak+l' F( U(kl);k (5.39)

Then, The optimal truncation of the rank of each index is reached by the correspond-
ing SVD. The truncation error is obviously the distance defined as

X
K ®) 77 k)
e® = T o sappriar — 9 Fareaprapn-Th U | (5.40)

br=1

which is minimized in this SVD.

For the algorithms of Tucker decomposition, one simple way is to do the
eigenvalue decomposition of each k-reduced matrix, or the SVD of each k-
rectangular. Then for a K-th ordered tensor, K SVDs will give us the Tucker
decomposition and a lower-rank approximation. This algorithm is often called
higher-order SVD (HOSVD), which has been successfully applied to implement
truncations in the TRG algorithm [20]. The accuracy of HOSVD can be improved.
Since the truncation on one index will definitely affect the truncations on other
indexes, there will be some “interactions” among different indexes (modes) of
the tensor. The truncations in HOSVD are calculated independently, thus such
“interactions” are ignored. One improved way is the high-order orthogonal iteration
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(HOOI), where the interactions among different modes are considered by iteratively
doing SVDs until reaching the convergence. See more details in Ref. [10].

Compared with the conditions of Tucker decomposition, let us redefine the super-
orthogonal conditions of a PEPS as

* Super-orthogonality. For any k, the reduced matrix of the k-rectangular matrix
AP (Eq. (5.31)) is diagonal, satisfying

A, =]

aray, ar lagay (541
s Ordering. For any k, the elements of I"® are positive-defined and in the
descending order, satisfying Iy > 17 > ---.

Note that the condition “unitary” (first one in Tucker decomposition) is hidden in
the fact that we use gauge transformations to transform the PEPS into the super-
orthogonal form. Therefore, the super-orthogonalization is also called network
Tucker decomposition (NTD).

In the Tucker decomposition, the “all-orthogonality” and “ordering” lead to an
SVD associated to a single tensor, which explains how the optimal truncations
work from the decompositions in linear algebra. In the NTD, the SVD picture is
generalized from a single tensor to a non-local PEPS. Thus, the truncations are
optimized in a non-local way.

Let us consider a finite-size PEPS and arbitrarily choose one geometrical bond
(say a). If the PEPS is on a tree, we can cut the bond and separate the TN into three
disconnecting parts: the spectrum (A) on this bond and two tree brunches stretching
to the two sides of the bond. Specifically speaking, each brunch contains one virtual
bond and all the physical bonds on the corresponding side, formally denoted as
123 . (and lesz.-. o on the other side). Then the state given by the iPEPS can be

i 1 -
ertten as

R
Z iip+ A qj]l]Z (542)

To get the SVD picture, we need to prove that ¥~ and ¥ R in the above equation
are isometries, satisfying the orthogonal conditions as

z : i1ip-,a 1112 a/: ad’>

i1ige

Z jl]2 .a J|J2 o = laa'-

Jijz

(5.43)

Note that the spectrum A is already positive-defined according to the algorithm. To
this end, we construct the TN of le ine lfl(zR) alI/ilLi(zl_e_?  from its boundary. If the

PEPS is super-orthogonal, the spectra must be on the boundary of the TN because
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the super-orthogonal conditions are satisfied everywhere.! Then the contractions
of the tensors on the boundary satisfy Eq. (5.29), which gives identities. Then we
have on the new boundary again the spectra to iterate the contractions. All tensors
can be contracted by iteratively using the super-orthogonal conditions, which in
the end gives identities as Eq. (5.43). Thus, &% and ¥ ¥ are indeed isometries and
Eq.(5.42) indeed gives the SVD of the whole wave-function. The truncations of
the bond dimensions are globally optimized by taking the whole tree PEPS as the
environment.

For an iPEPS, it can be similarly proven that ¥~ and ¥R are isometries. One
way is to put any non-zero spectra on the boundary and iterate the contraction by
Eq.(5.31). While the spectra on the boundary can be arbitrary, the results of the
contractions by Eq.(5.31) converge to identities quickly [9]. Then the rest of the
contractions are exactly given by the super-orthogonal conditions (Eq. (5.29)). In
other words, the identity is a stable fixed point of the above iterations. Once the
fixed point is reached, it can be considered that the contraction is from infinitely far
away, meaning from the “boundary” of the iPEPS. In this way, one proves ¥ and
Wk are isometries, i.e., WLTWL = [ and W RTWR =,

5.3 Zero-Loop Approximation on Regular Lattices
and Rank-1 Decomposition

5.3.1 Super-Orthogonalization Works Well for Truncating the
PEPS on Regular Lattice: Some Intuitive Discussions

From the discussions above, we can see that the “canonical” form of a TN state is
strongly desired, because it is expected to give the entanglement and the optimal
truncations of the bond dimensions. Recall that to contract a TN that cannot be
contracted exactly, truncations are inevitable, and locating the optimal truncations
is one of the main tasks in the computations. The super-orthogonal form provides
a robust way to optimally truncate the bond dimensions of the PEPS defined on a
tree, analog to the canonicalization of MPS.

Interestingly, the super-orthogonal form does not require the tree structure. For an
iPEPS defined on a regular lattice, for example, the square lattice, one can still super-
orthogonalize it using the same algorithm. What is different is that the SVD picture
of the wave-function (generally, see Eq. (5.5)) will not rigorously hold, as well as the
robustness of the optimal truncations. In other words, the super-orthogonal spectrum
does not exactly give the entanglement. A question rises: can we still truncate iPEPS
defined on a square lattice according to the super-orthogonal spectrum?

IWith the open boundary condition, one may consider the geometrical bond dimensions as one,
and define the spectra by the one-dimensional vector [21].
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Surprisingly, numeric simulations show that the accuracy by truncating according
to the super-orthogonal spectrum is still good in many cases. Let us take the ground-
state simulation of a 2D system by imaginary-time evolution as an example. As
discussed in Sect.4.2, the simulation becomes the contraction of a 3D TN. One
usual way to compute this contraction is to contract layer by layer to an iPEPS
(see, e.g., [22, 23]). The contraction will enlarge the virtual bond dimensions, and
truncations are needed. When the ground state is gapped (see, e.g., [9, 23]), the
truncations produce accurate results, which means the super-orthogonal spectrum
approximates the true entanglement quite well.

It has been realized that using the simple update algorithm [23], the iPEPS
will converge to the super-orthogonal form for a vanishing Trotter step t — 0.
The success of the simple update suggests that the optimal truncation method
on trees still works well for regular lattices. Intuitively, this can be understood
in the following way. Comparing a regular lattice with a tree, if it has the same
coordination number, the two lattices look exactly the same if we only inspect
locally on one site and its nearest neighbors. The difference appears when one
goes round the closed loops on the regular lattice, since there is no loop in the
tree. Thus, the error applying the optimal truncation schemes (such as super-
orthogonalization) of a tree to a regular lattice should be characterized by some
non-local features associated to the loops. This explains in a descriptive way why
the simple update works well for gapped states, where the physics is dominated
by short-range correlations. For the systems that possess small gaps or are gapless,
simple update is not sufficiently accurate [24], particularly for the non-local physical
properties such as the correlation functions.

5.3.2 Rank-1 Decomposition and Algorithm

Rank-1 decomposition in MLA [25] provides a more mathematic and rigorous
way to understand the approximation by super-orthogonalization (simple update)
to truncate PEPS on regular lattices [11]. For a tensor 7, its rank-1 decomposition
(Fig.5.8) is defined as

K
Tunayax = 2 [ [ v, (5.44)
k=1
Fig. 5.8 The illustrations of N
rank-1 decomposition C/ 1%
(Eq. (5.44)) Q
Ty
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(1 O O\H T ’E)O: 2)
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Fig. 5.9 The illustrations of self-consistent conditions for the rank-1 decomposition (Eq. (5.47))

where v® are normalized vectors and 2 is a constant that satisfies

= > Tuay-ax Hv(k)*. (5.45)

apaz--ag

Rank-1 decomposition provides an approximation of 7', where the distance between
T and its rank-1 approximation is minimized, i.e.,

K
r(gin Tuyayagx — $2 ]_[ vl (5.46)
oy |=1 k=1

The rank-1 decomposition is given by the fixed point of a set of self-consistent
equations (Fig. 5.9), which are

Y Tuayear [ 06 = 200 v k). (5.47)
all except ax JjFk

It means that v® is obtained by contracting all other vectors with the tensor. This
property provides us an algorithm to compute rank-1 decomposition: one arbitrarily
initializes the vectors {v®)} of norm-1 and recursively updates each vector by the
tensor and the rest vectors using Eq. (5.47) until all vectors converge.

