
Think Bayes

Bayesian Statistics Made Simple

Version 1.0.5

Think Bayes

Bayesian Statistics Made Simple

Version 1.0.5

Allen B. Downey

Green Tea Press
Needham, Massachusetts

Copyright © 2012 Allen B. Downey.

Green Tea Press
9 Washburn Ave
Needham MA 02492

Permission is granted to copy, distribute, and/or modify this document
under the terms of the Creative Commons Attribution-NonCommercial
3.0 Unported License, which is available at http://creativecommons.org/
licenses/by-nc/3.0/.

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

Preface

0.1 My theory, which is mine

The premise of this book, and the other books in the Think X series, is that if
you know how to program, you can use that skill to learn other topics.

Most books on Bayesian statistics use mathematical notation and present
ideas in terms of mathematical concepts like calculus. This book uses
Python code instead of math, and discrete approximations instead of con-
tinuous mathematics. As a result, what would be an integral in a math book
becomes a summation, and most operations on probability distributions are
simple loops.

I think this presentation is easier to understand, at least for people with pro-
gramming skills. It is also more general, because when we make modeling
decisions, we can choose the most appropriate model without worrying too
much about whether the model lends itself to conventional analysis.

Also, it provides a smooth development path from simple examples to real-
world problems. Chapter 3 is a good example. It starts with a simple ex-
ample involving dice, one of the staples of basic probability. From there
it proceeds in small steps to the locomotive problem, which I borrowed
from Mosteller’s Fifty Challenging Problems in Probability with Solutions, and
from there to the German tank problem, a famously successful application
of Bayesian methods during World War II.

0.2 Modeling and approximation

Most chapters in this book are motivated by a real-world problem, so they
involve some degree of modeling. Before we can apply Bayesian methods
(or any other analysis), we have to make decisions about which parts of the

vi Chapter 0. Preface

real-world system to include in the model and which details we can abstract
away.

For example, in Chapter 7, the motivating problem is to predict the winner
of a hockey game. I model goal-scoring as a Poisson process, which implies
that a goal is equally likely at any point in the game. That is not exactly true,
but it is probably a good enough model for most purposes.

In Chapter 12 the motivating problem is interpreting SAT scores (the SAT is
a standardized test used for college admissions in the United States). I start
with a simple model that assumes that all SAT questions are equally diffi-
cult, but in fact the designers of the SAT deliberately include some questions
that are relatively easy and some that are relatively hard. I present a second
model that accounts for this aspect of the design, and show that it doesn’t
have a big effect on the results after all.

I think it is important to include modeling as an explicit part of problem
solving because it reminds us to think about modeling errors (that is, errors
due to simplifications and assumptions of the model).

Many of the methods in this book are based on discrete distributions, which
makes some people worry about numerical errors. But for real-world prob-
lems, numerical errors are almost always smaller than modeling errors.

Furthermore, the discrete approach often allows better modeling decisions,
and I would rather have an approximate solution to a good model than an
exact solution to a bad model.

On the other hand, continuous methods sometimes yield performance
advantages—for example by replacing a linear- or quadratic-time compu-
tation with a constant-time solution.

So I recommend a general process with these steps:

1. While you are exploring a problem, start with simple models and im-
plement them in code that is clear, readable, and demonstrably correct.
Focus your attention on good modeling decisions, not optimization.

2. Once you have a simple model working, identify the biggest sources
of error. You might need to increase the number of values in a discrete
approximation, or increase the number of iterations in a Monte Carlo
simulation, or add details to the model.

3. If the performance of your solution is good enough for your applica-
tion, you might not have to do any optimization. But if you do, there
are two approaches to consider. You can review your code and look

0.3. Working with the code vii

for optimizations; for example, if you cache previously computed re-
sults you might be able to avoid redundant computation. Or you can
look for analytic methods that yield computational shortcuts.

One benefit of this process is that Steps 1 and 2 tend to be fast, so you can
explore several alternative models before investing heavily in any of them.

Another benefit is that if you get to Step 3, you will be starting with a ref-
erence implementation that is likely to be correct, which you can use for
regression testing (that is, checking that the optimized code yields the same
results, at least approximately).

0.3 Working with the code

Many of the examples in this book use classes and functions defined in
thinkbayes.py. You can download this module from http://thinkbayes.

com/thinkbayes.py.

Most chapters contain references to code you can download from http:

//thinkbayes.com. Some of those files have dependencies you will also
have to download. I suggest you keep all of these files in the same directory
so they can import each other without changing the Python search path.

You can download these files one at a time as you need them, or you
can download them all at once from http://thinkbayes.com/thinkbayes_

code.zip. This file also contains the data files used by some of the pro-
grams. When you unzip it, it creates a directory named thinkbayes_code

that contains all the code used in this book.

Or, if you are a Git user, you can get all of the files at once by forking and
cloning this repository: https://github.com/AllenDowney/ThinkBayes.

One of the modules I use is thinkplot.py, which provides wrappers for
some of the functions in pyplot. To use it, you need to install matplotlib.
If you don’t already have it, check your package manager to see if it
is available. Otherwise you can get download instructions from http:

//matplotlib.org.

Finally, some programs in this book use NumPy and SciPy, which are avail-
able from http://numpy.org and http://scipy.org.

http://thinkbayes.com/thinkbayes.py
http://thinkbayes.com/thinkbayes.py
http://thinkbayes.com
http://thinkbayes.com
http://thinkbayes.com/thinkbayes_code.zip
http://thinkbayes.com/thinkbayes_code.zip
https://github.com/AllenDowney/ThinkBayes
http://matplotlib.org
http://matplotlib.org
http://numpy.org
http://scipy.org

viii Chapter 0. Preface

0.4 Code style

Experienced Python programmers will notice that the code in this book
does not comply with PEP 8, which is the most common style guide for
Python (http://www.python.org/dev/peps/pep-0008/).

Specifically, PEP 8 calls for lowercase function names with underscores be-
tween words, like_this. In this book and the accompanying code, function
and method names begin with a capital letter and use camel case, LikeThis.

I broke this rule because I developed some of the code while I was a Visiting
Scientist at Google, so I followed the Google style guide, which deviates
from PEP 8 in a few places. Once I got used to Google style, I found that I
liked it. And at this point, it would be too much trouble to change.

Also on the topic of style, I write “Bayes’s theorem” with an s after the apos-
trophe, which is preferred in some style guides and deprecated in others. I
don’t have a strong preference. I had to choose one, and this is the one I
chose.

And finally one typographical note: throughout the book, I use PMF and
CDF for the mathematical concept of a probability mass function or cumu-
lative distribution function, and Pmf and Cdf to refer to the Python objects
I use to represent them.

0.5 Prerequisites

There are several excellent modules for doing Bayesian statistics in Python,
including pymc and OpenBUGS. I chose not to use them for this book be-
cause you need a fair amount of background knowledge to get started with
these modules, and I want to keep the prerequisites minimal. If you know
Python and a little bit about probability, you are ready to start this book.

Chapter 1 is about probability and Bayes’s theorem; it has no code. Chap-
ter 2 introduces Pmf, a thinly disguised Python dictionary I use to represent
a probability mass function (PMF). Then Chapter 3 introduces Suite, a kind
of Pmf that provides a framework for doing Bayesian updates. And that’s
just about all there is to it.

Well, almost. In some of the later chapters, I use analytic distributions in-
cluding the Gaussian (normal) distribution, the exponential and Poisson
distributions, and the beta distribution. In Chapter 15 I break out the less-
common Dirichlet distribution, but I explain it as I go along. If you are not

http://www.python.org/dev/peps/pep-0008/

0.5. Prerequisites ix

familiar with these distributions, you can read about them on Wikipedia.
You could also read the companion to this book, Think Stats, or an introduc-
tory statistics book (although I’m afraid most of them take a mathematical
approach that is not particularly helpful for practical purposes).

Contributor List

If you have a suggestion or correction, please send email to
downey@allendowney.com. If I make a change based on your feedback,
I will add you to the contributor list (unless you ask to be omitted).

If you include at least part of the sentence the error appears in, that makes
it easy for me to search. Page and section numbers are fine, too, but not as
easy to work with. Thanks!

• First, I have to acknowledge David MacKay’s excellent book, Information The-
ory, Inference, and Learning Algorithms, which is where I first came to under-
stand Bayesian methods. With his permission, I use several problems from
his book as examples.

• This book also benefited from my interactions with Sanjoy Mahajan, espe-
cially in fall 2012, when I audited his class on Bayesian Inference at Olin
College.

• I wrote parts of this book during project nights with the Boston Python User
Group, so I would like to thank them for their company and pizza.

• Jonathan Edwards sent in the first typo.

• George Purkins found a markup error.

• Olivier Yiptong sent several helpful suggestions.

• Yuriy Pasichnyk found several errors.

• Kristopher Overholt sent a long list of corrections and suggestions.

• Robert Marcus found a misplaced i.

• Max Hailperin suggested a clarification in Chapter 1.

• Markus Dobler pointed out that drawing cookies from a bowl with replace-
ment is an unrealistic scenario.

• Tom Pollard and Paul A. Giannaros spotted a version problem with some of
the numbers in the train example.

x Chapter 0. Preface

• Ram Limbu found a typo and suggested a clarification.

• In spring 2013, students in my class, Computational Bayesian Statistics,
made many helpful corrections and suggestions: Kai Austin, Claire Barnes,
Kari Bender, Rachel Boy, Kat Mendoza, Arjun Iyer, Ben Kroop, Nathan Lintz,
Kyle McConnaughay, Alec Radford, Brendan Ritter, and Evan Simpson.

• Greg Marra and Matt Aasted helped me clarify the discussion of The Price is
Right problem.

• Marcus Ogren pointed out that the original statement of the locomotive prob-
lem was ambiguous.

• Jasmine Kwityn and Dan Fauxsmith at O’Reilly Media proofread the book
and found many opportunities for improvement.

• James Lawry spotted a math error.

• Ben Kahle found a reference to the wrong figure.

• Jeffrey Law found an inconsistency between the text and the code.

Contents

Preface v

0.1 My theory, which is mine . v

0.2 Modeling and approximation v

0.3 Working with the code . vii

0.4 Code style . viii

0.5 Prerequisites . viii

1 Bayes’s Theorem 1

1.1 Conditional probability . 1

1.2 Conjoint probability . 2

1.3 The cookie problem . 3

1.4 Bayes’s theorem . 3

1.5 The diachronic interpretation 5

1.6 The M&M problem . 6

1.7 The Monty Hall problem . 8

1.8 Discussion . 10

2 Computational Statistics 11

2.1 Distributions . 11

2.2 The cookie problem . 12

xii Contents

2.3 The Bayesian framework . 13

2.4 The Monty Hall problem . 15

2.5 Encapsulating the framework 16

2.6 The M&M problem . 17

2.7 Discussion . 18

2.8 Exercises . 19

3 Estimation 21

3.1 The dice problem . 21

3.2 The locomotive problem . 22

3.3 What about that prior? . 25

3.4 An alternative prior . 25

3.5 Credible intervals . 27

3.6 Cumulative distribution functions 28

3.7 The German tank problem . 29

3.8 Discussion . 30

3.9 Exercises . 30

4 More Estimation 33

4.1 The Euro problem . 33

4.2 Summarizing the posterior . 35

4.3 Swamping the priors . 36

4.4 Optimization . 37

4.5 The beta distribution . 38

4.6 Discussion . 40

4.7 Exercises . 41

Contents xiii

5 Odds and Addends 43

5.1 Odds . 43

5.2 The odds form of Bayes’s theorem 44

5.3 Oliver’s blood . 45

5.4 Addends . 46

5.5 Maxima . 49

5.6 Mixtures . 51

5.7 Discussion . 54

6 Decision Analysis 55

6.1 The Price is Right problem . 55

6.2 The prior . 56

6.3 Probability density functions 57

6.4 Representing PDFs . 57

6.5 Modeling the contestants . 60

6.6 Likelihood . 62

6.7 Update . 63

6.8 Optimal bidding . 64

6.9 Discussion . 67

7 Prediction 69

7.1 The Boston Bruins problem 69

7.2 Poisson processes . 71

7.3 The posteriors . 71

7.4 The distribution of goals . 72

7.5 The probability of winning . 74

7.6 Sudden death . 75

7.7 Discussion . 76

7.8 Exercises . 78

xiv Contents

8 Observer Bias 81

8.1 The Red Line problem . 81

8.2 The model . 82

8.3 Wait times . 84

8.4 Predicting wait times . 86

8.5 Estimating the arrival rate . 89

8.6 Incorporating uncertainty . 91

8.7 Decision analysis . 92

8.8 Discussion . 95

8.9 Exercises . 95

9 Two Dimensions 97

9.1 Paintball . 97

9.2 The suite . 98

9.3 Trigonometry . 99

9.4 Likelihood . 101

9.5 Joint distributions . 102

9.6 Conditional distributions . 103

9.7 Credible intervals . 104

9.8 Discussion . 106

9.9 Exercises . 107

10 Approximate Bayesian Computation 109

10.1 The Variability Hypothesis . 109

10.2 Mean and standard deviation 110

10.3 Update . 112

10.4 The posterior distribution of CV 113

Contents xv

10.5 Underflow . 114

10.6 Log-likelihood . 115

10.7 A little optimization . 116

10.8 ABC . 118

10.9 Robust estimation . 119

10.10 Who is more variable? . 122

10.11 Discussion . 123

10.12 Exercises . 124

11 Hypothesis Testing 125

11.1 Back to the Euro problem . 125

11.2 Making a fair comparison . 126

11.3 The triangle prior . 128

11.4 Discussion . 129

11.5 Exercises . 129

12 Evidence 131

12.1 Interpreting SAT scores . 131

12.2 The scale . 132

12.3 The prior . 132

12.4 Posterior . 134

12.5 A better model . 136

12.6 Calibration . 138

12.7 Posterior distribution of efficacy 139

12.8 Predictive distribution . 141

12.9 Discussion . 142

xvi Contents

13 Simulation 145

13.1 The Kidney Tumor problem 145

13.2 A simple model . 146

13.3 A more general model . 148

13.4 Implementation . 150

13.5 Caching the joint distribution 151

13.6 Conditional distributions . 152

13.7 Serial Correlation . 154

13.8 Discussion . 157

14 A Hierarchical Model 159

14.1 The Geiger counter problem 159

14.2 Start simple . 160

14.3 Make it hierarchical . 161

14.4 A little optimization . 163

14.5 Extracting the posteriors . 163

14.6 Discussion . 164

14.7 Exercises . 165

15 Dealing with Dimensions 167

15.1 Belly button bacteria . 167

15.2 Lions and tigers and bears . 168

15.3 The hierarchical version . 170

15.4 Random sampling . 172

15.5 Optimization . 174

15.6 Collapsing the hierarchy . 175

15.7 One more problem . 177

Contents xvii

15.8 We’re not done yet . 179

15.9 The belly button data . 180

15.10 Predictive distributions . 183

15.11 Joint posterior . 187

15.12 Coverage . 188

15.13 Discussion . 190

xviii Contents

Chapter 1

Bayes’s Theorem

1.1 Conditional probability

The fundamental idea behind all Bayesian statistics is Bayes’s theorem,
which is surprisingly easy to derive, provided that you understand con-
ditional probability. So we’ll start with probability, then conditional proba-
bility, then Bayes’s theorem, and on to Bayesian statistics.

A probability is a number between 0 and 1 (including both) that represents
a degree of belief in a fact or prediction. The value 1 represents certainty
that a fact is true, or that a prediction will come true. The value 0 represents
certainty that the fact is false.

Intermediate values represent degrees of certainty. The value 0.5, often writ-
ten as 50%, means that a predicted outcome is as likely to happen as not.
For example, the probability that a tossed coin lands face up is very close to
50%.

A conditional probability is a probability based on some background in-
formation. For example, I want to know the probability that I will have
a heart attack in the next year. According to the CDC, “Every year about
785,000 Americans have a first coronary attack. (http://www.cdc.gov/
heartdisease/facts.htm)”

The U.S. population is about 311 million, so the probability that a randomly
chosen American will have a heart attack in the next year is roughly 0.3%.

But I am not a randomly chosen American. Epidemiologists have identified
many factors that affect the risk of heart attacks; depending on those factors,
my risk might be higher or lower than average.

http://www.cdc.gov/heartdisease/facts.htm
http://www.cdc.gov/heartdisease/facts.htm

2 Chapter 1. Bayes’s Theorem

I am male, 45 years old, and I have borderline high cholesterol. Those fac-
tors increase my chances. However, I have low blood pressure and I don’t
smoke, and those factors decrease my chances.

Plugging everything into the online calculator at http://cvdrisk.nhlbi.
nih.gov/calculator.asp, I find that my risk of a heart attack in the next
year is about 0.2%, less than the national average. That value is a conditional
probability, because it is based on a number of factors that make up my
“condition.”

The usual notation for conditional probability is p(A|B), which is the prob-
ability of A given that B is true. In this example, A represents the prediction
that I will have a heart attack in the next year, and B is the set of conditions
I listed.

1.2 Conjoint probability

Conjoint probability is a fancy way to say the probability that two things
are true. I write p(A and B) to mean the probability that A and B are both
true.

If you learned about probability in the context of coin tosses and dice, you
might have learned the following formula:

p(A and B) = p(A) p(B) WARNING: not always true

For example, if I toss two coins, and A means the first coin lands face up,
and B means the second coin lands face up, then p(A) = p(B) = 0.5, and
sure enough, p(A and B) = p(A) p(B) = 0.25.

But this formula only works because in this case A and B are independent;
that is, knowing the outcome of the first event does not change the proba-
bility of the second. Or, more formally, p(B|A) = p(B).

Here is a different example where the events are not independent. Suppose
that A means that it rains today and B means that it rains tomorrow. If I
know that it rained today, it is more likely that it will rain tomorrow, so
p(B|A) > p(B).

In general, the probability of a conjunction is

p(A and B) = p(A) p(B|A)

http://cvdrisk.nhlbi.nih.gov/calculator.asp
http://cvdrisk.nhlbi.nih.gov/calculator.asp

1.3. The cookie problem 3

for any A and B. So if the chance of rain on any given day is 0.5, the chance
of rain on two consecutive days is not 0.25, but probably a bit higher.

1.3 The cookie problem
We’ll get to Bayes’s theorem soon, but I want to motivate it with an example
called the cookie problem.1 Suppose there are two bowls of cookies. Bowl 1
contains 30 vanilla cookies and 10 chocolate cookies. Bowl 2 contains 20 of
each.

Now suppose you choose one of the bowls at random and, without looking,
select a cookie at random. The cookie is vanilla. What is the probability that
it came from Bowl 1?

This is a conditional probability; we want p(Bowl 1|vanilla), but it is not
obvious how to compute it. If I asked a different question—the probability
of a vanilla cookie given Bowl 1—it would be easy:

p(vanilla|Bowl 1) = 3/4

Sadly, p(A|B) is not the same as p(B|A), but there is a way to get from one
to the other: Bayes’s theorem.

1.4 Bayes’s theorem
At this point we have everything we need to derive Bayes’s theorem. We’ll
start with the observation that conjunction is commutative; that is

p(A and B) = p(B and A)

for any events A and B.

Next, we write the probability of a conjunction:

p(A and B) = p(A) p(B|A)

Since we have not said anything about what A and B mean, they are inter-
changeable. Interchanging them yields

p(B and A) = p(B) p(A|B)
1Based on an example from http://en.wikipedia.org/wiki/Bayes'_theorem that is

no longer there.

http://en.wikipedia.org/wiki/Bayes'_theorem

4 Chapter 1. Bayes’s Theorem

That’s all we need. Pulling those pieces together, we get

p(B) p(A|B) = p(A) p(B|A)

Which means there are two ways to compute the conjunction. If you have
p(A), you multiply by the conditional probability p(B|A). Or you can do
it the other way around; if you know p(B), you multiply by p(A|B). Either
way you should get the same thing.

Finally we can divide through by p(B):

p(A|B) = p(A) p(B|A)

p(B)

And that’s Bayes’s theorem! It might not look like much, but it turns out to
be surprisingly powerful.

For example, we can use it to solve the cookie problem. I’ll write B1 for the
hypothesis that the cookie came from Bowl 1 and V for the vanilla cookie.
Plugging in Bayes’s theorem we get

p(B1|V) =
p(B1) p(V|B1)

p(V)

The term on the left is what we want: the probability of Bowl 1, given that
we chose a vanilla cookie. The terms on the right are:

• p(B1): This is the probability that we chose Bowl 1, unconditioned by
what kind of cookie we got. Since the problem says we chose a bowl
at random, we can assume p(B1) = 1/2.

• p(V|B1): This is the probability of getting a vanilla cookie from Bowl
1, which is 3/4.

• p(V): This is the probability of drawing a vanilla cookie from either
bowl. Since we had an equal chance of choosing either bowl and the
bowls contain the same number of cookies, we had the same chance of
choosing any cookie. Between the two bowls there are 50 vanilla and
30 chocolate cookies, so p(V) = 5/8.

Putting it together, we have

p(B1|V) =
(1/2) (3/4)

5/8

1.5. The diachronic interpretation 5

which reduces to 3/5. So the vanilla cookie is evidence in favor of the hy-
pothesis that we chose Bowl 1, because vanilla cookies are more likely to
come from Bowl 1.

This example demonstrates one use of Bayes’s theorem: it provides a strat-
egy to get from p(B|A) to p(A|B). This strategy is useful in cases, like the
cookie problem, where it is easier to compute the terms on the right side of
Bayes’s theorem than the term on the left.

1.5 The diachronic interpretation

There is another way to think of Bayes’s theorem: it gives us a way to update
the probability of a hypothesis, H, in light of some body of data, D.

This way of thinking about Bayes’s theorem is called the diachronic inter-
pretation. “Diachronic” means that something is happening over time; in
this case the probability of the hypotheses changes, over time, as we see
new data.

Rewriting Bayes’s theorem with H and D yields:

p(H|D) =
p(H) p(D|H)

p(D)

In this interpretation, each term has a name:

• p(H) is the probability of the hypothesis before we see the data, called
the prior probability, or just prior.

• p(H|D) is what we want to compute, the probability of the hypothesis
after we see the data, called the posterior.

• p(D|H) is the probability of the data under the hypothesis, called the
likelihood.

• p(D) is the probability of the data under any hypothesis, called the
normalizing constant.

Sometimes we can compute the prior based on background information.
For example, the cookie problem specifies that we choose a bowl at random
with equal probability.

6 Chapter 1. Bayes’s Theorem

In other cases the prior is subjective; that is, reasonable people might dis-
agree, either because they use different background information or because
they interpret the same information differently.

The likelihood is usually the easiest part to compute. In the cookie problem,
if we know which bowl the cookie came from, we find the probability of a
vanilla cookie by counting.

The normalizing constant can be tricky. It is supposed to be the probability
of seeing the data under any hypothesis at all, but in the most general case
it is hard to nail down what that means.

Most often we simplify things by specifying a set of hypotheses that are

Mutually exclusive: At most one hypothesis in the set can be true, and

Collectively exhaustive: There are no other possibilities; at least one of the
hypotheses has to be true.

I use the word suite for a set of hypotheses that has these properties.

In the cookie problem, there are only two hypotheses—the cookie came
from Bowl 1 or Bowl 2—and they are mutually exclusive and collectively
exhaustive.

In that case we can compute p(D) using the law of total probability, which
says that if there are two exclusive ways that something might happen, you
can add up the probabilities like this:

p(D) = p(B1) p(D|B1) + p(B2) p(D|B2)

Plugging in the values from the cookie problem, we have

p(D) = (1/2) (3/4) + (1/2) (1/2) = 5/8

which is what we computed earlier by mentally combining the two bowls.

1.6 The M&M problem

M&M’s are small candy-coated chocolates that come in a variety of colors.
Mars, Inc., which makes M&M’s, changes the mixture of colors from time
to time.

1.6. The M&M problem 7

In 1995, they introduced blue M&M’s. Before then, the color mix in a bag
of plain M&M’s was 30% Brown, 20% Yellow, 20% Red, 10% Green, 10%
Orange, 10% Tan. Afterward it was 24% Blue , 20% Green, 16% Orange,
14% Yellow, 13% Red, 13% Brown.

Suppose a friend of mine has two bags of M&M’s, and he tells me that one
is from 1994 and one from 1996. He won’t tell me which is which, but he
gives me one M&M from each bag. One is yellow and one is green. What is
the probability that the yellow one came from the 1994 bag?

This problem is similar to the cookie problem, with the twist that I draw
one sample from each bowl/bag. This problem also gives me a chance to
demonstrate the table method, which is useful for solving problems like this
on paper. In the next chapter we will solve them computationally.

The first step is to enumerate the hypotheses. The bag the yellow
M&M came from I’ll call Bag 1; I’ll call the other Bag 2. So the hypothe-
ses are:

• A: Bag 1 is from 1994, which implies that Bag 2 is from 1996.

• B: Bag 1 is from 1996 and Bag 2 from 1994.

Now we construct a table with a row for each hypothesis and a column for
each term in Bayes’s theorem:

Prior Likelihood Posterior
p(H) p(D|H) p(H) p(D|H) p(H|D)

A 1/2 (20)(20) 200 20/27
B 1/2 (14)(10) 70 7/27

The first column has the priors. Based on the statement of the problem, it is
reasonable to choose p(A) = p(B) = 1/2.

The second column has the likelihoods, which follow from the information
in the problem. For example, if A is true, the yellow M&M came from the
1994 bag with probability 20%, and the green came from the 1996 bag with
probability 20%. If B is true, the yellow M&M came from the 1996 bag with
probability 14%, and the green came from the 1994 bag with probability
10%. Because the selections are independent, we get the conjoint probability
by multiplying.

The third column is just the product of the previous two. The sum of this
column, 270, is the normalizing constant. To get the last column, which

8 Chapter 1. Bayes’s Theorem

contains the posteriors, we divide the third column by the normalizing con-
stant.

That’s it. Simple, right?

Well, you might be bothered by one detail. I write p(D|H) in terms of per-
centages, not probabilities, which means it is off by a factor of 10,000. But
that cancels out when we divide through by the normalizing constant, so it
doesn’t affect the result.

When the set of hypotheses is mutually exclusive and collectively exhaus-
tive, you can multiply the likelihoods by any factor, if it is convenient, as
long as you apply the same factor to the entire column.

1.7 The Monty Hall problem

The Monty Hall problem might be the most contentious question in the his-
tory of probability. The scenario is simple, but the correct answer is so coun-
terintuitive that many people just can’t accept it, and many smart people
have embarrassed themselves not just by getting it wrong but by arguing
the wrong side, aggressively, in public.

Monty Hall was the original host of the game show Let’s Make a Deal. The
Monty Hall problem is based on one of the regular games on the show. If
you are on the show, here’s what happens:

• Monty shows you three closed doors and tells you that there is a prize
behind each door: one prize is a car, the other two are less valuable
prizes like peanut butter and fake finger nails. The prizes are arranged
at random.

• The object of the game is to guess which door has the car. If you guess
right, you get to keep the car.

• You pick a door, which we will call Door A. We’ll call the other doors
B and C.

• Before opening the door you chose, Monty increases the suspense by
opening either Door B or C, whichever does not have the car. (If the
car is actually behind Door A, Monty can safely open B or C, so he
chooses one at random.)

• Then Monty offers you the option to stick with your original choice or
switch to the one remaining unopened door.

1.7. The Monty Hall problem 9

The question is, should you “stick” or “switch” or does it make no differ-
ence?

Most people have the strong intuition that it makes no difference. There are
two doors left, they reason, so the chance that the car is behind Door A is
50%.

But that is wrong. In fact, the chance of winning if you stick with Door A is
only 1/3; if you switch, your chances are 2/3.

By applying Bayes’s theorem, we can break this problem into simple pieces,
and maybe convince ourselves that the correct answer is, in fact, correct.

To start, we should make a careful statement of the data. In this case D
consists of two parts: Monty chooses Door B and there is no car there.

Next we define three hypotheses: A, B, and C represent the hypothesis that
the car is behind Door A, Door B, or Door C. Again, let’s apply the table
method:

Prior Likelihood Posterior
p(H) p(D|H) p(H) p(D|H) p(H|D)

A 1/3 1/2 1/6 1/3
B 1/3 0 0 0
C 1/3 1 1/3 2/3

Filling in the priors is easy because we are told that the prizes are arranged
at random, which suggests that the car is equally likely to be behind any
door.

Figuring out the likelihoods takes some thought, but with reasonable care
we can be confident that we have it right:

• If the car is actually behind A, Monty could safely open Doors B or
C. So the probability that he chooses B is 1/2. And since the car is
actually behind A, the probability that the car is not behind B is 1.

• If the car is actually behind B, Monty has to open door C, so the prob-
ability that he opens door B is 0.

• Finally, if the car is behind Door C, Monty opens B with probability 1
and finds no car there with probability 1.

Now the hard part is over; the rest is just arithmetic. The sum of the third
column is 1/2. Dividing through yields p(A|D) = 1/3 and p(C|D) = 2/3.
So you are better off switching.

10 Chapter 1. Bayes’s Theorem

There are many variations of the Monty Hall problem. One of the strengths
of the Bayesian approach is that it generalizes to handle these variations.

For example, suppose that Monty always chooses B if he can, and only
chooses C if he has to (because the car is behind B). In that case the revised
table is:

Prior Likelihood Posterior
p(H) p(D|H) p(H) p(D|H) p(H|D)

A 1/3 1 1/3 1/2
B 1/3 0 0 0
C 1/3 1 1/3 1/2

The only change is p(D|A). If the car is behind A, Monty can choose to
open B or C. But in this variation he always chooses B, so p(D|A) = 1.

As a result, the likelihoods are the same for A and C, and the posteriors are
the same: p(A|D) = p(C|D) = 1/2. In this case, the fact that Monty chose
B reveals no information about the location of the car, so it doesn’t matter
whether the contestant sticks or switches.

On the other hand, if he had opened C, we would know p(B|D) = 1.

I included the Monty Hall problem in this chapter because I think it is fun,
and because Bayes’s theorem makes the complexity of the problem a little
more manageable. But it is not a typical use of Bayes’s theorem, so if you
found it confusing, don’t worry!

1.8 Discussion

For many problems involving conditional probability, Bayes’s theorem pro-
vides a divide-and-conquer strategy. If p(A|B) is hard to compute, or hard
to measure experimentally, check whether it might be easier to compute the
other terms in Bayes’s theorem, p(B|A), p(A) and p(B).

If the Monty Hall problem is your idea of fun, I have collected a num-
ber of similar problems in an article called “All your Bayes are belong to
us,” which you can read at http://allendowney.blogspot.com/2011/10/
all-your-bayes-are-belong-to-us.html.

http://allendowney.blogspot.com/2011/10/all-your-bayes-are-belong-to-us.html
http://allendowney.blogspot.com/2011/10/all-your-bayes-are-belong-to-us.html

Chapter 2

Computational Statistics

2.1 Distributions
In statistics a distribution is a set of values and their corresponding proba-
bilities.

For example, if you roll a six-sided die, the set of possible values is the
numbers 1 to 6, and the probability associated with each value is 1/6.

As another example, you might be interested in how many times each word
appears in common English usage. You could build a distribution that in-
cludes each word and how many times it appears.

To represent a distribution in Python, you could use a dictionary that maps
from each value to its probability. I have written a class called Pmf that uses
a Python dictionary in exactly that way, and provides a number of useful
methods. I called the class Pmf in reference to a probability mass function,
which is a way to represent a distribution mathematically.

Pmf is defined in a Python module I wrote to accompany this book,
thinkbayes.py. You can download it from http://thinkbayes.com/

thinkbayes.py. For more information see Section 0.3.

To use Pmf you can import it like this:
from thinkbayes import Pmf

The following code builds a Pmf to represent the distribution of outcomes
for a six-sided die:
pmf = Pmf()

for x in [1,2,3,4,5,6]:

pmf.Set(x, 1/6.0)

http://thinkbayes.com/thinkbayes.py
http://thinkbayes.com/thinkbayes.py

12 Chapter 2. Computational Statistics

Pmf creates an empty Pmf with no values. The Set method sets the proba-
bility associated with each value to 1/6.

Here’s another example that counts the number of times each word appears
in a sequence:

pmf = Pmf()

for word in word_list:

pmf.Incr(word, 1)

Incr increases the “probability” associated with each word by 1. If a word
is not already in the Pmf, it is added.

I put “probability” in quotes because in this example, the probabilities are
not normalized; that is, they do not add up to 1. So they are not true proba-
bilities.

But in this example the word counts are proportional to the probabilities.
So after we count all the words, we can compute probabilities by dividing
through by the total number of words. Pmf provides a method, Normalize,
that does exactly that:

pmf.Normalize()

Once you have a Pmf object, you can ask for the probability associated with
any value:

print pmf.Prob('the')

And that would print the frequency of the word “the” as a fraction of the
words in the list.

Pmf uses a Python dictionary to store the values and their probabilities, so
the values in the Pmf can be any hashable type. The probabilities can be any
numerical type, but they are usually floating-point numbers (type float).

2.2 The cookie problem

In the context of Bayes’s theorem, it is natural to use a Pmf to map from each
hypothesis to its probability. In the cookie problem, the hypotheses are B1
and B2. In Python, I represent them with strings:

pmf = Pmf()

pmf.Set('Bowl 1', 0.5)

pmf.Set('Bowl 2', 0.5)

2.3. The Bayesian framework 13

This distribution, which contains the priors for each hypothesis, is called
(wait for it) the prior distribution.

To update the distribution based on new data (the vanilla cookie), we mul-
tiply each prior by the corresponding likelihood. The likelihood of drawing
a vanilla cookie from Bowl 1 is 3/4. The likelihood for Bowl 2 is 1/2.

pmf.Mult('Bowl 1', 0.75)

pmf.Mult('Bowl 2', 0.5)

Mult does what you would expect. It gets the probability for the given hy-
pothesis and multiplies by the given likelihood.

After this update, the distribution is no longer normalized, but because
these hypotheses are mutually exclusive and collectively exhaustive, we can
renormalize:

pmf.Normalize()

The result is a distribution that contains the posterior probability for each
hypothesis, which is called (wait now) the posterior distribution.

