
LN
BI

P
28

3

18th International Conference, XP 2017
Cologne, Germany, May 22–26, 2017
Proceedings

Agile Processes
in Software Engineering
and Extreme Programming

Hubert Baumeister
Horst Lichter
Matthias Riebisch (Eds.)

Lecture Notes
in Business Information Processing 283

Series Editors

Wil M.P. van der Aalst
Eindhoven Technical University, Eindhoven, The Netherlands

John Mylopoulos
University of Trento, Trento, Italy

Michael Rosemann
Queensland University of Technology, Brisbane, QLD, Australia

Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7911

http://www.springer.com/series/7911

Hubert Baumeister • Horst Lichter
Matthias Riebisch (Eds.)

Agile Processes
in Software Engineering
and Extreme Programming
18th International Conference, XP 2017
Cologne, Germany, May 22–26, 2017
Proceedings

Editors
Hubert Baumeister
Technical University of Denmark
Kongens Lyngby
Denmark

Horst Lichter
RWTH Aachen University
Aachen
Germany

Matthias Riebisch
University of Hamburg
Hamburg
Germany

ISSN 1865-1348 ISSN 1865-1356 (electronic)
Lecture Notes in Business Information Processing
ISBN 978-3-319-57632-9 ISBN 978-3-319-57633-6 (eBook)
DOI 10.1007/978-3-319-57633-6

Library of Congress Control Number: 2017937714

© The Editor(s) (if applicable) and The Author(s) 2017. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book's Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book's Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://creativecommons.org/licenses/by/4.0/

Preface

The 18th XP conference was held 2017 in the wonderful city of Cologne, Germany.
In the spirit of past XP conferences, XP 2017 was a place where researchers and
practitioners met to exchange new ideas and present their work. These proceedings
contain the full research papers, short research papers, and doctoral symposium papers
presented at the conference.

In all, 46 research papers were submitted (39 full and seven short papers). All
submitted papers went through a thorough review process, with each paper receiving at
least three reviews. Finally, the Program Committee accepted 14 papers as full research
papers (an acceptance rate of 35%). Moreover, six papers — submitted as short or full
research papers — were accepted as short research papers. The selected papers cover a
wide range of agile techniques and approaches. Many of them present results of
empirical studies aiming to systematically evaluate successful agile practices, others are
technology studies that are relevant to both researchers and practitioners.

In the tradition of former XP conferences, the XP 2017 conference program offered
many different session topics. Besides the scientific program, i.e., the research track,
doctoral symposium, and scientific workshops, the conference featured an industry and
practice track, experience reports, and Open Space sessions. Materials from all of these
sessions are available on the conference website at www.xp2017.org.

Moreover, three keynotes were given by highly renowned speakers. Andrea Goulet
from Corgibytes presented a talk on “Makers and Menders: Putting the Right Devel-
opers on the Right Projects” focusing on a group of developers called “menders” –

people who love taking an existing project and making it better over time. In his
keynote “End-to-End Agility at GitHub” Alain Hélaïli talked about the organization
and the efficient workflows at GitHub. Finally, Claes Wohlin from Blekinge Institute of
Technology answered the question “Evidence-Driven Change in Software Develop-
ment: Is It Feasible?”

Many people contributed to the success of the XP 2017 conference. We would like
to thank everyone, especially the authors and presenters of all papers, the Program
Committee members, the volunteers, and sponsors. Furthermore, we want to express
our gratitude to the XP 2017 organizers; they did a great job.

March 2017 Hubert Baumeister
Horst Lichter

Matthias Riebisch

http://www.xp2017.org

Organization

Organizing Committee

General Chair

Jutta Eckstein IT communication, Germany

Conference Chairs

Marc Clemens codecentric AG, Germany
Nils Wloka codecentric AG, Germany

Academic Program Committee

Academic Program Chairs

Hubert Baumeister Technical University of Denmark
Horst Lichter RWTH Aachen University, Germany
Matthias Riebisch University of Hamburg, Germany

Scientific Workshops

Roberto Tonelli University of Cagliari, Italy

Poster Chair

Ademar Aguiar University of Porto, Portugal

PhD Symposium Chair

Stefan Wagner University of Stuttgart, Germany

Industrial Program Committee

Tutorials/Workshops

Nancy Van
Schooenderwoert

Lean-Agile Partners, USA

Working Software

Aslak Hellesøy Cucumber, UK

Individuals and Interaction

Diana Larsen FutureWorks Consulting, USA

Customer Collaboration

Ken Power Cisco Systems, Ireland

Responding to Change

Jan Coupette codecentric AG, Germany

Experience Reports

Rebecca Wirfs-Brock Wirfs-Brock Associates, USA
Avraham Poupko Cisco Systems, Israel

Open Space

Alexander Kylburg Paragraph Eins, Germany

Program Committee (Research Papers)

Ademar Aguiar University of Porto, Portugal
Mikio Aoyama Nanzan University, Japan
Leonor Barroca The Open University, UK
Hubert Baumeister Technical University of Denmark, Denmark
Jan Bosch Chalmers University of Technology, Sweden
Steve Counsell Brunel University, UK
Torgeir Dingsøyr SINTEF, Norway
Christof Ebert Vector Consulting Services, Germany
Hakan Erdogmus Carnegie Mellon University, USA
Juan Garbajosa Technical University of Madrid, Spain
Alfredo Goldman University of São Paulo, Brazil
Des Greer Queen’s University Belfast, UK
Peggy Gregory University of Central Lancashire, UK
Rashina Hoda The University of Auckland, New Zealand
Helena Holmström Olsson Malmö University, Sweden
Casper Lassenius MIT, USA
Horst Lichter RWTH Aachen University, Germany
Lech Madeyski Wroclaw University of Science and Technology, Poland
Michele Marchesi University of Cagliari, Italy
Sabrina Marczak Pontifícia Universidade Católica do Rio Grande do Sul,

Brazil
Tommi Mikkonen University of Helsinki, Finland
Alok Mishra Atilim University, Turkey
Nils Brede Moe SINTEF, Norway
Juergen Muench Reutlingen University and University of Helsinki,

Germany/Finland
Sridhar Nerur University of Texas at Arlington, USA
Maria Paasivaara Helsinki University of Technology, Finland
Kai Petersen Blekinge Institute of Technology/Ericsson AB, Sweden

VIII Organization

Matthias Riebisch University of Hamburg, Germany
Pilar Rodríquez University of Oulu, Finland
Knut H. Rolland Westerdals Oslo School of Arts, Communication

and Technology, Norway
Bernhard Rumpe RWTH Aachen University, Germany
Kurt Schneider Leibniz Universität Hannover, Germany
Helen Sharp The Open University, UK
Darja Smite Blekinge Institute of Technology, Sweden
Roberto Tonelli University of Cagliari, Italy
Rini Van Solingen Delft University of Technology, The Netherlands
Stefan Wagner University of Stuttgart, Germany
Xiaofeng Wang Free University of Bozen-Bolzano, Italy
Hironori Washizaki Waseda University, Japan
Agustin Yague Universidad Politecnica de Madrid, Spain

Reviewers (Industry and Practice)

Giovanni Asproni Asprotunity, UK
Emily Bache Bache Consulting, Sweden
Filipe Correia Uphold, Portugal
Aino Corry Metadeveloper, Denmark
Lisa Crispin Pivotal, USA
Jutta Eckstein IT communication, Germany
Sallyann Freudenberg Sallyann Freudenberg Consulting, UK
Steve Holyer Steve Holyer and Associates, Switzerland
Lise Hvatum Schlumberger, USA
Allan Rennebo Jepsen Core Agile, Denmark
Jason Kerney Hunter Industries, USA
David Kramer Agile New England, USA
Casper Lassenius Aalto University, Finland
Olaf Lewitz trustartist.com, Germany
Ralph Miarka sinnvollFÜHREN, Austria
Maria Paasivaara Alto University, Finland
Dana Pylayeva Hudson’s Bay Company, USA
Seb Rose Cucumber, UK
Johanna Rothman Rothman Consulting Group, USA
Aki Salmi Ambientia, Finland
Andreas Schliep Das ScrumTeam, Switzerland
Irina Tsyganok Yoox Net-A-Porter Group
Nils Wloka codecentric AG, Germany
Joseph Yoder The Refactory, USA
Joe Wright Arnold Clark Automobiles, UK

Organization IX

Additional Reviewers

Adam, Kai
Bjørnson, Finn Olav
Britto, Ricardo
Butting, Arvid
Da Silva, Tiago Silva
Díaz, Jessica
Edison, Henry
Fernández-Sánchez, Carlos
Fögen, Konrad

Kautz, Oliver
Kusmenko, Evgeny
Raco, Deni
Santana, Célio
Santos, Viviane
Stray, Viktoria
Vestues, Kathrine
Wang, Yang

Sponsors

“Cologne Cathedral” Sponsor

REWE digital

“Albertus Magnus” Sponsor

Accenture Interactive

“River Rhine” Sponsors

DATEV
EPLAN Software & Service
OPITZ CONSULTING
XebiaLabs

“Kölsch” Sponsor

Hänneschen and Bärbelchen

Organizer

codecentric

X Organization

Contents

Improving Agile Processes

Reflection in Agile Retrospectives. 3
Yanti Andriyani, Rashina Hoda, and Robert Amor

What Influences the Speed of Prototyping? An Empirical Investigation
of Twenty Software Startups . 20

Anh Nguyen-Duc, Xiaofeng Wang, and Pekka Abrahamsson

Key Challenges in Agile Requirements Engineering 37
Eva-Maria Schön, Dominique Winter, María José Escalona,
and Jörg Thomaschewski

Eeny, Meeny, Miny, Mo...: A Multiple Case Study on Selecting
a Technique for User-Interaction Data Collecting . 52

Sampo Suonsyrjä

Comparing Requirements Decomposition Within the Scrum, Scrum
with Kanban, XP, and Banana Development Processes 68

Davide Taibi, Valentina Lenarduzzi, Andrea Janes, Kari Liukkunen,
and Muhammad Ovais Ahmad

Effects of Technical Debt Awareness: A Classroom Study 84
Graziela Simone Tonin, Alfredo Goldman, Carolyn Seaman,
and Diogo Pina

Agile in Organizations

Don’t Forget to Breathe: A Controlled Trial of Mindfulness Practices
in Agile Project Teams . 103

Peter den Heijer, Wibo Koole, and Christoph J. Stettina

Enhancing Agile Team Collaboration Through the Use of Large Digital
Multi-touch Cardwalls . 119

Martin Kropp, Craig Anslow, Magdalena Mateescu, Roger Burkhard,
Dario Vischi, and Carmen Zahn

Knowledge Sharing in a Large Agile Organisation: A Survey Study 135
Kati Kuusinen, Peggy Gregory, Helen Sharp, Leonor Barroca,
Katie Taylor, and Laurence Wood

http://dx.doi.org/10.1007/978-3-319-57633-6_1
http://dx.doi.org/10.1007/978-3-319-57633-6_2
http://dx.doi.org/10.1007/978-3-319-57633-6_2
http://dx.doi.org/10.1007/978-3-319-57633-6_3
http://dx.doi.org/10.1007/978-3-319-57633-6_4
http://dx.doi.org/10.1007/978-3-319-57633-6_4
http://dx.doi.org/10.1007/978-3-319-57633-6_5
http://dx.doi.org/10.1007/978-3-319-57633-6_5
http://dx.doi.org/10.1007/978-3-319-57633-6_6
http://dx.doi.org/10.1007/978-3-319-57633-6_7
http://dx.doi.org/10.1007/978-3-319-57633-6_7
http://dx.doi.org/10.1007/978-3-319-57633-6_8
http://dx.doi.org/10.1007/978-3-319-57633-6_8
http://dx.doi.org/10.1007/978-3-319-57633-6_9

Teaching Agile Methods to Software Engineering Professionals:
10 Years, 1000 Release Plans . 151

Angela Martin, Craig Anslow, and David Johnson

Are Software Startups Applying Agile Practices? The State of the Practice
from a Large Survey . 167

Jevgenija Pantiuchina, Marco Mondini, Dron Khanna, Xiaofeng Wang,
and Pekka Abrahamsson

Adopting Test Automation on Agile Development Projects:
A Grounded Theory Study of Indian Software Organizations 184

Sulabh Tyagi, Ritu Sibal, and Bharti Suri

Safety Critical Software

How is Security Testing Done in Agile Teams? A Cross-Case Analysis
of Four Software Teams. 201

Daniela Soares Cruzes, Michael Felderer, Tosin Daniel Oyetoyan,
Matthias Gander, and Irdin Pekaric

An Assessment of Avionics Software Development Practice:
Justifications for an Agile Development Process . 217

Geir K. Hanssen, Gosse Wedzinga, and Martijn Stuip

Short Research Papers

Inoculating an Agile Company with User-Centred Design:
An Empirical Study. 235

Silvia Bordin and Antonella De Angeli

On the Usage and Benefits of Agile Methods & Practices: A Case Study
at Bosch Chassis Systems Control . 243

Philipp Diebold and Udo Mayer

Checklists to Support Test Charter Design in Exploratory Testing 251
Ahmad Nauman Ghazi, Ratna Pranathi Garigapati, and Kai Petersen

Discovering Software Process Deviations Using Visualizations 259
Anna-Liisa Mattila, Kari Systä, Outi Sievi-Korte, Marko Leppänen,
and Tommi Mikkonen

Exploring Workflow Mechanisms and Task Allocation Strategies
in Agile Software Teams . 267

Zainab Masood, Rashina Hoda, and Kelly Blincoe

XII Contents

http://dx.doi.org/10.1007/978-3-319-57633-6_10
http://dx.doi.org/10.1007/978-3-319-57633-6_10
http://dx.doi.org/10.1007/978-3-319-57633-6_11
http://dx.doi.org/10.1007/978-3-319-57633-6_11
http://dx.doi.org/10.1007/978-3-319-57633-6_12
http://dx.doi.org/10.1007/978-3-319-57633-6_12
http://dx.doi.org/10.1007/978-3-319-57633-6_13
http://dx.doi.org/10.1007/978-3-319-57633-6_13
http://dx.doi.org/10.1007/978-3-319-57633-6_14
http://dx.doi.org/10.1007/978-3-319-57633-6_14
http://dx.doi.org/10.1007/978-3-319-57633-6_15
http://dx.doi.org/10.1007/978-3-319-57633-6_15
http://dx.doi.org/10.1007/978-3-319-57633-6_16
http://dx.doi.org/10.1007/978-3-319-57633-6_16
http://dx.doi.org/10.1007/978-3-319-57633-6_17
http://dx.doi.org/10.1007/978-3-319-57633-6_18
http://dx.doi.org/10.1007/978-3-319-57633-6_19
http://dx.doi.org/10.1007/978-3-319-57633-6_19

Are Daily Stand-up Meetings Valuable? A Survey of Developers
in Software Teams . 274

Viktoria Stray, Nils Brede Moe, and Gunnar R. Bergersen

Doctoral Symposium Papers

Knowledge Management and Reflective Practice in Daily Stand-Up
and Retrospective Meetings . 285

Yanti Andriyani

Self-Assignment: Task Allocation Practice in Agile Software Development. . . . 292
Zainab Masood

Software Development Practices Patterns . 298
Herez Moise Kattan and Alfredo Goldman

Author Index . 305

Contents XIII

http://dx.doi.org/10.1007/978-3-319-57633-6_20
http://dx.doi.org/10.1007/978-3-319-57633-6_20
http://dx.doi.org/10.1007/978-3-319-57633-6_21
http://dx.doi.org/10.1007/978-3-319-57633-6_21
http://dx.doi.org/10.1007/978-3-319-57633-6_22
http://dx.doi.org/10.1007/978-3-319-57633-6_23

Improving Agile Processes

Reflection in Agile Retrospectives

Yanti Andriyani1(✉), Rashina Hoda1, and Robert Amor2

1 SEPTA Research, Department of Electrical and Computer Engineering,
The University of Auckland, Building 903, 386 Khyber Pass, New Market,

1023 Auckland, New Zealand
yand610@aucklanduni.ac.nz, r.hoda@auckland.ac.nz

2 Department of Computer Science, The University of Auckland, Auckland, New Zealand
trebor@cs.auckland.ac.nz

Abstract. A retrospective is a standard agile meeting practice designed for agile
software teams to reflect and tune their process. Despite its integral importance,
we know little about what aspects are focused upon during retrospectives and how
reflection occurs in this practice. We conducted Case Study research involving
data collected from interviews of sixteen software practitioners from four agile
teams and observations of their retrospective meetings. We found that the impor‐
tant aspects focused on during the retrospective meeting include identifying and
discussing obstacles, discussing feelings, analyzing previous action points, iden‐
tifying background reasons, identifying future action points and generating a plan.
Reflection occurs when the agile teams embody these aspects within three levels
of reflection: reporting and responding, relating and reasoning, and recon‐
structing. Critically, we show that agile teams may not achieve all levels of
reflection simply by performing retrospective meetings. One of the key contri‐
butions of our work is to present a reflection framework for agile retrospective
meetings that explains and embeds three levels of reflection within the five steps
of a standard agile retrospective. Agile teams can use this framework to achieve
better focus and higher levels of reflection in their retrospective meetings.

Keywords: Agile retrospective meeting · Reflection · Levels of reflection ·
Teams · Agile software development · Reflective practice

1 Introduction

Retrospective meetings embody the ‘inspect and adapt’ principle of Agile Software
Development (ASD) [1, 2]. They are designed to enable agile teams to frequently eval‐
uate and find ways to adjust their process [3]. There are several purposes for retrospective
meetings, such as to evaluate the previous work cycle or sprint; to determine the aspects
that need to be focused on as areas of improvement; and to develop a team action plan
[4]. The purpose and the techniques of the retrospective meeting have been stated and
described clearly as a guide for agile teams [2, 5, 6].

Much of the existing research focuses on the techniques of performing retrospective
meetings and provides lesser detail about the reflection process involved [5–9]. The
Reflective Agile Learning Model (REALM) [7] classified reflection in ASD practices

© The Author(s) 2017
H. Baumeister et al. (Eds.): XP 2017, LNBIP 283, pp. 3–19, 2017.
DOI: 10.1007/978-3-319-57633-6_1

into reflection-in-action or reflection that occurs during a practice, and reflection-on-
action or reflection that occurs post a practice based on definitions of the same by Argyris
and Schön [10]. A retrospective meeting was seen to embody reflection-on-action where
the agile teams reflect post finishing their sprint [7]. However, what is focused on during
retrospectives and how reflection occurs in this practice is not well understood.

To address this gap, we conducted Case Study research by observing four agile teams
and interviewing 16 of their members guided by the following research questions:

RQ 1: What aspects are focused on during the retrospective meeting?
RQ 2: How does reflection occur in the retrospective meeting?

2 Related Work

2.1 Agile Retrospective Meeting

There is a standard format commonly used to conduct an agile retrospective meeting
which involves setting the stage, gathering data, generating insight, deciding what to
do and closing the retrospective meeting [2]. Setting the stage involves welcoming and
explaining the aim of the retrospective meeting. Gathering data involves agile teams
sharing their review and feedback, reporting on what happened during the previous
sprint and briefly discussing with other team members. In generating insight, agile teams
participate in a further discussion and making agreements about what issues to focus on,
and then on how to solve those issues and what areas that need to improve in the deciding
what to do stage. Closing the retrospective involves summarizing the retrospective
meeting and appreciating all team members’ efforts.

There are several recommendations for embedding reflective practice within standard
agile practices as it is related to team performance improvement [7–9]. Cockburn [8] intro‐
duced a reflection workshop which involves collecting issues and generating tasks and
decisions. This workshop is performed regularly during or after the post-iteration work‐
shop. Babb et al. [7] investigated reflection in agile practices based on Argyris and Schön’s
[10] classification and introduced the Reflective Agile Learning Model (REALM).
REALM describes how some agile practices embody reflection-in-action and reflection-
on-action. Retrospective meetings were seen to embody reflection-on-action where the
agile teams reflect post finishing their sprint [7].

Most of the existing research focuses on the techniques of performing a retrospective
or identifying a broad classification of the type of reflection that occurs, e.g. reflection-
on-action [7]. What actual topics or aspects are discussed during a retrospective and how
reflection occurs, however, is not well understood. We build upon these works by inves‐
tigating the retrospective meeting in depth.

2.2 Reflective Practice

Reflective practice according to Osterman and Kottkamp [11], is defined as “a means
by which practitioners can develop a greater level of self-awareness about the nature

4 Y. Andriyani et al.

and impact of their performance, an awareness that creates opportunities for profes‐
sional growth and development”.

Bain et al. [12] classified reflection into five levels: reporting, responding, relating,
reasoning and reconstructing. Level 1 and 2 are reporting and responding and enable
learners to share brief descriptions of their experience, their feelings about events, facts
or problems that they encountered. Level 3 is relating and involves connecting experi‐
ence with personal meaning. Understanding at this level occurs when learners try to
highlight good points (e.g. their ability, successful work) and negative points (e.g.
mistakes, failure) to learn and identify areas of improvement. Level 4 is reasoning where
learners explore the information shared as well as background knowledge related to the
occurrences. Level 5 is reconstructing which signifies a high level of learning where
learners generate the general framework of thinking, which is specified in a plan or action
for responding to similar obstacles in the future.

Our study refers to levels of reflection proposed by Bain et al. [12] and adjusts the
levels into three main levels, i.e. reporting and responding, relating and reasoning and
reconstructing, based on our observations of the agile retrospectives in practice.
Reporting and responding are grouped together as the first level as these levels closely
related to reviews sharing and discussions at the beginning of the retrospective meeting.
Relating and responding are grouped as the second level as agile teams participate in a
further discussion after they reported and responded to the reviews. The third level, the
reconstructing level is embodied when agile teams discuss to formulate a plan as an
improvement for the next sprint.

3 Research Method

The aim of this study is to investigate how reflection occurs in retrospective meetings.
Understanding this is particularly important as agile teams are reported to focus more
on their technical progress and tend to pay less attention to how reflection is performed
thereby compromising their potential for improvement [7, 13].

This research is conducted by implementing the Case Study research method [14].
First, existing studies related to reflection in retrospective meetings were reviewed, as
summarized in Sect. 2. The research gaps identified provided guidance on formulating
the interview questions. To gain rich data from interviews, we developed semi-struc‐
tured questions consisting of main questions and follow-up questions. The data collec‐
tion method is described in Sect. 3.1 and participant demographics summarized in
Table 1. All interviews and observation data were collected by the first author in person.
The raw data and emerging findings from the analysis were discussed in detail with the
supervisory team (co-authors) who provided feedback and guidance.

3.1 Data Collection

Participants. We wanted to include software practitioners with a minimum of 2 years’
industrial agile experience to participate in our research. During one of the Auckland
Agile meetups, we received interest in participation from an agile team lead working at

Reflection in Agile Retrospectives 5

the largest online auction company in New Zealand, Trade Me. Trade Me had been
practicing agile software development for over three years and provided access to four
teams. Its headquarters are located in Wellington and the regional offices are in Auckland
and Christchurch.

For confidentiality purposes, the teams are named Jupiter, Saturn, Uranus, and
Neptune. The team names and team members’ details can be seen in Table 1. Each team
consisted of between 3 and 10 members. All members were invited and those willing
were interviewed. All teams held retrospective meetings, which lasted for between 15
and 65 min. Sixteen individual practitioners from the four teams participated in the
interviews and the observations. All team members had a dedicated role in their team

Table 1. Team and team members demographics (RMD: Retrospective meeting duration in
minutes; P#: Individual participant number; FAP: first agile project)

Team
Name

Interview
ed/total
members

Agile
method

RMD and the
frequencies

P# Role Agile
experience
(Year)

Agile
projects
(Total)

Jupiter 5 out of
10

Scrum 65 min (every
two weeks)

P1 UI
Designer

1 6–8

P2 Developer 0.5 1
P3 Developer 7+ 6–7
P4 Business

analyst
7+ 20+

P9 Tester 3+ 10+
Saturn 6 out of

10
Scrum 55 min (every

two weeks)
P4 Business

analyst
7+ 20+

P5 Developer 3 10+
P6 Designer 1 month FP
P7 Designer 0.5 FAP
P8 Tester 3+ 6
P9 Tester 3+ 10+

Uranus 2 out of 3 Kanban 45 min (every
two weeks)

P10 Tester,
Developer

1 2

P11 Scrum
Master,
Business
Analyst,
Product
Owner

6 6

Neptune 4 out of 6 Scrum 15 min (when
needed)

P12 Tester 2 1
P13 Developer 1.5 FAP
P14 Developer 1 FAP
P15 Tester <1 year FAP

Working across all four teams P16 Test
chapter
lead

7 10+

6 Y. Andriyani et al.

and there were three participants that committed across different teams: P4 was not only
fully committed as a Business Analyst in Team Jupiter but also supported Team Saturn.
Similarly, P9 was a tester in Team Saturn and a half tester in Team Jupiter. P16 worked
as a test lead across all four teams.

Interviews and Observations. Face-to-face individual and one group interview (of six
team members) were conducted to gain comprehensive explanations, which would help
derive the real concerns from both individual and team perspectives. We conducted one-
on-one interviews with all participants (P1–P16), where the duration of individual inter‐
views varied from 35 to 50 min. We asked some semi-structured questions about their
experiences and perspectives related to reflection in a retrospective meeting. Some
sample questions include: “Based on the three main points discussed in a retrospec‐
tive (i.e. what went well, what went wrong, what can you improve), which one(s) do you
think are most helpful for your team’s reflection?”, “How does your team use those
points to find solutions and ways to improve? Could you give some real examples?” and
“What is the outcome of your retrospective meeting? Does your team/scrum
master preserve points from the meeting?”. A sample question of the group interview
includes: “I noticed that your team exhibited some different ways of sharing knowledge,
(e.g. post-it notes, verbal communication, drawing). Did it help your team to perform
reflection? How?”

The group interview was conducted immediately after the retrospective meeting of
Team Jupiter with six of its team members. Given the variable meeting times, work
commitments and deadlines for different teams, it was not possible to gain further team
availability for group interviews with the remaining three teams over and above the
individual interviews and team observations.

Observations were conducted during the retrospective meetings of all the teams and
of their general workplace. The observations aimed to capture the details of the retro‐
spective meeting (i.e. time spent, attendees, and discussion involved) and to help validate
the findings from the interviews. Photographs were taken during the observations in
order to document the actual situations in the meetings and the report presented by the
agile team members. Notes were taken to highlight the important aspects being shared.
The information collected (e.g. photographs and notes) from the observations were used
to support individual interviews by including the photographs and describing the activ‐
ities in the retrospective meetings as observed first hand. The duration of each obser‐
vation depended on how long the team conducted the retrospective meeting. Three out
of four teams conducted the meeting for around 40–60 min each and one team, Neptune,
had a shorter 15 min’ retrospective. Observational data (e.g. photographs and notes)
were found to support the findings from the interview data analysis thereby strengthening
them.

3.2 Data Analysis

This research involved sixteen individual interviews, one group interview (of six team
members), and notes taken from retrospective meeting observations which were
analyzed by conducting a thematic analysis. Thematic analysis is a method that aims to

Reflection in Agile Retrospectives 7

recognize, analyze, evaluate and report patterns in data [15], which enables researchers
to search across a data set of interviews. Braun and Clarke [15] classify the analysis into
six phases: transcribing data, generating initial codes, searching for themes, reviewing
themes, defining and naming themes and making a report.

Sixteen interviews were transcribed and imported into NVivo software to facilitate
coding and thematic analysis. Generating initial codes involved code identification by
analyzing interesting features of a sentence, which were highlighted and added as a node
in NVivo representing a new code, such as identifying and discussing obstacles and
discussing feelings. Searching for themes involved comparing data with different codes
to see whether they have similar meanings or aspects. Parent themes were classified
based on five (grouped into three) levels of reflection, where each code was classified
based on the definition of each level.

Fig. 1. Levels of reflection in retrospective meetings: a thematic map (using levels of reflection
from Bain et al. [12])

Reviewing themes involved generating a thematic model to define the links and the
relationships between the themes (see Fig. 1). Defining and naming themes involved the
generation of several themes that emerged from the analysis, representing the aspects
discussed during retrospective meetings, which was formulated and explained in this
paper.

4 Findings

Following the thematic data analysis process, we identified seven themes that represent
important topics or aspects discussed in the retrospective meeting, which were then
mapped to the five (grouped into three) levels of reflection [12] (see Sect. 2.2).

8 Y. Andriyani et al.

Table 2 summarizes these themes along with their mapping to the reflection levels.
These themes and levels are described below along with pertinent quotes and photo‐
graphs from observations. The figures below (see Figs. 2 and 3) were captured during
the observation and show a glimpse of Team Jupiter and Team Saturn’s retrospective
meeting.

Table 2. Themes representing topics discussed during retrospectives, their description,
examples, and mapping to levels of reflection based on [12].

Levels of reflection Themes/topics discussed Description of themes Examples
Reporting and
Responding

Identifying and
discussing obstacles

Problems, issues and
concern causing
blockages

Unfinished tasks and
dependencies (e.g.
expertise, activity,
resource or entity and
technical.)

Discussing feelings The Subjective response
that reflects the situation,
fact or events from the
previous sprint

Negative and positive
feelings

Relating and Reasoning Analyzing previous
action points

Evaluate the process
improvement based on
previous action points

Some improvement
achieved or persisting
obstacles

Identifying background
reasons

Analyzing some causes
and aspects related to
issues on team
improvement

Testing environment
issue related to external
person in different
location, who is difficult
to contact

Identifying future action
points

Evaluating what areas
need to be focused on
more to be defined as
future action points

Evaluate successful
stories and failures

Reconstructing Generating a plan Define some action
points for the next plan

Action points

Fig. 2. Team Jupiter’s retrospective Fig. 3. Team Saturn’s retrospective

Reflection in Agile Retrospectives 9

4.1 Reporting and Responding

Reporting and responding can be realized when an agile team shares some aspects (e.g.
identifying and discussing obstacles and discussing feelings) while providing reviews
and feedback of the previous sprint. Each team had different techniques of performing
their reviews.

All teams were seen to engage in the reporting level of reflection by actively iden‐
tified and discussed obstacles and feelings. Similarly, all four teams were seen to be
actively involved in responding to their retrospective meeting discussions by providing
brief comments on the obstacles and feelings being shared. Teams were seen to report
on obstacles such as dependencies and unfinished tasks and respond with negative and
positive feelings based on the previous sprint, described below.

Identifying and Discussing Obstacles. Obstacles reported in the retrospective meet‐
ings related to the aspects that hindered the team from making progress. During the
retrospective meeting, agile teams gathered all the problems that occurred in the previous
sprint, which would be useful for the teams to highlight areas of improvement. There
were two specific obstacles reported: dependencies and unfinished tasks.

Dependencies. Most of the participant (11 out of 16) mentioned dependencies as the
specific type of obstacle most commonly reported in the retrospective meeting.

“If it’s delayed at the first point, if something is wrong at the first point the next person feels it.
So, if one brings it up [in the retrospective] and if it’s a true concern you will have support
because it does affect people.” P16 – Test Chapter Lead (Across All Teams)

By sharing problems about dependencies team members became aware of the other
team members’ tasks and how they related to their own tasks. By being aware of this
issue the team could think about ways to solve the dependency problems.

Unfinished tasks. Unfinished tasks were mentioned by three participants as an obstacle
reported in retrospective meetings. An unfinished task was a problem where team
members could not accomplish the tasks they had planned or considered the team to be
making slow progress.

“We were not achieving that daily goal and it is a kind of demotivating… let’s say you plan 10
stories for the sprint and you achieve just two or three. The rest we couldn’t complete for what‐
ever reason. So, we say that is one thing which didn’t go well.” P12 – Tester, Team Neptune

Surfacing this obstacle was helpful for teams to understand how much more effort
was required to finish the tasks, what tasks were challenging and why the tasks were
difficult to finish. For example, when Team Neptune faced a problem with a requirement
that delayed finishing tasks, they asked for clarifications from the product manager. It
was evident that dependencies led to unfinished tasks in some cases.

Discussing Feelings. Besides obstacles, agile teams also shared their feelings which
were visualized in several forms, e.g. as drawings or journey lines. The feelings shared
by team members represented the sense of facts and occurrences from the previous
sprint, such as when they were feeling down or happy.

10 Y. Andriyani et al.

There was an example of positive feelings shared, which had a positive impact on
the team’s productivity, where their work can be distributed well. Team Neptune
recruited an additional tester after they had a problem with tester resource. They felt
happy because their team was complete and balanced between developers and testers.

“We do put down smiley. When we got a new tester on board, a new person we had a happy
smiley saying that our squad is complete.” P12 – Tester, Team Neptune

These obstacles and feelings identified and discussed during the retrospective
meeting were supported by our observations of the retrospective meetings of Teams
Jupiter, Saturn, and Uranus. It was observed that Team Jupiter reported their review by
defining some words on sticky notes (see Fig. 4(a)).

(a) Team Jupiter (b) Team Saturn (c) Team Uranus

Fig. 4. (a) Words to describe obstacles and feelings in the Retrospective meeting; (b) and (c)
Journey lines visualizing emotions during a sprint in Retrospective meetings

For example, ‘muddy’ was used to describe a difficult situation where team members
had difficulty in understanding the detailed description of specific user stories in the
project. Upon asking a team member about what was the meaning of ‘muddy’, a partic‐
ipant explained:

“So, I think, he and I came up with the term of ‘muddy’; from observation - they were really
struggling to get the right data and really had to analyse the data for this project. I observed
that and for me, I would pick out a description which would explain what I’ve observed; as a
general team.”, P1 – User Interface Designer, Team Jupiter.

4.2 Relating and Reasoning

Relating and reasoning can be seen when agile teams compile the obstacles and the
feelings shared (from the previous reporting and responding level) and investigate the
relationship between those aspects. These levels consisted of activities such as analyzing
previous action points, identifying background reasons, identifying future action
points. The explanations below present the results from the individual interviews, which
supported by group interview and observations.

Analyzing Previous Action Points. An ‘action point’ refers to a specific item selected
by the team to focus on for improvement. In analyzing previous action points, agile

Reflection in Agile Retrospectives 11

teams referred to the action points agreed upon by the team in the previous retrospective
and evaluated the actual effort made by the team on that specific point.

“..that’s how you define if you made any changes, we measure yourself based on your action
points and that you’ve actually made changes for. You could make 200 action points of your 20
weeks, but not a single one of those was followed up on, you really haven’t done anything.” P4
– Business Analyst, Team Jupiter and Saturn

From the example above, it was seen that agile teams reflected on the previous action
points by measuring the outcomes achieved by the teams (i.e. good or slow progress).
This statement was further supported by the observations where during the retrospective
meetings, agile teams shared the process improvement or the failures of the previous
sprint.

Identifying Background Reasons. The background reasons of the existing issues were
identified when teams were not actively progressing, they would explore the reasons
why and what blockers were related to this problem. By identifying the background
reasons, teams would understand what aspects needed to be improved.

This point is supported by Team Jupiter’s group interview, which a team member
tried to identify the reason of the major problem during the retrospective meeting.

“I think we addressed like the major issues are causing the squad stuck at the moment and things
like test environment and [..] dealing with an external dependency like platform team in [city
name]” P4 – Business Analyst, Team Jupiter and Saturn

During the retrospective meeting observation of Team Saturn, it was seen that there
was a cause analysis discussion. For example, when team members shared their sad
feelings experienced during the first week sprint, team members shared the reasons, such
as unclear user stories or the user story was considered as a big task. The scrum master
guided the team to identify the causes by asking why they used the sad feeling notation
for the first week. Several reasons were shared, such as too many tasks, the previous
estimation and the actual effort were different, the unclear scope of work restricted their
progress. Discussing those reasons led to the point where the team realized the main
background reason was about inaccurate estimation, i.e. the team had created high
achievement expectations for the big tasks without considering the actual effort required.

Identifying Future Action Points. Identifying future action points happened when the
teams analyzed previous action points and identified the background issues, which
followed by identifying areas of improvement and asking ideas and agreement from the
teams. From the discussion, the teams gained the understanding of the existing issues
which lead to the thoughts of what areas need to improve and how to improve. Identi‐
fying future action points, the teams discussed areas of improvement, which were
focused on the process improvement. For example, in the retrospective meeting, most
agile teams stressed testing environment issues that delayed the team progress.

“we list down what didn’t go well or problems or whatever, we usually derive action points on
those things, which is a good way to improve maybe something immediately like getting a test
environment set up so we can test something.…like a more immediate thing… but there are also
action points that are related to the squad as well; determine a team chart or something like
that.” P2 – Developer, Team Jupiter

12 Y. Andriyani et al.

From the example above, it was seen that by knowing the existing issues the team
to will understand several areas of the process that need to be focused on. To determine
future action points the teams also discussed by asking each other’s opinions.

“when we discussed it [a plan], we asked other people what they think about it, do they agree
or don’t they? If everyone says they think they agree with what you are saying, then we say so
what the action for that?” P12 – Tester, Team Neptune

During the retrospective observations of Team Saturn, an example of how the team
identified their future action points was noted. Team Saturn had identified that the main
reason for their slow progress was inaccurate estimation. Some ideas for addressing this
included elaborating the stories into small tasks, providing the clear ‘definition of done’
for specific tasks, and asking for clarifications from the product manager about the scope
of work. The team members were asked their opinions and perspectives about these
ideas. Most team members agreed on asking for clarifications from the product manager
and elaborating the stories into small tasks. Consequently, the Scrum master of Team
Saturn made these ideas as official action points for the next sprint.

4.3 Reconstructing

The Reconstructing level of reflection seems to happen when a team constructs an
agreement on a specific plan based on the team members’ perspectives. There were three
out of the four teams (Jupiter, Saturn, Uranus) that seemed to engage in the recon‐
structing level as they performed further discussions and finalized by generating action
points.

Generating a Plan. In reconstructing, teams generated plans decided from their discus‐
sion in the retrospective meeting. Action points are an explicit outcome of the retro‐
spective meeting. It is useful to remind all team members about the goal for the next
sprint, who will responsible, and what are the associated deadlines.

“So, when they go up on their board and they are doing their sprint work, they can see, “Right,
let’s not forget what came out of this retro” and it is getting ticked off.” P11 – Scrum Master,
Business Analyst and Product Owner, Team Uranus

This point was brought up in a group interview (of Team Jupiter) where most of the
team members agreed that action points were used as a reference for evaluating improve‐
ment in the next retrospective meeting.

“umm we pulled out action points on the board. So, over the next two weeks, we will make sure
that everything talked about we follow through on.” P4 – Business Analyst, Team Jupiter and
Saturn

It was observed that Team Jupiter preserved their concrete action points on their
Scrum board (see Fig. 5). Another evidence from the observations was Teams Saturn
and Uranus did not have action points but their Scrum master made some notes during
the meetings and shared verbally the points that needed to be focused on at the end of
the retrospective meeting.

Reflection in Agile Retrospectives 13

Fig. 5. Action points generated by team Jupiter posted on their Scrum Board (Photo taken during
on-site observations)

5 Discussion

We now discuss the findings related to a reflection framework for agile retrospectives
including the levels of reflection achieved by the teams studied, implications for practice
and limitations of the study.

In response to the RQ1: What aspects are focused on during the retrospective
meeting? We found that there are six important aspects discussed in the retrospective
meetings: identifying and discussing obstacles, discussing feelings, analyzing previous
action points, identifying background reasons, identifying future action points and
generating a plan. In response to the RQ 2: How does reflection occur in the retrospec‐
tive meeting? We found that the reflection that occurs in retrospective meetings can be
classified into three levels of reflection [12], reporting and responding, relating and
reasoning, and reconstructing.

5.1 A Framework of Reflection in Agile Retrospective Meeting

Based on these findings, we present a reflection framework for agile retrospectives
(Fig. 6) that combines the five steps of the standard agile retrospective – set the stage,
gather data, generate insight and decide what to do, close the retrospective – and the
levels of reflection – reporting and responding, relating and reasoning, and recon‐
structing [12] within those steps.

14 Y. Andriyani et al.

Fig. 6. Reflection in agile retrospective meeting (levels of reflection depicted in shaded areas
based on [12])

Setting the stage involves welcoming and explaining the aim of the retrospective
meeting. Gathering data step embodies the reporting and responding level of reflection
as agile teams share their reviews (e.g. identifying and discussing obstacles and discus‐
sing feelings). Identifying and discussing obstacles and feelings in retrospective meet‐
ings was seen to correspond to ‘descriptive reflection’ [16] – a reflection which attempts
to answer questions such as: What is happening? What is this working, and for whom?
For whom is it not working? How do I know? How am I feeling? What am I pleased
and/or concerned about? What do I not understand? The obstacles and feelings shared
by all team members answer these questions. From the obstacles and feelings reported,
the teams would be able to record and collect important points of the previous sprint.
By having reviews (e.g. obstacles and feelings) of the previous sprint, team members
can be prepared to deal with other similar experiences.

Generating insight step embodies the relating and reasoning level, where agile
teams are involved in analyzing previous action points, identifying the background
reasons behind identified issues and identifying future action points. Discussing these
aspects was seen to be related to ‘descriptive reflection’, which attempts to answer
questions: does this relate to any of my stated goals and to what extent are they being
met? [16] and why the issues happen in the previous sprint? The answers to these ques‐
tions support the reflection in the form of comparative analysis and looking back to the
background issues, which help agile teams to determine what areas needed to be focused
on. Agile teams move to deep analysis on ideas or perspective shared to identify future
action points for the next sprint. It can be perceived that there is a transformation in the
discussion from answering what is happening? in the previous sprint; to what are the
alternative views of what is happening? and what are the implications of the matter
when viewed from these alternative perspectives? [16]. These questions are answered
when all team members provide their accounts about solutions of the obstacles or ways
to improve.

In the deciding what to do step, agile teams have an explicit formulation which is
generated in the form of action points (generating plans). The action points will be used
as a reference for agile teams to act upon and improve the process. Close the retrospec‐
tive step involves summarizing the outcomes of the retrospective meeting.

Reflection in Agile Retrospectives 15

5.2 Levels of Reflection Build on Each Other

We now discuss the findings related to the levels of reflection achieved by the teams
studied. A key finding of our study was that not all teams were performing on every
level of reflection. So, while all teams performed retrospective meetings, not all achieved
the higher levels of reflection, in particular reconstructing. Table 3 summarizes the levels
of reflection achieved by each of the teams and the associated aspects or topics discussed
in each level.

Table 3. Levels of reflection achieved by the teams (J: Jupiter; S: Saturn; U: Uranus; N: Neptune)

Levels of
reflection

Aspects discussed in retrospective meeting J S U N

Reporting and
responding

Identifying and discussing obstacles ✓ ✓ ✓ ✓
Discussing feelings ✓ ✓ ✓ X

Relating and
reasoning

Analyzing previous action points ✓ ✓ ✓ ✓
Identifying background reasons ✓ ✓ ✓ ✓
Identifying future action points ✓ ✓ ✓ X

Reconstructing Generating a plan ✓ ✓ ✓ X

Three teams were found to be fully engaged in all levels of reflection and one of the
teams, Team Neptune, performed partially on the first two levels and did not achieve
the final level of reflection, i.e. reconstructing. Based on the observation of their retro‐
spective meeting, it was seen that they did not discuss their feelings explicitly and only
discussed briefly the obstacles related to changing of task priorities needing confirmation
with the product manager. They did not discuss it further as once they agreed on that
obstacle then the product manager directly proceeded to the Scrum Board, discussed the
issue and wrapped up the meeting. They did not record any outcomes, such as a plan or
action points, from the meeting. There was little evidence of analyzing previous action
points, identifying background reasons and identifying future action points. Besides, the
duration of the meeting was also short, around 15 min, and they reported performing
retrospective meetings only when it was necessary. Another interesting observation was
that they had adapted the retrospective practice, which seemed too repetitive for them
and people often seemed to have forgotten about what happened during the last two
weeks’ sprint. As result, they were used to placing all the individual reviews written up
on sticky notes in a “retro box” – a box especially allocated to collect individual reflec‐
tion. If there were no sticky notes during a two weeks’ sprint, they would not perform
a retrospective meeting.

The case of Team Neptune is likely related to the fact that three out of six members
of Team Neptune were new to agile projects. They had in effect introduced a new
reflective practice, that of using a retro box, as a way to identify the need for conducting
a standard retrospective. However, a lack of reaching the reconstruction level suggests
that they were not able to generate a plan for improvement as several aspects of the
retrospective meeting were missing. Our findings confirm that the levels of reflection
are related and build on each other [12]. Furthermore, we show that the highest level of

16 Y. Andriyani et al.

reflection, reconstructing, may not be reached at all or not reached effectively until the
prior levels are accomplished effectively.

5.3 Implications for Research and Practice

For the researchers in the area of reflective practice and agile teams, our findings present
a new perspective for exploring reflective practice in agile teams. Using the framework
presented in the previous section, researchers can study agile teams’ reflective practice
in terms of levels of reflection both in retrospective meetings and other practices that
involve reflection (e.g. daily standup, pair programming [7]). Future studies can explore
new aspects or topics covered in each level and further explore how the levels build
upon each other in different team contexts.

For agile practitioners, our findings show that not all agile teams reach all levels of
reflection by simply performing retrospectives. By being aware of the different levels
of reflection meant to be achieved in each retrospective step, teams can consciously
strive to achieve the most out of their retrospective meetings. In particular, they can see
that only reporting and responding and relating and reasoning levels are not enough
rather reconstructing to generate action points and following up on those points in future
meetings is critical to harnessing retrospective meetings to achieve continuous improve‐
ment. Thus, in order to maximize the benefits of their retrospective meetings, we recom‐
mend agile teams use our reflection framework (Fig. 6) to self-assess their level as a
whole based on their personal understanding of their team context and track it in practice
to achieve higher levels of reflection.

5.4 Limitations

A key limitation of this study lies in the fact that observations of a single retrospective
meeting per team is not strong enough to establish and confirm a particular team’s overall
level of reflection. For example, it may be that in other retrospective meetings Team
Neptune reached higher levels of reflection. However, the findings were arrived at by
combining the data from interviews as well as the observations, which provides multiple
perspectives that support the findings. Another related limitation is that the findings are
limited to the contexts studied in this research, which in turn are dictated by the avail‐
ability of participants. Further studies can confirm, adapt, or extend our framework to
include different team contexts and reflective practices.

6 Conclusion

Previous studies have focused on specifying the techniques of conducting a retrospective
meeting, with little focus on how the reflection in the retrospective meeting actually
occurs. One of the key contributions of our work is to present a reflection framework
for agile retrospective meetings that explains and embeds five (grouped into three) levels
of reflection within the five steps of a standard agile retrospective meeting. Critically,
we show that agile teams may not achieve all levels of reflection simply by performing

Reflection in Agile Retrospectives 17

retrospective meetings. As the levels of reflection build upon each other, teams need to
effectively identify and discuss their obstacles and feelings in the reporting and
responding level, followed by analyzing previous action points, identifying background
reasons, and identifying future action points in the relating and reasoning level and
generating a plan in the reconstructing level. Embedding these levels of reflection into
the retrospective meeting will help agile teams achieve better focus and higher levels of
reflection from performing retrospective meetings. Another implication is an increase
in their awareness of the main aspects that need to be discussed in the retrospective
meeting and how to formulate these aspects to generate a plan for improvement.

Acknowledgement. This research is supported by The University of Auckland and the Indonesia
Endowment Fund for Education (LPDP) S-669/LPDP/2013 as scholarship provider from the
Ministry of Finance, Indonesia.

References

1. Deemer, P., Benefield, G., Larman, C., Vodde, B.: A Lightweight Guide to the Theory and
Practice of Scrum Version 2.0, vol. 2015 (2012)

2. Derby, E., Larsen, D., Schwaber, K.: Agile Retrospectives: Making Good Teams Great.
Pragmatic Bookshelf, Raleigh (2006). 0977616649

3. Fowler, M., Highsmith, J.: The agile manifesto. Softw. Dev. 9, 29 (2001)
4. Sutherland, J., Schwaber, K.: The Scrum Guide. The Definitive Guide to Scrum: The Rules

of the Game (2011)
5. Salo, O.: Systematical validation of learning in agile software development environment. In:

Althoff, K.-D., Dengel, A., Bergmann, R., Nick, M., Roth-Berghofer, T. (eds.) WM 2005.
LNCS (LNAI), vol. 3782, pp. 106–110. Springer, Heidelberg (2005). doi:
10.1007/11590019_13

6. Salo, O., Kolehmainen, K., Kyllönen, P., Löthman, J., Salmijärvi, S., Abrahamsson, P.: Self-
adaptability of agile software processes: a case study on post-iteration workshops. In:
Eckstein, J., Baumeister, H. (eds.) XP 2004. LNCS, vol. 3092, pp. 184–193. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-24853-8_21

7. Babb, J., Hoda, R., Nørbjerg, J.: Embedding reflection and learning into agile software
development. IEEE Softw. 31, 51–57 (2014). doi:10.1109/MS.2014.54

8. Cockburn, A., Highsmith, J.: Agile software development: the people factor. Computer 34,
131–133 (2001)

9. Dingsøyr, T., Hanssen, G.K.: Extending agile methods: postmortem reviews as extended
feedback. In: Henninger, S., Maurer, F. (eds.) LSO 2002. LNCS, vol. 2640, pp. 4–12. Springer,
Heidelberg (2003). doi:10.1007/978-3-540-40052-3_2

10. Argyris, C., Schon, D.A.: Organisational Learning II: Theory, Method and Practice.
Organisation Development Series. Adisson Wesley, Reading (1996)

11. Osterman, K., Kottkamp, R.: ReflectivePractice for Educators: Improving Schooling through
Professional Development. Corwin Press, Newbury Park (1993)

12. Bain, J.D., Ballantyne, R., Packer, J., Mills, C.: Using journal writing to enhance student
teachers’ reflectivity during field experience placements. Teachers Teach. Theor. Pract. 5, 51–
73 (1999). doi:10.1080/1354060990050104

13. Hoda, R., Babb, J., Nørbjerg, J.: Toward learning teams. IEEE Softw. 30, 95–98 (2013). doi:
10.1109/MS.2013.90

18 Y. Andriyani et al.

http://dx.doi.org/10.1007/11590019_13
http://dx.doi.org/10.1007/978-3-540-24853-8_21
http://dx.doi.org/10.1109/MS.2014.54
http://dx.doi.org/10.1007/978-3-540-40052-3_2
http://dx.doi.org/10.1080/1354060990050104
http://dx.doi.org/10.1109/MS.2013.90

14. Yin, R.K.: Case Study Research: Design and Methods. Sage Publications, Inc. (2003)
15. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qual. Res. Psychol. 3, 77–101

(2006)
16. Jay, J.K., Johnson, K.L.: Capturing complexity: a typology of reflective practice for teacher

education. Teach. Teacher Educ. 18, 73–85 (2002)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license
and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

Reflection in Agile Retrospectives 19

http://creativecommons.org/licenses/by/4.0/

What Influences the Speed of Prototyping? An Empirical
Investigation of Twenty Software Startups

Anh Nguyen-Duc1(✉), Xiaofeng Wang2, and Pekka Abrahamsson1

1 Department of Computer and Information Science (IDI), NTNU, 7491 Trondheim, Norway
{anhn,pekkaa}@ntnu.no

2 Free University of Bozen-Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy
xiaofeng.wang@unibz.it

Abstract. It is essential for startups to quickly experiment business ideas by
building tangible prototypes and collecting user feedback on them. As proto‐
typing is an inevitable part of learning for early stage software startups, how fast
startups can learn depends on how fast they can prototype. Despite of the impor‐
tance, there is a lack of research about prototyping in software startups. In this
study, we aimed at understanding what are factors influencing different types of
prototyping activities. We conducted a multiple case study on twenty European
software startups. The results are two folds; firstly we propose a prototype-centric
learning model in early stage software startups. Secondly, we identify factors
occur as barriers but also facilitators for prototyping in early stage software
startups. The factors are grouped into (1) artifacts, (2) team competence, (3)
collaboration, (4) customer and (5) process dimensions. To speed up a startup’s
progress at the early stage, it is important to incorporate the learning objective
into a well-defined collaborative approach of prototyping.

Keywords: Prototype · MVP · Prototyping-learning loop · Validated learning ·
Speed · Software startups

1 Introduction

With the startup movement, software industry is witnessing a paradigm shift from
serving customer requirements to creating customer value. The challenge for software
companies is no longer primarily on implementing customer requirements, but rather
on finding customer demands and providing a solution that delivers customer value [2].
Addressing uncertainty in both solution and problem domains has often been ad-hoc
and based on guesswork, which becomes one of the main reasons for failing startup
companies [3]. A demand on systematic approaches to manage the uncertainty has led
to an increased research interest on Lean Startup [4], New Product Development (NPD)
[5], software startups [6] and continuous experimentation [7].

In a competitive environment such as software industry, time-to-market is becoming
more and more critical as a success factor for startup companies. Business ideas under
development once revealed can be easily threatened by high speed copycats [9]. More‐
over, competitors can also follow an on-going journey of validating product-market fit

© The Author(s) 2017
H. Baumeister et al. (Eds.): XP 2017, LNBIP 283, pp. 20–36, 2017.
DOI: 10.1007/978-3-319-57633-6_2

and arrive faster in the destination. Regardless of company sizes and application
domains, the knowledge of influencing factors for a quick learning loop is important for
software startups to form best-fit strategy in developing business experimentation [10].

A ‘Build-Measure-Learn’ loop, as a central concept of the Lean Startup method‐
ology, aims at speeding up the new product development cycle [4]. The central part of
the loop is to build a representation of the business, a so-called Minimum viable product
(MVP), to collect feedback from customers and to learn from that. Steve Blank empha‐
sizes the goal of MVPs is “to maximize learning through incremental and iterative
engineering” [2]. In the startup context, developers quickly and iteratively develop a
software application to validate business ideas [12]. As such, the study of validated
learning can be beneficial from Software Engineering (SE) concepts and practices, such
as rapid prototypes and evolutionary prototypes [13–15]. Consequently, the time-to-
release of prototypes is essential to determine the total time in the validated learning
loop.

Software startup research is increasingly recognized by researcher’s community,
with many practical aspects, such as User Experience, Software practices, competences
and startup ecosystem [6]. Despite of the importance, there is a lack of research about
prototyping in software startups. In a multi-influenced context with funding, human
resource and market concerns, it is crucial to understand how the speed of learning can
be supported by prototyping activities and what are the influencing factors. In a previous
study, we investigated how a prototype is built in software startups [12]. We found that
prototyping activities as a core value of startup experimentation needed to be seen as a
multifaceted phenomenon [12]. In this work, we are particularly interested in the factors
that slow down the learning process and those that speed it up. The research question
(RQ) is:

What factors influence the speed of prototyping in software startups?

The paper is organized as follows. Firstly, we present the background about business-
driven experimentation in software projects, software prototype and a proposal of an
analytical model of startup prototyping (Sect. 2). Then, we describe our research
approach and the cases studied (Sect. 3). After that, the qualitative findings are presented
(Sect. 4). Finally, we reflect on the findings, the threats to validity (Sect. 5), and draw
the conclusion and future work (Sect. 6).

2 Background

2.1 Business Driven Experimentation

From SE perspective, validated learning means the focus on integrating business value
in defining software development processes and practices. Even though experiment
systems are recognized as beneficial to software projects, there are barriers in adopting
them, such as integration of customer feedback, synchronizing vendors in short cycles
and lack of reasoning about customer requirements [16, 17]. Bosch et al. [18] advocate
for adjusting the Lean startup methodology to accommodate the development of

What Influences the Speed of Prototyping? 21

multiple ideas and to integrate them when time for their testing and validation is too
long. Bosch suggested using 2-to-4-week experimentation iterations followed by
exposing the product to customers in order to collect feedbacks. Fagerholm et al. present
a model for continuous experimentation for start up companies [7], in which a key
element is the ability to release a prototype with suitable instrumentation, to manage
experiment plans, link experiment results with a product roadmap, and to manage a
flexible business strategy. Olsson et al. present a Hypothesis Experiment Data-Driven
Development model that integrates feature experiments with customer feedback in Agile
projects [19]. While these work characterize a process-like approach in developing
startups’ software products, Paternoster et al. grounded a model from 13 software
startups which describes a pattern that software startups often build evolutionary proto‐
types [20]. This study focuses on how startups are prototyping in reality and the influ‐
encing factors of the speed of learning by prototyping.

2.2 Prototype and Prototyping Activities

Brook mentioned “In software engineering, at least, the concept of rapid prototyping
has a name and a recognized value, whereas it does not always have the same status in
computer design and in building architecture” [21]. Prototyping implies a quick and
economic approach that serves to achieve understanding of what final products should
be [15]. From a technical perspective, prototypes can be differentiated according to its
relation to later product development. Throwaway prototypes are used mainly for spec‐
ification purposes; and they are not used as actual building blocks [15]. They are mostly
used in exploratory and experimental prototyping. Evolutionary prototypes provide a
basis for a real system, which is evolved out of the prototypes; they are used in evolu‐
tionary prototyping but can also be found in experimental prototyping (if it shows that
they provide a good basis for a system) [15].

From a business perspective, startups can create a representation of product ideas, a
so-called MVP, without actual product implementation. Eric Ries describes a classifi‐
cation of different types of MVPs [4], which are commonly used in the startup commun‐
ities. For instance, a MVP can be a short animation that explains what a product does
and why users should buy it. It can also be a user interface that looks like a real working
product, but the actual business process is manually carried out (Wizard of Oz MVP).
A concierge MVP is a manual service that consists of exactly the same steps users would
go through with the product.

A few research paid attention on improving prototyping activities, such as the speed
and effectiveness [28, 29]. Janssen et al. suggested code reuse to speed up writing code
to prototype [28]. Grevet et al. described a 6-stage prototyping approach to speed up
throw-away prototyping for new social computing systems using existing online systems
[29]. In our work, we address the speed of prototyping from a socio-technical perspec‐
tive, considering prototyping activities under human, market, finance and team factors.

22 A. Nguyen-Duc et al.

2.3 A Prototype-Centric Learning Model in Software Startups

The Build-Measure-Learn loop is a key concept in Lean Startup [4]. The loop is used
to manage and to operate software startups in finding a sustainable business model. A
key idea is to minimize waste and to focus only on the elements, which will be tested.
Lynn et al. describe another cycle, Probe and Learn, that is applicable to manage uncer‐
tainties about market, technology and time-to-market [25]. The authors suggest that
startups should go to customers with an early version of a product to learn about the
market, different applications and segments. Nguyen-Duc et al. propose a hunter-gather
double loop to capture the evolution of startup activities from idea to achieving a product
market fit [26]. The model visualizes the portion of product development vs. customer
development activities across the startup stages. While these studies provide an emphasis
on organization and evolution, they are well landed in an abstract space, not straight‐
forward to apply from the SE perspective.

In the SE literature, Gordon et al. propose a rapid prototyping system approach to
understand the prototype development of a system [27]. In the model, both low-fidelity
and high-fidelity prototypes are essential parts of developing a system [27]. Preliminary
product design activities create a throwaway prototype from the problem domain. A
series of throwaway low-fidelity prototypes can be created to capture the ideas of what
to built. Similarly, high-fidelity prototypes can also be evolved several times before
reaching the product launch.

A literature survey of software development shows that startups often build a proto‐
type in an evolutionary fashion and quickly learn from users’ feedback [20]. We argue
that both throwaway prototypes and evolutionary prototypes are important parts of
startups’ journey to a launched product. From the Lean startup perspective [4], learning
is an input and also an outcome for a prototype. We tailored the double loop model in
the previous work [26] by adapting Gordon’s system prototyping elements [27] to
capture the prototyping processes in the startup context, as shown in Fig. 1. The model
focus on prototyping as the core concept and compose four loops:

• Idea-prototype loop: iterations of refining business idea through throwaway proto‐
typing

• Throwaway prototype loop: iterations of constructing and learning from throwaway
prototypes

• Evolutionary prototype loop: iteration of constructing and learning from evolutionary
prototypes

• Pivot loop: starting a new cycle from the current product to a pivoted idea

Considering the model as a state-based system, it is possible to travel from a state to
any other one. However, the typical flow would happen within two loops. It can also
happen that a startup starts the loop from any state, for example, by doing a throwaway
prototype before getting to a stated problem. In the scope of this work, we did not go
in-depth about how these loops happen in our cases. The work will explore factors that
occur during the startup progress and influence throw-away and evolutionary proto‐
typing.

What Influences the Speed of Prototyping? 23

3 Research Approach

3.1 Multiple Case Study Design

This study is one part of a larger research activity that investigates the role of engineering
activities in software startups. The objective is to explore commonalities, challenges and
engineering patterns in software startups, from the business idea to a launched product.
This study reports the findings from empirical data regarding prototyping activities. We
conducted multiple case studies for a robust result in typical software startup population
[11]. The unit of analysis is a startup company. We aimed at collecting as many startups
as possible for a variety of the sample. As the aim is to reflect the state-of-practice rather
than finding a secret recipe of success, we included startups in different stages and with
different revenue statuses.

There is often a difficulty in identifying a real startup case among other similar
phenomenon, such as freelancers, SMEs or part-time startups. We defined five criteria
for our case selection: (1) a startup that operates for at least six months, so their expe‐
rience can be relevant, (2) a startup that has at least a first running prototype, (3) a startup
that has at least an initial customer set, i.e. first customer payments or a group of users,
(4) a startup that has an intention to scale their business model, (5) a startup that has
software as a main part of business core value.

The process of identifying and collecting data was done in 11 months, from March
2015 to February 2016. Cases were searched from four channels, (1) startups within the
professional networks of the authors, (2) startups in the same town with the authors, (3)
startups listed in Startup Norway and (4) Crunchbase database. The contact list includes
219 startups from Norway, Finland, Italy, Germany, Netherlands, Singapore, India,
China, Pakistan and Vietnam. After sending out invitation emails, we received 41 feed‐
backs, approximately 18.7% response rate. Excluding startups that are not interested in
the research, or startups that do not pass our selection criteria, the final set of cases are
20 startups, aliased as S1 to S20.

Fig. 1. A prototype-centric learning model in software startups

24 A. Nguyen-Duc et al.

3.2 Data Collection and Analysis

Semi-structured individual interviews were used to collect data, since they enable the
focus on pre-defined research topics and flexible structures to discover unforeseen infor‐
mation [28]. Methodological triangulation in data collection is also implemented by
using evidence from documents and observations (in S01-S05, S09). Business docu‐
ments, such as business model canvases and business plans were exposed to the research
team as a preliminary step prepared for interviews. Observations were useful to under‐
stand how prototypes were implemented and used in the working environment.

The interviewees were asked questions about (1) business background (2) idea visu‐
alization and prototyping (3) product development (4) challenges and lessons learnt.
The stories about startup ideas, prototypes and product development is organized into
the schema as described in Fig. 1. Most of the interviews were conducted by the first
author, with the attendance of a second researcher (the third author or sometimes external
researchers in our network). This researcher has a long experience conducting interviews
in software companies. Each interview lasted from 55 min to 70 min and the interviewees
were informed about the audio recording and its importance to the study.

We used a thematic analysis – a technique for identifying, analyzing, and reporting
standards (or themes) found in qualitative data [22]. We started by reading all interview
transcripts and relevant documents, and coded them according to open coding [22]. A
set of pre-determined categories were used to guide the coding process, as we have some
interests in topics of (1) business original, (2) prototyping practices (3) pivoting (4)
testing (5) challenges and (6) key performance indicators (KPIs). We attempted to label
all meaningful text segments with appropriate codes. To feed data to this study, we
filtered the codes that are related to prototyping, technical implementation, and testing
activities prior to product launching. According to Sect. 2.2, throwaway prototypes were
low-fidelity artifacts, such as mockup, wireframe, or simple code. Evolutionary proto‐
types were perceived as product building blocks, such as heavy code activities, i.e.
feasibility testing of functionality, building new feature, etc. The relationship of the
factors to the speed of prototyping or production was identified via text about challenges,
or text specifying consequence on time-to-market or time to collect user feedback. We
noted and reported evidence on prototyping as follows (1) factors that relate to proto‐
typing activities in generals, (2) factors that slow down the prototyping activities and
(3) factors that speed up the prototyping activities.

3.3 Case Description

The characteristics of our cases are given in Table 1. It is noticeable that a large number of
the studied cases deliver peer-to-peer services as marketplaces or platforms (S01, S02, S03,
S07, S08, S11, S13, S16, S20). There are also cases that deliver value in Business-to-Busi‐
ness model (B2B) (S04, S06, S10, S12, S15, S17). The cases are dominantly characterized
by web-based and mobile-based software product with client-server architecture. We also
identified the product focuses in early and later phases of the software startups [23]. Among
them, there are some startups with annual revenue of one million euro or more (S06, S09).

What Influences the Speed of Prototyping? 25

Regarding the development strategy, interestingly, there are seven cases (35%) that have
(parts of) product developed outside company boundary.

Table 1. Startup cases characteristics

Code Product type Early focus Later focus Dev. strategy No. of prot. Dev. method.
S01 Photo

marketplace
Feature Insource 2 Agile

S02 News generator UX New feature Outsource 4 Agile
S03 Homemade food

market
UX Insource 2 Adhoc

S04 Construction
management

Simple feature New feature Outsource 5 Distributed agile

S05 Underwater
camera

Feasible
technology

Outsourcing,
subcontracting

7 Informal agile

S06 Sale visualization
tool

UX Flexible, scalable Insource 3 Informal scrum

S07 Location
recommendation

Feature, UX Insource 3 Informal agile

S08 Ticket platform Intuitiveness,
friendliness

Scalable and new
features

Outsource 2 Agile

S09 Educational quiz
system

User
friendliness

Scalable, Stable Insource 5 From adhoc to
distributed agile

S10 IoT OS platform Ecosystem Functionality Insource 4 NO INFO.
S11 Ticket platform User friendly,

simple
More features,
complexity

Insource 2 Adhoc

S12 Elearning
platform

Feature Insource 3 Agile

S13 Shipping services NO INFO. NO INFO. Outsource 3 NO INFO.
S14 News services Feature

provider
Platform as a
service

Insource 2+ Continuous
development

S15 Smart grid
application

NO INFO. NO INFO. Insource NO INFO. NO INFO.

S16 Secondhand
marketplace

innovative
feature

Product line Insource 3 NO INFO.

S17 Simulation based
training

UX, feature Flexibility,
Scalability

Insource 2 + NO INFO.

S18 Open source
messenger

Community Feature Open source 4 Adhoc

S19 Location based
alert system

UX Feature and
enhanced UX

Insource 5 Agile

S20 Elearning system User
friendliness

Standardization Insource 2 Agile

*Notation: NO INFO. means missing information

The major reported development methodology is Agile, with iterative deliveries and
frequent customer feedback: “… Scrum based development, sprints of two weeks,
standup, wrap-up meeting, we like to work in this way.” (S06). In some cases, the
company reports a type of informal Agile process: “… fully informal but truly agile
process with working release maintained, … iterative development of functionality and
refactoring” (S05)

26 A. Nguyen-Duc et al.

One specific question asked to interviewees is how many prototypes have been made
before product launching. The answers vary from two to seven prototypes, either throw‐
away or evolutionary ones, before a launch. In many cases, we considered prototypes
as a tangible artifact that is experimented with (potential) users, customers and internal/
external stakeholders.

4 Result

Figure 2 describes the influencing elements on throw-away prototyping (detail on
Sect. 4.1) and evolutionary prototyping (detail on Sect. 4.2). It should be noticed that
the direction of impact is not given. Some elements specifically show the positive/nega‐
tive influences while other elements remain as general observations.

Fig. 2. Factors influencing the prototype-centric learning loops

4.1 Elements Influencing Throwaway Prototyping

4.1.1 Adoption of Collaborative Mock-up Tools
By adopting various tools, i.e. paper sketch, GUI mockups and wireframe tools, startups
achieve a fast and an economic prototype without any technical expertise, as described
in (S02, S09, S11, S13). In these cases, startups conducted very short iterations, from a
few days (S02, S11, S13) to a few weeks (S09), from a product or a service idea to
having the first user feedback. In S04, printing GUI layout in papers is reported as a
good practice for teamwork, especially improving the customer involvement: “normally
we draw in the piece of paper first and then we make mock-ups… and then the customer
joins us on that journey, then we click on the paper, we go to another one …” (S04). It
is also common that startups build mockups by using cloud-based software services. For
such an online tool, the teamwork mode is reported as an important feature that facilitates
collaborative design efforts among distributed team members (S02).

What Influences the Speed of Prototyping? 27

4.1.2 UX Designer Onboard
Business side of a startup (often CEOs) is always in a need of expressing and visualizing
their ideas into more tangible artifacts. By doing that, sitting next to a designer is highly
desirable for CEOs in early stages. In S02, the CEO expresses the need for a close collab‐
oration with a designer in team: “In this case, I would really like a designer that sits here
together with us …” (S2). The role of a design in mobile application is highlighted in
another discussion with S2: “You might think of user interface as a make-up for a person.
But I think UI is the capacity that an app needs to interact with people.” It happens simi‐
larly in S12, when the CEO mentions about the process of designing the graphical part of
their prototypes: “The alternative is to create a specification … and just developing that
document and all the process around it is typically very resource intensive. We talk about
a future, … we make a prototype at a first phase implementation and then we adjust from
there based on dialogues in between us.” (S12). For frontend-rich applications, a designer
is a champion of the user experience, considering the viewpoint of users and keeping
consistency among graphical elements across different platforms.

4.1.3 Choices of Faking or Building
There are often many uncertainties about customers and their expectations in the early
stages of startups. Starting with a single-feature prototypes, or other approaches with
implementation come always with a risk of wasting effort. It is considered time-saving
to start with a clear mind about the throw-away strategy, by focusing on demonstrating
business value rather than reusing the technical components (S02). Uncertainty about
what to build and how to build often come with quick and dirty experiments without
proper architectural designs, appropriate coding practices and documents. In this
manner, frequent change of requirements or feature requests could lead to the increase
of technical debts in later phase. Experimenting by the development of a runnable
prototype was a costly and time-consuming experience in S09. In this way, the value of
a prototype should exceed its cost. In S03, the development team has a clear plan for
experimenting without “making the product” until they get the right product design. S11
applies the concept of “fake it until you make it”, to simulate a final product without
primary quality, both with functionalities and user experience. However, the focus on
the speed has also led to the minimum part of viability. In S11, customer demonstration
was done in a wizard of oz manner [4], customer interacting with an actual user interface,
but business logics and backend functionality were done by manual work. Even though
it is inefficient, the approach is easy and fast to build.

4.1.4 Collaboration Across Diverged Mindsets
We observed that in most of the cases, the ideas came from the CEOs, who are often
business people or serial entrepreneurs. While the decisions about what the products
should do come from a business mindset, they are implemented by developers with a
technical mindset. In some cases (S01, S04, S05), there are challenges in communicating
the product ideas and convincing the developers about the product value. In S04, it took
as much time to discuss on the value proposition as to sketch a mockup. Vice versa, the
communication of technical difficulties is also a time-consuming task, as mentioned by

28 A. Nguyen-Duc et al.

a developer in S05: “She [the CEO] is very sharp about business and finance stuffs, but
it takes a long discussion to explain her about the importance of having flexible product
design …” (S05). The communication challenge might also happen between startups
and customers, when no concrete prototypes are provided: “We work with a customer
organization, learn how they have worked with the current solutions and describe our
proposal via the prototype. It is hard for them to realize the benefit without concrete
examples…” (S04). It also appears that a prototype is late released due to the wrong
estimation of the CEO, who has no technical background. For example, in S1, the CEO
insisted on a customer feedback having a new field in a frontend form, which caused
the change of both business logic layer and data table structure.

4.1.5 Identification of a Right Set of Feedbacks
Steve Blank emphasizes the importance of early involvement of end users in product
development [2]. Particularly, in startups developing products for mass market (or B2C
business model), the feedback from the representative users of a market segment is
essential. Nevertheless, not all users’ input is equally valuable to product development.
It was difficult to find the customer feedback that is useful for validating hypotheses in
S02: “I have attended a various types of events like that. To be honest, there are not so
many interesting things there …” (S02). The CEO wandered in town and talked to
different people about the product idea. However, the approach is quickly found ineffi‐
cient, as the users’ feedbacks are often shallow. After that, the CEO targeted a group of
innovative users from startups and research community and documented many inter‐
esting ideas for the product features. The integration of such lead users, “whose strong
needs will become general in a market-place months or years in the future” [24], appears
to be an important factor to accelerate the speed of startup learning. Lead users are also
able to contribute via suggestions, testing and feedback, or even participate in the devel‐
opment and co-creation of new products or services, as observed in S14: “We always
do that in a close relation to our actual client stakeholders. Once we decide to narrow
it on a new product area, the first thing we do is to get a partnership with a customer
so that we can work together on a daily basis as stakeholders and product devel‐
opers…” (S14).

4.1.6 Fostering Customer Knowledge and Embedding into Prototypes
Prototypes can be seen from three different perspectives, function, look-and-feel and
role, in which role is the representation of usability of the prototype [2]. In order to
maximize lessons learned from a prototype, the vision on how end-users adopt a final
product need to be visualized and captured in the prototype. As the actual end users
are often not well known in the early phases, the integration of the user’s role into the
prototype design is a fuzzy task. The time pressure on prototyping makes startups
skip a detailed analysis of users’ behaviors. It seems that the adoption of customer/
market analysis tools are not so common in our startup sample. In S02, the CEO
emphasized the role of mapping tools, such as a customer journey map to describe the
customer’s experience: “I have been told by my friends about the tool [a customer

What Influences the Speed of Prototyping? 29

journey map]. We used it to describe how customer interact with the system and
where could be the gap” (S02).

4.2 Elements Influencing Evolutionary Prototyping

4.2.1 Utilizing Plug-and-Play Components in Prototype
Utilizing ready-made components, such as Open source software (OSS) libraries and
frameworks unlocks the capacity of experimenting functional as well as non-functional
features. The adoption of OSS components was mentioned in all of the cases, from using
tools (S19), integration of OSS code (S02, S03, S05, S20), to participation in OSS
community (S18). The main benefits include reduced development cost and faster time-
to-release, which were mentioned by the CTOs of (S19) and (S20): “…we might not
even come to the idea of making it happen if we do not have OSS as an experiment.
Without OSS it would take a lot of time and very costly” (S19). It is an even more obvious
choice in open source type of platforms: “It is very hard nowadays not to use OSS
artifacts, especially when with Android development …” (S20). It also appears that many
advanced technologies were adopted via using OSS: “A core part of our product includes
a machine learning algorithm. We are lucky enough to find ml library in C++, entirely
OSS, super cool” (S02). By taking ready-made components, startups also reduce proto‐
typing time by simplifying architectural aspects to some existing patterns.

4.2.2 Synchronizing Customer Feedback in Loops
Communication among team members or between a startup company and its external
stakeholders is found as a significant factor delaying an iteration release. Insufficient
communication due to misunderstanding, cultural difference, language barrier, lack of
supporting tools happens often in outsourcing and remote partnership scenarios (S01,
S09): “Basically, we found some limitations that made it difficult to be efficient in the
way to communicate. And since we’re teams in different places it’s really important that
information flow works and also to make sure that all people—don’t have to be involved
in everything, and be able to group efficiently and create like projects, and store docu‐
ments, and all these things, and have video-share links, and articles, and all these
things.” (S09). The misunderstanding and reworking also happens when customers are
distant to developers and the customer feedbacks are not fully perceived. In S13, the
CEO and sales people interacted with customers and collected insightful feedback from
them. However, the feedback is not communicated efficiently to the development team
in other locations. This leads to unnecessary re-work with communication and imple‐
mentation effort and hence slows down the time to release.

4.2.3 Conflicting Feature Requests
It is a typical situation that evolutionary prototypes are built based on feature requests
from the first customers. Gradually, when having more customers, new feature requests
might vary from the business direction or even conflict with the previous functionalities.
S14 describes how they handled such situation: “either we solve them by providing them
different products or we do ignore parts of the market… We make a very clear statement

30 A. Nguyen-Duc et al.

to what we think the future of journalism is, then we pursue that and the cost of that is
neglecting parts of our market” (S14). Similarly, S15 expresses how their product
evolved through different iterations: “There will always be requirements arriving…
Sometimes the new requirements disrupt the old requirements. At the moment, we are
working to disrupt the old products” (S15). Considering what to develop and which
features to include adds complexity to future releases. Additionally, requests coming in
the middle of the development sprint from large customers might influence the feature
priority and delay the release further: “We’re in that situation all the time, it’s very
difficult to say no because giant customers telling you we need that functionality. If
you’re going to have us as customers you’re going to have to make it, we need it in the
contract that you have to make it. We also build it, we built it bigger and bigger” (S11).

4.2.4 Feature Creeps
Many startups add new features to fit the prototype to a changing group of early
customers. This leads to two possible challenges of satisfying customer demands, so-
called (1) feature creep and (2) product portfolio. Feature creep refers to the addition of
features to a product in a continuous manner: “We are adding features all the time. This
is not a product that will ever stop evolving. We will always have a strong engineering
team to develop the product forward. We are not talking about maintenance here. We
are talking about this being the core of the company’s competence” (S13). Startups
rarely have a requirement management process to manage product complexity. Conse‐
quently, feature creeps are considered harmful to the production and enhancement of
core features.

Moreover, this can be an unwanted expansion that requires changes also in the
product architecture and even in the strategic direction. In S04, after the first two releases
addressing a construction manager’s requirements, the third release was developed for
a construction operator’s demands. Consequently, S04’s product scope has grown from
a single feature MVP to a supply-chain management system: “So then we had a small
one just for easy communication between users of the building and the maintenance
guys… So the second feature was to manage document flow. And the third was to have
a 3D model of the building. And all these things here we spent a lot of time and we were
building in parallel with different prospects” (S04).

In a larger scale, the expansion could lead to deriving a product portfolio. Startups
face with challenges of keeping both the focus to increase the quality of core delivered
values and satisfaction of important customers. While not all good ideas can be turned
into features, some ideas are selected to develop further and might become the core value
providers for startups.

4.2.5 Solid Technical Competence Onboard
In several cases (S09, S01, S03, S06) the technical competence determines the speed of
feature releasing. Startups’ technical members are required to possess good technical
skills and they also need to be productive in an ambiguous development environment:
“We don’t hire people basically for them being cheap because we don’t have time. Our
challenge is time and to be more productive other kind of competing companies … it’s

What Influences the Speed of Prototyping? 31

much better to have people that can—within a short time, could produce good code”
(S09). It is also important to write code in a clean and structured manner, to be quality-
aware in the early phases: “The back end was pretty good because he had hired my boss
at my current company … there was some friction there in how to develop systems
between the professional programmer, my boss, and the copy paste programmers. I
think that also contributed to it not working.” (S11). The combination of technical
competence and customer understanding is emphasized in another case: “… It is very
hard to find people both good at technology and have a good sense of commercial
edge…” (S08).

4.2.6 Dependence on Fast Changing Technologies
Startups often struggle with thriving in a technical uncertainty, whether under market
pull or technology push impacts [20]. Due to different reasons, e.g., specific devices,
platforms or protocols becoming popular in market, or new technology gaining
momentum, there are needs for changing the current product’s features to accommodate
new technology (S01, S09, S11). In a small scale, for instance, the adoption of new
animation effects, a different type of map, etc. leads to an extension of the current or
coming iterations. In S02, the development of an IOS application is delayed after the
codebase and all dependent libraries were forced to be upgraded to a newer version of
Swift. The team took time to resolve all the changes so the next release can be done in
Swift 3.0. The technology uncertainty is expected with mobile applications, as stated by
the CEO of S11: “…at the moment we are changing the technology platform. This
perhaps has been the biggest challenge we have decided where to stand and make a new
platform on development technology… So next generation which will be out in the
market place around summer next year will be quite heavily rearranged.” (S11). In a
large scale, the technical change can lead to a change of business directions.

5 Discussion

5.1 Reflections on the Results

We captured what happened during the early phases of the studied twenty software
startups. We identified the factors that are found to influence the speed of prototyping
across different types of prototypes. They can be grouped into (1) Artifacts, (2) Team
competence, (3) Collaboration, (4) Customer and (5) Process dimensions. Artifacts
include collaborative tools and reusable components. The practices of adopting artifacts
are important for saving time of prototyping user interfaces and functionalities. The issue
here is to select the suitable tools and components to match the prototyping’s purposes.
The requirement of team competence might vary due to the type of prototyping and the
type of products. For instance, UI-rich application would require a designer onboard at
the early stage while a good developer in the later stage. Collaboration, including
efficient communication of visions and tasks among startup teams and interaction with
external stakeholders, is important for shorten the learning loops. Besides, how
customers are involved in the prototyping loops has an impact on the duration of the

32 A. Nguyen-Duc et al.

prototyping. While inappropriate customer feedback delays the learning and creates
more prototyping loops, too many requests from customers delay the time-to-release
and introduce complexity to product management. Last but not least, prototyping is
performed under many uncertainty and dependencies. Defining practices and processes
to support decision-making under uncertainties would help in prototyping.

5.2 Threats to Validity

There are several threats to validity worth discussing [1]. One internal threat to validity
is the bias in the data collection, as the data might not represent the comprehensive case.
This is worth discussing as most of the cases are represented by one interview. In order
to mitigate this threat, we selected CTO and CEO as interviewees, who have the best
understanding about their startups. We also use other types of data sources, such as
documents and observations to increase our understanding about the cases (S01 – S05,
S09). The participative observations in S01 and S02 enabled deeper insights that go
beyond cross-sectional interviews. A construct validity threat is the possible inadequate
descriptions of constructs. We tried at our best to collect contextual information about
the startups, from social media and personal contacts. When analyzing data, the coding
process of interview transcripts was assisted by the authors’ prior knowledge about
prototyping and validated learning. This helped to focus on the investigated phenomenon
without losing relevant details.

