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CHAPTER 1

Introduction

1.1. Overview

Besides the book by Laumon and Moret-Bailly, see [LMBO0O], and the work (in
progress) by Fulton et al, we think there is a place for an open source textbook
on algebraic stacks and the algebraic geometry that is needed to define them. The
Stacks Project attempts to do this by building the foundations starting with com-
mutative algebra and proceeding via the theory of schemes and algebraic spaces to
a comprehensive foundation for the theory of algebraic stacks.

We expect this material to be read online as a key feature are the hyperlinks giving
quick access to internal references spread over many different pages. If you use an
embedded pdf or dvi viewer in your browser, the cross file links should work.

This project is a collaborative effort and we encourage you to help out. Please email
any typos or errors you find while reading or any suggestions, additional material,
or examples you have to [stacks.project@gmail.com. You can download a tarball
containing all source files, extract, run make, and use a dvi or pdf viewer locally.
Please feel free to edit the LaTeX files and email your improvements.

1.2. Attribution

The scope of this work is such that it is a daunting task to attribute correctly and
succinctly all of those mathematicians whose work has led to the development of the
theory we try to explain here. We hope eventually to generate enough community
interest to find contributors willing to write sections with historical remarks for
each and every chapter.

Those who contributed to this work are listed on the title page of the book version of
this work and online. Here we would like to name a selection of major contributions:

1) Jarod Alper wrote |Guide to Literature}
2) Bhargav Bhatt wrote the initial version of |Etale Morphisms of Schemes
3) Bhargav Bhatt wrote the initial version of More on Algebra, Section|15.70
4) Kiran Kedlaya contributed the initial writeup of Descent, Section |34.4
5) The initial versions of

(a) Algebra, Section
(b) Injectives, Section and
(c) the chapter

are from The CRing Project], courtesy of Akhil Mathew et al.
(6) Alex Perry wrote the material on projective modules, Mittag-Leffler mod-
ules, including the proof of Algebra, Theorem [10.94.5

58
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1.3. OTHER CHAPTERS 59

(7) Alex Perry wrote [Formal Deformation Theory}
(8) Thibaut Pugin, Zachary Maddock and Min Lee took course notes which
formed the basis for [Etale Cohomology|
(9) David Rydh has contributed many helpful comments, pointed out several
mistakes, helped out in an essential way with the material on residual
gerbes, and was the originator for the material in More on Groupoids in
Spaces, Sections [66.10] and [66.13]
(10) Burt Totaro contributed Examples, Sections and Properties
of Stacks, Section [82.12
(11) The material in the chapter [Pro-étale Cohomology|is taken from a paper
by Bhargav Bhatt and Peter Scholze.
(12) Bhargav Bhatt contributed Examples, Sections and
(13) Ofer Gabber found mistakes, contributed corrections and he contributed
Formal Spaces, Lemma[70.9.5] the material in More on Groupoids, Section
the main result of Properties of Spaces, Section[53.16] and the proof
of More on Flatness, Proposition [37.25.13
(14) Jénos Kolldr contributed Algebra, Lemma and Dualizing Com-
plexes, Proposition [45.15.7]
(15) Kiran Kedlaya wrote the initial version of More on Algebra, Section
(16) Matthew Emerton, Toby Gee, and Brandon Levin contributed some re-
sults on thickenings, in particular More on Morphisms of Stacks, Lemmas

B7.3.6| B7.3.7 and 7.3.8]

1.3. Other chapters

Preliminaries (23) |Divided Power Algebral
(24) [Hypercoverings|
(1) Schemes
(? (25) [Schemes|
(3) 26) [Constructions of Schemes
4
(5) (27) [Properties of Schemes|
(5) (28) [Morphisms of Schemes|
(6) [Sheaves on Spaces|
- (29) [Cohomology of Schemes|
(7) [Sites and Sheaves| —
(8) Stacks (30) [Divisors|
: (31) [Limits of Schemes|
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19 Mool Mool (34) [Descent|
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(16) [Smoothing Ring Maps| :
(39) More on Groupoid Schemes|
(17) [Sheaves of Modules| (40) [Ftale Morphi f Sch |
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CHAPTER 2

Conventions

2.1. Comments

The philosophy behind the conventions used in writing these documents is to choose
those conventions that work.

2.2. Set theory

We use Zermelo-Fraenkel set theory with the axiom of choice. See [Kun83]. We
do not use universes (different from SGA4). We do not stress set-theoretic issues,
but we make sure everything is correct (of course) and so we do not ignore them
either.

2.3. Categories

A category C consists of a set of objects and, for each pair of objects, a set of
morphisms between them. In other words, it is what is called a “small” category in
other texts. We will use “big” categories (categories whose objects form a proper
class) as well, but only those that are listed in Categories, Remark

2.4. Algebra

In these notes a ring is a commutative ring with a 1. Hence the category of rings
has an initial object Z and a final object {0} (this is the unique ring where 1 = 0).
Modules are assumed unitary. See [Eis95].

2.5. Notation

The natural integers are elements of N = {1,2,3,...}. The integers are elements
of Z=14{...,-2,-1,0,1,2,...}. The field of rational numbers is denoted Q. The
field of real numbers is denoted R. The field of complex numbers is denoted C.

2.6. Other chapters

Stacks|

Fields

Commutative Algebral
Brauer Groups|
Homological Algebral
Derived Categories|
Simplicial Methods|
More on Algebral

Preliminaries

Sheaves on Spaces|
Sites and Sheaves|

61
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CHAPTER 3

Set Theory

3.1. Introduction

We need some set theory every now and then. We use Zermelo-Fraenkel set theory
with the axiom of choice (ZFC) as described in [Kun83] and [Jec02].

3.2. Everything is a set

Most mathematicians think of set theory as providing the basic foundations for
mathematics. So how does this really work? For example, how do we translate the
sentence “X is a scheme” into set theory? Well, we just unravel the definitions: A
scheme is a locally ringed space such that every point has an open neighbourhood
which is an affine scheme. A locally ringed space is a ringed space such that
every stalk of the structure sheaf is a local ring. A ringed space is a pair (X, Ox)
consisting of a topological space X and a sheaf of rings Ox on it. A topological
space is a pair (X, 7) consisting of a set X and a set of subsets 7 C P(X) satisfying
the axioms of a topology. And so on and so forth.

So how, given a set S would we recognize whether it is a scheme? The first thing
we look for is whether the set S is an ordered pair. This is defined (see [Jec02],
page 7) as saying that S has the form (a,b) := {{a}, {a,b}} for some sets a,b. If
this is the case, then we would take a look to see whether a is an ordered pair (¢, d).
If so we would check whether d C P(c), and if so whether d forms the collection of
sets for a topology on the set ¢. And so on and so forth.

So even though it would take a considerable amount of work to write a complete
formula @scheme () with one free variable x in set theory that expresses the notion
“r is a scheme”, it is possible to do so. The same thing should be true for any
mathematical object.

3.3. Classes

Informally we use the notion of a class. Given a formula ¢(z,p1,...,pn), we call

C={x:¢(x,p1,....,pn)}

a class. A class is easier to manipulate than the formula that defines it, but it is not
strictly speaking a mathematical object. For example, if R is a ring, then we may
consider the class of all R-modules (since after all we may translate the sentence
“M is an R-module” into a formula in set theory, which then defines a class). A
proper class is a class which is not a set.

63
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3.6. CARDINALITY 64

In this way we may consider the category of R-modules, which is a “big” category—
in other words, it has a proper class of objects. Similarly, we may consider the “big”
category of schemes, the “big” category of rings, etc.

3.4. Ordinals

A set T is transitive if x € T implies x C T. A set « is an ordinal if it is transitive
and well-ordered by €. In this case, we define o + 1 = aU {a}, which is another
ordinal called the successor of a. An ordinal « is called a successor ordinal if there
exists an ordinal 8 such that o = 8 + 1. The smallest ordinal is () which is also
denoted 0. If « is not 0, and not a successor ordinal, then « is called a limit ordinal

and we have
“= U’yea v

The first limit ordinal is w and it is also the first infinite ordinal. The first uncount-
able ordinal w; is the set of all countable ordinals. The collection of all ordinals is
a proper class. It is well-ordered by € in the following sense: any nonempty set (or
even class) of ordinals has a least element. Given a set A of ordinals, we define the
supremum of A to be sup,c4 @ =J,c4 @ It is the least ordinal bigger or equal to
all & € A. Given any well-ordered set (5, >), there is a unique ordinal « such that
(S,>) = (a, €); this is called the order type of the well-ordered set.

3.5. The hierarchy of sets
We define, by transfinite induction, Vo = 0, Vo1 = P(V,) (power set), and for a

limit ordinal «,
Vo = U/M Vs.
Note that each V,, is a transitive set.
Lemma 3.5.1. FEvery set is an element of Vi, for some ordinal a.
Proof. See [Jec02, Lemma 6.3]. O

In [Kun83| Chapter I1I] it is explained that this lemma is equivalent to the axiom
of foundation. The rank of a set S is the least ordinal « such that S € V,. By
a partial universe we shall mean a suitably large set of the form V,, which will be
clear from the context.

3.6. Cardinality

The cardinality of a set A is the least ordinal v such that there exists a bijection
between A and . We sometimes use the notation o« = |A| to indicate this. We
say an ordinal « is a cardinal if and only if it occurs as the cardinality of some set
A—in other words, if o = |A|. We use the greek letters x, A for cardinals. The first
infinite cardinal is w, and in this context it is denoted Ry. A set is countable if its
cardinality is < Ng. If o is an ordinal, then we denote o™ the least cardinal > «.
You can use this to define N; = NS‘, Ny = NT, etc, and in fact you can define N,
for any ordinal « by transfinite induction. We note the equality ¥; = w;.

The addition of cardinals x, A is denoted k @ A; it is the cardinality of x II A\. The
multiplication of cardinals k, A is denoted k ® A; it is the cardinality of k x A. It
is uninteresting since if x and A are infinite cardinals, then kK ® A = max(x, \).
The exponentiation of cardinals x, \ is denoted x*; it is the cardinality of the set
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of (set) maps from A to k. Given any set K of cardinals, the supremum of K is
sup,.e g K = U,cx K, which is also a cardinal.

3.7. Cofinality

A cofinal subset S of a partially ordered set T is a subset S C T such that V¢ €
T3s € S(t < s). Note that a subset of a well-ordered set is a well-ordered set (with
induced ordering). Given an ordinal «, the cofinality cf(«) of « is the least ordinal
8 which occurs as the order type of some cofinal subset of . The cofinality of an
ordinal is always a cardinal (this is clear from the definition). Hence alternatively
we can define the cofinality of « as the least cardinality of a cofinal subset of «.

Lemma 3.7.1. Suppose that T = colimy<p Ty, is a colimit of sets indexed by
ordinals less than a given ordinal B. Suppose that ¢ : S — T is a map of sets.
Then ¢ lifts to a map into T, for some o < [ provided that 5 is not a limit of
ordinals indexed by S, in other words, if B is an ordinal with cf(B) > |S].

Proof. For each element s € S pick a a; < § and an element ¢; € T,,, which maps
to ¢(s) in T. By assumption a = sup,cg o is strictly smaller than §. Hence the
map @, : S — T, which assigns to s the image of ¢, in T}, is a solution. (|

The following is essentially Grothendieck’s argument for the existence of ordinals
with arbitrarily large cofinality which he used to prove the existence of enough
injectives in certain abelian categories, see [Gro57].

Proposition 3.7.2. Let k be a cardinal. Then there exists an ordinal whose
cofinality is bigger than kK.

Proof. If  is finite, then w = cf(w) works. Let us thus assume that x is infinite.
Consider the smallest ordinal o whose cardinality is strictly greater than x. We
claim that cf(a) > k. Note that « is a limit ordinal, since if & = 8 + 1, then
|a| = |8| (because o and § are infinite) and this contradicts the minimality of «.
(Of course « is also a cardinal, but we do not need this.) To get a contradiction
suppose S C « is a cofinal subset with |S| < k. For 8 € S, ie., 8 < «, we have
|8] < k by minimality of a. As « is a limit ordinal and S cofinal in o we obtain
a = geg B Hence |a] < [S|®r < k® K < k which is a contradiction with our
choice of a. O

3.8. Reflection principle

Some of this material is in the chapter of [Kun83]| called “Easy consistency proofs”.

Let ¢(x1,...,2,) be a formula of set theory. Let us use the convention that this
notation implies that all the free variables in ¢ occur among z1,...,z,. Let M be
a set. The formula ¢™(z1,...,x,) is the formula obtained from ¢(x1,...,z,) by

replacing all the Va and Jz by Vx € M and 3z € M, respectively. So the formula
(z1,22) = Jz(x € 1 A € T9) is turned into ¢M (z1,29) =z € M(x € 11 Az €
x5). The formula ¢™ is called the relativization of ¢ to M.
Theorem 3.8.1. Suppose given ¢1(x1,...,&n),. .., dm(21,...,2,) a finite col-
lection of formulas of set theory. Let My be a set. There exists a set M such that
My C M andVzxq,...,x, € M, we have

Vi=1,....,m, ¢M(z1,...,z0) ©Vi=1,...,m, ¢i(x1,...,2).

In fact we may take M =V, for some limit ordinal «.
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Proof. See [Jec02, Theorem 12.14] or [Kun83| Theorem 7.4]. O

We view this theorem as saying the following: Given any zi,...,z, € M the
formulas hold with the bound variables ranging through all sets if and only if they
hold for the bound variables ranging through elements of V,,. This theorem is a
meta-theorem because it deals with the formulas of set theory directly. It actually
says that given the finite list of formulas ¢1,..., ¢, with at most free variables
z1i,...,T, the sentence

VMo AM, Mo C M Vzy,...,2, € M
G1(x1s e ) A A DTy T0) & OV (T, ) A A OM (g, 1)

is provable in ZFC. In other words, whenever we actually write down a finite list
of formulas ¢;, we get a theorem.

It is somewhat hard to use this theorem in “ordinary mathematics” since the mean-
ing of the formulas ¢ (z1,...,2,) is not so clear! Instead, we will use the idea of
the proof of the reflection principle to prove the existence results we need directly.

3.9. Constructing categories of schemes

We will discuss how to apply this to produce, given an initial set of schemes, a
“small” category of schemes closed under a list of natural operations. Before we do
so, we introduce the size of a scheme. Given a scheme S we define

size(S) = max(Ro, K1, K2),

where we define the cardinal numbers x; and ko as follows:

(1) We let k1 be the cardinality of the set of affine opens of S.
(2) We let k2 be the supremum of all the cardinalities of all I'(U, Og) for all
U C S affine open.

Lemma 3.9.1. For every cardinal k, there exists a set A such that every element
of A is a scheme and such that for every scheme S with size(S) < k, there is an
element X € A such that X = S (isomorphism of schemes).

Proof. Omitted. Hint: think about how any scheme is isomorphic to a scheme
obtained by glueing affines. O

We denote Bound the function which to each cardinal x associates
(3.9.1.1) Bound(r) = max{x"™, kT}.

We could make this function grow much more rapidly, e.g., we could set Bound(k) =
k", and the result below would still hold. For any ordinal «, we denote Sch, the
full subcategory of category of schemes whose objects are elements of V,,. Here is
the result we are going to prove.

Lemma 3.9.2. With notations size, Bound and Sch,, as above. Let Sy be a set
of schemes. There exists a limit ordinal o with the following properties:
(1) We have Sy C Vy; in other words, So C Ob(Schy,).
(2) For any S € Ob(Schy) and any scheme T with size(T) < Bound(size(S)),
there exists a scheme S’ € Ob(Schy) such that T = 5.
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(3) For any countableﬂ diagram category T and any functor F : T — Schy,, the
limit limz F exists in Schy, if and only if it exists in Sch and moreover, in
this case, the natural morphism between them is an isomorphism.

(4) For any countable diagram category T and any functor F : T — Sch,, the
colimit colimz F' exists in Schy, if and only if it exists in Sch and moreover,
in this case, the natural morphism between them is an isomorphism.

Proof. We define, by transfinite induction, a function f which associates to every
ordinal an ordinal as follows. Let f(0) = 0. Given f(«), we define f(a+ 1) to be
the least ordinal £ such that the following hold:
(1) We have o +1 < g and f(a) < 8.
(2) Forany S € Ob(Schy () and any scheme T" with size(T') < Bound(size(S5)),
there exists a scheme S’ € Ob(Schg) such that T' = §’.
(3) For any countable diagram category Z and any functor F': Z — Schy(q), if
the limit limz F' or the colimit colimyz F exists in Sch, then it is isomorphic
to a scheme in Schg.

To see f exists, we argue as follows. Since Ob(Schy(q)) is a set, we see that
K = SUDScOb(Schy(a)) Bound(size(S)) exists and is a cardinal. Let A be a set of
schemes obtained starting with x as in Lemma [3.9.1] There is a set CountCat of
countable categories such that any countable category is isomorphic to an element
of CountCat. Hence in (3) above we may assume that Z is an element in CountCat.
This means that the pairs (Z, F') in (3) range over a set. Thus, there exists a set
B whose elements are schemes such that for every (Z, F) as in (3), if the limit or
colimit exists, then it is isomorphic to an element in B. Hence, if we pick any f
such that AU B C Vg and f > max{a + 1, f(«)}, then (1)—(3) hold. Since every
nonempty collection of ordinals has a least element, we see that f(a + 1) is well
defined. Finally, if a is a limit ordinal, then we set f(a) = sup, ., f().

Pick By such that Sy C Vg,. By construction f(5) > S and we see that also
So C Vy(,)- Moreover, as f is nondecreasing, we see Sy C Vy(g) is true for any
B > Bo. Next, choose any ordinal 8; > By with cofinality cf(3;) > w = Xy. This is
possible since the cofinality of ordinals gets arbitrarily large, see Proposition |3.7.2
We claim that o = f(8;) is a solution to the problem posed in the lemma.

The first property of the lemma holds by our choice of 5; > By above.

Since f; is a limit ordinal (as its cofinality is infinite), we get f(81) = supgz_4, f(8).
Hence {f(8) | B < 1} C f(B1) is a cofinal subset. Hence we see that

Va=Vion =U,_, Vi

Now, let S € Ob(Sch,). We define 3(S) to be the least ordinal § such that S €
Ob(Schy(g)). By the above we see that always §(S) < (1. Since Ob(Schy(s41)) C
Ob(Schy,), we see by construction of f above that the second property of the lemma
is satisfied.

Suppose that {S7,S52,...} C Ob(Sch,) is a countable collection. Consider the
function w — B1, n — B(S,). Since the cofinality of 3 is > w, the image of
this function cannot be a cofinal subset. Hence there exists a § < (1 such that
{S1,82,...} C Ob(Schy(g)). It follows that any functor F' : T — Sch, factors

1Both the set of objects and the morphism sets are countable. In fact you can prove the
lemma with Rg replaced by any cardinal whatsoever in (3) and (4).
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through one of the subcategories Schy(g). Thus, if there exists a scheme X that
is the colimit or limit of the diagram F', then, by construction of f, we see X is
isomorphic to an object of Schy(g,1) which is a subcategory of Sch,. This proves
the last two assertions of the lemma. (]

Remark|3.9.3. The lemma above can also be proved using the reflection principle.
However, one has to be careful. Namely, suppose the sentence @scheme (X ) expresses
the property “X is a scheme”, then what does the formula ¢;/§heme(X ) mean? It
is true that the reflection principle says we can find « such that for all X € V,, we
have ¢scheme(X) qbl/gheme (X)) but this is entirely useless. It is only by combining
two such statements that something interesting happens. For example suppose
drea(X,Y) expresses the property “X, Y are schemes, and Y is the reduction of
X7 (see Schemes, Definition . Suppose we apply the reflection principle to
the pair of formulas ¢1(X,Y) = ¢rea(X,Y), ¢2(X) = IY, ¢1(X,Y). Then it is easy
to see that any « produced by the reflection principle has the property that given
X € Ob(Sch,) the reduction of X is also an object of Sch, (left as an exercise).

Lemma 3.9.4. Let S be an affine scheme. Let R =T(S,Og). Then the size of S
is equal to max{No, |R|}.

Proof. There are at most max{|R|,No} affine opens of Spec(R). This is clear since
any affine open U C Spec(R) is a finite union of principal opens D(f1)U...UD(f)
and hence the number of affine opens is at most sup,, |R|" = max{|R|,Ro}, see
[Kun83|, Ch. I, 10.13]. On the other hand, we see that I'(U,O) C Ry, X ... x Ry,
and hence [I'(U,0)| < max{Ro, |Ry,|,...,|Ry,|}. Thus it suffices to prove that
|Rs| < max{No,|R|} which is omitted. O

Lemma 3.9.5. Let S be a scheme. Let S = |
size(S) < max{|I|,sup,{size(S;)}}.

i1 i be an open covering. Then
Proof. Let U C S be any affine open. Since U is quasi-compact there exist finitely

many elements i1, ...,4, € I and affine opens U; C UN S; such that U = U; UU; U
...UU,. Thus

DU, Op)| < |T(U1,0)| @ ...Q |T(Uy,, O)| < sup,{size(S;)}

Moreover, it shows that the set of affine opens of S has cardinality less than or
equal to the cardinality of the set

H H {affine opens of S;, } x ... x {affine opens of S;}.
NEW iy, .enyin €]
Each of the sets inside the disjoint union has cardinality at most sup,{size(S;)}. The
index set has cardinality at most max{|I|,No}, see [Kun83l, Ch. I, 10.13]. Hence
by [Jec02 Lemma 5.8] the cardinality of the coproduct is at most max{Ro, |I|} ®
sup, {size(S;)}. The lemma follows. O

Lemma 3.9.6. Let f: X — S, g:Y — S be morphisms of schemes. Then we
have size(X xgY) < max{size(X), size(Y)}.

Proof. Let S = |J,cx Sk be an affine open covering. Let X = (J,c;U;, ¥V =
Ujes Vj be affine open coverings with I, J of cardinality < size(X),size(Y). For
each i € I there exists a finite set K; of k € K such that f(U;) C Ueg, Sk For
each j € J there exists a finite set K; of k € K such that g(V}) C UkeK,- Sk. Hence
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f(X),g(Y) are contained in S = ;¢ Sk with K" = U;c; Ki UU,¢; K;. Note
that the cardinality of K’ is at most max{Xy, |I|,|J|}. Applying Lemma we see
that it suffices to prove that size(f~1(Sk) x5, g7 1(Sk)) < max{size(X),size(Y))}
for k € K'. In other words, we may assume that S is affine.

Assume S affine. Let X = J,.; Ui, Y = Uje] V; be affine open coverings with I,
J of cardinality < size(X),size(Y). Again by Lemma it suffices to prove the
lemma for the products U; xg V;. By Lemma we see that it suffices to show
that

|A ®c B| < max{Ro, |4, |B|}.
We omit the proof of this inequality. O

Lemma 3.9.7. Let S be a scheme. Let f: X — S be locally of finite type with X
quasi-compact. Then size(X) < size(S).

Proof. We can find a finite affine open covering X = Ui:l,...n U; such that each
U; maps into an affine open S; of S. Thus by Lemma we reduce to the case
where both S and X are affine. In this case by Lemma [3.9.4] we see that it suffices
to show

|Alz1, ..., 2] < max{Rg, |A]}.

We omit the proof of this inequality. O

In Algebra, Lemma [[0.106.13] we will show that if A — B is an epimorphism of
rings, then |B| < max(|A|,Ng). The analogue for schemes is the following lemma.

Lemma 3.9.8. Let f: X =Y be a monomorphism of schemes. If at least one of
the following properties holds, then size(X) < size(Y):

(1) f is quasi-compact,

(2) f is locally of finite presentation,

(3) add more here as needed.

But the bound does not hold for monomorphisms which are locally of finite type.

Proof. Let Y = (J,;c; V; be an affine open covering of ¥ with [J| < size(Y). By
Lemma [3.9.5] it suffices to bound the size of the inverse image of Vj in X. Hence
we reduce to the case that Y is affine, say Y = Spec(B). For any affine open
Spec(A4) C X we have |A| < max(|B|,Ng) = size(Y), see remark above and Lemma
Thus it suffices to show that X has at most size(Y") affine opens. This is clear
if X is quasi-compact, whence case (1) holds. In case (2) the number of isomorphism
classes of B-algebras A that can occur is bounded by size(B), because each A is
of finite type over B, hence isomorphic to an algebra Blz1,...,2,]/(f1,.--, fm)
for some n,m, and f; € Blzy,...,z,]. However, as X — Y is a monomorphism,
there is a unique morphism Spec(A) — X over Y = Spec(B) if there is one, hence
the number of affine opens of X is bounded by the number of these isomorphism
classes.

To prove the final statement of the lemma consider the ring B = [],.n F2 and
set Y = Spec(B). For every ultrafilter &/ on N we obtain a maximal ideal my,
with residue field Fy; the map B — F5 sends the element (x,,) to limy 2,. Details
omitted. The morphism of schemes X = [[,, Spec(F2) — Y is a monomorphism
as all the points are distinct. However the cardinality of the set of affine open
subschemes of X is equal to the cardinality of the set of ultrafilters on IN which is
22" We conclude as |B| = 2% < 22" O
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000R Lemmal 3.9.9. Let « be an ordinal as in Lemmam above. The category Schy,
satisfies the following properties:

(1) If X,Y, S € Ob(Schy,), then for any morphisms f: X — S, g:Y — S the
fibre product X xgY in Schy, exists and is a fibre product in the category
of schemes.

(2) Given any at most countable collection Sy, Sa, ... of elements of Ob(Schy,),
the coproduct [ [, S; exists in Ob(Schy) and is a coproduct in the category
of schemes.

(3) For any S € Ob(Schy) and any open immersion U — S, there exists a
V € Ob(Schy,) with V=2 U.

(4) For any S € Ob(Schy) and any closed immersion T — S, there exists a
S’ € Ob(Schy,) with 8" = T.

(5) For any S € Ob(Schy) and any finite type morphism T — S, there exists
a S’ € Ob(Schy) with 8" = T.

(6) Suppose S is a scheme which has an open covering S = J,c; Si such that
there exists a T € Ob(Schy) with (a) size(S;) < size(T)™ for all i € I,
and (b) |I| < size(T)X0. Then S is isomorphic to an object of Sch,.

(7) For any S € Ob(Schy,) and any morphism f : T — S locally of finite type
such that T can be covered by at most size(S)X0 open affines, there exists
a S’ € Ob(Schy) with 8" = T. For example this holds if T can be covered
by at most |R| = 280 = R{° open affines.

(8) For any S € Ob(Schy) and any monomorphism T — S which is either lo-
cally of finite presentation or quasi-compact, there exists a S’ € Ob(Schy,)
with 8" =2 T.

(9) Suppose that T € Ob(Schy,) is affine. Write R = T(T,Or). Then any of
the following schemes is isomorphic to a scheme in Schy,:

(a) For any ideal I C R with completion R* = lim, R/I", the scheme
Spec(R*).

(b) For any finite type R-algebra R, the scheme Spec(R’).

(c) For any localization S~ R, the scheme Spec(S™1R).

(d) For any prime p C R, the scheme Spec(k(p)).

(e) For any subring R’ C R, the scheme Spec(R').

(f) Any scheme of finite type over a ring of cardinality at most |R|™°.

(8)

And so on.

Proof. Statements (1) and (2) follow directly from the definitions. Statement (3)
follows as the size of an open subscheme U of S is clearly smaller than or equal
to the size of S. Statement (4) follows from (5). Statement (5) follows from (7).
Statement (6) follows as the size of S is < max{|I|,sup, size(S;)} < size(T)¥° by
Lemma Statement (7) follows from (6). Namely, for any affine open V. C T
we have size(V) < size(S) by Lemma [3.9.7 Thus, we see that (6) applies in the
situation of (7). Part (8) follows from Lemma [3.9.8]

Statement (9) is translated, via Lemma into an upper bound on the cardi-
nality of the rings R*, S~'R, k(p), R, etc. Perhaps the most interesting one is the
ring R*. As a set, it is the image of a surjective map RN — R*. Since |[RN| = |R|o,
we see that it works by our choice of Bound(x) being at least k*°. Phew! (The
cardinality of the algebraic closure of a field is the same as the cardinality of the

field, or it is Ng.) O
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Remark 3.9.10. Let R be a ring. Suppose we consider the ring [, cqpec(r) £(P)-

The cardinality of this ring is bounded by |R|2‘R| but is not bounded by |R|*° in
general. For example if R = Cl[z] it is not bounded by |R[¥ and if R =[], .n F2

it is not bounded by |R|I®l. Thus the “And so on” of Lemma above should
be taken with a grain of salt. Of course, if it ever becomes necessary to consider
these rings in arguments pertaining to fppf/ étale cohomology7 then we can change
the function Bound above into the function x +— k2

In the following lemma we use the notion of an fpqc covering which is introduced
in Topologies, Section [33.8]

Lemmal 3.9.11. Let f : X — Y be a morphism of schemes. Assume there
exists an fpgc covering {g; : Y; — Y},ey such that g; factors through f. Then
size(Y) < size(X).

Proof. Let V C Y be an affine open. By definition there exist n > 0 and a :
{1,...,n} = J and affine opens V; C Y, ;) such that V' = g,1)(V1)U...Ugam)(Vp).
Denote h; : Y; — X a morphism such that f o h; = g;. Then hyy (V1)U ... U
ha(n)(Vi) is a quasi-compact subset of f ~1(V). Hence we can find a quasi-compact
open W C f~1(V) which contains ha(i) (Vi) for @ = 1,...,n. In particular V' =
fF).

On the one hand this shows that the cardinality of the set of affine opens of Y
is at most the cardinality of the set S of quasi-compact opens of X. Since every
quasi-compact open of X is a finite union of affines, we see that the cardinality of
this set is at most sup |S|" = max(Rg, |S|). On the other hand, we have Oy (V) C
[lizi...n Ov.g, (Vi) because {V; — V'} is an fpqc covering. Hence Oy (V) C Ox (W)
because V; —> V factors through W. Again since W has a finite covering by affine
opens of X we conclude that |Oy (V)| is bounded by the size of X. The lemma
now follows from the definition of the size of a scheme. ]

In the following lemma we use the notion of an fppf covering which is introduced
in Topologies, Section

Lemma 3.9.12. Let {f; : X; — X}ier be an fppf covering of a scheme. There
exists an fppf covering {W; — X} c; which is a refinement of {X; — X}icr such
that size([[ W) < size(X).

Proof. Choose an affine open covering X = (J,c4 Uas with |A| < size(X). For
each a we can choose a finite subset I, C I and for ¢ € I, a quasi-compact open
Wa,i C X; such that U, = U,¢;. fi( M) Then size(W, ;) < size(X) by Lemma

3.9.70 We conclude that size([ [, [[;c;, Wi.a) < size(X) by Lemma m O

3.10. Sets with group action

Let G be a group. We denote G-Sets the “big” category of G-sets. For any ordinal
a, we denote G-Sets, the full subcategory of G-Sets whose objects are in V.
As a notion for size of a G-set we take size(S) = max{Rg, |G|, |S|} (where |G|
and |S| are the cardinality of the underlying sets). As above we use the function
Bound(k) = kM.

Lemma 3.10.1. With notations G, G-Sets,, size, and Bound as above. Let Sy
be a set of G-sets. There exists a limit ordinal « with the following properties:
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(1) We have So U{cG} C Ob(G-Setsy).

(2) Forany S € Ob(G-Setsy) and any G-set T with size(T) < Bound(size(S)),
there exists a S’ € Ob(G-Setsy) that is isomorphic to T

(3) For any countable diagram category T and any functor F : T — G-Sets,,
the limit limz F' and colimit colimz F exist in G-Sets, and are the same
as in G-Sets.

Proof. Omitted. Similar to but easier than the proof of Lemma [3.9.2] above. O

Lemma) 3.10.2. Let a be an ordinal as in Lemma above. The category
G-Sets,, satisfies the following properties:
(1) The G-set ¢G is an object of G-Sets,.
(2) (Co)Products, fibre products, and pushouts exist in G-Sets, and are the
same as their counterparts in G-Sets.
(3) Given an object U of G-Sets,, any G-stable subset O C U is isomorphic
to an object of G-Sets,,.

Proof. Omitted. O

3.11. Coverings of a site

Suppose that C is a category (as in Categories, Deﬁnition and that Cov(C) is
a proper class of coverings satisfying properties (1), (2), and (3) of Sites, Definition
[[.6.21 We list them here:
(1) If V — U is an isomorphism, then {V — U} € Cov(C).
(2) If {U; = U}ier € Cov(C) and for each i we have {V;; — U, };c, € Cov(C),
then {Vj; = U}icr jes, € Cov(C).
(3) If {U; —» U}ier € Cov(C) and V — U is a morphism of C, then U; xy V
exists for all ¢ and {U; xy V — V}ier € Cov(C).
For an ordinal a, we set Cov(C), = Cov(C)NV,. Given an ordinal a and a cardinal
k, we set Cov(C), o equal to the set of elements U = {p; : U; = Uticr € Cov(C)q
such that |I| < k.

We recall the following notion, see Sites, Definition Two families of mor-
phisms, {¢; : U; — Ulier and {¢; : W; — U}jey, with the same target of C are
called combinatorially equivalent if there exist maps o : I — J and 5 : J — I such
that ©; = ;) and 1; = @g(;). This defines an equivalence relation on families of
morphisms having a fixed target.

Lemma 3.11.1. With notations as above. Let Covy C Couv(C) be a set contained in
Cov(C). There exist a cardinal k and a limit ordinal o with the following properties:
(1) We have Couy C Cov(C)y -
(2) The set of coverings Cov(C)y o satisfies (1), (2), and (3) of Sites, Defini-
tion (see above). In other words (C, Cov(C)y o) is a site.
(3) Every covering in Cou(C) is combinatorially equivalent to a covering in

Cov(C).ar-

Proof. To prove this, we first consider the set S of all sets of morphisms of C with
fixed target. In other words, an element of S is a subset T' of Arrows(C) such that
all elements of T have the same target. Given a family U = {¢; : U; — U}ies of
morphisms with fixed target, we define Supp(U) = {¢ € Arrows(C) | Fi € I, =
@;}. Note that two families U = {p; : Uy = Ulier and V = {V; — V},c are
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combinatorially equivalent if and only if Supp(U) = Supp(V). Next, we define
S C S to be the subset S; = {T' € S| 3 U € Cov(C) T = Supp(Ud)}. For
every element T € S;, set S(T') to equal the least ordinal 8 such that there exists a
U € Cov(C)p such that T' = Supp (). Finally, set 8y = suppeg. S(T). At this point
it follows that every U € Cov(C) is combinatorially equivalent to some element of
COV(C)QO.

Let k be the maximum of Ry, the cardinality |Arrows(C)|,

Sup{Ui*)U}iEIECOV(C)ﬁO |I|7 and Sup{Ui*)U}i€1€COV0 |I"

Since k is an infinite cardinal, we have k ® k = k. Note that obviously Cov(C)g, =
COV(C),{ﬁO.

We define, by transfinite induction, a function f which associates to every ordinal
an ordinal as follows. Let f(0) = 0. Given f(«), we define f(a+ 1) to be the least
ordinal 8 such that the following hold:
(1) We have a +1 < 8 and f(a) < 8.
(2) If {U; = Utier € Cov(C)y, #(a) and for each i we have {W;; — Ui}jecs, €
COV(C)H}f(a), then {Wij — U}ie[Jeji S COV(C),@,B.
(3) If {U; — Utier € Cov(C)u,o and W — U is a morphism of C, then
{Ui xy W — W}Z‘g] S COV(C),@[}.
To see [ exists we note that clearly the collection of all coverings {W;; — U} and
{UixyW — W} that occur in (2) and (3) form a set. Hence there is some ordinal 3
such that V3 contains all of these coverings. Moreover, the index set of the covering
{Wij — U} has cardinality ), ;|J;] <k ® k = &, and hence these coverings are
contained in Cov(C). g. Since every nonempty collection of ordinals has a least
element we see that f(a + 1) is well defined. Finally, if « is a limit ordinal, then
we set f(a) =sup, ., f(&).

Pick an ordinal $; such that Arrows(C) C V3,, Covg C V3,, and 51 > By. By con-
struction f(81) > B and we see that the same properties hold for Vg,). Moreover,
as f is nondecreasing this remains true for any 8 > ;. Next, choose any ordinal
B2 > 1 with cofinality c¢f(82) > x. This is possible since the cofinality of ordinals
gets arbitrarily large, see Proposition [3.7.2] We claim that the pair x, a = f(82) is
a solution to the problem posed in the lemma.

The first and third property of the lemma holds by our choices of , B2 > 81 > Bo
above.

Since f; is a limit ordinal (as its cofinality is infinite) we get f(52) = supg.g, f(5)-
Hence {f(8) | B < B2} C f(B2) is a cofinal subset. Hence we see that

Vo =Via =U,_,, Vo

Now, let & € Covyo. We define S(U) to be the least ordinal 8 such that U €
Cov,., s(3)- By the above we see that always 3(U) < fa.

We have to show properties (1), (2), and (3) defining a site hold for the pair
(C,CovVy,q). The first holds because by our choice of 85 all arrows of C are contained
in Vi (g,). For the third, we use that given a coveringd = {U; — U}ics € Cov(C)x,a
we have S(U) < P2 and hence any base change of I is by construction of f contained
in Cov(C),,f(s+1) and hence in Cov(C)x -
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Finally, for the second condition, suppose that {U; — U}ier € Cov(C),, f(a) and
for each i we have W; = {W;; — Ui}jes, € Cov(C)y (). Consider the function
I — PBa, i+ B(W;). Since the cofinality of B3 is > k > |I| the image of this function
cannot be a cofinal subset. Hence there exists a 8 < 1 such that W; € Cov, ()
for all 7 € I. It follows that the covering {W;; — U}ics je, is an element of
Cov(C)w,f(8+1) C Cov(C),qa as desired. O

Remark| 3.11.2. It is likely the case that, for some limit ordinal «, the set of
coverings Cov(C),, satisfies the conditions of the lemma. This is after all what
an application of the reflection principle would appear to give (modulo caveats as

described at the end of Section and in Remark [3.9.3)).

3.12. Abelian categories and injectives

The following lemma applies to the category of modules over a sheaf of rings on a
site.

Lemma 3.12.1. Suppose given a big category A (see Categories, Remark .
Assume A is abelian and has enough injectives. See Homology, Definitions|[12.5.

and |12.23.4) Then for any given set of objects {As}ses of A, there is an abelian
subcategory A" C A with the following properties:

(1) Ob(A) is a set,

(2) Ob(A") contains As for each s € S,

(3) A’ has enough injectives, and

(4) an object of A’ is injective if and only if it is an injective object of A.

Proof. Omitted. ]
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CHAPTER 4

Categories

0011

4.1. Introduction

0012 Categories were first introduced in [EM45]. The category of categories (which is a
proper class) is a 2-category. Similarly, the category of stacks forms a 2-category.
If you already know about categories, but not about 2-categories you should read
Section .27 as an introduction to the formal definitions later on.

4.2. Definitions
0013 We recall the definitions, partly to fix notation.

0014 Definition 4.2.1. A category C consists of the following data:

(1) A set of objects Ob(C).

(2) For each pair x,y € Ob(C) a set of morphisms Mor¢(z,y).

(3) For each triple z,y, z € Ob(C) a composition map More(y, 2) x More (z,y) —
Mor¢ (z, z), denoted (¢, ¥) — ¢ o .

These data are to satisfy the following rules:

(1) For every element x € Ob(C) there exists a morphism id, € Mor¢(z, )
such that id, o ¢ = ¢ and 1 oid, = 1) whenever these compositions make
sense.

(2) Composition is associative, i.e., (¢ 0o 1) o x = ¢ o (1 o x) whenever these
compositions make sense.

It is customary to require all the morphism sets Mor¢(x,y) to be disjoint. In this
way a morphism ¢ : x — y has a unique source x and a unique target y. This is
not strictly necessary, although care has to be taken in formulating condition (2)
above if it is not the case. It is convenient and we will often assume this is the case.
In this case we say that ¢ and ¥ are composable if the source of ¢ is equal to the
target of v, in which case ¢ o v is defined. An equivalent definition would be to
define a category as a quintuple (Ob, Arrows, s, ¢, o) consisting of a set of objects,
a set of morphisms (arrows), source, target and composition subject to a long list
of axioms. We will occasionally use this point of view.

0015 Remark 4.2.2. Big categories. In some texts a category is allowed to have a
proper class of objects. We will allow this as well in these notes but only in the
following list of cases (to be updated as we go along). In particular, when we say:
“Let C be a category” then it is understood that Ob(C) is a set.

(1) The category Sets of sets.
(2) The category Ab of abelian groups.

76
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The category Groups of groups.

Given a group G the category G-Sets of sets with a left G-action.

Given a ring R the category Modg of R-modules.

Given a field k the category of vector spaces over k.

The category of rings.

The category of schemes.

The category Top of topological spaces.

Given a topological space X the category PSh(X) of presheaves of sets

over X.

Given a topological space X the category Sh(X) of sheaves of sets over

X.

Given a topological space X the category PAb(X) of presheaves of abelian

groups over X.

(13) Given a topological space X the category Ab(X) of sheaves of abelian
groups over X.

(14) Given a small category C the category of functors from C to Sets.

(15) Given a category C the category of presheaves of sets over C.

(16) Given a site C the category of sheaves of sets over C.

—~ —
= =~~~
— O © 00~ O Ol = W
~— M e —

—~
—_
[\
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One of the reason to enumerate these here is to try and avoid working with some-
thing like the “collection” of “big” categories which would be like working with the
collection of all classes which I think definitively is a meta-mathematical object.

Remark| 4.2.3. It follows directly from the definition that any two identity mor-
phisms of an object = of A are the same. Thus we may and will speak of the identity
morphism id, of x.

Definition 4.2.4. A morphism ¢ : x — y is an isomorphism of the category C if
there exists a morphism %) : y — x such that ¢ oy = idy and ¥ o ¢ = id,.

An isomorphism ¢ is also sometimes called an invertible morphism, and the mor-
phism % of the definition is called the inverse and denoted ¢~'. It is unique if it
exists. Note that given an object x of a category A the set of invertible elements
Aut 4(z) of Mor 4(z, z) forms a group under composition. This group is called the
automorphism group of x in A.

Definition 4.2.5. A groupoid is a category where every morphism is an isomor-
phism.

Example 4.2.6. A group G gives rise to a groupoid with a single object z and
morphisms Mor(z, z) = G, with the composition rule given by the group law in G.
Every groupoid with a single object is of this form.

Example| 4.2.7. A set C gives rise to a groupoid C defined as follows: As objects
we take Ob(C) := C and for morphisms we take Mor(x, y) empty if z # y and equal
to {id,} if z = y.

Definition 4.2.8. A functor F': A — B between two categories A, B is given by
the following data:
(1) A map F: Ob(A) — Ob(B).
(2) For every z,y € Ob(A) a map F : Mora(z,y) — Morg(F(z), F(y)),
denoted ¢ — F(¢).


http://stacks.math.columbia.edu/tag/0016
http://stacks.math.columbia.edu/tag/0017
http://stacks.math.columbia.edu/tag/0018
http://stacks.math.columbia.edu/tag/0019
http://stacks.math.columbia.edu/tag/001A
http://stacks.math.columbia.edu/tag/001B

001C

001D

001E

001F

001G

001H

4.2. DEFINITIONS 78

These data should be compatible with composition and identity morphisms in the
following manner: F'(¢o)) = F(¢)oF () for a composable pair (¢, ¥) of morphisms
of A and F(id;) = idp(y)-

Note that every category A has an identity functor id 4. In addition, given a functor
G : B — C and a functor F': A — B there is a composition functor Go F : A — C
defined in an obvious manner.

Definition 4.2.9. Let F': A — B be a functor.
(1) We say F is faithful if for any objects x,y of Ob(A) the map
F : Mor4(z,y) — Morg(F(z), F(y))
is injective.
(2) If these maps are all bijective then F is called fully faithful.

(3) The functor F is called essentially surjective if for any object y € Ob(B)
there exists an object € Ob(.A) such that F(x) is isomorphic to y in B.

Definition 4.2.10. A subcategory of a category B is a category A whose objects
and arrows form subsets of the objects and arrows of B and such that source,
target and composition in A agree with those of B. We say A is a full subcategory
of B if Mor(z,y) = Morg(z,y) for all z,y € Ob(A). We say A is a strictly full
subcategory of B if it is a full subcategory and given x € Ob(A) any object of B
which is isomorphic to z is also in A.

If A C B is a subcategory then the identity map is a functor from A to B. Fur-
thermore a subcategory A C B is full if and only if the inclusion functor is fully
faithful. Note that given a category B the set of full subcategories of B is the same
as the set of subsets of Ob(B).

Remark| 4.2.11. Suppose that A is a category. A functor F' from A to Setsis a
mathematical object (i.e., it is a set not a class or a formula of set theory, see Sets,
Section even though the category of sets is “big”. Namely, the range of F' on
objects will be a set F/(Ob(A)) and then we may think of F' as a functor between
A and the full subcategory of the category of sets whose objects are elements of

F(Ob(A)).

Example 4.2.12. A homomorphism p : G — H of groups gives rise to a functor
between the associated groupoids in Example It is faithful (resp. fully faithful)
if and only if p is injective (resp. an isomorphism).

Example 4.2.13. Given a category C and an object X € Ob(C) we define the cate-
gory of objects over X, denoted C/X as follows. The objects of C/X are morphisms
Y — X for some Y € Ob(C). Morphisms between objects Y — X and Y’ — X are
morphisms Y — Y” in C that make the obvious diagram commute. Note that there
is a functor px : C/X — C which simply forgets the morphism. Moreover given a
morphism f : X’ — X in C there is an induced functor F': C/ X’ — C/X obtained
by composition with f, and px o F' = px-.

Example 4.2.14. Given a category C and an object X € Ob(C) we define the
category of objects under X, denoted X/C as follows. The objects of X/C are
morphisms X — Y for some Y € Ob(C). Morphisms between objects X — Y and
X — Y’ are morphisms Y — Y’ in C that make the obvious diagram commute.
Note that there is a functor px : X/C — C which simply forgets the morphism.
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Moreover given a morphism f : X’ — X in C there is an induced functor F' : X/C —
X'/C obtained by composition with f, and px: o F = px.