Finally, we can get the posterior probability for Bowl 1:

print pmf.Prob('Bowl 1')

And the answer is 0.6. You can download this example from http://

thinkbayes.com/cookie.py. For more information see Section 0.3.

2.3 The Bayesian framework

Before we go on to other problems, I want to rewrite the code from the pre-
vious section to make it more general. First I’ll define a class to encapsulate
the code related to this problem:

class Cookie(Pmf):

def __init__(self, hypos):

Pmf.__init__(self)

for hypo in hypos:

self.Set(hypo, 1)

self.Normalize()

A Cookie object is a Pmf that maps from hypotheses to their probabilities.
The __init__ method gives each hypothesis the same prior probability. As
in the previous section, there are two hypotheses:

http://thinkbayes.com/cookie.py
http://thinkbayes.com/cookie.py

14 Chapter 2. Computational Statistics

hypos = ['Bowl 1', 'Bowl 2']

pmf = Cookie(hypos)

Cookie provides an Update method that takes data as a parameter and up-
dates the probabilities:

def Update(self, data):

for hypo in self.Values():

like = self.Likelihood(data, hypo)

self.Mult(hypo, like)

self.Normalize()

Update loops through each hypothesis in the suite and multiplies its proba-
bility by the likelihood of the data under the hypothesis, which is computed
by Likelihood:

mixes = {

'Bowl 1':dict(vanilla=0.75, chocolate=0.25),

'Bowl 2':dict(vanilla=0.5, chocolate=0.5),

}

def Likelihood(self, data, hypo):

mix = self.mixes[hypo]

like = mix[data]

return like

Likelihood uses mixes, which is a dictionary that maps from the name of a
bowl to the mix of cookies in the bowl.

Here’s what the update looks like:

pmf.Update('vanilla')

And then we can print the posterior probability of each hypothesis:

for hypo, prob in pmf.Items():

print hypo, prob

The result is

Bowl 1 0.6

Bowl 2 0.4

which is the same as what we got before. This code is more complicated
than what we saw in the previous section. One advantage is that it general-
izes to the case where we draw more than one cookie from the same bowl
(with replacement):

dataset = ['vanilla', 'chocolate', 'vanilla']

for data in dataset:

pmf.Update(data)

2.4. The Monty Hall problem 15

The other advantage is that it provides a framework for solving many sim-
ilar problems. In the next section we’ll solve the Monty Hall problem com-
putationally and then see what parts of the framework are the same.

The code in this section is available from http://thinkbayes.com/cookie2.

py. For more information see Section 0.3.

2.4 The Monty Hall problem

To solve the Monty Hall problem, I’ll define a new class:

class Monty(Pmf):

def __init__(self, hypos):

Pmf.__init__(self)

for hypo in hypos:

self.Set(hypo, 1)

self.Normalize()

So far Monty and Cookie are exactly the same. And the code that creates the
Pmf is the same, too, except for the names of the hypotheses:

hypos = 'ABC'

pmf = Monty(hypos)

Calling Update is pretty much the same:

data = 'B'

pmf.Update(data)

And the implementation of Update is exactly the same:

def Update(self, data):

for hypo in self.Values():

like = self.Likelihood(data, hypo)

self.Mult(hypo, like)

self.Normalize()

The only part that requires some work is Likelihood:

def Likelihood(self, data, hypo):

if hypo == data:

return 0

elif hypo == 'A':

return 0.5

else:

return 1

http://thinkbayes.com/cookie2.py
http://thinkbayes.com/cookie2.py

16 Chapter 2. Computational Statistics

Finally, printing the results is the same:

for hypo, prob in pmf.Items():

print hypo, prob

And the answer is

A 0.333333333333

B 0.0

C 0.666666666667

In this example, writing Likelihood is a little complicated, but the frame-
work of the Bayesian update is simple. The code in this section is avail-
able from http://thinkbayes.com/monty.py. For more information see
Section 0.3.

2.5 Encapsulating the framework

Now that we see what elements of the framework are the same, we can
encapsulate them in an object—a Suite is a Pmf that provides __init__,
Update, and Print:

class Suite(Pmf):

"""Represents a suite of hypotheses and their probabilities."""

def __init__(self, hypo=tuple()):

"""Initializes the distribution."""

def Update(self, data):

"""Updates each hypothesis based on the data."""

def Print(self):

"""Prints the hypotheses and their probabilities."""

The implementation of Suite is in thinkbayes.py. To use Suite, you should
write a class that inherits from it and provides Likelihood. For example,
here is the solution to the Monty Hall problem rewritten to use Suite:

from thinkbayes import Suite

class Monty(Suite):

def Likelihood(self, data, hypo):

if hypo == data:

return 0

http://thinkbayes.com/monty.py

2.6. The M&M problem 17

elif hypo == 'A':

return 0.5

else:

return 1

And here’s the code that uses this class:

suite = Monty('ABC')

suite.Update('B')

suite.Print()

You can download this example from http://thinkbayes.com/monty2.py.
For more information see Section 0.3.

2.6 The M&M problem

We can use the Suite framework to solve the M&M problem. Writing the
Likelihood function is tricky, but everything else is straightforward.

First I need to encode the color mixes from before and after 1995:

mix94 = dict(brown=30,

yellow=20,

red=20,

green=10,

orange=10,

tan=10)

mix96 = dict(blue=24,

green=20,

orange=16,

yellow=14,

red=13,

brown=13)

Then I have to encode the hypotheses:

hypoA = dict(bag1=mix94, bag2=mix96)

hypoB = dict(bag1=mix96, bag2=mix94)

hypoA represents the hypothesis that Bag 1 is from 1994 and Bag 2 from 1996.
hypoB is the other way around.

Next I map from the name of the hypothesis to the representation:

hypotheses = dict(A=hypoA, B=hypoB)

http://thinkbayes.com/monty2.py

18 Chapter 2. Computational Statistics

And finally I can write Likelihood. In this case the hypothesis, hypo, is a
string, either A or B. The data is a tuple that specifies a bag and a color.

def Likelihood(self, data, hypo):

bag, color = data

mix = self.hypotheses[hypo][bag]

like = mix[color]

return like

Here’s the code that creates the suite and updates it:

suite = M_and_M('AB')

suite.Update(('bag1', 'yellow'))

suite.Update(('bag2', 'green'))

suite.Print()

And here’s the result:

A 0.740740740741

B 0.259259259259

The posterior probability of A is approximately 20/27, which is what we
got before.

The code in this section is available from http://thinkbayes.com/m_and_

m.py. For more information see Section 0.3.

2.7 Discussion

This chapter presents the Suite class, which encapsulates the Bayesian up-
date framework.

Suite is an abstract type, which means that it defines the interface a Suite
is supposed to have, but does not provide a complete implementation. The
Suite interface includes Update and Likelihood, but the Suite class only
provides an implementation of Update, not Likelihood.

A concrete type is a class that extends an abstract parent class and provides
an implementation of the missing methods. For example, Monty extends
Suite, so it inherits Update and provides Likelihood.

If you are familiar with design patterns, you might recognize this as an
example of the template method pattern. You can read about this pattern at
http://en.wikipedia.org/wiki/Template_method_pattern.

http://thinkbayes.com/m_and_m.py
http://thinkbayes.com/m_and_m.py
http://en.wikipedia.org/wiki/Template_method_pattern

2.8. Exercises 19

Most of the examples in the following chapters follow the same pattern; for
each problem we define a new class that extends Suite, inherits Update,
and provides Likelihood. In a few cases we override Update, usually to
improve performance.

2.8 Exercises

Exercise 2.1 In Section 2.3 I said that the solution to the cookie problem
generalizes to the case where we draw multiple cookies with replacement.

But in the more likely scenario where we eat the cookies we draw, the like-
lihood of each draw depends on the previous draws.

Modify the solution in this chapter to handle selection without replacement.
Hint: add instance variables to Cookie to represent the hypothetical state of
the bowls, and modify Likelihood accordingly. You might want to define a
Bowl object.

20 Chapter 2. Computational Statistics

Chapter 3

Estimation

3.1 The dice problem
Suppose I have a box of dice that contains a 4-sided die, a 6-sided die, an
8-sided die, a 12-sided die, and a 20-sided die. If you have ever played
Dungeons & Dragons, you know what I am talking about.

Suppose I select a die from the box at random, roll it, and get a 6. What is
the probability that I rolled each die?

Let me suggest a three-step strategy for approaching a problem like this.

1. Choose a representation for the hypotheses.

2. Choose a representation for the data.

3. Write the likelihood function.

In previous examples I used strings to represent hypotheses and data, but
for the die problem I’ll use numbers. Specifically, I’ll use the integers 4, 6, 8,
12, and 20 to represent hypotheses:

suite = Dice([4, 6, 8, 12, 20])

And integers from 1 to 20 for the data. These representations make it easy
to write the likelihood function:
class Dice(Suite):

def Likelihood(self, data, hypo):

if hypo < data:

return 0

else:

return 1.0/hypo

22 Chapter 3. Estimation

Here’s how Likelihood works. If hypo<data, that means the roll is greater
than the number of sides on the die. That can’t happen, so the likelihood is
0.

Otherwise the question is, “Given that there are hypo sides, what is the
chance of rolling data?” The answer is 1/hypo, regardless of data.

Here is the statement that does the update (if I roll a 6):

suite.Update(6)

And here is the posterior distribution:

4 0.0

6 0.392156862745

8 0.294117647059

12 0.196078431373

20 0.117647058824

After we roll a 6, the probability for the 4-sided die is 0. The most likely
alternative is the 6-sided die, but there is still almost a 12% chance for the
20-sided die.

What if we roll a few more times and get 6, 8, 7, 7, 5, and 4?

for roll in [6, 8, 7, 7, 5, 4]:

suite.Update(roll)

With this data the 6-sided die is eliminated, and the 8-sided die seems quite
likely. Here are the results:

4 0.0

6 0.0

8 0.943248453672

12 0.0552061280613

20 0.0015454182665

Now the probability is 94% that we are rolling the 8-sided die, and less than
1% for the 20-sided die.

The dice problem is based on an example I saw in Sanjoy Mahajan’s class on
Bayesian inference. You can download the code in this section from http:

//thinkbayes.com/dice.py. For more information see Section 0.3.

3.2 The locomotive problem

I found the locomotive problem in Frederick Mosteller’s, Fifty Challenging
Problems in Probability with Solutions (Dover, 1987):

http://thinkbayes.com/dice.py
http://thinkbayes.com/dice.py

3.2. The locomotive problem 23

0 200 400 600 800 1000
Number of trains

0.000

0.001

0.002

0.003

0.004

0.005

0.006

Pr
ob

ab
ili

ty

Figure 3.1: Posterior distribution for the locomotive problem, based on a
uniform prior.

“A railroad numbers its locomotives in order 1..N. One day you
see a locomotive with the number 60. Estimate how many loco-
motives the railroad has.”

Based on this observation, we know the railroad has 60 or more locomo-
tives. But how many more? To apply Bayesian reasoning, we can break this
problem into two steps:

1. What did we know about N before we saw the data?

2. For any given value of N, what is the likelihood of seeing the data (a
locomotive with number 60)?

The answer to the first question is the prior. The answer to the second is the
likelihood.

We don’t have much basis to choose a prior, but we can start with something
simple and then consider alternatives. Let’s assume that N is equally likely
to be any value from 1 to 1000.

hypos = xrange(1, 1001)

Now all we need is a likelihood function. In a hypothetical fleet of N lo-
comotives, what is the probability that we would see number 60? If we
assume that there is only one train-operating company (or only one we care
about) and that we are equally likely to see any of its locomotives, then the
chance of seeing any particular locomotive is 1/N.

Here’s the likelihood function:

24 Chapter 3. Estimation

class Train(Suite):

def Likelihood(self, data, hypo):

if hypo < data:

return 0

else:

return 1.0/hypo

This might look familiar; the likelihood functions for the locomotive prob-
lem and the dice problem are identical.

Here’s the update:

suite = Train(hypos)

suite.Update(60)

There are too many hypotheses to print, so I plotted the results in Figure 3.1.
Not surprisingly, all values of N below 60 have been eliminated.

The most likely value, if you had to guess, is 60. That might not seem like
a very good guess; after all, what are the chances that you just happened to
see the train with the highest number? Nevertheless, if you want to maxi-
mize the chance of getting the answer exactly right, you should guess 60.

But maybe that’s not the right goal. An alternative is to compute the mean
of the posterior distribution:

def Mean(suite):

total = 0

for hypo, prob in suite.Items():

total += hypo * prob

return total

print Mean(suite)

Or you could use the very similar method provided by Pmf:

print suite.Mean()

The mean of the posterior is 333, so that might be a good guess if you
wanted to minimize error. If you played this guessing game over and
over, using the mean of the posterior as your estimate would minimize
the mean squared error over the long run (see http://en.wikipedia.org/

wiki/Minimum_mean_square_error).

You can download this example from http://thinkbayes.com/train.py.
For more information see Section 0.3.

http://en.wikipedia.org/wiki/Minimum_mean_square_error
http://en.wikipedia.org/wiki/Minimum_mean_square_error
http://thinkbayes.com/train.py

3.3. What about that prior? 25

3.3 What about that prior?

To make any progress on the locomotive problem we had to make assump-
tions, and some of them were pretty arbitrary. In particular, we chose a
uniform prior from 1 to 1000, without much justification for choosing 1000,
or for choosing a uniform distribution.

It is not crazy to believe that a railroad company might operate 1000 loco-
motives, but a reasonable person might guess more or fewer. So we might
wonder whether the posterior distribution is sensitive to these assumptions.
With so little data—only one observation—it probably is.

Recall that with a uniform prior from 1 to 1000, the mean of the posterior is
333. With an upper bound of 500, we get a posterior mean of 207, and with
an upper bound of 2000, the posterior mean is 552.

So that’s bad. There are two ways to proceed:

• Get more data.

• Get more background information.

With more data, posterior distributions based on different priors tend to
converge. For example, suppose that in addition to train 60 we also see
trains 30 and 90. We can update the distribution like this:

for data in [60, 30, 90]:

suite.Update(data)

With these data, the means of the posteriors are

Upper Posterior
Bound Mean
500 152
1000 164
2000 171

So the differences are smaller.

3.4 An alternative prior

If more data are not available, another option is to improve the priors by
gathering more background information. It is probably not reasonable to as-
sume that a train-operating company with 1000 locomotives is just as likely
as a company with only 1.

26 Chapter 3. Estimation

0 200 400 600 800 1000
Number of trains

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

Pr
ob

ab
ili

ty

uniform
power law

Figure 3.2: Posterior distribution based on a power law prior, compared to
a uniform prior.

With some effort, we could probably find a list of companies that operate
locomotives in the area of observation. Or we could interview an expert in
rail shipping to gather information about the typical size of companies.

But even without getting into the specifics of railroad economics, we can
make some educated guesses. In most fields, there are many small compa-
nies, fewer medium-sized companies, and only one or two very large com-
panies. In fact, the distribution of company sizes tends to follow a power
law, as Robert Axtell reports in Science (see http://www.sciencemag.org/

content/293/5536/1818.full.pdf).

This law suggests that if there are 1000 companies with fewer than 10 loco-
motives, there might be 100 companies with 100 locomotives, 10 companies
with 1000, and possibly one company with 10,000 locomotives.

Mathematically, a power law means that the number of companies with a
given size is inversely proportional to size, or

PMF(x) ∝
(

1
x

)α

where PMF(x) is the probability mass function of x and α is a parameter
that is often near 1.

We can construct a power law prior like this:

class Train(Dice):

http://www.sciencemag.org/content/293/5536/1818.full.pdf
http://www.sciencemag.org/content/293/5536/1818.full.pdf

3.5. Credible intervals 27

def __init__(self, hypos, alpha=1.0):

Pmf.__init__(self)

for hypo in hypos:

self.Set(hypo, hypo**(-alpha))

self.Normalize()

And here’s the code that constructs the prior:

hypos = range(1, 1001)

suite = Train(hypos)

Again, the upper bound is arbitrary, but with a power law prior, the poste-
rior is less sensitive to this choice.

Figure 3.2 shows the new posterior based on the power law, compared to the
posterior based on the uniform prior. Using the background information
represented in the power law prior, we can all but eliminate values of N
greater than 700.

If we start with this prior and observe trains 30, 60, and 90, the means of the
posteriors are

Upper Posterior
Bound Mean
500 131
1000 133
2000 134

Now the differences are much smaller. In fact, with an arbitrarily large up-
per bound, the mean converges on 134.

So the power law prior is more realistic, because it is based on general in-
formation about the size of companies, and it behaves better in practice.

You can download the examples in this section from http://thinkbayes.

com/train3.py. For more information see Section 0.3.

3.5 Credible intervals

Once you have computed a posterior distribution, it is often useful to sum-
marize the results with a single point estimate or an interval. For point es-
timates it is common to use the mean, median, or the value with maximum
likelihood.

http://thinkbayes.com/train3.py
http://thinkbayes.com/train3.py

28 Chapter 3. Estimation

For intervals we usually report two values computed so that there is a 90%
chance that the unknown value falls between them (or any other probabil-
ity). These values define a credible interval.

A simple way to compute a credible interval is to add up the probabilities
in the posterior distribution and record the values that correspond to prob-
abilities 5% and 95%. In other words, the 5th and 95th percentiles.

thinkbayes provides a function that computes percentiles:

def Percentile(pmf, percentage):

p = percentage / 100.0

total = 0

for val, prob in pmf.Items():

total += prob

if total >= p:

return val

And here’s the code that uses it:

interval = Percentile(suite, 5), Percentile(suite, 95)

print interval

For the previous example—the locomotive problem with a power law prior
and three trains—the 90% credible interval is (91, 243). The width of this
range suggests, correctly, that we are still quite uncertain about how many
locomotives there are.

3.6 Cumulative distribution functions

In the previous section we computed percentiles by iterating through the
values and probabilities in a Pmf. If we need to compute more than a few
percentiles, it is more efficient to use a cumulative distribution function, or
Cdf.

Cdfs and Pmfs are equivalent in the sense that they contain the same infor-
mation about the distribution, and you can always convert from one to the
other. The advantage of the Cdf is that you can compute percentiles more
efficiently.

thinkbayes provides a Cdf class that represents a cumulative distribution
function. Pmf provides a method that makes the corresponding Cdf:

cdf = suite.MakeCdf()

And Cdf provides a function named Percentile

3.7. The German tank problem 29

interval = cdf.Percentile(5), cdf.Percentile(95)

Converting from a Pmf to a Cdf takes time proportional to the number of
values, len(pmf). The Cdf stores the values and probabilities in sorted lists,
so looking up a probability to get the corresponding value takes “log time”:
that is, time proportional to the logarithm of the number of values. Looking
up a value to get the corresponding probability is also logarithmic, so Cdfs
are efficient for many calculations.

The examples in this section are in http://thinkbayes.com/train3.py. For
more information see Section 0.3.

3.7 The German tank problem

During World War II, the Economic Warfare Division of the American Em-
bassy in London used statistical analysis to estimate German production of
tanks and other equipment.1

The Western Allies had captured log books, inventories, and repair records
that included chassis and engine serial numbers for individual tanks.

Analysis of these records indicated that serial numbers were allocated by
manufacturer and tank type in blocks of 100 numbers, that numbers in each
block were used sequentially, and that not all numbers in each block were
used. So the problem of estimating German tank production could be re-
duced, within each block of 100 numbers, to a form of the locomotive prob-
lem.

Based on this insight, American and British analysts produced estimates
substantially lower than estimates from other forms of intelligence. And
after the war, records indicated that they were substantially more accurate.

They performed similar analyses for tires, trucks, rockets, and other equip-
ment, yielding accurate and actionable economic intelligence.

The German tank problem is historically interesting; it is also a nice example
of real-world application of statistical estimation. So far many of the exam-
ples in this book have been toy problems, but it will not be long before we
start solving real problems. I think it is an advantage of Bayesian analysis,
especially with the computational approach we are taking, that it provides
such a short path from a basic introduction to the research frontier.

1Ruggles and Brodie, “An Empirical Approach to Economic Intelligence in World War
II,” Journal of the American Statistical Association, Vol. 42, No. 237 (March 1947).

http://thinkbayes.com/train3.py

30 Chapter 3. Estimation

3.8 Discussion

Among Bayesians, there are two approaches to choosing prior distributions.
Some recommend choosing the prior that best represents background infor-
mation about the problem; in that case the prior is said to be informative.
The problem with using an informative prior is that people might use dif-
ferent background information (or interpret it differently). So informative
priors often seem subjective.

The alternative is a so-called uninformative prior, which is intended to be
as unrestricted as possible, in order to let the data speak for themselves. In
some cases you can identify a unique prior that has some desirable property,
like representing minimal prior information about the estimated quantity.

Uninformative priors are appealing because they seem more objective. But
I am generally in favor of using informative priors. Why? First, Bayesian
analysis is always based on modeling decisions. Choosing the prior is one
of those decisions, but it is not the only one, and it might not even be the
most subjective. So even if an uninformative prior is more objective, the
entire analysis is still subjective.

Also, for most practical problems, you are likely to be in one of two regimes:
either you have a lot of data or not very much. If you have a lot of data, the
choice of the prior doesn’t matter very much; informative and uninforma-
tive priors yield almost the same results. We’ll see an example like this in
the next chapter.

But if, as in the locomotive problem, you don’t have much data, using rele-
vant background information (like the power law distribution) makes a big
difference.

And if, as in the German tank problem, you have to make life-and-death
decisions based on your results, you should probably use all of the infor-
mation at your disposal, rather than maintaining the illusion of objectivity
by pretending to know less than you do.

3.9 Exercises

Exercise 3.1 To write a likelihood function for the locomotive problem, we
had to answer this question: “If the railroad has N locomotives, what is the
probability that we see number 60?”

3.9. Exercises 31

The answer depends on what sampling process we use when we observe
the locomotive. In this chapter, I resolved the ambiguity by specifying that
there is only one train-operating company (or only one that we care about).

But suppose instead that there are many companies with different numbers
of trains. And suppose that you are equally likely to see any train operated
by any company. In that case, the likelihood function is different because
you are more likely to see a train operated by a large company.

As an exercise, implement the likelihood function for this variation of the
locomotive problem, and compare the results.

32 Chapter 3. Estimation

Chapter 4

More Estimation

4.1 The Euro problem

In Information Theory, Inference, and Learning Algorithms, David MacKay
poses this problem:

A statistical statement appeared in “The Guardian" on Friday
January 4, 2002:

When spun on edge 250 times, a Belgian one-euro coin
came up heads 140 times and tails 110. ‘It looks very
suspicious to me,’ said Barry Blight, a statistics lecturer
at the London School of Economics. ‘If the coin were
unbiased, the chance of getting a result as extreme as
that would be less than 7%.’

But do these data give evidence that the coin is biased rather
than fair?

To answer that question, we’ll proceed in two steps. The first is to esti-
mate the probability that the coin lands face up. The second is to evaluate
whether the data support the hypothesis that the coin is biased.

You can download the code in this section from http://thinkbayes.com/

euro.py. For more information see Section 0.3.

Any given coin has some probability, x, of landing heads up when spun on
edge. It seems reasonable to believe that the value of x depends on some
physical characteristics of the coin, primarily the distribution of weight.

http://thinkbayes.com/euro.py
http://thinkbayes.com/euro.py

34 Chapter 4. More Estimation

0 20 40 60 80 100
x

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Pr
ob

ab
ili

ty

uniform

Figure 4.1: Posterior distribution for the Euro problem on a uniform prior.

If a coin is perfectly balanced, we expect x to be close to 50%, but for a lop-
sided coin, x might be substantially different. We can use Bayes’s theorem
and the observed data to estimate x.

Let’s define 101 hypotheses, where Hx is the hypothesis that the probability
of heads is x%, for values from 0 to 100. I’ll start with a uniform prior where
the probability of Hx is the same for all x. We’ll come back later to consider
other priors.

The likelihood function is relatively easy: If Hx is true, the probability of
heads is x/100 and the probability of tails is 1− x/100.

class Euro(Suite):

def Likelihood(self, data, hypo):

x = hypo

if data == 'H':

return x/100.0

else:

return 1 - x/100.0

Here’s the code that makes the suite and updates it:

suite = Euro(xrange(0, 101))

dataset = 'H' * 140 + 'T' * 110

for data in dataset:

suite.Update(data)

The result is in Figure 4.1.

4.2. Summarizing the posterior 35

4.2 Summarizing the posterior

Again, there are several ways to summarize the posterior distribution.
One option is to find the most likely value in the posterior distribution.
thinkbayes provides a function that does that:

def MaximumLikelihood(pmf):

"""Returns the value with the highest probability."""

prob, val = max((prob, val) for val, prob in pmf.Items())

return val

In this case the result is 56, which is also the observed percentage of heads,
140/250 = 56%. So that suggests (correctly) that the observed percentage is
the maximum likelihood estimator for the population.

We might also summarize the posterior by computing the mean and me-
dian:

print 'Mean', suite.Mean()

print 'Median', thinkbayes.Percentile(suite, 50)

The mean is 55.95; the median is 56. Finally, we can compute a credible
interval:

print 'CI', thinkbayes.CredibleInterval(suite, 90)

The result is (51, 61).

Now, getting back to the original question, we would like to know whether
the coin is fair. We observe that the posterior credible interval does not
include 50%, which suggests that the coin is not fair.

But that is not exactly the question we started with. MacKay asked, “ Do
these data give evidence that the coin is biased rather than fair?” To answer
that question, we will have to be more precise about what it means to say
that data constitute evidence for a hypothesis. And that is the subject of the
next chapter.

But before we go on, I want to address one possible source of confusion.
Since we want to know whether the coin is fair, it might be tempting to ask
for the probability that x is 50%:

print suite.Prob(50)

The result is 0.021, but that value is almost meaningless. The decision to
evaluate 101 hypotheses was arbitrary; we could have divided the range
into more or fewer pieces, and if we had, the probability for any given hy-
pothesis would be greater or less.

36 Chapter 4. More Estimation

0 20 40 60 80 100
x

0.000

0.005

0.010

0.015

0.020

0.025

Pr
ob

ab
ili

ty

uniform
triangle

Figure 4.2: Uniform and triangular priors for the Euro problem.

4.3 Swamping the priors

We started with a uniform prior, but that might not be a good choice. I can
believe that if a coin is lopsided, x might deviate substantially from 50%,
but it seems unlikely that the Belgian Euro coin is so imbalanced that x is
10% or 90%.

It might be more reasonable to choose a prior that gives higher probability
to values of x near 50% and lower probability to extreme values.

As an example, I constructed a triangular prior, shown in Figure 4.2. Here’s
the code that constructs the prior:

def TrianglePrior():

suite = Euro()

for x in range(0, 51):

suite.Set(x, x)

for x in range(51, 101):

suite.Set(x, 100-x)

suite.Normalize()

Figure 4.2 shows the result (and the uniform prior for comparison). Updat-
ing this prior with the same dataset yields the posterior distribution shown
in Figure 4.3. Even with substantially different priors, the posterior distribu-
tions are very similar. The medians and the credible intervals are identical;
the means differ by less than 0.5%.

This is an example of swamping the priors: with enough data, people who
start with different priors will tend to converge on the same posterior.

4.4. Optimization 37

0 20 40 60 80 100
x

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Pr
ob

ab
ili

ty

uniform
triangle

Figure 4.3: Posterior distributions for the Euro problem.

4.4 Optimization

The code I have shown so far is meant to be easy to read, but it is not very
efficient. In general, I like to develop code that is demonstrably correct, then
check whether it is fast enough for my purposes. If so, there is no need to
optimize. For this example, if we care about run time, there are several ways
we can speed it up.

The first opportunity is to reduce the number of times we normalize the
suite. In the original code, we call Update once for each spin.

dataset = 'H' * heads + 'T' * tails

for data in dataset:

suite.Update(data)

And here’s what Update looks like:

def Update(self, data):

for hypo in self.Values():

like = self.Likelihood(data, hypo)

self.Mult(hypo, like)

return self.Normalize()

Each update iterates through the hypotheses, then calls Normalize, which
iterates through the hypotheses again. We can save some time by doing all
of the updates before normalizing.

Suite provides a method called UpdateSet that does exactly that. Here it is:

38 Chapter 4. More Estimation

def UpdateSet(self, dataset):

for data in dataset:

for hypo in self.Values():

like = self.Likelihood(data, hypo)

self.Mult(hypo, like)

return self.Normalize()

And here’s how we can invoke it:

dataset = 'H' * heads + 'T' * tails

suite.UpdateSet(dataset)

This optimization speeds things up, but the run time is still proportional
to the amount of data. We can speed things up even more by rewriting
Likelihood to process the entire dataset, rather than one spin at a time.

In the original version, data is a string that encodes either heads or tails:

def Likelihood(self, data, hypo):

x = hypo / 100.0

if data == 'H':

return x

else:

return 1-x

As an alternative, we could encode the dataset as a tuple of two integers:
the number of heads and tails. In that case Likelihood looks like this:

def Likelihood(self, data, hypo):

x = hypo / 100.0

heads, tails = data

like = x**heads * (1-x)**tails

return like

And then we can call Update like this:

heads, tails = 140, 110

suite.Update((heads, tails))

Since we have replaced repeated multiplication with exponentiation, this
version takes the same time for any number of spins.

4.5 The beta distribution

There is one more optimization that solves this problem even faster.

4.5. The beta distribution 39

So far we have used a Pmf object to represent a discrete set of values for x.
Now we will use a continuous distribution, specifically the beta distribution
(see http://en.wikipedia.org/wiki/Beta_distribution).

The beta distribution is defined on the interval from 0 to 1 (including both),
so it is a natural choice for describing proportions and probabilities. But
wait, it gets better.

It turns out that if you do a Bayesian update with a binomial likelihood
function, as we did in the previous section, the beta distribution is a conju-
gate prior. That means that if the prior distribution for x is a beta distribu-
tion, the posterior is also a beta distribution. But wait, it gets even better.

The shape of the beta distribution depends on two parameters, written α
and β, or alpha and beta. If the prior is a beta distribution with parameters
alpha and beta, and we see data with h heads and t tails, the posterior is a
beta distribution with parameters alpha+h and beta+t. In other words, we
can do an update with two additions.

So that’s great, but it only works if we can find a beta distribution that is a
good choice for a prior. Fortunately, for many realistic priors there is a beta
distribution that is at least a good approximation, and for a uniform prior
there is a perfect match. The beta distribution with alpha=1 and beta=1 is
uniform from 0 to 1.

Let’s see how we can take advantage of all this. thinkbayes.py provides a
class that represents a beta distribution:

class Beta(object):

def __init__(self, alpha=1, beta=1):

self.alpha = alpha

self.beta = beta

By default __init__ makes a uniform distribution. Update performs a
Bayesian update:

def Update(self, data):

heads, tails = data

self.alpha += heads

self.beta += tails

data is a pair of integers representing the number of heads and tails.

So we have yet another way to solve the Euro problem:

http://en.wikipedia.org/wiki/Beta_distribution

40 Chapter 4. More Estimation

beta = thinkbayes.Beta()

beta.Update((140, 110))

print beta.Mean()

Beta provides Mean, which computes a simple function of alpha and beta:

def Mean(self):

return float(self.alpha) / (self.alpha + self.beta)

For the Euro problem the posterior mean is 56%, which is the same result
we got using Pmfs.

Beta also provides EvalPdf, which evaluates the probability density func-
tion (PDF) of the beta distribution:

def EvalPdf(self, x):

return x**(self.alpha-1) * (1-x)**(self.beta-1)

Finally, Beta provides MakePmf, which uses EvalPdf to generate a discrete
approximation of the beta distribution.

4.6 Discussion

In this chapter we solved the same problem with two different priors and
found that with a large dataset, the priors get swamped. If two people start
with different prior beliefs, they generally find, as they see more data, that
their posterior distributions converge. At some point the difference between
their distribution is small enough that it has no practical effect.

When this happens, it relieves some of the worry about objectivity that I
discussed in the previous chapter. And for many real-world problems even
stark prior beliefs can eventually be reconciled by data.

But that is not always the case. First, remember that all Bayesian analysis is
based on modeling decisions. If you and I do not choose the same model,
we might interpret data differently. So even with the same data, we would
compute different likelihoods, and our posterior beliefs might not converge.

Also, notice that in a Bayesian update, we multiply each prior probability
by a likelihood, so if p(H) is 0, p(H|D) is also 0, regardless of D. In the
Euro problem, if you are convinced that x is less than 50%, and you assign
probability 0 to all other hypotheses, no amount of data will convince you
otherwise.

4.7. Exercises 41

This observation is the basis of Cromwell’s rule, which is the recommen-
dation that you should avoid giving a prior probability of 0 to any hypoth-
esis that is even remotely possible (see http://en.wikipedia.org/wiki/

Cromwell's_rule).

Cromwell’s rule is named after Oliver Cromwell, who wrote, “I beseech
you, in the bowels of Christ, think it possible that you may be mistaken.”
For Bayesians, this turns out to be good advice (even if it’s a little over-
wrought).

4.7 Exercises
Exercise 4.1 Suppose that instead of observing coin tosses directly, you mea-
sure the outcome using an instrument that is not always correct. Specif-
ically, suppose there is a probability y that an actual heads is reported as
tails, or actual tails reported as heads.

Write a class that estimates the bias of a coin given a series of outcomes and
the value of y.

How does the spread of the posterior distribution depend on y?

Exercise 4.2 This exercise is inspired by a question posted by a “redditor”
named dominosci on Reddit’s statistics “subreddit” at http://reddit.com/
r/statistics.

Reddit is an online forum with many interest groups called subreddits.
Users, called redditors, post links to online content and other web pages.
Other redditors vote on the links, giving an “upvote” to high-quality links
and a “downvote” to links that are bad or irrelevant.

A problem, identified by dominosci, is that some redditors are more reliable
than others, and Reddit does not take this into account.

The challenge is to devise a system so that when a redditor casts a vote, the
estimated quality of the link is updated in accordance with the reliability
of the redditor, and the estimated reliability of the redditor is updated in
accordance with the quality of the link.