Apart from some very special cases, such an optimization problem is concave,
thus rank-1 decomposition is unique.” Furthermore, if one arbitrarily chooses a set
of norm-1 vectors, they will converge to the fixed point exponentially fast with the
iterations. To the best of our knowledge, the exponential convergence has not been
proved rigorously, but observed in most cases.

2In fact, the uniqueness of rank-1 decomposition has not been rigorously proven.
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5.3.3 Rank-1 Decomposition, Super-Orthogonalization, and
Zero-Loop Approximation

Let us still consider an translational invariant square TN that is formed by infinite
copies of the 4th-order tensor T (Fig. 2.28). The rank-1 decomposition of 7 provides
an approximative scheme to compute the contraction of the TN, which is called the
theory of network contractor dynamics (NCD) [11].

The picture of NCD can be understood in an opposite way to contraction, but by
iteratively using the self-consistent conditions (Eq. (5.47)) to “grow” a tree TN that
covers the whole square lattice (Fig. 5.10). Let us start from Eq. (5.45) of £2. Using
Eq. (5.47), we substitute each of the four vectors by the contraction of 7 with the
other three vectors. After doing so, Eq. (5.45) becomes the contraction of more than
one T's with the vectors on the boundary. In other words, we “grow” the local TN
contraction from one tensor plus four vectors to that with more tensors and vectors.

By repeating the substitution, the TN can be grown to cover the whole square
lattice, where each site is allowed to put maximally one 7. Inevitably, some sites
will not have T, but four vectors instead. These vectors (also called contractors)
give the rank-1 decomposition of T as Eq. (5.44). This is to say that some tensors
in the square TN are replaced by its rank-1 approximation, so that all loops are
destructed and the TN becomes a loopless tree covering the square lattice. In this
way, the square TN is approximated by such a tree TN on square lattice, so that its
contraction is simply computed by Eq. (5.45).

The growing process as well as the optimal tree TN is only to understand the
zero-loop approximation with rank-1 decomposition. There is no need to practically

Fig. 5.10 Using the self-consistent conditions of the rank-1 decomposition, a tree TN with no
loops can grow to cover the infinite square lattice. The four vectors gathering in a same site give
the rank-1 approximation of the original tensor
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implement such a process. Thus, it does not matter how the TN is grown or where
the rank-1 tensors are put to destroy the loops. All information we need is given by
the rank-1 decomposition. In other words, the zero-loop approximation of the TN is
encoded in the rank-1 decomposition.

For growing the TN, we shall remark that using the contraction of one 7" with
several vectors to substitute one vector is certainly not unique. However, the aim
of “growing” is to reconstruct the TN formed by 7. Thus, if T has to appear in
the substitution, the vectors should be uniquely chosen as those given in the rank-1
decomposition due to the uniqueness of rank-1 decomposition. Secondly, there are
hidden conditions when covering the lattice by “growing”. A stronger version is

Ta1a2a3a4 =T =T = Ta3a4a1a2- (5.48)

azarajas ajasaza;
And a weaker one only requires the vectors to be conjugate to each other as

D = v(3)T’ 0@ = @7 (5.49)
These conditions assure that the self-consistent equations encode the correct tree
that optimally in the rank-1 sense approximates the square TN.

Comparing with Eqgs.(5.29) and (5.47), the super-orthogonal conditions are
actually equivalent to the above self-consistent equations of rank-1 decomposition
11102 ag — Z aauz ak ga”aé’ ”K

by defining the tensor 7" and vector v as
/ A(k)A(]f,)*, (5.50)
k
v = Ay Ay, (5.51)
ak

with a; = (a;,a;). Thus, the super-orthogonal spectrum provides an optimal
approximation for the truncations of the bond dimensions in the zero-loop level.
This provides a direct connection between the simple update scheme and rank-1
decomposition.

K

1

5.3.4 Error of Zero-Loop Approximation and Tree-Expansion
Theory Based on Rank-Decomposition

The error of NCD (and simple update) is an important issue. From the first glance,
the error seems to be the error of rank-1 decomposition ¢ = [T — [], v®|. This
would be true if we replaced all tensors in the square TN by the rank-1 version.
In this case, the PEPS is approximated by a product state with zero entanglement.
In the NCD scheme, however, we only replace a part of the tensors to destruct the
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Fig. 5.11 The illustrations of )
rank-1 decomposition C/ Vv
(Eq.(5.52)) E S) —0 00—,

Hn f v
Vw

loops. The corresponding approximative PEPS is an entanglement state with a tree
structure. Therefore, the error of rank-1 decomposition cannot properly characterize
the error of simple update.

To control the error, let us introduce the rank decomposition (also called
CANDECOMP/PARAFAC decomposition) of 7 in MLA (Fig.5.11) that reads

Tuas- X_: ]_[v(’”), (5.52)
r=0

where v®") are normalized vectors. The idea of rank decomposition [26, 27] is
to expand 7T into the summation of R number of rank-1 tensors with R called the
tensor rank. The elements of the vector §2 can always be in the descending order
according to the absolute values. Then the leading term 2o [, v*? gives exactly
the rank—l decomposition of T, and the error of the rank-1 decomposition becomes
| Zr Q nk vﬁ(l]li &

In the optimal tree TN, let us replace the rank-1 tensors back by the full rank
tensor in Eq.(5.52). We suppose the rank decomposition is exact, thus we will
recover the original TN by doing so. The TN contraction becomes the summation
of RN terms with N the number of rank-1 tensors in the zero-loop TN. Each term
is the contraction of a tree TN, which is the same as the optimal tree TN except that
certain vectors are changed to v*") instead of the rank-1 term v*?_ Note that in
all terms, we use the same tree structure; the leading term in the summation is the
zero-loop TN in the NCD scheme. It means with rank decomposition, we expand
the contraction of the square TN by the summation of the contractions of many tree
TN’s.

Let us order the summation referring to the contributions of different terms.
For simplicity, we assume R = 2, meaning T can be exactly decomposed as the
summation of two rank-1 tensors, which are the leading term given by the rank-1
decomposition, and the next-leading term denoted as 71 = £21 [], v®&D We dub
as the next-leading term as the impurity tensor. Defining n as the number of the
impurity tensors appearing in one of the tree TN in the summation, the expansion
can be written as

Z—QN’XN:(QIY 3z
=0/ =l ” (5.53)

£ $20 i
n=0 et (n)
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zeroth order

first order

second order

Fig. 5.12 The illustrations of the expansion with rank decomposition. The yellow and red circles

stand for vg;"o) (zeroth order terms in the rank decomposition) and vf,lz’l) (first order terms),

respectively. Here, we consider the tensor rank R = 2 for simplicity

We use €' (n) to denote the set of all possible configurations of n number of the
impurity tensors, where there are 71 of T1s located in different positions in the tree.
Then Z¢ denotes the contraction of such a tree TN with a specific configuration
of T1’s. In general, the contribution is determined by the order of |£21/§2¢| since
|£21/820] < 1 (Fig.5.12).

To proceed, we choose one tensor in the tree as the original point, and always
contract the tree TN by ending at this tensor. Then the distance & of a vector is
defined as the number of tensors in the path that connects this vector to the original
point. Note that one impurity tensor is the tensor product of several vectors, and
each vector may have different distance to the original point. For simplicity, we take
the shortest one to define the distance of an impurity tensor.