0011 |Definition| 4.2.15. Let F,G : A — B be functors. A natural transformation, or
a morphism of functorst : F' — G, is a collection {t, },con(4) such that
(1) ty : F(z) — G(z) is a morphism in the category B, and
(2) for every morphism ¢ : x — y of A the following diagram is commutative

F(z) —=> G(x)
F(¢)l lG(aﬁ)

Sometimes we use the diagram

to indicate that ¢ is a morphism from F to G.

Note that every functor F' comes with the identity transformation idp : F' — F.
In addition, given a morphism of functors ¢t : F — G and a morphism of functors
s : B — F then the composition t o s is defined by the rule

(tos)y =ty o8, : E(x) = G(x)

for z € Ob(A). Tt is easy to verify that this is indeed a morphism of functors from
FE to G. In this way, given categories A and B we obtain a new category, namely
the category of functors between A and B.

02C2 Remark|4.2.16. This is one instance where the same thing does not hold if A is
a “big” category. For example consider functors Sets — Sets. As we have currently
defined it such a functor is a class and not a set. In other words, it is given by a
formula in set theory (with some variables equal to specified sets)! It is not a good
idea to try to consider all possible formulae of set theory as part of the definition of
a mathematical object. The same problem presents itself when considering sheaves
on the category of schemes for example. We will come back to this point later.

001J Definition 4.2.17. An equivalence of categories F' : A — B is a functor such that
there exists a functor G : B — A such that the compositions F' o G and G o F are
isomorphic to the identity functors idg, respectively id 4. In this case we say that
G is a quasi-inverse to F.

055G |Lemma 4.2.18. Let F' : A — B be a fully faithful functor. Suppose for every
X € Ob(B) given an object j(X) of A and an isomorphism ix : X — F(j(X)).
Then there is a unique functor j : B — A such that j extends the rule on objects,
and the isomorphisms ix define an isomorphism of functors idg — Foj. Moreover,
j and F are quasi-inverse equivalences of categories.

Proof. This lemma proves itself. O

02C3 |Lemma 4.2.19. A functor is an equivalence of categories if and only if it is both
fully faithful and essentially surjective.
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Proof. Let F': A — B be essentially surjective and fully faithful. As by convention
all categories are small and as F' is essentially surjective we can, using the axiom
of choice, choose for every X € Ob(B) an object j(X) of A and an isomorphism
ix : X = F(j(X)). Then we apply Lemma [4.2.18| using that F is fully faithful. O

Definition 4.2.20. Let A, B be categories. We define the product category A x B
to be the category with objects Ob(A x B) = Ob(A) x Ob(B) and

Mor axs((z,y), (x',y")) := Mor 4(z,z") x Morg(y, y').

Composition is defined componentwise.

4.3. Opposite Categories and the Yoneda Lemma

Definition 4.3.1. Given a category C the opposite category C°PP is the category
with the same objects as C but all morphisms reversed.

In other words Morcerr (2, y) = More(y, ). Composition in C°PP is the same as in
C except backwards: if ¢ : y — z and ¥ : x — y are morphisms in C°PP, in other
words arrows z — y and y — x in C, then ¢ o°PP 1) is the morphism x — z of C°PP
which corresponds to the composition z — y — z in C.

Definition 4.3.2. Let C, S be categories. A contravariant functor F from C to S
is a functor C°PP — S.

Concretely, a contravariant functor F' is given by a map F : Ob(C) — Ob(S) and
for every morphism ¢ : x — y in C a morphism F'(¢) : F(y) — F(z). These
should satisfy the property that, given another morphism ¢ : y — z, we have
F(¢potp) =F(¢) o F(¢) as morphisms F(z) — F(x). (Note the reverse of order.)

Definition 4.3.3. Let C be a category.

(1) A presheaf of sets on C or simply a presheaf is a contravariant functor F
from C to Sets.
(2) The category of presheaves is denoted PSh(C).

Of course the category of presheaves is a proper class.

Example 4.3.4. Functor of points. For any U € Ob(C) there is a contravariant
functor
hy : C — Sets
X > More(X,U)

which takes an object X to the set More(X,U). In other words hy is a presheaf.
Given a morphism f : X — Y the corresponding map hy(f) : More(Y,U) —
More (X, U) takes ¢ to ¢o f. We will always denote this presheaf hy : C°PP — Sets.
It is called the representable presheaf associated to U. If C is the category of schemes
this functor is sometimes referred to as the functor of points of U.

Note that given a morphism ¢ : U — V in C we get a corresponding natural
transformation of functors h(¢) : hy — hy defined simply by composing with the
morphism U — V. It is trivial to see that this turns composition of morphisms in
C into composition of transformations of functors. In other words we get a functor

h:C — Fun(C°PP, Sets) = PSh(C)
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Note that the target is a “big” category, see Remark [£:2.2] On the other hand, h
is an actual mathematical object (i.e. a set), compare Remark [4.2.11

Lemma 4.3.5 (Yoneda lemma). Let U,V € Ob(C). Given any morphism of
functors s : hy — hy there is a unique morphism ¢ : U — V such that h(¢) = s. In
other words the functor h is fully faithful. More generally, given any contravariant
functor F' and any object U of C we have a natural bijection

Morpgh(c)(hU,F) — F(U), S — SU(idU).

Proof. For the first statement, just take ¢ = sy(idy) € More(U,V). For the
second statement, given £ € F(U) define s by sy : hy(V) — F(V) by sending the
element f:V — U of hy(U) = Morc(V,U) to F(f)(&). O

Definition 4.3.6. A contravariant functor F' : C — Sets is said to be representable
if it is isomorphic to the functor of points hy for some object U of C.

Let C be a category and let F' : C°PP — Sets be a representable functor. Choose
an object U of C and an isomorphism s : hyy — F. The Yoneda lemma guarantees
that the pair (U, s) is unique up to unique isomorphism. The object U is called an
object representing F'. By the Yoneda lemma the transformation s corresponds to
a unique element & € F(U). This element is called the universal object. It has the
property that for V'€ Ob(C) the map

More(V,U) — F(V), (f:V =U)— F(f)(§)

is a bijection. Thus £ is universal in the sens that every element of F(V) is equal
to the image of £ via F'(f) for a unique morphism f:V — U in C.

4.4. Products of pairs

Definition 4.4.1. Let 2,y € Ob(C). A product of x and y is an object = X y €
Ob(C) together with morphisms p € Mor¢(z X y,z) and ¢ € More(x X y,y) such
that the following universal property holds: for any w € Ob(C) and morphisms
a € More(w, z) and 8 € More(w,y) there is a unique v € More(w, z X y) making
the diagram

commute.

If a product exists it is unique up to unique isomorphism. This follows from the
Yoneda lemma as the definition requires = X y to be an object of C such that

functorially in w. In other words the product z X y is an object representing the
functor w — hg(w) x hy(w).

Appeared in some
form in [Yon54].
Used by
Grothendieck in a
generalized form in

[Gro95b)].
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Definition 4.4.2. We say the category C has products of pairs of objects if a
product z X y exists for any z,y € Ob(C).

We use this terminology to distinguish this notion from the notion of “having prod-
ucts” or “having finite products” which usually means something else (in particular
it always implies there exists a final object).

4.5. Coproducts of pairs

Definition 4.5.1. Let x,y € Ob(C). A coproduct, or amalgamated sum of x
and y is an object x ITy € Ob(C) together with morphisms ¢ € More(x, 2 IT y)
and j € More(y,x IT y) such that the following universal property holds: for any
w € Ob(C) and morphisms « € More(z, w) and 8 € More(y, w) there is a unique
v € More(x I y, w) making the diagram

commute.

If a coproduct exists it is unique up to unique isomorphism. This follows from the
Yoneda lemma (applied to the opposite category) as the definition requires z IT y
to be an object of C such that

More (2 Ty, w) = More(z, w) X More (y, w)
functorially in w.

Definition 4.5.2. We say the category C has coproducts of pairs of objects if a
coproduct z IT y exists for any z,y € Ob(C).

We use this terminology to distinguish this notion from the notion of “having
coproducts” or “having finite coproducts” which usually means something else (in
particular it always implies there exists an initial object in C).

4.6. Fibre products

Definition 4.6.1. Let x,y,z € Ob(C), f € Mor¢(z,y) and g € More(z,y). A
fibre product of f and g is an object = x, z € Ob(C) together with morphisms
p € More(z X, z,x) and ¢ € More(z X, 2, z) making the diagram

T Xy 2 ——>

z
! q
pl lg
f
T

—y
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commute, and such that the following universal property holds: for any w € Ob(C)
and morphisms « € Mor¢(w,z) and 8 € More(w, z) with foa = go § there is a
unique v € More(w, x X, z) making the diagram

commute.

If a fibre product exists it is unique up to unique isomorphism. This follows from
the Yoneda lemma as the definition requires X, z to be an object of C such that

hasyz(W) = ha (W) Xp, (1) hz(w)

functorially in w. In other words the fibre product x X, z is an object representing
the functor w +— hy(w) Xp, (w) h(w).

Definition 4.6.2. We say a commutative diagram
w z
x Y
in a category is cartesian if w and the morphisms w — = and w — z form a fibre
product of the morphisms x — y and z — y.

R

—_—

Definition 4.6.3. We say the category C has fibre products if the fibre product
exists for any f € More(z,y) and g € More(z,y).

Definition 4.6.4. A morphism f : x — y of a category C is said to be representable
if for every morphism z — y in C the fibre product z x, z exists.

Lemmal 4.6.5. Let C be a category. Let f : x — vy, and g : y — z be representable.
Then go f : x — z is representable.

Proof. Omitted. ]

Lemmal 4.6.6. Let C be a category. Let f : x — y be representable. Let y' — y be
a morphism of C. Then the morphism x' := x X,y — y' is representable also.

Proof. Let z — 3’ be a morphism. The fibre product &’ x,s z is supposed to
represent the functor

w = hy(w) Xhy (w) Pz w)
() Xy P 0)) X ) B0
= hy w) Xhy (w) hz(’LU)

which is representable by assumption. (I
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4.7. Examples of fibre products

0020 In this section we list examples of fibre products and we describe them.

0021

0022

0023

As a really trivial first example we observe that the category of sets has fibred
products and hence every morphism is representable. Namely, if f : X — Y and
g : Z — Y are maps of sets then we define X Xy Z as the subset of X x Z
consisting of pairs (z, z) such that f(z) = g(z). The morphisms p : X Xy Z — X
and ¢ : X Xy Z — Z are the projection maps (z, z) — z, and (z, z) — z. Finally,
ifa: W — X and g : W — Z are morphisms such that f oa = go g then the map
W = X x Z, w— (a(w), S(w)) obviously ends up in X xy Z as desired.

In many categories whose objects are sets endowed with certain types of algebraic
structures the fibre product of the underlying sets also provides the fibre product
in the category. For example, suppose that X, Y and Z above are groups and that
f, g are homomorphisms of groups. Then the set-theoretic fibre product X xy Z
inherits the structure of a group, simply by defining the product of two pairs by
the formula (x,2) - (2/,2") = (xa’,zz"). Here we list those categories for which a
similar reasoning works.

(1) The category Groups of groups.

(2) The category G-Sets of sets endowed with a left G-action for some fixed

group G.
(3) The category of rings.
(4) The category of R-modules given a ring R.

4.8. Fibre products and representability

In this section we work out fibre products in the category of contravariant func-
tors from a category to the category of sets. This will later be superseded during
the discussion of sites, presheaves, sheaves. Of some interest is the notion of a
“representable morphism” between such functors.

Lemmal 4.8.1. Let C be a category. Let F,G,H : C°PP — Sets be functors. Let
a:F — G andb: H— G be transformations of functors. Then the fibre product
F xq.ap H in the category Fun(C°PP, Sets) exists and is given by the formula

(F Xa,6p H)(X) = F(X) Xay,cx)6x HX)
for any object X of C.
Proof. Omitted. U

As a special case suppose we have a morphism a : F — G, an object U € Ob(C)
and an element ¢ € G(U). According to the Yoneda Lemma this gives a
transformation £ : hy — G. The fibre product in this case is described by the rule

(hu xega F)X)={(£,§) | f: X = U, { € F(X), G(f)(§) = ax(£)}

If F', G are also representable, then this is the functor representing the fibre product,
if it exists, see Section [4.6] The analogy with Definition [£.6.4] prompts us to define
a notion of representable transformations.

Definition 4.8.2. Let C be a category. Let F,G : C°PP — Sets be functors. We say
a morphism a : F' — G is representable, or that F' is relatively representable over
G, if for every U € Ob(C) and any £ € G(U) the functor hy xg F' is representable.
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Lemma 4.8.3. Let C be a category. Leta: F — G be a morphism of contravariant
functors from C to Sets. If a is representable, and G is a representable functor, then
F is representable.

Proof. Omitted. O

Lemma 4.8.4. Let C be a category. Let F : C°PP — Sets be a functor. Assume C
has products of pairs of objects and fibre products. The following are equivalent:

(1) The diagonal F' — F x F' is representable.
(2) For every U inC, and any & € F(U) the map & : hy — F is representable.

Proof. Suppose the diagonal is representable, and let U, ¢ be given. Consider any
V € Ob(C) and any ¢ € F(V). Note that hy X hy = hyxy is representable.
Hence the fibre product of the maps (£,¢') : hy x hy > F X Fand F - F x F
is representable by assumption. This means there exists W € Ob(C), morphisms
W — U, W — V and hyy — F such that

hy ———F

]

hy Xx hy —= F x F

is cartesian. We leave it to the reader to see that this implies that hyy = hy Xg hy
as desired.

Assume (2) holds. Consider any V' € Ob(C) and any (§,¢') € (F x F)(V). We have
to show that hy X pxp F' is representable. What we know is that hy x¢ pe hy is
representable, say by W in C with corresponding morphisms a,a’ : W — V (such
that {oa = & oa’). Consider W' = W X (401, vxv V. It is formal to show that W’
represents hy X pxr F' because

hw' = hw Xny xhy by = (hv X¢ per hv) Xny xhy hv = F Xpxp hy.

4.9. Pushouts

The dual notion to fibre products is that of pushouts.

Definition 4.9.1. Let x,y,z € Ob(C), f € Mor¢(y,z) and g € More(y, z). A
pushout of f and ¢ is an object x I, z € Ob(C) together with morphisms p €
More(z, z 11, z) and ¢ € Mor¢(z, « I, z) making the diagram

Y g Z
1l
P

T

—x I, 2
commute, and such that the following universal property holds: For any w € Ob(C)
and morphisms « € Mor¢(z,w) and 8 € More(z,w) with co f = S o g there is a

-


http://stacks.math.columbia.edu/tag/03KC
http://stacks.math.columbia.edu/tag/0024
http://stacks.math.columbia.edu/tag/0026

08N1

0027
0028

0029
002A

4.11. COEQUALIZERS 86

unique v € Mor¢(z I, z,w) making the diagram
Y g 2
T
P
T—>x1, 2

commute.

It is possible and straightforward to prove the uniqueness of the triple (z 11, z, p, q)
up to unique isomorphism (if it exists) by direct arguments. Another possibility
is to think of the pushout as the fibre product in the opposite category, thereby
getting this uniqueness for free from the discussion in Section (4.6

Definition 4.9.2. We say a commutative diagram

Yy—==z

|

r—w

in a category is cocartesian if w and the morphisms z — w and z — w form a
pushout of the morphisms y — x and y — z.

4.10. Equalizers

Definition 4.10.1. Suppose that X, Y are objects of a category C and that
a,b: X — Y are morphisms. We say a morphism e : Z — X is an equalizer for
the pair (a,b) if ace =boe and if (Z, e) satisfies the following universal property:
For every morphism ¢ : W — X in C such that a ot = b ot there exists a unique
morphism s : W — Z such that t = eo s.

As in the case of the fibre product above, equalizers when they exist are unique up
to unique isomorphism. There is a straightforward generalization of this definition
to the case where we have more than 2 morphisms.

4.11. Coequalizers

Definition 4.11.1. Suppose that X, Y are objects of a category C and that
a,b: X — Y are morphisms. We say a morphism ¢ : Y — Z is a coequalizer for
the pair (a,b) if coa =cob and if (Z, ¢) satisfies the following universal property:
For every morphism ¢ : Y — W in C such that t o a = t o b there exists a unique
morphism s : Z — W such that t = soc.

As in the case of the pushouts above, coequalizers when they exist are unique up
to unique isomorphism, and this follows from the uniqueness of equalizers upon
considering the opposite category. There is a straightforward generalization of this
definition to the case where we have more than 2 morphisms.
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4.12. Initial and final objects

Definition 4.12.1. Let C be a category.

(1) An object x of the category C is called an initial object if for every object
y of C there is exactly one morphism =z — y.

(2) An object x of the category C is called a final object if for every object y
of C there is exactly one morphism y — z.

In the category of sets the empty set () is an initial object, and in fact the only
initial object. Also, any singleton, i.e., a set with one element, is a final object (so
it is not unique).

4.13. Monomorphisms and Epimorphisms

Definition 4.13.1. Let C be a category and let f : X — Y be a morphism of C.

(1) We say that f is a monomorphism if for every object W and every pair
of morphisms a,b: W — X such that foa = f ob we have a = b.

(2) We say that f is an epimorphism if for every object W and every pair of
morphisms a,b: Y — W such that ao f = bo f we have a = b.

Example 4.13.2. In the category of sets the monomorphisms correspond to in-
jective maps and the epimorphisms correspond to surjective maps.

Lemma 4.13.3. Let C be a category, and let f : X — Y be a morphism of C.
Then

(1) f is a monomorphism if and only if X is the fibre product X xy X, and
(2) f is an epimorphism if and only if Y is the pushout Y IIx Y.

Proof. Omitted. O

4.14. Limits and colimits

Let C be a category. A diagram in C is simply a functor M : Z — C. We say that
T is the index category or that M is an Z-diagram. We will use the notation M;
to denote the image of the object ¢ of Z. Hence for ¢ : ¢ — ¢’ a morphism in 7 we
have M(d)) : Mz — Mi’-

Definition 4.14.1. A [limit of the Z-diagram M in the category C is given by an
object limz M in C together with morphisms p; : limz M — M, such that
(1) for ¢ : 4 — i’ a morphism in Z we have py = M (¢) o p;, and
(2) for any object W in C and any family of morphisms ¢; : W — M; (indexed
by i € Z) such that for all ¢ : i — i’ in Z we have ¢z = M(¢) o ¢; there
exists a unique morphism ¢ : W — limz M such that ¢; = p; o g for every
object i of Z.

Limits (limz M, (p:);cob(z)) are (if they exist) unique up to unique isomorphism by
the uniqueness requirement in the definition. Products of pairs, fibred products,
and equalizers are examples of limits. The limit over the empty diagram is a final
object of C. In the category of sets all limits exist. The dual notion is that of
colimits.
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Definition 4.14.2. A colimit of the Z-diagram M in the category C is given by
an object colimz M in C together with morphisms s; : M; — colimz M such that
(1) for ¢ : i — ¢’ a morphism in Z we have s; = s; o M(¢), and
(2) for any object W in C and any family of morphisms ¢; : M; — W (indexed
by i € Z) such that for all ¢ : ¢ — i’ in Z we have t; = t;; o M(¢) there
exists a unique morphism ¢ : colimz M — W such that ¢; = tos; for every
object ¢ of Z.

Colimits (colimz M, (s;)icon(z)) are (if they exist) unique up to unique isomorphism
by the uniqueness requirement in the definition. Coproducts of pairs, pushouts,
and coequalizers are examples of colimits. The colimit over an empty diagram is
an initial object of C. In the category of sets all colimits exist.

Remark 4.14.3. The index category of a (co)limit will never be allowed to have
a proper class of objects. In this project it means that it cannot be one of the

categories listed in Remark

Remark| 4.14.4. We often write lim; M;, colim; M;, lim;cz M;, or colim;c7 M;
instead of the versions indexed by Z. Using this notation, and using the description
of limits and colimits of sets in Section below, we can say the following. Let
M : T — C be a diagram.

(1) The object lim; M; if it exists satisfies the following property
1\/[Ol'c(VV7 hm, M,) = hm, MOI‘c(VV, MZ)

where the limit on the right takes place in the category of sets.
(2) The object colim; M; if it exists satisfies the following property

MOI‘C (COlil’ni Mi, W) = Hmiezopp MOI‘C (MZ', W)

where on the right we have the limit over the opposite category with value
in the category of sets.
By the Yoneda lemma (and its dual) this formula completely determines the limit,
respectively the colimit.

As an application of the notions of limits and colimits we define products and
coproducts.

Definition 4.14.5. Suppose that I is a set, and suppose given for every i € [
an object M; of the category C. A product [[,.; M; is by definition limz M (if it
exists) where Z is the category having only identities as morphisms and having the
elements of I as objects.

An important special case is where I = () in which case the product is a final
object of the category. The morphisms p; : [[ M; — M; are called the projection
morphisms.

Definition 4.14.6. Suppose that I is a set, and suppose given for every i € I an
object M; of the category C. A coproduct [],.; M; is by definition colimz M (if it
exists) where 7 is the category having only identities as morphisms and having the
elements of I as objects.

An important special case is where I = ) in which case the coproduct is an initial
object of the category. Note that the coproduct comes equipped with morphisms
M; — [] M;. These are sometimes called the coprojections.
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Lemma 4.14.7. Suppose that M : T — C, and N : J — C are diagrams whose
colimits exist. Suppose H : T — J is a functor, and supposet : M — N o H is a
transformation of functors. Then there is a unique morphism

0 : colimz M — colim gy N
such that all the diagrams
M; ——— colimgy M
T
Ny sy — colimy N
commute.

Proof. Omitted. O

Lemma 4.14.8. Suppose that M : T — C, and N : J — C are diagrams whose
limits exist. Suppose H : T — J is a functor, and supposet : No H — M is a
transformation of functors. Then there is a unique morphism

6‘111ij—>“sz

such that all the diagrams
limj N —— NH(i)

o

limy M —— M,

commute.

Proof. Omitted. O

Lemma 4.14.9. Let Z, J be index categories. Let M : Z x J — C be a functor.
We have

colim; colim; M; ; = colim; ; M; ; = colim; colim; M; ;
provided all the indicated colimits exist. Similar for limits.

Proof. Omitted. O

Lemma 4.14.10. Let M : T — C be a diagram. Write I = Ob(Z) and A =
Arrow(Z). Denote s,t: A — I the source and target maps. Suppose that [];.; M;
and [],c 4 Mya) ewist. Suppose that the equalizer of

[
Hie[ M; 4>¢ HaEA Mt(a)

exists, where the morphisms are determined by their components as follows: pgov) =
M(a) o ps(a) and pq © ¢ = pyay. Then this equalizer is the limit of the diagram.

Proof. Omitted. O
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Lemma 4.14.11. Let M : T — C be a diagram. Write I = Ob(Z) and A =
Arrow(Z). Denote s,t: A — I the source and target maps. Suppose that [];.; M;
and [J,c 4 Ms(a) exist. Suppose that the coequalizer of

¢
—_—
HaeA MS(G) 1/}4> Hie] M;

exists, where the morphisms are determined by their components as follows: The
component M,y maps via v to the component M) via the morphism a. The
component Myqy maps via ¢ to the component Mgy by the identity morphism.
Then this coequalizer is the colimit of the diagram.

Proof. Omitted. O

4.15. Limits and colimits in the category of sets

Not only do limits and colimits exist in Sets but they are also easy to describe.
Namely, let M : Z — Sets, i — M; be a diagram of sets. Denote I = Ob(Z). The
limit is described as

lmqﬂfz{mmmleILaﬂL|Whi+iHnIwaﬂm0:nw}

So we think of an element of the limit as a compatible system of elements of all the
sets M;.

On the other hand, the colimit is
colimg M = (||. M;)/ ~
el
where the equivalence relation ~ is the equivalence relation generated by setting
m; ~ my if m; € M;, my € My and M(¢)(m;) = my for some ¢ : i — . In other
words, m; € M; and my € M, are equivalent if there is a chain of morphisms in Z

/ ’il ’i3 7:2n71
1 =1 12 don =14’
and elements m;;, € M;, mapping to each other under the maps M;,, , — M, _,

and M; — M;,, induced from the maps in Z above.

2k—1 2k

This is not a very pleasant type of object to work with. But if the diagram is
filtered then it is much easier to describe. We will explain this in Section .19}

4.16. Connected limits

A (co)limit is called connected if its index category is connected.

Definition 4.16.1. We say that a category Z is connected if the equivalence
relation generated by x ~ y < Morz(z,y) # 0 has exactly one equivalence class.

Here we follow the convention of Topology, Definition [5.6.1] that connected spaces
are nonempty. The following in some vague sense characterizes connected limits.
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Lemma 4.16.2. Let C be a category. Let X be an object of C. Let M : T — C/X
be a diagram in the category of objects over X. If the index category I is connected
and the limit of M exists in C/ X, then the limit of the composition T — C/X — C
exists and is the same.

Proof. Let M — X be an object representing the limit in C/X. Consider the
functor
W +— lim; Morc (W, M;).

Let (;) be an element of the set on the right. Since each M; comes equipped with
a morphism s; : M; — X we get morphisms f; = s;0p; : W — X. But as 7 is
connected we see that all f; are equal. Since Z is nonempty there is at least one f;.
Hence this common value W — X defines the structure of an object of W in C/X
and (p;) defines is an element of lim; More, x (W, M;). Thus we obtain a unique
morphism ¢ : W — M such that ¢; is the composition of ¢ with M — M; as
desired. (]

Lemma 4.16.3. Let C be a category. Let X be an object of C. Let M : T —
X/C be a diagram in the category of objects under X. If the index category T is
connected and the colimit of M exists in X/C, then the colimit of the composition
Z — X/C — C exists and is the same.

Proof. Omitted. Hint: This lemma is dual to Lemma [4.16.2] O

4.17. Cofinal and initial categories

In the literature sometimes the word “final” is used instead of cofinal in the following
definition.

Definition 4.17.1. Let H : T — J be a functor between categories. We say 7 is
cofinal in J or that H is cofinal if

(1) for all y € Ob(J) there exists a € Ob(Z) and a morphism y — H(z),
and

(2) giveny € Ob(J), x,2" € Ob(Z) and morphisms y — H(x) and y — H(z')
there exists a sequence of morphisms

T=TpT1 = Ta T3 —> ... = To, =
in Z and morphisms y — H(xz;) in J such that the diagrams
/ Yy \
H(zor) <—— H(22k41) — H(w2k+2)
commute for k=0,...,n—1.

Lemma 4.17.2. Let H : T — J be a functor of categories. Assume T is cofinal
m J. Then for every diagram M : J — C we have a canonical isomorphism

colimyz M o H = colimy M
if either side exists.

Proof. Omitted. O
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Definition 4.17.3. Let H : T — J be a functor between categories. We say 7 is
initial in J or that H is initial if
(1) for all y € Ob(J) there exists a € Ob(Z) and a morphism H(z) — v,
(2) for any y € Ob(J), z,2’ € Ob(Z) and morphisms H(z) — y, H(z') = y
in J there exists a sequence of morphisms

T=Lo4—T] =S Ty T3 — ... = Top =1
in Z and morphisms H(x;) — y in J such that the diagrams

H(zor) <—— H(2ok+1) — H(7ax12)

7

Y

commute for k=0,...,n— 1.
This is just the dual notion to “cofinal” functors.

Lemma 4.17.4. Let H : T — J be a functor of categories. Assume I is initial
m J. Then for every diagram M : J — C we have a canonical isomorphism

liszoH = hmJM
if either side exists.

Proof. Omitted. O

Lemmal 4.17.5. Let F': 7 — 1’ be a functor. Assume
(1) the fibre categories (see Definition of T over I’ are all connected,

and
(2) for every morphism o' : ' — y' in I’ there exist a morphism a: x — y
in T such that F(a) = .
Then for every diagram M : T' — C the colimit colimz M o F exists if and only if
colimz: M exists and if so these colimits agree.

Proof. One can prove this by showing that Z is cofinal in Z’ and applying Lemma
But we can also prove it directly as follows. It suffices to show that for any
object T of C we have

limIO;Dp MOI'C (MF(1)7 T) = lim(I/)npp MOI‘C (M,L'/, T)

If (gir)ircob(zry is an element of the right hand side, then setting f; = gp@) we
obtain an element (f;);eon(z) of the left hand side. Conversely, let (f;);conz) be
an element of the left hand side. Note that on each (connected) fibre category
I the functor M o F' is constant with value M;/. Hence the morphisms f; for
i € Ob(Z) with F'(¢) =i’ are all the same and determine a well defined morphism
gir + My — T. By assumption (2) the collection (gi/)ycon(z/) defines an element of
the right hand side. (]

Lemma 4.17.6. Let 7 and J be a categories and denote p : T x J — J the
projection. If T is connected, then for a diagram M : J — C the colimit colim g M
exists if and only if colimzy 7 M o p exists and if so these colimits are equal.

Proof. This is a special case of Lemma [4.17.5 (]
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4.18. Finite limits and colimits

A finite (co)limit is a (co)limit whose diagram category is finite, i.e., the diagram
category has finitely many objects and finitely many morphisms. A (co)limit is
called nonempty if the index category is nonempty. A (co)limit is called connected
if the index category is connected, see Definition It turns out that there are
“enough” finite diagram categories.

Lemma 4.18.1. Let 7 be a category with
(1) Ob(Z) is finite, and
(2) there exist finitely many morphisms fi,..., fm € Arrows(Z) such that
every morphism of I is a composition fj, o fj, 0...0 fj, .
Then there exists a functor F' : J — I such that
(a) J is a finite category, and
(b) for any diagram M : T — C the (co)limit of M over T exists if and only
if the (co)limit of M o F over J exists and in this case the (co)limits are
canonically isomorphic.

Moreover, J is connected (resp. nonempty) if and only if T is so.

Proof. Say Ob(Z) = {z1,...,z,}. Denote s,t : {1,...,m} — {1,...,n} the
functions such that f; : @y — @4;). We set Ob(T) = {y1,.- -, Yn, 21, -+, 2n}
Besides the identity morphisms we introduce morphisms g; : ys;) — 2y, J =
1,...,m and morphisms h; : y; — 2;, ¢ = 1,...,n. Since all of the nonidentity
morphisms in J go from a y to a z there are no compositions to define and no
associativities to check. Set F'(y;) = F(z;) = x;. Set F(g;) = f; and F(h;) = id,.
It is clear that F' is a functor. It is clear that J is finite. It is clear that J is
connected, resp. nonempty if and only if 7 is so.

Let M : T — C be a diagram. Consider an object W of C and morphisms ¢; :
W — M(z;) as in Definition Then by taking ¢; : W — M(F(y;)) =
M(F(z;)) = M(x;) we obtain a family of maps as in Definition for the
diagram M o F. Conversely, suppose we are given maps qy; : W — M (F(y;)) and
qzi : W — M(F(z;)) as in Definition for the diagram M o F'. Since

M(F(h;)) =id : M(F(y;)) = M(z;) — M(z;) = M(F(2))
we conclude that qy; = qz; for all i. Set g; equal to this common value. The
compatibility of gsj) = qus;) and i) = qzy;) with the morphism M(f;) guar-
antees that the family ¢; is compatible with all morphisms in Z as by assumption
every such morphism is a composition of the morphisms f;. Thus we have found a
canonical bijection

limpeon() More(W, M(F(B))) = limacon(z) Morc (W, M(A))

which implies the statement on limits in the lemma. The statement on colimits is
proved in the same way (proof omitted). O

Lemmal 4.18.2. Let C be a category. The following are equivalent:
(1) Connected finite limits exist in C.
(2) Equalizers and fibre products exist in C.

Proof. Since equalizers and fibre products are finite connected limits we see that
(1) implies (2). For the converse, let Z be a finite connected diagram category. Let
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F : J — T be the functor of diagram categories constructed in the proof of Lemma
Then we see that we may replace Z by J. The result is that we may assume
that Ob(Z) = {z1,...,2n} U {y1,...,ym} with n,m > 1 such that all nonidentity
morphisms in 7 are morphisms f : x; — y; for some ¢ and j.

Suppose that n > 1. Since Z is connected there exist indices 1,72 and jy and
morphisms a : 23, — y;, and b : z;, — y;,. Consider the category
T ={a} U{x1, ..., iy Zins- T} T{y1, - Ym}
with
Morz/(z,y;) = Morz(x;,,y;) Il Morz(x;,, ;)
and all other morphism sets the same as in Z. For any functor M : Z — C we can
construct a functor M’ : 7/ — C by setting
M'(x) = M(x5,) X nr(a),M(y;), M) M (i)
and for a morphism f’ : & — y; corresponding to, say, f : z;, — y; we set
M'(f) = M(f)opry. Then the functor M has a limit if and only if the functor M’
has a limit (proof omitted). Hence by induction we reduce to the case n = 1.

If n = 1, then the limit of any M : Z — C is the successive equalizer of pairs of
maps x1 — y; hence exists by assumption. ([

Lemmal 4.18.3. Let C be a category. The following are equivalent:

(1) Nonempty finite limits exist in C.
(2) Products of pairs and equalizers exist in C.
(3) Products of pairs and fibre products exist in C.

Proof. Since products of pairs, fibre products, and equalizers are limits with
nonempty index categories we see that (1) implies both (2) and (3). Assume (2).
Then finite nonempty products and equalizers exist. Hence by Lemma we
see that finite nonempty limits exist, i.e., (1) holds. Assume (3). If a,b: A — B
are morphisms of C, then the equalizer of a, b is

(A Xa,Bb A) X (pry pra),Axan A.

Thus (3) implies (2), and the lemma is proved. O

Lemma 4.18.4. Let C be a category. The following are equivalent:
(1) Finite limits exist in C.
(2) Finite products and equalizers exist.
(3) The category has a final object and fibred products exist.

Proof. Since products of pairs, fibre products, equalizers, and final objects are
limits over finite index categories we see that (1) implies both (2) and (3). By
Lemma above we see that (2) implies (1). Assume (3). Note that the
product A x B is the fibre product over the final object. If a,b : A — B are
morphisms of C, then the equalizer of a, b is

(A ><a,B,b A) X(prl,prg),AXA,A A.
Thus (3) implies (2) and the lemma is proved. O

Lemmal 4.18.5. Let C be a category. The following are equivalent:

(1) Connected finite colimits exist in C.
(2) Coequalizers and pushouts exist in C.
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Proof. Omitted. Hint: This is dual to Lemma [4.18.2) O

Lemmal 4.18.6. Let C be a category. The following are equivalent:

(1) Nonempty finite colimits exist in C.
(2) Coproducts of pairs and coequalizers exist in C.
(3) Coproducts of pairs and pushouts exist in C.

Proof. Omitted. Hint: This is the dual of Lemma [4.18.3] |

Lemma 4.18.7. Let C be a category. The following are equivalent:
(1) Flinite colimits exist in C,
(2) Flinite coproducts and coequalizers exist in C, and
(3) The category has an initial object and pushouts exist.

Proof. Omitted. Hint: This is dual to Lemma [A.18.4] O

4.19. Filtered colimits

Colimits are easier to compute or describe when they are over a filtered diagram.
Here is the definition.

Definition 4.19.1. We say that a diagram M : 7 — C is directed, or filtered if the
following conditions hold:

(1) the category Z has at least one object,

(2) for every pair of objects x,y of Z there exists an object z and morphisms
r— z,y — 2, and

(3) for every pair of objects x,y of Z and every pair of morphisms a,b: z — y
of 7 there exists a morphism ¢ : y — z of Z such that M (coa) = M(cob)
as morphisms in C.

We say that an index category Z is directed, or filtered if id : T — T is filtered (in
other words you erase the M in part (3) above.)

We observe that any diagram with filtered index category is filtered, and this is how
filtered colimits usually come about. In fact, if M : Z — C is a filtered diagram,
then we can factor M as Z — T’ — C where 7' is a filtered index category[] such
that colimz M exists if and only if colimz, M’ exists in which case the colimits are
canonically isomorphic.

Suppose that M : T — Sets is a filtered diagram. In this case we may describe the
equivalence relation in the formula

colimy M = ( e M;)] ~

simply as follows
mi~my & Fi g — i @ i =i M(p)(my) = M(¢')(myr).

In other words, two elements are equal in the colimit if and only if they “eventually
become equal”.

INamely, let Z/ have the same objects as Z but where Morz/ (z, y) is the quotient of Morz (z, y)
by the equivalence relation which identifies a,b: z — y if M(a) = M (b).
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Lemmal 4.19.2. Let Z and J be index categories. Assume that T is filtered and
J s finite. Let M : T x J — Sets, (i,§) — M, ; be a diagram of diagrams of sets.
In this case

colimi hIIl_7 Mi,j = hm] colimi Mi,j .

In particular, colimits over I commute with finite products, fibre products, and
equalizers of sets.

Proof. Omitted. In fact, it is a fun exercise to prove that a category is filtered if
and only if colimits over the category commute with finite limits (into the category
of sets). O

We give a counter example to the lemma in the case where 7 is infinite. Namely, let
T consist of N = {1,2,3,...} with a unique morphism ¢ — ¢’ whenever ¢ < i’. Let
J consist of the discrete category N = {1,2,3,...} (only morphisms are identities).
Let M; ; = {1,2,...,i} with obvious inclusion maps M; ; — M,/ ; when ¢ < ¢'. In
this case colim; M; ; = N and hence

lim; colim; M; ; = || N =NN
im; colim; M; ; Hj
On the other hand lim; M; ; = []; M;,; and hence
. . AN
colim; lim; M; ; = Ui{l, 2,...,i}
which is smaller than the other limit.

It turns out we sometimes need a more finegrained control over the possible con-
ditions one can impose on index categories. Thus we add some lemmas on the
possible things one can require.

Lemma 4.19.3. Let T be an index category, i.e., a category. Assume that for
every pair of objects x,y of I there exists an object z and morphisms r — z and
y — z. Then colimits of diagrams of sets over T commute with finite nonempty
products.

Proof. Let M and N be diagrams of sets over Z. To prove the lemma we have to
show that the canonical map

colim(M; x N;) — colim M; x colim N;

is an isomorphism. If 7 is empty, then this is true because the colimit of sets
over the empty category is the empty set. If Z is nonempty, then we construct a
map colim M; x colim N; — colim(M; x N;) as follows. Suppose that m € M; and
n € N; give rise to elements s and ¢ of the respective colimits. By assumption we
can find a : ¢ —» kand b: j — k in Z. Then (M(a)(m),N(b)(n)) is an element
of My, x Ni and we map (s,t) to the corresponding element of colim M; x N;. We
omit the verification that this map is well defined and that it is an inverse of the
map displayed above. ([

Lemma 4.19.4. Let T be an index category, i.e., a category. Assume that for
every pair of objects x,y of I there exists an object z and morphisms r — z and
y — z. Let M : T — Ab be a diagram of abelian groups over . Then the set
underlying colim; M; is the colimit of M viewed as a diagram of sets over I.
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Proof. In this proof all colimits are taken in the category of sets. By Lemma
we have colim M; x colim M; = colim(M; x M;) hence we can use the maps
4+ : M; x M; — M; to define an addition map on colim M;. A straightforward
argument, which we omit, shows that the set colim M, with this addition is the
colimit in the category of abelian groups. O

Lemma 4.19.5. Let T be an index category, i.e., a category. Assume that for
every solid diagram

—y

T
l \
z

>w

in L there exists an object w and dotted arrows making the diagram commute. Then
T is a (possibly empty) disjoint union of categories satisfying the condition above

and the condition of Lemma[].19.3

Proof. If 7 is the empty category, then the lemma is true. Otherwise, we define a
relation on objects of Z by saying that x ~ y if there exists a z and morphisms z — z
and y — z. This is an equivalence relation by the assumption of the lemma. Hence
Ob(Z) is a disjoint union of equivalence classes. Let Z; be the full subcategories
corresponding to these equivalence classes. Then Z = [[Z; as desired. O

Lemmal 4.19.6. Let T be an index category, i.e., a category. Assume that for
every solid diagram

— sy

T
l’ \
z

>w

in I there exists an object w and dotted arrows making the diagram commute. Then
an injective morphism M — N of diagrams of sets (resp. abelian groups) over T
gives rise to an injective map colim M; — colim N; of sets (resp. abelian groups).

Proof. We first show that it suffices to prove the lemma for the case of a diagram
of sets. Namely, by Lemma we can write Z = [[Z; where each Z; satisfies
the condition of the lemma as well as the condition of Lemma Thus, if M
is a diagram of abelian groups over Z, then

colimz M = EB _colimz; M|z,
j

It follows that it suffices to prove the result for the categories Z;. Howeover, col-
imits of abelian groups over these categories are computed by the colimits of the
underlying sets (Lemma hence we reduce to the case of an injective map of
diagrams of sets.

Here we say that M — N is injective if all the maps M; — N; are injective. In
fact, we will identify M; with the image of M; — N;, i.e., we will think of M; as
a subset of N;. We will use the description of the colimits given in Section
without further mention. Let s, s’ € colim M; map to the same element of colim N;.
Say s comes from an element m of M; and s’ comes from an element m’ of M; .
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Then we can find a sequence i = ig,i1,...,i, = of objects of Z and morphisms
i1 i3 1on—1
. . S,
1T =19 19 PN 1on =1

and elements n;; € N;; mapping to each other under the maps N;,,_, — Ny, _,
and N;,, _, — N,,, induced from the maps in Z above with n;, = m and n;,, = m/.
We will prove by induction on n that this implies s = s’. The base case n = 0 is

trivial. Assume n > 1. Using the assumption on Z we find a commutative diagram

10 /il \iz
N

We conclude that m and n;, map to the same element of IV,, because both are the
image of the element n;,. In particular, this element is an element m” € M, which
gives rise to the same element as s in colim M;. Then we find the chain

13 i5 12n—1

SN N

w 14 foy =1

and the elements n;; for j > 3 which has a smaller length than the chain we started
with. This proves the induction step and the proof of the lemma is complete. [

Lemma 4.19.7. Let T be an index category, i.e., a category. Assume

(1) for every pair of morphisms a:w — x and b: w — y in T there exists an
object z and morphisms ¢ : x — z and d : y — z such that coa = d o b,
and

(2) for every pair of morphisms a,b: x — y there exists a morphismc:y — z
such that coa =cob.

Then T is a (possibly empty) union of disjoint filtered index categories T;.

Proof. If 7 is the empty category, then the lemma is true. Otherwise, we define
a relation on objects of Z by saying that x ~ y if there exists a z and morphisms
x — z and y — z. This is an equivalence relation by the first assumption of the
lemma. Hence Ob(Z) is a disjoint union of equivalence classes. Let Z; be the full
subcategories corresponding to these equivalence classes. The rest is clear from the
definitions. O

Lemma 4.19.8. Let Z be an index category satisfying the hypotheses of Lemma
above. Then colimits over T commute with fibre products and equalizers in
sets (and more generally with finite connected limits).
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Proof. By Lemmal4.19.7|we may write Z = [ [ Z; with each Z; filtered. By Lemma

4.19.2| we see that colimits of Z; commute with equalizers and fibred products. Thus

it suffices to show that equalizers and fibre products commute with coproducts in
the category of sets (including empty coproducts). In other words, given a set J
and sets A;, B;,C; and set maps A; = B;, C; — B; for j € J we have to show

that
(Hje.] AJ) X(I—[jEJ Bj) ( JeJ C]) = Hje‘] 14‘7 XB]- CJ
and given aj,a;. : A; — Bj that

Equalizer(HjeJ a;, HjeJ ay) = HjEJ Equalizer(a;, a})

This is true even if J = (). Details omitted. O

4.20. Cofiltered limits

Limits are easier to compute or describe when they are over a cofiltered diagram.
Here is the definition.

Definition 4.20.1. We say that a diagram M : Z — C is codirected or cofiltered if
the following conditions hold:

(1) the category Z has at least one object,

(2) for every pair of objects x,y of Z there exists an object z and morphisms
z—x, 2z — vy, and

(3) for every pair of objects z,y of Z and every pair of morphisms a,b: z — y
of 7 there exists a morphism ¢ : w — x of Z such that M(aoc) = M(boc)
as morphisms in C.

We say that an index category Z is codirected, or cofiltered if id : T — T is cofiltered
(in other words you erase the M in part (3) above.)

We observe that any diagram with cofiltered index category is cofiltered, and this
is how this situation usually occurs.

As an example of why cofiltered limits of sets are “easier” than general ones, we men-
tion the fact that a cofiltered diagram of finite nonempty sets has nonempty limit
(Lemma [4.21.5). This result does not hold for a general limit of finite nonempty
sets.

4.21. Limits and colimits over partially ordered sets
A special case of diagrams is given by systems over partially ordered sets.

Definition 4.21.1. Let (I,>) be a partially ordered set. Let C be a category.

(1) A system over I in C, sometimes called a inductive system over I in C is
given by objects M; of C and for every ¢ <4’ a morphism f;; : M; — My
such that f;; = id and such that f;;» = fir;n o fi;;7 whenever 1 < i’ < ¢”.

(2) An inverse system over I in C, sometimes called a projective system over
I in C is given by objects M; of C and for every ¢ > 4’ a morphism
fiir + M; — M, such that f;; = id and such that f;;» = firyn o fisr
whenever i > i’ > i”. (Note reversal of inequalities.)

We will say (M;, fiiv) is a (inverse) system over I to denote this. The maps f;;s are
sometimes called the transition maps.
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In other words a system over [ is just a diagram M : Z — C where 7 is the category
with objects I and a unique arrow ¢ — 4’ if and only ¢ < 4’. And an inverse system
is a diagram M : Z°PP — C. From this point of view we could take (co)limits of any
(inverse) system over I. However, it is customary to take only colimits of systems
over I and only limits of inverse systems over I. More precisely: Given a system
(M;, fiir) over I the colimit of the system (M;, fiv) is defined as

colim;c 1 M; = colimz M,

i.e., as the colimit of the corresponding diagram. Given a inverse system (M;, fiir)
over I the limit of the inverse system (M;, f;;/) is defined as

limiel Ml = limzopp ]\47
i.e., as the limit of the corresponding diagram.

Definition 4.21.2. With notation as above. We say the system (resp. inverse
system) (M;, fiir) is a directed system (resp. directed inverse system) if the partially
ordered set [ is directed: I is nonempty and for all 1,45 € I there exists ¢ € I such
that i1 <17 and 79 <.

In this case the colimit is sometimes (unfortunately) called the “direct limit”. We
will not use this last terminology. It turns out that diagrams over a filtered category
are no more general than directed systems in the following sense.