One approach is to model the quality of the link as the probability of garner-
ing an upvote, and to model the reliability of the redditor as the probability
of correctly giving an upvote to a high-quality item.

Write class definitions for redditors and links and an update function that
updates both objects whenever a redditor casts a vote.

http://en.wikipedia.org/wiki/Cromwell's_rule
http://en.wikipedia.org/wiki/Cromwell's_rule
http://reddit.com/r/statistics
http://reddit.com/r/statistics

42 Chapter 4. More Estimation

Chapter 5

Odds and Addends

5.1 Odds

One way to represent a probability is with a number between 0 and 1, but
that’s not the only way. If you have ever bet on a football game or a horse
race, you have probably encountered another representation of probability,
called odds.

You might have heard expressions like “the odds are three to one,” but you
might not know what that means. The odds in favor of an event are the
ratio of the probability it will occur to the probability that it will not.

So if I think my team has a 75% chance of winning, I would say that the
odds in their favor are three to one, because the chance of winning is three
times the chance of losing.

You can write odds in decimal form, but it is most common to write them
as a ratio of integers. So “three to one” is written 3 : 1.

When probabilities are low, it is more common to report the odds against
rather than the odds in favor. For example, if I think my horse has a 10%
chance of winning, I would say that the odds against are 9 : 1.

Probabilities and odds are different representations of the same informa-
tion. Given a probability, you can compute the odds like this:

def Odds(p):

return p / (1-p)

Given the odds in favor, in decimal form, you can convert to probability like
this:

44 Chapter 5. Odds and Addends

def Probability(o):

return o / (o+1)

If you represent odds with a numerator and denominator, you can convert
to probability like this:

def Probability2(yes, no):

return yes / (yes + no)

When I work with odds in my head, I find it helpful to picture people at the
track. If 20% of them think my horse will win, then 80% of them don’t, so
the odds in favor are 20 : 80 or 1 : 4.

If the odds are 5 : 1 against my horse, then five out of six people think she
will lose, so the probability of winning is 1/6.

5.2 The odds form of Bayes’s theorem

In Chapter 1 I wrote Bayes’s theorem in the probability form:

p(H|D) =
p(H) p(D|H)

p(D)

If we have two hypotheses, A and B, we can write the ratio of posterior
probabilities like this:

p(A|D)

p(B|D)
=

p(A) p(D|A)

p(B) p(D|B)

Notice that the normalizing constant, p(D), drops out of this equation.

If A and B are mutually exclusive and collectively exhaustive, that means
p(B) = 1− p(A), so we can rewrite the ratio of the priors, and the ratio of
the posteriors, as odds.

Writing o(A) for odds in favor of A, we get:

o(A|D) = o(A)
p(D|A)

p(D|B)

In words, this says that the posterior odds are the prior odds times the like-
lihood ratio. This is the odds form of Bayes’s theorem.

This form is most convenient for computing a Bayesian update on paper or
in your head. For example, let’s go back to the cookie problem:

5.3. Oliver’s blood 45

Suppose there are two bowls of cookies. Bowl 1 contains 30
vanilla cookies and 10 chocolate cookies. Bowl 2 contains 20 of
each.

Now suppose you choose one of the bowls at random and, with-
out looking, select a cookie at random. The cookie is vanilla.
What is the probability that it came from Bowl 1?

The prior probability is 50%, so the prior odds are 1 : 1, or just 1. The likeli-
hood ratio is 3

4 / 1
2 , or 3/2. So the posterior odds are 3 : 2, which corresponds

to probability 3/5.

5.3 Oliver’s blood

Here is another problem from MacKay’s Information Theory, Inference, and
Learning Algorithms:

Two people have left traces of their own blood at the scene of
a crime. A suspect, Oliver, is tested and found to have type ‘O’
blood. The blood groups of the two traces are found to be of type
‘O’ (a common type in the local population, having frequency
60%) and of type ‘AB’ (a rare type, with frequency 1%). Do these
data [the traces found at the scene] give evidence in favor of the
proposition that Oliver was one of the people [who left blood at
the scene]?

To answer this question, we need to think about what it means for data to
give evidence in favor of (or against) a hypothesis. Intuitively, we might say
that data favor a hypothesis if the hypothesis is more likely in light of the
data than it was before.

In the cookie problem, the prior odds are 1 : 1, or probability 50%. The
posterior odds are 3 : 2, or probability 60%. So we could say that the vanilla
cookie is evidence in favor of Bowl 1.

The odds form of Bayes’s theorem provides a way to make this intuition
more precise. Again

o(A|D) = o(A)
p(D|A)

p(D|B)
Or dividing through by o(A):

o(A|D)

o(A)
=

p(D|A)

p(D|B)

46 Chapter 5. Odds and Addends

The term on the left is the ratio of the posterior and prior odds. The term on
the right is the likelihood ratio, also called the Bayes factor.

If the Bayes factor value is greater than 1, that means that the data were
more likely under A than under B. And since the odds ratio is also greater
than 1, that means that the odds are greater, in light of the data, than they
were before.

If the Bayes factor is less than 1, that means the data were less likely under
A than under B, so the odds in favor of A go down.

Finally, if the Bayes factor is exactly 1, the data are equally likely under
either hypothesis, so the odds do not change.

Now we can get back to the Oliver’s blood problem. If Oliver is one of
the people who left blood at the crime scene, then he accounts for the ‘O’
sample, so the probability of the data is just the probability that a random
member of the population has type ‘AB’ blood, which is 1%.

If Oliver did not leave blood at the scene, then we have two samples to
account for. If we choose two random people from the population, what is
the chance of finding one with type ‘O’ and one with type ‘AB’? Well, there
are two ways it might happen: the first person we choose might have type
‘O’ and the second ‘AB’, or the other way around. So the total probability is
2(0.6)(0.01) = 1.2%.

The likelihood of the data is slightly higher if Oliver is not one of the people
who left blood at the scene, so the blood data is actually evidence against
Oliver’s guilt.

This example is a little contrived, but it is an example of the counterintuitive
result that data consistent with a hypothesis are not necessarily in favor of the
hypothesis.

If this result is so counterintuitive that it bothers you, this way of think-
ing might help: the data consist of a common event, type ‘O’ blood, and a
rare event, type ‘AB’ blood. If Oliver accounts for the common event, that
leaves the rare event still unexplained. If Oliver doesn’t account for the ‘O’
blood, then we have two chances to find someone in the population with
‘AB’ blood. And that factor of two makes the difference.

5.4 Addends
The fundamental operation of Bayesian statistics is Update, which takes a
prior distribution and a set of data, and produces a posterior distribution.

5.4. Addends 47

But solving real problems usually involves a number of other operations,
including scaling, addition and other arithmetic operations, max and min,
and mixtures.

This chapter presents addition and max; I will present other operations as
we need them.

The first example is based on Dungeons & Dragons, a role-playing game
where the results of players’ decisions are usually determined by rolling
dice. In fact, before game play starts, players generate each attribute
of their characters—strength, intelligence, wisdom, dexterity, constitution,
and charisma—by rolling three 6-sided dice and adding them up.

So you might be curious to know the distribution of this sum. There are two
ways you might compute it:

Simulation: Given a Pmf that represents the distribution for a single die,
you can draw random samples, add them up, and accumulate the dis-
tribution of simulated sums.

Enumeration: Given two Pmfs, you can enumerate all possible pairs of val-
ues and compute the distribution of the sums.

thinkbayes provides functions for both. Here’s an example of the first ap-
proach. First, I’ll define a class to represent a single die as a Pmf:

class Die(thinkbayes.Pmf):

def __init__(self, sides):

thinkbayes.Pmf.__init__(self)

for x in xrange(1, sides+1):

self.Set(x, 1)

self.Normalize()

Now I can create a 6-sided die:

d6 = Die(6)

And use thinkbayes.SampleSum to generate a sample of 1000 rolls.

dice = [d6] * 3

three = thinkbayes.SampleSum(dice, 1000)

SampleSum takes list of distributions (either Pmf or Cdf objects) and the sam-
ple size, n. It generates n random sums and returns their distribution as a
Pmf object.

48 Chapter 5. Odds and Addends

def SampleSum(dists, n):

pmf = MakePmfFromList(RandomSum(dists) for i in xrange(n))

return pmf

SampleSum uses RandomSum, also in thinkbayes.py:
def RandomSum(dists):

total = sum(dist.Random() for dist in dists)

return total

RandomSum invokes Random on each distribution and adds up the results.

The drawback of simulation is that the result is only approximately correct.
As n gets larger, it gets more accurate, but of course the run time increases
as well.

The other approach is to enumerate all pairs of values and compute the sum
and probability of each pair. This is implemented in Pmf.__add__:
class Pmf

def __add__(self, other):

pmf = Pmf()

for v1, p1 in self.Items():

for v2, p2 in other.Items():

pmf.Incr(v1+v2, p1*p2)

return pmf

self is a Pmf, of course; other can be a Pmf or anything else that pro-
vides Items. The result is a new Pmf. The time to run __add__ depends
on the number of items in self and other; it is proportional to len(self)

* len(other).

And here’s how it’s used:
three_exact = d6 + d6 + d6

When you apply the + operator to a Pmf, Python invokes __add__. In this
example, __add__ is invoked twice.

Figure 5.1 shows an approximate result generated by simulation and the
exact result computed by enumeration.

Pmf.__add__ is based on the assumption that the random selections from
each Pmf are independent. In the example of rolling several dice, this as-
sumption is pretty good. In other cases, we would have to extend this
method to use conditional probabilities.

The code from this section is available from http://thinkbayes.com/

dungeons.py. For more information see Section 0.3.

http://thinkbayes.com/dungeons.py
http://thinkbayes.com/dungeons.py

5.5. Maxima 49

2 4 6 8 10 12 14 16 18
Sum of three d6

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Pr
ob

ab
ili

ty

sample
exact

Figure 5.1: Approximate and exact distributions for the sum of three 6-sided
dice.

5.5 Maxima

When you generate a Dungeons & Dragons character, you are particularly
interested in the character’s best attributes, so you might like to know the
distribution of the maximum attribute.

There are three ways to compute the distribution of a maximum:

Simulation: Given a Pmf that represents the distribution for a single se-
lection, you can generate random samples, find the maximum, and
accumulate the distribution of simulated maxima.

Enumeration: Given two Pmfs, you can enumerate all possible pairs of val-
ues and compute the distribution of the maximum.

Exponentiation: If we convert a Pmf to a Cdf, there is a simple and efficient
algorithm for finding the Cdf of the maximum.

The code to simulate maxima is almost identical to the code for simulating
sums:

def RandomMax(dists):

total = max(dist.Random() for dist in dists)

return total

def SampleMax(dists, n):

pmf = MakePmfFromList(RandomMax(dists) for i in xrange(n))

return pmf

50 Chapter 5. Odds and Addends

2 4 6 8 10 12 14 16 18
Sum of three d6

0.00

0.05

0.10

0.15

0.20

Pr
ob

ab
ili

ty

Figure 5.2: Distribution of the maximum of six rolls of three dice.

All I did was replace “sum” with “max”. And the code for enumeration is
almost identical, too:

def PmfMax(pmf1, pmf2):

res = thinkbayes.Pmf()

for v1, p1 in pmf1.Items():

for v2, p2 in pmf2.Items():

res.Incr(max(v1, v2), p1*p2)

return res

In fact, you could generalize this function by taking the appropriate opera-
tor as a parameter.

The only problem with this algorithm is that if each Pmf has m values, the
run time is proportional to m2. And if we want the maximum of k selections,
it takes time proportional to km2.

If we convert the Pmfs to Cdfs, we can do the same calculation much faster!
The key is to remember the definition of the cumulative distribution func-
tion:

CDF(x) = p(X ≤ x)

where X is a random variable that means “a value chosen randomly from
this distribution.” So, for example, CDF(5) is the probability that a value
from this distribution is less than or equal to 5.

If I draw X from CDF1 and Y from CDF2, and compute the maximum Z =
max(X, Y), what is the chance that Z is less than or equal to 5? Well, in that
case both X and Y must be less than or equal to 5.

5.6. Mixtures 51

If the selections of X and Y are independent,

CDF3(5) = CDF1(5)CDF2(5)

where CDF3 is the distribution of Z. I chose the value 5 because I think it
makes the formulas easy to read, but we can generalize for any value of z:

CDF3(z) = CDF1(z)CDF2(z)

In the special case where we draw k values from the same distribution,

CDFk(z) = CDF1(z)k

So to find the distribution of the maximum of k values, we can enumerate
the probabilities in the given Cdf and raise them to the kth power. Cdf

provides a method that does just that:
class Cdf

def Max(self, k):

cdf = self.Copy()

cdf.ps = [p**k for p in cdf.ps]

return cdf

Max takes the number of selections, k, and returns a new Cdf that repre-
sents the distribution of the maximum of k selections. The run time for this
method is proportional to m, the number of items in the Cdf.

Pmf.Max does the same thing for Pmfs. It has to do a little more work to
convert the Pmf to a Cdf, so the run time is proportional to m log m, but
that’s still better than quadratic.

Finally, here’s an example that computes the distribution of a character’s
best attribute:

best_attr_cdf = three_exact.Max(6)

best_attr_pmf = best_attr_cdf.MakePmf()

Where three_exact is defined in the previous section. If we print the re-
sults, we see that the chance of generating a character with at least one at-
tribute of 18 is about 3%. Figure 5.2 shows the distribution.

5.6 Mixtures
Let’s do one more example from Dungeons & Dragons. Suppose I have a box
of dice with the following inventory:

52 Chapter 5. Odds and Addends

0 5 10 15 20 25
Outcome

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Pr
ob

ab
ili

ty

mix

Figure 5.3: Distribution outcome for random die from a box.

5 4-sided dice

4 6-sided dice

3 8-sided dice

2 12-sided dice

1 20-sided die

I choose a die from the box and roll it. What is the distribution of the out-
come?

If you know which die it is, the answer is easy. A die with n sides yields a
uniform distribution from 1 to n, including both.

But if we don’t know which die it is, the resulting distribution is a mixture
of uniform distributions with different bounds. In general, this kind of mix-
ture does not fit any simple mathematical model, but it is straightforward
to compute the distribution in the form of a PMF.

As always, one option is to simulate the scenario, generate a random sam-
ple, and compute the PMF of the sample. This approach is simple and it
generates an approximate solution quickly. But if we want an exact solu-
tion, we need a different approach.

Let’s start with a simple version of the problem where there are only two
dice, one with 6 sides and one with 8. We can make a Pmf to represent each
die:

d6 = Die(6)

d8 = Die(8)

Then we create a Pmf to represent the mixture:

5.6. Mixtures 53

mix = thinkbayes.Pmf()

for die in [d6, d8]:

for outcome, prob in die.Items():

mix.Incr(outcome, prob)

mix.Normalize()

The first loop enumerates the dice; the second enumerates the outcomes
and their probabilities. Inside the loop, Pmf.Incr adds up the contributions
from the two distributions.

This code assumes that the two dice are equally likely. More generally, we
need to know the probability of each die so we can weight the outcomes
accordingly.

First we create a Pmf that maps from each die to the probability it is selected:

pmf_dice = thinkbayes.Pmf()

pmf_dice.Set(Die(4), 5)

pmf_dice.Set(Die(6), 4)

pmf_dice.Set(Die(8), 3)

pmf_dice.Set(Die(12), 2)

pmf_dice.Set(Die(20), 1)

pmf_dice.Normalize()

Next we need a more general version of the mixture algorithm:

mix = thinkbayes.Pmf()

for die, weight in pmf_dice.Items():

for outcome, prob in die.Items():

mix.Incr(outcome, weight*prob)

Now each die has a weight associated with it (which makes it a weighted
die, I suppose). When we add each outcome to the mixture, its probability
is multiplied by weight.

Figure 5.3 shows the result. As expected, values 1 through 4 are the most
likely because any die can produce them. Values above 12 are unlikely be-
cause there is only one die in the box that can produce them (and it does so
less than half the time).

thinkbayes provides a function named MakeMixture that encapsulates this
algorithm, so we could have written:

mix = thinkbayes.MakeMixture(pmf_dice)

We’ll use MakeMixture again in Chapters 7 and 8.

54 Chapter 5. Odds and Addends

5.7 Discussion

Other than the odds form of Bayes’s theorem, this chapter is not specifically
Bayesian. But Bayesian analysis is all about distributions, so it is important
to understand the concept of a distribution well. From a computational
point of view, a distribution is any data structure that represents a set of
values (possible outcomes of a random process) and their probabilities.

We have seen two representations of distributions: Pmfs and Cdfs. These
representations are equivalent in the sense that they contain the same infor-
mation, so you can convert from one to the other. The primary difference
between them is performance: some operations are faster and easier with a
Pmf; others are faster with a Cdf.

The other goal of this chapter is to introduce operations that act on distri-
butions, like Pmf.__add__, Cdf.Max, and thinkbayes.MakeMixture. We will
use these operations later, but I introduce them now to encourage you to
think of a distribution as a fundamental unit of computation, not just a con-
tainer for values and probabilities.

Chapter 6

Decision Analysis

6.1 The Price is Right problem

On November 1, 2007, contestants named Letia and Nathaniel appeared
on The Price is Right, an American game show. They competed in a game
called The Showcase, where the objective is to guess the price of a showcase of
prizes. The contestant who comes closest to the actual price of the showcase,
without going over, wins the prizes.

Nathaniel went first. His showcase included a dishwasher, a wine cabinet,
a laptop computer, and a car. He bid $26,000.

Letia’s showcase included a pinball machine, a video arcade game, a pool
table, and a cruise of the Bahamas. She bid $21,500.

The actual price of Nathaniel’s showcase was $25,347. His bid was too high,
so he lost.

The actual price of Letia’s showcase was $21,578. She was only off by $78,
so she won her showcase and, because her bid was off by less than $250, she
also won Nathaniel’s showcase.

For a Bayesian thinker, this scenario suggests several questions:

1. Before seeing the prizes, what prior beliefs should the contestant have
about the price of the showcase?

2. After seeing the prizes, how should the contestant update those be-
liefs?

3. Based on the posterior distribution, what should the contestant bid?

56 Chapter 6. Decision Analysis

0 10000 20000 30000 40000 50000 60000 70000 80000
price ($)

0.00

0.01

0.02

0.03

0.04

0.05

PD
F

showcase 1
showcase 2

Figure 6.1: Distribution of prices for showcases on The Price is Right, 2011-12.

The third question demonstrates a common use of Bayesian analysis: de-
cision analysis. Given a posterior distribution, we can choose the bid that
maximizes the contestant’s expected return.

This problem is inspired by an example in Cameron Davidson-Pilon’s book,
Bayesian Methods for Hackers. The code I wrote for this chapter is avail-
able from http://thinkbayes.com/price.py; it reads data files you can
download from http://thinkbayes.com/showcases.2011.csv and http:

//thinkbayes.com/showcases.2012.csv. For more information see Sec-
tion 0.3.

6.2 The prior

To choose a prior distribution of prices, we can take advantage of data from
previous episodes. Fortunately, fans of the show keep detailed records.
When I corresponded with Mr. Davidson-Pilon about his book, he sent me
data collected by Steve Gee at http://tpirsummaries.8m.com. It includes
the price of each showcase from the 2011 and 2012 seasons and the bids
offered by the contestants.

Figure 6.1 shows the distribution of prices for these showcases. The most
common value for both showcases is around $28,000, but the first showcase
has a second mode near $50,000, and the second showcase is occasionally
worth more than $70,000.

These distributions are based on actual data, but they have been smoothed

http://thinkbayes.com/price.py
http://thinkbayes.com/showcases.2011.csv
http://thinkbayes.com/showcases.2012.csv
http://thinkbayes.com/showcases.2012.csv
http://tpirsummaries.8m.com

6.3. Probability density functions 57

by Gaussian kernel density estimation (KDE). Before we go on, I want to
take a detour to talk about probability density functions and KDE.

6.3 Probability density functions

So far we have been working with probability mass functions, or PMFs. A
PMF is a map from each possible value to its probability. In my implemen-
tation, a Pmf object provides a method named Prob that takes a value and
returns a probability, also known as a probability mass.

A probability density function, or PDF, is the continuous version of a PMF,
where the possible values make up a continuous range rather than a discrete
set.

In mathematical notation, PDFs are usually written as functions; for exam-
ple, here is the PDF of a Gaussian distribution with mean 0 and standard
deviation 1:

f (x) =
1√
2π

exp(−x2/2)

For a given value of x, this function computes a probability density. A den-
sity is similar to a probability mass in the sense that a higher density indi-
cates that a value is more likely.

But a density is not a probability. A density can be 0 or any positive value;
it is not bounded, like a probability, between 0 and 1.

If you integrate a density over a continuous range, the result is a probability.
But for the applications in this book we seldom have to do that.

Instead we primarily use probability densities as part of a likelihood func-
tion. We will see an example soon.

6.4 Representing PDFs

To represent PDFs in Python, thinkbayes.py provides a class named Pdf.
Pdf is an abstract type, which means that it defines the interface a Pdf is
supposed to have, but does not provide a complete implementation. The
Pdf interface includes two methods, Density and MakePmf:

class Pdf(object):

58 Chapter 6. Decision Analysis

def Density(self, x):

raise UnimplementedMethodException()

def MakePmf(self, xs):

pmf = Pmf()

for x in xs:

pmf.Set(x, self.Density(x))

pmf.Normalize()

return pmf

Density takes a value, x, and returns the corresponding density. MakePmf

makes a discrete approximation to the PDF.

Pdf provides an implementation of MakePmf, but not Density, which has to
be provided by a child class.

A concrete type is a child class that extends an abstract type and provides an
implementation of the missing methods. For example, GaussianPdf extends
Pdf and provides Density:
class GaussianPdf(Pdf):

def __init__(self, mu, sigma):

self.mu = mu

self.sigma = sigma

def Density(self, x):

return scipy.stats.norm.pdf(x, self.mu, self.sigma)

__init__ takes mu and sigma, which are the mean and standard deviation
of the distribution, and stores them as attributes.

Density uses a function from scipy.stats to evaluate the Gaussian PDF.
The function is called norm.pdf because the Gaussian distribution is also
called the “normal” distribution.

The Gaussian PDF is defined by a simple mathematical function, so it is
easy to evaluate. And it is useful because many quantities in the real world
have distributions that are approximately Gaussian.

But with real data, there is no guarantee that the distribution is Gaussian or
any other simple mathematical function. In that case we can use a sample
to estimate the PDF of the whole population.

For example, in The Price Is Right data, we have 313 prices for the first show-
case. We can think of these values as a sample from the population of all
possible showcase prices.

6.4. Representing PDFs 59

This sample includes the following values (in order):

28800, 28868, 28941, 28957, 28958

In the sample, no values appear between 28801 and 28867, but there is no
reason to think that these values are impossible. Based on our background
information, we expect all values in this range to be equally likely. In other
words, we expect the PDF to be fairly smooth.

Kernel density estimation (KDE) is an algorithm that takes a sample and
finds an appropriately smooth PDF that fits the data. You can read details
at http://en.wikipedia.org/wiki/Kernel_density_estimation.

scipy provides an implementation of KDE and thinkbayes provides a class
called EstimatedPdf that uses it:
class EstimatedPdf(Pdf):

def __init__(self, sample):

self.kde = scipy.stats.gaussian_kde(sample)

def Density(self, x):

return self.kde.evaluate(x)

__init__ takes a sample and computes a kernel density estimate. The result
is a gaussian_kde object that provides an evaluate method.

Density takes a value, calls gaussian_kde.evaluate, and returns the result-
ing density.

Finally, here’s an outline of the code I used to generate Figure 6.1:
prices = ReadData()

pdf = thinkbayes.EstimatedPdf(prices)

low, high = 0, 75000

n = 101

xs = numpy.linspace(low, high, n)

pmf = pdf.MakePmf(xs)

pdf is a Pdf object, estimated by KDE. pmf is a Pmf object that approximates
the Pdf by evaluating the density at a sequence of equally spaced values.

linspace stands for “linear space.” It takes a range, low and high, and the
number of points, n, and returns a new numpy array with n elements equally
spaced between low and high, including both.

And now back to The Price is Right.

http://en.wikipedia.org/wiki/Kernel_density_estimation

60 Chapter 6. Decision Analysis

30000 20000 10000 0 10000 20000 30000 40000 50000
diff ($)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

player 1
player 2

Figure 6.2: Cumulative distribution (CDF) of the difference between the
contestant’s bid and the actual price.

6.5 Modeling the contestants

The PDFs in Figure 6.1 estimate the distribution of possible prices. If you
were a contestant on the show, you could use this distribution to quan-
tify your prior belief about the price of each showcase (before you see the
prizes).

To update these priors, we have to answer these questions:

1. What data should we consider and how should we quantify it?

2. Can we compute a likelihood function; that is, for each hypothetical
value of price, can we compute the conditional likelihood of the data?

To answer these questions, I am going to model the contestant as a price-
guessing instrument with known error characteristics. In other words,
when the contestant sees the prizes, he or she guesses the price of each
prize—ideally without taking into consideration the fact that the prize is
part of a showcase—and adds up the prices. Let’s call this total guess.

Under this model, the question we have to answer is, “If the actual price
is price, what is the likelihood that the contestant’s estimate would be
guess?”

Or if we define

error = price - guess

6.5. Modeling the contestants 61

then we could ask, “What is the likelihood that the contestant’s estimate is
off by error?”

To answer this question, we can use the historical data again. Figure 6.2
shows the cumulative distribution of diff, the difference between the con-
testant’s bid and the actual price of the showcase.

The definition of diff is

diff = price - bid

When diff is negative, the bid is too high. As an aside, we can use this
distribution to compute the probability that the contestants overbid: the
first contestant overbids 25% of the time; the second contestant overbids
29% of the time.

We can also see that the bids are biased; that is, they are more likely to be
too low than too high. And that makes sense, given the rules of the game.

Finally, we can use this distribution to estimate the reliability of the contes-
tants’ guesses. This step is a little tricky because we don’t actually know the
contestant’s guesses; we only know what they bid.

So we’ll have to make some assumptions. Specifically, I assume that the
distribution of error is Gaussian with mean 0 and the same variance as
diff.

The Player class implements this model:

class Player(object):

def __init__(self, prices, bids, diffs):

self.pdf_price = thinkbayes.EstimatedPdf(prices)

self.cdf_diff = thinkbayes.MakeCdfFromList(diffs)

mu = 0

sigma = numpy.std(diffs)

self.pdf_error = thinkbayes.GaussianPdf(mu, sigma)

prices is a sequence of showcase prices, bids is a sequence of bids, and
diffs is a sequence of diffs, where again diff = price - bid.

pdf_price is the smoothed PDF of prices, estimated by KDE. cdf_diff is
the cumulative distribution of diff, which we saw in Figure 6.2. And
pdf_error is the PDF that characterizes the distribution of errors; where
error = price - guess.

62 Chapter 6. Decision Analysis

Again, we use the variance of diff to estimate the variance of error. This
estimate is not perfect because contestants’ bids are sometimes strategic; for
example, if Player 2 thinks that Player 1 has overbid, Player 2 might make
a very low bid. In that case diff does not reflect error. If this happens a
lot, the observed variance in diff might overestimate the variance in error.
Nevertheless, I think it is a reasonable modeling decision.

As an alternative, someone preparing to appear on the show could estimate
their own distribution of error by watching previous shows and recording
their guesses and the actual prices.

6.6 Likelihood

Now we are ready to write the likelihood function. As usual, I define a new
class that extends thinkbayes.Suite:

class Price(thinkbayes.Suite):

def __init__(self, pmf, player):

thinkbayes.Suite.__init__(self, pmf)

self.player = player

pmf represents the prior distribution and player is a Player object as de-
scribed in the previous section. Here’s Likelihood:

def Likelihood(self, data, hypo):

price = hypo

guess = data

error = price - guess

like = self.player.ErrorDensity(error)

return like

hypo is the hypothetical price of the showcase. data is the contestant’s best
guess at the price. error is the difference, and like is the likelihood of the
data, given the hypothesis.

ErrorDensity is defined in Player:

class Player:

def ErrorDensity(self, error):

return self.pdf_error.Density(error)

6.7. Update 63

0 10000 20000 30000 40000 50000 60000 70000 80000
price ($)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

PM
F

prior
posterior

Figure 6.3: Prior and posterior distributions for Player 1, based on a best
guess of $20,000.

ErrorDensity works by evaluating pdf_error at the given value of error.
The result is a probability density, so it is not really a probability. But re-
member that Likelihood doesn’t need to compute a probability; it only has
to compute something proportional to a probability. As long as the constant
of proportionality is the same for all likelihoods, it gets canceled out when
we normalize the posterior distribution.

And therefore, a probability density is a perfectly good likelihood.

6.7 Update

Player provides a method that takes the contestant’s guess and computes
the posterior distribution:

class Player

def MakeBeliefs(self, guess):

pmf = self.PmfPrice()

self.prior = Price(pmf, self)

self.posterior = self.prior.Copy()

self.posterior.Update(guess)

PmfPrice generates a discrete approximation to the PDF of price, which we
use to construct the prior.

PmfPrice uses MakePmf, which evaluates pdf_price at a sequence of values:

64 Chapter 6. Decision Analysis

class Player

n = 101

price_xs = numpy.linspace(0, 75000, n)

def PmfPrice(self):

return self.pdf_price.MakePmf(self.price_xs)

To construct the posterior, we make a copy of the prior and then invoke
Update, which invokes Likelihood for each hypothesis, multiplies the pri-
ors by the likelihoods, and renormalizes.

So let’s get back to the original scenario. Suppose you are Player 1 and when
you see your showcase, your best guess is that the total price of the prizes
is $20,000.

Figure 6.3 shows prior and posterior beliefs about the actual price. The
posterior is shifted to the left because your guess is on the low end of the
prior range.

On one level, this result makes sense. The most likely value in the prior is
$27,750, your best guess is $20,000, and the mean of the posterior is some-
where in between: $25,096.

On another level, you might find this result bizarre, because it suggests that
if you think the price is $20,000, then you should believe the price is $24,000.

To resolve this apparent paradox, remember that you are combining two
sources of information, historical data about past showcases and guesses
about the prizes you see.

We are treating the historical data as the prior and updating it based on your
guesses, but we could equivalently use your guess as a prior and update it
based on historical data.

If you think of it that way, maybe it is less surprising that the most likely
value in the posterior is not your original guess.

6.8 Optimal bidding

Now that we have a posterior distribution, we can use it to compute the
optimal bid, which I define as the bid that maximizes expected return (see
http://en.wikipedia.org/wiki/Expected_return).

http://en.wikipedia.org/wiki/Expected_return

6.8. Optimal bidding 65

I’m going to present the methods in this section top-down, which means I
will show you how they are used before I show you how they work. If you
see an unfamiliar method, don’t worry; the definition will be along shortly.

To compute optimal bids, I wrote a class called GainCalculator:

class GainCalculator(object):

def __init__(self, player, opponent):

self.player = player

self.opponent = opponent

player and opponent are Player objects.

GainCalculator provides ExpectedGains, which computes a sequence of
bids and the expected gain for each bid:

def ExpectedGains(self, low=0, high=75000, n=101):

bids = numpy.linspace(low, high, n)

gains = [self.ExpectedGain(bid) for bid in bids]

return bids, gains

low and high specify the range of possible bids; n is the number of bids to
try.

ExpectedGains calls ExpectedGain, which computes expected gain for a
given bid:

def ExpectedGain(self, bid):

suite = self.player.posterior

total = 0

for price, prob in sorted(suite.Items()):

gain = self.Gain(bid, price)

total += prob * gain

return total

ExpectedGain loops through the values in the posterior and computes the
gain for each bid, given the actual prices of the showcase. It weights each
gain with the corresponding probability and returns the total.

ExpectedGain invokes Gain, which takes a bid and an actual price and re-
turns the expected gain:

def Gain(self, bid, price):

if bid > price:

return 0

66 Chapter 6. Decision Analysis

0 10000 20000 30000 40000 50000 60000 70000 80000
bid ($)

0

5000

10000

15000

20000

ex
pe

ct
ed

 g
ai

n
($

)

Player 1
Player 2

Figure 6.4: Expected gain versus bid in a scenario where Player 1’s best
guess is $20,000 and Player 2’s best guess is $40,000.

diff = price - bid

prob = self.ProbWin(diff)

if diff <= 250:

return 2 * price * prob

else:

return price * prob

If you overbid, you get nothing. Otherwise we compute the difference be-
tween your bid and the price, which determines your probability of win-
ning.

If diff is less than $250, you win both showcases. For simplicity, I assume
that both showcases have the same price. Since this outcome is rare, it
doesn’t make much difference.

Finally, we have to compute the probability of winning based on diff:

def ProbWin(self, diff):

prob = (self.opponent.ProbOverbid() +

self.opponent.ProbWorseThan(diff))

return prob

If your opponent overbids, you win. Otherwise, you have to hope that your
opponent is off by more than diff. Player provides methods to compute
both probabilities:

class Player:

6.9. Discussion 67

def ProbOverbid(self):

return self.cdf_diff.Prob(-1)

def ProbWorseThan(self, diff):

return 1 - self.cdf_diff.Prob(diff)

This code might be confusing because the computation is now from the
point of view of the opponent, who is computing, “What is the probability
that I overbid?” and “What is the probability that my bid is off by more
than diff?”

Both answers are based on the CDF of diff. If the opponent’s diff is less
than or equal to -1, you win. If the opponent’s diff is worse than yours,
you win. Otherwise you lose.

Finally, here’s the code that computes optimal bids:
class Player:

def OptimalBid(self, guess, opponent):

self.MakeBeliefs(guess)

calc = GainCalculator(self, opponent)

bids, gains = calc.ExpectedGains()

gain, bid = max(zip(gains, bids))

return bid, gain

Given a guess and an opponent, OptimalBid computes the posterior distri-
bution, instantiates a GainCalculator, computes expected gains for a range
of bids and returns the optimal bid and expected gain. Whew!

Figure 6.4 shows the results for both players, based on a scenario where
Player 1’s best guess is $20,000 and Player 2’s best guess is $40,000.