The external validity is normally not addressed by case study research. Our result is
grounded on twenty cases, with diversity in company size, application domain, financial
model, and growth stage and organization structure, which adds the robustness to our
findings. Many themes, such as Sect. 4.1.1, Sect. 4.2.1, Sect. 4.2.5, Sect. 4.2.6 are
observed in more than half of the cases. Our sample is characterized by Norwegian
software startups, with a small team and bootstrap financing model. We do not consider
other types of startups, for example, internal cooperate startups, venture capital invested
startups, and American startups. Hence, the results cannot be directly applied to other
contexts, though analytical generalization may be possible in similar contexts.

6 Conclusions

To the best of our knowledge, this is the largest multiple case study research about
software startups. Grounded on twenty European startups, we adopted an analytical
framework to reveal different factors that influence the prototyping activities in early
stages of software startups. We found that both throw-away and evolutionary prototypes
were influenced by artifacts adoption approach, available team competence, collabora‐
tion and customer involvement. Even though there is certain limitation in our case
sample, there are still valuable lessons learnt for practitioners. For startups that follow
the Lean Startup approach, it is important to align the learning objective with a collab‐
orative and well-defined approach of prototyping. Moreover, startups need to find a
systematic approach to integrate relevant external feedback in all phases of prototyping.

What Influences the Speed of Prototyping? 33

This work does not address the evolution of startups according to the learning loops,
i.e. what are lessons from idea to throw-away prototype, what are lessons from switching
from throw-away prototypes to evolutionary ones. Besides, future work can investigate
different types of learning brought by different types of prototypes. This work addressed
validated learning through an important angle, which is the speed of prototyping loops.
In the future work, we will explore another equally important aspect, which is the quality
of learning. Further studies might also identify the effective prototyping and develop‐
ment patterns among software startups.

References

1. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in software
engineering. Empirical Softw. Eng. 14(2), 131–164 (2009)

2. Blank, S.: The Four Steps to the Epiphany: Successful Strategies for Products that Win, 2nd
edn. K & S Ranch Press (2013)

3. Giardino, C., Wang, X., Abrahamsson, P.: Why early-stage software startups fail: a behavioral
framework. In: Lassenius, C., Smolander, K. (eds.) ICSOB 2014. LNBIP, vol. 182, pp. 27–
41. Springer, Cham (2014). doi:10.1007/978-3-319-08738-2_3

4. Ries, E.: The Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation to Create
Radically Successful Businesses. Crown Business, New York (2011)

5. Cooper, R.G.: Stage-gate systems: a new tool for managing new products. Bus. Horiz. 33(3),
44–54 (1990)

6. Unterkalmsteiner, M., Abrahamsson, P., Wang, X., Nguyen-Duc, A., Shah, S., Bajwa, S.S.,
Yagüe, A.: Software startups: a research agenda. e-informatica. Softw. Eng. J. 10(1), 89–123
(2016)

7. Fagerholm, F., Guinea, A.S., Mäenpää, H., Münch, J.: The RIGHT model for continuous
experimentation. J. Syst. Softw. (2016)

8. Houde, S., Hill, C.: What do prototypes prototype. In: Helander, M., Landauer, T., Prabhu,
P. (eds.) Handbook of Human-Computer Interaction, 2nd edn. Elsevier Science (1997)

9. Accessed 1 Dec 2016. http://qz.com/771727/chinas-factories-in-shenzhen-can-copy-
products-at-breakneck-speed-and-its-time-for-the-rest-of-the-world-to-get-over-it/

10. Cohen, M.A., Eliasberg, J., Ho, T.H.: New product development: the performance and time-
to-market tradeoff. Manage. Sci. 42, 173–186 (1996)

11. Yin, R.K.: Case Study Research: Design and Methods, 4th edn. Sage Publications Inc,
Thousand Oaks (2008)

12. Duc, A.N., Abrahamsson, P.: Minimum viable product or multiple facet product? The role of
MVP in software startups. In: Sharp, H., Hall, T. (eds.) XP 2016. LNBIP, vol. 251, pp. 118–
130. Springer, Cham (2016). doi:10.1007/978-3-319-33515-5_10

13. Lichter, H., Schneider-Hufschmidt, M., Züllighoven, H.: Prototyping in industrial software
projects-bridging the gap between theory and practice. IEEE Trans. Softw. Eng. 20(11), 825–
832 (1994)

14. Floyd, C.: A systematic look at prototyping. In: Budde, R., Kuhlenkamp, K., Mathiassen, L.,
Zullighoven, H. (eds.) Approaches to Prototyping, pp. 1–18 (1984)

15. Beaudouin-Lafon, M., Mackay, W.E.: Prototyping development and tools. In: Jacko, J.A.,
Sears, A. (eds.) Handbook of Human-Computer Interaction, Revisited edn, pp. 1006–1031.
Lawrence Erlbaum Associates, New York (2007)

34 A. Nguyen-Duc et al.

http://dx.doi.org/10.1007/978-3-319-08738-2_3
http://qz.com/771727/chinas-factories-in-shenzhen-can-copy-products-at-breakneck-speed-and-its-time-for-the-rest-of-the-world-to-get-over-it/
http://qz.com/771727/chinas-factories-in-shenzhen-can-copy-products-at-breakneck-speed-and-its-time-for-the-rest-of-the-world-to-get-over-it/
http://dx.doi.org/10.1007/978-3-319-33515-5_10

16. Karvonen, T., Lwakatare, L.E., Sauvola, T., Bosch, J., Olsson, H.H., Kuvaja, P., Oivo, M.:
Hitting the target: practices for moving toward innovation experiment systems. In: Fernandes,
J.M., Machado, R.J., Wnuk, K. (eds.) ICSOB 2015. LNBIP, vol. 210, pp. 117–131. Springer,
Cham (2015). doi:10.1007/978-3-319-19593-3_10

17. Sauvola, T., Lwakatare, L.E., Karvonen, T., Kuvaja, P., Olsson, H.H., Bosch, J., Oivo, M.:
Towards customer-centric software development: a multiple-case study. In: 41st Euromicro
Conference on Software Engineering and Advanced Applications (2015)

18. Bosch, J., Holmström Olsson, H., Björk, J., Ljungblad, J.: The early stage software startup
development model: a framework for operationalizing lean principles in software startups. In:
Fitzgerald, B., Conboy, K., Power, K., Valerdi, R., Morgan, L., Stol, K.-J. (eds.) LESS 2013.
LNBIP, vol. 167, pp. 1–15. Springer, Heidelberg (2013). doi:10.1007/978-3-642-44930-7_1

19. Olsson, H.H., Alahyari, H., Bosch, J.: Climbing the “stairway to heaven”: a multiple-case
study exploring barriers in the transition from agile development towards continuous
deployment of software. In: 38th Euromicro Conference on Software Engineering and
Advanced Applications (2012)

20. Paternoster, N., Giardino, C., Unterkalmsteiner, M., Gorschek, T., Abrahamsson, P.: Software
development in startup companies: a systematic mapping study. Inf. Softw. Technol. 56(10),
1200–1218 (2014)

21. Brooks, F.P.: The Design of Design: Essays From a Computer Scientist. Addison-Wesley
Professional, Boston (2010)

22. Boyatzis, R.E.: Transforming Qualitative Information: Thematic Analysis and Code
Development. Sage Publications, Thousand Oaks (1998)

23. Nguyen-Duc, A., Shah, S., Abrahamsson, P.: Towards an early stage software startups
evolution model. In: 42nd Euromicro Conference on Software Engineering and Advanced
Applications (2016)

24. Von Hippel, E.: Lead users: a source of novel product concepts. Manage. Sci. 32(7), 791–805
(1986)

25. Lynn, G.S., Morone, J.G.: Marketing and discontinuous: the probe and learn process. Calif.
Manage. Rev. 38(3) (1996)

26. Nguyen-Duc, A., Seppnen, P., Abrahamsson, P.: Hunter-gatherer cycle: a conceptual model
of the evolution of startup innovation and engineering. In: 1st Workshop on Open Innovation
on Software Engineering, ICSSP (2015)

27. Luqi, F.K.: An introduction to rapid system prototyping. IEEE Trans. Softw. Eng. 28(9), 817–
821 (2002)

28. Jansen, S., Brinkkemper, S., Hunink, I., Demir, C.: Pragmatic and opportunistic reuse in
innovative start-up companies. IEEE Softw. 25(6), 42–49 (2008)

29. Grevet, C., Gilbert, E.: Piggyback prototyping: using existing, large-scale social computing
systems to prototype new ones. In: 33rd Annual ACM Conference on Human Factors in
Computing Systems; Seoul, Republic of Korea, pp. 4047–4056 (2015)

What Influences the Speed of Prototyping? 35

http://dx.doi.org/10.1007/978-3-319-19593-3_10
http://dx.doi.org/10.1007/978-3-642-44930-7_1

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license
and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

36 A. Nguyen-Duc et al.

http://creativecommons.org/licenses/by/4.0/

Key Challenges in Agile Requirements Engineering

Eva-Maria Schön1,2(✉), Dominique Winter3, María José Escalona1,
and Jörg Thomaschewski3

1 University of Seville, Seville, Spain
eva.schoen@iwt2.org, mjescalona@us.es

2 CGI Deutschland Ltd. & Co. KG, Hamburg, Germany
3 University of Applied Sciences Emden/Leer, Emden, Germany

dominique.winter@designik.de,
joerg.thomaschewski@hs-emden-leer.de

Abstract. Agile Software Development (ASD) is becoming more popular in all
fields of industry. For an agile transformation, organizations need to continuously
improve their established approaches to Requirements Engineering (RE) as well
as their approaches to software development. This is accompanied by some chal‐
lenges in terms of agile RE. The main objective of this paper is to identify the
most important challenges in agile RE industry has to face today. Therefore, we
conducted an iterative expert judgement process with 26 experts in the field of
ASD, comprising three complementary rounds.

In sum, we identified 20 challenges in three rounds. Six of these challenges
are defined as key challenges. Based on the results, we provide options for dealing
with those key challenges by means of agile techniques and tools. The results
show that the identified challenges are often not limited to ASD, but they rather
refer to software development in general. Therefore, we can conclude that organ‐
izations still struggle with agile transition and understanding agile values, in
particular, in terms of stakeholder and user involvement.

Keywords: Agile Software Development · Requirements Engineering ·
Challenges · Agile RE · Stakeholder and user involvement · Human-Centered
Design

1 Introduction

Agile Software development (ASD) gains in popularity in today’s business world due
to enabling immediately changes in the direction of product development. These short-
term changes in direction require a flexible approach to Requirements Engineering (RE)
as well. In addition, agile methodologies (such as Scrum [1], Kanban [2] or Extreme
Programming [3]) are often combined with Human-Centered Design (HCD) [4] activ‐
ities in order to emphasize a value-driven approach to product development [5, 6]. To
this end, the field of agile RE has emerged during the last decade.

Focusing on user needs and value delivery becomes an important aspect in product
development due to the increasing competition in all areas. With regard to ASD, plan-
driven organizations moved away to value-driven organizations. On the one hand,

© The Author(s) 2017
H. Baumeister et al. (Eds.): XP 2017, LNBIP 283, pp. 37–51, 2017.
DOI: 10.1007/978-3-319-57633-6_3

people in plan-driven organizations often negotiate about project plans, pricing models
and the amount of features they can develop with the available resources. They are
emphasizing the generated outputs such as number of created features during a time
period. On the other hand, people in value-driven organizations discuss visions, expe‐
riences and human values as well as the way to address them through the product. They
focus on the outcomes that the delivered outputs entail.

Compared to sequential approaches to RE, which comprise a requirement analysis
phase before the development can even begin, agile RE is carried out along with the
development itself. Therefore, continuous management of requirements is a crucial
attribute. Requirements are regularly described from a user perspective in the form of
epics and user stories [7] instead of creating a requirements document [8]. Recent
research is showing that there are several ways of running RE in an agile environment
while involving users and stakeholders [5, 9–12].

Performing agile RE can lead to challenges organizations have to deal with. In liter‐
ature, there can be found some studies investigating challenges in agile RE (see [11–
15]). However, the related work still lacks in giving a general overview of the challenges
in current industry.

This study pursues the main objective of identifying the most important challenges
in agile RE industry has to address today. We aim to build a shared understanding
concerning these challenges among voices that matter by means of experts in the field
of agile RE. Thus, the research questions we pose are listed below:

– RQ1: What are the key challenges in Agile Requirements Engineering?
– RQ2: How can we deal with the identified key challenges?

The paper is structured as follows: Sect. 2 briefly summarizes the related work and
points out the research gap. Section 3 presents the applied research method and describes
the iterative expert judgement process. Then, Sect. 4 identifies the findings and discusses
both on their meaning and on the limitations of this study. Finally, Sect. 5 provides the
conclusions as well as an outlook on future research.

2 Related Work

There are related studies in the literature that investigate challenges in agile RE by means
of different research methods. Table 1 shows an overview of the reported challenges and
used research methods.

Analyzing the related work, we can state that the authors use two different kinds of
research approaches in general. On the one hand, Ramesh et al. [13] and Bjarnason et al.
[14] utilize case studies to investigate the challenges in the field. On the other hand,
Inayat et al. [11], Heikkila et al. [15] and Soares et al. [12] report challenges in agile RE
by analyzing primary studies with the aim to identify available evidence in existing
research.

38 E.-M. Schön et al.

Table 1. Challenges in agile RE reported by related work

Authors Research method Reported challenges
Ramesh, Cao,
Baskerville [13]

Multi-case study
(16 companies)

Problems with cost and schedule estimation; inadequate
or inappropriate architecture; neglect of non-functional
requirements; customer access and participation;
prioritization on a single dimension; inadequate
requirements verification; minimal documentation

Bjarnason,
Wnuk, Regnell
[14]

Case study Planning for agility; weak requirements prioritization;
weak effort estimates; quality issues; system completed
late; capturing innovation; lack of documented
requirements; customer-proxy role; ensuring
competence (RE, VV); motivating teams for
requirements work; weak requirements at start

Inayat, Salim,
Marczak,
Daneva,
Shamshirband
[11]

Systematic
literature review

Minimal documentation; customer availability;
inappropriate architecture; budget and time estimation;
neglecting non-functional requirements (NFRs);
customer inability and agreement; contractual
limitations; requirements change and its evaluation

Heikkila,
Damian,
Lassenius,
Paasivaara [15]

Mapping study Problems with client or customer representatives;
insufficiency of user story format; difficulties in
prioritization of requirements; growing technical debt;
reliance on tacit requirements knowledge; imprecise
effort estimates

Soares, Alves,
Mendes,
Mendonca,
Spinola [12]

Systematic
literature review

Requirement prioritization; non-functional requirements
identification; lack of information; volatility of
requirements; requirements definition; dependence
among requirements; prediction of impacts of changes;
user dependence; communication and collaboration with
users; requirements validation

Ramesh et al. [13] results were published in 2010. However, as ASD is a rapidly
changing research area and the body of knowledge has evolved over the last years, we
need to clarify whether the reported challenges are still relevant today. For instance,
NFRs may not be longer a challenge for industry since the concept of the Definition of
Done and the usage of acceptance criteria are widely spread. Bjarnason et al. [14] carry
out a case study in only one company, therefore the results may not be applicable to
other companies and may not be representative in general. In comparison, Inayat et al.
[11], Heikkila et al. [15] and Soares et al. [12] review primary studies by analyzing
existing literature, which is a good approach to get an impression of relevant aspects
from a theoretical viewpoint. Nevertheless, one could argue that this is not an appropriate
approach to investigate the existing challenges in practice.

To this end, the aim of this study is to identify the most important challenges in agile
RE industry has to face up today by getting insights from 26 experts in the field. To the
best of our knowledge there is no existing study investigating these challenges by means
of a qualitative study with practicing experts in ASD working for many different companies.

Key Challenges in Agile Requirements Engineering 39

3 Research Method

We used an iterative expert judgement process rooted in a Delphi study [16–18] in order
to respond to our RQs. We applied a modified Delphi study where measuring consensus
and stability at group level among several iterations was not the most crucial part. On
the contrary, we shifted the focus to applying the valuable features of Delphi for
conducting our iterative expert judgement process [19]:

– Anonymity among experts to avoid influence of dominant individuals
– Iterative approach
– Controlled feedback with statistical group response

The main benefit of our modified approach was utilizing the learnings from a
previous iteration for carrying out the following ones.

3.1 General Study Design

The study was performed in three complementary rounds. Figure 1 gives a general
overview of the process. At the beginning of each round, we started designing the ques‐
tionnaire, optimized by a pretest. Once finished, the invitation was sent to the experts
via email. In the second and third round, we attached the results of the previous rounds
to the invitation in order to share the outcomes among the panel. The experts had two
weeks to fill in the questionnaire. During the following two weeks we evaluated the
results, created the report, specified the criteria for dropping items for the following
round and designed the questionnaire for the next round.

Fig. 1. General process of study

We conducted the study in German since most of the experts are native speaker.
Since we are aware that the term agile RE is not very accepted in the agile community
and some experts understand this as a contradiction in itself, we decided not to ask for
challenges in agile RE directly. On the contrary, we phrased our questions differently
and described the context of our study within the introduction part of each questionnaire.

We used google forms for the first and second round, whereas limesurvey was used
for the third round due to the complexity of the questionnaire. In general, we decided to
use 7-point Likert items since this has been proven to be the best choice in terms of
avoiding interpolations within related research fields [20]. Besides, we adapted the
quality criteria proposed by Diamond et al. [17] so as to ensure the quality of our study.

40 E.-M. Schön et al.

3.2 Panel of Experts

We selected our panelists specifically for their knowledge or position regarding the issue
under study. As shown in previous work, the research field of agile RE is very close to
existing work practices in industry [5]. To this end, we defined the reproducible criteria
for selecting participants as follows:

– Many years of experience as professional in the field of ASD
– Working experience in one or more of the following roles: Product Owner, Scrum

Master, Agile Coach, Consultant for Agile Transition, Kanban Expert or Lean Startup
Expert

The panel consisted of 26 experts who are working in 19 different companies located
in Germany and Switzerland. In general, they had 2–10 years of experience working in
ASD (average = 6.14 years). In comparison, experts have about 0–16 years of experience
with RE (average = 6.65 years). Even though one expert stated that he had no experience
with RE at all, we decided to include his answers into the study, since he has long
experience in ASD and in general there do not exist a specific role of a requirements
engineer.

Figure 2 shows the kind of process models experts have been working with. It is
worth mentioning that most of the experts have experience both with sequential
approaches and with agile approaches.

Fig. 2. Process models used by experts

In addition, Table 2 displays the know-how level in terms of ASD rated by experts
themselves.

Table 2. Know-how of panel in terms of ASD

know-how
very poor

1 2 3 4 5 know-how
very high0.0% 0.0% 15.4% 69.2% 15.4%

Key Challenges in Agile Requirements Engineering 41

3.3 Round 1

The questionnaire of the first round comprised two open questions, repeated 15 times. On
the one hand, the experts were asked what the most important challenges with require‐
ments in terms of ASD were. On the other hand, they should give a statement for each
challenge to clarify why they considered this challenge as important. The minimum
number of required answers was 3, whereas the maximum was 15. In sum, we received 107
answers (items) from 26 experts. Table 3 shows an example of an item consisting of a
challenge and a statement concerning importance. The full results can be found in [21].

Table 3. Exemplary item in round 1

Question round 1 Answer given by expert
What challenge do you perceive with
requirements in terms of Agile
Software Development?

Stakeholders affected by requirements or changing the
system are not involved

Why do you consider this challenge
as important?

In one of my projects, representatives of end users did
not really knew the pain of end users. Even the early UI
prototypes were tested by incorrect stakeholders, which
led to risks of conflicts and failure

With respect to data analysis, each challenge was categorized by the authors during
a workshop. Those items, which could not be categorized easily, were discussed within
the group of authors. We used the following categories: stakeholder and user involve‐
ment, collaboration within the team, vision and big picture, iteration planning and esti‐
mation, granularity of requirements, dependencies of requirements, understanding agile
and agile values, continuous delivery of value, roles and responsibilities, need for
security, requirement validation, RE methods, format of requirements, clarity of require‐
ments, prioritization, refinement, discovery and transparency.

Additionally, the reported challenges were categorized according to their agile RE
activity (see Table 4).

Table 4. Agile RE activities

Agile RE activity Description
Discovery Eliciting new ideas/requirements
Refinement Clarifying and analyzing new ideas/requirements
Prioritization Measuring the value that the development will add to the product
Review Checking if requirement is implemented in the manner to deliver value
Documentation Capturing discussion and decisions around the requirement

3.4 Round 2

We checked each item of round one critically, whether or not it was appropriate for
answering our RQs and being queried in the next round. Thus, items of round 1 were
consolidated or excluded. In the end, we identified 34 items as relevant for assessing
them in round 2. Based on those items, we created the questionnaire for the second round.

42 E.-M. Schön et al.

The resulting questionnaire assessed 34 items related to the following topics: stakeholder
and user involvement (6 items), understanding agile and agile values (6 items), RE
methods (10 items), iteration planning and estimation (6 items) and format of require‐
ments (6 items).

The experts rated each item using 7-point Likert items (see Fig. 3). Moreover, they
could choose giving no statement. To sum up, we received responses from 23 experts.
For each item we calculated mean, variance and standard deviation. Additionally, we
created a diagram showing the distribution of experts’ opinion (see Fig. 3) and discussed
on the meaning of findings. The results of round two can be found in [22].

Fig. 3. Exemplary item of round 2

3.5 Round 3

We reduced the number of items when designing the questionnaire for the third round.
Considering items from round 2, we assessed each item according to (a) its relevance
in terms of our RQs, (b) the importance in terms of the attributes of agile RE, (c) the
opinion of the experts and the comprehensibility of the items.

The final questionnaire comprised two parts. The first part queried in sum 20 potential
key challenges of agile RE (see Appendix). The experts were asked to rate each item,
whether or not it is a challenge in agile RE. Moreover, they had the option to choose
giving no statement. Then, the second part evaluated those items that experts identified
as challenge in terms of importance, following 7-point Likert items (totally important,
important, rather important, neutral, rather unimportant, unimportant, totally unimpor‐
tant, no statement). In addition, experts optionally had the chance to provide a solution
for solving the challenge.

In sum, 22 experts filled in the questionnaire. We classified each of the 20 items as
challenge in Agile RE since we derived all items from the results of the previous rounds.
Besides, we calculated the number of experts who rated each item as a challenge. Then,
we defined challenges as key in those cases where 2/3 of the experts’ answers were:
“Yes, it is a challenge”. Finally, we calculated the importance for those items. The results
of round 3 can be found in [23].

Key Challenges in Agile Requirements Engineering 43

4 Results and Discussion

Summarizing the results of the three complementary rounds, we derived 20 challenges
that companies have to cope with in terms of agile RE (see Appendix). We categorized
such challenges into stakeholder and user (3 items), requirements management (7 items),
methods and artifacts (5 items) and format of requirements (5 items).

4.1 (RQ1) What Are the Key Challenges in Agile Requirements Engineering?

We identified six key challenges industry has to face today in terms of agile RE (see
Table 5). In general experts weighted the identified challenges as important [23] and
none of them rated one of the six key challenges as unimportant.

Table 5. Key challenges in agile RE

ID Key challenge N Yes No
C1 In agile software development functional or technical

dependencies with other teams are a challenge because a
considerable coordination effort is required

17 14
(82.4%)

3
(17.6%)

C2 In agile software development it is a challenge that
stakeholders understand that the development team can
make independent (detailed) decisions

20 15
(75.0%)

5
(25.0%)

C3 In agile software development it is a challenge not to lose
sight of the big picture during the implementation of
complex requirements

20 15
(75.0%)

5
(25.0%)

C4 In agile software development continuous management of
requirements is a challenge since not all of them are fixed
at the beginning and they may change over the course of
the project

22 16
(72.7%)

6
(27.3%)

C5 In agile software development it is a challenge to work out
user requirements and quality of use in cooperation with
direct users (end users) of the product

18 13
(72.2%)

5
(27.8%)

C6 In agile software development it is a challenge to involve
stakeholders throughout the whole development process in
regular iterations, so that product development will
succeed

20 14
(70.0%)

6
(30.0%)

All challenges related to the category stakeholder and user are classified as key
challenges (C2, C5, C6). Therefore, we can conclude that organizations still struggle to
the agile transition. Evolving an agile mindset within a whole organization even in parts
that are not close to development is still a challenge companies have to address.

Typically, agile transformation starts in development-oriented parts of an organiza‐
tion. Transforming an organization to become more agile implies a change within the
whole organization. The results show that there is a gap between knowledge and under‐
standing agile values [24] within organizations. Development-oriented techniques

44 E.-M. Schön et al.

evolve rapidly. In comparison, there are still challenges involving stakeholders and users
into the agile processes (C2, C5, C6).

Two challenges (C1, C4), related to category requirements management, are key in
agile RE. On the one hand, companies have an issue with the continuous management
of requirements. On the other hand, they have a problem with technical or functional
dependencies due to raising effort in coordination. Besides, one challenge of methods
and artifacts (C3) is a key challenge.

ASD is commonly used in environments where people have to solve complex adap‐
tive problems [25]. Concerning C1, C3, and C4 we can state that there are still challenges
to be solved, due to the complexity of problems, which are not addressed by agile tech‐
niques properly. To this end, existing techniques and methods must be adapted or new
techniques need to be found.

Figure 4 offers an overview of the categorized key challenges.

Fig. 4. Categorized key challenges in agile RE

4.2 (RQ2) How Can We Deal with the Identified Key Challenges?

Experts recommend techniques, methods and tools in order to deal with the challenges
in agile RE. Below, we will list the techniques and methods proposed by the panel for
each key challenge.

C1: In agile software development functional or technical dependencies with other
teams are a challenge because a considerable coordination effort is required.
More than three experts recommended using scaled frameworks such as LeSS, SAFe or
Scrum of Scrum. Moreover, they proposed the use of the following techniques: creating
a common understanding among all, enhancing continuous communication and collab‐
oration, training the ability to solve dependencies, holding weekly coordination meet‐
ings, organizing teams in matrix management, building communities of practices for
transcending topics, release planning (SAFe), team-transcending availability of product
und sprint backlogs, involving temporary representatives in other teams, enforcing
continuous integration, improving API-driven development and microservices.

Key Challenges in Agile Requirements Engineering 45

C2: In agile software development it is a challenge that stakeholders understand
that the development team can make independent (detailed) decisions.
The following techniques were suggested: continuous coordination and presenting
possible solutions to stakeholder, providing transparency about rationales of the deci‐
sions, strengthening product owner with competency in decision making and helping
stakeholders become aware of the consequences of interfering into detailed decisions.

More than three experts recommended providing alternative solutions for one
requirement. In addition, it is useful to demonstrate that the recommended solution of a
stakeholder is an alternative out of many. In previous rounds, more than one expert stated
that product owner and stakeholder altogether decide what to be developed. In contrast,
the development team decides how the requirement should be developed.

C3: In agile software development it is a challenge not to lose sight of the big picture
during the implementation of complex requirements.
The following techniques were recommended: creating a shared understanding
regarding the meaning of the big picture by means of a product vision, defining epics or
subgoals in the beginning, managing the big picture as a responsibility of the product
owner, providing transparency concerning changes among all, understanding connec‐
tions among user stories by means of story mapping, visualizing customer journey in
the beginning, involving users continuously in order to focus on the problem to be solved
and identifying central contact person for related topics to enable rapid coordination.
Moreover, the experts advised to use visualization by means of roadmaps, sketches of
the system and processes, and value streams.

C4: In agile software development continuous management of requirements is a
challenge since not all of them are fixed at the beginning and they may change over
the course of the project.
The experts proposed the following techniques, methods and tools: collaborating closely
with the requesting stakeholder, communicating regularly within the team, refining and
prioritizing continuously the product backlog, grooming on demand (Kanban),
describing in detail the requirements in the sprint backlog, reviewing the results regu‐
larly, discussing the maturity level of a requirement with the team, grouping user stories
to epics, using Kano analysis, screening and scoring the theme, weighting relatively,
utilizing spike stories to evaluate uncertainty in requirements and using ticketing tools
(e.g. JIRA).

C5: In agile software development it is a challenge to work out user requirements
and quality of use in cooperation with direct users (end users) of the product.
The experts recommended utilizing the following techniques: prototypes, interviews,
observing users by the think aloud method, A/B testing, UX labs, analyzing usage
behavior, friendly user tests, alpha/beta/silent launches, improving continuously a
released version, utilizing a UX-board for play back user insights and testing hypotheses
with real users. In addition, one expert suggested adapting user research to ASD by
reducing the methods to the minimal, evaluate within the team without report creation,
reduce financial restrictions for user involvement as well as problems of accessing real
user by means of panels or a prior recruitment.

46 E.-M. Schön et al.

C6: In agile software development it is a challenge to involve stakeholders
throughout the whole development process in regular iterations so that product
development will succeed.
The following techniques were proposed: defining stakeholders and their involvement
in regular iterations, proposing goals instead of prescribing solutions, involving all
possible stakeholders in the beginning and reducing the amount of people over time.

More than eight experts suggested involving stakeholders by regular planning and
review meetings to gather feedback and useful information. In light of this, they recom‐
mended clarifying the purpose of the meetings and the importance of the outcomes to
be discussed beforehand.

4.3 Meaning of Findings

Comparing our findings to the identified challenges of the related work (see Table 1),
we can conclude that 16 out of our challenges are not reported by the related studies.

Our key challenge C5 (user involvement) is reported by all related studies. In addi‐
tion, three studies [11–13] report issues with non-functional requirements, which is
comparable to our challenge C13. There is also a relation between the key challenge C4
(continuous requirements management) and the challenge “requirements change and its
evaluation” reported by [11]. Moreover, the key challenge C1 (technical or functional
dependencies to other teams) is reported by [12] in a slightly different manner since they
phrase it like “dependence between requirements”.

Moreover, the results show that the identified challenges are often not limited to
ASD, but they rather refer to software development in general. Therefore, we can
conclude that organizations still struggle with agile transition and understanding agile
values, in particular, in terms of stakeholder and user involvement.

4.4 Limitations

We are aware that the design of a questionnaire is important for the process of data
gathering. To this end, we made several pretests of each questionnaire we used with
participants matching our criteria of expert selection. Nevertheless, we observed two
experts struggling with the user experience of the questionnaire tool (Google Forms)
used in round 1. Therefore, we decided to use another tool (LimeSurvey) for the ques‐
tionnaire in round 3, which was more complex than the previous two.

To carry out the study, the group of authors created summaries of the results and
made decisions concerning the kind of items they had to query in the following rounds.
That may lead to bias in the opinion building process of the panel. We tried to prevent
this point by being very accurate in terms of data analysis and by creating the reports.
In addition, we selected items for the following rounds through the selection criteria
defined earlier.

Key Challenges in Agile Requirements Engineering 47

5 Conclusions and Future Work

This paper has addressed the identification of the most important challenges in agile RE
industry has to face up today. Moreover, we examined how to deal with those challenges.
For that purpose, we carried out an iterative expert judgement process comprising three
complementary rounds. The learnings from previous iterations were used for carrying
out the following ones. Our panel consisted of 26 experts in the field of ASD working
for 19 different companies.

We have contributed to the body of knowledge of software development by identi‐
fying 20 challenges industry has to address at present in terms of agile RE. Six of these
challenges have been defined as key challenges. In addition, we have analyzed options
to deal with those key challenges by means of agile techniques recommended by the
experts.

Future research may specifically identify challenges in agile RE by means of an
international panel of experts, for instance with experts from Scandinavian countries.
Our aim is to conduct a comparative analysis among the statements of German-speaking
experts with the viewpoint of international experts. In addition, we are creating a tool
that supports practitioners solving the identified challenges using agile techniques.
Therefore, we are working on agile RE patterns. Some experts stated that the queried
challenges are not limited to ASD. To this end, future studies may analyze whether the
challenges appear in terms of RE in general.

Acknowledgements. First of all, we would like to thank all experts for their participation and
sharing their valuable knowledge. Moreover, we would like to thank all participants in our pretests
for their collaboration. This research has been supported by the MeGUS project (TIN2013-46928-
C3-3-R), Pololas project (TIN2016-76956-C3-2-R) and by SoftPLM Network (TIN2015-71938-
REDT) of the Spanish Ministry of Economy and Competitiveness.

Appendix

See Table 6.

48 E.-M. Schön et al.

Table 6. Challenges in agile Requirements Engineering

ID Challenge in agile RE N Yes No
C1 In agile software development functional or technical dependencies with other

teams are a challenge because a considerable coordination effort is required
17 14

(82.4%)
3
(17.6%)

C2 In agile software development it is a challenge that stakeholders understand that
the development team can make independent (detailed) decisions

20 15
(75.0%)

5
(25.0%)

C3 In agile software development it is a challenge not to lose sight of the big picture
during the implementation of complex requirements

20 15
(75.0%)

5
(25.0%)

C4 In agile software development continuous management of requirements is a
challenge since not all of them are fixed at the beginning and they may change
over the course of the project

22 16
(72.7%)

6
(27.3%)

C5 In agile software development it is a challenge to work out user requirements
and quality of use in cooperation with direct users (end users) of the product

18 13
(72.2%)

5
(27.8%)

C6 In agile software development it is a challenge to involve stakeholders throughout
the whole development process in regular iterations so that product development
will succeed

20 14
(70.0%)

6
(30.0%)

C7 In agile software development it is a challenge that the requirements to be
implemented are clearly defined from the development start since the priorities
often change in the short term

21 13
(61.9%)

8
(38.1%)

C8 In agile software development it is a challenge to analyze requirements with
regard to the past development in order to avoid side effects

15 9
(60.0%)

6
(40.0%)

C9 In agile software development it is a challenge to formulate requirements as
objectives that describe the problem area so that the creativity in solution finding
is not restricted

22 13
(59.0%)

9
(41.0%)

C10 In agile software development it is a challenge to slice requirements in such a
way that they offer added value for the product

20 11
(55.0%)

9
(45.0%)

C11 In agile software development it is a challenge to justify the benefits of the
requirements in order to make the added value of the implementation clear as
well as decisions for a specific requirement comprehensible

21 11
(52.4%)

10
(47.6%)

C12 In agile software development it is a challenge to document changes to the
requirements comprehensibly

18 9
(50.0%)

9
(50.0%)

C13 In agile software development it is a challenge to establish non-functional
requirements

19 9
(47.4%)

10
(52.6%)

C14 In agile software development it is a challenge to focus only on the refinement
of the requirements for the short-term iterations

22 10
(45.5%)

12
(54.5%)

C15 In agile software development it is a challenge to develop an outlook on the next
iterations without making it a binding one

21 9
(42.9%)

12
(57.1%)

C16 In agile software development it is a challenge to design requirement documents
in such a way that they can be adapted to changing surrounding factors at
reasonable effort

21 9
(42.9%)

12
(57.1%)

C17 In agile software development it is a challenge to use methods for elicitation and
evaluation of requirements in which the findings are shared with the development
team

20 8
(40.0%)

12
(60.0%)

C18 In agile software development it is a challenge to capture requirements in such
a way that detailed test cases can be derived from them for quality assurance

21 8
(38.1%)

13
(61.9%)

C19 In agile software development it is a challenge to formulate clear and
comprehensible requirements in order to avoid uncertainties in the development

22 7
(31.8%)

15
(68.2%)

C20 In agile software development it is a challenge that elicitation and evaluation of
requirements are not fast enough in the project context

17 5
(29.4%)

12
(70.6%)

Key Challenges in Agile Requirements Engineering 49

References

1. Schwaber, K.: Agile Project Management with Scrum. Microsoft, Redmond (2004)
2. Anderson, D.J.: Kanban - Successful Evolutionary Change for your Technology Business.

Blue Hole Press, Sequim (2010)
3. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley, Reading

(2000)
4. International Organization for Standardization: ISO 9241-210:2010 - Ergonomics of human-

system interaction - Part 210: Human-centred design for interactive systems (2010)
5. Schön, E.-M., Thomaschewski, J., Escalona, M.J.: Agile requirements engineering: a

systematic literature review. Comput. Stand. Interfaces 49, 79–91 (2017)
6. Schön, E., Winter, D., Uhlenbrok, J., Escalona, M.J., Thomaschewski, J.: Enterprise

experience into the integration of human-centered design and Kanban. In: Proceedings of the
11th International Joint Conference on Software Technologies (ICSOFT 2016), Lisbon,
Portugal, pp. 133–140 (2016)

7. Cohn, M.: User Stories Applied: For Agile Software Development (2004)
8. Sommerville, I., Sawyer, P.: Requirements Engineering: A Good Practice Guide. Wiley,

New York (1997)
9. Silva da Silva, T., Martin, A., Maurer, F., Silveira, M.: User-centered design and agile

methods: a systematic review. In: 2011 AGILE Conference, pp. 77–86. IEEE (2011)
10. Brhel, M., Meth, H., Maedche, A., Werder, K.: Exploring principles of user-centered agile

software development: a literature review. Inf. Softw. Technol. 61, 163–181 (2015)
11. Inayat, I., Salim, S.S., Marczak, S., Daneva, M., Shamshirband, S.: A systematic literature

review on agile requirements engineering practices and challenges. Comput. Hum. Behav.
51, 915–929 (2015)

12. Soares, H.F., Alves, N.S.R., Mendes, T.S., Mendonca, M., Spinola, R.O.: Investigating the
link between user stories and documentation debt on software projects. In: 2015 Proceedings
of the 12th International Conference on Information Technology - New Generations, pp. 385–
390. IEEE (2015)

13. Ramesh, B., Cao, L., Baskerville, R.: Agile requirements engineering practices and
challenges: an empirical study. Inf. Syst. J. 20, 449–480 (2010)

14. Bjarnason, E., Wnuk, K., Regnell, B.: A case study on benefits and side-effects of agile
practices in large-scale requirements engineering. In: Proceedings of the 1st Workshop on
Agile Requirements Engineering - AREW 2011, pp. 1–5. ACM Press, New York (2011)

15. Heikkila, V.T., Damian, D., Lassenius, C., Paasivaara, M.: A mapping study on requirements
engineering in agile software development. In: 2015 Proceedings of the 41st Euromicro
Conference on Software Engineering and Advanced Applications, pp. 199–207 (2015)

16. Dalkey, N., Helmer, O.: An experimental application of the DELPHI method to the use of
experts. Manage. Sci. 9, 458–467 (1963)

17. Diamond, I.R., Grant, R.C., Feldman, B.M., Pencharz, P.B., Ling, S.C., Moore, A.M., Wales,
P.W.: Defining consensus: a systematic review recommends methodologic criteria for
reporting of Delphi studies. J. Clin. Epidemiol. 67, 401–409 (2014)

18. Linstone, H.A., Turoff, M.: The Delphi Method - Techniques and Applications (2002)
19. Dalkey, N.: An experimental study of group opinion. Futures 1, 408–426 (1969)
20. Finstad, K.: Response interpolation and scale sensitivity: evidence against 5-point scales. J.

Usability Stud. 5, 104–110 (2010)
21. Schön, E.-M., Winter, D., Thomaschewski, J., Escalona, M.J.: Results of “Challenges in Agile

Requirements Engineering” (Round 1) (2017). doi:10.13140/RG.2.2.34571.28961

50 E.-M. Schön et al.

http://dx.doi.org/10.13140/RG.2.2.34571.28961

22. Schön, E.-M., Winter, D., Thomaschewski, J., Escalona, M.J.: Results of “Challenges in Agile
Requirements Engineering” (Round 2) (2017). doi:10.13140/RG.2.2.32893.56802

23. Schön, E.-M., Winter, D., Thomaschewski, J., Escalona, M.J.: Results of “Challenges in Agile
Requirements Engineering” (Round 3) (2017). doi:10.13140/RG.2.2.16116.35201

24. Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,
Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R., Mellor, S.,
Schwaber, K., Sutherland, J., Thomas, D.: Manifesto for Agile Software Development. http://
www.agilemanifesto.org/

25. Schwaber, K., Sutherland, J.: Scrum Guide. http://www.scrumguides.org/scrum-guide.html

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license
and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

Key Challenges in Agile Requirements Engineering 51

http://dx.doi.org/10.13140/RG.2.2.32893.56802
http://dx.doi.org/10.13140/RG.2.2.16116.35201
http://www.agilemanifesto.org/
http://www.agilemanifesto.org/
http://www.scrumguides.org/scrum-guide.html
http://creativecommons.org/licenses/by/4.0/

Eeny, Meeny, Miny, Mo...

A Multiple Case Study on Selecting a Technique
for User-Interaction Data Collecting

Sampo Suonsyrjä(B)

Tampere University of Technology, P.O. Box 553, 33101 Tampere, Finland
sampo.suonsyrja@tut.fi

Abstract. Today, software teams can deploy new software versions to
users at an increasing speed – even continuously. Although this has
enabled faster responding to changing customer needs than ever before,
the speed of automated customer feedback gathering has not yet blos-
somed out at the same level. For these purposes, the automated collect-
ing of quantitative data about how users interact with systems can pro-
vide software teams with an interesting alternative. When starting such a
process, however, teams are faced immediately with difficult decision mak-
ing: What kind of technique should be used for collecting user-interaction
data? In this paper, we describe the reasons for choosing specific collecting
techniques in three cases and refine a previously designed selection frame-
work based on their data. The study is a part of on-going design science
research and was conducted using case study methods. A few distinct cri-
teria which practitioners valued the most arose from the results.

Keywords: Agile software development · User-interaction data ·
Multiple case study · Software data collecting

1 Introduction

In the last few years, the world has witnessed a tremendous progress in the
ways software is developed with. On one hand, this has already benefited both
customers and vendors by improving productivity, product quality, and customer
satisfaction [1]. On the other hand, the acceleration of release velocity has been
such a strong focus point, that the evolution of the means of understanding user
wants and needs could not have kept up the pace. For example, Mäkinen et al. [2]
describe that customer data analytics are still used sparingly. Similarly, research
related to the techniques of automatic collecting of post-deployment data and
its use to support decisions still seems to be in its infancy [3]. This feels partly
unfortunate, because agile software development has always had the intention
of faster responding to changing customer requirements – and to achieve this,
both rapid releasing and rapid understanding of customers are needed.

Addressing this, one of the promising solutions is to track users in the user-
interface level, then analyze that data to understand how they use the software,
c© The Author(s) 2017
H. Baumeister et al. (Eds.): XP 2017, LNBIP 283, pp. 52–67, 2017.
DOI: 10.1007/978-3-319-57633-6 4

Selecting a Technique for User-Interaction Data Collecting 53

and finally make decisions based on the analysis [4]. To start such a process,
the first thing to do is to select a collecting technique that is suitable for the
case. There are many restrictions to this, however, and these make the select-
ing a rather problematic task. Therefore, guidelines for evaluating and selecting
a suitable collecting technique are needed. In our previous work [5], we have
designed such a selection framework, which should serve as a guideline and help
practitioners in these tasks. The objective of this study is to evaluate and refine
that selection framework.

In this paper, we describe the reasons for choosing specific collecting tech-
niques in three different case contexts and evaluate and refine the previously
presented selection framework based on their data. The study is a part of on-
going design science research in which we have already designed the selection
framework. This part uses the case study method to evaluate and refine the
previous design and explore its contexts. Specifically, we address the research
question:

– What reasons software teams have for selecting a specific technique
for user-interaction data collecting?

To answer this overarching research question, we have derived two sub-questions.
Firstly, the process of choosing a collecting technology will be explained. Sec-
ondly, we try to find out if some of the criteria we presented in our previous
work are more significant than others or if there are completely other and more
relevant reasons for choosing the technologies. The sub-questions for the study
are declared as follows:

1. How were the collecting techniques selected in each case?
2. What kind of criteria for choosing a certain technique were the

most significant in each case?

The rest of the paper is structured as follows. In Sect. 2, we present the back-
ground of the study, namely the selection framework which consists of selection
criteria and a process. In Sect. 3, we explain how and why we used case study
methods and describe the cases involved. In Sect. 4, we describe the process and
criteria for choosing a specific technique for user-interaction data collecting in
each case. In Sect. 5, we discuss those results to evaluate and refine the selection
framework and in Sect. 6 we present the final conclusions of the study.

2 Background

To the best of our knowledge, related work for selecting techniques for user-
interaction data is very limited. For example, a recently published systematic
mapping study by Rodriguez et al. [6] identified the analysis of why certain tech-
nologies for monitoring post-deployment user behavior are selected over other
similar existing solutions as a concrete opportunity for future work. However
as a background for this study, we revisit the basics of the previously designed
selection framework for user-interaction data collecting techniques.

54 S. Suonsyrjä

The selection framework forms the basis for this study, as our goal is to
evaluate the framework and refine it where necessary. It consists of a set of
selection criteria and a process for the selecting. In addition, we introduce dif-
ferent techniques for user-interaction data collecting. These techniques and their
evaluations are presented in a more detailed manner in [5]. They are mentioned
nonetheless here for an overlook to the different alternatives that software teams
have when they start collecting user-interaction data and for demonstrating the
criteria part of the selection framework.

2.1 Selection Framework for a Collecting Technique

Criteria. The selection framework guides software teams to evaluate user-
interaction data collecting techniques in terms of the technique’s timeliness,
targets, effort level, overhead, sources, configurability, security, and reuse. In the
following list, each criterion is described by demonstrative questions which could
be asked as a team evaluates collecting techniques.

– Timeliness. When can the data be available? Does it have a support for real-
time?

– Targets. Who should benefit from the data? What is the intended use? Does
it support many targets? Does it produce different types of data?

– Effort level. What kind of a work effort is needed from the developers to
implement the technique?

– Overhead. How does it affect performance, e.g. system response time to user-
interactions?

– Sources. Does it support many source platforms?
– Configurability. Can the collecting be switched on and off easily? Can it

change between different types of data to collect?
– Security. Can the organization who developed the collecting technology be

trusted with the collected data? Is the data automatically stored by the same
organization?

– Reuse. Is the collecting always a one-time solution or can it be reused easily?

Process. The first thing to do when selecting a technique for user-interaction
data collecting, is to rapidly explore the case to get a grasp of the most
critical technical limitations. These include things such as the size of the code
base, availability of automated tools and AOP libraries for the target appli-
cation’s language and platform, and access to the UI libraries and execution
environments.

If any critical limitations are faced, the next step is to reject the unsuitable
techniques accordingly. For example, if there are many security issues related
to the data being collected or if data needs to be sent in real-time, collecting
techniques using 3rd party tools might have critical limitations that cannot be
avoided resulting in the rejection of the technique.

The following step is to prioritize the evaluation criteria. In addition to
the explored case information, one should find out the goals different stakeholders

Selecting a Technique for User-Interaction Data Collecting 55

Fig. 1. Selection framework for user-interaction data collecting techniques.

have for the usage data collecting as these can have a major impact on the
approach selection. If the goals are clearly stated, and the aim is e.g. to simply
find out which of two buttons is used the most, manual instrumentation can work
sufficiently. However, if the goal is stated anything like “to get an overall view of
how the system is used” or if the goal is not stated at all, the more automated and
more configurable approaches most likely become more appealing. Therefore, one
of the most crucial things to find out in this step is to understand what different
stakeholders want to accomplish with the collected data.

After this, the final step is to evaluate the remaining approaches. The
plus and minus signs used in Table 1 work as guidelines in this, but their emphasis
obviously varies on a case to case basis. To summarize, the selection framework
is illustrated in Fig. 1.

2.2 Techniques for User-Interaction Data Collecting

Firstly, in manual instrumentation (Manual) developer adds extra statements
to the relevant locations of the software. On one hand, this highlights the flex-
ibility of the technique but on the other, adoption to new targets and sources
would require significant rework making reuse practically impossible.

Secondly, there are multiple tools for automated instrumentation
(Tools) of the code, e.g. GEMS [7], for various data logging, quality assurance
and performance monitoring purposes. This technique frees the programmers
from the manual work and reduces the probability for errors lowering the effort
significantly.

Thirdly in between of the above techniques, aspect-oriented program-
ming approach (AOP) is something of a mixture from the two. The research
presented e.g. in [8,9] use aspect-oriented programming as a tool for code
instrumentation. Aspect-based instrumentation allows the instrumentation to be

56 S. Suonsyrjä

Table 1. Summary of the technique evaluations.

Criteria Techniques

Manual Tools AOP UI Lib. E.E.

Timeliness + − + + −
Targets + − + − −
Effort − + + + +

Overhead + − + − −
Sources + − − − −
Configurability + − + + −
Security + − + + −
Reuse − + − − +

+ = Supports selecting
− = Technique has limitations

system and application specific, which focuses the collecting better on the rele-
vant targets.

Fourthly, an alternative implementation of a user-interface library
(UI Lib.) can be set to automatically collect user-interaction data. Because user-
interaction is usually implemented with standard UI libraries, their components
can be altered so that they include the collection of user-interaction data within
them. Finally, the data collection can also be integrated into the environment
without modifications to the original application. For languages like Java and
JavaScript the virtual machine is an execution environment (E.E.) where
method and function calls can be monitored by instrumenting critical places.

We have summarized the evaluations of different collecting techniques for
the basis of the selection framework, i.e. Table 1, giving each technique either a
plus if it has a positive impact or if it does not have restrictions in terms of the
criterion. A technique is marked with a minus sign if it limits the selection or
the use of a data collecting implementation according to a criterion.

3 Research Approach

The study was conducted using case study methodology. It allowed us to explore
and describe the case specific situations and their circumstances related to
the selection framework from deeper and more insightful viewpoints than if
a research method with set variables had been used. Case study investigates
contemporary phenomena in their real-life context [10], and this suited the pur-
poses of the study well. The study is a part of on-going research effort, where
we design, evaluate, and diffuse the selection framework by design science guide-
lines presented in [11] and with the process presented in [12]. The design science
method of the underlying research effort affected this study as well especially in
how actively the researchers had to take part in the cases. This participation was

Selecting a Technique for User-Interaction Data Collecting 57

obviously required because the automated collecting of user-interaction data and
its use for software development was still an unknown area for each of the case
organizations. Moreover, the researchers had a substantial expertise considering
the designed selection framework.

3.1 Explanatory Case Study

The selection framework, as presented in [5], includes predetermined criteria
for evaluating the collecting technologies. These criteria could have been used
straightforwardly as variables of a study with more experimental setting. How-
ever, the criteria have been derived from a literature survey and from only one
case study. Therefore, we acknowledge that there can be other criteria that affect
the selection as well, and perhaps with a greater impact. To allow the inclusion of
these other possible factors into the selection framework, we have chosen to use
specifically multiple case study method and gather data from three different cases.

This study uses explanatory case study methodology because its aim is at
finding the reasons why software teams choose a specific collecting technology.
The results of this explanatory case study are used for evaluating and refining the
designed selection framework where necessary. Runeson & Höst [13] have cate-
gorized case studies by their purposes into exploratory, descriptive, explanatory,
and improving. Since explanatory case studies are “...seeking an explanation
of a situation or a problem, mostly but not necessary in the form of a causal
relationship”, their aims are well-suited for the study.

Case Selection. Given the purpose of the studied selection framework, its
potential users are mainly software teams that are only beginning to collect
user-interaction data. This limited the potential cases for this study to software
teams that had not yet selected a technique for user-interaction data collecting
but were still willing to try such collecting out. Clearly, the selected cases had
to be open enough that publishing the results reliably was possible and also
accessible in the first place for the first author to do the research with them.

Similarly, the number of the cases selected for the study was affected by
the fact that the first author had to spend considerable effort in each case. As
suitable software teams for this study had not tried out user-interaction data
collecting or explored its techniques, the first author had to have access to a
potential software team to tell about the possibilities of such data collecting and
initiate these tasks. All of these limited the number of selectable cases to few,
and finally three software teams were selected for the study.

Data Collection. The data was gathered from February to December 2016.
Main parts of the data consist of meeting notes written down by the first author
of this paper. Workshop type of meetings were held in each of the cases. Since
collecting user-interaction data was a novelty for each participating software
team, simple interviewing would not have worked. Rather, the meetings were
organized as workshops where the first author motivated the software team to

58 S. Suonsyrjä

try out user-interaction data collecting and described the different possible tech-
niques for doing so. In addition to the data gathered in meetings, the first author
had designated work desks in the same rooms where the software teams were
working in cases A and B. Therefore, data was also gathered by observation
and by participating in informal meetings. However, these data were only used
for verifying some of the previously collected meeting note data, such as how
many standup meetings a team have in a week. Although these observational
data were not collected in a formal fashion, for the first author it improves the
reliability of the results in terms of data triangulation.

Validity and Reliability Considerations. Although this study tries to inves-
tigate what kind of things have an effect on the decisions of software teams, the
aim is not to find definitive proofs or certain amounts of statistical significance
in these relations – rather to broaden the scope of possible causes. Therefore, the
internal validity needs especially careful considering. Firstly, selections in earlier
cases can have had effects on later ones. This was obviously not intentional but
still surely possible because the same researcher explained the different options
for the teams in each case. However, the author of this paper separated himself
from the decision making in each of the cases and the decisions were made only
by the software teams.

Secondly, the criteria presented with the selection framework can have guided
the author of this paper to identify only those as the reasons for selection. Con-
sequently, there can have been reasons that have not been mentioned aloud in
the meetings but which still have had an effect on the decision. For example, a
technology might have been seen as an unsuitable option in such an indisputable
manner that the software team has not even mentioned it. This risk was miti-
gated in cases A and B by not only gathering data from meetings, but also by
observing the working of the teams in the their offices and participating in their
informal meetings.

The results of this study will not be generalizable for any software team. How-
ever, they provide a detailed look on the reasons these three software teams had
for choosing a user-interaction data collecting technique. The three case orga-
nizations are different from each other in many ways, and therefore the results
can give interesting insights to a wide audience. Although only one researcher
gathered the data in each case, the meeting notes were shown to and accepted
by team members in each case.

3.2 Case Organizations

Case A. Organization A is a large international telecommunications company.
The software team that was involved in this case consisted of around eight mem-
bers. The border of one team in this organization is quite flexible as employees
work for many products. The team members had titles of software architect, UX
designer, software developer, and line manager. Their products consist primarily
of software in the field of network management, and these range from Java software

Selecting a Technique for User-Interaction Data Collecting 59

to web based systems. The software development method used in their team has
some properties from agile development methods such as Scrum. They, for exam-
ple, have bi-daily standup meetings and they use Kanban boards to organize their
work. New versions of their product are released usually a few times a year.

Case B. Organization B is a privately held software company in Finland. At the
time of the study, they had around 300 employees and offices in three major cities
in Finland and they primarily develop software in projects for their customers
as ordered. The software team involved in this case, however, develops their own
software-as-a-service solution. As in case A, the software team in case B also uses
things such as daily standup meetings, Kanban boards and retrospective sessions
familiar from some of the agile development practices. On the contrary however,
they are releasing new versions of their product to the end-users far more often –
usually biweekly. Their software team consists of seven members with titles such
as product owner, UX specialist, software architect, and software developer.

Case C. Organization C is a research and education center of around 10000
students and 2000 employees. The case C software team is part of a research
group who have specialized in embedded systems design. They have developed
Kactus2, which is an “open source IP-XACT-based tool for ASIC, FPGA and
embedded systems design”1. The software has created traction from users world
wide. It has been downloaded around 5500 times during the last year requests
coming mainly from the USA and from middle Europe. The development team
consists of four employees with the titles of software developer, software architect
and business architect. The developed tool itself is an installable software system
and installer packages for Windows and Linux tar-packages of its new versions
are released three to four times a year.

4 Results

The results of the study are twofold. Firstly, we describe the processes with which
the techniques were selected in each case. Secondly, we dive into the reasons the
software teams had for their selection.

4.1 The Processes of Choosing a Collecting Technology

Case A. In February 2016, members of the software team of Case A explained
to the researcher that they had an overall interest in trying out the use of user-
interaction data for the further development of their software products. The
researcher had presented the different technological approaches for collecting
such data in a previous informal meeting. These were the same approaches as
described in [5]. Two of the software team’s products had been then analyzed by

1 http://funbase.cs.tut.fi/.

http://funbase.cs.tut.fi/

60 S. Suonsyrjä

the Organization A in terms of the suitability of the products in experimenting
with user-interaction data collecting. The first of the two was Tool X written in
Java, and the second one a JavaScript based Web-system Y. The team decided
to carry on the collecting efforts with the System Y.

After this decision, the team had a meeting with the researcher to give a short
presentation about the code base of the System Y and its software architecture.
The meeting was arranged as a workshop to find out what kind of user-interaction
data the team wanted to have collected. In addition, the team described what
is important for the collecting technology and its implementation.

From this point on, the job of the researcher in the eyes of the software team
was to develop a demonstrative collecting tool for their product. The researcher
then used the criteria from the selection framework and was left with only one
suitable technology approach – developing a new tool for monitoring the exe-
cution environment. After developing a prototype of such a collecting tool, the
researcher presented it in a demo show for the team in March and got a thumbs up
from the team to go on with experimenting with the actual System Y. A testing
day with eight users from within the Organization A was held in December 2016
to try out an improved version of the collecting tool implemented in a lab version
of the System Y. The developed collecting tool is available in GitHub2.

Case B. In case B, a similar workshop meeting as in Case A was held by
the researcher with the software team in March 2016. The team explained the
method they use for developing their software and what kind of a software the
product is architecturally. It turned out, however, that this team had more expe-
riences with collecting use related data even at that point. For example, they had
tried out Google Analytics with some default settings for their product already.
After explaining that the data was mainly collected for debugging, two of the
team members and the researcher worked out also new targets in their software
development process which could be improved with user-interaction data. These
ideas ranged from prioritizing their product backlog to improvements in the user
interface of the product.

The team was well motivated to try out user-interaction data collecting.
However, as its return on investment was still unclear the first few tasks for
data collecting were agreed upon to be completed with as little work effort and
changes to the software architecture as possible. Therefore, three very specifically
described places in the UI of the product were selected to be improved with the
help of user-interaction data collecting. As the team had already tried out Google
Analytics on the same product, it was a straightforward choice for the storing
and analyzing the data of the tasks at hand as well.

At that point, the researcher described the same technological approaches to
the team as in Case A. Also similar to Case A, the selecting of the collecting
technology was an obvious pick since the three tasks were specified so explicitly.
The team members and the researcher made an unanimous decision to use man-
ual implementation for instrumenting the required places of the source code.
2 https://github.com/ssuonsyrja/Usage-Data-Collector.

https://github.com/ssuonsyrja/Usage-Data-Collector

Selecting a Technique for User-Interaction Data Collecting 61

The researcher was then given rights to change the source code. After applying
the collecting code to six places in it, the version was sent to end-users for a two
week collecting period in April 2016.

Case C. In case C, an initial meeting was held with two members of the software
team and the researcher in September 2016. Similar to the previous cases, the
team members described the environment for which they develop software and
the architecture of their product. The meeting then continued as a workshop,
where each participant tried to figure out ways for how user-interaction data
collecting could be used for their software development. Such targets were plenty,
and no specific tasks were selected at that point. The researcher then explained
the same technological approaches for user-interaction data collecting to the
team members. The option of monitoring execution environment was rejected at
this point, but the rest still remained possible for selecting.

The evaluation criteria from the selection framework were then used for the
analysis of the product and its environment. Since the aspect-oriented approach
raised the most interest among the software team, it was decided that the avail-
ability of AOP libraries and their suitability to the product were to be examined.
An alternative implementation of a UI library was considered as a second choice,
but the rest of the alternatives were rejected at this point. During the fall of 2016,
the aspect-oriented approach was implemented technically successfully to the
product. The first data collecting period is planned to be held during the spring
of 2017 with a student group as experimental end-users.

4.2 Reasons for Choosing a Collecting Technique

Case A. The first decision made by the Organization A was that they selected
to try out user-interaction data collecting with System Y. This decision was
based on the sources and the reuse possibilities of the collecting effort,
because the motivation was to specifically try out this kind of data collecting as
a technical concept rather than immediately produce actionable insights from
exact places of a product. Had the collecting effort been carried out with the
Tool X, the reuse would have been practically impossible since its environment
was not as common as with the System Y.

Although the overall motivation was to test user-interaction data collecting
conceptually, the team wanted to focus the requirements of the data collecting
after the selection of the specific source, i.e. product. Finding a technology that
could be easily reused with as little implementation effort as possible became a
goal. This made the option of manual instrumentation heavily unfavorable. The
team also emphasized how the security and configurability were important
for the collecting technology. For example, the environment of their product was
such that the collecting should be easy to be left out of the whole product when
necessary. Consequently, the unobtrusiveness of the technology was highly valued.

Although the need for low configuring effort increased the attractiveness of
using an automated tool for instrumentation, the security concerns were so heavy

62 S. Suonsyrjä

that the use of a tool developed outside the organization was not recommended.
Therefore, the option of finding and using 3rd party tools was quickly rejected.
In addition, the availability and effects of AOP libraries to things such as the
overhead were unknown in the environment of System Y. Possibly the most
significant of all, there was no motivation to make as big a change to the
software architecture as needed by the aspect-oriented approach. The same
reason applied for rejecting the option of an alternative UI library, because hav-
ing different versions of the libraries was not acceptable for the delivery pipeline.

Case B. Similar to case A, the motivation for the team of case B in user-
interaction data collecting was to try it out as a concept. On the contrary how-
ever, this resulted in this case in a faster and a narrower scoped experiment.
In other words, the targets and the source of their data collecting were very
clearly defined in the first place. At the same time, this resulted in the lack of
significance of the implementation effort because it would be so low even with
the manual approach. Similarly, reuse was not considered as a significant rea-
son, since there were no guarantees that the data collecting mechanism would
be ever reused. All this resulted in a very straightforward choice of the manual
approach. It was by far the easiest approach to implement on a small scale and
it allowed the team to try out if user-interaction data collecting in a fast and
low-effort way.

Case C. Being a new thing for the case C software team, the user-interaction
data collecting was again designed as a demonstrative experiment similar to
the case A. Likewise, the interests of the team in this case were technical in the
sense that they firstly wanted to find out a suitable technique for user-interaction
data collecting. In the best case scenario, this technique could be then used with
their actual product and actual end-users after the initial experiment. Because
there was no simple access to experiment the collecting with real users, in the
manner of case B, and the security requirements were weighted a lot heavier, the
technical design of the collecting was the primary focus. Although the possible
user-interaction data types and collection places, i.e. sources, were plenty, they
were to be considered only secondly after validating the technical setup for the
collecting.

This affected the evaluation of the collecting techniques in terms of prioritiz-
ing the criteria from the selection framework. Not limiting the sources and tar-
gets became important, because the collecting technique would not be selected
and designed for just a one time try out. Although not mentioned out loud by
the team, this could hint towards them valuing the reuse possibilities. All of
these resulted in the attractiveness of the techniques enabling lower work effort
spend on each distinct collecting place. Further on, the whole collecting was
required to be able to be switched off as easily as possible. In other words, the
configurability of the collecting technique was valued high.

Selecting a Technique for User-Interaction Data Collecting 63

5 Discussion

In each case, the process of choosing a collecting technology for user-interaction
data was more or less the same. Members of the software team and the researcher
had a meeting, where the researcher described the different technologies over-
all. After finding out what was the underlying goal for the team in the user-
interaction data collecting, the most important criteria for the selecting became
quite clear for both the researcher and the team members.

Comparing those criteria with the ones in the selecting framework, it is safe to
say that most of the evaluation criteria from the selection framework were used
without the researcher pushing the team towards those specific points. However,
timeliness was never mentioned by the teams, which could signal either its
insignificance or that its need is self-evident. On the contrary, overhead rose
up in each case as a conversation topic but similar to the timeliness it did not
seem to have any effect on the selecting in any case.

For both of these, it is worth mentioning that none of the techniques had a
known disadvantage nor a limitation in terms of these criteria (timeliness and
overhead) that would have been significant enough to get the whole technique
rejected. However, in the original selection framework they were marked with
minus signs for the monitoring execution environment technique. Therefore, the
summary table with the evaluation criteria from the original selection framework,
i.e. Table 1, requires some refining.

Firstly, the evaluations should consist of a wider scale than a plain plus or
a minus sign. In these cases, some of the criteria affected the selection clearly a
lot more than others. For example, the timeliness and overhead criteria did not
seem to have an effect on the selection but on the other hand, the effort level
of the manual technique had it rejected. Therefore, we propose an additional
exclamation mark to the evaluations in case the criterion is a possible ground
for a rejection. We have gone through the rest of the summary evaluations and
added an exclamation mark where necessary based on the cases.

Secondly, some of the evaluations are not clearly pluses nor minuses. There-
fore, we have added an option of +/− marking for the evaluation, if the technique
does not definitely support nor limit the selection in terms of the specific cri-
terion. Adding this option has had effects especially on the evaluations of the
techniques that are heavily intertwined with specific tools. For example, the
minus signs in the execution environment column of timeliness and overhead
rows can be then replaced with this option. We have reviewed the evaluations
and changed the original signs into +/− markings where necessary.

Thirdly, the effort criterion should be divided into two and renamed to scal-
ability. The intention of the criterion is to depict the work effort that is required
from the software developers to implement collecting snippets to the different
places of the source code. Finally, however, there was a clear need for an evalu-
ation criterion of how great an effort is needed from the software developers to
change the software architecture and/or environment of the moment to support
the collecting technique. This criterion could be named as the change that is

64 S. Suonsyrjä

Table 2. Refined summary of the technique evaluations.

Criteria Techniques

Manual Tools AOP UI Lib. E.E.

Timeliness + +/− + + +/−
Targets + − +! − +/−
Scalability −! + +! + +!

Overhead + − +/− − −
Sources + − − − −
Configurability + − + + +/−!

Security + +/−! +/− + +/−
Reuse − + − − +!

Change +! + −! −! +

+ = Supports selecting
− = Technique has limitations
+/− = No clear support nor limitations
! = A possible ground the rejection

required. With these refinements to the criteria and evaluations, the summary
table of the evaluations is as listed in Table 2.

In addition to the changes in the evaluations, the original selection framework
requires some refinements based on the cases as well. First of all, in these cases
the underlying goal of the whole collecting effort was the most important driver
in the selection process. In cases A and C the delivery pipelines did not allow fast
and flexible releases of new software versions with user-interaction data collecting
capabilities, and so the software teams decided to develop their environment so
that the collecting would be possible in the future. This became their real target,
where as the team in case B did not have to develop their environment. On the
contrary, they had the luxury of aiming straightforwardly at just testing out the
collecting and the resulting user-interaction data with a minimum effort.

Therefore, the first step of the selection framework, exploring the case, should
be clarified and replaced by a step of defining a main goal for the collecting effort.
Based on these cases, it would be easy to then remove the irrelevant evaluation
criteria after defining such a goal. For example, in case B the scalability of the
collecting technique was seen unnecessary after the collecting was designed to
be implemented as a one time solution.

Exploring the case still included important things that should be part of the
selecting framework. Thus, the next thing of the process should be to find out
the critical limitations. The rest of the original selection framework worked out
as it was in these cases, and so no other changes were required to the final refined
version of the selection framework. This framework is illustrated in Fig. 2.

Selecting a Technique for User-Interaction Data Collecting 65

Fig. 2. Refined selection framework for user-interaction collecting techniques.

6 Conclusions

In this paper, we studied three cases where software teams selected techniques
for user-interaction data collecting. More specifically, we examined the reasons
the software teams had for the selection. To complement this, we evaluated
our previously designed selection framework and refined it based on the data
gathered from the cases.

In these cases, two of the most valued criteria for the selection were the scal-
ability of the technique and the lack of changes required to the software architec-
ture and deployment pipeline of the moment. Additionally, teams appreciated
the reuse, security, and configurability of the techniques as well as the support
for a wide range of monitoring targets. On the other hand, the rest of the cri-
teria presented with the original selection framework, i.e. timeliness, overhead,
and support for different source applications, did not seem to have a significant
effect on the selections.

The original evaluations of the different user-interaction data collecting tech-
niques were refined to include markings for the different levels of significance.
In addition, the original selection framework was fixed to better support these
more detailed evaluations. With these changes, we think the selection framework
and its complementary technique evaluations can help practitioners greatly to
the beginning of their journey of user-interaction data collecting.

Acknowledgments. The authors wish to thank DIMECC’s Need4Speed program
(http://www.n4s.fi/) funded by the Finnish Funding Agency for Innovation Tekes
(http://www.tekes.fi/en/tekes/) for its support for this research.

References

1. Leppänen, M., Mäkinen, S., Pagels, M., Eloranta, V.P., Itkonen, J., Mäntylä, M.V.,
Männistö, T.: The highways and country roads to continuous deployment. IEEE
Softw. 32(2), 64–72 (2015)

http://www.n4s.fi/
http://www.tekes.fi/en/tekes/

66 S. Suonsyrjä

2. Mäkinen, S., Leppänen, M., Kilamo, T., Mattila, A.L., Laukkanen, E., Pagels, M.,
Männistö, T.: Improving the delivery cycle: a multiple-case study of the toolchains
in finnish software intensive enterprises. Inf. Softw. Technol. 80, 175–194 (2016)

3. Fabijan, A., Olsson, H.H., Bosch, J.: Customer feedback and data collection tech-
niques in software R&D: a literature review. In: Fernandes, J., Machado, R., Wnuk,
K. (eds.) ICSOB 2015. LNBIP, vol. 210, pp. 139–153. Springer, Cham (2015).
doi:10.1007/978-3-319-19593-3 12

4. Suonsyrjä, S., Mikkonen, T.: Designing an unobtrusive analytics framework
for monitoring Java applications. In: Kobyliński, A., Czarnacka-Chrobot, B.,
Świerczek, J. (eds.) IWSM/Mensura -2015. LNBIP, vol. 230, pp. 160–175. Springer,
Cham (2015). doi:10.1007/978-3-319-24285-9 11

5. Suonsyrjä, S., Systä, K., Mikkonen, T., Terho, H.: Collecting usage data for soft-
ware development: selection framework for technological approaches. In: Proceed-
ings of The Twenty-Eighth International Conference on Software Engineering and
Knowledge Engineering (SEKE 2016) (2016)

6. Rodriguez, P., Haghighatkhah, A., Lwakatare, L.E., Teppola, S., Suomalainen, T.,
Eskeli, J., Karvonen, T., Kuvaja, P., Verner, J.M., Oivo, M.: Continuous deploy-
ment of software intensive products and services: a systematic mapping study. J.
Syst. Softw. 123, 263–291 (2017)

7. Chittimalli, P.K., Shah, V.: GEMS: a generic model based source code instru-
mentation framework. In: Proceedings of the Fifth IEEE International Conference
on Software Testing, Verification and Validation, pp. 909–914. IEEE Computer
Society (2012)

8. Chen, W., Wassyng, A., Maibaum, T.: Combining static and dynamic impact
analysis for large-scale enterprise systems. In: Jedlitschka, A., Kuvaja, P.,
Kuhrmann, M., Männistö, T., Münch, J., Raatikainen, M. (eds.) PROFES
2014. LNCS, vol. 8892, pp. 224–238. Springer, Cham (2014). doi:10.1007/
978-3-319-13835-0 16

9. Chawla, A., Orso, A.: A generic instrumentation framework for collecting dynamic
information. SIGSOFT Softw. Eng. Notes 29(5), 1–4 (2004)

10. Yin, R.K.: Case Study Research: Design and Methods. Sage Publications, Thou-
sand Oaks (2013)

11. Von Alan, R.H., March, S.T., Park, J., Ram, S.: Design science in information
systems research. MIS Q. 28(1), 75–105 (2004)

12. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science
research methodology for information systems research. J. Manage. Inf. Syst. 24(3),
45–77 (2007)

13. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical Softw. Eng. 14(2), 131 (2008)

http://dx.doi.org/10.1007/978-3-319-19593-3_12
http://dx.doi.org/10.1007/978-3-319-24285-9_11
http://dx.doi.org/10.1007/978-3-319-13835-0_16
http://dx.doi.org/10.1007/978-3-319-13835-0_16

Selecting a Technique for User-Interaction Data Collecting 67

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Comparing Requirements Decomposition Within
the Scrum, Scrum with Kanban, XP, and Banana

Development Processes

Davide Taibi1(✉) , Valentina Lenarduzzi1 , Andrea Janes1 , Kari Liukkunen2 ,
and Muhammad Ovais Ahmad2

1 Free University of Bolzano/Bozen, Bolzano, Italy
{davide.taibi,valentina.lenarduzzi,andrea.janes}@unibz.it

2 University of Oulu, Oulu, Finland
{kari.liukkunen,muhammad.ahmad}@oulu.fi

Abstract. Context: Eliciting requirements from customers is a complex task.
In Agile processes, the customer talks directly with the development team and
often reports requirements in an unstructured way. The requirements elicitation
process is up to the developers, who split it into user stories by means of different
techniques. Objective: We aim to compare the requirements decomposition
process of an unstructured process and three Agile processes, namely XP, Scrum,
and Scrum with Kanban. Method: We conducted a multiple case study with a
replication design, based on the project idea of an entrepreneur, a designer with
no experience in software development. Four teams developed the project inde‐
pendently, using four different development processes. The requirements were
elicited by the teams from the entrepreneur, who acted as product owner and was
available to talk with the four groups during the project. Results: The teams
decomposed the requirements using different techniques, based on the selected
development process. Conclusion: Scrum with Kanban and XP resulted in the
most effective processes from different points of view. Unexpectedly, decompo‐
sition techniques commonly adopted in traditional processes are still used in Agile
processes, which may reduce project agility and performance. Therefore, we
believe that decomposition techniques need to be addressed to a greater extent,
both from the practitioners’ and the research points of view.

1 Introduction

Eliciting requirements from customers is a complex task. In Agile processes, the intro‐
duction of the product owner usually facilitates the process, suggesting that the customer
talk directly with the development team and thus reducing the number of intermediaries.
However, the product owner, especially when he or she is not an expert in the project
domain, reports requirements in natural language, in their own words, and often in an
unstructured way.

The requirements elicitation process is up to the developers, who usually split it up
into user stories in the case of Agile processes.

© The Author(s) 2017
H. Baumeister et al. (Eds.): XP 2017, LNBIP 283, pp. 68–83, 2017.
DOI: 10.1007/978-3-319-57633-6_5

http://orcid.org/0000-0002-3210-3990
http://orcid.org/0000-0003-0511-5133
http://orcid.org/0000-0002-1423-6773
http://orcid.org/0000-0002-0719-4712
http://orcid.org/0000-0002-7885-0369

To the best of our knowledge, there are no studies that have attempted to understand
how requirements are decomposed in Agile processes and, moreover, no studies that
compare requirements decomposition among different Agile processes or other
processes.

To bridge this gap, we designed and conducted the first such empirical study, with
the aim of comparing the requirements decomposition process of an unstructured
process and three Agile processes, namely XP, Scrum, and Scrum with Kanban [21].
We conducted the study as a multiple case study with a replication design [1] since it
was not possible to execute a controlled experiment because of the unavailability of
developers for the major effort required. We selected four groups of second-year master
students as participants, which constitute a good sample of the next generation of devel‐
opers entering the job market. They were perfectly suited for this task since the project
did not require the use of new technologies unknown to the students, and they can thus
be viewed as the next generation of professionals [10–13]. Students are perfectly suitable
when the study does not require a steep learning curve for using new technology [13, 17].

We selected a project idea to be developed by means of an idea contest for entre‐
preneurs, selecting an idea from a designer with no experience in software development.
This project idea was then developed by four teams using four different development
processes. The requirements were elicited by the teams from the same entrepreneur who
acted as product owner with all four groups.

The results show interesting differences regarding requirements decomposition. The
team that developed in XP decomposed a lot more stories, followed by the one using
Scrum with Kanban, then the one using Scrum, and finally the team using the unstruc‐
tured process. Another interesting result is related to the development effort, which was
perfectly inversely proportional to the number of user stories decomposed, resulting in
the highest effort for the unstructured process and the lowest for the XP one.

This paper is structured as follows. Section 2 introduces the background and related
work. Section 3 presents the multiple case study and Sect. 4 the results obtained.
Section 5 describes the threats to validity and Sect. 6 draws conclusions and future work.

2 Background and Related Work

The term “user story decomposition” describes the act of breaking a user story down
into smaller parts [8]. User stories are typically decomposed into parts that have a scope
that is large enough to provide value to the customer but small enough so that the effort
for implementing the story can be estimated with a low risk of being wrong. A story
with a smaller scope is likely to be less complex than a story with a large scope. More‐
over, if the scope is large, more things can go wrong, e.g., unknown details might emerge,
the architecture may be inadequate, and so on [4]. Altogether, the expectation is that it
should be easier to estimate the effort for developing a small story than that for a large
one. As a consequence, sprint planning, i.e., defining which stories the team should be
able to complete during a sprint, is more likely to be accurate with small user stories.

Additionally, developing stories with a smaller scope allows the team to complete a
user story more often than if it were to develop only a few large user stories. This allows

Comparing Requirements Decomposition 69

it to regularly deliver business value to the customer, with the consequence that the
customer can provide feedback earlier, allowing the team to learn faster which require‐
ments the system being developed should fulfill.

A popular technique for decomposing user stories is “User Story Mapping” [9],
which decomposes the stories from the user’s point of view, i.e., it decomposes the flow
of user activities “into a workflow that can be further decomposed into a set of detailed
tasks” [8]. User Story Mapping uses the terms “activity”, “task”, and “subtask” to
describe high-level activities (e.g., “buy a product”), tasks (e.g., “manage shopping
cart”), and subtasks, i.e., the decomposed user stories, which are the ones assigned to
developers (e.g., “add product to shopping cart”). Rubin uses the terms “epic”, “theme”,
and “sprintable story” to apply it within Scrum [8].

Outside of an Agile context, the decomposition of requirements into different parts
has been discussed to prepare their technical implementation: for example, [14]
describes techniques used in service-based applications to decompose complex require‐
ments in order to reuse relatively simple services; in [15], the authors develop a technique
for matching parts of the requirements to COTS components; in [16], the authors discuss
how to decompose architectural requirements to support software deployment in the
cloud; in [17, 20], the authors study conflicting requirements; in [18], the authors propose
an extension to UML to allow decomposing use case models into models at several
levels of abstraction; and in [19], the authors decompose requirements to identify
security-centric requirements.

All these examples rather describe decomposition as an activity to devise a specifi‐
cation that describes the system to be built. Within an Agile context, decomposition is
used to reduce the risk of providing a constant flow of value; therefore, user stories are
typically decomposed following the principle that each one should deliver value to the
customer. To the best of our knowledge, no peer-reviewed works exist that describe
decomposition techniques used within an Agile context. However, various other tech‐
niques worth mentioning have been developed by practitioners, who describe them on
their blogs. In the following, we will describe the approaches they propose.

As a general approach, Lawrence [3] suggests two general rules of thumb: choosing
a decomposition strategy that allows deprioritizing or throwing away parts of a story,
thus isolating and removing unnecessary smaller parts of a larger user story, and then
choosing a strategy that results in equally sized small stories. Verwijs [5] distinguishes
between two ways to break down user stories: horizontal and vertical. Horizontal break-
down means dividing user stories by the type of work that is needed or the layers or
components that are involved, e.g. separating a large user story into smaller user stories
for the UI, the database, the server, etc. He suggests avoiding this type of break-down
as user stories will no longer represent units of “working, demonstrable software”, as it
will be hard to ship them separately to the user, as it increases bottlenecks since devel‐
opers will tend to specialize in types of user stories, e.g., the “database guy”, and as it
is hard to prioritize horizontally divided stories. Verwijs suggests breaking down user
stories “vertically”, i.e., “in such a way that smaller items still result in working, demon‐
strable, software [5].” Recent works also support Verwijs proposal, suggesting to
decompose the user stories incrementally, starting from the minimum viable product
[16] and decomposing each functionality vertically, so as to also improve the user stories

70 D. Taibi et al.

effort estimation accuracy [7, 15] and the testing easiness [20]. However, this process
is more suitable for projects started from scratch with SCRUM instead of project where
SCRUM has been introduced later [14].

As these are specific techniques for decomposing a large user story into smaller ones
in an Agile context, we integrated their proposals into the following list:

1. Input options/platform [5]: decompose user stories based on the different UI possi‐
bilities, e.g., command line input or a graphical user interface;

2. Study conjunctions and connecting words (like “and”) to separate stories [4];
3. Data types or parameters [3, 5]: user stories are split based on the datatypes they

return or the parameters they are supposed to handle; for example, during a search
process, one could define different user stories for the different search parameters
the user is allowed to define;

4. Operations, e.g. CRUD [3, 5]: whenever user stories involve a set of operations,
such as CRUD (create, read, update, delete), they are separated into smaller
versions implementing each operation separately;

5. Simple/Complex [3, 5]: a complex user story is decomposed into a simple, default
variation and additional variations that describe special cases or additional aspects;

6. Major effort [3, 5]: a complex user story is decomposed into smaller ones isolating
the difficulty in one user story;

7. Workflow steps [3–5, 8]: the temporal development of the user story is studied by
imagining the process that the typical user has to follow to accomplish the user
story in order to develop (smaller) step-by-step user stories;

8. Test scenarios/test case [4, 5]: user stories are divided based on the way they will
be tested. If they will be tested by first executing a sequence of steps and then
executing another sequence of steps, these two groups of steps will be implemented
as two separate user stories;

9. Roles [5]: one functionality is formulated as separate user stories describing the
same story for different user roles (personas) in each user story;

10. Business rules [3, 5]: user stories are extended by “business rules”, i.e., constraints
or rules that are defined by the context in which the system has to be developed,
e.g., a specific law that has to be fulfilled, and the single constraints and rules are
used to formulate more fine-grained user stories;

11. Happy/unhappy flow [5]: separate user stories are created for successful variations
and unsuccessful variations of the user story;

12. Browser compatibility [5]: if there is a large effort connected to particular tech‐
nologies, e.g., a text-based browser, [5] recommends splitting user stories
according to browser compatibility. Having separate user stories for different
browsers allows the product owner to prioritize the work;

13. Identified acceptance criteria [4, 5]: acceptance criteria are defined for user stories
that can be used to develop a refined set of (smaller) user stories;

14. External dependencies [5]: user stories can be separated based on the external
systems to which they have access;

15. Usability requirements [5]: user stories are separated based on particular usability
requirements, e.g., particular implementations for color-blind users;

Comparing Requirements Decomposition 71

16. SEO requirements [5]: user stories are separated based on search-engine-optimi‐
zation requirements, e.g., separate landing pages for specific keywords;

17. Break out a Spike [3]: a user story that is not well understood is divided into one
that develops a prototype, a so-called “spike”, and one that implements the actual
functionality; and

18. Refinement of generic words (like “manage”) into more concrete user stories [4].

3 The Multiple Case Study

As stated in the introduction, the objective of this research is to compare the requirements
gathering processes and user story decomposition in Agile and unstructured develop‐
ment processes. Therefore, we designed this study as a multiple case study with a repli‐
cation design [1].