Lemma 4.21.3. LetZ be a filtered index category. There exists a directed partially
ordered set (I,>) and a system (x;, ;7)) over I in T with the following properties:

(1) For every category C and every diagram M : T — C with values in C, de-
note (M (z;), M (@) the corresponding system over I. If colim;e; M (z;)
exists then so does colimz M and the transformation

0 : colim;e; M(x;) — colimg M

of Lemma is an isomorphism.
(2) For every category C and every diagram M : Z°PP — C in C, denote

(M (2;), M(piir)) the corresponding inverse system over I. Iflim;c; M (x;)
exists then so does limz M and the transformation

0 : limzopr M — lim;ey M (2;)
of Lemma is an isomorphism.

Proof. Asmentioned in the beginning of the section, we may view partially ordered
sets as categories and systems as functors. Throughout the proof, we will freely
shift between these two points of view. We prove the first statement by constructing
a category Zy, corresponding to a directed set, and a cofinal functor My : Zo — Z.
Then, by Lemma, the colimit of a diagram M : Z — C coincides with the
colimit of the diagram M o My|Zy — C, from which the statement follows. The
second statement is dual to the first and may be proved by interpreting a limit in
C as a colimit in C°PP. We omit the details.

A category F is called finitely generated if there exists a finite set F' of arrows
in F, such that each arrow in F may be obtained by composing arrows from F.
In particular, this implies that F has finitely many objects. We start the proof
by reducing to the case when Z has the property that every finitely generated
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subcategory of Z may be extended to a finitely generated subcategory with a unique
final object.

Let w denote the directed set of finite ordinals, which we view as a filtered category.
It is easy to verify that the product category Z x w is also filtered, and the projection
II:7Z x w— 7 is cofinal.

Now let F be any finitely generated subcategory of Z X w. By using the axioms of
a filtered category and a simple induction argument on a finite set of generators of
F, we may construct a cocone ({fi},ix) in Z for the diagram F — Z. That is, a
morphism f; : i — i for every object ¢ in F such that for each arrow f:4 — 4’ in
F we have f; = f o fi. We can also choose i, such that there are no arrows from
i to an object in F. This is possible since we may always post-compose the arrows
fi with an arrow which is the identity on the Z-component and strictly increasing
on the w-component. Now let FT denote the category consisting of all objects and
arrows in F together with the object i, the identity arrow id; _ and the arrows
fi. Since there are no arrows from i,, in F* to any object of F, the arrow set in
FT is closed under composition, so F7T is indeed a category. By construction, it is
a finitely generated subcategory of Z which has i, as unique final object. Since,
by Lemma the colimit of any diagram M : Z — C coincides with the colimit
of M oIl , this gives the desired reduction.

The set of all finitely generated subcategories of Z with a unique final object is
naturally ordered by inclusion. We take Z; to be the category corresponding to
this set. We also have a functor My : Zyp — Z, which takes an arrow F C F’ in
Zo to the unique map from the final object of F to the final object of F’. Given
any two finitely generated subcategories of Z, the category generated by these two
categories is also finitely generated. By our assumption on Z, it is also contained
in a finitely generated subcategory of Z with a unique final object. This shows that
Ty is directed.

Finally, we verify that Mj is cofinal. Since any object of Z is the final object in
the subcategory consisting of only that object and its identity arrow, the functor
M, is surjective on objects. In particular, Condition (1) of Definition is
satisfied. Given an object ¢ of Z, Fi,Fy in Zy and maps ¢1 : @ — Mo(F;) and
w2 11— My(Fa) in Z, we can take Fio to be a finitely generated category with
a unique final object containing F7, F2 and the morphisms 1, ¢s. The resulting
diagram commutes

Mo (F12)

RN

My(Fy) My(F2)

~

7

since it lives in the category Fi2 and My(Fi2) is final in this category. Hence also
Condition (2) is satisfied, which concludes the proof. O

09P8 |Remark 4.21.4. Note that a finite directed set (I, >) always has a greatest object
i0o. Hence any colimit of a system (M;, fi;/) over such a set is trivial in the sense
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that the colimit equals M;_ . In contrast, a colimit indexed by a finite filtered
category need not be trival. For instance, let Z be the category with a single object
1 and a single non-trivial morphism e satisfying e = e oe. The colimit of a diagram
M : T — Sets is the image of the idempotent M (e). This illustrates that something
like the trick of passing to Z x w in the proof of Lemma is essential.

Lemma 4.21.5. If S :7Z — Sets is a cofiltered diagram of sets and all the S; are
finite nonempty, then lim; S; is nonempty. In other words, the limit of a directed
inverse system of finite nonempty sets is nonempty.

Proof. The two statements are equivalent by Lemma Let I be a directed
partially ordered set and let (S;);er be an inverse system of finite nonempty sets
over I. Let us say that a subsystem T is a family T = (T};);c; of nonempty subsets
T; C S; such that T;/ is mapped into T; by the transition map Sy — S; for all
i/ > i. Denote T the set of subsystems. We order T by inclusion. Suppose T,
a € A is a totally ordered family of elements of 7. Say T, = (Tw,i)icr- Then we
can find a lower bound T' = (T});cs by setting T; = () c4 Tw,i Which is manifestly
a finite nonempty subset of S; as all the T, ; are nonempty and as the T;, form a
totally ordered family. Thus we may apply Zorn’s lemma to see that 7 has minimal
elements.

Let’s analyze what a minimal element 7" € T looks like. First observe that the maps
T;» — T; are all surjective. Namely, as [ is a directed partially ordered set and T;
is finite, the intersection T} = (;/~,; Im(T;» — T;) is nonempty. Thus 7" = (T7) is a
subsystem contained in 7" and by minimality 77 = T'. Finally, we claim that 7} is a
singleton for each i. Namely, if z € T}, then we can define T}, = (T;y — T;) ' ({z})
for i > i and T} = T} if j # i. This is another subsystem as we've seen above
that the transition maps of the subsystem 7" are surjective. By minimality we see
that 7' = T” which indeed implies that T; is a singleton. This holds for every i € I,
hence we see that T; = {z;} for some z; € S; with z;; — x; under the map S;; — S;
for every i’ > 4. In other words, (z;) € limS; and the lemma is proved. 0

4.22. Essentially constant systems

Let M : 7 — C be a diagram in a category C. Assume the index category Z is
filtered. In this case there are three successively stronger notions which pick out
an object X of C. The first is just

X = COhIIlieI Mz

Then X comes equipped with the coprojections M; — X. A stronger condition
would be to require that X is the colimit and that there exists an ¢+ € Z and a
morphism X — M; such that the composition X — M; — X is idx. A stronger
condition is the following.

Definition 4.22.1. Let M : Z — C be a diagram in a category C.

(1) Assume the index category Z is filtered. We say M is essentially constant
with value X if X = colim; M; and there exists an ¢ € Z and a morphism
X — M; such that
(a) X - M; —» X is idx, and
(b) for all j there exist k& and morphisms ¢ — k and j — k such that the
morphism M; — M}, equals the composition M; — X — M; — M.
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(2) Assume the index category 7 is cofiltered. We say M is essentially con-
stant with value X if X = lim; M; and there exists an ¢ € Z and a
morphism M; — X such that

(a) X > M; —» X is idx, and
(b) for all j there exist k and morphisms & — ¢ and k& — j such that the
morphism My — M; equals the composition M, — M; — X — M;.

Which of the two versions is meant will be clear from context. If there is any
confusion we will distinguish between these by saying that the first version means
M is essentially constant as an ind-object, and in the second case we will say it
is essentially constant as a pro-object. This terminology is further explained in
Remarks [£.22.3] and .22.4] In fact we will often use the terminology “essentially
constant system” which formally speaking is only defined for systems over directed
partially ordered sets.

Definition 4.22.2. Let C be a category. A directed system (M;, f;i/) is an es-
sentially constant system if M viewed as a functor I — C defines an essentially
constant diagram. A directed inverse system (M;, f;) is an essentially constant
inverse system if M viewed as a functor I°PP — C defines an essentially constant
inverse diagram.

If (M, fiir) is an essentially constant system and the morphisms f;;; are monomor-
phisms, then for all ¢ < ¢’ sufficiently large the morphisms f;;; are isomorphisms.
In general this need not be the case however. An example is the system

7 77 -7 — ...
with maps given by (a,b) — (a + b,0). This system is essentially constant with
value Z. A non-example is to let M =P, >, Z and to let S: M — M be the shift
operator (ag,a1,...) — (ai,asz,...). In this case the system M - M — M — ...

with transition maps S has colimit 0 and the composition 0 — M — 0 is the
identity, but the system is not essentially constant.

Remark| 4.22.3. Let C be a category. There exists a big category Ind-C of ind-
objects of C. Namely, if F: Z — C and G : J — C are filtered diagrams in C, then
we can define

Mormg.c (F, G) = lim; colim; Mor¢ (F(¢), G(35)).

There is a canonical functor C — Ind-C which maps X to the constant system on
X. This is a fully faithful embedding. In this language one sees that a diagram F
is essentially constant if and only F' is isomorphic to a constant system. If we ever
need this material, then we will formulate this into a lemma and prove it here.

Remark| 4.22.4. Let C be a category. There exists a big category Pro-C of pro-
objects of C. Namely, if FF: Z — C and G : J — C are cofiltered diagrams in C,
then we can define

Morpyo-¢(F, G) = lim; colim; Mor¢ (F (), G(j)).

There is a canonical functor C — Pro-C which maps X to the constant system on
X. This is a fully faithful embedding. In this language one sees that a diagram F
is essentially constant if and only F' is isomorphic to a constant system. If we ever
need this material, then we will formulate this into a lemma and prove it here.
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Lemma 4.22.5. Let C be a category. Let M : T — C be a diagram with filtered
(resp. cofiltered) index category I. Let F : C — D be a functor. If M is essentially
constant as an ind-object (resp. pro-object), then so is FoM : T — D.

Proof. If X is a value for M, then it follows immediately from the definition that
F(X) is a value for F o M. O

Lemmal 4.22.6. Let C be a category. Let M : T — C be a diagram with filtered
index category L. The following are equivalent

(1) M is an essentially constant ind-object, and
(2) X = colim; M; exists and for any W in C the map

colim; Mor¢ (W, M;) — Morc (W, X)
18 bijective.
Proof. Assume (2) holds. Then idx € Mor¢(X, X) comes from a morphism X —
M; for some i, i.e., X — M; — X is the identity. Then both maps
Mor¢(W, X)) — colim; More (W, M;) — More (W, X)

are bijective for all W where the first one is induced by the morphism X — M; we
found above, and the composition is the identity. This means that the composition

colim; More (W, M;) — More (W, X) — colim; More (W, M;)

is the identity too. Setting W = M; and starting with idys; in the colimit, we see
that M; — X — M; — M), is equal to M; — M, for some k large enough. This
proves (1) holds. The proof of (1) = (2) is omitted. O

Lemmal 4.22.7. Let C be a category. Let M : T — C be a diagram with cofiltered
index category L. The following are equivalent

(1) M is an essentially constant pro-object, and

(2) X =lim; M; exists and for any W in C the map

colim;ezorr More (M;, W) — More (X, W)
1s bijective.

Proof. Assume (2) holds. Then idx € Mor¢ (X, X) comes from a morphism M; —
X for some i, i.e., X — M; — X is the identity. Then both maps

More (X, W) — colim; More(M;, W) — More(X, W)
are bijective for all W where the first one is induced by the morphism M; — X we
found above, and the composition is the identity. This means that the composition
colim; Mor¢ (M;, W) — More (X, W) — colim; More (M;, W)

is the identity too. Setting W = M; and starting with idy; in the colimit, we see
that My — M; — X — M; is equal to M;, — M, for some k large enough. This
proves (1) holds. The proof of (1) = (2) is omitted. O

Lemma 4.22.8. Let C be a category. Let H : T — J be a functor of filtered index
categories. If H is cofinal, then any diagram M : J — C is essentially constant if
and only if M o H is essentially constant.

Proof. This follows formally from Lemmas [£.22.6] and [£.17.2} g
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Lemma 4.22.9. Let Z and J be filtered categories and denote p : T x J — J the
projection. Then I X J is filtered and a diagram M : J — C is essentially constant
if and only if M op:Z x J — C is essentially constant.

Proof. We omit the verification that Z x J is filtered. The equivalence follows
from Lemma [4.22.8| because p is cofinal (verification omitted). O

Lemmal 4.22.10. Let C be a category. Let H : T — J be a functor of cofiltered
index categories. If H is initial, then any diagram M : J — C is essentially
constant if and only if M o H is essentially constant.

Proof. This follows formally from Lemmas [.22.7] [£.17.4] [£.17.2] and the fact that
if 7 is initial in 7, then Z°PP is cofinal in [J°PP. O

4.23. Exact functors

Definition 4.23.1. Let F' : A — B be a functor.

(1) Suppose all finite limits exist in A. We say F' is left exact if it commutes
with all finite limits.

(2) Suppose all finite colimits exist in .A. We say F' is right exactif it commutes
with all finite colimits.

(3) We say F is exact if it is both left and right exact.

Lemma 4.23.2. Let F': A — B be a functor. Suppose all finite limits exist in A,
see Lemma[f.18]} The following are equivalent:

(1) F is left exact,

(2) F commutes with finite products and equalizers, and

(3) F transforms a final object of A into a final object of B, and commutes
with fibre products.

Proof. Lemma [4.14.10| shows that (2) implies (1). Suppose (3) holds. The fibre
product over the final object is the product. If a,b: A — B are morphisms of A,
then the equalizer of a,b is

(A ><uL,B,b A) X(prl,prg),AXA,A A.

Thus (3) implies (2). Finally (1) implies (3) because the empty limit is a final
object, and fibre products are limits. O

4.24. Adjoint functors

Definition 4.24.1. Let C, D be categories. Let uw: C — D and v : D — C be
functors. We say that u is a left adjoint of v, or that v is a right adjoint to wu if
there are bijections

Morp (u(X),Y) — More(X,v(Y))
functorial in X € Ob(C), and Y € Ob(D).
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In other words, this means that there is a given isomorphism of functors C°P? x D —
Sets from Morp(u(—), —) to More(—,v(—)). For any object X of C we obtain a
morphism X — v(u(X)) corresponding to id,(x). Similarly, for any object Y of
D we obtain a morphism u(v(Y')) — Y corresponding to id,y). These maps are
called the adjunction maps. The adjunction maps are functorial in X and Y, hence
we obtain morphisms of functors

ide > vowu (unit) and wowv —idp (counit).

Moreover, if a : u(X) = Y and §: X — v(Y) are morphisms, then the following
are equivalent

(1) « and 3 correspond to each other via the bijection of the definition,

(2) B is the composition X — v(u(X)) LGN v(Y), and

(3) « is the composition u(X) B, u(v(Y)) = Y.

In this way one can reformulate the notion of adjoint functors in terms of adjunction
maps.

Lemma 4.24.2. Let u : C — D be a functor between categories. If for each
y € Ob(D) the functor x — Morp(u(x),y) is representable, then u has a right
adjoint.

Proof. For each y choose an object v(y) and an isomorphism More(—,v(y)) —
Morp(u(—),y) of functors. By Yoneda’s lemma (Lemma [4.3.5)) for any morphism
g :y — Yy the transformation of functors

MorC(fvv(y)) - MorD(u(—),y) - MOI‘D(U(*), y/) - MorC(fav(y/))

corresponds to a unique morphism v(g) : v(y) — v(y’). We omit the verification
that v is a functor and that it is right adjoint to w. [

Lemma 4.24.3. Let u be a left adjoint to v as in Definition |4.24.1. Then
(1) w is fully faithful < id = vou.
(2) v is fully faithful < wov = id.

Proof. Assume w is fully faithful. We have to show the adjunction map X —
v(u(X)) is an isomorphism. Let X’ — v(u(X)) be any morphism. By adjointness
this corresponds to a morphism u(X’) — u(X). By fully faithfulness of u this
corresponds to a morphism X’ — X. Thus we see that X — v(u(X)) defines a bi-
jection Mor(X’, X) — Mor(X’,v(u(X))). Hence it is an isomorphism. Conversely,
if id 2 v o u then u has to be fully faithful, as v defines an inverse on morphism
sets.

Part (2) is dual to part (1). O

Lemma 4.24.4. Let u be a left adjoint to v as in Definition |4.24.1|

(1) Suppose that M : T — C is a diagram, and suppose that colimg M exists
in C. Then u(colimz M) = colimzu o M. In other words, u commutes
with (representable) colimits.

(2) Suppose that M : T — D is a diagram, and suppose that limz M exists
in D. Then v(limz M) = limzv o M. In other words v commutes with
representable limits.
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Proof. A morphism from a colimit into an object is the same as a compatible
system of morphisms from the constituents of the limit into the object, see Remark

4144 So

Morp (u(colim;ez M;),Y) Mor¢ (colim;er M;, v(Y))
= hmiezopp MOI‘c(Mi, ’U(Y))
= limiezopp MOYD('U,(MZ'), Y)

proves that u(colim;ez M;) is the colimit we are looking for. A similar argument
works for the other statement. O
Lemma 4.24.5. Let u be a left adjoint of v as in Definition |4.24.1).

(1) If C has finite colimits, then u is right exact.

(2) If D has finite limits, then v is left exact.

Proof. Obvious from the definitions and Lemma [4.24 .4 O

Lemma 4.24.6. Let uy,us : C — D be functors with right adjoints vi,vs : D —
C. Let B : uy — uy be a transformation of functors. Let BY : vy — vo be the
corresponding transformation of adjoint functors. Then

U O V1 4>,@ U1 © Uy
ﬁvl i
Ug © Vg ———> id
is commutative where the unlabeled arrows are the counit transformations.

Proof. This is true because 3, : v;1D — wvyD is the unique morphism such
that the induced maps Mor(C,v1 D) — Mor(C, v2D) is the map Mor(u,C, D) —
Mor(u2C, D) induced by B¢ : u2C — u1C. Namely, this means the map

Mor(uyv1 D, D") — Mor(ugvi D, D")
induced by B,, p is the same as the map
Mor(vy D, v1 D") — Mor(vy D, v D")

induced by 8),. Taking D’ = D we find that the counit u;v; D — D precomposed
by By, p corresponds to 3}, under adjunction. This exactly means that the diagram
commutes when evaluated on D. (]

4.25. A criterion for representability

The following lemma is often useful to prove the existence of universal objects in
big categories, please see the discussion in Remark [4.25.2

Lemmal 4.25.1. Let C be a bigﬂ category which has limits. Let F': C — Sets be a
functor. Assume that

(1) F commutes with limits,

(2) there exists a family {x;};c1 of objects of C and for each i € I an element
fi € F(z;) such that for y € Ob(C) and g € F(y) there exists an i and a
morphism ¢ : x; — y with F(o)(fi) = g.

2See Remark
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Then F' is representable, i.e., there exists an object x of C such that

F(y) = MOTC (CL’, y)
functorially in y.

Proof. Let Z be the category whose objects are the pairs (z;, f;) and whose mor-
phisms (x;, fi) — (x4, fir) are maps ¢ : x; — x4 in C such that F(p)(fi) = fi.
Set

T = lim, f)er o
(this will not be the x we are looking for, see below). The limit exists by assumption.
As F commutes with limits we have

F(SU) = lim(thi)ez F(i[:l)

Hence there is a universal element f € F(z) which maps to f; € F(x;) under F
applied to the projection map = — x;. Using f we obtain a transformation of
functors

& : More(z,—) — F(-)
see Section Let y be an arbitrary object of C and let g € F(y). Choose z; — y
such that f; maps to g which is possible by assumption. Then F' applied to the
maps

T—x; — Y

(the first being the projection map of the limit defining z) sends f to g. Hence the
transformation £ is surjective.

In order to find the object representing F' we let e : ' — x be the equalizer of all
self maps ¢ : © — x with F(¢)(f) = f. Since F' commutes with limits, it commutes
with equalizers, and we see there exists an f’ € F(z') mapping to f in F(z). Since
¢ is surjective and since f’ maps to f we see that also & : More(z/, —) — F(—) is
surjective. Finally, suppose that a,b: ' — y are two maps such that F(a)(f) =
F(b)(f). We have to show a = b. Consider the equalizer ¢’ : 2/ — 2’. Again we
find f” € F(2") mapping to f’. Choose a map ¢ :  — 2 such that F(¢)(f) = f".
Then we see that eoe’ ot : x — x is a morphism with F(eoe’ 09)(f) = f. Hence
eoe’ o1 oe=e. This means that e : ' — x factors through e’ oe : 2/ — x and
since e and e’ are monomorphisms this implies z’/ = 2/, i.e., a = b as desired. [

Remark| 4.25.2. The lemma above is often used to construct the free something
on something. For example the free abelian group on a set, the free group on a set,
etc. The idea, say in the case of the free group on a set E is to consider the functor

F : Groups — Sets, G +— Map(F, Q)

This functor commutes with limits. As our family of objects we can take a family
E — G; consisting of groups G; of cardinality at most max(Xg, |E|) and set maps
E — G, such that every isomorphism class of such a structure occurs at least once.
Namely, if F — G is a map from E to a group G, then the subgroup G’ generated
by the image has cardinality at most max(Xg, |E|). The lemma tells us the functor
is representable, hence there exists a group Fg such that Morgroups(Fr, G) =
Map(E,G). In particular, the identity morphism of Fg corresponds to a map
FE — Fg and one can show that Fg is generated by the image without imposing
any relations.
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Another typical application is that we can use the lemma to construct colimits once
it is known that limits exist. We illustrate it using the category of topological spaces
which has limits by Topology, Lemma Namely, suppose that Z — Top,
i +— X; is a functor. Then we can consider

F: Top — Sets, Y —— limz Morq,,(X;,Y)

This functor commutes with limits. Moreover, given any topological space Y and
an element (p; : X; — Y) of F(Y), there is a subspace Y’ C Y of cardinality at
most | []X;| such that the morphisms ¢; map into Y’. Namely, we can take the
induced topology on the union of the images of the ;. Thus it is clear that the
hypotheses of the lemma are satisfied and we find a topological space X representing
the functor F', which precisely means that X is the colimit of the diagram i — X;.

Theorem 4.25.3 (Adjoint functor theorem). Let G : C — D be a functor of big
categories. Assume C has limits, G commutes with them, and for every object y
of D there ezists a set of pairs (x;, fi)icr with x; € Ob(C), fi; € Morp(y, G(z;))
such that for any pair (z, f) with x € Ob(C), f € Morc(y, G(z)) there is an i and
a morphism h : x; — x such that f = G(h) o f;. Then G has a left adjoint F.

Proof. The assumptions imply that for every object y of D the functor x —
Morp (y, G(x)) satisfies the assumptions of Lemma[£.25.1] Thus it is representable
by an object, let’s call it F'(y). An application of Yoneda’s lemma (Lemma
turns the rule y — F(y) into a functor which by construction is an adjoint to G.
We omit the details. (]

4.26. Localization in categories

The basic idea of this section is given a category C and a set of arrows .S to construct
a functor F : C — S~1C such that all elements of S become invertible in S~!C and
such that F' is universal among all functors with this property. References for this
section are [GZ67], Chapter I, Section 2] and [Ver96l Chapter II, Section 2].

Definition 4.26.1. Let C be a category. A set of arrows S of C is called a left
multiplicative system if it has the following properties:

LMS1 The identity of every object of C is in S and the composition of two
composable elements of S is in S.
LMS2 Every solid diagram

tl £}
\
Z f>W

with t € S can be completed to a commutative dotted square with s € S.
LMS3 For every pair of morphisms f,¢g: X — Y and ¢t € S with target X such
that fot = got there exists a s € S with source Y such that so f =sog.

A set of arrows S of C is called a right multiplicative system if it has the following
properties:

RMS1 The identity of every object of C is in S and the composition of two
composable elements of S is in S.
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RMS2 Every solid diagram

X >Y
g

t ls

v

7z ——W

with s € S can be completed to a commutative dotted square with ¢ € S.
RMS3 For every pair of morphisms f,g: X — Y and s € S with source Y such
that so f = sog there exists a t € S with target X such that fot =got.

A set of arrows S of C is called a multiplicative system if it is both a left multiplicative
system and a right multiplicative system. In other words, this means that MS1,
MS2, MS3 hold, where MS1 = LMS1 + RMS1, MS2 = LMS2 + RMS2, and MS3
= LMS3 + RMS3. (That said, of course LMS1 = RMS1 = MS1.)

These conditions are useful to construct the categories S~!C as follows.

Left calculus of fractions. Let C be a category and let S be a left multiplicative
system. We define a new category S—!C as follows (we verify this works in the

proof of Lemma :

(1) We set Ob(S~1C) = Ob(C).

(2) Morphisms X — Y of S71C are given by pairs (f : X — Y',s: Y —Y’)
with s € S up to equivalence. (The equivalence is defined below. Think
of the equivalence class of a pair (f,s) as s 1f: X —Y.)

(3) Two pairs (f1 : X =2 Y1,81: Y > Vi) and (fo: X = Ya,80: Y = Y5)
are said to be equivalent if there exists a third pair (fs : X — Y3,s3 :
Y — Y3) and morphisms u : Y7 — Y3 and v : Yo — Y3 of C fitting into the
commutative diagram

Y,

AN

X—>Y3<L

N4

Y

(4) The composition of the equivalence classes of the pairs (f : X — Y’ s :
Y—=>Y)and (¢:Y — Z',t: Z — Z') is defined as the equivalence class
of a pair (ho f: X = Z" uot:Z — Z") where h and u € S are chosen
to fit into a commutative diagram

y—>Z
y! h g
which exists by assumption.

(5) The identity morphism X — X in S™!C is the equivalence class of the
pair (id: X — X,id: X — X).

Lemma 4.26.2. Let C be a category and let S be a left multiplicative system.

(1) The relation on pairs defined above is an equivalence relation.
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(2) The composition rule given above is well defined on equivalence classes.
(3) Composition is associative (and the identity morphisms satisfy the identity
axioms), and hence S™1C is a category.

Proof. Proof of (1). Let us say two pairs p1 = (f1 : X — Yy, : Y — V)
and po = (fo : X — Ya2,82 : Y — Y5) are elementary equivalent if there exists a
morphism a : Y7 — Y5 of C such that ao f; = fo and a o s = s5. Diagram:

X—Y1<~—Y
e
X-Poy, <2y

Let us denote this property by saying p; Ep,. Note that pEp and aEb,bEc = aFEc.
(Despite its name, E is not an equivalence relation.) Part (1) claims that the
relation p ~ p’ < 3q : pEq A p’Eq (where g is supposed to be a pair satisfying the
same conditions as p and p’) is an equivalence relation. A simple formal argument,
using the properties of E' above, shows that it suffices to prove p3Epi,p3Eps =
p1 ~ p2. Thus suppose that we are given a commutative diagram

with s; € S. First we apply LMS2 to get a commutative diagram

Y ——Y;

Sli a24
\

alq
Yl > Y4
with asy € S. Then, we have
A14 © Q31 © 83 = A14 © 51 = A24 O S2 = A24 © A32 O 53.
Hence, by LMS3, there exists a morphism sy44 : Yy — Y, such that sy € S and
$440a140a31 = S440a240a32. Hence, after replacing Yy, a14 and agq by Yy, sqq0a14
and s44 0 agq, we may assume that a4 0 ag; = agq 0 azo (and we still have agq € S
and 14 ©S1 = Qg4 O 82). Set
fa=auofi=auoaz o fz=azocazo f3=auof
and s4 = a14 © S1 = ag4 © S3. Then, the diagram
X—Y <~—Y
f1 S1
fa S4
X—Y,~—Y

commutes, and we have s, € S (by LMS1). Thus, p1 Eps, where py = (f4,84).
Similarly, po Eps. Combining these, we find p; ~ po.
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Proofof (2). Letp=(f: X =Y ',s: Y =>Y)andq=(g:Y > Z',t: Z — Z') be
pairs as in the definition of composition above. To compose we choose a diagram

Y——=7'

g
y' 2 7,

with us € S. We first show that the equivalence class of the pair ro = (hoo f : X —

Za,ug ot Z — Zs) is independent of the choice of (Z2, ha,us). Namely, suppose

that (Zs, hs,us) is another choice with corresponding composition r3 = (hgo f :

X — Zs,uzot:Z — Z3). Then by LMS2 we can choose a diagram

with uzqy € S. We have hy 0 s = ug 0 g and similarly h3 o s = uz o g. Now,
U340h308:U34OU30g:h24OUQOg:h240h205.

Hence, LMS3 shows that there exists a Z) and an sgq : Z4 — Zj such that sy 0
U34 © h3 = 8440 h24 o h2. Replacing Z4, h24 and UuU34 by Z:l, S44 © h24 and S44 0U34, WE
may assume that usg o hg = hoyg 0 ho. Meanwhile, the relations ugq 0 ug = hog 0 us
and usy € S continue to hold. We can now set hy = usq 0 hg = hay o hy and
Ug = Ugq © U3 = hayg 0 ug. Then, we have a commutative diagram

X—> o <~— 2
haof ugot
h24
haof ugot

X—>Z4<—Z

X g 23 2ot o
Hence we obtain a pair r4 = (hgo f : X — Zy,usot : Z — Z4) and the above
diagram shows that we have roEry and r3FEry, whence ro ~ r3, as desired. Thus
it now makes sense to define p o ¢ as the equivalence class of all possible pairs r
obtained as above.

To finish the proof of (2) we have to show that given pairs p1, ps2, ¢ such that p; Eps
then p1oq = paoq and gop; = gops whenever the compositions make sense. To do
this, write p1 = (f1 : X = V1,81 : Y =2 V) and ps = (fo: X = Yo,82: Y = Y>)
and let a : Y1 — Y5 be a morphism of C such that fo = ao f; and sy = a o s3.
First assume that g = (g:Y — Z’,t: Z — Z’). In this case choose a commutative
diagram as the one on the left

yv_ 9oz y_ 9

‘RN

h h
}/2 g Yl $ VAU
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(with v € S), which implies the diagram on the right is commutative as well. Using
these diagrams we see that both compositions g o p; and q o p; are the equivalence
class of (hoao f; : X = Z" uot: Z — Z'"). Thus qop; = qo py. The proof of
the other case, in which we have to show p; o ¢ = ps o ¢, is omitted. (It is similar
to the case we did.)

Proof of (3). We have to prove associativity of composition. Consider a solid
diagram

XHY/ >Z/I

T

W XI - Y/I - Z/I/
(whose vertical arrows belong to S) which gives rise to three composable pairs.
Using LMS2 we can choose the dotted arrows making the squares commutative
and such that the vertical arrows are in S. Then it is clear that the composition of
the three pairs is the equivalence class of the pair (W — Z"' | Z — Z'") gotten by
composing the horizontal arrows on the bottom row and the vertical arrows on the
right column.

We leave it to the reader to check the identity axioms. O

Remark 4.26.3. The motivation for the construction of S~!C is to “force” the
morphisms in S to be invertible by artificially creating inverses to them (at the cost
of some existing morphisms possibly becoming identified with each other). This
is similar to the localization of a commutative ring at a multiplicative subset, and
more generally to the localization of a noncommutative ring at a right denominator
set. This is more than just a similarity: The construction of S~*C (or, more pre-
cisely, its version for additive categories C) actually generalizes the latter type of
localization. Namely, a noncommutative ring can be viewed as an additive category
with a single object (the morphisms being the elements of the ring); a multiplicative
subset of this ring then becomes a set S of morphisms satisfying LMS1 (aka RMS1).
Then, the conditions RMS2 and RMS3 for this category and this subset S translate
into the two conditions (“right permutable” and “right reversible”) of a right de-
nominator set (and similarly for LMS and left denominator sets), and S~!C (with
a properly defined additive structure) is the one-object category corresponding to
the localization of the ring.

Definition 4.26.4. Let C be a category and let S be a left multiplicative system
of morphisms of C. Given any morphism f : X — Y’ in C and any morphism
s:Y — Y'in S, we denote by s~1f the equivalence class of the pair (f : X —
Y’,s:Y — Y’). This is a morphism from X to Y in S~!C.

This notation is suggestive, and the things it suggests are true: Given any morphism
f: X =Y inC and any two morphisms s : Y - Y  and ¢ : Y’ — Y” in S, we
have (tos)*1 (tof) =s1f. Also,forany f: X - Y andg:Y' — Z' inC
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and all s : Z — Z' in S, we have s™*(go f) = (s7'g) o (id;,l f). Finally, for
any f : X - Y inC,alls:Y - Y inS, andt: Z — Y in S, we have
(sot) ' f = (¢7'idy) o (s7'f). This is all clear from the definition. We can
“write any finite collection of morphisms with the same target as fractions with
common denominator”.

Lemmal 4.26.5. Let C be a category and let S be a left multiplicative system
of morphisms of C. Given any finite collection g; : X; — Y of morphisms of
S=IC (indexed by i), we can find an element s : Y — Y' of S and a family of
morphisms f; : X; — Y’ of C such that each g; is the equivalence class of the pair
(fi: Xi=>Y' s:Y =Y.

Proof. For each i choose a representative (X; — Y5, s, : Y — Y;) of g;. The lemma
follows if we can find a morphism s : Y — Y’ in S such that for each i there is a
morphism a; : Y; — Y/ with a; 0 s; = s. If we have two indices 1 = 1,2, then we
can do this by completing the square

Sll \Ltz
Vi —=Y

with ¢ € S as is possible by Definition Then s =ty 059 € S works. If we
have n > 2 morphisms, then we use the above trick to reduce to the case of n — 1
morphisms, and we win by induction. O

There is an easy characterization of equality of morphisms if they have the same
denominator.

Lemmal 4.26.6. Let C be a category and let S be a left multiplicative system of
morphisms of C. Let A, B : X — Y be morphisms of S~'C which are the equivalence
classes of (f : X =Y, s: Y =YY and (¢g: X = Y',s:Y = Y’'). Then A= B
if and only if there exists a morphism a : Y' — Y" with aos € S and such that
aof=uaog.

Proof. The equality of A and B means that there exists a commutative diagram

Y/

YI

with ¢ € S. In particular uos = vos. Hence by LMS3 there existsa s’ : Z — Y" in
S such that s’ ou = s’ ov. Setting a equal to this common value does the job. [

Remark|4.26.7. Let C be a category. Let S be a left multiplicative system. Given
an object Y of C we denote Y/S the category whose objects are s : Y — Y’ with
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s € S and whose morphisms are commutative diagrams

Y
SN
y, ——— % >

where a : Y/ — Y is arbitrary. We claim that the category Y/S is filtered (see
Definition [£.19.1)). Namely, LMS1 implies that idy : ¥ — Y is in Y/S; hence Y/S
is nonempty. LMS2 implies that given s; : Y — Y7 and s3 : Y — Y5 we can find a
diagram

Y//

Y, ——=Y3

with t € S. Hence s1: Y — Y7 and s5: Y — Y5 both have mapstotosy : Y — Y3
in Y/S. Finally, given two morphisms a,b from s; : Y = Y1 t0 $2: Y = Y3 in Y/S
we see that a o sy = bosy; hence by LMS3 there exists a ¢ : Y5 — Y3 in S such that
toa =tob. Now the combined results of Lemmas [4.26.5] and [4.26.6] tell us that

(42671) MOrs—lc(X, Y) = COlim(s:Y%Y’)eY/S MOI‘C (X, Y/)

This formula expressing morphism sets in S~!C as a filtered colimit of morphism
sets in C is occasionally useful.

Lemmal 4.26.8. Let C be a category and let S be a left multiplicative system of
morphisms of C.
(1) The rules X = X and (f: X =2 Y) = (f: X = Y,idy : Y = Y) define
a functor Q : C — S7IC.
(2) For any s € S the morphism Q(s) is an isomorphism in S™'C.
(3) If G : C — D is any functor such that G(s) is invertible for every s € S,
then there exists a unique functor H : S™'C — D such that H o Q = G.

Proof. Parts (1) and (2) are clear. (In (2), the inverse of Q(s) is the equivalence
class of the pair (idy,s).) To see (3) just set H(X) = G(X) and set H((f : X —
Y/ s:Y = Y') = G(s)"! o G(f). Details omitted. O

Lemma 4.26.9. Let C be a category and let S be a left multiplicative system of
morphisms of C. The localization functor Q : C — S™'C commutes with finite
colimits.

Proof. Let Z be a finite category and let Z — C, i — X; be a functor whose colimit
exists. Then using (4.26.7.1)), the fact that Y/S is filtered, and Lemma [4.19.2| we
have

Morg-1¢(Q(colim X;), Q(Y)) = colim(,.y _,y+)ey,s More(colim X;,Y”)
= colim(,y y1yeyys lim; More (X;,Y”)
= lim; colim,.y _y+)ey,s More(X;, YY)
= lim; Morg-1£(Q(X;), Q(Y))
and hence Q(colim X;) is the colimit of the functor ¢ — Q(X;) as desired. O
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05Q3 Lemma 4.26.10. Let C be a category. Let S be a left multiplicative system. If
f: X =Y, f: X' =Y’ are two morphisms of C and if

QX) —= Q(X")

Q(f)l \LQ(f/)
b
QY) ——QY")
is a commutative diagram in STIC, then there exists a morphism f" : X" = Y" in
C and a commutative diagram

XHXHHX/

g s
fl l P i E
t

YHYN%Y/
in C with s,t €S anda=s"1g, b=t"1h.

Proof. We choose maps and objects in the following way: First write a = s~!g for
some s: X' - X" inSand g: X - X”. By LMS2 we can find ¢t : Y’ - Y” in §
and f"”: X" —Y" such that

XHXHHX/

g s
fl \Lf” if’
Yy Y//<t;yl

commutes. Now in this diagram we are going to repeatedly change our choice of
x" Ly Ly

by postcomposing both ¢ and f” by a morphism d : Y — Y'” with the property
that dot € S. According to Remark [£.26.7] we may after such a replacement assume
that there exists a morphism h : Y — Y such that b = t_lhﬂ At this point we
have everything as in the lemma except that we don’t know that the left square
of the diagram commutes. But the definition of composition in S~!C shows that
bo Q(f) is the equivalence class of the pair (ho f: X - Y" ¢:Y’' — Y") (since
b is the equivalence class of the pair (g : X — X" s : X' — X”), while Q (f)
is the equivalence class of the pair (f : X — Y,id : Y — Y)), while Q (f') o a
is the equivalence class of the pair (f"og: X — YY"t : Y’ — Y”) (since a is
the equivalence class of the pair (h : Y — Y" ¢t : Y’ — Y”), while Q (f’) is the
equivalence class of the pair (f' : X’ — Y’ /id : Y/ — Y”)). Since we know that
boQ(f) = Q(f') oa, we thus conclude that the equivalence classes of the pairs
(hof : X =YY" t:Y' =>Y")and (fog: X =YY" t: Y’ = Y") are equal. Hence
using Lemma we can find a morphism d : Y — Y’ such that dot € S and
doho f=do f”og. Hence we make one more replacement of the kind described
above and we win. O

3Here is a more down-to-earth way to see this: Write b = ¢~ 1i for some ¢ : Y/ — Z in S and
somei:Y — Z. By LMS2wecanfindr: Y” - Y"” in Sand j: Z — Y’ such that joq=rot.
Now, set d =7 and h = joi.
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Right calculus of fractions. Let C be a category and let S be a right multiplica-
tive system. We define a new category S™1C as follows (we verify this works in the
proof of Lemma [4.26.11)):

(1) We set Ob(S~1C) = Ob(C).

(2) Morphisms X — Y of S7IC are given by pairs (f : X’ = Y,s: X' — X)

3)

(5)

(1)
(2)
3)

with s € S up to equivalence. (The equivalence is defined below. Think
of the equivalence class of a pair (f,s) as fs™1: X —Y.)

Two pairs (f1 : X1 = V,s1: X1 — X) and (f2 : Xo = Y, 50 : X5 — X)
are said to be equivalent if there exists a third pair (fs : X3 — Y, s3 :
X3 — X) and morphisms u : X3 — X5 and v : X3 — X5 of C fitting into
the commutative diagram

X1

21X

X< x, "oy

A

Xo

The composition of the equivalence classes of the pairs (f : X' — Y, s :
X' - X)and (g: Y — Z,t:Y' = Y) is defined as the equivalence class
of a pair (goh: X" — Z sou: X" — X) where h and u € S are chosen
to fit into a commutative diagram

Xl/ h Y/

x oy
which exists by assumption.

The identity morphism X — X in S~!C is the equivalence class of the
pair (id: X —» X,id: X — X).

4.26.11. Let C be a category and let S be a right multiplicative system.

The relation on pairs defined above is an equivalence relation.

The composition rule given above is well defined on equivalence classes.
Composition is associative (and the identity morphisms satisfy the identity
axioms), and hence ST1C is a category.

Proof. This lemma is dual to Lemma [£:26.2} It follows formally from that lemma
by replacing C by its opposite category in which S is a left multiplicative system. [

Definition 4.26.12. Let C be a category and let S be a right multiplicative system
of morphisms of C. Given any morphism f : X’ — Y in C and any morphism
s: X" — X in S, we denote by fs~! the equivalence class of the pair (f : X' —
Y,s: X' — X). This is a morphism from X to Y in S~!C.

Identities similar (actually, dual) to the ones in Definition [4.26.4] hold. We can
“write any finite collection of morphisms with the same source as fractions with
common denominator”.
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Lemma 4.26.13. Let C be a category and let S be a right multiplicative system
of morphisms of C. Given any finite collection g; : X — Y; of morphisms of
S~1C (indexed by i), we can find an element s : X' — X of S and a family of
morphisms f; : X' — Y; of C such that g; is the equivalence class of the pair
(fi: X' =Y,s: X' = X).

Proof. This lemma is the dual of Lemma and follows formally from that
lemma by replacing all categories in sight by their opposites. O

There is an easy characterization of equality of morphisms if they have the same
denominator.

Lemmal 4.26.14. Let C be a category and let S be a right multiplicative system of
morphisms of C. Let A, B : X — Y be morphisms of S~1C which are the equivalence
classes of (f : X' =YV, s: X' =5 X)and (9: X' = Y,s: X' = X). Then A= B
if and only if there exists a morphism a : X" — X' with soa € S and such that
foa=goa.

Proof. This is dual to Lemma [4.26.6] O

Remark| 4.26.15. Let C be a category. Let S be a right multiplicative system.
Given an object X of C we denote S/X the category whose objects are s : X’ — X
with s € S and whose morphisms are commutative diagrams

X//

\/

where a : X’ — X" is arbitrary. The category S/X is cofiltered (see Definition
4.20.1)). (This is dual to the corresponding statement in Remark [4.26.7]) Now the
combined results of Lemmas [£.26.13] and [£.26.14] tell us that

(426151) MOrs—lc(X, Y) = Colim(S:X/‘)X)e(S/X)opp MOTC(X/, Y)

This formula expressing morphisms in S~!C as a filtered colimit of morphisms in C
is occasionally useful.

Lemmal 4.26.16. Let C be a category and let S be a right multiplicative system
of morphisms of C.
(1) The rules X —» X and (f : X = Y) = (f: X =Y, idx : X = X) define
a functor Q : C — S7IC.
(2) For any s € S the morphism Q(s) is an isomorphism in S™'C.
(3) If G : C — D is any functor such that G(s) is invertible for every s € S,
then there exists a unique functor H : ST'C — D such that H o Q = G.

Proof. This lemma is the dual of Lemma and follows formally from that
lemma by replacing all categories in sight by their opposites. (I

Lemma 4.26.17. Let C be a category and let S be a right multiplicative system
of morphisms of C. The localization functor Q : C — STIC commutes with finite
limits.

Proof. This is dual to Lemma [£.26.9] O
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Lemma 4.26.18. Let C be a category. Let S be a right multiplicative system. If
f: X =Y, f: X' =Y are two morphisms of C and if

QX) —= Q(X')

Q(f)l \LQ(f/)
b
QY) ——QY")
is a commutative diagram in ST1C, then there exists a morphism f" : X" —Y" in
C and a commutative diagram

X%SXHHX/

g
fl lf” if/
YéY//L>Y/

in C with s,t €S and a = gs~', b= ht~!.

Proof. This lemma is dual to Lemma [£.:26.10 but we can also prove it directly as
follows. We choose maps and objects in the following way: First write b = ht~! for
somet:Y” Y inSand h:Y” — Y’ By RMS2 we can find s : X’/ — X in §
and f"”: X" —Y" such that

X - X// X/

S

)

YéY//L>Y/

commutes. Now in this diagram we are going to repeatedly change our choice of
x & xn oy

by precomposing both s and f” by a morphism d : X" — X" with the property
that s od € S. According to Remark we may after such a replacement
assume that there exists a morphism g : X" — X’ such that a = gs~!. At this
point we have everything as in the lemma except that we don’t know that the right
square of the diagram commutes. However, we do know that Q(f'g) = Q(hf") in
S~1D because the left square commutes, the outer square commutes in S~'D by
assumption, and because Q(s), Q(t) are isomorphisms. Hence using Lemma [4.26.14

we can find a morphism d : X" — X" in S (!) such that f'gd = hf”d. Hence we
make one more replacement of the kind described above and we win. O

Multiplicative systems and two sided calculus of fractions. If S is a multi-
plicative system then left and right calculus of fractions give canonically isomorphic
categories.

Lemmal 4.26.19. Let C be a category and let S be a multiplicative system. The
category of left fractions and the category of right fractions S~'C are canonically
isomorphic.

Proof. Denote Cict, Crignt the two categories of fractions. By the universal
properties of Lemmas [£.26.8] and [£.26.16] we obtain functors Cieft — Cpignt and
Cright = Cieye- By the uniqueness of these functors they are each others inverse. [
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Definition 4.26.20. Let C be a category and let S be a multiplicative system.
We say S is saturated if, in addition to MS1, MS2, MS3 we also have

MS4 Given three composable morphisms f, g, h, if fg,gh € S, then g € S.

Note that a saturated multiplicative system contains all isomorphisms. Moreover, if
f, g, h are composable morphisms in a category and fg, gh are isomorphisms, then
g is an isomorphism (because then g has both a left and a right inverse, hence is
invertible).

Lemma 4.26.21. Let C be a category and let S be a multiplicative system. Denote
Q : C — S™IC the localization functor. The set

S ={f e Arrows(C) | Q(f) is an isomorphism}
is equal to
S" = {f € Arrows(C) | there exist g, h such that gf, fh € S}

and is the smallest saturated multiplicative system containing S. In particular, if
S is saturated, then S = S.

Proof. It is clear that S C S’ C S because elements of S’ map to morphisms in
S~1C which have both left and right inverses. Note that S’ satisfies MS4, and that
S satisfies MS1. Next, we prove that S’ = S.