For Player 1 the optimal bid is $21,000, yielding an expected return of almost
$16,700. This is a case (which turns out to be unusual) where the optimal
bid is actually higher than the contestant’s best guess.

For Player 2 the optimal bid is $31,500, yielding an expected return of almost
$19,400. This is the more typical case where the optimal bid is less than the
best guess.

6.9 Discussion
One of the features of Bayesian estimation is that the result comes in the
form of a posterior distribution. Classical estimation usually generates a

68 Chapter 6. Decision Analysis

single point estimate or a confidence interval, which is sufficient if estima-
tion is the last step in the process, but if you want to use an estimate as an
input to a subsequent analysis, point estimates and intervals are often not
much help.

In this example, we use the posterior distribution to compute an optimal
bid. The return on a given bid is asymmetric and discontinuous (if you
overbid, you lose), so it would be hard to solve this problem analytically.
But it is relatively simple to do computationally.

Newcomers to Bayesian thinking are often tempted to summarize the pos-
terior distribution by computing the mean or the maximum likelihood es-
timate. These summaries can be useful, but if that’s all you need, then you
probably don’t need Bayesian methods in the first place.

Bayesian methods are most useful when you can carry the posterior distri-
bution into the next step of the analysis to perform some kind of decision
analysis, as we did in this chapter, or some kind of prediction, as we see in
the next chapter.

Chapter 7

Prediction

7.1 The Boston Bruins problem

In the 2010-11 National Hockey League (NHL) Finals, my beloved Boston
Bruins played a best-of-seven championship series against the despised
Vancouver Canucks. Boston lost the first two games 0-1 and 2-3, then won
the next two games 8-1 and 4-0. At this point in the series, what is the prob-
ability that Boston will win the next game, and what is their probability of
winning the championship?

As always, to answer a question like this, we need to make some assump-
tions. First, it is reasonable to believe that goal scoring in hockey is at least
approximately a Poisson process, which means that it is equally likely for a
goal to be scored at any time during a game. Second, we can assume that
against a particular opponent, each team has some long-term average goals
per game, denoted λ.

Given these assumptions, my strategy for answering this question is

1. Use statistics from previous games to choose a prior distribution for
λ.

2. Use the score from the first four games to estimate λ for each team.

3. Use the posterior distributions of λ to compute distribution of goals
for each team, the distribution of the goal differential, and the proba-
bility that each team wins the next game.

4. Compute the probability that each team wins the series.

70 Chapter 7. Prediction

To choose a prior distribution, I got some statistics from http://www.nhl.

com, specifically the average goals per game for each team in the 2010-11
season. The distribution is roughly Gaussian with mean 2.8 and standard
deviation 0.3.

The Gaussian distribution is continuous, but we’ll approximate it with a
discrete Pmf. thinkbayes provides MakeGaussianPmf to do exactly that:

def MakeGaussianPmf(mu, sigma, num_sigmas, n=101):

pmf = Pmf()

low = mu - num_sigmas*sigma

high = mu + num_sigmas*sigma

for x in numpy.linspace(low, high, n):

p = scipy.stats.norm.pdf(mu, sigma, x)

pmf.Set(x, p)

pmf.Normalize()

return pmf

mu and sigma are the mean and standard deviation of the Gaussian distri-
bution. num_sigmas is the number of standard deviations above and below
the mean that the Pmf will span, and n is the number of values in the Pmf.

Again we use numpy.linspace to make an array of n equally spaced values
between low and high, including both.

norm.pdf evaluates the Gaussian probability density function (PDF).

Getting back to the hockey problem, here’s the definition for a suite of hy-
potheses about the value of λ.

class Hockey(thinkbayes.Suite):

def __init__(self):

pmf = thinkbayes.MakeGaussianPmf(2.7, 0.3, 4)

thinkbayes.Suite.__init__(self, pmf)

So the prior distribution is Gaussian with mean 2.7, standard deviation 0.3,
and it spans 4 sigmas above and below the mean.

As always, we have to decide how to represent each hypothesis; in this case
I represent the hypothesis that λ = x with the floating-point value x.

http://www.nhl.com
http://www.nhl.com

7.2. Poisson processes 71

7.2 Poisson processes
In mathematical statistics, a process is a stochastic model of a physical sys-
tem (“stochastic” means that the model has some kind of randomness in it).
For example, a Bernoulli process is a model of a sequence of events, called
trials, in which each trial has two possible outcomes, like success and fail-
ure. So a Bernoulli process is a natural model for a series of coin flips, or a
series of shots on goal.

A Poisson process is the continuous version of a Bernoulli process, where
an event can occur at any point in time with equal probability. Poisson
processes can be used to model customers arriving in a store, buses arriving
at a bus stop, or goals scored in a hockey game.

In many real systems the probability of an event changes over time. Cus-
tomers are more likely to go to a store at certain times of day, buses are
supposed to arrive at fixed intervals, and goals are more or less likely at
different times during a game.

But all models are based on simplifications, and in this case modeling a
hockey game with a Poisson process is a reasonable choice. Heuer, Müller
and Rubner (2010) analyze scoring in a German soccer league and come
to the same conclusion; see http://www.cimat.mx/Eventos/vpec10/img/

poisson.pdf.

The benefit of using this model is that we can compute the distribution of
goals per game efficiently, as well as the distribution of time between goals.
Specifically, if the average number of goals in a game is lam, the distribution
of goals per game is given by the Poisson PMF:
def EvalPoissonPmf(k, lam):

return (lam)**k * math.exp(-lam) / math.factorial(k)

And the distribution of time between goals is given by the exponential PDF:

def EvalExponentialPdf(x, lam):

return lam * math.exp(-lam * x)

I use the variable lam because lambda is a reserved keyword in Python. Both
of these functions are in thinkbayes.py.

7.3 The posteriors
Now we can compute the likelihood that a team with a hypothetical value
of lam scores k goals in a game:

http://www.cimat.mx/Eventos/vpec10/img/poisson.pdf
http://www.cimat.mx/Eventos/vpec10/img/poisson.pdf

72 Chapter 7. Prediction

1.5 2.0 2.5 3.0 3.5 4.0
Goals per game

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

Pr
ob

ab
ili

ty

bruins
canucks

Figure 7.1: Posterior distribution of the number of goals per game.

class Hockey

def Likelihood(self, data, hypo):

lam = hypo

k = data

like = thinkbayes.EvalPoissonPmf(k, lam)

return like

Each hypothesis is a possible value of λ; data is the observed number of
goals, k.

With the likelihood function in place, we can make a suite for each team
and update them with the scores from the first four games.

suite1 = Hockey('bruins')

suite1.UpdateSet([0, 2, 8, 4])

suite2 = Hockey('canucks')

suite2.UpdateSet([1, 3, 1, 0])

Figure 7.1 shows the resulting posterior distributions for lam. Based on the
first four games, the most likely values for lam are 2.6 for the Canucks and
2.9 for the Bruins.

7.4 The distribution of goals

To compute the probability that each team wins the next game, we need to
compute the distribution of goals for each team.

7.4. The distribution of goals 73

0 2 4 6 8 10
Goals

0.00

0.05

0.10

0.15

0.20

0.25

Pr
ob

ab
ili

ty

bruins
canucks

Figure 7.2: Distribution of goals in a single game.

If we knew the value of lam exactly, we could use the Poisson distribution
again. thinkbayes provides a method that computes a truncated approxi-
mation of a Poisson distribution:

def MakePoissonPmf(lam, high):

pmf = Pmf()

for k in xrange(0, high+1):

p = EvalPoissonPmf(k, lam)

pmf.Set(k, p)

pmf.Normalize()

return pmf

The range of values in the computed Pmf is from 0 to high. So if the value
of lam were exactly 3.4, we would compute:

lam = 3.4

goal_dist = thinkbayes.MakePoissonPmf(lam, 10)

I chose the upper bound, 10, because the probability of scoring more than
10 goals in a game is quite low.

That’s simple enough so far; the problem is that we don’t know the value of
lam exactly. Instead, we have a distribution of possible values for lam.

For each value of lam, the distribution of goals is Poisson. So the overall
distribution of goals is a mixture of these Poisson distributions, weighted
according to the probabilities in the distribution of lam.

Given the posterior distribution of lam, here’s the code that makes the dis-
tribution of goals:

74 Chapter 7. Prediction

0.0 0.5 1.0 1.5 2.0
Games until goal

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

Pr
ob

ab
ili

ty

bruins
canucks

Figure 7.3: Distribution of time between goals.

def MakeGoalPmf(suite):

metapmf = thinkbayes.Pmf()

for lam, prob in suite.Items():

pmf = thinkbayes.MakePoissonPmf(lam, 10)

metapmf.Set(pmf, prob)

mix = thinkbayes.MakeMixture(metapmf)

return mix

For each value of lam we make a Poisson Pmf and add it to the meta-Pmf. I
call it a meta-Pmf because it is a Pmf that contains Pmfs as its values.

Then we use MakeMixture to compute the mixture (we saw MakeMixture in
Section 5.6).

Figure 7.2 shows the resulting distribution of goals for the Bruins and
Canucks. The Bruins are less likely to score 3 goals or fewer in the next
game, and more likely to score 4 or more.

7.5 The probability of winning
To get the probability of winning, first we compute the distribution of the
goal differential:

goal_dist1 = MakeGoalPmf(suite1)

goal_dist2 = MakeGoalPmf(suite2)

diff = goal_dist1 - goal_dist2

7.6. Sudden death 75

The subtraction operator invokes Pmf.__sub__, which enumerates pairs of
values and computes the difference. Subtracting two distributions is almost
the same as adding, which we saw in Section 5.4.

If the goal differential is positive, the Bruins win; if negative, the Canucks
win; if 0, it’s a tie:

p_win = diff.ProbGreater(0)

p_loss = diff.ProbLess(0)

p_tie = diff.Prob(0)

With the distributions from the previous section, p_win is 46%, p_loss is
37%, and p_tie is 17%.

In the event of a tie at the end of “regulation play,” the teams play overtime
periods until one team scores. Since the game ends immediately when the
first goal is scored, this overtime format is known as “sudden death.”

7.6 Sudden death

To compute the probability of winning in a sudden death overtime, the im-
portant statistic is not goals per game, but time until the first goal. The
assumption that goal-scoring is a Poisson process implies that the time be-
tween goals is exponentially distributed.

Given lam, we can compute the time between goals like this:

lam = 3.4

time_dist = thinkbayes.MakeExponentialPmf(lam, high=2, n=101)

high is the upper bound of the distribution. In this case I chose 2, because
the probability of going more than two games without scoring is small. n is
the number of values in the Pmf.

If we know lam exactly, that’s all there is to it. But we don’t; instead we
have a posterior distribution of possible values. So as we did with the dis-
tribution of goals, we make a meta-Pmf and compute a mixture of Pmfs.

def MakeGoalTimePmf(suite):

metapmf = thinkbayes.Pmf()

for lam, prob in suite.Items():

pmf = thinkbayes.MakeExponentialPmf(lam, high=2, n=2001)

metapmf.Set(pmf, prob)

76 Chapter 7. Prediction

mix = thinkbayes.MakeMixture(metapmf)

return mix

Figure 7.3 shows the resulting distributions. For time values less than one
period (one third of a game), the Bruins are more likely to score. The time
until the Canucks score is more likely to be longer.

I set the number of values, n, fairly high in order to minimize the number of
ties, since it is not possible for both teams to score simultaneously.

Now we compute the probability that the Bruins score first:
time_dist1 = MakeGoalTimePmf(suite1)

time_dist2 = MakeGoalTimePmf(suite2)

p_overtime = thinkbayes.PmfProbLess(time_dist1, time_dist2)

For the Bruins, the probability of winning in overtime is 52%.

Finally, the total probability of winning is the chance of winning at the end
of regulation play plus the probability of winning in overtime.

p_tie = diff.Prob(0)

p_overtime = thinkbayes.PmfProbLess(time_dist1, time_dist2)

p_win = diff.ProbGreater(0) + p_tie * p_overtime

For the Bruins, the overall chance of winning the next game is 55%.

To win the series, the Bruins can either win the next two games or split the
next two and win the third. Again, we can compute the total probability:

win the next two

p_series = p_win**2

split the next two, win the third

p_series += 2 * p_win * (1-p_win) * p_win

The Bruins chance of winning the series is 57%. And in 2011, they did.

7.7 Discussion

As always, the analysis in this chapter is based on modeling decisions, and
modeling is almost always an iterative process. In general, you want to start
with something simple that yields an approximate answer, identify likely
sources of error, and look for opportunities for improvement.

In this example, I would consider these options:

7.7. Discussion 77

• I chose a prior based on the average goals per game for each team.
But this statistic is averaged across all opponents. Against a particu-
lar opponent, we might expect more variability. For example, if the
team with the best offense plays the team with the worst defense, the
expected goals per game might be several standard deviations above
the mean.

• For data I used only the first four games of the championship series.
If the same teams played each other during the regular season, I could
use the results from those games as well. One complication is that the
composition of teams changes during the season due to trades and
injuries. So it might be best to give more weight to recent games.

• To take advantage of all available information, we could use results
from all regular season games to estimate each team’s goal scoring
rate, possibly adjusted by estimating an additional factor for each pair-
wise match-up. This approach would be more complicated, but it is
still feasible.

For the first option, we could use the results from the regular season to esti-
mate the variability across all pairwise match-ups. Thanks to Dirk Hoag at
http://forechecker.blogspot.com/, I was able to get the number of goals
scored during regulation play (not overtime) for each game in the regular
season.

Teams in different conferences only play each other one or two times in the
regular season, so I focused on pairs that played each other 4–6 times. For
each pair, I computed the average goals per game, which is an estimate of
λ, then plotted the distribution of these estimates.

The mean of these estimates is 2.8, again, but the standard deviation is 0.85,
substantially higher than what we got computing one estimate for each
team.

If we run the analysis again with the higher-variance prior, the probability
that the Bruins win the series is 80%, substantially higher than the result
with the low-variance prior, 57%.

So it turns out that the results are sensitive to the prior, which makes sense
considering how little data we have to work with. Based on the differ-
ence between the low-variance model and the high-variable model, it seems
worthwhile to put some effort into getting the prior right.

http://forechecker.blogspot.com/

78 Chapter 7. Prediction

The code and data for this chapter are available from http://thinkbayes.

com/hockey.py and http://thinkbayes.com/hockey_data.csv. For more
information see Section 0.3.

7.8 Exercises

Exercise 7.1 If buses arrive at a bus stop every 20 minutes, and you arrive
at the bus stop at a random time, your wait time until the bus arrives is
uniformly distributed from 0 to 20 minutes.

But in reality, there is variability in the time between buses. Suppose you are
waiting for a bus, and you know the historical distribution of time between
buses. Compute your distribution of wait times.

Hint: Suppose that the time between buses is either 5 or 10 minutes with
equal probability. What is the probability that you arrive during one of the
10 minute intervals?

I solve a version of this problem in the next chapter.

Exercise 7.2 Suppose that passengers arriving at the bus stop are well-
modeled by a Poisson process with parameter λ. If you arrive at the stop
and find 3 people waiting, what is your posterior distribution for the time
since the last bus arrived.

I solve a version of this problem in the next chapter.

Exercise 7.3 Suppose that you are an ecologist sampling the insect popula-
tion in a new environment. You deploy 100 traps in a test area and come
back the next day to check on them. You find that 37 traps have been trig-
gered, trapping an insect inside. Once a trap triggers, it cannot trap another
insect until it has been reset.

If you reset the traps and come back in two days, how many traps do you
expect to find triggered? Compute a posterior predictive distribution for
the number of traps.

Exercise 7.4 Suppose you are the manager of an apartment building with
100 light bulbs in common areas. It is your responsibility to replace light
bulbs when they break.

On January 1, all 100 bulbs are working. When you inspect them on Febru-
ary 1, you find 3 light bulbs out. If you come back on April 1, how many
light bulbs do you expect to find broken?

http://thinkbayes.com/hockey.py
http://thinkbayes.com/hockey.py
http://thinkbayes.com/hockey_data.csv

7.8. Exercises 79

In the previous exercise, you could reasonably assume that an event is
equally likely at any time. For light bulbs, the likelihood of failure depends
on the age of the bulb. Specifically, old bulbs have an increasing failure rate
due to evaporation of the filament.

This problem is more open-ended than some; you will have to make mod-
eling decisions. You might want to read about the Weibull distribution
(http://en.wikipedia.org/wiki/Weibull_distribution). Or you might
want to look around for information about light bulb survival curves.

http://en.wikipedia.org/wiki/Weibull_distribution

80 Chapter 7. Prediction

Chapter 8

Observer Bias

8.1 The Red Line problem

In Massachusetts, the Red Line is a subway that connects Cambridge and
Boston. When I was working in Cambridge I took the Red Line from
Kendall Square to South Station and caught the commuter rail to Needham.
During rush hour Red Line trains run every 7–8 minutes, on average.

When I arrived at the station, I could estimate the time until the next train
based on the number of passengers on the platform. If there were only a
few people, I inferred that I just missed a train and expected to wait about 7
minutes. If there were more passengers, I expected the train to arrive sooner.
But if there were a large number of passengers, I suspected that trains were
not running on schedule, so I would go back to the street level and get a
taxi.

While I was waiting for trains, I thought about how Bayesian estimation
could help predict my wait time and decide when I should give up and
take a taxi. This chapter presents the analysis I came up with.

This chapter is based on a project by Brendan Ritter and Kai Austin, who
took a class with me at Olin College. The code in this chapter is available
from http://thinkbayes.com/redline.py. The code I used to collect data
is in http://thinkbayes.com/redline_data.py. For more information see
Section 0.3.

http://thinkbayes.com/redline.py
http://thinkbayes.com/redline_data.py

82 Chapter 8. Observer Bias

0 5 10 15 20
Time (min)

0.000

0.005

0.010

0.015

0.020

0.025

CD
F

z
zb

Figure 8.1: PMF of gaps between trains, based on collected data, smoothed
by KDE. z is the actual distribution; zb is the biased distribution seen by
passengers.

8.2 The model

Before we get to the analysis, we have to make some modeling decisions.
First, I will treat passenger arrivals as a Poisson process, which means I
assume that passengers are equally likely to arrive at any time, and that they
arrive at an unknown rate, λ, measured in passengers per minute. Since I
observe passengers during a short period of time, and at the same time
every day, I assume that λ is constant.

On the other hand, the arrival process for trains is not Poisson. Trains to
Boston are supposed to leave from the end of the line (Alewife station) every
7–8 minutes during peak times, but by the time they get to Kendall Square,
the time between trains varies between 3 and 12 minutes.

To gather data on the time between trains, I wrote a script that downloads
real-time data from http://www.mbta.com/rider_tools/developers/, se-
lects south-bound trains arriving at Kendall square, and records their ar-
rival times in a database. I ran the script from 4pm to 6pm every weekday
for 5 days, and recorded about 15 arrivals per day. Then I computed the
time between consecutive arrivals; the distribution of these gaps is shown
in Figure 8.1, labeled z.

If you stood on the platform from 4pm to 6pm and recorded the time be-
tween trains, this is the distribution you would see. But if you arrive at
some random time (without regard to the train schedule) you would see a

http://www.mbta.com/rider_tools/developers/

8.3. Wait times 83

different distribution. The average time between trains, as seen by a ran-
dom passenger, is substantially higher than the true average.

Why? Because a passenger is more like to arrive during a large interval than
a small one. Consider a simple example: suppose that the time between
trains is either 5 minutes or 10 minutes with equal probability. In that case
the average time between trains is 7.5 minutes.

But a passenger is more likely to arrive during a 10 minute gap than a 5
minute gap; in fact, twice as likely. If we surveyed arriving passengers, we
would find that 2/3 of them arrived during a 10 minute gap, and only 1/3
during a 5 minute gap. So the average time between trains, as seen by an
arriving passenger, is 8.33 minutes.

This kind of observer bias appears in many contexts. Students think that
classes are bigger than they are because more of them are in the big classes.
Airline passengers think that planes are fuller than they are because more
of them are on full flights.

In each case, values from the actual distribution are oversampled in propor-
tion to their value. In the Red Line example, a gap that is twice as big is
twice as likely to be observed.

So given the actual distribution of gaps, we can compute the distribution of
gaps as seen by passengers. BiasPmf does this computation:

def BiasPmf(pmf):

new_pmf = pmf.Copy()

for x, p in pmf.Items():

new_pmf.Mult(x, x)

new_pmf.Normalize()

return new_pmf

pmf is the actual distribution; new_pmf is the biased distribution. Inside the
loop, we multiply the probability of each value, x, by the likelihood it will
be observed, which is proportional to x. Then we normalize the result.

Figure 8.1 shows the actual distribution of gaps, labeled z, and the distribu-
tion of gaps seen by passengers, labeled zb for “z biased”.

84 Chapter 8. Observer Bias

0 5 10 15 20
Time (min)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

z
zb
y

Figure 8.2: CDF of z, zb, and the wait time seen by passengers, y.

8.3 Wait times

Wait time, which I call y, is the time between the arrival of a passenger and
the next arrival of a train. Elapsed time, which I call x, is the time between
the arrival of the previous train and the arrival of a passenger. I chose these
definitions so that zb = x + y.

Given the distribution of zb, we can compute the distribution of y. I’ll start
with a simple case and then generalize. Suppose, as in the previous ex-
ample, that zb is either 5 minutes with probability 1/3, or 10 minutes with
probability 2/3.

If we arrive at a random time during a 5 minute gap, y is uniform from 0 to
5 minutes. If we arrive during a 10 minute gap, y is uniform from 0 to 10.
So the overall distribution is a mixture of uniform distributions weighted
according to the probability of each gap.

The following function takes the distribution of zb and computes the distri-
bution of y:

def PmfOfWaitTime(pmf_zb):

metapmf = thinkbayes.Pmf()

for gap, prob in pmf_zb.Items():

uniform = MakeUniformPmf(0, gap)

metapmf.Set(uniform, prob)

pmf_y = thinkbayes.MakeMixture(metapmf)

return pmf_y

8.3. Wait times 85

PmfOfWaitTime makes a meta-Pmf that maps from each uniform distribu-
tion to its probability. Then it uses MakeMixture, which we saw in Sec-
tion 5.6, to compute the mixture.

PmfOfWaitTime also uses MakeUniformPmf, defined here:

def MakeUniformPmf(low, high):

pmf = thinkbayes.Pmf()

for x in MakeRange(low=low, high=high):

pmf.Set(x, 1)

pmf.Normalize()

return pmf

low and high are the range of the uniform distribution, (both ends in-
cluded). Finally, MakeUniformPmf uses MakeRange, defined here:

def MakeRange(low, high, skip=10):

return range(low, high+skip, skip)

MakeRange defines a set of possible values for wait time (expressed in sec-
onds). By default it divides the range into 10 second intervals.

To encapsulate the process of computing these distributions, I created a
class called WaitTimeCalculator:

class WaitTimeCalculator(object):

def __init__(self, pmf_z):

self.pmf_z = pmf_z

self.pmf_zb = BiasPmf(pmf)

self.pmf_y = self.PmfOfWaitTime(self.pmf_zb)

self.pmf_x = self.pmf_y

The parameter, pmf_z, is the unbiased distribution of z. pmf_zb is the biased
distribution of gap time, as seen by passengers.

pmf_y is the distribution of wait time. pmf_x is the distribution of elapsed
time, which is the same as the distribution of wait time. To see why, remem-
ber that for a particular value of zp, the distribution of y is uniform from 0
to zp. Also

x = zp - y

So the distribution of x is also uniform from 0 to zp.

Figure 8.2 shows the distribution of z, zb, and y based on the data I collected
from the Red Line web site.

86 Chapter 8. Observer Bias

0 5 10 15 20
Time (min)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

prior x
posterior x
pred y

Figure 8.3: Prior and posterior of x and predicted y.

To present these distributions, I am switching from Pmfs to Cdfs. Most
people are more familiar with Pmfs, but I think Cdfs are easier to interpret,
once you get used to them. And if you want to plot several distributions on
the same axes, Cdfs are the way to go.

The mean of z is 7.8 minutes. The mean of zb is 8.8 minutes, about 13%
higher. The mean of y is 4.4, half the mean of zb.

As an aside, the Red Line schedule reports that trains run every 9 minutes
during peak times. This is close to the average of zb, but higher than the
average of z. I exchanged email with a representative of the MBTA, who
confirmed that the reported time between trains is deliberately conservative
in order to account for variability.

8.4 Predicting wait times
Let’s get back to the motivating question: suppose that when I arrive at the
platform I see 10 people waiting. How long should I expect to wait until the
next train arrives?

As always, let’s start with the easiest version of the problem and work our
way up. Suppose we are given the actual distribution of z, and we know
that the passenger arrival rate, λ, is 2 passengers per minute.

In that case we can:

1. Use the distribution of z to compute the prior distribution of zp, the
time between trains as seen by a passenger.

8.4. Predicting wait times 87

2. Then we can use the number of passengers to estimate the distribution
of x, the elapsed time since the last train.

3. Finally, we use the relation y = zp - x to get the distribution of y.

The first step is to create a WaitTimeCalculator that encapsulates the distri-
butions of zp, x, and y, prior to taking into account the number of passen-
gers.

wtc = WaitTimeCalculator(pmf_z)

pmf_z is the given distribution of gap times.

The next step is to make an ElapsedTimeEstimator (defined below), which
encapsulates the posterior distribution of x and the predictive distribution
of y.

ete = ElapsedTimeEstimator(wtc,

lam=2.0/60,

num_passengers=15)

The parameters are the WaitTimeCalculator, the passenger arrival rate, lam
(expressed in passengers per second), and the observed number of passen-
gers, let’s say 15.

Here is the definition of ElapsedTimeEstimator:

class ElapsedTimeEstimator(object):

def __init__(self, wtc, lam, num_passengers):

self.prior_x = Elapsed(wtc.pmf_x)

self.post_x = self.prior_x.Copy()

self.post_x.Update((lam, num_passengers))

self.pmf_y = PredictWaitTime(wtc.pmf_zb, self.post_x)

prior_x and posterior_x are the prior and posterior distributions of
elapsed time. pmf_y is the predictive distribution of wait time.

ElapsedTimeEstimator uses Elapsed and PredictWaitTime, defined below.

Elapsed is a Suite that represents the hypothetical distribution of x. The
prior distribution of x comes straight from the WaitTimeCalculator. Then
we use the data, which consists of the arrival rate, lam, and the number of
passengers on the platform, to compute the posterior distribution.

Here’s the definition of Elapsed:

88 Chapter 8. Observer Bias

class Elapsed(thinkbayes.Suite):

def Likelihood(self, data, hypo):

x = hypo

lam, k = data

like = thinkbayes.EvalPoissonPmf(k, lam * x)

return like

As always, Likelihood takes a hypothesis and data, and computes the like-
lihood of the data under the hypothesis. In this case hypo is the elapsed time
since the last train and data is a tuple of lam and the number of passengers.

The likelihood of the data is the probability of getting k arrivals in x time,
given arrival rate lam. We compute that using the PMF of the Poisson dis-
tribution.

Finally, here’s the definition of PredictWaitTime:

def PredictWaitTime(pmf_zb, pmf_x):

pmf_y = pmf_zb - pmf_x

RemoveNegatives(pmf_y)

return pmf_y

pmf_zb is the distribution of gaps between trains; pmf_x is the distribution
of elapsed time, based on the observed number of passengers. Since y = zb

- x, we can compute

pmf_y = pmf_zb - pmf_x

The subtraction operator invokes Pmf.__sub__, which enumerates all pairs
of zb and x, computes the differences, and adds the results to pmf_y.

The resulting Pmf includes some negative values, which we know are im-
possible. For example, if you arrive during a gap of 5 minutes, you can’t
wait more than 5 minutes. RemoveNegatives removes the impossible val-
ues from the distribution and renormalizes.

def RemoveNegatives(pmf):

for val in pmf.Values():

if val < 0:

pmf.Remove(val)

pmf.Normalize()

Figure 8.3 shows the results. The prior distribution of x is the same as the
distribution of y in Figure 8.2. The posterior distribution of x shows that,
after seeing 15 passengers on the platform, we believe that the time since

8.5. Estimating the arrival rate 89

0 1 2 3 4 5
Arrival rate (passengers / min)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

prior
posterior

Figure 8.4: Prior and posterior distributions of lam based on five days of
passenger data.

the last train is probably 5-10 minutes. The predictive distribution of y in-
dicates that we expect the next train in less than 5 minutes, with about 80%
confidence.

8.5 Estimating the arrival rate

The analysis so far has been based on the assumption that we know (1) the
distribution of gaps and (2) the passenger arrival rate. Now we are ready to
relax the second assumption.

Suppose that you just moved to Boston, so you don’t know much about the
passenger arrival rate on the Red Line. After a few days of commuting,
you could make a guess, at least qualitatively. With a little more effort, you
could estimate λ quantitatively.

Each day when you arrive at the platform, you should note the time and the
number of passengers waiting (if the platform is too big, you could choose
a sample area). Then you should record your wait time and the number of
new arrivals while you are waiting.

After five days, you might have data like this:

k1 y k2

-- --- --

17 4.6 9

90 Chapter 8. Observer Bias

22 1.0 0

23 1.4 4

18 5.4 12

4 5.8 11

where k1 is the number of passengers waiting when you arrive, y is your
wait time in minutes, and k2 is the number of passengers who arrive while
you are waiting.

Over the course of one week, you waited 18 minutes and saw 36 passen-
gers arrive, so you would estimate that the arrival rate is 2 passengers per
minute. For practical purposes that estimate is good enough, but for the
sake of completeness I will compute a posterior distribution for λ and show
how to use that distribution in the rest of the analysis.

ArrivalRate is a Suite that represents hypotheses about λ. As always,
Likelihood takes a hypothesis and data, and computes the likelihood of
the data under the hypothesis.

In this case the hypothesis is a value of λ. The data is a pair, y, k, where y

is a wait time and k is the number of passengers that arrived.

class ArrivalRate(thinkbayes.Suite):

def Likelihood(self, data, hypo):

lam = hypo

y, k = data

like = thinkbayes.EvalPoissonPmf(k, lam * y)

return like

This Likelihood might look familiar; it is almost identical to
Elapsed.Likelihood in Section 8.4. The difference is that in
Elapsed.Likelihood the hypothesis is x, the elapsed time; in
ArrivalRate.Likelihood the hypothesis is lam, the arrival rate. But
in both cases the likelihood is the probability of seeing k arrivals in some
period of time, given lam.

ArrivalRateEstimator encapsulates the process of estimating λ. The pa-
rameter, passenger_data, is a list of k1, y, k2 tuples, as in the table above.

class ArrivalRateEstimator(object):

def __init__(self, passenger_data):

low, high = 0, 5

n = 51

8.6. Incorporating uncertainty 91

0 2 4 6 8 10
Wait time (min)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

mix

Figure 8.5: Predictive distributions of y for possible values of lam.

hypos = numpy.linspace(low, high, n) / 60

self.prior_lam = ArrivalRate(hypos)

self.post_lam = self.prior_lam.Copy()

for k1, y, k2 in passenger_data:

self.post_lam.Update((y, k2))

__init__ builds hypos, which is a sequence of hypothetical values for lam,
then builds the prior distribution, prior_lam. The for loop updates the
prior with data, yielding the posterior distribution, post_lam.

Figure 8.4 shows the prior and posterior distributions. As expected, the
mean and median of the posterior are near the observed rate, 2 passengers
per minute. But the spread of the posterior distribution captures our uncer-
tainty about λ based on a small sample.

8.6 Incorporating uncertainty

Whenever there is uncertainty about one of the inputs to an analysis, we
can take it into account by a process like this:

1. Implement the analysis based on a deterministic value of the uncertain
parameter (in this case λ).

2. Compute the distribution of the uncertain parameter.

92 Chapter 8. Observer Bias

3. Run the analysis for each value of the parameter, and generate a set of
predictive distributions.

4. Compute a mixture of the predictive distributions, using the weights
from the distribution of the parameter.

We have already done steps (1) and (2). I wrote a class called
WaitMixtureEstimator to handle steps (3) and (4).
class WaitMixtureEstimator(object):

def __init__(self, wtc, are, num_passengers=15):

self.metapmf = thinkbayes.Pmf()

for lam, prob in sorted(are.post_lam.Items()):

ete = ElapsedTimeEstimator(wtc, lam, num_passengers)

self.metapmf.Set(ete.pmf_y, prob)

self.mixture = thinkbayes.MakeMixture(self.metapmf)

wtc is the WaitTimeCalculator that contains the distribution of zb. are is
the ArrivalTimeEstimator that contains the distribution of lam.

The first line makes a meta-Pmf that maps from each possible distribution
of y to its probability. For each value of lam, we use ElapsedTimeEstimator

to compute the corresponding distribution of y and store it in the Meta-Pmf.
Then we use MakeMixture to compute the mixture.

Figure 8.5 shows the results. The shaded lines in the background are the
distributions of y for each value of lam, with line thickness that represents
likelihood. The dark line is the mixture of these distributions.

In this case we could get a very similar result using a single point estimate
of lam. So it was not necessary, for practical purposes, to include the uncer-
tainty of the estimate.

In general, it is important to include variability if the system response is
non-linear; that is, if small changes in the input can cause big changes in
the output. In this case, posterior variability in lam is small and the system
response is approximately linear for small perturbations.

8.7 Decision analysis
At this point we can use the number of passengers on the platform to pre-
dict the distribution of wait times. Now let’s get to the second part of the

8.7. Decision analysis 93

0 5 10 15 20 25 30 35
Num passengers

0.00

0.02

0.04

0.06

0.08

0.10

0.12

P(
y

>
 1

5
m

in
)

Figure 8.6: Probability that wait time exceeds 15 minutes as a function of
the number of passengers on the platform.

question: when should I stop waiting for the train and go catch a taxi?

Remember that in the original scenario, I am trying to get to South Station
to catch the commuter rail. Suppose I leave the office with enough time that
I can wait 15 minutes and still make my connection at South Station.

In that case I would like to know the probability that y exceeds 15 minutes
as a function of num_passengers. It is easy enough to use the analysis from
Section 8.4 and run it for a range of num_passengers.