As depicted in Fig. 1, we first identified the research questions, then selected the case
studies and their design.

Fig. 1. Study design (adapted from [1])

In this section, we present the study process we adopted, the goal, the research ques‐
tions, and the metrics for the case study. This is followed by a description of the designs
used for the case study, the measurement instruments, and the results obtained.

3.1 Study Goal

According to our research objective, we formulated the goal of the case study following
the GQM approach [2] as follows:

Analyze requirements decomposition in user stories (or tasks)
For the purpose of comparison
With respect to the granularity
From the point of view of software developers
In the context of Scrum, Scrum with Kanban, XP, and an ad-hoc development process

Note that in the case of Agile processes, we refer to user stories, whereas in the case
of the ad-hoc development process, we refer to tasks. This leads to the following research
question:

72 D. Taibi et al.

RQ1: How does the requirements decomposition of user stories differ between the
four considered development processes?

For this research question, we defined six metrics:

M1: Number of requirements: the number of requirements provided by the product
owner;

M2: Number of user stories: the number of decomposed user stories;
M3: Number of tasks/user stories per requirement: describes how each requirement

was decomposed in each team for each requirement;
M4: Total effort (actual development time): time spent (hours) to develop the whole

application;
M5: Total effort for each requirement: time spent (hours) to implement requirements

among the different teams;
M6: Total effort per task/user story: time spent (hours) to implement each task/user

story; and
M7: Strategy used to decompose requirements into tasks or user stories: strategy

described in the literature used to decompose each requirement, assigned to two
researchers of this paper studying the names of the decomposed requirements.

3.2 Study Design

We designed our study as a multiple-case replication design [1]. We asked four devel‐
opment teams to develop the same application. The four sub-case studies are sufficient
as replications since the teams have similar backgrounds. All the teams received the
same requirements provided by the same entrepreneur, who acted as product owner and
within the same timeframe.

One team was required to develop the project in Scrum, one in Scrum with Kanban,
another one using XP, and the last one was free to develop using an ad-hoc process, as
shown in Fig. 2. We call the ad-hoc development process the “Banana” process, since
this term is used among practitioners to describe processes that produce immature prod‐
ucts, which have to “ripen” after being shipped to the customer, like bananas.

Fig. 2. Study design

Comparing Requirements Decomposition 73

As the population of our study, we selected four groups of master students in
computer science from two universities involved in the Software Factory Network [6].
One group was from the Master in Computer Science curriculum of the University of
Bolzano-Bozen (Italy) and the other four groups were from the Master in Information
Processing Science curriculum of the University of Oulu (Finland). The groups had very
similar backgrounds since they were all master students in computer science and both
universities have similar programs due to their participation in the European Master in
Software Engineering (EMSE, http://em-se.eu/) program and having taken classes on
agile software development and software engineering. International students took part
in this project, originating from Finland, India, Nepal, China, Russia, Bangladesh,
Germany, Italy, and Ghana.

The students were randomly assigned to each group taking into account that each
team needed to have at least one experienced developer.

The groups were asked to develop the same application. The application require‐
ments were proposed by the product owner, a designer from Bolzano with no experience
in software development who described the requirements to the groups with the same
schedule and using the same terminology.

The developers elicited the requirements, translating them from the “designer
language”, a non-technical language, to a more technical one. The groups working with
Scrum (with and without Kanban) and XP decomposed the requirements into user
stories, while the group using “Banana” decomposed them into tasks.

The developed project. The teams were required to develop an Android application
called Serendipity. The idea was selected in a contest for entrepreneurs, where entre‐
preneurs were asked to submit the minimum viable product [16] description of their
project ideas that could be implemented in the software factory lab (http://
ideas.inf.unibz.it/). Serendipity is an Android application and a web application intended
to share a set of sounds in a specific location, so as to have the user recall special moments
by listening to the sounds.

The entrepreneur, a designer from Bolzano, initially defined the project idea as:
“Serendipity means “fortunate happenstance” or “pleasant surprise”. This project is
meant to be an experience that mixes places and sound to enable you to see places you
usually go to with new eyes, in a more poetic, more ecstatic way. While taking walk,
you will have access to six music tracks, developed from the actual ambient sound of
those places themselves. I specifically chose very popular meeting points in my town
(Bolzano), where many people go without even realizing anymore what the place looks
like. On a map displayed on your smartphone, these locations are highlighted. When
you arrive there, you can listen to the soundtrack created to allow you to enjoy the
moment. It should be a discovery process. The perk is that this concept is applicable to
any city/place – it would be nice to spread it and let the sound go local”.

The entrepreneur acted as product owner and described the project to the groups,
which elicited the requirements (Req) independently. The requirements were intention‐
ally stated such as to allow vertical break-down [5] decomposition and were proposed
to the groups within this timeframe:

74 D. Taibi et al.

http://em-se.eu/
http://ideas.inf.unibz.it/
http://ideas.inf.unibz.it/

Week #0:

Req 1: Minimal Viable Product, with all pages with fake content. The parts of the
product comprised: Sign-in/Login; Maps; Listen to sound; Record sound; Rules; and
About.
Req 2: Show the list of available sounds on a map.
Req 3: Allow only registered users to record tracks.
Req 4: The main sound can only be played when the user is exactly in the correct
location.

Week #3:

Req 5: No more than three sounds allowed within a radius of 300 m.
Req 6: Sounds cannot be downloaded but only played.
Req 7: Any user (registered or not) can listen to sounds.
Req 8: Users are allowed to listen to an ambient sound within a radius of 300 m from
the main sound.

Week #5:

Req 9: Play a notification when entering the notification area, so as to alert the user to
a sound in the neighborhood.
Req 10: Due to the lack of accuracy of GPS signals in smartphones, the main sound
must to be playable within a radius of 10 m instead of only at the exact point, as
previously required in Req 6.

Week #7:

Req 11: Create a “liking” system for each sound, allowing users to “like” a maximum
of one sound per spot. In this way, sounds with a lower number of likes can be replaced
by new sounds after three weeks.
Req 12: Create a web application to allow users to login to their profile with the only
purpose of uploading sounds, especially for professional users who would like to
upload high-quality or edited sounds.
Req 13: Allow users to register with their Facebook account.

The teams in Oulu that started the development in February were asked to develop
the same tool with the same requirements proposed with the same schedule. To ensure
the correct succession of requirements and to prevent the development of the previous
project in Bolzano to influence the entrepreneur’s perception of her project, we recorded
every requirement elicited in Bolzano so as to ask her to request the same things without
revealing any details to the other teams.

3.3 Study Execution

The web application was developed at the Software Factory Lab of the two participating
universities. The participants were initially informed about the study and about the usage
of the collected data. The development took place at the University of Bolzano-Bozen
(Italy) from October 2015 until the end of January 2016 and at the University of Oulu

Comparing Requirements Decomposition 75

from February 2016 to the end of April 2016. The groups were required to spend a
minimum effort of 250 h on their work.

Three groups were composed of second-year master students in computer science at
the University of Oulu (Finland), while one group was composed of second-year master
students in computer science from the University of Bolzano-Bozen. The selected
students represent typical developers entering the market. It is therefore interesting not
only to understand how they break down requirements but also to observe their work
processes. All of the teams had iterations lasting two weeks. The Banana team also met
the entrepreneur every two weeks in order to be updated on the requirements.

The first group (Kanban, https://github.com/Belka1000867/Serendipity) was
composed of five master students who developed in Scrum with Kanban. The second
group (Scrum, https://github.com/samukarjalainen/serendipity-app and https://
github.com/-samukarjalainen/serendipity-web) was composed of five master students
who developed in Scrum with 2-week sprints, while the third group (XP, https://
github.com/davidetaibi/unibz-serendipity) was composed of four master students who
developed in Extreme Programming (XP). The fourth group (Banana, https://
github.com/Silvergrail/Serendipity/releases) was composed of six master students who
developed in an unstructured process, which we defined as “Banana” process.

3.4 Data Collection and Analysis

The measures were collected during meetings with the developers. They also used the
collected data to draw burn-down charts and track results. We defined a set of measures
to be collected as follows:

• number of sprints;
• opening and closing date for each user story;
• user story description;
• responsible developer for each user story; and
• the actual effort for each user story.

The requirements were elicited from the entrepreneur. However, to avoid interfer‐
ence with the development process, two researchers attended the requirements elicitation
meetings and reported the requirements independently.

Three sets of decisions were used to measure pairwise interrater reliability in order
to get a fair/good agreement on the first process iteration. In order to resolve any differ‐
ences, where necessary, we discussed any incongruity to get 100% coverage among the
authors.

We associated user stories/tasks with each requirement defined by the entrepreneur.
Then we calculated sums, medians, and averages.

4 Study Results

The teams developed the project according to the assigned development process. The
XP team developed with a test-first approach, while the two Scrum teams (Scrum and

76 D. Taibi et al.

https://github.com/Belka1000867/Serendipity
https://github.com/samukarjalainen/serendipity-app
https://github.com/-samukarjalainen/serendipity-web
https://github.com/-samukarjalainen/serendipity-web
https://github.com/davidetaibi/unibz-serendipity
https://github.com/davidetaibi/unibz-serendipity
https://github.com/Silvergrail/Serendipity/releases
https://github.com/Silvergrail/Serendipity/releases

Scrum with Kanban) developed test cases during the process. The Banana team devel‐
oped a limited set of test cases at the end of the process. All four teams delivered a final
product with the same set of features, with no requirement missing.

The three Agile teams delivered the first version of the product with a limited set of
features that could be evaluated by the customer after two sprints, while the Banana
team delivered the application, with nearly all the features implemented, only three
weeks before the end of the development and then started to implement tests. This result
was expected because of the structure of the process, since they decomposed the require‐
ments by means of a horizontal break-down. For example, they developed the whole
server-side application first, starting from the design of the database schema, and then
the Android application connecting the frontend with the server-side functionalities.

The three Agile teams decomposed the requirements by means of a vertical break-
down [5], so as to deliver to the entrepreneur a working product with the required features
as soon as possible. For example, Req 2 (Show the list of available sounds on a map)
was decomposed by the XP team into: “Show a Google map centered on the user location
in the Android app” and “Show existing sounds as map placeholders”, while the Scrum
team and the Scrum with Kanban team decomposed this into: “Show a Google map”,
“Centered on the user location in the Android app,” and “Show existing sounds as map
placeholders.”

As expected, the groups decomposed the 13 requirements into different subsets of
user stories/tasks. As reported in Table 1 and Fig. 3, the team working in XP is the one
that decomposed the requirements with the lowest granularity (46 user stories), followed
by the team using Scrum with Kanban (40 user stories) and the team using Scrum (27
stories). However, the team using the Banana approach decomposed the requirements
into only 13 tasks. Moreover, they merged two requirements into one single task.
Considering the number of decomposed user stories or tasks per requirement, the results
are obviously similar to the total number of user stories and tasks reported.

Table 1. Summary of metrics results

Metrics XP Scrum Scrum+Kanban Banana
M1 (# of requirements) 13 13 13 13
M2 (# of user stories/tasks) 46 27 40 19
M3 (user stories per requirements) 3.54 2.08 3.08 1.46
M5 (effort per requirement) 23.04 36.77 24.46 48.85
M6 (effort per user story/task) 6.51 17.70 7.95 33.42
Total effort all user stories/tasks 299.5 478 318 635
Other effort 92 10 0 481
M4 (total effort entire project) 391.5 488 318 1116

Taking into account the required effort, the team developing with Scrum with Kanban
was the most efficient one, spending a total of 318 h on development. The XP and Scrum
teams followed with an effort of 391 h for XP and 478 h for Scrum. The Banana team,
unexpectedly, spent dramatically higher effort (1116 h), nearly 3.5 times more than the
teams developing with Scrum and Kanban. Considering the effort spent on other tasks
not related to user stories, such as database design, server setup, and such, the team using
Scrum with Kanban was also the most efficient one, spending no effort on these tasks.

Comparing Requirements Decomposition 77

The Scrum team only spent 10 h on other activities (2%), the XP team spent 92 h (23%),
and the Banana team 481 h (43%).

Fig. 4. Boxplot of the effort spent per user story/task

When analyzing the average effort spent to implement each requirement, the teams
developing with XP and Scrum with Kanban obtained similar results, while the Scrum
and the Banana teams spent similar amounts of effort per requirement, nearly 2.5 times
more than the XP and Scrum with Kanban teams. Taking into account the distribution
of effort depicted in Fig. 4, there is a similar distribution of effort spent on user stories

Fig. 3. Comparison of user stories and task decomposition and effort (hours)

78 D. Taibi et al.

between the Agile teams, while, as expected, the Banana team had the highest variability
of effort. Looking at the decomposition for each task (Table 2), other differences among
the groups emerge. Req 6 was not implemented by all the teams since it was related to
“not implementing” the download sound feature. The Banana team also considered zero
effort for Req 7 since they merged the tasks with the activities related to Req 4.

Table 2. Effort and user stories/tasks per requirement

Requir
ement

XP Scrum Scrum with Kanban Banana
Effort # of

user
stories

Effort/
user
story

Effort # of
user
stories

Effort/
user
story

Effort # of
user
stories

Effort/
user
story

Effort # of
tasks

Effort/
task

R1 40.5 6 6.8 81 3 27.0 77 5 15.4 140 5 28
R2 20.5 2 10.3 47 3 15.7 17 3 5.7 50 1 50
R3 94 11 8.5 57 3 19.0 112 9 12.4 150 3 50
R4 66.5 7 9.5 46 2 23.0 27 4 6.8 94 1 94
R5 9 2 4.5 16 1 16.0 5 1 5.0 19 1 19
R6
R7 4 1 4.0 6 1 6.0 5 1 5.0
R8 13 1 13.0 10 1 10.0 1 1 1.0 18 1 18
R9 17 2 8.5 12 2 6.0 15 1 15.0 25 1 25
R10 10.5 1 10.5 2 1 2.0 1 1 1.0 13 1 13
R11 10 1 10.0 21 1 21.0 2 4 0.5 21 2 10.5
R12 7 1 7.0 165 8 20.6 44 9 4.9 87 2 43.5
R13 7.5 1 7.5 15 2 7.5 12 1 12.0 18 1 18

Table 3 illustrates the various methods applied by the various teams to break down
the requirements into user stories (or tasks for the Banana approach), i.e., the results of
collecting metric M7. To obtain this table, two researchers studied the user stories and
tasks provided by the teams and compared the approach adopted to break down the
requirements with the approaches described in the literature. All disagreements in the
classification were discussed and clarified based on the description of the broken-down
user stories or tasks as well as the description of the approaches found in the literature.

To also be able to classify approaches not recommended in an Agile project, we
added the three horizontal break-down strategies described by Verwijs [5]: divide user
stories by (1) the type of work that is needed, (2) the layers that are involved, or (3) the
components that are involved.

All teams used the approaches “Input options/platform” and “Conjunctions and
connecting words”. All Agile teams used the approaches “Data types or parameters”,
“Operations”, and “Simple/Complex“. Only the Banana team adopted the “Workflow
steps” approach and only the XP team adopted the approaches “Test scenarios/test case”
and “Roles”. The approach “Major effort” was used by the teams XP, Scrum with
Kanban, and Banana.

Unexpectedly, the Banana team was not the only one that adopted horizontal break-
down approaches such as dividing user stories or tasks based on the layers of the solution,
types of work, or components. Typically, Agile teams avoid such types of break-down
since this contradicts with the principle that a user story should provide value to the user.
We conjecture that the frequent application of horizontal break-down approaches by the

Comparing Requirements Decomposition 79

Scrum team was the reason for their bad performance in terms of total effort, compared
to the other Agile teams. This also shows that the experiment was conducted with
university students with little experience in the field. Nevertheless, their behavior is
comparable to professionals at the beginning of their careers. We did not involve
freshmen students in the study, as recommended by [10].

Table 3. Requirement decomposition strategies adopted by the studied teams

Strategy XP Scrum Scrum with Kanban Banana
Vertical decomposition strategies
Input options/platform [5] × × × ×
Conjunctions and connecting words [4] × × × ×
Data types or parameters [3, 5] × × ×
Operations e.g. CRUD [3, 5] × × ×
Simple/Complex [3, 5] × × ×
Major effort [3, 5] × × ×
Workflow steps [3–5, 8] ×
Test scenarios/test case [4, 5] ×
Roles [5] ×
Business rules [3, 5]
Happy/unhappy flow [5]
Browser compatibility [5]
Identified acceptance criteria [4, 5]
External dependencies [5]
Usability requirements [5]
SEO requirements [5]
Break out a Spike [3]
Refinement of generic words [4]
Horizontal decomposition strategies
Layers, e.g. database, GUI [5] × × ×
Type of work, e.g. testing, coding [5] × ×
Components, e.g. server, client [5] × ×

5 Threats to Validity

Concerning the internal validity of the study, even though we did our best to select
developers with a similar background, the results could be partially dependent on the
subjects. A replication study could confirm or reject our findings. Concerning the
external validity of the study, the use of students to investigate aspects of practitioners
is still being debated but considered very close to the results of real practitioners in the
case of master students [9] and when one is interested in evaluating the use of a technique
by novices or non-expert software engineers [10–13, 17].

80 D. Taibi et al.

6 Conclusion and Future Work

In this work, we conducted a preliminary multiple case study with a replication design
with the aim of comparing the requirements decomposition process of an ad-hoc process
and Extreme Programming, Scrum, and Scrum with Kanban.

With this study, we contribute to the body of knowledge by providing the first
empirical study on requirements decomposition in the Agile domain.

To achieve this purpose, we first provided an overview of the different requirements
decomposition techniques and then a description of the study we executed.

Although some results might depend on the participants’ skills, we observed the
usage of different decomposition techniques in our groups, which often adopted tradi‐
tional decomposition techniques, which are more suitable for waterfall processes, in
combination with other Agile techniques.

The teams developing with Scrum with Kanban and with XP decomposed the
requirements into the highest number of user stories, while the team working with an
unstructured process, as expected, decomposed the requirements into a very limited
number of tasks. Two decomposition approaches were adopted by all processes, namely
“Input options/platform” and “Conjunctions and connecting words”. All Agile teams
used the “Data types or parameters”, “Operations”, and “Simple/Complex” approaches,
while, as expected, only the Banana team adopted the “Workflow steps” approach and
only the XP team adopted the approaches “Test scenarios/test case” and “Roles”.

Unexpectedly, the Banana team was not the only one that adopted horizontal break-
down approaches such as dividing user stories or tasks based on the layers of the solution,
types of work, or components. We suppose that the bad performance in terms of total
effort of the Scrum team compared to the other Agile teams was probably due to the
application of horizontal break-down approaches.

The main result of this work is that requirements decomposition is not only team-
dependent but also process-dependent, and that therefore decomposition techniques
need to be addressed to a greater extent in order to improve the efficiency of the devel‐
opment process.

Therefore, we recommend that developers investigate requirement break-down
approaches more thoroughly and that researchers study the impact of different
approaches, so as to identify the most effective ones in different contexts.

In the future, we plan to validate the results obtained with studies involving more
students and practitioners and using larger projects.

References

1. Yin, R.K.: Case Study Research: Design and Methods, 4th edn. Sage, Thousand Oaks (2009)
2. Basili, V.R., Caldiera, G., Rombach, H.D.: The goal question metric approach. In:

Encyclopedia of Software Engineering (1994)

Comparing Requirements Decomposition 81

3. Lawrence, R.: Patterns for splitting user stories. Agile For All Blog, 28 October 2009. http://
Agileforall.com/patterns-for-splitting-user-stories/. Accessed 8 Dec 2016

4. Irwin, B.: Boulders to gravel: techniques for decomposing user stories. VersionOne Blog, 9
May 2014. https://blog.versionone.com/boulders-to-gravel-techniques-for-decomposing-
user-stories/. Accessed 8 Dec 2016

5. Verwijs, C.: 10 useful strategies for breaking down large User Stories (and a cheatsheet).
Agilistic Blog. n.d. http://blog.agilistic.nl/10-useful-strategies-for-breaking-down-large-
user-stories-and-a-cheatsheet/. Accessed 8 Dec 2016

6. Taibi, D., Lenarduzzi, V., Ahmad, O.M., Liukkunen, K., Lunesu, I., Matta, M., Fagerholm,
F., Münch, J., Pietinen, S., Tukiainen, M., Fernández-Sánchez, C., Garbajosa, J., Systä, K.:
Free innovation environments: lessons learned from the software factory initiatives. In: The
Tenth International Conference on Software Engineering Advances, ICSEA 2015 (2015)

7. Lenarduzzi, V., Lunesu, I., Matta, M., Taibi, D.: Functional size measures and effort
estimation in agile development: a replicated study. In: 16th International Conference on Agile
Processes in Software Engineering and Extreme Programming, XP2015 (2015)

8. Rubin, K.S.: Essential Scrum: A Practical Guide to the Most Popular Agile Process, 1st edn.
Addison-Wesley Professional, Boston (2012)

9. Patton, J., Economy, P.: User Story Mapping: Discover the Whole Story, Build the Right
Product, 1st edn. O’Reilly Media, Inc., Sebastopol (2014)

10. Runeson, P.: Using students as experiment subjects – an analysis on graduate and freshmen
student data. In: Proceedings 7th International Conference on Empirical Assessment &
Evaluation in Software Engineering (2003)

11. Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones, P.W., Hoaglin, D.C., El Emam, K.,
Rosenberg, J.: Preliminary guidelines for empirical research in software engineering. IEEE
Trans. Softw. Eng. 28(8), 721–734 (2002)

12. Tichy, W.F.: Hints for reviewing empirical work in software engineering. Empirical Softw.
Eng. 5(4), 309–312 (2000)

13. Salman, I., Misirli, A.T., Juristo, N.: Are students representatives of professionals in software
engineering experiments? In: 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, Florence (2015)

14. Lavazza, L., Morasca, S., Taibi, D., Tosi, D.: Applying SCRUM in an OSS development
process: an empirical evaluation. In: 11th International Conference on Agile Processes in
Software Engineering and Extreme Programming, XP 2010, pp. 147–159 (2010)

15. Diebold, P., Dieudonné, L., Taibi, D.: Process configuration framework tool. In: 39th
Euromicro Conference on Software Engineering and Advanced Applications (2014)

16. Taibi, D., Lenarduzzi, V.: MVP explained: a systematic mapping on the definition of minimum
viable product. In: 42th Euromicro Conference on Software Engineering and Advanced
Applications 2016, Cyprus (2016)

17. Basili, V.R., Shull, F., Lanubile, F.: Building knowledge through families of experiments.
IEEE Trans. Softw. Eng. 25(4), 456–473 (1999)

18. Wang, H., Zhou, S., Yu, Q.: Discovering web services to improve requirements
decomposition. In: 2015 IEEE International Conference on Web Services, New York, NY
(2015)

19. Abbasipour, M., Sackmann, M., Khendek, F., Toeroe, M.: Ontology-based user requirements
decomposition for component selection for highly available systems. In: Proceedings of the
2014 International Conference on Information Reuse and Integration (2014)

82 D. Taibi et al.

http://Agileforall.com/patterns-for-splitting-user-stories/
http://Agileforall.com/patterns-for-splitting-user-stories/
https://blog.versionone.com/boulders-to-gravel-techniques-for-decomposing-user-stories/
https://blog.versionone.com/boulders-to-gravel-techniques-for-decomposing-user-stories/
http://blog.agilistic.nl/10-useful-strategies-for-breaking-down-large-user-stories-and-a-cheatsheet/
http://blog.agilistic.nl/10-useful-strategies-for-breaking-down-large-user-stories-and-a-cheatsheet/

20. Morasca, S., Taibi, D., Tosi, D.: OSS-TMM guidelines for improving the testing process of
open source software. Int. J. Open Source Softw. Process. 3(2), 1–22 (2011)

21. Ahmad, M.O., Markkula, J., Oivo, M.: Kanban in software development: a systematic
literature review. In: 39th EUROMICRO Conference on Software Engineering and Advanced
Applications (SEAA), pp. 9–16, September 2013

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license
and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

Comparing Requirements Decomposition 83

http://creativecommons.org/licenses/by/4.0/

Effects of Technical Debt Awareness: A Classroom Study

Graziela Simone Tonin1(✉), Alfredo Goldman1, Carolyn Seaman2, and Diogo Pina1

1 Institute of Mathematics, Statistics and Computer Science, University of Sao Paulo,
São Paulo, Brazil

{grazzi,gold,diogojp}@ime.usp.br
2 Department of Information Systems, University of Maryland Baltimore County,

Baltimore, USA
cseaman@umbc.edu

Abstract. Technical Debt is a metaphor that has, in recent years, helped devel‐
opers to think about and to monitor software quality. The metaphor refers to flaws
in software (usually caused by shortcuts to save time) that may affect future
maintenance and evolution. We conducted an empirical study in an academic
environment, with nine teams of graduate and undergraduate students during two
offerings of a laboratory course on Extreme Programming (XP Lab). The teams
had a comprehensive lecture about several alternative ways to identify and
manage Technical Debt. We monitored the teams, performed interviews, did close
observations and collected feedback. The results show that the awareness of
Technical Debt influences team behavior. Team members report thinking and
discussing more about software quality after becoming aware of Technical Debt
in their projects.

Keywords: Technical debt · Technical debt awareness · Technical debt impact ·
Extreme programming

1 Introduction

Several studies have shown that agile methods have provided significant gains in soft‐
ware projects [19]. However, it is also known that when prioritizing delivery speed, as
may happen in agile projects, Technical Debt may be incurred. Much of this debt is not
even identified, monitored or managed. Technical Debt that is not well managed runs
the risk of high maintenance costs.

The term Technical Debt was introduced by Cunningham, who explained it in the
following way [4], “…Although the immature code may work fine and be completely
acceptable to the customer, excess quantities will make a program unmasterable, leading
to extreme specialization of programmers and finally an inflexible product. Shipping
first time code is like going into debt. A little debt speeds development so long as it is
paid back promptly with a rewrite […]. The danger occurs when the debt is not repaid.
Every minute spent on not-quite-right code counts as interest on that debt…”. Technical
Debt is recognized as a critical problem for software companies [2] and has received a
lot of attention in the recent years from both practitioners and researchers [16, 17].

© The Author(s) 2017
H. Baumeister et al. (Eds.): XP 2017, LNBIP 283, pp. 84–100, 2017.
DOI: 10.1007/978-3-319-57633-6_6

Lim et al. [18] emphasize that: “…most project teams now recognize that Technical
Debt is unavoidable and necessary within business realities. So managing Technical
Debt involves finding the best compromise for the project team…”, but a project team
cannot do this if they are not aware of Technical Debt. Also, Lim et al. highlighted that
when the development team is not aware of Technical Debt, it will probably result in
challenges for maintenance and evolution tasks. Given this scenario, our motivation was
to observe the effects of Technical Debt awareness in teams in an academic setting.

The Extreme Programming Laboratory (XP Lab) is a course that has Undergraduate
and Graduate students at the University of São Paulo since 2001. The aim of this course
is to provide the experience of a real software development scenario using the Extreme
Programming values and practices [1].

Extreme Programming emphasizes teamwork; managers, customers and developers
are all equal partners in a collaborative team. The main values of Extreme Programming
are communication, simplicity, feedback, respect and courage [3].

The objective of our research is to characterize the impact on the team when Tech‐
nical Debt items are visible, based on team members’ perceptions. This study aims to
answer the following research question (RQ):

• What is the impact on the team when Technical Debt is explicitly considered?

The study was applied in two editions of XP Lab. Four teams were followed in the
2013 edition and five teams in the 2014 edition. We conducted the study and collected
data through questionnaires and interviews, and analyzed the source code of the projects
with Sonar Qube and Code Climate tools to identify the impact on the teams that explic‐
itly considered Technical Debt (TD).

In the next section, related work is described. In Sect. 3, we describe the context of
the Extreme Programming Laboratory. After, in Sect. 4, we provide a description of the
research steps, data collection and analysis. Section 5 describes the results. In Sect. 6,
we discuss the findings and present the threats to validity. Finally, in Sect. 7, we present
the final considerations and future work.

2 Related Work

Few studies deal directly with the technical debt awareness. The study of Kruchten [22]
showed that agile teams believe that they are immune to TD, because they use an inter‐
active development process. Therefore, he explains that in these teams, TD items could
be contracted rapidly and massively, because code is often developed and delivered very
rapidly, without time to devote to good design or to think about longer term issues. This
could result in contracting TD items such as a lack of rigor or systematic tests. To deal
with TD and to avoid accumulating too much TD, he suggests: “The first step is aware‐
ness: identifying debt and its causes. The next step is to manage this debt explicitly,
which involves listing debt-related tasks in a common backlog during release and iter‐
ation planning, along with other “things to do.”. Bavani [21] shows that if teams are
unaware of the context of meaning of the term TD, they can consider trivial issues or
technical tasks as a TD. These teams have to improve the awareness of it, so he proposes

Effects of Technical Debt Awareness: A Classroom Study 85

a quadrant to help teams to better recognize and understand the TD concept. The study
of Martini [23] listed some causes of architecture technical debt and one of the reasons
he found was the lack of awareness about the dependencies between the specific archi‐
tectural TD and the other parts of the software. Furthermore, there are many related
studies on not managing TD and how this affects software quality, such as in the studies
of Guo [20], Sterling [24], Li [16], Lim [18], and Curtis [25]. McConnell [26] empha‐
sizes that when a team makes the decision to contract a debt or not, they are really
deciding between two ways to complete the current development task, one faster and
the other resulting in better quality. Bavani [21] talks about management of TD items
in distributed agile teams, and he emphasizes that the management of TD items directly
affects the economics of software maintenance and according to him, the key for success
in the current global economy is building and maintaining software under optimal costs.
Sterling [24] said that TD exists and is detrimental to the maintenance of software
quality. Buschmann [27] suggests that teams doing a refactoring in the code should also
pay the TD items and improve internal quality. A recent report showed that one of the
consequences of incurring TD is the impact on quality [28].

3 Context: Extreme Programming Laboratory

The XP Lab is a regular course offered at the University of São Paulo, to graduate and
undergraduate Computer Science students. The motivation is to provide them an oppor‐
tunity to learn agile software development methods on real projects. In the 2013 offering,
there were four teams, with five or six students each. In the 2014 offering, five teams
with six students each attended the course. XP Lab students have the support of meta-
coaches who are experts in agile methods. They provide agile mentoring for all the teams
with the professor’s help. Each team also has a coach, who is a student that has more
experience in agile methods. The teams develop real projects with on-site customers.
The teams have to follow some agile practices, for instance; pair programming, auto‐
mated tests, continuous improvement, continuous integration, etc. In both studies, the
teams worked in pairs and in threes, and the groupings changed many times during the
course, sometimes according to the tasks they needed to develop. The course requires a
minimum attendance of at least 8 h a week of dedication (four hours in the laboratory
and four hours of extra classes), and there is a lunch once a week, to encourage the
students’ presence in the lab and to allow the students to share experiences. On some
weeks, there are short presentations about some difficulties that the teams are facing,
where a specialist explains and discusses specific topics. A complete description of the
course settings can be found in [1].

3.1 Projects

In Table 1, we briefly describe each of the projects involved in our study:

86 G.S. Tonin et al.

Table 1. Extreme programming projects

Project Description
Arquigrafia Arquigrafia is a public digital collaborative environment,

nonprofit, dedicated to the dissemination of architectural images,
with particular attention to Brazilian architecture [6].

Games-VidaGeek A platform for games that support the teaching of programming
(with games for Scala, Java, Html, CSS, SQL and other languages
being produced) [7].

TikTak A project focused on collecting feedback data from users and
display it in a web dashboard [5].

Mezuro A framework for monitoring source code metrics [8].
Monitoring system An online system where students can apply to be a teacher assistant

of a regular courses [14].
System specialist in sport An application to enable researchers working with physiological

data to apply metabolic mathematical models [15].
Social networking startups A social network for Startup, with the goal of creating a community

of highly connected and committed entrepreneurs [5].
Family tree A genealogy community where each individual can create a family

tree and from time to time the system attempts to “link” the trees
[5].

CoGroo Portuguese grammar corrector used by LibreOffice [9].

3.2 The Informative Workspace

Each team had its private informative workspace1 [10, 11], where they physically
displayed TD items. In the XP Lab 2013 offering, all teams had a TD board (Figs. 1 and
2). In the XP Lab 2014 offering, each team decided by themselves how to manage the
TD items in their informative workspaces. Some teams decided to have the TD board
and other teams kept the TD items list on a Kanban board.

3.2.1 Boards
In the TD board (Fig. 1) a team placed the TD items that were incurred and/or identified.
On the top of the board, there is a supply of blank cards called ‘Fichas’. These cards
were used to document the TD items.

Figure 2 shows another team’s board where they kept the list of TD items that were
incurred and identified. On the right side, they have a reserve of blank cards.

1 The informative workspace is the place where the teams put all the physical boards and
graphics, with the metrics they used to manage the project development also the list of the task
they will develop in each sprint.

Effects of Technical Debt Awareness: A Classroom Study 87

Fig. 1. Technical debt board Fig. 2. Board of the technical debt list.

Figure 3 shows one TD item about duplicated code. Each card had nine categories
to fill out. Below we transcribe the data contained in Fig. 3.

Fig. 3. Technical debt item

In this case the Name of TD item was Duplicated code in the Mezuro plugin, the
Date (when the item was identified), was 05/16/2013, the Responsible (the person that
incurred or found the TD item, in this case Alessandro), the Type was duplication, (could
be test, documentation, design, etc.), the Location (which part of the code the items was
related), was in lib/mezuro-puglin-rb. The Description (a brief description of the TD
item), the class control-panel-buttons has duplicated code. The Estimated Principal, was
twenty minutes (how much expected time they need to spend now if they implemented
that task in the correct way, if they did not know how much time, then they could use a
scale of high - if they probably will spend a large amount of time -, medium - if they
probably will not spend much time - and low - if they probably will solve it quickly).

88 G.S. Tonin et al.

The Estimated Interest Amount should be filled out when they pay the TD item. The
Probability of being a future problem (i.e. the interest probability) in this case was low.
In this case, they also added in the card the Date when they paid the TD item, 05/23/2013
and how long it took them to pay off the item, also twenty minutes.

These boards represent some of the boards used in the team’s informative workspace.
Some teams used a specific board to manage TD, as shown in Figs. 1 and 2, other teams
used the Kanban board and put the TD items together with the tasks of the sprint.
Furthermore, some teams also placed the list of TD items in the tool used to manage the
project.

3.2.2 Tools
The teams had two code quality analysis tools:

• Code Climate: a tool for quality analysis of code repositories (https://codecli‐
mate.com/).

• Sonar Qube: a code quality analysis platform that has a plugin that identifies TD
(http://www.sonarqube.org/).

4 Research Methods

Data was collected and analyzed for this study through interviews and questionnaires.
Before data collection, the teams spent some time identifying TD items in their projects.
Below, we first describe how TD items were identified, and then we describe our data
collection and analysis methods.

4.1 Technical Debt Identification

In the two offerings of the XP Lab, we followed slightly different steps to help the teams
to identify TD.

4.1.1 XP Lab 2013
Four weeks after the students started working on their projects, we gave a presentation
about TD, as some students were familiar with the term, but others were not. After the
presentation, we had a discussion and we encouraged the students to talk about their
views of TD. We also talked about some concrete examples they had in their projects.
The discussion lasted for about one hour and after that, each team had to prepare a TD
board, where they would have to document their TD items (Fig. 3 shows an example of
a TD item). Each TD item was written on a card, and in this card they had to fill out a
list of topics, after that it was then pinned to the board. The card structure was based on
the template developed in [12]. Each team had a board with a set of cards representing
TD items. Every team that identified or incurred a debt put the information on the board.

Effects of Technical Debt Awareness: A Classroom Study 89

https://codeclimate.com/
https://codeclimate.com/
http://www.sonarqube.org/

4.1.2 XP Lab 2014
In the XP Lab 2014 offering, we made a presentation about TD for all the students
together for 30 min, about two months after the course began. After that, we discussed
it for another 20 min, during this time the students could clarify their doubts about TD.
The students already had the code quality analysis tools available, Sonar Qube and Code
Climate, since the beginning of the course. We did not impose the use of either the boards
or the tools to identify TD. We showed them the meanings of TD items and some exam‐
ples in each project. We also presented examples of a TD board and of the categories
they could use to identify TD items. Then each team decided whether they would monitor
TD on their project or not.

4.2 Second Step – Interviews and Questionnaires

Data collection was done differently in the two XP Lab offerings. In both cases, similar
data was collected both at the beginning and at the end of the course.

4.2.1 XP Lab 2013
Eight weeks after the teams started to identify TD items and fill the boards with cards,
we carried out a face-to-face interview with the pairs in each team. The interview moti‐
vation was to verify the influence on the team of the TD visibility. The interview was
composed of twenty questions, with open-ended and multiple-choice questions, sepa‐
rated into the following topics2:

• The concept of TD.
• Were there any changes in the software development process?
• Negotiation with clients.
• About the experience of identifying TD.
• What is the relevance of identifying TD?
• What is the impact on software quality?
• Do the teams pay off TD?
• Will the teams pay off some TD?

Four weeks after the first interview, at the end of the course, we did the last interview
with an open format and we performed it for each team. In the last interview, each team
was invited to talk about the experience of making TD explicit. Each interview took
about twenty minutes.

4.2.2 XP Lab 2014
In this edition of the course, we decided to apply a questionnaire on what each team
member thinks about TD (the questionnaire was answered by the students individually;
this approach was taken to try decrease a possible bias). This questionnaire was applied

2 It is possible to access all the questions in the following link https://www.dropbox.com/sh/
gen3dr97xxofs21/AACo11oqbBsaCprOCQtSYv5Ja?dl=0.

90 G.S. Tonin et al.

https://www.dropbox.com/sh/gen3dr97xxofs21/AACo11oqbBsaCprOCQtSYv5Ja?dl=0
https://www.dropbox.com/sh/gen3dr97xxofs21/AACo11oqbBsaCprOCQtSYv5Ja?dl=0

one week before the class received a talk about TD. We sent a link to the questionnaire
by email and then the students had one week to answer it.

The questionnaire was composed of seventeen open-ended and multiple-choice
questions, separated into the following topics3:

• Software quality
– What does the team do about quality?

• Familiarity with TD.
– Do you know about and use the TD concept?

• How TD is used in the project.
– Are you using the Sonar Qube or Code Climate report?
– Are you using a TD list?
– Have you paid any TD item?
– Is there any evidence that having the TD items visible has an influence on the

team?
• Did you identify any TD item that was not identified by the tools?
• Are you going to consider TD in future projects?
• Do you think the TD concept is relevant?

The same questionnaire was applied a second time at the end of the course. The aim
was to see if there was any change in the team members’ behavior.

4.3 Third Step – Data Analysis

For the data analysis, we used coding techniques from the grounded theory approach
[13]. Grounded theory methods are aimed at building or discovering a theory. In this
approach, the data analysis proceeds in three interdependent steps: open coding, axial
coding, and selective coding. In the open coding step, the researcher interprets the data
to identify patterns and define codes, “…event/action/interaction, are compared against
others for similarities and differences; they are also conceptually labeled […] concep‐
tually similar ones are grouped together to form categories and their subcategories…”
[13]. In axial coding “…categories are related to their subcategories, and these rela‐
tionships tested against the data…” [13]. Then in selective coding “…all categories are
unified around a central ‘core’ category and categories that need further explanation are
filled-in with descriptive details…” [13].

For data analysis, we used the NVivo4 tool, which is widely used for analysis of
qualitative data. In this case, the goal was not to use grounded theory to develop a new
theory but only use its coding steps to answer our research questions.

We also analyzed the source code of the projects with the Sonar Qube and Code
Climate tools, to try to identify relationships between team’s beliefs and the reports from
these tools.

3 It is possible to access all the questions in the following link https://www.dropbox.com/sh/
gen3dr97xxofs21/AACo11oqbBsaCprOCQtSYv5Ja?dl=0.

4 http://www.qsrinternational.com/support/downloads/nvivo-9.

Effects of Technical Debt Awareness: A Classroom Study 91

https://www.dropbox.com/sh/gen3dr97xxofs21/AACo11oqbBsaCprOCQtSYv5Ja?dl=0
https://www.dropbox.com/sh/gen3dr97xxofs21/AACo11oqbBsaCprOCQtSYv5Ja?dl=0
http://www.qsrinternational.com/support/downloads/nvivo-9

5 Results

In this section, we describe our findings organized by the coding steps. As the main
question in the both editions of XP Lab was the same and the obtained results were
similar, we analyzed the results of both editions together.

5.1 Open Coding

In this step, the data analysis was conducted by reading the transcripts of the interviews
and also the answers from the questionnaires. We applied the coding process to this
material, line by line. In this phase, we discovered the open codes. In Table 2, we list
three code samples. It is possible to access the list of the open codes that emerged from
this first codification in an appendix5.

Table 2. Example of codes resulting from open coding

Open codes What they talked about
Changed attitude of the
teams

The team discussed more the tasks they have to do before incurring
a TD and they thought more before taking the decisions.

Communication After the identification of TD items, the team had more discussions.
Maintainability The identification of TD items helps the teams to know that there will

be some changes in the software in the future.

5.2 Axial Coding

The open codes were reassembled in new ways during axial coding to form categories.
The goal was to create a higher abstraction level. Thus, codes were grouped to form
subcategories, and in turn, they were organized into categories. This process was highly
iterative, with codes and categories forming and re-forming as more data were incor‐
porated into the evolving understanding [13].

In Fig. 4, it is possible to observe the list of categories and subcategories resulting
from axial coding analysis. The first level is the main category resulting, this category
emerged from the subcategories of the second level, the subcategories are resulting from
the codes emerged in the third and fourth level.

One of the most important influences when we make a list of TD items is the attitude
of the team (team behavior), “…registers by not forgetting, there was a change in the
attitude of the team…” and “…increased people’s concern regarding the Technical
Debt…”. The team had less ‘untouchable’ expert professionals and behaved more as a
whole team. They talked more about the TDs “…we discussed these debts. Otherwise,
the project would not have advanced…” and thought about the necessity of incurring
it. It helped them to have the same understanding of the concept of TD because they
discuss it (TD concept). In addition, if the team members were not sure whether to incur

5 It is possible to access all the codes in the following link https://www.dropbox.com/sh/
gen3dr97xxofs21/AACo11oqbBsaCprOCQtSYv5Ja?dl=0.

92 G.S. Tonin et al.

https://www.dropbox.com/sh/gen3dr97xxofs21/AACo11oqbBsaCprOCQtSYv5Ja?dl=0
https://www.dropbox.com/sh/gen3dr97xxofs21/AACo11oqbBsaCprOCQtSYv5Ja?dl=0

a TD item or not, the team member debated with another team member to help him to
take this decision, thus improving the team’s communication. Team members started
talking more with each other and because of it, they knew what part of the project was
being modified and the problems of the software, “…It was easier to remember that we
have to fix things, debts…”. Furthermore, if team communication was good, they were
more comfortable to share with each other their difficulties. After the team began to
identify TD, developers discussed their decisions rather than just doing something and
moving on, now that all the software problems were more clear to the team members,
“…usually only the person thought or knew about it (…), now with the TD it becomes
clearer as well…”. They began to argue among themselves, before incurring a debt, “…
As evidenced here we even got everyone talking about the debts, instead of just looking
to give a quick solution and move along…”.

They started to think more about if it was necessary or not to incur some TDs. Several
times they concluded that it was not required, a team member says: “[…] From the
moment I started to think about that item, which was debt, I asked myself about what is
the current cost, compared to the future cost. Because if the cost of doing now is less,
then it’s better to fix it now…”, other student says: “…we think twice before making a
TD…”.

When TD items were visible, the team had more control, over whether they will pay
off the TD item, whether they will incur more debts or not, or whether they will incur
and pay later. Moreover, this facilitates planning to repay the TD items, “…we analyzed
some of the debts, now we will plan, what we might kill, to kill some of those debts,
then it becomes easier to make this analysis…”. Therefore, if they incur a TD item, they
would make it visible, would monitor it, and sometimes they would look back at this
TD item. This way, they always thought about continuous improvement. Thus, the team
could be defining a strategy to pay off or not some TD items to improve the code quality.

Fig. 4. Categories and subcategories of the XP Lab 2013 and 2014 edition

Effects of Technical Debt Awareness: A Classroom Study 93

However, if the team member incurred a TD item, and never paid, the project would
probably lose quality. Nevertheless, they might incur TD to prioritize other tasks or as
a business decision to deliver fast and then used it strategically.

The TD item list presented indications on whether the code quality was improving
or not, and helped them to understand the current development state It also indicated if
they would have a lot of future work and future refactoring to do in that code. Indeed,
if the software had TD items, the team would probably need to perform some refac‐
toring, and it directly affected the sustainability of the project. Furthermore, the team
could do an analysis of the TD items and they could be defining a software’s quality
metrics to help them monitor the software quality, for instance, test. They also could
identify technological deficiencies and define possible directions to improve their tech‐
nical skills and not repeat the same mistakes, in order to mitigate the occurrence of those
TD items that were recurrent.

The teams used the TD item list as documentation providing a historical record of
the immature parts of the project. Therefore, each team knew that some parts of the
project should be improved; it was possible to see if there was a TD item to pay off. This
documentation helped the teams to maintain the code and it reflected on the health of
the project. In addition, it affected the teams by sometimes causing dissatisfaction with
the quality of the software. Many team members saw that it was very uncomfortable to
arrive at work and see that the health of the project was not so good. If the source code
health of other teams was good, it was even more uncomfortable. Therefore, this process
of the team having discussions, and having dissatisfaction impacted in the following
reflection: when a team member decided to incur or not TD, thought and discussed it,
he better understood the problem that he had to solve. This often resulted in the non-
insertion of a TD item in the code, since it only lacked the understanding of what should
be done.

Considering TD implied generating a culture focused on quality. It affected factors
related to project continuity. It has an influence on the cost and the viability of main‐
tainability and evolution of the project. A developer said that, if they did not have the
TD items visible it was so difficult to identify the software quality landscape, “…it was
difficult for you to identify the whole landscape…”. Therefore, if in the future the team
needed to make some changes in the legacy code, they already knew what they were
and where the problems were located. It provided a general awareness to the team about
the problems of the software. It also might help a new team member that did not know
about the code to have a notion on the quality of the code and the location of the code
problems.

5.3 Selective Coding

Selective coding constituted the third stage of data analysis, with the objective to refine
and integrate categories, unveiling a category deemed as central, encompassing all the
others. The full potential of abstraction was employed to incorporate the full scope of
the data investigated and coded [13].

In our case, the objective was not to generate a theory, but rather to identify the main
categories. The aim was to describe the impact of TD awareness.

94 G.S. Tonin et al.

The categories, Strategy, Team Behavior, Code, and Visibility represent the main
influences on teams due to making TD items explicit. Each of these categories captures
part of our results, although none of them describes the phenomenon entirely. For this
reason, another abstract category is required, a conceptual idea on which all categories
are included. As such, we concluded that the resulting core category might be a perceived
notion on ‘‘Improving Quality”.

All teams progressed towards creating a culture of Quality of the code, team, and
project. This arose primarily because each team member started to think more about the
need to incur TD items. Many times they decided that incurring TD was not necessary
in a given situation. When a team member was not sure about the necessity or not to
incur the debt, they spoke with other members to make a decision. Therefore, the team
improved their communication and then it was clearer what each member was doing.
So, it was easier to understand the objective of the project. Then, making TD explicit
has a direct implication on the Team Behavior. Most of the team members said that after
they started to identify TD, they talked more with each other, thought more about the
real need to incur debt or not, discussed more about code quality, refactored more
frequently some parts of the code, knew where the code problems were, and where each
team member was working at any time on the project. In addition, when communication
among the team was good, people felt more comfortable to expose and discuss their
problems with the team. The team then became more a group that works together, rather
than a group of experts on different parts of the system.

In some situations incurring some TD items was a Strategy to gain some time, due
to the time to market. Moreover, if there was a list of TD items it might be possible in
the future to correct them, by refactoring. The list of TD items was used as documen‐
tation, this enabled the historical record of the TD items list that the code contains. When
the need to change a particular part of the system appeared, it was possible to verify if
it had some TD item and if this debt would affect such functionality. Therefore, the team
members had the option of paying it off or not. The documentation helped in the Visibility
of the project’s health. If the software had any TD, probably it would have more defi‐
ciencies.

Finally, when a team had the TD items list they automatically became Aware of the
TDs of the project, consequently about the software quality. So, the team could think
about it, before possibly incurring in another TD item. The team could decide when and
where they would improve the software quality.

5.4 The Code Analysis with the Tools

In XP Lab 2013 edition, we analyzed one project with Code Climate tool (supported the
language used in the project, in this case, Ruby). Further, we analyzed two projects with
the Sonar Qube tool. In the XP Lab 2014 edition, we also analyzed two projects with
Code Climate tool and four projects with the Sonar Qube. We considered the Code
Climate metric, grade point average6 (GPA) and in the Sonar Qube the following
metrics: code smells, security, reliability, maintainability, duplications, documentation,

6 https://docs.codeclimate.com/docs/code-climate-glossary#gpa.

Effects of Technical Debt Awareness: A Classroom Study 95

https://docs.codeclimate.com/docs/code-climate-glossary#gpa

issues, technical debt rating, complexity, size, duplicated blocks, bugs & vulnerability
and duplications. The GPA of the Mezuro’s code and the Monitoria project increase
after the teams considered TD. Then the quality of project increased, it means that the
remediation (the amount of effort required to improve a software issue), was 0 to 2 M
(too short). In the analysis with Sonar Qube of the projects: Game VidaGeek, Tiktak,
Arquigrafia, Family Tree, Social Networking Startups and Specialist in Sport we did not
identify large variations in the measured metrics comparing the two different versions
of each project (Before and after they consider TD). However, in 5 of the 6 projects, the
rate of duplication and the duplicated blocks decreased after the team started to consider
TD, indicating an improvement in code quality.

It is important to highlight that the students said that most of TD items were not
identified by the tools, which explains the modest size of the changes in these metrics.
For instance, one team was using Handsontable7 for data entry, and they had a problem
with the validation of the data. The presence of this type of TD item, nor the impact of
paying it off, could not be identified with Sonar Qube or Code Climate reports. In general,
many types of TD items (e.g. those related business rules) cannot be identified through
static metrics.

6 Discussion of the Findings

The teams had some similar views on the importance and benefits of making TD explicit.
A significant finding is that the teams considered it very helpful because they could see
the whole landscape of the software quality (they knew which part of the software had
immature code). They also emphasized that it was very useful to have a board where
every day they could see the health of the code. Before becoming aware of TD, the team
members reported that they sometimes incurred TD but never remembered to go back
and correct it. But after considering TD, they thought about the necessity of incurring
TD and often decided against it. Also, they could see the TD list and so they did not
forget the TD items that needed to be addressed. They discussed more about how to
implement the tasks, also they talked more about the problems of the software because
they had the list of the TDs visible. This process of thinking about incurring or not TD,
discussing about it and reviewing the TD during the project can create a culture focused
on improving the software quality.

In addition, in this study we explored some ways of identifying and monitoring TD.
Our subjects found some form of a TD board very useful for documenting TD, making
it visible, and adjusting both the TD board and their behavior accordingly. By using the
TD board, they always know the list of software deficiencies so have a constant reminder
of how to organize their work and improve the software. As a complementary aid, they
may use tools to help them to identify and monitor TD occurrence. However, it is
important to highlight that tool reports provide a static analysis of the software quality
and some TD item could not be identified using static metrics.

7 https://handsontable.com/.

96 G.S. Tonin et al.

https://handsontable.com/

The results of this study could motivate teams to consider TD further, to help devel‐
opers convince leaders and directors, the decision makers, to start considering TD. These
approaches used by the XP Lab teams, such as boards, cards and tools can help teams
in companies to deal with TD. In addition, they could define the list of TD items that
are crucial to the project but hard to identify with the tools. As a result they can define
a strategy to deal with the TD over time.

6.1 Threats to the Validity

In this study, we took some actions to mitigate possible biases, we describe these in the
following points:

• Construct validity (credibility): We used multiple data collection approaches with
the aim to reduce possible bias. When planning the interviews and the questionnaire
we discussed the best way to formulate the questions. We did a first interview and
questionnaire with one member of the group as a pilot test. Based on this test we
reviewed the questions. We did not include these data in the final analysis. One thing
that it is important to highlight is that the students might not have understood the
main meaning of the questions correctly, in the interviews and questionnaires.
Because of this, in the interviews, if the student did not understand the question the
interviewer explained the question for them. The researcher was available throughout
both studies if the students had any questions.

• External Validity: This study can be replicated in other academic courses, also in
companies. In both cases, the study can be separated into two parts and can be applied
in these situations: one in teams that do not consider technical debt yet, to verify if
awareness of TD influences something in the team, such as communication. Further‐
more, this study can be analyzed with teams that already consider technical debt, by
identifying, monitoring and managing if it is possible to identify some changes in the
team behavior and in the software quality. If they have a historical record, we could
also measure the software quality with tools. Finally, to carry out this study is not
necessary to make significant changes in the team’s environment, which makes
feasible to replicate in companies.

• Internal Validity: We analyzed the data separately, first the interview transcriptions,
then the questionnaire responses, and then compared and merged the findings that
were relevant and had a lot of evidence in the results of both studies. In the case of
any doubt about a specific point, we went back to the data and re-analyzed them.
After that, the advisor and co-advisor read the results and if they indicated some
points to be re-analyzed, the researcher re-analyzed the data. We did analysis and re-
analysis many times until we were sure of the conclusions.

• Reliability: To interpret the data we followed the coding techniques from the
grounded theory steps. Also, the data analysis was made by a single researcher,
however, the results of the analysis were discussed by the two researchers and with
the advisor and co-advisor, every time a doubt arose the data were re-analyzed. Also,
this paper is a result of an analysis of the data that lasted two years, where the
researcher compared the data many times. Furthermore, the preliminary results were

Effects of Technical Debt Awareness: A Classroom Study 97

presented and discussed at seminar8 attended by top researchers in this field. It is
important to observe that when we infer that awareness of TD could impact software
quality, we are describing the perceived quality by the team.

• Objectivity: The results show the information derived from the data, the codes and
categories emerged were related with the data quotes.

7 Final Considerations and Future Works

This work describes results about the influences of making TD explicit in an academic
setting. Our results show the importance of making TD visible and how that influences
teams. It is important to point out that no negative influences were identified. The team
members were always very excited about the results of making TD items visible. As
communication in the team was improved, all team members thought more about quality,
not just specific members. The “agile” culture of the teams improved and in addition,
the team believed that it was easier to show the impact of the TD level to clients, showing
that it is possible to invest some time to improve the quality. The main results emphasize
the Extreme Programming values and helped the teams to support values such as
communication at all levels, courage to change and feedback to continuously improve
the software.

In future work it is important to verify the influence on the team in the long term,
especially concerning speed and code quality. It is also important to create ways to
compare the perceptions of the developers with the results of the tool reports. For
instance, in these studies the students believed that when they started considering TD,
the project quality improved, but when we analyzed the code with the tools, we saw that
the reports did not indicate significant changes in source code quality. Then, it is inter‐
esting to investigate why this happened, and possible future solutions.

Acknowledgments. We are grateful to all the students and TAs of the XP Lab course (2013 and
2014 offerings) for providing valuable data for this research. We would like to thank IBM, CNPQ,
CAPES and FAPESP, too, for funding this work.

References

1. Santos, V. et al.: Uncovering steady advances for an extreme programming course. CLEI
Electron. J. 15(1) (2012). paper 1

2. Edith, T., Aybuke, A., Richard, V.: An exploration of technical debt. J. Syst. Softw. 86, 1498–
1516 (2013)

3. Kent, B.: Extreme Programming Explained: Embrace Change. Person Education Inc, United
States (2005)

4. Ward, C.: The WyCash portfolio management system. In: Addendum to the Proceedings on
Object-Oriented Programming Systems, Languages, and Applications, pp. 29–30 (1992)

5. Extreme Programming Projects – CCSL. (http://www.ccsl.org.br/oldwiki/index.php)
6. Arquigrafia. http://www.arquigrafia.org.br/. Accessed May 2016

8 http://www.dagstuhl.de/de/programm/kalender/semhp/?semnr=16162.

98 G.S. Tonin et al.

http://www.ccsl.org.br/oldwiki/index.php
http://www.arquigrafia.org.br/
http://www.dagstuhl.de/de/programm/kalender/semhp/?semnr=16162

7. VidaGeek. http://aprenda.vidageek.net/. Accessed May 2016
8. Mezuro. http://mezuro.org/pt. Accessed May 2016
9. CoGroo. http://ccsl.ime.usp.br/cogroo/. Accessed May 2016

10. Oliveira, R.M., Goldman, A., Mello, C.: Designing and managing agile informative
workspaces: discovering and exploring patterns. In: Proceedings of the 46th Hawaii
International Conference on System Sciences (2013)

11. Oliveira, R., Goldman, A.: How to build an Informative workspace? an experience using data
collection and feedback. In: Agile Conference (2011)

12. Seaman, C.: Technical Deb Minicourse. At the University of São Paulo (2013)
13. Corbin, J., Strauss, A.: Grounded theory research: procedures, canons and evaluative criteria.

Zeitschrift fur Soziologie 19(6), 418–427 (1990)
14. Monitoria. www.monitoria.ime.usp.br. Accessed May 2016
15. System Specialist in Sport. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.

0145733. Accessed May 2016
16. Li, Z.G., Avgeriou, P., Liang, P.: A systematic mapping study on technical debt and its

management. J. Syst. Softw. 101, 193–220 (2014)
17. Poliakov, D.: A systematic mapping study on technical debt definition. Lappeenranta

University of Technology School of Industrial Engineering and Management Degree Program
in Computer Science (2015)

18. Lim, E., Taksande, N., Seaman, C.: A balancing act: what software practitioners have to say
about technical debt. IEEE Comput. Soc. Softw. 29(6), 22–27 (2012)

19. VersionOne.: State of Agile Report (2015). http://info.versionone.com/state-of-agile-report-
thank-you.html

20. Guo, Y., Seaman, C.: A portfolio approach to technical debt management. In: Proceeding of
the 2nd Workshop on Managing Technical Debt (2011)

21. Bavani, R.: Distributed agile, agile testing, and technical debt. IEEE Softw. 29, 28–33 (2012)
22. Kruchten, P., Nord, R.L., Ozkaya, I.: Technical debt: from metaphor to theory and practice.

IEEE Softw. 29, 18–21 (2012)
23. Martini, A., Bosch, J., Chaudron, M.: Architecture technical debt: understanding causes and

a qualitative model. In: Proceedings of the 40th Euromicro Conference on Software
Engineering and Advanced Applications (2014)

24. Sterling, C.: Managing Software Debt: Building for Inevitable Change. Addison-Wesley
Professional, Boston (2010)

25. Curtis, B., Sappidi, J., Szynkarsky, A.: Estimating the size, cost, and types of technical debt.
In: Proceedings of the IEEE 3rd International Workshop on Managing Technical Debt (MTD
2012) (2012)

26. McConnel, S.: Managing Technical Debt. http://www.construx.com/File.ashx?cid=2797.
Accessed April 2008

27. Buschmann, F.: To pay or not to pay technical debt. IEEE Softw. 28(6), 29–31 (2011)
28. Avgeriou, P., Kruchten, P., Ozkaya, I., Seaman, C.: Managing technical debt in software

engineering. Dagstuhl Rep. 6, 110–138 (2016)

Effects of Technical Debt Awareness: A Classroom Study 99

http://aprenda.vidageek.net/
http://mezuro.org/pt
http://ccsl.ime.usp.br/cogroo/
http://www.monitoria.ime.usp.br
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0145733
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0145733
http://info.versionone.com/state-of-agile-report-thank-you.html
http://info.versionone.com/state-of-agile-report-thank-you.html
http://www.construx.com/File.ashx?cid=2797

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license
and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

100 G.S. Tonin et al.

http://creativecommons.org/licenses/by/4.0/

Agile in Organizations

Don’t Forget to Breathe: A Controlled Trial
of Mindfulness Practices in Agile Project Teams

Peter den Heijer2(B), Wibo Koole3, and Christoph J. Stettina1,2

1 Centre for Innovation The Hague, Leiden University,
Schouwburgstraat 2, 2511 VA The Hague, The Netherlands

c.j.stettina@fgga.leidenuniv.nl
2 Leiden Institute of Advanced Computer Science, Leiden University,

Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
pdheijer@gmail.com

3 Centrum voor Mindfulness,
Raadhuisstraat 15, 1016 DB Amsterdam, The Netherlands

wibokoole@cvm.nl

Abstract. While the effects of mindfulness are increasingly explored
across different fields, little is known about the application of these
practices in agile project teams. In this paper we report on a rigorous
controlled trial executed to understand the impact of the three minute
breathing exercise on the perceived effectiveness of stand-up meetings.
We compare (1) an active group using a three minute breathing exercise,
to (2) a placebo, and (3) a control group in 3 organizations and 8 teams
with over 152 measurements. Our findings indicate an immediate pos-
itive impact on perceived effectiveness, decision-making and improved
listening in the active groups compared to the placebo and natural his-
tory groups. We provide a preliminary agenda for future research based
on our findings and previous evidence from other fields.

Keywords: Empirical study · Mindfulness · Scrum · Teamwork ·
Resilience · Agile software development

1 Introduction

In a world led by ‘volatility, uncertainty, complexity and ambiguity’, depending
solely on automatic pilots can have disastrous effects on human life [1]. Present-
day organizations are facing the same problem as they are operating in a highly
unpredictable and stressful environment to which they daily need to respond
adequately. It is difficult for organizations to adapt to changing circumstances
and demands in a highly volatile world. Carefully crafted plans, that should work
like business or project auto-pilots, are met by a stubborn reality that does not
fit the envisioned strategy. Such an increase in speed and uncertainty leads to
an increase in stress for teams and management [2,3]. As a consequence people
fall back on autopilot behavior with suboptimal results.

c© The Author(s) 2017
H. Baumeister et al. (Eds.): XP 2017, LNBIP 283, pp. 103–118, 2017.
DOI: 10.1007/978-3-319-57633-6 7

104 P. den Heijer et al.

This is a problem because organizations that do not possess the agility to
reply to the present and its changed demands, run a great risk of becoming
obsolete or at least lose some of their striking power within the market that
they operate. Big corporations like Atari, Kodak, DeLorean, Polaroid, Pan Am
and Compaq, once cutting edge businesses, have failed to meet these changing
demands and showed no signs of agility, which eventually led to their demise.
Their business auto-pilot was focused on a fixed point and failed to prevent them
from crashing into new competitors, new technologies, new demands and waning
public interest at the next junction. Companies that cannot alter their course
because they cannot recognize the changes in the market, will fail or decline.
Their employees will likely have to deal with stress levels that keep on building
up in their system with a great chance of burnout and demoralization.

Mindfulness, a concept increasingly popular in practice, promises relief to
some of those symptoms. Mindfulness deals with a certain attitude towards
reality in which the practitioner approaches the here-and-now in ‘the fullest
attention to whatever the moment presents’ [4]. Mindfulness provides tools to
increase attention and aims to create habits of mind that lead to stress reduc-
tion [5]. While there is a firm evidence base of mindfulness in clinical psychology,
research on the application of these practices in the context of professional orga-
nizations such as agile teams, is still in its infancy.

In this report we present the first empirical perspective on the application of
a very concrete mindfulness practice in agile teams: the three minute breathing
exercise. While previous studies predominantly conducted in the field of clinical
psychology only revealed results after several weeks, our findings point at an
immediate effect of the exercise in a subsequent meeting. Based on our experi-
ences we draw out an agenda for further research. Our findings provide a strong
base for further exploration relevant for both research and practice.

2 Background and Related Work

While the debate on the definition of mindfulness is ongoing, it’s roots can
be traced to Buddhist psychology where it has been practiced for several
millennia [6]. The concept has then been introduced in the field of contempo-
rary psychology by Jon Kabat-Zinn in the mid-1980s, as ‘paying attention in a
particular way, on purpose, in the present moment, and nonjudgmentally’ [7,8].
Since then mindfulness has been applied in many fields such as education [9],
law [10], “prison programs” [11], “IT” [12], and “business” [13] to stimulate more
positive responses and better-decision making. While there is a growing base of
evidence that specific mindfulness practices can have a positive effect on human
behaviour, little is known on its impact in professional organizations such as
agile teams.

In the following subsections we will discuss existing evidence of mindfulness
practices applied in clinical psychology, organizational psychology, information
systems, management research, and lastly in agile teams.

Mindfulness Practices in Agile Project Teams 105

Mindfulness in Clinical Psychology. Several therapies and trainings have
been developed to execute mindfulness based interventions. Kabat-Zinn for
example introduced Mindfulness-Based Stress Reduction (MBSR). This treat-
ment was originally designed to “treat patients with chronic pain” [8]. Eigh-
teen known studies have been undertaken toward fathoming the consequences
of MBSR on different groups of participants [14]. All of the research indicates
that there is a positive correlation between MBSR and psychological well-being.
Shapiro, Schwarz and Bonner for example have conducted a study among med-
ical students, wanting to find out if the students would be able to cope better
with stress after they had gone through an official MBSR program [5]. The
results indicate that participation in a mindfulness-based stress reduction inter-
vention can effectively (1) reduce self-reports of overall psychological distress
including depression, (2) reduce self-reported state and trait anxiety and (3)
increase scores on overall empathy levels [5]. Studies have shown that mindful-
ness has a general positive impact on one’s psychological health [7]. Mindfulness
has been correlated to a myriad of positive effects on people with psychological
issues. Good results have been shown in the areas of “self-esteem” [15], “self-
efficacy” [16], “clarity” [17], “self-compassion and empathy” [18]. The correlation
of mindfulness has also been associated with the reduction of “depression” [19]
and “stress” [20].

Mindfulness in Organizational Psychology, Information Systems and
Management Research. Several randomized controlled trials have been
undertaken to prove the effectiveness of mindfulness in a business setting. In an
integrative review Good et al. [21] integrate the impact of mindfulness into five
areas of basic functioning (attention, cognition, emotion, behavior, and physiol-
ogy) and into three clusters of workplace outcomes (performance, relationships,
and well-being).

Reb et al. [22] for example examined the effect of “leader’s mindfulness on
employee well-being and performance”. The study showed that the higher the
supervisor’s mindfulness: (1) the higher the employees’ psychological need satis-
faction, (2) the higher the job satisfaction of the employee, (3) the more favor-
able overall job performance ratings, (4) the higher the in-role performance, and
(5) the higher the engagement with organizational citizenship behaviors. Other
randomized controlled trials in this area have also shown a positive correla-
tion between the trait mindfulness and psychological well-being, better decision-
making and better handling of stress [23].

Hafenbrack et al. [23] discuss the association with a mindfulness condition
towards (1) positive emotions, (2) focus on the present, and (3) better decision-
making. Mindfulness practices are associated with an augmentation of a positive
emotional state of being, since mindfulness “increases the willingness to toler-
ate uncomfortable emotions and sensations” [24] which indirectly increases the
quality of decision making [25]. There is a significant direct correlation between
the mindfulness state and decision making [23]. Lastly mindfulness has a focus
on the present [8,23] which indirectly increases the value of decision making.

106 P. den Heijer et al.

Mindfulness, Agility and Agile Teams: Initial work on agile teams and well-
being indicates that teams that feel more empowered experience less stress [26].
However, while the popularity of agile methods is continuously rising, estab-
lishing the right team atmosphere and leadership approach remains a challenge
[27,28]. Especially in situations of increased speed and competition, agile teams
are experimenting with practices to counter the loss of focus [29].

Mindfulness, while promising relief to some of the aforementioned symptoms,
has so far received little attention in the context of agile methods. In existing
literature the concept has been explored in two main directions in relation to
agility: (1) Mindfulness as an organizational condition and a theoretical con-
cept that supports agility through attention to detail and reliability of systems
(compare [30]), and (2) Mindfulness practices as a set of tools to achieve it.

Mindfulness as a theoretical concept to support agility in organizations has
been explored by McAvoy et al. [30] to compare ‘Doing’ Agile vs. ‘Being’ Agile
- thus understanding the effectiveness of agile practices in organizational con-
texts. Nagle et al. [31] utilize a mindfulness measure to understand how an orga-
nization can achieve flexibility and reliability in the context of Global Software
Development (GSD).

The interaction of concrete mindfulness practices and agile practices is far less
well understood. Agile practices such as stand-up meetings for team coordina-
tion [32], Iteration Reviews for continuous customer feedback, or Retrospectives
for teams to reflect and improve their ways of working, are concrete routines that
help teams to deliver their products and improve. Mindfulness practices, simi-
larly to agile practices, provide very specific patterns of action and reproducible
protocols, routines that can help build mindful behaviour in organizations [33].
For example, Bernárdez et al. [12] conducted an experiment comparing groups of
students conducting a mindfulness exercise to a control group practicing public
speaking, with the former being more efficient in developing conceptual models.

Following evidence across various fields we know that mindfulness exercise
can have a positive impact on decision-making, the ability to focus and psy-
chological well-being. However, until now little is known on the impact of those
exercises in business settings, especially in agile project teams. The three minute
breathing space exercise [34], for example, is a concise mindfulness exercise that
can be applied relatively easy in teams with little investment. The participant
approaches the short exercise with an attitude of alertness and curiosity through-
out its three stages of ‘becoming aware’, ‘focusing attention on breathing’ and
‘extending the attention’ [34]. Similarly to meeting routines in agile teams, such
as stand-up meetings, it provides a concrete and convenient protocol. As such,
the two practices, stand-up meeting and the breathing exercise, can be combined
into an experiment.

Based on the literature reviewed above we thus pose the following question:
What is the effect of the three minute breathing space exercise on the quality of
meetings in an agile project team?

Mindfulness Practices in Agile Project Teams 107

Table 1. Stand-up meeting protocol for the three trial groups

Step Duration Activity Actor(s)

Active Placebo Control

1 5min Execute
the three
minute
breathing
space

Listen to Tango by
Igor Stravinsky

- Facilitator & Teams

2 15min Participate in Stand-up meeting Teams

3 5min Fill out questionnaire Teams

4 1min Collect questionnaires Facilitator

3 Research Method and Conduct

Following the research question this paper aims to help understand the impact
of a specific mindfulness practice, the three minute breathing space, applied in
agile project teams. As the three minute breathing exercise as well as the Scrum
stand-up meetings provides reproducible and comparable routines, we embed-
ded our research question in an experiment following the design of a controlled
trial as common in clinical settings [35,36]. As the trial is executed in a social
context with many interconnected factors such as teamwork, process, culture
and the perceptions of individuals, we applied a mixed methods approach using
quantitative and qualitative sources to analyse the data [37].

Protocol: The trial was divided into three phases, a (1) preparatory phase from
April until May 2016, three organizations were asked to join and facilitators were
instructed, (2) collection of a baseline measurement in the beginning of June
2016, and (3) the actual trial period lasting from mid-June until mid-July 2016.

In order to reduce bias, we designed a controlled trial including a placebo as
well as a natural history control group to compare the effect of the mindfulness
exercise. To do so, we created a trial protocol including three groups, (1) an
active group with teams executing the breathing exercise before their meetings,
(2) a placebo group, which would listen to classical music by composer Igor
Stravinsky, and (3) a control group. In order to distract attention from the
actual mindfulness exercise, the study was strictly framed as an “experiment to
increase effectiveness in Scrum Meetings” across participants and supporting
facilitators. The placebo1 group was added to compare the impact to a non-
meditative form of relaxation, which could have an impact on the team, and

1 We are aware that similarly to trials in social therapy, there is no placebo for an
intervention in a social environment, as even a trivial interaction across individuals
does have an impact [36]. For the sake of simplicity we still call the second trial
group as “placebo” although it is technically not the case.

108 P. den Heijer et al.

to further remove attention from the mindfulness exercise. All data collection
was kept strictly anonymous and we repeatedly asked the teams to give honest
opinions.

We chose stand-up meetings as the agile practice the trial was aligned to,
also referred to as “Daily Scrum”. We chose that specific meeting type due
to frequency, commonly accepted format and contribution to decision-making
within the team [32]. The meetings are short in nature and strictly time limited.
The team members address the three questions “What have I done? What will
be done? What obstacles are in my way?” and make operational decisions [32].

The interventions for the three trial groups were designed as depicted in
Table 1. For the active and placebo groups a guided 5-minute exercise was given
just before the start of the stand-up meeting, the natural history control group
had no exercise whatsoever. The mindfulness breathing exercises (for a proto-
col compare [34]) as well as the Stravinsky2 placebo exercise were both guided
by experienced mindfulness instructors to give the best results. The breathing
exercise was chosen due to its short nature, accessibility and prior exploration
in the context of software teams [12].

The instructors were present 5 min before the meeting started and conducted
the exercise type that was assigned to the team. After the exercise had taken
place the team would start with its meeting. Shortly thereafter the team would
fill out the forms. The natural history control group (nh) was not guided at
all, but needed to fill out the forms at exactly the same moments as the other
teams to follow their heartbeat. The procedure was repeated for the active and
placebo groups four times until the end of the trial. Due to different iteration
lengths, and to have sufficient time between the measurements to ensure that
the interventions themselves would not influence each other because of too short
an interval between exercises, the measurements took place once per week.

Organizations, Teams and Participants: Between April 2016 and May 2016
we reached out to organizations with software development departments in the
Netherlands. The selection criteria was to find organizations with at least three
software development teams applying Scrum for a period of at least three years.

Table 2. Distribution of the three trial groups (active, placebo, control) across the
three participating organizations and involved teams

Organisation Alpha Beta Gamma

Team T1 T2 T3 T4 T5 T6 T7 T8

Trial group Active Placebo Control Active Placebo Control Active Control

Team size 5 8 7 8 10 10 5 8

Measurements 4 4 1 4 4 4 4 2

Total responses 32 13 7 24 24 19 19 14

2 “Igor Stravinsky - Tango (audio + sheet music)”, URL to the video: https://www.
youtube.com/watch?v=VcXTFRXenwI.

https://www.youtube.com/watch?v=VcXTFRXenwI
https://www.youtube.com/watch?v=VcXTFRXenwI

Mindfulness Practices in Agile Project Teams 109

This ensures that these teams are working with short cyclical iterations in which
working software is completed after each sprint, and applying stand-up meet-
ings. Out of the 10 inquired organizations, three organizations and a total of
8 teams agreed to participate. After gaining the commitment of the teams, we
assigned them to one of the three trial groups as depicted in Table 2. Organ-
isation Gamma originally included a placebo team as well, however, the team
dropped out due to internal deadlines before the trail execution. At last there
were 8 teams included in the trial and respective analysis. Furthermore, seven
facilitators were instructed to conduct the respective exercises and collect the
data on-site.

Questionnaire Design and Data Collection: Following our literature study
we compiled a questionnaire based on two dimensions: mindfulness and effective-
ness. The questions can be found in Table 3. The questions addressing mindful-
ness (Q03, Q05, Q07, Q08, Q09, Q10) have been selected based on the dimensions
mindfulness has been reported to have an impact on, such as: improved decision-
making, better emotional responses, focus on the present [23]. In addition to
that we added questions on effectiveness of the meeting (Q01, Q02, Q04, Q06).
The questions have been administered with a 7-point Likert scale: 1 = Never,
2 = Rarely, 3 = Sometimes but infrequently, 4 = Neutral, 5 = Sometimes, 6 =
Usually, 7 = Always

Before the actual trial we conducted a baseline measurement which would
later serve as a base for comparison. The baseline measurement was collected at
the beginning of June 2016, the actual trial followed in mid-June 2016. During
the trial team members were asked to fill out the questionnaire directly after
the meeting and respective intervention (compare Table 1). In order to have
sufficient time between the measurements, the exercises were conducted and
data was collected once per week across the participating teams. After each
allocated meeting, being three stand-up meetings per team, the stated items
were graded by each team participant and were handed over to the facilitators.
The time frame in which these measurements took place is from May 30th until
July 25th of the year 2016. The facilitators made sure that the forms were then
forwarded to the researcher.

At the end of the trial we asked the participants that took part in both the
active and the placebo group to answer a number of open questions to get a more
qualitative view on their perceptions. The questions were: How valuable did you
find this exercise? Would you continue this exercise without the trainers? What
are the challenges you had? What worked well?. For this qualitative view we
used a deductive and exploratory approach in order to understand whether the
personal perceptions of the participants would confirm or refute the quantitative
analysis.

Data Analysis: The data generated was analyzed by question and by prepa-
ration type, i.e. the baseline of each question of each preparation type was
aggregated and compared to the figures that were the result of the actual

110 P. den Heijer et al.

Table 3. Questions Q01–Q10

• Q01 - Everyone is involved in the decision-making process.

• Q02 - The team vision was well defined.

• Q03 - The meeting atmosphere was constructive, calm and open

• Q04 - The meeting was effective

• Q05 - All meeting participants listened well to each other

• Q06 - The meeting objectives were met

• Q07 - The level of disagreement during the meeting was acceptable

• Q08 - The tension during the meeting was tolerable

• Q09 - The interaction in the meeting was good

• Q10 - The emotional responses within the meeting were healthy

measurements that were taken after the experiments had been conducted. With
that aggregation level a t-test was executed on the difference between the base-
line and the experiment per preparation type, finding the difference in average
scores on all questions and the significance value (the p.value) of all these dif-
ferences indicating if the difference could be explained through the intervention
itself. The significance value we sought was a p-value< 0,05.

Besides the differences in average per question given the preparation type, we
also took an average on the aggregated sum of the questions per team and tried
to identify the maturity of the team. Furthermore the variance of all questions
per team was measured to ensure the homogeneity of the given answers per
team. To control for any unexpected influences T-values were measured.

4 Results

This section presents the results of the experiment. Table 2 depicts the partic-
ipating teams, the respective team size, the number of measurement points, as
well as the number of completed questionnaires. Every team consisted of approx-
imately eight members. Each team, with the exception of the control groups, had
four measurement moments. Those consisted of one baseline to measure the effec-
tiveness and culture of the team before any intervention was provided and three
guided measuring moments.

Table 4 summarizes the results for the ten questions (Q01–Q10) for the
three trial groups. As depicted in the table teams that submitted themselves to
the mindfulness exercise showed a slight but statistically significant (p< 0.05)
increase in some key elements of effectiveness and cultural aspects of the team.
Specifically our data indicates an improvement on the perception of (1) listen-
ing, (2) decision-making, (3) effectiveness of the meeting, (4) good interaction
and (5) healthiness of emotional responses. Neither the placebo nor the natural
history control groups showed statistically significant differences.

Mindfulness Practices in Agile Project Teams 111

Table 4. Difference to baseline measurement for questions Q01–Q10 (Total n= 152)

Question/Trial group Active (n = 75) Placebo (n = 37) Control (n= 40)

Q01 Decision-making 0.6659* 0.1666 0.1190

Q02 Team-vision well defined 0.2513 −0.4666 0.2857

Q03 Atmosphere constructive 0.3170 0.4 0.0238

Q04 Meeting effective 0.6139* 0.1333 0.2142

Q05 Listening 0.6299** 0.0666 0.4285

Q06 Objectives met 0.2905 0.2666 0.2857

Q07 Disagreement acceptable 0.3276 0.1000 −0.0238

Q08 Tension tolerable 0.3382 −0.0666 −0.1190

Q09 Interaction good 0.5673* 0.1333 0.0000

Q10 Emotional responses 0.4178* 0.2333 0.4333

* p< 0.05, ** p< 0.01

5 Discussion

The main query of this paper is whether a short mindfulness intervention has an
impact on the effectiveness and culture in stand-up meetings of agile development
teams. In the following subsections we will discuss (1) the perceptions of the
teams with respect to our research question, (2) the embedding of the exercise
in a broader organizational setting and barriers to its adoption, and (3) directions
for future research.

5.1 Three Minute Breathing Exercise in Agile Teams, Does It
Work?

The trial shows that even short mindfulness exercises, such as the here pre-
sented three minute exercise have a positive impact on the teams similarly to
those reported in other domains (compare Table 4). The data indicates a self-
reported improvement along five of the ten questionnaire items, particularly: (1)
participants listened well to each other, (2) Everyone is involved in the decision-
making process, (3) the meeting was effective, (4) the interaction in the meeting
was good, and (5) the emotional responses within the meeting were healthy.
The questions with the biggest difference to the baseline were Q01 Everyone
is involved in the decision-making process, and Q05 participants listened well to
each other. These perceptions were supported by the qualitative data (n = 14),
e.g.: “The 3min of silence helped me rest and relax. It helped gather my senses
back after a few hours of (usually) stressful work.” (Participant Team 4). We
did not observe any statistically significant negative effects in our data. In the
placebo group the question Q02 had a statistically not significant decrease com-
pared to the baseline measurement. Here we could raise the question if the
Stravinky song had a distracting effect on the team and its vision during the
meeting. Looking back at our research question we will now lead the discussion in

112 P. den Heijer et al.

two ways: (1) how the exercise can support building emotional intelligence and
leadership skills in the individual, and (2) how the exercise can help building
mindful teams.