Now, let us utilize the exponential convergence of the rank-1 decomposition.
After contracting any vectors with the tensor in the tree, the resulting vector
approaches to the fixed point (the vectors in the rank-1 decomposition) in an
exponential speed. Define 9 as the average number of the contractions that will
project any vectors to the fixed point with a tolerable difference. Consider any
impurity tensors with the distance ¥ > %, their contributions to the contraction
are approximately the same, since after %y contractions, the vectors have already
been projected to the fixed point.

From the above argument, we can see that the error is related not only to the error
of the rank-1 decomposition, but also to the speed of the convergence to the rank-
1 component. The smaller % is, the smaller the error (the total contribution from
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the non-dominant terms) will be. Calculations show that the convergence speed is
related to the correlation length (or gap) of the physical system, but their rigorous
relations have not been established yet. Meanwhile, the expansion theory of the TN
contraction given above requires the rank decomposition, which, however, is not
uniquely defined of an arbitrarily given tensor.

5.4 IDMRG,ITEBD, and CTMRG Revisited by Tensor Ring
Decomposition

We have shown that the rank-1 decomposition solves the contraction of infinite-size
tree TN and provides a mathematic explanation of the approximation made in the
simple update. Then, it is natural to think: can we generalize this scheme beyond
being only rank-1, in order to have better update schemes? In the following, we will
show that besides the rank decomposition, the tensor ring decomposition (TRD)
[28] was suggested as another rank-N generalization for solving TN contraction
problems.

TRD is defined by a set of self-consistent eigenvalue equations (SEEs) with
certain constraints. The original proposal of TRD requires all eigenvalue equations
to be Hermitian [28]. Later, a generalize version was proposed [29] that provides
an unified description of the iDMRG [4, 5, 7], iTEBD [3], and CTMRG [30]
algorithms. We will concentrate on this version in the following.

5.4.1 Revisiting iDMRG, iTEBD, and CTMRG: A Unified
Description with Tensor Ring Decomposition

Let us start from the iDMRG algorithm. The TN contraction can be solved using
the iDMRG [4, 5, 7] by considering an infinite-size row of tensors in the TN as
an MPO [31-35] (also see some related discussions in Sect.3.4). We introduce
three third-order variational tensors denoted by vl ok (dubbed as the boundary or
environmental tensors) and ¥ (dubbed as the central tensor). These tensors are the
fixed-point solution of the a set of eigenvalue equations. v’ and v¥ are, respectively,
the left and right dominant eigenvector of the following matrices (Fig.5.13a, b)

’b/bl cbhby — Z Tacac ’b’lbéA“ble’ (5.54)

R *
Mc’h’lb|,cb’2hz = Z T“/C/aCBa’h’lbéBable’ (5.55)

aa’
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Fig. 5.13 The (a, b) and (c¢) show the three local eigenvalue equations given by Egs. (5.55) and
(5.57). The isometries A and B are obtained by the QR decompositions of ¥ in two different ways
in Eq. (5.56), as shown in (d)

where A and B are the left and right orthogonal parts obtained by the QR
decomposition (or SVD) of ¥ (Fig.5.13d) as

Wabb’ = Z Aabb” i’b//b/ - Z ll};b,, Bab//b/. (556)
b b

¥ is the dominant eigenvector of the Hermitian matrix (Fig. 5.13c) that satisfies

L R
‘%’b’lb’z,ablbz = Z Ta’c/acvc/bqbl vcb’zbz' (5.57)

cc’

One can see that each of the eigenvalue problems is parametrized by the solutions
of others, thus we solve them in a recursive way. First, we initialize arbitrarily the
central tensors ¥ and get A and B by Eq.(5.56). Note that a good initial guess
can make the simulations faster and more stable. Then we update v* and v® by
multiplying with ML and MR as Egs. (5.54) and (5.55). Then we have the new ¥
by solving the dominant eigenvector of .77 in Eq. (5.57) that is defined by the new
vl and v®. We iterate such a process until all variational tensors converge.

Let us rephrase the iDMRG algorithm given above in the language of TN
contraction/reconstruction. When the variational tensors give the fixed point, the
eigenvalue equations “encodes” the infinite TN, i.e., the TN can be reconstructed
from the equations. To do so, we start from a local representation of Z (Fig.5.14)
written as

L * L R
Z= Z Tacac !I/a/blbz l‘[/‘1173b4 vc’bl b3 Vebaby> (558)

where the summation goes through all indexes. According to the fact that ¥ is the
leading eigenvector of Eq. (5.57), Z is maximized with fixed v’ and v®. We here and
below use the symbol “=" to represent the contraction relation up to a difference of
a constant factor.
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Fig. 5.14 The eigenvalue
equations as illustrated
“encode” the infinite TN

Then, we use the eigenvalue equations of v~ and v to add one M and one M~
(Eqgs. (5.54) and (5.55)) in the contraction, i.e., we substitute vl by vEMZL and vR
by MRvR. After doing so for one time, a finite central-orthogonal MPS appears,
formed by A, B and ¥. Such substitutions can be repeated for infinite times, and
then we will have an infinite central-orthogonal MPS formed by ¥, A and B as

¢“‘an"‘ = Z e Aan72bn72bn71 Aanflbnflbn lIlanbnanrl Ban+1bn+lbn+2 Ban+2bn+2bn+3 e
{b}
(5.59)

One can see that the bond dimension of b,, is in fact the dimension cut-off of the
MPS.
Now, we have

Z=o po, (5.60)
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Fig. 5.15 The illustrations of \IJ*
the TRD in Eq. (5.62)

|

7 — v \Y
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I

where p is an infinite-dimensional matrix that has the form of an MPO (middle of
Fig.5.14) as

Povstt)yoee ooty = Z: T Tar'lfnancnﬂ Ta,’,+]Cn+1an+1Cn+2 e (5.61)
{c}

p is in fact one raw of the TN. Compared with Eq. (5.58), the difference of Z is only
a constant factor that can be given by the dominant eigenvalues of M~ and MR,

After the substitutions from Egs. (5.58)—(5.60), Z is still maximized by the given
@, since vL and v¥ are the dominant eigenvectors. Note that such a maximization
is reached under the assumption that the dominant eigenvector @ can be well
represented in an MPS with finite bond dimensions. Meanwhile, one can easily see
that the MPS is normalized |®...,,...| = 1, thanks to the orthogonality of A and B.
Then we come to a conclusion that @ is the optimal MPS that gives the dominant
eigenvector of p, satisfying @ = p®.3 Then, we can rewrite the TN contraction as
Z = limg o @7 pX @, where the infinite TN appears as pX (Fig. 5.14).

Now we define the tensor ring decomposition (TRD)*: with the following
conditions

+ Z (Eq.(5.58)) is maximized under the constraint that v* and v® are normalized,
. of p® is maximized under the constraint that @ is normalized,

the TRD (Fig. 5.15) of T is defined by T as

= L R
Tactac = Z 2 15y Pabsba Ve by Vebaby (5.62)
bibybsby

so that the TN contraction Z = Ta/c/acf’a/c/ac (Eq. (5.58)) is maximized. Like the
NTD and rank-1 decomposition, TRD belongs to the decompositions that encode
infinite TN’s, i.e., an infinite TN can be reconstructed from the self-consistent
equations (note the rank decomposition does not encode any TN’s). Comparing with

3For a Hermitian matrix M, v is its dominant eigenvector if [v| = 1 and v’ Mv is maximized.
4The definition of TRD given here is from Ref. [28], which is completely different from the tensor
ring decomposition proposed in Ref. [36]. While their TRD provides an approximation of a single
tensor, the TRD discussed in this paper is more like an encoding scheme of an infinite-size TN.
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Eq. (5.47), TRD is reduced to the rank-1 decomposition by taking the dimensions
of {b} as one.