But there’s a problem. The analysis is sensitive to the frequency of long
delays, and because long delays are rare, it is hard estimate their frequency.

I only have data from one week, and the longest delay I observed was 15
minutes. So I can’t estimate the frequency of longer delays accurately.

However, I can use previous observations to make at least a coarse estimate.
When I commuted by Red Line for a year, I saw three long delays caused by
a signaling problem, a power outage, and “police activity” at another stop.
So I estimate that there are about 3 major delays per year.

But remember that my observations are biased. I am more likely to observe
long delays because they affect a large number of passengers. So we should
treat my observations as a sample of zb rather than z. Here’s how we can
do that.

During my year of commuting, I took the Red Line home about 220 times.
So I take the observed gap times, gap_times, generate a sample of 220 gaps,
and compute their Pmf:

94 Chapter 8. Observer Bias

n = 220

cdf_z = thinkbayes.MakeCdfFromList(gap_times)

sample_z = cdf_z.Sample(n)

pmf_z = thinkbayes.MakePmfFromList(sample_z)

Next I bias pmf_z to get the distribution of zb, draw a sample, and then add
in delays of 30, 40, and 50 minutes (expressed in seconds):

cdf_zp = BiasPmf(pmf_z).MakeCdf()

sample_zb = cdf_zp.Sample(n) + [1800, 2400, 3000]

Cdf.Sample is more efficient than Pmf.Sample, so it is usually faster to con-
vert a Pmf to a Cdf before sampling.

Next I use the sample of zb to estimate a Pdf using KDE, and then convert
the Pdf to a Pmf:

pdf_zb = thinkbayes.EstimatedPdf(sample_zb)

xs = MakeRange(low=60)

pmf_zb = pdf_zb.MakePmf(xs)

Finally I unbias the distribution of zb to get the distribution of z, which I
use to create the WaitTimeCalculator:

pmf_z = UnbiasPmf(pmf_zb)

wtc = WaitTimeCalculator(pmf_z)

This process is complicated, but all of the steps are operations we have seen
before. Now we are ready to compute the probability of a long wait.

def ProbLongWait(num_passengers, minutes):

ete = ElapsedTimeEstimator(wtc, lam, num_passengers)

cdf_y = ete.pmf_y.MakeCdf()

prob = 1 - cdf_y.Prob(minutes * 60)

Given the number of passengers on the platform, ProbLongWait makes an
ElapsedTimeEstimator, extracts the distribution of wait time, and com-
putes the probability that wait time exceeds minutes.

Figure 8.6 shows the result. When the number of passengers is less than 20,
we infer that the system is operating normally, so the probability of a long
delay is small. If there are 30 passengers, we estimate that it has been 15
minutes since the last train; that’s longer than a normal delay, so we infer
that something is wrong and expect longer delays.

If we are willing to accept a 10% chance of missing the connection at South
Station, we should stay and wait as long as there are fewer than 30 passen-
gers, and take a taxi if there are more.

8.8. Discussion 95

Or, to take this analysis one step further, we could quantify the cost of miss-
ing the connection and the cost of taking a taxi, then choose the threshold
that minimizes expected cost.

8.8 Discussion

The analysis so far has been based on the assumption that the arrival rate of
passengers is the same every day. For a commuter train during rush hour,
that might not be a bad assumption, but there are some obvious exceptions.
For example, if there is a special event nearby, a large number of people
might arrive at the same time. In that case, the estimate of lam would be too
low, so the estimates of x and y would be too high.

If special events are as common as major delays, it would be important to
include them in the model. We could do that by extending the distribution
of lam to include occasional large values.

We started with the assumption that we know distribution of z. As an alter-
native, a passenger could estimate z, but it would not be easy. As a passen-
ger, you only observe only your own wait time, y. Unless you skip the first
train and wait for the second, you don’t observe the gap between trains, z.

However, we could make some inferences about zb. If we note the number
of passengers waiting when we arrive, we can estimate the elapsed time
since the last train, x. Then we observe y. If we add the posterior dis-
tribution of x to the observed y, we get a distribution that represents our
posterior belief about the observed value of zb.

We can use this distribution to update our beliefs about the distribution of
zb. Finally, we can compute the inverse of BiasPmf to get from the distribu-
tion of zb to the distribution of z.

I leave this analysis as an exercise for the reader. One suggestion: you
should read Chapter 15 first. You can find the outline of a solution in
http://thinkbayes.com/redline.py. For more information see Section 0.3.

8.9 Exercises

Exercise 8.1 This exercise is from MacKay, Information Theory, Inference, and
Learning Algorithms:

http://thinkbayes.com/redline.py

96 Chapter 8. Observer Bias

Unstable particles are emitted from a source and decay at a dis-
tance x, a real number that has an exponential probability distri-
bution with [parameter] λ. Decay events can only be observed if
they occur in a window extending from x = 1 cm to x = 20 cm.
N decays are observed at locations {1.5, 2, 3, 4, 5, 12} cm. What
is the posterior distribution of λ?

You can download a solution to this exercise from http://thinkbayes.com/

decay.py.

http://thinkbayes.com/decay.py
http://thinkbayes.com/decay.py

Chapter 9

Two Dimensions

9.1 Paintball

Paintball is a sport in which competing teams try to shoot each other with
guns that fire paint-filled pellets that break on impact, leaving a colorful
mark on the target. It is usually played in an arena decorated with barriers
and other objects that can be used as cover.

Suppose you are playing paintball in an indoor arena 30 feet wide and 50
feet long. You are standing near one of the 30 foot walls, and you suspect
that one of your opponents has taken cover nearby. Along the wall, you see
several paint spatters, all the same color, that you think your opponent fired
recently.

The spatters are at 15, 16, 18, and 21 feet, measured from the lower-left
corner of the room. Based on these data, where do you think your opponent
is hiding?

Figure 9.1 shows a diagram of the arena. Using the lower-left corner of
the room as the origin, I denote the unknown location of the shooter with
coordinates α and β, or alpha and beta. The location of a spatter is labeled
x. The angle the opponent shoots at is θ or theta.

The Paintball problem is a modified version of the Lighthouse problem, a
common example of Bayesian analysis. My notation follows the presenta-
tion of the problem in D.S. Sivia’s, Data Analysis: a Bayesian Tutorial, Second
Edition (Oxford, 2006).

You can download the code in this chapter from http://thinkbayes.com/

paintball.py. For more information see Section 0.3.

http://thinkbayes.com/paintball.py
http://thinkbayes.com/paintball.py

98 Chapter 9. Two Dimensions

α

β
θ

x

shooter

wall

Figure 9.1: Diagram of the layout for the paintball problem.

9.2 The suite

To get started, we need a Suite that represents a set of hypotheses about the
location of the opponent. Each hypothesis is a pair of coordinates: (alpha,
beta).

Here is the definition of the Paintball suite:

class Paintball(thinkbayes.Suite, thinkbayes.Joint):

def __init__(self, alphas, betas, locations):

self.locations = locations

pairs = [(alpha, beta)

for alpha in alphas

for beta in betas]

thinkbayes.Suite.__init__(self, pairs)

Paintball inherits from Suite, which we have seen before, and Joint,
which I will explain soon.

alphas is the list of possible values for alpha; betas is the list of values for
beta. pairs is a list of all (alpha, beta) pairs.

locations is a list of possible locations along the wall; it is stored for use in
Likelihood.

The room is 30 feet wide and 50 feet long, so here’s the code that creates the
suite:

alphas = range(0, 31)

9.3. Trigonometry 99

0 10 20 30 40 50
Distance

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

alpha
beta

Figure 9.2: Posterior CDFs for alpha and beta, given the data.

betas = range(1, 51)

locations = range(0, 31)

suite = Paintball(alphas, betas, locations)

This prior distribution assumes that all locations in the room are equally
likely. Given a map of the room, we might choose a more detailed prior, but
we’ll start simple.

9.3 Trigonometry

Now we need a likelihood function, which means we have to figure out
the likelihood of hitting any spot along the wall, given the location of the
opponent.

As a simple model, imagine that the opponent is like a rotating turret,
equally likely to shoot in any direction. In that case, he is most likely to
hit the wall at location alpha, and less likely to hit the wall far away from
alpha.

With a little trigonometry, we can compute the probability of hitting any
spot along the wall. Imagine that the shooter fires a shot at angle θ; the
pellet would hit the wall at location x, where

x− α = β tan θ

100 Chapter 9. Two Dimensions

0 5 10 15 20 25 30
Distance

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

Pr
ob

beta = 10
beta = 20
beta = 40

Figure 9.3: PMF of location given alpha=10, for several values of beta.

Solving this equation for θ yields

θ = tan−1
(

x− α

β

)
So given a location on the wall, we can find θ.

Taking the derivative of the first equation with respect to θ yields

dx
dθ

=
β

cos2 θ

This derivative is what I’ll call the “strafing speed”, which is the speed of
the target location along the wall as θ increases. The probability of hitting a
given point on the wall is inversely related to strafing speed.

If we know the coordinates of the shooter and a location along the wall, we
can compute strafing speed:

def StrafingSpeed(alpha, beta, x):

theta = math.atan2(x - alpha, beta)

speed = beta / math.cos(theta)**2

return speed

alpha and beta are the coordinates of the shooter; x is the location of a
spatter. The result is the derivative of x with respect to theta.

Now we can compute a Pmf that represents the probability of hitting any lo-
cation on the wall. MakeLocationPmf takes alpha and beta, the coordinates
of the shooter, and locations, a list of possible values of x.

9.4. Likelihood 101

def MakeLocationPmf(alpha, beta, locations):

pmf = thinkbayes.Pmf()

for x in locations:

prob = 1.0 / StrafingSpeed(alpha, beta, x)

pmf.Set(x, prob)

pmf.Normalize()

return pmf

MakeLocationPmf computes the probability of hitting each location, which
is inversely related to strafing speed. The result is a Pmf of locations and
their probabilities.

Figure 9.3 shows the Pmf of location with alpha = 10 and a range of values
for beta. For all values of beta the most likely spatter location is x = 10; as
beta increases, so does the spread of the Pmf.

9.4 Likelihood

Now all we need is a likelihood function. We can use MakeLocationPmf

to compute the likelihood of any value of x, given the coordinates of the
opponent.

def Likelihood(self, data, hypo):

alpha, beta = hypo

x = data

pmf = MakeLocationPmf(alpha, beta, self.locations)

like = pmf.Prob(x)

return like

Again, alpha and beta are the hypothetical coordinates of the shooter, and
x is the location of an observed spatter.

pmf contains the probability of each location, given the coordinates of the
shooter. From this Pmf, we select the probability of the observed location.

And we’re done. To update the suite, we can use UpdateSet, which is inher-
ited from Suite.

suite.UpdateSet([15, 16, 18, 21])

The result is a distribution that maps each (alpha, beta) pair to a posterior
probability.

102 Chapter 9. Two Dimensions

9.5 Joint distributions

When each value in a distribution is a tuple of variables, it is called a joint
distribution because it represents the distributions of the variables together,
that is “jointly”. A joint distribution contains the distributions of the vari-
ables, as well information about the relationships among them.

Given a joint distribution, we can compute the distributions of each variable
independently, which are called the marginal distributions.

thinkbayes.Joint provides a method that computes marginal distribu-
tions:

class Joint:

def Marginal(self, i):

pmf = Pmf()

for vs, prob in self.Items():

pmf.Incr(vs[i], prob)

return pmf

i is the index of the variable we want; in this example i=0 indicates the
distribution of alpha, and i=1 indicates the distribution of beta.

Here’s the code that extracts the marginal distributions:

marginal_alpha = suite.Marginal(0)

marginal_beta = suite.Marginal(1)

Figure 9.2 shows the results (converted to CDFs). The median value for
alpha is 18, near the center of mass of the observed spatters. For beta, the
most likely values are close to the wall, but beyond 10 feet the distribution
is almost uniform, which indicates that the data do not distinguish strongly
between these possible locations.

Given the posterior marginals, we can compute credible intervals for each
coordinate independently:

print 'alpha CI', marginal_alpha.CredibleInterval(50)

print 'beta CI', marginal_beta.CredibleInterval(50)

The 50% credible intervals are (14, 21) for alpha and (5, 31) for beta. So
the data provide evidence that the shooter is in the near side of the room.
But it is not strong evidence. The 90% credible intervals cover most of the
room!

9.6. Conditional distributions 103

0 5 10 15 20 25 30
Distance

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Pr
ob

beta = 10
beta = 20
beta = 40

Figure 9.4: Posterior distributions for alpha conditioned on several values
of beta.

9.6 Conditional distributions

The marginal distributions contain information about the variables inde-
pendently, but they do not capture the dependence between variables, if
any.

One way to visualize dependence is by computing conditional distribu-
tions. thinkbayes.Joint provides a method that does that:

def Conditional(self, i, j, val):

pmf = Pmf()

for vs, prob in self.Items():

if vs[j] != val: continue

pmf.Incr(vs[i], prob)

pmf.Normalize()

return pmf

Again, i is the index of the variable we want; j is the index of the condi-
tioning variable, and val is the conditional value.

The result is the distribution of the ith variable under the condition that the
jth variable is val.

For example, the following code computes the conditional distributions of
alpha for a range of values of beta:

betas = [10, 20, 40]

104 Chapter 9. Two Dimensions

0 5 10 15 20 25 30
alpha

0

10

20

30

40

50

be
ta

25

50

75

Figure 9.5: Credible intervals for the coordinates of the opponent.

for beta in betas:

cond = suite.Conditional(0, 1, beta)

Figure 9.4 shows the results, which we could fully describe as “posterior
conditional marginal distributions.” Whew!

If the variables were independent, the conditional distributions would all
be the same. Since they are all different, we can tell the variables are depen-
dent. For example, if we know (somehow) that beta = 10, the conditional
distribution of alpha is fairly narrow. For larger values of beta, the distri-
bution of alpha is wider.

9.7 Credible intervals

Another way to visualize the posterior joint distribution is to compute cred-
ible intervals. When we looked at credible intervals in Section 3.5, I skipped
over a subtle point: for a given distribution, there are many intervals with
the same level of credibility. For example, if you want a 50% credible inter-
val, you could choose any set of values whose probability adds up to 50%.

When the values are one-dimensional, it is most common to choose the cen-
tral credible interval; for example, the central 50% credible interval con-
tains all values between the 25th and 75th percentiles.

In multiple dimensions it is less obvious what the right credible interval
should be. The best choice might depend on context, but one common

9.7. Credible intervals 105

choice is the maximum likelihood credible interval, which contains the most
likely values that add up to 50% (or some other percentage).

thinkbayes.Joint provides a method that computes maximum likelihood
credible intervals.
class Joint:

def MaxLikeInterval(self, percentage=90):

interval = []

total = 0

t = [(prob, val) for val, prob in self.Items()]

t.sort(reverse=True)

for prob, val in t:

interval.append(val)

total += prob

if total >= percentage/100.0:

break

return interval

The first step is to make a list of the values in the suite, sorted in descending
order by probability. Next we traverse the list, adding each value to the
interval, until the total probability exceeds percentage. The result is a list
of values from the suite. Notice that this set of values is not necessarily
contiguous.

To visualize the intervals, I wrote a function that “colors” each value ac-
cording to how many intervals it appears in:
def MakeCrediblePlot(suite):

d = dict((pair, 0) for pair in suite.Values())

percentages = [75, 50, 25]

for p in percentages:

interval = suite.MaxLikeInterval(p)

for pair in interval:

d[pair] += 1

return d

d is a dictionary that maps from each value in the suite to the number of
intervals it appears in. The loop computes intervals for several percentages
and modifies d.

106 Chapter 9. Two Dimensions

Figure 9.5 shows the result. The 25% credible interval is the darkest region
near the bottom wall. For higher percentages, the credible interval is bigger,
of course, and skewed toward the right side of the room.

9.8 Discussion

This chapter shows that the Bayesian framework from the previous chapters
can be extended to handle a two-dimensional parameter space. The only
difference is that each hypothesis is represented by a tuple of parameters.

I also presented Joint, which is a parent class that provides meth-
ods that apply to joint distributions: Marginal, Conditional, and
MakeLikeInterval. In object-oriented terms, Joint is a mixin (see http:

//en.wikipedia.org/wiki/Mixin).

There is a lot of new vocabulary in this chapter, so let’s review:

Joint distribution: A distribution that represents all possible values in a
multidimensional space and their probabilities. The example in this
chapter is a two-dimensional space made up of the coordinates alpha
and beta. The joint distribution represents the probability of each
(alpha, beta) pair.

Marginal distribution: The distribution of one parameter in a joint distri-
bution, treating the other parameters as unknown. For example, Fig-
ure 9.2 shows the distributions of alpha and beta independently.

Conditional distribution: The distribution of one parameter in a joint dis-
tribution, conditioned on one or more of the other parameters. Fig-
ure 9.4 several distributions for alpha, conditioned on different values
of beta.

Given the joint distribution, you can compute marginal and conditional dis-
tributions. With enough conditional distributions, you could re-create the
joint distribution, at least approximately. But given the marginal distribu-
tions you cannot re-create the joint distribution because you have lost infor-
mation about the dependence between variables.

If there are n possible values for each of two parameters, most operations on
the joint distribution take time proportional to n2. If there are d parameters,
run time is proportional to nd, which quickly becomes impractical as the
number of dimensions increases.

http://en.wikipedia.org/wiki/Mixin
http://en.wikipedia.org/wiki/Mixin

9.9. Exercises 107

If you can process a million hypotheses in a reasonable amount of time, you
could handle two dimensions with 1000 values for each parameter, or three
dimensions with 100 values each, or six dimensions with 10 values each.

If you need more dimensions, or more values per dimension, there are op-
timizations you can try. I present an example in Chapter 15.

You can download the code in this chapter from http://thinkbayes.com/

paintball.py. For more information see Section 0.3.

9.9 Exercises

Exercise 9.1 In our simple model, the opponent is equally likely to shoot in
any direction. As an exercise, let’s consider improvements to this model.

The analysis in this chapter suggests that a shooter is most likely to hit the
closest wall. But in reality, if the opponent is close to a wall, he is unlikely to
shoot at the wall because he is unlikely to see a target between himself and
the wall.

Design an improved model that takes this behavior into account. Try to find
a model that is more realistic, but not too complicated.

http://thinkbayes.com/paintball.py
http://thinkbayes.com/paintball.py

108 Chapter 9. Two Dimensions

Chapter 10

Approximate Bayesian
Computation

10.1 The Variability Hypothesis

I have a soft spot for crank science. Recently I visited Norumbega Tower,
which is an enduring monument to the crackpot theories of Eben Norton
Horsford, inventor of double-acting baking powder and fake history. But
that’s not what this chapter is about.

This chapter is about the Variability Hypothesis, which

"originated in the early nineteenth century with Johann Meckel,
who argued that males have a greater range of ability than fe-
males, especially in intelligence. In other words, he believed that
most geniuses and most mentally retarded people are men. Be-
cause he considered males to be the ’superior animal,’ Meckel
concluded that females’ lack of variation was a sign of inferior-
ity."

From http://en.wikipedia.org/wiki/Variability_

hypothesis.

I particularly like that last part, because I suspect that if it turns out that
women are actually more variable, Meckel would take that as a sign of in-
feriority, too. Anyway, you will not be surprised to hear that the evidence
for the Variability Hypothesis is weak.

Nevertheless, it came up in my class recently when we looked at data from
the CDC’s Behavioral Risk Factor Surveillance System (BRFSS), specifically

http://en.wikipedia.org/wiki/Variability_hypothesis
http://en.wikipedia.org/wiki/Variability_hypothesis

110 Chapter 10. Approximate Bayesian Computation

the self-reported heights of adult American men and women. The dataset
includes responses from 154407 men and 254722 women. Here’s what we
found:

• The average height for men is 178 cm; the average height for women
is 163 cm. So men are taller, on average. No surprise there.

• For men the standard deviation is 7.7 cm; for women it is 7.3 cm. So
in absolute terms, men’s heights are more variable.

• But to compare variability between groups, it is more meaningful to
use the coefficient of variation (CV), which is the standard deviation
divided by the mean. It is a dimensionless measure of variability rela-
tive to scale. For men CV is 0.0433; for women it is 0.0444.

That’s very close, so we could conclude that this dataset provides weak ev-
idence against the Variability Hypothesis. But we can use Bayesian meth-
ods to make that conclusion more precise. And answering this question
gives me a chance to demonstrate some techniques for working with large
datasets.

I will proceed in a few steps:

1. We’ll start with the simplest implementation, but it only works for
datasets smaller than 1000 values.

2. By computing probabilities under a log transform, we can scale up to
the full size of the dataset, but the computation gets slow.

3. Finally, we speed things up substantially with Approximate Bayesian
Computation, also known as ABC.

You can download the code in this chapter from http://thinkbayes.com/

variability.py. For more information see Section 0.3.

10.2 Mean and standard deviation

In Chapter 9 we estimated two parameters simultaneously using a joint dis-
tribution. In this chapter we use the same method to estimate the param-
eters of a Gaussian distribution: the mean, mu, and the standard deviation,
sigma.

For this problem, I define a Suite called Height that represents a map from
each mu, sigma pair to its probability:

http://thinkbayes.com/variability.py
http://thinkbayes.com/variability.py

10.2. Mean and standard deviation 111

class Height(thinkbayes.Suite, thinkbayes.Joint):

def __init__(self, mus, sigmas):

thinkbayes.Suite.__init__(self)

pairs = [(mu, sigma)

for mu in mus

for sigma in sigmas]

thinkbayes.Suite.__init__(self, pairs)

mus is a sequence of possible values for mu; sigmas is a sequence of values
for sigma. The prior distribution is uniform over all mu, sigma pairs.

The likelihood function is easy. Given hypothetical values of mu and
sigma, we compute the likelihood of a particular value, x. That’s what
EvalGaussianPdf does, so all we have to do is use it:

class Height

def Likelihood(self, data, hypo):

x = data

mu, sigma = hypo

like = thinkbayes.EvalGaussianPdf(x, mu, sigma)

return like

If you have studied statistics from a mathematical perspective, you know
that when you evaluate a PDF, you get a probability density. In order to get
a probability, you have to integrate probability densities over some range.

But for our purposes, we don’t need a probability; we just need something
proportional to the probability we want. A probability density does that job
nicely.

The hardest part of this problem turns out to be choosing appropriate
ranges for mus and sigmas. If the range is too small, we omit some pos-
sibilities with non-negligible probability and get the wrong answer. If the
range is too big, we get the right answer, but waste computational power.

So this is an opportunity to use classical estimation to make Bayesian tech-
niques more efficient. Specifically, we can use classical estimators to find a
likely location for mu and sigma, and use the standard errors of those esti-
mates to choose a likely spread.

If the true parameters of the distribution are µ and σ, and we take a sample
of n values, an estimator of µ is the sample mean, m.

112 Chapter 10. Approximate Bayesian Computation

And an estimator of σ is the sample standard variance, s.

The standard error of the estimated µ is s/
√

n and the standard error of the
estimated σ is s/

√
2(n− 1).

Here’s the code to compute all that:

def FindPriorRanges(xs, num_points, num_stderrs=3.0):

compute m and s

n = len(xs)

m = numpy.mean(xs)

s = numpy.std(xs)

compute ranges for m and s

stderr_m = s / math.sqrt(n)

mus = MakeRange(m, stderr_m, num_stderrs)

stderr_s = s / math.sqrt(2 * (n-1))

sigmas = MakeRange(s, stderr_s, num_stderrs)

return mus, sigmas

xs is the dataset. num_points is the desired number of values in the range.
num_stderrs is the width of the range on each side of the estimate, in num-
ber of standard errors.

The return value is a pair of sequences, mus and sigmas.

Here’s MakeRange:

def MakeRange(estimate, stderr, num_stderrs):

spread = stderr * num_stderrs

array = numpy.linspace(estimate-spread,

estimate+spread,

num_points)

return array

numpy.linspace makes an array of equally spaced elements between
estimate-spread and estimate+spread, including both.

10.3 Update

Finally here’s the code to make and update the suite:

10.4. The posterior distribution of CV 113

mus, sigmas = FindPriorRanges(xs, num_points)

suite = Height(mus, sigmas)

suite.UpdateSet(xs)

print suite.MaximumLikelihood()

This process might seem bogus, because we use the data to choose the range
of the prior distribution, and then use the data again to do the update. In
general, using the same data twice is, in fact, bogus.

But in this case it is ok. Really. We use the data to choose the range for the
prior, but only to avoid computing a lot of probabilities that would have
been very small anyway. With num_stderrs=4, the range is big enough to
cover all values with non-negligible likelihood. After that, making it bigger
has no effect on the results.

In effect, the prior is uniform over all values of mu and sigma, but for com-
putational efficiency we ignore all the values that don’t matter.

10.4 The posterior distribution of CV
Once we have the posterior joint distribution of mu and sigma, we can com-
pute the distribution of CV for men and women, and then the probability
that one exceeds the other.

To compute the distribution of CV, we enumerate pairs of mu and sigma:
def CoefVariation(suite):

pmf = thinkbayes.Pmf()

for (mu, sigma), p in suite.Items():

pmf.Incr(sigma/mu, p)

return pmf

Then we use thinkbayes.PmfProbGreater to compute the probability that
men are more variable.

The analysis itself is simple, but there are two more issues we have to deal
with:

1. As the size of the dataset increases, we run into a series of computa-
tional problems due to the limitations of floating-point arithmetic.

2. The dataset contains a number of extreme values that are almost cer-
tainly errors. We will need to make the estimation process robust in
the presence of these outliers.

The following sections explain these problems and their solutions.

114 Chapter 10. Approximate Bayesian Computation

10.5 Underflow

If we select the first 100 values from the BRFSS dataset and run the analysis
I just described, it runs without errors and we get posterior distributions
that look reasonable.

If we select the first 1000 values and run the program again, we get an error
in Pmf.Normalize:

ValueError: total probability is zero.

The problem is that we are using probability densities to compute likeli-
hoods, and densities from continuous distributions tend to be small. And
if you take 1000 small values and multiply them together, the result is very
small. In this case it is so small it can’t be represented by a floating-point
number, so it gets rounded down to zero, which is called underflow. And
if all probabilities in the distribution are 0, it’s not a distribution any more.

A possible solution is to renormalize the Pmf after each update, or after each
batch of 100. That would work, but it would be slow.

A better alternative is to compute likelihoods under a log transform. That
way, instead of multiplying small values, we can add up log likelihoods.
Pmf provides methods Log, LogUpdateSet and Exp to make this process easy.

Log computes the log of the probabilities in a Pmf:

class Pmf

def Log(self):

m = self.MaxLike()

for x, p in self.d.iteritems():

if p:

self.Set(x, math.log(p/m))

else:

self.Remove(x)

Before applying the log transform Log uses MaxLike to find m, the highest
probability in the Pmf. It divide all probabilities by m, so the highest proba-
bility gets normalized to 1, which yields a log of 0. The other log probabil-
ities are all negative. If there are any values in the Pmf with probability 0,
they are removed.

While the Pmf is under a log transform, we can’t use Update, UpdateSet,
or Normalize. The result would be nonsensical; if you try, Pmf raises an
exception. Instead, we have to use LogUpdate and LogUpdateSet.

10.6. Log-likelihood 115

Here’s the implementation of LogUpdateSet:

class Suite

def LogUpdateSet(self, dataset):

for data in dataset:

self.LogUpdate(data)

LogUpdateSet loops through the data and calls LogUpdate:

class Suite

def LogUpdate(self, data):

for hypo in self.Values():

like = self.LogLikelihood(data, hypo)

self.Incr(hypo, like)

LogUpdate is just like Update except that it calls LogLikelihood instead of
Likelihood, and Incr instead of Mult.

Using log-likelihoods avoids the problem with underflow, but while the
Pmf is under the log transform, there’s not much we can do with it. We
have to use Exp to invert the transform:

class Pmf

def Exp(self):

m = self.MaxLike()

for x, p in self.d.iteritems():

self.Set(x, math.exp(p-m))

If the log-likelihoods are large negative numbers, the resulting likelihoods
might underflow. So Exp finds the maximum log-likelihood, m, and shifts
all the likelihoods up by m. The resulting distribution has a maximum like-
lihood of 1. This process inverts the log transform with minimal loss of
precision.

10.6 Log-likelihood

Now all we need is LogLikelihood.

class Height

def LogLikelihood(self, data, hypo):

x = data

116 Chapter 10. Approximate Bayesian Computation

mu, sigma = hypo

loglike = scipy.stats.norm.logpdf(x, mu, sigma)

return loglike

norm.logpdf computes the log-likelihood of the Gaussian PDF.

Here’s what the whole update process looks like:
suite.Log()

suite.LogUpdateSet(xs)

suite.Exp()

suite.Normalize()

To review, Log puts the suite under a log transform. LogUpdateSet calls
LogUpdate, which calls LogLikelihood. LogUpdate uses Pmf.Incr, because
adding a log-likelihood is the same as multiplying by a likelihood.

After the update, the log-likelihoods are large negative numbers, so Exp

shifts them up before inverting the transform, which is how we avoid un-
derflow.

Once the suite is transformed back, the probabilities are “linear” again,
which means “not logarithmic”, so we can use Normalize again.

Using this algorithm, we can process the entire dataset without underflow,
but it is still slow. On my computer it might take an hour. We can do better.

10.7 A little optimization

This section uses math and computational optimization to speed things up
by a factor of 100. But the following section presents an algorithm that is
even faster. So if you want to get right to the good stuff, feel free to skip this
section.

Suite.LogUpdateSet calls LogUpdate once for each data point. We can
speed it up by computing the log-likelihood of the entire dataset at once.

We’ll start with the Gaussian PDF:

1
σ
√

2π
exp

[
−1

2

(
x− µ

σ

)2
]

and compute the log (dropping the constant term):

− log σ− 1
2

(
x− µ

σ

)2

10.7. A little optimization 117

Given a sequence of values, xi, the total log-likelihood is

∑
i
− log σ− 1

2

(
xi − µ

σ

)2

Pulling out the terms that don’t depend on i, we get

−n log σ− 1
2σ2 ∑

i
(xi − µ)2

which we can translate into Python:

class Height

def LogUpdateSetFast(self, data):

xs = tuple(data)

n = len(xs)

for hypo in self.Values():

mu, sigma = hypo

total = Summation(xs, mu)

loglike = -n * math.log(sigma) - total / 2 / sigma**2

self.Incr(hypo, loglike)

By itself, this would be a small improvement, but it creates an opportunity
for a bigger one. Notice that the summation only depends on mu, not sigma,
so we only have to compute it once for each value of mu.

To avoid recomputing, I factor out a function that computes the summation,
and memoize it so it stores previously computed results in a dictionary (see
http://en.wikipedia.org/wiki/Memoization):

def Summation(xs, mu, cache={}):

try:

return cache[xs, mu]

except KeyError:

ds = [(x-mu)**2 for x in xs]

total = sum(ds)

cache[xs, mu] = total

return total

cache stores previously computed sums. The try statement returns a re-
sult from the cache if possible; otherwise it computes the summation, then
caches and returns the result.

The only catch is that we can’t use a list as a key in the cache, because it is

http://en.wikipedia.org/wiki/Memoization

118 Chapter 10. Approximate Bayesian Computation

not a hashable type. That’s why LogUpdateSetFast converts the dataset to
a tuple.

This optimization speeds up the computation by about a factor of 100, pro-
cessing the entire dataset (154 407 men and 254 722 women) in less than a
minute on my not-very-fast computer.

10.8 ABC

But maybe you don’t have that kind of time. In that case, Approximate
Bayesian Computation (ABC) might be the way to go. The motivation be-
hind ABC is that the likelihood of any particular dataset is:

1. Very small, especially for large datasets, which is why we had to use
the log transform,

2. Expensive to compute, which is why we had to do so much optimiza-
tion, and

3. Not really what we want anyway.

We don’t really care about the likelihood of seeing the exact dataset we saw.
Especially for continuous variables, we care about the likelihood of seeing
any dataset like the one we saw.

For example, in the Euro problem, we don’t care about the order of the
coin flips, only the total number of heads and tails. And in the locomotive
problem, we don’t care about which particular trains were seen, only the
number of trains and the maximum of the serial numbers.

Similarly, in the BRFSS sample, we don’t really want to know the probability
of seeing one particular set of values (especially since there are hundreds of
thousands of them). It is more relevant to ask, “If we sample 100,000 people
from a population with hypothetical values of µ and σ, what would be the
chance of collecting a sample with the observed mean and variance?”

For samples from a Gaussian distribution, we can answer this question effi-
ciently because we can find the distribution of the sample statistics analyt-
ically. In fact, we already did it when we computed the range of the prior.

If you draw n values from a Gaussian distribution with parameters µ and
σ, and compute the sample mean, m, the distribution of m is Gaussian with
parameters µ and σ/

√
n.

10.9. Robust estimation 119

Similarly, the distribution of the sample standard deviation, s, is Gaussian
with parameters σ and σ/

√
2(n− 1).

We can use these sample distributions to compute the likelihood of the sam-
ple statistics, m and s, given hypothetical values for µ and σ. Here’s a new
version of LogUpdateSet that does it:

def LogUpdateSetABC(self, data):

xs = data

n = len(xs)

compute sample statistics

m = numpy.mean(xs)

s = numpy.std(xs)

for hypo in sorted(self.Values()):

mu, sigma = hypo

compute log likelihood of m, given hypo

stderr_m = sigma / math.sqrt(n)

loglike = EvalGaussianLogPdf(m, mu, stderr_m)

#compute log likelihood of s, given hypo

stderr_s = sigma / math.sqrt(2 * (n-1))

loglike += EvalGaussianLogPdf(s, sigma, stderr_s)

self.Incr(hypo, loglike)

On my computer this function processes the entire dataset in about a sec-
ond, and the result agrees with the exact result with about 5 digits of preci-
sion.

10.9 Robust estimation

We are almost ready to look at results, but we have one more problem to
deal with. There are a number of outliers in this dataset that are almost
certainly errors. For example, there are three adults with reported height
of 61 cm, which would place them among the shortest living adults in the
world. At the other end, there are four women with reported height 229 cm,
just short of the tallest women in the world.