Taking the perspective of the individual our findings indicate that the breath-
ing exercise could help agile team members and team leaders to build up their
emotional leadership skills. As pointed out by Porthouse and Dulewicz [38]
emotional leadership competencies (e.g., emotional resilience, sensitivity, self-
awareness, conscientiousness) are of greater importance for leaders in agile
projects compared to traditional projects. As the leadership skills and style of
individual managers have a big impact on the culture of an organization, emo-
tional leadership skills are important for the success of agile methods. A meta-
analysis conducted by Giluk [39] on the relationship between mindfulness and
the Big Five personality traits shows relationships with neuroticism, negative
affect, and conscientiousness, but also with agreeableness.

Taking the perspective of the team our findings indicate that the practice
could help building agile teams. Self-managing teams are considered to be one of
the corner stones of agility, yet they are difficult to establish [28]. The five dimen-
sions of agile teamwork, such as shared leadership, team orientation, redundancy,
learning and autonomy [28,40] require shared decision making and the ability to
listen to each other and understand each others opinions, as supported by the
breathing exercise. Further, similarly to what McAvoy et al. [30] call ‘Doing’
Agile vs. ‘Being’ Agile, our experiences with the trial indicate that the exer-
cise could help build up mindful behaviour, which helps the team understand
agility and agile practices in context rather than blindly following them. The
lack of focus can be an issue for agile and entrepreneurial teams [29]. Hafenbrack
et al. [23] researched the positive influence of mindfulness on decision making
and the sunk-cost bias, the tendency to continue investing in a project once
time, money or effort was invested, although that project might not be a viable
initiative after all. Stettina and Smit [29] researched agile teams working in entre-
preneurial settings. The results reveal that when trying to handle many project
requests due to customer pressure, mindfulness could help making better deci-
sions on what projects to follow.

5.2 Mindfulness in Our Case Organisations: Barriers to Adoption

Our quantitative results show that mindfulness enhances qualities of effective-
ness and team cooperation in the daily working culture of an agile team. The
qualitative open questionnaires distributed to the teams after the trial, how-
ever, draw another perspective on our findings. While several participants saw
the personal use of the exercise, none would continue it in a public setting. As
a participant from Team 2 commented: “For some members, the pause before
the standup was useful, because they could focus on their activities done in the
previous day. But for the rest of the team, the exercise was considered just not
suitable with their own way of working.” Several participants in Team 4, for
example, indicated that the fact that they conducted the exercises in an open
space, they felt looked at by other teams. Others indicated, they would continue

Mindfulness Practices in Agile Project Teams 113

with the breathing exercise on their own rather than in the team setting: “Yes,
I want to do those exercises more often. I have chosen to do this at home and
not at work.” (Participant Team 7). So, although the results show statistically
significant increases of effectiveness on several entries, the perceived usefulness
does not raise to the level that the participants want to keep on using it in a
public setting. The teams apparently encountered a barrier to introduction of
these practices.

This raises the more general question of what conditions could support the
adoption of these type of mental practices in agile teams. From the literature
(cf. [21]) we know a few: support of management for these practices, voluntary
participation and a safe team climate. Management support for these practices
seems obvious: if leaders do not support these practices it will not happen. In
that respect these mental practices do not differ from other agile team practices
that help teams perform better. As a line of research, this would be interesting
to look into.

Voluntary participation is a necessary corollary of these type of practices.
It enhances intrinsic motivation, which is an important mediator of success of
team practices (cf. [41,42]). Lastly, also a safe team climate is important. If, as
the qualitative data examples showed, people feel exposed, the practices will not
function very well. That is a general factor for well-functioning teams: psycho-
logical safety is a crucial characteristic of successful teams. If such a climate is
absent, social defense mechanisms will come into play and diminish team perfor-
mance. Safety has both an environmental side (what space is the team working
of meeting in, open or closed) and a communicative side: do people feel safe
to utter difficulties, ask questions, disagree, praise each other, etc. In general it
means that within the team culture or the organization, it is recognized that
emotions play a role and are not subdued. It is generally known from psycholog-
ical research into emotional agility that if this happens, they will play out in a
different but uncontrolled way with mostly negative effects on team climate and
effectiveness.

5.3 Mindfulness in Agile Project Teams: A Preliminary Research
Agenda

Having studied the results of a mindfulness intervention in agile teams and dis-
cussed its relation to existing literature, we now continue to discuss a potential
future research agenda. The following is a thematic list of questions, not aiming
to be exhaustive, but as possible entry points for an exploration of mindfulness
in agile teams:

Effects on leadership competencies and team development. From
Porthouse and Dulewicz [38] we know that emotional leadership competencies
are more important in agile project teams compared to traditional project teams.
Also shared leadership is an integral aspect of agile teams and can be difficult to
acquire [28]. How does mindfulness influence the development of leadership com-
petencies and emotional intelligence? What role do mindfulness practices play
in team development?

114 P. den Heijer et al.

Effects on decisions. From Hafenbrack et al. [23] we know that meditation
practices are reducing sunk-cost bias. What types of decisions do mindfulness
practices have an impact on?

Lengths of training and lengths of effect. In this trial we worked with
a brief mindfulness exercise at the beginning of a short agile meeting. We did
not, however, measure the impact of this short exercise on a longer type of
meeting. It could be that the enhancing effect wears off quickly and that for
longer meetings the exercise needs to be repeated several times in order to gain
its lasting effect. Also, in clinical research, experiments have been more intense
in nature. It would be interesting to see if a whole team that volunteers to submit
to a whole intensive program will see even better results. Do longer, more intense
mindfulness exercises have greater impact on agile teams? Do short mindfulness
exercises also have an impact on longer agile meetings? Do short mindfulness
practices become increasingly more effective over time?

Implementation. Although teams indicated that they benefited from the mind-
fulness exercise they also communicated that they did not want to continue the
exercise once the experiment ended. This is an interesting observation which
has a contradicting tension. It would be interesting to find out why we were
confronted with this tension. What is the best possible organizational culture in
which mindfulness will thrive? What is the correlation between the effectiveness
of a mindfulness exercise and the maturity of a team?If the teams are to sustain
such a practice on their own, how would they teach to new team members? And
if they have to teach the practice to new members, will it be as good as they have
learned is form a mindfulness teacher?

Interaction with other practices and routines. In this paper, we have
only focused on stand-up meetings during this experiment. Future research can
broaden the scope and could determine if there is a correlation between the trait
mindfulness and the effectiveness of other types of Agile meetings like retrospec-
tives, sprint planning, sprint review or refinements. It would be interesting to
find the effect of other types of mindfulness exercises on the effectiveness of team
meetings in Agile teams. What is the effect of other expressions of mindfulness
exercises on the effectiveness of meetings in agile project organisations? What is
the effect of a mindfulness exercise on other type of meetings in an Agile project
organisation?

Types of teams and domains of practice. Our research has focused on
software development teams, it would be interesting to expand our understanding
towards other domains of practice. We have seen that the trait mindfulness helps
make better decisions and is an enabler for the handling of stress. Some types
of teams might benefit even more from exercises in the mindfulness spectrum.
Teams that are dealing with higher stress levels than software teams or teams
that have an acute need for clear and effective decisions would potentially be
better candidates in this regards. Portfolio management teams, innovation teams
or board room teams would be suitable candidates to consider. What type of
teams benefits most from the trait mindfulness?

Mindfulness Practices in Agile Project Teams 115

Costs vs. Benefits. Understanding the costs of a potential implementation
is important for management. Hales et al. [43] discuss the costs of implement-
ing mindfulness in a health care context. What are the costs of implementing
mindfulness in project organizations compared to their benefits?

5.4 Threats to Validity

A controlled trial executed within eight teams in three organizations can be
more of a challenge to set up in the operational phase than when designed on
paper. To avoid potential sources of bias, we followed the recommendations of
Pannucci et al. [44] to prevent bias in clinical trials across stages of research in
the planning, data collection, analysis, and publication.

In the pre-trail phase study design and in recruitment selecting a favourable
population could impact study results. We addressed selection bias by masking
the study purpose. During trail execution, the facilitators educated mindful-
ness trainers, could have consciously or subconsciously influenced the responses
of the team members which could result in higher scores for the treatment
teams. We used standardized protocols for execution, data collection and care-
fully instructed the facilitators, reiterating that masking the study purpose is
important for its outcomes. Further, participants might be prone to please the
experiment leader and give him the answers he needs for his experiment to be
successful. Due to masking the purpose, the participants were not aware of the
actual study purpose. Another potential source of bias could be the concept of
the breathing exercise, which could polarize some of the participant. Potential
skepticism could influence the answers of the participants, provoking interest and
random answers. We have tried to notice this within the data set but did not find
statistically relevant outliers or noise in the data. In the post-trial phase, bias
can occur during data analysis and publication. To address external validity, we
compared our findings to existing evidence in the fields of clinical psychology [14]
and in professional organizations [21]. To further improve construct validity we
applied a mixed methods approach in collecting and data analysis using quali-
tative and quantitative sources.

6 Conclusions

The goal of this study was to explore the impact of a short mindfulness exercise
on the quality and effectiveness of meetings in agile project teams. A controlled
trial was designed to observe effects associated with mindfulness in the context
of eight Scrum teams in three organizations.

The participants perceived the practice as useful, and statistically significant
improvement was reported on some of the dimensions in the groups performing
the exercise (listening, decision-making, meeting effectiveness, interaction, emo-
tional responses). The teams in our case organizations will not continue with the
exercise in their particular setting. Nonetheless, the result is quite remarkable as
the trial shows an instant effect while other studies had a preparation phase of

116 P. den Heijer et al.

several weeks or more. Further research needs to be done in order to understand
the circumstances under which its effects are perceived more or less. If there is
more collaboration and more pressure in future business settings to keep our
organizations healthy, sustainable and effective, the use of mindfulness might
be more essential. To do so we provide concrete ideas for a research agenda to
explore the effects further.

The conclusion that we can draw is that mindfulness in the form of breathing
exercises indeed enhances the quality of meetings in an agile team. Research
indicates the increasing importance of emotional intelligence and empathy to be
for future workforce next to analytical skills. Practices such as the here discussed
exercise could help build up some of those skills in the future.

Acknowledgments. We thank all the participating organizations, teams and facili-
tators for generously contributing to this study.

References

1. Inge, J.: Safe data: Recognising the issue. Safety Syst. 21(1), 4–7 (2011)
2. Bodensteiner, W.D., Gerloff, E.A., Quick, J.C.: Uncertainty and stress in an r&d

project environment. R&D Manag. 19(4), 309–322 (1989)
3. Ashford, S.J.: Individual strategies for coping with stress during organizational

transitions. J. Appl. Behav. Sci. 24(1), 19–36 (1988)
4. Brown, K.W., Ryan, R.M.: The benefits of being present: mindfulness and its role

in psychological well-being. J. Pers. Soc. Psychol. 84(4), 822 (2003)
5. Shapiro, S.L., Schwartz, G.E., Bonner, G.: Effects of mindfulness-based stress

reduction on medical and premedical students. J. Behav. Med. 21(6), 581–599
(1998)

6. Kohls, N., Sauer, S., Walach, H.: Facets of mindfulness-results of an online study
investigating the freiburg mindfulness inventory. Pers. Individ. Differ. 46(2), 224–
230 (2009)

7. Kabat-Zinn, J.: An outpatient program in behavioral medicine for chronic pain
patients based on the practice of mindfulness meditation: Theoretical considera-
tions and preliminary results. Gen. Hosp. Psychiatry 4(1), 33–47 (1982)

8. Kabat-Zinn, J.: Full catastrophe living: using the wisdom of your body and mind
to face stress, pain, and illness. Dell Pub. A division of Bantam Doubleday Dell
Pub. Group, New York (1991)

9. Hyland, T.: Mindfulness and the therapeutic function of education. J. Philos. Educ.
43(1), 119–131 (2009)

10. Rogers, S.L.: Mindfulness for Law Students: Using the Power of Mindful Awareness
to Achieve Balance and Success in Law School. Mindful Living Press, Miami Beach
(2009)

11. Vengapally, M.: Preparing to Leave Prison: A Mindfulness-based Intervention to
Reduce Recidivism (2014)

12. Bernárdez, B., Durán, A., Parejo, J.A., et al.: A controlled experiment to eval-
uate the effects of mindfulness in software engineering. In: Proceedings of the
8th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement, p. 17. ACM (2014)

Mindfulness Practices in Agile Project Teams 117

13. Reb, J., Atkins, P.W.: Mindfulness in Organizations: Foundations, Research, and
Applications. Cambridge University Press, Cambridge (2015)

14. Keng, S.L., Smoski, M.J., Robins, C.J.: Effects of mindfulness on psychological
health: a review of empirical studies. Clin. Psychol. Rev. 31(6), 1041–1056 (2011)

15. Ward, D.: Overcoming Low Self-Esteem with Mindfulness. SPCK Publishing,
London (2015)

16. Shapiro, S.L.: The integration of mindfulness and psychology. J. Clin. Psychol.
65(6), 555–560 (2009)

17. Moffitt, P.: Emotional Chaos to Clarity: Move from the Chaos of the Reactive
Mind to the Clarity of the Responsive Mind. Penguin Publishing Group (2012)

18. Kingsbury, E.: The Relationship Between Empathy and Mindfulness: Understand-
ing the Role of Self-compassion. Alliant International University, San Diego (2009)

19. Segal, Z.V., Williams, J.M.G., Teasdale, J.D.: Mindfulness-Based Cognitive Ther-
apy for Depression. Guilford Press, New York (2012)

20. Stahl, B., Goldstein, E.: A Mindfulness-Based Stress Reduction Workbook. New
Harbinger Publications, Oakland (2010)

21. Good, D.J., Lyddy, C.J., Glomb, T.M., Bono, J.E., Brown, K.W., Duffy, M.K.,
Baer, R.A., Brewer, J.A., Lazar, S.W.: Contemplating mindfulness at work an
integrative review. J. Manag. 42(1), 114–142 (2015). 0149206315617003

22. Reb, J., Narayanan, J., Chaturvedi, S.: Leading mindfully: two studies on the
influence of supervisor trait mindfulness on employee well-being and performance.
Mindfulness 5(1), 36–45 (2014)

23. Hafenbrack, A.C., Kinias, Z., Barsade, S.G.: Debiasing the mind through medita-
tion mindfulness and the sunk-cost bias. Psychol. Sci. 25(2), 369–376 (2014)

24. Arch, J.J., Craske, M.G.: Mechanisms of mindfulness: emotion regulation following
a focused breathing induction. Behav. Res. Ther. 44(12), 1849–1858 (2006)

25. Loewenstein, G., Lerner, J.S.: The role of affect in decision making (2003)
26. Laanti, M.: Agile and wellbeing-stress, empowerment, and performance in scrum

and kanban teams. In: 2013 46th Hawaii International Conference on System Sci-
ences (HICSS), pp. 4761–4770. IEEE (2013)

27. Moe, N.B., Dingsøyr, T., Dyb̊a, T.: A teamwork model for understanding an agile
team: a case study of a scrum project. Inf. Softw. Technol. 52(5), 480–491 (2010)

28. Stettina, C.J., Heijstek, W.: Five agile factors: helping self-management to self-
reflect. In: O’Connor, R.V., Pries-Heje, J., Messnarz, R. (eds.) EuroSPI 2011. CCIS,
vol. 172, pp. 84–96. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22206-1 8

29. Stettina, C.J., Smit, M.N.W.: Team portfolio scrum: an action research on
multitasking in multi-project scrum teams. In: Sharp, H., Hall, T. (eds.)
XP 2016. LNBIP, vol. 251, pp. 79–91. Springer, Cham (2016). doi:10.1007/
978-3-319-33515-5 7

30. McAvoy, J., Nagle, T., Sammon, D.: Using mindfulness to examine ISD agility. Inf.
Syst. J. 23(2), 155–172 (2013)

31. Nagle, T., McAvoy, J., Sammon, D.: Utilising mindfulness to analyse agile global
software development. In: ECIS (2011)

32. Stray, V.G., Moe, N.B., Aurum, A.: Investigating daily team meetings in agile
software projects. In: 2012 38th Euromicro Conference on Software Engineering
and Advanced Applications, pp. 274–281. IEEE (2012)

33. Jordan, S., Messner, M., Becker, A.: Reflection and mindfulness in organizations:
rationales and possibilities for integration. Manag. Learn. 40(4), 465–473 (2009)

34. Koole, W.: Mindful Leadership: Effective Tools to Help you Focus and Succeed.
Warden Press, Amsterdam (2014)

http://dx.doi.org/10.1007/978-3-642-22206-1_8
http://dx.doi.org/10.1007/978-3-319-33515-5_7
http://dx.doi.org/10.1007/978-3-319-33515-5_7

118 P. den Heijer et al.

35. Pocock, S.J.: Clinical Trials: A Practical Approach. Wiley, Hoboken (2013)
36. Leff, J.: Clinical and methodological problems in interaction studies. In: Epidemi-

ological Impact of Psychotropic Drugs. Elsevier, Amsterdam (1981)
37. Miles, M., Huberman, A.: Qualitative Data Analysis: An Expanded Sourcebook,

2nd edn. Sage, Thousand Oaks (1994)
38. Porthouse, M., Dulewicz, V.: Agile Project Managers’ Leadership Competencies.

Henley Management College (2007)
39. Giluk, T.L.: Mindfulness, big five personality, and affect: a meta-analysis. Person.

Individ. Differ. 47(8), 805–811 (2009)
40. Salas, E., Sims, D.E., Burke, C.S.: Is there a big “five” in teamwork? Small Group

Res. 36(5), 555–599 (2005)
41. Bain, A.: Social defenses against organizational learning. Hum. Relat. 51(3), 413–

429 (1998)
42. Goto-Jones, C.: Zombie apocalypse as mindfulness manifesto (after žižek). Post-

modern Cult. 24(1) (2013)
43. Hales, D.N., Kroes, J., Chen, Y., Kang, K.W.D.: The cost of mindfulness: A case

study. J. Bus. Res. 65(4), 570–578 (2012)
44. Pannucci, C.J., Wilkins, E.G.: Identifying and avoiding bias in research. Plast.

Reconstr. Surg. 126(2), 619 (2010)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Enhancing Agile Team Collaboration Through
the Use of Large Digital Multi-touch Cardwalls

Martin Kropp1(B), Craig Anslow2, Magdalena Mateescu1, Roger Burkhard1,
Dario Vischi1, and Carmen Zahn1

1 University of Applied Sciences Northwestern Switzerland, Windisch, Switzerland
{martin.kropp,magdalena.mateescu}@fhnw.ch
2 School of Engineering and Computer Science,

Victoria University of Wellington, Wellington, New Zealand
craig@ecs.vuw.ac.nz

Abstract. Agile software development has become mainstream, and
with it many tools have been developed to support Agile software devel-
opment. Nonetheless, studies show, that most Agile software teams still
also use physical cardboards for their daily work. This is error prone and
causes a lot of extra effort to keep both in sync. In our research project
we conducted an interview study about the reasons for this media break.
Based on the findings we developed visualization and interaction con-
cepts for an Agile cardwall using an extra-large multi-touch wall display
which provides Agile teams the lightweight collaboration workspace for
their Agile meetings. We implemented the concepts in the software pro-
totype aWall, and evaluated the usability of aWall in a user study. The
evaluation indicates that aWall enables and encourages team work due to
the large size of the wall, the easy accessibility and visibility of the needed
information, and the integration with existing issue tracking tools. This
suggests that augmenting digital cardwalls with large interactive touch
technology and integration with task tracking systems is a useful way to
support effective collaborative Agile software development processes.

Keywords: Agile software development · Cardwalls · Large wall dis-
plays · Multi-touch · Tool · Software processes · Collaboration

1 Introduction

In Agile software development, physical cardwalls continue to be an essential
part of the Agile processes despite the relative large number of available digital
tools. Although many commercial and open source digital Agile tools like JIRA
[3], CA Agile Central (formerly Rally) [16] and VersionOne [12] are available
and have been adopted by a large number of Agile companies, studies show that
physical cardwalls are still widely used [4,7]. Azizyan et al. conducted interviews
with software practitioners and found that 31% of companies used both project
management tools and physical cardwalls, where the usage of cardwalls was not
restricted to co-located teams [4]. Despite their prevalence, physical cardwalls
c© The Author(s) 2017
H. Baumeister et al. (Eds.): XP 2017, LNBIP 283, pp. 119–134, 2017.
DOI: 10.1007/978-3-319-57633-6 8

120 M. Kropp et al.

still have issues as content is not digitalized and not integrated with issue track-
ing systems. To address the issue with physical cardwalls, we aim to bridge the
gap by creating a large digital cardwall that supports elements of the physi-
cal nature, integration with existing tracking systems, while also preserving the
Agile collaborative work style.

In this paper we present aWall, a large digital cardwall, providing a collab-
orative workspace for Agile teams. While the main focus of aWall is for use by
co-located teams, aWall is designed to be used also by distributed teams which
is one of the main driver for digital Agile tools (see Fig. 1). aWall has the size of
classical physical cardwalls by using large multi-touch high resolution displays
and so provides enough space for the whole team to interactively collaborate.
We first give an overview of related work, followed by an evaluation of an inter-
view study about the usage of Agile tools in software teams. We then present the
design consideration for a large scale Agile cardwall and the user interface design
of aWall. The following section presents the evaluation of aWall in a user study
which we conducted with software practitioners to evaluate the usability and
effectiveness of the chosen approach. The paper concludes with a final summary
and outlook for future work.

Fig. 1. aWall – digital Agile cardwall displayed on a large high resolution multi-touch
wall (2× 2 46 Inch 4K displays) for planning and Agile team meetings.

2 Related Work

Sharp et al. [15] reports that physical artifacts like pin boards, sticky cards, flip
charts or whiteboards are used as a means of communication and collaboration
by Agile teams. However they also report that there are some disadvantages

Enhancing Agile Team Collaboration 121

of physical artifacts such as cards may get lost and they cannot be searched
or shared easily. Any attempt to overcome these disadvantages by digitalizing
cards and cardwalls should retain the advantages of the physical form while also
benefiting from translation to the digital medium [15].

Gossage et al. [7] report in their study that the physical nature of artifacts is
important to the collaborative process. For example being able to manipulate the
cards easily (writing and posting) and their permanent availability on the card-
wall helps support effective communication at least in co-located teams. Physical
cardwalls are valued for their flexibility, light-weight and easy usage, providing
a big picture, and permanent and instant availability of information. Physical
cardwalls are not well suited for distributed environments and displaying large
amounts of information is difficult. On the other side, they report that digital
tools were not necessarily easy to use, hard to personalize, or to adapt to the
teams’ needs. They come up with suggestions on the design of digital cardwalls
and with critical features: always provide an overview, offer easy zoom-and-pan,
to hide details, assign annotations to any object on the board, automatic syn-
chronization, for example.

Paredes et al. conducted a survey of existing literature on information visu-
alization techniques used by Agile software development teams and found that
information radiators and cardwalls are most frequently used for Agile teams in
communication and progress tracking [13].

Azizyan et al. [4] report that digital Agile tools like JIRA and VersionOne
account for less than 10% of tools used to support Agile processes, while physical
walls, paper, and spreadsheets account for almost 50%. They also report that it
is important to find the right balance between enough features and usability is
critical.

A number of research digital tools have been developed for use on large
interactive surfaces (e.g. horizontal and vertical). DAP [10] and subsequently
AgilePlanner [18] were early prototypes developed to support Agile planning on
horizontal tabletops for co-located teams. SmellTagger supports collaborative
code reviews for co-located teams using multi-touch tabletops [11].

CodeSpace [5] does not focus on any particular Agile process but uses shared
touch screens, mobile touch devices, and Kinect sensors to share information dur-
ing developer meetings. They report that professional developers were positive
with this approach and felt that pointing with hands or devices and forming hand
postures are socially acceptable. Anslow et al. [2] evaluated large display walls for
collaborative software visualization. SourceVis used large multi-touch tabletops
to support code reviews using collaborative visualization techniques [1]. They
show in their paper that large displays have the potential to provide a good
overview about complex situations and thus can help to get a better under-
standing of it. Rubart developed a basic prototype for multi-touch tabletops to
support Scrum meetings [14] and evaluated the prototype in a study with stu-
dent groups. They report positive feedbacks with respect to team collaboration,
but also difficulties with editing data. Though support of distributed teams is
currently not in the focus of our work, dBoard [6] is a very interesting approach

122 M. Kropp et al.

in which a Scrum board on a vertical touch screen has been enabled with in-
screen video capabilities for distributed development. This might be a possible
approach for aWall to support distributed teams.

Based on our review we conclude that most digital Agile tools only partially
support collaborative Agile processes and meetings. Digital Agile tools espe-
cially seems to lack support for social interaction and team cognitive activities
compared with physical tools. Neither existing physical nor digital cardwall tools
seem to sufficiently support the collaborative Agile process for Agile teams effec-
tively. With aWall we present an approach to overcome these limitations. aWall
tries to combine the advantages of physical and digital cardwalls, by making
use of the large screen size and the touch functionality, and serve as an Agile
collaborative workspace and information radiator for Agile teams.

3 Pre-study Tool Usage

3.1 Study Method

As a first step in our project we conducted a qualitative interview study among
eleven IT companies that have adopted agile methods in their software develop-
ment. The interviews focused on collaborative processes in agile teams and the
tools they use for communication.

We conducted ten semi-structured group interviews and three individual
interviews with eleven IT companies. The interviews were conducted with a
total of 44 participants (7 female, mean age of all participants was 38.5 years).
The participants mostly worked in multiple Agile teams and had different roles
in those teams (e.g. Scrum Master, Product Owner, Team Member). The partic-
ipants had at least one year experience with Agile software development, most
between 2–5 years. Each group interview took about two hours and the individ-
ual interviews one hour. All interviews were conducted in German. The focus
of the interviews was on the employment of agile methods and practices, team
and collaborative processes, meetings and tools used. All interviews were audio
recorded and transcribed. The transcribed interviews were segmented into small
units of analysis and coded using MAXQDA [17]. A category system for the
analysis was developed and continuously refined [9].

3.2 Findings

We found that 10 out of 11 teams still use physical cardwalls typically in com-
bination with digital tools, like Jira/Confluence, TFS, Trello. Only one team
was working exclusively with digital tools. When using physical cardwalls we
found that it is a common practice to put a lot of extra information around the
task board as shown in Fig. 2. The extra information includes for example, the
Definition-of-Done, team members’ periods of absence, burn-down charts, but
also private pictures, post cards from holidays or other greeting cards from team
members.

Enhancing Agile Team Collaboration 123

Fig. 2. A physical task board with extra information

When asking for the advantages of physical cardwalls compared to digital
Agile boards the most often named reasons were ease of use, always-on visi-
bility, flexibility, good overview, and the focused view on the information. On
the disadvantage side the interviewees mainly named that the board is only
locally available, the missing traceability and documentation, and the missing
integration into digital tools. Table 1 lists the most often named advantages and
disadvantages of digital tools by the participants.

The following statements restates opinions from some participants about
various aspects about digital tools1:

“Yes, it is all well integrated. If I have it electronically, I have it in the
database. I have to capture it only once. That’s what I like about the
digital tools (I8, 305)2.”

“The digital board looks quite nice, is always well ordered (I11, 364).”

“You have so many options in JIRA, so many input fields. And if you
are looking for information, you always have to do a lot of navigation.(I1,
235).”

“It takes so long to start up the tool. And after five seconds passed, I have
to fill out this template. And then I just want to add a picture. I have to
take a photo and somehow add it to the system. That’s very cumbersome.
(I10, 396).”

1 All statements have been translated from German.
2 The numbers refer to the interview and the line number of the transcription.

124 M. Kropp et al.

Table 1. Pros and Cons of digital agile tools compared to physical tools

Pros Cons

Changes are stored automatically Feeling of having no control

A lot of extra features Too many features

Traceability Missing visibility for others

Transparency in who did what High effort for usage/administration

Provide some overview Missing good overview

Adaptability of tools High effort for customization

Access from everywhere Not always on (have to start up)

Teams can meet in virtual rooms Must be customized before usage

- Have to navigate to information

- Performance not always good

- Displays are too small

We also asked the participants about the requirements for an ideal digi-
tal Agile cardwall. The interviewees stressed the importance of non-functional
requirements. These included the need for a large size display, configurable views,
instant availability of information, overview of information, at all time visible
information, easy to reach context dependent information, increased readabil-
ity of information, simultaneous multi-user touch interaction, direct interaction
with data, and no need for navigation.

3.3 Summary

In summary the study results seem to show that available digital tools do not
sufficiently well support the required flexible collaborative Agile workstyle. Users
value the traceability of information in digital tools, linking possibilities of arti-
facts, and the flexibility to adapt the tools to the users’ needs. The main disad-
vantages of digital cardwall tools seem to be that they are often too complicated
to use, the need to navigate to extra information not shown on the main board,
no direct and concurrent interaction by all team members, and small displays,
missing overview, missing instant availability.

4 aWall - Digital Agile Collaboration Wall

Based on our study we developed aWall to support Agile teams (co-located or
distributed) more effectively than existing physical and digital tools. aWall is
designed for various Agile team meetings (e.g. daily stand up, sprint planning,
and retrospectives) by providing information dashboards, maintaining user sto-
ries and tasks, enables customization of Agile processes, and integrates with issue
tracking systems. aWall was developed by an interdisciplinary project team of

Enhancing Agile Team Collaboration 125

computer scientists and psychologists (from the School of Engineering, and the
School of Applied Psychology). We now outline the design and user interface of
aWall, followed by a user study to evaluate the prototype.

4.1 Design

Based on the requirements elicited during the interviews, we identified a number
of design considerations.

Physical Size. A digital cardwall needs to satisfy not only the needs for interact-
ing with the digital content, but also provide enough physical space to display
information to effectively support team collaboration. Therefore, the size of a
digital cardwall needs to be at least comparable to that of physical cardwalls.
aWall consists of four 46 in. displays (2× 2), for a wall size of 2.05 m width and
1.25 m height (see Fig. 1).

High Resolution. Each display in aWall is 3840× 2160 pixels, for a total reso-
lution of 15360× 8640 pixels. The high resolution display wall provides enough
real estate to display large amounts of information at once while still ensuring
the readability of text elements, widgets, and views.

Multi-user and Multi-Touch. The display wall consists of a 12 point multi-touch
infrared optical overlay (PQ Labs frame3) which is attached to the display wall.
The multi-touch capabilities allows multiple users to work simultaneously with
artifacts and provides an accurate and effective touch experience.

Integration with Issue Tracking Systems. aWall is designed to run on top of exist-
ing third party issue tracking systems such as JIRA. Therefore, infrastructure
functionality can be reused and already defined Agile processes utilized.

Availability of Information. aWall can replace physical cardwalls and act as the
team’s external memory of the project. For that, aWall should be installed in a
team’s open office area, always being switched on, and have a permanent view
of the task board.

Web Technologies. In order to have a ubiquitous and easily deployable design,
aWall was developed as a web application based on HTML5 and JavaScript
technology. For multi-touch support we used the interact.js framework4.

4.2 User Interface

The aWall user interface contains a number of different views, widgets, and
interaction techniques designed to support different types of Agile meetings.

Action and Information View. The results of the interviews showed that most
interaction with the cardwall takes place during Agile meetings. Each meeting

3 http://multitouch.com/.
4 http://interactjs.io/.

http://multitouch.com/
http://interactjs.io/

126 M. Kropp et al.

has specific goals, operates on different data, and requires different supporting
tools and information. To support these different types of information handling,
we divide the display into an action view and an information view. Figure 3
shows the view for a daily standup meeting highlighting the separation into
information view and action view. The action view is the main work area, which
is dedicated to the core artifacts of a specific meeting. The main interactions dur-
ing a meeting are performed by users on the action view. The information view
provides supporting information and tools needed for the meeting. The infor-
mation view represents the dynamic memory of the team and as any dynamic
system they need to allow for change. For example, the information view for
the daily standup meeting contains additional information, like a timer widget
showing the meeting moderator and a countdown, a team widget showing the
team members, a definition-of-done widget, an impediment list widget, and a
burn-down chart for an iteration. When necessary, new widgets can be added
and removed from the information view.

Dedicated Views. aWall provides dedicated views that are tailored to the specific
needs of Agile meetings. For the sprint planning meeting shown in Fig. 4, the
action view is divided into three columns. The left column shows the top priority
user stories of the product backlog. The centre column shows the so far selected
user stories for the next iteration. The right column shows a detailed view of
the currently selected user story. This column can be used by the product owner
to discuss and clarify open issues during the meeting with the development
team. Relevant documents can be easily attached and opened in the application.
Figure 5 shows the retrospective meeting view after team members have sent
their iteration feedback where the notes have been ordered on the right side.
Users can navigate between the different meeting views by means of a navigation
bar displayed at the bottom of the view.

Information Widgets. The information view consists of a set of widgets (e.g.
team widget, timer widget, fun widget, avatar widget – see Figs. 3, 4, 5) and can
be independently configured for each Agile meeting. Each widget is designed
to support distinct aspects of the collaborative Agile process. The team widget
shows the team members and can be used to assign people to tasks during a daily
standup meeting. The timer widget supports time boxing during the meeting
and furthermore, allows to choose a meeting moderator. The moderators’ names
are stored in the application and future moderators can be suggested based on
previous selections. The fun widget allows users to post personal or fun images
to the information view to help bring emotion to the cardwall and foster team
thinking. The avatar widget can be used to drag avatars to any position on
the wall or attach it to tasks or user stories. Both the fun and avatar widgets
are designed to help with the interpersonal process in Agile teams (emotion
management, team spirit). All widgets can be detached from the information
view and moved around the cardwall to facilitate user interaction.

Availability of Information. Any information needed for a meeting is visible and
accessible; either on the action view or on the information view. If the team

Enhancing Agile Team Collaboration 127

F
ig
.
3
.

D
a
il
y

S
ta

n
d
u
p

w
it

h
th

e
fo

ll
ow

in
g

v
ie

w
s:

In
fo

rm
a
ti

o
n

V
ie

w
(t

o
p

se
ct

io
n

w
it

h
re

d
b
o
rd

er
)

a
n
d

A
ct

io
n

V
ie

w
(m

id
d
le

se
ct

io
n

w
it

h
b
lu

e
b
o
rd

er
).

(C
o
lo

r
fi
g
u
re

o
n
li
n
e)

128 M. Kropp et al.

Fig. 4. Sprint planning meeting with a user story detail view.

Fig. 5. Retrospective meeting view.

needs different supporting information, additional widgets can be switched on
or off in the configuration button on the right side of the information view.

Interaction. aWall supports multi-touch and multi-user interaction. Fluid inter-
action with widgets and cards is enabled by gestures like tap, double tap, drag-
and-drop, and pinch-to-zoom supporting changing task and user story cards
position, moving widgets around the cardwall, and changing the size of a widget.

Enhancing Agile Team Collaboration 129

Data can be either entered on the cardwall with a virtual or physical keyboard
or via the underlying issue tracker system and mobile devices such as tablets.

Scalability of Information. By default, user story cards and task cards show only
a few details (e.g. title). By increasing the card size with a pinch-to-zoom gesture
more information is displayed. The text size increases concomitantly with the
widening of the cards so that information can be more easily read depending
on the distance from the cardwall. When all information is shown the widget
automatically switches into edit mode, so that data can be added or modified.

5 User Study

To evaluate the usability of the aWall prototype we conducted a qualitative user
study with professional Agile practitioners. The goals were:

1. evaluate the availability of context specific information
2. evaluate reachability and discoverability of functionality and information
3. evaluate the support of Agile workstyle and Agile culture,
4. evaluate the applicability to real life situations in Agile teams.

The user study was conducted with an early prototype of aWall. The partic-
ipants worked in teams and had to complete various tasks.

5.1 Participants

We recruited 11 employees (nine men and two women – see Table 2) from the
same companies that participated in our interview study [8]. Most participants
had many years of experience in IT, and several of them in Agile development.
They came from different fields and covered a wide spectrum of Agile team
roles. Among the participants were four Scrum Masters, two Agile coaches, two
senior developers, one Agile grandmaster, one UX consultant and one head of a
software development department. Two of the companies were from the assur-
ance domain, one manufacturing, two service providers, one engineering, and one
enterprise software development company. Four companies sent two employees,
and three companies sent one employee each. All companies had been applying
Agile processes for at least one year, and all employees to executed the given
tasks in their companies before.

5.2 Procedure

We divided the eleven participants randomly into two groups by five and six peo-
ple. Both groups completed the same tasks with aWall in two separate workshop
sessions. Each workshop session lasted one hour.

Upon signing an informed consent statement, the participants were asked to
act as a team during the workshop. Prior to the user study, the participants
received a presentation on the interview study results, but did not receive any

130 M. Kropp et al.

Table 2. Demographics of workshop participants: gender, IT experience, Agile expe-
rience, job title, company (anonymized), and workshop group.

Gender IT Exp. Agile Exp. Job title Company Group

Male 23 3 Head SW dev D 1

Male 5 1.5 Senior dev E 1

Male 13 2 Grandmaster C 1

Male 10 3 Agile coach F 1

Male 19 4 Senior dev G 1

Male 10 3 UX consultant B 1

Female 8 3 Agile coach C 2

Female 15 5 Scrum master A 2

Male 15 3 Scrum master A 2

Male 1 1 Scrum master E 2

Male 6 2 Scrum master F 2

information about the aWall application. Each member of the team received
three tasks to be solved together in groups using aWall. The tasks involved a
daily standup meeting and a sprint planning meeting. After receiving the task,
each participant read the task out aloud to the other participants and completed
it with their help.

The daily standup tasks included to start the daily standup meeting (task 1),
choose a moderator for the meeting (task 2), and update the task board during
the meeting (task3), assign team members to a task card (task 4). For example:
“In this team you play the role of team member M. Please find a way to carry
out a daily standup. The application suggests a moderator. Please ask the team
member suggested by the application to play the moderator. Please act as a team
accordingly to the received instructions.”. The sprint planning tasks included to
show and discuss a user story during the meeting (task 1) and move the story
to the sprint backlog (task 2). Other tasks were to switch on and off different
widgets in the information view.

After completing the tasks for each type of meeting we asked the participants
about the benefits and difficulties of aWall in an open discussion. The discus-
sions were recorded and the results written down. Both team workshops were
conducted by two moderators.

5.3 Findings

The overall feedback for the prototype was very positive, with the participants
considering aWall to be usable, capable to support Agile processes in general
and especially the collaborative working style in teams.

Size Aspects. The participants especially valued the large size and high resolution
of aWall. The large size supports real team collaboration capabilities, similar to

Enhancing Agile Team Collaboration 131

physical cardwalls. Displaying a large amount of information at once was deemed
positive. As one participant stated5:

“With the large size you can display many user stories and tasks.”

Readability of Information. Most participants considered the displayed infor-
mation to be legible, especially since the card titles are relatively large. Some
participants considered the actual cards to be too small. Therefore, it is very
important to be able to display the whole content of a card and enlarge the font
size so that the whole team can read it from a distance. One participant stated:

“That’s really a nice feature, that cards can be enlarged and font size
increases to improve readability.”

Availability of Information. The participants especially valued the availability of
additional information and functionality for the different meetings. The separa-
tion of the display into action view and information view was easily understood.
Some participants mentioned that elements placed on the upper side of the dis-
play wall might be out of reach for smaller people. Another participant liked the
extra features:

“I like the extra features around the main view and the additional infor-
mation.”

Discoverability of Functionality. The participants discovered most functional-
ity of aWall by themselves and could easily interact with the display wall.
There were some issues with discoverability of those functions that were not
a straight-forward transfer of the pin-boards into the digital world. For exam-
ple, the timer widget has no corresponding artifact in the practice of Agile
teams. Whereas, direct implementations of the pin-boards functionality (e.g.
the task-board shown in the daily standup meeting) were instantly understood
and deemed as valuable by the participants. That was also the case for the wid-
gets inspired from Agile practices such as the team widget which is based on the
observation that Agile teams sometimes write the team members’ names on the
cards or even hang their pictures on the pin-boards.

Third-Party System Integration. The integration with third-party tools was pos-
itively rated. Tasks modified during the daily standup meeting, are immediately
synchronized in the Agile project management tool (JIRA). There is no extra
effort to update the tasks manually from the physical cardwall after the meeting.
One participant stated:

“The link to JIRA with automatic update of data is important.”

Flexibility and Customization. Increased flexibility with respect to both the man-
ner of conducting the meetings and displaying information was considered impor-
tant by the participants. For example, the timer widget solicited choosing a mod-
erator at the beginning of a meeting. The flexibility provided by aWall was also
5 All quotes have been translated from German.

132 M. Kropp et al.

positively rated, especially with respect to conducting retrospective meetings
that sometimes might prove strenuous. The participants considered that it is
important to create a proper environment especially for this type of meeting as
sometimes they tend to transmute into a drill. Most participants were in favour
of a greater flexibility of the time boxing, with only optionally choosing a mod-
erator and not showing the elapsed time, but the time of day during the daily
meeting. The participants valued the team widget, but requested to have more
information being displayed (e.g. absences, vacation days) and allow for more
customization. Furthermore, the participants remarked that they should be able
to add functionality to aWall on their own and not be dependent on standard
functionality as often is the case with other Agile tools.

Agile Collaborative Workspace. Offering tags and avatars as well as the fun view
was positively seen as bringing emotions onto the board. One participant men-
tioned the positive effect of avoiding media disruption, by being able to do all
interaction with only one medium:

“With such a board we could probably avoid media discontinuity.”

Filtering and Representation of Information. The participants requested espe-
cially to have filter functions, to highlight and show the desired information.
As an example, participants requested to highlight all tasks of a team member,
when touching that person in the team view. The usage of colors for different
types of user stories was suggested to increase readability (e.g. to distinguish
between technical tasks, bug reports, or user requirements).

Task Time Recording. Some participants suggested automatically capturing the
time spent on a task combined with computing of the work hours on the task
would help provide further metric details of performance.

Provenance of Information. Some participants suggested to have automatic
recordings of meetings with voice recognition and transcriptions of the discus-
sions form the interactions in front of the display wall for later recollection and
analysis of the meetings.

6 Conclusions

Current Agile cardwalls don’t fulfil today’s requirements for effective software
development. We aim to bridge that gap with aWall, a digital cardwall tool
to support co-located and distributed Agile teams. aWall provides a collabora-
tive workspace using large multi-touch displays, information transparency, direct
information interaction without the need for navigation, support for the whole
Agile process, and dedicated views for different types meetings. We conducted a
user study with 11 Agile practitioners and found that they especially valued the
large-size of the wall due to the physical space affordances, the dedicated views
with context specific information, and the always visible and direct information
access. Our future work involves deploying aWall within companies.

Enhancing Agile Team Collaboration 133

Acknowledgments. Many thanks goes to the University of Applied Sciences North-
western Switzerland for funding this project as part of their strategic initiative to
fostering interdisciplinary work, and to the companies and people for participating in
this project. Thanks to Robert Biddle for feedback on early drafts of this paper.

References

1. Anslow, C., Marshall, S., Noble, J., Biddle, R.: Sourcevis: collaborative software
visualization for co-located environments. In VISSOFT, pp. 1–10. IEEE (2013)

2. Anslow, C., Marshall, S., Noble, J., Tempero, E., Biddle, R.: User evaluation of
polymetric views using a large visualization wall. In: SoftVis, pp. 25–34. ACM
(2010)

3. Atlassian: JIRA (2015). https://www.atlassian.com/software/jira
4. Azizyan, G., Magarian, M.K., Kajko-Matsson, M.: Survey of agile tool usage and

needs. In AGILE, pp. 29–30. IEEE (2011)
5. Bragdon, A., DeLine, R., Hinckley, K., Morris, M.: Code space: touch + air gesture

hybrid interactions for supporting developer meetings. In: ITS, pp. 212–221. ACM
(2011)

6. Esbensen, M., Tell, P., Cholewa, J.B., Pedersen, M.K., Bardram, J.: The dBoard:
a digital scrum board for distributed software development. In ITS, pages 161–170.
ACM, 2015

7. Gossage, S., Brown, J., Biddle, R.: Understanding digital cardwall usage. In
AGILE, pp. 21–30. IEEE (2015)

8. Mateescu, M., Kropp, M., Greiwe, S., Burkhard, R., Vischi, D., Zahn, C.: Erfol-
greiche zusammenarbeit in agilen teams: Eine schweizer interview-studie ber kom-
munikation, 22 December 2015. http://www.swissagilestudy.ch/studies

9. Mayring, P.: Einfhrung in die qualitative Sozialforschung. Beltz-UTB, Weinheim
(2003)

10. Morgan, R., Walny, J., Kolenda, H., Ginez, E., Maurer, F.: Using horizontal
displays for distributed and collocated agile planning. In: Concas, G., Damiani,
E., Scotto, M., Succi, G. (eds.) XP 2007. LNCS, vol. 4536, pp. 38–45. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-73101-6 6

11. Muller, M., Wursch, M., Fritz, T., Gall, H.: An approach for collaborative code
reviews using multi-touch technology. In: CHASE Workshop. ACM (2012)

12. Version One. Enterprise agile platform. (2015). http://www.versionone.com.
Accessed 6 Jan 2017

13. Paredes, J., Anslow, C., Maurer, F.: Information visualization for agile software
development teams. In: VISSOFT, pp. 157–166. IEEE (2014)

14. Rubart, J.: A cooperative multitouch scrum task board for synchronous face-to-face
collaboration. In: ITS, pp. 387–392. ACM (2014)

15. Sharp, H., Robinson, H., Petre, M.: The role of physical artefacts in agile soft-
ware development: two complementary perspectives. Interact. Comput. 21(1–2),
108–116 (2009)

16. CA Technologies. CA agile central (2016). https://www.ca.com/. Accessed 6 Jan
2017

17. Research GmbH VERBI Software, Consult. Maxqda data analysis software (2015).
http://www.maxqda.com. Accessed 6 Jan 2017

18. Wang, X., Maurer, F.: Tabletop agileplanner: a tabletop-based project planning
tool for agile software development teams. In: TABLETOP, pp. 121–128. IEEE
(2008)

https://www.atlassian.com/software/jira
http://www.swissagilestudy.ch/studies
http://dx.doi.org/10.1007/978-3-540-73101-6_6
http://www.versionone.com
https://www.ca.com/
http://www.maxqda.com

134 M. Kropp et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Knowledge Sharing in a Large Agile
Organisation: A Survey Study

Kati Kuusinen1(B), Peggy Gregory1, Helen Sharp2, Leonor Barroca2,
Katie Taylor1, and Laurence Wood3

1 University of Central Lancashire, Preston, UK
{KKuusinen,AJGregory,KJTaylor}@uclan.ac.uk

2 The Open University, Walton Hall, Milton Keynes, UK
{Helen.Sharp,Leonor.Barroca}@open.ac.uk

3 IndigoBlue, London, UK
laurence.wood@indigoblue.co.uk

Abstract. Knowledge is a core resource for agile organisations that is
transformed into products and services during the development process.
Sharing of knowledge is essential across any organisation, and it has
been claimed that the software industry requires more knowledge man-
agement than any other sector. Agile methodologies concentrate on team
level collaboration, and some techniques for inter-team knowledge shar-
ing have also proved to be successful. But these techniques focus on
within-team and between-team knowledge sharing rather than knowl-
edge sharing across the organisation. This paper presents the results of a
survey with 81 responses on organisational knowledge sharing in a multi-
national agile company. The survey focuses on three aspects of knowledge
sharing: within agile teams, beyond the team with company colleagues,
and with customers. It concentrates on knowledge sharing practices, ease
of knowledge sharing and motivation for knowledge sharing. Summary
statistics, regression, and test of equity are used as analysis techniques.
Results show that knowledge sharing with team members is significantly
easier than with customers or company colleagues beyond their team. In
addition, using agile practices improves ease of knowledge sharing within
teams but not with customers or colleagues. Extrinsic motivators need
to be in place to encourage knowledge sharing across the organisation,
especially where such knowledge sharing is not an automatic consequence
of completing the work.

Keywords: Knowledge sharing · Agile software development · Organi-
sational knowledge sharing · Learning organisation

1 Introduction

Knowledge is awareness or understanding of something such as information or
skills [4]. Knowledge creates most of the value in today’s economy and the value
of knowledge often increases when shared [23]. Organisational knowledge sharing
c© The Author(s) 2017
H. Baumeister et al. (Eds.): XP 2017, LNBIP 283, pp. 135–150, 2017.
DOI: 10.1007/978-3-319-57633-6 9

136 K. Kuusinen et al.

aims at transferring to the organisation the information, skills and experience
a person or team has [10]. This is essential for sustaining the development of
quality in software intensive companies [10]. For agile development companies,
knowledge is the core resource that is transformed to products and services in
the development process [2]. Moreover, Biao-wen [2] claims that the software
industry requires more knowledge management than any other sector.

Agile methods focus heavily on the delivery of product and customer value.
Moreover, an agile team focuses on applying knowledge instead of sharing it
[10]. Agile methods facilitate knowledge sharing in the team but offer limited
support for knowledge sharing outside the team [6,17,18]. Agile methods favour
tacit knowledge shared informally using face-to-face communication (personali-
sation strategy) in contrast to traditional knowledge management practices [9].
Although attention has been paid to inter-team knowledge sharing [27], and tech-
niques for distributed agile teams have proved to be successful, the focus here is
on knowledge sharing across the organisation and not just between teams. The
lack of knowledge sharing practices beyond the team can hinder sharing and
sustaining knowledge in agile organisations [17].

This paper presents results of a baseline survey organised in a multinational
agile software intensive company as part of their effort to improve organisational
knowledge sharing. The results show that knowledge sharing with team members
is significantly easier than with company colleagues or with customers. In addi-
tion, using more agile techniques is associated with increased ease of knowledge
sharing with team members but not with colleagues outside the team and not
with customers.

The rest of the paper is structured as follows: Sect. 2 introduces related
research, Sect. 3 describes the research method, Sect. 4 presents the results,
Sect. 5 considers limitations, Sect. 6 discusses the findings and Sect. 7 presents
some conclusions and future work.

2 Related Work

Software engineering is a knowledge-intensive activity [25]. Software develop-
ment teams are made up of knowledgeable individuals who need to be able to
use, share, and communicate their knowledge in ways that foster problem solv-
ing and creativity. Whereas traditional software project approaches rely heavily
on documentation and role-based working as ways of capturing and managing
knowledge, agile approaches focus more on informal communication mechanisms
within cross-functional teams [6,10].

Agile approaches employ intensive team work, face-to-face knowledge shar-
ing, and trust as vital elements of working practice [1]. Research evidence
shows that good team work is crucial for project success, with important
facets including communication, coordination, balance of member contributions,
mutual support, effort and cohesion [15]. Studies of agile teams have found that
agile practices improve both informal and formal communication, and facilitate
team and organisational communication [22]. Information visibility and sharing

Knowledge Sharing in a Large Agile Organisation: A Survey Study 137

are characteristics of agile approaches, especially when documentation is used.
Sharp and Robinson [29] discuss how story cards and the Wall play an impor-
tant part in the collaboration, co-ordination and communication processes of
agile teams. Collaborative online tools are used to keep track of decisions and
facilitate communication within collocated and distributed teams [8].

Knowledge management and learning theories have been used to explain
the distinctiveness of the agile approach. Nonaka and Takeuchi’s [21] distinc-
tion between explicit and tacit knowledge has been used to characterise the
difference between traditional and agile approaches [6]. Explicit knowledge is
objective, rational, and is easier to externalise in documents. In contrast, tacit
knowledge is subjective, experience-based, and more likely to be context-specific
and therefore easier to discuss than to document. Similarly, Hanssen et al. [14]
identify two strategies for knowledge management: codification and personalisa-
tion. The codification strategy systematises and stores organisational knowledge,
whereas the personalisation strategy supports the flow of information through
the organisation through fostering connections between people and supporting
a culture of communication. Traditional approaches tend towards codification
whereas agile approaches tend towards personalisation.

Agile knowledge sharing practices can be roughly divided into practices
among peers (e.g. communities of practice, pairing, coding dojos), among dif-
ferent specialists (shared specialists, interdisciplinary pairing, marathons), and
among stakeholders and managers (scrum of scrums, review meetings). As agile
becomes more widely adopted within companies and across industry, approaches
for facilitating inter-team knowledge sharing and cross-organisational knowledge
sharing need to be considered [3]. Inter-team personalisation strategies include
Scrum of Scrums, project member rotation, communities of practice and open
fishbowl sessions [27]. When viewed at an organisational level, knowledge is a sig-
nificant competitive asset for a company. However, it is also challenging because
of the scale and complexity of organisational environments and because the
inter-team strategies do not address the needs of knowledge sharing across an
organisation beyond teams collaborating in the same project.

Several authors identify that agile methods supply less advice for how to do
this [6,17]. Santos et al. [27] propose a model showing how knowledge shar-
ing between agile teams requires three elements: the adoption of practices,
organisational support and appropriate stimuli. Recommended practices include
face-to-face conversations, an informative workspace, rotation among teams and
projects, collective meetings, pair programming between teams and projects,
technical presentations, marathons, and coding dojos. Organisational support
includes strategy, structure, culture, environment, top management and leader-
ship support, communication flow and channels, integration among teams and
projects, and deeper agile adoption. Appropriate stimuli include problems, com-
mon goals, incentives and sustainable pace.

138 K. Kuusinen et al.

3 Method

The research goal for the study was to identify areas that require improvement
in organisational knowledge sharing in an agile company and to provide a base-
line for assessing the progress and effectiveness of future actions. The study was
initiated by the company who approached the authors1 with a request to inves-
tigate their challenge. A survey2 was used to reach a wide audience, it was sent
to company employees (not customers), and concentrated on knowledge sharing
between three groups: team members, company colleagues, and customers. The
research questions are as follows.

RQ 1 How is knowledge shared in the organisation?
RQ 2 What motivates knowledge sharing in the organisation?
RQ 3 Is there a relation between agility and ease of knowledge sharing?
RQ 4 Is there a relation between frequency of knowledge sharing activities and

ease of knowledge sharing?

3.1 Collaborator Company

The company in which the survey was conducted is a large IT service provider
that primarily develops software for UK customers but has staff distributed
over three continents. The majority of their workforce is based in India, and
are sent to work in development teams at customer sites on a temporary basis
in several countries worldwide. Development teams are assigned to a specific
customer account and thus have a strong customer focus in their job and day-
to-day responsibilities; many teams are embedded in the customer organisation
and hence distant from each other. While some cross-organisational knowledge
sharing tools and practices have been put in place such as wikis, Yammer, and
profession-specific groups for training, these are limited.

3.2 Procedure

The survey was developed iteratively in collaboration with our company con-
tacts and piloted first with students and then with a few company representa-
tives. A link to the online survey was then distributed via a contact person in
the company and it was advertised on the company intranet. The survey was
open from May to July 2016 and there were altogether 113 responses from com-
pany employees of which 81 were completed. Of the 81 complete responses, 36
responded to the open-ended question on how to improve knowledge sharing
in the company. No incentives were offered and two reminders were sent. The
survey was anonymous. Mean completion time was 11 min (SD 19 min).
1 The authors are members of the Agile Research Network (agileresearchnetwork.org)

which is funded by the Agile Business Consortium Ltd. (ABC) Board, The Open
University and University of Central Lancashire. Our research approach is explained
here: Barroca, L., Sharp, H., Salah, D., Taylor, K., & Gregory, P. (2015). Bridging
the gap between research and agile practice: an evolutionary model. IJSA, 1–12.

2 The survey can be found from here: http://agileresearchnetwork.org/kss.

http://agileresearchnetwork.org/kss

Knowledge Sharing in a Large Agile Organisation: A Survey Study 139

3.3 Survey

The survey addressed practices, motivators and ease of knowledge sharing with
team members, company colleagues and with the customer. The survey had three
sections, on (1) agile methods and agile techniques employed, (2) knowledge
sharing and (3) background information. Questions on knowledge sharing were
related to frequency of use of knowledge sharing practices, motivation towards
sharing and experienced ease of sharing. Survey themes were as follows

1. Agile methods employed (question 1, multiple choice)
2. Agile techniques employed (question 2, multiple choice)
3. Frequency of use of knowledge sharing practices with team members (question

3, pre-defined list of practices assessed on four-point frequency scale)
4. Frequency of use of knowledge sharing practices with company colleagues

outside the team (question 4, pre-defined list of practices assessed on four-
point frequency scale)

5. Frequency of use of knowledge sharing practices with customer (question 5,
pre-defined list of practices assessed on four-point frequency scale)

6. Motivation for knowledge sharing with team members, company colleagues
and customer (question 6, multiple choice)

7. Ease of knowledge sharing with team members, with company colleagues
outside the team and with customer (question 7, five-point Likert scale)

8. Suggestions for how to improve knowledge sharing in the company (question
8, open-ended)

In addition we asked for background information including job role, years of
experience in the company, the number of customer accounts and the number of
people led if any.

The survey was designed to address the needs of the collaborator company
and drew on existing literature. The first two questions on agile methods and
techniques were adopted from the annual state of agile survey by Version One
[31]. Question six on motivation was adapted from [19] and consisted of six
statements measuring intrinsic and extrinsic motivation.

3.4 Analysis

We used basic descriptive statistics such as means to summarise responses on
the structured questions. Since the data complied with the assumptions [5] of
linear regression (F), a commonly used predictive analysis, we used it to study
the relation between experienced ease of knowledge sharing and agility or fre-
quency of knowledge sharing activities. We assumed that agility increases with
the number of agile techniques employed. Gandomani et al. [11] propose a model
and formula for calculating agility based on practices used. They use a list of 44
practices, of which ours is a sub-set. Thus, we use linear regression analysis to
test whether experienced ease of knowledge sharing can be predicted from

140 K. Kuusinen et al.

1. number of specific agile techniques employed (RQ 3)
2. reported frequency of use of knowledge sharing practices (RQ 4)

Based on Shapiro-Wilk test, the data was non-normal and thus we used a non-
parametric hypothesis test. The selected Wilcoxon’s signed rank test (Z) is a
non-parametric statistical hypothesis test for comparing two related samples, e.g.
two responses given by one single individual in a survey. We used the Wilcoxon
test for equity to measure if there is a statistically significant difference between
the experienced ease of knowledge sharing with team members, company col-
leagues and customers (RQ3, RQ4) and if there is a difference in the frequency
of reporting motivation sources for sharing between those three groups (RQ2).

When sharing with either element of each of the partner pairs (team members
and company colleagues, team members and customer, company colleagues and
customer) the hypotheses are as follows:

1. there is no difference between the ease of knowledge sharing;
2. there is no difference between the frequency of intrinsic motivation sources;
3. there is no difference between the frequency of extrinsic motivation sources.

The hypotheses are a combination of the interests of the studied company and
literature. For the open-ended question the data was collated and thematically
analysed using an inductive, qualitative, data-driven content analysis with the
aim of generating thematic groupings from the data [26], with no preconceived
ideas about what would emerge.

3.5 Respondents

The response rate was 9%. The main job responsibility of the 81 respondents was
as follows: software development 42%, architecture 16%, project management
15%, software testing or quality 7%, business or system analyst 6%, design or UX
design 4%, configuration/support 1% and other roles 9% (coaching or training
or a mixture of development and design roles). Of the 81 respondents, 43% did
not lead a team or function, 35% led 1 to 9 persons, 14% led 10 to 19 persons
and 9% led over 19 persons. Almost all the respondents worked for customer
accounts: 4% had not worked for a customer account, 30% had worked for one
customer account, 40% for 2 to 4 customer accounts and 27% had worked for
five or more customer accounts. On average, respondents had worked for the
company for 7 years, standard deviation 6 years.

4 Results

For answers about agile methods and techniques multiple responses were pos-
sible. Scrum was the most used agile method reported by 83% of respondents.
Kanban and Scrumban were also often used, reported respectively by 32% and
22% of the respondents. The most often employed agile techniques were daily
standups, prioritised backlogs, iteration or sprint planning, retrospectives and
short iterations or sprints (Fig. 1).

Knowledge Sharing in a Large Agile Organisation: A Survey Study 141

Fig. 1. Employed Agile techniques [31]

4.1 Knowledge Sharing Practices

The most common techniques for knowledge sharing in general were informally,
in meetings, and by email (Fig. 2). In general, knowledge sharing was more fre-
quent within teams than with customers or company colleagues outside the team.
This is an expected result as teams are often the fundamental social units of an
organisation’s knowledge creation [16] and Scrum - the most widely used agile
method in the company - emphasises the role of collaborative teams. Sharing
knowledge with colleagues was most often done informally, whereas when shar-
ing knowledge with customers, meetings were the most frequent technique. Both
represent a personalisation knowledge sharing strategy (person-to-person) which
is the favoured strategy in agile. The next most commonly used knowledge shar-
ing techniques with customers were email and through the team lead or a senior
member of the team.

4.2 Motivation for Knowledge Sharing

The mean number of reported motivation sources per respondent was higher
for sharing knowledge with team members than with either company colleagues
or customers (Fig. 3). There was a difference between the frequency of intrinsic
and extrinsic motivators when sharing with customers compared to when sharing
with either team members or company colleagues. When sharing knowledge with
team members or company colleagues, a greater number of respondents reported
intrinsic sources of motivation than extrinsic sources whereas when sharing with

142 K. Kuusinen et al.

Fig. 2. Mean frequency of use of knowledge sharing practices in team, in company and
with customer. N = 81

Table 1. Percentage of respondents reporting motivation source types per sharing
partner. N = 81.

Motivation source Team Colleague Customer

Both extrinsic and intrinsic 85% 63% 59%

Intrinsic only 14% 16% 10%

Extrinsic only 1% 10% 21%

None 0% 11% 10%

customers a greater number of respondents reported extrinsic sources of moti-
vation than intrinsic sources (Table 1).

Enjoyment was the most common motivator for knowledge sharing with team
members (90% of respondents mentioned it) and with company colleagues (67%)
whereas with customer it was strengthening ties (64%) (Fig. 3). Enjoyment is an
intrinsic motivator whereas strengthening ties is an extrinsic motivator [16,19].

The Wilcoxon signed rank test was applied to the data. Based on the results,
all hypotheses considering motivation sources were rejected apart from the
following: there is no difference between the frequency of intrinsic motivation
sources (1) when sharing with company colleagues and (2) when sharing with
customers (Table 2). However there is a significant difference in the frequency of
reporting extrinsic motivation sources between sharing knowledge with company
colleagues and customers. The most obvious difference is that strengthening ties
was an especially frequent source of motivation for sharing knowledge with cus-
tomers, which is important for maintaining the relationship with the customer.

Knowledge Sharing in a Large Agile Organisation: A Survey Study 143

Table 2. Wilcoxon signed rank test on the frequency of motivation sources for sharing
knowledge with team members, company colleagues and customer. N = 81.

Compared sharing partner pair Test outcome (Z) Level of significance (p)

Intrinsic: Team members - Colleagues Z = −3.98 p <.001

Intrinsic: Team members - Customer Z = −4.94 p <.001

Intrinsic: Colleagues - Customer Z = −1.53 n.s.

Extrinsic: Team members - Colleagues Z = −4.12 p <.001

Extrinsic: Team members - Customer Z = −2.33 p <.05

Extrinsic: Colleagues - Customer Z = −2.00 p <.05

Fig. 3. Frequency of motivation sources for knowledge sharing with team members,
customer and company colleagues outside the team. N= 81.

In summary, this test showed differences between the frequencies of extrinsic
motivation sources for sharing with all the sharing partners and between the
frequencies of intrinsic sources between all the sharing partners except company
colleagues and the customer.

4.3 Ease of Knowledge Sharing

Knowledge sharing within teams was reported to be easy whereas knowledge
sharing beyond the team with company colleagues and with customers was less
easy (Fig. 4). A Wilcoxon signed rank test was applied to the findings. This
revealed that knowledge sharing with team members was significantly easier than
with customers (Z = −4.51, p <.001). It also revealed that knowledge sharing
with team members was significantly easier than with company colleagues out-
side the team (Z = −4.52, p <.001). Based on the test, the hypotheses there

144 K. Kuusinen et al.

is no difference between the ease of knowledge sharing with team members and
customers and there is no difference between the ease of knowledge sharing with
team members and company colleagues were rejected while the hypothesis there is
no difference between the ease of knowledge sharing with company colleagues and
customers was accepted. Of the respondents, 62% strongly agreed that knowl-
edge sharing with team members is easy whereas 28% and 27% strongly agreed
that knowledge sharing with customers or with company colleagues, respectively,
is easy. Knowledge sharing with customers was considered slightly easier than
with company colleagues (Fig. 4). Only 9% did not agree that knowledge sharing
is easy with team members whereas 30% did not agree that knowledge sharing is
easy with customers and 33% did not agree that knowledge sharing is easy with
company colleagues outside the team. Thirty-six employees suggested improve-
ments for organisational knowledge sharing in an open-ended question. Almost
all of the suggestions were about knowledge sharing in the company outside the
team. Half of the respondents suggested having small informal sessions among
interested individuals to share knowledge, for example, about architectural solu-
tions or new technologies. Also, half of respondents suggested either creating
new knowledge bases, or repositories, or using the current ones more efficiently.
Other ideas included fostering the company culture to embrace knowledge shar-
ing. Such a culture would build on trust and encourage people to share their
knowledge instead of making them fear they are replaceable if they share.

Fig. 4. Perceived ease of knowledge sharing with team members, customer and col-
leagues. N= 81.

Knowledge Sharing in a Large Agile Organisation: A Survey Study 145

4.4 Relation of Agility and Ease of Knowledge Sharing

Experienced ease of knowledge sharing with team members could be predicted
from the number of agile techniques employed using linear regression F(80,1) =
10.7, p <.01. Thus, the greater the number of agile techniques employed, the
easier knowledge sharing with team members was experienced.

There is no direct association between the number of agile techniques
employed and experienced ease of knowledge sharing with company colleagues,
F(80,1) = 0.0, n.s, nor between the number of agile techniques employed and
experienced ease of knowledge sharing with customers, F(80,1) = 2.7, n.s.

4.5 Relation of Frequency and Ease of Knowledge Sharing

There is a direct association between the frequency of use of knowledge shar-
ing practices and experienced ease of knowledge sharing with team members:
the more frequently knowledge sharing practices are used, the easier knowledge
sharing is, F(78,12) = 3.6, p <.001. When ease of knowledge sharing with team
members was calculated from knowledge sharing practices, using the whiteboard
(t = 3.8, p <.001) and doing it informally (t = 2.8, p <.01) are significant pos-
itive predictors whereas using Yammer (t = −2.0, p <.05) was a significant
negative predictor. Thus, the more frequently whiteboards are used for knowl-
edge sharing or the more frequently knowledge is shared informally with team
members, the easier knowledge sharing with team members is experienced. On
the contrary, the more often knowledge is shared via Yammer with team mem-
bers, the less easy knowledge sharing with team members is experienced.

Using a whiteboard requires face-to-face contact whereas Yammer moves
people away from physical presence, which may explain the negative association.
These results indicate that knowledge sharing is easier where frequent, informal
sharing takes place, including using whiteboards as a knowledge sharing tool.

Experienced ease of knowledge sharing with company colleagues can be pre-
dicted from the frequency of use of knowledge sharing practices using multiple
linear regression, F(80,11) = 1.9, p <.05. When ease of knowledge sharing with
colleagues was calculated from knowledge sharing practices, giving presentations
(t = −2.0, p <.05) was a significant negative predictor.

In general, the more frequently knowledge sharing practices are used, the eas-
ier knowledge sharing appears to be. However, giving presentations is a negative
predictor. A possible explanation for this negative association is that presenta-
tions are often one-directional: the presenter shares their information with the
audience. Furthermore, the company also shares presentations via email. Using
one-directional practices for knowledge sharing may decrease the experienced
ease of knowledge sharing.

There is a direct association between the frequency of use of knowledge shar-
ing practices and the experienced ease of knowledge sharing with customers.
Experienced ease of knowledge sharing with customers can be predicted from
the frequency of use of knowledge sharing practices using multiple linear regres-
sion, F(80, 7) = 5.8, p <.001. When ease of knowledge sharing with customers

146 K. Kuusinen et al.

was calculated from knowledge sharing practices, using a wiki (t = 3.6, p <.01)
and having meetings (t = 2.6, p <.05) were significant predictors. Thus, knowl-
edge sharing is easier when a collaborative exchange of information is frequently
used and meetings with the customer are frequent.

5 Limitations

Construct validity relates to the appropriateness of the survey as a mea-
sure. Several techniques were used to mitigate this threat. Questions 1, 2 and
6 in the survey were based on questions found in existing literature, to ensure
that terminology used was in common use. The survey was developed itera-
tively and piloted with practitioners. Some of the questions contained repetition
asking respondents to consider knowledge sharing from three perspectives, with
team members, company colleagues and customers. Factors such as boredom
and practice could have impacted the results. Question randomisation or coun-
terbalancing were not used because of limitations of the surveying tool. Multiple
response was controlled by allowing only one response per device. Internal
validity relates to causal conclusions drawn. We used the number of specific
agile techniques employed as a measure of agility in the survey, an approach
used by [11,24]. This is not sophisticated, however in the context of this survey
it provides a useful indication of how agility varies within the company. The
strength of motivators was not asked for and therefore it is unknown if some of
them are more powerful than the others. The measures of agility and motiva-
tion were both used in the linear regression analysis. Moreover, statistical tests
are always prone to incorrect rejection or retaining of the null hypothesis and
multiple hypothesis testing increases the risk. We did not use adjustments for
these error types since correction of one of the types increases the risk to the
other type. External validity relates to generalizability of the findings. As only
one company was surveyed, the results are specific to that company. Moreover,
only a number of employees responded to the survey which makes it prone to
non-response bias.

6 Discussion

The summary answers to our research questions are as follows:

RQ 1 How is knowledge shared in the organisation? The top three knowledge
sharing practices are: sharing informally, in meetings, and through email.
Sharing knowledge with colleagues is most often done informally whereas
with customers the most common means is in meetings.

RQ 2 What motivates knowledge sharing in the organisation? Respondents
cited more motivators for sharing with team members than with company col-
leagues or customers. Motivators for knowledge sharing with team members
and with company colleagues are more frequently intrinsic than extrinsic; moti-
vators for knowledge sharing with customers are more frequently extrinsic.

Knowledge Sharing in a Large Agile Organisation: A Survey Study 147

RQ 3 Is there a relation between agility and ease of knowledge sharing? Shar-
ing knowledge within teams is statistically significantly easier than with cus-
tomers or company colleagues. The regression analysis shows that using agile
techniques improves ease of knowledge sharing within agile teams but not
with company colleagues or with customer.

RQ 4 Is there a relation between the frequency of knowledge sharing activities
and ease of knowledge sharing? In general the more frequently knowledge
sharing practices are used, the easier knowledge sharing is. However, there
are nuances in the data with some practices improving knowledge sharing
and some hindering it. Our findings suggest that knowledge sharing is easier
if face-to-face and informal contact is used, whereas one-way presentations
decrease the perceived ease of knowledge sharing.

Our findings indicate that specific agile techniques improve ease of knowledge
sharing within teams. This confirms findings from Pikkarainen et al. [22] who
found that agile practices improved both informal and formal communication,
and [20], who suggest that the “knowledge-as-relationship” focus of agile teams
facilitates team knowledge sharing. It also confirms common-sense expectations
that agility improves knowledge sharing and communication within the team.

Our findings also suggest that a high level of agility helps knowledge shar-
ing to some extent with customers, but has little impact on knowledge sharing
with company colleagues. This finding confirms the view that simply using agile
techniques does not help much with inter-team knowledge sharing [6,17].

Software engineers are outcome-oriented and motivated by technically inter-
esting content and the work itself [28]. One of the characteristics of agile working
is that all of the team’s effort is focused on producing code that provides business
value, and that plays directly into this motivation profile. In this context, sharing
experiences with company colleagues who are not directly involved in the same
project or with the same customer, requires compelling extrinsic motivators.
Yet motivators for knowledge sharing with company colleagues were intrinsic
rather than extrinsic. Therefore, it seems clear that this organisation does not
have sufficient extrinsic motivators in place to encourage knowledge sharing with
company colleagues.

These results are influenced by the collaborator’s specific cicumstances, and
these require further investigation. For example they are mostly based in India
and the Indian agile community faces a range of challenges [30], are embedded
in customer sites around the world, and hence at a distance from each other.

7 Conclusions and Future Work

Our survey study contributes to an understanding of how knowledge is shared
in agile organisations. We provide evidence to support claims that knowledge
sharing is easier within agile teams. In this instance, we find that these benefits
do not apply to knowledge sharing across the organisation. Extrinsic motivators
need to be in place to encourage knowledge sharing across the organisation,

148 K. Kuusinen et al.

especially where such knowledge sharing is not an automatic consequence of
completing the work.

Further research is required to investigate how knowledge sharing may be
improved across this organisation, to compare their situation with other compa-
nies, and to understand better how the organisation’s specific situation influences
knowledge sharing behaviour. Suggestions from literature will be used to guide
the next stage, for example ecosystems, communities of practice, shared spe-
cialists, coding marathons and project members’ rotation [6,7,27,32]. Santos et
al’s [27] model of inter-team knowledge sharing suggests that three elements are
important in inter-team knowledge sharing: the adoption of specific practices,
organisational support and appropriate stimuli. Some of their suggestions for
practices, such as job rotation, role pairing between projects and informal cross-
organisational networks are not currently in place, but could be introduced. Han
and Anantatmula’s [13] model for knowledge sharing in large IT organisations
identifies organisation, technology, learning and leadership as important compo-
nents. Their suggestions for leadership highlight the importance of aspects such
as a management help with knowledge sharing, verbal praise, encouragement,
and career promotion. These observations could be characterised as cultural
issues, such as those identified in [12].

References

1. Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler,
M., et al.: The Agile Manifesto (2001)

2. Biao-wen, L.: The analysis of obstacles and solutions for software enterprises to
implement knowledge management. In: 2010 The 2nd IEEE International Confer-
ence on Information Management and Engineering (ICIME), pp. 211–214. IEEE
(2010)

3. Bjørnson, F.O., Dingsøyr, T.: Knowledge management in software engineering: a
systematic review of studied concepts, findings and research methods used. Inf.
Softw. Technol. 50(11), 1055–1068 (2008)

4. Charband, Y., Navimipour, N.J.: Online knowledge sharing mechanisms: a sys-
tematic review of the state of the art literature and recommendations for future
research. Inf. Syst. Front., pp. 1–21 (2016)

5. Chatterjee, S., Simonoff, J.S.: Handbook of Regression Analysis, vol. 5. Wiley, New
York (2013)

6. Chau, T., Maurer, F., Melnik, G.: Knowledge sharing: Agile methods vs. Tayloristic
methods. In: WETICE, vol. 3, pp. 302–307 (2003)

7. Cockburn, A., Highsmith, J.: Agile software development, the people factor. Com-
puter 34(11), 131–133 (2001)

8. Deshpande, A., Sharp, H., Barroca, L., Gregory, P.: Remote working and collabo-
ration in agile teams. In: International Conference on Information Systems, ICIS
2016. AIS Electronical Library (2016)

9. Dyb̊a, T., Dingsøyr, T.: Empirical studies of agile software development: a system-
atic review. Inf. Softw. Technol. 50(9), 833–859 (2008)

10. Ersoy, I.B., Mahdy, A.M.: Agile knowledge sharing. Int. J. Softw. Eng. (IJSE) 6(1),
1–15 (2015)

Knowledge Sharing in a Large Agile Organisation: A Survey Study 149

11. Gandomani, T.J., Nafchi, M.Z.: An empirically-developed framework for agile tran-
sition and adoption: a grounded theory approach. J. Syst. Softw. 107, 204–219
(2015)

12. Gregory, P., Barroca, L., Sharp, H., Deshpande, A., Taylor, K.: The challenges
that challenge: engaging with agile practitioners concerns. Inf. Softw. Technol. 77,
92–104 (2016)

13. Han, B.M., Anantatmula, V.S.: Knowledge sharing in large it organizations: a case
study. Vine 37(4), 421–439 (2007)

14. Hansen, M.T., Nohria, N., Tierney, T.: Whats your strategy for managing knowl-
edge? In: The Knowledge Management Yearbook 2000–2001, pp. 55–69 (1999)

15. Hoegl, M., Gemuenden, H.G.: Teamwork quality and the success of innovative
projects: a theoretical concept and empirical evidence. Organ. Sci. 12(4), 435–449
(2001)

16. Hung, S.Y., Durcikova, A., Lai, H.M., Lin, W.M.: The influence of intrinsic and
extrinsic motivation on individuals’ knowledge sharing behavior. Int. J. Hum. Com-
put. Stud. 69(6), 415–427 (2011)

17. Karlsen, T.J., Hagman, L., Pedersen, T.: Intra-project transfer of knowledge in
information systems development firms. J. Syst. Inf. Technol. 13(1), 66–80 (2011)

18. Kettunen, P., Laanti, M.: Combining agile software projects and large-scale orga-
nizational agility. Softw. Process Improv. Pract. 13(2), 183–193 (2008)

19. Lin, H.F.: Effects of extrinsic and intrinsic motivation on employee knowledge
sharing intentions. J. Inf. Sci. 33(3), 340–359 (2007)

20. Melnik, G., Maurer, F.: Direct verbal communication as a catalyst of agile knowl-
edge sharing. In: Agile Development Conference 2004, pp. 21–31. IEEE (2004)

21. Nonaka, I., Takeuchi, H.: The Knowledge-Creating Company: How Japanese Com-
panies Create the Dynamics of Innovation. Oxford University Press, New York
(1995)

22. Pikkarainen, M., Haikara, J., Salo, O., Abrahamsson, P., Still, J.: The impact of
agile practices on communication in software development. Empirical Softw. Eng.
13(3), 303–337 (2008)

23. Quinn, J.B., Anderson, P., Finkelstein, S.: Managing professional intellect: making
the most of the best. In: Strategic Management of Intellectual Capital, pp. 87–100
(1998)

24. Qumer, A., Henderson-Sellers, B.: An evaluation of the degree of agility in six agile
methods and its applicability for method engineering. Inf. Softw. Technol. 50(4),
280–295 (2008)

25. Qumer, A., Henderson-Sellers, B.: A framework to support the evaluation, adoption
and improvement of agile methods in practice. J. Syst. Softw. 81(11), 1899–1919
(2008)

26. Ritchie, J., Lewis, J., Nicholls, C.M., Ormston, R., et al.: Qualitative Research
Practice: A Guide for Social Science Students and Researchers. Sage (2013)

27. Santos, V., Goldman, A., De Souza, C.R.: Fostering effective inter-team knowledge
sharing in agile software development. Empirical Softw. Eng. 20(4), 1006–1051
(2015)

28. Sharp, H., Baddoo, N., Beecham, S., Hall, T., Robinson, H.: Models of motivation
in software engineering. IST 51(1), 219–233 (2009)

29. Sharp, H., Robinson, H.: Three ‘C’s of Agile Practice: Collaboration, Co-ordination
and Communication. In: Dingsøyr, T., Dyb̊a, T., Moe, N.B. (eds.) Agile Software
Development, pp. 61–85. Springer, Heidelberg (2010)

150 K. Kuusinen et al.

30. Srinivasan, J., Lundqvist, K.: Agile in India: challenges and lessons learned. In:
Proceedings of ISEC 2010 the 3rd India Software Engineering Conference, pp.
125–130. ACM, New York (2010)

31. VersionOne: Annual State of Agile Survey (2016). http://stateofagile.versionone.
com. Accessed 29 Nov 2016

32. Wenger, E., McDermott, R.A., Snyder, W.: Cultivating Communities of Practice:
A Guide to Managing Knowledge. Harvard Business Press (2002)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://stateofagile.versionone.com
http://stateofagile.versionone.com
http://creativecommons.org/licenses/by/4.0/

Teaching Agile Methods to Software Engineering
Professionals: 10Years, 1000 Release Plans

Angela Martin1, Craig Anslow2(B), and David Johnson3

1 Xero, Wellington, New Zealand
angela.m.martin@gmail.com

2 School of Engineering and Computer Science,
Victoria University of Wellington, Wellington, New Zealand

craig@ecs.vuw.ac.nz
3 Oxford E-Research Centre, University of Oxford, Oxford, UK

david.johnson@oerc.ox.ac.uk

Abstract. Agile methods are an essential resource for software engi-
neers. The Agile movement evolved out of industry and is the common
approach to software development today. Teaching Agile methods chal-
lenges students’ working attitudes, where putting Agile into practice is
not possible through simply applying methods prescriptively, but by hav-
ing an Agile mindset. In this paper we present and discuss our experiences
over the last decade of teaching a novel intensive Agile methods week long
course as part of a professional Masters of Software Engineering degree
programme at the University of Oxford. We describe the typical shape
of the course, discuss how students experience Agile values and manage-
ment practices to foster an Agile mindset, and provide student feedback
indicating a consistently positive response to our approach at teaching
Agile methods to software engineering professionals. Our reported expe-
riences and material can help other educators who want to run similar
courses and adapt where required.

Keywords: Agile software development · Experience report · Group
work · Graduate programs · Software engineering professionals

1 Introduction

Since the introduction of the Agile Manifesto, Agile methods in software engi-
neering have gained popularity year on year, and today Agile is not just com-
monplace, but often expected as a standard industry practice in software devel-
opment teams. Agile methods were evolved by and are applied by industry [6].
This growth in applying Agile principles in the software industry went hand-
in-hand with a growth in Agile training being offered to software engineering
professionals in the work place, as well as more recently in undergraduate and
some graduate computer science and software engineering degrees.