It was shown that for the same system, the ground state obtained by iDMRG
is equivalent to the ground state by iTEBD, up to a gauge transformation [7, 37].
Different from this connection, TRD further unifies iDMRG and iTEBD. For
iTEBD, after combining the contraction and truncation given by Eqgs. (3.34) and
(3.38), we have the equation for updating the tensor there as

As,cc/: Z Txbs’b’As/,aa’Xab,cYa/b’,c/- (5.63)

s’aba’'b’

Looking at Egs. (5.55) and (5.55), Eq.(5.63) is just the eigenvalue equation for
updating v!E®] by plLBO] — prILETHILER]: the QR decomposition in Eq. (5.56)
guaranties that the “truncations in iTEBD” are implemented by isometries. In
other words, one can consider another MPS defined in the vertical direction,
which is formed by v!Z®1 and updated by the iTEBD algorithm. It means that
while implementing iDMRG in the parallel direction of the TN, one is in fact
simultaneously implementing iTEBD to update another MPS along the vertical
direction.

Particularly, when one uses iDMRG to solve the ground state of a 1D system,
the MPS formed by v!Z(®1 in the imaginary-time direction satisfies the continuous
structure [29, 38] that was originally proposed for continuous field theories [39].
Such an iTEBD calculation can also be considered as the transverse contraction of
the TN [38, 40, 41].

CTMRG [30, 42] is also closely related to the scheme given above, which leads
to the CTMRG without the corners. The tensors ¥, vl and v¥ correspond to the
row and column tensors, and the equations for updating these tensors are the same
to the equations of updating the row and column tensors in CTMRG (see Eqgs. (3.27)
and (3.31)). Such a relation becomes more explicit in the rank-1 case, when corners
become simply scalars. The difference is that in the original CTMRG by Orts et al.
[30], the tensors are updated with a power method, i.e., ¥ <« ¥ and LB
MIILBOYILB] Recently, eigen-solvers instead of power method were suggested in
CTMRG ([42] and a related review [43]), where the eigenvalue equations of the row
and column tensors are the same to those given in TRD. The efficiency was shown
to be largely improved with this modification.

5.4.2 Extracting the Information of Tensor Networks From
Eigenvalue Equations: Two Examples

In the following, we present how to extract the properties of the TN by taking
the free energy and correlation length as two example related to the eigenvalue
equations. Note that these quantities correspond to the properties of the physical
model and have been employed in many places (see, e.g., a review [44]). In the
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following, we treated these two quantities as the properties of the TN itself. When
the TN is used to represent different physical models, these quantities will be
interpreted accordingly to different physical properties.

For an infinite TN, the contraction usually gives a divergent or vanishing value.
The free energy per tensor of the TN is defined to measure the contraction as

, (5.64)

with Z the value of the contraction in theory and N denoting the number of tensors.
Such a definition is closely related to some physical quantities, such as the free
energy of classical models and the average fidelity of TN states [45]. Meanwhile, f
can enable us to compare the values of the contractions of two TN’s without actually
computing %

The free energy is given by the dominant eigenvalues of ML and M~ Let us
reverse the above reconstructing process to show this. Firstly, we use the MPS in
Eq. (5.59) to contract the TN in one direction, and have 2 = (limg _, o nK VoI =
limg _ o0 nX with 7 the dominant eigenvalue of p. The problem becomes getting 1.
By going from @' p® to Eq. (5.58), we can see that the eigenvalue problem of @ is

transformed to that of .7 in Eq. (5.57) multiplied by a constant limg_, K({< with
Ko the dominant eigenvalue of M’ and MR and K the number of tensors in p. Thus,
we have n = T’)()K§ with 1o the dominant eigenvalue of 7. Finally, we have the TN
contraction % = [r;mcég 1¥ = n&«l’ with KK = N.By substituting into Eq. (5.64),
we have f = —Inkg —limg_ (Inng)/ K1 = —Inko.

The second issue is about the correlations of the TN. The correlation function of
a TN can be defined as

F (77‘[1'1]’ T[rz]> - g(f"[rl]’ f[rz]> /% — g(’f‘[l‘l]’ T[rz]>
¥ (T[rﬂ, T[fﬂ) /%2, (5.65)

where Z(T™1], TI2]) denotes the contraction of the TN after substituting the
original tensors in the positions rq and rj by two different tensors 71! and T1¥2,
T'r1 denotes the original tensor at the position r.

Though the correlation functions depend on the tensors that are substituted with,
and can be defined in many different ways, the long-range behavior share some
universal properties. For a sufficiently large distance (|r; — rz| > 1), if 7"l and
T!r2] are in a same column, F satisfies

F ~ gmInir2l/s, (5.66)
One has the correlation length

& =1/(nno—Inny), (5.67)
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with ngo and 7 the two dominant eigenvalues of 7. If 7M1 and T'*2] are in a same
row, one has

§ =1/(Inko — Inky), (5.68)

with ko and k the two dominant eigen\jalues ~of MLE®),
To prove Eq. (5.67), we rewrite 2 (T*11, T1r2ly/ 2 ag

¥ (T[fﬂ, T[‘ﬂ) 1% =[®ip (T[fﬂ, T[‘ﬂ) o]/ (@quﬁ) . (5.69)

Then, introduce the transfer matrix M of @ pd,ie., o p® =TrM K with K —
oo. With the eigenvalue decomposition of .Z = ijz_ol njvjv ; with D the matrix
dimension and v; the j-th eigenvectors, one can further simply the equation as

5 (T[rl 7 rg]) /Y = (m/no)lrl_rz‘ ///( rl]) vjv ]T/// (f[n]) %
0

o

~.
Il

(5.70)

with .2 (T'"]) the transfer matrix after substituting the original tensor at r with Tl
Similarly, one has

¥ (T [r1] T) )% =i (T ( “1) v0, (5.71)
s (T, T“Z') /% = vl (T“zl) Y. (5.72)
Note that one could transform the MPS into a translationally invariant form (e.g.,

the canonical form) to uniquely define the transfer matrix of @¥p®. Substituting
the equations above in Eq. (5.65), one has

o

-1

F (T T) = 3 (/o)™ gt (FE0) vyl (T7) v, (573)
1

~.
Il

When the distance is sufficiently large, i.e., [r; — r2| > 1, only the dominant term
takes effects, which is

F (’f[l'l]’ f[l’ﬂ) ~ (/o) f/%( r1]> vl (T[n )vo. (5.74)

Compared with Eq. (5.66), one has £ = 1/(Inng — Inn;). The second case can be
proven similarly.

These two quantities are defined independently on specific physical models that
the TN might represent, thus they can be considered as the mathematical properties



126 5 Tensor Network Contraction and Multi-Linear Algebra

of the TN. By introducing physical models, these quantities are closely related to
the physical properties. For example, when the TN represents the partition function
of a classical lattice model, Eq. (5.64) multiplied by the temperature is exactly the
free energy. And the correlation lengths of the TN are also the physical correlation
lengths of the model in two spatial directions. When the TN gives the imaginary-
time evolution of an infinite 1D quantum chain, the correlation lengths of the TN
are the spatial and dynamical correlation length of the ground state.

It is a huge topic to investigate the properties of the TN’s or TN states. Paradigm
examples include injectivity and symmetries [46—61], statistics and fusion rules [62—
65]. These issues are beyond the scope of this lecture notes. One may refer to the
related works if interested.
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Chapter 6 ®
Quantum Entanglement Simulation e
Inspired by Tensor Network

Abstract This chapter is focused on the quantum entanglement simulation
approach (Ran et al., Phys Rev B 96:155120, 2017). The idea is to use few-
body models embedded in the “entanglement bath” to mimic the properties of large
and infinite-size quantum systems. The few-body models are dubbed as quantum
entanglement simulators. Generally speaking, the QES approach consists of three
stages: first, determine the effective interactions that give the infinite boundary
condition (Ran et al., Phys Rev B 96:155120, 2017; Phien et al., Phys Rev B
86:245107, 2012) by the MPS/PEPS methods, such as iDMRG in one dimension or
zero-loop scheme in two and three dimensions; second, construct the simulators by
surrounding a finite-size cluster of the targeted model with the effective interactions;
third, simulate the properties of the quantum entanglement simulator by the finite-
size algorithms or quantum hardware, and extract the properties of the targeted
model within the bulk.