It is not impossible that these values are correct, but it is unlikely, which
makes it hard to know how to deal with them. And we have to get it

120 Chapter 10. Approximate Bayesian Computation

178.46 178.48 178.50 178.52 178.54
Mean height (cm)

7.28

7.29

7.30

7.31

7.32

7.33

7.34

7.35

St
dd

ev
 (c

m
)

0.001

0.0
020.002 0.003

0.0040.005
0.006

Posterior joint distribution

Figure 10.1: Contour plot of the posterior joint distribution of mean and
standard deviation of height for men in the U.S.

163.46 163.47 163.48 163.49 163.50 163.51 163.52 163.53
Mean height (cm)

6.99

7.00

7.01

7.02

7.03

7.04

St
dd

ev
 (c

m
)

0.001

0.0
020.002 0.003

0.0040.005
0.006

Posterior joint distribution

Figure 10.2: Contour plot of the posterior joint distribution of mean and
standard deviation of height for women in the U.S.

10.9. Robust estimation 121

right, because these extreme values have a disproportionate effect on the
estimated variability.

Because ABC is based on summary statistics, rather than the entire dataset,
we can make it more robust by choosing summary statistics that are robust
in the presence of outliers. For example, rather than use the sample mean
and standard deviation, we could use the median and inter-quartile range
(IQR), which is the difference between the 25th and 75th percentiles.

More generally, we could compute an inter-percentile range (IPR) that spans
any given fraction of the distribution, p:

def MedianIPR(xs, p):

cdf = thinkbayes.MakeCdfFromList(xs)

median = cdf.Percentile(50)

alpha = (1-p) / 2

ipr = cdf.Value(1-alpha) - cdf.Value(alpha)

return median, ipr

xs is a sequence of values. p is the desired range; for example, p=0.5 yields
the inter-quartile range.

MedianIPR works by computing the CDF of xs, then extracting the median
and the difference between two percentiles.

We can convert from ipr to an estimate of sigma using the Gaussian CDF
to compute the fraction of the distribution covered by a given number of
standard deviations. For example, it is a well-known rule of thumb that
68% of a Gaussian distribution falls within one standard deviation of the
mean, which leaves 16% in each tail. If we compute the range between the
16th and 84th percentiles, we expect the result to be 2 * sigma. So we can
estimate sigma by computing the 68% IPR and dividing by 2.

More generally we could use any number of sigmas. MedianS performs the
more general version of this computation:

def MedianS(xs, num_sigmas):

half_p = thinkbayes.StandardGaussianCdf(num_sigmas) - 0.5

median, ipr = MedianIPR(xs, half_p * 2)

s = ipr / 2 / num_sigmas

return median, s

122 Chapter 10. Approximate Bayesian Computation

0.0405 0.0410 0.0415 0.0420 0.0425 0.0430 0.0435
Coefficient of variation

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

male
female

Figure 10.3: Posterior distributions of CV for men and women, based on
robust estimators.

Again, xs is the sequence of values; num_sigmas is the number of standard
deviations the results should be based on. The result is median, which esti-
mates µ, and s, which estimates σ.

Finally, in LogUpdateSetABC we can replace the sample mean and standard
deviation with median and s. And that pretty much does it.

It might seem odd that we are using observed percentiles to estimate µ and
σ, but it is an example of the flexibility of the Bayesian approach. In effect
we are asking, “Given hypothetical values for µ and σ, and a sampling pro-
cess that has some chance of introducing errors, what is the likelihood of
generating a given set of sample statistics?”

We are free to choose any sample statistics we like, up to a point: µ and σ
determine the location and spread of a distribution, so we need to choose
statistics that capture those characteristics. For example, if we chose the 49th
and 51st percentiles, we would get very little information about spread, so
it would leave the estimate of σ relatively unconstrained by the data. All
values of sigma would have nearly the same likelihood of producing the
observed values, so the posterior distribution of sigma would look a lot like
the prior.

10.10 Who is more variable?
Finally we are ready to answer the question we started with: is the coeffi-
cient of variation greater for men than for women?

10.11. Discussion 123

Using ABC based on the median and IPR with num_sigmas=1, I computed
posterior joint distributions for mu and sigma. Figures 10.1 and 10.2 show
the results as a contour plot with mu on the x-axis, sigma on the y-axis, and
probability on the z-axis.

For each joint distribution, I computed the posterior distribution of CV. Fig-
ure 10.3 shows these distributions for men and women. The mean for men
is 0.0410; for women it is 0.0429. Since there is no overlap between the dis-
tributions, we conclude with near certainty that women are more variable
in height than men.

So is that the end of the Variability Hypothesis? Sadly, no. It turns
out that this result depends on the choice of the inter-percentile range.
With num_sigmas=1, we conclude that women are more variable, but with
num_sigmas=2 we conclude with equal confidence that men are more vari-
able.

The reason for the difference is that there are more men of short stature, and
their distance from the mean is greater.

So our evaluation of the Variability Hypothesis depends on the interpreta-
tion of “variability.” With num_sigmas=1 we focus on people near the mean.
As we increase num_sigmas, we give more weight to the extremes.

To decide which emphasis is appropriate, we would need a more precise
statement of the hypothesis. As it is, the Variability Hypothesis may be too
vague to evaluate.

Nevertheless, it helped me demonstrate several new ideas and, I hope you
agree, it makes an interesting example.

10.11 Discussion

There are two ways you might think of ABC. One interpretation is that it is,
as the name suggests, an approximation that is faster to compute than the
exact value.

But remember that Bayesian analysis is always based on modeling deci-
sions, which implies that there is no “exact” solution. For any interesting
physical system there are many possible models, and each model yields
different results. To interpret the results, we have to evaluate the models.

124 Chapter 10. Approximate Bayesian Computation

So another interpretation of ABC is that it represents an alternative model
of the likelihood. When we compute p(D|H), we are asking “What is the
likelihood of the data under a given hypothesis?”

For large datasets, the likelihood of the data is very small, which is a hint
that we might not be asking the right question. What we really want to
know is the likelihood of any outcome like the data, where the definition of
“like” is yet another modeling decision.

The underlying idea of ABC is that two datasets are alike if they yield the
same summary statistics. But in some cases, like the example in this chapter,
it is not obvious which summary statistics to choose.

You can download the code in this chapter from http://thinkbayes.com/

variability.py. For more information see Section 0.3.

10.12 Exercises

Exercise 10.1 An “effect size” is a statistic intended to measure the dif-
ference between two groups (see http://en.wikipedia.org/wiki/Effect_

size).

For example, we could use data from the BRFSS to estimate the difference
in height between men and women. By sampling values from the posterior
distributions of µ and σ, we could generate the posterior distribution of this
difference.

But it might be better to use a dimensionless measure of effect size, rather
than a difference measured in cm. One option is to use divide through by
the standard deviation (similar to what we did with the coefficient of varia-
tion).

If the parameters for Group 1 are (µ1, σ1), and the parameters for Group 2
are (µ2, σ2), the dimensionless effect size is

µ1 − µ2

(σ1 + σ2)/2

Write a function that takes joint distributions of mu and sigma for two groups
and returns the posterior distribution of effect size.

Hint: if enumerating all pairs from the two distributions takes too long,
consider random sampling.

http://thinkbayes.com/variability.py
http://thinkbayes.com/variability.py
http://en.wikipedia.org/wiki/Effect_size
http://en.wikipedia.org/wiki/Effect_size

Chapter 11

Hypothesis Testing

11.1 Back to the Euro problem
In Section 4.1 I presented a problem from MacKay’s Information Theory, In-
ference, and Learning Algorithms:

A statistical statement appeared in “The Guardian" on Friday
January 4, 2002:

When spun on edge 250 times, a Belgian one-euro coin
came up heads 140 times and tails 110. ‘It looks very
suspicious to me,’ said Barry Blight, a statistics lecturer
at the London School of Economics. ‘If the coin were
unbiased, the chance of getting a result as extreme as
that would be less than 7%.’

But do these data give evidence that the coin is biased rather
than fair?

We estimated the probability that the coin would land face up, but we didn’t
really answer MacKay’s question: Do the data give evidence that the coin is
biased?

In Chapter 4 I proposed that data are in favor of a hypothesis if the data are
more likely under the hypothesis than under the alternative or, equivalently,
if the Bayes factor is greater than 1.

In the Euro example, we have two hypotheses to consider: I’ll use F for the
hypothesis that the coin is fair and B for the hypothesis that it is biased.

If the coin is fair, it is easy to compute the likelihood of the data, p(D|F). In
fact, we already wrote the function that does it.

126 Chapter 11. Hypothesis Testing

def Likelihood(self, data, hypo):

x = hypo / 100.0

head, tails = data

like = x**heads * (1-x)**tails

return like

To use it we can create a Euro suite and invoke Likelihood:

suite = Euro()

likelihood = suite.Likelihood(data, 50)

p(D|F) is 5.5 · 10−76, which doesn’t tell us much except that the probability
of seeing any particular dataset is very small. It takes two likelihoods to
make a ratio, so we also have to compute p(D|B).

It is not obvious how to compute the likelihood of B, because it’s not obvi-
ous what “biased” means.

One possibility is to cheat and look at the data before we define the hypoth-
esis. In that case we would say that “biased” means that the probability of
heads is 140/250.

actual_percent = 100.0 * 140 / 250

likelihood = suite.Likelihood(data, actual_percent)

This version of B I call B_cheat; the likelihood of b_cheat is 34 · 10−76 and
the likelihood ratio is 6.1. So we would say that the data are evidence in
favor of this version of B.

But using the data to formulate the hypothesis is obviously bogus. By that
definition, any dataset would be evidence in favor of B, unless the observed
percentage of heads is exactly 50%.

11.2 Making a fair comparison

To make a legitimate comparison, we have to define B without looking at
the data. So let’s try a different definition. If you inspect a Belgian Euro coin,
you might notice that the “heads” side is more prominent than the “tails”
side. You might expect the shape to have some effect on x, but be unsure
whether it makes heads more or less likely. So you might say “I think the
coin is biased so that x is either 0.6 or 0.4, but I am not sure which.”

We can think of this version, which I’ll call B_two as a hypothesis made
up of two sub-hypotheses. We can compute the likelihood for each sub-
hypothesis and then compute the average likelihood.

11.2. Making a fair comparison 127

like40 = suite.Likelihood(data, 40)

like60 = suite.Likelihood(data, 60)

likelihood = 0.5 * like40 + 0.5 * like60

The likelihood ratio (or Bayes factor) for b_two is 1.3, which means the data
provide weak evidence in favor of b_two.

More generally, suppose you suspect that the coin is biased, but you have
no clue about the value of x. In that case you might build a Suite, which I
call b_uniform, to represent sub-hypotheses from 0 to 100.

b_uniform = Euro(xrange(0, 101))

b_uniform.Remove(50)

b_uniform.Normalize()

I initialize b_uniform with values from 0 to 100. I removed the sub-
hypothesis that x is 50%, because if x is 50% the coin is fair, but it has almost
no effect on the result whether you remove it or not.

To compute the likelihood of b_uniform we compute the likelihood of each
sub-hypothesis and accumulate a weighted average.

def SuiteLikelihood(suite, data):

total = 0

for hypo, prob in suite.Items():

like = suite.Likelihood(data, hypo)

total += prob * like

return total

The likelihood ratio for b_uniform is 0.47, which means that the data are
weak evidence against b_uniform, compared to F.

If you think about the computation performed by SuiteLikelihood, you
might notice that it is similar to an update. To refresh your memory, here’s
the Update function:

def Update(self, data):

for hypo in self.Values():

like = self.Likelihood(data, hypo)

self.Mult(hypo, like)

return self.Normalize()

And here’s Normalize:

def Normalize(self):

total = self.Total()

factor = 1.0 / total

128 Chapter 11. Hypothesis Testing

for x in self.d:

self.d[x] *= factor

return total

The return value from Normalize is the total of the probabilities in the Suite,
which is the average of the likelihoods for the sub-hypotheses, weighted by
the prior probabilities. And Update passes this value along, so instead of
using SuiteLikelihood, we could compute the likelihood of b_uniform like
this:

likelihood = b_uniform.Update(data)

11.3 The triangle prior

In Chapter 4 we also considered a triangle-shaped prior that gives higher
probability to values of x near 50%. If we think of this prior as a suite of
sub-hypotheses, we can compute its likelihood like this:

b_triangle = TrianglePrior()

likelihood = b_triangle.Update(data)

The likelihood ratio for b_triangle is 0.84, compared to F, so again we
would say that the data are weak evidence against B.

The following table shows the priors we have considered, the likelihood of
each, and the likelihood ratio (or Bayes factor) relative to F.

Hypothesis Likelihood Bayes
×10−76 Factor

F 5.5 –
B_cheat 34 6.1
B_two 7.4 1.3
B_uniform 2.6 0.47
B_triangle 4.6 0.84

Depending on which definition we choose, the data might provide evidence
for or against the hypothesis that the coin is biased, but in either case it is
relatively weak evidence.

In summary, we can use Bayesian hypothesis testing to compare the likeli-
hood of F and B, but we have to do some work to specify precisely what B
means. This specification depends on background information about coins
and their behavior when spun, so people could reasonably disagree about
the right definition.

11.4. Discussion 129

My presentation of this example follows David MacKay’s discussion, and
comes to the same conclusion. You can download the code I used in this
chapter from http://thinkbayes.com/euro3.py. For more information see
Section 0.3.

11.4 Discussion

The Bayes factor for B_uniform is 0.47, which means that the data provide
evidence against this hypothesis, compared to F. In the previous section I
characterized this evidence as “weak,” but didn’t say why.

Part of the answer is historical. Harold Jeffreys, an early proponent of
Bayesian statistics, suggested a scale for interpreting Bayes factors:

Bayes Strength
Factor
1 – 3 Barely worth mentioning
3 – 10 Substantial
10 – 30 Strong
30 – 100 Very strong
> 100 Decisive

In the example, the Bayes factor is 0.47 in favor of B_uniform, so it is 2.1 in
favor is F, which Jeffreys would consider “barely worth mentioning.” Other
authors have suggested variations on the wording. To avoid arguing about
adjectives, we could think about odds instead.

If your prior odds are 1:1, and you see evidence with Bayes factor 2, your
posterior odds are 2:1. In terms of probability, the data changed your degree
of belief from 50% to 66%. For most real world problems, that change would
be small relative to modeling errors and other sources of uncertainty.

On the other hand, if you had seen evidence with Bayes factor 100, your
posterior odds would be 100:1 or more than 99%. Whether or not you agree
that such evidence is “decisive,” it is certainly strong.

11.5 Exercises

Exercise 11.1 Some people believe in the existence of extra-sensory percep-
tion (ESP); for example, the ability of some people to guess the value of an
unseen playing card with probability better than chance.

http://thinkbayes.com/euro3.py

130 Chapter 11. Hypothesis Testing

What is your prior degree of belief in this kind of ESP? Do you think it is as
likely to exist as not? Or are you more skeptical about it? Write down your
prior odds.

Now compute the strength of the evidence it would take to convince you
that ESP is at least 50% likely to exist. What Bayes factor would be needed
to make you 90% sure that ESP exists?

Exercise 11.2 Suppose that your answer to the previous question is 1000;
that is, evidence with Bayes factor 1000 in favor of ESP would be sufficient
to change your mind.

Now suppose that you read a paper in a respectable peer-reviewed scientific
journal that presents evidence with Bayes factor 1000 in favor of ESP. Would
that change your mind?

If not, how do you resolve the apparent contradiction? You might find it
helpful to read about David Hume’s article, “Of Miracles,” at http://en.
wikipedia.org/wiki/Of_Miracles.

http://en.wikipedia.org/wiki/Of_Miracles
http://en.wikipedia.org/wiki/Of_Miracles

Chapter 12

Evidence

12.1 Interpreting SAT scores

Suppose you are the Dean of Admission at a small engineering college in
Massachusetts, and you are considering two candidates, Alice and Bob,
whose qualifications are similar in many ways, with the exception that Al-
ice got a higher score on the Math portion of the SAT, a standardized test
intended to measure preparation for college-level work in mathematics.

If Alice got 780 and Bob got a 740 (out of a possible 800), you might want to
know whether that difference is evidence that Alice is better prepared than
Bob, and what the strength of that evidence is.

Now in reality, both scores are very good, and both candidates are probably
well prepared for college math. So the real Dean of Admission would prob-
ably suggest that we choose the candidate who best demonstrates the other
skills and attitudes we look for in students. But as an example of Bayesian
hypothesis testing, let’s stick with a narrower question: “How strong is the
evidence that Alice is better prepared than Bob?”

To answer that question, we need to make some modeling decisions. I’ll
start with a simplification I know is wrong; then we’ll come back and im-
prove the model. I pretend, temporarily, that all SAT questions are equally
difficult. Actually, the designers of the SAT choose questions with a range
of difficulty, because that improves the ability to measure statistical differ-
ences between test-takers.

But if we choose a model where all questions are equally difficult, we can
define a characteristic, p_correct, for each test-taker, which is the probabil-

132 Chapter 12. Evidence

ity of answering any question correctly. This simplification makes it easy to
compute the likelihood of a given score.

12.2 The scale

In order to understand SAT scores, we have to understand the scoring and
scaling process. Each test-taker gets a raw score based on the number of
correct and incorrect questions. The raw score is converted to a scaled score
in the range 200–800.

In 2009, there were 54 questions on the math SAT. The raw score for each
test-taker is the number of questions answered correctly minus a penalty of
1/4 point for each question answered incorrectly.

The College Board, which administers the SAT, publishes the map from raw
scores to scaled scores. I have downloaded that data and wrapped it in
an Interpolator object that provides a forward lookup (from raw score to
scaled) and a reverse lookup (from scaled score to raw).

You can download the code for this example from http://thinkbayes.com/

sat.py. For more information see Section 0.3.

12.3 The prior

The College Board also publishes the distribution of scaled scores for all
test-takers. If we convert each scaled score to a raw score, and divide by the
number of questions, the result is an estimate of p_correct. So we can use
the distribution of raw scores to model the prior distribution of p_correct.

Here is the code that reads and processes the data:

class Exam(object):

def __init__(self):

self.scale = ReadScale()

scores = ReadRanks()

score_pmf = thinkbayes.MakePmfFromDict(dict(scores))

self.raw = self.ReverseScale(score_pmf)

self.prior = DivideValues(raw, 54)

http://thinkbayes.com/sat.py
http://thinkbayes.com/sat.py

12.3. The prior 133

0.0 0.2 0.4 0.6 0.8 1.0
p_correct

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

prior

Figure 12.1: Prior distribution of p_correct for SAT test-takers.

Exam encapsulates the information we have about the exam. ReadScale and
ReadRanks read files and return objects that contain the data: self.scale is
the Interpolator that converts from raw to scaled scores and back; scores
is a list of (score, frequency) pairs.

score_pmf is the Pmf of scaled scores. self.raw is the Pmf of raw scores,
and self.prior is the Pmf of p_correct.

Figure 12.1 shows the prior distribution of p_correct. This distribution is
approximately Gaussian, but it is compressed at the extremes. By design,
the SAT has the most power to discriminate between test-takers within two
standard deviations of the mean, and less power outside that range.

For each test-taker, I define a Suite called Sat that represents the distribution
of p_correct. Here’s the definition:

class Sat(thinkbayes.Suite):

def __init__(self, exam, score):

thinkbayes.Suite.__init__(self)

self.exam = exam

self.score = score

start with the prior distribution

for p_correct, prob in exam.prior.Items():

self.Set(p_correct, prob)

134 Chapter 12. Evidence

0.70 0.75 0.80 0.85 0.90 0.95 1.00
p_correct

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

posterior 780
posterior 740

Figure 12.2: Posterior distributions of p_correct for Alice and Bob.

update based on an exam score

self.Update(score)

__init__ takes an Exam object and a scaled score. It makes a copy of the
prior distribution and then updates itself based on the exam score.

As usual, we inherit Update from Suite and provide Likelihood:
def Likelihood(self, data, hypo):

p_correct = hypo

score = data

k = self.exam.Reverse(score)

n = self.exam.max_score

like = thinkbayes.EvalBinomialPmf(k, n, p_correct)

return like

hypo is a hypothetical value of p_correct, and data is a scaled score.

To keep things simple, I interpret the raw score as the number of correct
answers, ignoring the penalty for wrong answers. With this simplification,
the likelihood is given by the binomial distribution, which computes the
probability of k correct responses out of n questions.

12.4 Posterior
Figure 12.2 shows the posterior distributions of p_correct for Alice and Bob
based on their exam scores. We can see that they overlap, so it is possible
that p_correct is actually higher for Bob, but it seems unlikely.

12.4. Posterior 135

Which brings us back to the original question, “How strong is the evidence
that Alice is better prepared than Bob?” We can use the posterior distribu-
tions of p_correct to answer this question.

To formulate the question in terms of Bayesian hypothesis testing, I define
two hypotheses:

• A: p_correct is higher for Alice than for Bob.

• B: p_correct is higher for Bob than for Alice.

To compute the likelihood of A, we can enumerate all pairs of values from
the posterior distributions and add up the total probability of the cases
where p_correct is higher for Alice than for Bob. And we already have
a function, thinkbayes.PmfProbGreater, that does that.

So we can define a Suite that computes the posterior probabilities of A and
B:

class TopLevel(thinkbayes.Suite):

def Update(self, data):

a_sat, b_sat = data

a_like = thinkbayes.PmfProbGreater(a_sat, b_sat)

b_like = thinkbayes.PmfProbLess(a_sat, b_sat)

c_like = thinkbayes.PmfProbEqual(a_sat, b_sat)

a_like += c_like / 2

b_like += c_like / 2

self.Mult('A', a_like)

self.Mult('B', b_like)

self.Normalize()

Usually when we define a new Suite, we inherit Update and provide
Likelihood. In this case I override Update, because it is easier to evaluate
the likelihood of both hypotheses at the same time.

The data passed to Update are Sat objects that represent the posterior distri-
butions of p_correct.

a_like is the total probability that p_correct is higher for Alice; b_like is
that probability that it is higher for Bob.

136 Chapter 12. Evidence

c_like is the probability that they are “equal,” but this equality is an artifact
of the decision to model p_correct with a set of discrete values. If we use
more values, c_like is smaller, and in the extreme, if p_correct is continu-
ous, c_like is zero. So I treat c_like as a kind of round-off error and split
it evenly between a_like and b_like.

Here is the code that creates TopLevel and updates it:

exam = Exam()

a_sat = Sat(exam, 780)

b_sat = Sat(exam, 740)

top = TopLevel('AB')

top.Update((a_sat, b_sat))

top.Print()

The likelihood of A is 0.79 and the likelihood of B is 0.21. The likelihood
ratio (or Bayes factor) is 3.8, which means that these test scores are evidence
that Alice is better than Bob at answering SAT questions. If we believed,
before seeing the test scores, that A and B were equally likely, then after
seeing the scores we should believe that the probability of A is 79%, which
means there is still a 21% chance that Bob is actually better prepared.

12.5 A better model

Remember that the analysis we have done so far is based on the simplifica-
tion that all SAT questions are equally difficult. In reality, some are easier
than others, which means that the difference between Alice and Bob might
be even smaller.

But how big is the modeling error? If it is small, we conclude that the first
model—based on the simplification that all questions are equally difficult—
is good enough. If it’s large, we need a better model.

In the next few sections, I develop a better model and discover (spoiler
alert!) that the modeling error is small. So if you are satisfied with the
simple mode, you can skip to the next chapter. If you want to see how the
more realistic model works, read on...

• Assume that each test-taker has some degree of efficacy, which mea-
sures their ability to answer SAT questions.

• Assume that each question has some level of difficulty.

12.5. A better model 137

• Finally, assume that the chance that a test-taker answers a question
correctly is related to efficacy and difficulty according to this func-
tion:

def ProbCorrect(efficacy, difficulty, a=1):

return 1 / (1 + math.exp(-a * (efficacy - difficulty)))

This function is a simplified version of the curve used in item response the-
ory, which you can read about at http://en.wikipedia.org/wiki/Item_
response_theory. efficacy and difficulty are considered to be on the
same scale, and the probability of getting a question right depends only on
the difference between them.

When efficacy and difficulty are equal, the probability of getting the
question right is 50%. As efficacy increases, this probability approaches
100%. As it decreases (or as difficulty increases), the probability ap-
proaches 0%.

Given the distribution of efficacy across test-takers and the distribution
of difficulty across questions, we can compute the expected distribution
of raw scores. We’ll do that in two steps. First, for a person with given
efficacy, we’ll compute the distribution of raw scores.

def PmfCorrect(efficacy, difficulties):

pmf0 = thinkbayes.Pmf([0])

ps = [ProbCorrect(efficacy, diff) for diff in difficulties]

pmfs = [BinaryPmf(p) for p in ps]

dist = sum(pmfs, pmf0)

return dist

difficulties is a list of difficulties, one for each question. ps is a list of
probabilities, and pmfs is a list of two-valued Pmf objects; here’s the func-
tion that makes them:

def BinaryPmf(p):

pmf = thinkbayes.Pmf()

pmf.Set(1, p)

pmf.Set(0, 1-p)

return pmf

dist is the sum of these Pmfs. Remember from Section 5.4 that when we
add up Pmf objects, the result is the distribution of the sums. In order to
use Python’s sum to add up Pmfs, we have to provide pmf0 which is the
identity for Pmfs, so pmf + pmf0 is always pmf.

http://en.wikipedia.org/wiki/Item_response_theory
http://en.wikipedia.org/wiki/Item_response_theory

138 Chapter 12. Evidence

If we know a person’s efficacy, we can compute their distribution of raw
scores. For a group of people with a different efficacies, the resulting distri-
bution of raw scores is a mixture. Here’s the code that computes the mix-
ture:
class Exam:

def MakeRawScoreDist(self, efficacies):

pmfs = thinkbayes.Pmf()

for efficacy, prob in efficacies.Items():

scores = PmfCorrect(efficacy, self.difficulties)

pmfs.Set(scores, prob)

mix = thinkbayes.MakeMixture(pmfs)

return mix

MakeRawScoreDist takes efficacies, which is a Pmf that represents the dis-
tribution of efficacy across test-takers. I assume it is Gaussian with mean 0
and standard deviation 1.5. This choice is mostly arbitrary. The probability
of getting a question correct depends on the difference between efficacy and
difficulty, so we can choose the units of efficacy and then calibrate the units
of difficulty accordingly.

pmfs is a meta-Pmf that contains one Pmf for each level of efficacy, and maps
to the fraction of test-takers at that level. MakeMixture takes the meta-pmf
and computes the distribution of the mixture (see Section 5.6).

12.6 Calibration
If we were given the distribution of difficulty, we could use
MakeRawScoreDist to compute the distribution of raw scores. But for
us the problem is the other way around: we are given the distribution of
raw scores and we want to infer the distribution of difficulty.

I assume that the distribution of difficulty is uniform with parameters
center and width. MakeDifficulties makes a list of difficulties with these
parameters.
def MakeDifficulties(center, width, n):

low, high = center-width, center+width

return numpy.linspace(low, high, n)

By trying out a few combinations, I found that center=-0.05 and width=1.8

yield a distribution of raw scores similar to the actual data, as shown in
Figure 12.3.

12.7. Posterior distribution of efficacy 139

0 10 20 30 40 50 60
raw score

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

data
model

Figure 12.3: Actual distribution of raw scores and a model to fit it.

So, assuming that the distribution of difficulty is uniform, its range is ap-
proximately -1.85 to 1.75, given that efficacy is Gaussian with mean 0 and
standard deviation 1.5.

The following table shows the range of ProbCorrect for test-takers at dif-
ferent levels of efficacy:

Difficulty
Efficacy -1.85 -0.05 1.75

3.00 0.99 0.95 0.78
1.50 0.97 0.82 0.44
0.00 0.86 0.51 0.15

-1.50 0.59 0.19 0.04
-3.00 0.24 0.05 0.01

Someone with efficacy 3 (two standard deviations above the mean) has a
99% chance of answering the easiest questions on the exam, and a 78%
chance of answering the hardest. On the other end of the range, someone
two standard deviations below the mean has only a 24% chance of answer-
ing the easiest questions.

12.7 Posterior distribution of efficacy

Now that the model is calibrated, we can compute the posterior distribution
of efficacy for Alice and Bob. Here is a version of the Sat class that uses the
new model:

140 Chapter 12. Evidence

0 1 2 3 4
efficacy

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

posterior 780
posterior 740

Figure 12.4: Posterior distributions of efficacy for Alice and Bob.

class Sat2(thinkbayes.Suite):

def __init__(self, exam, score):

self.exam = exam

self.score = score

start with the Gaussian prior

efficacies = thinkbayes.MakeGaussianPmf(0, 1.5, 3)

thinkbayes.Suite.__init__(self, efficacies)

update based on an exam score

self.Update(score)

Update invokes Likelihood, which computes the likelihood of a given test
score for a hypothetical level of efficacy.

def Likelihood(self, data, hypo):

efficacy = hypo

score = data

raw = self.exam.Reverse(score)

pmf = self.exam.PmfCorrect(efficacy)

like = pmf.Prob(raw)

return like

pmf is the distribution of raw scores for a test-taker with the given efficacy;
like is the probability of the observed score.

12.8. Predictive distribution 141

Figure 12.4 shows the posterior distributions of efficacy for Alice and Bob.
As expected, the location of Alice’s distribution is farther to the right, but
again there is some overlap.

Using TopLevel again, we compare A, the hypothesis that Alice’s efficacy is
higher, and B, the hypothesis that Bob’s is higher. The likelihood ratio is 3.4,
a bit smaller than what we got from the simple model (3.8). So this model
indicates that the data are evidence in favor of A, but a little weaker than
the previous estimate.

If our prior belief is that A and B are equally likely, then in light of this
evidence we would give A a posterior probability of 77%, leaving a 23%
chance that Bob’s efficacy is higher.

12.8 Predictive distribution

The analysis we have done so far generates estimates for Alice and Bob’s
efficacy, but since efficacy is not directly observable, it is hard to validate
the results.

To give the model predictive power, we can use it to answer a related ques-
tion: “If Alice and Bob take the math SAT again, what is the chance that
Alice will do better again?”

We’ll answer this question in two steps:

• We’ll use the posterior distribution of efficacy to generate a predictive
distribution of raw score for each test-taker.

• We’ll compare the two predictive distributions to compute the proba-
bility that Alice gets a higher score again.

We already have most of the code we need. To compute the predictive dis-
tributions, we can use MakeRawScoreDist again:

exam = Exam()

a_sat = Sat(exam, 780)

b_sat = Sat(exam, 740)

a_pred = exam.MakeRawScoreDist(a_sat)

b_pred = exam.MakeRawScoreDist(b_sat)

Then we can find the likelihood that Alice does better on the second test,
Bob does better, or they tie:

142 Chapter 12. Evidence

0.80 0.85 0.90 0.95 1.00
p_correct Alice

0.80

0.85

0.90

0.95

1.00

p_
co

rr
ec

t B
ob

Figure 12.5: Joint posterior distribution of p_correct for Alice and Bob.

a_like = thinkbayes.PmfProbGreater(a_pred, b_pred)

b_like = thinkbayes.PmfProbLess(a_pred, b_pred)

c_like = thinkbayes.PmfProbEqual(a_pred, b_pred)

The probability that Alice does better on the second exam is 63%, which
means that Bob has a 37% chance of doing as well or better.

Notice that we have more confidence about Alice’s efficacy than we do
about the outcome of the next test. The posterior odds are 3:1 that Alice’s
efficacy is higher, but only 2:1 that Alice will do better on the next exam.

12.9 Discussion

We started this chapter with the question, “How strong is the evidence that
Alice is better prepared than Bob?” On the face of it, that sounds like we
want to test two hypotheses: either Alice is more prepared or Bob is.

But in order to compute likelihoods for these hypotheses, we have to solve
an estimation problem. For each test-taker we have to find the posterior
distribution of either p_correct or efficacy.

Values like this are called nuisance parameters because we don’t care what
they are, but we have to estimate them to answer the question we care
about.

One way to visualize the analysis we did in this chapter is to plot the
space of these parameters. thinkbayes.MakeJoint takes two Pmfs, com-

12.9. Discussion 143

putes their joint distribution, and returns a joint pmf of each possible pair
of values and its probability.

def MakeJoint(pmf1, pmf2):

joint = Joint()

for v1, p1 in pmf1.Items():

for v2, p2 in pmf2.Items():

joint.Set((v1, v2), p1 * p2)

return joint

This function assumes that the two distributions are independent.

Figure 12.5 shows the joint posterior distribution of p_correct for Alice and
Bob. The diagonal line indicates the part of the space where p_correct is
the same for Alice and Bob. To the right of this line, Alice is more prepared;
to the left, Bob is more prepared.

In TopLevel.Update, when we compute the likelihoods of A and B, we add
up the probability mass on each side of this line. For the cells that fall on
the line, we add up the total mass and split it between A and B.

The process we used in this chapter—estimating nuisance parameters in
order to evaluate the likelihood of competing hypotheses—is a common
Bayesian approach to problems like this.

144 Chapter 12. Evidence

Chapter 13

Simulation

In this chapter I describe my solution to a problem posed by a patient with
a kidney tumor. I think the problem is important and relevant to patients
with these tumors and doctors treating them.

And I think the solution is interesting because, although it is a Bayesian
approach to the problem, the use of Bayes’s theorem is implicit. I present the
solution and my code; at the end of the chapter I will explain the Bayesian
part.

If you want more technical detail than I present here, you can read my paper
on this work at http://arxiv.org/abs/1203.6890.

13.1 The Kidney Tumor problem
I am a frequent reader and occasional contributor to the online statistics
forum at http://reddit.com/r/statistics. In November 2011, I read the
following message:

"I have Stage IV Kidney Cancer and am trying to determine if
the cancer formed before I retired from the military. ... Given
the dates of retirement and detection is it possible to determine
when there was a 50/50 chance that I developed the disease? Is
it possible to determine the probability on the retirement date?
My tumor was 15.5 cm x 15 cm at detection. Grade II."