The University of Oxford Software Engineering Programme (SEP) was estab-
lished in 1993 and exists to create strong connections between theory and prac-
tice in software engineering and to make the expertise of the university available
c© The Author(s) 2017
H. Baumeister et al. (Eds.): XP 2017, LNBIP 283, pp. 151–166, 2017.
DOI: 10.1007/978-3-319-57633-6 10

152 A. Martin et al.

to those who wish to study part-time while continuing in full-time employment.
Most students on SEP are practicing software engineering professionals who
often already have university degrees or extensive industry experience. Week-
long intensive courses in a variety of subjects are offered, with up to 16 students
per class. Each student must take 10 courses in any order over a four year period
and are used as credit towards a Masters’ degree (MSc) in Software Engineering
awarded by the University of Oxford. In 2007 the Agile Methods (AGM) course1

was introduced in response to the growing needs for software engineering pro-
fessionals to understand and introduce Agile in their work places.

Teaching Agile methodologies often focuses on learning a particular
method [6], such as Scrum [14] or XP [2]. It was recognized that the inten-
sive nature of the week long part-time courses at Oxford made it difficult for
an in-depth dive into the variety of Agile methods and practices to fit into the
short time span of an individual course. To this end, the Agile Methods course
is devised to bring students into an Agile mindset – through a combination of
(1) coupling lectures with simulated exercises of Agile management practices,
(2) critical analysis and debate around case studies on Agile adoption, and (3)
hands-on approach of Agile practices within the classroom.

In this paper, we present an approach to teaching Agile to software engineer-
ing professionals and discuss our experiences over the last 10 years of delivering
the course. We give a course outline describing the pre-course assignment, case
studies, lecture content, group exercises, post-course assignment, and finally dis-
cuss lessons learned from teaching the course over a long period of time. Other
educators who wish to run similar courses can learn from our experiences and
material reported in this paper and adapt where required.

2 Course Outline

The Agile Methods course aims to give an overview of Agile to software engi-
neering professionals and help them understand and adopt an Agile mindset.
The learning objectives of the course are as follows: (1) compare and contrast
the different agile methods, (2) determine the suitability of agile methods for a
particular project and organization, (3) evaluate how well a project is following
agile principles, and assist the project to become more agile (where appropri-
ate), (4) understand the relationship between the customer and the development
team in agile projects and the responsibilities of both communities, and (5) how
to foster organizational change to build better software.

The course is scheduled for a week and spans five consecutive days (Monday
to Friday), where each day is timetabled from 0900 to 1730, except for Friday
where the class concludes at lunch time (see Table 1 for an example Agile Meth-
ods course schedule). The week long class is split into discrete time boxes, with
three sessions in the mornings, and three in the afternoons, concluding each day
with a learning stand up. Each time box consists of a lecture, an exercise, or a
case study discussion, with breaks in between each session.
1 https://www.cs.ox.ac.uk/softeng/subjects/AGM.html.

https://www.cs.ox.ac.uk/softeng/subjects/AGM.html

Teaching Agile Methods to Software Engineering Professionals 153

Table 1. An example University of Oxford Agile Methods (AGM) course schedule.
Encoding: Lectures – yellow, Group Exercises – blue, Case Study – green. Three sessions
in the morning and three in the afternoon followed by a learning stand-up. Small coffee
and tea breaks happen between each session.

Time Monday Tuesday Wednesday Thursday Friday

0900-1000 Introduction Case Case Case Case
Study Study Study Study

1015-1115 Agile XP Empirical Personas Retrospectives
Manifesto Research

1130-1230 Communication Release Planning Lean User Retrospective
& User Stories & Kanban Stories Q&A, Survey

1230-1330 Lunch Lunch Lunch Lunch Lunch

1330-1430 Case Case Case Estimation
Study Study Study

1445-1545 Scrum Iteration Planning Kanban Release
& Estimation Game Planning

1600-1700 Marshmallow Coffee Machine Kanban Iteration
Challenge Game Game Cont’d Planning

1700-1730 Learning Learning Learning Learning
stand-up stand-up stand-up stand-up

The only prerequisite is that a student must be already enrolled in the SEP.
To cover enough Agile background material and different methods we use Agile
Software Development Ecosystems [8] as the text book. A pre-study assignment
is given to each student to help them prepare in advance of the teaching week
and a post-course assignment as the student’s assessment.

2.1 Pre-study Assignment: Case Study

It is important for students to begin their study about Agile in advance of the
teaching week, and we cater for this by sending them an assignment four weeks
in advance of the course. One of the main themes that the course explores is that
of Agile adoption; and not just the idealized version of Agile adoption, but the
in-the-trenches realities of Agile adoption. We incorporate a case-based learning
approach which is common in MBA programs [7].

Students are assigned a case study on Agile adoption and prepare a short
presentation to be delivered during the class, followed by a mediated class dis-
cussion. Table 1 highlights the case study presentations schedule in green and
Sect. 6 lists the case studies for the 2016 course editions. The case study papers
are Agile adoption experience reports from past XP and Agile conferences. The
case studies involves students actively discussing different industry-based case
studies that focus on different organizations that go through an Agile adop-
tion process. No single case study describes an easy Agile adoption story; each
highlights a different discussion point around adoption or organizational change.

Each student presents their case study once throughout the week for up to 30
mins. The student summarizes the paper and leads a discussion. The students are

154 A. Martin et al.

asked to first present on who the organization is, who the author is and what their
role is within the organization, and what they are trying to achieve or improve in
the organization. The class then discusses what should the organization do based
on this information. The presenter then describes what the authors actually did
and what the outcome of the case study was. Finally, the class discusses if what
the authors did made sense, if something different should be recommended, and
compares this study with other case studies that have already been presented.

This case-based learning approach enables students to gain an appreciation
of how difficult Agile adoption is at an organizational level. By discussing a
range of case studies we aim to equip students with knowledge of a broad range
of situations that may arise and be able to think critically about where Agile
methods can and should be applied in practice.

2.2 Lectures

During the week lectures are delivered that fit into one hour time boxes and
consist of presentations and class exercises. Throughout the week we disperse
the lectures among case study sessions and group exercises, to keep class activity
varied and to ensure the theory is backed up with practical exercises. Table 1
highlights the lectures in yellow.

Agile Manifesto. After an introductory lecture, we present the Agile manifesto
and the 12 underlying principles. We focus on the main idea of the manifesto that
is: We are uncovering better ways of developing software by doing it and helping
others do it. We emphasize the importance of the main items of the manifesto,
discuss the principles of the manifesto and give some examples to illustrate these
principles and values. Finally, we finish the lecture with some of the common
misconceptions about Agile methodologies and from our own experience such as
If you’re going to adopt Agile development, you should do it 100% and Switching
to Agile development offers excellent immediate benefits.

Agile Methods. We present lectures on time-boxed methods in Agile, where we
give an overview of both Scrum and XP. For each method we give an overview
of the main features, the different practices and roles that team members have,
and explain the core values and contributions. In both methodologies we focus
on explaining delivering business value with regular steps, monitoring features
delivered, and adjusting plans according to results. Then we discuss balancing
allowing the business to change their mind while the development team continues
to get work done on a stable scope. We present the different team roles, different
practices such as sprints/iterations, maintaining a product backlog, planning,
daily meetings, and iteration reviews. We emphasize the values of Agile teams:
commitment, focus, openness, respect, and courage. Scrum and XP have similar
and overlapping structures, roles, and values. There are however some subtle
differences that we highlight in the Scrum and XP lectures, for example where
XP has a greater emphasis on engineering practices such as pair programming
and Test-Driven Development (TDD). We feel it is important to cover both
of these time boxed methodologies, as Agile training frequently champions one

Teaching Agile Methods to Software Engineering Professionals 155

method over the other. Our approach is to give students an understanding of
what Agile methodologies are available to them, with a view to helping them to
think in an Agile mindset and not focus on just the methods. We additionally
give overviews of other methods including: Kanban, Lean, Crystal, DSDM, and
CRISP-DM.

Release and Iteration Planning. Understanding user stories is a an impor-
tant aspect to software release planning in Agile. Not only are they used to elicit
requirements from customers and communicate ideas among a team, they are
used as units of customer value. In Agile, delivering customer value is a priority,
and by creating user stories teams can plan releases, as well as iterations, around
maximizing value for their customers. We present lectures on how to generate
personas (fictional end-users as a focus for delivering value to somebody) and
use them in-turn to generate candidate user stories. We then show how to esti-
mate the amount of work a user story might require to be implemented. One
of the key things we try and get across is that user stories are not all equal,
and that an estimation of the amount of work required to implement one varies
from team to team. Estimation is difficult, and requires team discussion and
agreement, and we illustrate this idea with students playing Planning Poker2,
among other methods, to estimate animal points (see Fig. 1(a)). We then show
how user stories with estimates can be used to plan releases (e.g. a release after
4 week sprints) by selecting a series of user stories that delivers minimum demon-
strable value for customers (in order to receive feedback in as short a time as
possible). At the same time iteration planning (e.g. weekly) is discussed to show
how an Agile team should aim to have working software as early as possible and
often. Coupled with the team release planning exercise, our aim is to put stu-
dents through the motions of becoming customer-focused and in the mindset of
team collaboration to achieve goals in an iterative manner. We also discuss how
to effectively track progress during release and iteration planning using various
techniques such as information radiators (e.g. burn down/up charts).

Guest Lectures. We typically invite expert guest lecturers (industry practition-
ers or other academics) to deliver specialist content. In particular we have had
lectures on Example Driven Development (xDD) (e.g. TDD, ATDD, BDD), Lean
& Kanban, change management, and empirical research on how Agile methods
are used in practice.

Retrospectives. The final lecture is on retrospectives, where we typically have
a guest lecture present and then perform a retrospective exercise with the class.
This lecture focuses on the ideas from Derby and Larsen [5] and Kerth [9].
Once the retrospective has completed, the post-course assignment (Sect. 2.4) is
explained and handed out and then finally students conduct a course survey
which is used for course evaluation purposes.

2 http://www.planningpoker.com/.

http://www.planningpoker.com/.

156 A. Martin et al.

2.3 Group Exercises

One of the key approaches we take with teaching our Agile Methods course is
to encourage peer learning and learning-by-doing. To reinforce the lectures stu-
dents participate in a number of exercises, working as pairs and groups. Table 1
highlights the group exercises in blue.

Communication. We explain to the students how important it is to commu-
nicate effectively with customers on Agile projects by illustrating the customer
design cartoon3. To reinforce this message the students complete a communi-
cation exercise – Offing the Off-Site Customer 4. This exercise involves pairs of
students where one acts as a “customer” and the other as a “programmer”. The
aim of the exercise is for the programmer to elicit requirements from the cus-
tomer in order to draw a diagram of the product vision on paper (see Fig. 1(b)).
The customers are given a drawing that they need to communicate to the pro-
grammers to recreate, without visually communicating the drawing. The exercise
is played out over two rounds. In the first round the customers must only com-
municate with the programmer via handwritten text messages on index cards.
In the second round, the customers and programmers are allowed to use ver-
bal communication. After each round, the students reflect on the experiences of
trying to communicate the drawings between them. The point of this exercise
is to suggest that people in close proximity to each other with minimal phys-
ical barriers have a better chance of communicating effectively. We encourage
the students to think about their own work place and to find a way to set up
environments to encourage regular and meaningful collaboration.

Prototyping. To get a feel of prototyping with time-boxed methods, students
complete the Marshmallow Challenge5 and are asked to prototype a fully func-
tioning coffee machine out of cardboard based on ideas from Cockburn [4] (see
Fig. 1(c)). The goal of the coffee machine exercise is to try Scrum for an iteration
and then walk a mile in a product owner’s shoes as part of a second iteration.
The students are divided into teams (up to four). During the first iteration the
teams have 7 min to write stories about how the machine will work and prepare
materials (e.g. boxes, tape, scissors, cups, water). For each iteration they have
5 min to plan what stories they will implement, followed by 10 min to design and
implement the stories, and finally a group presentation to the class. The purpose
of this exercise is to get the students to work in a simulated environment as a
team in a time-boxed manner, and to understand that prototyping and early
releases only need to demonstrate a concept to a customer to deliver value.

Agile Debate. To help students gain a better understanding of the differences
between the Scrum and XP methodologies we ask them to perform a debate. The
class is separated into two sides: Scrum and XP. We give them two well-known,

3 http://projectcartoon.com.
4 http://www.jamesshore.com/Presentations/OffingTheOffsiteCustomer.html.
5 http://www.tomwujec.com/design-projects/marshmallow-challenge/.

http://projectcartoon.com
http://www.jamesshore.com/Presentations/OffingTheOffsiteCustomer.html
http://www.tomwujec.com/design-projects/marshmallow-challenge/

Teaching Agile Methods to Software Engineering Professionals 157

and highly contrasting, quotes, from Martin Fowler6 and Ken Schwaber7 as the
basis for their arguments. The students use the session to come up with their
own arguments and perform the debate with the lecturer as the adjudicator. The
aim of the debate is for the students to understand that there is no silver-bullet
when it comes to applying and adopting Agile methods.

Kanban Game. To help students gain an appreciation of the Kanban method
we get them to play the getKanban8 board game (see Fig. 1(d)). getKanban is a
physical board game designed to teach the concepts and mechanics of Kanban
for software development in a classroom setting. Each team can have up to six
people. Each team has a playing board representing a Kanban task board, and
a collection of story cards representing work to be done. Teams compete to
maximise profit by optimizing the flow of work. We simulate the game for up to
21 days. During the game the teams construct charts based on data from the
game including a Cumulative Flow Diagram, a Run Chart, and a Lead Time
Distribution Chart. To help make the game more realistic there are a number
of simulated events that occur throughout the game that challenge the teams
(e.g. a developer needs to attend a training course) and require them to make
various system design, prioritization, and resource allocation decisions. We allow
a couple of hours to play the game and have a debrief session at the end to help
students understand the intricacies of the method.

Team Release Planning. Building on the accompanying lecture sessions, stu-
dents carry out a team release planning exercise which covers most of Thursday.
This puts into practice everything they have been taught about Agile. In this
exercise, we split the students into groups of no more than four per team. In
this exercise, we do not mandate any team structure – we allow the students to
self-organize, much like a real Agile team would be expected to do. The lecturer
sets a particular domain area (e.g. solve London’s transport issues) in which each
team can then pick their own idea for a small product or service. They create
a release plan (including personas and user stories) over four weeks and four
time-boxes on a card wall, with the aim of being able to release a first version
of their product to a customer after the four weeks. At the end of the exercise,
each team presents their release plan to the rest of the class (see Fig. 1(e)).

Retrospective. A retrospective on the course is performed on the last day where
an external guest lecturer usually facilitates. Students record their thoughts
about the course on post-it notes into three categories: positive, could be better,
and aspects that were a surprise. Students place the ideas into different days of
the course on a card wall based on the timetable (see Fig. 1(f)). The facilitator
walks through the card wall and identifies and discusses key themes. The aim of
this exercise is for students to reflect upon what they have learned.

Learning Stand-up Meeting. At the end of each day the students perform
a learning stand-up meeting similar to a daily stand-up meeting (see Fig. 1(g)).
6 http://martinfowler.com/bliki/FlaccidScrum.html.
7 http://kenschwaber.wordpress.com/2010/06/10/waterfall-leankanban-and-scrum-2/.
8 https://getkanban.com/.

http://martinfowler.com/bliki/FlaccidScrum.html
http://kenschwaber.wordpress.com/2010/06/10/waterfall-leankanban-and-scrum-2/
https://getkanban.com/

158 A. Martin et al.

(a) Estimation: plan-
ning poker with ani-
mal cards.

(b) Communication: customers &
programmers diagrams.

(c) Prototyping: cardboard
coffee machine.

(d) getKanban board game. (e) Team Release
Planning Exercise.

(f) Retrospective on the
class.

(g) Learning Standup that happens at the end of each day.

Fig. 1. Agile methods course – some sample class exercises that simulate some key
points about different Agile practices including: estimation, communication, prototyp-
ing with cardboard, Kanban, release planning, class retrospectives, and daily learning
stand up meetings.

The stand-up meeting is for each student to address the questions like they would
in a daily stand-up, hence fostering Agile team values of openness, respect, and
courage. The questions focus on what have they learned during the day and
what they would like to learn. Students write answers on post-it notes, present
them to the group, and then put them on a learning card wall.

Teaching Agile Methods to Software Engineering Professionals 159

2.4 Course Assignment: Essay and Release Plan

The course is assessed with an assignment where students are given six weeks to
develop a mock four-week release plan and complete an essay. The release plan
is based on a fictitious product idea (e.g. develop an application for a hospital
to help support children who suffer from a medical condition like autism). The
release plan is documented as a report, outlining the different personas, user
stories (based on one persona), and the release plan itself, similar to the team
planning exercise performed in class. They need to include the rationale for
deciding the team’s capacity for each sprint, and why they think that this release
plan makes the most sense for the customer. Developing the release plan in the
assignment aims to assess what the students learned in class, and we ask them
to reflect on this aspect comparing with their experience on the team release
planning exercise. The essay involves comparing and contrasting different Agile
adoption paths from two of the case studies (Sects. 2.1 and 6). One question
that students are asked to address is, “is there a one-size fits all Agile adoption
strategy?” The assignments are assessed following a marking guide9 where all
submissions are awarded a numerical grade between 0 and 100, interpreted as
follows: 0 and 49 denotes a fail, 50 and 69 denotes a pass, and 70 and 100 denotes
excellence. Most students are awarded a pass, some with excellence, and few with
fail; and grades are released approximately six weeks from submission. Students
can defer submitting the assignment and wait for a later edition, but this is rare.

3 Discussion

Teaching the AGM course over the last decade has given us in-depth experiences
from which to draw upon, that we would like to share. Throughout the duration
of this course, we have gathered student feedback to help inform and evolve the
course along the way, as well as having gathered formal feedback from students,
some of which we now discuss.

Lectures. One of the biggest challenges in designing this course is catering for
the intensive nature of the course delivery. While there are just over 30 h of
face-to-face time allocated to the course, we were conscious not to overwhelm
students with only lectures. To this end, about a third of the class time was
allocated for lectures, broken up with exercises and case study discussion ses-
sions. While lectures are useful for delivering information to students, our key
aim was to enable the Agile mindset. In this case, we put further emphasis on
learning-by-doing with hands-on exercises and class discussion. For each lecture,
we ensured that a relevant exercise or case study followed. Keeping the lectures
to a planned limit of only one hour per session we felt also deferred any feel-
ings of fatigue or boredom, which is vitally important in a short but intensive
learning environment. The students found the theory was important to learn
and appreciated the lecture content on empirical studies of Agile project teams
which showed evidence about the use of different practices within industry.
9 http://www.cs.ox.ac.uk/softeng/handbook/examinations.html.

http://www.cs.ox.ac.uk/softeng/handbook/examinations.html

160 A. Martin et al.

Group Exercises. The exercises were carefully chosen to help the students
put into practice, or to help them quickly understand, the lecture material. As
discussed above, the lectures were normally paired with relevant exercises or
case studies. For example, to take the learning from the release planning lecture
and put it into practice, we would follow the lecture with an exercise on story
estimation. Each of the exercises aimed to teach important aspects about the
different Agile methods. The communication exercise highlights the importance
of fast and frequent customer feedback. The prototyping exercise looks at how
Agile teams are formed and how to respond to change. The estimation exercise
put the use of abstract story points into practice on non-software artifacts to help
understand that estimation is a team effort and not a formula that is uniformly
applied. The Kanban board game exercise aims to demonstrate the Kanban
method and allows students to put the method in action to understand workflow.

Team Release Planning Exercise. The team release planning exercise
involves putting into practice the learning from all the previous lectures and
exercises. We encouraged the students to self-organize and gave them reminders
and guidance on the course material. We mainly left them to make their own
decisions on how to plan their product releases. This exercise always proves to
be the most challenging for the students, as it was designed to simulate the
real planning of a hypothetical product or service, where the exercise often took
many hours or a whole day. The task also requires a level of creativity that many
students were uncomfortable with, but it was essential to move them away from
their comfort zone in order to get into an Agile mindset where all members of a
team should be able to feel they can contribute.

Assignments. The assignment tasks mirrored much of what was taught during
the class, where students are asked to write a short essay comparing and con-
trasting two case studies, and then to create a release plan similar to their team
release planning exercise. The essay question was generally straight forward as
the case study presentations and debates prepared students well for this part
of the assignment. The release planning exercise, however, proved challenging
for many. The main difficulty in this task was that in class it was done as a
group exercise, while in the assignment the students were asked to do a similar
plan but on their own. Some students took the initiative to simulate the group
environment by asking work colleagues to carry out the collaborative parts of
the exercise, such as estimation. Others on occasions, however, fell back into
old habits or forgot the learning in class and strayed on a tangent to what was
expected. The creativity aspect of the release planning exercise, on occasions,
proved problematic, where students either could not come up with an idea for
a product that was suitable to generate a good number of personas and user
stories, or that sometimes a student would get carried away and produce an
assignment submission that was all about their great idea, but little in substance
for demonstrating what they learned in class. What we learned is that setting
such an assignment, care should be taken to ensure the students remember they
need to focus and demonstrate their learning in their submissions.

Teaching Agile Methods to Software Engineering Professionals 161

Practical Approach to Teaching Agile. The design of the class delivery
gives students a practical approach to an Agile environment. The time-boxed
class sessions planned throughout the week reflects how sprints or iterations
are planned in time-boxed Agile methods such as Scrum and XP. We used pair-
stairs10 to encourage students to pair with their colleagues during the week, much
like when applying the XP practice of pair programming. The daily learning
stand-up reflects the practice of daily stand-up meetings in a Scrum or XP team.
The use of visual cues around the classroom to learning material, but also to the
collective class experiences such as in the prototyping and the release planning
exercises, provides the tactile experience that Agile working environments give.
Finally, getting the students to perform the retrospective exercise gives them the
experience of participating in a realistic retrospective.

Evolving Agile Teaching Content. One of the things we have observed that
is changing in the students over the last few years is that more students attend-
ing the course identify themselves as already having Agile training, or as being
Agile practitioners in their organizations. This reflects what we see today in the
software industry – that Agile is no longer a niche, and is an expected workplace
practice in software engineering teams. To this end we have taken the opportu-
nity, through the retrospectives, to be Agile in our planning of the course itself,
and to take on board “customer feedback” from our students and make continual
changes based on this feedback. For example we have introduced new games and
techniques into the course such as the getKanban board game and used more
recent and up to date Agile adoption case studies over time.

Student Feedback. Over each iteration of the Agile Methods course, as dis-
cussed earlier, feedback is gained by putting students through a retrospective
exercise at the end of the teaching week to help inform any changes to the next
instance of the class. Alongside this, students have been returning student feed-
back questionnaires since 2010, where overwhelmingly the feedback has been
positive. The students were asked to rate between 1 (strongly disagree) and 5
(strongly agree) their level of agreement on 12 statements, for example:

– The lectures added significant value to the course material
– The lectures included valuable contributions from other students in class
– The exercises helped me to understand the topics covered in the lectures

The aggregate and average score over the time period for which we have data
is 4.32 out of 5 based on 132 completed questionnaires11 (see Fig. 2). The last
three editions of the course feedback scored the most highly and were above
the SEP all courses average of 4.55, at 4.6, 4.73, and 4.66 respectively. This
feedback shows some perceived evidence that the course structure and content
has matured where students are generally satisfied with what is being delivered.

While the feedback was generally positive, there were however some negative
comments on the course content in the feedback questionnaires. Many of these
10 http://pairstair.com.
11 Statements and raw data located in https://tinyurl.com/AGM-Student-Feedback.

http://pairstair.com
https://tinyurl.com/AGM-Student-Feedback

162 A. Martin et al.

Fig. 2. AGM course evaluation as perceived feedback by students since 2010. Black –
average score for each AGM course by the students. Red – average score for all AGM
courses. Blue – average score for all SEP courses. Last three editions scored the highest.
(Color figure online)

focused on the fact that given such a short space of time allocated in class, there
was far too broad material in the Agile space to impart in further depth onto
the students. In particular, we received comments such as:

“The course content is not enough to stretch 5 days.”
“The large amounts of material made timing difficult.”
This is a clear acknowledgment that the amount of material around Agile

methods makes teaching the subject very difficult, especially in an intensive
teaching environment. There was some skepticism about the game-like exercises,
however, on further reflection with students several weeks after the course had
completed even those students acknowledged that they had taken on board the
learning from the exercises when they returned to their own organizations to
share their new-found knowledge around Agile. Some of the positive comments
we received included:

“Excellent way of teaching! You have expanded my horizon and gave me an
excellent introduction to Agile.”

“One of the best courses I have studied at Oxford. The lecturer and their use
of guests made the course better and maybe of benefit to other courses! Initially
I had doubts about the lecturer coming from industry but for this course it works
better as they can draw on experience.”

“A useful course with a timeliness of current industry trends.”
“Good and helpful lecturers. The idea of students studying and presenting a

case study is brilliant and helped a lot with understanding and discussing.”

Teaching Agile Methods to Software Engineering Professionals 163

We have kept the Agile Methods course content timely by consciously putting
Agile into practice in how we prepare and deliver the Agile Methods course itself.
Feedback, in particular via the retrospective exercise, has allowed us to keep the
course up to date with student and industry needs.

4 Related Work

Related work has mainly focused on teaching Agile to undergraduate and gradu-
ate students as part of computer science and software engineering curriculum’s.
The majority of these courses are typically group based projects, last 10–16
weeks, and teach Scrum and or XP. Our work reports on teaching a novel Agile
methods course to software engineering professionals that are already working
within industry and likely already have a degree, potentially in a computing
subject, or have extensive software industry experience.

Lu and DeClue [12] discuss how Agile skills improve the marketability of
new graduates. They also highlight the challenges posed in teaching Agile to
undergraduates that stem from prerequisite experience and maturity. These
challenges include fostering Agile approaches to skills such as communication,
self-organization, and teamwork, where students who have less experience in a
workplace may find mastery of these skills more difficult.

A panel at SIGCSE 2016 [3] raised a number of issues for teaching Agile
methods in software engineering courses at a variety of computer science pro-
grams. The panel focused only on undergraduate university teaching (100 to 400
levels), hence novices to Agile with limited development experience.

Anslow et al. [1] reported their experience of teaching Agile methods to
undergraduate and graduate students and presented a course outline along with
associated teaching materials. They recommended not to teach the course to
different levels simultaneously due to the nature of different levels of assessment
required, abilities of the students, and additional administrative overheads.

Steghöfer et al. [16] reported on their efforts to improve teaching Agile, and
Scrum in particular. They aimed to teach in a realistic manner but without
encountering the technical difficulties of creating a real product by introducing
exercises decoupled from software, such as LEGO Scrum.

Kropp et al. [10,11,13] looked at the status of Agile in education and indus-
try and proposed a competency model on which to base integration of Agile
into undergraduate teaching at two different universities. They found the most
difficult competencies to teach are Agile values and management practices which
they put significant emphasis on. Our AGM course also focuses on values and
management practices and we have a complimentary course that focuses on Agile
engineering practices12 such as TDD and continuous integration.

Soundararajan, et al. [15] developed an advanced graduate-level course (to
non-software professionals) in Agile software engineering at Virginia Tech. Their

12 http://www.cs.ox.ac.uk/softeng/subjects/APE.html.

http://www.cs.ox.ac.uk/softeng/subjects/APE.html

164 A. Martin et al.

course has similarities to our approach where they focus on Agile product devel-
opment, host guest talks from industry experts, and encourage students to
present and debate Agile case studies within the class.

5 Conclusions

For today’s computer science students who look towards entering a career in
software engineering, skills beyond programming and technical excellence are
essential. For any new graduate entering the tech industry, knowledge of Agile
is essential. We hope that by sharing our extensive experiences in teaching Agile
we can help foster excellence in Agile methods education in formal educational
settings, such as in high school, university degree programs, and perhaps also in
industrial training. From our experiences in teaching the Agile Methods course
at the University of Oxford, we can extract many aspects of what we taught
to graduate students that could be applied in any Agile teaching course. We
believe that putting Agile theory into practice with a hands-on approach will
lead to more effective learning. Based on the material reported in this paper
other academics who wish to run similar courses can learn from our experiences.

6 Agile Methods: Case Study Papers for 2016

P1. M. Albisetti. Launchpad’s quest for a better and agile user interface. In
XP, pages 244–250. Springer, 2010.

P2. K. Boekhout. Mob programming: find fun faster. In XP, pages 185–192.
Springer, 2016.

P3. C. Fry and S. Greene. Large scale agile transformation in an on-demand
world. In AGILE, pages 136–142. IEEE, 2007.

P4. S. Hublikar and S. Hampiholi. Pause, reflect and act, the pursuit of con-
tinuous transformation. In XP, pages 201–208. Springer, 2016.

P5. M. Keeling. Put it to the test: Using lightweight experiments to improve
team processes. In XP, pages 287–296. Springer, 2010.

P6. T. Little, F. Greene, T. Phillips, R. Pilger, and R. Poldervaart. Adaptive
agility. In AGILE, pages 63–70. IEEE, 2004.

P7. S. McCalden, M. Tumilty, and D. Bustard. Smoothing the transition from
agile software development to agile software maintenance. In XP, pages
209–216. Springer, 2016.

P8. B. Pieber, K. Ohler, and M. Ehegötz. University of Vienna’s u:space turn-
ing around a failed large project by becoming agile. In XP, pages 217–225.
Springer, 2016.

P9. D. Poon. A self funding agile transformation. In AGILE, pages 342–350.
IEEE, 2006.

P10. M. Rajpal. Lessons learned from a failed attempt at distributed agile. In
XP, pages 235–243. Springer, 2016.

P11. N. Robinson. A technical story. In AGILE, pages 339–343. IEEE, 2007.

Teaching Agile Methods to Software Engineering Professionals 165

P12. K.H. Rolland, V. Mikkelsen, and A. Næss. Tailoring agile in the large:
Experience and reflections from a large-scale agile software development
project. In XP, pages 244–251. Springer, 2016.

P13. C. Sudbery. How XP can improve the experiences of female software devel-
opers. In XP, pages 261–269. Springer, 2016.

P14. A. Takats and N. Brewer. Improving communication between customers
and developers. In AGILE, pages 243–252. IEEE, 2005.

P15. I. Tsyganok. Pair-programming from a beginner’s perspective. In XP,
pages 270–277. Springer, 2016.

P16. B. Victor and N. Jacobson. We didn’t quite get it. In AGILE, pages 271–
274. IEEE, 2009.

Acknowledgments. Thanks to Jeremy Gibbons and Jim Davies from the Software
Engineering Programme at the University of Oxford for their support. Thanks to guest
lectures by Antony Marcano, Duncan Pierce, Lazaro Wolf, and Robert Biddle. Thanks
to Rob Chatley for expert advice. Thanks to Clint Sieunarine and Ross Gales for being
teaching assistants.

References

1. Anslow, C., Maurer, F.: An experience report at teaching a group based agile
software development project course. In: SIGCSE, pp. 500–505. ACM (2015)

2. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change. Addison
Wesley, Reading (2004)

3. Campbell, J., Kurkovsky, S., Liew, C.W., Tafliovich, A.: Scrum and agile methods
in software engineering courses. In: SIGCSE, pp. 319–320. ACM (2016)

4. Cockburn, A.: Agile Software Development: The Cooperative Game. Addison Wes-
ley, Boston (2006)

5. Derby, E., Larsen, D.: Agile Retrospectives: Making Good Teams Great. Pragmatic
Bookshelf, Raleigh (2006)

6. Hazzan, O., Dubinsky, Y.: Why software engineering programs should teach agile
software development. SIGSOFT Softw. Eng. Notes 32(2), 1–3 (2007)

7. Lee, S.H., Lee, J., Liu, X., Bonk, C.J., Magjuka, R.J.: A review of case-based
learning practices in an online MBA program: a program-level case study. Educ.
Technol. Soc. 12(3), 178–190 (2009)

8. Highsmith, J.: Agile Software Development Ecosystems. Addison Wesley, Boston
(2002)

9. Kerth, N.L.: Project Retrospectives: A Handbook for Team Reviews. Dorset House
Publishing Co., New York (2001)

10. Kropp, M., Meier, A.: Teaching agile software development at university level:
Values, management, and craftsmanship. In: International Conference on Software
Engineering Education and Training (CSEET), pp. 179–188. IEEE (2013)

11. Kropp, M., Meier, A.: New sustainable teaching approaches in software engineering
education. In: EDUCON, pp. 1019–1022. IEEE (2014)

12. Lu, B., DeClue, T.: Teaching agile methodology in a software engineering capstone
course. J. Comput. Sci. Coll. 26(5), 293–299 (2011)

166 A. Martin et al.

13. Meier, A., Kropp, M., Perellano, G.: Experience report of teaching agile collabora-
tion and values: agile software development in large student teams. In: International
Conference on Software Engineering Education and Training (CSEET), pp. 76–80.
IEEE (2016)

14. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Pearson, Upper
Saddle River (2001)

15. Soundararajan, S., Chigani, A., Arthur, J.D.: Understanding the tenets of agile
software engineering: Lecturing, exploration and critical thinking. In: SIGCSE,
pp. 313–318. ACM (2012)

16. Vogel, B., Kilamo, T., Kurti, A.: Teaching distributed agile development to software
professionals: a flexible approach. In: European Conference on Software Architec-
ture Workshops, ECSAW, pp. 31:1–31:8. ACM (2015)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Are Software Startups Applying Agile Practices?
The State of the Practice from a Large Survey

Jevgenija Pantiuchina1, Marco Mondini1, Dron Khanna1, Xiaofeng Wang1(B),
and Pekka Abrahamsson2

1 Free University of Bozen-Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy
{Jevgenija.Pantiuchina,marco.mondini,dron.khanna,xiaofeng.wang}@unibz.it

2 Norwegian University of Science Technology, 7491 Trondheim, Norway
pekkaa@ntnu.no

Abstract. Software startups operate under various uncertainties and
the demand on their ability to deal with change is high. Agile methods
are considered a suitable and viable development approach for them.
However, the competing needs for speed and quality may render cer-
tain agile practices less suitable than others in the startup context. The
adoption of agile practices can be further complicated in software star-
tups that adopt the Lean Startup approach. To make the best of agile
practices, it is necessary to first understand whether and how they are
used in software startups. This study targets at a better understanding
of the use of agile practices in software startups, with a particular focus
on lean startups. Based on a large survey of 1526 software startups, we
examined the use of five agile practices, including quality related (regular
refactoring and test first), speed related (frequent release and agile plan-
ning) and communication practice (daily standup meeting). The findings
show that speed related agile practices are used to a greater extent in
comparison to quality practices. Daily standup meeting is least used.
Software startups who adopt the Lean Startup approach do not sacrifice
quality for speed more than other startups do.

Keywords: Software startups · Agile practice · Lean startup · Mini-
mum viable product · Pivot · Quality vs Speed

1 Introduction

Startups are organizations designed to create new products or services under
the conditions of extreme uncertainty, which constantly seek repeatable, prof-
itable and scalable business models and aim at rapid growth [1,2]. Software
startups are startups that have a primary focus on developing new and innova-
tive software-intensive products or services from which business value is created.
Even though sharing common characteristics with other types of startups, such
as resource scarcity and a lack of operational history [3], software startups are
often caught up in the wave of technological change frequently happening in soft-
ware industry, such as new computing and network technologies and devices [4].
c© The Author(s) 2017
H. Baumeister et al. (Eds.): XP 2017, LNBIP 283, pp. 167–183, 2017.
DOI: 10.1007/978-3-319-57633-6 11

168 J. Pantiuchina et al.

As the ability to accommodate frequent change is essential in the startup context,
agile methods have been considered the most suitable process model since they
enable software startups to embrace change, and allow development to adapt to
business strategies [5]. Fast release with an iterative and incremental approach
shortens the lead time from idea conception to production to market, which is
especially important for software startups as “done is better than perfect” and
“move fast and break things” are the slogans or mantras that they follow in
order to respond to the challenges they are confronted with [6].

However, since software startups are constantly under the huge pressure of
time-to-market and need to move really fast, product quality may be treated
with a low priority and technical debt is accumulated to gain the speed to mar-
ket [7]. As a result, certain agile practices that ensure the quality of software,
such as refactoring and test-driven development, may not be considered viable
practices for software startups, especially at the early stages [8]. But the accu-
mulated technical debt, if not paid back in time, will eventually slow down the
development speed [7], which means software startups cannot afford to ignore
quality and related engineering practices as they progress through the stages of
development.

The adoption of agile practices can be further complicated when software
startups follow the Lean Startup approach to develop their business, which puts
even more emphasis on quick prototyping [9], testing prototypes with potential
customers, and getting early feedback. The use of Lean Startup approach may
intensify the so-called “developers dilemma”—the balancing act between quality
and speed to achieve fast product iteration [10], and render the agile practices
related to quality even less viable to software startups.

To understand how software startups can better use and benefit from dif-
ferent agile practices for their needs for quality and speed, it is important to
understand firstly if and how software startups are currently using agile prac-
tices. The existing software engineering literature has accumulated a growing
body of knowledge on the application of agile methods in established compa-
nies, large or small. However it casts very few lights on the use of agile practices
in software startups, let alone in the startups who adopt the Lean Startup app-
roach. Based on this observation, the study presented in this paper targets at
understanding the state of the practice of agile practices in software startups,
and the potential influence of the Lean Startup approach on the use of agile
practices. The overall research questions that guide our study are:

RQ1: Are software startups applying agile practices?
RQ2: Are software startups that adopt Lean Startup applying agile practices?

To depict the state of the practice, we utilize the data collected in a large
online survey conducted from September 2013 to September 2014. Based on
the responses from 1526 surveyed software startups worldwide, we could obtain
a good understanding of the state of the practice of agile practices applied in
software startups.

The rest of the paper is organized as follows. Section 2 reviews the related
work that has been conducted so far to understand the use of agile practices

Agile Practices in Software Startups 169

in software startups. In Sect. 3, we explain how the online survey is utilized to
answer the research questions. The findings are presented in Sect. 4 and further
discussed in Sect. 5, together with the reflection on the limitations of and validity
threats to the study. The paper ends with Sect. 6 in which potential future work
is outlined.

2 Related Work

2.1 Agile Methods in Software Startups

The emergence of agile methods was a response to the inability of heavy-
weight, waterfall-like development methodologies to allow software organizations
to respond to change. Popular agile methods, such as Scrum and XP, have been
adopted by both small and large companies worldwide over the years, render-
ing agile a mainstream software development approach [11]. At their core, agile
methods focus on incremental and iterative development. The nimbleness and
flexibility allowed by different agile practices, such as short iterations, continu-
ous integration, etc., enable software organizations to address change effectively
[12,13]. The effective adoption and use of agile methods in established companies
have been manifested in a growing body of agile research [14–16].

When the context is switched to software startups, the picture is less clear-
cut. Some studies suggest in a general manner that agile methods are viable and
suitable for software startups (e.g., [17,18]). For example, Duc and Abrahamsson
[9] find that four out of five startups they studied have adopted agile development
processes. However, these studies do not specify clearly which particular agile
method or agile practices have been used in software startups.

Other studies suggest a different picture. Coleman and O’Connor [5] argue
that startups are creative and flexible in nature and are reluctant to intro-
duce process which may hinder their natural attributes. They have very limited
resources and typically wish to use these resources to support product develop-
ment. Giardino et al. [18] observe that, to quickly validate the product in the
market, software startups tend to use agile methods, but in an ad-hoc manner.
Yau and Murphy [8] go further and contend that, given that the communication
and cooperation dynamics in startups are very different from more established
companies and the fact that the initial focus of a startup might be significantly
different from its final objective, even the agile approach seems to impose too
much rigidity and process on them. Without denying that agile methods offer
clear benefits to startups over some of the more traditional methods, the authors
question whether they are appropriate in tackling the problems faced by star-
tups. Doubts are cast on the usefulness of agile practices including test-driven
development, pair programming, user stories, velocity and backlogs [8].

2.2 Lean Startup and Agile Practices

The Lean startup approach is considered a variant to agile methods in software
engineering literature [18]. It advocates the identification of the most risky parts

170 J. Pantiuchina et al.

of a software business and the use of Minimum Viable Products (MVPs) to
systematically test them and change the course of the development if needed.
According to Ries [1], a MVP is “[the] version of a new product which allows
a team to collect the maximum amount of validated learning about customers
with the least effort.” MVPs should be the main focus of both business and
product development activities in software startups [9]. The strategic change is
termed pivot in Lean Startup.

Even though the Lean Startup approach is seen as a recent advancement
in agile community, and regarded by some as a more “extreme” agile approach
than extreme programming (XP) or Scrum [19], difference between the two has
been argued. Agile methods seem to be able to prescribe on how to develop a
working software faster, but are unable to provide the answer to what product
should be developed in the first place [20]. Although agile methods advocate
to build software iteratively, they only work when problems are known to the
stakeholders. Instead, startups typically are looking for right problems to solve
and need to figure out who are their customers [2]. Lean Startup advocates
startups to build products iteratively and get early feedback to test riskiest
assumptions about their business models. The combined use of agile and Lean
Startup seems a sensible approach for software startups.

The research conducted by Duc and Abrahamsson [9] is focused on different
types of MVPs that software startups utilize and what are their main purposes.
They argue that the adoption of MVP might be influenced by many contex-
tual factors, and one most relevant factor is the product development method-
ology. They further suggest that the continuous integration—one of the agile
practices—might be the impetus for the popular adoption of evolutionary pro-
totypes and single-feature MVP in four of the five cases they studied.

However, Yau and Murphy [8] contend that certain agile practices may not be
in consistency with the primary focus of software startups that adopt the Lean
Startup approach. Quality is important for a software startup but cost and time
may be larger deciding factors. A small scale startup that has not obtained much
funding will probably have a short runway, and thus a limited amount of time
and money. The priority in this case should be to create an MVP, which may
lack in quality but is functional enough to show to investors. Terho et al. [10] also
argue the need of balancing between quality and speed in creating MVPs, the
intensified “developers dilemma” faced by software startups. As a consequence,
the agile practices that are focused on quality of software, such as test-driven
development and refactoring, may be compromised or even not taken on board.

3 Research Method

3.1 Survey Questions

This study utilizes a large online survey that was conducted between 2013 and
2014. The original survey explored various aspects of startups and covered a
large set of questions. The authors had the opportunity to access the survey
data and select the questions that were pertinent to the purpose of this study.

Agile Practices in Software Startups 171

Table 1 shows the list of questions used in this study, as the result of the selection
process. The questions are mainly divided into three categories:

– questions related to the demographic information of the respondents and the
background information of the surveyed software startups;

– questions related to agile practices, which form the core category. We used
the list of agile practices reported in the 10th annual agile report from Ver-
sionOne [11] as the commonly accepted agile practices. The original survey
includes five questions relevant to agile practices: regular refactoring, test
first, frequent release, agile planning, and daily standup meeting. All are
close-ended questions. Four are ordinal and the one about daily stand-up
meeting is binary. All of them require a single answer and are not mandatory.

– questions related to the Lean Startup approach, which allow us a more focused
examination of the use of agile practices in software startups that adopted the
Lean Startup approach. We identified three questions from the original survey
which indicate whether a startup is following the Lean Startup approach or
not. These questions reflect the key Lean Startup concepts: hypothesis-driven,
MVP and pivot.

Table 1. Survey questions used in the study

Background questions

About respondent Select your gender

How old are you?

What is your motivation with this startup?

About startup What kind of startup are you a part of?

What is the total size of your team?

How many founders are there on your team that own a
significant piece of equity?

What’s the stage of your primary product?

How many core features does your product have?

Agile practice related questions

Regular Refactoring How often do you refactor code?

Test First When do you start writing tests?

Frequent Release What is the frequency of your product release cycle?

Agile Planning How far ahead do you plan your product development
pipeline?

Daily Standup Do you do daily stand up meetings?

Lean Startup related questions

Hypothesis-driven We identified the riskiest hypotheses about our business in
order to test them first

MVP We built minimally viable products to test our hypotheses

Pivot How many pivots have you had?

172 J. Pantiuchina et al.

3.2 Data Cleaning and Validation

To ensure the quality and validity of the survey data, we went through a careful
data cleaning and validation process on the original dataset, which is described
in detail in this section. The process was mainly automatized using R software
package. Additionally, we have removed suspicious data entries manually.

To start with the data cleaning process, we set the threshold of 50 (out of a
total of 278 original survey questions) as the minimum number of answered
questions that a data entry should contain. All the rows with less than 50
answers were removed from the dataset. Afterwards, we merged rows if they
were answered by the same person and for the same startup, because the sur-
vey collection application saved the data as a separate entry if the survey was
interrupted and then restarted again. We also removed duplicate columns that
might have been introduced during the data exporting process. We also fixed
various obvious errors that may be attributed to the original survey design or
data exporting process.

After this rudimentary step, we started automatized and manual data clean-
ing column by column (question by question). We removed all the rows where
startup names were missing, to ensure that respondents have answered the ques-
tions by referring to specific startups. We also removed the rows with empty
emails. We have decided to exclude from the sample the answers referring to
the same startup but answered by different respondents because there was not a
convincing rationale as to which answer to keep: the CEO’s or the developer’s.
Each of them has its pros and cons. Fortunately there were not many dupli-
cated startups. We also checked startup names, emails and websites and further
removed the rows with suspicious values, for example, the answers that contain-
ing “none”, “not”, “test”, “xyz”, “untitled”, etc. We then applied the regular
expressions to all the columns that had a fixed set of values to further remove
invalid answers. For example, if a question was Boolean, we ensured that only
“0”s and “1”s were in the corresponding column. In the last step, we printed
all the possible values for each closed question and ensured that only the valid
answers were present in the dataset.

After the initial cleaning, we checked the validity of the data using a set
of validation cases that we discovered based on a close inspection of all the
survey questions. The validation cases detected a set of unrealistic, impossi-
ble, invalid combinations of answers which rendered certain data entries invalid,
which in turn were removed from the dataset. All the validation cases we used
are described in an online document that can be accessed at https://figshare.
com/s/08c35ec98fd85e827594

The original dataset had 10171 entries. After applying the data cleaning
and validation process, the final cleaned dataset has a sample size of 1526. By
performing such strict data cleaning and validation steps, we may have removed
some valid entries unintentionally. But removing some valid entries is a trade
off that is worth making in order to obtain a clean dataset to conduct the data
analysis.

https://figshare.com/s/08c35ec98fd85e827594
https://figshare.com/s/08c35ec98fd85e827594

Agile Practices in Software Startups 173

3.3 Data Analysis

To answer the research questions posed in Sect. 1, we analyzed the data in two
steps:

Step 1 : To answer RQ1, firstly the structure of the five questions related to
agile practices was analyzed using exploratory factor analysis. Two factors fit
the model and the practices group in pairs: regular refactoring with test first,
and frequent release with agile planning. Instead daily standup meeting does not
show a significant correlation with any of the two factors. Therefore three dimen-
sions can be defined to group the five agile practices: quality (regular refactoring
and test first), speed (frequent release and agile planning), and communication
(daily standup meeting). Next the internal consistency between the two items
in the quality and speed dimensions was analyzed using Cronbach’s alpha. How-
ever a low level of reliability estimates (α = 0.41 and α = 0.50 respectively)
was obtained, which meant that the two items within each dimension were not
suitable to aggregate. Therefore, the further analysis was conducted on each
individual agile practice, rather than at the group level. To allow a sharper com-
parison, for each agile practice, we divided the startups into using the practice
vs. not using it based on their answers to the question. In this way we converted
the four agile questions that were categorical (ordinal) into binary. We exam-
ined the frequency of the use of five agile practices in the surveyed startups.
Since software startups at different product development stages may adopt agile
practices differently, we further investigated the difference using Chi-square. The
hypothesis for each of the agile practices can be formulated as the following:

Ha1: There is significant difference in the use of [the agile practice] among soft-
ware startups at different product development stages.

Step 2 : The focus of this step was to analyze the use of agile practices in the soft-
ware startups that adopted the Lean Startup approach, in order to answer RQ2.
To identify lean software startups in the sample, we used the three questions
related to the Lean Startup approach, as explained in Sect. 3.1. The software
startups that answered “yes” to the first two questions and have pivoted at least
once were considered adopting the Lean Startup approach therefore lean software
startups. 229 out of 1526 are lean startups. The use of the five agile practices
in these lean startups was compared to that in the rest of the whole sample, to
understand if there was difference in agile practice use between the two sub sam-
ples. For this purpose again Chi-square tests were used. The hypothesis under
the test regarding each agile practices can be formulated as the following:

Ha2: There is significant difference in the use of [the agile practice] between lean
software startups and non lean software startups.

Since pivot is an important aspect of software startups, we also examined
the number of pivots the surveyed startups made as part of Step 2 analysis.

The data analysis process was conducted using R software environment.

174 J. Pantiuchina et al.

4 Results

The cleaned dataset contains information about 1526 software startups, pro-
vided by 1526 respondents who either founded or worked for these startups. Not
surprisingly only a very small percentage (8%) are females in comparison to the
much larger percent of males (76%, the remaining 16% didn’t reveal gender infor-
mation). The age of these respondents spread from 18 to 72 (based on 1219 cases
that contain age information), with a mean of 34 and a median of 32 (sd = 9.58).
A slight majority of the respondents (52.3%) have the age between 25 and 35. It
is intriguing to understand what motivated the respondents to found or work for
these startups. As expected the majority of answers reflect an entrepreneurial
mindset: “Build a Great Product” covers the 52% of the motivations, followed
by “Change the world” (29%). “Make a Good Living”, “Get Rich” and “Create
a quick flip” are motivations for only less than 20% of the respondents.

Regarding the types of these software startups, more than half of them (877)
are working on web-based products. 264 software startups provide both web
and mobile solutions. Mobile applications are the focus of 171 startups. Only 65
startups provide non web-based software solutions. The remaining 149 startups
either work on products where software plays a less significant role or did not
provide specific information regarding the types of their startups.

1461 software startups answered the question “What is the total size of your
team?” with meaningful values. The distribution of the sample is skewed right
significantly, with 81.2% of the software startup teams with less than 9 members.
The mean of the team size is 7.23 and the median is 4 (sd = 19.15). When the
number of founders is concerned, even though we could not obtain the direct
data from the survey, we could infer from the question “how many founders
are there on your team that own a significant piece of equity?” that most often
an entrepreneurial team has two co-founders that have significant equity of the
company, followed by 1-significant-founder and trio co-founder teams.

The distribution of the software startups across product development stages
is shown in Fig. 1. It can be seen that it follows a normal distribution, with soft-
ware startups that have functional products with limited users as most common,
and those with mature products as the minority. A closer look at the number of
core features that these products have reveals that the average number of the
core features of a product is 5 (mean = 5.2,median = 4, sd = 4.07). 72% of the
startups work on products that have 5 core features or less.

Fig. 1. Startup distribution with respect to product stages

Agile Practices in Software Startups 175

4.1 Agile Practices in Software Startups

Two agile practices, regular refactoring and test first, allow software startups to
focus on the quality of their products. 1240 startups responded to the question
related to regular refactoring, and 1273 to test first. As shown in Fig. 2, regarding
refactoring, slightly less than 45% of the startups do care about the quality and
refactor the code every few weeks or even once a week. However, a bit more
than one fourth of those rarely or never do refactoring. If refactoring “once a
week” and “every few weeks” are considered regular therefore an agile practice
(blue bars in Fig. 2), the other options indicate that regular refactoring is not
practiced in the startups. It can be concluded that a slight majority of the
startups surveyed are not doing regular refactoring.

Fig. 2. Startup distribution with respect to the frequency of code refactoring (Color
figure online)

Similar results are shown in the test first practice. It is evident from Fig. 3
that around 32% of them are writing tests as soon as they write features, there-
fore practicing test first (blue bar). However, again one fourth of the startups
never write tests. Among the other options, “as soon as we know we’re going to
keep a feature” indicates clearly the test first practice is not used. Even though
we could not interpret properly the options “as soon as we reach a legal agree-
ment with a customer” and “other” due to a lack of access to the original survey
design, we could still conclude that the majority of the startups surveyed do not
adopt the test first practice.

Fig. 3. Startup distribution with respect to the frequency of code testing (Color figure
online)

Agile planning and frequent release are the two practices that allow software
teams to be able to collect feedback on their products and adjust their devel-
opment speed accordingly. 1391 startups responded with their release frequen-
cies and 1290 indicated how far ahead they planned their product development

176 J. Pantiuchina et al.

Fig. 4. Startup distribution with respect to agile planning (Color figure online)

pipelines. Regarding planning, Fig. 4 shows that most often the software star-
tups plan ahead for 1 to 3 weeks (about 24%), more than 10% plan for 2 to 7
days, and about 3% are doing daily planning. Only less than 6% put up a yearly
or longer-term plan. In total, more than 57% of the startups plan in an agile
manner in terms of the time frame covered by the planning (shown by the blue
bars. We used 30-day sprint to draw the division). Agile planning should be for
3 to 6 weeks (30 working days) or shorter.

As shown in Fig. 5, the most common (about 21%) release frequency used by
these software startups is every 2 to 3 weeks, followed by every 1–3 months (about
19%). It is interesting to see that more than 13% of the startups are practicing
continuous delivery and release product once per day or even multiple times per
day. However, more than 15% other startups have really low release frequency
(every 3–6 months or even more than 6 months), which is worrying given the
fact that they are software startups and moving fast is not an option but a must
for many of them. The bars in Fig. 5 are divided into two groups: those with
release frequency of 2–3 weeks or less (blue bars) therefore indicating frequent
release (again the 30-day sprint length was used as the division line), and those
indicating low release frequency (taking more than one sprint to release a new
version). It can be seen that more than 64% of the startups do frequently release
their products.

Daily standup meeting is an agile ceremony used to facilitate communication
among software development teams and organizations. Among the 1286 software
startups that answered the question, more than 70% are not using the practice,
in contrast to about 30% that said “yes” to the question.

Fig. 5. Startup distribution with respect to frequency of product releases (Color figure
online)

Agile Practices in Software Startups 177

Table 2. The use of agile practices in software startups across product stages

Product Regular Test Frequent Agile Daily standup

development stage refactoring first release planning meeting

Yes No Yes No Yes No Yes No Yes No

Concept 49 47 41 41 2 0 63 36 23 76

In development 93 93 74 97 144 80 118 78 53 146

Working prototype 111 107 87 119 158 108 138 91 59 170

Functional product
with limited users

246 337 190 323 483 230 350 257 198 403

Functional product
with high growth

40 63 42 51 79 44 53 51 32 72

Mature product 16 35 24 19 29 31 20 32 16 35

Table 2 shows the use of the five agile practices by the software startups across
different product development stages. As explained in Sect. 3.3, the use of the
agile practices are simplified into “yes”/“no” Boolean options, to allow a sharper
comparison. Table 2 does show that for each agile practice, the percentage of
software startups using it varies across the product development stages. However,
there is no discernible pattern in the variance of the percentages.

To test Ha1, Chi-square tests were applied. A pre-examination excluded fre-
quent release from the test since the assumptions requested to run Chi-square
test were not met. We run the tests on the cleaned sample (n = 1526). Since
the data entries that have empty answers to each agile practice and/or product
development stage were removed, each test has a different sample size (as shown
in Table 3, Column 2). The test results show that regular refactoring and agile
planning are linked to the development stages (the respective Ha1 is supported).
Instead, Ha1 regarding test first and daily standup meeting cannot be supported.

4.2 Agile Practices in Lean Software Startups

Regarding the individual responses to the three Lean Startup questions from the
whole sample, 489 out of the 1526 replied with a definitive “yes” to the statement

Table 3. Agile practices across product stages—Chi-square test results

Practice n Chi-square Degrees of p-value Result

freedom

Regular refactoring 1237 13.638 5 0.01808 Ha1 supported

Test first 1108 11.06 5 0.05021 Ha1 rejected

Agile planning 1287 12.365 5 0.030121 Ha1 supported

Daily standup meeting 1283 7.736 5 0.1714 Ha1 rejected

178 J. Pantiuchina et al.

Table 4. Pivoting in lean startups across product stages

Product No. of lean Mean of number

stage startups of pivots

Concept 3 2.0

In development 40 2.1

Working prototype 57 2.4

Functional product with limited users 107 2.0

Functional product with high growth 17 2.4

Mature product 5 2.6

“We identified the riskiest hypotheses about our business in order to test them
first”, and 55% claimed that “We built minimally viable products to test our
hypotheses”. It is interesting to explore the pivoting behavior of these startups
in terms of the number of pivots they have made. 1440 out of 1526 gave valid
answers to the number of pivots. The mean is 1.528 and median is 1 (sd = 2.06),
in a range from 0 to 30 pivots.

229 out of the 1526 software startups are considered following the Lean
Startup approach based on the selection criteria specified in Sect. 3.3. When
looking closely at the pivoting in this subset, the number of total pivots the
surveyed startups experienced ranges from 1 to 15, with the mean equal to 2.153
and the median to 2 (sd = 1.73). From the perspective of product development
stages, we can see that, as shown in Table 4, the mean of the number of total
pivots of startups at different stages ranges from 2 to 2.6. The lean startups that
progressed to the stages of having functional or mature products in total have
not pivoted more than those at the early product development stages.

Table 5 shows the use of the five agile practices in lean startups in comparison
to that in the rest of the sample. It can be seen that there is a higher percentage
of lean startups using each of the agile practices for all the five agile practices.

To test Ha2, we used the Chi-square test on the two groups: lean startups
vs. non-lean startups. The results are shown in Table 6. The difference between

Table 5. The use of agile practices in lean startups vs. non lean startups

Agile practice Lean startup subset Non lean startup subset

Yes No Yes No

Regular refactoring 99 99 456 586

Test first 86 86 372 567

Frequent release 164 61 733 433

Agile planning 119 83 626 462

Daily standup meeting 76 124 306 780

Agile Practices in Software Startups 179

Table 6. Agile practices in lean vs. non-lean startups—Chi-square test results

Practice n Chi-square Degrees of p-value Result

freedom

Regular refactoring 1240 2.3723 1 0.1235 Ha2 rejected

Test first 1111 6.0471 1 0.0139 Ha2 supported

Agile planning 1290 0.0815 1 0.7752 Ha2 rejected

Frequent release 1391 7.8438 1 0.0051 Ha2 supported

Daily standup meeting 1286 7.3417 1 0.0067 Ha2 supported

the two groups is not significant in terms of the use of regular refactoring and
agile planning. Instead, the percentage of lean startups using test first, frequent
release or daily standup meeting is significantly higher than that of non-lean
startups.

5 Discussion

So are software startups using agile practices? The results of our study reveal
that a majority of software startups do not use quality related agile practices,
such as regular refactoring and test first. It reflects the major concern expressed
in the literature that quality has a low priority and technical debt is accumulated
in software startups, especially at their early stages. When the agile practices
regarding the speed of development are concerned, our study shows that a large
majority of software startups do move fast by adopting frequent releases and
short-term agile planning. This is in line with the literature that emphasizes
that speed matters significantly to software startups [7]. However, the under
use of quality related agile practices in comparison to speed related practices
is not unique to software startups. The same pattern has been manifested in
the surveys of agile and lean adoption in software organizations in general. For
example, in the 10th annual agile survey conducted by VersionOne (based on
3,880 completed responses) [11], it is shown that speed related practices (e.g.,
short iterations, iteration planning, release planning) are employed more often in
the surveyed organizations than quality related practices (such as unit testing,
refactoring, test-driven development). A smaller scale academic survey on agile
and lean usage in Finnish software industry with 408 responses demonstrates
the same tendency [21]. It seems that, in terms of balancing speed and quality
concerns, software startups are not so different from the general population of
software organizations. Agile practices related to speed are more often used by
both software startups and established companies alike.

In contrast, our findings regarding daily standup meeting indicate that this
well-known agile practice is not used in software startups to the same extent as
in established software organizations. According to the VersionOne survey [11],
daily standup meeting is the most popular agile practice among the surveyed

180 J. Pantiuchina et al.

organizations, with an adoption rate of 83%. Its popularity is echoed in the
academic survey too [21]. In our survey instead, daily standup meeting is the
least frequently used practice among the five agile practices studied. Only about
30% of the software startups use this practice. One explanation of such different
could be that daily standup meeting is a typical agile ceremony used by software
development teams and organizations to facilitate communication. Because most
startup teams have very small sizes (as described in Sect. 4), informal commu-
nication happens frequently, which renders formal communication practices less
necessary. Yau and Murphy [8] offer similar arguments. They contend that, in
small scale startups with only a few members, many problems that agile methods
set out to solve do not exist, e.g., the communication issue.

In this study we further examined the use of agile practices by software
startups at different stages of product development. The results of the hypothesis
testing (Ha1) show that the use of agile practices including regular refactoring
and agile planning does vary across the product development stages. Instead,
the use of test first and daily standup meeting is not significantly associated
with the stages. We cannot draw any conclusion regarding frequent release. This
finding provides partial support to the claim in the literature that not all software
engineering practices are usable or beneficial in different stages of startups [22].
It is an interesting direction to investigate which software engineering practices
are most useful and beneficial to which stages of startups.

Another specific angle investigated in our study is the use of agile practices
by software startups that adopted the Lean Startup approach. Some studies have
expressed the concerns that startups adopting the Lean Startup approach have
to sacrifice certain agile practices or product quality due to limited funding and
short runway in order to move fast and test business hypotheses with MVPs
[8,10]. However, the findings reported in Sect. 4.2 do not substantiate these con-
cerns. On the contrary, they reveal that lean software startups tend to use agile
practices more than the rest of the startups surveyed. Especially in terms of test
first, frequent release and daily standup meeting, significantly higher portions
of lean startups practice them. With these practices that address both needs of
quality and speed, lean software startups may be in a good position to manage
the “developers dilemma” [10], better at balancing between quality and speed
to achieve fast product iteration.

Even though not a main focus of this study, it is worth noting the somehow
surprising finding regarding the number of pivots made by lean startups across
different product development stages. Pivot is considered a key component of the
Lean Startup approach, an action that startups are encouraged to take based
on the validated learning they obtain through testing risky business assump-
tions early and often [1]. Therefore, one would expect that the total number
of pivots increases as startups progress along the development stages and pivot
continuously. However, the result regarding pivoting reported in Sect. 4.2 does
not conform to this expectation. Further investigation is needed to understand
the pivoting in software startups.

Agile Practices in Software Startups 181

Lastly, the results reported in this paper need to be viewed in the lights of the
limitations of and validity threats to the study. The lack of access to the original
survey design and no control to the quality of collected data pose the biggest
limitation to our study, constraining the types of analysis that can be conducted
and consequently the results that can be obtained. For these reasons, we went
to great lengths to clean and validate the data to ensure its quality. Another
limitation is due to the fact that there are a very limited number of questions
in the original survey that can be associated with agile methods and practices
with an acceptable level of confidence. At the end only five agile practices were
brought into the study. In addition, each agile practice had only one correspond-
ing question (item), so the risk of not obtaining valid data was increased due
to the lack of multiple items to probe the same practice. These concerns pose
a potential threat to the construct validity of the study. Instead, the external
validity is ensured by the size and random nature of the sample. Therefore the
findings of this study can be generalized to a general population of software
startups.

6 Conclusion

In the past years agile methods have become main-stream software develop-
ment approaches in established companies, small or large. They are considered
natural choices for software startups too, since startups operate under various
uncertainties and the demand on their ability to deal with change is high. Mean-
while software startups have to focus on business development as well as product
development. Lean Startup is the approach that an increasing number of startups
adopt to test the riskiest business assumptions in their business models. This
study provided a better understanding of the state of agile practices in software
startups, with a particular focus on lean startups. Based on a large survey of
1526 software startups, we found out that different agile practices are used to
different extents, depending on the focus of the practices. Speed related agile
practices are used to a greater extent in comparison to quality related practices.
Communication practices represented by daily standup meeting is least used. In
addition, unlike what is speculated in the literature, software startups who adopt
the Lean Startup approach do not sacrifice quality for speed more than other
startups do. Our study is the first step towards more in-depth understanding of
how software startups can better use agile practices and eventually benefit from
them.

In our current study we could not identify any questions specific to lean
practices, such as kanban, from the original survey questions. Future work can
investigate how lean practices are used in software startups. Meanwhile, “doing
agile”, using agile practices, does not ensure software startups of “being agile”,
being able to respond to change and uncertainty. This study was focused on
“doing agile”. Future work can assess the agility of software startups, and estab-
lish the link between “doing” and “being” agile to startup success. It would be
also effort worth spent to design a new survey that is focused on investigating the
adoption of agile and lean methods as well as Lean Startup in software startups.

182 J. Pantiuchina et al.

Acknowledgement. Thanks a lot to Carmine Giardino who shared the original sur-
vey data with us.

References

1. Ries, E.: The Lean Startup: How Today’s Entrepreneurs Use Continuous Innova-
tion to Create Radically Successful Businesses. Crown Business, New York (2011)

2. Blank, S.G.: The Four Steps to the Epiphany: Successful Strategies for Products
that Win. Cafepress.com, Foster City (2005)

3. Sutton, S.M.: The role of process in a software start-up. IEEE Softw. 17, 33–39
(2000)

4. Unterkalmsteiner, M., Abrahamsson, P., Wang, X., Nguyen-Duc, A., Shah, S.,
Bajwa, S.S., Baltes, G.H., Conboy, K., Cullina, E., Dennehy, D., et al.: Software
startups-a research agenda. e-Informatica Softw. Eng. J. 10(1), 89–123 (2016)

5. Coleman, G., O’Connor, R.V.: An investigation into software development process
formation in software start-ups. J. Enterp. Inf. Manag. 21(6), 633–648 (2008)

6. Thomas, S.: Done is better than perfect: how to beat perfectionism paralysis (2016).
http://engageme.online/done-is-better-than-perfect-how-to-beat-perfectionism-
paralysis/

7. Giardino, C., Paternoster, N., Unterkalmsteiner, M., Gorschek, T., Abrahamsson,
P.: Software development in startup companies: the greenfield startup model. IEEE
Trans. Softw. Eng. 42(6), 585–604 (2016)

8. Yau, A., Murphy, C.: Is a rigorous agile methodology the best development strategy
for small scale tech startups? Technical report (CIS), Paper980, p. 9 (2013)

9. Duc, A.N., Abrahamsson, P.: Minimum viable product or multiple facet product?
The role of MVP in software startups. In: Agile Processes, in Software Engineering,
and Extreme Programming, vol. 251, pp. 118–130 (2016)

10. Terho, H., Suonsyrjä, S., Systä, K.: The developers dilemma: perfect product devel-
opment or fast business validation? In: Abrahamsson, P., Jedlitschka, A., Nguyen
Duc, A., Felderer, M., Amasaki, S., Mikkonen, T. (eds.) PROFES 2016. LNCS, vol.
10027, pp. 571–579. Springer, Cham (2016). doi:10.1007/978-3-319-49094-6 42

11. VersionOne: The 10th Annual State of Agile Report. Technical report (2016)
12. Highsmith, J., Cockburn, A.: Agile software development: the business of innova-

tion. Computer 34(9), 120–127 (2001)
13. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd

edn. Addison-Wesley Professional, Boston (2004)
14. Dyb̊a, T., Dingsøyr, T.: Empirical studies of agile software development: a system-

atic review. Inf. Softw. Technol. 50(9), 833–859 (2008)
15. Abrahamsson, P., Conboy, K., Wang, X.: “lots done, more to do”: the current state

of agile systems development research. Eur. J. Inf. Syst. 18, 281–284 (2009)
16. Dingsøyr, T., Nerur, S., Balijepally, V., Moe, N.B.: A decade of agile methodologies:

towards explaining agile software development. J. Syst. Softw. 85(6), 1213–1221
(2012)

17. Paternoster, N., Giardino, C., Unterkalmsteiner, M., Gorschek, T., Abrahamsson,
P.: Software development in startup companies: a systematic mapping study. Inf.
Softw. Technol. 56(10), 1200–1218 (2014)

18. Giardino, C., Unterkalmsteiner, M., Paternoster, N., Gorschek, T., Abrahamsson,
P.: What do we know about software development in startups? IEEE Softw. 31(5),
28–32 (2014)

http://engageme.online/done-is-better-than-perfect-how-to-beat-perfectionism-paralysis/
http://engageme.online/done-is-better-than-perfect-how-to-beat-perfectionism-paralysis/
http://dx.doi.org/10.1007/978-3-319-49094-6_42

Agile Practices in Software Startups 183

19. Gilb, T., Gilb, K.: “Lean Startup” - the most extreme agile method by far. Agile
Rec. (9), 53–54 (2012)

20. Bosch, J., Holmström Olsson, H., Björk, J., Ljungblad, J.: The early stage software
startup development model: a framework for operationalizing lean principles in
software startups. In: Fitzgerald, B., Conboy, K., Power, K., Valerdi, R., Morgan,
L., Stol, K.-J. (eds.) LESS 2013. LNBIP, vol. 167, pp. 1–15. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-44930-7 1

21. Rodŕıguez, P., Markkula, J., Oivo, M., Turula, K.: Survey on agile and lean usage
in finish software industry. In: Proceedings of the ACM-IEEE International Sym-
posium on Empirical Software Engineering and Measurement - ESEM 2012, p. 139
(2012)

22. Eloranta, V.P.: Towards a pattern language for software start-ups. In: 19th Euro-
pean Conference on Pattern Languages of Programs, pp. 1–11 (2014)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://dx.doi.org/10.1007/978-3-642-44930-7_1
http://creativecommons.org/licenses/by/4.0/

Adopting Test Automation on Agile Development Projects:
A Grounded Theory Study of Indian Software

Organizations

Sulabh Tyagi1(✉), Ritu Sibal1, and Bharti Suri2

1 Netaji Subhash Institute of Technology, Delhi University, New Delhi, India
sulabhtyagi2k@yahoo.co.in, ritusib@hotmail.com

2 Guru Gobind Singh Indraprastha University, New Delhi, India
bhartisuri@gmail.com

Abstract. The role of test automation in Agile Software Development projects
is of paramount importance. It is absolutely necessary to automate tests on agile
projects as the number of test cases will continue to grow with each successive
sprint. Through a Grounded Theory study involving 38 agile practitioners from
18 different software organizations in India, we identified five key challenges
faced by agile practitioners and different strategies to overcome those challenges
while practicing test automation. Understanding these challenges and strategies
would help agile teams in streamlining their test automation practices.

Keywords: Test automation · Test driven development · Agile software
development · Grounded theory

1 Introduction

The widespread use and popularity of agile methodologies are primarily due to their
ability to produce quality software in less time with limited manpower. Most of the
software industries are using scrum and XP methodologies of agile software develop‐
ment. Testing is an integral part of development in agile projects rather than a distinct
Software Development Life Cycle (SDLC) phase [1].

Software test automation refers to the activities and efforts that intend to automate
engineering tasks in a software test process using well-defined strategies and systematic
solution [2]. According to [3] test automation is one of the most effective solution for
projects which have strict deadlines as it speeds up the test execution and increases the
test coverage.

Automation on a scrum project is not optional, for a team to sprint effectively and
deliver value quickly, it needs to rely heavily on test automation [4]. Crispin and Gregory
[5] argued that test automation is the key factor for successful agile software develop‐
ment and the core of agile testing. In a study by Puleio’s [6] test automation was seen
as a key factor in agile testing to keep development and testing in synchronization. It is
evident from the above studies that test automation is a crucial ingredient of agile soft‐
ware development projects. Further, a study from Collins [7] reported that test

© The Author(s) 2017
H. Baumeister et al. (Eds.): XP 2017, LNBIP 283, pp. 184–198, 2017.
DOI: 10.1007/978-3-319-57633-6_12

automation works very well if the agile teams find the right way to implement test
automation in their projects and presented some strategies to minimize the risk during
test automation implementation.

The objective of this study is to create an understanding on different challenges faced
by agile practitioners while adopting test automation on agile projects and to present
some possible strategies to overcome those challenges. To provide more empirical
insight in this area, a grounded theory study has been conducted that involved 38 agile
practitioners from 18 different software organizations in India. We hope our research
will help in understanding the issues while adopting test automation on agile projects
and streamlining it through proper strategies.

The rest of the paper is structured as follows: in the next section a brief overview of
the Grounded Theory is presented; the third section describes the findings of this study;
the fourth section discusses these findings; the fifth section presents limitations of this
study and the last section concludes the paper.

2 Research Method

2.1 Grounded Theory

Grounded Theory (GT) is a systematic research method where prominence is on the
generation of theory that derived from systematic and rigorous analysis of data [8, 9].
The emphasis in GT is on new theory generation which means rather than beginning
with a pre-conceived theory in mind, the theory evolves during the research process
itself and thus the product of continuous interplay between data collection and analysis
of that data [10].

Which version of ground theory. Glaser GT states that researchers should start with the
general ‘area of interest’ and beginning a GT study with specific research questions can
lead to pre-conceived ideas or hypothesis of the research phenomena [11]. Other two
versions of GT are Straussin GT [12] and Charmaz’s constructivist GT [13]. This study
employed the Glaserian version as our objective was to find out the issues from the real
life experience of the agile practitioners related to our general area of interest i.e. Agile
Project Management rather than imposing our own pre-conceived ideas and concerns
that could influence this study and also due to plenty of resources available on Glaserian
GT [8]. GT has been chosen as our research method for many reasons. Firstly, agile
software development focuses on people and interactions, and GT, allows us to study
social interactions and the behavior of people. Secondly, GT is most suited to areas of
research that have not been explored in detail, and according to our knowledge, the
research studies on test automation practices in agile software development is also
scarce. Thirdly, GT focuses on theory generation rather than extending or verifying
existing theories [14]. Finally, GT is being liberally used to study the agile teams [11,
15–18]. Following Glaser’s guidelines, the study started with a general area of interest
– Agile project management – rather than beginning with a specific research problem.
Problems and its key concerns will emerge in the initial stages of data analysis and it
did [19].

Adopting Test Automation on Agile Development Projects 185

2.2 Data Collection

Data collection in GT is guided through theoretical sampling whereby researchers iter‐
atively collect and analyze their data to decide what data to collect next and where to
find the data [20]. A GT study requires the theoretical sampling to be continued until
theoretical saturation is reached that is when no more new concepts or categories emerge
from the data, and further data collection would be a waste of time [21].

Recruiting Participants. This study involved 38 agile practitioners from 18 different
software organizations in India with size varied from 50 to 200,000 employees located
in Bengaluru, Mumbai, Pune, Noida and Gurgaon. The project duration varied from 6
to 36 months and team size varied from 7 to 20 people on different projects with wide
range of domains like software consultancy, e-commerce platforms. Due to ethical
considerations and to keep our participants identity confidential, we used codes P1 to
P38 to identify our participants. Table 1 shows the participants and project details of
this research study. We contacted members of Agile Software Community of India [22]
and also took part in Agile India 2016 International Conference [23] on Agile that
provided us the platform to collaborate with many agile practitioners across India and
abroad. Many practitioners agreed to be a part of our research and participated in this
study.

Interviews. Face-to-face semi-structured interviews were conducted with agile practi‐
tioners using open-ended questions over a period of eighteen months. Normally, each
interview lasted for about one hour and was scheduled at the mutually agreed location.
The interviews were audio recorded with the consent from the participants on ensuring
full confidentiality, so that we could concentrate on the conversation. Ten participants
were interviewed from four different software organizations in first phase of our study.
Interview began with warm up questions regarding participants experience, their roles,
nature of duties and different agile project management practices in their respective
projects. Each participant had a 3–4 or more years of hands-on experience on either
scrum, XP or both. Initial sample of participants comprised Scrum Masters, Developers,
Product Owners (PO’s) and Testers. Then we progressed to our second phase of inter‐
views and expanded our sample participants to Senior Management people (Chief Tech‐
nical Officer, Vice-President), Agile coaches and Devops to gain the well rounded
perspective from participants, also the set of questions were gradually modified as per
Glaser [20] to achieve theoretical saturation of our core category - Adopting Test Auto‐
mation. After completion of each interview, it was transcribed and analyzed line by line
to identify key points, codes, concepts and categories. Data collection and its analysis
were performed iteratively. Constant comparison of interview transcripts helped us in
guiding future interviews, and then we continuously fed back the analysis of interviews
and observations from our study into the emerging results. All the data was personally
collected and analyzed by the primary author so that consistency can be maintained in
the application of GT.

Observations. We also performed passive observations in two projects denoted as
Sigma and Delta in two different Indian software organizations denoted as X and Y. X

186 S. Tyagi et al.

is into smart metering and energy management solutions with presence in over 30 coun‐
tries and Y is into e-commerce business with presence in over 4 countries.

Observation period in Sigma and Delta was 8 and 6 months respectively. Sigma was
practicing agile mainly blend of scrum and XP from past 3 years but Delta was relatively
new to agile and practicing scrum from past 1 year. We observed daily stand ups, sprint

Table 1. Summary of participants and project details. (Agile Position: Agile Coach (AC), Chief
Technical Officer (CTO), Developer (DEV), Devops (DO), Product Owner (PO), Scrum Master
(SM), Senior Agile Coach (SAC), Senior Developer (SD), Senior Quality Analyst (SQA), Senior
Tester (ST), Test Analyst (TA), Tester (TES), Vice-President (VP)
Participant
(Code)

Agile Position/
Experience
(yrs)

Project distri‐
bution location

Agile method Domain Team size Project dura‐
tion (Mos)

Sprint duration
(Wks)

P1, P2 TES/3, SM/10 India-UK Scrum Finance 10–12, 16–18 12, 24 2
P3, P4 ST/4, PO/5 India-USA Scrum & XP Network

Mgmt. Serv‐
ices

10 10 to 12 2–3

P5, P10 SM/6, ST/5 India-South
East Asia

Scrum & XP Insurance 12–14, 12 8–10, 15–16 3–4

P6 TES/4 India-Europe Scrum & XP Mobile Retail 18 18–20 3–4
P7, P8 TES/3, SD/5 India-USA Scrum & XP E-Commerce 14 12–14 1–2
P9 SD/4 India-Australia Scrum & XP Banking &

Finance
20 24 3–4

P11, P12 AC/12,
CTO/16

India-USA -
Australia

Scrum & XP Software
Consultancy &
Services

14–15, 18–20 12–14, 15–16 2–4

P13, P14 AC X 2/8, 10 India-New
Zealand

Scrum & XP IT & Agile
Training

7–8 36 2–3

P15 DEV/3 India-UK Scrum & XP Telecom 12–13 42 3–4
P16, P17 TA/5, VP/12 India-UK Scrum & XP Insurance 9–10 12 2–3
P18, P19 SM/7, AC/8 India-Western

Europe
Scrum Health Care 18–19 24 3–4

P20, P21 TES/3.5, DO/4 India-USA Scrum & XP Energy
Metering Solu‐
tions

10–12 36 3–4

P22, P23 TES/4,
DEV/4.5

India-Canada Scrum & XP Finance 9–10, 12 24, 18–20 3–4

P24, P25 ST/5.5, TA/5 India-Australia Scrum & XP E-Commerce 10, 9–10 12, 12–14 1–2, 2–3
P26 SQA/4 India-South

East Asia-
Australia

Scrum Information
Security

8–9 18 3–4

P27 TES/3.5 India-Western
Europe

Scrum Web Portal 12–13 10–12 1–2

P28 SM/8 India-Western
Europe

Scrum & XP IT & Agile
Training

10–12 12–14 2–3

P29, P30 SM/10, VP/12 India-USA Scrum & XP IT Infrastruc‐
ture

12–14 16–18 2–3

P31 SAC/12 India-Europe Scrum & XP IT & Agile
Training

8–9 24 3

P32 SM/6 India-Europe Scrum & XP Agile Training 10–11 12 3–4
P33 PO/3 India-Europe Scrum & XP Finance 12–13 15–16 2–3
P34 ST/4.5 India-UAE Scrum Banking &

Finance
15–18 24 2–3

P35 TES/4 India-USA Scrum Telecom 10–11 10–12 3–4
P36, P37 SM/7, DEV/4 India-USA Scrum & XP E-Commerce 12–14, 18–19 6–8, 18 2–3

1–2
P38 PO/4.5 India-UK Scrum & XP Telecom 20 12–14 2–3

Adopting Test Automation on Agile Development Projects 187

retrospectives, sprint review meetings, end sprint demos, pair programming practices,
daily smoke and regression tests and we had taken field notes along the way about our
observations and transcribed them for analysis. Moreover, we compared the codes
emerged during observations with the codes from the interviews that helped us in
achieving triangulation. The interview data was further strengthened by our observations
from these two projects.

2.3 Data Analysis

Coding. Following Glaser’s two successive stages of substantive coding: open and
selective coding, we began our data analysis with open coding. It helps us in directing
our research by identifying a core category and serves as the initial step of the theoretical
analysis in GT [14]. Then, selective coding was performed to identify the categories that
were related to the core and to ascertain theoretical saturation.

Constant Comparative Method. Here, codes are compared with other codes to produce
concepts, codes are compared further with concepts to produce new concepts and finally
concepts are compared with other concepts to produce categories [14].

Memoing. Memos are written notes to log reflections between data, codes and their
relationships as they occur in researchers mind [20]. In our case, we wrote memos as
soon as we had some ideas about emerging codes and their relationships.

Phase 1: Identifying the core category. We commenced phase 1 of our interviews on
our general area of interest “Agile Project Management” and performed open coding on
data that generated initial codes, which guided us on further data collection as per theo‐
retical sampling process of classic GT [20]. We continued collecting and analyzing our
data iteratively that gradually led us to our core category i.e. “Adopting Test Automa‐
tion” on agile projects.

Open Coding. In open coding interview transcripts are being analyzed in detail and key
points are identified from each interview transcript [24]. In the next step, key points are
collated and particular code is assigned to each key point [25]. Code is a phrase used to
summarize the key point in 2 to 3 words. Using the constant comparative method, the
codes from each interview were compared constantly with the codes from the same as
well as from other interviews and also with data based on our observations and written
memos. The constant comparison and grouping of similar codes lead to the second level
of abstraction, called concepts. Further, this method is repeated on concepts to produce
the third level of abstraction, called categories.