6.1 Motivation and General Ideas

An impression one may have for the TN approaches of the quantum lattice models
is that the algorithm (i.e., how to contract and/or truncate) will dramatically change
when considering different models or lattices. This motivates us to look for more
unified approaches. Considering that a huge number of problems can be transformed
to TN contractions, one general question we may ask is: how can we reduce a
non-deterministic polynomial hard TN contraction problem approximately to an
effective one that can be computed exactly and efficiently by classical computers?
We shall put some principles while considering this question: the effective problem
should be as simple as possible, containing as few parameters to solve as possible.
We would like to coin this principle for TN contractions as the ab initio optimization
principle (AOP) of TN [1]. The term “ab inito” is taken here to pay respect to the
famous ab inito principle approaches in condensed matter physics and quantum
chemistry (see several recent reviews in [2—4]). Here, “ab inito” means to think from
the very beginning, with least prior knowledge of or assumptions to the problems.

© The Author(s) 2020 131
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One progress achieved in the spirit of AOP is the TRD introduced in Sect.5.4.
Considering the TN on an infinite square lattice, its contraction is reduced to a set
of self-consistent eigenvalue equations that can be efficiently solved by classical
computers. The variational parameters are just two tensors. One advantage of
TRD is that it connects the TN algorithms (iDMRG, iTEBD, CTMRG), which are
previously considered to be quite different, in a unified picture.

Another progress made in the AOP spirit is called QES for simulating infinite-
size physical models [1, 5, 6]. It is less dependent on the specific models; it
also provides a natural way for designing quantum simulators and for hybridized-
quantum-classical simulations of many-body systems. Hopefully in the future when
people are able to readily realize the designed Hamiltonians on artificial quantum
platforms, QES will enable us to design the Hamiltonians that will realize quantum
many-body phenomena.

6.2 Simulating One-Dimensional Quantum Lattice Models

Let us firstly take the ground-state simulation of the infinite-size 1D quantum system
as an example. The Hamiltonian is the summation of two-body nearest-neighbor
terms, which reads ﬁlnf =>, I:I,,,n+1. The translational invariance is imposed.
The first step is to choose a supercell (e.g., a finite part of the chain with N sites).
Then the Hamiltonian of the supercell is H B = Ziv: 1 1:1,1, n+1, and the Hamiltonian
connecting the supercell to the rest part is Hy = I-AI,,/, w+1 (note the interactions are
nearest neighbor).
Define the operator F? as

Fy=1—1H,, (6.1)

with © the Trotter-Suzuki step. This definition is to construct the Trotter-Suzuki
decomposition [7, 8]. Instead of using the exponential form e~ 7| we equivalently
chose to shift Hy for algorithmic consideration. The errors of these two ways
concerning the grourAld state are at the same level (€ (¢2)). Introduce an ancillary

index a and rewrite Fj as a sum of operators as

Fy =Y FL()aFR(s as (6.2)

where F' 7.(8)q and F r(s")4 are two sets of one-body operators (labeled by a) acting
on the left and right one of the two spins (s and s”) associated with Hy, respectively
(Fig.6.1). Equation (6.2) can be easily achieved directly from the Hamiltonian
or using eigenvalue decomposition. For example, for the Heisenberg interaction
with Hd = Za:x,yz Ju S"‘(s)S"‘(s) with S"‘(s) the spin operators. We have
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Fig. 6.1 Graphical §.
representations of a 2 a
Egs. (6.1)~(6.4) AT TR A
7 A 3
S
Fy = Za:O,x,y,z J,84(s)S4(s"y with 8O = 1, Jo = 1, J, = —1J, (o = x, v, 2),
hence we can define F7 (s)y = +/|Jal8%(s) and Fr(s)a = sign(Ja)y/|JalS%(s)).
Construct the operator G (8)a/a> with § = (s1, - - - , ;) representing the physical
spins inside the supercell, as
F(S)ara = Fr(s1)} Hp FL(s)as (6.3)

with I:IB =1- rI:IB. ﬁR(sl)Z, and ﬁL(S/(/)a act on the first and last sites of

the supercell, respectively. One can see that F (S)aq represents a set of operators
labeled by two indexes (a’ and a) that act on the supercell.

In the language of TN, the coefficients of .%#(S),, in the local basis (|S) =
[s1) -+ - |s5)) is a fourth-order cell tensor (Fig. 6.1) as

Tsasa = (S'1.F (S)aalS). (6.4)

On the left-hand side, the order of the indexes are arranged to be consistent with
the definition in the TN algorithm introduced in the precious sections. T is the cell
tensor, whose infinite copies form the TN of the imaginary-time evolution up to
the first Trotter-Suzuki order. One may consider the second Trotter-Suzuki order
by defining Z (S)aa a8 F(S)aa = (I — THp/2)Fr(s1)], F1(sj)al — THp/2).
With the cell tensor T, the ground-state properties can be solved using the TN
algorithms (e.g., TRD) introduced above. The ground state is given by the MPS
given by Eq. (5.59).

Let us consider one of the eigenvalue equations [also see Eq. (5.57)] in the TRD

L R
5, by Sbiby = Z TS/a/SaUa/b/lbl Vablyby* (6.5)

aa’

We define a new Hamiltonian .7 by using jfs/bi b, Sbyby 3 the coefficients

A= N Ay s sbis,1SBID5) (Shibal. (6.6)
S8’ bibyb) bl

A is the effective Hamiltonian in iDMRG [9-11] or the methods which represent
the RG of Hilbert space by MPS [12, 13]. The indexes {b} are considered as virtual
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spins with basis {|)}. The virtual spins are called the entanglement bath sites in the
QES.

By substituting with the cell tensor 7' [Egs. (6.3) and (6.4)] inside the above
equation, we have

H = 5, Hp A, (6.7)

where the Hamiltonians %ZL and ,}?R locate on the boundaries of f%z, whose
coefficients satisfy

(bysilALlbist) = ) vl (11 FRGsDls1), (6.8)
a

(b5l Arlsgba) = D (s IFLG 1S5

a

A, and Ak are just two-body Hamiltonians, of which each acts on the bath site

and its neighboring physical site on the boundary of the bulk; they define the infinite

boundary condition for simulating the time evolution of 1D quantum systems [14].
%”L and %”R can also be written in a shifted form as

<%2L(R) =1- ‘L'I:IL(R). (6.9)

This is because the tensor v’ (and also v¥) satisfies a special form [15] as
Vg by = Iob — 7 Qi (6.10)

iy = TRy (a > 0), 6.11)

with O and R two Hermitian matrices independent on 7. In other words, the MPS
formed by infinite copies of v’ or v¥ is a continuous MPS [16], which is known as
the temporal MPS [17]. Therefore, ﬁL( Rr) is independent on 7, called the physical-
bath Hamiltonian. Then H can be written as the shift of a few-body Hamiltonian
as A =1—1H rB, Where H rB has the standard summation form as

L
Hrp = H + Z Hypi1 + Hg. (6.12)

n=1

For ﬁL and H g with the bath dimension x, the coefficient matrix of H L(R) 18
(2x x 2x). Then ﬁL(R) can be generally expanded by S¥ @ P with {52} the
generators of the SU(y ) group, and define the magnetic field and coupling constants
associated to the entanglement bath

Hypy= Y s @ 5%, (6.13)

op,02
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with . denoting the SU() spin operators and S the operators of the physical spin
(with the identity included).

Let us take the bond dimension xy = 2 as an example, and H L(R) just gives the
Hamiltonian between two spin-1/2’s. Thus, it can be expanded by the spin (or Pauli)
operators S ® 8§ as

3
Hym= Y. JHg8a ®38e, (6.14)

ap,0=0

vAvhere Athe spin-1/2 operators are labeled as SO = g s St = S’x, §2 = §v , and
§3 = §%. Then with oy # 0 and a» # 0, we have Jzzfg as the coupling constants,

and Jzt(lg) and JE‘(XIZQ) the magnetic fields on the first and second sites, respectively.

JS?R) only provides a constant shift of the Hamiltonian which does not change the
eigenstates.