I contacted the author of the message and got more information; I learned
that veterans get different benefits if it is "more likely than not" that a tumor
formed while they were in military service (among other considerations).

http://arxiv.org/abs/1203.6890
http://reddit.com/r/statistics

146 Chapter 13. Simulation

2 1 0 1 2 3 4 5 6 7
RDT (volume doublings per year)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Distribution of RDT

model
data

Figure 13.1: CDF of RDT in doublings per year.

Because renal tumors grow slowly, and often do not cause symptoms, they
are sometimes left untreated. As a result, doctors can observe the rate of
growth for untreated tumors by comparing scans from the same patient at
different times. Several papers have reported these growth rates.

I collected data from a paper by Zhang et al1. I contacted the authors to
see if I could get raw data, but they refused on grounds of medical privacy.
Nevertheless, I was able to extract the data I needed by printing one of their
graphs and measuring it with a ruler.

They report growth rates in reciprocal doubling time (RDT), which is in
units of doublings per year. So a tumor with RDT = 1 doubles in volume
each year; with RDT = 2 it quadruples in the same time, and with RDT =
−1, it halves. Figure 13.1 shows the distribution of RDT for 53 patients.

The squares are the data points from the paper; the line is a model I fit to
the data. The positive tail fits an exponential distribution well, so I used a
mixture of two exponentials.

13.2 A simple model

It is usually a good idea to start with a simple model before trying some-
thing more challenging. Sometimes the simple model is sufficient for the

1Zhang et al, Distribution of Renal Tumor Growth Rates Determined by Using Serial
Volumetric CT Measurements, January 2009 Radiology, 250, 137-144.

13.2. A simple model 147

problem at hand, and if not, you can use it to validate the more complex
model.

For my simple model, I assume that tumors grow with a constant doubling
time, and that they are three-dimensional in the sense that if the maximum
linear measurement doubles, the volume is multiplied by eight.

I learned from my correspondent that the time between his discharge from
the military and his diagnosis was 3291 days (about 9 years). So my first
calculation was, “If this tumor grew at the median rate, how big would it
have been at the date of discharge?”

The median volume doubling time reported by Zhang et al is 811 days.
Assuming 3-dimensional geometry, the doubling time for a linear measure
is three times longer.

time between discharge and diagnosis, in days

interval = 3291.0

doubling time in linear measure is doubling time in volume * 3

dt = 811.0 * 3

number of doublings since discharge

doublings = interval / dt

how big was the tumor at time of discharge (diameter in cm)

d1 = 15.5

d0 = d1 / 2.0 ** doublings

You can download the code in this chapter from http://thinkbayes.com/

kidney.py. For more information see Section 0.3.

The result, d0, is about 6 cm. So if this tumor formed after the date of dis-
charge, it must have grown substantially faster than the median rate. There-
fore I concluded that it is “more likely than not” that this tumor formed
before the date of discharge.

In addition, I computed the growth rate that would be implied if this tumor
had formed after the date of discharge. If we assume an initial size of 0.1
cm, we can compute the number of doublings to get to a final size of 15.5
cm:

assume an initial linear measure of 0.1 cm

d0 = 0.1

d1 = 15.5

http://thinkbayes.com/kidney.py
http://thinkbayes.com/kidney.py

148 Chapter 13. Simulation

how many doublings would it take to get from d0 to d1

doublings = log2(d1 / d0)

what linear doubling time does that imply?

dt = interval / doublings

compute the volumetric doubling time and RDT

vdt = dt / 3

rdt = 365 / vdt

dt is linear doubling time, so vdt is volumetric doubling time, and rdt is
reciprocal doubling time.

The number of doublings, in linear measure, is 7.3, which implies an RDT of
2.4. In the data from Zhang et al, only 20% of tumors grew this fast during
a period of observation. So again, I concluded that is “more likely than not”
that the tumor formed prior to the date of discharge.

These calculations are sufficient to answer the question as posed, and on
behalf of my correspondent, I wrote a letter explaining my conclusions to
the Veterans’ Benefit Administration.

Later I told a friend, who is an oncologist, about my results. He was sur-
prised by the growth rates observed by Zhang et al, and by what they imply
about the ages of these tumors. He suggested that the results might be in-
teresting to researchers and doctors.

But in order to make them useful, I wanted a more general model of the
relationship between age and size.

13.3 A more general model

Given the size of a tumor at time of diagnosis, it would be most useful to
know the probability that the tumor formed before any given date; in other
words, the distribution of ages.

To find it, I run simulations of tumor growth to get the distribution of size
conditioned on age. Then we can use a Bayesian approach to get the distri-
bution of age conditioned on size.

The simulation starts with a small tumor and runs these steps:

1. Choose a growth rate from the distribution of RDT.

13.3. A more general model 149

0 5 10 15 20 25 30 35 40
tumor age (years)

0.2

0.5

1

2

5

10

20

di
am

et
er

 (c
m

, l
og

 s
ca

le
)

Simulations of tumor growth

Figure 13.2: Simulations of tumor growth, size vs. time.

2. Compute the size of the tumor at the end of an interval.

3. Record the size of the tumor at each interval.

4. Repeat until the tumor exceeds the maximum relevant size.

For the initial size I chose 0.3 cm, because carcinomas smaller than that are
less likely to be invasive and less likely to have the blood supply needed for
rapid growth (see http://en.wikipedia.org/wiki/Carcinoma_in_situ).

I chose an interval of 245 days (about 8 months) because that is the median
time between measurements in the data source.

For the maximum size I chose 20 cm. In the data source, the range of ob-
served sizes is 1.0 to 12.0 cm, so we are extrapolating beyond the observed
range at each end, but not by far, and not in a way likely to have a strong
effect on the results.

The simulation is based on one big simplification: the growth rate is chosen
independently during each interval, so it does not depend on age, size, or
growth rate during previous intervals.

In Section 13.7 I review these assumptions and consider more detailed mod-
els. But first let’s look at some examples.

Figure 13.2 shows the size of simulated tumors as a function of age. The
dashed line at 10 cm shows the range of ages for tumors at that size: the
fastest-growing tumor gets there in 8 years; the slowest takes more than 35.

http://en.wikipedia.org/wiki/Carcinoma_in_situ

150 Chapter 13. Simulation

I am presenting results in terms of linear measurements, but the calculations
are in terms of volume. To convert from one to the other, again, I use the
volume of a sphere with the given diameter.

13.4 Implementation

Here is the kernel of the simulation:

def MakeSequence(rdt_seq, v0=0.01, interval=0.67, vmax=Volume(20.0)):

seq = v0,

age = 0

for rdt in rdt_seq:

age += interval

final, seq = ExtendSequence(age, seq, rdt, interval)

if final > vmax:

break

return seq

rdt_seq is an iterator that yields random values from the CDF of growth
rate. v0 is the initial volume in mL. interval is the time step in years. vmax
is the final volume corresponding to a linear measurement of 20 cm.

Volume converts from linear measurement in cm to volume in mL, based on
the simplification that the tumor is a sphere:

def Volume(diameter, factor=4*math.pi/3):

return factor * (diameter/2.0)**3

ExtendSequence computes the volume of the tumor at the end of the inter-
val.

def ExtendSequence(age, seq, rdt, interval):

initial = seq[-1]

doublings = rdt * interval

final = initial * 2**doublings

new_seq = seq + (final,)

cache.Add(age, new_seq, rdt)

return final, new_seq

age is the age of the tumor at the end of the interval. seq is a tuple that
contains the volumes so far. rdt is the growth rate during the interval, in
doublings per year. interval is the size of the time step in years.

13.5. Caching the joint distribution 151

0 5 10 15 20 25 30 35 40
ages

0.2

0.5

1

2

5

10

20

di
am

et
er

 (c
m

, l
og

 s
ca

le
)

Figure 13.3: Joint distribution of age and tumor size.

The return values are final, the volume of the tumor at the end of the inter-
val, and new_seq, a new tuple containing the volumes in seq plus the new
volume final.

Cache.Add records the age and size of each tumor at the end of each interval,
as explained in the next section.

13.5 Caching the joint distribution

Here’s how the cache works.

class Cache(object):

def __init__(self):

self.joint = thinkbayes.Joint()

joint is a joint Pmf that records the frequency of each age-size pair, so it
approximates the joint distribution of age and size.

At the end of each simulated interval, ExtendSequence calls Add:

class Cache

def Add(self, age, seq):

final = seq[-1]

cm = Diameter(final)

bucket = round(CmToBucket(cm))

self.joint.Incr((age, bucket))

152 Chapter 13. Simulation

0 10 20 30 40 50
tumor age (years)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Distribution of age for several diameters

2 cm
5 cm
10 cm
15 cm

Figure 13.4: Distributions of age, conditioned on size.

Again, age is the age of the tumor, and seq is the sequence of volumes so
far.

Before adding the new data to the joint distribution, we use Diameter to
convert from volume to diameter in centimeters:

def Diameter(volume, factor=3/math.pi/4, exp=1/3.0):

return 2 * (factor * volume) ** exp

And CmToBucket to convert from centimeters to a discrete bucket number:

def CmToBucket(x, factor=10):

return factor * math.log(x)

The buckets are equally spaced on a log scale. Using factor=10 yields a
reasonable number of buckets; for example, 1 cm maps to bucket 0 and 10
cm maps to bucket 23.

After running the simulations, we can plot the joint distribution as a pseu-
docolor plot, where each cell represents the number of tumors observed at
a given size-age pair. Figure 13.3 shows the joint distribution after 1000
simulations.

13.6 Conditional distributions

By taking a vertical slice from the joint distribution, we can get the distribu-
tion of sizes for any given age. By taking a horizontal slice, we can get the
distribution of ages conditioned on size.

13.6. Conditional distributions 153

0.5 1 2 5 10 20
diameter (cm, log scale)

0

5

10

15

20

25

30

35

40

45

tu
m

or
 a

ge
 (y

ea
rs

)

95th

75th

50th

25th

5th

Credible interval for age vs diameter

Figure 13.5: Percentiles of tumor age as a function of size.

Here’s the code that reads the joint distribution and builds the conditional
distribution for a given size.

class Cache

def ConditionalCdf(self, bucket):

pmf = self.joint.Conditional(0, 1, bucket)

cdf = pmf.MakeCdf()

return cdf

bucket is the integer bucket number corresponding to tumor size.
Joint.Conditional computes the PMF of age conditioned on bucket. The
result is the CDF of age conditioned on bucket.

Figure 13.4 shows several of these CDFs, for a range of sizes. To summarize
these distributions, we can compute percentiles as a function of size.

percentiles = [95, 75, 50, 25, 5]

for bucket in cache.GetBuckets():

cdf = ConditionalCdf(bucket)

ps = [cdf.Percentile(p) for p in percentiles]

Figure 13.5 shows these percentiles for each size bucket. The data points
are computed from the estimated joint distribution. In the model, size and
time are discrete, which contributes numerical errors, so I also show a least
squares fit for each sequence of percentiles.

154 Chapter 13. Simulation

13.7 Serial Correlation

The results so far are based on a number of modeling decisions; let’s review
them and consider which ones are the most likely sources of error:

• To convert from linear measure to volume, we assume that tumors are
approximately spherical. This assumption is probably fine for tumors
up to a few centimeters, but not for very large tumors.

• The distribution of growth rates in the simulations are based on a con-
tinuous model we chose to fit the data reported by Zhang et al, which
is based on 53 patients. The fit is only approximate and, more impor-
tantly, a larger sample would yield a different distribution.

• The growth model does not take into account tumor subtype or grade;
this assumption is consistent with the conclusion of Zhang et al:
“Growth rates in renal tumors of different sizes, subtypes and grades
represent a wide range and overlap substantially.” But with a larger
sample, a difference might become apparent.

• The distribution of growth rate does not depend on the size of the
tumor. This assumption would not be realistic for very small and very
large tumors, whose growth is limited by blood supply.

But tumors observed by Zhang et al ranged from 1 to 12 cm, and they
found no statistically significant relationship between size and growth
rate. So if there is a relationship, it is likely to be weak, at least in this
size range.

• In the simulations, growth rate during each interval is independent of
previous growth rates. In reality it is plausible that tumors that have
grown quickly in the past are more likely to grow quickly. In other
words, there is probably a serial correlation in growth rate.

Of these, the first and last seem the most problematic. I’ll investigate serial
correlation first, then come back to spherical geometry.

To simulate correlated growth, I wrote a generator2 that yields a correlated
series from a given Cdf. Here’s how the algorithm works:

1. Generate correlated values from a Gaussian distribution. This is easy
to do because we can compute the distribution of the next value con-
ditioned on the previous value.

2If you are not familiar with Python generators, see http://wiki.python.org/moin/

Generators.

http://wiki.python.org/moin/Generators
http://wiki.python.org/moin/Generators

13.7. Serial Correlation 155

2. Transform each value to its cumulative probability using the Gaussian
CDF.

3. Transform each cumulative probability to the corresponding value us-
ing the given Cdf.

Here’s what that looks like in code:

def CorrelatedGenerator(cdf, rho):

x = random.gauss(0, 1)

yield Transform(x)

sigma = math.sqrt(1 - rho**2);

while True:

x = random.gauss(x * rho, sigma)

yield Transform(x)

cdf is the desired Cdf; rho is the desired correlation. The values of x are
Gaussian; Transform converts them to the desired distribution.

The first value of x is Gaussian with mean 0 and standard deviation 1. For
subsequent values, the mean and standard deviation depend on the previ-
ous value. Given the previous x, the mean of the next value is x * rho, and
the variance is 1 - rho**2.

Transform maps from each Gaussian value, x, to a value from the given Cdf,
y.

def Transform(x):

p = thinkbayes.GaussianCdf(x)

y = cdf.Value(p)

return y

GaussianCdf computes the CDF of the standard Gaussian distribution at
x, returning a cumulative probability. Cdf.Value maps from a cumulative
probability to the corresponding value in cdf.

Depending on the shape of cdf, information can be lost in transformation,
so the actual correlation might be lower than rho. For example, when I gen-
erate 10000 values from the distribution of growth rates with rho=0.4, the
actual correlation is 0.37. But since we are guessing at the right correlation
anyway, that’s close enough.

Remember that MakeSequence takes an iterator as an argument. That inter-
face allows it to work with different generators:

156 Chapter 13. Simulation

Serial Diameter Percentiles of age
Correlation (cm) 5th 25th 50th 75th 95th
0.0 6.0 10.7 15.4 19.5 23.5 30.2
0.4 6.0 9.4 15.4 20.8 26.2 36.9

Table 13.1: Percentiles of tumor age conditioned on size.

iterator = UncorrelatedGenerator(cdf)

seq1 = MakeSequence(iterator)

iterator = CorrelatedGenerator(cdf, rho)

seq2 = MakeSequence(iterator)

In this example, seq1 and seq2 are drawn from the same distribution, but
the values in seq1 are uncorrelated and the values in seq2 are correlated
with a coefficient of approximately rho.

Now we can see what effect serial correlation has on the results; the follow-
ing table shows percentiles of age for a 6 cm tumor, using the uncorrelated
generator and a correlated generator with target ρ = 0.4.

Correlation makes the fastest growing tumors faster and the slowest slower,
so the range of ages is wider. The difference is modest for low percentiles,
but for the 95th percentile it is more than 6 years. To compute these per-
centiles precisely, we would need a better estimate of the actual serial cor-
relation.

However, this model is sufficient to answer the question we started with:
given a tumor with a linear dimension of 15.5 cm, what is the probability
that it formed more than 8 years ago?

Here’s the code:

class Cache

def ProbOlder(self, cm, age):

bucket = CmToBucket(cm)

cdf = self.ConditionalCdf(bucket)

p = cdf.Prob(age)

return 1-p

cm is the size of the tumor; age is the age threshold in years. ProbOlder

converts size to a bucket number, gets the Cdf of age conditioned on bucket,
and computes the probability that age exceeds the given value.

13.8. Discussion 157

With no serial correlation, the probability that a 15.5 cm tumor is older than
8 years is 0.999, or almost certain. With correlation 0.4, faster-growing tu-
mors are more likely, but the probability is still 0.995. Even with correlation
0.8, the probability is 0.978.

Another likely source of error is the assumption that tumors are approx-
imately spherical. For a tumor with linear dimensions 15.5 x 15 cm, this
assumption is probably not valid. If, as seems likely, a tumor this size is
relatively flat, it might have the same volume as a 6 cm sphere. With this
smaller volume and correlation 0.8, the probability of age greater than 8 is
still 95%.

So even taking into account modeling errors, it is unlikely that such a large
tumor could have formed less than 8 years prior to the date of diagnosis.

13.8 Discussion

Well, we got through a whole chapter without using Bayes’s theorem or the
Suite class that encapsulates Bayesian updates. What happened?

One way to think about Bayes’s theorem is as an algorithm for inverting
conditional probabilities. Given p(B|A), we can compute p(A|B), provided
we know p(A) and p(B). Of course this algorithm is only useful if, for some
reason, it is easier to compute p(B|A) than p(A|B).

In this example, it is. By running simulations, we can estimate the distri-
bution of size conditioned on age, or p(size|age). But it is harder to get the
distribution of age conditioned on size, or p(age|size). So this seems like a
perfect opportunity to use Bayes’s theorem.

The reason I didn’t is computational efficiency. To estimate p(size|age) for
any given size, you have to run a lot of simulations. Along the way, you end
up computing p(size|age) for a lot of sizes. In fact, you end up computing
the entire joint distribution of size and age, p(size, age).

And once you have the joint distribution, you don’t really need Bayes’s the-
orem, you can extract p(age|size) by taking slices from the joint distribution,
as demonstrated in ConditionalCdf.

So we side-stepped Bayes, but he was with us in spirit.

158 Chapter 13. Simulation

Chapter 14

A Hierarchical Model

14.1 The Geiger counter problem

I got the idea for the following problem from Tom Campbell-Ricketts,
author of the Maximum Entropy blog at http://maximum-entropy-blog.
blogspot.com. And he got the idea from E. T. Jaynes, author of the classic
Probability Theory: The Logic of Science:

Suppose that a radioactive source emits particles toward a
Geiger counter at an average rate of r particles per second, but
the counter only registers a fraction, f , of the particles that hit
it. If f is 10% and the counter registers 15 particles in a one sec-
ond interval, what is the posterior distribution of n, the actual
number of particles that hit the counter, and r, the average rate
particles are emitted?

To get started on a problem like this, think about the chain of causation that
starts with the parameters of the system and ends with the observed data:

1. The source emits particles at an average rate, r.

2. During any given second, the source emits n particles toward the
counter.

3. Out of those n particles, some number, k, get counted.

The probability that an atom decays is the same at any point in time, so
radioactive decay is well modeled by a Poisson process. Given r, the distri-
bution of n is Poisson distribution with parameter r.

http://maximum-entropy-blog.blogspot.com
http://maximum-entropy-blog.blogspot.com

160 Chapter 14. A Hierarchical Model

0 100 200 300 400 500
Number of particles (n)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

PM
F

100
250
400

Figure 14.1: Posterior distribution of n for three values of r.

And if we assume that the probability of detection for each particle is inde-
pendent of the others, the distribution of k is the binomial distribution with
parameters n and f .

Given the parameters of the system, we can find the distribution of the data.
So we can solve what is called the forward problem.

Now we want to go the other way: given the data, we want the distribution
of the parameters. This is called the inverse problem. And if you can solve
the forward problem, you can use Bayesian methods to solve the inverse
problem.

14.2 Start simple

Let’s start with a simple version of the problem where we know the value
of r. We are given the value of f , so all we have to do is estimate n.

I define a Suite called Detector that models the behavior of the detector and
estimates n.

class Detector(thinkbayes.Suite):

def __init__(self, r, f, high=500, step=1):

pmf = thinkbayes.MakePoissonPmf(r, high, step=step)

thinkbayes.Suite.__init__(self, pmf, name=r)

self.r = r

self.f = f

14.3. Make it hierarchical 161

If the average emission rate is r particles per second, the distribution of n is
Poisson with parameter r. high and step determine the upper bound for n
and the step size between hypothetical values.

Now we need a likelihood function:
class Detector

def Likelihood(self, data, hypo):

k = data

n = hypo

p = self.f

return thinkbayes.EvalBinomialPmf(k, n, p)

data is the number of particles detected, and hypo is the hypothetical num-
ber of particles emitted, n.

If there are actually n particles, and the probability of detecting any one of
them is f , the probability of detecting k particles is given by the binomial
distribution.

That’s it for the Detector. We can try it out for a range of values of r:
f = 0.1

k = 15

for r in [100, 250, 400]:

suite = Detector(r, f, step=1)

suite.Update(k)

print suite.MaximumLikelihood()

Figure 14.1 shows the posterior distribution of n for several given values of
r.

14.3 Make it hierarchical
In the previous section, we assume r is known. Now let’s relax that assump-
tion. I define another Suite, called Emitter, that models the behavior of the
emitter and estimates r:
class Emitter(thinkbayes.Suite):

def __init__(self, rs, f=0.1):

detectors = [Detector(r, f) for r in rs]

thinkbayes.Suite.__init__(self, detectors)

162 Chapter 14. A Hierarchical Model

rs is a sequence of hypothetical value for r. detectors is a sequence of
Detector objects, one for each value of r. The values in the Suite are Detec-
tors, so Emitter is a meta-Suite; that is, a Suite that contains other Suites as
values.

To update the Emitter, we have to compute the likelihood of the data under
each hypothetical value of r. But each value of r is represented by a Detector
that contains a range of values for n.

To compute the likelihood of the data for a given Detector, we loop
through the values of n and add up the total probability of k. That’s what
SuiteLikelihood does:

class Detector

def SuiteLikelihood(self, data):

total = 0

for hypo, prob in self.Items():

like = self.Likelihood(data, hypo)

total += prob * like

return total

Now we can write the Likelihood function for the Emitter:

class Detector

def Likelihood(self, data, hypo):

detector = hypo

like = detector.SuiteLikelihood(data)

return like

Each hypo is a Detector, so we can invoke SuiteLikelihood to get the likeli-
hood of the data under the hypothesis.

After we update the Emitter, we have to update each of the Detectors, too.

class Detector

def Update(self, data):

thinkbayes.Suite.Update(self, data)

for detector in self.Values():

detector.Update()

A model like this, with multiple levels of Suites, is called hierarchical.

14.4. A little optimization 163

0 100 200 300 400 500
Emission rate

0.00

0.01

0.02

0.03

0.04

0.05

0.06

PM
F

posterior r
posterior n

Figure 14.2: Posterior distributions of n and r.

14.4 A little optimization

You might recognize SuiteLikelihood; we saw it in Section 11.2. At the
time, I pointed out that we didn’t really need it, because the total prob-
ability computed by SuiteLikelihood is exactly the normalizing constant
computed and returned by Update.

So instead of updating the Emitter and then updating the Detectors, we can
do both steps at the same time, using the result from Detector.Update as
the likelihood of Emitter.

Here’s the streamlined version of Emitter.Likelihood:

class Emitter

def Likelihood(self, data, hypo):

return hypo.Update(data)

And with this version of Likelihood we can use the default version of
Update. So this version has fewer lines of code, and it runs faster because it
does not compute the normalizing constant twice.

14.5 Extracting the posteriors

After we update the Emitter, we can get the posterior distribution of r by
looping through the Detectors and their probabilities:

164 Chapter 14. A Hierarchical Model

class Emitter

def DistOfR(self):

items = [(detector.r, prob) for detector, prob in self.Items()]

return thinkbayes.MakePmfFromItems(items)

items is a list of values of r and their probabilities. The result is the Pmf of
r.

To get the posterior distribution of n, we have to compute the mixture of
the Detectors. We can use thinkbayes.MakeMixture, which takes a meta-
Pmf that maps from each distribution to its probability. And that’s exactly
what the Emitter is:

class Emitter

def DistOfN(self):

return thinkbayes.MakeMixture(self)

Figure 14.2 shows the results. Not surprisingly, the most likely value for n
is 150. Given f and n, the expected count is k = f n, so given f and k, the
expected value of n is k/ f , which is 150.

And if 150 particles are emitted in one second, the most likely value of r is
150 particles per second. So the posterior distribution of r is also centered
on 150.

The posterior distributions of r and n are similar; the only difference is that
we are slightly less certain about n. In general, we can be more certain about
the long-range emission rate, r, than about the number of particles emitted
in any particular second, n.

You can download the code in this chapter from http://thinkbayes.com/

jaynes.py. For more information see Section 0.3.

14.6 Discussion

The Geiger counter problem demonstrates the connection between causa-
tion and hierarchical modeling. In the example, the emission rate r has a
causal effect on the number of particles, n, which has a causal effect on the
particle count, k.

The hierarchical model reflects the structure of the system, with causes at
the top and effects at the bottom.

http://thinkbayes.com/jaynes.py
http://thinkbayes.com/jaynes.py

14.7. Exercises 165

1. At the top level, we start with a range of hypothetical values for r.

2. For each value of r, we have a range of values for n, and the prior
distribution of n depends on r.

3. When we update the model, we go bottom-up. We compute a poste-
rior distribution of n for each value of r, then compute the posterior
distribution of r.

So causal information flows down the hierarchy, and inference flows up.

14.7 Exercises

Exercise 14.1 This exercise is also inspired by an example in Jaynes, Proba-
bility Theory.

Suppose you buy a mosquito trap that is supposed to reduce the popula-
tion of mosquitoes near your house. Each week, you empty the trap and
count the number of mosquitoes captured. After the first week, you count
30 mosquitoes. After the second week, you count 20 mosquitoes. Estimate
the percentage change in the number of mosquitoes in your yard.

To answer this question, you have to make some modeling decisions. Here
are some suggestions:

• Suppose that each week a large number of mosquitoes, N, is bred in a
wetland near your home.

• During the week, some fraction of them, f1, wander into your yard,
and of those some fraction, f2, are caught in the trap.

• Your solution should take into account your prior belief about how
much N is likely to change from one week to the next. You can do that
by adding a level to the hierarchy to model the percent change in N.

166 Chapter 14. A Hierarchical Model

Chapter 15

Dealing with Dimensions

15.1 Belly button bacteria

Belly Button Biodiversity 2.0 (BBB2) is a nation-wide citizen science project
with the goal of identifying bacterial species that can be found in human
navels (http://bbdata.yourwildlife.org). The project might seem whim-
sical, but it is part of an increasing interest in the human microbiome, the
set of microorganisms that live on human skin and parts of the body.

In their pilot study, BBB2 researchers collected swabs from the navels of
60 volunteers, used multiplex pyrosequencing to extract and sequence frag-
ments of 16S rDNA, then identified the species or genus the fragments came
from. Each identified fragment is called a “read.”

We can use these data to answer several related questions:

• Based on the number of species observed, can we estimate the total
number of species in the environment?

• Can we estimate the prevalence of each species; that is, the fraction of
the total population belonging to each species?

• If we are planning to collect additional samples, can we predict how
many new species we are likely to discover?

• How many additional reads are needed to increase the fraction of ob-
served species to a given threshold?

These questions make up what is called the Unseen Species problem.

http://bbdata.yourwildlife.org

168 Chapter 15. Dealing with Dimensions

15.2 Lions and tigers and bears

I’ll start with a simplified version of the problem where we know that there
are exactly three species. Let’s call them lions, tigers and bears. Suppose we
visit a wild animal preserve and see 3 lions, 2 tigers and one bear.

If we have an equal chance of observing any animal in the preserve, the
number of each species we see is governed by the multinomial distribution.
If the prevalence of lions and tigers and bears is p_lion and p_tiger and
p_bear, the likelihood of seeing 3 lions, 2 tigers and one bear is

p_lion**3 * p_tiger**2 * p_bear**1

An approach that is tempting, but not correct, is to use beta distributions,
as in Section 4.5, to describe the prevalence of each species separately. For
example, we saw 3 lions and 3 non-lions; if we think of that as 3 “heads”
and 3 “tails,” then the posterior distribution of p_lion is:

beta = thinkbayes.Beta()

beta.Update((3, 3))

print beta.MaximumLikelihood()

The maximum likelihood estimate for p_lion is the observed rate, 50%.
Similarly the MLEs for p_tiger and p_bear are 33% and 17%.

But there are two problems:

1. We have implicitly used a prior for each species that is uniform from
0 to 1, but since we know that there are three species, that prior is not
correct. The right prior should have a mean of 1/3, and there should
be zero likelihood that any species has a prevalence of 100%.

2. The distributions for each species are not independent, because the
prevalences have to add up to 1. To capture this dependence, we need
a joint distribution for the three prevalences.

We can use a Dirichlet distribution to solve both of these problems (see
http://en.wikipedia.org/wiki/Dirichlet_distribution). In the same
way we used the beta distribution to describe the distribution of bias for
a coin, we can use a Dirichlet distribution to describe the joint distribution
of p_lion, p_tiger and p_bear.

The Dirichlet distribution is the multi-dimensional generalization of the
beta distribution. Instead of two possible outcomes, like heads and tails,
the Dirichlet distribution handles any number of outcomes: in this exam-
ple, three species.

http://en.wikipedia.org/wiki/Dirichlet_distribution

15.2. Lions and tigers and bears 169

If there are n outcomes, the Dirichlet distribution is described by n parame-
ters, written α1 through αn.

Here’s the definition, from thinkbayes.py, of a class that represents a
Dirichlet distribution:

class Dirichlet(object):

def __init__(self, n):

self.n = n

self.params = numpy.ones(n, dtype=numpy.int)

n is the number of dimensions; initially the parameters are all 1. I use a
numpy array to store the parameters so I can take advantage of array opera-
tions.

Given a Dirichlet distribution, the marginal distribution for each prevalence
is a beta distribution, which we can compute like this:

def MarginalBeta(self, i):

alpha0 = self.params.sum()

alpha = self.params[i]

return Beta(alpha, alpha0-alpha)

i is the index of the marginal distribution we want. alpha0 is the sum of
the parameters; alpha is the parameter for the given species.

In the example, the prior marginal distribution for each species is Beta(1,

2). We can compute the prior means like this:

dirichlet = thinkbayes.Dirichlet(3)

for i in range(3):

beta = dirichlet.MarginalBeta(i)

print beta.Mean()

As expected, the prior mean prevalence for each species is 1/3.

To update the Dirichlet distribution, we add the observations to the param-
eters like this:

def Update(self, data):

m = len(data)

self.params[:m] += data

Here data is a sequence of counts in the same order as params, so in this
example, it should be the number of lions, tigers and bears.

data can be shorter than params; in that case there are some species that
have not been observed.

170 Chapter 15. Dealing with Dimensions

0.0 0.2 0.4 0.6 0.8 1.0
Prevalence

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Pr
ob

lions
tigers
bears

Figure 15.1: Distribution of prevalences for three species.

Here’s code that updates dirichlet with the observed data and computes
the posterior marginal distributions.

data = [3, 2, 1]

dirichlet.Update(data)

for i in range(3):

beta = dirichlet.MarginalBeta(i)

pmf = beta.MakePmf()

print i, pmf.Mean()

Figure 15.1 shows the results. The posterior mean prevalences are 44%, 33%,
and 22%.

15.3 The hierarchical version

We have solved a simplified version of the problem: if we know how many
species there are, we can estimate the prevalence of each.

Now let’s get back to the original problem, estimating the total number of
species. To solve this problem I’ll define a meta-Suite, which is a Suite that
contains other Suites as hypotheses. In this case, the top-level Suite contains
hypotheses about the number of species; the bottom level contains hypothe-
ses about prevalences.

Here’s the class definition:

15.3. The hierarchical version 171

class Species(thinkbayes.Suite):

def __init__(self, ns):

hypos = [thinkbayes.Dirichlet(n) for n in ns]

thinkbayes.Suite.__init__(self, hypos)

__init__ takes a list of possible values for n and makes a list of Dirichlet
objects.

Here’s the code that creates the top-level suite:

ns = range(3, 30)

suite = Species(ns)

ns is the list of possible values for n. We have seen 3 species, so there have
to be at least that many. I chose an upper bound that seems reasonable, but
we will check later that the probability of exceeding this bound is low. And
at least initially we assume that any value in this range is equally likely.

To update a hierarchical model, you have to update all levels. Usually you
have to update the bottom level first and work up, but in this case we can
update the top level first:

#class Species

def Update(self, data):

thinkbayes.Suite.Update(self, data)

for hypo in self.Values():

hypo.Update(data)

Species.Update invokes Update in the parent class, then loops through the
sub-hypotheses and updates them.

Now all we need is a likelihood function:

class Species

def Likelihood(self, data, hypo):

dirichlet = hypo

like = 0

for i in range(1000):

like += dirichlet.Likelihood(data)

return like

data is a sequence of observed counts; hypo is a Dirichlet object.
Species.Likelihood calls Dirichlet.Likelihood 1000 times and returns
the total.

172 Chapter 15. Dealing with Dimensions

Why call it 1000 times? Because Dirichlet.Likelihood doesn’t actually
compute the likelihood of the data under the whole Dirichlet distribution.
Instead, it draws one sample from the hypothetical distribution and com-
putes the likelihood of the data under the sampled set of prevalences.

Here’s what it looks like:

class Dirichlet

def Likelihood(self, data):

m = len(data)

if self.n < m:

return 0

x = data

p = self.Random()

q = p[:m]**x

return q.prod()

The length of data is the number of species observed. If we see more species
than we thought existed, the likelihood is 0.

Otherwise we select a random set of prevalences, p, and compute the multi-
nomial PMF, which is

cx px1
1 · · · p

xn
n

pi is the prevalence of the ith species, and xi is the observed number. The
first term, cx, is the multinomial coefficient; I leave it out of the computa-
tion because it is a multiplicative factor that depends only on the data, not
the hypothesis, so it gets normalized away (see http://en.wikipedia.org/
wiki/Multinomial_distribution).

m is the number of observed species. We only need the first m elements of p;
for the others, xi is 0, so pxi

i is 1, and we can leave them out of the product.