Let f € S. Let s7'g = ht~! be the inverse morphism in S~!C. (We may use
both left fractions and right fractions to describe morphisms in S~!C, see Lemma
4.26.19]) The relation idx = s~ !gf in S™!C means there exists a commutative
diagram

X/
gf J{u\
x_ Ioxr o

for some morphisms f',u,v and s’ € S. Hence ugf = s’ € S. Similarly, using that
idy = fht~! one proves that fhw € S for some w. We conclude that f € S’. Thus
S’ = §. Provided we prove that S/ = § is a multiplicative system it is now clear
that this implies that S’ = S is the smallest saturated system containing S.

Our remarks above take care of MS1 and MS4, so to finish thg proof of the lemma
we have to show that LMS2, RMS2, LMS3, RMS3 hold for S. Let us check that
LMS2 holds for S. Suppose we have a solid diagram

X——Y

g
tl E}
f Y

Z > W
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with ¢ € S. Pick a morphism a : Z — Z’ such that at € S. Then we can use LMS2
for S to find a commutative diagram

X ——Y

7' —=W
and setting f = f’ oa we win. The proof of RMS2 is dual to this. Finally, suppose
given a pair of morphisms f,g: X — Y and t € S with target X such that ft = gt.
Then we pick a morphism b such that tb € S. Then ftb = gtb which implies by

LMSS3 for S that there exists an s € S with source Y such that sf = sg as desired.
The proof of RMS3 is dual to this. O

4.27. Formal properties

In this section we discuss some formal properties of the 2-category of categories.
This will lead us to the definition of a (strict) 2-category later.

Let us denote Ob(Cat) the class of all categories. For every pair of categories
A, B € Ob(Cat) we have the “small” category of functors Fun(A, B). Composition
of transformation of functors such as

F
— |
A — B composes to A Jtor — B
NI ~—
F
F

is called wvertical composition. We will use the usual symbol o for this. Next, we
will define horizontal composition. In order to do this we explain a bit more of the
structure at hand.

Namely for every triple of categories A, B, and C there is a composition law
o : Ob(Fun(B,C)) x Ob(Fun(A, B)) — Ob(Fun(A,C))

coming from composition of functors. This composition law is associative, and
identity functors act as units. In other words — forgetting about transformations of
functors — we see that Cat forms a category. How does this structure interact with
the morphisms between functors?

Well, given t : F — F’ a transformation of functors F, F’ : A — B and a functor
G : B — C we can define a transformation of functors Go FF — G o F'. We
will denote this transformation gt. It is given by the formula (gt), = G(t) :
G(F(z)) — G(F'(z)) for all z € A. In this way composition with G becomes a
functor

Fun(A, B) — Fun(A,C).

To see this you just have to check that ¢ (idr) = idgor and that ¢ (t10t2) = gt1oata.
Of course we also have that iq ¢t = t.
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Similarly, given s : G — G’ a transformation of functors G,G’ : B — C and
F : A — B afunctor we can define sr to be the transformation of functors Go F' —
G' o F given by (sp)e = sp(z) : G(F(x)) = G'(F(x)) for all z € A. In this way
composition with F' becomes a functor

Fun(B,C) — Fun(A,C).

To see this you just have to check that (idg)r = idgor and that (sq o s9)p =
s1,F 0 o, . Of course we also have that siq, = s.

These constructions satisfy the additional properties
ci(6at) = GroGots (SP)F, = SPiom,, and m(sr) = (as)rF

whenever these make sense. Finally, given functors F,F' : A — B, and G,G’ :
B — C and transformations ¢ : FF — F’, and s : G — G’ the following diagram is
commutative

GoF —S's GoF
G oF — G' o I’
GI
in other words g/t o sp = spr o gt. To prove this we just consider what happens on
any object x € Ob(A):

G(F(z) 222 G(F/(2)

SF(z)l lsp/(z)

GI(F(2)) 5 &' (F' (@)

which is commutative because s is a transformation of functors. This compatibility
relation allows us to define horizontal composition.

Definition 4.27.1. Given a diagram as in the left hand side of:

F G GoF
ATICBTASC g AT e
F’ G’ G'oF’

we define the horizontal composition s x t to be the transformation of functors
gt osp = spr o gt.

Now we see that we may recover our previously constructed transformations ¢t and
sr as gt = idg vt and sp = s xidr. Furthermore, all of the rules we found above
are consequences of the properties stated in the lemma that follows.

Lemma 4.27.2. The horizontal and vertical compositions have the following prop-
erties

(1) o and % are associative,

(2) the identity transformations idp are units for o,

(3) the identity transformations of the identity functors id,q, are units for
and o, and
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(4) given a diagram

F G
R T T

F ledd

c

we have (8" 0s)x (t' ot) = (' xt') o (sxt).

Proof. The last statement turns using our previous notation into the following
equation

SIF// ogt ospiogt= (S/ o0 8§)pn o G(t/ ot).
According to our result above applied to the middle composition we may rewrite

the left hand side as %, o spr o gt’ o gt which is easily shown to be equal to the
right hand side. (I

Another way of formulating condition (4) of the lemma is that composition of
functors and horizontal composition of transformation of functors gives rise to a
functor

(0,%) : Fun(B,C) x Fun(A, B) — Fun(A,C)
whose source is the product category, see Definition

4.28. 2-categories

We will give a definition of (strict) 2-categories as they appear in the setting of
stacks. Before you read this take a look at Section [£.27] and Example Basi-
cally, you take this example and you write out all the rules satisfied by the objects,
1-morphisms and 2-morphisms in that example.

Definition 4.28.1. A (strict) 2-category C consists of the following data

(1) A set of objects Ob(C).

(2) For each pair z,y € Ob(C) a category Morc¢(z,y). The objects of More(z, y)
will be called 1-morphisms and denoted F' : x — y. The morphisms be-
tween these 1-morphisms will be called 2-morphisms and denoted ¢ : F/ —
F. The composition of 2-morphisms in Mor¢(z,y) will be called vertical
composition and will be denoted tot’ for ¢t : F/ — F and ¢/ : F”" — F’.

(3) For each triple x,y,z € Ob(C) a functor

(o, %) : More(y, 2) X More(x,y) — More(z, 2).

The image of the pair of 1-morphisms (F, G) on the left hand side will be
called the composition of F' and G, and denoted F o G. The image of the
pair of 2-morphisms (¢, s) will be called the horizontal composition and
denoted t x s.

These data are to satisfy the following rules:

(1) The set of objects together with the set of 1-morphisms endowed with
composition of 1-morphisms forms a category.

(2) Horizontal composition of 2-morphisms is associative.

(3) The identity 2-morphism idiq, of the identity 1-morphism id, is a unit for
horizontal composition.
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This is obviously not a very pleasant type of object to work with. On the other
hand, there are lots of examples where it is quite clear how you work with it. The
only example we have so far is that of the 2-category whose objects are a given
collection of categories, 1-morphisms are functors between these categories, and 2-
morphisms are natural transformations of functors, see Section As far as this
text is concerned all 2-categories will be sub 2-categories of this example. Here is
what it means to be a sub 2-category.

Definition 4.28.2. Let C be a 2-category. A sub 2-category C' of C, is given by a
subset Ob(C’) of Ob(C) and sub categories Morc/ (z, y) of the categories More(z, y)
for all 2,y € Ob(C’) such that these, together with the operations o (composition 1-
morphisms), o (vertical composition 2-morphisms), and x (horizontal composition)
form a 2-category.

Remark| 4.28.3. Big 2-categories. In many texts a 2-category is allowed to have
a class of objects (but hopefully a “class of classes” is not allowed). We will allow
these “big” 2-categories as well, but only in the following list of cases (to be updated
as we go along):

1) The 2-category of categories Cat.

2) The (2, 1)-category of categories Cat.

3) The 2-category of groupoids Groupoids.

4) The (2, 1)-category of groupoids Groupoids.

5) The 2-category of fibred categories over a fixed category.

(6) The (2,1)-category of fibred categories over a fixed category.

See Definition Note that in each case the class of objects of the 2-category C
is a proper class, but for all objects x,y € Ob(C) the category Mor¢(z,y) is “small”
(according to our conventions).

The notion of equivalence of categories that we defined in Section [.2] extends to
the more general setting of 2-categories as follows.

Definition 4.28.4. Two objects z,y of a 2-category are equivalent if there exist
1-morphisms F': x — y and G : y — x such that F' o G is 2-isomorphic to id, and
G o F is 2-isomorphic to id,.

Sometimes we need to say what it means to have a functor from a category into a
2-category.

Definition 4.28.5. Let A be a category and let C be a 2-category.

(1) A functor from an ordinary category into a 2-category will ignore the
2-morphisms unless mentioned otherwise. In other words, it will be a
“usual” functor into the category formed out of 2-category by forgetting
all the 2-morphisms.

(2) A weak functor, or a pseudo functor ¢ from A into the 2-category C is
given by the following data
(a) amap ¢ : Ob(A) — Ob(C),

(b) for every pair z,y € Ob(A), and every morphism f : z — y a 1-
morphism ¢(f) : ¢(x) = ¢(y),

(c) for every € Ob(A) a 2-morphism ay : idg ;) — ¢(id;), and

(d) for every pair of composable morphisms f:z —y, g:y — zof Aa
2-morphism oy : 9(g o f) = ¢(g) © p():
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These data are subject to the following conditions:
(a) the 2-morphisms «, and a4 ; are all isomorphisms,
(b) for any morphism f : 2 — y in A we have aiq,,; = oy xid():

e(f) idy e (f)
— — =
pla) e oly) v _ely) = wlz) s o(y)
®(f) #(idy) p(idy)op(f)

(c) for any morphism f: 2 — y in A we have ay;q, = idg(s) *
(d) for any triple of composable morphisms f: w — z, g : ¢ — y, and
h:y — z of A we have

(idgn) * ag,1) © Qhgog = (g *1dy(y)) © Qhog, f

in other words the following diagram with objects 1-morphisms and
arrows 2-morphisms commutes

@(hogof)a—mw>%0(h09)°%0(f)

O‘h,swfi iah,g*id«p(.f)
idgnyxag,

p(h)op(go f) ————>=p(h) o p(g) o p(f)

Again this is not a very workable notion, but it does sometimes come up. There
is a theorem that says that any pseudo-functor is isomorphic to a functor. Finally,
there are the notions of functor between 2-categories, and pseudo functor between
2-categories. This last notion leads us into 3-category territory. We would like to
avoid having to define this at almost any cost!

4.29. (2, 1)-categories

02X8 Some 2-categories have the property that all 2-morphisms are isomorphisms. These
will play an important role in the following, and they are easier to work with.

0031 Definition/4.29.1. A (strict) (2,1)-categoryis a 2-category in which all 2-morphisms
are isomorphisms.

003K |Example 4.29.2. The 2-category Cat, see Remark 4.28.3] can be turned into a
(2, 1)-category by only allowing isomorphisms of functors as 2-morphisms.

In fact, more generally any 2-category C produces a (2,1)-category by consider-
ing the sub 2-category C’ with the same objects and 1-morphisms but whose 2-
morphisms are the invertible 2-morphisms of C. In this situation we will say “let C’
be the (2,1)-category associated to C” or similar. For example, the (2, 1)-category of
groupoids means the 2-category whose objects are groupoids, whose 1-morphisms
are functors and whose 2-morphisms are isomorphisms of functors. Except that
this is a bad example as a transformation between functors between groupoids is
automatically an isomorphism!

003M Remark| 4.29.3. Thus there are variants of the construction of Example [4.29.2
above where we look at the 2-category of groupoids, or categories fibred in groupoids
over a fixed category, or stacks. And so on.
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4.30. 2-fibre products

In this section we introduce 2-fibre products. Suppose that C is a 2-category. We
say that a diagram

w—>Yy

|

r—>2z

2-commutes if the two 1-morphisms w — y — z and w — x — 2z are 2-isomorphic.
In a 2-category it is more natural to ask for 2-commutativity of diagrams than for
actually commuting diagrams. (Indeed, some may say that we should not work with
strict 2-categories at all, and in a “weak” 2-category the notion of a commutative
diagram of 1-morphisms does not even make sense.) Correspondingly the notion of
a fibre product has to be adjusted.

Let C be a 2-category. Let x,y,2 € Ob(C) and f € Mor¢(z, z) and g € More(y, 2).
In order to define the 2-fibre product of f and g we are going to look at 2-
commutative diagrams

w—>2x
bl if
Yy z.

Now in the case of categories, the fibre product is a final object in the category of
such diagrams. Correspondingly a 2-fibre product is a final object in a 2-category
(see definition below). The 2-category of 2-commutative diagrams is the 2-category
defined as follows:

a
g
e

(1) Objects are quadruples (w,a,b, @) as above where ¢ is an invertible 2-
morphism ¢ : foa — gob,

(2) 1-morphisms from (w’,a’, b, @) to (w,a,b, $) are given by (k : w' — w,« :
a —aok,B:V — bok) such that

fod ———— foaok

idf *x
& J/ J/qb*idk

id
gol i gobok

is commutative,
(3) given a second 1-morphism (k',c/, ") : (w”,a”, 0", ¢") — (W', &/, 5, ¢)
the composition of 1-morphisms is given by the rule

(k,a,B)o (K, o/, B') = (ko k', (avxidis) 0 o, (B xidy) o B),

(4) a 2-morphism between 1-morphisms (k;, «;, 53;), ¢ = 1,2 with the same
source and target is given by a 2-morphism ¢ : k; — ko such that

a’4>aok1 bokl%b/
1 B1
\ lid,,,*& idb*éi
@2 B2
aoky boks

commute,
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(5) vertical composition of 2-morphisms is given by vertical composition of
the morphisms ¢ in C, and
(6) horizontal composition of the diagram

(kg,y,85) (k2,02,82)

is given by the diagram
(k1ok’, (a1 *id,, )oa'l,(ﬁl*idkzl)oﬁi)

(w”,a", b, ¢") { x5 (w, a,b, d)
(kgoké,(ag*idké)oag,(ﬁz*idk_,z)oﬁé)

Note that if C is actually a (2, 1)-category, the morphisms « and S in (2) above
are automatically also isomorphismsﬁ In addition the 2-category of 2-commutative
diagrams is also a (2, 1)-category if C is a (2, 1)-category.

003P Definition| 4.30.1. A final object of a (2,1)-category C is an object = such that

(1) for every y € Ob(C) there is a morphism y — z, and
(2) every two morphisms y — x are isomorphic by a unique 2-morphism.

Likely, in the more general case of 2-categories there are different flavours of final
objects. We do not want to get into this and hence we only define 2-fibre products
in the (2, 1)-case.

003Q [Definition 4.30.2. Let C be a (2,1)-category. Let z,y,z € Ob(C) and f €
Morc(x,2) and g € Morc(y,z). A 2-fibre product of f and g is a final object
in the category of 2-commutative diagrams described above. If a 2-fibre product
exists we will denote it x x, y € Ob(C), and denote the required morphisms p €
More(z X, y,z) and ¢ € Morec(z X, y,y) making the diagram

p
TX, Yy ——>21a

ilf

Yy—m—m—m>=

2-commute and we will denote the given invertible 2-morphism exhibiting this by
Y:fop—ygoq.

Thus the following universal property holds: for any w € Ob(C) and morphisms
a € More(w,z) and b € More(w,y) with a given 2-isomorphism ¢ : foa — gobd
there is a v € Mor¢(w, z X, y) making the diagram

T
P

!
g

qi

4n fact it seems in the 2-category case that one could define another 2-category of 2-
commutative diagrams where the direction of the arrows «, [ is reversed, or even where the
direction of only one of them is reversed. This is why we restrict to (2, 1)-categories later on.

—_—>Z
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2-commute such that for suitable choices of a — p o~ and b — ¢q o v the diagram

foa——>fopoy

¢i lw*idw

gob——=gogqoy

commutes. Moreover v is unique up to isomorphism. Of course the exact properties
are finer than this. All of the cases of 2-fibre products that we will need later on
come from the following example of 2-fibre products in the 2-category of categories.

Example| 4.30.3. Let A, B, and C be categories. Let F': A —-C and G: B— C
be functors. We define a category A x¢ B as follows:
(1) an object of A x¢ B is a triple (4, B, f), where A € Ob(A), B € Ob(B),
and f: F(A) — G(B) is an isomorphism in C,
(2) a morphism (A, B, f) — (A, B’, f') is given by a pair (a,b), where a :
A — A’ is a morphism in A, and b : B — B’ is a morphism in B such
that the diagram

F(A)— = q(B)
\LF(@) iG(b)
P L B

is commutative.
Moreover, we define functors p: A Xx¢ B — A and ¢ : A X¢ B — B by setting
p(A,B,f) =4, q(AB,f)=B,
in other words, these are the forgetful functors. We define a transformation of
functors ¢ : F op — G ogq. On the object £ = (A, B, f) it is given by ¢ = f :
F(p(§)) = F(A) = G(B) = G(4())-

Lemma 4.30.4. In the (2,1)-category of categories 2-fibre products exist and are
given by the construction of Example [[.30.3

Proof. Let us check the universal property: let WW be a category, let a : W — A
and b : W — B be functors, and let ¢t : F'oa — G ob be an isomorphism of functors.

Consider the functor v : W — A x¢ B given by W — (a(W),b(W),tw ). (Check
this is a functor omitted.) Moreover, consider a : @ — po~y and §:b — qo~
obtained from the identities p oy = a and g oy = b. Then it is clear that (v, a, )
is a morphism from (W, a,b,t) to (A x¢ B, p,q,v).

Let (k,o/,8") : (W,a,b,t) — (A X¢ B,p,q,1¢) be a second such morphism. For an
object W of W let us write k(W) = (ar(W), bp(W), tr.w). Hence p(k(W)) = ai(W)
and so on. The map o corresponds to functorial maps o : a(W) — ap(W).
Since we are working in the (2, 1)-category of categories, in fact each of the maps
a(W) — ar(W) is an isomorphism. We can use these (and their counterparts
b(W) — bi(W)) to get isomorphisms

§W : ’Y(W) = (a(W),b(W),tw) — (ak(W%bk(W),thw) = k(W)

It is straightforward to show that § defines a 2-isomorphism between ~ and k in
the 2-category of 2-commutative diagrams as desired. (I
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Remark| 4.30.5. Let A, B, and C be categories. Let F': A - C and G : B — C
be functors. Another, slightly more symmetrical, construction of a 2-fibre product
A x¢ B is as follows. An object is a quintuple (A, B, C,a,b) where A, B,C are
objects of A, B,C and where a : F(A) — C and b : G(B) — C are isomorphisms.
A morphism (A4, B,C,a,b) — (A", B',C’,d’,V) is given by a triple of morphisms
A— A',B— B',C — C' compatible with the morphisms a, b,a’,b’. We can prove
directly that this leads to a 2-fibre product. However, it is easier to observe that
the functor (A4, B,C,a,b) — (A, B,b=! o a) gives an equivalence from the category
of quintuples to the category constructed in Example

Lemma 4.30.6. Let
Yy
AN
I
X",z B
NN
G
A-L>c
be a 2-commutative diagram of categories. A choice of isomorphisms a: Go K —
Mol and : Mo H — F oL determines a morphism
XxzY — A Xe B
of 2-fibre products associated to this situation.

Proof. Just use the functor
(XY, ¢) — (L(X), K(Y), a5 0 M(¢) 0 5"
on objects and
(a,b) — (L(a), K(b))
on morphisms. O

Lemma 4.30.7. Assumptions as in Lemma .
(1) If K and L are faithful then the morphism X xz Y — A X¢ B is faithful.
(2) If K and L are fully faithful and M is faithful then the morphism X X z
Y — A x¢ B is fully faithful.
(3) If K and L are equivalences and M is fully faithful then the morphism
X xzY — A xc B is an equivalence.

Proof. Let (X,Y,¢) and (X', Y’,¢) be objects of X xz Y. Set Z = H(X) and
identify it with I(Y") via ¢. Also, identify M (Z) with F(L(X)) via ax and identify
M(Z) with G(K(Y)) via By. Similarly for Z' = H(X') and M(Z’). The map on
morphisms is the map

MorX(X, XI) XMorZ(Z,Z’) 1\/{01‘)}(1/7 YI)

|

Mor A (L(X), L(X")) Xnore(M(2),Mm(z)) Mors(K(Y), K(Y"))

Hence parts (1) and (2) follow. Moreover, if K and L are equivalences and M is
fully faithful, then any object (A, B, ¢) is in the essential image for the following
reasons: Pick X, Y such that L(X) = A and K(Y) = B. Then the fully faithfulness
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of M guarantees that we can find an isomorphism H(X) = I(Y). Some details
omitted. (]

A C &
B D
be a diagram of categories and functors. Then there is a canonical isomorphism

(AxgC)xpE2XAXp(Cxpé&)

Lemma 4.30.8. Let

of categories.

Proof. Just use the functor
((A7 C? ¢)7 E7 11[}) ’—> (A7 (07 E? /l/})’ ¢)

if you know what I mean. O

Henceforth we do not write the parentheses when dealing with fibred products of
more than 2 categories.

NN\
N

be a commutative diagram of categories and functors. Then there is a canonical
functor

Lemma 4.30.9. Let

Prog :AXBC XxpE — AXxr €&
of categories.
Proof. If we write A x5 C xp & as (A xpC) Xp & then we can just use the functor
((A,C,0),E,¢) — (A, E,G(¢) 0 F(¢))
if you know what I mean. O

Lemma 4.30.10. Let
A— B+ C«+D

be a diagram of categories and functors. Then there is a canonical isomorphism
AXxgCxeD=2AxpD
of categories.

Proof. Omitted. O

We claim that this means you can work with these 2-fibre products just like with
ordinary fibre products. Here are some further lemmas that actually come up later.
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Lemma 4.30.11. Let

C3———S§

A

C x G %2 s xS

be a 2-fibre product of categories. Then there is a canonical isomorphism C3 =2
Ci1 X@,,8,65 Co.

Proof. We may assume that Cz is the category (C; X C2) Xsxs S constructed in

Example 4.30.3l Hence an object is a triple ((X1,X2),S,¢) where ¢ = (¢1,¢2) :
(G1(X1),G2(X2)) — (S,S) is an isomorphism. Thus we can associate to this the

triple (X1, X2, d5 ' 0 ¢1). Conversely, if (X1, X2,1) is an object of C; XG1.8,Gs Ca,
then we can associate to this the triple ((X1, X2), G2(X2), (¢,idg,(x,))). We claim
these constructions given mutually inverse functors. We omit describing how to
deal with morphisms and showing they are mutually inverse. [

Lemma 4.30.12. Let
(' —S8
A

c -G g

be a 2-fibre product of categories. Then there is a canonical isomorphism

C' = (C %64,5,G2 C) X(p.g).cxe,a C.
Proof. An object of the right hand side is given by ((C1, Cs, ¢), C3,1) where ¢ :
Gl(Cl) — GQ(OQ) is an isomorphism and 1/) = (¢)17w2) : (017 CQ) — (03, 03) is an
isomorphism. Hence we can associate to this the triple (Cs, G1(C1), (G1 (7 1), ¢~ o
Go(y 1)) which is an object of C’. Details omitted. O

Lemmal 4.30.13. Let A — C, B— C and C — D be functors between categories.
Then the diagram
.A Xc B—— A XD B

| e

C——=CxpC
is a 2-fibre product diagram.
Proof. Omitted. U

Lemma 4.30.14. Let
U——--y

|

X —=Y
be a 2-fibre product of categories. Then the diagram

U—m-u XVZ/{

L

X*>XX)}X
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is 2-cartesian.

Proof. This is a purely 2-category theoretic statement, valid in any (2, 1)-category
with 2-fibre products. Explicitly, it follows from the following chain of equivalences:

X X(xxyx) U xpU) =X X(xxyx) (X xy V) xp (X xyV))
=X X(xxyx) (X Xy X xy V)
:XXyV:u

see Lemmas 14.30.8 and 4.30.10L O

4.31. Categories over categories

In this section we have a functor p : S — C. We think of S as being on top and of
C as being at the bottom. To make sure that everybody knows what we are talking
about we define the 2-category of categories over C.

Definition 4.31.1. Let C be a category. The 2-category of categories over C is
the 2-category defined as follows:
(1) Tts objects will be functors p : S — C.
(2) Its l-morphisms (S,p) — (§’,p’) will be functors G : S — S’ such that
poG=p.
(3) Its 2-morphisms ¢t : G — H for G, H : (S,p) — (S',p) will be morphisms
of functors such that p’(t,) = id,y) for all z € Ob(S).

In this situation we will denote
MorCat/C (Sv S/)
the category of 1-morphisms between (S, p) and (S8’,p’)

In this 2-category we define horizontal and vertical composition exactly as is done
for Cat in Section The axioms of a 2-category are satisfied for the same reason
that the hold in Cat. To see this one can also use that the axioms hold in Cat and
verify things such as “vertical composition of 2-morphisms over C gives another
2-morphism over C”. This is clear.

Analogously to the fibre of a map of spaces, we have the notion of a fibre category,
and some notions of lifting associated to this situation.

Definition 4.31.2. Let C be a category. Let p: & — C be a category over C.

(1) The fibre category over an object U € Ob(C) is the category Sy with
objects

Ob(Sy) = {z € Ob(S) : p(x) = U}

and morphisms

Morg, (z,y) = {¢ € Mors(z,y) : p(¢) =idy}.

(2) A lift of an object U € Ob(C) is an object € Ob(S) such that p(z) = U,
i.e., z € Ob(Sy). We will also sometime say that = lies over U.

(3) Similarly, a lift of a morphism f:V — U in C is a morphism ¢ : y — z in
S such that p(¢) = f. We sometimes say that ¢ lies over f.
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There are some observations we could make here. For example if F : (S,p) —
(8',p’) is a 1-morphism of categories over C, then F' induces functors of fibre cate-
gories F' : Sy — &;. Similarly for 2-morphisms.

Here is the obligatory lemma describing the 2-fibre product in the (2, 1)-category
of categories over C.

Lemma 4.31.3. Let C be a category. The (2,1)-category of categories over C
has 2-fibre products. Suppose that F : X — S and G : Y — S are morphisms
of categories over C. An explicit 2-fibre product X xs Y is given by the following
description

(1) an object of X xs Y is a quadruple (U,z,y, f), where U € Ob(C), x €
Ob(Xy), y € Ob(Qy), and f: F(x) — G(y) is an isomorphism in Sy,
(2) a morphism (U,z,y, f) — (U, 2',y/, f') is given by a pair (a,b), where
a:x — x' is a morphism in X, and b : y — vy is a morphism in ) such
that
(a) a and b induce the same morphism U — U’, and
(b) the diagram

F(z) —— G(y)

lF(a)
F') —> Gy

G(b)

18 commutative.
The functorsp: X xgY — X and q: X xgY — Y are the forgetful functors in this

case. The transformation ¥ : F op — G o q is given on the object & = (U, x,y, f)
by e = f: F(p(§)) = F(x) = G(y) = G(q(&))-

Proof. Let us check the universal property: let pyy : W — C be a category over
C,let X : W —> X and Y : W — Y be functors over C, and let t : Fo X — GoY
be an isomorphism of functors over C. The desired functor v : W — X xg ) is
given by W — (pyy (W), X (W), Y (W), tw ). Details omitted; compare with Lemma
4.50.4! ([l

Lemma 4.31.4. Let C be a category. Let f: X — S and g:)Y — S be morphisms
of categories over C. For any object U of C we have the following identity of fibre
categories

(X xs )y = Xu xs, VU

Proof. Omitted. U

4.32. Fibred categories
A very brief discussion of fibred categories is warranted.

Let p: 8§ — C be a category over C. Given an object x € S with p(z) = U, and
given a morphism f : V — U, we can try to take some kind of “fibre product
V xy 27 (or a base change of x via V' — U). Namely, a morphism from an object
z € S into “V xy 2” should be given by a pair (¢, g), where ¢ : z = z, g : p(z) = V
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such that p(p) = f o g. Pictorially:

bbb

p(z) —=V ——=U

If such a morphism V Xy ¢ — x exists then it is called a strongly cartesian mor-
phism.

Definition 4.32.1. Let C be a category. Let p : S — C be a category over C. A
strongly cartesian morphism, or more precisely a strongly C-cartesian morphism is
a morphism ¢ : y — x of S such that for every z € Ob(S) the map

MOI‘S(Za y) — MOI‘S (27 JI) X More (p(2),p(z)) MOI‘C (p(z)ap(y))v
given by ¥ — (p o, p(v))) is bijective.

Note that by the Yoneda Lemma [4.3.5] given z € Ob(S) lying over U € Ob(C) and
the morphism f : V — U of C, if there is a strongly cartesian morphism ¢ : y — x
with p(¢) = f, then (y, ) is unique up to unique isomorphism. This is clear from
the definition above, as the functor

z > Mors(2, %) Xnore (p(2),v) More(p(2), V)

only depends on the data (z,U, f : V — U). Hence we will sometimes use V xyz —
x or f*r — x to denote a strongly cartesian morphism which is a lift of f.

Lemma 4.32.2. Let C be a category. Let p: S — C be a category over C.

(1) The composition of two strongly cartesian morphisms is strongly cartesian.

(2) Any isomorphism of S is strongly cartesian.

(3) Any strongly cartesian morphism ¢ such that p(p) is an isomorphism, is
an isomorphism.

Proof. Proof of (1). Let ¢ : y — x and ¢ : z — y be strongly cartesian. Let t be
an arbitrary object of S. Then we have

Mors(t, z)

= MOI’S (t7 y) ><Morc(p(t),p(y)) MOI’C (p(t),p(z))

= Mors (t, .Z‘) X More (p(t),p(z)) More (p(t)vp(y)) X More (p(t),p(y)) Morc (p(t)’p(z))

= MOI‘S(t, ZC) ><Morc(p(t),p(m)) MOI‘c(p(t),p(Z))
hence z — z is strongly cartesian.
Proof of (2). Let y — z be an isomorphism. Then p(y) — p(z) is an isomor-
phism too. Hence Morc(p(2),p(y)) — Morc(p(z),p(x)) is a bijection. Hence
Mors (2, ) XMore (p(2),p(x)) More(p(2), p(y)) is bijective to Mors(z,z). Hence the

displayed map of Definition [4.32.1| is a bijection as y — x is an isomorphism, and
we conclude that y — x is strongly cartesian.

Proof of (3). Assume ¢ : y — x is strongly cartesian with p(¢) : p(y) — p(z) an
isomorphism. Applying the definition with z = z shows that (id,,p(¢)~!) comes
from a unique morphism y : z — y. We omit the verification that y is the inverse
of . O
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Lemmal 4.32.3. Let F: A — B and G : B — C be composable functors between
categories. Let x — y be a morphism of A. If © — y is strongly B-cartesian and
F(z) — F(y) is strongly C-cartesian, then x — y is strongly C-cartesian.

Proof. This follows directly from the definition. (]

Lemma 4.32.4. Let C be a category. Let p: S — C be a category over C. Let
x — y and z — y be morphisms of S. Assume

(1) = — y is strongly cartesian,
(2) p(x) Xpey) p(2) exists, and
(3) there exists a strongly cartesian morphism a : w — z in S with p(w) =
P(x) Xp(y) p(2) and p(a) = pry : p(x) Xpy) p(2) = p(2)-
Then the fibre product x x, z exists and is isomorphic to w.

Proof. Since x — y is strongly cartesian there exists a unique morphism b : w — x
such that p(b) = pry. To see that w is the fibre product we compute

p(w))
X More (p(t),p(2)) (MOrc( ( )7p($)) X More (p(t),p(v)) Morc(p(t),p(z)))
p(

(t,2)
(t,2)

= Mors(t, 2) Xnore (p(t) p(y)) Motc (p(t), p(2))
(t,2)
(t,2)

><Morc (t),p(2)) MOI‘C( ( )
z

1 Z) XMors (t,y) MOTs(t,Y) XMore (p(t),p(y)) More(p(t), p(x))

»Z) XMors (t,y) MorS(t $)

as desired. The first equality holds because a : w — z is strongly cartesian and the
last equality holds because x — y is strongly cartesian. (I

Definition 4.32.5. Let C be a category. Let p: S — C be a category over C. We
say S is a fibred category over C if given any x € Ob(S) lying over U € Ob(C) and
any morphism f : V — U of C, there exists a strongly cartesian morphism f*z — =
lying over f.

Assume p : § — C is a fibred category. For every f : V — U and z € Ob(Sy)
as in the definition we may choose a strongly cartesian morphism f*r — z lying
over f. By the axiom of choice we may choose f*z — z for all f: V — U = p(x)
simultaneously. We claim that for every morphism ¢ : x — 2’ in Sy and f: V — U
there is a unique morphism f*¢ : f*x — f*x’ in Sy such that

*x *x/
fro—— fl
l & ,
r—>1x

commutes. Namely, the arrow exists and is unique because f*z’ — 2’ is strongly
cartesian. The uniqueness of this arrow guarantees that f* (now also defined on
morphisms) is a functor f*: Sy — Sy.

Definition 4.32.6. Assume p:S — C is a fibred category.
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(1) A choice of pullback:ﬂ for p : & — C is given by a choice of a strongly
cartesian morphism f*x — z lying over f for any morphism f:V — U
of C and any xz € Ob(Sy).

(2) Given a choice of pullbacks, for any morphism f : V — U of C the functor
f*: Sy — Sy described above is called a pullback functor (associated to
the choices f*z — = made above).

Of course we may always assume our choice of pullbacks has the property that
idj;x = z, although in practice this is a useless property without imposing further
assumptions on the pullbacks.

Lemmal 4.32.7. Assume p: S — C is a fibred category. Assume given a choice
of pullbacks forp:S — C.

(1) For any pair of composable morphisms f:V — U, g: W — V there is a
unique isomorphism

ags:(fog) —rgtof
as functors Sy — Sw such that for every y € Ob(Sy) the following
diagram commutes

g fry——fy

(ag,f)y T

(fog)y——>y
(2) If f = idy, then there is a canonical isomorphism ay : id — (idy)* as
functors Sy — Sy .

(3) The quadruple (U — Sy, f — f*, aq,5,ar) defines a pseudo functor from
COPP to the (2,1)-category of categories, see Definition |4.28.5)

Proof. In fact, it is clear that the commutative diagram of part (1) uniquely de-
termines the morphism (o, ), in the fibre category Sw. It is an isomorphism
since both the morphism (f o g)*y — vy and the composition ¢*f*y — f*y — y
are strongly cartesian morphisms lifting f o g (see discussion following Defini-
tion and Lemma [4.32.2). In the same way, since id, : * — x is clearly
strongly cartesian over idy (with U = p(x)) we see that there exists an isomor-
phism (ay), : « — (idy)*z. (Of course we could have assumed beforehand that
f*x = x whenever f is an identity morphism, but it is better for the sake of gen-
erality not to assume this.) We omit the verification that oy y and ay so obtained
are transformations of functors. We also omit the verification of (3). O

Lemmal 4.32.8. Let C be a category. Let Sy, So be categories over C. Suppose
that S1 and Sy are equivalent as categories over C. Then Sy is fibred over C if and
only if Sy is fibred over C.

Proof. Denote p; : §S; — C the given functors. Let F' : S — Sz, G : So — &1 be
functors over C, and let i : F o G — ids,, j : Go F — ids, be isomorphisms of
functors over C. We claim that in this case F' maps strongly cartesian morphisms to

5This is probably nonstandard terminology. In some texts this is called a “cleavage” but
it conjures up the wrong image. Maybe a “cleaving” would be a better word. A related notion
is that of a “splitting”, but in many texts a “splitting” means a choice of pullbacks such that
g*f* = (f og)* for any composable pair of morphisms. Compare also with Definition
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strongly cartesian morphisms. Namely, suppose that ¢ : y — z is strongly cartesian
in §;. Set f:V — U equal to p1(¢). Suppose that 2/ € Ob(Sz), with W = py(2’),
and we are given g : W — V and ¢’ : 2’ — F(z) such that pa(¢') = f o g. Then

Y=730G0W): G — G(F(z)) = x

is a morphism in 81 with p;(¥) = f og. Hence by assumption there exists a unique
morphism ¢ : G(2’) — y lying over g such that ¢ = ¢ o £. This in turn gives a
morphism

§=Foit:2 = F(G(E)) = F(y)

lying over g with ¥’ = F(p) o ¢’. We omit the verification that £’ is unique. d

The conclusion from Lemma is that equivalences map strongly cartesian
morphisms to strongly cartesian morphisms. But this may not be the case for an
arbitrary functor between fibred categories over C. Hence we define the 2-category
of fibred categories as follows.

Definition 4.32.9. Let C be a category. The 2-category of fibred categories over
C is the sub 2-category of the 2-category of categories over C (see Definition [4.31.1))
defined as follows:

(1) Tts objects will be fibred categories p: S — C.
(2) Its l-morphisms (S,p) — (§’,p’) will be functors G : S — S’ such that
p' oG = p and such that G maps strongly cartesian morphisms to strongly
cartesian morphisms.
(3) Its 2-morphisms ¢t : G — H for G, H : (S,p) — (S',p’) will be morphisms
of functors such that p’(t,) = id, () for all z € Ob(S).
In this situation we will denote

Mor iy /e (S, S')
the category of 1-morphisms between (S, p) and (S§’,p’)

Note the condition on 1-morphisms. Note also that this is a true 2-category and not
a (2, 1)-category. Hence when taking 2-fibre products we first pass to the associated
(2, 1)-category.

Lemma 4.32.10. Let C be a category. The (2,1)-category of fibred categories over
C has 2-fibre products, and they are described as in Lemma[{.51.3

Proof. Basically what one has to show here is that given £ : X - SandG: Y — S
morphisms of fibred categories over C, then the category X xs ) described in
Lemma is fibred. Let us show that X xs ) has plenty of strongly cartesian
morphisms. Namely, suppose we have (U, x,y, ¢) an object of X Xs). And suppose
f:V = U is a morphism in C. Choose strongly cartesian morphisms a : f*x — =
in X lying over f and b : f*y — y in Y lying over f. By assumption F'(a) and
G(b) are strongly cartesian. Since ¢ : F(x) — G(y) is an isomorphism, by the
uniqueness of strongly cartesian morphisms we find a unique isomorphism f*¢ :
F(f*x) — G(f*y) such that G(b) o f*¢ = ¢ o F(a). In other words (G(a),G(b)) :
(V, f*x, f*y, f*¢) — (U, x,y, $) is a morphism in X xg ). We omit the verification
that this is a strongly cartesian morphism (and that these are in fact the only
strongly cartesian morphisms). (I

Lemma 4.32.11. Let C be a category. Let U € Ob(C). Ifp:S — C is a fibred
category and p factors throughp' : S — C/U thenp' : S — C/U is a fibred category.
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Proof. Suppose that ¢ : #' — x is strongly cartesian with respect to p. We
claim that ¢ is strongly cartesian with respect to p’ also. Set g = p/(¢), so that
g:V'/U — V/U for some morphisms f: V — U and f': V' — U. Let z € Ob(S).
Set p/(z) = (W — U). To show that ¢ is strongly cartesian for p’ we have to show

Mors (2, ") — Mors(2,2) Xwmor,, (w/v,v/v) More,u(W/U, V' /U),

given by ¢ — (p o ¢/, p'(¢')) is bijective. Suppose given an element (i, h) of
the right hand side, then in particular g o h = p(¢), and by the condition that ¢
is strongly cartesian we get a unique morphism %’ : z — ' with ¥ = ¢ o4’ and
p(¥') = h. OK, and now p'(¢’) : W/U — V/U is a morphism whose corresponding
map W — V is h, hence equal to h as a morphism in C/U. Thus ¢’ is a unique
morphism z — 2’ which maps to the given pair (¢, h). This proves the claim.

Finally, suppose given g : V//U — V/U and x with p’(z) = V/U. Sincep : S — C is
a fibred category we see there exists a strongly cartesian morphism ¢ : 2’ — z with
p(p) = g. By the same argument as above it follows that p/'(¢) = ¢ : V' /U — V/U.
And as seen above the morphism ¢ is strongly cartesian. Thus the conditions of
Definition are satisfied and we win. 0

Lemmal 4.32.12. Let A — B — C be functors between categories. If A is fibred
over B and B is fibred over C, then A is fibred over C.

Proof. This follows from the definitions and Lemma [.32.3] O

Lemma 4.32.13. Letp:S — C be a fibred category. Let x — y and z — y be
morphisms of S with x — y strongly cartesian. If p(x) X ) p(2) exists, then x X, 2
exists, p(x Xy z) = p(x) Xp) P(2), and x X, z — 2 is strongly cartesian.

Proof. Pick a strongly cartesian morphism pr;z — z lying over pry : p(x) X ()
p(z) = p(z). Then priz = x X, z by Lemma [4.32.4 O

Lemma 4.32.14. Let C be a category. Let F': X — Y be a 1-morphism of fibred
categories over C. There exist 1-morphisms of fibred categories over C

X_ x5y
such that F = v ou and such that
(1) w: X = X is fully faithful,
(2) w is left adjoint to u, and
(3) v: X' =Y is a fibred category.

Proof. Denote p: X — C and ¢ : YV — C the structure functors. We construct
X’ explicitly as follows. An object of X’ is a quadruple (U,z,y, f) where z €
Ob(Xy), y € Ob(Yy) and f : y — F(x) is a morphism in Yy. A morphism
(a,b) : (U,z,y, f) — (U',2",y,f') is given by @ : @ — 2’ and b : y — y with
p(a) = q(b) : U — U’ and such that f'ob= F(a)o f.

Let us make a choice of pullbacks for both p and ¢ and let us use the same notation
to indicate them. Let (U,z,y, f) be an object and let h : V' — U be a morphism.
Consider the morphism ¢ : (V, h*z, h*y, h*f) — (U, z,y, f) coming from the given
strongly cartesian maps h*x — x and h*y — y. We claim c is strongly cartesian in
X’ over C. Namely, suppose we are given an object (W, z’,y’, f’) of X', a morphism
(a,b) : W, 2",y f") = (U,z,y, f) lying over W — U, and a factorization W —
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V — U of W — U through h. As h*x — x and h*y — y are strongly cartesian we
obtain morphisms a’ : ¥’ — h*x and b’ : ¥y’ — h*y lying over the given morphism
W — V. Consider the diagram

y h*y y

N
F(z') —= F(h*z) — F()

The outer rectangle and the right square commute. Since F' is a l-morphism of
fibred categories the morphism F(h*z) — F(z) is strongly cartesian. Hence the
left square commutes by the universal property of strongly cartesian morphisms.
This proves that X’ is fibred over C.

The functor v : X — X’ is given by = — (p(z),z, F(z),id). This is fully faithful.
The functor X’ — Y is given by (U, x,y, f) — y. The functor w : X’ — X is given
by (U, z,y, f) — x. Each of these functors is a 1-morphism of fibred categories over
C by our description of strongly cartesian morphisms of X’ over C. Adjointness of
w and u means that

Mory (z,2") = Morx/ (U, z,y, f), (p(z'), ', F(2'),id)),

which follows immediately from the definitions.

Finally, we have to show that X’ — ) is a fibred category. Let ¢ : 3y — y be a
morphism in ) and let (U, z,y, f) be an object of X’ lying over y. Set V = ¢(y') and
let h=gq(c): V —>U. Let a: h*x — x and b : h*y — y be the strongly cartesian
morphisms covering h. Since F' is a 1-morphism of fibred categories we may identify
h*F(z) = F(h*z) with strongly cartesian morphism F'(a) : F(h*z) — F(x). By
the universal property of b : h*y — y there is a morphism ¢’ : y' — h*y in Yy such
that ¢ = bo . We claim that

(a,0): (V.h'z,y', k" foc) — (U,z,y, f)

is strongly cartesian in X’ over ). To see this let (W, x1,y1, f1) be an object of X7,
let (ay,b1) : (W, 21,41, f1) = (U, z,y, f) be a morphism and let b; = cob} for some
morphism b : y; — 3. Then

(alla bll) : (VI/’ Z1,Y1, fl) — (‘/7 h*.'IJ, y/7 h’*f © C/)
(where o} : 1 — h*z is the unique morphism lying over the given morphism
q(b}) : W — V such that a1 = a o a}) is the desired morphism. O

4.33. Inertia

Given fibred categories p : S — C and p’ : &’ — C over a category C and a
1-morphism F : § — &’ we have the diagonal morphism

A:AS/S’ :S§—Sxs' S
in the (2, 1)-category of fibred categories over C.

Lemma 4.33.1. Let C be a category. Letp: S — C and p' : 8’ — C be fibred
categories. Let F': S — 8" be a 1-morphism of fibred categories over C. Consider
the category Ls;s: over C whose

(1) objects are pairs (x,a) where x € Ob(S) and o : x — x is an automor-
phism with F(a) = id,
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(2) morphisms (x,a) — (y, 8) are given by morphisms ¢ : x — y such that

T —>y
VL b
2y
commutes, and
(3) the functor Is;s — C is given by (x,c) — p(x).

(1) there is an equivalence
Isisr — S XA(Sxg8),A S

in the (2,1)-category of categories over C, and
(2) Zs/s is a fibred category over C.

Proof. Note that (2) follows from (1) by Lemmas [4.32.10| and [4.32.8 Thus it
suffices to prove (1). We will use without further mention the construction of the
2-fibre product from Lemma In particular an object of S XA (sxs 8),a S
is a triple (z,y, (¢,x)) where x and y are objects of S, and (¢, k) : (z,7,idp()) —
(y,9,1dp(y)) is an isomorphism in S xs/ §. This just means that ¢,k : © — y are
isomorphisms and that F(:) = F(x). Consider the functor

Is)st — S XA (sx g8, 8

which to an object (z,«) of the left hand side assigns the object (z,z, (a,id;)) of
the right hand side and to a morphism ¢ of the left hand side assigns the morphism
(¢, @) of the right hand side. We claim that a quasi-inverse to that morphism is
given by the functor
S XA (Sxg8),aS —> Isys
which to an object (z,, (1, k)) of the left hand side assigns the object (z,x o) of
the right hand side and to a morphism (¢, ¢') : (x,y, (¢, k)) = (2, w, (A, u)) of the
left hand side assigns the morphism ¢. Indeed, the endo-functor of Is/s: induced
by composing the two functors above is the identity on the nose, and the endo-
functor induced on S XA (sx 5 8),a S is isomorphic to the identity via the natural
isomorphism
(idg, &) : (z, 2, (k0 1,idy)) — (2,9, (1, k).