As an example, we show the H; and Hy for the infinite quantum Ising chain
in a transverse field [18]. The original Hamiltonian reads I:IISing =Y 8282

nPnPn+l T
o), S, and Hy and Hp satisfies

Ay = JLSESS + JL8I8 — hESY — hL3T — LS,
2 R& & R & R & R& "R 6.15)
Hg = JZxSIZVflS]):/ + Jzzslzvflslz\’ _hx SI{/ - hz SIZV - hx S}\rl—l'

The coupling constants and magnetic fields depend on the transverse field «, as
shown in Fig. 6.2. The calculation shows that except the Ising interactions and the
transverse field that originally appear in the infinite model, the §x 82 coupling and a
vertical field emerge in H 1 and H r- This is interesting, because the $% 87 interaction

1.0 2.0
—O—h O H
05l A 15p—4—h —— hT
\ ——h —<— R/
X X
o 1.0}
0.085. AR
x3\ Y L R
)\ :\7 —— sz —0O0— sz 05
05} Q.
%g - —— K
zz zz
0.0 oooo0——0——C
-1.0 'VVVV, 0-0-0-0——O a A e ) ) )
0.0 0.5 1.0 15 20 00 05 1.0 15 2.0
a a

Fig. 6.2 The a-dependence [18] of the coupling constants (left) and magnetic fields (right) of the
few-body Hamiltonians (Eq. (6.15)). Reused from [18] with permission
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is the stabilizer on the open boundaries of the cluster state, a highly entangled state
that has been widely used in quantum information sciences [19, 20]. More relations
with the cluster state are to be further explored.

The physical information of the infinite-size model can be extracted from the
ground state of Hpp (denoted by | (Sb1by))) by tracing over the entanglement-
bath degrees of freedom. To this aim, we calculate the reduced density matrix of the
bulk as

P(S) = Trp,p, ¥ (Sb1b2)) (¥ (Sb1by)]. (6.16)

Note |¥ (Sh1by)) = ZSblbz Wep, b, |Sb1b2) with Wy, 1, the eigenvector of Eq. (6.5)
or (5.57). It is easy to see that Wy, p, is the central tensor in the central-orthogonal
MPS (Eq. (5.59)), thus the 5(S) is actually the reduced density matrix of the MPS.
Since the MPS optimally gives the ground state of the infinite model, therefore,
0(S) of the few-body ground state optimally gives the reduced density matrix of the
original model.

In Eq. (6.12), the summation of the physical interactions is within the supercell
that we choose to construct the cell tensor. To improve the accuracy to, e.g., capture
longer correlations inside the bulk, one just needs to increase the supercell in Hrp.
In other words, H 1 and H g are obtained by TRD from the supercell of a tolerable

~ N A A N A
size N, and Hrp is constructed with a larger bulk as Hrp = Hy + Z,Ilvzl Hy 41+
H R With N’ > N. Though H rp becomes more expensive to solve, we have many

well-established finite-size algorithms to compute its dominant eigenvector. We will
show below that this way is extremely useful in higher dimensions.

6.3 Simulating Higher-Dimensional Quantum Systems

For (D > 1)-dimensional quantum systems on, e.g., square lattice, one can use dif-
ferent update schemes to calculate the ground state. Here, we explain an alternative
way by generalizing the above 1D simulation to higher dimensions [5]. The idea is
to optimize the physical-bath Hamiltonians by the zero-loop approximation (simple
update, see Sect.5.3), e.g., iIDMRG on tree lattices [21, 22], and then construct the
few-body Hamiltonian Hrp with larger bulks. The loops inside the bulk will be
fully considered when solving the ground state of Hpp, thus the precision will be
significantly improved compared with the zero-loop approximation.

The procedures are similar to those for 1D models. The first step is to contract the
cell tensor, so that the ground-state simulation is transformed to a TN contraction
problem. We choose the two sites connected by a parallel bond as the supercell,
and construct the cell tensor that parametrizes the eigenvalue equations. The bulk
interaction is simply the coupling between these two spins, i.e., H B = H, ,j» and

the interaction between two neighboring supercells is the same, i.e.  Hy = H,, j-By
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Fig. 6.3 Graphical
representation of the cell
tensor for 2D quantum
systems (Eq. (6.18))

shifting I:I;;, we define ﬁa =] — 11:13 and decompose it as

Fo =) FL(s)a ® Fr(s)a- (6.17)

F 1.(s)q and F R (s")4 are two sets of operators labeled by a that act on the two spins (s
and s”) in the supercell, respectively (see the texts below Eq. (6.2) for more detail).

Define a set of operators by the product of the (shifted) bulk Hamiltonian with
Fr.(s)q and Fg(s), (Fig.6.3) as

F (S ayarasas = FR()ay FR()ay FL( s Fr(5 oy HE, (6.18)

with § = (s, s’) and I:IAB = I — tHB. The cell tensor that defines the TN is given
by the coefficients of .# (S)4,ara3a, S

Ty saasasas = (517 (Sarazazas|S)- (6.19)

One can see that T has six bonds, of which two (S and S”) are physical and four (ay,
as, a3, and a4) are non-physical. For comparison, the tensor in the 1D quantum case
has four bonds, where two are physical and two are non-physical [see Eq. (6.4)]. As
discussed above in Sect. 4.2, the ground-state simulation becomes the contraction
of a cubic TN formed by infinite copies of 7. Each layer of the cubic TN gives the
operator p(t) = I — tH, which is a PEPO defined on a square lattice. Infinite layers
of the PEPO limg _, o, p(7)X give the cubic TN.

The next step is to solve the SEEs of the zero-loop approximation. For the same
model defined on the loopless Bethe lattice, the 3D TN is formed by infinite layers
of PEPO pperne () that is defined on the Bethe lattice. The cell tensor is defined
exactly in the same way as Eq. (6.19). With the Bethe approximation, there are five
variational tensors, which are ¥ (central tensor) and vl (x = 1,2,3, 4, boundary
tensors). Meanwhile, we have five self-consistent equations that encodes the 3D TN
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limg — o0 PBethe (T)X, which are given by five matrices as

— (1] [2] [3] [4]
%’b&béb;bﬁ,shlb2b3b4 - Z TS/S01a2a3a4vulb1b’1 vazbzblz a3b3b§ a4b4b£"
ajazazay
(6.20)
(1] _ Z [1]= (2] (1] 4]
arbybl azbsbly — T sarasazas A gy by 1), Vaybyly A Sbibabsba Vagbab,”
§'Sazashybybab
(6.21)
[2] _ Z [2]% (1] [2] [3]
arbybh,ashabl, — T sarasazas gy by, Vaybo, b, A Sbibabsba Vasbsby
§'Sayash b bsb,
(6.22)
[3] _ Z Te AR (2] [3] v[4]
arbib},azb3by — §'Sarazazas gyt bbb, Cazbablh © Sb1babsba Cazbybl,’
§'Sazashyblybab,
(6.23)
[4] _ Z [4]x (1] (41 (3]
aybybly,ashybl, — T sarasazas A v, b, Vay by ) A Sbrbabsbs Vashsb,
§'Sayash bbb
(6.24)

Equations (6.20) and (6.22) are illustrated in Fig. 6.4 as two examples. A is an
isometry obtained by the QR decomposition (or SVD) of the central tensor ¥
referring to the x-th virtual bond b,. For example, for x = 2, we have (Fig. 6.4)

— [2] (2]
lprlbzb3b4 = Z ASb]bb3b4 Rbbz . (625)
b

Fig. 6.4 The left figure is the graphic representations of ,}{fg,br] bbbl Sbybabsbs in Eq. (6.20), and
we take Eq. (6.22) from the self-consistent equations as an example shown in the middle. The QR
decomposition in Eq. (6.25) is shown in the right figure, where the arrows indicate the direction of
orthogonality of APl in Eq. (6.26)
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Al is orthogonal, satisfying

[2]* [2] _
Z ASblbb3b4ASb1h’b3b4 = lpp- (6.26)
Sb1b3by

The self-consistent equations can be solved recursively. By solving the leading
eigenvector of J# given by Eq.(6.20), we update the central tensor ¥. Then
according to Eq.(6.25), we decompose ¥ to obtain A), then update M) in
Egs. (6.21)—(6.24), and update each v*! by M*1y[*1. Repeat this process until all the
five variational tensors converge. The algorithm is the generalized DMRG based on
infinite tree PEPS [21, 22]. Each boundary tensor can be understood as the infinite
environment of a tree branch, thus the original model is actually approximated at
this stage by that defined on an Bethe lattice. Note that when only looking at the
tree locally (from one site and its nearest neighbors), it looks the same to the original
lattice. Thus, the loss of information is mainly long range, i.e., from the destruction
of loops.