15.4 Random sampling

There are two ways to generate a random sample from a Dirichlet dis-
tribution. One is to use the marginal beta distributions, but in that case
you have to select one at a time and scale the rest so they add up to
1 (see http://en.wikipedia.org/wiki/Dirichlet_distribution#Random_

number_generation).

http://en.wikipedia.org/wiki/Multinomial_distribution
http://en.wikipedia.org/wiki/Multinomial_distribution
http://en.wikipedia.org/wiki/Dirichlet_distribution#Random_number_generation
http://en.wikipedia.org/wiki/Dirichlet_distribution#Random_number_generation

15.4. Random sampling 173

0 5 10 15 20 25 30
Number of species

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Pr
ob

Figure 15.2: Posterior distribution of n.

A less obvious, but faster, way is to select values from n gamma distribu-
tions, then normalize by dividing through by the total. Here’s the code:

class Dirichlet

def Random(self):

p = numpy.random.gamma(self.params)

return p / p.sum()

Now we’re ready to look at some results. Here is the code that extracts the
posterior distribution of n:

def DistOfN(self):

pmf = thinkbayes.Pmf()

for hypo, prob in self.Items():

pmf.Set(hypo.n, prob)

return pmf

DistOfN iterates through the top-level hypotheses and accumulates the
probability of each n.

Figure 15.2 shows the result. The most likely value is 4. Values from 3 to
7 are reasonably likely; after that the probabilities drop off quickly. The
probability that there are 29 species is low enough to be negligible; if we
chose a higher bound, we would get nearly the same result.

Remember that this result is based on a uniform prior for n. If we have
background information about the number of species in the environment,
we might choose a different prior.

174 Chapter 15. Dealing with Dimensions

15.5 Optimization

I have to admit that I am proud of this example. The Unseen Species prob-
lem is not easy, and I think this solution is simple and clear, and takes sur-
prisingly few lines of code (about 50 so far).

The only problem is that it is slow. It’s good enough for the example with
only 3 observed species, but not good enough for the belly button data, with
more than 100 species in some samples.

The next few sections present a series of optimizations we need to make this
solution scale. Before we get into the details, here’s a road map.

• The first step is to recognize that if we update the Dirichlet distribu-
tions with the same data, the first m parameters are the same for all
of them. The only difference is the number of hypothetical unseen
species. So we don’t really need n Dirichlet objects; we can store the
parameters in the top level of the hierarchy. Species2 implements this
optimization.

• Species2 also uses the same set of random values for all of the hy-
potheses. This saves time generating random values, but it has a sec-
ond benefit that turns out to be more important: by giving all hypothe-
ses the same selection from the sample space, we make the compari-
son between the hypotheses more fair, so it takes fewer iterations to
converge.

• Even with these changes there is a major performance problem. As
the number of observed species increases, the array of random preva-
lences gets bigger, and the chance of choosing one that is approxi-
mately right becomes small. So the vast majority of iterations yield
small likelihoods that don’t contribute much to the total, and don’t
discriminate between hypotheses.

The solution is to do the updates one species at a time. Species4 is a
simple implementation of this strategy using Dirichlet objects to rep-
resent the sub-hypotheses.

• Finally, Species5 combines the sub-hypotheses into the top level and
uses numpy array operations to speed things up.

If you are not interested in the details, feel free to skip to Section 15.9 where
we look at results from the belly button data.

15.6. Collapsing the hierarchy 175

15.6 Collapsing the hierarchy

All of the bottom-level Dirichlet distributions are updated with the same
data, so the first m parameters are the same for all of them. We can eliminate
them and merge the parameters into the top-level suite. Species2 imple-
ments this optimization:

class Species2(object):

def __init__(self, ns):

self.ns = ns

self.probs = numpy.ones(len(ns), dtype=numpy.double)

self.params = numpy.ones(self.high, dtype=numpy.int)

ns is the list of hypothetical values for n; probs is the list of corresponding
probabilities. And params is the sequence of Dirichlet parameters, initially
all 1.

Species2.Update updates both levels of the hierarchy: first the probability
for each value of n, then the Dirichlet parameters:

class Species2

def Update(self, data):

like = numpy.zeros(len(self.ns), dtype=numpy.double)

for i in range(1000):

like += self.SampleLikelihood(data)

self.probs *= like

self.probs /= self.probs.sum()

m = len(data)

self.params[:m] += data

SampleLikelihood returns an array of likelihoods, one for each value of n.
like accumulates the total likelihood for 1000 samples. self.probs is mul-
tiplied by the total likelihood, then normalized. The last two lines, which
update the parameters, are the same as in Dirichlet.Update.

Now let’s look at SampleLikelihood. There are two opportunities for opti-
mization here:

• When the hypothetical number of species, n, exceeds the observed
number, m, we only need the first m terms of the multinomial PMF;
the rest are 1.

176 Chapter 15. Dealing with Dimensions

• If the number of species is large, the likelihood of the data might be
too small for floating-point (see 10.5). So it is safer to compute log-
likelihoods.

Again, the multinomial PMF is

cx px1
1 · · · p

xn
n

So the log-likelihood is

log cx + x1 log p1 + · · ·+ xn log pn

which is fast and easy to compute. Again, cx it is the same for all hypotheses,
so we can drop it. Here’s the code:

class Species2

def SampleLikelihood(self, data):

gammas = numpy.random.gamma(self.params)

m = len(data)

row = gammas[:m]

col = numpy.cumsum(gammas)

log_likes = []

for n in self.ns:

ps = row / col[n-1]

terms = data * numpy.log(ps)

log_like = terms.sum()

log_likes.append(log_like)

log_likes -= numpy.max(log_likes)

likes = numpy.exp(log_likes)

coefs = [thinkbayes.BinomialCoef(n, m) for n in self.ns]

likes *= coefs

return likes

gammas is an array of values from a gamma distribution; its length is the
largest hypothetical value of n. row is just the first m elements of gammas;
since these are the only elements that depend on the data, they are the only
ones we need.

15.7. One more problem 177

For each value of n we need to divide row by the total of the first n values
from gamma. cumsum computes these cumulative sums and stores them in
col.

The loop iterates through the values of n and accumulates a list of log-
likelihoods.

Inside the loop, ps contains the row of probabilities, normalized with the
appropriate cumulative sum. terms contains the terms of the summation,
xi log pi, and log_like contains their sum.

After the loop, we want to convert the log-likelihoods to linear likelihoods,
but first it’s a good idea to shift them so the largest log-likelihood is 0; that
way the linear likelihoods are not too small (see 10.5).

Finally, before we return the likelihood, we have to apply a correction factor,
which is the number of ways we could have observed these m species, if the
total number of species is n. BinomialCoefficient computes “n choose m”,
which is written (n

m).

As often happens, the optimized version is less readable and more error-
prone than the original. But that’s one reason I think it is a good idea to
start with the simple version; we can use it for regression testing. I plotted
results from both versions and confirmed that they are approximately equal,
and that they converge as the number of iterations increases.

15.7 One more problem

There’s more we could do to optimize this code, but there’s another prob-
lem we need to fix first. As the number of observed species increases, this
version gets noisier and takes more iterations to converge on a good answer.

The problem is that if the prevalences we choose from the Dirichlet distri-
bution, the ps, are not at least approximately right, the likelihood of the
observed data is close to zero and almost equally bad for all values of n.
So most iterations don’t provide any useful contribution to the total likeli-
hood. And as the number of observed species, m, gets large, the probability
of choosing ps with non-negligible likelihood gets small. Really small.

Fortunately, there is a solution. Remember that if you observe a set of data,
you can update the prior distribution with the entire dataset, or you can
break it up into a series of updates with subsets of the data, and the result
is the same either way.

178 Chapter 15. Dealing with Dimensions

For this example, the key is to perform the updates one species at a time.
That way when we generate a random set of ps, only one of them affects
the computed likelihood, so the chance of choosing a good one is much
better.

Here’s a new version that updates one species at a time:
class Species4(Species):

def Update(self, data):

m = len(data)

for i in range(m):

one = numpy.zeros(i+1)

one[i] = data[i]

Species.Update(self, one)

This version inherits __init__ from Species, so it represents the hypotheses
as a list of Dirichlet objects (unlike Species2).

Update loops through the observed species and makes an array, one, with all
zeros and one species count. Then it calls Update in the parent class, which
computes the likelihoods and updates the sub-hypotheses.

So in the running example, we do three updates. The first is something
like “I have seen three lions.” The second is “I have seen two tigers and no
additional lions.” And the third is “I have seen one bear and no more lions
and tigers.”

Here’s the new version of Likelihood:
class Species4

def Likelihood(self, data, hypo):

dirichlet = hypo

like = 0

for i in range(self.iterations):

like += dirichlet.Likelihood(data)

correct for the number of unseen species the new one

could have been

m = len(data)

num_unseen = dirichlet.n - m + 1

like *= num_unseen

return like

15.8. We’re not done yet 179

This is almost the same as Species.Likelihood. The difference is the fac-
tor, num_unseen. This correction is necessary because each time we see a
species for the first time, we have to consider that there were some num-
ber of other unseen species that we might have seen. For larger values of n
there are more unseen species that we could have seen, which increases the
likelihood of the data.

This is a subtle point and I have to admit that I did not get it right the first
time. But again I was able to validate this version by comparing it to the
previous versions.

15.8 We’re not done yet

Performing the updates one species at a time solves one problem, but it
creates another. Each update takes time proportional to km, where k is the
number of hypotheses and m is the number of observed species. So if we
do m updates, the total run time is proportional to km2.

But we can speed things up using the same trick we used in Section 15.6:
we’ll get rid of the Dirichlet objects and collapse the two levels of the hier-
archy into a single object. So here’s yet another version of Species:

class Species5(Species2):

def Update(self, data):

m = len(data)

for i in range(m):

self.UpdateOne(i+1, data[i])

self.params[i] += data[i]

This version inherits __init__ from Species2, so it uses ns and probs to
represent the distribution of n, and params to represent the parameters of
the Dirichlet distribution.

Update is similar to what we saw in the previous section. It loops through
the observed species and calls UpdateOne:

class Species5

def UpdateOne(self, i, count):

likes = numpy.zeros(len(self.ns), dtype=numpy.double)

for i in range(self.iterations):

likes += self.SampleLikelihood(i, count)

180 Chapter 15. Dealing with Dimensions

unseen_species = [n-i+1 for n in self.ns]

likes *= unseen_species

self.probs *= likes

self.probs /= self.probs.sum()

This function is similar to Species2.Update, with two changes:

• The interface is different. Instead of the whole dataset, we get i, the
index of the observed species, and count, how many of that species
we’ve seen.

• We have to apply a correction factor for the number of unseen species,
as in Species4.Likelihood. The difference here is that we update all
of the likelihoods at once with array multiplication.

Finally, here’s SampleLikelihood:
class Species5

def SampleLikelihood(self, i, count):

gammas = numpy.random.gamma(self.params)

sums = numpy.cumsum(gammas)[self.ns[0]-1:]

ps = gammas[i-1] / sums

log_likes = numpy.log(ps) * count

log_likes -= numpy.max(log_likes)

likes = numpy.exp(log_likes)

return likes

This is similar to Species2.SampleLikelihood; the difference is that each
update only includes a single species, so we don’t need a loop.

The runtime of this function is proportional to the number of hypotheses,
k. It runs m times, so the run time of the update is proportional to km. And
the number of iterations we need to get an accurate result is usually small.

15.9 The belly button data
That’s enough about lions and tigers and bears. Let’s get back to belly but-
tons. To get a sense of what the data look like, consider subject B1242, whose

15.9. The belly button data 181

sample of 400 reads yielded 61 species with the following counts:

92, 53, 47, 38, 15, 14, 12, 10, 8, 7, 7, 5, 5,

4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

There are a few dominant species that make up a large fraction of the whole,
but many species that yielded only a single read. The number of these “sin-
gletons” suggests that there are likely to be at least a few unseen species.

In the example with lions and tigers, we assume that each animal in the
preserve is equally likely to be observed. Similarly, for the belly button
data, we assume that each bacterium is equally likely to yield a read.

In reality, each step in the data-collection process might introduce biases.
Some species might be more likely to be picked up by a swab, or to yield
identifiable amplicons. So when we talk about the prevalence of each
species, we should remember this source of error.

I should also acknowledge that I am using the term “species” loosely. First,
bacterial species are not well defined. Second, some reads identify a partic-
ular species, others only identify a genus. To be more precise, I should say
“operational taxonomic unit”, or OTU.

Now let’s process some of the belly button data. I define a class called
Subject to represent information about each subject in the study:

class Subject(object):

def __init__(self, code):

self.code = code

self.species = []

Each subject has a string code, like “B1242”, and a list of (count, species
name) pairs, sorted in increasing order by count. Subject provides several
methods to make it easy to access these counts and species names. You can
see the details in http://thinkbayes.com/species.py. For more informa-
tion see Section 0.3.

Subject provides a method named Process that creates and updates a
Species5 suite, which represents the distributions of n and the prevalences.

And Suite2 provides DistOfN, which returns the posterior distribution of
n.

http://thinkbayes.com/species.py

182 Chapter 15. Dealing with Dimensions

60 65 70 75 80 85 90 95 100
Number of species

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Pr
ob

B1242

Figure 15.3: Distribution of n for subject B1242.

class Suite2

def DistN(self):

items = zip(self.ns, self.probs)

pmf = thinkbayes.MakePmfFromItems(items)

return pmf

Figure 15.3 shows the distribution of n for subject B1242. The probability
that there are exactly 61 species, and no unseen species, is nearly zero. The
most likely value is 72, with 90% credible interval 66 to 79. At the high end,
it is unlikely that there are as many as 87 species.

Next we compute the posterior distribution of prevalence for each species.
Species2 provides DistOfPrevalence:

class Species2

def DistOfPrevalence(self, index):

metapmf = thinkbayes.Pmf()

for n, prob in zip(self.ns, self.probs):

beta = self.MarginalBeta(n, index)

pmf = beta.MakePmf()

metapmf.Set(pmf, prob)

mix = thinkbayes.MakeMixture(metapmf)

return metapmf, mix

15.10. Predictive distributions 183

0.00 0.05 0.10 0.15 0.20 0.25
Prevalence

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

1 (92)
2 (53)
3 (47)
4 (38)
5 (15)

Figure 15.4: Distribution of prevalences for subject B1242.

index indicates which species we want. For each n, we have a different
posterior distribution of prevalence.

The loop iterates through the possible values of n and their probabilities.
For each value of n it gets a Beta object representing the marginal distri-
bution for the indicated species. Remember that Beta objects contain the
parameters alpha and beta; they don’t have values and probabilities like a
Pmf, but they provide MakePmf, which generates a discrete approximation
to the continuous beta distribution.

metapmf is a meta-Pmf that contains the distributions of prevalence, condi-
tioned on n. MakeMixture combines the meta-Pmf into mix, which combines
the conditional distributions into a single distribution of prevalence.

Figure 15.4 shows results for the five species with the most reads. The most
prevalent species accounts for 23% of the 400 reads, but since there are al-
most certainly unseen species, the most likely estimate for its prevalence is
20%, with 90% credible interval between 17% and 23%.

15.10 Predictive distributions

I introduced the hidden species problem in the form of four related ques-
tions. We have answered the first two by computing the posterior distribu-
tion for n and the prevalence of each species.

The other two questions are:

184 Chapter 15. Dealing with Dimensions

0 50 100 150 200 250 300 350 400 450
samples

2

0

2

4

6

8

10

#
 s

pe
ci

es

Figure 15.5: Simulated rarefaction curves for subject B1242.

• If we are planning to collect additional reads, can we predict how
many new species we are likely to discover?

• How many additional reads are needed to increase the fraction of ob-
served species to a given threshold?

To answer predictive questions like this we can use the posterior distribu-
tions to simulate possible future events and compute predictive distribu-
tions for the number of species, and fraction of the total, we are likely to
see.

The kernel of these simulations looks like this:

1. Choose n from its posterior distribution.

2. Choose a prevalence for each species, including possible unseen
species, using the Dirichlet distribution.

3. Generate a random sequence of future observations.

4. Compute the number of new species, num_new, as a function of the
number of additional reads, k.

5. Repeat the previous steps and accumulate the joint distribution of
num_new and k.

And here’s the code. RunSimulation runs a single simulation:

15.10. Predictive distributions 185

class Subject

def RunSimulation(self, num_reads):

m, seen = self.GetSeenSpecies()

n, observations = self.GenerateObservations(num_reads)

curve = []

for k, obs in enumerate(observations):

seen.add(obs)

num_new = len(seen) - m

curve.append((k+1, num_new))

return curve

num_reads is the number of additional reads to simulate. m is the number of
seen species, and seen is a set of strings with a unique name for each species.
n is a random value from the posterior distribution, and observations is a
random sequence of species names.

Each time through the loop, we add the new observation to seen and record
the number of reads and the number of new species so far.

The result of RunSimulation is a rarefaction curve, represented as a list of
pairs with the number of reads and the number of new species.

Before we see the results, let’s look at GetSeenSpecies and
GenerateObservations.

#class Subject

def GetSeenSpecies(self):

names = self.GetNames()

m = len(names)

seen = set(SpeciesGenerator(names, m))

return m, seen

GetNames returns the list of species names that appear in the data files, but
for many subjects these names are not unique. So I use SpeciesGenerator

to extend each name with a serial number:

def SpeciesGenerator(names, num):

i = 0

for name in names:

yield '%s-%d' % (name, i)

186 Chapter 15. Dealing with Dimensions

i += 1

while i < num:

yield 'unseen-%d' % i

i += 1

Given a name like Corynebacterium, SpeciesGenerator yields
Corynebacterium-1. When the list of names is exhausted, it yields
names like unseen-62.

Here is GenerateObservations:

class Subject

def GenerateObservations(self, num_reads):

n, prevalences = self.suite.SamplePosterior()

names = self.GetNames()

name_iter = SpeciesGenerator(names, n)

d = dict(zip(name_iter, prevalences))

cdf = thinkbayes.MakeCdfFromDict(d)

observations = cdf.Sample(num_reads)

return n, observations

Again, num_reads is the number of additional reads to generate. n and
prevalences are samples from the posterior distribution.

cdf is a Cdf object that maps species names, including the unseen, to cu-
mulative probabilities. Using a Cdf makes it efficient to generate a random
sequence of species names.

Finally, here is Species2.SamplePosterior:

def SamplePosterior(self):

pmf = self.DistOfN()

n = pmf.Random()

prevalences = self.SamplePrevalences(n)

return n, prevalences

And SamplePrevalences, which generates a sample of prevalences condi-
tioned on n:

class Species2

def SamplePrevalences(self, n):

15.11. Joint posterior 187

0 2 4 6 8 10 12 14
new species

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

k=100
k=200
k=400
k=800

Figure 15.6: Distributions of the number of new species conditioned on the
number of additional reads.

params = self.params[:n]

gammas = numpy.random.gamma(params)

gammas /= gammas.sum()

return gammas

We saw this algorithm for generating random values from a Dirichlet dis-
tribution in Section 15.4.

Figure 15.5 shows 100 simulated rarefaction curves for subject B1242. The
curves are “jittered;” that is, I shifted each curve by a random offset so they
would not all overlap. By inspection we can estimate that after 400 more
reads we are likely to find 2–6 new species.

15.11 Joint posterior

We can use these simulations to estimate the joint distribution of num_new
and k, and from that we can get the distribution of num_new conditioned on
any value of k.

def MakeJointPredictive(curves):

joint = thinkbayes.Joint()

for curve in curves:

for k, num_new in curve:

joint.Incr((k, num_new))

joint.Normalize()

return joint

188 Chapter 15. Dealing with Dimensions

MakeJointPredictive makes a Joint object, which is a Pmf whose values
are tuples.

curves is a list of rarefaction curves created by RunSimulation. Each curve
contains a list of pairs of k and num_new.

The resulting joint distribution is a map from each pair to its probability of
occurring. Given the joint distribution, we can use Joint.Conditional get
the distribution of num_new conditioned on k (see Section 9.6).

Subject.MakeConditionals takes a list of ks and computes the conditional
distribution of num_new for each k. The result is a list of Cdf objects.

def MakeConditionals(curves, ks):

joint = MakeJointPredictive(curves)

cdfs = []

for k in ks:

pmf = joint.Conditional(1, 0, k)

pmf.name = 'k=%d' % k

cdf = pmf.MakeCdf()

cdfs.append(cdf)

return cdfs

Figure 15.6 shows the results. After 100 reads, the median predicted number
of new species is 2; the 90% credible interval is 0 to 5. After 800 reads, we
expect to see 3 to 12 new species.

15.12 Coverage

The last question we want to answer is, “How many additional reads are
needed to increase the fraction of observed species to a given threshold?”

To answer this question, we need a version of RunSimulation that computes
the fraction of observed species rather than the number of new species.

class Subject

def RunSimulation(self, num_reads):

m, seen = self.GetSeenSpecies()

n, observations = self.GenerateObservations(num_reads)

curve = []

15.12. Coverage 189

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05
Fraction of species seen

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

800

100

200

10

400

1000

600

Figure 15.7: Complementary CDF of coverage for a range of additional
reads.

for k, obs in enumerate(observations):

seen.add(obs)

frac_seen = len(seen) / float(n)

curve.append((k+1, frac_seen))

return curve

Next we loop through each curve and make a dictionary, d, that maps from
the number of additional reads, k, to a list of fracs; that is, a list of values
for the coverage achieved after k reads.

def MakeFracCdfs(self, curves):

d = {}

for curve in curves:

for k, frac in curve:

d.setdefault(k, []).append(frac)

cdfs = {}

for k, fracs in d.iteritems():

cdf = thinkbayes.MakeCdfFromList(fracs)

cdfs[k] = cdf

return cdfs

Then for each value of k we make a Cdf of fracs; this Cdf represents the
distribution of coverage after k reads.

190 Chapter 15. Dealing with Dimensions

Remember that the CDF tells you the probability of falling below a given
threshold, so the complementary CDF tells you the probability of exceeding
it. Figure 15.7 shows complementary CDFs for a range of values of k.

To read this figure, select the level of coverage you want to achieve along
the x-axis. As an example, choose 90%.

Now you can read up the chart to find the probability of achieving 90%
coverage after k reads. For example, with 200 reads, you have about a 40%
chance of getting 90% coverage. With 1000 reads, you have a 90% chance of
getting 90% coverage.

With that, we have answered the four questions that make up the unseen
species problem. To validate the algorithms in this chapter with real data, I
had to deal with a few more details. But this chapter is already too long, so
I won’t discuss them here.

You can read about the problems, and how I addressed
them, at http://allendowney.blogspot.com/2013/05/

belly-button-biodiversity-end-game.html.

You can download the code in this chapter from http://thinkbayes.com/

species.py. For more information see Section 0.3.

15.13 Discussion

The Unseen Species problem is an area of active research, and I believe the
algorithm in this chapter is a novel contribution. So in fewer than 200 pages
we have made it from the basics of probability to the research frontier. I’m
very happy about that.

My goal for this book is to present three related ideas:

• Bayesian thinking: The foundation of Bayesian analysis is the idea
of using probability distributions to represent uncertain beliefs, using
data to update those distributions, and using the results to make pre-
dictions and inform decisions.

• A computational approach: The premise of this book is that it is easier
to understand Bayesian analysis using computation rather than math,
and easier to implement Bayesian methods with reusable building
blocks that can be rearranged to solve real-world problems quickly.

http://allendowney.blogspot.com/2013/05/belly-button-biodiversity-end-game.html
http://allendowney.blogspot.com/2013/05/belly-button-biodiversity-end-game.html
http://thinkbayes.com/species.py
http://thinkbayes.com/species.py

15.13. Discussion 191

• Iterative modeling: Most real-world problems involve modeling de-
cisions and trade-offs between realism and complexity. It is often im-
possible to know ahead of time what factors should be included in the
model and which can be abstracted away. The best approach is to it-
erate, starting with simple models and adding complexity gradually,
using each model to validate the others.

These ideas are versatile and powerful; they are applicable to problems in
every area of science and engineering, from simple examples to topics of
current research.

If you made it this far, you should be prepared to apply these tools to new
problems relevant to your work. I hope you find them useful; let me know
how it goes!

Index

ABC, 118
abstract type, 18, 58
Approximate Bayesian Computa-

tion, 118
arrival rate, 89
Axtell, Robert, 26

bacteria, 167
Bayes factor, 46, 125, 127, 128, 136
Bayes’s theorem, 3

derivation, 3
odds form, 44

Bayesian framework, 13
Behavioral Risk Factor Surveillance

System, 110
belly button, 167
Bernoulli process, 71
beta distribution, 38, 168
Beta object, 39, 183
biased coin, 125
binomial coefficient, 177
binomial distribution, 134, 160, 161
binomial likelihood function, 39
biodiversity, 167
bogus, 113, 126
Boston, 81
Boston Bruins, 69
BRFSS, 110, 118
bucket, 152
bus stop problem, 78

cache, 117, 151
calibration, 138
Campbell-Ricketts, Tom, 159
carcinoma, 149

causation, 159, 164
CDC, 110
Cdf, 28, 54, 61, 86, 186
Centers for Disease Control, 110
central credible interval, 104
classical estimation, 111
coefficient of variation, 110
coin toss, 1
collectively exhaustive, 6
College Board, 132
complementary CDF, 190
concrete type, 18, 58
conditional distribution, 103, 106,

148, 152, 157, 188
conditional probability, 1
conjoint probability, 2
conjugate prior, 39
conjunction, 3
continuous distribution, 39
contributors, ix
convergence, 36, 40
cookie problem, 3, 12, 44
cookie.py, 13
correlated random value, 155
coverage, 188, 190
crank science, 109
credible interval, 27, 102
Cromwell’s rule, 41
Cromwell, Oliver, 41
cumulative distribution function, 28,

86
cumulative probability, 155, 186
cumulative sum, 177

Index 193

Davidson-Pilon, Cameron, 56
decision analysis, 56, 64, 68, 93
degree of belief, 1
density, 57, 59, 63, 111
dependence, 2, 103, 104
diachronic interpretation, 5
dice, 11, 21
Dice problem, 21
dice problem, 24
Dirichlet distribution, 168, 184
distribution, 11, 54, 68

operations, 47
divide-and-conquer, 10
doubling time, 146
Dungeons and Dragons, 21, 47

efficacy, 136
enumeration, 47, 49
error, 60
ESP, 129
Euro problem, 33, 40, 118, 125
evidence, 5, 35, 45, 46, 102, 109, 125–

129, 131
exception, 114
exponential distribution, 71, 75, 146
exponentiation, 49
extra-sensory perception, 129

fair coin, 125
forward problem, 160

gamma distribution, 173, 176
Gaussian distribution, 57, 58, 61, 70,

110, 118, 121, 133, 138, 139,
154

Gaussian PDF, 58
Gee, Steve, 56
Geiger counter problem, 159, 164
generator, 154, 155, 185
German tank problem, 22, 30
growth rate, 154

heart attack, 1

height, 110
Heuer, Andreas, 71
hierarchical model, 162, 164, 170
Hoag, Dirk, 77
hockey, 69
horse racing, 44
Horsford, Eben Norton, 109
Hume, David, 130
hypothesis testing, 125

implementation, 18, 58
independence, 2, 7, 48, 50, 103, 104,

143, 149, 168
informative prior, 30
insect sampling problem, 78
inter-quartile range, 121
interface, 18, 58
intuition, 9
inverse problem, 160
IQR, 121
item response theory, 137
iterative modeling, 76
iterator, 150

Jaynes, E. T., 159
Joint, 102, 103, 105, 106, 111
joint distribution, 102, 106, 111, 143,

151, 153, 157, 168, 184, 187
Joint object, 188
Joint pmf, 98

KDE, 57, 59
kernel density estimation, 57, 59
Kidney tumor problem, 145

least squares fit, 153
light bulb problem, 78
Likelihood, 14
likelihood, 5, 60, 62, 63, 88, 99, 101,

111, 124, 127, 161
likelihood function, 23
likelihood ratio, 46, 127, 128, 136
linspace, 112

194 Index

lions and tigers and bears, 168
locomotive problem, 22, 30, 118
log scale, 152
log transform, 114
log-likelihood, 116, 176, 177
logarithm, 114

M and M problem, 6, 17
MacKay, David, 33, 45, 95, 125
MakeMixture, 74, 75, 85, 92, 138, 183
marginal distribution, 102, 106, 169
maximum, 49
maximum likelihood, 27, 35, 68, 105,

113, 115, 168
mean squared error, 24
Meckel, Johann, 109
median, 35
memoization, 117
meta-Pmf, 74, 75, 85, 92, 138, 183
meta-Suite, 162, 170
microbiome, 167
mixture, 52, 73–75, 85, 92, 146, 183
modeling, vi, 30, 40, 76, 123, 131, 147,

148
modeling error, 136, 154, 157
Monty Hall problem, 8, 15
Mosteller, Frederick, 22
Mult, 13
multinomial coefficient, 172
multinomial distribution, 168, 172,

176
mutually exclusive, 6

National Hockey League, 70
navel, 167
NHL, 70
non-linear, 92
normal distribution, 58
normalize, 64
normalizing constant, 5, 8, 44, 163
nuisance parameter, 142

numpy, vii, 59, 61, 65, 70, 90, 112, 138,
169, 173–176, 178–180, 186

objectivity, 30
observer bias, 83, 93
odds, 43
Olin College, 81
Oliver’s blood problem, 45
operational taxonomic unit, 181
optimization, 37, 116, 117, 163, 174
OTU, 181
overtime, 75

Paintball problem, 97
parameter, 39
PDF, 40, 70
Pdf, 57
PEP 8, viii
percentile, 28, 153, 156
Pmf, 54, 57
Pmf class, 11
Pmf methods, 12
Poisson distribution, 71, 73, 88, 161
Poisson process, vi, 69, 71, 75, 78, 82,

159
posterior, 5
posterior distribution, 13, 35
power law, 26
predictive distribution, 78, 87, 89, 92,

141, 183
prevalence, 167, 170, 181
Price is Right, 55
prior, 5
prior distribution, 13, 25
Prob, 12
probability, 57

conditional, 1
conjoint, 2

probability density, 57
probability density function, 40, 57,

70
probability mass function, 11

Index 195

process, 71
pseudocolor plot, 152
pyrosequencing, 167

radioactive decay, 159
random sample, 172, 186
rarefaction curve, 185, 188
raw score, 134
rDNA, 167
Red Line problem, 81
Reddit, 41, 145
regression testing, vii, 177, 179
renormalize, 13
robust estimation, 121

sample bias, 181
sample statistics, 119
SAT, 131
scaled score, 132
scipy, vii, 58, 59, 116
serial correlation, 154, 156
Showcase, 55
simulation, 47, 49, 52, 148, 150, 184
Sivia, D.S., 97
species, 167, 181
sphere, 150, 154
standardized test, 131
stick, 9
strafing speed, 100
subjective prior, 6
subjectivity, 30
sudden death, 75
suite, 6
Suite class, 16
summary statistic, 68, 121, 124
swamping the priors, 36, 40
switch, 9

table method, 7
template method pattern, 18
thinkplot, vii
total probability, 6

triangle distribution, 36, 128
trigonometry, 99
tumor type, 154
tuple, 38

uncertainty, 91
underflow, 114, 176
uniform distribution, 173
uniform distribution, 34, 52, 84
uninformative prior, 30
Unseen Species problem, 167
Update, 14

Vancouver Canucks, 69
Variability Hypothesis, 109
Veterans’ Benefit Administration,

148
volume, 150

Weibull distribution, 79
word frequency, 11

	Preface
	My theory, which is mine
	Modeling and approximation
	Working with the code
	Code style
	Prerequisites

	Bayes's Theorem
	Conditional probability
	Conjoint probability
	The cookie problem
	Bayes's theorem
	The diachronic interpretation
	The M&M problem
	The Monty Hall problem
	Discussion

	Computational Statistics
	Distributions
	The cookie problem
	The Bayesian framework
	The Monty Hall problem
	Encapsulating the framework
	The M&M problem
	Discussion
	Exercises

	Estimation
	The dice problem
	The locomotive problem
	What about that prior?
	An alternative prior
	Credible intervals
	Cumulative distribution functions
	The German tank problem
	Discussion
	Exercises

	More Estimation
	The Euro problem
	Summarizing the posterior
	Swamping the priors
	Optimization
	The beta distribution
	Discussion
	Exercises

	Odds and Addends
	Odds
	The odds form of Bayes's theorem
	Oliver's blood
	Addends
	Maxima
	Mixtures
	Discussion

	Decision Analysis
	The Price is Right problem
	The prior
	Probability density functions
	Representing PDFs
	Modeling the contestants
	Likelihood
	Update
	Optimal bidding
	Discussion

	Prediction
	The Boston Bruins problem
	Poisson processes
	The posteriors
	The distribution of goals
	The probability of winning
	Sudden death
	Discussion
	Exercises

	Observer Bias
	The Red Line problem
	The model
	Wait times
	Predicting wait times
	Estimating the arrival rate
	Incorporating uncertainty
	Decision analysis
	Discussion
	Exercises

	Two Dimensions
	Paintball
	The suite
	Trigonometry
	Likelihood
	Joint distributions
	Conditional distributions
	Credible intervals
	Discussion
	Exercises

	Approximate Bayesian Computation
	The Variability Hypothesis
	Mean and standard deviation
	Update
	The posterior distribution of CV
	Underflow
	Log-likelihood
	A little optimization
	ABC
	Robust estimation
	Who is more variable?
	Discussion
	Exercises

	Hypothesis Testing
	Back to the Euro problem
	Making a fair comparison
	The triangle prior
	Discussion
	Exercises

	Evidence
	Interpreting SAT scores
	The scale
	The prior
	Posterior
	A better model
	Calibration
	Posterior distribution of efficacy
	Predictive distribution
	Discussion

	Simulation
	The Kidney Tumor problem
	A simple model
	A more general model
	Implementation
	Caching the joint distribution
	Conditional distributions
	Serial Correlation
	Discussion

	A Hierarchical Model
	The Geiger counter problem
	Start simple
	Make it hierarchical
	A little optimization
	Extracting the posteriors
	Discussion
	Exercises

	Dealing with Dimensions
	Belly button bacteria
	Lions and tigers and bears
	The hierarchical version
	Random sampling
	Optimization
	Collapsing the hierarchy
	One more problem
	We're not done yet
	The belly button data
	Predictive distributions
	Joint posterior
	Coverage
	Discussion