Some details omitted. O

Definition 4.33.2. Let C be a category.

(1) Let F: S — &’ be a 1-morphism of fibred categories over C. The relative
inertia of S over S’ is the fibred category Zs/s: — C of Lemma [4.33.1
(2) By the inertia fibred category s of S we mean Zs = Zgc.

Note that there are canonical 1-morphisms
(43321) Is/s/ — S and Is —> S

of fibred categories over C. In terms of the description of Lemma[4.33.1these simply
map the object (z,a) to the object z and the morphism ¢ : (x,a) — (y, 3) to the
morphism ¢ : x — y. There is also a neutral section

(4.33.2.2) e:S—TIsisr and e:8 —1Is


http://stacks.math.columbia.edu/tag/034I

0474

0475

0476

003S

003T

4.34. CATEGORIES FIBRED IN GROUPOIDS 141

defined by the rules = — (z,id;) and (¢ : * — y) — ¢. This is a right inverse to
(4.33.2.1). Given a 2-commutative square

Si — Sy
170
5~ 8
there is a functoriality map
(4.33.2.3) Is,/s; — Ls,ys, and Is, — s,
defined by the rules (z,a) — (G(z),G(«)) and ¢ — G(¢). In particular there is

always a comparison map
(4.33.2.4) Is/s — Ls

and all the maps above are compatible with this.

Lemmal 4.33.3. Let F : § — & be a 1-morphism of categories fibred over a
category C. Then the diagram

T — T
SIS T @332 S

Fol 1»
S —° ST
is a 2-fibre product.
Proof. Omitted. ]

4.34. Categories fibred in groupoids

In this section we explain how to think about categories in groupoids and we see
how they are basically the same as functors with values in the (2, 1)-category of
groupoids.

Definition 4.34.1. Let p : § — C be a functor. We say that S is fibred in
groupoids over C if the following two conditions hold:

(1) For every morphism f : V — U in C and every lift x of U there is a lift
¢y — x of f with target x.

(2) For every pair of morphisms ¢ : y — = and ¢ : 2z — = and any morphism
f : p(z2) = p(y) such that p(¢) o f = p(v) there exists a unique lift
X : 2 — y of f such that ¢ oy = .

Condition (2) phrased differently says that applying the functor p gives a bijection
between the sets of dotted arrows in the following commutative diagram below:

zA/*> x p(Ay) —p(z)
| / 1 /
z p(2)

Another way to think about the second condition is the following. Suppose that
g: W = Voand f:V — U are morphisms in C. Let z € Ob(Sy). By the first
condition we can lift f to ¢ : ¥y — x and then we can lift g to ¥ : z — y. Instead of
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doing this two step process we can directly lift g o f to v : 2’ — x. This gives the
solid arrows in the diagram

(4.34.1.1)

A
|
Y
Z Yy
bbb
g f
W—V—>U

where the squiggly arrows represent not morphisms but the functor p. Applying
the second condition to the arrows ¢ o, v and idy we conclude that there is a
unique morphism x : z — 2’ in Sy such that v oy = ¢ o4. Similarly there is a
unique morphism 2z’ — z. The uniqueness implies that the morphisms z’ — z and
z — 2z’ are mutually inverse, in other words isomorphisms.

It should be clear from this discussion that a category fibred in groupoids is very
closely related to a fibred category. Here is the result.

Lemma 4.34.2. Letp:S — C be a functor. The following are equivalent

(1) p: S = C is a category fibred in groupoids, and

(2) all fibre categories are groupoids and S is a fibred category over C.
Moreover, in this case every morphism of S is strongly cartesian. In addition, given
ffx — x lying over f forall f 1 V — U = p(z) the data (U — Sy, f — f*, a54,av0)
constructed in Lemma defines a pseudo functor from C°PP in to the (2,1)-
category of groupoids.

Proof. Assume p: § — C is fibred in groupoids. To show all fibre categories Sy
for U € Ob(C) are groupoids, we must exhibit for every f : y — x in Sy an inverse
morphism. The diagram on the left (in Sy) is mapped by p to the diagram on the
right:

f idy

y——>x U——U
A A

S /
x U

Since only idy makes the diagram on the right commute, there is a unique g : * — y
making the diagram on the left commute, so fg = id,. By a similar argument there
is a unique h : y — x so that gh = id,. Then fgh = f :y — 2. We have fg = id,,
so h = f. Condition (2) of Definition says exactly that every morphism of
S is strongly cartesian. Hence condition (1) of Deﬁnition implies that S is a
fibred category over C.

Conversely, assume all fibre categories are groupoids and S is a fibred category
over C. We have to check conditions (1) and (2) of Definition The first
condition follows trivially. Let ¢ : y — x, ¥ : z — x and f : p(z) — p(y) such
that p(¢) o f = p(¢) be as in condition (2) of Definition Write U = p(z),
V=py), W=npz),p(¢) =g:V = U, p()=h: W — U. Choose a strongly
cartesian g*x — x lying over g. Then we get a morphism ¢ : y — g*x in Sy, which
is therefore an isomorphism. We also get a morphism j : z — g*x corresponding to
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the pair (v, f) as g*x — z is strongly cartesian. Then one checks that y =i7! o j
is a solution.

We have seen in the proof of (1) = (2) that every morphism of S is strongly
cartesian. The final statement follows directly from Lemma O

Lemmal 4.34.3. Let C be a category. Let p: S — C be a fibred category. Let S’
be the subcategory of S defined as follows

(1) Ob(S") = Ob(S), and
(2) for xz,y € Ob(S’) the set of morphisms between x and y in S’ is the set of
of strongly cartesian morphisms between x and y in S.

Let p' : 8" — C be the restriction of p to S’. Then p’' : 8" — C is fibred in groupoids.

Proof. Note that the construction makes sense since by Lemma[4.32.2] the identity
morphism of any object of S is strongly cartesian, and the composition of strongly
cartesian morphisms is strongly cartesian. The first lifting property of Definition
follows from the condition that in a fibred category given any morphism
f:V — U and z lying over U there exists a strongly cartesian morphism ¢ : y — =
lying over f. Let us check the second lifting property of Definition for the
category p’ : 8’ — C over C. To do this we argue as in the discussion following
Definition Thus in Diagram [£.34.1.1] the morphisms ¢, 1 and ~ are strongly
cartesian morphisms of S. Hence v and ¢ o are strongly cartesian morphisms of S
lying over the same arrow of C and having the same target in S. By the discussion
following Definition [£:32.1] this means these two arrows are isomorphic as desired
(here we use also that any isomorphism in S is strongly cartesian, by Lemma
again). O

Example 4.34.4. A homomorphism of groups p : G — H gives rise to a functor
p: S — C as in Example[£:2.12] This functor p : § — C is fibred in groupoids if and
only if p is surjective. The fibre category Sy over the (unique) object U € Ob(C)
is the category associated to the kernel of p as in Example [1.2.6]

Given p : § — C, we can ask: if the fibre category Sy is a groupoid for all U €
Ob(C), must S be fibred in groupoids over C? We can see the answer is no as follows.
Start with a category fibred in groupoids p : S — C. Altering the morphisms in
S which do not map to the identity morphism on some object does not alter the
categories Sy. Hence we can violate the existence and uniqueness conditions on lifts.
One example is the functor from Example when G — H is not surjective.
Here is another example.

Example 4.34.5. Let Ob(C) = {4, B,T} and Morc(A, B) = {f}, Mor¢(B,T) =
{g}, Morc(A,T) = {h} = {gf}, plus the identity morphism for each object. See
the diagram below for a picture of this category. Now let Ob(S) = {A’, B, T'}
and Morg(A’, B’) = 0, Mors(B’,T") = {¢'}, Mors(A’,T") = {h'}, plus the identity
morphisms. The functor p : S — C is obvious. Then for every U € Ob(C), Sy
is the category with one object and the identity morphism on that object, so a
groupoid, but the morphism f : A — B cannot be lifted. Similarly, if we declare
Mors(A’, B") = {f1, f4} and Mors (A", T") = {h'} = {¢'f1} = {g' f5}, then the fibre
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categories are the same and f: A — B in the diagram below has two lifts.

/

B LT B-2-T
A

7?7 : % above fT ﬁ—h
A’ A

Later we would like to make assertions such as “any category fibred in groupoids
over C is equivalent to a split one”, or “any category fibred in groupoids whose
fibre categories are setlike is equivalent to a category fibred in sets”. The notion of
equivalence depends on the 2-category we are working with.

Definition 4.34.6. Let C be a category. The 2-category of categories fibred in
groupoids over C is the sub 2-category of the 2-category of fibred categories over C
(see Definition defined as follows:
(1) Its objects will be categories p : S — C fibred in groupoids.
(2) Its 1-morphisms (S,p) — (§’,p’) will be functors G : S — S’ such that
p' o G = p (since every morphism is strongly cartesian G automatically
preserves them).
(3) Its 2-morphisms ¢t : G — H for G, H : (S,p) — (S',p) will be morphisms
of functors such that p’(t,) = id,y) for all z € Ob(S).

Note that every 2-morphism is automatically an isomorphism! Hence this is actually
a (2, 1)-category and not just a 2-category. Here is the obligatory lemma on 2-fibre
products.

Lemmal 4.34.7. Let C be a category. The 2-category of categories fibred in
groupoids over C has 2-fibre products, and they are described as in Lemma [{.31.3

Proof. By Lemma [£.32.10] the fibre product as described in Lemma [£:31.3] is a
fibred category. Hence it suffices to prove that the fibre categories are groupoids,
see Lemma By Lemma it is enough to show that the 2-fibre product
of groupoids is a groupoid, which is clear (from the construction in Lemma
for example). O

Lemmal 4.34.8. Letp:S — C and p' : 8’ — C be categories fibred in groupoids,
and suppose that G : S — S’ is a functor over C.

(1) Then G is faithful (resp. fully faithful, resp. an equivalence) if and only if
for each U € Ob(C) the induced functor Gy : Sy — Sy, is faithful (resp.
fully faithful, resp. an equivalence).

(2) If G is an equivalence, then G is an equivalence in the 2-category of cate-
gories fibred in groupoids over C.

Proof. Let x,y be objects of S lying over the same object U. Consider the com-
mutative diagram

Morgs(z,y) Mors/ (G(z), G(y))
Mor¢(U,U) ’

From this diagram it is clear that if G is faithful (resp. fully faithful) then so is
each Gy.
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Suppose G is an equivalence. For every object z’ of 8’ there exists an object x
of § such that G(z) is isomorphic to z’. Suppose that 2’ lies over U’ and x lies
over U. Then there is an isomorphism f : U’ — U in C, namely, p’ applied to the
isomorphism 2’ — G(z). By the axioms of a category fibred in groupoids there
exists an arrow f*xr — x of S lying over f. Hence there exists an isomorphism
a:x’ — G(f*x) such that p'(«) = idys (this time by the axioms for §’). All in all
we conclude that for every object 2’ of 8’ we can choose a pair (0., @) consisting
of an object 0, of S and an isomorphism a, : &' — G(0y/) with p' () = idy (5.
From this point on we proceed as usual (see proof of Lemma to produce an
inverse functor F' : 8’ — S, by taking ' — 0, and ¢’ : 2’ — 9/ to the unique arrow
Pyt 0gr — 0y With 04;,1 0G(pyr) o0y = ¢'. With these choices F is a functor over
C. We omit the verification that Go F' and F oG are 2-isomorphic to the respective
identity functors (in the 2-category of categories fibred in groupoids over C).

Suppose that Gy is faithful (resp. fully faithful) for all U € Ob(C). To show that G
is faithful (resp. fully faithful) we have to show for any objects x,y € Ob(S) that G
induces an injection (resp. bijection) between Mors(x,y) and Mors/ (G(z), G(y)).
Set U = p(z) and V = p(y). It suffices to prove that G induces an injection (resp.
bijection) between morphism x — y lying over f to morphisms G(z) — G(y) lying
over f for any morphism f : U — V. Now fix f : U — V. Denote f'y — y a
pullback. Then also G(f*y) — G(y) is a pullback. The set of morphisms from x
to y lying over f is bijective to the set of morphisms between z and f*y lying over
idy. (By the second axiom of a category fibred in groupoids.) Similarly the set
of morphisms from G(x) to G(y) lying over f is bijective to the set of morphisms
between G(x) and G(f*y) lying over idy. Hence the fact that Gy is faithful (resp.
fully faithful) gives the desired result.

Finally suppose for all Gy is an equivalence for all U, so it is fully faithful and
essentially surjective. We have seen this implies G is fully faithful, and thus to
prove it is an equivalence we have to prove that it is essentially surjective. This is
clear, for if 2/ € Ob(S’) then 2’ € Ob(S];) where U = p/(2’). Since Gy is essentially
surjective we know that 2’ is isomorphic, in Sf;, to an object of the form Gy (z)
for some z € Ob(Sy). But morphisms in S;; are morphisms in " and hence 2’ is
isomorphic to G(z) in §'. O

Lemmal 4.34.9. Let C be a category. Let p: S — C and p' : 8" — C be categories
fibred in groupoids. Let G : S — S’ be a functor over C. Then G is fully faithful if
and only if the diagonal

AG :S— S Xc;’g/’gs

is an equivalence.

Proof. By Lemma it suffices to look at fibre categories over an object U of
C. An object of the right hand side is a triple (z, 2’, o) where  : G(z) — G(2') is a
morphism in S;;. The functor Ag maps the object x of Sy to the triple (2, z,id¢g (s))-
Note that (z,2’, ) is in the essential image of Ag if and only if & = G(8) for some
morphism 8 : © — 2’ in Sy (details omitted). Hence in order for Ag to be an
equivalence, every « has to be the image of a morphism 8 : x — z/, and also every
two distinct morphisms 3, 5’ : x — ' have to give distinct morphisms G(8), G(5).
This proves the lemma. O
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Lemma 4.34.10. Let C be a category. Let S;, i = 1,2,3,4 be categories fibred in
groupoids over C. Suppose that ¢ : S — Sz and ¢ : S — S4 are equivalences over
C. Then

Mor ¢at/c(S2,83) —> Morgaye(S1,84), ar—oaoyp
is an equivalence of categories.

Proof. This is a generality and holds in any 2-category. O

Lemmal 4.34.11. Let C be a category. If p: S — C is fibred in groupoids, then so
is the inertia fibred category Is — C.

Proof. Clear from the construction in Lemma |4.33.1| or by using (from the same
lemma) that Is — S XA sxcs,A S is an equivalence and appealing to Lemma

4347 O

Lemma 4.34.12. Let C be a category. Let U € Ob(C). Ifp: S — C is a category
fibred in groupoids and p factors through p’ : S — C/U then p' : S — C/U is fibred
mn groupoids.

Proof. We have already seen in Lemma 4.32.11|that p’ is a fibred category. Hence
it suffices to prove the fibre categories are groupoids, see Lemma [4.34.2] For V €
Ob(C) we have

Sv = Hf:VHU S(p:v-u)
where the left hand side is the fibre category of p and the right hand side is the
disjoint union of the fibre categories of p’. Hence the result. O

Lemmal 4.34.13. Let A — B — C be functors between categories. If A is fibred in
groupoids over B and B is fibred in groupoids over C, then A is fibred in groupoids
over C.

Proof. One can prove this directly from the definition. However, we will argue
using the criterion of Lemma By Lemma we see that A is fibred
over C. To finish the proof we show that the fibre category Ay is a groupoid for U
in C. Namely, if x — y is a morphism of Ay, then its image in B is an isomorphism
as By is a groupoid. But then x — y is an isomorphism, for example by Lemma
4.32.2| and the fact that every morphism of A is strongly B-cartesian (see Lemma
4.34.2)). O

Lemma 4.34.14. Let p : S — C be a category fibred in groupoids. Let © — y
and z — y be morphisms of S. If p(x) xp,) p(2) ewists, then x X, z exists and
p(.%' Xy Z) = p(.%‘) Xp(y) p(Z)

Proof. Follows from Lemma [4.32.13] U

Lemma 4.34.15. Let C be a category. Let F' : X — Y be a 1-morphism of
categories fibred in groupoids over C. There exists a factorization X — X' — Y
by 1-morphisms of categories fibred in groupoids over C such that X — X’ is an
equivalence over C and such that X' is a category fibred in groupoids over ).

Proof. Denote p: X — C and ¢ : YV — C the structure functors. We construct
X’ explicitly as follows. An object of X’ is a quadruple (U, z,y, f) where x €
Ob(Xy), y € Ob(Yy) and f : F(x) — y is an isomorphism in Yy. A morphism
(a,b) : (U,z,y, f) — (U,2',y,f') is given by a : * — 2’ and b : y — y with
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p(a) = ¢(b) and such that f’ o F(a) =bo f. In other words X’ = X Xpyiq Y with
the construction of the 2-fibre product from Lemma By Lemma we
see that X’ is a category fibred in groupoids over C and that X’ — ) is a morphism
of categories over C. As functor X — A’ we take x — (p(x),z, F(x),idp(,)) on
objects and (a : z — ') — (a, F(a)) on morphisms. It is clear that the composition
X — X' — Y equals F. We omit the verification that X — X’ is an equivalence of
fibred categories over C.

Finally, we have to show that X/ — ) is a category fibred in groupoids. Let
b:y — y be a morphism in Y and let (U, z,y, f) be an object of X’ lying over
y. Because X is fibred in groupoids over C we can find a morphism a : 2’ — =z
lying over U’ = ¢(y') — ¢(y) = U. Since Y is fibred in groupoids over C and
since both F(2') — F(x ) and ' — y lie over the same morphism U’ — U we
can find [’ : F(a') — y lymg over idys such that f o F(a) = bo f'. Hence
we obtain (a,b) : (U’ &'y, ) (U x,y, f). This verifies the first condition
(1) of Definition |4 To se ) let (a,b) : (U, 2",y f) = (Ux,y, f) and
(@', b) : (U”,x”,y” f”) U,z y, f) be morphisms of X' and let b : ¢/ — y”
be a morphism of ) such that b’ ob” = b. We have to show that there exists
a unique morphism a” : ' — 2z’ such that f” o F(a”) = b"” o f' and such that
(a’,0) o (a",b") = (a,b). Because X is fibred in groupoids we know there exists a
unique morphism a” : &' — 2" such that a’oa” = a and p(a”) = q(b”). Because Y is
fibred in groupoids we see that F(a”’) is the unique morphism F(z') — F(z”) such
that F(a') o F(a") = F(a) and q(F(a”)) = q(0"). The relation f” o F(a") =b"0o f’
follows from this and the given relations fo F(a) = bo f and foF(a') =bof". O

Lemma 4.34.16. Let C be a category. Let F : X — Y be a 1-morphism of
categories fibred in groupoids over C. Assume we have a 2-commutative diagram

X/ﬁXHXH

N

where a and b are equivalences of categories over C and f and g are categories
fibred in groupoids. Then there exists an equivalence h : X" — X' of categories
over Y such that h o b is 2-isomorphic to a as 1-morphisms of categories over C.
If the diagram above actually commutes, then we can arrange it so that hob is
2-isomorphic to a as 1-morphisms of categories over ).

Proof. We will show that both X’ and X" over ) are equivalent to the category
fibred in groupoids X X gy iq Y over ), see proof of Lemma Choose a
quasi-inverse b=! : X — X in the 2-category of categories over C. Since the right
triangle of the diagram is 2-commutative we see that

X%Xﬁ

p1
17
V—"=Y
is 2-commutative. Hence we obtain a l-morphism ¢ : X" — X Xpyiq Y by the

universal property of the 2-fibre product. Moreover ¢ is a morphism of categories
over J (!) and an equivalence (by the assumption that b is an equivalence, see


http://stacks.math.columbia.edu/tag/06N8

02XU

02XV

02XW

4.35. PRESHEAVES OF CATEGORIES 148

Lemma 4.30.7)). Hence c is an equivalence in the 2-category of categories fibred in
groupoids over Y by Lemma |4.34.8

We still have to construct a 2-isomorphism between c o b and the functor d : X —
X xpyiad, z— (p(z),z, F(r),idpy)) constructed in the proof of Lemma
Let o : F — goband B:b" ' ob— id be 2-isomorphisms between 1-morphisms of
categories over C. Note that co b is given by the rule

= (p(2), b7 (b(2)), 9(b(2)), @z © F(B))

on objects. Then we see that

(Bwa Oéz) : (p(l‘), z, F(J?), ldF(z)) i (p(x), b_l(b(x)),g(b(x)), Ay O F(ﬁx))
is a functorial isomorphism which gives our 2-morphism d — b o c¢. Finally, if the
diagram commutes then «,, is the identity for all x and we see that this 2-morphism
is a 2-morphism in the 2-category of categories over ). O

4.35. Presheaves of categories

In this section we compare the notion of fibred categories with the closely related
notion of a “presheaf of categories”. The basic construction is explained in the
following example.

Example 4.35.1. Let C be a category. Suppose that F' : C°P? — (Clat is a functor
to the 2-category of categories, see Definition [£.28°5] For f:V — U in C we will
suggestively write F'(f) = f* for the functor from F(U) to F(V). From this we
can construct a fibred category Sg over C as follows. Define

Ob(Sr) = {(U,z) | U € Ob(C),x € Ob(F(U))}.

For (U, x),(V,y) € Ob(SF) we define

Mors, ((V;), (U;2)) = {(£,6) | £ € Nore(V, ), 6 € Mot (. /*2)}

= HfEMorc(V,U) MorF(V) (y7 f {E)

In order to define composition we use that g*o f* = (fog)* for a pair of composable
morphisms of C (by definition of a functor into a 2-category). Namely, we define
the composition of ¢ : 2 — g*y and ¢ : y — f*x to be g*(¢) o . The functor
pr : Sp — C is given by the rule (U ,z) — U. Let us check that this is indeed
a fibred category. Given f : V — U in C and (U,z) a lift of U, then we claim
(f,idf+g) : (V, f*x) — (U, x) is a strongly cartesian lift of f. We have to show a h
in the diagram on the left determines (h,v) on the right:

fiidpx g,
vteu  wrd? e

A A

| h,v) |
h\ / | )\ Aj
W (W.2)

Just take v = 1 which works because f o h = g and hence g*x = h* f*x. Moreover,
this is the only lift making the diagram (on the right) commute.

Definition 4.35.2. Let C be a category. Suppose that F' : C°P? — C(Cat is a
functor to the 2-category of categories. We will write pp : Sp — C for the fibred
category constructed in Example [£:35.1] A split fibred category is a fibred category
isomorphic (!) over C to one of these categories Sp.
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Lemma 4.35.3. Let C be a category. Let S be a fibred category over C. Then S is
split if and only if for some choice of pullbacks (see Definition the pullback
functors (f o g)* and g* o f* are equal.

Proof. This is immediate from the definitions. O

Lemma 4.35.4. Let p:S — C be a fibred category. There exists a contravariant
functor F : C — Cat such that S is equivalent to Sg in the 2-category of fibred
categories over C. In other words, every fibred category is equivalent to a split one.

Proof. Let us make a choice of pullbacks (see Definition 4.32.6)). By Lemma [4.32.7]
we get pullback functors f* for every morphism f of C.

We construct a new category S’ as follows. The objects of &’ are pairs (z, f)
consisting of a morphism f : V. — U of C and an object x of S over U, i.e.,
x € Ob(Sy). The functor p’ : &’ — C will map the pair (x, f) to the source of
the morphism f, in other words p/(z, f : V — U) = V. A morphism ¢ : (z1, f1 :
Vi = Uy) = (22, fo : Vo — Us) is given by a pair (¢, g) consisting of a morphism
g: Vi — V5 and a morphism ¢ : fix1 — fyze with p(p) = g. It is no problem to
define the composition law: (p, g)o (¢, h) = (pow, goh) for any pair of composable
morphisms. There is a natural functor S — &’ which simply maps x over U to the
pair (z,idy).

At this point we need to check that p’ makes &’ into a fibred category over C,
and we need to check that S — &’ is an equivalence of categories over C which
maps strongly cartesian morphisms to strongly cartesian morphisms. We omit the
verifications.

Finally, we can define pullback functors on &’ by setting ¢g*(x, f) = (x, f o g) on
objects if g : V! — V and f: V — U. On morphisms (¢,idy) : (z1, f1) = (22, f2)
between morphisms in S, we set g*(¢,idy) = (g%, idy+) where we use the unique
identifications g* f}z; = (f;09)*z; from Lemmato think of g* as a morphism
from (f10g9)*x1 to (fa0g)*xa. Clearly, these pullback functors g* have the property
that g7 o g5 = (g2 0 g1)*, in other words &’ is split as desired. O

4.36. Presheaves of groupoids

In this section we compare the notion of categories fibred in groupoids with the
closely related notion of a “presheaf of groupoids”. The basic construction is ex-
plained in the following example.

Example/ 4.36.1. This example is the analogue of Example for “presheaves
of groupoids” instead of “presheaves of categories”. The output will be a category
fibred in groupoids instead of a fibred category. Suppose that F' : C°PP — Groupoids
is a functor to the category of groupoids, see Definition [f.285] For f:V — U in
C we will suggestively write F'(f) = f* for the functor from F(U) to F(V). We
construct a category Sg fibred in groupoids over C as follows. Define
Ob(Sr) ={(U,z) | U € Ob(C),x € Ob(F(U))}.
For (U,z),(V,y) € Ob(Sr) we define
MOI‘SF((V: y)a (Ua x)) = {(f) ¢> | f € MOI‘C(M U)7 ¢ € MorF(V) (y’ f*l')}

- HfEMorc(V,U) MOI‘F(V)(y’ f {IT)
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In order to define composition we use that g*o f* = (fog)* for a pair of composable
morphisms of C (by definition of a functor into a 2-category). Namely, we define
the composition of ¢ : z — g*y and ¢ : y — f*z to be g*(¢) o 1p. The functor
pr : Sp — C is given by the rule (U,z) — U. The condition that F(U) is a
groupoid for every U guarantees that Sg is fibred in groupoids over C, as we have
already seen in Example [£.35.1] that Sp is a fibred category, see Lemma [£.34.2] But
we can also prove conditions (1), (2) of Definition directly as follows: (1)
Lifts of morphisms exist since given f : V — U in C and (U,z) an object of Sp
over U, then (f,ids-5) : (V, f*z) — (U, ) is a lift of f. (2) Suppose given solid
diagrams as follows

v—Lov vy )
A A
Rl h,v) |
\ / " \ A:)
W (W.2)
Then for the dotted arrows we have v = (h*¢)~! o4 so given h there exists a v
which is unique by uniqueness of inverses.

Definition 4.36.2. Let C be a category. Suppose that F' : C°PP — Groupoids
is a functor to the 2-category of groupoids. We will write pr : Sp — C for the
category fibred in groupoids constructed in Example A split category fibred
in groupoids is a category fibred in groupoids isomorphic (!) over C to one of these
categories Sp.

Lemmal 4.36.3. Letp:S — C be a category fibred in groupoids. There exists a
contravariant functor F : C — Groupoids such that S is equivalent to Sg over C.
In other words, every category fibred in groupoids is equivalent to a split one.

Proof. Make a choice of pullbacks (see Definition 4.32.6)). By Lemmas [4.32.7| and
4.34.2) we get pullback functors f* for every morphism f of C.

We construct a new category S’ as follows. The objects of &’ are pairs (z, f)
consisting of a morphism f : V. — U of C and an object x of S over U, i.e.,
x € Ob(Sy). The functor p’ : &’ — C will map the pair (x, f) to the source of
the morphism f, in other words p/(z, f : V — U) = V. A morphism ¢ : (z1, f1 :
Vi = Uy) = (22, fa : Vo — Us) is given by a pair (¢, g) consisting of a morphism
g : Vi — V5 and a morphism ¢ : fix; — f3ze with p(p) = g. It is no problem to
define the composition law: (p, g)o (¢, h) = (pow, goh) for any pair of composable
morphisms. There is a natural functor S — &’ which simply maps x over U to the
pair (z,idy).

At this point we need to check that p’ makes S’ into a category fibred in groupoids
over C, and we need to check that S — &’ is an equivalence of categories over C.
We omit the verifications.

Finally, we can define pullback functors on &’ by setting ¢*(z, f) = (x, f o g) on
objects if g : V! = V and f: V — U. On morphisms (¢,idy) : (21, f1) = (22, f2)
between morphisms in S{, we set ¢*(¢,idyv) = (¢*¢,idy) where we use the unique
identifications g* fFx; = (fiog)*x; from Lemmato think of g* as a morphism
from (f10g)*x1 to (faog)*xs. Clearly, these pullback functors g* have the property
that g7 o g5 = (g2 0 g1)*, in other words &’ is split as desired. O
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We will see an alternative proof of this lemma in Section [£:40]

4.37. Categories fibred in sets

Definition 4.37.1. A category is called discrete if the only morphisms are the
identity morphisms.

A discrete category has only one interesting piece of information: its set of objects.
Thus we sometime confuse discrete categories with sets.

Definition 4.37.2. Let C be a category. A category fibred in sets, or a category
fibred in discrete categories is a category fibred in groupoids all of whose fibre
categories are discrete.

We want to clarify the relationship between categories fibred in sets and presheaves
(see Definition4.3.3)). To do this it makes sense to first make the following definition.

Definition 4.37.3. Let C be a category. The 2-category of categories fibred in
sets over C is the sub 2-category of the category of categories fibred in groupoids
over C (see Definition [4.34.6)) defined as follows:

(1) Its objects will be categories p : S — C fibred in sets.

(2) Its l-morphisms (S,p) — (§’,p’) will be functors G : S — S’ such that
p’ o G = p (since every morphism is strongly cartesian G automatically
preserves them).

(3) Its 2-morphisms ¢t : G — H for G, H : (S,p) — (S',p’) will be morphisms
of functors such that p’(t,) = id,y) for all z € Ob(S).

Note that every 2-morphism is automatically an isomorphism. Hence this 2-category
is actually a (2, 1)-category. Here is the obligatory lemma on the existence of 2-fibre
products.

Lemma 4.37.4. Let C be a category. The 2-category of categories fibred in sets
over C has 2-fibre products. More precisely, the 2-fibre product described in Lemma
.31.5 returns a category fibred in sets if one starts out with such.

Proof. Omitted. O

Example| 4.37.5. This example is the analogue of Examples |4.35.1| and |4.36.1|
for presheaves instead of “presheaves of categories”. The output will be a category
fibred in sets instead of a fibred category. Suppose that F : C°PP — Sets is a
presheaf. For f : V — U in C we will suggestively write F'(f) = f*: F(U) — F(V).
We construct a category Sg fibred in sets over C as follows. Define

Ob(Sr) ={(U,z) | U € Ob(C),z € Ob(F(U))}.
For (U,z),(V,y) € Ob(Sr) we define
Mors, ((V:y), (U,x)) = {f € More(V,U) | f*x =y}

Composition is inherited from composition in C which works as g* o f* = (f o g)*
for a pair of composable morphisms of C. The functor pr : Sp — C is given by
the rule (U,z) — U. As every fibre category Spy is discrete with underlying set
F(U) and we have already see in Example that Sg is a category fibred in
groupoids, we conclude that Sg is fibred in sets.
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Lemma 4.37.6. Let C be a category. The only 2-morphisms between categories
fibred in sets are identities. In other words, the 2-category of categories fibred in
sets is a category. Moreover, there is an equivalence of categories

the category of presheaves the category of categories
of sets over C fibred in sets over C

The functor from left to right is the construction F — Sg discussed in Fxample
[£-375 The functor from right to left assigns to p : S — C the presheaf of objects
U — Ob(Sp).

Proof. The first assertion is clear, as the only morphisms in the fibre categories
are identities.

Suppose that p : & — C is fibred in sets. Let f : V — U be a morphism in C and
let x € Ob(Sy). Then there is exactly one choice for the object f*z. Thus we see
that (fog)*x = g*(f*x) for f,g asin Lemma It follows that we may think
of the assignments U — Ob(Sy) and f — f* as a presheaf on C. (]

Here is an important example of a category fibred in sets.

Example 4.37.7. Let C be a category. Let X € Ob(C). Consider the representable
presheaf hx = Mor¢(—, X) (see Example [4.3.4). On the other hand, consider the
category p : C/X — C from Example The fibre category (C/X)y has as
objects morphisms h : U — X, and only identities as morphisms. Hence we see
that under the correspondence of Lemma [{.37.6] we have

hx «+— C/X.

In other words, the category C/X is canonically equivalent to the category S

associated to hx in Example

For this reason it is tempting to define a “representable” object in the 2-category
of categories fibred in groupoids to be a category fibred in sets whose associated
presheaf is representable. However, this is would not be a good definition for use
since we prefer to have a notion which is invariant under equivalences. To make
this precise we study exactly which categories fibred in groupoids are equivalent to
categories fibred in sets.

4.38. Categories fibred in setoids

Definition/ 4.38.1. Let us call a category a setoz’cﬁ if it is a groupoid where every
object has exactly one automorphism: the identity.

If C is a set with an equivalence relation ~, then we can make a setoid C as follows:
Ob(C) = C and Morc¢(z,y) = 0 unless © ~ y in which case we set More(z,y) = {1}.
Transitivity of ~ means that we can compose morphisms. Conversely any setoid
category defines an equivalence relation on its objects (isomorphism) such that
you recover the category (up to unique isomorphism — not equivalence) from the
procedure just described.

Discrete categories are setoids. For any setoid C there is a canonical procedure to
make a discrete category equivalent to it, namely one replaces Ob(C) by the set of

6A set on steroids!?


http://stacks.math.columbia.edu/tag/02Y2
http://stacks.math.columbia.edu/tag/0044
http://stacks.math.columbia.edu/tag/02XZ

04SA

02Y1

04SB

0045

4.38. CATEGORIES FIBRED IN SETOIDS 153

isomorphism classes (and adds identity morphisms). In terms of sets endowed with
an equivalence relation this corresponds to taking the quotient by the equivalence
relation.

Definition 4.38.2. Let C be a category. A category fibred in setoids is a category
fibred in groupoids all of whose fibre categories are setoids.

Below we will clarify the relationship between categories fibred in setoids and cat-
egories fibred in sets.

Definition 4.38.3. Let C be a category. The 2-category of categories fibred in
setoids over C is the sub 2-category of the category of categories fibred in groupoids
over C (see Definition [4.34.6|) defined as follows:

(1) Its objects will be categories p : S — C fibred in setoids.

(2) Its l-morphisms (S,p) — (S',p’) will be functors G : S — &’ such that
p’ o G = p (since every morphism is strongly cartesian G automatically
preserves them).

(3) Tts 2-morphisms ¢t : G — H for G, H : (S,p) — (S',p’) will be morphisms
of functors such that p/(t,) = id,(,) for all 2 € Ob(S).

Note that every 2-morphism is automatically an isomorphism. Hence this 2-category
is actually a (2, 1)-category.
Here is the obligatory lemma on the existence of 2-fibre products.

Lemmal 4.38.4. Let C be a category. The 2-category of categories fibred in setoids
over C has 2-fibre products. More precisely, the 2-fibre product described in Lemma
returns a category fibred in setoids if one starts out with such.

Proof. Omitted. O

Lemmal 4.38.5. Let C be a category. Let S be a category over C.

(1) If § = S’ is an equivalence over C with S’ fibred in sets over C, then
(a) S is fibred in setoids over C, and
(b) for each U € Ob(C) the map Ob(Sy) — Ob(Sy;) identifies the target
as the set of isomorphism classes of the source.
(2) If p: S — C is a category fibred in setoids, then there exists a category
fibred in sets p' : 8" — C and an equivalence can: S — S’ over C.

Proof. Let us prove (2). An object of the category &’ will be a pair (U, ), where
U € Ob(C) and ¢ is an isomorphism class of objects of Syy. A morphism (U, ¢) —
(V, 1) is given by a morphism x — y, where z € £ and y € ¢. Here we identify two
morphisms z — y and 2’ — ¢’ if they induce the same morphism U — V, and if
for some choices of isomorphisms z — 2’ in Sy and y — ¢’ in Sy the compositions
z — 1’ — 1y and v — y — v’ agree. By construction there are surjective maps on
objects and morphisms from § — S§’. We define composition of morphisms in &’
to be the unique law that turns S — &’ into a functor. Some details omitted. [

Thus categories fibred in setoids are exactly the categories fibred in groupoids which
are equivalent to categories fibred in sets. Moreover, an equivalence of categories
fibred in sets is an isomorphism by Lemma [{.37.6]
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04SC Lemma 4.38.6. Let C be a category. The construction of Lemma part (2)

042J

04SD

gives a functor

I the 2-category of categories N the category of categories
fibred in setoids over C fibred in sets over C

(see Definition . This functor is an equivalence in the following sense:

(1) for any two 1-morphisms f,g: S1 — So with F(f) = F(g) there exists a
unique 2-isomorphism f — g,
(2) for any morphism h : F(S1) — F(S2) there exists a 1-morphism f : S; —
Sy with F(f) = h, and
(3) any category fibred in sets S is equal to F(S).
In particular, defining F; € PSh(C) by the rule F;(U) = Ob(S; )/ =, we have

Mor ¢q/c (81782)/2-i50m0rphi5m = Mor pgp(c) (F1, F2)

More precisely, given any map ¢ : F1 — Fy there exists a 1-morphism f: 81 — So
which induces ¢ on isomorphism classes of objects and which is unique up to unique
2-1somorphism.

Proof. By Lemma the target of F is a category hence the assertion makes
sense. The construction of Lemma part (2) assigns to S the category fibred
in sets whose value over U is the set of isomorphism classes in Sy. Hence it is clear
that it defines a functor as indicated. Let f,g : S — Sz with F(f) = F(g) be
as in (1). For each object U of C and each object x of Sy we see that f(x) =
g(z) by assumption. As Sy is fibred in setoids there exists a unique isomorphism
ty : f(xz) = g(z) in Sy . Clearly the rule x + t, gives the desired 2-isomorphism
f — g. We omit the proofs of (2) and (3). To see the final assertion use Lemma
to see that the right hand side is equal to Mor ¢q¢¢ (F(S1), F/(S2)) and apply

1) and (2) above. O

Here is another characterization of categories fibred in setoids among all categories
fibred in groupoids.

Lemmal 4.38.7. Let C be a category. Let p : S — C be a category fibred in
groupoids. The following are equivalent:

(1) p: S = C is a category fibred in setoids, and

(2) the canonical 1-morphism Is — S, see (4.33.2.1), is an equivalence (of
categories over C).

Proof. Assume (2). The category Zs has objects (z,«) where x € S, say with
p(z) =U, and « : x — x is a morphism in Sy. Hence if Zs — S is an equivalence
over C then every pair of objects (z,a), (x,a’) are isomorphic in the fibre category
of Zs over U. Looking at the definition of morphisms in Zs we conclude that «,
o’ are conjugate in the group of automorphisms of x. Hence taking o/ = id, we
conclude that every automorphism of x is equal to the identity. Since S — C is
fibred in groupoids this implies that S — C is fibred in setoids. We omit the proof
of (1) = (2). O

Lemma 4.38.8. Let C be a category. The construction of Lemma which
associates to a category fibred in setoids a presheaf is compatible with products, in
the sense that the presheaf associated to a 2-fibre product X Xy Z is the fibre product
of the presheaves associated to X,), Z.
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Proof. Let U € Ob(C). The lemma just says that
Ob((X xy Z)y)/=  equals Ob(Xy)/= Xopy)~ Ob(Zy)/=

the proof of which we omit. (But note that this would not be true in general if the
category Yy is not a setoid.) O

4.39. Representable categories fibred in groupoids

Here is our definition of a representable category fibred in groupoids. As promised
this is invariant under equivalences.

Definition 4.39.1. Let C be a category. A category fibred in groupoidsp: S — C
is called representable if there exists an object X of C and an equivalence j : S —
C/X (in the 2-category of groupoids over C).

The usual abuse of notation is to say that X represents S and not mention the
equivalence j. We spell out what this entails.

Lemmal 4.39.2. Let C be a category. Let p : S — C be a category fibred in
groupoids.

(1) S is representable if and only if the following conditions are satisfied:
(a) S is fibred in setoids, and
(b) the presheaf U — Ob(Sy)/ = is representable.

(2) If S is representable the pair (X, j), where j is the equivalence j : S —
C/X, is uniquely determined up to isomorphism.

Proof. The first assertion follows immediately from Lemmal[f.38.5] For the second,
suppose that j/ : § — C/X’ is a second such pair. Choose a l-morphism ¢’ :
C/X'" — S such that j' ot' =id¢/x and t' 0 j' = ids. Then jot' : C/X' = C/X
is an equivalence. Hence it is an isomorphism, see Lemma Hence by the
Yoneda Lemmam (via Example for example) it is given by an isomorphism
X' — X. O

Lemma 4.39.3. Let C be a category. Let X, Y be categories fibred in groupoids
over C. Assume that X, Y are representable by objects X, Y of C. Then

Mor cat/c (X, y)/Q—isomorphism = Mor¢(X,Y)
More precisely, given ¢ : X — Y there exists a 1-morphism f : X — Y which

induces ¢ on isomorphism classes of objects and which is unique up to unique 2-
isomorphism.

Proof. By Example 4.37.7| we have C/X = S, and C/Y = Sj,. By Lemma
[4.38.6 we have

Mor ¢qt/c (X, y)/2—isomorphism = Morpgpc)(hx, hy)

By the Yoneda Lemma we have Mor pgp(cy(hx, hy) = Morc(X,Y). O
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4.40. Representable 1-morphisms

Let C be a category. In this section we explain what it means for a 1-morphism
between categories fibred in groupoids over C to be representable. Note that the
2-category of categories fibred in groupoids over C is a “full” sub 2-category of the
2-category of categories over C (see Definition . Hence if S, &’ are fibred in
groupoids over C then
MorCat/C (Sv S/)

denotes the category of l-morphisms in this 2-category (see Definition [4.31.1]).
These are all groupoids, see remarks following Definition Here is the 2-
category analogue of the Yoneda lemma.

Lemma 4.40.1 (2-Yoneda lemma). Let S — C be fibred in groupoids. Let U €
Ob(C). The functor
MorCat/C (C/U7 8) — Su

given by G — G(idy) is an equivalence.
Proof. Make a choice of pullbacks for S (see Definition [1.32.6). We define a functor
Su — Mor gac(C/U,S)
as follows. Given z € Ob(Sy) the associated functor is
(1) on objects: (f:V = U) — f*z, and
(2) on morphisms: the arrow (g : V'/U — V/U) maps to the composition

(fog)*x (agyf)z g*f*l' N f*.l?
where a7 is as in Lemma

We omit the verification that this is an inverse to the functor of the lemma. O

Remark| 4.40.2. We can use the 2-Yoneda lemma to give an alternative proof
of Lemma Let p : S — C be a category fibred in groupoids. We define a
contravariant functor F' from C to the category of groupoids as follows: for U €
Ob(C) let
F(U) = Morcatc(C/U,S).

If f: U — V the induced functor C/U — C/V induces the morphism F(f) :
F(V) — F(U). Clearly F is a functor. Let 8’ be the associated category fibred
in groupoids from Example There is an obvious functor G : 8" — S over C
given by taking the pair (U,x), where U € Ob(C) and = € F(U), to z(idy) € S.
Now Lemma implies that for each U,

Gy : S[/J = F(U) = MOI‘Cat/c(C/U,S) — Su
is an equivalence, and thus G is an equivalence between S and S’ by Lemma [4.34.8

Let C be a category. Let X, ) be categories fibred in groupoids over C. Let
UeOb(C). Let F: X - Y and G :C/U — Y be 1l-morphisms of categories fibred
in groupoids over C. We want to describe the 2-fibre product

C/U) xy X —= X

Lk

cU—5 sy
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Let y = G(idy) € Yy. Make a choice of pullbacks for ) (see Definition [4.32.6)).
Then G is isomorphic to the functor (f : V — U) — f*y, see Lemma @ and its
proof. We may think of an object of (C/U)xy X as a quadruple (V, f : V — U, z, ¢),
see Lemma Using the description of G above we may think of ¢ as an
isomorphism ¢ : f*y — F(z) in Yy.

Lemma 4.40.3. In the situation above the fibre category of (C/U) Xy X over an
object f: V. — U of C/U is the category described as follows:
(1) objects are pairs (x,¢), where x € Ob(Xy), and ¢ : f*y — F(x) is a
morphism in Yy,

(2) the set of morphisms between (x,$) and (x',¢') is the set of morphisms
ix— 2 in Xy such that F(¢) = ¢/ o ¢~ L.

Proof. See discussion above. O

Lemma 4.40.4. Let C be a category. Let X, Y be categories fibred in groupoids
over C. Let F : X — Y be a 1-morphism. Let G : C/U — Y be a 1-morphism.
Then

(C/U)xy X —CJU
s a category fibred in groupoids.
Proof. We have already seen in Lemma [£.34.7] that the composition

C/U)xy X —C/U —C

is a category fibred in groupoids. Then the lemma follows from Lemma O
Definition 4.40.5. Let C be a category. Let X', ) be categories fibred in groupoids
over C. Let F : X — ) be a 1-morphism. We say F' is representable, or that X is
relatively representable over Y, if for every U € Ob(C) and any G : C/U — ) the
category fibred in groupoids

(C/U)xy X —C/U
is representable.
Lemma 4.40.6. Let C be a category. Let X, Y be categories fibred in groupoids

over C. Let F': X — Y be a 1-morphism. If I is representable then every one of
the functors

Fy: Xy — v
between fibre categories is faithful.

Proof. Clear from the description of fibre categories in Lemma [£:40.3] and the
characterization of representable fibred categories in Lemma [£.39.2] O

Lemma 4.40.7. Let C be a category. Let X, Y be categories fibred in groupoids
overC. Let F : X — Y be a 1-morphism. Make a choice of pullbacks for ). Assume

(1) each functor Fy : Xy — Yy between fibre categories is faithful, and
(2) for each U and each y € Yy the presheaf

(f:V=U) —{(z,¢) |z €y, d: fry— Flx)}/ =
is a representable presheaf on C/U.

Then F is representable.


http://stacks.math.columbia.edu/tag/02Y5
http://stacks.math.columbia.edu/tag/02Y6
http://stacks.math.columbia.edu/tag/02Y7
http://stacks.math.columbia.edu/tag/02Y8
http://stacks.math.columbia.edu/tag/02Y9

02YA

4.40. REPRESENTABLE 1-MORPHISMS 158

Proof. Clear from the description of fibre categories in Lemma [£:40.3] and the
characterization of representable fibred categories in Lemma [4.39.2 (]

Before we state the next lemma we point out that the 2-category of categories
fibred in groupoids is a (2,1)-category, and hence we know what it means to say
that it has a final object (see Definition . And it has a final object namely
id : C — C. Thus we define 2-products of categories fibred in groupoids over C as
the 2-fibred products

X xY:=X xXe ).