We can have a deeper understanding of the Bethe approximation with the help
of rank-1 decomposition explained in Sect.5.3. Equations (6.21)—(6.24) encode
a Bethe TN, whose contraction is written as Zpgethe = <(§|)6Bethe(f)|§5> with
OBethe(t) the PEPO of the Bethe model and |®) a tree iPEPS (Fig.6.5). To see
this, let us start with the local contraction (Fig. 6.5a) as

— * (1 [2] [3] (4]
Zpethe = Z Ws’bibébébf‘ Wsbib2b3bs TS/S“WZ‘”‘”va1blb/l arbabl “azb3 b Ua4b4bg' (6.27)

3
Then, each v*1 can be replaced by M*1y*] because we are at the fixed point of the
eigenvalue equations. By repeating this substitution in a similar way as the rank-1
decomposition in Sect. 5.3.3, we will have the TN for Zp.spe, Which is maximized
at the fixed point (Fig. 6.5b). With the constraint (é|q3) = 1 satisfied, |<15) is the
ground state of Ogerne (T).

(a) Ny ()

%

V

LIJ

g

Fig. 6.5 The left figure shows the local contraction that encodes the infinite TN for simulating
the 2D ground state. By substituting with the self-consistent equations, the TN representing Z =
(D|pBetne(T)|®) can be reconstructed, with ppespe(t) the tree PEPO of the Bethe model and |®)
a PEPS
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Now, we constrain the growth so that the TN covers the infinite square lattice.
Inevitably, some v*ls will gather at the same site. The tensor product of these v*1s
in fact gives the optimal rank-1 approximation of the “correct” full-rank tensor here
(Sect. 5.3.3). Suppose that one uses the full-rank tensor to replace its rank-1 version
(the tensor product of four vl¥1s), one will have the PEPO of I — tH (with H the
Hamiltonian on square lattice), and the tree iPEPS becomes the iPEPS defined on the
square lattice. Compared with the NCD scheme that employs rank-1 decomposition
explicitly to solve TN contraction, one difference here for updating iPEPS is that the
“correct” tensor to be decomposed by rank-1 decomposition contains the variational
tensor, thus is in fact unknown before the equations are solved. For this reason, we
cannot use rank-1 decomposition directly. Another difference is that the constraint,
i.e., the normalization of the tree iPEPS, should be fulfilled. By utilizing the iDMRG
algorithm with the tree iPEPS, the rank-1 tensor is obtained without knowing
the “correct” tensor, and meanwhile the constraints are satisfied. The zero-loop
approximation of the ground state is thus given by the tree iPEPS.

The few-body Hamiltonian is constructed in a larger cluster, so that the error
brought by zero-loop approximation can be reduced. Similar to the 1D case, we
embed a larger cluster in the middle of the entanglement bath. The few-body
Hamiltonian (Fig. 6.6) is written as

H = [ A,y [ U—tHGispl (628

(necluster,ae€bath) (i,j)ecluster
%% (n, o) is defined as the physical-bath Hamiltonian between the «-th bath site and

the neighboring n-th physical site, and it is obtained by the corresponding boundary
tensor vI*@! and Fr(r)(sn) (Fig.6.6) as

(Bisy| A (n, )lbasn) = Y vyl (s 1 FL k) (sn)alsn)- (6.29)
a

L(R)

Fig. 6.6 The left figure shows the few-body Hamiltonian S in Eq. (6.28). The middle one shows
the physical-bath Hamiltonian ) that gives the interaction between the corresponding physical
and bath site. The right one illustrates the state ansatz for the infinite system. Note that the boundary
of the cluster should be surrounded by H5’s, and each 5 corresponds to an infinite tree brunch in
the state ansatz. For simplicity, we only illustrate four of the Hhs and the corresponding brunches
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Here, F L(R)(Sn)q 1s the operator defined in Eq. (6.17), and v[[;;(,og are the solutions

of the SEEs given in Egs. (6.20)—(6.24).

. J€ in Eq. (6.28) can also be rewri}ten as the shift of a few-body Hamiltonian
Hpp,ie., ¢ = 1 —tHpp. We have Hpp possessing the standard summation form
as

Hrp = Z H(si,s)) + Z Hpp(n,a), (6.30)

(i,j)€ecluster (necluster,aebath)

with %%(n, o) =1 — tH pB(su, by). This equations gives a general form of the
few-body Hamiltonian: the first term contains all the physical interactions inside
the cluster, and the second contains all physical-bath interactions H pB(Sn, by). A
can be solved by any finite-size algorithms, such as exact diagonalization, QMC,
DMRG [9, 23, 24], or finite-size PEPS [25-27] algorithms. The error from the rank-
1 decomposition will be reduced since the loops inside the cluster will be fully
considered.

Similar to the 1D cases, the ground-state properties can be extracted by the
reduced density matrix o(S) after tracing over the entanglement-bath degrees of
freedom. We have p(S) = Tr/(s)|®)(®| (with |®) the ground state of the infinite
model) that well approximate by

PO Y W s SIS (631)
SS'biby---

with Wgy,,p,... the coefficients of the ground state of H FB.

Figure 6.6 illustrates the ground state ansatz behind the few-body model. The
cluster in the center is entangled with the surrounding infinite tree brunches through
the entanglement-bath degrees of freedom. Note that solving Eq. (6.20) in Stage one
is equivalent to solving Eq. (6.28) by choose the cluster as one supercell.

Some benchmark results of simulating 2D and 3D spin models can be found in
Ref. [5]. For the ground state of Heisenberg model on honeycomb lattice, results of
the magnetization and bond energy show that the few-body model of 18 physical
and 12 bath sites suffers only a small finite-effect of O(10~3). For the ground state
of 3D Heisenberg model on cubic lattice, the discrepancy of the energy per site is
0 (1073) between the few-body model of 8 physical plus 24 bath sites and the model
of 1000 sites by QMC. The quantum phase transition of the quantum Ising model on
cubic lattice can also be accurately captured by such a few-body model, including
determining the critical field and the critical exponent of the magnetization.
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6.4 Quantum Entanglement Simulation by Tensor Network:
Summary

Below, we summarize the QES approach for quantum many-body systems with few-
body models [1, 5, 6]. The QES contains three stages (Fig. 6.7) in general. The first
stage is to optimize the physical-bath interactions by classical computations. The
algorithm can be iDMRG in one dimension or the zero-loop schemes in higher
dimensions. The second stage is to construct the few-body model by embedding
a finite-size cluster in the entanglement bath, and simulate the ground state of
this few-body model. One can employ any well-established finite-size algorithms
by classical computations, or build the quantum simulators according to the few-
body Hamiltonian. The third stage is to extract physical information by tracing
over all bath degrees of freedom. The QES approach has been generalized to
finite-temperature simulations for one-, two-, and three-dimensional quantum lattice
models [6].

As to the classical computations, one will have a high flexibility to balance
between the computational complexity and accuracy, according to the required
precision and the computational resources at hand. On the one hand, thanks to the
zero-loop approximation, one can avoid the conventional finite-size effects faced by
the previous exact diagonalization, QMC, or DMRG algorithms with the standard
finite-size models. In the QES, the size of the few-body model is finite, but the actual
size is infinite as the size of the defective TN (see Sect. 5.3.3). The approximation
is that the loops beyond the supercell are destroyed in the manner of the rank-1
approximation, so that the TN can be computed efficiently by classical computation.
On the other hand, the error from the destruction of the loops can be reduced in the
second stage by considering a cluster larger than the supercell. It is important that
the second stage would introduce no improvement if no larger loops were contained
in the enlarged cluster. From this point of view, we have no “finite-size” but “finite-
loop” effects. In addition, this “loop” scheme explains why we can flexibly change
the size of the cluster in stage two: which is just to restore the rank-1 tensors inside
the chosen cluster with the full tensors.