Open coding was ended on identifying our core category “Adopting test automa‐
tion”. Two potential near core categories were also emerged like “Quality work
delivery” and “Manage changing requirements”, but we selected “Adopting test auto‐
mation” as our category as it is related to most other categories in a meaningful way.
An example of open coding process is shown in Table 2 that depicts the emergence of
our core category from the combined analysis of interviews and observations.

188 S. Tyagi et al.

Table 2. Example of Open Coding Process

Open coding Interview Quotation – P5, Scrum
Master

Observation (Org.: Y, Project: Delta)

Statement/Field
note

“Most important question…whether
or not your project is truly time
driven, whether or not you are
delivering high quality product, time
is speed for us and we can achieve
that [speed and quality] by embracing
automation.”

Acceptance testing was practiced
manually till sprint 3, consuming lot
of time and effort. UI changes were
frequent due to constant new product
launches, decision to automate
acceptance tests, acceptance tests
automation started

Key point Need for timely delivery of quality
products, Achieving speed, Quality
through automation

Manual acceptance consumes time
and effort, Frequent UI changes,
Automating acceptance tests

Code Timely delivery, Quality products,
Embracing automation

Time and effort loss, Constant UI
changes, Acceptance tests
automation

Concept Achieving quality and speed by
embracing automation

Achieving speed by embracing
automation

Category Adopting test automation

Phase 2: Refining the core category. As per theoretical sampling process, selecting
new interviewees and sites for data collection should come from the results of the coding
process [14]. We progressed into phase 2 and continued our data collection process.

Table 3. Example of selective coding process

Selective coding Interview Quotation – P6, Tester Observation (Org.: X, Project:
Sigma)

Statement/Field note “Our project…lot of business logic,
we handle lot of features additions
& changes…has accumulation
effect on our tests too…which
makes them grow in numbers with
every sprint and it is really difficult
to maintain [test scripts]”

Frequent change requests received
from the customers, constant addi‐
tion, modification of page
elements, effect on test scripts
size, making test script mainte‐
nance difficult for the team

Key point Adding new features, Test scripts
continue to grow, Difficulty in test
script maintenance

Frequent change requests,
Constant changes in test scripts,
Difficulty in test script mainte‐
nance

Code Grow in test scripts, Difficulty in
maintaining test scripts

Constant test script changes, Diffi‐
culty in maintaining test scripts

Concept Difficulty in test script maintenance Difficulty in test script mainte‐
nance

Category Test script maintenance

Selective Coding. Here, only those interview transcripts were coded that were related
to our core category i.e. “Adopting Test Automation”. Constant comparative method

Adopting Test Automation on Agile Development Projects 189

was used on interview transcripts and observations to find out codes, concepts and finally
the categories related to our core. Table 3 shows an example of selective coding
process.

The other concepts and categories emerged in a similar manner which sheds light
on the problems faced by agile teams while adopting test automation. Observations
gathered from the two projects were also analyzed and compared to the concepts derived
from the interviews. It was found that our observations supported the data provided in
the interviews, thereby strengthening our interview data. During our data analysis one
more set of concepts emerged that formed the strategies used by agile teams in order to
overcome those challenges as described in the present study. Figure 1.a shows different
levels of data abstraction using GT and Fig. 1.b explains the emergence of category
choosing the right tool from underlying concepts.

Fig. 1. a. Different levels of data abstraction in GT. b. Emergence of category choosing the right
tool from concepts

Determining Theoretical Saturation. The selective coding continues until the
researcher has sufficiently integrated the core category and its connections to other rele‐
vant categories [20]. On reaching a stage where further data collection and its analysis
were leading us to the same categories with no new data, we found out that our categories
have reached saturation. Then we started sorting the theoretical memos conceptually
and this process is called sorting that forms the theoretical outline of our study.

The last step in GT is generating a theory also know as Theoretical Coding. It
involves the conceptualization of how different categories and their associated properties
relate to each other as hypothesis so that can be integrated into a theory [19, 26]. We
followed Glaser’s guidelines and performed theoretical coding at the later stages of
analysis [14].

Table 4 shows different concepts and categories that form the challenges and corre‐
sponding concepts that form the adopted strategies while practicing test automation on
agile projects. Also, the number within the parenthesis indicates the number of inter‐
viewees who referred these challenges/strategies. As the codes, concepts, and categories

190 S. Tyagi et al.

emerge directly from the data, which is collected from the real world, the resulting theory
is grounded within the context of the data [17].

Table 4. Strategies adopted on different agile projects

Challenges Strategies
Choosing the right tool (26) • Know your test automation requirements, Know your tool

(14)
• Cost Benefit Analysis (CBA) (11)

Managing test environment (15) • Upfront planning for managing test environment (11)
• Virtualization (10)

Test script maintenance (18) • Automation testing framework (12)
• Page Object Model (POM) (8)

Mindset toward automation (17) • Engender automation awareness (12)
• ROI evaluation (11)

Effective communication (16) • One team approach (10)

In the following section, we present the research findings from our study. Selected
interview quotations are provided under each category to better explain it in the present
context. Our results are grounded further by key points, codes, and concepts from the
interviews as well as the observations from two agile projects. It is difficult to describe
here in detail due to space reasons.

3 Results: Adopting Test Automation on Agile Projects

In this section, we present our grounded theory: Strategies used by agile practitioners
while adopting test automation in their projects. We have selected quotations from our
study to explain the challenges faced by agile teams and strategies opted by them.

3.1 Challenge 1: Choosing the Right Tool

Test automation is very important right from the start of any agile project. It is essential
to know the project requirements, which tests needs to be automated and what tools are
needed. Agile practitioners admitted that while transitioning to scrum and XP, they were
still using traditional record and playback tool but results were highly unsatisfactory.

Other associated concerns include choosing a tool for automating continuous inte‐
gration and deployment, automating acceptance and regression tests and a tool for
effective test management.

“Output of sprint N has to combine with sprint N + 1, daily defect fixes that continuously check
in to the code, this whole process is continuous integration (CI), it also takes lot of time, and
only by automating our CI process we could survive our project deadlines.” – P10, Senior Tester

Choice of test automation tool particularly in agile projects is a very crucial decision as
if you would end up choosing a wrong tool with the partial or incomplete evaluation; it may

Adopting Test Automation on Agile Development Projects 191

lead to loss of efforts spent in each sprint, loss of licensing fees as well as loss of automa‐
tion opportunities. In order to prevent these losses, some strategies were used to overcome
the problem of choosing the right tool. Two adopted strategies are explained below:

Strategy 1: Know your Test Automation Requirements, Know your Tool. One
should be scrupulous while choosing a test automation tool in agile projects. Agile teams
should understand their project needs and then decide on test automation tool, it is
imperative to first know the exact automation requirements of the projects like test types
(unit, acceptance, regression, etc.) needs to be performed, coding languages to be used
on the project and suitability of choosing between licensed and open source tools; it is
good to choose a tool based upon the compatibility with the application under test (AUT).

“A lot of licensed and open source tools are available…You must know that what you want to
do with that [Tool] and for what [purpose] as requirements may vary depending on project size,
cost and allocated time.”– P16, Test Analyst

Strategy 2: Cost Benefit Analysis (CBA). Cost of the tool is also one of the important
deciding factors in most agile projects. Licensed tools have certain benefits over open
source tools like good user support, sufficient training material and ease of use but that
comes with the cost.

“…would be using that [tool], whether it’s a licensed or open source it depends on CBA (Cost
to benefit analysis) of that tool w.r.t our project.” – P32, Scrum Master

It is always better to know what test types needs to be automated, tools utility with
project needs, its ability to integrate with other project and defect management tools.

3.2 Challenge 2: Managing Test Environment

The ultimate aim of any agile project is to deliver quality product and test automation
plays an important role in adding that quality to the product in such short sprint durations.
Keeping test environment as close as possible to production environment ensures the
quality of the test automation. Agile teams were facing difficulties while creating
multiple test environments for every different configuration, platforms and workflows.

“Why it is worth to have Test Automation in agile projects because it helps you in achieving
your quality objectives, test environment should be a replica of your live [production] environ‐
ment…if you practice this then the code that go into upper [production] environment would meet
quality criteria.” – P13, Agile Coach

Strategy 3: Upfront Planning for Managing Test Environment. Testing whether it
is automation or manual is only been successful when performed in the proper test
environment. In agile, it is very common to have multiple test environments, multiple
configurations for the single business application so upfront planning for managing test
environment is very important.

192 S. Tyagi et al.

“… important to have upfront plan for managing your test environments… by maintaining
spreadsheets containing all our test environment related information like different configura‐
tions, different test devices and test data used by those devices, any database related information
and continuously update it.” – P29, Scrum Master

Strategy 4: Virtualization. It serves an important strategy in managing issues related
to test environment management. Virtual machine setup provides that additional space
to both developers and testers to test their application under test (AUT). It was used to
reduce the overhead caused by different OS and hardware configurations.

“…by using virtual machines test environments can be created according to the requirement
and the scope of the test… Above all it is scalable and has on demand access which reduces our
burden of managing test environment.”– P25, Test Analyst

Participants were using a document to gather different test environment requirements
to plan for managing their existing environment or building a new. VMware worksta‐
tions were also used for managing test environments related issues.

3.3 Challenge 3: Test Script Maintenance

For every new addition or modification in feature, test script needs to be modified and
maintained for the entire duration of the projects with multiple sprints and this was a
challenge for them.

“…The scale of regression testing grows with each sprint and so does the test scripts, so how
you would add more test cases to the existing regression test suite? How you maintain those
scripts?” – P34, Senior Tester

Maintainability of code was a big issue, many participants worked on web based
applications where test script was created by identifying web page elements and their
associated properties, so if any page element whether it is a dropdown box or submit
button had changed then they needed to track and modify that script.

Strategy 5: Automation Testing Framework. Majority of our participants admitted
that having a good automation testing framework solved their test script maintenance
problem to the larger extent. Automation testing framework is an engine that runs your
automation test scripts with the help of some tool like Selenium or Unified Functional
Tester (UFT) to test your application under test. Most commonly used frameworks were:
Data driven framework – modular functions are stored in external files and called by
test scripts; Keyword driven framework – keyword is assigned to every user action (like
button click), stored in a spreadsheet and called by test scripts; Hybrid framework –
combination of data and keyword driven frameworks; and Behaviour driven framework
– creating examples to describe the user behavior while using the application under test.

Strategy 6: Page Object Model (POM). Another technique used by many agile prac‐
titioners to make test script maintenance easier was Page Object Model (POM) approach.
Here, each web page element (button, text box) is modeled as an object within the test
code and represents as one class.

Adopting Test Automation on Agile Development Projects 193

3.4 Challenge 4: Mindset Toward Automation

Whenever any project is transitioning to agile then it is important to have support from
the management so that every team member proactively put up his concern and ask for
any assistance that is needed to overcome any constraint regarding implementing test
automation. They need to understand that test automation is a long term investment and
should support the team by providing enough budget and time.

“Transition to agile…need support from your senior management particularly when you
embrace test automation in agile…have realistic expectations from the team and…accept initial
failures and invest in terms of tools or trainings…only this kind of thinking can encourage use
of test automation in any agile project.” – P20, Tester

Strategy 7: Engender Automation Awareness. Agile teams need a shift in their
thinking while adopting test automation. They should know the merits and demerits of
having test automation in their projects and how to use it [test automation] effectively.

“When you wrap test automation around agile…not easy to adapt as your team won’t have that
thinking that agile demands…to create automation awareness in your team…try to create it by
providing coaching, workshops or short trainings on test automation in agile environment.” –
P13, Agile Coach

Strategy 8: ROI Evaluation. Senior management should provide the required infra‐
structure and environment necessary to conduct effective test automation practices.
Eleven of our participants used ROI (Return on Investment) evaluation to get their
support. ROI calculation is based on evaluating the benefits of test automation with
respect to its implementation costs in terms of tool cost, manpower cost, time needed to
build required infrastructure for automation.

3.5 Challenge 5: Effective Communication

Many participants admitted that lack of communication in their teams often results in
poor automation planning, late feedbacks and wrong automation effort estimates. Test
automation is teamwork and should be taken care of by both developers and testers.

“…have to consider a lot many things…plan automation, what features to automate in each
sprint, when to start automation and one thing is crucial…conversation element - PO talking to
developers, testers talking to developers and creating a wonderful coordination with effective
communication.” – P38, Product Owner

While implementing test automation, it is very important for developers and testers
to collaborate with each other, testers should help developers in designing unit test cases
and developers should help testers in automating acceptance tests. The more they
communicate more effective test automation would become.

Strategy 9: One Team Approach. One team approach was the key crusader in
building effective communication between testers, developers and PO’s as mentioned
by ten agile practitioners. Many agile teams were giving much emphasis to have proac‐
tive communication with each other including both verbal and written communication

194 S. Tyagi et al.

so that every team member developed this feeling that they are working together as one
single team not as separate entities.

“When you automate…expected to not only report defects but also to communicate [defects]
effectively to the development team and track it till closure. When you have that [proactive
communication] surrounding your team that keeps everyone in one loop then results are more
than satisfactory.” – P32, Scrum Master.

If there is any defect then it should be properly determined whether it is because of
script or actually a test case has failed and it can only be possible when testers proactively
talk to developers and also send a mail to team’s group mail id for better information
flow.

4 Discussion and Related Work

Agile projects have daily rounds of unit tests, integration tests, acceptance tests and
continuous deployment. The serious effect of not having perfect test automation in place
forms the rationale behind our study.

The choice of the right tool from a plethora of available tools is a decisive step
towards successful test automation. This is confirmed by studies of Oliveira [27] and
Collins [28]. If one tool is not working well for the project, in the next iteration, agile
teams should try something new [28]. Yoder [29] discussed the importance of selecting
automation tools and when automated tests should be run under “Automate First”
pattern.

The implications of managing test environment and test script maintenance revealed
by our findings are also supported by a number of studies. Deak [30] highlights a number
of negative factors that influence testing like insufficient number of test environments
and weak infrastructure. Karhu [31] contributes test environment, test maintenance and
implementation time as key concerns about test automation infrastructure. Fewester
et al.’s study [32] mentioned negative impact on test automation cost due to improperly
managed test script maintenance cost. Bach [33] advocates the benefits of test automa‐
tion over maintenance cost of constantly changing test scripts suite.

For successful test automation, management should be open to test automation prac‐
tices and their financial benefits in spite of time constraints. Late testing mindset need
to be changed to early testing mindset in agile environment [34] and management
support is also desired in terms of having realistic expectations from the test automa‐
tion [35].

According to [34] efficient communication and interaction between testers and
developers improved both testing and development, eventually improving information
flow and efficiency in process. Graham [36] suggested active participation of testers in
requirement reviews along with developers for performing test planning in parallel.
Yoder [29] also reported whole team approach as one of the pattern for agile quality
mindset.

Adopting Test Automation on Agile Development Projects 195

5 Limitations

The inherent limitation with grounded theory research study is that the research findings
are grounded in the specific contexts that are explored in the research. Data triangulation
was used for reducing researcher bias, as we gathered the data from two sources, namely,
interviews and observations that may yield more reliable data than using a single data
source. The context in this research was governed by our choice of research destinations
and the availability and accessibility of agile practitioners to participate in this study.
We do not claim that our findings are universally applicable to all the agile projects
practicing test automation, however, they accurately characterize the contexts studied.

6 Conclusion

A Grounded Theory study has been conducted over a period of eighteen months that
involved 38 agile practitioners from 18 software development organizations in India.
This study investigated the test automation adoption from the specific perspective of
agile practitioners through their real life project experiences using GT. Unlike most of
the participant organizations, some of them were recently transitioned to agile software
development methods. However, all of them were striving to build good test automation
infrastructure for their projects. During the study, we discovered the various challenges
and strategies adopted thereof by agile teams while establishing good test automation
practices in their projects. Main contribution of this paper is towards understanding the
key challenges while adopting test automation in agile projects and providing some
widely used strategies to overcome those challenges. This study can be utilized by agile
software development teams to have a plan of action and streamline the test automation
to get maximum benefits. We acknowledge this fact that all challenges and strategies
adopted by software development organizations practicing test automation in agile
projects may not have emerged in this study. This may also serve as the foundation for
conducting future studies in the same area.

Acknowledgments. Our big thanks to all agile practitioners for participating in this study. This
research is supported by our institute’s TRF academic grant. Thanks to Prof. Yogesh Singh for
his immense support and guidance.

References

1. Sayed, I.N.: The case of agile testing. White Paper, cognizant 20-20 insights (2016). https://
www.cognizant.com/InsightsWhitepaper. Last accessed 08 Jan 2016

2. Gao, J., Tsao, J., Wu, Y.: Testing and Quality Assurance for Component-Based Software.
Artech House, Boston (2003)

3. Dustin, E., Rashka, J., Paul, J.: Automated Software Testing: Introduction, Management, and
Performance. Addison-Wesley, Boston (1999)

4. Cohn, M.: Succeeding with Agile: Software Development Using Scrum, 1st edn. pp. 314–
316. Addison-Wesley Professional, Boston (2009)

196 S. Tyagi et al.

https://www.cognizant.com/InsightsWhitepaper
https://www.cognizant.com/InsightsWhitepaper

5. Gregory, J., Lisa, C.: More Agile Testing. Addison-Wesley, Upper Saddle River (2015)
6. Puleio, M.: How not to do Agile testing. In: Proceedings of the Conference on AGILE 2006

(AGILE 2006), pp. 305–314. IEEE Computer Society, Washington, DC (2006). doi:http://
dx.doi.org/10.1109/AGILE.2006.34

7. Collins, E., Lucena Jr., F.: Strategies for agile software testing automation: an industrial
experience. In: Proceedings of the 2012 IEEE 36th Annual Computer Software and
Applications Conference Workshops (COMPSACW 2012), pp. 440–445. IEEE Computer
Society, Washington, DC (2012)

8. Glaser, B.: Grounded theory institute: methodology of Barney G Glaser (2010). http://
groundedtheory.org/. Last accessed 28 Nov 2015

9. Hoda, R., Noble, J., Marshall, S.: Agile undercover: when customers don’t collaborate. In:
XP 2010, Norway, pp. 73–87 (2010)

10. Goulding, C.: Grounded Theory: A Practical Guide for Management, Business and Market
Researchers. Springer, Berlin (2002)

11. Dorairaj, S., Noble, J., Malik, P.: Understanding team dynamics in distributed agile software
development. In: Wohlin, C. (ed.) XP 2012. LNBIP, vol. 111, pp. 47–61. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-30350-0_4

12. Corbin, J., Strauss, A.: Basics of Qualitative Research: Techniques and Procedures for
Developing Grounded Theory, 4th edn. Sage, London (2015)

13. Charmaz, K.: Constructing Grounded Theory, 2nd edn. Sage (2014)
14. Glaser, B.: Basics of Grounded Theory Analysis: Emergence vs. Forcing. Sociology Press,

Mill Valley (1992)
15. Dorairaj, S., Noble, J., Malik, P.: Understanding lack of trust in distributed agile teams: a

grounded theory study. In: 16th International Conference on Evaluation & Assessment in
Software Engineering (EASE 2012), pp. 81–90. IET (2012)

16. Hoda, R., Noble, J., Marshall, S.: Organizing self-organizing teams. In: ICSE 2010, pp. 285–
294. ACM, South Africa (2010)

17. Martin, A., Biddle, R., Noble, J.: The XP customer team: a grounded theory. In: Proceedings
of the AGILE Conference, pp. 57–64 (2009)

18. Whitworth, E., Biddle, R.: The social nature of Agile teams. In: Agile 2007, pp. 26–36. IEEE
Computer Society, USA (2007)

19. Glaser, B.: Doing Grounded Theory: Issues and Discussions. Sociology Press, Mill Valley
(1998)

20. Glaser, B.: Theoretical Sensitivity: Advances in Methodology of Grounded Theory. Sociology
Press, Mill Valley (1978)

21. Glaser, B.G., Strauss, A.L.: The Discovery of Grounded Theory: Strategies for Qualitative
Research. Sociology Press, Aldine (1967)

22. Agile Software Community of India. http://www.agileindia.org/. Last accessed 12 June 2016
23. Agile India 2016. http://www.2016.agileindia.org/. Last accessed 10 Feb 2016
24. Urquhart, C., Lehmann, H., Myers, M.D.: Putting the ‘theory’ back into grounded theory:

guidelines for grounded theory studies in information systems. Inf. Syst. J. 20(4), 357–381
(2010)

25. Georgieva, S., Allan, G.: Best practices in project management through a grounded theory
lens. Electron. J. Bus. Res. Methods 6(1), 43–52 (2008)

26. Glaser, B.: The Grounded Theory Perspective III: Theoretical Coding. Sociology Press, Mill
Valley (2005)

27. Oliveira, J.C., Gouveia, C., Filho, R.Q.: A way of improving test automation cost-
effectiveness. In: CAST. EUA, Indianapolis (2006)

Adopting Test Automation on Agile Development Projects 197

http://dx.doi.org/10.1109/AGILE.2006.34
http://dx.doi.org/10.1109/AGILE.2006.34
http://groundedtheory.org/
http://groundedtheory.org/
http://dx.doi.org/10.1007/978-3-642-30350-0_4
http://www.agileindia.org/
http://www.2016.agileindia.org/

28. Collins, E., Lucena Jr., F.: Software test automation practices in agile development
environment: an industry experience report. In: Proceedings of the 7th International Workshop
on Automation of Software Test (AST 2012), pp. 57–63. IEEE Press, Piscataway (2012)

29. Yoder, J.W., Wirfs-Brock, R., Washizaki, H.: QA to AQ part six: being agile at quality
“Enabling and Infusing Quality”. In: HILLSIDE Proceedings of 23rd Conference on Pattern
Languages of Programs, October 2016

30. Deak, A.: A comparative study of testers’ motivation in traditional and agile software
development. In: Product – Focused Software Process Improvement, pp. 1–16 (2014)

31. Karhu, K., Repo, T., Taipale, O., Smolander, K.: Empirical observations on software testing
automation. In: Proceedings of the 2nd International Conference on Software Testing,
Verification, and Validation (ICST 2009), Denver, Colo, USA, pp. 201–209 (2009)

32. Fewster, M.: Common Mistakes in Test Automation, Grove Consultants (2001). https://
www.stickyminds.com/sites/default/files/presentation/file/2013/01TAU_M5.pdf. Last
accessed 02 Feb 2016

33. Bach, J.: Test automation snake oil. Windows Tech. J., 40–44 (1996)
34. Taipale, O., Smolander, K.: Improving software testing by observing practice. In: Proceedings

of the 2006 ACM/IEEE International Symposium on Empirical Software Engineering (ISESE
2006), pp. 262–271. ACM, New York (2006). doi:http://dx.doi.org/
10.1145/1159733.1159773

35. Kettunen, V., Kasurinen, J., Taipale, O., Smolander, K.: A study on agility and testing
processes in software organizations. In: Proceedings of the 19th International Symposium on
Software Testing and Analysis, pp. 231–240 (2010)

36. Graham, D.: Requirements: requirements and testing: seven missing-link myths. IEEE Softw.
19(5), 15–17 (2002). doi:10.1109/MS.2002.1032845

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license
and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

198 S. Tyagi et al.

https://www.stickyminds.com/sites/default/files/presentation/file/2013/01TAU_M5.pdf
https://www.stickyminds.com/sites/default/files/presentation/file/2013/01TAU_M5.pdf
http://dx.doi.org/10.1145/1159733.1159773
http://dx.doi.org/10.1145/1159733.1159773
http://dx.doi.org/10.1109/MS.2002.1032845
http://creativecommons.org/licenses/by/4.0/

Safety Critical Software

How is Security Testing Done in Agile Teams?
A Cross-Case Analysis of Four Software Teams

Daniela Soares Cruzes1(✉), Michael Felderer2, Tosin Daniel Oyetoyan1,
Matthias Gander2, and Irdin Pekaric2

1 SINTEF Digital, Trondheim, Norway
{danielac,tosin.oyetoyan}@sintef.no

2 University of Innsbruck, Innsbruck, Austria
{michael.felderer,matthias.gander,irdin.pekaric}@uibk.ac.at

Abstract. Security testing can broadly be described as (1) the testing of security
requirements that concerns confidentiality, integrity, availability, authentication,
authorization, nonrepudiation and (2) the testing of the software to validate how
much it can withstand an attack. Agile testing involves immediately integrating
changes into the main system, continuously testing all changes and updating test
cases to be able to run a regression test at any time to verify that changes have
not broken existing functionality. Software companies have a challenge to
systematically apply security testing in their processes nowadays. There is a lack
of guidelines in practice as well as empirical studies in real-world projects on
agile security testing; industry in general needs a more systematic approach to
security. The findings of this research are not surprising, but at the same time are
alarming. The lack of knowledge on security by agile teams in general, the large
dependency on incidental pen-testers, and the ignorance in static testing for
security are indicators that security testing is highly under addressed and that more
efforts should be addressed to security testing in agile teams.

Keywords: Security testing · Agile testing · Case study research

1 Introduction

Security testing can broadly be described as (1) the testing of security requirements that
concerns confidentiality, integrity, availability, authentication, authorization, non-repu‐
diation [16] and the testing to validate the ability of the software to withstand attack
(resiliency) [28]. This process can be performed by showing conformance with the
security properties, similar to requirements-based testing; or by trying to address known
vulnerabilities, similar to traditional fault-based testing. It is essential to take testing into
account in all phases of the secure software development lifecycle, i.e., analysis, design,
development, deployment, as well as maintenance. Thus, security testing must be
holistic covering the whole secure software development lifecycle. Proper security
testing requires a mix of techniques as there is no single testing technique that can be
performed to effectively cover all security testing and their application within testing

© The Author(s) 2017
H. Baumeister et al. (Eds.): XP 2017, LNBIP 283, pp. 201–216, 2017.
DOI: 10.1007/978-3-319-57633-6_13

activities at unit, integration, and system level [2]. Nevertheless, many companies adopt
only one security testing approach, for instance penetration testing.

Agile testing is one approach that is increasingly being adopted by software compa‐
nies. This approach does not just mean testing on agile projects, but testing an application
with a plan to learn about it and let the product information and customer feedback guide
the testing. Agile testing involves immediately integrating changes into the main system,
continuously testing all changes and updating test cases to be able to run a regression
test at any time to verify that changes have not broken existing functionality [18, 23].
In agile software development, there is a focus on the feature implementation and
delivery of value to the customer and, as such, non-functional aspects of a system should
also be of attention. Non-functional requirements testing is challenging due its cross-
functional aspects and lack of clarity of their needs by business in the most part of
projects, therefore, although important, the non-functional requirements are often
neglected in agile testing for many reasons, such as experience, culture, awareness,
priority, cost and time pressure [5].

There is a lack of guidelines in practice as well as empirical studies in real-world
projects on security testing; for agile projects in general needs a more systematic
approach to security. The main contribution of this paper is to deepen relevant knowl‐
edge and experience on the characterization of security testing in an agile context. Based
on the “traditional waterfall testing approaches and techniques”, we have analyzed four
teams and asked about how they perform these in the agile context. We then provide
recommendations of ways to improve it based on lessons learned and good practices
from the cases. In addition, we provide an improved understanding on how research and
practice are aligned.

The remainder of the paper is organized as follows. In Sect. 2, we provide back‐
ground on software and security testing. It also forms the backbone of the used interview
guide. Section 3 presents the research methodology and describes how the studies were
conducted. Section 4 presents the main findings of the case studies. Section 5 discusses
the cross-case analysis findings. Finally, Sect. 6 concludes the paper and highlights
directions of future work.

2 Background on Software and Security Testing

Software testing consists of all software development lifecycle activities, both static and
dynamic, concerned with evaluation of software products and related artifacts to deter‐
mine that they satisfy specified requirements, to demonstrate that they are fit for purpose
and to detect defects. Testing can be classified according to the three dimensions objec‐
tive, scope, and accessibility shown in Fig. 1.

Test objectives are reason or purpose for designing and executing a test. The reason
is either to check the functional behavior of the system or its nonfunctional properties.
Functional testing is concerned with assessing the functional behavior of an SUT
(System under Testing), whereas nonfunctional testing aims at assessing nonfunctional
requirements with regard to quality characteristics like security or performance.

202 D.S. Cruzes et al.

The test scope describes the granularity of the SUT and can be classified into compo‐
nent, integration and system testing. It also determines the test basis, i.e., the artifacts
to derive test cases. Component testing (also referred to as unit testing) checks the
smallest testable component in isolation. Integration testing combines components with
each other and tests those as a subsystem, that is, not yet a complete system. System
testing checks the complete system, including all subsystems. A specific type of system
testing is acceptance testing where it is checked whether a solution works for the user
of a system. Regression testing is a selective retesting to verify that modifications have
not caused side effects and that the SUT still complies with the specified requirements.

In terms of accessibility of test design artifacts we can classify testing methods into
white-box and black-box testing. In white-box testing, test cases are derived based on
information about how the software has been designed or coded. In black-box testing,
test cases rely only on the input/output behavior of the software. This classification is
especially relevant for security testing, as black-box testing, where no or only basic
information about the system under test is provided, enables to mimic external attacks
from hackers.

Security testing is testing of security requirements related to security properties like
confidentiality, integrity, availability, authentication, authorization, and non-repudia‐
tion in addition to testing the resilience of the system against attack. In security testing,
there are two principal approaches that can be distinguished, i.e., security functional
testing and security vulnerability testing [33]. Security functional testing validates
whether the specified security requirements are implemented correctly, both in terms of
security properties and security mechanisms. Security vulnerability testing addresses
the identification of unintended system vulnerabilities. It uses the simulation of attacks
and other kinds of penetration testing attempting to compromise the security of a system
by playing the role of a hacker trying to attack the system and exploit its vulnerabilities
[1]. Furthermore, security vulnerability testing requires specific expertise, which makes
it difficult and hard to automate [21]. By identifying risks in the system and creating
tests driven by those risks, security vulnerability testing can focus on specific parts of a
system implementation where an attack is likely to succeed.

Scope

Component

Integration

System

Accessibility

Objective

White-Box Black-Box

Functional

Nonfunctional

Fig. 1. Software testing dimensions objective, scope and accessibility (adopted from [16]).

How is Security Testing Done in Agile Teams? 203

Figure 2 abstracts from concrete security testing techniques mentioned before, and
classifies them according to their test basis within the secure software development life‐
cycle, which takes security aspects into account in each phase of software development,
i.e., analysis, design, implementation, deployment, maintenance, and additionally
testing.

Requirements Design Models Code Running System
Analysis Design Development Deployment Maintenance

Penetra on Tes ng
and Dynamic Analysis

Code-Based Tes ng
and Sta c Analysis

Security
Regression Tes ng

Model-Based
Security Tes ng

Fig. 2. Process for risk-based test strategy development (adopted from [16]).

Model-based security testing is grounded on requirements and design models created
during the analysis and design phase. Examples are misuse cases and threat models. In
misuse cases, test cases relating to an attacker’s perspective are captured and used to
exercise the system [31]. During the design, a threat model can be used to capture
security issues and translated into test cases that can be used for security testing [20].

Code-based testing and static analysis is based on source, bytecode, or binary created
during development. This testing approach in many cases uses static analysis tools to
find code-based defects [6]. There is a range of issues that could be focused by a static
analysis tool such as duplications, coding rules, code complexity, unit test coverage, and
structural complexity. As regards security testing, specific frameworks exist that provide
platform for common enumeration of security defects in the implementation and design.
The Common Weakness Enumeration (CWE) [8] provides a formal list of software
weaknesses. The OWASP Top-10 provides the list of the most common web application
vulnerabilities [26]. The SANS Top-25 list shows the most widespread and critical errors
that are applicable to all types of applications [11].

Penetration testing and dynamic analysis are based on running systems, either in a
test or production environment. It is referred to as a black-box testing approach because
the tester has no access to the source code of the system under test. Penetration testing
seeks to break into running software but from ethical point of view. As a result, the rule
of engagement must always be defined before such a test is carried out [28].

Refactoring and feature implementation may break existing security controls,
increase the attack surface, and introduce new vulnerabilities into the system. In the
agile context, it would be an activity that would need to be continuously performed to
validate that the security properties of the system is not compromised.

2.1 Four Quadrants of Agile Testing

Crispin and Gregory [9] discuss the Agile Testing quadrants that are widely adopted in
practice. Each quadrant in Fig. 3 reflects different reasons to test. Traditionally, software
testing is involved late in the development process to detect failures, but typically not
to prevent them. Companies focus almost exclusively on the right hand side (Q3 and

204 D.S. Cruzes et al.

Q4), criticizing the product, but not playing a productive part in supporting the creation
and guidance of the product (Q1 and Q2). In agile testing, the testers are not only
involved in identifying, but also in preventing failures by continuous interaction with
developers and customers. Automation is an important enabler for agile testing. Auto‐
mation of the tests in Q1 is usually easiest to implement, and at the same time has a big
impact on the process effectiveness. Tests in Q3 are usually performed manually. Tests
in Q4 are heavily dependent on tools and specialized skill sets. But, manual exploratory
testing by a knowledgeable security tester is indispensable to detect issues that auto‐
mated tests can miss.

Fig. 3. Agile test quadrants [9]

Agile testing increases the need for improved communication and coordination
between testers and developers, in addition to a new mind-set at the personal and organ‐
izational levels. In the rush to deliver functionality, most agile teams lack to think about
security [5]. Authorization is often the only aspect of security testing that the agile teams
consider as part of business functionality.

During the last years there have been several efforts to reconcile software security
with the conflicting premises imposed by agile methodologies [4, 19, 24]. In a systematic
review of agile challenges for secure software development Queslati et al. [24] conclude
that the reported security assurance challenges are as follows: security assessment favors
detailed documentation; tests are, in general, insufficient to ensure the implementation
of security requirements; tests do not cover in general, all vulnerability cases; security
tests are in general difficult to automate; and continuous changing of the development
processes conflicts with audit needs of uniform stable processes.

Probably, the most widely known software security methodology is Microsoft’s
framework, which is integrated into the Microsoft Agile Security Development Life‐
cycle [22]. Other approaches also exist. Recently, Baca et al. [3] demonstrate how
security features can be integrated into an agile software development method process
at Ericsson AB. The approach focuses on risk management. Chólis et al. [7] describe a

How is Security Testing Done in Agile Teams? 205

case study of a software security testing process based on the Microsoft Software Devel‐
opment Lifecycle for Agile. The case company moves their software engineering teams
from waterfall to agile. The case shows that a synchronization between the tasks of agile
software engineering teams and the independent security team is possible. Türpe et al.
[34] report on a one-year study of penetration testing and its aftermath at a major software
vendor, and show how an agile development team managed to incorporate the test
findings. Rindel et al. [30] describes a case of building a secure identity management
system and its management processes. The project’s steering group required the use of
Scrum. In the implementations of this model the security testing, reviews and audits are
viewed as normal stories in the sprint backlog and executed as part of the daily scrum.

Furthermore, security testing approaches for agile projects have especially been
proposed for web applications [12, 32] and service-oriented systems [15]. These cases
show how it is possible to integrate security testing into agile software development for
specific system types. Our research comprises an independent study on the state of
practice in security testing in agile teams.

3 Research Methodology

The overall goal of this paper is to investigate the role of security testing in agile teams,
process-wise. For this purpose, we present the synthesis of the results of the four cases
in security testing, highlighting the security engineering process, testing phases and
techniques. The results of the interviews and context mapping provide insights into the
recommended practices and lessons learned in the context of agile testing. The following
three research questions (RQs) were investigated:

(RQ 1) How is the traditional security engineering process managed/organized in the
agile teams?

(RQ 2) How does the agile teams perform security testing in each testing phase?
(RQ 3) How are traditional security testing techniques generally used in the agile soft‐

ware development lifecycle?

This study is carried out in four teams in two countries, i.e., Austria and Norway,
within three organizations and denoted as 1, 2, 3-Team1, and 3-Team2, as shown in
Table 2. Organizations 1 and 2 are located in the same country while organization 3 is
located in another country. Organization 3 is a company with roughly 90 engineers. The
team setup are both co-located and distributed. 3-Team1 has teams distributed in sepa‐
rate locations while 3-Team2 has the core development teams (frontend and backend)
in the same location and interacts with a QA team that sits in a separate location. 3-team1
develops identity management APIs that are mainly consumed by other teams within
the organization. They do not interact with external users. 3-Team2 on the other hand,
develops solution for storage and processing of end user images and videos.

We prepared semi-structured interview guide (see Table 1) using a qualitative data
collection approach that is based on in-depth literature review of the state-of-the-art in
security testing. The interviews were compared with the collected information about the
organizational contexts and interactions with the companies. The resulting interview

206 D.S. Cruzes et al.

audios were then analyzed using the thematic analysis approach [10] to crosscheck and
compare the answers in order to find behavioral confirmation and disconfirmation as
well. The transcripts and recordings of the interviews were categorized, tabulated, and
also analyzed by coding of the interviews. All the transcriptions and coding were vali‐
dated with other researchers before analysis. By doing so, another researcher independ‐
ently double-checked the codes and data to tag the key words, phrases and paragraphs.
It is important to note that basic information on each context was considered (see
Table 2). This information served as a context to better understand the points of view
of each participant connected to the results. In this analysis, we considered in which
areas the cases suggest the same points, where they differ, and where the cases conflict.

Table 1. Semi-structured interview guide

Questions
1 Can you briefly describe the kind of system you develop? Back-end or Front-End?
2 Can you give us a brief introduction of how your development team is organized?

(Developers, Testers, Architects, CSOs, etc.), (Distributed, Co-located, etc.)
3 How is your agile software development process? Which practices do you adopt?

(Fill in the table with agile and lean practices)
4 How is your security engineering process (for example, security requirements,

secure design, secure coding, security testing) organized/managed in your team?
Can you describe how you organize your security testing along these axes of the
Fig. 1?

5 Can you describe the kind of security testing that you perform in each testing phase
listed below?
Phases of testing Components
Unit Testing Classes, functions, statements, data
Integration Testing Modules, packages, etc.
System Testing System
Regression Testing Classes, Modules, System
UAT Testing System
Production/Configuration Testing System

6 Figure 2 shows the security testing techniques generally used in secure software
development lifecycle. Could you talk about how you perform these activities in
your agile software development? How often are security testing or security related
activities done in your agile cycles? How do you decide when to perform them?
How do you decide when not to perform them?

7 Do you see benefits of performing security testing?
8 On the test automation and continuous integration. Do you automate your testing

activities? To what extent? How do you incorporate security testing in this process?
9 Anything you would like to add?

How is Security Testing Done in Agile Teams? 207

Table 2. Teams under study

Team Team Size Type of software Other context
information

1 20 Frontend and
backend developers
divided in teams of 5

Medical Information System Applies a Scrum-based
agile process; the
software is certified
according to medical
standards

2 6 developers Security service tools Scrum-based agile
process

3–A 21 developers (UI,
Backend, Mobile, and
Infrastructure)

Identity Management APIs
that are consumed by other
business units and teams

A mix of Agile
Practices. Not
specifically scrum by
the book. DevOps
approach is also spread
used

3–B 22 developers
(Frontend (web/
mobile) and backend
teams)

Mobile client and backend
system for close storage and
processing of images and
videos

A mix of Agile
Practices. Not
specifically scrum by
the book. DevOps
approach is also spread
used

4 Results

We collected our main findings in a mind map shown in Figs. 4, 5 and 6. These results
are then discussed in more detail in the next subsections.

4.1 RQ 1: How Is the Traditional Security Engineering Process Managed/
Organized in the Agile Teams?

We found three main themes from the interviews in relation to the roles and responsi‐
bility (Fig. 4). The first observation is that larger companies have their own chief security
officer, who is not part of the teams to not interfere with any daily team activities.
Sometimes the responsibility of the chief security officer overlaps with the project owner
in order to ensure that the applications being developed do not impose security risks.
One team mentioned that their project owner (PO) or project manager (PM) has domain-
specific security knowledge, which is not the case for the other teams. In fact, for the
smaller companies, there is no such chief security officer role. One problem that the
teams experienced with involving the security officer is that it is hard to identify when
to include him in the activities.

The second observation is that external experts are normally hired for penetration
testing. However, a problem experienced by one of the companies is that external
consultants do not have sufficient domain knowledge needed for security testing. There‐
fore, some domain-specific vulnerabilities are left undiscovered. The periodicity of the

208 D.S. Cruzes et al.

execution of these tests is quite ad-hoc, sometimes linked to big deliveries or when there
are too many changes in the source code. The results of the tests are not completely
integrated in the development process and almost never get into the planning of the
activities of the sprint.

The third observation is that testers or QA personnel focus on the system level in the
case this role still exists and the developers take care of the daily activities and developers
are expected to have knowledge on security both during coding and sometimes for
testing their own code. This knowledge is also needed when reading the output of the
security tools. One interviewee said: “We generally organize mainly as software devel‐
opers, we generally have a software engineering role and we are expected to be with a
broad knowledge, and skill set, computer science engineering and security and safe
programming”. But there is no specific validation of this stated ‘broad knowledge and
skill set’. Another interviewee stated on some tool output: “Normally, the errors are
quite readable. From technician level, the developer that develops component should
also understand the message of the tool. For instance, if the tool says, open API C#
token found, hopefully developers also know what it says. The tools check very huge
part, but they cannot check all. This is the responsibility that developer has while devel‐
oping.” It was clear that this knowledge was not something systematically evaluated or
externalized, just assumed, as the agile mindset brings the focus to people instead of
process and tools the teams are not completely sure of how much knowledge on secure
coding was in the teams.

Automated unit testing is not security-oriented at all. Risk assessment is performed
mostly by the Austrian teams (Team 1 and Team 2), and is applied to focus testing. One
interviewer said: “Yes, we are using risk assessment, it is a kind of matrix where we have

Fig. 4. Mind map: security software engineering process.

How is Security Testing Done in Agile Teams? 209

on one hand probability occurrence and on the other hand importance of that stuff or
if it can occur. We have this matrix and we are using it for small tools”.

4.2 RQ 2: How Does the Agile Teams Perform Security Testing in Each Testing
Phase?

To answer how security testing is performed in each testing phase, we analyzed the
scope, objective and accessibility of the security testing, as shown in Fig. 5. With regard
to the scope, unit tests are commonly used in agile teams, but typically not with a specific
security focus. With some approaches for example testing positive and negative cases
one team specifically mentions security focus for unit tests. Only one team highlights
that security aspects are considered when negative unit tests, which are intended to fail,
are executed.

Fig. 5. Mind map security phases.

Static source and binary code analysis is performed for security reasons on the unit
level. All teams stated that no specific security aspects are considered during integration
testing. Security testing is most prominent on the system level. On this level security
tests are typically a synonym for penetration testing, typically performed as black box
testing. Security tests on the system level are to a large extent automated and there is
almost no manual security testing on this level. White-box aspects are typically only
considered during static source or binary code analysis.

When testing non-functional requirements, the focus in the interviewed teams is
typically on performance. One interviewee said: “We usually have unit test. And those
are trying to exercise the happy path, which should already catch a many of basic the
problems. We don’t have much integration tests. We have also some performance tests.
And that may go to the non-functional category, but we do not have much. We worry
mostly on if the code works as it is supposed to work”.

4.3 RQ 3: How Are Traditional Security Testing Techniques Generally Used in
the Agile Software Development Lifecycle?

For this question, the interviewees were asked to analyze Fig. 2. It shows the security
testing techniques generally used in traditional secure software development lifecycle,
i.e., model-based security testing, code-based testing and static analysis, penetration

210 D.S. Cruzes et al.

testing and dynamic analysis as well as security regression testing. The interviewees
were asked to talk about how they perform these activities in their agile software devel‐
opment and how often security testing or security related activities are done in their agile
cycles. An overview of the results is shown in Fig. 6.

Fig. 6. Mind map security testing techniques findings.

In general, there is no classical model-based testing approach available where security
tests are generated from test models, but there are abstractions available on the design level
to discuss security issues. One interviewee said: “We don’t do any model-based testing. We
consider security aspects as part of design and we don’t try to buy a formal model around
that. During development as we said we do code-based testing and static analysis. And that
is probably on where most of our focus is. We have done some dynamic security tests in the
past. As I said, those took a lot of manual effort and it was very unstable, it broke up often
with some UI changes and it was hard to keep up”.

For code-based testing there are two main approaches referred to by the companies,
i.e., code reviews and unit testing. When it comes to code review, there is no explicit
emphasis on security, but developers are implicitly required to do security checks during
the code review process. As for unit tests the focus is more on functionality than on
security.

Static analysis tools are used to check the code but not primarily with a security
focus. The interviewed teams believe that static analysis already finds the most important
‘low-hanging fruits’ in security. SonarQube and FindBugs are widely used tools for
static analysis for the teams interviewed.

Penetration testing is performed basically by external consultants periodically or
when there is a big change on the system but not aligned with the sprint cycles. One
interviewee stated: “We do penetration testing from external testers from the company,
this was done together with the University of Innsbruck and plus our customers are
doing against software. They are completely independent and we are not informed, we
offer our aid only if there is a problem, and if we take Austrian medical network for

How is Security Testing Done in Agile Teams? 211

example, it is not allowed to go live without testing from external company and that does
not only involve our software but the whole system.”

Dynamic analysis was only mentioned by one interviewee as something they have
tried but it was too costly to maintain it. He said: “It was taking too much time to keep
it for us. And it requires a lot of manual integration and once that the scenario broke
because of an UI change or something and then we would have again manual effort to
fix that. For me, what makes code review and static analysis to work so well is that every
time you compile the code you can see the feedback on it. On the dynamic tests, you cant
do that very easily at that point you have to wait, and there is a lag between you writing
your code and you receiving some feedback on it. Even if it is part of the development
process, it doesn’t happen right away. In my experience the further away from your
commit, it less likely that you will either notice or be able to change it”.

In most cases security regression testing relies on test automation and on the system
level only tests for critical scenarios are automated, but not a specific regression testing
for security. One interviewee said: “So what is working well is, I think our development
processes are well structured and the biggest problem is, that we have frequent changes
of user stories and that is very challenging on the one hand side on the development
process and on the other side testing process. You have to adopt everything. The user
stories are not from our customers, the problem the changing part is more about our
c-level changes, on time this and one time that. So this is very big problem which also
is very big problem for agile software development because it is very big problem”.

5 Discussion

Based on the results, we discuss recommendations for practice and research as well as
limitations of this work.

5.1 Recommendations for Practice

With regard to the security engineering process, it is evident that the teams assume that
developers have some security knowledge, but the issue is that they did not state how
they conduct security engineering processes as well as what they need. For this reason,
there is a demand for better use of guidelines for secure coding and testing practices like
the OWASP guidelines [25]. Moreover, there should be a more systematic approach of
spreading knowledge in security inside the teams. In a recent survey, Oyetoyan et al.
[27] found that the developers’ confidence in their software security knowledge is low,
and therefore more efforts should be spend on getting the level of security knowledge
higher at the companies. This is stronger in agile setting context because there is a strong
dependency on people and not on process and tools. In addition code review and static
analysis are used more and more in software projects, but without specific focus on
security [27]. For this reason, processes of code reviews and static analysis should be
more focused on security.

Even though the teams rely on penetration testing performed by externals, there is a
danger of external penetration testers not having domain knowledge to catch important

212 D.S. Cruzes et al.

vulnerabilities. While independent penetration testing is possible, there is a need that
the penetration testing feedback is well integrated with the whole development process
lifecycle [7, 34]. Chóliz et al. [7] have focused their study on the security testing activ‐
ities, with the clear objective of synchronizing the tests from the independent security
team with the agile rhythm of sprints, with frequent deliveries, of the software engi‐
neering teams, showing that the rate of found security vulnerabilities increased gradu‐
ally. The results of Türpe et al. [34] suggest that penetration tests improve developers’
security awareness, but long-lasting change of development practices is hampered if
security is not properly reflected in the communicative and collaborative structures of
the organization, e.g. by a dedicated stakeholder.

POs should have more security awareness because they are the only one responsible
for maximizing the return on investment (ROI) of the development effort. In addition,
the PO is responsible for product vision and constantly re-prioritizes the Product
Backlog, thereby adjusting any long-term expectations such as release plans and making
sure the team considers the stakeholders interests. The main issue with the explicit
functional security requirements is that, most of the time stakeholders do not explicitly
state them as requirements, and neither do the product owners. On the other hand, the
non-functional security requirements are not features, which mean they never become
a user story. In other words, they are not inserted into the product backlog. From the
performed study, we see that security issues are implicitly handled on the process, but
there is need for a more systematic approach to handle security issues in the development
process. As shown by Rindel et al. [30] it is possible to have the security user stories as
part of the product backlog.

5.2 Recommendations for Research

Research can help to increase knowledge and application of security testing in several
respects. First, knowledge can be increased by the development of suitable courses and
guidelines based on empirical evidence showing which approaches work in which
context. Good efforts have been done in the last years [3, 7, 30, 34]. Therefore more
empirical studies are needed which investigate challenges of security testing and derive
respective evidence-based guidelines to address them.

With regard to model-based security testing, lightweight approaches are needed,
which support the model creation, for instance, by learning of domain language
concepts, based on design-level abstracts that are available also in agile teams. Also, a
general understanding of the return of investment of model-based security testing
approaches, which has already been highlighted as a challenge in [17], would help to
apply such approaches efficiently. The issue of efficiently applying model-based testing
approaches becomes even more critical when agile teams develop systems where the
connection between safety and security is essential as in modern Internet-of-Things
applications.

As seen in the results, system testing is often limited to penetration testing and testing
of functional security requirements is often neglected. As automation is difficult to
achieve fully, but at the same time, important for successful application in agile teams,
suitable automation support and innovative techniques are required [29].

How is Security Testing Done in Agile Teams? 213

So far, security testing in agile teams makes little use of security risk assessments,
which typically exist in an implicit or explicit for in other organization units. Risk
assessment can be used to develop risk-based testing approaches [14], which can guide
decisions during testing, and for instance help to select and prioritize security regression
tests [13]. Baca et al. [3] shows that using a risk analysis approach, it s possible to find
more severe risks, besides, more advanced skills and a deeper awareness of the problems
become available. More research needs to be done in order to understand the best way
to apply risk management in agile projects and especially on security.

5.3 Work Limitations

Common criticisms to a case study also apply to this study, among them one may list:
uniqueness, difficulty to generalize the results, and the introduction of bias by partici‐
pants and researchers. In our study, we generalized the findings from empirical state‐
ments to theoretical statements, which involved generalizing data from interviews and
perceptions by discussing them in accordance with the literature. Interview data were
though our primary source of information.

Qualitative findings are highly context and case-dependent. Our findings apply to
software projects teams within four participating teams. However, all the participants
were professionals using typical development technologies in a typical working envi‐
ronment, e.g., the natural setting demanded by the case study approach. We described
the main characteristics of each case and company, including context and settings, data
collection, analysis, and analysis process, as well as quotations with our major findings.
This makes the results easier to generalize.

As commonly done in in-depth qualitative studies, we also had to do a trade-off
between the number of participants, the duration and the cost of this study. The number
of subjects interviewed in this context is not quantitatively significant, but gives deeper
insights on the issues investigated in this work.

6 Conclusion

In this paper, we investigated by a cross-case analysis of four teams, two from Austria
and two from Norway, how security testing is performed in agile teams. We investigated
how the security engineering process is managed/organized in agile teams, how security
testing is performed in each testing phase, and how security testing techniques are
generally used in the secure software development lifecycle.

Although the study is based only on the results of a limited amount of agile teams,
i.e., four, agile teams, we could derive recommendations for research and practice. The
findings of this research are not surprising, but at the same time are alarming. The lack
of knowledge on security by agile teams in general, the large dependency on incidental
penetration testers, and the ignorance in static testing for security are indicators that
security testing is highly under addressed and that more efforts should be addressed to
security testing in agile teams.

214 D.S. Cruzes et al.

In the future, we plan to replicate this study and to develop and evaluate suitable
security testing approaches to support the adoption of security testing in agile teams
through action research studies with industry.

Acknowledgments. This work was partially supported by the SoS-Agile (247678/070)
project funded by the Research Council of Norway, and by MOBSTECO (FWF P 26194-
N15) funded by the Austrian Science Fund. The authors are grateful to all involved in
this study, specially the interviewees for their insights and cooperation and to the soft‐
ware companies for supporting this work.

References

1. Arkin, B., Stender, S., McGraw, G.: Software penetration testing. IEEE Secur. Priv. 3(1), 84–87
(2005)

2. Austin, A., Williams, L.: One technique is not enough: a comparison of vulnerability discovery
techniques. In: ESEM 2011, pp. 97–106 (2011)

3. Baca, D., Boldt, M., Carlsson B., Jacobsson, A.: A novel security-enhanced agile software
development process applied in an industrial setting. In: ARES 2015, pp. 11–19 (2015)

4. Beznosov, K., Kruchten, P.: Towards agile security assurance. In: NSPW 2004, pp. 47–54
(2004)

5. Camacho, C.R., Marczak, S., Cruzes, D.S.: Agile team members perceptions on non-
functional testing: influencing factors from an empirical study. In: ARES 2016, pp. 582–589
(2016)

6. Chess, B., McGraw, G.: Static analysis for security. IEEE Secur. Priv. 2(6), 76–79 (2004)
7. Choliz, J., Vilas, J., Moreira, J.: Independent security testing on agile software development:

a case study in a software company. In: ARES 2015, pp. 522–531 (2015)
8. Common Weakness Enumeration (CWE), 5 March, 2017. https://cwe.mitre.org/index.html
9. Crispin, L., Gregory, J.: Agile Testing: A Practical Guide for Testers and Agile Teams.

Addison-Wesley Professional, Boston (2009)
10. Cruzes, D., Dybå, T.: Recommended steps for thematic synthesis in software engineering. In:

ESEM 2011, pp. 275–284 (2011)
11. CWE/SANS TOP 25 Most Dangerous Software Errors, 5 March 2017. https://www.sans.org/

top25-software-errors/
12. Erdogan, G., Meland, P.H., Mathieson, D.: Security testing in agile web application

development - a case study using the EAST methodology. In: Sillitti, A., Martin, A., Wang,
X., Whitworth, E. (eds.) XP 2010. LNBIP, vol. 48, pp. 14–27. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-13054-0_2

13. Felderer, M., Fourneret, E.: A systematic classification of security regression testing
approaches. Int. J. Soft Tools Technol. Transf. 17(3), 305–319 (2015)

14. Felderer, M., Schieferdecker, I.: A taxonomy of risk-based testing. Int. J. Softw. Tools
Technol. Transf. 16(5), 559–568 (2014)

15. Felderer, M., Agreiter, B., Breu, R., Armenteros, A.: Security Testing by Telling Test Stories.
Modellierung 161, 195–202 (2011)

16. Felderer, M., Büchler, M., Johns, M., Brucker, A.D., Breu, R., Pretschner, A.: Chapter one-
security testing: a survey. Adv. Comput. 101, 1–51 (2016)

17. Felderer, M., Zech, P., Breu, R., Büchler, M., Pretschner, A.: Model-based security testing: a
taxonomy and systematic classification. Softw. Test. Verification Reliab. 26(2), 119–148
(2016)

How is Security Testing Done in Agile Teams? 215

https://cwe.mitre.org/index.html
https://www.sans.org/top25-software-errors/
https://www.sans.org/top25-software-errors/
http://dx.doi.org/10.1007/978-3-642-13054-0_2

18. Fitzgerald, B., Stol, K.-J.: Continuous software engineering: a roadmap and agenda. JSS
123, 176–189 (2017)

19. Keramati, H., Mirian-Hosseinabadi, S.: Integrating software development security activities
with agile methodologies. In: AICCSA 2008 (2008)

20. Marback, A., Do, H., He, K., Kondamarri, S., Xu, D.: A threat model-based approach to
security testing. Softw. Pract. Experience 43(2), 241–258 (2013)

21. McGraw, G., Potter, B.: Software security testing. IEEE Secur. Priv. 2(5), 81–85 (2004)
22. Microsoft, Agile Development Using Microsoft Security Development Lifecycle 5 March

2017. http://www.microsoft.com/en-us/sdl/discover/sdlagile.aspx
23. Moe, N.B., Cruzes, D., Dybå, T., Mikkelsen, E.M.: Continuous software testing in a globally

distributed project. In: ICGSE 2015, pp. 130–134 (2015)
24. Oueslati, H., Rahman, M.M., Othmane, L., Ghani, I., Arbain, A.F.: Evaluation of the

challenges of developing secure software using the agile approach. Int. J. Secure Softw. Eng.
7, 17 (2016)

25. OWASP Foundation: OWASP Testing Guide v4. 5 March, 2017. https://www.owasp.org/
index.php/OWASP_Testing_Project

26. OWASP Top 10. 5 March 2017. https://www.owasp.org/index.php/Top_10_2013-Top_10
27. Oyetoyan, T.D., Cruzes, D.S., Jaatun, M.G.: An empirical study on the relationship between

software security skills, usage and training needs in agile settings. In: ARES 2016, pp. 548–555
(2016)

28. Paul, M.: Official (ISC)2 Guide to the CSSLP CBK, 2nd edn. (ISC)2 Press (2014)
29. Peischl, B., Felderer, M., Beer, A.: Testing security requirements with non-experts:

approaches and empirical investigations. In: QRS 2016, pp. 254–261 (2016)
30. Rindell, K., Hyrynsalmi, S., Leppänen, V.: Case study of security development in an agile

environment: building identity management for a government agency. In: ARES 2016, pp.
556–563 (2016)

31. Sindre, G., Opdahl, A.L.: Eliciting security requirements with misuse cases. Requirements
Eng. 10(1), 34–44 (2005)

32. Tappenden, A., et al.: Agile security testing of web-based systems via HTTP unit. In:
Proceedings of Agile Conference. IEEE (2005)

33. Tian-yang, G., Yin-sheng, S., You-yuan, F.: Research on software security testing. World
Acad. Sci. Eng. Technol. 70, 647–651 (2010)

34. Türpe, S., Kocksch, L., Poller, A.: Penetration tests a turning point in security practices? In:
Organizational Challenges and Implications in a Software Development Team,
WSIW@SOUPS 2016 (2016)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license
and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

216 D.S. Cruzes et al.

http://www.microsoft.com/en-us/sdl/discover/sdlagile.aspx
https://www.owasp.org/index.php/OWASP_Testing_Project
https://www.owasp.org/index.php/OWASP_Testing_Project
https://www.owasp.org/index.php/Top_10_2013-Top_10
http://creativecommons.org/licenses/by/4.0/

An Assessment of Avionics Software Development
Practice: Justifications for an Agile Development Process

Geir K. Hanssen1(✉), Gosse Wedzinga2, and Martijn Stuip2

1 SINTEF, Trondheim, Norway
geir.k.hanssen@sintef.no

2 NLR, Amsterdam, The Netherlands
{gosse.wedzinga,martijn.stuip}@nlr.nl

Abstract. Avionic systems for communication, navigation, and flight control,
and many other functions are complex and crucial components of any modern
aircraft. Present day avionic systems are increasingly based on computers and a
growing percentage of system complexity can be attributed to software. An error
in the software of a safety-critical avionic system could lead to a catastrophic
event, such as multiple deaths and loss of the aircraft. To demonstrate compliance
with airworthiness requirements, certification agencies accept the use of RTCA
document DO-178 for the software development. Avionics software development
is typically complex and is traditionally reliant on a strict plan-driven develop‐
ment process, characterized by early fixture of detailed requirements and late
production of working software. In this process, requirement changes and solving
software errors can lead to much rework, and create a risk of budget and schedule
overruns. This raises the question whether avionics software development could
benefit from the application of agile approaches. Based on the results of three
activities: (1) a literature study on industrial experience with the use of agile
methods in a DO-178 context, (2) an expert assessment of the DO-178 objectives,
and (3) a survey conducted among European avionics industry, an outline is
presented of an agile development process, where Scrum is extended to achieve
the DO-178 objectives. The application of agile methods is expected to support
frequent delivery of working software and ability to respond to changes, resulting
in reduced risk of budget and schedule overruns.

Keywords: Avionics · Certification · Safety critical software · DO-178 ·
Software Life-Cycle · Agile · Scrum

1 Introduction

Avionic systems play a crucial role aboard modern aircraft. These systems offer pilots
operational support in areas such as communications, navigation, and control of the
aircraft during all phases of flight and in all weather conditions. A system is safety-
critical when its failure could result in loss of life, significant property damage, or
damage to the environment [11]. An example of a safety-critical avionic system is the
flight control system, which governs the attitude of an aircraft and, as a result, the flight
path it follows. Safety-critical systems are not limited to the avionics domain only,

© The Author(s) 2017
H. Baumeister et al. (Eds.): XP 2017, LNBIP 283, pp. 217–231, 2017.
DOI: 10.1007/978-3-319-57633-6_14

examples of other important domains include, process control [20], medical equipment
[17], and automotive [9].

Present day avionic systems are increasingly based on computers and more functions
are implemented as software. Certification agencies, like the European Aviation Safety
Agency (EASA), accept the use of RTCA document DO-178 [18] for the development
of avionics software to provide assurance of compliance with airworthiness require‐
ments. Document DO-178 requires the achievement of many safety objectives, which
is generally costly and time consuming [4, 10].

The avionics industry traditionally uses the V-model, or a variant thereof, as life-
cycle model for software development. This matches DO-178 well when looking at the
life-cycle data items that have to be produced. There are, however, also disadvantages.
For example, no working software is produced until late in the development life-cycle.
Errors detected in this stage can lead to much rework of earlier performed activities, and
increase the risk of budget and schedule overruns [4]. In the same way, changes in
requirements in a late stage can also lead to much rework with similar consequences.

The application of agile methods could be a solution for these problems. The diffi‐
culty lies, however, in the fact that the looseness of an agile process does not seem to
be reconcilable with the rigour imposed by DO-178. For example, agile development
considers responding to change more important than following a plan, while DO-178 is
strictly plan driven. The main question addressed by this research is how agile methods
can be adapted to be usable in an avionics development process that is governed by
DO-178.

The following of the paper describes our research method (Sect. 2), an analysis of
DO-178C (Sect. 3), an overview of research and industry experience (Sect. 4), a survey
of present practice (Sect. 5), and an outline of an agile process aligned with DO-178
(Sect. 6). Conclusions and further work are presented in Sect. 7.

2 Research Method

In order to answer our research question, three complimentary activities have been
carried out and used to propose a DO-178-aligned agile process.

(1) An assessment of DO-178 has been performed to indicate how an agile strategy for
meeting the objectives could look like and whether there are potential conflicts by
using an agile method (Sect. 3.2). Annex A of DO-178 contains 10 summary tables
with 71 objectives. The information provided for each objective includes: (a) a brief
description, (b) its applicability for each software criticality level, (c) the require‐
ment for independent achievement, and (d) the data items in which the results are
collected. Each objective has been assessed to determine how the objective can be
met using an agile approach like Scrum and whether there is a need for extensions
beyond what can be considered a plain agile approach. The work performed by
K. Coetzee1 was taken as a starting point.

1 http://www.embeddedfool.net/blog/2015/04/08/a-more-agile-do-178/ (last accessed, Dec. 5,
2016).

218 G.K. Hanssen et al.

http://www.embeddedfool.net/blog/2015/04/08/a-more-agile-do-178/

(2) Relevant literature addressing the application of agile methods in the avionics
domain has been reviewed and main findings about opportunities and limitations
of using agile methods for development of avionics software were summarized
(Sect. 4). In order to build an understanding of the status of research and reported
industrial experience on the use and effects of agile methods in development of
safety-critical avionics software, a search for relevant literature has been conducted
with Google Scholar. We applied search phrases based on relevant terms such as
‘agile’, ‘avionic’, and ‘DO-178’. To strengthen the search, we applied snowballing,
meaning that relevant work referenced in identified publications was checked for
relevance and potentially included if the focus and quality was found sufficient.
From this search, 11 publications were found that potentially could offer insight
into industrial experience.

(3) A survey was done as an online questionnaire to establish a better overview of the
state–including challenges and potential points of improvement–of software devel‐
opment and certification in the avionics industry, and to map the current status of
using or plans to use agile methods. As part of the ASHLEY2 EU-project, we
selected professionals believed to have sufficient knowledge about their own organ‐
ization and about how software is developed and certified. 29 contact persons were
selected, each representing a unique ASHLEY partner organization. 10 contact
persons completed the questionnaire fully or partially.

Our study has some limitations. Firstly, the literature review identified a relatively
low number of relevant studies providing industrial experience. This is however a
valuable insight as it nevertheless summarizes the present state of research within this
specific domain. Secondly, the survey has a relatively low number of respondents. This
is due to resource priorities, but is somewhat compensated by selecting qualified
respondents, each representing a major avionic system provider in Europe. The results
present the most comprehensive overview of this industry so far.

3 Certification Aspects of Avionics Software Development

3.1 Overview of Document DO-178C

Document DO-178C, “Software considerations in airborne systems and equipment
certification” [18] governs the approval of software for avionic systems by certification
authorities, such as EASA. In this paper, we simply write DO-178 when referring to
revision C of the document.

DO-178 distinguishes five software levels (A–E) based upon the failure condition
that may result from erroneous behaviour of the software. Software is classified as (the
highest) level A, if erroneous software behaviour can cause or contribute to a cata‐
strophic failure condition of the aircraft, which would result in multiple fatalities, usually

2 Avionics Systems Hosted on a distributed modular electronics Large scale dEmonstrator for
multiple tYpe of aircraft, http://www.ashleyproject.eu (last accessed, Dec. 9 2016).

An Assessment of Avionics Software Development Practice 219

http://www.ashleyproject.eu

with loss of aircraft. For lower software levels, the consequence of erroneous software
behaviour gradually reduces to no effect on safety (level E).

DO-178 is a process-based standard relying on evidence that the various activities
associated with software development have been performed successfully. DO-178 cate‐
gorizes processes into three types: (1) the software planning process, which defines and
coordinates the activities of all processes (2) the software development processes, which
produce the software product, and (3) the integral processes, which ensure the correct‐
ness of the software product and confidence in the software development processes and
their outputs. DO-178 does not address system life-cycle processes, but it does describe
the interaction with system processes, including system safety assessment.

Table 1. Assessment of objectives for the software development processes.

DO-178 Objective Agile Strategy Remarks
1. High-Level Requirements
(HLRs) are developed

A system is divided into
features. Features are divided
into stories. Stories consist of
HLRs (and their test cases)

Features are client-valued
functions. At the end of each
Sprint, the implemented user
stories are used to update the
HLRs

2. Derived HLRs are defined
and provided to the system
processes, including system
safety assessment process

Derived HLRs are not directly
traceable to system
requirements. They are
developed in the same way as
HLRs (see objective 1)

Derived HLRs are provided to
the system processes to
determine if there is any
impact on the system safety
assessment and system
requirements

3. Software architecture is
developed

Start with a high-level
architecture and update/refine
it at each software release

Closure activities include a
review of the software
architecture to make sure it is
consistent with the source code

4. Low-Level Requirements
(LLRs) are developed

Develop LLRs by defining
conditions and associated
actions [13]

LLRs can be contained in the
source code or the unit tests
(embedded in the source code)

5. Derived LLRs are defined
and provided to the system
processes, including system
safety assessment process

Derived LLRs are not directly
traceable to HLRs. They are
developed in the same way as
LLRs (see objective 4)

Derived LLRs are provided to
the system processes to
determine if there is any
impact on the system safety
assessment and system
requirements

6. Source Code is developed Develop source code by
applying Test-Driven
Development (TDD)

Stories are implemented
during Sprints

7. Executable Object Code and
Parameter Data Item Files, if
any, are produced and loaded
in the target computer

Develop object code by
applying Continuous
Integration (CI) and
Continuous Delivery (CD)

When a defined set of features
is completed, a release will
follow

220 G.K. Hanssen et al.

DO-178 provides guidance by (1) stating objectives for software life-cycle
processes, (2) describing activities that provide a means for satisfying the objectives,
and (3) describing evidence in the form of data items to demonstrate that the objectives
have been satisfied. DO-178 does not prescribe a particular software life-cycle or meth‐
odology. A software development project defines its software life-cycle by specifying
a set of processes and their sequence. The usual sequence through the software devel‐
opment processes is requirements, design, coding, and integration.

3.2 Assessment of Document DO-178C

The assessment revealed that objectives for the software development processes
(DO-178, Table A-2) and testing (DO-178, Table A-6) can be achieved by applying
agile techniques. The remaining objectives are either outside the agile process or there
are no suitable agile techniques to achieve them. These objectives can be achieved using
traditional methods (inspections, reviews, analyses, management records).

Table 1 presents the assessment of the 7 objectives for the software development
processes (DO-178, Table A-2).

In conclusion, agile methods can be used to achieve a subset of the DO-178 objec‐
tives. No prohibitive conflicts have been identified.

4 Overview of Existing Research and Industry Experience

Most of the 11 reviewed publications provide discussions at a conceptual level without
any empirical data, indicating that this is a relatively new and immature–but growing–
concept within the avionics domain. Some empirical data is presented in only three of
the papers. Wils et al. [22] provide some minor insights from the Barco company, Paige
et al. [16] present a very small-scale experiment, and Carlson and Turner [1] make a
review of five case studies.

This lack of empirical data from industry is in contrast to non-safety-critical domains
where the use of agile methods has become common, with correspondingly more empir‐
ical research available [6]. One comparable domain, the process control domain, where
the IEC 61508 standard applies, is a bit more advanced, but in general it seems that the
application of agile methods and techniques to safety-critical software is in its early
stages [8]. However, the emergence of literature presenting ideas over the past few years
means that the industry is seeking new opportunities for improving their software devel‐
opment processes inspired by other domains.

4.1 Why This Interest in Agile Methods?

The common background and motivation for nearly all reviewed publications is the need
for improving the software development process, including certification based on
DO-178B/C. The trend seems to be that avionic system complexity is increasing [5].
Requirements tend to be more volatile (even late in the development process), calling
for better approaches to manage requirements and their changes in more flexible ways

An Assessment of Avionics Software Development Practice 221

[5, 15, 16]. We also see an increased customer orientation where industry wants to listen
more closely to customers [1, 3, 16, 21, 22], opening up for a more flexible development
process with less emphasis on complete and detailed up-front design. Experience also
indicates that cost and schedule overruns are happening too frequently [1, 4].

4.2 Evidence and Documentation

Regardless of the process framework, e.g., V-model or an agile process, there is a set of
formal data items that has to be produced [5], but an agile process may allow for doing
this more efficiently as well as data items may be updated more often. However, if an
agile approach is to be used, it calls for some extensions [16], as agile methods, such as
Scrum, do not specify such documentation at all. Examples of such data items that are
required by certification authorities are the Plan for Software Aspects of Certification
(PSAC) and the Software Accomplishment Summary (SAS) [18]. These documents,
together with the plans that concern the definition of the life-cycle processes may best
be kept outside the agile process.

4.3 More Flexible Management of Requirements and Change

One of the main characteristics of the established practice and application of the V-
model is that development of avionics software may be characterized as document driven
and sequential [16]. This may become challenging in cases where requirements change
throughout a development project, even despite there have been made very detailed plans
and design up-front. Change may come from several sources, like design revisions,
review of safety analysis, and verification [16]. Recent figures indicate that requirements
change can be quite extensive, from 25% in typical projects to 35% in large and complex
projects [21], and discovering problems and dealing with changes late in the process
may become very costly [4]. According to Wils et al., agile methods may lower the
change effort as compared to traditional development [22]. This does not mean that up-
front plans are to be avoided, as that would conflict seriously with the process objectives
in DO-178. However, the role of agile requirements management is to detail high-level
requirements per iteration, not to create new high-level requirements [5]. New high-
level requirements could be added after the Sprint, as part of the Sprint review. Up-front
requirements may not be complete or even in conflict (and need to be refined) [5].

However, there is a potential conflict here–that flexible requirements management
negatively affects the software verification process. If previously verified components
of a system are changed, the verification results need to be updated. This requires strict
configuration management and relentless testing of the software under development [2].

4.4 Applicability and Obstacles

In general, the consensus seems to be that there is no conflict per se for using agile
methods in development of avionics software [2, 3, 13, 21, 22]. In fact XP/Agile is
claimed to be particularly suitable [3] to deal with the increasing complexity and

222 G.K. Hanssen et al.

requirements volatility in safety-critical software projects. As changes inevitably do
happen, we could make use of better strategies to manage changes.

However, agile methods, such as Scrum, were not designed to support development
of large and complex systems like safety-critical avionic systems and there is a lack of
techniques and practices to meet the objectives of DO-178. E.g., the requirements for
data items and traceability have to be met by setting up a well-functioning framework
of tools to support and automate the process to a large extent [3, 22]. An agile process,
with short iterations of work, frequent feedback, and evaluation of status and incremental
development of the software supports the production of some of the needed data items
as part of the development itself. Instead of explicitly producing separate documents,
some of the information may be extracted from tools and logs. One of the core objectives
of agile methods is to minimize the effort for producing documentation [16, 21]. There
is work going on to extend Scrum to make it applicable to regulated domains, for
example the SafeScrum framework [14] and R-Scrum [7], which seek to meet require‐
ments mentioned above.

Besides practical aspects of setting up an agile process and a chain of supporting
tools, we also need to clarify such a change with the certification authority. A more or
less radical change in process will affect the work to be done by this stakeholder and it
is of course important that the certification authority representative gets all requested
information and eventually gets confidence that the applied approach has led to a safe
product without extra problems and in an efficient way.

Besides the core principle of incremental and iterative development, agile methods
may also be seen as a collection of practices and techniques. From Chenu [3] and Paige
et al. [16], we extracted the following set that may be particularly relevant to safety-
critical systems development:

• Test-driven development (need some adaptation, see also [12]).
• Coding standards (already mandatory for DO-178 levels A–C).
• Design improvement/refactoring (creates some challenges with respect to safety

analysis [5]).
• The planning game (from XP).
• Emphasis on communication (other than through extensive documentation).

4.5 Team Efficiency and Motivation

One of the main aspects of agile methods is how people work together. As a contrast to
plan-based methods where developers take on specialized roles, following detailed plans,
agile methods rely on multi-disciplinary teams, with the idea that this better enforces learning
and motivation [3]. Furthermore co-located teams are also believed to improve design flex‐
ibility and a shared vision of the system under development [1]. A team may also have
Designated Engineering Representatives (DERs), who are embedded representatives of the
certification authorities within the development team [5].3

3 Under EASA regulation, Certification Verification Engineers (CVEs) perform equivalent tasks as
DERs.

An Assessment of Avionics Software Development Practice 223

4.6 Testing

Extensive testing and full traceability is fundamental in development of avionics soft‐
ware and implementation of all requirements has to be verified by tests [3]. Testing is
also strongly emphasized in agile methods, which focus on test-driven development and
high test-coverage. However, for avionics software development purposes, agile
methods need to extend testing activities–e.g. by having more thorough acceptance
testing (not (only) relying on customer feedback) [2, 16]. Carlson and Turner argue that
incremental testing increases iteration pace and enables issues to be revealed and
dispatched [1]; they also argue that testers should be part of the development team
(provided that any independency requirements are guaranteed).

4.7 Adoption of New Software Process Models

Experience (e.g. from object-oriented development) shows that uptake and acceptance
of a new practice takes time–we should expect the same for agile methods as well [21,
22]. The avionics domain relies on well-established and well-proven practices and
processes and it is natural to be careful with new ideas, like agile methods, as they may
seem to impose more challenges than benefits. However, as this literature in sum shows,
there seems to be a growing interest at least.

4.8 Relating Findings to Other Domains

The literature review done here has focused explicitly on the avionics domain. However,
we find that the main challenges and approaches clearly coincide with other domains
where safety-critical software is essential. Other studies show that the same type of
challenges are being addressed, e.g., for process control systems [20], medical equip‐
ment [17], and automotive [9], and that agile methods may be applicable to other safety
standards and frameworks like IEC 61508, SPICE, and IEC 62304.

5 Survey to Assess Present Practice

A questionnaire was used to gain insights into the organizations’ profiles, their maturity,
their relationship to safety standards and authorities, various life-cycle aspects, and
perceived challenges and problems.

5.1 Respondents’ and Organizations’ Profiles

Respondents have a great variety in profiles, from developers and testers to managers.
Their organizations also have a wide range of business models, target markets (civil
passenger aircrafts on the top), and type of software applications (real-time embedded
systems being the most common).

224 G.K. Hanssen et al.

5.2 Maturity

The avionics domain/industry is mature and professional with established system
providers having decades of experience. There is a wide range of methods for require‐
ments analysis and architectural and detailed design in use. There is also a wide range
of testing approaches in use (white/black-box–unit/module/system/hardware-in-the-
loop). All practice extensive testing and inspection. Customer involvement is extensive.
There is extensive use of DOORS® from IBM Rational for requirements analysis and
management, but half of the respondents also use typical office tools.

5.3 Relationship to Safety Standards and Authorities

DO-178 is clearly the most relevant standard for all organizations. Applications are
developed at all levels of DO-178, where level C is the most common (60% of the
respondents). Consequently, there is a very high coverage of data items. When asked
about the level of interaction with the external assessor, 50% report that they collaborate
with the assessor in all phases of the project. The rest report a lower level. The average
estimate of costs related to verification and certification (including all reviews and
testing) is 40% of the total project budget.

5.4 Life-Cycle Aspects

There are a wide variety of software life-cycle models in use. The V-model is in use in
some form by all organizations, while 25% use incremental/iterative methods in some
form. Customers are involved to a very high degree. Testing (in general) and code
inspection/analysis are used by all respondents. Formal methods are applied by about a
third of the respondents.

5.5 Perceived Challenges and Problems

The top challenges with respect to verification and certification include: (1) having
sufficient resources, infrastructure, and competency/staff, (2) having sufficient quality
of customer communication, including requirements specification and feedback, and (3)
demonstrating compliance with DO-178 requirements to certification authority. The top-
rated problems with the software development process are requirements management
(frequent changes, insufficient requirements, ambiguous requirements, and addition of
new requirements), late discovery of problems/defects, and project cost overruns.

6 Towards an DO-178-Aligned Agile Approach

As mentioned in Sect. 3.1, document DO-178 [18] does not prescribe a particular soft‐
ware life-cycle model. This makes it possible to define software life-cycles, such as,
waterfall, V-model, incremental, and spiral, but also to apply agile methods. Scrum is
considered to be a suitable (non-safety) agile framework that could be used as a baseline.

An Assessment of Avionics Software Development Practice 225

It is the most commonly used agile framework in the software industry, in general, with
a large number of training resources, industrial experience, and available research liter‐
ature. Scrum will have to be extended for the development of avionics software to enable
delivery of all required data items in compliance with DO-178.

6.1 Scrum Phases

In his seminal paper [19] on the Scrum development process, K. Schwaber made a
distinction into the phases Pregame, Game, and Postgame. In this paper, we use the
terms Preparation, Development, and Closure, which are also frequently used, e.g., [13].
Applying the Scrum phases to the software development and software verification
processes of DO-178, as depicted in Fig. 1, allows the mapping of agile methods to these
processes.4

So�ware
development

processes

So�ware
verifica�on

process

Sprints

Prepara�on Development Closure

Scrum phases

D
O

-1
78

 p
ro

ce
ss

es

Prepara�on

Fig. 1. Application of Scrum phases to DO-178 processes.

During the Preparation phase, planning and architecture activities are performed.
Scrum’s concept of planning is somewhat broader than that of DO-178. Scrum includes
the definition of the next software release based on the currently known backlog, analysis
of system requirements, and development of user stories. The architecture activities
establish (or update) the software structure. During the Development phase, the func‐
tionality of a new release is developed as well as tests for new or changed code. The
software is designed, and source code is implemented, integrated, and tested during a
sequence of Sprints. In the Closure phase, the software release is prepared, including
system testing, final documentation, and release. The sequence of Preparation, Devel‐
opment, and Closure is repeated until the final software release has been completed. In
the next sections, the activities in each phase are described in more detail.

6.2 Preparation Phase Activities

During the Preparation phase, the allocated system requirements, or a subset thereof,
are taken and high-level requirements (HLRs) are produced in the form of features that

4 For simplicity, the DO-178 planning process and integral processes other than software veri‐
fication are not shown in Fig. 1.

226 G.K. Hanssen et al.

are further divided into user stories. A software architecture is established (or refined),
which, together with the prioritized HLRs, as part of the product backlog, is provided
to the Development phase. As required by DO-178, outputs of all processes are verified,
e.g., by means of review or analysis. Further details are presented in Table 2.

Table 2. Activities during Preparation phase.

DO-178 Process Inputs Activities Outputs
Software
requirements

Allocated system
requirements,
software level

Define system features
and prepare user
stories. A story
consists of HLRs

HLRs, trace data

Software design HLRs Establish or refine
software architecture,
including partitioning
concept

Software architecture,
trace data

Software verification HLRs, software
architecture, trace data

Define test cases for
HLRs. Verify all
outputs

HLR test cases,
verification results

The planning process of DO-178 is kept outside the agile process. It is responsible
for establishing and updating all plans, including the Software Development Plan, the
Configuration Management Plan, and the Plan for Software Aspects of Certification.
The latter document is used for communication with the authorities.

6.3 Development Phase Activities

The Development phase consists of a sequence of Sprints, all with preferably the same
fixed duration (from 1 to 4 weeks). The number of Sprints is not fixed. The result of a
Sprint is a set of implemented and tested user stories that are integrated into a working
application. In addition, a Sprint produces information for the assessor (the data items).
The application can be demonstrated to stakeholders, but not all features may be
complete and hence it is not releasable. Further details are presented in Table 3.

Agile development promotes the Test-Driven Development (TDD) technique. A
cyclic process is performed whereby first LLRs are established together with their test
cases. Next, test code is produced and all tests are executed to verify that they fail. Then,
source code is produced that just passes the tests. Finally, the code is refactored and tests
are re-executed. This cycle repeats until all LLRs have been implemented. In practise,
the TDD technique implies that software development activities will be performed in
conjunction with software verification activities.