With this definition in place the following lemma makes sense.

Lemma 4.40.8. Let C be a category. Let S — C be a category fibred in groupoids.
Assume C has products of pairs of objects and fibre products. The following are
equivalent:

(1) The diagonal S — S x S is representable.

(2) For everyU in C, any G :C/U — S is representable.

Proof. Suppose the diagonal is representable, and let U, G be given. Consider
any V € Ob(C) and any G’ : C/V — S. Note that C/U x C/V = C/U x V is
representable. Hence the fibre product

(C/U X V) X(8x8) S——=S

i (G,G") l

C/lUXV ————=8xS8

is representable by assumption. This means there exists W — U x V in C, such
that
c/wW S

]

C/lUxC/V—S8xS
is cartesian. This implies that C/W = C/U xsC/V (see Lemma4.30.11)) as desired.

Assume (2) holds. Consider any V € Ob(C) and any (G,G’) : C/V — S x S. We
have to show that C/V X sxsS is representable. What we know is that C/V x ¢ s,¢
C/V is representable, say by a : W — V in C/V. The equivalence

C/W — C/V Xa,s,G C/V
followed by the second projection to C/V gives a second morphism o' : W — V.
Consider W' = W X(4,4/),vxv V. There exists an equivalence

C/W/ gC/V Xsxs S

namely
C/W' = C/W xcjvxev)ClV
= (C/V x(a.s,61 CIV) Xepvxevy CIV
= C/V X(sxs)S
(for the last isomorphism see Lemma which proves the lemma. ]

Biographical notes: Parts of this have been taken from Vistoli’s notes [Vis04].
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CHAPTER 5

Topology

5.1. Introduction

Basic topology will be explained in this document. A reference is [Eng77].

5.2. Basic notions

The following is a list of basic notions in topology. Some of these notions are
discussed in more detail in the text that follows and some are defined in the list,
but others are considered basic and will not be defined. If you are not familiar with
most of the italicized concepts, then we suggest looking at an introductory text on
topology before continuing.

(1)

X is a topological space,

z € X is a point,

E C X is a locally closed subset,
z € X is a closed point,

if {x € X | f(z) < a} is open for all « € R,

an extended real function f : X — RU{o0, —oo} is lower semi-continuous
if {x € X | f(x) > a} is open for all a € R,

a continuous map of spaces f : X — Y is open if f(U) is open in Y for
U C X open,

a continuous map of spaces f: X — Y is closed if f(Z) is closed in Y for
Z C X closed,

a neighbourhood of x € X is any subset £ C X which contains an open
subset that contains x,

the induced topology on a subset £ C X,

(13) U : U = U,¢; Ui is an open covering of U (note: we allow any U; to be

empty and we even allow, in case U is empty, the empty set for I),

the open covering V is a refinement of the open covering U (if V : V =
Ujes Vi and U : U = ;¢ U; this means each V; is completely contained
in one of the U;),

{E;}ier is a fundamental system of neighbourhoods of x in X,

a topological space X is called Hausdorff or separated if and only if for
every distinct pair of points x,y € X there exist disjoint opens U,V C X
such that x e U, y € V,

iel
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(17) the product of two topological spaces,

(18) the fibre product X xy Z of a pair of continuous maps f : X — Y and
g:Z =Y,

(19) the discrete topology and the indiscrete topology on a set,

(20) ete.

5.3. Hausdorff spaces
The category of topological spaces has finite products.

Lemma 5.3.1. Let X be a topological space. The following are equivalent:

(1) X is Hausdorff,
(2) the diagonal A(X) C X x X is closed.

Proof. Omitted. O

Lemma 5.3.2. Let f: X — Y be a continuous map of topological spaces. If Y is
Hausdorff, then the graph of f is closed in X X Y.

Proof. The graph is the inverse image of the diagonal under the map X x Y —
Y x Y. Thus the lemma follows from Lemma O

Lemma 5.3.3. Let f: X — Y be a continuous map of topological spaces. Let
s:Y — X be a continuous map such that fos = idy. If X is Hausdorff, then
s(Y) is closed.

Proof. This follows from Lemma as s(Y)={z e X |z =s(f(x))}. O

Lemma 5.3.4. Let X — Z andY — Z be continuous maps of topological spaces.
If Z is Hausdorff, then X Xz Y is closed in X X Y.

Proof. This follows from Lemma as X Xz Y is the inverse image of A(Z)
under X XY — Z x Z. g

5.4. Bases
Basic material on bases for topological spaces.

Definition 5.4.1. Let X be a topological space. A collection of subsets B of X is
called a base for the topology on X or a basis for the topology on X if the following
conditions hold:

(1) Every element B € B is open in X.
(2) For every open U C X and every x € U, there exists an element B € B
such that x € B C U.

Let X be a set and let B be a collection of subsets. Assume that X = Jz.z B and
that given x € B; N By with By, B € B there is a By € B with x € By C By N Bs.
Then there is a unique topology on X such that B is a basis for this topology. This
remark is sometimes used to define a topology.

Lemma 5.4.2. Let X be a topological space. Let B be a basis for the topology
on X. LetU : U = J,U; be an open covering of U C X. There exists an open
covering U = |JV; which is a refinement of U such that each V; is an element of
the basis B.

Proof. Omitted. O
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Definition 5.4.3. Let X be a topological space. A collection of subsets B of X
is called a subbase for the topology on X or a subbasis for the topology on X if the
finite intersections of elements of I form a basis for the topology on X.

In particular every element of B is open.

Lemmal 5.4.4. Let X be a set. Given any collection B of subsets of X there is a
unique topology on X such that B is a subbase for this topology.

Proof. Omitted. O

5.5. Submersive maps

If X is a topological space and E C X is a subset, then we usually endow E with
the induced topology.

Lemma 5.5.1. Let X be a topological space. LetY be a set and let f :Y — X be
an injective map of sets. The induced topology on Y is the topology characterized
by each of the following statements:

(1) it is the weakest topology on'Y such that f is continuous,
(2) the open subsets of Y are f~1(U) for U C X open,
(3) the closed subsets of Y are the sets f~1(Z) for Z C X closed.

Proof. Omitted. O

Dually, if X is a topological space and X — Y is a surjection of sets, then Y can
be endowed with the quotient topology.

Lemma 5.5.2. Let X be a topological space. LetY be a set and let f : X — 'Y be
a surjective map of sets. The quotient topology on Y 1is the topology characterized
by each of the following statements:

(1) it is the strongest topology on'Y such that f is continuous,
(2) a subset V of Y is open if and only if f~1(V) is open,
(3) a subset Z of Y is closed if and only if f~1(Z) is closed.

Proof. Omitted. O

Let f: X — Y be a continuous map of topological spaces. In this case we obtain
a factorization X — f(X) — Y of maps of sets. We can endow f(X) with the
quotient topology coming from the surjection X — f(X) or with the induced
topology coming from the injection f(X) — Y. The map

(f(X), quotient topology) — (f(X),induced topology)
is continuous.

Definition 5.5.3. Let f: X — Y be a continuous map of topological spaces.

(1) We say f is a strict map of topological spaces if the induced topology and
the quotient topology on f(X) agree (see discussion above).
(2) We say f is submersz'vcﬂ if f is surjective and strict.

Thus a continuous map f : X — Y is submersive if f is a surjection and for any
T C Y we have T is open or closed if and only if f~1(T) is so. In other words, Y’

has the quotient topology relative to the surjection X — Y.

IThis is very different from the notion of a submersion between differential manifolds! It is
probably a good idea to use “strict and surjective” in stead of “submersive”.
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Lemma 5.5.4. Let f: X — Y be surjective, open, continuous map of topological
spaces. Let T CY be a subset. Then
(1) f7YT) = f~YT),
(2) T CY is closed if and only f=1(T) is closed,
(3) T CY is open if and only f~(T) is open, and
(4) T C Y is locally closed if and only f=1(T) is locally closed.

In particular we see that f is submersive.

Proof. It is clear that f~1(T) c f~(T). If z € X, and « ¢ f~1(T), then there
exists an open neighbourhood z € U C X with U N f~(T) = 0. Since f is
open we see that f(U) is an open neighbourhood of f(x) not meeting 7. Hence
x ¢ f~Y(T). This proves (1). Part (2) is an easy consequence of (1). Part (3) is
obvious from the fact that f is open and surjective. For (4), if f=(T) is locally
closed, then f~(T) C f=1(T) = f~'(T) is open, and hence by (3) applied to the

map f~Y(T) — T we see that T is open in T, i.e., T is locally closed. O

Lemma 5.5.5. Let f: X — Y be surjective, closed, continuous map of topological
spaces. Let T CY be a subset. Then
(1) T = f(f~1(1)),
(2) T CY is closed if and only f~1(T) is closed,
(3) T CY is open if and only f=(T) is open, and
(4) T C Y is locally closed if and only f=(T) is locally closed.

In particular we see that f is submersive.

Proof. It is clear that f~1(T) C f~Y(T). Then T C f(f~%(T)) C T is a closed
subset, hence we get (1). Part (2) is obvious from the fact that f is closed and
surjective. Part (3) follows from (2) applied to the complement of T. For (4), if
f~Y(T) is locally closed, then f~(T) € f~1(T) is open. Since the map f~1(T) — T
is surjective by (1) we can apply part (3) to the map f~(7) — T induced by f to
conclude that T is open in T, i.e., T is locally closed. ([

5.6. Connected components

Definition 5.6.1. Let X be a topological space.

(1) We say X is connected if X is not empty and whenever X = T II T, with
T; C X open and closed, then either T} = 0 or T = 0.

(2) Wesay T C X is a connected component of X if T is a maximal connected
subset of X.

The empty space is not connected.

Lemma 5.6.2. Let f: X — Y be a continuous map of topological spaces. If
E C X is a connected subset, then f(E) CY is connected as well.

Proof. Omitted. O

Lemmal 5.6.3. Let X be a topological space.
(1) If T C X is connected, then so is its closure.
(2) Any connected component of X is closed (but not necessarily open,).
(3) Every connected subset of X is contained in a connected component of X .
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(4) Every point of X is contained in a connected component, in other words,
X is the union of its connected components.

Proof. Let T be the closure of the connected subset T. Suppose T = Ty 11 T, with
T; C T open and closed. Then T'= (T'NTy) 11 (T NT5). Hence T equals one of the
two, say T'= Ty NT. Thus clearly T C T} as desired.

Pick a point € X. Consider the set A of connected subsets x € T, C X. Note
that A is nonempty since {x} € A. There is a partial ordering on A coming from
inclusion: a < o/ & T, C T,,. Choose a maximal totally ordered subset A’ C A,
and let T = UaE 4 To. We claim that T' is connected. Namely, suppose that
T =T, 1175 is a disjoint union of two open and closed subsets of T'. For each
a € A’ we have either T, C Ty or T, C T5, by connectedness of T,,. Suppose that
for some ag € A" we have T, ¢ Ty (say, if not we’re done anyway). Then, since A’
is totally ordered we see immediately that T,, C T3 for all « € A’. Hence T = Tb.

To get an example where connected components are not open, just take an infinite
product [[,cn{0,1} with the product topology. Its connected components are
singletons, which are not open. O

Lemma 5.6.4. Let f : X =Y be a continuous map of topological spaces. Assume
that

(1) all fibres of f are connected, and
(2) asetT CY is closed if and only if f~1(T) is closed.

Then f induces a bijection between the sets of connected components of X and Y .

Proof. Let T C Y be a connected component. Note that T is closed, see Lemma
5.6.3l The lemma follows if we show that f~!(T) is connected because any con-
nected subset of X maps into a connected component of Y by Lemma [5.6.2} Sup-
pose that f~3(T) = Z; I Zy with Z;, Zy closed. For any t € T we see that

Y)Y =Zin 1 ({t) U Zan 71 ({t}). By (1) we see f~1({t}) is connected we
conclude that elther F7Y{t}) € Zy or f71({t}) C Zs. In other words T =T 11 Ty
with f=(T;) = Z;. By (2) we conclude that T; is closed in Y. Hence either T} = ()
orTp =0 as desued O

Lemmal 5.6.5. Let f: X =Y be a continuous map of topological spaces. Assume
that (a) f is open, (b) all fibres of f are connected. Then f induces a bijection
between the sets of connected components of X and Y .

Proof. This is a special case of Lemma [5.6.4] O

Lemma 5.6.6. Let f : X — Y be a continuous map of nonempty topological
spaces. Assume that (a)Y is connected, (b) f is open and closed, and (c) there is a
point y € Y such that the fiber f~1(y) is a finite set. Then X has at most |f~1(y)|
connected components. Hence any connected component T' of X is open and closed,
and p(T) is a nonempty open and closed subset of Y, which is therefore equal to Y .

Proof. If the topological space X has at least N connected components for some
N € N, we find by induction a decomposition X = X;II...II Xy of X as a disjoint
union of N nonempty open and closed subsets X1,..., Xy of X. As f is open and
closed, each f(X;) is a nonempty open and closed subset of Y and is hence equal
to Y. In particular the intersection X; N f~*(y) is nonempty for each 1 <4 < N.
Hence f~!(y) has at least N elements. O
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Definition 5.6.7. A topological space is totally disconnected if the connected
components are all singletons.

A discrete space is totally disconnected. A totally disconnected space need not be
discrete, for example Q C R is totally disconnected but not discrete.

Lemma 5.6.8. Let X be a topological space. Let mo(X) be the set of connected
components of X. Let X — mo(X) be the map which sends x € X to the connected
component of X passing through x. Endow mo(X) with the quotient topology. Then
mo(X) is a totally disconnected space and any continuous map X —'Y from X to
a totally disconnected space Y factors through mo(X).

Proof. By Lemma the connected components of mo(X) are the singletons.
We omit the proof of the second statement. O

Definition 5.6.9. A topological space X is called locally connected if every point
x € X has a fundamental system of connected neighbourhoods.

Lemma 5.6.10. Let X be a topological space. If X is locally connected, then

(1) any open subset of X is locally connected, and
(2) the connected components of X are open.

So also the connected components of open subsets of X are open. In particular,
every point has a fundamental system of open connected neighbourhoods.

Proof. Omitted. O

5.7. Irreducible components

Definition 5.7.1. Let X be a topological space.
(1) We say X is irreducible, if X is not empty, and whenever X = Z; U Z
with Z; closed, we have X = Z; or X = Zs.
(2) We say Z C X is an irreducible component of X if Z is a maximal irre-
ducible subset of X.

An irreducible space is obviously connected.

Lemma 5.7.2. Let f : X — Y be a continuous map of topological spaces. If
E C X is an irreducible subset, then f(E) CY is irreducible as well.

Proof. Suppose f(F) is the union of Z; N f(F) and Zs N f(FE), for two distinct
closed subsets Z; and Z3 of Y this is equal to the intersection (Z; U Z2) N f(E),
so f(F) is then contained in the union Z; U Zy. For the irreducibility of f(E) it
suffices to show that it is contained in either Z; or Zs. The relation f(F) C Z1 U Zs
shows that f=(f(E)) C f~%(Z1 U Z3); as the right-hand side is clearly equal to
Y Z1)Uf~Y(Zy) and since E C f~1(f(E)), it follows that E C f~1(Z,)Uf~1(Z,),
from which one concludes by the irreducibility of E that E C f~1(Z;) or E C
/71(Zs). Hence one sees that either f(E) C f(f~'(Z1)) C Z1 or f(E) C Zy. O

Lemma 5.7.3. Let X be a topological space.

(1) If T C X is irreducible so is its closure in X.
(2) Any irreducible component of X is closed.
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(3) Any irreducible subset of X is contained in an irreducible component of
X.

(4) Every point of X is contained in some irreducible component of X, in
other words, X is the union of its irreducible components.

Proof. Let T be the closure of the irreducible subset T. If T = Z; U Z, with
Z; C T closed, then T = (T'N Z1) U(T N Z3) and hence T equals one of the two, say
T = Z;NT. Thus clearly T C Z;. This proves (1). Part (2) follows immediately
from (1) and the definition of irreducible components.

Let T' C X be irreducible. Consider the set A of irreducible subsets T' C T, C X.
Note that A is nonempty since T' € A. There is a partial ordering on A coming
from inclusion: o < o’ & T, C T,. Choose a maximal totally ordered subset
A'Cc A, and let T = {J,car To- We claim that T is irreducible. Namely, suppose
that 77 = Z; U Z5 is a union of two closed subsets of T'. For each ov € A’ we have
either T, C Z; or T, C Zs, by irreducibility of T,,. Suppose that for some ag € A’
we have To, ¢ Z1 (say, if not we're done anyway). Then, since A’ is totally ordered
we see immediately that T, C Z; for all « € A’. Hence T = Z5. This proves (3).
Part (4) is an immediate consequence of (3) as a singleton space is irreducible. O

A singleton is irreducible. Thus if z € X is a point then the closure {z} is an
irreducible closed subset of X.

Definition 5.7.4. Let X be a topological space.

(1) Let Z C X be an irreducible closed subset. A generic point of Z is a point
¢ € Z such that Z = {¢}.

(2) The space X is called Kolmogorov, if for every z, 2’ € X, x # ' there
exists a closed subset of X which contains exactly one of the two points.

(3) The space X is called quasi-sober if every irreducible closed subset has a
generic point.

(4) The space X is called sober if every irreducible closed subset has a unique
generic point.

A topological space X is Kolmogorov, quasi-sober or sober, resp., if and only if
the map x — m from X to the set of irreducible closed subsets of X is injective,
surjective or bijective, resp. Hence we see that a topological space is sober if and
only if it is quasi-sober and Kolmogorov.

Lemma 5.7.5. Let X be a topological space and let Y C X.
(1) If X is Kolmogorov then so isY .

(2) Suppose Y is locally closed in X. If X is quasi-sober then so is Y.
(3) Suppose Y is locally closed in X. If X is sober then so is Y.

Proof. Proof of (1). Suppose X is Kolmogorov. Let z,y € X with  # y. Then

{e}nY ={z} # {y} = {y} NY. Hence {z} NY # {y} NY. This shows that Y is
Kolmogorov.

Proof of (2). Suppose X is quasi-sober. It suffices to consider the cases Y is closed
and Y is open. First, suppose Y is closed. Let Z be an irreducible closed subset
of Y. Then Z is an irreducible closed subset of X. Hence there exists x € Y with
{z} =Y. It follows {2} NY =Y. This shows Y is quasi-sober. Second, suppose
Y is open. Let Z be an irreducible closed subset of Y. Then Z is an irreducible
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closed subset of X. Hence there exists x € Z with {e} =7 Ifx ¢ Y we get the
contradiction Z = ZNY C ZNY = {z} NY = (. Therefore z € Y. It follows
Z =Z7ZNY ={z}NY. This shows Y is quasi-sober.

Proof of (3). Immediately from (1) and (2). d

Lemma 5.7.6. Let X be a topological space and let (X;);cr be a covering of X.

(1) Suppose X; is locally closed in X for everyi € I. Then, X is Kolmogorov
if and only if X; is Kolmogorov for every i € I.

(2) Suppose X; is open in X for every i € I. Then, X is quasi-sober if and
only if X; is quasi-sober for every i € I.

(3) Suppose X; is open in X for every i € I. Then, X is sober if and only if
X; is sober for every i € I.

Proof. Proof of (1). If X is Kolmogorov then so is X; for every i € I by Lemma

Suppose X; is Kolmogorov for every i € I. Let x,y € X with {z} = {y}.

There exists ¢ € I with x € X;. There exists an open subset U C X such that X; is
a closed subset of U. If y ¢ U we get the contradiction z € {z}NU = {y}NU = (.
Hence y € U. It follows y € @ﬁ U = mﬁ U C X;. This shows y € X;. It
follows mﬂ X; = @ N X;. Since X; is Kolmogorov we get x = y. This shows X
is Kolmogorov.

Proof of (2). If X is quasi-sober then so is X; for every i € I by Lemma m
Suppose X; is quasi-sober for every ¢ € I. Let Y be an irreducible closed subset of
X. AsY # () there exists ¢ € T with X; NY # 0. As X, is open in X it follows
X;NY is non-empty and open in Y, hence irreducible and dense in Y. Thus X;NY
is an irreducible closed subset of X;. As X; is quasi-sober there exists x € X; NY
with X; NY = {z} N X; C {z}. Since X; NY is dense in Y and Y is closed in X it
follows Y =X, NYNY C X;NY C {z} CY. Therefore Y = m This shows X
is quasi-sober.

Proof of (3). Immediately from (1) and (2). d

Example 5.7.7. Let X be an indiscrete space of cardinality at least 2. Then
X is quasi-sober but not Kolmogorov. Moreover, the family of its singletons is a
covering of X by discrete and hence Kolmogorov spaces.

Example 5.7.8. Let Y be an infinite set, furnished with the topology whose closed
sets are Y and the finite subsets of Y. Then Y is Kolmogorov but not quasi-sober.
However, the family of its singletons (which are its irreducible components) is a
covering by discrete and hence sober spaces.

Example| 5.7.9. Let X and Y be as in Example and Example|5.7.8] Then,
X IT'Y is neither Kolmogorov nor quasi-sober.

Example| 5.7.10. Let Z be an infinite set and let z € Z. We furnish Z with the
topology whose closed sets are Z and the finite subsets of Z \ {z}. Then Z is sober
but its subspace Z \ {z} is not quasi-sober.

Example 5.7.11. Recall that a topological space X is Hausdorff iff for every
distinct pair of points x,y € X there exist disjoint opens U,V C X such that
x € U,y e V. In this case X is irreducible if and only if X is a singleton. Similarly,
any subset of X is irreducible if and only if it is a singleton. Hence a Hausdorff
space is sober.
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Lemmal5.7.12. Let f: X = Y be a continuous map of topological spaces. Assume
that (a) Y is irreducible, (b) f is open, and (c) there exists a dense collection of
points y € Y such that f~1(y) is irreducible. Then X is irreducible.

Proof. Suppose X = Z;UZs with Z; closed. Consider the open sets Uy = Z1\Zs =
X\ Zyand Uy = Z3\ Z1 = X \ Z;1. To get a contradiction assume that U; and Us
are both nonempty. By (b) we see that f(U;) is open. By (a) we have Y irreducible
and hence f(U;)N f(Uz) # 0. By (c) there is a point y which corresponds to a point
of this intersection such that the fibre X,, = f~!(y) is irreducible. Then X, N U;
and X, NU, are nonempty disjoint open subsets of X, which is a contradiction. [

Lemmal5.7.13. Let f: X = Y be a continuous map of topological spaces. Assume
that (a) f is open, and (b) for every y € Y the fibre f~1(y) is irreducible. Then f
induces a bijection between irreducible components.

Proof. We point out that assumption (b) implies that f is surjective (see Defini-
tion [5.7.1). Let T C Y be an irreducible component. Note that T is closed, see
Lem The lemma follows if we show that f~1(T) is irreducible because
any irreducible subset of X maps into an irreducible component of Y by Lemma
Note that f~1(T) — T satisfies the assumptions of Lemma Hence we
win. (]

The construction of the following lemma is sometimes called the “soberification”.

Lemma 5.7.14. Let X be a topological space. There is a canonical continuous
map
c: X — X'

from X to a sober topological space X' which is universal among continuous maps
from X to sober topological spaces. Moreover, the assignment U’ +— ¢~ (U') is a
bijection between opens of X' and X which commutes with finite intersections and
arbitrary unions. The image ¢(X) is a Kolmogorov topological space and the map
c: X — ¢(X) is universal for maps of X into Kolmogorov spaces.

Proof. Let X’ be the set of irreducible closed subsets of X and let
c: X 5 X',z {z}.

For U C X open, let U’ C X’ denote the set of irreducible closed subsets of X
which meet U. Then ¢~ !(U’) = U. In particular, if U; # Us are open in X, then
U] # UJS. Hence ¢ induces a bijection between the subsets of X’ of the form U’ and
the opens of X.

Let Uy,Us be open in X. Suppose that Z € U{ and Z € Uj). Then Z N U; and
Z MU, are nonempty open subsets of the irreducible space Z and hence ZNU; NUs
is nonempty. Thus (U3 NUy)" = U NUS. The rule U — U’ is also compatible with
arbitrary unions (details omitted). Thus it is clear that the collection of U’ form a
topology on X’ and that we have a bijection as stated in the lemma.

Next we show that X’ is sober. Let T C X’ be an irreducible closed subset. Let
U C X be the open such that X'\ T = U’. Then Z = X \ U is irreducible because
of the properties of the bijection of the lemma. We claim that Z € T is the unique
generic point. Namely, any open of the form V' € X’ which does not contain Z
must come from an open V' C X which misses Z, i.e., is contained in U.
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Finally, we check the universal property. Let f: X — Y be a continuous map to
a sober topological space. Then we let f/ : X’ — Y be the map which sends the
irreducible closed Z C X to the unique generic point of f(Z). It follows immediately
that f/oc = f as maps of sets, and the properties of ¢ imply that f’ is continuous.
We omit the verification that the continuous map f’ is unique. We also omit the
proof of the statements on Kolmogorov spaces. (I

5.8. Noetherian topological spaces

Definition 5.8.1. A topological space is called Noetherian if the descending chain
condition holds for closed subsets of X. A topological space is called locally Noe-
therian if every point has a neighbourhood which is Noetherian.

Lemma 5.8.2. Let X be a Noetherian topological space.

(1) Any subset of X with the induced topology is Noetherian.
(2) The space X has finitely many irreducible components.
(3) Fach irreducible component of X contains a nonempty open of X.

Proof. Let T C X be a subset of X. Let T3 D 15 D ... be a descending chain of
closed subsets of T'. Write T; = T'NZ; with Z; C X closed. Consider the descending
chain of closed subsets Zy D Z1NZy D Z1NZsNZ3 ... This stabilizes by assumption
and hence the original sequence of T; stabilizes. Thus T is Noetherian.

Let A be the set of closed subsets of X which do not have finitely many irreducible
components. Assume that A is not empty to arrive at a contradiction. The set A
is partially ordered by inclusion: « < o & Z, C Z,. By the descending chain
condition we may find a smallest element of A, say Z. As Z is not a finite union of
irreducible components, it is not irreducible. Hence we can write Z = Z’ U Z" and
both are strictly smaller closed subsets. By construction Z' = |J Z] and Z" = {J Z}
are finite unions of their irreducible components. Hence Z = |J Z;U{J Z7 is a finite
union of irreducible closed subsets. After removing redundant members of this
expression, this will be the decomposition of Z into its irreducible components, a
contradiction.

Let Z C X be an irreducible component of X. Let Z1,...,Z, be the other irre-
ducible components of X. Consider U = Z \ (Z; U...U Z,). This is not empty
since otherwise the irreducible space Z would be contained in one of the other Z;.
Because X = ZU Zy U ... Z, (see Lemmal5.7.3), also U = X \ (Z; U...U Z,) and
hence open in X. Thus Z contains a nonempty open of X. ([

Lemma 5.8.3. Let f: X =Y be a continuous map of topological spaces.

(1) If X is Noetherian, then f(X) is Noetherian.
(2) If X is locally Noetherian and f open, then f(X) is locally Noetherian.

Proof. In case (1), suppose that Z; D Zy D Z3 D ... is a descending chain of
closed subsets of f(X) (as usual with the induced topology as a subset of V). Then
F71Z1) D f74(Z2) D f~Y(Z3) D ... is a descending chain of closed subsets of X.
Hence this chain stabilizes. Since f(f~1(Z;)) = Z; we conclude that Z; D Zy D
Z3 D ... stabilizes also. In case (2),let y € f(X). Choose z € X with f(x) =y. By
assumption there exists a neighbourhood E C X of z which is Noetherian. Then
f(E) C f(X) is a neighbourhood which is Noetherian by part (1). O


http://stacks.math.columbia.edu/tag/0051
http://stacks.math.columbia.edu/tag/0052
http://stacks.math.columbia.edu/tag/04Z8

0053

02HZ

04MF

0054
0055

0B71

5.9. KRULL DIMENSION 171

Lemma 5.8.4. Let X be a topological space. Let X; C X, i=1,...,n be a finite
collection of subsets. If each X; is Noetherian (with the induced topology), then
Uiz1....n Xi is Noetherian (with the induced topology).

Proof. Omitted. O

Example 5.8.5. Any nonempty, Kolmogorov Noetherian topological space has a
closed point (combine Lemmas [5.11.8 and [5.11.13). Let X = {1,2,3,...}. Define
a topology on X with opens @, {1,2,...,n}, n > 1 and X. Thus X is a locally
Noetherian topological space, without any closed points. This space cannot be the
underlying topological space of a locally Noetherian scheme, see Properties, Lemma
27.5.9

Lemma 5.8.6. Let X be a locally Noetherian topological space. Then X 1is locally
connected.

Proof. Let z € X. Let F be a neighbourhood of . We have to find a connected
neighbourhood of = contained in E. By assumption there exists a neighbourhood
E’ of x which is Noetherian. Then E N E’ is Noetherian, see Lemma Let
ENE’ =Y1U...UY, be the decomposition into irreducible components, see Lemma
Let E" = J,cy, Yi- This is a connected subset of £ N E’ containing . It
contains the open EN E"\ (U, gy, Yi) of ENE" and hence it is a neighbourhood of
x in X. This proves the lemma. O

5.9. Krull dimension

Definition| 5.9.1. Let X be a topological space.

(1) A chain of irreducible closed subsets of X is a sequence Zyg C Z3 C ... C
Z, C X with Z; closed irreducible and Z; # Z;;1 for i =0,...,n — 1.

(2) The length of a chain Zy C Z; C ... C Z, C X of irreducible closed
subsets of X is the integer n.

(3) The dimension or more precisely the Krull dimension dim(X) of X is the
element of {—00,0,1,2,3,...,00} defined by the formula:

dim(X) = sup{lengths of chains of irreducible closed subsets}

Thus dim(X) = —oco if and only if X is the empty space.
(4) Let z € X. The Krull dimension of X at x is defined as
dim, (X) = min{dim(U),z € U C X open}

the minimum of dim(U) where U runs over the open neighbourhoods of
zin X.

Note that if U’ C U C X are open then dim(U’) < dim(U). Hence if dim,(X) =
d then z has a fundamental system of open neighbourhoods U with dim(U) =
dim,, (X).

Lemma 5.9.2. Let X be a topological space. Then dim(X) = sup dim,(X) where
the supremum runs over the points x of X.
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Proof. It is clear that dim(X) > dim,(X) for all z € X (see discussion following
Definition . Thus an inequality in one direction. For the converse, let n > 0
and suppose that dim(X) > n. Then we can find a chain of irreducible closed
subsets Zo C Z1 C ... C Z, C X. Pick x € Zy. Then we see that every open
neighbourhood U of z has a chain of irreducible closed subsets ZoNU C Z;NU C
...Z,NU C U. In this way we see that dim,(X) > n which proves the other
inequality. (I

Example 5.9.3. The Krull dimension of the usual Euclidean space R™ is 0.

Example 5.9.4. Let X = {s,n} with open sets given by {0,{n},{s,n}}. In
this case a maximal chain of irreducible closed subsets is {s} C {s,n}. Hence
dim(X) = 1. It is easy to generalize this example to get a (n+1)-element topological
space of Krull dimension n.

Definition 5.9.5. Let X be a topological space. We say that X is equidimensional
if every irreducible component of X has the same dimension.

5.10. Codimension and catenary spaces
We only define the codimension of irreducible closed subsets.

Definition 5.10.1. Let X be a topological space. Let Y C X be an irreducible
closed subset. The codimension of Y in X is the supremum of the lengths e of
chains

Y=YycYic...CcY.CcX
of irreducible closed subsets in X starting with Y. We will denote this codim(Y, X).

The codimension is an element of {0,1,2,...} U {oo}. If codim(Y, X) < oo, then
every chain can be extended to a maximal chain (but these do not all have to have
the same length).

Lemma 5.10.2. Let X be a topological space. LetY C X be an irreducible closed
subset. Let U C X be an open subset such that Y NU is nonempty. Then

codim(Y, X) = codim(Y NU,U)

Proof. The rule T — T defines a bijective inclusion preserving map between the
closed irreducible subsets of U and the closed irreducible subsets of X which meet
U. Using this the lemma easily follows. Details omitted. O

Example 5.10.3. Let X = [0, 1] be the unit interval with the following topology:
The sets [0,1], (1 —1/n,1] for n € N, and () are open. So the closed sets are (), {0},
[0,1—1/n] for n > 1 and [0, 1]. This is clearly a Noetherian topological space. But
the irreducible closed subset Y = {0} has infinite codimension codim(Y, X) = occ.
To see this we just remark that all the closed sets [0,1 — 1/n] are irreducible.

Definition 5.10.4. Let X be a topological space. We say X is catenary if for
every pair of irreducible closed subsets T C T” we have codim(7,7") < oo and
every maximal chain of irreducible closed subsets

T=Ty,chhc...cT,=1T
has the same length (equal to the codimension).

Lemma 5.10.5. Let X be a topological space. The following are equivalent:
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(1) X is catenary,
(2) X has an open covering by catenary spaces.

Moreover, in this case any locally closed subspace of X is catenary.

Proof. Suppose that X is catenary and that U C X is an open subset. The rule
T — T defines a bijective inclusion preserving map between the closed irreducible
subsets of U and the closed irreducible subsets of X which meet U. Using this the
lemma easily follows. Details omitted. (]

Lemma 5.10.6. Let X be a topological space. The following are equivalent:

(1) X is catenary, and
(2) for every pair of irreducible closed subsets Y C Y’ we have codim(Y,Y") <
oo and for every triple Y CY' CY" of irreducible closed subsets we have

codim(Y,Y") = codim(Y,Y") + codim(Y',Y").
Proof. Omitted. O

5.11. Quasi-compact spaces and maps

The phrase “compact” will be reserved for Hausdorff topological spaces. And many
spaces occurring in algebraic geometry are not Hausdorff.

Definition 5.11.1. Quasi-compactness.

(1) We say that a topological space X is quasi-compact if every open covering
of X has a finite refinement.

(2) We say that a continuous map f : X — Y is quasi-compact if the inverse
image f~1(V) of every quasi-compact open V C Y is quasi-compact.

(3) We say a subset Z C X is retrocompact if the inclusion map Z — X is
quasi-compact.

In many texts on topology a space is called compact if it is quasi-compact and
Hausdorff; and in other texts the Hausdorff condition is omitted. To avoid confusion
in algebraic geometry we use the term quasi-compact. Note that the notion of
quasi-compactness of a map is very different from the notion of a “proper map” in
topology, since there one requires the inverse image of any (quasi-)compact subset of
the target to be (quasi-)compact, whereas in the definition above we only consider
quasi-compact open sets.

Lemma 5.11.2. A composition of quasi-compact maps is quasi-compact.
Proof. This is immediate from the definition. ([l

Lemma 5.11.3. A closed subset of a quasi-compact topological space is quasi-
compact.

Proof. Let E C X be a closed subset of the quasi-compact space X. Let E =V}
be an open covering. Choose U; C X open such that V; = ENU;. Then X =
(X \E)UUU;j is an open covering of X. Hence X = (X \ E)UU;, U...UU;, for
some n and indices j;. Thus E = V; U...UV; as desired. g

Lemma 5.11.4. Let X be a Hausdorff topological space.
(1) If E C X is quasi-compact, then it is closed.
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(2) If By, B2 C X are disjoint quasi-compact subsets then there exists opens
E,CcU; withUynNnUy = .

Proof. Proof of (1). Let z € X, z ¢ E. For every e € E we can find disjoint
opens V. and U, with e € V. and z € U.. Since E C |JV. we can find finitely
many ei, ..., e, such that £ C V,, U...UV,, . Then U =U,, N...NU,, is an open
neighbourhood of = which avoids V., U... UV, . In particular it avoids £. Thus
E is closed.

Proof of (2). In the proof of (1) we have seen that given x € F; we can find an
open neighbourhood x € U, and an open E> C V,, such that U, NV, = (). Because
E; is quasi-compact we can find a finite number z; € F; such that £y C U =
Ug, U...UUs,, . Wetake V=V, N...NV, to finish the proof. O

Lemma 5.11.5. Let X be a quasi-compact Hausdorff space. Let E C X. The
following are equivalent: (a) E is closed in X, (b) E is quasi-compact.

Proof. The implication (a) = (b) is Lemma [5.11.3] The implication (b) = (a) is
Lemma B.1T.4 O

The following is really a reformulation of the quasi-compact property.

Lemma 5.11.6. Let X be a quasi-compact topological space. If {Zy}aca is a
collection of closed subsets such that the intersection of each finite subcollection is

nonempty, then (\,c 4 Za is nonempty.

Proof. Omitted. O

Lemma 5.11.7. Let f: X — Y be a continuous map of topological spaces.
(1) If X is quasi-compact, then f(X) is quasi-compact.
(2) If f is quasi-compact, then f(X) is retrocompact.

Proof. If f(X) = JV; is an open covering, then X = |Jf~'(V;) is an open
covering. Hence if X is quasi-compact then X = f=}(V;,)U...U f~Y(V;,) for
some iy,...,i, € I and hence f(X) =V, U...UV; . This proves (1). Assume f
is quasi-compact, and let V' C Y be quasi-compact open. Then f~1(V) is quasi-
compact, hence by (1) we see that f(f~1(V)) = f(X)NV is quasi-compact. Hence
f(X) is retrocompact. O

Lemma 5.11.8. Let X be a topological space. Assume that
(1) X is nonempty,
(2) X is quasi-compact, and
(3) X is Kolmogorov.

Then X has a closed point.

Proof. Consider the set
T={Zc X |Z={x} for some z € X}

of all closures of singletons in X. It is nonempty since X is nonempty. Make T
into a partially ordered set using the relation of inclusion. Suppose Z,, a € A is
a totally ordered subset of 7. By Lemma we see that (o4 Za # (). Hence
there exists some = € () ,c4 Zo and we see that Z = {2z} € T is a lower bound
for the family. By Zorn’s lemma there exists a minimal element Z € 7. As X is
Kolmogorov we conclude that Z = {z} for some x and z € X is a closed point. O
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Lemma 5.11.9. Let X be a quasi-compact Kolmogorov space. Then the set Xy
of closed points of X is quasi-compact.

Proof. Let Xy = U, o be an open covering. Write U; o = X N U; for some
open U; C X. Consider the complement Z of |JU;. This is a closed subset of X,
hence quasi-compact (Lemma and Kolmogorov. By Lemma if Zis
nonempty it would have a closed point which contradicts the fact that X C (JU;.
Hence Z = () and X = |JU;. Since X is quasi-compact this covering has a finite
subcover and we conclude. O

Lemmal 5.11.10. Let X be a topological space. Assume
(1) X is quasi-compact,
(2) X has a basis for the topology consisting of quasi-compact opens, and
(3) the intersection of two quasi-compact opens is quasi-compact.

For any x € X the connected component of X containing x is the intersection of
all open and closed subsets of X containing x.

Proof. Let T be the connected component containing x. Let S = [ ,c 4 Za be the
intersection of all open and closed subsets Z, of X containing x. Note that S is
closed in X. Note that any finite intersection of Z,’s is a Z,. Because T is connected
and x € T we have T' C S. It suffices to show that S is connected. If not, then there
exists a disjoint union decomposition S = BII C with B and C' open and closed in
S. In particular, B and C are closed in X, and so quasi-compact by Lemma [5.11.

and assumption (1). By assumption (2) there exist quasi-compact opens U,V C X
with B=SNU and C = SNV (details omitted). Then UNV NS = (). Hence
N, UNVNZ, =0 By assumption (3) the intersection U NV is quasi-compact.
By Lemma [5.11.6 for some o/ € A we have UNV N Zy = 0. Since X \ (UUV) is
disjoint from S and closed in X hence quasi-compact, we can use the same lemma
to see that Z,» Cc UUYV for some o” € A. Then Z, = Z, N Z,» is contained in
U UV and disjoint from U NV. Hence Z, =UNZ, 11V N Z, is a decomposition
into two open pieces, hence U N Z, and V N Z, are open and closed in X. Thus, if
2 € B say, then we see that S C U N Z, and we conclude that C' = ). O

Lemmal 5.11.11. Let X be a topological space. Assume X is quasi-compact and
Hausdorff. For any © € X the connected component of X containing x is the
intersection of all open and closed subsets of X containing x.

Proof. Let T' be the connected component containing x. Let S = [\ ,c4 Za be
the intersection of all open and closed subsets Z, of X containing . Note that
S is closed in X. Note that any finite intersection of Z,’s is a Z,. Because T is
connected and x € T we have T' C S. It suffices to show that S is connected. If not,
then there exists a disjoint union decomposition S = B II C' with B and C open
and closed in S. In particular, B and C are closed in X, and so quasi-compact by
Lemma By Lemma there exist disjoint opens U,V C X with BC U
and C C V. Then X \ U UV is closed in X hence quasi-compact (Lemma [5.11.3).
It follows that (X \ UUV) N Z, = 0 for some a by Lemma [5.11.6] In other words,
Zo CUUV. Thus Z, = Z,NV 11 Z,NU is a decomposition into two open pieces,
hence U N Z, and V N Z, are open and closed in X. Thus, if x € B say, then we
see that S C U N Z, and we conclude that C' = (. O

Lemma 5.11.12. Let X be a topological space. Assume


http://stacks.math.columbia.edu/tag/08ZM
http://stacks.math.columbia.edu/tag/005F
http://stacks.math.columbia.edu/tag/08ZN
http://stacks.math.columbia.edu/tag/04PL

04ZA

04ZB

08ZP

5.11. QUASI-COMPACT SPACES AND MAPS 176

(1) X is quasi-compact,
(2) X has a basis for the topology consisting of quasi-compact opens, and
(3) the intersection of two quasi-compact opens is quasi-compact.

For a subset T C X the following are equivalent:

(a) T is an intersection of open and closed subsets of X, and
(b) T is closed in X and is a union of connected components of X .

Proof. It is clear that (a) implies (b). Assume (b). Let x € X, x ¢ T. Let
z € C' C X be the connected component of X containing z. By Lemma [5.11.10] we
see that C' = [V, is the intersection of all open and closed subsets V,, of X which
contain C'. In particular, any pairwise intersection V,, NV occurs as a V,. As T is
a union of connected components of X we see that CNT = . Hence TNV, = 0.
Since T is quasi-compact as a closed subset of a quasi-compact space (see Lemma
we deduce that 7' NV, = () for some «, see Lemma For this o we
see that U, = X \ V,, is an open and closed subset of X which contains T and not
2. The lemma follows. |

Lemma 5.11.13. Let X be a Noetherian topological space.

(1) The space X is quasi-compact.
(2) Any subset of X is retrocompact.

Proof. Suppose X = |JU; is an open covering of X indexed by the set I which
does not have a refinement by a finite open covering. Choose i1, i3, ... elements of
I inductively in the following way: Choose i1 such that U, is not contained in
Ui, U...UU;, . Thus we see that X D (X \U;,) D (X \U;, UU,,) D ... is a strictly
decreasing infinite sequence of closed subsets. This contradicts the fact that X is
Noetherian. This proves the first assertion. The second assertion is now clear since
every subset of X is Noetherian by Lemma [5.8.2 O

Lemma 5.11.14. A quasi-compact locally Noetherian space is Noetherian.

Proof. The conditions imply immediately that X has a finite covering by Noether-
ian subsets, and hence is Noetherian by Lemma [5.8.4] (]

Lemma 5.11.15 (Alexander subbase theorem). Let X be a topological space.
Let B be a subbase for X. If every covering of X by elements of B has a finite
refinement, then X is quasi-compact.

Proof. Assume there is an open covering of X which does not have a finite refine-
ment. Using Zorn’s lemma we can choose a maximal open covering X = (J;c; U;
which does not have a finite refinement (details omitted). In other words, if U C X
is any open which does not occur as one of the U;, then the covering X = UUJ,; U;
does have a finite refinement. Let I’ C I be the set of indices such that U; € B.
Then (J;c; Ui # X, since otherwise we would get a finite refinement covering X
by our assumption on B. Pick x € X, x & (J;.; Us. Pick i € I with z € U;. Pick
Vi,...,V, € Bsuch that x € ViN...NV,, C U;. This is possible as B is a subbasis for
X. Note that V; does not occur as a U;. By maximality of the chosen covering we
see that for each j there exist 4,1, ... yi5n,; € Isuch that X = V;UU;, , U...UU;

Since V1 N...NV,, C U; we conclude that X = U; UJUj,

Jomgt

, a contradiction. O
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5.12. Locally quasi-compact spaces
Recall that a neighbourhood of a point need not be open.

Definition 5.12.1. A topological space X is called locally quasi—compacﬂ if every
point has a fundamental system of quasi-compact neighbourhoods.

The term locally compact space in the literature often refers to a space as in the
following lemma.

Lemma 5.12.2. A Hausdorff space is locally quasi-compact if and only if every
point has a quasi-compact neighbourhood.

Proof. Let X be a Hausdorff space. Let x € X and let z € E C X be a quasi-
compact neighbourhood. Then E is closed by Lemma Suppose that = €
U C X is an open neighbourhood of . Then Z = E \ U is a closed subset of
F not containing x. Hence we can find a pair of disjoint open subsets W,V C FE
of F such that z € V and Z C W, see Lemma It follows that V C E is
a closed neighbourhood of x contained in E N U. Also V is quasi-compact as a
closed subset of F (Lemma . In this way we obtain a fundamental system
of quasi-compact neighbourhoods of z. O

Lemma 5.12.3. Let X be a Hausdorff and quasi-compact space. Let X = |J;c; Us
be an open covering. Then there exists an open covering X = J;c; Vi such that
Vi C U; for all i.

Proof. Let » € X. Choose an i(z) € I such that x € Ujq,). Since X \ Uj
and {x} are disjoint closed subsets of X, by Lemmas|5.11.3|and [5.11.4] there exists
an open neighbourhood U, of x whose closure is disjoint from X \ Ujy). Thus

U, C Ui(z)- Since X is quasi-compact, there is a finite list of points z1, ..., z,, such
that X =U,, U...UU, . Setting V; = | U,, the proof is finished. O

i=i(z;)

Lemma 5.12.4. Let X be a Hausdorff and quasi-compact space. Let X = |J;c; Us
be an open covering. Suppose given an integer p > 0 and for every (p + 1)-tuple
@0, ---,ip of I an open covering U;, N...NU;, = UWiO...ip,k. Then there exists an
open covering X = UjeJ Vi and a map o : J — I such that VJ C Ua(y) and such
that each Vi, N ... NV, is contained in Wq(jy)...a,).k for some k.