The relations among other algorithms are illustrated in Fig. 6.8 by taking certain
limits of the computational parameters. The simplest situation is to take the
dimension of the bath sites dim(b) = 1, and then %) can be written as a linear
combination of spin operators (and identity). Thus in this case, v!*! simply plays

Stage Two:

Stage One: classical/quantum Stage Three:

imi : simulation of

Original optimize boundary [™g; o /e SmLaton o Ground state frace out
. interaction few-body model . the boundary
lattice model bulk+boundary|_____5, | of FB model
i iDMRG/Simple & ED/DMRG/QMC %) P=Tr, W)
-update Quantum simulator -

Fig. 6.7 The “ab initio optimization principle” to simulate quantum many-body systems
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Fig. 6.8 Relations to the algorithms (PEPS, DMRG, and ED) for the ground-state simulations of
2D and 3D Hamiltonian. The corresponding computational set-ups in the first (bath calculation)
and second (solving the few-body Hamiltonian) stages are given above and under the arrows,
respectively. Reused from [5] with permission

the role of a classical mean field. If one only uses the bath calculation of the first
stage to obtain the ground-state properties, the algorithm will be reduced to the
zero-loop schemes such as tree DMRG and simple update of iPEPS. By choosing
a large cluster and dim(b) = 1, the DMRG simulation in stage two becomes
equivalent to the standard DMRG for solving the cluster in a mean field. By taking
proper supercell, cluster, algorithms, and other computational parameters, the QES
approach can outperform others.

The QES approach with classical computations can be categorized as a cluster
update scheme (see Sect. 4.3) in the sense of classical computations. Compared with
the “traditional” cluster update schemes [26, 28-30], there exist some essential
differences. The “traditional” cluster update schemes use the super-orthogonal
spectra to approximate the environment of the iPEPS. The central idea of QES is
different, which is to give an effective finite-size Hamiltonian; the environment is
mimicked by the physical-bath Hamiltonians instead of some spectra.

In addition, it is possible to use full update in the first stage to optimize the
interactions related to the entanglement bath. For example, one may use TRD
(iDMRG, iTEBD, or CTMRG) to compute the environment tensors, instead of the
zero-loop schemes. This idea has not been realized yet, but it can be foreseen that the
interactions among the bath sites will appear in Hrp. Surely the computation will
become much more expensive. It is not clear yet how the performance would be.

The idea of “bath” has been utilized in many approaches and gained tremendous
successes. The general idea is to mimic the target model of high complexity by a
simpler model embedded in a bath. The physics of the target model can be extracted
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Table 6.1 The effective models under several bath-related methods: density functional theory
(DFT, also known as the ab initio calculations), dynamical mean-field theory (DMFT), and QES

Methods DFT DMFT QES

Effective models | Tight binding model | Single impurity model | Interacting few-body model

by integrating over the bath degrees of freedom. The approximations are reflected
by the underlying effective model. Table 6.1 shows the effective models of two
recognized methods (DFT and dynamic mean-field theory (DMFT) [31]) and the
QES. An essential difference is that the effective models of the former two methods
are of single-particle or mean-field approximations, and the effective model of the
QES is strongly correlated.

The QES allow for quantum simulations of infinite-size many-body systems by
realizing the few-body models on the quantum platforms. There are several unique
advantages. The first one concerns the size. One of the main challenges to build a
quantum simulator is to access a large size. In this scheme, a few-body model of
only O(10) sites already shows a high accuracy with the error ~0(1073) [1, 5].
Such sizes are accessible by the current platforms. Secondly, the interactions in the
few-body model are simple. The bulk just contains the interactions of the original
physical model. The physical-bath interactions are only two-body and nearest
neighbor. But there exist several challenges. Firstly, the physical-bath interaction for
simulating, e.g., spin-1/2 models, is between a spin-1/2 and a higher spin. This may
require the realization of the interactions between SU(N) spins, which is difficult
but possible with current experimental techniques [32—-35]. The second challenge
concerns the non-standard form in the physical-bath interaction, such as the §x 82
coupling in Hpp for simulating quantum Ising chain [see Eq. (6.15)] [18]. With
the experimental realization of the few-body models, the numerical simulations of
many-body systems will not only be useful to study natural materials. It would
become possible to firstly study the many-body phenomena by numerics, and then
realize, control, and even utilize these many-body phenomena in the bulk of small
quantum devices.

The QES Hamiltonian was shown to also mimics the thermodynamics [6]. The
finite-temperature information is extracted from the reduced density matrix

PR = Trpah o, (6.32)
with p = e~ 7727 the density matrix of the QES at the temperature T and Trpa
the trace over the degrees of freedom of the bath sites. pg mimics the reduced
density matrix of infinite-size system that traces over everything except the bulk.
This idea has been used to simulate the quantum models in one, two, and three
dimensions. The QES shows good accuracy at all temperatures, where relatively
large error appears near the critical/crossover temperature.
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One can readily check the consistency with the ground-state QES. When the
ground state is unique, the density matrix is defined as 6 = |W¥)(¥| with |¥) the
ground state of the QES. In this case, Egs. (6.32) and (6.16) are equivalent. With
degenerate ground states, the equivalence should still hold when the spontaneous
symmetry breaking occurs. With the symmetry preserved, it is an open question
how the ground-state degeneracy affects the QES, where at zero temperature we
have p = Za@ [P ) (W, ]/ 2 with {|¥,)} the degenerate ground states and & the
degeneracy.
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Chapter 7 )
Summary e

The explosive progresses of TN that have been made in the recent years opened
an interdisciplinary diagram for studying varieties of subjects. What is more, the
theories and techniques in the TN algorithms are now evolving into a new numerical
field, forming a systematic framework for numerical simulations. Our lecture notes
are aimed at presenting this framework from the perspective of the TN contraction
algorithms for quantum many-body physics.

The basic steps of the TN contraction algorithms are to contract the tensors and to
truncate the bond dimensions to bound the computational cost. For the contraction
procedure, the key is the contraction order, which leads to the exponential, lin-
earized, and polynomial contraction algorithms according to how the size of the TN
decreases. For the truncation, the key is the environment, which plays the role of the
reference for determining the importance of the basis. We have the simple, cluster,
and full decimation schemes, where the environment is chosen to be a local tensor,
a local but larger cluster, and the whole TN, respectively. When the environment
becomes larger, the accuracy increases, but so do the computational costs. Thus, it
is important to balance between the efficiency and accuracy. Then, we show that by
explicitly writing the truncations in the TN, we are essentially dealing with exactly
contractible TNs.

Compared with the existing reviews of TN, a unique perspective that our notes
discuss about is the underlying relations between the TN approaches and the multi-
linear algebra (MLA). Instead of iterating the contraction-and-truncation process,
the idea is to build a set of local self-consistent eigenvalue equations that could
reconstruct the target TN. These self-consistent equations in fact coincide with or
generalize the tensor decompositions in MLA, including Tucker decomposition,
rank-1 decomposition and its higher-rank version. The equations are parameterized
by both the tensor(s) that define the TN and the variational tensors (the solution of
the equations), thus can be solved in a recursive manner. This MLA perspective
provides a unified scheme to understand the established TN methods including
iDMRG, iTEBD, and CTMRG. In the end, we explain how the eigenvalue equations
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lead to the quantum entanglement simulation (QES) of the lattice models. The
central idea of QES is to construct an effective few-body model surrounded by the
entanglement bath, where its bulk mimics the properties of the infinite-size model
at both zero and finite temperatures. The interactions between the bulk and the bath
are optimized by the TN methods. The QES provides an efficient way for simulating
one-, two-, and even three-dimensional infinite-size many-body models by classical
computation and/or quantum simulation.

With the lecture notes, we expect that the readers could use the existing TN
algorithms to solve their problems. Moreover, we hope that those who are interested
in TN itself could get the ideas and the connections behind the algorithms to develop
novel TN schemes.
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