6.4 Closure Phase Activities

Upon start of the Closure phase, a sufficient number of features should be completed to
warrant release of the application. During Closure, all data items that already exist in
some form (see outputs in Tables 2 and 3) are brought up to date. The remaining data

An Assessment of Avionics Software Development Practice 227

items required for compliance with DO-178 are produced by other processes than soft‐
ware development and software verification. For example, the software configuration
process produces the Software Configuration Index and the certification liaison process
produces the Software Accomplishment Summary.

6.5 Remarks and Potential Issues

The proposed process aims to address some of the key challenges we identified in the
survey, in particular challenges related to requirements management. Breaking work
down in shorter iterations, including planning (Preparation) and evaluation (Closure)
means that planning may be done using updated information from previous Sprints, and
that each Sprint provides information needed to meet the requirements of DO-178 (in
the form of data items). From related research we know that such a process needs to be
supported by tools to automate test-driven development and documentation creation as
much as possible in order to save time and to ensure quality and consistency [8].

Including agile approaches in the development process for avionics software prom‐
ises the usually cited benefits such as frequent delivery of working software, including
all data items required by DO-178, and the ability to deal with frequent changes in
requirements. There are, however, also a number of potential issues.

Contrary to the waterfall model, or the V-model, HLRs are defined in batches; each
time that the Preparation phase is entered, a sufficient number of HLRs are defined for
the subsequent sequence of Sprints. Having no overview of the complete set of HLRs
in an early phase of the development could lead to an inadequate software architecture
that may need drastic (and therefore costly) revision during subsequent Preparation
phases. This means that also agile projects needs to invest in a sufficient level of detail
of HLRs and overall system architecture early. An agile process though may create better
opportunities to manage changes when they occur.

Table 3. Activities during Development phase.

DO-178 Process Inputs Activities Outputs
Software design HLRs, software

architecture, trace data
Define Low-level
requirements (LLRs)
by conditions and
associated actions [13]

LLRs, trace data

Software coding LLRs Produce code for the
LLRs

Source code

Integration Source code Perform continuous
integration

Executable object
code

Software verification HLRs, HLR test cases,
software architecture,
LLRs, source code,
executable object
code, trace data

Establish test cases for
LLRs. Produce test
code for HLRs and
LLRs. Execute
(automated) tests.
Verify all outputs

HLR test procedures,
HLR test results, LLR
test cases, LLR test
procedures, LLR test
results, verification
results

228 G.K. Hanssen et al.

Another issue is that the definition of derived HLRs late in the development, e.g.,
after several cycles of Preparation, Development, and Closure have taken place, may
have consequences for the safety analysis [21]. For example, if derived HLRs imply
new interfaces that falsify earlier independence claims, a higher software level could be
required, creating additional (verification) work that could have been done more effi‐
ciently when known beforehand.

7 Conclusions and Further Work

The development of safety-critical software by the avionics industry is governed by
RTCA document DO-178. The document places much emphasis on documented and
traceable verification to achieve an acceptable level of confidence that the software
development activities have been performed successfully. Indeed, our survey, among
major players in the European avionics industry, confirmed that verification and certif‐
ication constitutes a large portion of the total costs of development (estimated 40%). The
survey also revealed other challenges perceived by this industry, including requirements
volatility, late discovery of problems/defects, and project cost overruns.

The adoption of an agile framework could be a solution for these challenges; this is
in line with other related safety-industry oriented research [7, 8]. At present, the life-
cycle model mostly used by the avionics industry to organize software development is
the V-model, or variants thereof. DO-178, however, does not preclude the use of any
particular model, and in general, there seem to be no obstacles for adopting an agile
framework. It is clear that agile methods, like Scrum, need to be adapted to fit in the
development and certification of avionics software. In particular, such methods need to
be extended to fulfil requirements of traceability and documentation. Some of these may
be enabled by use of proper tools that provide a high level of automation.

Using Scrum as a basis, an approach has been outlined that benefits from agile
methods and can also satisfy the objectives of DO-178. Some DO-178 objectives are
achieved in an agile way, while others, in particular a subset of the verification objec‐
tives, are achieved by traditional means (management plans, reviews, and analyses).
Benefits expected from the agile approach include reduction of risks, adaptability to
changing requirements, and overall a reduction of development cost.

There are, however, issues that need further investigation. One of these is that soft‐
ware requirements are defined in batches; each time, sufficient software requirements
are defined for the subsequent sequence of Sprints. Having no overview of the complete
set of software requirements in an early phase of the development could lead to an
inadequate software architecture that would need thorough revision later on.

To conclude, agile methods may promise to resolve some of the specific challenges
in the avionics domain, but there is still a clear need for more research and industrial
experimentation to verify applicability and to demonstrate improvement effects.

Acknowledgments. The authors would like to thank the anonymous contributors to the survey
and Rob Udo from NLR for his contributions to this research. Also the insightful comments from
the reviewers are much appreciated. The research leading to these results has received funding

An Assessment of Avionics Software Development Practice 229

from the European Community’s Seventh Framework Programme FP7/2012-2016 under grant
agreement no. ACP2-GA-2013-605442.

References

1. Carlson, R., Turner, R.: Review of agile case studies for applicability to aircraft systems
integration. Procedia Comput. Sci. 16, 469–474 (2013)

2. Cawley, O., Wang, X., Richardson, I.: Lean/Agile software development methodologies in
regulated environments – state of the art. In: Abrahamsson, P., Oza, N. (eds.) LESS 2010.
LNBIP, vol. 65, pp. 31–36. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16416-3_4

3. Chenu, E.: Agility and lean for avionics. In: Lean, Agile Approach to High-Integrity Software
Conference, Paris (2009)

4. Chenu, E.: Agile and Lean software development for avionic software. Whitepaper, Thales
Avionics (2011)

5. Coe, D.J., Kulick, J.H.: A model-based agile process for DO-178C certification. In:
Proceedings of 2013 World Congress in Computer Science, Computer Engineering, and
Applied Computing, Las Vegas (2013)

6. Dingsøyr, T., Nerur, S., Balijepally, V., Moe, N.B.: A decade of agile methodologies: towards
explaining agile software development. J. Syst. Softw. 85(6), 1213–1221 (2012)

7. Fitzgerald, B., Stol, K.-J., O’Sullivan, R., O’Brien, D.: Scaling agile methods to regulated
environments: an industry case study. In: Proceedings of the 2013 International Conference
on Software Engineering. IEEE Press (2013)

8. Hanssen, Geir K., Haugset, B., Stålhane, T., Myklebust, T., Kulbrandstad, I.: Quality
assurance in scrum applied to safety critical software. In: Sharp, H., Hall, T. (eds.) XP 2016.
LNBIP, vol. 251, pp. 92–103. Springer, Cham (2016). doi:10.1007/978-3-319-33515-5_8

9. Hantke, D.: An approach for combining spice and scrum in software development projects.
In: Rout, T., O’Connor, R.V., Dorling, A. (eds.) SPICE 2015. CCIS, vol. 526, pp. 233–238.
Springer, Cham (2015). doi:10.1007/978-3-319-19860-6_18

10. Hilderman, V.: DO-178B Costs Versus Benefits. HighRely Inc., HighRely Whitepaper (2009)
11. Knight, J.C.: Safety critical systems: challenges and directions. In: Proceedings of the 24rd

International Conference on Software Engineering, ICSE 2002. IEEE (2002)
12. Lambourg, J., Comar, C.: Methodology: agile development of safety critical systems.

OpenCoss Framework 7 project (2012)
13. Meunier, V., Destouesse, M., Cros, T.: How to “take credit” of agile principles within a

certification context? (2008) (Presentation)
14. Myklebust, T., Stålhane, T., Hanssen, G., Wien, T., Haugset, B.: Scrum, documentation and

the IEC 61508-3: 2010 software standard. In: International Conference on Probabilistic Safety
Assesment and Management (PSAM). PSAM, Hawaii (2014)

15. Paige, Richard F., Charalambous, R., Ge, X., Brooke, Phillip J.: Towards agile engineering
of high-integrity systems. In: Harrison, Michael D., Sujan, M.-A. (eds.) SAFECOMP 2008.
LNCS, vol. 5219, pp. 30–43. Springer, Heidelberg (2008). doi:10.1007/978-3-540-87698-4_6

16. Paige, R.F., Galloway, A., Charalambous, R., Ge, X.: High-integrity agile processes for the
development of safety critical software. Int. J. Crit. Comput.-Based Syst. 2(2), 181–216 (2011)

17. Rottier, P.A., Rodrigues, V: Agile development in a medical device company. In: AGILE
2008 Conference (2008)

18. RTCA, DO-178C: Software considerations in airborne systems and equipment certification
(2011)

230 G.K. Hanssen et al.

http://dx.doi.org/10.1007/978-3-642-16416-3_4
http://dx.doi.org/10.1007/978-3-319-33515-5_8
http://dx.doi.org/10.1007/978-3-319-19860-6_18
http://dx.doi.org/10.1007/978-3-540-87698-4_6

19. Schwaber K.: SCRUM development process. In: Sutherland, J., Casanave, C., Miller, J., Patel,
P., Hollowell, G. (eds.) Business Object Design and Implementation, pp. 117–134. Springer,
London (1997). ISBN 978-3-540-76096-2

20. Stålhane, T., Myklebust, T., Hanssen, G.K.: The application of Scrum IEC 61508 certifiable
software. In Proceedings of ESREL, Helsinki, Finland

21. VanderLeest, S.H., Buter, A.: Escape the waterfall: agile for aerospace. In: Proceedings of
IEEE/AIAA 28th Digital Avionics Systems Conference, DASC 2009, p. 6, (6D3). IEEE
(2009). doi:10.1109/DASC.2009.5347438

22. Wils, A., Baelen, S., Holvoet, T., Vlaminck, K.: Agility in the avionics software world. In:
Abrahamsson, P., Marchesi, M., Succi, G. (eds.) XP 2006. LNCS, vol. 4044, pp. 123–132.
Springer, Heidelberg (2006). doi:10.1007/11774129_13

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license
and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

An Assessment of Avionics Software Development Practice 231

http://dx.doi.org/10.1109/DASC.2009.5347438
http://dx.doi.org/10.1007/11774129_13
http://creativecommons.org/licenses/by/4.0/

Short Research Papers

Inoculating an Agile Company with User-Centred Design:
An Empirical Study

Silvia Bordin1(✉) and Antonella De Angeli1,2

1 Department of Information Engineering and Computer Science, University of Trento,
via Sommarive 9, 38123 Trento, Italy

{Silvia.bordin,antonella.deangeli}@unitn.it
2 School of Computer Science, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK

Abstract. We present an empirical study on facilitating the adoption of user-
centred design (UCD) in small Agile companies. To this end, we introduced a
curated set of qualitative design practices in an Agile organisation, engaging
developers in a lightweight series of workshops. Our results suggest that the
approach followed enhanced internal communication and promoted a concrete
shift towards a more user-centred perspective. However, the presence of a
predominant non-Agile customer seems to have limited potential benefits.

Keywords: Qualitative research · Training developers · User-centred mindset

1 Introduction

Still in 2013, Moreno et al. stated that “the integration of usability engineering methods
into software development life cycles is seldom realized in industrial settings” [11]. One
reason for this is the “sheer lack of usability specialists in the industry” [5], which results
in insufficient knowledge about the work of the end user [8] and in the so-called “devel‐
oper mindset” [1], overly focused on technological aspects. Another issue relates to the
limited suitability of most usability and UX methods for the Agile setting [15], with
several authors [2, 4, 7] reporting a particular scarcity of lightweight practices for user
involvement in development projects despite the benefits induced by the ability to
perform usability and UX work in an agile context [4, 15]. In addition, even companies
realising a need to increase the usability of their products may be unable to invest in the
resources needed to achieve this [5], and this is particularly true in the case of small
enterprises [1, 5].

To facilitate the adoption of user-centred design (UCD) in small Agile companies,
we curated the identification of a small set of design techniques; we then planned an
action research intervention for presenting them to developers and assessing the impact
of these techniques on their working practices. A first iteration has been reported in [3],
while a second iteration is reported here. Our results suggest that even such a lightweight
approach may support the enactment of a user-centred mindset. However, the impact of
the intervention has been limited by the relationship with a dominant customer resistant
both to Agile and UCD: we conclude by pointing out the need both for researchers and

© The Author(s) 2017
H. Baumeister et al. (Eds.): XP 2017, LNBIP 283, pp. 235–242, 2017.
DOI: 10.1007/978-3-319-57633-6_15

practitioners to investigate more effective ways to communicate the business benefits
that the two approaches may bring.

2 Related Work

The term “user-centred design” denotes a broad set of techniques, methods, procedures
and processes that places the user at the centre of an iterative design process [17]. The
acknowledged benefits of involving users in systems design [e.g. 1] include improved
quality and acceptance of the system, and cost saving [12]. Although promising to
support “the execution of software development projects targeting the delivery of useful
and usable software” [4], the integration of UCD and Agile development is however not
trivial to achieve [e.g. 2] and limited empirical research exists on the topic [4, 7]. One
of the ways to enact this integration, particularly in the limited-resource context of small
enterprises, is “to use the software developers as a UX work resource by enhancing their
qualifications within the field of usability and UX” [14], or in other words to train
developers on usability techniques. Advantages include “the potential of easing prob‐
lems regarding the lack of usability specialists in the industry” [5]; the chance for small
companies to lessen “the need to staff usability specialists, which cannot be funded” [5];
a good fit with the Agile feature of team members being able to perform every given
work task [13]. This is where we place our contribution.

We also point out, however, that also the customer needs to be supportive of the inte‐
gration of UCD and Agile, allowing for a suitable design to be researched [2] and for
adequate access to users. Scepticism is more frequent in large customers [10] and may
result in a lack of customer engagement, which can be a big challenge for development teams
[10] especially given the relevance placed on the customer by the Agile philosophy. The
solution may require the capability of demonstrating business value, management support,
and nurturing a change of mindset and culture in the customer [9]: how to effectively
communicate this has however remained largely an open point to date.

3 Action Research Intervention

The activities described here were carried out in “the Company”, a branch of a large
Italian IT group providing cyber security and network configuration services to the
largest telecommunication operators of the country. The Company had long adopted
Agile successfully, and had one main customer, a large telecommunication provider that
we will call “the Telco”. Being the Telco a much larger venture, the power relationship
between the two parties was naturally asymmetrical, although generally warm.
However, the Telco is also a highly structured corporate, whose constrained workflow
prevents a full implementation of Agile in the projects followed by the Company, and
where some representatives seem to oppose contacts between the Company and final
users of their software. While trying to reduce their dependency from the Telco, the
Company realised that they were lacking sufficient skills in usability and interface
design, and that this could be an issue in proposing their products to fresh customers;
therefore, they asked for our help.

236 S. Bordin and A. De Angeli

3.1 Method

We followed the Cooperative Method Development approach, a “domain specific adap‐
tation of action research” that moves from an ethnographically-inspired understanding
of the “existing practice of software development in concrete industrial settings” and
aims at improving such practice by cooperating with practitioners [6].

Design techniques presented to developers were chosen to overcome potential
communication breakdowns in the integration of UCD and Agile [2], and to reflect
surveys on the usability techniques most used in industry [e.g. 14], particularly
accounting for their feasibility of integration into an Agile environment and of teaching
non-UX professionals. These methods include low-fidelity prototyping, usability
testing, personas, expert evaluations, and user task analyses. We remark that this inter‐
vention is meant for “supporting developers during ongoing day-to-day product devel‐
opment” [13] and that “we do not discard the need for a usability expert” [8].

3.2 Preliminary Understanding

The first author interviewed developers in June 2016 about their perception of the
working environment, their current working practices, and their attitude towards UCD-
related themes. The interview study lasted two days and involved 7 people. For what
concerns the organisational setting, the Company employs about 20 people, mostly
young graduate developers, and exhibits a pretty flat hierarchy. The environment is
predominantly technical, yet with a positive and rather curious attitude towards UCD-
related themes, to the point that employees explicitly argued in favour of the collabo‐
ration with our University in front of the group managers, who tend to adopt a more
“command and control” approach instead.

The Company proposed to focus on what we will call the Software (a desktop appli‐
cation used to configure and monitor networking devices for corporate customers of
Telco) as a running example during the intervention, for a variety of reasons: it is entirely
developed within the Company for Telco; it has evolved over several years as the juxta‐
position of different parts, and would now need a refactoring; being one of the main
projects of the Company, it is sufficiently well known to all employees.

3.3 Implementation

In August 2016 a series of four workshops, each lasting a whole day, was carried out at
the Company site. The agenda of workshops is outlined in Fig. 1 and was grounded on
different elements: on a practical level, we accounted for the results of preliminary
interviews and for the feedback from our previous iteration of a similar series of work‐
shops [3]; on a more theoretical level, we accounted for the stages of the traditional UCD
lifecycle, and the set of focal points to consider in the integration of UCD and Agile
development [2], namely the extent of user and customer involvement, the role of docu‐
mentation, the synchronisation of design and development iterations, and ownership
over UX tasks.

Inoculating an Agile Company with User-Centred Design 237

Fig. 1. Workshops overview.

Three developers (who will be referenced as D1 to D3) were appointed to attend the
whole workshop cycle, led by the first author in the role of a facilitator. All of them
expressed great interest in user-related themes: D1 was self-taught on UCD techniques,
while D2 and D3 were not familiar at all with them.

“One doesn’t even know where to start from, without knowing any basics” (D3)
“More than once [design choices] have been a stab in the dark” (D1)
“If there’s one skill in the Company we are really lacking it is interface design … we try to do
what we can” (D2)

Workshops started by motivating more formally the advantages of adopting UCD,
that is by presenting well-known reports from industry [e.g. 18] highlighting user
involvement as a key factor for project success, and in contrast the lack of it as one of
the most common reasons for failure. We then considered the workflow supported by
the Software, illustrated in a very technology-centred way in its user manual, and guided
participants in re-elaborating it focusing on the perspective of users. In collaboration
with the facilitator, participants then outlined the stakeholder network related to the
Software, which confirmed how the needs of actual users were generally mediated when
reported to the Company, if collected at all. A task analysis was then performed for
actors most likely to interact significantly with the Software, and was represented
through use-case diagrams. The project manager was chosen as the reference user:
information on the characteristics of Software users in this role was retrieved indirectly,
i.e. through LinkedIn and narratives of other Company employees, and then expressed
through a couple of personas representing different levels of expertise; these in turn
inspired scenarios and storyboards.

Once a reference persona was chosen, participants rated the dimensions of usability
listed in [12] through poker planning, regarding them as non-functional quality criteria
for the Software. Participants then elaborated different low-fidelity prototypes for a
specific interface of the Software; however, a later inspection revealed that these alter‐
natives could not support the same workflow articulation as the existing interface. Hence,
since the latter was anyway rather complex, participants asked for support in wire‐
framing a more logical re-grouping of its functionalities.

238 S. Bordin and A. De Angeli

Finally, the different purposes of low- and high-fidelity prototypes and how to
communicate them were illustrated, since D1 repeatedly pointed out that Telco would
not accept discussing over a “non serious” low-fidelity prototype and that previous
attempts at doing this had failed. In addition, a session of user testing was simulated on
the ERP system in use at the Company for demonstrative purposes. After the end of the
intervention, participants organised a wrap-up session and, a few weeks later, a dissem‐
ination seminar for their colleagues.

3.4 Evaluation

In December 2016, an external researcher interviewed participants about what they
remembered of proposed techniques after a few months and whether they felt that their
approach to design and development had changed. Interviews were loosely transcribed
and thematically analysed. Overall, participants positively welcomed our intervention,
regarding it as a chance of professional growth. They appreciated having learnt concrete
techniques, and remembered them correctly:

“I enjoyed wireframing a lot. It really gave me a different point of view” (D1)
“We should organise the info with wireframes, the poor user will be scared” (D3)

In addition, they expressed appreciation also for the presence of a trainer, reiterating
the effectiveness of scaffolding [19]:

“In terms of common sense, this is what every developer should do. Yet having someone
explaining you the steps to follow is something different” (D2)
“Now I have a method”(D3)

The training seems in fact to have contributed to enacting a shift from a technology-
focused mindset to a more user-centred one:

“Before we used to say – [the user] will have to get over it” “The interface as the means to
achieve an objective from the user’s point of view” “The goal is to remove the need for a manual
– even for us as developers!” (D3)
“We’ll surely follow this approach rather than – bah, let’s just do something” “I have been
assigned to a project where the interface is set in stone [by Telco], BUT [developers and
management] all agree that we are going to apply UCD techniques at the first suitable occasion”
(D2)

D2 and D3 in fact claimed to have applied proposed techniques as much as possible
to the improvement of minor parts of the Software interface that had been assigned to
them, and to have used them to support communication with colleagues:

“Prototypes and scenarios can be used internally to understand how to design something […]
I proposed some prototypes to my colleagues and this simplified the discussion” “In my opinion
personas should be shared by the whole team… to raise awareness among colleagues” (D3)

Participants also commented on the positive attitude shown by the rest of the
Company at the end of the dissemination seminar they led:

“We reported to the rest of the Company and the reaction was – let’s hope we will soon have
projects where to apply this approach” (D2)

Inoculating an Agile Company with User-Centred Design 239

Despite the satisfaction and interest shown, participants did not believe the approach
would prove fully applicable in the interaction with their customer due to the strong
“developer mindset” [1] of Telco’s representatives, even harder to overcome due to the
unbalanced power relationship with the Company:

“Personas cannot be used with Telco: our customer is very much feature-oriented and in a
dominant position […] it does not want to see the prototype, it wants to see the product” “Some
techniques will be more applicable than others, because it is impossible to access users […] We
have no [user] feedback. Clearly we miss it” (D1)
“I guess the customer would be disappointed by storyboards on paper […] it may think we did
not put too much effort into such a proposal” (D3)

4 Discussion

In terms of the applicability of the presented approach to other small enterprises, we
suggest that, together with the Company’s “culture receptive to UCD” [2], developers’
consolidated familiarity with Agile (including being used to change and flexibility, iter‐
ation, and frequent interaction with the customer) may have allowed a deeper appro‐
priation of UX techniques, resulting in a potentially sustained impact over working
practices. Furthermore, participants demonstrated an accurate recall of techniques and
of their rationale, and reported a spontaneous sharing of their learning with colleagues,
applying proposed techniques whenever possible to support interface design and internal
discussion. This reflects claims in [16], where Agile and UCD-inspired practices are
considered to have a positive impact on mutual understanding and communication;
moreover, these factors suggest that even a lightweight intervention such as the one
described in this paper may support the enactment of a more user-centred mindset. This
can constitute a first step for the organisation towards the awareness of the benefits of
integrating UCD, providing elements to decide whether to proceed in developers’ UX
training or to hire a specialist designer.

The impact of proposed techniques seems however to have been limited by the
Company doing Agile in a non-Agile environment, where this label includes both the
culture of the parent group and of the Telco. We argue that the same challenges encoun‐
tered in this setting [9, 10] can be found when introducing UCD in an environment not
accustomed to it. We envision as future work the evaluation of the set of UCD techniques
in an Agile company whose customer is also Agile: this would be the most favourable
context. In conclusion, we point out to the research and practitioners’ community that
there is still a lack of suitable ways to clearly communicate to reluctant customers the
potential benefits of Agile and UCD [10].

Acknowledgments. We thank Angela Di Fiore for collaborating in the evaluation interviews,
and our participants and the whole Company for their welcoming and kind support. This work
has been possible thanks to the funding granted by the Italian Ministry of Education, University
and Research (MIUR) through the project “Città Educante”, project code CTN01_00034_393801.

240 S. Bordin and A. De Angeli

References

1. Ardito, C., Buono, P., Caivano, D., Costabile, M.F., Lanzilotti, R.: Investigating and
promoting UX practice in industry: an experimental study. Int. J. Hum. Comput. Stud. 72(6),
542–551 (2014)

2. Bordin, S., De Angeli, A.: Focal points for a more user-centred agile development. In: Sharp,
H., Hall, T. (eds.) XP 2016. LNBIP, vol. 251, pp. 3–15. Springer, Cham (2016). doi:
10.1007/978-3-319-33515-5_1

3. Bordin, S., De Angeli, A.: Supporting cooperative work by integrating user-centred design
and agile development. Submitted at the European Conference on Computer-Supported
Cooperative Work (2016)

4. Brhel, M., Meth, H., Maedche, A., Werder, K.: Exploring principles of user-centered agile
software development: a literature review. Inf. Softw. Technol. 61, 163–181 (2015)

5. Bruun, A.: Training software developers in usability engineering: a literature review.
In: Proceedings of the 6th Nordic Conference on Human-Computer Interaction: Extending
Boundaries. ACM (2010)

6. Dittrich, Y., Rönkkö, K., Eriksson, J., Hansson, C., Lindeberg, O.: Cooperative method
development. Empirical Softw. Eng. 13(3), 231–260 (2008)

7. Dybå, T., Dingsøyr, T.: Empirical studies of agile software development: a systematic review.
Inf. Softw. Technol. 50(9), 833–859 (2008)

8. Eriksson, E., Cajander, Å., Gulliksen, J.: Hello world! – experiencing usability methods
without usability expertise. In: Gross, T., Gulliksen, J., Kotzé, P., Oestreicher, L., Palanque,
P., Prates, R.O., Winckler, M. (eds.) INTERACT 2009. LNCS, vol. 5727, pp. 550–565.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-03658-3_60

9. Gregory, P., Barroca, L., Sharp, H., Deshpande, A., Taylor, K.: The challenges that challenge:
engaging with agile practitioners’ concerns. Inf. Softw. Technol. 77, 92–104 (2016)

10. Hoda, R., Noble, J., Marshall, S.: The impact of inadequate customer collaboration on self-
organizing agile teams. Inf. Softw. Technol. 53(5), 521–534 (2011)

11. Moreno, A.M., Seffah, A., Capilla, R., Sanchez-Segura, M.-I.: HCI practices for building
usable software. Computer 46(4), 100–102 (2013)

12. Nielsen, J.: Usability Engineering. Morgan Kaufmann, San Francisco (1994)
13. Øvad, T., Bornoe, N., Larsen, L.B., Stage, J.: Teaching software developers to perform UX

tasks. In: Proceedings of the Annual Meeting of the Australian Special Interest Group for
Computer Human Interaction, pp. 397–406. ACM (2015)

14. Øvad, T., Larsen, L.B.: The prevalence of UX design in agile development processes in
industry. In: Agile Conference (AGILE), pp. 40–49. IEEE (2015)

15. Øvad, T., Larsen, L.B.: How to reduce the UX bottleneck–train your software developers.
Behav. Inf. Technol. 35(12), 1080–1090 (2016)

16. Pikkarainen, M., Haikara, J., Salo, O., Abrahamsson, P., Still, J.: The impact of agile practices
on communication in software development. Empirical Softw. Eng. 13(3), 303–337 (2008)

17. Rogers, Y., Sharp, H., Preece, J.: Interaction Design: Beyond Human-Computer Interaction.
John Wiley & Sons, Hoboken (2011)

18. The Standish Group CHAOS Report (2014). https://www.projectsmart.co.uk/white-papers/
chaos-report.pdf

19. Vygotsky, L.S.: Mind in Society: The Development of Higher Psychological Processes.
Harvard University Press, Cambridge (1980)

Inoculating an Agile Company with User-Centred Design 241

http://dx.doi.org/10.1007/978-3-319-33515-5_1
http://dx.doi.org/10.1007/978-3-642-03658-3_60
https://www.projectsmart.co.uk/white-papers/chaos-report.pdf
https://www.projectsmart.co.uk/white-papers/chaos-report.pdf

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license
and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

242 S. Bordin and A. De Angeli

http://creativecommons.org/licenses/by/4.0/

On the Usage and Benefits of Agile Methods & Practices

A Case Study at Bosch Chassis Systems Control

Philipp Diebold1(✉) and Udo Mayer2

1 Fraunhofer Institute for Experimental Software Engineering, Fraunhofer-Platz 1,
67663 Kaiserslautern, Germany

philipp.diebold@iese.fraunhofer.de
2 Bosch Chassis Systems Control, Robert-Bosch-Allee 1, 74232 Abstatt, Germany

udo.mayer@de.bosch.com

Abstract. Since software became a major part of the car, we were interested in
identifying which agile practices are used and adapted at Bosch automotive.
Therefore, we conducted a multi-case study with nine interviews from five Bosch
projects. Our results showed a strong focus on Scrum. Most of the Scrum practices
are adapted due to the specific project context. Practices from other agile methods,
e.g. XP, are used and adapted as well. We further collected the benefits of the
practices, most often resulting in improved transparency and planning. The results
are used to support automotive projects in selecting and applying agile practices
according to their specific process improvement goals.

Keywords: Automotive · Agile practices · Scrum deviations · Case study

1 Introduction

Within software engineering, agile development has shown to be a commonly used
approach [8, 9, 12]. Since embedded domains struggle with the integration of different
disciplines, e.g. hardware and electronics, there is a lot more communication necessary
[11]. These domains are currently using agile only to some extent in order to profit from
the benefits of agile development, e.g. shorter time-to-market. This was one of the major
reasons for Bosch Chassis Systems Control (CC) to become more agile. Thus, the state
of agile in projects is interesting. Knowledge about usage, adaptations of Agile Methods
and Practices, and their benefits should help spreading of agile.

2 Chassis Systems Control of the Bosch Group

The division CC is part of the business sector Mobility Solutions of the Bosch Group.
The business sector Mobility Solution generated sales of 41.7 billion euros in 2015
(Bosch Group in total: 70.6 billion euros) which makes the Bosch Group to one of the
world’s largest automotive suppliers. The division CC develops and manufactures inno‐
vative components, functions and systems that are designed to make driving a safe and

© The Author(s) 2017
H. Baumeister et al. (Eds.): XP 2017, LNBIP 283, pp. 243–250, 2017.
DOI: 10.1007/978-3-319-57633-6_16

comfortable experience. The projects of this study are developing systems for (highly)
automated driving, e.g. a highway pilot.

3 Study Design

Research Questions. Our objective is to better understand the usage, reasons and
adaptions as well as benefits of agile methods and practices within Bosch CC. Thus, we
ended up with the following research questions: RQ1 - Which agile elements (incl. agile
methods and agile practices [3]) are used? RQ2 - How is the usage of the agile practice
deviating from the textbooks? RQ3 - What are the benefits of the agile practices?

Case and Subject Selection. Possible cases (Bosch CC projects) and subjects (inter‐
viewees) were identified by Bosch based on the organizational scope and their usage of
agility. The latter was mandatory for participation. We identified 15 candidates repre‐
senting five projects. Nine of the 15 candidates participated, covering all five projects.

Data Collection Procedure. We conducted structured interviews with the participants,
seven face-to-face and two via phone. The questions were categorized into (1) intro‐
duction, (2) usage and (3) benefits of agile elements (first methods, then practices), and
(4) project context. The principal author conducted all interviews as follows: He
explained the idea and reason behind this study, the data collection, and the guaranteed
anonymity. He asked for used agile methods and agile practices. He discussed about the
experienced impacts, mainly benefits of the different elements. During the gathering of
the benefits, we were open to any mentioned benefits. If they had no idea, we named
potential benefits as triggers. For not biasing them, the interviewees had to give examples
for these benefit triggers. We ended up in a coded list of the benefits (cf. Table 2).

Analysis Procedure. We analyzed the notes of the interviews qualitatively. First, we
extracted the data from each interview (usage of agile elements, where and how, and
their benefits). Second, we compared and aggregated information from interviews
related to the same project. Third, we compared the project-aggregated results among
each other and with our experience and literature.

4 Results

We covered different team sizes and developed functions and considered different roles
of the interviewees: group leaders, department leaders, project leaders/managers (cf.
Table 1). Two participants performed the Scrum Master role.

4.1 RQ1: Usage of Agile Methods and Practices

Four Agile Methods were used by the projects: Scrum (n = 4 projects), Flow (n = 2),
iPeP (n = 1), and SAFe (n = 1). The practices that were used in all five projects belong
to Scrum, namely Sprint, Backlog, Sprint Planning, and Daily Stand-Ups, although one

244 P. Diebold and U. Mayer

project reported that it is not using Scrum. The practices that were used in most projects
were Sprint Review, Sprint Retrospective, Burndown-charts, Definition of Done, Scrum
Master, and Product Owner (PO) (all Scrum), and User Stories and Epics (both XP).
Continuous Integration, Release Planning and Scrum-of-Scrums completed the set. The
practices that were used in few projects were: Planning Poker and Pair Programming
(both XP), 80%-rule and Pull-system (both Lean/Flow), and Backlog Grooming
(Scrum). In Table 2, we show the use of agile practices.

Table 2. Benefits of used agile practices on goals (numbers indicate how many projects
mentioned a benefit)

(numbers indicate how many projects mentioned a benefit)

Agile

Practice un
de

rs
ta

nd
ab

ili
ty

kn
ow

le
dg

e
tr

an
sf

er

co
m

m
un

ic
at

io
n

tr
an

sp
ar

en
cy

fe
ed

ba
ck

sa
tis

fa
ct

io
n

te
am

 e
m

po
w

er
m

en
t

fo
cu

sin
g

st
ru

ct
ur

ed
ne

ss

pl
an

ni
ng

tim
e-

to
-m

ar
ke

t

ri
sk

 m
an

ag
em

en
t

ad

re
ss

ed
 b

en
ef

its

us

in
g

pr
oj

ec
ts

Daily Stand-Up 0 0 3 5 0 0 0 0 0 2 0 0 3 4
Sprint 0 0 0 2 0 0 0 1 2 1 0 1 5 5
Sprint Review 1 0 2 1 0 0 0 0 0 1 0 0 4 4
Retrospective 0 1 0 0 1 1 0 0 0 0 0 0 3 4
Sprint Planning 0 0 0 0 0 1 0 0 0 4 0 1 3 5
Backlog 1 0 0 2 0 0 0 0 1 1 0 0 4 5
Burndown-Charts 3 1 4
Scrum Master 0 0 0 0 0 1 1 0 0 0 0 0 2 4
Product Owner 0 0 0 1 0 0 1 0 0 1 0 0 3 4
80%-Rule 1 2 2 3 2
Planning Poker 1 2 2 1
User Stories 1 1 4
Epics 3 1 3
Cont. Integration 2 1 2 3
Scrum-of-Scrums 4 1 1 1 4 3

practices 2 1 3 8 1 3 3 2 4 10 1 3

Table 1. Project characteristics

Project Size Locations Project phase [6] Participating roles
P1 60 persons, 7 sub-

teams
2 in Germany Pre-development system project lead

P2 8 teams 1 in Germany,
Europe, Asia each

Pre-development technical project lead &
project lead

P3 33 persons 2 in Germany Series
development

project lead & team
lead

P4 8 persons 1 in Germany Pre-development Group lead
P5 70 persons 1 in Germany,

Europe, Asia each
Pre-development project lead, SW

project lead &
department lead

On the Usage and Benefits of Agile Methods & Practices 245

4.2 RQ2: Deviations of Agile Practices

The used practices are now discussed regarding their deviations from existing guide‐
lines, e.g. the Scrum Guide:

The major issue of the Scrum Master was the manifestation as “caretaker”, e.g. in
one team the Scrum Master was only inviting for the different Scrum meetings. Further,
often the Scrum Master was not the only role. Being a project leader or a PO in combi‐
nation might result in a conflict of interests. The PO also deals with the aspect of several
roles by one person without problems. But some teams defined an additional “feature
responsible”, which covered POs tasks, e.g. breaking down the features into Stories.
Finally, within one project, they struggled with the issue of having a Chief-PO commu‐
nicating with the customer high-level, but not knowing the requirements in detail.

The most deviating aspect of sprints was their length. For one project (needing four
weeks) more than two weeks were necessary for the integration of hardware aspects.
Another one worked with varying lengths over time.

The Scrum-of-Scrums meetings conducted weekly by the larger teams or projects
was in one case a team-meeting in which all project members participated. In another
case, it was conducted by the project lead to keep the offshore team on track.

The Daily Stand-Ups deviated in three different aspects: (1) Usage only for status-
tracking purpose, (2) Meetings lasting up to one hour, (3) Frequency of the meeting:
Instead of every day, teams conducted it every other day, every three days, once a week,
or unregularly. An extended duration of the meeting (one hour) was the consequence.

Sprint Planning: Within the sprint shift (Review, Retrospective, and upcoming
Planning), most of the teams performed all three meetings en-block in about three days.
In one of the larger teams, they found a solution to break down the Backlog to the teams
by the PO. The planning itself was conducted within the single teams without the PO.

Sprint Review: The composition of meeting participants ranged from meetings
without the customer and only with the team leaders and functional owners up to an
“open event”. Some meetings were unstructured without agenda or open topic list.
Others were not conducted as an “acceptance meeting” with stakeholders or PO.

Sprint Retrospective: This meeting varied within the timing: One team performed
it every other sprint, because two weeks were too short to resolve impediments. Another
team directly resolved smaller impediments during the meetings. One interviewee
mentioned that the retrospective was only weakly defined and valued within their team.

Within the Backlog, two major variations existed: Some included prioritization,
whereas other did not. Different backlogs were used, from team-, project- or overall
backlogs up to release backlogs. These kinds also contained various backlog items, e.g.
User Stories vs. Epics. Two teams did not use User Stories as prescribed by the given
templates, since they were not used to it and needed more information.

Planning Poker: One team used this practice for estimating the granularity-level to
refine the story or not. Furthermore, not all teams used “story points” as values, but e.g.
person hours or days. Finally, one deviation was that in one team just the “key player”
(a senior developer or feature responsible) decided on the estimation value.

Within the 80%-Rule, one interviewee mentioned that they are not considering it for
the workload, but on their throughput. In the only case using the pull-principle, the

246 P. Diebold and U. Mayer

responsibility regarding the different functions was clear such that it was “obvious who
is going to pull what”. Thus, sometimes one team member just “assigned” the tasks.

4.3 RQ3: Benefits of Agile Practices

Most of the considered agile practices are beneficial for planning (10 practices) and
transparency (8), followed by structuredness (4), communication, risk management,
satisfaction, and team empowerment (each 3). Checking the overall number of addressed
benefits per practice (cf. Table 2), e.g. the highest with five is the sprint, three yield four
benefits, and five yield three benefits.

Except for the Definition of Done and the Backlog Grooming, we could gather at
least one impact for each of the Scrum practices. Considering the Scrum meetings,
except the retrospective, all impact planning. Sprint Review as well as the Stand-Ups
also influence communication and transparency. The Sprint Retrospective was the only
practice dealing with feedback and knowledge transfer. The Burndown-Chart is a quite
good mechanism for transparency. Both Scrum roles impact the team empowerment.
The improved satisfaction resulting from the Scrum Master correspond with that. The
PO provides transparency as well as planning aspects. Considering the Non-Scrum
practices, there is information about the impact of six practices: Risk management,
planning and structuredness were impacted by the 80%-Rule. Planning Poker increases
planning and team empowerment. User Stories and Epics influence planning (Epics) or
focusing (User Stories). Continuous Integration improves transparency and time-to-
market. Finally, Scrum-of-Scrums was quite good for communication and it affects
transparency, structuredness, and planning.

5 Related Works and Discussion

Distribution/Frequency of Agile Practices. Within VersionOne [12], the most used
agile practices were Daily Stand-Ups, prioritized Backlogs, short Iterations (=Sprints),
Retrospective, Iteration Planning, and Release Planning. All of them were used by at
least one project, except for the Release Planning. For the other practices mentioned by
[12], there are some differences: The Sprint Reviews are used less often than in our
study, whereas, Continuous Integration is more common. Focusing on agile practices,
Kumos [9] reports that almost all of the top six used agile practices are Scrum practices,
all used by the Bosch projects. Scrum is also the prevalent agile method in automotive
[8]. Similar to our results, the Planning, Daily Stand-Ups, Review, and Retrospective
are used. We cannot confirm that the Sprint Review is used less often. In our study it
was the Retrospective.

Deviations of Agile Practices. A prior study on Scrum variations [1] showed similar
patterns, with the Scrum Master and PO given to people already owing a role, e.g.
developer or team lead. However, within our cases most of the Scrum roles were staffed.
Considering the 15–30 min of the Daily Stand-Ups, this timeframe is exceeded by some
cases and extended up to one hour. The frequency deviation of the Stand-Up is also

On the Usage and Benefits of Agile Methods & Practices 247

common [1]. For the sprint length variance from two to four weeks could be confirmed.
Only one project reasonably decided to have four weeks due to synchronizations of
teams and disciplines such as hardware and software.

Benefits of Agile Practices. Considering the benefits reported by [12], we see some
similarities: The benefits increased team productivity, improved project visibility,
increased team moral/motivation, better delivery predictability, and reduced project
risk can directly be mapped to the ones reported to us. In contrast, the benefits dealing
with engineering and quality, such as enhancing software quality, software maintaina‐
bility, or improving engineering discipline, were not mentioned within our interviews.
Compared to [9], five of nine benefits were also mentioned by our participants: trans‐
parency, customer orientation, timing, teamwork, and employee motivation. The results
of [9] (similar to [12]) additionally showed quality as highly impacted, not indicated by
our results.

Besides these studies, there are some practices studied in detail with their different
impacts, e.g. User Stories [4], Planning Poker [5] or Pair Programming [7]. Furthermore,
some studies analyzed which agile practice influence one specific benefit, e.g. [10]
dealing with communication: Daily Stand-Ups improve communication and transpar‐
ency, due to keeping developers, project leaders, and customers aware of the status.
Iteration Planning created awareness of the project plan and iteration goals, whereas the
Retrospective was a good way for working on process improvement. Even if we consider
the benefits on a more fine-granular level, the results confirm each other.

6 Validity of the Results

An interview guideline and data collection sheet eased aggregation and comparisons.
The guideline reduced the risk of misinterpretation and increased the objectivity. We
could not recognize any misunderstanding, since all interview participants were aware
of the common concepts, methods and practices. Additionally, we experienced that
assuring anonymity led the interviewees to answer openly. Regarding the interviewed
people within a project, we selected independent ones (not from the same team). Thus,
our data is a representative sample of agile development in the area of autonomous
driving. Within the data analysis, the aggregation of interview data within one project
was the most difficult and error-prone, because of considering different project roles and
teams with their viewpoints into one data set. The IESE and Bosch team discussed the
aggregated results involving colleagues for an external point of view. We provided a
summary report of the results via e-mail and gathered the feedback. We also performed
a presentation and discussion session with all participants. That our qualitative results
from Bosch CC are in line with most of the related work is another strong indicator for
their validity.

248 P. Diebold and U. Mayer

7 Conclusions and Future Work

Within this paper, we present the results of an interview series covering five different
automotive projects at Bosch CC with overall nine interviews on the topic of usage,
deviation, and benefits of single agile practices.

The usage of agile methods as well as the underlying agile practices shows a similar
picture as common studies. The most commonly used method is Scrum, which is adapted
and extended by other practices. There seem to be similar variations of agile practices
in the automotive domain as in information systems. Our study could confirm some of
the benefits mentioned by other agile surveys, and could provide further answers to the
question, which agile practice provides what specific benefits, and furthermore, that agile
practices overall are most beneficial for transparency and planning.

Within future work, we intend to use the elicited data to instantiate the Agile Capa‐
bility Analysis [2] for Bosch CC, a goal-oriented SPI approach using agile practices.
The next step will be the integration of A-SPICE® and connection to the agile practices.

Acknowledgements. We thank all interviewees for their time, participation, and openness. We
also thank A. Schmitt, T. Zehler, S. Theobald and Dr. P. Fröhlich for providing feedback.

References

1. Diebold, P., Ostberg, J.-P., Wagner, S., Zendler, U.: What do practitioners vary in using
scrum? In: Lassenius, C., Dingsøyr, T., Paasivaara, M. (eds.) XP 2015. LNBIP, vol. 212, pp.
40–51. Springer, Cham (2015). doi:10.1007/978-3-319-18612-2_4

2. Diebold, P., Zehler. T.: The agile practice impact model. In: Proceedings of ICSSP 2015.
ACM (2015)

3. Diebold, P., Zehler, T.: The right degree of agility in rich processes. In: Kuhrmann, M., Münch,
J., Richardson, I., Rausch, A., Zhang, H. (eds.) Managing Software Process Evolution, pp.
15–37. Springer, Cham (2016). doi:10.1007/978-3-319-31545-4_2

4. O’hEocha, C., Conboy, K.: The role of the user story agile practice in innovation. In:
Abrahamsson, P., Oza, N. (eds.) LESS 2010. LNBIP, vol. 65, pp. 20–30. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-16416-3_3

5. Haugen, N.: An empirical study of using planning poker for user story estimation. In:
Proceedings of AGILE 2006, pp. 23–34. IEEE (2006)

6. Hirz, M., Dietrich, W., Gfrerrer, A., Lang, J.: Overview of virtual product development. In:
Hirz, M., Dietrich, W., Gfrerrer, A., Lang, J. (eds.) Integrated Computer-Aided Design in
Automotive Development, pp. 25–50. Springer, Heidelberg (2013)

7. Hulkko, H., Abrahamsson, P.: A multiple case study on the impact of pair programming on
product quality. In: Proceedings of ICSE 2005, pp 495–504. ACM (2005)

8. Kugler Maag CIE. Agile in Automotive – State of the Practice (2015)
9. Kumos, A.: Status Quo Agile 2014. University of Applied Science Koblenz (2014)

10. Pikkarainen, M., Haikara, J., Salo, O., Abrahamson, P., Still, J.: The impact of agile practices
on communication in SW development. ESEJ 13(3), 303–337 (2008). Springer

11. Shen, M., Yang, W., Rong, G., Shao, D.: Applying agile methods to embedded software
development: a systematic review. In: Proceedings of SEES 2012, pp. 30–36. IEEE (2012)

12. VersionOne: The 10th annual State of Agile Report (2016)

On the Usage and Benefits of Agile Methods & Practices 249

http://dx.doi.org/10.1007/978-3-319-18612-2_4
http://dx.doi.org/10.1007/978-3-319-31545-4_2
http://dx.doi.org/10.1007/978-3-642-16416-3_3

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license
and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

250 P. Diebold and U. Mayer

http://creativecommons.org/licenses/by/4.0/

Checklists to Support Test Charter Design
in Exploratory Testing

Ahmad Nauman Ghazi(B), Ratna Pranathi Garigapati, and Kai Petersen

Blekinge Institute of Technology, Karlskrona, Sweden
{nauman.ghazi,kai.petersen}@bth.se, pranathi.r8@gmail.com

Abstract. During exploratory testing sessions the tester simultaneously
learns, designs and executes tests. The activity is iterative and utilizes
the skills of the tester and provides flexibility and creativity. Test charters
are used as a vehicle to support the testers during the testing. The aim
of this study is to support practitioners in the design of test charters
through checklists. We aimed to identify factors allowing practitioners to
critically reflect on their designs and contents of test charters to support
practitioners in making informed decisions of what to include in test
charters. The factors and contents have been elicited through interviews.
Overall, 30 factors and 35 content elements have been elicited.

Keywords: Exploratory testing · Session-based test management · Test
charter · Test mission

1 Introduction

James Bach defines exploratory testing as simultaneous learning, test design and
test execution [3]. Existing literature reflects that ET is widely used for testing
complex systems as well and is perceived to be flexible in all types of test levels,
activities and phases [7,13]. In the context of quality, ET has amassed a good
amount of evidence on overall defect detection effectiveness, cost effectiveness
and high performance for detecting critical defects [1,9–11,13]. Session-based test
management (SBTM) is an enhancement to ET. SBTM incorporates planning,
structuring, guiding and tracking the test effort with good tool support when
conducting ET [4].

A test charter is a clear mission for the test session and a high level plan that
determines what should be tested, how it should be tested and the associated
limitations. A tester interacts with the product to accomplish a test mission or
charter and further reports the results [3]. The charter does not pre-specify the
detailed test cases which are executed in each session. But, a total set of charters
for an entire project generally include everything that is reasonably testable. The
metrics gathered during the session are used to track down the testing process
more closely and to make instant reports to management [11]. Specific charters
demand more effort in their design whilst providing better focus. A test session
often begins with a charter which forms the first part of the scannable session
c© The Author(s) 2017
H. Baumeister et al. (Eds.): XP 2017, LNBIP 283, pp. 251–258, 2017.
DOI: 10.1007/978-3-319-57633-6 17

252 A.N. Ghazi et al.

sheet or the reviewable result. Normally, a test charter includes the mission
statement and the areas to be tested in its design.

Overall, the empirical evidence of how test charters are designed and how
to achieve high quality test charters are designed are scarce. High quality test
charters are useful, accurate, efficient, adaptable, clear, usable, compliant, and
feasible [4]. In this study we make a first step towards understanding test charter
design by exploring the factors influencing the design choices, and the elements
that could be included in a test charter. This provides the foundation for fur-
ther studies investigating which elements actually lead to the quality criteria
described by Bach [4]. We make the following contributions:

C1: Identify and categorize the influential factors that practitioners consider
when designing test charters.

C2: Identify and categorize the possible elements of a test charter.

The remainder of the paper is structured as follows: Sect. 2 presents the
related work. Section 3 outlines the research method, followed by the results in
Sect. 4. Finally, in Sect. 5, we present the conclusions of this study.

2 Related Work

Test charters, which are an SBTM element plays a major role in guiding inexpe-
rienced testers. The charter is a test plan which is usually generated from a test
strategy. The charters include ideas that guide the testers as they test. These
ideas are partially documented and are subject to change as the project evolves
[4]. SBTM echoes the actions of testers who are well experienced in testing and
charters play a key role in guiding the inexperienced testers by providing them
with details regarding the aspects and actions involved in the particular test
session [2].

The context of the test session plays a great role in determining the design
of test plan or the charter [4]. Key steps to achieve context awareness are, for
example, understanding the project members and the way they are affected by
the charter, and understanding work constraints and resources. When designing
charters Bach [4] formulated specific goals, in particular finding significant tests
quicker, improving quality, and increasing testing efficiency.

The sources that inspire the design of test charters are manifold
(cf. [4,8,12]), such as risks, product analysis, requirements, and questions raised
by stakeholders. Mission statements, test priorities, risk areas, test logistics, and
how to test are example elements of a test charter design identified from the lit-
erature review and their description [1,4,6]. Our study will further complement
the contents of test charters as they are used in practice.

3 Research Method

Study Purpose and Research Questions: The goal of this study is to investigate
the design of test charters and the factors influencing the design of these charters
and their contents.

Checklists to Support Test Charter Design in Exploratory Testing 253

RQ1: What are the factors influencing the design of test charters? The
factors provide the contextual information that is important to consider
when designing test charters, and complements the research on context aware
testing [4].

RQ2: What do practitioners include in their test charters? The checklist of
contents supports practitioners to make informed decisions about which contents
to include without overlooking relevant ones.

Interviews: Interviews (three face-to-face and six through Skype) were con-
ducted with a total of nine industry practitioners through convenience sampling
combined with choosing experienced subjects who are visible in the communities
discussing ET (see Table 1).

Table 1. Profile of the Interviewees

Interview ID Role Experience in testing Organizational size

1 Senior systems test engineer 4 years More than 500

2 Test quality architect 10 years 50–500

3 Test specialist 10 years 50–500

4 Test consultant 12 years More than 500

5 Test strategist 3 years Less than 50

6 CEO, Test consultant 30 years More than 500

7 Test manager 20 years More than 500

8 CEO, Test lead 4 years 50–500

9 Test quality manager 13 years 50–500

The interviews were semi-structured, following the structure outlined below:

1. Introduction to research and researcher: The researchers provide a brief intro-
duction about themselves, followed by a brief description on the research
objectives.

2. Collection of general information: In this stage, the information related to
the interviewee is collected.

3. Collection of research related information: This is the last stage where the
factors and contents of test charters have been elicited.

Data analysis: All the interviews were recorded by consent of the interviewees
and later transcribed manually. The qualitative data collected using literature
review and interviews was later analyzed using thematic analysis [5]. After thor-
oughly studying the coded data, similar codes have been grouped to converge
their meaning to form a single definite code.

Validity: The potential bias introduced by interviewing thought leaders and
experienced people in the area who are favorable towards exploratory testing
may bias the results, and hence may not be fully generalizable. Though, we have
not put any value on the factors and contents elicited, and they may be utilized
differently depending on context. That is, identifying the potential elements to

254 A.N. Ghazi et al.

include in test charters is the first step needed. To reduce the threat multiple
interviews have been used. Using a systematic approach to data analysis (the-
matic analysis) also aids in reducing this threat.

4 Results

RQ1: What are the factors influencing the design of test charters? Based on
interviews with test practitioners, 30 different factors have been identified (see
Table 2). The table provides the name of the factors as well as a short description
of what the factor means.

We categorized the factors and identified the following emerging categories,
namely:

– Customer and requirements factors: These factors characterize the customer
and their requirements. They include: F01: Client Requirements, F10: Busi-
ness Usecase, F15: Quality requirements, F27: Client location, and F30: User
Journey Map.

– Process factors: Process factors characterize the context of the testing in
regard to the development process. They include: F21: Process Maturity Level
and F25: SDLC Phase.

– Product factors: Product factors describe the attributes of the product under
test, they include: “F08: Functional flows, F09: Product Purpose, F14: Product
Characteristics, F19: General Software design, F20: System Architecture, F22:
Product Design Effects, and F28: Heterogeneous Dimensions.

– Project management factors: These factors concern the planning and lead-
ership aspects of the project in which the testing takes place. They include:
F05: Timeframe, F06: Project Purpose, F12: Effort estimation, F17: Test Team
Communication, F18: Project Plan, and F29: Project Revenue.

– Testing: Testing factors include contextual information relevant for the plan-
ning, design and execution of the tests. They include: F02: Test Strategy,
F03: Knowledge of Previous Bugs, F04: Risk Areas, F07: Test Function Com-
plexity, F11: Test Equipment Availability, F13: Test Planning Checklist, F16:
Test coverage areas, F23: Feedback and Consolidation, F24: Session Notes,
and F26: Tester.

RQ2: What do practitioners include in their test charters? The interviews
revealed 35 different contents that may be included in a test charter. Table 3
states the content types and their descriptions.

Similar to the factors we categorized the contents as well. Seven cate-
gories have been identified, namely testing scope, testing goals, test manage-
ment, infrastructure, historical information, product-related information, and
constraints, risks and issues.

– Testing scope: The testing scope describes what to focus the testing on, be
it the parts of the system or the level of the testing. It may also describe
what not to focus on and set the priorities. It includes: C02: Test Focus, C03:
Test Level, C04: Test Techniques, C10: Exit Criteria, C14: Specific Areas of
Interest, C19: Priorities, C28: Coverage, and C33: Omitted Things.

Checklists to Support Test Charter Design in Exploratory Testing 255

Table 2. Factors influencing test charter design

Charter influence factors Description

F01: Client requirements Requirements elicited from clients

F02: Test strategy Set of ideas that guide the test plan

F03: Knowledge of previous bugs Knowledge regarding system related bugs that
occurred in the past

F04: Risk areas Results of product risk analysis

F05: Time-frame Time needed for test mission execution, time
constraints

F06: Project purpose Purpose of the project

F07: Test function complexity Complexity of the tested functions

F08: Functional flows Flow of data and functions

F09: Product purpose Principle goal(s) of the product

F10: Business use-case Business use-case for the system

F11: Test equipment availability Accessibility to tools and equipment needed for the
software tests

F12: Effort estimation Effort needed to carry out the test mission

F13: Test planning checklist Testing heuristics appointed for the particular test
charter

F14: Product characteristics Features of the product

F15: Quality requirements Quality requirements of the product

F16: Test coverage areas Parts of the system to be tested

F17: Test team communication Means of communication between the testing team
members

F18: Project plan Plan for the project prior to its execution

F19: General software design Design of the system software

F20: System architecture Structure, interfaces and platforms of the system

F21: Process maturity level Maturity of the process (e.g. CMMI levels)

F22: Product design effects Impact of product design and features on other
modules

F23: Feedback and consolidation Feedback and consolidation of the test plan based on
the comments of previous testers and clients

F24: Session notes Notes filled during previous test sessions

F25: SDLC phase Phase involved in the system development life-cycle

F26: Tester Testers and their experience level

F27: Client location Location of the client, local or global

F28: System heterogeneity Differences between interacting systems (different
programming languages, platforms, system
configuration)

F29: Project revenue Business returns for project

F30: User journey map User interaction with the product over time

256 A.N. Ghazi et al.

Table 3. Contents of test charters

Content type Description

C01: Test setup Description of the test environment

C02: Test focus Part of the system to be tested

C03: Test level Unit, Function, System test, etc.

C04: Test techniques Test techniques used to carry out the tests

C05: Risks Product risk analysis

C06: Bugs found Bugs found previously

C07: Purpose Motivation why the test is being carried out

C08: System definition Type of system (e.g. simple/ complex)

C09: Client requirements Requirements specification of the client

C10: Exit criteria Defines the “done” criteria for the test

C11: Limitations It tells of what the product must never do, e.g. data sent as

plain text is strictly forbidden

C12: Test logs Test logs to record the session results

C13: Data and functional flows Data and work flow among components

C14: Specific areas of interest Where to put extra focus on during the testing

C15: Issues Charter specific issues or concerns to be investigated

C16: Compatibility issues Hardware and software compatibility and interoperability

issues

C17: Current open questions Existing questions that refer to the known unknowns

C18: Information sources Documents and guidelines that hold information regarding

the features, functions and systems being tested

C19: Priorities Determines what the tester spends most and least time on

C20: Quality characteristics Quality objectives for the project

C21: Test results location Test results location for developers to verify

C22: Mission statement One liner describing the mission of the test charter

C23: Existing tools Existing software testing tools that would aid the tests

C24: Target What is to be achieved by each test

C25: Reporting Test session notes

C26: Models and visualizations People, mind maps, pictures related to the function to be

tested

C27: General fault Test related failure patterns of the past

C28: Coverage Charter’s boundary in relation to what it is supposed to cover

C29: Engineering standards Regulations, rules and standards used, if any

C30: Oracles Expected behavior of the system (either based on

requirements or a person)

C31: Logistics How and when resources are used to execute the test

strategy, e.g. how people in projects are coordinated and

assigned to testing tasks.

C32: Stakeholders Stakeholders of the project and how their conflicting interests

would be handled

C33: Omitted things Specifies what will not be tested

C34: Difficulties The biggest challenges for the test project

C35: System architecture Structure, interfaces and platforms concerning the system,

and its impact on system integration

Checklists to Support Test Charter Design in Exploratory Testing 257

– Testing goals: The testing goals set the mission and purpose of the test session.
They include: C07: Purpose, C22: Mission Statement, and C24: Target.

– Test management: Test management is concerned with the planning, resource
management, and the definition of how to record the tests. Test management
includes: C12: Test Logs, C18: Information Sources, C21: Test Results Loca-
tion, C25: Reporting, C26: Models and Visualizations, C31: Logistics, C32:
Stakeholders, and C34: Difficulties.

– Infrastructure: Infrastructure comprises of tools and setups needed to conduct
the testing. It includes: C01: Test Setup and C23: Existing Tools.

– Historical information: As exploratory testing focuses on learning, past infor-
mation may be of importance. Thus, the historical information includes: C06:
Bugs Found, C16: Compatibility Issues, C17: Current Open Questions, and
C27: General Fault.

– Product-related information: Here contextual product information is captured,
including: C08: System Definition, C13: Data and Functional Flows, and C35:
System Architecture.

– Constraints, risks and issues: Constraints, risks and issues to testing comprise
of the items: C05: Risks, C15: Issues, and C29: Engineering Standards.

5 Conclusion

In this study two checklists for test charter design were developed. The checklists
were based on nine interviews. The interviews were utilized to gather a check-
list for factors influencing test charter design and one to describe the possible
contents of test charters. Overall, 30 factors and 35 content types have been
identified and categorized.

The factors may be used in a similar manner and should be used to question
the design choices of the test charter. For example:

– Should the test focus of the charter be influenced by previous bugs (F03)?
How/why?

– Are the product’s goals (F09) reflected in the charter?
– Is it possible to achieve the test charter mission in the given time for the test

session (F12)?
– etc.

With regard to the content a wide range of possible contents to be included
have been presented. For example, only stating the testing goals (C22) provides
much room for exploration, while adding the techniques to be used (C04) may
constrain the tester. Thus, the more information is included in the test charter
the exploration space is reduced. Thus, when deciding what to include from the
checklist (Table 3) the possibility to explore should be taken into consideration.

In future work we need to empirically understand (a) which are the most
influential factors and how they affect the test charter design, and (b) which of
the identified contents should be included to make exploratory testing effective
and efficient.

258 A.N. Ghazi et al.

References

1. Afzal, W., Ghazi, A.N., Itkonen, J., Torkar, R., Andrews, A., Bhatti, K.: An exper-
iment on the effectiveness and efficiency of exploratory testing. Empirical Softw.
Eng. 20(3), 844–878 (2015)

2. Bach, J.: Session-based test management. Softw. Testing Qual. Eng. Mag. 2(6)
(2000)

3. Bach, J.: Exploratory testing explained (2003)
4. Bach, J., Bolton, M.: Rapid software testing. Version (1.3. 2) (2007). www.

satisficc.com
5. Christ, R.E.: Review and analysis of color coding research for visual displays. Hum.

Factors J. Hum. Factors Ergonomics Soc. 17(6), 542–570 (1975)
6. Ghazi, A.N.: Testing of heterogeneous systems. Blekinge Inst. Technol. Licentiate

Dissertion Ser. 2014(03), 1–153 (2014)
7. Ghazi, A.N., Petersen, K., Börstler, J.: Heterogeneous systems testing tech-

niques: an exploratory survey. In: Winkler, D., Biffl, S., Bergsmann, J. (eds.)
SWQD 2015. LNBIP, vol. 200, pp. 67–85. Springer, Cham (2015). doi:10.1007/
978-3-319-13251-8 5

8. Hendrickson, E.: Explore it! The Pragmatic Programmers (2014)
9. Itkonen, J., et al.: Empirical studies on exploratory software testing (2011)

10. Itkonen, J., Mäntylä, M.V.: Are test cases needed? Replicated comparison between
exploratory and test-case-based software testing. Empirical Softw. Eng. 19(2),
303–342 (2014)

11. Itkonen, J., Rautiainen, K.: Exploratory testing: a multiple case study. In: 2005
International Symposium on Empirical Software Engineering, p. 10. IEEE (2005)

12. Kaner, C., Bach, J., Pettichord, B.: Lessons Learned in Software Testing. Wiley,
New York (2008)

13. Pfahl, D., Yin, H., Mäntylä, M.V., Münch, J., et al.: How is exploratory testing
used? In: Proceedings of the 8th ACM/IEEE International Symposium on Empir-
ical Software Engineering and Measurement, ESEM 2014 (2014)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://www.satisficc.com
http://www.satisficc.com
http://dx.doi.org/10.1007/978-3-319-13251-8_5
http://dx.doi.org/10.1007/978-3-319-13251-8_5
http://creativecommons.org/licenses/by/4.0/

Discovering Software Process Deviations Using
Visualizations

Anna-Liisa Mattila1(B), Kari Systä1, Outi Sievi-Korte1, Marko Leppänen1,
and Tommi Mikkonen2

1 Tampere University of Technology, Tampere, Finland
{anna-liisa.mattila,kari.systa,outi.sievi-korte,marko.leppanen}@tut.fi

2 University of Helsinki, Helsinki, Finland
tommi.mikkonen@helsinki.fi

Abstract. Modern software development is supported by a rich set of
tools that accumulate data from the software process automatically. That
data can be used for understanding and improving software processes
without any manual data collection. In this paper we introduce an indus-
trial case where data visualization of issue management system was used
to investigate software projects. The results of the study show that visu-
alization of issue management system data can really reveal deviations
between planned process and executed process.

Keywords: Software visualization · Mining software repositories

1 Introduction

Various business information systems are focal for corporate management, and
often companies utilize metrics as critical success indicators for their business
[1]. So, in management of any process, both access to valid process data and the
ability to understand the meaning of the data are essential.

Building automated data collection frameworks requires time and effort and
is an investment for the company [2], but collecting data manually from the
employees is a tedious and error prone effort. Fortunately in software develop-
ment the effort required to access the data can be reduced significantly as many
tools, such as version control and issue management systems, already automat-
ically collect some data [3]. Thus, utilization of this ready-at-hand data could
make process analysis more feasible for software companies.

Raw data items or numbers can rarely illuminate the analyst. Therefore,
visualization methods are used to get a better overall picture of the organization
and its business. When visualizations are available, various stakeholders can
enjoy improved transparency to the actual status and react to possible issues
faster. The usefulness of these visualizations is not limited to managers only, as
everybody can benefit from good visualizations of the progress and properties
of the project. This follows the spirit of Andon boards that are used to notify

c© The Author(s) 2017
H. Baumeister et al. (Eds.): XP 2017, LNBIP 283, pp. 259–266, 2017.
DOI: 10.1007/978-3-319-57633-6 18

260 A.-L. Mattila et al.

management, maintenance, and other workers of a quality or process problems
in the Toyota Production System [4].

Many kinds of visualizations are used to show different aspects of software
engineering process. Standard visualisation methods in project planning, such as
Gantt charts [5] and Scrum burndown charts [6] can be used as well as workflow
visualizations such as Kanban board [7,8]. The current state of the project can
be communicated to the developer team using radiators and dashboards [8,9].
When in software process management and improvement, it is important to
know what happened in the past and for this purpose various timeline based
visualizations have been developed [10,11]. The idea in these methods is to show
what happened in the past based on data. This kind of visualizations can be
used as a tool in retrospective meetings [10], and during the development to
spot abnormalities in the process [11].

In this paper we present experiences on visualizing data from software reposi-
tories. We explore the software process in two industrial projects. The paramount
goal of our work is to help stakeholders, especially project managers, to observe
the execution of software process to find deviations from the planned process,
and to detect possible problems in the projects.

2 Research Process

The main research questions of the study are: (1) Can we show deviations from
the assumed software process by visualizing data gathered from software repos-
itories? (2) Is the visualization of project data helpful for keeping track of the
projects? To answer these questions, we decided to study software projects where
we could access the data starting from the beginning of the project. Issue man-
agement system was chosen as our data source as it is used for managing and
reporting the software projects. The research process is presented in detail in
Fig. 1.

Selected Cases. The cases studied are two industrial projects of a Finland-
based multinational large-sized company involved in software R&D. We selected
the company based on their interest towards the research. The company repre-
sentatives selected the studied projects with the following constraints: suitable

Selecting
data sources

Setting
research

goals
Results

Background interviews

Interviews for
validation

Selecting
projects

Collecting
data Meetings

Making
obervations

Implementing
visualizations

Fig. 1. The research process.

Discovering Software Process Deviations Using Visualizations 261

data are available from the beginning of the project, the project is currently in
the development phase, and selected projects are comparable with each other.

Both of the studied projects are sub-projects of a larger software entity.
In this paper, we refer to the projects as project A and project B. In project
A, a software platform is developed whereas in project B a user interface for
the software is developed. Both projects have 5–10 team members; the team
composition varies based on the current need. Most of the team members are
developers, but in team B there are also dedicated persons for testing and user
experience design.

The projects use JIRA1 for issue tracking. The guidelines for using JIRA are
the same in both projects. The projects follow the same software development
process, namely Scrumban [12], which is a hybrid of Scrum and Kanban. As the
projects have uniform practices and processes, we assume that the project data
are comparable between the projects.

The data collection period was from the start of the projects till the begin-
ning of January 2015. The projects had started in 2013 – project A in May
and B in August. The data sets we used were anonymized by the company
representatives. The data were delivered in text format and contained only the
information necessary for visualization and analysis – for example person names,
JIRA comments or issue names were not visible to us.

Participants. We had eight participants from the case company. A manager of
the larger project entity which the studied projects are part of (P1), a person
responsible of the realization of agile ways of working in both projects and who
was also a former developer in project B (P2), three developers from project A
(P3, P4, P5), and three developers from project B (P6, P7, P8).

Four researchers participated to the research by studying the project data,
developing the visualization tool, and participating the meetings with the case
company.

The visualization tool. To empirically examine the relationship between
project data and the perceived state of the project we built a software visu-
alization tool. We chose to utilize timeline as the visualization format because
it enables us to easily explore how projects evolved over time and it is used for
similar purposes in other studies as well [11,13]. We held several meetings with
participants P1, P2, and P3 from the case company to receive feedback from the
visualization. The visualization was developed in an iterative manner where we
fine-tuned the visualizations based on the received feedback.

The main element of the visualization is to show lifespans and state changes
of issues reported in JIRA. Through the lifespan visualization we can observe
which issues have been open for a long time and through which states the issue
is finally resolved. Detailed figures of the visualization are provided with other
additional material on https://github.com/pervcomp/DSPDUV.

Interviews. We held two interview sessions for developers in the projects stud-
ied. The first interviews were held at the beginning of the research process to
1 JIRA – Project management system, https://www.atlassian.com/software/jira.

https://github.com/pervcomp/DSPDUV
https://www.atlassian.com/software/jira

262 A.-L. Mattila et al.

gain feedback from the initial version of the visualization and get deeper knowl-
edge of the case projects. In the first interview we had three participants: P2,
P3, and P6. The second interviews were held four months later to validate our
observations made from the visualizations and to gather feedback from the visu-
alization. In the second interview we had seven participants: all the three people
interviewed in the first round (P2, P3, and P6) were interviewed again along
with two more developers from both projects (P4, P5, P7, and P8). We selected
the themes in a fashion that allowed us to (i) validate the assumptions consider-
ing the visual observations, and to (ii) reveal the ways of working in the projects
as well as possible problems in the team and project.

The interviewing sessions were conducted as follows. Each interview began
by discussing the background of the interviewee and continued to the discussion
about ways of working, challenging issues in the team work and the project’s cur-
rent status. We showed the visualization to the interviewee during the last part
of the interviewing session and asked the interviewee to observe and interpret
the visualization. Finally, we discussed the observations made by researchers
together with the interviewee to identify potential misinterpretations and to
determine causes of the observed issues. Interviewees were also asked to give
feedback from the visualization and tell if they thought the visualization is a
useful tool for managing projects. The duration of the interviews varied from
30 to 60 min. All interviews were recorded and written notes were made. The
interviews were conducted by one researcher.

3 Results

The results are based on studying the visualizations of project data and inter-
views. The data visualized from the projects were bug reports, epics, and stories.
We made assumptions of status and ways of working from the visualizations.
The table of assumptions made is available on https://github.com/pervcomp/
DSPDUV with the visualizations and other additional material.

Bugs. When comparing the views that show the lifespans and resolution rate
of bug reports we noticed that the resolution rate of bug reports was higher
in project A than in project B. When interviewing the participants, we found
out that in project A bug fixes were prioritized over implementing new features.
Prioritizing the bug fixes over new features was not an actual policy of the
software process but an agreement within the team thus in project B similar
convention was not applied.

The long life spans and increasing amounts of bug reports in project B could
be a sign of technical debt or bad architectural decisions but also relate to
problems in organizing and reporting work. Based on the interviews we learned
that in project B there was technical debt as they had built the project directly
on top of their initial prototype, which should have been just a throw away
prototype. In project A the initial prototype was discarded. There were also
problems in organizing and reporting work in project B.

https://github.com/pervcomp/DSPDUV
https://github.com/pervcomp/DSPDUV

Discovering Software Process Deviations Using Visualizations 263

Epics. The projects differed in how they used epics to plan greater entities. In
project B only three epics were closed during the data collection period and all
open epics were in their initial state. In project A epics were closed and opened in
a more regular pattern. Based on this we could assume that in project B the role
of epics in planning was not clear and they were not used systematically, which
was also proven to be the case based on the interviews. Based on the process
and instructions given to the teams they were supposed to use epics similarly
when planning work.

Stories. When looking at the projects individually we assumed that both
projects had problems in organizing and reporting work. The assumption was
made based on long lifespans and increasing amounts of open stories that were
visible in the visualizations. Also the long lifespans and high amount of open
bug reports in project B supported this assumption for project B. Based on the
interviews there were problems in organizing work. In both projects the product
owner’s role was not clear. In project A the product owner was not committed
to organize the backlog, and in project B there was no product owner.

Usefulness of the visualization. To get feedback on use of the visualization
for tracking the projects, we asked if the interviewees considered the visualiza-
tion useful. All of the interviewees agreed that the visualization we presented is
practical in tracking the projects as it shows clearly the issues which have been
open for a long time. Most of the interviewees mentioned that the visualization
would be especially useful for the project managers but also for them selfs.

4 Threats to Validity

Wohlin et al. [14] state four different categories when considering threats to
validity - conclusion validity, internal validity, construct validity and external
validity. We will deal with those that are particularly relevant to our study.

Threats to conclusion validity are concerned with issues that affect the ability
to draw the correct conclusion about relations between the treatment and the
outcome of an experiment. The threats most concerning our study have to do
with “fishing” for a particular result and reliability of measures. In the start of
the research process we did not expect any results, but were simply curious about
what could be learned by visualizing software project data. Thus, all the obser-
vations made are purely drawn from what could be seen and without prejudice.
Furthermore, the visualizations were interpreted together with company rep-
resentatives, who would correct false assumptions. Additionally, the interviews
were designed to reveal possible overlooked information from the visualizations.

Reliability of measures, in turn, involves the measured data (from the repos-
itories) and verbal information (interviews). The data itself is visualized “as is”,
without any human involvement required in between, so it is valid. The interview
questions, in turn, were designed in a way that would allow as open answers as
possible and for the interviewer to also perform follow-up questions. Naturally,
the wording of the questions is still always critical, and for example a pilot study
of the interviews could have been beneficial.

264 A.-L. Mattila et al.

Threats to internal validity concern causality and threats to conclusions
about relationships between treatment and outcome. In our experiment the most
relevant threat regards selection, i.e., selecting the subjects, in our case the inter-
viewees from the company, and how volunteering might affect the results. The
interviewees were selected so that we had at least one developer and one per-
son in charge of the process for both projects, who answered questions on both
interview rounds, thus ensuring a versatile perspective of the project. For the
second round the subjects were selected among developers based on who had the
time. Thus there was no direct volunteering, which might affect results, and also
selection was not made on any other criteria than having different roles, which
should ensure a true view of the project. However, there was also no means to
control the backgrounds of interviewees either.

Finally, construct validity concerns generalizing the result of the experiment.
The most relevant threat to this study are hypothesis guessing and evaluation
apprehension, both having to do with whether the interviews can be trusted.
We argue that evaluation apprehension is not a concern, as all interviewees were
willing to discuss the problems in their projects, and did not attempt to hide
them from the researcher. As for guessing the hypothesis, we did not show the
visualization to the interviewees until in the end of the interview, so all answers
were purely given based on the questions.

The final category of threats given by [14] relates to external validity are
conditions that limit the ability to generalize the results of the experiment to
industrial practice. This does not concern us, as our cases were from the indus-
try, and thus we can argue that the results already reflect industrial practice.
However, more research need to be done for generalization of results.

5 Discussion and Conclusions

The first research question we addressed in Sect. 2 was “Can we show devia-
tions from the assumed software process by visualizing data gathered from soft-
ware repositories?”. Using the visualization we could note differences in practices
between projects that should have had the same practices. We were also able to
interpret from the visualization that there were problems in the software process.
We learned that problems related to organizing work shows well in the visual-
ization of issue management data. We also learned that different problems show
differently. The problems in planning and reporting are visible in long lifespans
of issues as well as different kinds of patterns in creating issues where as technical
debt may be visible in bug report lifespans and creation rate.

Our second research question was: “Is the visualization of project data helpful
for keeping track of the projects?”. Based on the feedback we can conclude that
the visualization is a useful tool for project managers. Furthermore, we noticed
that the visualization raised questions and interest in participants to discuss
about the state of the projects. The visualization creates a good common ground
for such discussion as it shows empirical evidence.

We have developed the visualization tool further based on the feedback
received from the case company. We have also done first experiments using the

Discovering Software Process Deviations Using Visualizations 265

visualizations in teaching software engineering. As a future work we will inves-
tigate the use of the tool for other industrial projects as well as for open source
projects to validate our findings and evaluate the tool further.

References

1. Menzies, T., Zimmermann, T.: Software analytics: so what? IEEE Softw. 30(4),
31–37 (2013)

2. Robbes, R., Vidal, R., Bastarrica, M.: Are software analytics efforts worthwhile for
small companies? The case of Amisoft. IEEE Softw. 30(5), 46–53 (2013)

3. Mäkinen, S., Leppänen, M., Kilamo, T., Mattila, A.L., Laukkanen, E., Pagels, M.,
Männistö, T.: Improving the delivery cycle: a multiple-case study of the toolchains
in Finnish software intensive enterprises. Inf. Softw. Technol. 80, 175–194 (2016)

4. Liker, J.K.: The Toyota Way. Esensi (2004)
5. Gantt, H.: Work, Wages and Profit. The Engineering Magazine (1910)
6. Schwaber, K., Beedle, M.: Agile Software Development with Scrum, 1st edn. Pren-

tice Hall PTR, Upper Saddle River, NJ (2001)
7. Kerzazi, N., Robillard, P.N.: Kanbanize the Release Engineering Process. In: 2013

1st International Workshop on Release Engineering (RELENG), pp. 9–12. IEEE
(2013)

8. Paredes, J., Anslow, C., Maurer, F.: Information visualization for agile software
development. In: 2014 Second IEEE Working Conference on Software Visualization
(VISSOFT), pp. 157–166. IEEE (2014)

9. Baysal, O., Holmes, R., Godfrey, M.W.: Developer dashboards: the need for qual-
itative analytics. IEEE Softw. 30(4), 46–52 (2013)

10. Bjarnason, E., Hess, A., Doerr, J., Regnell, B.: Variations on the evidence-based
timeline retrospective method: a comparison of two cases. In: 2013 39th EUROMI-
CRO Conference on Software Engineering and Advanced Applications (SEAA),
pp. 37–44. IEEE (2013)

11. Lehtonen, T., Eloranta, V.P., Leppänen, M., Isohanni, E.: Visualizations as a basis
for agile software process improvement. In: 2013 20th Asia-Pacific Software Engi-
neering Conference (APSEC), vol. 1, pp. 495–502. IEEE (2013)

12. Ladas, C.: Scrumban - Essays on Kanban Systems for Lean Software Development.
Modus Cooperandi Press, USA (2009)

13. Bjarnason, E., Svensson, R.B., Regnell, B.: Evidence-based timelines for project
retrospectives - a method for assessing requirements engineering in context. In:
2012 IEEE Second International Workshop on Empirical Requirements Engineer-
ing (EmpiRE), pp. 17–24. IEEE (2012)

14. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experi-
mentation in Software Engineering: An Introduction. Kluwer Academic Publishers,
Norwell (2000)

266 A.-L. Mattila et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Exploring Workflow Mechanisms and Task Allocation
Strategies in Agile Software Teams

Zainab Masood(✉), Rashina Hoda, and Kelly Blincoe

SEPTA Research, Department of Electrical and Computer Engineering, The University of
Auckland, Auckland, New Zealand

zmas690@aucklanduni.ac.nz, {r.hoda,k.blincoe}@auckland.ac.nz

Abstract. Task allocation is considered an important activity in software project
management. However, the process of allocating tasks in agile software devel‐
opment teams has not received much attention in empirical research. Through a
pilot study involving mixed open-ended and closed-ended interviews questions
with 11 agile software practitioners working within a software development
organization in India, we explain the process of task allocation as including three
different mechanisms of workflow across teams: team-independent, team-
dependent, and hybrid workflow; and five types of task allocation strategies:
manager-driven, team-driven, individual-driven, manager-assisted and team-
assisted. Knowing these workflow mechanisms and task allocation strategies will
help software teams and project managers make more effective decisions around
workflow and task allocation.

Keywords: Task allocation · Workflow · Allocation mechanism · Agile software
teams · Task allocation strategies

1 Introduction

Successful project completion depends on how well and effectively the project activities
are planned and managed throughout [1]. Primary project management activities include
managing resources, task allocation, and tracking time and budget in the best possible
way [2]. Several studies have researched task allocation in global and distributed soft‐
ware development using traditional or agile methods [3–6]. A limited number of studies
have assessed task allocation mechanisms practiced by Free/Libre Open Source Soft‐
ware (FLOSS) development teams; however, they did not cover commercial projects [7].
Overall, task allocation in agile software teams, which are meant to be self-organizing
[9, 12], has not be studied.

We conducted a pilot study involving face-to-face interviews with 11 agile practi‐
tioners from three teams in a software organization in India. Thematic analysis [8] was
performed to derive the different types of workflow mechanisms and task allocation
strategies from the interview data. We identified three workflow mechanisms: team-
independent, team-dependent, and hybrid workflow. We also identified five types of task
allocation strategies: manager-driven, team-driven, individual-driven, manager-assisted
and team-assisted. Identifying these mechanisms and strategies helped understand the

© The Author(s) 2017
H. Baumeister et al. (Eds.): XP 2017, LNBIP 283, pp. 267–273, 2017.
DOI: 10.1007/978-3-319-57633-6_19

flow and forms in which tasks arrives to the team and the basis on which tasks are
classified and allocated.

2 Related Work

In traditional software development, the project manager plays a key role in task allo‐
cation and management and overall decision making. With the evolution of
agile methods, software teams are meant to be self-organizing with high levels of
autonomy, teams empowerment and mutual decision making in their everyday work
[10, 12] including project management activities such as task allocation [11, 12]. In
practice, however, agile teams are seen to display varying levels of autonomy as they
gain experience of functioning in a self-organizing way [11]. How the varying levels of
autonomy influence task allocation is not well understood. In particular, it is unclear
how work flows to and within the team, how tasks are allocated on an individual level,
and what are the different types and autonomy levels of task allocation in agile teams.