Proof. Since X is quasi-compact, there is a reduction to the case where [ is finite
(details omitted). We prove the result for I finite by induction on p. The base
case p = 0 is immediate by taking a covering as in Lemma [5.12.3| refining the open
covering X = Wi, -

Induction step. Assume the lemma proven for p — 1. For all p-tuples i, ... ,2;71
of I'let Uy M...N UZ-;F1 =y Wig»--i;,l,k be a common refinement of the coverings
Uiy N ... N U, = UWig...i,k for those (p + 1)-tuples such that {i, .. .,i;_l} =
{ig,...,ip} (equality of sets). (There are finitely many of these as I is finite.) By
induction there exists a solution for these opens, say X =JV; and a: J — I. At

this point the covering X = Uje] Vj and a satisfy V; C U,(;) and each V; N...NV;,

2This may not be standard notation. Alternative notions used in the literature are: (1) Every
point has some quasi-compact neighbourhood, and (2) Every point has a closed quasi-compact
neighbourhood. A scheme has the property that every point has a fundamental system of open
quasi-compact neighbourhoods.
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is contained in Wy (jy)...a(j,),x for some k if there is a repetition in a(jo), . .., a(jp)-
Of course, we may and do assume that J is finite.

Fix dg,...,i, € I pairwise distinct. Consider (p + 1)-tuples jo,...,jp € J with
io = a(jo), - - -,ip = a(jp) such that Vj;,N...NVj is not contained in W (jo)...a(,).k
for any k. Let N be the number of such (p+1)-tuples. We will show how to decrease
N. Since

ijo ﬂ...ﬁV}‘p C Uio ﬁ...ﬁUiP :UWiomip,k

we find a finite set K = {k1, ..., k;} such that the LHS is contained in U, x Wiy ...i, k-
Then we consider the open covering

V}o = (‘/}0 \ (Vh n...nNn V]p)) U (UkEK V}o N Wio.-.ip7k)
The first open on the RHS intersects V;, N...NVj in the empty set and the other
opens Vj, . of the RHS satisfy Vj, . NV, ...0V;, C Waijo)...a(,)k Set J = JILK.
For j € J set V] = Vjif j # jo and set V] = V;, \ (V;,; N...NVj,). For k € K
set V| = Vj, k. Finally, the map o/ : J* — I is given by « on J and maps every
element of K to ig. A simple check shows that IV has decreased by one under this
replacement. Repeating this procedure N times we arrive at the situation where
N =0.

To finish the proof we argue by induction on the number M of (p + 1)-tuples
i0,...,1p € I with pairwise distinct entries for which there exists a (p + 1)-tuple
Jos--yJp € J with ig = a(jo),...,ip, = a(jp) such that V;y n...NV; is not
contained in We(jo)...a(j,),x for any k. To do this, we claim that the operation
performed in the previous paragraph does not increase M. This follows formally
from the fact that the map o' : J' — I factors through a map 8 : J' — J such that
Vi € Vs O

Lemmal5.12.5. Let X be a Hausdorff and locally quasi-compact space. Let Z C X
be a quasi-compact (hence closed) subset. Suppose given an integer p > 0, a set I,
for every i € I an open U; C X, and for every (p + 1)-tuple io,...,i, of I an open
Wi0~~~ip C Uio n...N Uip such that

(1) Zc U, and

(2) for every io, ..., i, we have Wy, s, NZ =U;,N...NU;, N Z.
Then there exist opens V; of X such that we have Z C |JV;, for all i we have
V;, C U;, and we have Vien...nV; C Wi, for all (p+ 1)-tuples ig, ..., ip.

Proof. Since Z is quasi-compact, there is a reduction to the case where I is finite
(details omitted). Because X is locally quasi-compact and Z is quasi-compact, we
can find a neighbourhood Z C E which is quasi-compact, i.e., E is quasi-compact
and contains an open neighbourhood of Z in X. If we prove the result after replacing
X by E, then the result follows. Hence we may assume X is quasi-compact.

We prove the result in case I is finite and X is quasi-compact by induction on p.
The base case is p = 0. In this case we have X = (X \ Z) UJW,. By Lemma
We can find a covering X = VU V; by opens V; C W, and V C X \ Z with
V; C W; for all i. Then we see that we obtain a solution of the problem posed by
the lemma.

Induction step. Assume the lemma proven for p — 1. Set W, ; _
intersection of all W;

, equal to the
0oip With {jo,...,jp—1} = {d0,...,4p} (equality of sets). By
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induction there exists a solution for these opens, say V; C U;. It follows from our
choice of Wj,. ; _, that we have V;; N...NV; C Wy, 4, for all (p + 1)-tuples
i0,...,1p where i, = % for some 0 < a < b < p. Thus we only need to modify our
choice of V; if Viy N...NV; & Wy, 4, for some (p+ 1)-tuple 4o, . .., i, with pairwise
distinct elements. In this case we have

T=Vi,n...0V;, \ W, CViyN...nVi, \ Wig.,
is a closed subset of X contained in U;; N...N U;, not meeting Z. Hence we can

replace V;, by Vi, \ T to “fix” the problem. After repeating this finitely many times
for each of the problem tuples, the lemma is proven. (I

0---2p

5.13. Limits of spaces

The category of topological spaces has products. Namely, if I is a set and for
i € I we are given a topological space X; then we endow [[,.; X; with the product
topology. As a basis for the topology we use sets of the form []U; where U; C X;
is open and U; = X; for almost all .

The category of topological spaces has equalizers. Namely, if a,b : X — Y are
morphisms of topological spaces, then the equalizer of a and b is the subset {z €
X |a(z) =b(z)} € X endowed with the induced topology.

Lemma 5.13.1. The category of topological spaces has limits and the forgetful
functor to sets commutes with them.

Proof. This follows from the discussion above and Categories, Lemma |4.14.10
It follows from the description above that the forgetful functor commutes with
limits. Another way to see this is to use Categories, Lemma and use that
the forgetful functor has a left adjoint, namely the functor which assigns to a set
the corresponding discrete topological space. ([l

Lemma 5.13.2. Let Z be a cofiltered category. Let i — X; be a diagram of
topological spaces over Z. Let X = lim X; be the limit with projection maps f; :
(1) Any open of X is of the form UjeJ f;l(Uj) for some subset J C I and
opens U; C Xj.
(2) Any quasi-compact open of X is of the form fi_l(Ui) for some i and some
U; C X; open.

Proof. The construction of the limit given above shows that X C [[X; with the
induced topology. A basis for the topology of [ X; are the opens []U; where
U; C X; is open and U; = X; for almost all i. Say 41,...,4, € Ob(Z) are the
objects such that U;; # X;;. Then

xn[[vi= £ wi)n...0 8 UL)
For a general limit of topological spaces these form a basis for the topology on X.
However, if Z is cofiltered as in the statement of the lemma, then we can pick a
j € Ob(Z) and morphisms j — i, I =1,...,n. Let
Uj=(X; = X)) U)o (X = X5,)7H(UG)
Then it is clear that XN[[U; = f; 1(U;). Thus for any open W of X there is a set
A and a map o : A — Ob(Z) and opens U, C X,(q) such that W = Ufa(a)( )
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Set J =Im(a) and for j € J set U; = Y
This proves (1).

; Uq to see that W =, fj_l(Uj).

a(a)=

To see (2) suppose that UjeJ fjfl(Uj) is quasi-compact. Then it is equal to
f{l(Ujl) U...u f;ﬂl(U]) for some ji,...,jm € J. Since Z is cofiltered, we can
pick a i € Ob(Z) and morphisms i — j;, { =1,...,m. Let

Ui = (Xi = X;,) " (Uj) V... U (X = X5,) 7 (U;,)
Then our open equals f; ' (U;) as desired. O

Lemma 5.13.3. Let Z be a cofiltered category. Let i — X; be a diagram of
topological spaces over . Let X be a topological space such that

(1) X =lim X; as a set (denote f; the projection maps),

(2) the sets f;Y(U;) for i € Ob(Z) and U; C X; open form a basis for the

topology of X.
Then X s the limit of the X; as a topological space.

Proof. Follows from the description of the limit topology in Lemma [5.13.2 O

Theorem 5.13.4 (Tychonov). A product of quasi-compact spaces is quasi-compact.

Proof. Let I be a set and for ¢ € I let X; be a quasi-compact topological space.
Set X = J[X;. Let B be the set of subsets of X of the form U; x [[; ¢ vy Xir
where U; C X; is open. By construction this family is a subbasis for the topology
on X. By Lemma it suffices to show that any covering X = UjeJ B; by
elements B; of B has a finite refinement. We can decompose J = []J; so that if
j € J;, then B; = U; x Hi,# X with U; C X; open. If X; = UjeJi Uj, then there
is a finite refinement and we conclude that X = (J,.; B; has a finite refinement. If
this is not the case, then for every i we can choose an point x; € X; which is not
in UjeJi U;. But then the point = (;);cs is an element of X not contained in
U,es Bj. a contradiction. O

The following lemma does not hold if one drops the assumption that the spaces X;
are Hausdorff, see Examples, Section [88.4

Lemma 5.13.5. Let Z be a category and let i — X; be a diagram over I in
the category of topological spaces. If each X; is quasi-compact and Hausdorff, then
lim X; s quasi-compact.

Proof. Recall that lim X; is a subspace of [[ X;. By Theorem this product
is quasi-compact. Hence it suffices to show that lim X is a closed subspace of [ X;
(Lemma . If ¢ : j — k is a morphism of Z, then let ', C X; x X}, denote
the graph of the corresponding continuous map X; — Xj. By Lemma this
graph is closed. It is clear that lim X; is the intersection of the closed subsets

T, x H#M X c][x
Thus the result follows. O

The following lemma generalizes Categories, Lemma[f.2T.5|and partially generalizes
Lemma [5.11.6l
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0A2R Lemmal 5.13.6. Let Z be a cofiltered category and let i — X; be a diagram over

04ZC
005G

005H

0051

T in the category of topological spaces. If each X; is quasi-compact, Hausdorff, and
nonempty, then lim X; is nonempty.

Proof. In the proof of Lemma [5.13.5| we have seen that X = lim X; is the inter-
section of the closed subsets

Z,=T, x Hl#jyk X,

inside the quasi-compact space [[ X; where ¢ : j — k is a morphism of Z and
I'y € X; x X}, is the graph of the corresponding morphism X; — X. Hence by
Lemmal5.11.6)it suffices to show any finite intersection of these subsets is nonempty.
Assume ¢y : j; — kg, t =1,...,n is a finite collection of morphisms of Z. Since 7
is cofiltered, we can pick an object 7 and a morphism ; : j — j; for each t. For
each pair ¢,¢ such that either (a) j; = jy, or (b) j: = kg, or (c) k; = ky we obtain
two morphisms j — [ with [ = j; in case (a), (b) or [ = k; in case (c¢). Because 7 is
cofiltered and since there are finitely many pairs (¢,¢") we may choose a map j' — j
which equalizes these two morphisms for all such pairs (¢,¢'). Pick an element
z € X and for each t let x;,, resp. x, be the image of x under the morphism
Xjr = X; = Xj,, resp. Xjv = X; = X, = Xj,. For any index [ € Ob(Z) which
is not equal to j; or k; for some t we pick an arbitrary element z; € X; (using the
axiom of choice). Then (;);con(z) is in the intersection

Zp 0.0 2y,

by construction and the proof is complete. ([

5.14. Constructible sets

Definition 5.14.1. Let X be a topological space. Let F C X be a subset of X.

(1) Wesay E'is constructibleﬁ in X if I is a finite union of subsets of the form
UNVe where U,V C X are open and retrocompact in X.

(2) We say E is locally constructible in X if there exists an open covering
X =V, such that each E NV; is constructible in V.

Lemma 5.14.2. The collection of constructible sets is closed under finite inter-
sections, finite unions and complements.

Proof. Note that if Uy, Uy are open and retrocompact in X then so is U; U Us
because the union of two quasi-compact subsets of X is quasi-compact. It is also
true that U; N Uy is retrocompact. Namely, suppose U C X is quasi-compact
open, then Us NU is quasi-compact because Us is retrocompact in X, and then we
conclude Uy N (U NU) is quasi-compact because Uy is retrocompact in X. From
this it is formal to show that the complement of a constructible set is constructible,
that finite unions of constructibles are constructible, and that finite intersections
of constructibles are constructible. ([

Lemma 5.14.3. Let f: X — Y be a continuous map of topological spaces. If the
inverse image of every retrocompact open subset of Y is retrocompact in X, then

inwverse images of constructible sets are constructible.

3In the second edition of EGA I [GDT1] this was called a “globally constructible” set and a
the terminology “constructible” was used for what we call a locally constructible set.
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Proof. This is true because f~1(UNV¢) = f~YU)N f~1(V)¢, combined with the
definition of constructible sets. O

Lemma 5.14.4. Let U C X be open. For a constructible set E C X the intersec-
tion ENU is constructible in U.

Proof. Suppose that V' C X is retrocompact open in X. It suffices to show that
VNU is retrocompact in U by Lemma[5.14.3] To show this let W C U be open and
quasi-compact. Then W is open and quasi-compact in X. Hence VNW = VNUNW
is quasi-compact as V' is retrocompact in X. ([

Lemma 5.14.5. Let U C X be a retrocompact open. Let E C U. If E is
constructible in U, then E is constructible in X .

Proof. Suppose that VW C U are retrocompact open in U. Then V,W are
retrocompact open in X (Lemma [5.11.2). Hence VN (U\ W) =V N (X \ W) is
constructible in X. We conclude since every constructible subset of U is a finite
union of subsets of the form V N (U \ W). O

Lemma 5.14.6. Let X be a topological space. Let E C X be a subset. Let
X =ViU...UV,, be a finite covering by retrocompact opens. Then E is constructible
in X if and only if ENV; is constructible in V; for each j =1,...,m.

Proof. If E is constructible in X, then by Lemma we see that ENVj is
constructible in V; for all j. Conversely, suppose that £ N Vj is constructible in Vj
for each j =1,...,m. Then E = |JE NV} is a finite union of constructible sets by
Lemma [5.14.5] and hence constructible. O

Lemma 5.14.7. Let X be a topological space. Let Z C X be a closed subset such
that X \ Z is quasi-compact. Then for a constructible set E C X the intersection
ENZ is constructible in Z.

Proof. Suppose that V' C X is retrocompact open in X. It suffices to show that
V' N Z is retrocompact in Z by Lemma [5.14.3] To show this let W C Z be open
and quasi-compact. The subset W/ = W U (X \ Z) is quasi-compact, open, and
W =ZNW'. Hence VNZNW = VNZNW'is a closed subset of the quasi-compact
open VN W' as V is retrocompact in X. Thus V N Z N W is quasi-compact by
Lemma [5.11.3 O

Lemma 5.14.8. Let X be a topological space. Let T C X be a subset. Suppose

(1) T is retrocompact in X,
(2) quasi-compact opens form a basis for the topology on X.

Then for a constructible set E C X the intersection ENT s constructible in T'.

Proof. Suppose that V' C X is retrocompact open in X. It suffices to show that
V' NT is retrocompact in T' by Lemma [5.14.3] To show this let W C T be open
and quasi-compact. By assumption (2) we can find a quasi-compact open W' C X
such that W =T N W’ (details omitted). Hence VNTNW =V NT NW' is the
intersection of T' with the quasi-compact open V N W’ as V is retrocompact in X.
Thus VNT NW is quasi-compact. 0

Lemma 5.14.9. Let Z C X be a closed subset whose complement is retrocompact
open. Let E C Z. If E is constructible in Z, then E is constructible in X.
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Proof. Suppose that V' C Z is retrocompact open in Z. Consider the open subset
V=VU(X\Z)of X. Let W C X be quasi-compact open. Then

WnV=VnAW)u((X\2Z2)nw).

The first part is quasi-compact as VNW =V N (ZNW) and (Z N W) is quasi-
compact open in Z (Lemma and V is retrocompact in Z. The second part
is quasi-compact as (X \ Z) is retrocompact in X. In this way we see that V is
retrocompact in X. Thus if Vi, V5 C Z are retrocompact open, then

Vin(Z\Va) =Vin(X\Va)

is constructible in X. We conclude since every constructible subset of Z is a finite
union of subsets of the form Vi N (Z\ V7). O

Lemma 5.14.10. Let X be a topological space. Every constructible subset of X
18 retrocompact.

Proof. Let E = Ui:l,...,n U;NV,E with U;, V; retrocompact open in X. Let W C X
be quasi-compact open. Then ENW = {J,_; ,U;NVENW. Thus it suffices
to show that U N V¢ N W is quasi-compact if U,V are retrocompact open and W
is quasi-compact open. This is true because U N VN W is a closed subset of the
quasi-compact U N W so Lemma [5.11.3| applies. (]

Question: Does the following lemma also hold if we assume X is a quasi-compact
topological space? Compare with Lemma

Lemma 5.14.11. Let X be a topological space. Assume X has a basis consisting
of quasi-compact opens. For E,|E’ constructible in X, the intersection E N E’ is
constructible in E.

Proof. Combine Lemmas (5.14.8 and B.14.101 O

Lemmal 5.14.12. Let X be a topological space. Assume X has a basis consisting
of quasi-compact opens. Let E be constructible in X and F C E constructible in
E. Then F s constructible in X.

Proof. Observe that any retrocompact subset T of X has a basis for the induced
topology consisting of quasi-compact opens. In particular this holds for any con-
structible subset (Lemma . Write £ = E4U...UE, with E;, = U; N Vf
where U,;, V; C X are retrocompact open. Note that E; = EN E; is constructible in
FE by Lemma|5.14.11] Hence F'N E; is constructible in F; by Lemma [5.14.11} Thus
it suffices to prove the lemma in case ' = UNV ¢ where U,V C X are retrocompact
open. In this case the inclusion £ C X is a composition

E=UnNVe—-U—X
Then we can apply Lemma to the first inclusion and Lemma to the

second. 0

Lemma 5.14.13. Let X be a topological space which has a basis for the topology
consisting of quasi-compact opens. Let E C X be a subset. Let X = E1U...UE,,
be a finite covering by constructible subsets. Then E is constructible in X if and
only if BN E; is constructible in E; for each j =1,...,m.

Proof. Combine Lemmas [5.14.11l and [5.14.12 O
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Lemma 5.14.14. Let X be a topological space. Suppose that Z C X is irreducible.
Let E C X be a finite union of locally closed subsets (e.g. E is constructible). The
following are equivalent

(1) The intersection E N Z contains an open dense subset of Z.
(2) The intersection ENZ is dense in Z.

If Z has a generic point &, then this is also equivalent to
(3) We have € € E.

Proof. Write E = |JU; N Z; as the finite union of intersections of open sets U; and
closed sets Z;. Suppose that E N Z is dense in Z. Note that the closure of EN Z
is the union of the closures of the intersections U; N Z; N Z. As Z is irreducible we
conclude that the closure of U; N Z; N Z is Z for some i. Fix such an 7. It follows
that Z C Z; since otherwise the closed subset Z N Z; of Z would not be dense in
Z. Then U;NZ; N Z = U; N Z is an open nonempty subset of Z. Because Z is
irreducible, it is open dense. Hence E'N Z contains an open dense subset of Z. The
converse is obvious.

Suppose that £ € Z is a generic point. Of course if (1) < (2) holds, then ¢ € E.
Conversely, if £ € E, then £ € U; N Z; for some ¢ = 49. Clearly this implies Z C Z;,
and hence U;, N Z;, N Z = U, N Z is an open not empty subset of Z. We conclude
as before. O

5.15. Constructible sets and Noetherian spaces

Lemma 5.15.1. Let X be a Noetherian topological space. The constructible sets
i X are precisely the finite unions of locally closed subsets of X.

Proof. This follows immediately from Lemma [5.11.13 d

Lemma 5.15.2. Let f : X — Y be a continuous map of Noetherian topological
spaces. If E CY is constructible in'Y, then f~1(E) is constructible in X.

Proof. Follows immediately from Lemma [5.15.1]and the definition of a continuous
map. ([l

Lemma 5.15.3. Let X be a Noetherian topological space. Let E C X be a subset.
The following are equivalent:
(1) E is constructible in X, and
(2) for every irreducible closed Z C X the intersection E N Z either contains
a nonempty open of Z or is not dense in Z.

Proof. Assume F is constructible and Z C X irreducible closed. Then E N Z is
constructible in Z by Lemma [5.15.2] Hence E N Z is a finite union of nonempty
locally closed subsets T; of Z. Clearly if none of the T} is open in Z, then EN Z is
not dense in Z. In this way we see that (1) implies (2).

Conversely, assume (2) holds. Consider the set S of closed subsets Y of X such that
ENY is not constructible in Y. If S # (), then it has a smallest element Y as X
is Noetherian. Let Y = Y7 U...UY, be the decomposition of Y into its irreducible
components, see Lemma[5.8:2] If 7 > 1, then each Y; N E is constructible in Y; and
hence a finite union of locally closed subsets of Y;. Thus ENY is a finite union of
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locally closed subsets of Y too and we conclude that ENY is constructible in Y by
Lemma This is a contradiction and so r = 1. If » = 1, then Y is irreducible,
and by assumption (2) we see that ENY either (a) contains an open V of Y or
(b) is not dense in Y. In case (a) we see, by minimality of Y, that EN (Y \ V) is a
finite union of locally closed subsets of Y\ V. Thus ENY is a finite union of locally
closed subsets of Y and is constructible by Lemma This is a contradiction
and so we must be in case (b). In case (b) we see that ENY = ENY’ for some
proper closed subset Y/ C Y. By minimality of ¥ we see that ENY’ is a finite
union of locally closed subsets of Y’ and we see that ENY’' = ENY is a finite
union of locally closed subsets of Y and is constructible by Lemma This
contradiction finishes the proof of the lemma. O

Lemma 5.15.4. Let X be a Noetherian topological space. Let x € X. Let E C X
be constructible in X. The following are equivalent:

(1) E is a neighbourhood of x, and
(2) for every irreducible closed subsetY of X which contains x the intersection
ENY is dense inY.

Proof. It is clear that (1) implies (2). Assume (2). Consider the set S of closed
subsets Y of X containing = such that ENY is not a neighbourhood of z in Y. If
S # (), then it has a minimal element Y as X is Noetherian. Suppose Y = Y; UY;
with two smaller nonempty closed subsets Y7, Yo. If z € Y; for i = 1,2, then
Y; N E is a neighbourhood of x in Y; and we conclude Y N E is a neighbourhood
of z in Y which is a contradiction. If z € Y] but « € Y5 (say), then Y1 N E is a
neighbourhood of z in Y7 and hence also in Y, which is a contradiction as well.
We conclude that Y is irreducible closed. By assumption (2) we see that ENY is
dense in Y. Thus ENY contains an open V of Y, see Lemma IfzeV
then ENY is a neighbourhood of x in Y which is a contradiction. If z & V', then
Y =Y \ V is a proper closed subset of Y containing z. By minimality of ¥ we
see that £ N'Y’ contains an open neighbourhood V' C Y’ of x in Y’. But then
VUV is an open neighbourhood of  in Y contained in F, a contradiction. This
contradiction finishes the proof of the lemma. (I

Lemma 5.15.5. Let X be a Noetherian topological space. Let E C X be a subset.
The following are equivalent:
(1) E is open in X, and
(2) for every irreducible closed subsetY of X the intersection ENY is either
empty or contains a nonempty open of Y.

Proof. This follows formally from Lemmas [5.15.3| and [5.15.4] ([l

5.16. Characterizing proper maps

We include a section discussing the notion of a proper map in usual topology. It
turns out that in topology, the notion of being proper is the same as the notion of
being universally closed, in the sense that any base change is a closed morphism
(not just taking products with spaces). The reason for doing this is that in algebraic
geometry we use this notion of universal closedness as the basis for our definition
of properness.
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Lemma 5.16.1 (Tube lemma). Let X and Y be topological spaces. Let A C X
and B C'Y be quasi-compact subsets. Let Ax BC W C X xY with W open in
X xXY. Then there exists opens ACU C X and BCV CY suchthatUxV C W.

Proof. For every a € A and b € B there exist opens Uy ) of X and Vigp) of YV
such that (a,b) € Uap) X Via,p) C W. Fix b and we see there exist a finite number
ai,...,an such that A C Ugg, ) U...UU(q, ). Hence

A x {b} C (U(al,b) Uu...u U(an,b)) X (V(al,b) n... ﬂV(amb)) cWw.

Thus for every b € B there exists opens U, C X and V;, C Y such that A x {b} C
U, x V, € W. As above there exist a finite number bq,...,b,, such that B C
Vp, U. ..UV, . Then we win because Ax B C (Up, N...NUy, ) X (Vp,U...UV,, ). O

m *

The notation in the following definition may be slightly different from what you are
used to.

Definition 5.16.2. Let f : X — Y be a continuous map between topological
spaces.

(1) We say that the map f is closed iff the image of every closed subset is
closed.

(2) We say that the map f is propeﬂ iff the map Z x X — Z x Y is closed
for any topological space Z.

(3) We say that the map f is quasi-proper iff the inverse image f~1(V) of
every quasi-compact subset V' C Y is quasi-compact.

(4) We say that f is universally closed iff the map f': Z xy X — Z is closed
for any map g: Z — Y.

The following lemma is useful later.

Lemma 5.16.3. A topological space X is quasi-compact if and only if the projec-
tion map Z X X — Z is closed for any topological space Z.

Proof. (See also remark below.) If X is not quasi-compact, there exists an open
covering X = Uiel U; such that no finite number of U; cover X. Let Z be the
subset of the power set P(I) of I consisting of I and all nonempty finite subsets of
1. Define a topology on Z with as a basis for the topology the following sets:

(1) All subsets of Z \ {I}.
(2) For every finite subset K of [ theset Ux :={JCI|Je€ Z, K CJ}).

It is left to the reader to verify this is the basis for a topology. Consider the subset
of Z x X defined by the formula
M={(Jo)|JeZ ze),_ U}

If (J;x) ¢ M, then x € U; for some i € J. Hence Up;y x U; C Z x X is an open
subset containing (J, z) and not intersecting M. Hence M is closed. The projection
of M to Z is Z — {I} which is not closed. Hence Z x X — Z is not closed.

Assume X is quasi-compact. Let Z be a topological space. Let M C Z x X be
closed. Let z € Z be a point which is not in pr;(M). By the Tube Lemma [5.16.1
there exists an open U C Z such that U x X is contained in the complement of M.

Hence pry (M) is closed. O

4This is the terminology used in [Bou71]. Usually this is what is called “universally closed”
in the literature. Thus our notion of proper does not involve any separation conditions.

Combination of
[Boutll I, p. 75,
Lemme 1] and
[Bou71] I, p. 76,
Corrolaire 1].
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Remark 5.16.4. Lemma|5.16.3|is a combination of [Bou71l I, p. 75, Lemme 1]
and [Bou71l I, p. 76, Corrolaire 1].

Theorem 5.16.5. Let f: X — Y be a continuous map between topological spaces.
The following conditions are equivalent:
(1) The map f is quasi-proper and closed.
(2) The map f is proper.
(3) The map f is universally closed.
(4) The map f is closed and f~'(y) is quasi-compact for any y € Y.

Proof. (See also the remark below.) If the map f satisfies (1), it automatically
satisfies (4) because any single point is quasi-compact.

Assume map [ satisfies (4). We will prove it is universally closed, i.e., (3) holds.
Let g : Z — Y be a continuous map of topological spaces and consider the diagram

ZXYX/HX

I

z— 2 vy

During the proof we will use that Z xy X — Z x X is a homeomorphism onto its
image, i.e., that we may identify Zxy X with the corresponding subset of Z x X with
the induced topology. The image of f' : Zxy X — ZisIm(f') = {z: g(z) € f(X)}.
Because f(X) is closed, we see that Im(f’) is a closed subspace of Z. Consider a
closed subset P C Z xy X. Let z € Z, 2 & f'(P). If z ¢ Im(f’), then Z \ Im(f")
is an open neighbourhood which avoids f’(P). If z is in Im(f’) then (f')~!{z} =
{2} x f7Hg(2)} and f~{g(2)} is quasi-compact by assumption. Because P is a
closed subset of Z xy X, we have a closed P’ of Z x X such that P = P'NZ xy X.
Since (f")71{z} is a subset of P¢ = P’°U(Z xy X)¢, and since (f’)~{z} is disjoint
from (Z xy X)¢ we see that (f')~'{z} is contained in P’°. We may apply the Tube
Lemmato () Yy ={z} x f7Hg(2)} C (P")¢ C Zx X. This gives V x U
containing (f’)~'{z} where U and V are open sets in X and Z respectively and
V x U has empty intersection with P’. Then the set V N g~ (Y — f(U¢)) is open
in Z since f is closed, contains z, and has empty intersection with the image of P.
Thus f/(P) is closed. In other words, the map f is universally closed.

The implication (3) = (2) is trivial. Namely, given any topological space Z consider
the projection morphism g : Z x Y — Y. Then it is easy to see that f’ is the map
Z x X — Z xY, in other words that (Z xY) xy X = Z x X. (This identification
is a purely categorical property having nothing to do with topological spaces per
se.)

Assume f satisfies (2). We will prove it satisfies (1). Note that f is closed as
f can be identified with the map {pt} x X — {pt} x Y which is assumed closed.
Choose any quasi-compact subset K C Y. Let Z be any topological space. Because
Z x X = Z x Y is closed we see the map Z x f~1(K) — Z x K is closed (if T is
closed in Z x f~YK), write T = Z x f~1(K)NT" for some closed T" C Z x X).
Because K is quasi-compact, K x Z — Z is closed by Lemma Hence the
composition Z x f~1(K) = Z x K — Z is closed and therefore f~!(K) must be
quasi-compact by Lemma [5.16.3| again. g

In [BouT71l I, p. 75,
Theorem 1] you can
find: (2) & (4). In
[Boutll I, p. 77,
Proposition 6] you
can find: (2) = (1).
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Remark 5.16.6. Here are some references to the literature. In [Bou71l I, p. 75,
Theorem 1] you can find: (2) < (4). In [Bou71l I, p. 77, Proposition 6] you can
find: (2) = (1). Of course, trivially we have (1) = (4). Thus (1), (2) and (4) are
equivalent. Fan Zhou claimed and proved that (3) and (4) are equivalent; let me
know if you find a reference in the literature.

Lemma 5.16.7. Let f: X — Y be a continuous map of topological spaces. If X
s quasi-compact and 'Y is Hausdorff, then f is proper.

Proof. Since every point of Y is closed, we see from Lemma[5.11.3 that the closed
subset f~1(y) of X is quasi-compact for all y € Y. Thus, by Theorem it
suffices to show that f is closed. If E C X is closed, then it is quasi-compact
(Lemma [5.11.3), hence f(E) C Y is quasi-compact (Lemma[5.11.7)), hence f(E) is
closed in Y (Lemma [5.11.4). O

Lemma 5.16.8. Let f: X = Y be a continuous map of topological spaces. If f
1s bigective, X is quasi-compact, and Y is Hausdorff, then f is a homeomorphism.

Proof. This follows immediately from Lemma which tells us that f is closed,
i.e., f~! is continuous. ]

5.17. Jacobson spaces

Definition 5.17.1. Let X be a topological space. Let X be the set of closed
points of X. We say that X is Jacobson if every closed subset Z C X is the closure
of ZnN Xo.

Note that a topological space X is Jacobson if and only if every nonempty locally
closed subset of X has a point closed in X.

Let X be a Jacobson space and let Xy be the set of closed points of X with the
induced topology. Clearly, the definition implies that the morphism X, — X
induces a bijection between the closed subsets of X and the closed subsets of X.
Thus many properties of X are inherited by Xy. For example, the Krull dimensions
of X and X are the same.

Lemma 5.17.2. Let X be a topological space. Let X, be the set of closed points

iX. Suppose that for every point x € X the intersection Xg N @ is dense in
{z}. Then X is Jacobson.

Proof. Let Z be closed subset of X and U be and open subset of X such that
U N Z is nonempty. Then for x € UNZ we have that {x} NU is a nonempty subset
of ZNU, and by hypothesis it contains a point closed in X as required. O

Lemma 5.17.3. Let X be a Kolmogorov topological space with a basis of quasi-
compact open sets. If X is not Jacobson, then there exists a non-closed point x € X
such that {x} is locally closed.

Proof. As X is not Jacobson there exists a closed set Z and an open set U in X
such that Z N U is nonempty and does not contain points closed in X. As X has
a basis of quasi-compact open sets we may replace U by an open quasi-compact
neighborhood of a point in Z NU and so we may assume that U is quasi-compact
open. By Lemma [5.11.8] there exists a point z € Z N U closed in Z N U, and so
{z} is locally closed but not closed in X. O
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Lemma 5.17.4. Let X be a topological space. Let X = |JU; be an open covering.
Then X is Jacobson if and only if each U; is Jacobson. Moreover, in this case
XO = U UZ'70.

Proof. Let X be a topological space. Let X be the set of closed points of X. Let
Ui,o be the set of closed points of U;. Then Xy N U; C U; o but equality may not
hold in general.

First, assume that each U; is Jacobson. We claim that in this case Xo N U; = U, .
Namely, suppose that « € U, o, i.e., x is closed in U;. Let m be the closure in X.
Consider {x} NU;. If x ¢ U, then {x} NU; = 0. If z € U;, then U; NU; C Uj is
an open subset of U; containing z. Let 7" = U; \U; NU; and T = {z} I T". Then
T, T' are closed subsets of U; and T' contains z. As Uj is Jacobson we see that the
closed points of U; are dense in T'. Because T = {«} II 7" this can only be the case
if 2 is closed in U;. Hence {x}NU; = {z}. We conclude that {z} = {z} as desired.

Let Z C X be a closed subset (still assuming each U; is Jacobson). Since now we
know that Xo N ZNU; = U; 0N Z are dense in Z N U, it follows immediately that
XoNZ is dense in Z.

Conversely, assume that X is Jacobson. Let Z C U; be closed. Then X, NZ is dense
in Z. Hence also XoN Z is dense in Z, because Z \ Z is closed. As XoNU; C U,
we see that U; o N Z is dense in Z. Thus U; is Jacobson as desired. O

Lemma 5.17.5. Let X be Jacobson. The following types of subsets T C X are
Jacobson:

(1) Open subspaces.

2) Closed subspaces.

3) Locally closed subspaces.

4) Unions of locally closed subspaces.

5) Constructible sets.

6) Any subset T C X which locally on X is a union of locally closed subsets.

In each of these cases closed points of T are closed in X.
Proof. Let Xj be the set of closed points of X. For any subset T C X we let (%)
denote the property:
(*) Every nonempty locally closed subset of T' has a point closed in X.
Note that always XoNT C Tp. Hence property (x) implies that T is Jacobson. In

addition it clearly implies that every closed point of T is closed in X.

Suppose that 7' = |J, T; with T; locally closed in X. Take A C T a locally closed
nonempty subset in T, then there exists a T; such that A N T; is nonempty, it is
locally closed in T; and so in X. As X is Jacobson A has a point closed in X. [O

Lemmal 5.17.6. A finite Jacobson space is discrete.

Proof. If X is finite Jacobson, Xy C X the subset of closed points, then, on the
one hand, Xy = X. On the other hand, X, and hence Xj is finite, so Xy =
{z1,... 20} = Uiy n{zi} is a finite union of closed sets, hence closed, so X =

Xy = Xo. Every point is closed, and by finiteness, every point is open. (I
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Lemma 5.17.7. Suppose X is a Jacobson topological space. Let Xy be the set of
closed points of X. There is a bijective, inclusion preserving correspondence

{finite unions loc. closed subsets of X} <> {finite unions loc. closed subsets of Xy}

gwen by E — E N Xy. This correspondence preserves the subsets of locally closed,
of open and of closed subsets.

Proof. We just prove that the correspondence E — E N Xy is injective. Indeed if
E # E' then without loss of generality F'\ E’ is nonempty, and it is a finite union of
locally closed sets (details omitted). As X is Jacobson, we see that (E\ E')NXy =
ENnXo\ E'N Xy is not empty. O

Lemmal 5.17.8. Suppose X is a Jacobson topological space. Let Xy be the set of
closed points of X. There is a bijective, inclusion preserving correspondence

{constructible subsets of X} < {constructible subsets of Xy}

gwen by E — E N Xg. This correspondence preserves the subset of retrocompact
open subsets, as well as complements of these.

Proof. From Lemma|5.17.7|above, we just have to see that if U is open in X then
U N Xy is retrocompact in X if and only if U is retrocompact in X. This follows
if we prove that for U open in X then U N X is quasi-compact if and only if U
is quasi-compact. From Lemma [5.17.5]it follows that we may replace X by U and
assume that U = X. Finally notice that any collection of opens U of X cover X if
and only if they cover X, using the Jacobson property of X in the closed X \ JU
to find a point in Xy if it were nonempty. O

5.18. Specialization

Definition 5.18.1. Let X be a topological space.

(1) If 2,2’ € X then we say x is a specialization of &', or 2’ is a generalization
of z if z € {z/}. Notation: 2’ ~~ x.

(2) A subset T' C X is stable under specialization if for all 2/ € T and every
specialization 2’ ~ x we have z € T.

(3) A subset T C X is stable under generalization if for all x € T and every
generalization 2’ ~ x we have 2’ € T.

Lemma 5.18.2. Let X be a topological space.

(1) Any closed subset of X is stable under specialization.

(2) Any open subset of X is stable under generalization.

(3) A subsetT C X is stable under specialization if and only if the complement
T¢ is stable under generalization.

Proof. Omitted. U

Definition 5.18.3. Let f: X — Y be a continuous map of topological spaces.
(1) We say that specializations lift along f or that f is specializing if given
y ~yinY and any ©’ € X with f(2') = 3/ there exists a specialization
x' ~» x of ' in X such that f(z) =y.
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(2) We say that generalizations lift along f or that f is generalizing if given
y ~yinY and any x € X with f(x) = y there exists a generalization
a2’ ~ x of z in X such that f(z') =v/'.

Lemma 5.18.4. Suppose f : X — Y and g : Y — Z are continuous maps of
topological spaces. If specializations lift along both f and g then specializations lift
along g o f. Similarly for “generalizations lift along”.

Proof. Omitted. O

Lemmal 5.18.5. Let f: X — Y be a continuous map of topological spaces.
(1) If specializations lift along f, and if T C X is stable under specialization,
then f(T') C Y is stable under specialization.
(2) If generalizations lift along f, and if T C X is stable under generalization,
then f(T) CY is stable under generalization.

Proof. Omitted. O

Lemma 5.18.6. Let f: X — Y be a continuous map of topological spaces.
(1) If f is closed then specializations lift along f.

(2) If f is open, X is a Noetherian topological space, each irreducible closed

subset of X has a generic point, and Y is Kolmogorov then generalizations
lift along f.

Proof. Assume f is closed. Let ¢ ~» y in Y and any 2/ € X with f(a’) = ¢/
be given. Consider the closed subset T = {a’} of X. Then f(T) C Y is a closed
subset, and 3’ € f(T'). Hence also y € f(T). Hence y = f(x) with z € T, i.e.,
x’ ~

Assume f is open, X Noetherian, every irreducible closed subset of X has a generic
point, and Y is Kolmogorov. Let 3/ ~» y in Y and any « € X with f(z) = y be
given. Consider T'= f~!({y'}) C X. Take an open neighbourhood # € U C X of
2. Then f(U) C Y is open and y € f(U). Hence also ' € f(U). In other words,
TNU # (). This proves that z € T. Since X is Noetherian, T is Noetherian (Lemma
5.8.2)). Hence it has a decomposition T'= T U...UT, into irreducible components.
Then correspondingly T = T, U ... U T,. By the above x € T, for some i. By
assumption there exists a generic pomt z' € T;, and we see that o’ ~» z. Asa’ € T
we see that f(z') € {y'}. Note that f(T;) = f({z'}) C {f(a/)}. If f(2') # ¢/, then
since Y is Kolmogorov f(z') is not a generic point of the irreducible closed subset
{y'} and the inclusion {f(2/)} C {y'} is strict, i.e., ¥’ & f(T;). This contradicts the
fact that f(T;) = {y’'}. Hence f(2’) = ¢ and we win. O

Lemma 5.18.7. Suppose that s,t : R — U and 7 : U — X are continuous maps
of topological spaces such that

) T is open,

U is sober,

s,t have finite fibres,

generalizations lift along s,t,

(t,s)(R) C U x U is an equivalence relation on U and X is the quotient
of U by this equivalence relation (as a set).

(1

(2)
(3)
(4)
()

Then X is Kolmogorov.
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Proof. Properties (3) and (5) imply that a point « corresponds to an finite equiv-
alence class {u1,...,u,} C U of the equivalence relation. Suppose that ' € X is
a second point corresponding to the equivalence class {u},...,u,, } C U. Suppose
that u; ~ u’; for some 4, j. Then for any 7" € R with s(r’) = u; by (4) we can find
7~ 7! with s(r) = u;. Hence t(r) ~ t(r'). Since {u},...,up,} = t(s~'({u}})) we
conclude that every element of {u,...,u, } is the specialization of an element of
{uy,...,up}. Thus {u;}U...U{u,} is a union of equivalence classes, hence of the
form 771(Z) for some subset Z C X. By (1) we see that Z is closed in X and in
fact Z = {x} because 7({u;}) C {z} for each i. In other words, & ~ «’ if and only
if some lift of = in U specializes to some lift of =’ in U, if and only if every lift of z’
in U is a specialization of some lift of x in U.

Suppose that both = ~» 2’ and 2’ ~» z. Say x corresponds to {uy,...,u,} and
a’ corresponds to {u},...,ul,} as above. Then, by the results of the preceding
paragraph, we can find a sequence

!/ / /
4 uj3 M Ugg ~ ujz M Ugy ujl ~ Uy
which must repeat, hence by (2) we conclude that {uy,...,u,} = {uf,...

Uy }
i.e., z = 2’. Thus X is Kolmogorov. (Il

Lemma 5.18.8. Let f: X — Y be a morphism of topological spaces. Suppose
that Y 1is a sober topological space, and f is surjective. If either specializations or
generalizations lift along f, then dim(X) > dim(Y").

Proof. Assume specializations lift along f. Let Zg C Z; C ... Z. C Y be a chain of
irreducible closed subsets of X. Let &, € X be a point mapping to the generic point
of Z.. By assumption there exists a specialization & ~~ &._1 in X such that &._4
maps to the generic point of Z._ ;. Continuing in this manner we find a sequence
of specializations
e~ Ee1 ™ o &p

with & mapping to the generic point of Z;. This clearly implies the sequence of
irreducible closed subsets

{6} c{&} .. {&}

is a chain of length e in X. The case when generalizations lift along f is similar. [J

Lemma 5.18.9. Let X be a Noetherian sober topological space. Let E C X be a
subset of X.

(1) If E is constructible and stable under specialization, then E is closed.
(2) If E is constructible and stable under generalization, then E is open.

Proof. Let E be constructible and stable under generalization. Let Y C X be an
irreducible closed subset with generic point £ € Y. If ENY is nonempty, then
it contains ¢ (by stability under generalization) and hence is dense in Y, hence it
contains a nonempty open of Y, see Lemma [5.15.3] Thus E is open by Lemma
5.15.50 This proves (2). To prove (1) apply (2) to the complement of F'in X. O

5.19. Dimension functions

It scarcely makes sense to consider dimension functions unless the space considered
is sober (Deﬁnition. Thus the definition below can be improved by considering
the sober topological space associated to X. Since the underlying topological space
of a scheme is sober we do not bother with this improvement.
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Definition 5.19.1. Let X be a topological space.

(1) Let 2,y € X, © # y. Suppose x ~ y, that is y is a specialization of x. We
say y is an immediate specialization of x if there is no z € X \ {x, y} with
z ~ zand z ~ y.
(2) A map 0:X — Zis called a dimension functioﬂ if
(a) whenever x ~ y and x # y we have é(z) > §(y), and
(b) for every immediate specialization z ~ y in X we have §(x) = §(y) +
1.

It is clear that if § is a dimension function, then so is § + ¢ for any ¢ € Z. Here is a
fun lemma.

Lemma 5.19.2. Let X be a topological space. If X is sober and has a dimension
function, then X is catenary. Moreover, for any x ~> y we have

0(x) — 6(y) = codim (@, m) :

Proof. Suppose Y C Y’ C X are irreducible closed subsets. Let £ € Y, & €
Y’ be their generic points. Then we see immediately from the definitions that
codim(Y,Y’) < 6(€) —6(&') < oo. In fact the first inequality is an equality. Namely,
suppose
Y=YycYiC...CY.=Y'

is any maximal chain of irreducible closed subsets. Let &; € Y; denote the generic
point. Then we see that & ~» £; 41 is an immediate specialization. Hence we see that
e =08(§) — 6(¢’) as desired. This also proves the last statement of the lemma. O

Lemmal 5.19.3. Let X be a topological space. Let &, &' be two dimension functions
on X. If X is locally Noetherian and sober then § — &' is locally constant on X.

Proof. Let x € X be a point. We will show that § — ¢’ is constant in a neigh-
bourhood of z. We may replace X by an open neighbourhood of x in X which
is Noetherian. Hence we may assume X is Noetherian and sober. Let Zi,...,Z,
be the irreducible components of X passing through z. (There are finitely many
as X is Noetherian, see Lemma m) Let & € Z; be the generic point. Note
Z1U...UZ, is a neighbourhood of  in X (not necessarily closed). We claim that
0 — &' is constant on Z; U...U Z,.. Namely, if y € Z;, then

8(z) = d(y) = d(x) — 8(&) + 8(&) — 8(y) = —codim({z}, Z;) + codim({y}, Z;)
by Lemma Similarly for §’. Whence the result. (]

Lemma 5.19.4. Let X be locally Noetherian, sober and catenary. Then any point
has an open neighbourhood U C X which has a dimension function.