The research on task allocation in software teams has been largely dominated by
distributed contexts in global software development. Imtiaz et al. in their recent survey-
based study identified “functional area of expertise and phase‐based” task allocation as
the most common way of allocating tasks global software development [5]. Other
studies, e.g. [4, 6], explored task allocation in distributed agile software development
contexts through literature review and proposed models indicating further studies as a
promising area of research. Crowston et al. 2007 [7] demonstrated the possible mech‐
anisms of tasks allocation in community-based Free/Libre Open Source Software
(FLOSS) development in self-organized volunteer teams. Their findings support self-
assignment as one of the common ways of assigning tasks adopted by FLOSS teams.
However, not much has been explored in the literature about task allocation mechanisms
outside the FLOSS domain and specifically for commercial software development.
Overall, much remains to be understood about how work flows to and within agile teams
and how they practice task allocation.

3 Research Method

Our pilot study involved mixed open- and closed-ended interview questions with 11
agile practitioners. The overarching research questions were:

RQ1: How does work flow in agile teams?
RQ2: How does task allocation happen in agile teams?

3.1 Participant Selection and Description

An invitation to participate was sent out to members of the Agile software community
of India. The company willing to offer a maximum number of teams and participants
was selected. Eleven software practitioners from three agile teams working in this digital
technology company were included (one additional participant was later dropped since

268 Z. Masood et al.

they were the sole representative of a fourth team). Participants were experienced soft‐
ware practitioners and were using agile methods, either Scrum or Kanban, including key
agile practices such as Daily Team Meetings, Release and Iteration planning, Pair
Programming, Review meetings and Retrospectives. Teams were collaborating with
off-shored customers or product teams in the USA through Google Hangout, Skype or
Webex. The project management tool used by all teams was Jira. Team, project and
participants’ details are profiled in Table 1.

Table 1. Team, project contexts and participants demographics (TS: Team Size, SP#:
Participants; TX: total experience in years; X: agile experience in years; ATL: Assoc.Tech Lead;
TL: Tech Lead; SSE: Senior Software Engineer)

Team TS Software
method

Project Area/
Context

SP# Role Age
group

TX AX

T1 10‒15 Scrum Digital
Marketing/
Features &
Maintenance

SP1 TL 31‒35 10‒11 6‒7
SP2 SE 21‒25 2‒2.5 1
SP3 ATL 26‒30 4‒5 4‒5
SP4 SE 21‒25 2.5 2.5

T2 5‒10 Scrum Analytics/
Features

SP5 TL 36‒40 7 7
SP6 SSE 26‒30 4 2
SP7 TL 31‒35 7.5 7.5

T3 15‒20 Kanban Cloud Services/
Migration &
Enhancement

SP8 TL 31‒35 5.5 5‒6
SP9 ATL 26‒30 4 2
SP10 SSE 21‒25 3.5 1
SP11 ATL 26‒30 4.5 2

3.2 Data Collection and Analysis

We conducted face-to-face interviews lasting 30‒40 min with each participant using a
combination of open- and close-ended questions about their current projects applying
agile methods. Initial questions gathered participants’ demographical data, details
related to the project, team and the agile methods used. Most other questions focused
on task allocation process e.g. how, when and from whom the teams receive the tasks
and how the tasks are allocated among the teams and the individuals. These were mostly
open-ended questions to allow a range of answers, with some choices being given to
facilitate the interviewees during the interview.

All the interviews were recorded with detailed notes taken during the interview.
Interview data was transcribed and analyzed manually using thematic analysis [8] to
derive the common themes, i.e. patterns of workflow mechanisms and task allocation
strategies common across the participants. This was led by one of the authors and
supported by the other two through careful reviews and discussions.

Exploring Workflow Mechanisms and Task Allocation Strategies 269

4 Findings

In answer to RQ1, we identified three distinct workflow mechanisms (illustrated in
Fig. 1) that describe how the teams receive the work from the relevant stakeholders:
team-independent, team-dependent, and hybrid workflow. Additionally, in answer to
RQ2, we found five different task allocation strategies based on how tasks were allocated
within the team: manager-driven, team-driven, individual-driven, manager-assisted and
team-assisted.

Fig. 1. Teamwise task allocation mechanisms (T1: team independent workflow; T2: team
dependent workflow; T3: hybrid workflow)

4.1 Team Workflow Mechanisms

Team Independent Workflow: In this workflow, the tasks are defined irrespective of
the team location (US, India). Tasks comes to both teams from Product Owner mostly
in form of user stories during sprint planning meeting. Members of all teams individually
pick and break user stories into technical tasks. The work allocation is done by volun‐
teering for tasks through mutual discussions. For example, one participant explained:

“They[Product Team] bring whole description of the ticket[user story]…Everyone is in sprint
planning meeting, every developer I should say and then ticket by ticket we volunteer, they do
not assign any name.” SP1, Tech Lead.

Team Dependent Workflow: Client defines the tasks for respective teams (US, India)
separately as user stories during fortnightly iteration planning meeting. Before sprint
planning meeting, the team (T2) go through their stories and team members allocate the
tasks either individually or through mutual consensus. SP7 described the workflow as
follows:

“Client creates user stories then one day before sprint planning we [T2] go through stories
which are meant for India team and we pick whatever we want to do.” SP7, Tech Lead

270 Z. Masood et al.

Hybrid Workflow: Team T3 was seen to follow multiple workflow mechanisms, but
tasks are typically allocated during a monthly release from the USA technical team, who
collaborates with the client. For a few members of the team, the USA team creates Jira
tickets with a set priority and complexity level. As specified by SP9:

“Now that teams have been divided so they have to work according to the tasks that are assigned
to those particular teams only so it’s not like that X team can work on team Y cards.” SP9,
Associate. Tech Lead

For other team members, work comes as features with a defined priority and release
date from the USA team. These features are selected by the Tech Lead in USA, who breaks
them into tasks and sub-tasks and allocates them to their ‘buddy’ programmer in India.

“So the client decides the criticality and to which release these [cards] will belong so once the
lead has decided that then pair [buddy] can pick up.” SP10, Sr. Software Engineer

4.2 Task Allocation Strategies

In Manager-driven Task Allocation, the manager/client/technical-lead allocates tasks
to the team members with names against the tasks as stated by a participant, where the
‘buddy’ was a senior Tech Lead in the USA:

“Nowadays I am given task by my buddy.” SP11, Assoc. Tech Lead

In Team-driven Task Allocation, the team discusses and mutually decides who will
perform which task, for example:

“We are three people [in the team] so mutually decide who will do [what].” SP6, Sr. Software
Engineer

In Individual-driven Task Allocation, tasks are self-assigned i.e. selected and
managed individually without any assistance from others. For example, SP4 quoted
practicing self-driven allocation:

“Mostly we volunteer it.” SP4, Software Engineer

In Manager-assisted Task Allocation, tasks are allocated with some assistance
from the manager/client/technical-lead to the team members. As a technical lead, SP1
mentioned assisting team member with picking tasks:

“‘Hey [name] you should do this [task]’, let say he is new and he doesn’t know [so] I help him,
‘pick this one because this is lesser complex’.” SP1, Tech Lead

In Team-assisted Task Allocation, every team member self-assigns tasks with some
assistance from fellow team members, for example:

“So any of the pair[s] can pick up [a task].” SP10, Sr. Software Engineer

5 Discussion

We identified five task allocation strategies. Four of these strategies involve either the
team as a whole or the manager/client in the task allocation process, making it evident

Exploring Workflow Mechanisms and Task Allocation Strategies 271

that the task allocation mostly takes place through assistance or mutual discussions. In
other words, task allocation strategies rely on collective decision making. A prior study
[13] has shown that agile teams make effective decisions collectively compared to indi‐
vidual decisions, benefitting from collective knowledge and experiences.

Another aspect is that for high priority tasks all mechanisms agree on a common
allocation method, i.e. tasks are directly allocated to a skilled and experienced person,
an aspect supported by previous research [7].

Our study supports the different levels of autonomy evident on agile teams [11] as
we found evidence of varying management approaches: manager-driven, manager-
assisted and team-driven. Additionally, we also identified a new level: individual-driven
task allocation.

With respect to the effectiveness of their current strategy, all the teams reported being
satisfied, but some participants shared a few challenges, e.g. vagueness or missing clarity
on tasks was the most commonly reported challenge. One participant (SP10) mentioned
that with their current task allocation strategy (Team-assisted), work at times is not
evenly distributed. Another participant (SP1) revealed drawbacks of picking tasks
remotely. Since their client and the USA team are co-located they were perceived to
have an advantage in picking tasks over SP1’s India team. However, these challenges
are not directly related to task allocation, rather, they are also linked to requirements
clarity issues and the distributed nature of the team. This illustrates that task allocation
is impacted by many factors.

This research study can serve as a basis for exploring other task allocation strategies
and internal workflow mechanisms of agile teams. This pilot study included only 11
interviews from the same organization which signifies a limited dataset and context. Our
larger study will interview more software teams and individuals representing different
roles. Future work can focus on evaluating the effectiveness of the strategies.

6 Conclusion

This study presents a preliminary understanding of workflow mechanisms and task
allocation strategies in agile teams. Clients typically provide high-level requirements as
features or user stories to the agile teams who then break them down into technical tasks
or sub-tasks by themselves or directly allocate them to team members. The team
members then select them individually or through mutual discussions within the team.
Allocation of tasks usually takes place during iteration or release planning. The findings
of this study demonstrate that there are multiple types of task allocation strategies prac‐
ticed by agile teams based on what suits the completion of the work in the best possible
way. A common mechanism found in a majority of the teams is that if the priority of
the task is high, then the task is allocated to the most suitable person directly. Also on
average, the practice most commonly followed is that the team members collaborate
with each other and with their manager/client when assistance is needed.

272 Z. Masood et al.

References

1. Pinto, J.K., Slevin, D.P.: Critical success factors across the project life cycle. Proj. Manag. J.
19(3), 67–75 (1988)

2. Hoda, R., Noble, J., Marshall, S.: Agile project management. In: New Zealand Computer
Science Research Student Conference, vol. 6, pp. 218–221 (2008)

3. Lamersdorf, A., Munch, J., Rombach, D.: A survey on the state of the practice in distributed
software development: criteria for task allocation. In: 2009 Fourth IEEE International
Conference on Global Software Engineering, ICGSE 2009, pp. 41–50 (2009)

4. Filho, M.S., Pinheiro, P.R., Albuquerque, A.B.: Task allocation approaches in distributed
agile software development: a quasi-systematic review. In: Silhavy, R., Senkerik, R.,
Oplatkova, Z.K., Prokopova, Z., Silhavy, P. (eds.) Software Engineering in Intelligent
Systems. AISC, vol. 349, pp. 243–252. Springer, Cham (2015). doi:
10.1007/978-3-319-18473-9_24

5. Imtiaz, S., Ikram, N.: Dynamics of task allocation in global software development. J. Softw.
Evol. Process 29(1) (2016). doi:10.1002/smr.1832

6. Mak, D.K., Kruchten, P.B.: Task coordination in an agile distributed software development
environment. In: 2006 Canadian Conference on Electrical and Computer Engineering,
CCECE 2006, pp. 606–611. IEEE (2006)

7. Crowston, K., Li, Q., Wei, K., Eseryel, U.Y., Howison, J.: Self-organization of teams for free/
libre open source software development. Inf. Softw. Technol. 49(6), 564–575 (2007)

8. Clarke, V., Braun, V.: Thematic analysis. In: Encyclopedia of Critical Psychology, pp. 1947–
1952. Springer, New York (2014)

9. Moe, N.B., Dingsøyr, T., Dybå, T.: Understanding self-organizing teams in agile software
development. In: 2008 19th Australian Conference on Software Engineering, ASWEC 2008,
pp. 76–85. IEEE (2008)

10. Highsmith, J.: Agile Project Management: Creating Innovative Products. Pearson Education,
Upper Saddle River, NJ (2009)

11. Hoda, R., Noble, J.: Becoming agile: a grounded theory of agile transitions in practice. In:
IEEE International Conference on Software Engineering (ICSE2017) (2017)

12. Hoda, R., Murugesan, L.K.: Multi-level agile project management challenges: A self-
organizing team perspective. J. Syst. Softw. 117, 245–257 (2016)

13. Drury, M., Conboy, K., Power, K.: Obstacles to decision making in Agile software
development teams. J. Syst. Softw. 85(6), 1239–1254 (2012)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license
and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

Exploring Workflow Mechanisms and Task Allocation Strategies 273

http://dx.doi.org/10.1007/978-3-319-18473-9_24
http://dx.doi.org/10.1002/smr.1832
http://creativecommons.org/licenses/by/4.0/

Are Daily Stand-up Meetings Valuable?
A Survey of Developers in Software Teams

Viktoria Stray1(&), Nils Brede Moe2, and Gunnar R. Bergersen1

1 University of Oslo, Gaustadalléen 23B, 0374 Oslo, Norway
{stray,gunnab}@ifi.uio.no

2 SINTEF, Strindveien 4, 7465 Trondheim, Norway
nils.b.moe@sintef.no

Abstract. The daily stand-up meeting is a widely used practice. However, what
is more uncertain is how valuable the practice is to team members. We invited
professional developers of a programming forum to a survey and obtained 221
responses. Results show that the daily stand-up meeting was used by 87% of
those who employ agile methods. We found that even though the respondents on
average were neutral towards the practice, the majority were either positive or
negative. Junior developers were most positive and senior developers and
members of large teams most negative. We argue that the value of the practice
should be evaluated according to the team needs. Further, more work is needed
to understand why senior developers do not perceive the meetings as valuable
and how to apply the practice successfully in large teams.

Keywords: Daily meetings � Stand up meeting � Daily scrum �
Communication � Coordination � Teamwork � Team size � Agile adoption �
Agile practices

1 Introduction

Agile methods introduced the daily stand-up meeting (DSM) as a practice to improve
communication in software development projects. In Scrum, the meeting is mandatory,
time-boxed to 15 min and team members address: (1) what they have done the previous
work day, (2) what they will do today and (3) what obstacles are preventing them from
making progress [1]. Scrum recommends that the DSM should not be used for dis-
cussing solutions to obstacles raised. However, empirical studies have found that
spending time in the short meeting on discussing and solving problems is valuable [2, 3].

DSMs are task oriented, generally unrecorded, and members gather to focus on a
narrow organizational goal. According to Boden [4], such meetings can be charac-
terized as informal. The practice gives team members an overview of what other team
members are doing and is therefore an important mechanism to increase information
sharing and team awareness [5]. The meeting is often conducted standing up to keep it
brief and avoid lengthy discussions, hence the term “stand-up meeting”. The practice is
also called “frequent short meetings” [6], “morning roll call” [7], and “daily Scrum
meeting” [1]. The DSM is an important practice for agile teams because it helps the
team in monitoring and managing its performance, which is important for the team to

© The Author(s) 2017
H. Baumeister et al. (Eds.): XP 2017, LNBIP 283, pp. 274–281, 2017.
DOI: 10.1007/978-3-319-57633-6_20

self-manage [8]. Further, such meetings improve access to information that foster
employee empowerment [9].

While DSM is a relatively straightforward practice to adopt, it is challenging to
implement it successfully. Challenges include finding a suitable time of day, keeping
the time limit and whether it should be held daily and standing up [10]. We have
previously found DSMs to last 63% longer when team members sit rather than stand
during the meeting [5]. Another challenge is members reporting their status to the team
leader, resulting in team members not paying attention to each other [8].

Although the DSM is one of the most popular agile practices [11, 12] and the only
daily team-based coordination mechanism, the practice has received little research
attention. Further, because meeting satisfaction is part of overall job satisfaction [13], it
is important to understand what makes this meeting valuable for team members. In a
recent, qualitative study of thirteen teams (in Norway, Poland, UK and Malaysia) we
found that the attitudes towards DSMs were slightly more positive than negative [5].
However, the level of satisfaction varied within the teams. Therefore, to understand
how to implement DSM, it is important to explore satisfaction with the practice on an
individual level. This leads to the following research question: “What are the char-
acteristics of developers perceiving the daily stand-up meeting to be valuable com-
pared to those who do not?”

Our work also answers a call for more empirical studies on the adoption rate of
agile software development methods [14].

2 Method

The target population for this study was professional software developers. Accordingly,
we posted the survey on Reddit, which is a social media website that allows scientists
to recruit a targeted population [15]. We chose two programming-related subreddits
(subforums) that provide news and discussions about computer programming
(r/programming, 710 000 subscribers) and web development (r/webdev, 130 000
subscribers). The survey was administered using the Qualtrics software which prevents
the survey to be completed more than once by the same respondent. Participation was
voluntary. Further, no compensation was offered, which increase the quality of the data
because the incentive to cheat is largely reduced [15]. The survey (available from
https://figshare.com/s/a10006dd8f5f26141511) took about three minutes to complete.

We received 316 responses, of which 243 contained data that could be analyzed.
Because we were interested in the opinions of software professionals currently working
in teams, we removed students and those not working or not working in a team. In total,
221 responses were used for the reported results. The majority of responses were from
the programming forum (n = 165). Nearly all the respondents were male (96.8%) with
a mean age of 31 years (n = 204, sd = 6.86). Among the respondents who answered
whether their team was distributed (n = 168), about two-thirds of the respondents
(63.1%) reported working in co-located teams, whereas the remaining had team
members distributed across sites (36.9%).

Are Daily Stand-up Meetings Valuable? 275

https://figshare.com/s/a10006dd8f5f26141511

All Likert questions used a five-point scale. All nominal-scale questions were
presented with a randomized order of categories because the order of response alter-
natives can influence results [16]. Some questions were not compulsory, which resulted
in missing data for the reported variables. Analyses are reported using the R statistical
software [17]. To err on the side of caution, we use two-tailed analysis and chose
non-parametric statistical tests. The one-sample Wilcoxon test is used to check for
statistically significant differences in distributions. When comparing frequencies
between two dichotomous variables that contain count data (i.e., frequencies) we used
Fisher’s exact test which reports the odds ratio (OR) effect size.

3 Results

In our study, the average number of DSMs conducted per week was five, which
suggests that it is a daily meeting. Table 1 shows descriptive statistics. We found no
difference regarding the frequency of meetings when it comes to being part of a
distributed team or not, or to team size. Among all the respondents, one-third reported
to work in teams with two to five members, one-third in teams with six to eight
members and one-third in teams with nine or more members. We found a difference of
52% points with an odds ratio of 12.3 for agile teams using DSMs over non-agile teams
(p < 0.001, 95% confidence interval for OR: 5.4–29.5).

Overall, 70.6% report that they attend DSMs (n = 221). Those who attend and
those who do not attend DSMs spend the same amount of hours in meetings (DSMs
included) and report similar values for programming skills. However, those who attend
DSMs spend almost one hour more each workday on programming (p = 0.046, attend:
M = 6.5 h, sd = 2.1; not attend: M = 5.6 h, sd = 2.7). Further, those who attend
DSMs work in larger teams (p = 0.03, attend: M = 6.90 members, sd = 4.7; M = 7.44
members, sd = 3.52); the median difference was 2 team members. Moreover, the
practice is regarded as more valuable by those who attend DSMs than those who do not
(p = 0.002, attend: M = 3.1, n = 123, not attend: M = 2.3, n = 29).

Table 1. Descriptive statistics

Unit n Mean (M) sd median
Meetings
Time in meetings
Time programming
Team size
DSM valuable
Programming skill self
Programming skill peers

Frequency per day, DSMs included
Hours per day; DSMs included
Hours per day
Members including self
Likert: Negative (1)–Positive (5)
Likert: Novice (1)–Expert (5)
Likert: Novice (1)–Expert (5)

166
187
196
168
149
177
177

1.8
1.4
6.2
7.3
3.0
3.7
3.6

1.2
2.0
2.3
3.9
1.2
0.8
0.8

2
1
7
6
3
4
4

276 V. Stray et al.

We now report on only those respondents who attend DSMs. While the mean
perceived value by these respondents towards the practice was neutral (3.1), only
18.7% chose this middle category on the Likert scale. Most respondents were either
positive (44.7%) or negative (36.6%). We coded responses of 4 and 5 as “positive”,
responses of 1 and 2 as “negative”, and removed those who responded neutral to be
able to better understand differences between these two groups. We found no relation
between working in a co-located or distributed team and the perceived value of DSM.
However, those positive were significantly younger (p = 0.008, positive: M = 29.6
years, n = 49; negative: M = 33.5 years, n = 42).

Figure 1 shows the characteristics of the respondents who attend DSMs according
to whether they are positive (green, n = 55) or negative (red, n = 45) towards the
meetings they attend. The left part of the figure shows that those positive and negative
towards their DSMs spent about the same amount of time in meetings: 83 min for those
positive versus 77 min for those negative. However, there was a significant difference
in meeting frequency; those positive attended fewer meetings per day (DSMs included)
than those negative. Those positive towards DSM report somewhat more time spent on
programming per day (24 min) than those negative. Being positive towards DSMs was,
to some extent, associated with working in smaller teams. As a post hoc analysis, we
investigated differences in attitudes further and found that teams with 12 or more
members were most strongly associated with negative attitudes towards DSMs.

The right part of Fig. 1 shows a minor difference between how those positive and
negative towards DSM rated their own programming skills. However, those positive
rated the programming skills of their peers as significantly higher compared to how the

Fig. 1. Characteristics of those positive and negative towards their DSMs being valuable.
Significant differences are shown at the top and means are shown at the bottom of the figure (as
numbers). Outliers are omitted. Error bars represent the standard errors of the mean. + is
p < 0.10 and * is p < 0.05 (two-sided). (Color figure online)

Are Daily Stand-up Meetings Valuable? 277

negative rated their peers. Further, those negative also rated their own skills as sig-
nificantly higher than that of their peers, whereas it was, to some extent, the opposite
for those positive.

4 Discussion

The main explanation of the widespread use of DSM (70,6%) is the high adoption rate
of agile development methods among our respondents. Table 2 shows that the agile
adoption rate in our survey is higher than what was found by Rodríguez et al. [11].
Rodríguez et al. did not report the adoption rate of DSM but concluded that it was one
of the most widely used practices. The last column in Table 2 shows the adoption rate
of DSM in both agile and non-agile teams in our study. VersionOne [12] report the
DSM to be the most employed agile practice with an adoption rate of 83%.
VersionOne’s sample mostly consisted of agile practitioners. In comparison, our DSM
adoption rate among those using agile or agile in combination with Lean was 87.3%.
Our results indicate that the practice has spread to companies not using agile methods
because 35.4% of the respondents who work in non-agile teams also report using DSM.
Thus, being agile implies that DSMs are used to a large extent which supports that
DSM is a practice that distinguishes agile from non-agile teams [17].

For our research question, “What are the characteristics of developers perceiving
the daily stand-up meeting to be valuable compared to those who do not?”, our results
indicate that those positive towards DSM are more junior developers. This inference is
supported by age, how they rate their own programming skills and their self-reported
skills compared to the perceived skill of their peers. Those positive towards DSM also
participate in fewer meetings than those negative. The same variables also indicate that
those negative towards DSM are more senior developers. One explanation for why a
senior developer regards DSM as less valuable is because seniors may already know
what goes on in the team and does not get any new information in the meeting. The
personal gain from the meeting is thus reduced. Moreover, being able to have quick
problem-solving discussions in the DSM make developers perceive the DSM as more
valuable [5]. Senior developers often work on more complex tasks, and it might be that
high complexity problems are seldom discussed at the meeting because they require too

Table 2. Usage rates of agile methods and DSM adoption according to development method

Development method Agile adoption
in our survey

Agile adoption in
Rodríguez et al. [11]

DSM adoption
in our survey

Agile and/or Lean 73.6% 57.8% 87.3%
Only agile 54.9% 33.6% 89.0%
Agile and Lean 18.7% 21.6% 82.4%
Only Lean 0.0% 2.7% 0.0%

Neither agile nor Lean 26.4% 42.2% 35.4%

Total 100.0% 100.0%

278 V. Stray et al.

much time. It is more likely that the problems a junior developer encounter are more
easily solved in a DSM.

A second explanation is that senior developers attend more meetings than junior
developers. The DSM then becomes an additional daily interruption, which reduces the
satisfaction with such meetings. Perceiving the meeting to have too high frequency
negatively affects the attitude towards DSMs [5]. Moreover, meeting load affects
employees well-being [18] so companies should be sensitive to the number of meetings
the developers have to attend. While it has been claimed that DSMs eliminate the need
for other meetings [1], we found no difference between hours spent in meetings for
those who attend or do not attend DSMs.

In a self-managing team, the team goal should be more important than the indi-
vidual goal, and then a developer should rate the DSM value depending on the team
needs. One respondent commented: “I think some people need the daily stand-up
format. So even though I personally don’t feel like I need it, I feel it benefits us all to do
it because of the different personalities.” Because we do not know the perspective of
the respondent we do not know if the respondents are considering the value from an
individual or team perspective, or a mixture of the two views.

We found that larger teams are more likely to have DSMs. Paradoxically, the larger
the team, the less is the satisfaction with DSM. Large teams using DSMs should
therefore pay special attention to improving the quality of these meetings. In particular,
developers were negative towards DSM when teams consisted of 12 or more team
members. Previous research also found a negative correlation between the number of
meeting participants and the attitude towards DSM [5].

The main limitation of this study concerns the representativeness. Although the
distribution of self-reported programming skill in this study is nearly identical to our
earlier study of programming skill of developers [19], the sample and target population
may differ. For example, it is possible that only those who knew or had a strong
(polarized) opinion of DSMs responded to the survey. This may bias results in favor of
more respondents reporting using DSM and more variability in opinions than is
actually present in the target population. Another potential concern is that we had
subjects from two different programming forums, but the results we report still hold
when analyzing the data from the two forums separately.

5 Conclusion and Future Work

The present study investigated the perceived value of daily stand-up meetings (DSMs)
and reports the adoption rate of the practice. Among those who use agile methods, the
majority conducts DSMs. Although it is a common practice, the perceived value of the
meeting varies with junior developers being more positive and senior developers more
negative towards the DSMs they attend. A possible explanation is that junior devel-
opers receive more relevant information and assistance in solving problems during the
meeting. In contrast, senior developers often work with larger, more complex and
independent tasks that are more difficult to share with team members on a daily basis.
Agile teams are expected to be self-managed, and the need of the team should be more
important than that of the individual. The value of the practice should, therefore,

Are Daily Stand-up Meetings Valuable? 279

be evaluated according to the team needs. Consequently, senior developers should be
made more aware that DSMs are beneficial for the junior developers as well as the team
as a whole. Another result was that developers in larger teams see the meeting as less
valuable than developers in smaller teams. Because the work in large teams is often
loosely coupled, the information shared during the meeting may be less relevant for the
individuals. Consequently, large teams in particular need to invest resources in
improving the practice to make it valuable.

Future work should investigate other criteria of the participants, such as role and
domain. Because the perceived value of meetings affects job satisfaction, there is a
need to understand why senior developers and large teams do not perceive the meeting
as more valuable. The DSM is a widely adopted practice and is an important mech-
anism for information sharing and team awareness, thus, how to apply the practice
successfully in large teams should also be studied.

Acknowledgments. We are grateful to the survey respondents and to the reviewers. This work
was supported by the Smiglo project, which is partly funded by the Research Council of Norway
under the grant 235359/O30.

References

1. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice Hall, Upper
Saddle River (2002)

2. Stray, V.G., Moe, N.B., Aurum, A.: Investigating daily team meetings in agile software
projects. In: The 38th EUROMICRO Conference on Software Engineering and Advanced
Applications (SEAA 2012), Cesme, Turkey, 17 August 2012

3. Pikkarainen, M., Haikara, J., Salo, O., Abrahamsson, P., Still, J.: The impact of agile
practices on communication in software development. Empirical Softw. Eng. 13, 303–337
(2008)

4. Boden, D.: The Business of Talk: Organizations in Action. Polity Press, Cambridge (1994)
5. Stray, V., Sjøberg, D., Dybå, T.: The daily stand-up meeting: a grounded theory study.

J. Syst. Softw. 114, 101–124 (2016)
6. Rising, L.: Agile meetings. STQE, pp. 42–46 (2002)
7. Anderson, D.J.: Agile Management for Software Engineering: Applying the Theory of

Constraints for Business Results. Prentice Hall, Upper Saddle River (2003)
8. Moe, N.B., Dingsøyr, T., Dybå, T.: A teamwork model for understanding an agile team: a

case study of a Scrum project. Inf. Softw. Technol. 52, 480–491 (2010)
9. Allen, J.A., Lehmann-Willenbrock, N., Sands, S.J.: Meetings as a positive boost? How and

when meeting satisfaction impacts employee empowerment. J. Bus. Res. 69, 1–8 (2016)
10. Stray, V.G., Lindsjørn, Y., Sjøberg, D.: Obstacles to efficient daily meetings in agile

development projects: a case study. In: The ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM 2013), Baltimore, USA, 13
September 2013

11. Rodríguez, P., Markkula, J., Oivo, M., Turula, K.: Survey on Agile and Lean Usage in
Finnish Software Industry. ACM, New York (2012)

12. VersionOne: VersionOne 10th Annual State of Agile Report. https://versionone.com/pdf/
VersionOne-10th-Annual-State-of-Agile-Report.pdf

280 V. Stray et al.

https://versionone.com/pdf/VersionOne-10th-Annual-State-of-Agile-Report.pdf
https://versionone.com/pdf/VersionOne-10th-Annual-State-of-Agile-Report.pdf

13. Rogelberg, S.G., Allen, J.A., Shanock, L., Scott, C., Shuffler, M.: Employee satisfaction with
meetings: a contemporary facet of job satisfaction. Hum. Resour. Manag. 49, 149–172
(2010)

14. Stavru, S.: A critical examination of recent industrial surveys on agile method usage. J. Syst.
Softw. 94, 87–97 (2014)

15. Shatz, I.: Fast, free, and targeted: reddit as a source for recruiting participants online. Soc.
Sci. Comput. Rev., pp. 1–13 (2016)

16. Schwarz, N., Hippler, H.J.: Response alternatives: the impact of their choice and
presentation order (1991)

17. Murphy, B., Bird, C., Zimmermann, T., Williams, L.: Have agile techniques been the silver
bullet for software development at Microsoft? In: The Proceedings of the 2013 ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement (ESEM
2013), Baltimore, USA, 7 July 2013

18. Luong, A., Rogelberg, S.G.: Meetings and more meetings: the relationship between meeting
load and the daily well-being of employees. Group Dyn. Theor. Res. Pract. 9, 58–67 (2005)

19. Bergersen, G.R., Sjøberg, D., Dybå, T.: Construction and validation of an instrument for
measuring programming skill. IEEE Trans. Softw. Eng. 40, 1163–1184 (2014)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

Are Daily Stand-up Meetings Valuable? 281

http://creativecommons.org/licenses/by/4.0/

Doctoral Symposium Papers

Knowledge Management and Reflective Practice in Daily
Stand-Up and Retrospective Meetings

Yanti Andriyani(✉)

SEPTA Research, Department of Electrical and Computer Engineering,
The University of Auckland, Building 903, 386 Khyber Pass, New Market Auckland,

Auckland 1023, New Zealand
yand610@aucklanduni.ac.nz

Abstract. Knowledge management and reflection are important aspects in daily
stand-up and retrospective meetings, which contribute to agile teams continuous
improvement. Research in knowledge management in agile software develop‐
ment has shown knowledge classifications which do not seem closely related with
agile practitioners and current research has not treated agile reflective practice in
detail. This research, which will focus on daily stand-up and retrospective meet‐
ings, addresses two objectives: (i) to investigate specific knowledge types (i.e.
product, project and process knowledge) in everyday agile practice and knowl‐
edge management strategies applied by agile teams; (ii) to explore the actual
knowledge involved in the meetings, which helps agile teams to perform reflec‐
tion and use that knowledge for reflection. Case studies will be applied for this
research to analyse both meeting practices. It is expected that the research results
will provide a framework for agile teams to manage knowledge and perform
reflection, which would be useful for team and process improvement.

Keywords: Agile software development · Knowledge management · Reflective
practice · Agile retrospective meeting · Daily stand-up meeting

1 Introduction

Agile Software Development (ASD) is a group of software methods that use an “inspect
and adapt” process as a part of regular reflection for continuous improvement [1]. Daily
stand-up and retrospective meetings are practices that are meant to help evaluate team
progress, impediments, and plans and find ways to improve [2]. In the daily stand-up
meetings, agile teams share progress, discuss the impediments that occur in the team
and share their plans daily [3]. The retrospective meeting enables agile teams to inspect
the feedback shared and discuss the ways to improve.

Supervisor: Dr. Rashina Hoda, Department of Electrical and Computer Engineering, The
University of Auckland, email: r.hoda@auckland.ac.nz.
Co-Supervisor: Prof. Robert Amor, Department of Computer Science, The University of
Auckland, email: trebor@cs.auckland.ac.nz.

© The Author(s) 2017
H. Baumeister et al. (Eds.): XP 2017, LNBIP 283, pp. 285–291, 2017.
DOI: 10.1007/978-3-319-57633-6_21

Knowledge management is an important aspect for agile team creativity, which can
lead to improving the agile process [4]. By knowing how to manage knowledge, which
is useful for team learning, agile teams would be able to reflect and find ways to improve
the process [4]. While the daily stand-up and retrospective meetings are meant to be
used to share knowledge and perform reflection, in practice what specific knowledge
(e.g. contextual information, understanding, insight, experience), knowledge types (e.g.
product, process and project) and knowledge management strategies help agile teams
perform reflection are not well understood.

With the motivation to address these research problems of knowledge management
and reflective practice in ASD, this paper contains some initial findings of our research,
which include a concept of knowledge management in ASD and a reflection framework
in retrospective meetings (Sect. 5). However, there are some issues that are still unclear
on how to correlate these findings. We hope that the consortium can provide suggestions
and feedback on:

1. The content and presentation of our preliminary theoretical models.
2. Best practice in cross-team comparison and analysis of data and combined presen‐

tation.
3. Recommendations on known or hypothesized relationship(s) between knowledge

management and reflective practice.

2 Relevant Prior Work

2.1 Knowledge Management in ASD

Knowledge is the combination of content from more than one categories of information,
which taken from documents, practices and norms [5]. Relevant prior research shows
several classifications of knowledge management in ASD. Several reviews focus on
knowledge management school classification [6] and knowledge management concept
in ASD [7].

There are three categories of knowledge management [8] (i.e. technocratic,
economic and behavioural) of which two of categories (technocratic and behavioural)
are associated with ASD [6] and the third category (economic) is not related to ASD.
The technocratic category emphasizes on explicating knowledge and its flows. The
technocratic school is further subdivided into three schools: system, engineering and
cartographic schools. The system school refers to knowledge management strategies
that use technology, such as JIRA, Wiki and GitHub; the engineering school focuses on
the business context of software processes; and the cartographic school focuses on
experts in a team as a centre of knowledge for the team. The behavioral category is
further subdivided into three schools: organizational, spatial and strategic schools. This
school focuses on collaboration and communication as knowledge management strat‐
egies. Developing the network among teams and using office space to support team
communication are included in the behavioural school.

Another research is about knowledge management concept map in ASD [7]. Yanzer
et al. [7] present several concepts map, such as ways of communication, human and

286 Y. Andriyani

social factors, tools for knowledge management and knowledge representation forms.
The human and social factor concept covers knowledge management adoption in agile
projects. Other concepts, which include the ways of communication, tools for knowledge
management and knowledge representation forms, focus more on techniques and tools
to manage the discussion.

Specific explanation about knowledge classification in software engineering [9] is
explained by Ebert & De Man [9], which classifies knowledge types into three types,
such as product, project, and process knowledge. Product knowledge is the knowledge
that consists of product features, which is related to other product features, protocols,
products and standards. Project knowledge is the knowledge about project resources,
such as work products, budget, milestones, team performance and targets achieved.
Process knowledge is the knowledge about the workflow related to business process,
supporting technologies and how teams integrate their work with others.

Referring to the aforementioned knowledge classification, this research intends to
investigate the knowledge types (product, project and process knowledge) involved in
ASD. By referring to these knowledge types, the explanation of knowledge involved in
ASD would be more detailed and closely related with agile practices.

2.2 Reflective Practice in ASD

Most studies in the topic of reflective practice in ASD have only focused on how to
perform retrospective meetings with the broad explanation on the reflective practice.
One of the techniques introduced to be implemented in retrospective meeting is Post
Iteration Workshop (PIW) [10]. PIW is performed in retrospective meeting by collecting
obstacles and generating tasks and decisions. Postmortem review is another technique
that is applied in retrospective meeting [11]. This review is useful to highlight five
important issues during a two-week sprint that need to be focused on.

In addition, reflective practice is also explained in Babb et al. [12]. In their study,
they investigate reflection in agile practices by introducing the Reflective Agile Learning
Model (REALM). REALM classifies some agile practices based on Argyris and Schön’s
[13] classification, which embody reflection-in-action and reflection-on-action.
Although reflection in each agile practice is captured in REALM, the specific knowledge
used by agile teams to perform reflection has not been investigated.

To fill this gap, this research attempts to investigate what knowledge is managed by
agile teams in performing reflection and how the reflection occurs in daily stand-up and
retrospective meetings. By referring to Bain [14] about level of reflection (i.e. reporting,
responding, relating, reasoning and reconstructing), the explanation about reflective
practice in those practices would be more specific.

3 Research Objectives

This research attempts to answer the following research questions:

Knowledge Management and Reflective Practice 287

RQ1. What specific knowledge types (i.e. product, project and process knowledge) are
involved in daily stand-up and retrospective meetings and how do agile teams
manage that knowledge?

RQ2. What actual knowledge helps agile teams perform reflection and how agile teams
use that knowledge for reflection in daily stand-up and retrospective meeting?

The aims of this research are to explore knowledge types based on three knowledge
types (i.e. product, project and process), the strategies in managing that knowledge in
daily stand-up and retrospective meetings for agile team’s reflection.

4 Research Design

In order to answer the research questions, this research will apply Yin’s case study
research methodology [15], which is classified into three phases: (a) Define and design,
(b) Collect, prepare and analyse (i.e. data), (c) Analyse (i.e. findings) and conclude.
Figure 1 summarises the structure of Yin’s case study and shows some phases in this
research. The colours indicate the research progress. Green refers to the tasks that are
“done”, yellow indicates the tasks that are “in progress” and red refers to “to do” tasks.
The current research focuses on phase b which is to analyse collected data (interviews
and observations).

Fig. 1. Case study method [15] (Color figure online)

Firstly, in the define and design phase, a concept about knowledge management in
ASD was generated through the Systematic Literature Review (SLR-‘review/develop
theory’). The next phase in the case study is to collect, prepare and analyze (phase b).
Data collection was started by conducting interviews (individual and group) and meeting
observations, which aims to gain specific explanation from the participants and under‐
stand the situation and actual knowledge managed in the meetings.

The next steps after observations and interviews are transcribing the interviews and
analyzing them. The interviews transcripts were analyzed by using a qualitative data
analysis technique called thematic analysis [16] by generating initial codes, searching
for themes, defining and naming themes and finally producing the report that will be
integrated on the next phase. Lastly, in the analyse and conclude (phase c), the analysis
results of each team will be compared with those from other teams to formulate the
findings and conclude the research. The results will be analysed comprehensively and
followed by formulating the findings (phase c).

288 Y. Andriyani

5 Current Research Progress

This research has two initial findings, which emerged knowledge management and
reflection in daily stand-up and retrospective meeting. Initial findings were generated
from SLR and case studies are described in the section below.

5.1 Initial Findings on Knowledge Management in ASD

A Systematic Literature Review was performed that reviewed 46 empirical studies
focused on knowledge management in ASD selected from an initial pool of 2317 papers
from reputed databases such as Springer, Scopus, and IEEE Xplore. Using a combination
of thematic analysis [16] to analyse the primary studies and a Grounded Theory [17]
approach to synthesise the results, it was discovered that:

1. Agile practices were found to be associated with the three types of software engi‐
neering knowledge proposed by Ebert & De Man [9]: timelines, team progress, and
plans representing project knowledge; requirements and designs representing
product knowledge; and coding techniques and synchronised teamwork representing
process knowledge.

2. To manage the knowledge, agile teams use three specific knowledge management
strategies: discussions (e.g. sharing requirements), artefacts (e.g. user stories) and
visualisations (e.g. burn down charts).

A theoretical model was generated from the results (see Fig. 2), which explains that
the three knowledge types are managed by performing agile practices and knowledge
management strategies. This result was submitted currently under review.

Fig. 2. A theoretical model of knowledge management in ASD

5.2 Initial Findings on Reflection in Agile Retrospective Meeting

A case study was conducted using data collected from interviews of sixteen software
practitioners from four agile teams and observations of their retrospective meetings.
Collected data was analyzed by applying thematic data analysis [16]. By transcribing
data, generating codes, searching for themes, reviewing themes, defining and naming
themes, the findings of this case study were formulated in the form of a paper, which
has been accepted in XP 2017 conference (“Reflection in Agile Retrospective”).

This case study aims to investigate what aspects are focused on during the retro‐
spective meeting and how reflection occurs in the retrospective meeting. By applying

Knowledge Management and Reflective Practice 289

thematic analysis to analyze the interviews, it was discovered that identifying and
discussing obstacles, discussing feelings, analyzing previous action points, identifying
background reasons, identifying future action points and generating a plan are impor‐
tant aspects involved in the retrospective meeting, which is useful for agile team reflec‐
tion. These aspects are associated with five (grouped to three) levels of reflection from
education [14]. The levels of reflection from education appear related to the answer of
how reflection occurs in the retrospective meeting, which can be classified into three
levels of reflection [14], reporting and responding, relating and reasoning, and recon‐
structing.

According to these findings, a reflection framework for agile retrospective meeting
was presented on Fig. 3. The framework combines five steps of the standard agile retro‐
spective – set the stage, gather data, generate insight and decide what to do, close the
retrospective – and the levels of reflection – reporting and responding, relating and
reasoning, and reconstructing [14] include the aspects involved on each step.

Fig. 3. A reflection framework for agile retrospective meeting

There are some research tasks remains, as can be seen in Fig. 1 (phase b and phase
c), in which some tasks are in progress. Next steps include writing up the results of the
case study pertaining to the daily stand-up practice, conducting further observations,
analysing the transcription of software teams and formulating the findings.

References

1. Fowler, M., Highsmith, J.: The agile manifesto. Softw. Dev. 9, 29 (2001)
2. Ringstad, M.A., Dingsøyr, T., Brede Moe, N.: Agile process improvement: diagnosis and

planning to improve teamwork. In: O‘Connor, R.V., Pries-Heje, J., Messnarz, R. (eds.)
EuroSPI 2011. CCIS, vol. 172, pp. 167–178. Springer, Heidelberg (2011). doi:
10.1007/978-3-642-22206-1_15

3. Santos, V., Goldman, A., de Souza, C.R.B.: Fostering effective inter-team knowledge sharing
in agile software development. Empirical Softw. Eng. 20(4), 1–46 (2014)

4. Crawford, B., De La Barra, C.L., Soto, R., Misra, S., Monfroy, E.: Knowledge management
and creativity practices in software engineering. In: Proceedings of the International
Conference on Knowledge Management and Information Sharing, KMIS 2012, pp. 277–280
(2012)

5. Davenport, T.H., Prusak, L.: Working Knowledge-How Organizations Manage What They
Know, vol. 5, pp. 193–211. Harvard Business School Press, Boston (1998)

290 Y. Andriyani

http://dx.doi.org/10.1007/978-3-642-22206-1_15

6. Bjørnson, F.O., Dingsøyr, T.: Knowledge management in software engineering: a systematic
review of studied concepts, findings and research methods used. Inf. Softw. Technol. 50,
1055–1068 (2008)

7. Yanzer Cabral, A.R., Ribeiro, M.B., Noll, R.P.: Knowledge management in agile software
projects: a systematic review. J. Inf. Knowl. Manage. 13, 1450010 (2014)

8. Earl, M.: Knowledge management strategies: Toward a taxonomy. J. Manage. Inf. Syst.
18(1), 215–233 (2001)

9. Ebert, C., De Man, J.: Effectively utilizing project, product and process knowledge. Inf. Softw.
Technol. 50(6), 579–594 (2008)

10. Cockburn, A., Highsmith, J.: Agile software development: the people factor. Computer 34,
131–133 (2001)

11. Dingsöyr, T., Hanssen, G.: Extending agile methods: postmortem reviews as extended
feedback. Adv. Learn. Softw. Organ. 2640, 4–12 (2003)

12. Babb, J., Hoda, R., Nørbjerg, J.: Embedding reflection and learning into agile software
development. IEEE Softw. 31, 51–57 (2014)

13. Argyris, C., Schon, D.A.: Organisational Learning II: Theory, Method and Practice,
Organisation Development Series. Adisson Wesley, Reading (1996)

14. Bain, J.D., Ballantyne, R., Packer, J., Mills, C.: Using journal writing to enhance student
teachers’ reflectivity during field experience placements. Teach. Teach.: Theo. Pract. 5, 51–
73 (1999)

15. Yin, R.K.: Case Study Research: Design and Methods, vol. 5, p. 11. Sage Publications, Inc,
Thousand Oaks (2003)

16. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qual. Res. Psychol. 3, 77–101
(2006)

17. Glaser, B.G., Strauss, A.L.: The Discovery of Grounded Theory: Strategies for Qualitative
Research. Aldine Pub. Co., Chicago (1967)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license
and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

Knowledge Management and Reflective Practice 291

http://creativecommons.org/licenses/by/4.0/

Self-Assignment: Task Allocation Practice in Agile
Software Development

Zainab Masood(✉)

Department of Electrical and Computer Engineering, The University of Auckland, Building 903,
386 Khyber Pass, Newmarket Auckland, Auckland 1023, New Zealand

zmas690@aucklanduni.ac.nz

Abstract. Self-assignment is a self-directed way of task allocation commonly
practiced by members of agile teams. However, not much is known about different
aspects of self-assignment in literature. This research focuses on two objectives
with respect to self-assignment. The first objective is to explore what strategies
agile practitioners follow to self-assign tasks of different nature (i.e. new feature,
enhancement, and bug-fix). The second objective is to identify the challenges
associated with self-assignment and investigate how agile practitioners overcome
these challenges to achieve project outcomes. Grounded theory is chosen as the
research methodology for this study with data collection through interviewing
agile practitioners and observing teams practicing self-assignment. Based on the
results, we would propose a theory for self-assignment as a task allocation practice
and a set of context-driven guidelines. Knowing the proposed theory and guide‐
lines will help the agile practitioners and companies to make self-assignment a
valuable practice in their settings.

1 Introduction

Agile development methodology emerged as an alternative to conventional, sequential
and phase-based development. It follows an iterative and incremental approach to
development and is open to changes throughout the project [1]. In contrast to traditional
development processes, agile offers a different approach to managing the software
development cycle. Agile software development constitutes a set of methods and prac‐
tices based on twelve principles formulated in the Agile Manifesto [2]. The leading agile
methodologies (Scrum, XP, Kanban) suggest different strategies and practices to ensure
smooth development to achieve project outcomes.

An agile team is a cross-functional group of people who brings a different set of
skills to the team. The essence to successful agile teams is their capability to self-
organize accompanied by ownership. We find many contributions by researchers made

Supervisor: Dr. Rashina Hoda, The University of Auckland, email: r.hoda@auckland.ac.nz.
Co-Supervisor: Dr. Kelly Blincoe, The University of Auckland, email:
k.blincoe@auckland.ac.nz.

© The Author(s) 2017
H. Baumeister et al. (Eds.): XP 2017, LNBIP 283, pp. 292–297, 2017.
DOI: 10.1007/978-3-319-57633-6_22

exclusively on self-organization and self- organizing nature of the teams [3]. However,
there is a dearth of research on how task allocation is done in self-organizing agile teams
and what are the common practices followed by agile practitioners to achieve their goals.

Agile methodology uses self-assignment method for the allocation of tasks among
team members [4]. However, we do not have enough studies and evidences regarding
how software engineers tend to choose these tasks for themselves. There are certain
factors that tend to motivate the engineers and developers to prioritize while self-
assignment of tasks. During the process of self-assignment, they also have to face issues
that need to be addressed for proper allocation and self-assignment. This study will be
focusing on mainly these two aspects of self-assignment i.e. strategies and challenges
for self-assignment in agile methodology. The contribution will be twofold. Firstly, it
will add theoretical knowledge about self-assignment as a way of task allocation.
Secondly, the results of this study will benefit developers and managers to overcome
challenges during the process of task allocation.

2 Feedback or Areas Seeking Advice

At this time, we are seeking feedback and advice for the following things:

• What is the best way to compare findings from different sources and present overall
findings in a way that data integrity is not compromised?

• Advice on reaching theoretical saturation for different task allocation strategies under
different contexts.

3 Related Work

The success of a software development project depends heavily on the way the related
project management activities are executed [5]. These activities primarily include
managing the resources, organizing the software teams, allocating tasks to relevant
stakeholders, monitoring time, budget, and resources [4]. These activities are carried
out differently depending on the project management approach followed. In traditional
software development, a project manager plays a key role in task allocation. The main
duty of a project manager is to assign tasks to the project teams. This work is assigned
keeping in mind the knowledge, skills, expertise, experience, proficiency and technical
competence of the team member [6].

The benefits of agile methodologies include but are not limited to teams empower‐
ment, collaborative atmosphere, shared decision-making and a transparency with a client
[4, 7]. In addition, the concepts of ‘light touch’ management and self-organizing teams
are the essence of agile teams [1]. These benefits have taken many software firms by a
storm, as a result adopting many of these practices in their everyday project management
activities including task allocation [4, 8]. This has affected the way the tasks allocation
takes place in agile teams. Instead of manager directing or assisting the tasks, these teams
are meant to practice picking up tasks or volunteering for tasks [7].

Self-Assignment: Task Allocation Practice in Agile Software Development 293

Self-directed task allocation or self-assignment is an attribute of agile teams [4, 8].
In theory, every member of the agile team is meant to assign a task or user story to
themself [4]. This method of assigning tasks has also been observed in open source
software (OSS) development in both commercial and non-commercial projects [9, 10].
Research on industry practices gives some evidence to support this method of task allo‐
cation but how this takes place is not very deeply investigated. For this reason, it is
potentially a promising area for study leading to both academic and practical implica‐
tions.

4 Research Basis

In this study, we intend to explore self-assignment of tasks in agile software development
teams. The main research questions governing the research are:

RQ1: How agile practitioners practice self-assignment of tasks? What are the best
strategies for self-assigning different types of tasks (new feature, enhancement,
bug fixation) in agile software teams?

RQ2: What are the challenges associated with self-assignment of tasks? How agile
practitioners overcome these challenges?

5 Research Plans

To answer RQ1 and RQ2, we will focus on how task allocation is played out in agile
teams. In particular, this will center on the strategies that teams and individuals undergo
in practice using different agile methodologies and for different projects including chal‐
lenges associated with using these practices. We also plan to study self-assignment as
task allocation in different scenarios and contexts and the study will not be limited to a
single domain.

• Identifying strategies for tasks of different nature(New feature, Bug Fix, Enhance‐
ment)

• Classification of common strategies
• Strengths and weaknesses of the common strategies
• Identifying best strategies in their settings
• Factors affecting self-assignment of tasks
• Comparing self-assignment to alternative methods of task allocation
• Challenges faced with different strategies(threats to autonomy and cross-function‐

ality, complexity and dependency dimensions)
• Identifying the areas of improvements with these strategies
• Evaluating the generated theory using GT guidelines
• Proposing a context-driven set of guidelines which agile practitioners may take into

account while self-assigning tasks to get the best out of it.
• If time permits, evaluating the effectiveness of these guidelines through survey based

feedback.

294 Z. Masood

6 Research Method

We studied few research methodologies [13] and selected Grounded Theory (GT) for
our study [11, 12, 14]. Grounded theory was developed in the early 1960’s by Glaser
and Strauss. It is chosen as the research methodology mainly due to listed reasons.

• Interest of the researcher towards generating theory explaining how self-assignment
is practiced by agile practitioners

• GT is suitable for research areas which have not been explored thoroughly before.
• GT is extensively used for studying agile software teams, human and social aspects

of software engineering, and many project management issues [3].
• GT treats everything as data giving researcher the freedom to use quantitative data,

qualitative data, video, diagrams, and existing theories [14].

Initially, literature and related work are explored generally on identifying how and
when tasks are allocated using traditional and non-traditional software methods for
software projects. As recommended by Glaser, a minor literature review is conducted
in the area of research [12] i.e. self-assignment as a practice of agile teams and individ‐
uals. Additionally, we went through articles describing grounded theory in other areas
which helped to understand the research methodology and the emergence of the theory
from the data [15–17].

As the research is mainly qualitative in nature, the intended data source is semi-
structured interviews with agile practitioners of the relevant industry. In terms of data
collection, we intend interviewing a total of 40–50 agile practitioners with team obser‐
vations. But for some parts of the study e.g. factors affecting self-assignment, survey-
based data collection will be pursued. Ongoing data analysis and synthesis procedures
will be employed on collected data leading to findings of the research. In later stages,
when the findings will be sufficiently developed latest and previous related literature
will be reviewed again. We intend to assess the generated theory on the basis of four
criteria: fit, work, relevance, and modifiability as recommended by Glaser [11].

The main components as adopted by some of the researchers are listed below [14]:

• Data Selection and Collection: Theoretical Sampling (Recruiting participants; Inter‐
views; Observations; Surveys; Questionnaires);

• Data Analysis: Open Coding; Selective Coding; Theoretical Coding; Constant
Comparison; Memoing; Sorting; Theoretical Saturation; Generating Theory

7 Validity Threats and Control

The most relevant validity threats to the research along with some checks to be taken to
minimize them are given below.

• To reduce researcher bias, we intend to collect data from different sources interviews,
observed meetings, and questionnaire. Such data triangulation will help us to generate
more substantial data.

Self-Assignment: Task Allocation Practice in Agile Software Development 295

• Additionally, to collect multiple perspectives we plan to collect data from different
contexts so that we do not limit this study to a particular setting, also we will be
interviewing different roles belonging to variant sized organizations working on
different software types.

• The supervisor and the co-supervisor, have strong expertise in empirical methods,
especially GT and will keep a constant check to make sure that the researcher is not
inclined to some side at some point during the study.

8 Current Status

• We have completed an initial round of literature review of related work on task allo‐
cation from a pool of papers published between 1990 to 2016 and gathered related
work on task allocation generally in software projects and explicitly for agile projects.

• We have also explored some research methodologies to analyze and synthesize the
data. After studying few research methodologies we decided to use grounded theory.

• Additionally, we conducted a pilot study to explore self-assignment in agile teams
and investigated few aspects associated with it on a relatively small number of agile
practitioners. During this study, we found self-assignment to be a potential area for
further research as it has not been addressed extensively in the literature. The findings
of this study are formulated and submitted to XP 2017 conference and accepted as a
short paper (“Exploring Workflow Mechanisms and Task Allocation Strategies in
Agile Software Teams”) and the social aspects of the study are formulated, submitted
to CHASE2017 and accepted as notes paper (“Motivation for Self-Assignment:
Factors Agile Developers Consider”).

• At present, we are collecting data. We have been successful in gaining some agile
practitioner participants and continue to approach others.

References

1. Hoda, R., Noble, J., Marshall, S.: Agile project management. In: New Zealand Computer
Science Research Student Conference, vol. 6, pp. 218–221 (2008)

2. Manifesto for agile software development (2001). http://agilemanifesto.org. Accessed 7 Jan
2017

3. Hoda, R., Noble, J., Marshall, S.: Developing a grounded theory to explain the practices of
self-organizing Agile teams. Empirical Softw. Eng. 17(6), 609–639 (2012)

4. Hoda, R., Murugesan, L.K.: Multi-level agile project management challenges: a self-
organizing team perspective. J. Syst. Softw. 117, 245–257 (2016)

5. Pinto, J.K., Slevin, D.P.: Critical success factors across the project life cycle. Proj. Manage.
J. 19(3), 67–75 (1988)

6. Acuna, S.T., Juristo, N., Moreno, A.M.: Emphasizing human capabilities in software
development. IEEE Softw. 23(2), 94–101 (2006)

7. Deemer, P., Benefield, G., Larman, C., Vodde, B.: A lightweight guide to the theory and
practice of scrum. Version 2 (2012)

8. Hoda, R., Noble, J.: Becoming agile: a grounded theory of agile transitions in practice. In:
IEEE International Conference on Software Engineering (ICSE 2017) (2017)

296 Z. Masood

http://agilemanifesto.org

9. Crowston, K., Li, Q., Wei, K., Eseryel, U.Y., Howison, J.: Self-organization of teams for free/
libre open source software development. Inf. Softw. Technol. 49(6), 564–575 (2007)

10. Kalliamvakou, E., Damian, D., Blincoe, K., Singer, L., German, D.M.: Open source-style
collaborative development practices in commercial projects using github. In: Proceedings of
the 37th International Conference on Software Engineering, vol. 1, pp. 574–585. IEEE Press
(2015)

11. Glaser, B.G.: Basics of Grounded Theory Analysis: Emergence vs. Forcing. Sociology Press,
Mill Valley (1992)

12. Glaser, B.G.: Theoretical Sensitivity: Advances in the Methodology of Grounded Theory.
Sociology Pr., Mill Valley (1978)

13. Myers, M.D.: Qualitative research in information systems. Manage. Inf. Syst. Q. 21(2), 241–
242 (1997)

14. Stol, K.J., Ralph, P., Fitzgerald, B.: Grounded theory in software engineering research: a
critical review and guidelines. In: Proceedings of the 38th International Conference on
Software Engineering, pp. 120–131. ACM (2016)

15. Hoda, R., Noble, J., Marshall, S.: Self-organizing roles on agile software development teams.
IEEE Trans. Softw. Eng. 39(3), 422–444 (2013)

16. Adolph, S., Kruchten, P., Hall, W.: Reconciling perspectives: a grounded theory of how people
manage the process of software development. J. Syst. Softw. 85(6), 1269–1286 (2012)

17. Stray, V., Sjøberg, D.I., Dybå, T.: The daily stand-up meeting: a grounded theory study. J.
Syst. Softw. 114, 101–124 (2016)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license
and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

Self-Assignment: Task Allocation Practice in Agile Software Development 297

http://creativecommons.org/licenses/by/4.0/

Software Development Practices Patterns

Herez Moise Kattan(B) and Alfredo Goldman

Department of Computer Science, University of São Paulo (IME-USP),
São Paulo, Brazil

{herez,gold}@ime.usp.br

Abstract. Our ultimate goal is to propose a catalog with recommenda-
tions on how to organize the work of programmers. In this research we
intend to provide experiments to explore the most suitable forms to allow
programmers to develop software, either alone, in pair programming or
in group. We also explore other approaches like code review. Our goal is
not only to reduce the software development cost, but also to improve
programmers life quality.

Keywords: Mob Programming · Swarming · Pair programming · Pair
and review simultaneous in pairs · Code review · Coding Dojo

1 Introduction

The motivation of our research is to find better ways to organize the programmers
work to develop quality software in a productive way suitable to their current
context. Our goal is not only to reduce the software development cost, but also
to improve the programming experience. Toward to do this a set of unanswered
questions related on how many programmers should implement a task emerged:

– When Pair programming should be used?
– When it is interesting to perform Mob programming?
– What are the situations where it is better to do simultaneous work?
– What’s the influence of the context and of the team?

2 Description of Points on Which We Would Like
to Get the Most Advice on

We would like to have initial hints on when is better to use each one of the
techniques and when alternating among them is a good idea. Our research is
based upon the process of the Illuminated Arrow (see below).

c© The Author(s) 2017
H. Baumeister et al. (Eds.): XP 2017, LNBIP 283, pp. 298–303, 2017.
DOI: 10.1007/978-3-319-57633-6 23

Software Development Practices Patterns 299

3 Relevant Prior Work

Herez [9] did an extensive work on when to apply pair programming on several
teams. The main conclusions were that pair programming should be applied
when the task being developed is more complex or when there is a large gap on
the programmers experience. On other situations, other more light techniques
like code review can be applied without any drawback.

More recently we started to study also the benefits of Mob Programming.
There are points of convergence in the literature about the advantages of the

use of Mob Programming over other techniques [9–13]. On a first experiment
we figured out that Mob Programming was not very useful when no one in the
team knew the language/framework being used [10].

4 Research Objective

Elaborate a catalog with suggestions on how the programmers should organize
their work concerning pair programming and related techniques.

5 Research Approach, Study Design and Arrangements

The interpretation made in an interpretive case study is frequently impossible to
be auditing posteriorly and, is very difficult to conduct controlled experiments.
For this reason, Kattan [2] suggests to conduct application examples to produce
raw data. After, to analysis this data, is suggested the use of the Grounded The-
ory techniques, to looking for one auditable Theory to explain the findings [5].

There are no silver bullets [6], but maybe together we could build illuminated
arrows that somehow inspire the correct path to innovators. Figure 1 show the
phases of this research method, that reduces the gap between software develop-
ers and academic researchers and, thus, produce more ready to use knowledge.
The Illuminated Arrow [2] proposed application examples to deepen impartially
the initial work of an action research, supported by systematic and tertiary
revisions [4].

In Software Engineering it is very difficult to conduct controlled experiments
or make convincing Double Blind experiments [3]. Furthermore, human expertise
and human subjectivity interfere with the result of experiments. The types of
software are very different, each software is unique, it depends on the problem it
solves, so is different from medical research, where every human being has blood,
lung, heart, brain, etc [2].

The reason to start with an action research is to fix the initial mistakes of the
research and to be sure about the benefits and limitations of it. If the result of
the initial work, is considered positive, the next step suggest by the Illuminated
Arrow is systematically review the literature, making it easier to audit.

300 H. Moise Kattan and A. Goldman

Fig. 1. Phases of illuminated arrow, starting from left and finishing in the right [2].

6 Action Research and Application Examples

The Empirical Study occurs twice. The first is in the beginning of the research
as suggested by illuminated arrow, because start with an action research helps
to deep the knowledge on this theme. Thus, makes easier the identification of
some aspect possible to be improved and will guide the systematics reviews.

The second time, occurs after the literature review and is the empirical study
by application examples. Thus, makes easier audits compared with interpretative
case studies usely used. The applications examples will be careful design based
at the literature reviews and action research.

These application examples will produce raw data about what we observe,
toward to confirm and validated some aspects, provide new ideas and these
raw data produced we hope that permit emerge one Theory in the way of one
recommendation system to software developers about the better set of practices
based on a specific context.

7 Data Analysis Methods and Techniques

The use of grounded theory is founded on the premise that the generation of
theory at various levels is indispensable for a deep understanding of social phe-
nomena [7,8]. The techniques of data analysis in grounded theory are:

– coding data (that comprises open, axial and selective):

Open coding, to find categories;

Axial coding, to find links between the themes/categories;

Selective coding, to find the core category.

– memo writing;
– theoretical sampling.

Software Development Practices Patterns 301

8 Summary of the Current Status of the Research and
Planned Next Steps

This proposal research is the continuation of Kattan [9] master’s thesis. The tech-
nique is called Programming and review simultaneous in Pairs, is one extension
to the pair programming. It’s concluded when the goal is to reduce the time-to-
benefit suggest use the Programming and review simultaneous in Pairs, when the
pair is compose by professionals with the follows experience levels: intermediate
and senior, or senior and senior, or junior and junior. The complexity of these
tasks were classified as: low, medium and high.

Kattan reviewed the Mob Programming literature too in his master’s disser-
tation and also applied Mob Programming in one application example.

Figure 2 illustrates the extension to pair programming, was used aspects of
Simultaneous Engineering [9] to create one alternative to pair programming. The
phases 1, 2, 3, 4, 5 and 6 are illustrated in Fig. 2. Phase 7 is illustrated in the form
of the team with the work, because is the reflective rest and conflict resolution, is
unformatted due to the miscellaneous possibilities for reflective/productive rest
and conflict resolution.

The current status of the research and planned next steps are:

– We are conducting in companies experiments on Mob Programming, Pro-
gramming and review simultaneous in Pairs, Pair Programming, Code Review
and Coding Dojo [1].

– We are continuously reading the live science of this theme in literature in a
frequently updating process.

– Beyond the use of questionnaire, we are analysing possible metrics [9].
– Based on feedback of international community we will rock the research and

start the data collection.
– After conducting field studies, called here of application examples, we will

analyse the data using Grounded Theory techniques.

Fig. 2. Programming and review simultaneous in Pairs

302 H. Moise Kattan and A. Goldman

References

1. Rooksby, J., Hunt, J., Wang, X.: The theory and practice of randori coding dojos.
In: Agile Processes in Software Engineering and Extreme Programming: Proceed-
ings of the 15th International Conference, XP 2014, Rome, Italy, vol. 179, pp.
251–259, 26–30 May 2014

2. Kattan, H.M.: Illuminated Arrow: a research method to software engineering based
on action research, systematic review and grounded theory. In: CONTECSI - Inter-
national Conference on Information Systems and Technology Management 2016,
pp. 1971–1978, 21 July 2016

3. Budgen, D., Charters, S., Turner, M., Brereton, P., Kitchenham, B., Linkman, S.:
Investigating the applicability of the evidence-based paradigm to software engi-
neering. In: Proceedings of WISER Workshop, ICSE 2006, pp. 7–13. ACM Press,
May 2006

4. Kitchenham, B., Charters, S., Budgen, D., Brereton, P., Turner, M., Linkman,
S., JØrgensen, M., Mendes, E.: Guidelines for performing systematic literature
reviews in software engineering, version 2.3. EBSE Technical Report EBSE-2007-
01, Software Engineering Group, School of Computer Science and Mathematics,
Keele University Keele, Staffs ST5 5BG, UK and Department of Computer Science,
University of Durham, Durham, UK, 9 July 2007

5. Allan, G.: The legitimacy of grounded theory. In: Proceedings of Fifth European
Conference on Business Research Methods, pp. 1–8 (2006)

6. Brooks, F.: The Mythical Man-Month: Essays on Software Engineering, 20th
Anniversary Edition, 322 pages. Addison-Wesley, Reading (1995)

7. Glaser, E.G.: Advances in the Methodology of Grounded Theory: Theoretical Sen-
sitivity. Sociology Press, Mill Valley (1978)

8. Glaser, E.G., Strauss, A.L.: The Discovery of Grounded Theory: Strategies for
Qualitative Research (1967)

9. Kattan, H. M.: Programming and review simultaneous in Pairs: a pair program-
ming extension. Master dissertation, Institute for Technological Research of the
State of São Paulo (IPT) (2015). http://aleph.ipt.br/F or http://ipt.br, click on:
Online Consultations, then click on: Library

10. Questionnaire. http://ccsl.ime.usp.br/wiki/SwarmQuestionnaire
11. Wilson, A.: Mob programming - what’s works, what’s doesn’t. In: Agile Processes

in Software Engineering and Extreme Programming: Proceedings of the 16th Inter-
national Conference on Agile Software Development, XP 2015, Helsinki, Finland,
pp. 319–325, 25–29 May 2015

12. Griffith, A.: Mob programming for the introverted. Experience report, Agile (2016)
13. Hohman, M., Slocum, A.: Mob Programming and the Transition to XP (2001)

http://aleph.ipt.br/F
http://ipt.br
http://ccsl.ime.usp.br/wiki/SwarmQuestionnaire

Software Development Practices Patterns 303

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Author Index

Abrahamsson, Pekka 20, 167
Ahmad, Muhammad Ovais 68
Amor, Robert 3
Andriyani, Yanti 3, 285
Anslow, Craig 119, 151

Barroca, Leonor 135
Bergersen, Gunnar R. 274
Blincoe, Kelly 267
Bordin, Silvia 235
Burkhard, Roger 119

Cruzes, Daniela Soares 201

De Angeli, Antonella 235
den Heijer, Peter 103
Diebold, Philipp 243

Escalona, María José 37

Felderer, Michael 201

Gander, Matthias 201
Garigapati, Ratna Pranathi 251
Ghazi, Ahmad Nauman 251
Goldman, Alfredo 84, 298
Gregory, Peggy 135

Hanssen, Geir K. 217
Hoda, Rashina 3, 267

Janes, Andrea 68
Johnson, David 151

Khanna, Dron 167
Koole, Wibo 103
Kropp, Martin 119
Kuusinen, Kati 135

Lenarduzzi, Valentina 68
Leppänen, Marko 259
Liukkunen, Kari 68

Martin, Angela 151
Masood, Zainab 267, 292
Mateescu, Magdalena 119
Mattila, Anna-Liisa 259
Mayer, Udo 243
Mikkonen, Tommi 259
Moe, Nils Brede 274
Moise Kattan, Herez 298
Mondini, Marco 167

Nguyen-Duc, Anh 20

Oyetoyan, Tosin Daniel 201

Pantiuchina, Jevgenija 167
Pekaric, Irdin 201
Petersen, Kai 251
Pina, Diogo 84

Schön, Eva-Maria 37
Seaman, Carolyn 84
Sharp, Helen 135
Sibal, Ritu 184
Sievi-Korte, Outi 259
Stettina, Christoph J. 103
Stray, Viktoria 274
Stuip, Martijn 217
Suonsyrjä, Sampo 52
Suri, Bharti 184
Systä, Kari 259

Taibi, Davide 68
Taylor, Katie 135
Thomaschewski, Jörg 37
Tonin, Graziela Simone 84
Tyagi, Sulabh 184

Vischi, Dario 119

Wang, Xiaofeng 20, 167
Wedzinga, Gosse 217
Winter, Dominique 37
Wood, Laurence 135

Zahn, Carmen 119

© The Editor(s) (if applicable) and The Author(s) 2017. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license
and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the book’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

306 Author Index

http://creativecommons.org/licenses/by/4.0/

	Preface
	Organization
	Contents
	Improving Agile Processes
	Reflection in Agile Retrospectives
	Abstract
	1 Introduction
	2 Related Work
	2.1 Agile Retrospective Meeting
	2.2 Reflective Practice

	3 Research Method
	3.1 Data Collection
	3.2 Data Analysis

	4 Findings
	4.1 Reporting and Responding
	4.2 Relating and Reasoning
	4.3 Reconstructing

	5 Discussion
	5.1 A Framework of Reflection in Agile Retrospective Meeting
	5.2 Levels of Reflection Build on Each Other
	5.3 Implications for Research and Practice
	5.4 Limitations

	6 Conclusion
	Acknowledgement
	References

	What Influences the Speed of Prototyping? An Empirical Investigation of Twenty Software Startups
	Abstract
	1 Introduction
	2 Background
	2.1 Business Driven Experimentation
	2.2 Prototype and Prototyping Activities
	2.3 A Prototype-Centric Learning Model in Software Startups

	3 Research Approach
	3.1 Multiple Case Study Design
	3.2 Data Collection and Analysis
	3.3 Case Description

	4 Result
	4.1 Elements Influencing Throwaway Prototyping
	4.1.1 Adoption of Collaborative Mock-up Tools
	4.1.2 UX Designer Onboard
	4.1.3 Choices of Faking or Building
	4.1.4 Collaboration Across Diverged Mindsets
	4.1.5 Identification of a Right Set of Feedbacks
	4.1.6 Fostering Customer Knowledge and Embedding into Prototypes

	4.2 Elements Influencing Evolutionary Prototyping
	4.2.1 Utilizing Plug-and-Play Components in Prototype
	4.2.2 Synchronizing Customer Feedback in Loops
	4.2.3 Conflicting Feature Requests
	4.2.4 Feature Creeps
	4.2.5 Solid Technical Competence Onboard
	4.2.6 Dependence on Fast Changing Technologies

	5 Discussion
	5.1 Reflections on the Results
	5.2 Threats to Validity

	6 Conclusions
	References

	Key Challenges in Agile Requirements Engineering
	Abstract
	1 Introduction
	2 Related Work
	3 Research Method
	3.1 General Study Design
	3.2 Panel of Experts
	3.3 Round 1
	3.4 Round 2
	3.5 Round 3

	4 Results and Discussion
	4.1 (RQ1) What Are the Key Challenges in Agile Requirements Engineering?
	4.2 (RQ2) How Can We Deal with the Identified Key Challenges?
	4.3 Meaning of Findings
	4.4 Limitations

	5 Conclusions and Future Work
	Acknowledgements
	Appendix
	References

	Eeny, Meeny, Miny, Mo...
	1 Introduction
	2 Background
	2.1 Selection Framework for a Collecting Technique
	2.2 Techniques for User-Interaction Data Collecting

	3 Research Approach
	3.1 Explanatory Case Study
	3.2 Case Organizations

	4 Results
	4.1 The Processes of Choosing a Collecting Technology
	4.2 Reasons for Choosing a Collecting Technique

	5 Discussion
	6 Conclusions
	References

	Comparing Requirements Decomposition Within the Scrum, Scrum with Kanban, XP, and Banana Development ...
	Abstract
	1 Introduction
	2 Background and Related Work
	3 The Multiple Case Study
	3.1 Study Goal
	3.2 Study Design
	3.3 Study Execution
	3.4 Data Collection and Analysis

	4 Study Results
	5 Threats to Validity
	6 Conclusion and Future Work
	References

	Effects of Technical Debt Awareness: A Classroom Study
	Abstract
	1 Introduction
	2 Related Work
	3 Context: Extreme Programming Laboratory
	3.1 Projects
	3.2 The Informative Workspace
	3.2.1 Boards
	3.2.2 Tools

	4 Research Methods
	4.1 Technical Debt Identification
	4.1.1 XP Lab 2013
	4.1.2 XP Lab 2014

	4.2 Second Step – Interviews and Questionnaires
	4.2.1 XP Lab 2013
	4.2.2 XP Lab 2014

	4.3 Third Step – Data Analysis

	5 Results
	5.1 Open Coding
	5.2 Axial Coding
	5.3 Selective Coding
	5.4 The Code Analysis with the Tools

	6 Discussion of the Findings
	6.1 Threats to the Validity

	7 Final Considerations and Future Works
	Acknowledgments
	References

	Agile in Organizations
	Don't Forget to Breathe: A Controlled Trial of Mindfulness Practices in Agile Project Teams
	1 Introduction
	2 Background and Related Work
	3 Research Method and Conduct
	4 Results
	5 Discussion
	5.1 Three Minute Breathing Exercise in Agile Teams, Does It Work?
	5.2 Mindfulness in Our Case Organisations: Barriers to Adoption
	5.3 Mindfulness in Agile Project Teams: A Preliminary Research Agenda
	5.4 Threats to Validity

	6 Conclusions
	References

	Enhancing Agile Team Collaboration Through the Use of Large Digital Multi-touch Cardwalls
	1 Introduction
	2 Related Work
	3 Pre-study Tool Usage
	3.1 Study Method
	3.2 Findings
	3.3 Summary

	4 aWall - Digital Agile Collaboration Wall
	4.1 Design
	4.2 User Interface

	5 User Study
	5.1 Participants
	5.2 Procedure
	5.3 Findings

	6 Conclusions
	References

	Knowledge Sharing in a Large Agile Organisation: A Survey Study
	1 Introduction
	2 Related Work
	3 Method
	3.1 Collaborator Company
	3.2 Procedure
	3.3 Survey
	3.4 Analysis
	3.5 Respondents

	4 Results
	4.1 Knowledge Sharing Practices
	4.2 Motivation for Knowledge Sharing
	4.3 Ease of Knowledge Sharing
	4.4 Relation of Agility and Ease of Knowledge Sharing
	4.5 Relation of Frequency and Ease of Knowledge Sharing

	5 Limitations
	6 Discussion
	7 Conclusions and Future Work
	References

	Teaching Agile Methods to Software Engineering Professionals: 10Years, 1000 Release Plans
	1 Introduction
	2 Course Outline
	2.1 Pre-study Assignment: Case Study
	2.2 Lectures
	2.3 Group Exercises
	2.4 Course Assignment: Essay and Release Plan

	3 Discussion
	4 Related Work
	5 Conclusions
	6 Agile Methods: Case Study Papers for 2016
	References

	Are Software Startups Applying Agile Practices? The State of the Practice from a Large Survey
	1 Introduction
	2 Related Work
	2.1 Agile Methods in Software Startups
	2.2 Lean Startup and Agile Practices

	3 Research Method
	3.1 Survey Questions
	3.2 Data Cleaning and Validation
	3.3 Data Analysis

	4 Results
	4.1 Agile Practices in Software Startups
	4.2 Agile Practices in Lean Software Startups

	5 Discussion
	6 Conclusion
	References

	Adopting Test Automation on Agile Development Projects: A Grounded Theory Study of Indian Software O ...
	Abstract
	1 Introduction
	2 Research Method
	2.1 Grounded Theory
	2.2 Data Collection
	2.3 Data Analysis

	3 Results: Adopting Test Automation on Agile Projects
	3.1 Challenge 1: Choosing the Right Tool
	3.2 Challenge 2: Managing Test Environment
	3.3 Challenge 3: Test Script Maintenance
	3.4 Challenge 4: Mindset Toward Automation
	3.5 Challenge 5: Effective Communication

	4 Discussion and Related Work
	5 Limitations
	6 Conclusion
	Acknowledgments
	References

	Safety Critical Software
	How is Security Testing Done in Agile Teams? A Cross-Case Analysis of Four Software Teams
	Abstract
	1 Introduction
	2 Background on Software and Security Testing
	2.1 Four Quadrants of Agile Testing

	3 Research Methodology
	4 Results
	4.1 RQ 1: How Is the Traditional Security Engineering Process Managed/Organized in the Agile Teams?
	4.2 RQ 2: How Does the Agile Teams Perform Security Testing in Each Testing Phase?
	4.3 RQ 3: How Are Traditional Security Testing Techniques Generally Used in the Agile Software Devel ...

	5 Discussion
	5.1 Recommendations for Practice
	5.2 Recommendations for Research
	5.3 Work Limitations

	6 Conclusion
	References

	An Assessment of Avionics Software Development Practice: Justifications for an Agile Development Process
	Abstract
	1 Introduction
	2 Research Method
	3 Certification Aspects of Avionics Software Development
	3.1 Overview of Document DO-178C
	3.2 Assessment of Document DO-178C

	4 Overview of Existing Research and Industry Experience
	4.1 Why This Interest in Agile Methods?
	4.2 Evidence and Documentation
	4.3 More Flexible Management of Requirements and Change
	4.4 Applicability and Obstacles
	4.5 Team Efficiency and Motivation
	4.6 Testing
	4.7 Adoption of New Software Process Models
	4.8 Relating Findings to Other Domains

	5 Survey to Assess Present Practice
	5.1 Respondents’ and Organizations’ Profiles
	5.2 Maturity
	5.3 Relationship to Safety Standards and Authorities
	5.4 Life-Cycle Aspects
	5.5 Perceived Challenges and Problems

	6 Towards an DO-178-Aligned Agile Approach
	6.1 Scrum Phases
	6.2 Preparation Phase Activities
	6.3 Development Phase Activities
	6.4 Closure Phase Activities
	6.5 Remarks and Potential Issues

	7 Conclusions and Further Work
	Acknowledgments
	References

	Short Research Papers
	Inoculating an Agile Company with User-Centred Design: An Empirical Study
	Abstract
	1 Introduction
	2 Related Work
	3 Action Research Intervention
	3.1 Method
	3.2 Preliminary Understanding
	3.3 Implementation
	3.4 Evaluation

	4 Discussion
	Acknowledgments
	References

	On the Usage and Benefits of Agile Methods & Practices
	Abstract
	1 Introduction
	2 Chassis Systems Control of the Bosch Group
	3 Study Design
	4 Results
	4.1 RQ1: Usage of Agile Methods and Practices
	4.2 RQ2: Deviations of Agile Practices
	4.3 RQ3: Benefits of Agile Practices

	5 Related Works and Discussion
	6 Validity of the Results
	7 Conclusions and Future Work
	Acknowledgements
	References

	Checklists to Support Test Charter Design in Exploratory Testing
	1 Introduction
	2 Related Work
	3 Research Method
	4 Results
	5 Conclusion
	References

	Discovering Software Process Deviations Using Visualizations
	1 Introduction
	2 Research Process
	3 Results
	4 Threats to Validity
	5 Discussion and Conclusions
	References

	Exploring Workflow Mechanisms and Task Allocation Strategies in Agile Software Teams
	Abstract
	1 Introduction
	2 Related Work
	3 Research Method
	3.1 Participant Selection and Description
	3.2 Data Collection and Analysis

	4 Findings
	4.1 Team Workflow Mechanisms
	4.2 Task Allocation Strategies

	5 Discussion
	6 Conclusion
	References

	Are Daily Stand-up Meetings Valuable? A Survey of Developers in Software Teams
	Abstract
	1 Introduction
	2 Method
	3 Results
	4 Discussion
	5 Conclusion and Future Work
	Acknowledgments
	References

	Doctoral Symposium Papers
	Knowledge Management and Reflective Practice in Daily Stand-Up and Retrospective Meetings
	Abstract
	1 Introduction
	2 Relevant Prior Work
	2.1 Knowledge Management in ASD
	2.2 Reflective Practice in ASD

	3 Research Objectives
	4 Research Design
	5 Current Research Progress
	5.1 Initial Findings on Knowledge Management in ASD
	5.2 Initial Findings on Reflection in Agile Retrospective Meeting

	References

	Self-Assignment: Task Allocation Practice in Agile Software Development
	Abstract
	1 Introduction
	2 Feedback or Areas Seeking Advice
	3 Related Work
	4 Research Basis
	5 Research Plans
	6 Research Method
	7 Validity Threats and Control
	8 Current Status
	References

	Software Development Practices Patterns
	1 Introduction
	2 Description of Points on Which We Would Like to Get the Most Advice on
	3 Relevant Prior Work
	4 Research Objective
	5 Research Approach, Study Design and Arrangements
	6 Action Research and Application Examples
	7 Data Analysis Methods and Techniques
	8 Summary of the Current Status of the Research and Planned Next Steps
	References

	Author Index