Proof. We will use repeatedly that an open subspace of a catenary space is cate-
nary, see Lemma [5.10.5| and that a Noetherian topological space has finitely many
irreducible components, see Lemma In the proof of Lemma [5.19.3| we saw
how to construct such a function. Namely, we first replace X by a Noetherian open
neighbourhood of x. Next, we let Z1,...,Z,. C X be the irreducible components of
X. Let

Zi0 Zj = Zijx

5This is likely nonstandard notation. This notion is usually introduced only for (locally)
Noetherian schemes, in which case condition (a) is implied by (b).
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be the decomposition into irreducible components. We replace X by

X \ (U:E%Zl Zl J Ux%Z”‘k lek)

so that we may assume = € Z; for all ¢ and x € Z;j, for all 4, j, k. For y € X choose
any ¢ such that y € Z; and set

8(y) = —codim({z}, Z;) + codim({y}, Z;).

We claim this is a dimension function. First we show that it is well defined, i.e.,
independent of the choice of 7. Namely, suppose that y € Z;;;, for some i, j, k. Then

we have (using Lemma

§(y) = —codim({z}, Z;) + codim({y}, Z;)
= —codim({z}, Zij) — codim(Z;x, Z;) + codim({y}, Zijx) + codim(Ziji, Z;)
= —codim({z}, Zi;1.) + codim({y}, Zi;x)

which is symmetric in ¢ and j. We omit the proof that it is a dimension function. [

Remark|5.19.5. Combining Lemmas |5.19.3| and |5.19.4| we see that on a catenary,
locally Noetherian, sober topological space the obstruction to having a dimension
function is an element of H'(X,Z).

5.20. Nowhere dense sets

Definition 5.20.1. Let X be a topological space.
(1) Given a subset T' C X the interior of T' is the largest open subset of X
contained in 7.
(2) A subset T C X is called nowhere dense if the closure of T has empty
interior.

Lemma 5.20.2. Let X be a topological space. The union of a finite number of
nowhere dense sets is a nowhere dense set.

Proof. Omitted. U

Lemma 5.20.3. Let X be a topological space. Let U C X be an open. Let T C U
be a subset. If T is nowhere dense in U, then T is nowhere dense in X.

Proof. Assume T is nowhere dense in U. Suppose that z € X is an interior point
of the closure T of T in X. Say x € V C T with V C X open in X. Note that
T NU is the closure of T in U. Hence the interior of T N U being empty implies
VNU = (. Thus x cannot be in the closure of U, a fortiori cannot be in the closure
of T, a contradiction. O

Lemma 5.20.4. Let X be a topological space. Let X = |JU; be an open covering.
Let T C X be a subset. If TNU; is nowhere dense in U; for all i, then T is nowhere
dense in X.

Proof. Omitted. (Hint: closure commutes with intersecting with opens.) (]

Lemma 5.20.5. Let f: X — Y be a continuous map of topological spaces. Let
T C X be a subset. If f is a homeomorphism of X onto a closed subset of Y and
T is nowhere dense in X, then also f(T') is nowhere dense in'Y .
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Proof. Omitted. O

Lemma 5.20.6. Let f: X — Y be a continuous map of topological spaces. Let
T CY be a subset. If f is open and T is a closed nowhere dense subset of Y, then
also f~Y(T) is a closed nowhere dense subset of X. If f is surjective and open,
then T is closed nowhere dense if and only if f~(T) is closed nowhere dense.

Proof. Omitted. (Hint: In the first case the interior of f~!(7)) maps into the
interior of T, and in the second case the interior of f~(T") maps onto the interior
of T.) O

5.21. Profinite spaces

Here is the definition.

Definition 5.21.1. A topological space is profinite if it is homeomorphic to a limit
of a diagram of finite discrete spaces.

This is not the most convenient characterization of a profinite space.

Lemma 5.21.2. Let X be a topological space. The following are equivalent

(1) X is a profinite space, and
(2) X is Hausdorff, quasi-compact, and totally disconnected.
If this is true, then X is a cofiltered limit of finite discrete spaces.

Proof. Assume (1). Choose a diagram ¢ — X; of finite discrete spaces such that
X =lim X;. As each X; is Hausdorff and quasi-compact we find that X is quasi-
compact by Lemma If z, 2’ € X are distinct points, then z and z’ map to
distinct points in some X;. Hence x and z’ have disjoint open neighbourhoods, i.e.,
X is Hausdorff. In exactly the same way we see that X is totally disconnected.

Assume (2). Let Z be the set of finite disjoint union decompositions X = [,.; U;
with U; open (and closed). For each I € T there is a continuous map X — I
sending a point of U; to i. We define a partial ordering: I < I’ for I,I’ € Z if and
only if the covering corresponding to I’ refines the covering corresponding to I. In
this case we obtain a canonical map I’ — I. In other words we obtain an inverse
system of finite discrete spaces over Z. The maps X — I fit together and we obtain
a continuous map

X — limIeI 1

We claim this map is a homeomorphism, which finishes the proof. (The final as-
sertion follows too as the partially ordered set Z is directed: given two disjoint
union decompositions of X we can find a third refining either.) Namely, the map is
injective as X is totally disconnected and hence {z} is the intersection of all open
and closed subsets of X containing z (Lemma and the map is surjective

by Lemma [5.11.6] By Lemma [5.16.8| the map is a homeomorphism. (I

Lemma 5.21.3. Let X be a profinite space. FEvery open covering of X has a
refinement by a finite covering X = [[U; with U; open and closed.

Proof. Write X = lim X; as a limit of an inverse system of finite discrete spaces
over a directed partially ordered set I (Lemma [5.21.2). Denote f; : X — X;
the projection. For every point z = (x;) € X a fundamental system of open
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neighbourhoods is the collection f; ! ({x;}). Thus, as X is quasi-compact, we may
assume we have an open covering

X=f (e v Uf (o))

Choose i € I with 4 > i; for j = 1,...,n (this is possible as I is a directed partially
ordered set). Then we see that the covering

X =11, . 't

refines the given covering and is of the desired form. O

Lemma 5.21.4. Let X be a topological space. If X is quasi-compact and ev-
ery connected component of X is the intersection of the open and closed subsets
containing it, then mo(X) is a profinite space.

Proof. We will use Lemma to prove this. Since my(X) is the image of a
quasi-compact space it is quasi-compact (Lemma. It is totally disconnected
by construction (Lemma [5.6.8). Let C, D C X be distinct connected components
of X. Write C = (U, as the intersection of the open and closed subsets of X
containing C. Any finite intersection of U,’s is another. Since (U, N D = § we
conclude that U, N D = @ for some o (use Lemmas [5.6.3] [5.11.3] and [5.11.6)) Since
U, is open and closed, it is the union of the connected components it contains, i.e.,
U, is the inverse image of some open and closed subset V,, C my(X). This proves
that the points corresponding to C' and D are contained in disjoint open subsets,
i.e., mo(X) is Hausdorff. O

5.22. Spectral spaces

The material in this section is taken from [Hoc69] and [Hoc67]. In his the-
sis Hochster proves (among other things) that the spectral spaces are exactly the
topological spaces that occur as the spectrum of a ring.

Definition 5.22.1. A topological space X is called spectral if it is sober, quasi-
compact, the intersection of two quasi-compact opens is quasi-compact, and the
collection of quasi-compact opens forms a basis for the topology. A continuous
map f : X — Y of spectral spaces is called spectral if the inverse image of a
quasi-compact open is quasi-compact.

In other words a continuous map of spectral spaces is spectral if and only if it is

quasi-compact (Definition [5.11.1]).

Let X be a spectral space. The constructible topology on X is the topology which
has as a subbase of opens the sets U and U¢ where U is a quasi-compact open of
X. Note that since X is spectral an open U C X is retrocompact if and only if
U is quasi-compact. Hence the constructible topology can also be characterized as
the coarsest topology such that every constructible subset of X is both open and
closed. Since the collection of quasi-compact opens is a basis for the topology on
X we see that the constructible topology is stronger than the given topology on X.

Lemma 5.22.2. Let X be a spectral space. The constructible topology is Hausdorff
and quasi-compact.
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Proof. Since the collection of all quasi-compact opens forms a basis for the topol-
ogy on X and X is sober, it is clear that X is Hausdorff in the constructible
topology.

Let B be the collection of subsets B C X with B either quasi-compact open or
closed with quasi-compact complement. If B € B then B¢ € B. It suffices to
show every covering X = (J,.; B; with B; € B has a finite refinement, see Lemma
5.11.15] Taking complements we see that we have to show that any family {B;}icr
of elements of B such that B;, N...N B;, # 0 for all n and all 41,...,i, € I has a
common point of intersection. We may and do assume B; # By for i # i'.

To get a contradiction assume {B;};cr is a family of elements of B having the
finite intersection property but empty intersection. An application of Zorn’s lemma
shows that we may assume our family is maximal (details omitted). Let I’ C I
be those indices such that B; is closed and set Z = ﬂiep B;. This is a closed
subset of X. If Z is reducible, then we can write Z = Z’ U Z” as a union of
two closed subsets, neither equal to Z. This means in particular that we can find
a quasi-compact open U’ C X meeting Z’ but not Z”. Similarly, we can find
a quasi-compact open U” C X meeting Z” but not Z’. Set B’ = X \ U’ and
B" = X\ U". Note that Z”" C B’ and Z’ C B”. If there exist a finite number of
indices i1, ...,i, € I such that B'N B;, N...N B; = as well as a finite number
of indices ji,...,Jm € I such that B" N B;, N...N Bj,, = 0 then we find that
ZNB;,N...NB;, NBj,N...NB;, = 0. However, the set B;,N...NB; NB;,N...NB;
is quasi-compact hence we would find a finite number of indices #},...,4; € I’ with
By, N...0B;, "B N...NBj, NByN...N By =, a contradiction. Thus we
see that we may add either B’ or B” to the given family contradicting maximality.
We conclude that Z is irreducible. However, this leads to a contradiction as well,
as now every nonempty (by the same argument as above) open ZNB; for i € T\ I’
contains the unique generic point of Z. This contradiction proves the lemma. [

m

Lemma 5.22.3. Let f: X =Y be a spectral map of spectral spaces. Then

(1) f is continuous in the constructible topology,
(2) the fibres of f are quasi-compact, and
(3) the image is closed in the constructible topology.

Proof. Let X’ and Y’ denote X and Y endowed with the constructible topology
which are quasi-compact Hausdorff spaces by Lemma Part (1) says X’ — Y’
is continuous and follows immediately from the definitions. Part (3) follows as f(X’)
is a quasi-compact subset of the Hausdorff space Y, see Lemma We have a
commutative diagram

X —=X

L

Y ——=Y
of continuous maps of topological spaces. Since Y’ is Hausdorfl we see that the
fibres X are closed in X'. As X' is quasi-compact we see that X, is quasi-compact
(Lemma[5.11.3)). As X?’J — X, is a surjective continuous map we conclude that X,
is quasi-compact (Lemma [5.11.7]). O
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Lemma 5.22.4. Let X be a spectral space. Let E C X be closed in the constructible
topology (for example constructible or closed). Then E with the induced topology is
a spectral space.

Proof. Let Z C F be a closed irreducible subset. Let 1 be the generic point of the
closure Z of Z in X. To prove that E is sober, we show that n € E. If not, then
since E is closed in the constructible topology, there exists a constructible subset
F C X such that n € F and FNE = (. By Lemma this implies F N Z
contains a nonempty open subset of Z. But this is impossible as Z is the closure
of Zand ZNF = .

Since E' is closed in the constructible topology, it is quasi-compact in the con-
structible topology (Lemmas|5.11.3|and [5.22.2)). Hence a fortiori it is quasi-compact
in the topology coming from X. If U C X is a quasi-compact open, then £ NU
is closed in the constructible topology, hence quasi-compact (as seen above). It
follows that the quasi-compact open subsets of E are the intersections £ N U with
U quasi-compact open in X. These form a basis for the topology. Finally, given two
U,U’ C X quasi-compact opens, the intersection (ENU)N(ENU’) = EN(UNU’)
and U N U’ is quasi-compact as X is spectral. This finishes the proof. [

Lemma 5.22.5. Let X be a spectral space. Let E C X be a subset closed in the
constructible topology (for example constructible).
(1) If x € E, then x is the specialization of a point of E.
(2) If E is stable under specialization, then E is closed.
(3) If E' C X is open in the constructible topology (for example constructible)
and stable under generalization, then E’ is open.

Proof. Proof of (1). Let x € E. Let {U;} be the set of quasi-compact open
neighbourhoods of z. A finite intersection of the U; is another one. The intersection
U; N E is nonempty for all <. Since the subsets U; N E are closed in the constructible
topology we see that ((U; N E) is nonempty by Lemma and Lemma
Since X is a sober space and {U;} is a fundamental system of open neighbourhoods
of z, we see that [ U; is the set of generalizations of z. Thus z is a specialization
of a point of E.

Part (2) is immediate from (1).

Proof of (3). Assume E’ is as in (3). The complement of E’ is closed in the
constructible topology (Lemma [5.14.2]) and closed under specialization (Lemma
5.18.2)). Hence the complement is closed by (2), i.e., E’ is open. |

Lemma 5.22.6. Let X be a spectral space. Let x,y € X. Then either there exists
a third point specializing to both x and y, or there exist disjoint open neighbourhoods
containing x and y.

Proof. Let {U;} be the set of quasi-compact open neighbourhoods of z. A finite
intersection of the U; is another one. Let {V;} be the set of quasi-compact open
neighbourhoods of y. A finite intersection of the V; is another one. If U; NV} is
empty for some ¢, j we are done. If not, then the intersection U; N V; is nonempty
for all ¢ and j. The sets U; NV} are closed in the constructible topology on X.
By Lemma we see that ((U; N'V;) is nonempty (Lemma [5.11.6)). Since X
is a sober space and {U;} is a fundamental system of open neighbourhoods of z,
we see that (U, is the set of generalizations of x. Similarly, |V} is the set of
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generalizations of y. Thus any element of ((U; N'V;) specializes to both x and
Y. (]

Lemmal 5.22.7. Let X be a spectral space. The following are equivalent:
(1) X is profinite,
2) X is Hausdorff,
) X is totally disconnected,
) every quasi-compact open is closed,
) there are no nontrivial specializations between points,
) every point of X is closed,
) every point of X is the generic point of an irreducible component of X,
) add more here.

(
(3
(4
(5
(6
(7
8

(

Proof. Lemma shows the implication (1) = (3). Irreducible components
are closed, so if X is totally disconnected, then every point is closed. So (3) implies
(6). The equivalence of (6) and (5) is immediate, and (6) < (7) holds because
X is sober. Assume (5). Then all constructible subsets of X are closed (Lemma
, in particular all quasi-compact opens are closed. So (5) implies (4). Since
X is sober, for any two points there is a quasi-compact open containing exactly one
of them, hence (4) implies (2). It remains to prove (2) implies (1). Suppose X is
Hausdorff. Every quasi-compact open is also closed (Lemma . This implies
X is totally disconnected. Hence it is profinite, by Lemma[5.21.2] O

Lemma 5.22.8. If X is a spectral space, then mo(X) is a profinite space.
Proof. Combine Lemmas [5.11.10] and 52141 (I

Lemma 5.22.9. The product of two spectral spaces is spectral.

Proof. Let X, Y be spectral spaces. Denote p: X XY - X and¢g: X XY =Y
the projections. Let Z C X x Y be a closed irreducible subset. Then p(Z) C X
is irreducible and ¢(Z) C Y is irreducible. Let € X be the generic point of
the closure of p(X) and let y € Y be the generic point of the closure of ¢(Y). If
(x,y) € Z, then there exist opens x € U C X,y € V C Y such that ZNU xV = {).
Hence Z is contained in (X \U) x YU X x (Y \ V). Since Z is irreducible, we see
that either Z C (X \U) xY or Z C X x (Y \ V). In the first case p(Z) C (X \U)
and in the second case ¢(Z) C (Y \ V). Both cases are absurd as z is in the closure
of p(Z) and y is in the closure of ¢(Z). Thus we conclude that (z,y) € Z, which
means that (x,y) is the generic point for Z.

A Dbasis of the topology of X x Y are the opens of the form U x V with U C X
and V C Y quasi-compact open (here we use that X and Y are spectral). Then
U x V is quasi-compact as the product of quasi-compact spaces is quasi-compact.
Moreover, any quasi-compact open of X XY is a finite union of such quasi-compact
rectangles U x V. It follows that the intersection of two such is again quasi-compact
(since X and Y are spectral). This concludes the proof. (]

Lemma 5.22.10. Let f: X — Y be a continuous map of topological spaces. If

(1) X and Y are spectral,
(2) f is spectral and bijective, and
(3) generalizations (resp. specializations) lift along f.

Then f is a homeomorphism.
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Proof. Since f is spectral it defines a continuous map between X and Y in the
constructible topology. By Lemmas [5.22.2| and |5.16.8| it follows that X — Y is a
homeomorphism in the constructible topology. Let U C X be quasi-compact open.
Then f(U) is constructible in Y. Let y € Y specialize to a point in f(U). By the
last assumption we see that f~1(y) specializes to a point of U. Hence f~!(y) € U.
Thus y € f(U). It follows that f(U) is open, see Lemma Whence f is a
homeomorphism. To prove the lemma in case specializations lift along f one shows
instead that f(Z) is closed if X \ Z is a quasi-compact open of X. a

Lemma 5.22.11. The inverse limit of a directed inverse system of finite sober
topological spaces is a spectral topological space.

Proof. Let I be a directed partially ordered set. Let X; be an inverse system of
finite sober spaces over I. Let X = lim X; which exists by Lemma As
a set X = limX;. Denote p; : X — X, the projection. Because I is directed
we may apply Lemma A basis for the topology is given by the opens
p; 1 (U;) for U; C X; open. Since an open covering of p; *(U;) is in particular an
open covering in the profinite topology, we conclude that p;” 1(UZ-) is quasi-compact.
Given U; C X; and U; C X, then p; '(U;) ﬁpj_l(Uj) = p,, ' (Uy) for some k > i, j
and open Uy C Xj. Finally, if Z C X is irreducible and closed, then p;(Z) C X is
irreducible and therefore has a unique generic point §; (because X; is a finite sober
topological space). Then & = lim¢; is a generic point of Z (it is a point of Z as Z
is closed). This finishes the proof. O

Lemma 5.22.12. Let W be the topological space with two points, one closed, the
other not. A topological space is spectral if and only if it is homeomorphic to a
subspace of a product of copies of W which is closed in the constructible topology.

Proof. Write W = {0,1} where 0 is a specialization of 1 but not vice versa. Let
I be a set. The space [[;.; W is spectral by Lemma [5.22.11, Thus we see that
a subspace of [[,.; W closed in the constructible topology is a spectral space by

Lemma [5.22.4]

For the converse, let X be a spectral space. Let U C X be a quasi-compact open.
Consider the continuous map

fUtX*)W

which maps every point in U to 1 and every point in X \ U to 0. Taking the product
of these maps we obtain a continuous map

f:HfUiX—>HUW

By construction the map f : X — Y is spectral. By Lemma the image of
f is closed in the constructible topology. If ',z € X are distinct, then since X is
sober either 2’ is not a specialization of  or conversely. In either case (as the quasi-
compact opens form a basis for the topology of X) there exists a quasi-compact
open U C X such that fy(2') # fu(z). Thus f is injective. Let Y = f(X) endowed
with the induced topology. Let y’ ~~ y be a specialization in Y and say f(2') = ¢/
and f(x) = y. Arguing as above we see that 2’ ~ x, since otherwise there is a U
such that z € U and 2’ ¢ U, which would imply fy(z') + fu(xz). We conclude
that f: X — Y is a homeomorphism by Lemma [5.22.10 (]
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Lemmal 5.22.13. A topological space is spectral if and only if it is a directed
inverse limit of finite sober topological spaces.

Proof. One direction is given by Lemma [5.22.11} For the converse, assume X is
spectral. Then we may assume X C [],.; W is a subset closed in the constructible
topology where W = {0,1} as in Lemma [5.22.12] We can write

W =lmycs fnite | |
el JCI finite jed

as a cofiltered limit. For each J, let X; C HJEJW be the image of X. Then
we see that X = lim X; as sets because X is closed in the product with the
constructible topology (detail omitted). A formal argument (omitted) on limits
shows that X = lim X ; as topological spaces. (I

Lemmal 5.22.14. Let X be a topological space and let ¢ : X — X' be the universal
map from X to a sober topological space, see Lemma [5.7.1]}
(1) If X is quasi-compact, so is X'.
(2) If X is quasi-compact, has a basis of quasi-compact opens, and the inter-
section of two quasi-compact opens is quasi-compact, then X' is spectral.
(3) If X is Noetherian, then X' is a Noetherian spectral space.

Proof. Let U C X be open and let U’ C X’ be the corresponding open, i.e., the
open such that ¢=1(U’) = U. Then U is quasi-compact if and only if U’ is quasi-
compact, as pulling back by c is a bijection between the opens of X and X’ which
commutes with unions. This in particular proves (1).

Proof of (2). It follows from the above that X’ has a basis of quasi-compact opens.
Since ¢! also commutes with intersections of pairs of opens, we see that the in-
tersection of two quasi-compact opens X' is quasi-compact. Finally, X’ is quasi-
compact by (1) and sober by construction. Hence X’ is spectral.

Proof of (3). It is immediate that X’ is Noetherian as this is defined in terms of
the acc for open subsets which holds for X. We have already seen in (2) that X’ is
spectral. (I

5.23. Limits of spectral spaces

Lemma tells us that every spectral space is a cofiltered limit of finite sober
spaces. Every finite sober space is a spectral space and every continuous map of
finite sober spaces is a spectral map of spectral spaces. In this section we prove some
lemmas concerning limits of systems of spectral topological spaces along spectral
maps.

Lemma 5.23.1. Let T be a category. Let i — X; be a diagram of spectral spaces
such that for a : j — 1 in I the corresponding map fo : X; — X; is spectral.
(1) Given subsets Z; C X; closed in the constructible topology with fo(Z;) C
Z; for alla:j—iinZ, then lim Z; is quasi-compact.
(2) The space X = lim X; is quasi-compact.

Proof. The limit Z = lim Z; exists by Lemma Denote X/ the space X;
endowed with the constructible topology and Z! the corresponding subspace of
X/. Let a : j — i in Z be a morphism. As f, is spectral it defines a continuous
map f, : X; = X. Thus fu|z, : Z; — Zj is a continuous map of quasi-compact
Hausdorf spaces (by Lemmas|5.22.2land [5.11.3). Thus Z’ = lim Z; is quasi-compact
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by Lemma [5.13.5| The maps Z, — Z; are continuous, hence Z' — Z is continuous
and a bijection on underlying sets. Hence Z is quasi-compact as the image of the
surjective continuous map Z' — Z (Lemma [5.11.7)). O

Lemma 5.23.2. Let T be a cofiltered category. Leti— X; be a diagram of spectral
spaces such that for a : j — i in I the corresponding map fq : X; — X; is spectral.
(1) Given nonempty subsets Z; C X; closed in the constructible topology with
fa(Z;) C Z; for alla:j — i in L, then lim Z; is nonempty.
(2) If each X; is nonempty, then X = lim X; is nonempty.

Proof. Denote X! the space X; endowed with the constructible topology and Z!
the corresponding subspace of X/. Let a : j — ¢ in Z be a morphism. As f, is
spectral it defines a continuous map f, : X} — X]. Thus fulz, : Z} — Z] is a
continuous map of quasi-compact Hausdorff spaces (by Lemmas|[5.22.2)and [5.11.3)).
By Lemma the space lim Z/ is nonempty. Since lim Z! = lim Z; as sets we
conclude. O

Lemma 5.23.3. LetZ be a cofiltered category. Leti— X; be a diagram of spectral
spaces such that for a : j — ¢ in I the corresponding map f, : X; — X; is spectral.
Let X = lim X; with projections p; : X — X;. Leti € Ob(Z) and let E,F C X; be
subsets with E closed in the constructible topology and F open in the constructible
topology. Then pi_l(E) - pi_l(F) if and only if there is a morphism a :j — i in T
such that f7Y(E) C f,71(F).

Proof. Observe that

piH(B) \p; H(F) = limgyji fo (B) \ £ (F)

Since f, is a spectral map, it is continuous in the constructible topology hence the
set f1(E)\ f,1(F) is closed in the constructible topology. Hence Lemma

applies to show that the LHS is nonempty if and only if each of the spaces of the
RHS is nonempty. O

Lemma 5.23.4. LetZ be a cofiltered category. Leti— X; be a diagram of spectral
spaces such that for a : j — ¢ in I the corresponding map fo : X; — X; is spectral.
Let X = lim X; with projections p; : X — X;. Let E C X be a constructible
subset. Then there exists an i € Ob(Z) and a constructible subset E; C X; such
that pi_l(Ei) = FE. If E is open, resp. closed, we may choose E; open, resp. closed.

Proof. Assume F is a quasi-compact open of X. By Lemma we can write
E = p{l(Ui) for some 7 and some open U; C X;. Write U; = |JU; o as a union
of quasi-compact opens. As FE is quasi-compact we can find a4,...,a, such that
E = pi_l(th1 U...UUia,) Hence E; =U, o, U...UU, ,, works.

Assume F is a constructible closed subset. Then E° is quasi-compact open. So
E°¢ = pi_l(Fi) for some ¢ and quasi-compact open F; C X; by the result of the
previous paragraph. Then E = p; 1(Ff) as desired.

If F is general we can write £ = Ul:L_“ » UiNZ; with U; constructible open and Z;
constructible closed. By the result of the previous paragraphs we may write U; =
p;ll(Ul,il) and Z; = pjfll(Zl’jl) with Up;, C X, constructible open and Z; ;, C X,
constructible closed. As 7 is cofiltered we may choose an object k of Z and morphism
ap: k —ipand by : k — ji. Then taking Ex = U;—y _, far' (Uri) N £y, (Z15,) we
obtain a constructible subset of X whose inverse image in X is E. O
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0A27Z Lemma 5.23.5. Let T be a cofiltered index category. Let i — X; be a diagram of
spectral spaces such that for a : j — i in L the corresponding map f, : X; — X; is
spectral. Then the inverse limit X = lim X; is a spectral topological space and the
projection maps p; : X — X; are spectral.

Proof. The limit X = lim X; exists (Lemma [5.13.1) and is quasi-compact by
Lemma [(5.23.11

Denote p; : X — X, the projection. Because T is cofiltered we can apply Lemma
Hence a basis for the topology on X is given by the opens p; '(U;) for
U; C X; open. Since a basis for the topology of X; is given by the quasi-compact
open, we conclude that a basis for the topology on X is given by p{l(Ui) with
U; C X; quasi-compact open. A formal argument shows that

p; H(Ui) = limg.ji £, (Us)
as topological spaces. Since each f, is spectral the sets f, *(U;) are closed in the

constructible topology of X; and hence 10;1 (U;) is quasi-compact by Lemma|5.23.1
Thus X has a basis for the topology consisting of quasi-compact opens.

Any quasi-compact open U of X is of the form U = p; 1(Ui) for some 7 and some
quasi-compact open U; C X; (see Lemma . Given U; C X; and U; C X
quasi-compact open, then pi_l(Ul-) N pj_l(Uj) = pgl(Uk) for some k and quasi-
compact open Uy C Xi. Namely, choose k¥ and morphisms k — ¢ and £ — j and
let U be the intersection of the pullbacks of U; and U; to Xj. Thus we see that
the intersection of two quasi-compact opens of X is quasi-compact open.

Finally, let Z C X be irreducible and closed. Then p;(Z) C X; is irreducible and
therefore Z; = p;(Z) has a unique generic point §; (because X; is a spectral space).
Then fo(&;) =& for a: j — i inZ because f,(Z;) = Z;. Hence £ =1lim¢&; is a point
of X. Claim: £ € Z. Namely, if not we can find a quasi-compact open containing &
disjoint from Z. This would be of the form p; L(U;) for some i and quasi-compact
open U; C X;. Then & € U; but p;(Z) NU; = () which contradicts &; € p;(Z). So
¢ € Z and hence @ C Z. Conversely, every z € Z is in the closure of £&. Namely,
given a quasi-compact open neighbourhood U of z we write U = p; 1(UZ-) for some
i and quasi-compact open U; C X;. We see that p;(z) € U; hence & € U; hence
& € U. Thus ¢ is the generic point of Z. This finishes the proof. (I

0A30 |Lemmal5.23.6. Let T be a cofiltered index category. Let i — X; be a diagram of
spectral spaces such that for a : j — i in L the corresponding map f, : X; — X; is
spectral. Set X =lim X; and denote p; : X — X; the projection.

(1) Given any quasi-compact open U C X there exists an i € Ob(Z) and a
quasi-compact open U; C X; such that p; ' (U;) = U.

(2) Given U; C X; and U; C X; quasi-compact opens such that p; *(U;) C
pj_l(Uj) there exist k € Ob(Z) and morphisms a : k — i and b : k — j
such that f71(U;) € f;H(U;).

(3) IfU;, Uy, ..., Uy s C X, are quasi-compact opens andpi_l(Ui) = pi_l(Ul)i)U
o Up; H(Uny) then f7HU;) = fo1(Uri) U...U f7H(Uny;) for some mor-
phisma:j— 1 inZ.

(4) Same statement as in (3) but for intersections.
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Proof. Part (1) is a special case of Lemma Part (2) is a special case of
Lemmal5.23.3|as quasi-compact opens are both open and closed in the constructible
topology. Parts (3) and (4) follow formally from (1) and (2) and the fact that taking
inverse images of subsets commutes with taking unions and intersections. [

Lemma 5.23.7. Let W be a subset of a spectral space X. The following are
equivalent:

(1) W is an intersection of constructible sets and closed under generalizations,

(2) W is quasi-compact and closed under generalizations,

(3) there exists a quasi-compact subset E C X such that W is the set of points
specializing to E,

(4) W is an intersection of quasi-compact open subsets,

(5) there exists a nonempty set I and quasi-compact opens U; C X, i € I such
that W = (U, and for all i,j € I there exists a k € I with U, C U;NU;.

In this case we have (a) W is a spectral space, (b) W = lim U; as topological spaces,
and (c) for any open U containing W there exists an i with U; C U.

Proof. Let E C X satisfy (1). Then E is closed in the constructible topology,
hence quasi-compact in the constructible topology (by Lemmas[5.22.2f and [5.11.3]),
hence quasi-compact in the topology of X (because opens in X are open in the
constructible topology). Thus (2) holds.

It is clear that (2) implies (3) by taking £ = W.

Let X be a spectral space and let E C W be as in (3). Since every point of W
specializes to a point of E we see that an open of W which contains F is equal to
W. Hence since F is quasi-compact, sois W. If z € X, x € W, then Z = m is
disjoint from W. Since W is quasi-compact we can find a quasi-compact open U
with W C U and U N Z = (). We conclude that (4) holds.

If W = ;c;U; then setting I equal to the set of finite subsets of J and U; =
Uj,N...NnUj, fori={ji,...,Jr} shows that (4) implies (5). It is immediate that
(5) implies (1).

Let I and U; be as in (5). Since W = (\U; we have W = lim U; by the universal
property of limits. Then W is a spectral space by Lemma Let U C X be
an open neighbourhood of W. Then E; = U; N (X \ U) is a family of constructible
subsets of the spectral space Z = X \ U with empty intersection. Using that the
spectral topology on Z is quasi-compact (Lemma we conclude from Lemma

5.11.6| that E; = () for some 3. ]

Lemma 5.23.8. Let X be a spectral space. Let E C X be a constructible subset.
Let W C X be the set of points of X which specialize to a point of E. Then
W\ E is a spectral space. If W = NU; with U; as in Lemma (@ then
W\ E =1lim(U; \ E).

Proof. Since E is constructible, it is quasi-compact and hence Lemma ap-
plies to W. If E is constructible, then E is constructible in U; for all ¢ € I.
Hence U; \ E is spectral by Lemma Since W\ E = N(U; \ E) we have
W\ E =1limU; \ E by the universal property of limits. Then W \ E is a spectral
space by Lemma [5.23.5 (]
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5.24. Stone-Cech compactification

The Stone-Cech compactification of a topological space X is a map X — £(X)
from X to a Hausdorfl quasi-compact space 8(X) which is universal for such maps.
We prove this exists by a standard argument using the following simple lemma.

Lemmal5.24.1. Let f: X = Y be a continuous map of topological spaces. Assume
that f(X) is dense in' Y and that Y is Hausdorff. Then the cardinality of Y is at
most the cardinality of P(P(X)) where P is the power set operation.

Proof. Let S = f(X) C Y. Let D be the set of all closed domains of Y, i.e.,
subsets D C Y which equal the closure of its interior. Note that the closure of an
open subset of Y is a closed domain. For y € Y consider the set

I, ={T C S| thereexists D € D with T =SND and y € D}.

Since S is dense in Y for every closed domain D we see that SN D is dense in D.
Hence, if DNS =D'NS for D,D’ € D, then D = D'. Thus I,, = I, implies that
y = 1’ because the Hausdorff condition assures us that we can find a closed domain
containing y but not y’. The result follows. [

Let X be a topological space. By Lemma there is a set I of isomorphism
classes of continuous maps f : X — Y which have dense image and where Y is
Hausdorff and quasi-compact. For ¢ € I choose a representative f; : X — Y.

Consider the map
[ex— 11,7

and denote 3(X) the closure of the image. Since each Y; is Hausdorff, so is 5(X).
Since each Y; is quasi-compact, so is 3(X) (use Theorem[5.13.4 and Lemma [5.11.3)).

Let us show the canonical map X — B(X) satisfies the universal property with
respect to maps to Hausdorff, quasi-compact spaces. Namely, let f : X — Y be
such a morphism. Let Z C Y be the closure of f(X). Then X — Z is isomorphic
to one of the maps f; : X — Y;, say fi, : X = Y;,. Thus f factors as X — f(X) —
[1Y: = Y, 2 Z — Y as desired.

Lemma 5.24.2. Let X be a Hausdorff, locally quasi-compact space. There exists a
map X — X* which identifies X as an open subspace of a quasi-compact Hausdorff
space X* such that X*\ X is a singleton (one point compactification). In particular,
the map X — B(X) identifies X with an open subspace of 5(X).

Proof. Set X* = X IT {oo}. We declare a subset V' of X* to be open if either
V CcXisopenin X,or oo € Vand U=V NX is an open of X such that X \ U
is quasi-compact. We omit the verification that this defines a topology. It is clear
that X — X* identifies X with an open subspace of X.

Since X is locally quasi-compact, every point x € X has a quasi-compact neigh-
bourhood z € E C X. Then F is closed (Lemma|5.11.3)) and V = (X \ E) II{co} is
an open neighbourhood of oo disjoint from the interior of . Thus X* is Hausdorff.

Let X* = |JV; be an open covering. Then for some i, say ig, we have co € V;,. By
construction Z = X* \ V;, is quasi-compact. Hence the covering Z C | J; £io ZNV;
has a finite refinement which implies that the given covering of X* has a finite
refinement. Thus X™* is quasi-compact.
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The map X — X* factors as X — S(X) — X* by the universal property of the
Stone-Cech compactification. Let ¢ : (X) — X* be this factorization. Then
X — ¢ 1(X) is a section to ¢~ !(X) — X hence has closed image (Lemma [5.3.3)).
Since the image of X — B(X) is dense we conclude that X = ¢~1(X). O

5.25. Extremally disconnected spaces

The material in this section is taken from [Gle58| (with a slight modification as
in [Rai59]). In Gleason’s paper it is shown that in the category of quasi-compact
Hausdorff spaces, the “projective objects” are exactly the extremally disconnected
spaces.

Definition 5.25.1. A topological space X is called extremally disconnected if the
closure of every open subset of X is open.

If X is Hausdorff and extremally disconnected, then X is totally disconnected (this
isn’t true in general). If X is quasi-compact, Hausdorff, and extremally discon-
nected, then X is profinite by Lemma [5.21.2] but the converse does not holds in
general. Namely, Gleason shows that in an extremally disconnected Hausdorff space
X a convergent sequence x1,xs,s,... is eventually constant. Hence for example
the p-adic integers Z, = limZ/p"Z is a profinite space which is not extremally
disconnected.

Lemma 5.25.2. Let f : X — Y be a continuous map of topological spaces. Assume
[ 1s surjective and f(E) #Y for all proper closed subsets E C X. Then forU C X
open the subset f(U) is contained in the closure of Y \ f(X \U).

Proof. Pick y € f(U) and let V C Y be any open neighbourhood of y. We will
show that V intersects Y \ f(X \ U). Note that W = U N f=1(V) is a nonempty
open subset of X, hence f(X \ W) #Y. Takey' € Y, ¢ & f(X\W). It is
elementary to show that y’ € Vand ¢y e Y\ f(X \ U). O

Lemma 5.25.3. Let X be an extremally disconnected space. If U,V C X are
disjoint open subsets, then U and V are disjoint too.

Proof. By assumption U is open, hence V NU is open and disjoint from U, hence
empty because U is the intersection of all the closed subsets of X containing U.
This means the open V N U avoids V hence is empty by the same argument. [

Lemma 5.25.4. Let f: X — Y be a continuous map of Hausdorff quasi-compact
topological spaces. If Y is extremally disconnected, [ is surjective, and f(Z) #Y
for every proper closed subset Z of X, then f is a homeomorphism.

Proof. By Lemmal5.16.8]it suffices to show that f is injective. Suppose that z, 2’ €
X are distinct points with y = f(z) = f(2’). Choose disjoint open neighbourhoods
U, U C X of ,z'. Observe that f is closed (Lemma [5.16.7) hence T = f(X \ U)
and 7" = f(X \ U’) are closed in Y. Since X is the union of X \ U and X \ U’ we
see that Y = TUT’. By Lemma we see that y is contained in the closure
of Y\ T and the closure of Y \ 77. On the other hand, by Lemma this
intersection is empty. In this way we obtain the desired contradiction. [

Lemma 5.25.5. Let f : X — Y be a continuous surjective map of Hausdorff
quasi-compact topological spaces. There exists a quasi-compact subset E C X such

that f(E) =Y but f(E') #Y for all proper closed subsets E' C E.
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Proof. We will use without further mention that the quasi-compact subsets of X
are exactly the closed subsets (Lemma . Consider the collection £ of all
quasi-compact subsets E C X with f(E) = Y ordered by inclusion. We will use
Zorn’s lemma to show that £ has a minimal element. To do this it suffices to show
that given a totally ordered family F) of elements of £ the intersection () E) is
an element of £. It is quasi-compact as it is closed. For every y € Y the sets
Exn f~1({y}) are nonempty and closed, hence the intersection (| ExN f~1({y}) =
N(ExN f~1({y})) is nonempty by Lemma This finishes the proof. O

Proposition| 5.25.6. Let X be a Hausdorff, quasi-compact topological space. The
following are equivalent

(1) X is extremally disconnected,

(2) for any surjective continuous map f :Y — X with Y Hausdorff quasi-
compact there exists a continuous section, and

(3) for any solid commutative diagram

Y

4 i
X——>7
of continuous maps of quasi-compact Hausdorff spaces with Y — Z sur-

jective, there is a dotted arrow in the category of topological spaces making
the diagram commute.

Proof. It is clear that (3) implies (2). On the other hand, if (2) holds and X — Z
and Y — Z are as in (3), then (2) assures there is a section to the projection
X Xz Y — X which implies a suitable dotted arrow exists (details omitted). Thus
(3) is equivalent to (2).

Assume X is extremally disconnected and let f: Y — X be as in (2). By Lemma
there exists a quasi-compact subset E C Y such that f(E) = X but f(E') #
X for all proper closed subsets £/ C E. By Lemmawe find that f|g: E — X
is a homeomorphism, the inverse of which gives the desired section.

Assume (2). Let U C X be open with complement Z. Consider the continuous
surjection f: Ul Z — X. Let o be a section. Then U = ¢~ 1(U) is open. Thus X
is extremally disconnected. (]

Lemma 5.25.7. Let f: X — X be a continuous selfmap of a Hausdorff topological
space. If f is not idx, then there exists a proper closed subset E C X such that
X =FEUf(E).

Proof. Pick p € X with f(p) # p. Choose disjoint open neighbourhoods p € U,
fl(p)eVandset E=X\UnNf~ (V). O

Example 5.25.8. We can use Proposition m to see that the Stone-Cech
compactification S(X) of a discrete space X is extremally disconnected. Namely, let
f:Y — B(X) be a continuous surjection where Y is quasi-compact and Hausdorff.
Then we can lift the map X — F(X) to a continuous (!) map X — Y as X
is discrete. By the universal property of the Stone-Cech compactification we see
that we obtain a factorization X — [(X) — Y. Since f(X) — Y — B(X)
equals the identity on the dense subset X we conclude that we get a section. In
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particular, we conclude that the Stone-Cech compactification of a discrete space
is totally disconnected, whence profinite (see discussion following Definition [5.25.1

and Lemma [5.21.2)).

Using the supply of extremally disconnected spaces given by Example [5.25.8 we
can prove that every quasi-compact Hausdorff space has a “projective cover” in the
category of quasi-compact Hausdorff spaces.

Lemma 5.25.9. Let X be a quasi-compact Hausdorff space. There exists a con-
tinuous surjection X' — X with X' quasi-compact, Hausdorff, and extremally dis-
connected. If we require that every proper closed subset of X' does mot map onto
X, then X' is unique up to isomorphism.

Proof. Let Y = X but endowed with the discrete topology. Let X’ = S(Y). The
continuous map Y — X factors as Y — X’ — X. This proves the first statement
of the lemma by Example [5.25.8

By Lemma we can find a quasi-compact subset £ C X’ such that no proper
closed subset of F surjects onto X. Because X’ is extremally disconnected there
exists a continuous map f : X’ — FE over X (Proposition . Composing f
with the map F — X’ gives a continuous selfmap f|g : E — E. This map has
to be idg as otherwise Lemma shows that E isn’t minimal. Thus the idg
factors through the extremally disconnected space X’. A formal, categorical argu-
ment (using the characterization of Proposition shows that E is extremally
disconnected.

To prove uniqueness, suppose we have a second X” — X minimal cover. By
the lifting property proven in Proposition [5.25.6] we can find a continuous map
g : X’ = X" over X. Observe that g is a closed map (Lemma . Hence
g(X’) € X" is a closed subset surjecting onto X and we conclude g(X’) = X" by
minimality of X”. On the other hand, if E C X' is a proper closed subset, then
g(E) # X" as E does not map onto X by minimality of X’. By Lemma[5.25.4] we
see that g is an isomorphism. a

Remark| 5.25.10. Let X be a quasi-compact Hausdorfl space. Let x be an
infinite cardinal bigger or equal than the cardinality of X. Then the cardinality
of the minimal quasi-compact, Hausdorff, extremally disconnected cover X' — X
(Lemma is at most 22" . Namely, choose a subset S C X’ mapping bijectively
to X. By minimality of X’ the set S is dense in X’. Thus |X’| < 22" by Lemma

5.26. Miscellany

The following lemma applies to the underlying topological space associated to a
quasi-separated scheme.

Lemma 5.26.1. Let X be a topological space which

(1) has a basis of the topology consisting of quasi-compact opens, and
(2) has the property that the intersection of any two quasi-compact opens is
quasi-compact.
Then

(1) X is locally quasi-compact,
(2) a quasi-compact open U C X is retrocompact,
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(3) any quasi-compact open U C X has a cofinal system of open coverings
Uu:U= UjeJ U; with J finite and all U; and U; N Uy quasi-compact,
(4) add more here.

Proof. Omitted. ]

Definition 5.26.2. Let X be a topological space. We say z € X is an isolated
point of X if {z} is open in X.

5.27. Partitions and stratifications

Stratifications can be defined in many different ways. We welcome comments on
the choice of definitions in this section.

Definition 5.27.1. Let X be a topological space. A partition of X is a decom-
position X = J] X; into locally closed subsets X;. The X; are called the parts of
the partition. Given two partitions of X we say one refines the other if the parts
of one are unions of parts of the other.

Any topological space X has a partition into connected components. If X has
finitely many irreducible components Zi,...,Z,, then there is a partition with
parts X1 = (V7 Zi \ (U,g; Zi) whose indices are subsets I C {1,...,r} which
refines the partition into connected components.

Definition 5.27.2. Let X be a topological space. A good stratification of X is a
partition X = [ X; such that for all ¢, 5 € I we have

XlﬁYJ#Q)?XICYJ

Given a good stratification X = [[,.; X; we obtain a partial ordering on I by
setting ¢ < j if and only if X; C X,. Then we see that

X;= Xi

1<y
However, what often happens in algebraic geometry is that one just has that the

left hand side is a subset of the right hand side in the last displayed formula. This
leads to the following definition.

Definition 5.27.3. Let X be a topological space. A stratification of X is given
by a partition X = [],.; X; and a partial ordering on I such that for each j € T

we have
Xj - UiSj X;

The parts X; are called the strata of the stratification.

icl

We often impose additional conditions on the stratification. For example, stratifi-
cations are particularly nice if they are locally finite, which means that every point
has a neighbourhood which meets only finitely many strata. Moreo generally we
introduce the following definition.

Definition 5.27.4. Let X be a topological space. Let I be a set and for ¢ € I let
E; C X be a subset. We say the collection {F;};cr is locally finite if for all z € X
there exists an open neighbourhood U of z such that {i € I|E; N U # 0} is finite.
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Remark 5.27.5. Given a locally finite stratification X = [] X; of a topological
space X, we obtain a family of closed subsets Z; = | J i<i X of X indexed by I such

that
ZinZ; = Uk<ij n

Conversely, given closed subsets Z; C X indexed by a partially ordered set I such
that X = |JZ;, such that every point has a neighbourhood meeting only finitely
many Z;, and such that the displayed formula holds, then we obtain a locally finite
stratification of X by setting X; = Z; \ U, ., Z;-

Lemma 5.27.6. Let X be a topological space. Let X =[] X; be a finite partition
of X. Then there exists a finite stratification of X refining it.

Proof. Let T, = X; and A; = T} \ X;. Let S be the set of all intersections of T;
and A;. (For example Ty N T> N Ay is an element of S.) Then S = {Z,} is a finite
collection of closed subsets of X such that Z, N Zy € S for all 5,5’ € S. Define a
partial ordering on S by inclusion. Then set Y, = Z, \ [, ., Zs to get the desired
stratification. O

Lemma 5.27.7. Let X be a topological space. Suppose X = T1U...UT, is written
as a union of constructible subsets. There exists a finite stratification X = [[ X;
with each X; constructible such that each Ty is a union of strata.

Proof. By definition of constructible subsets, we can write each T; as a finite union
of UNVe with U,V C X retrocompact open. Hence we may assume that T; =
U;NVe with U;, V; C X retrocompact open. Let S be the finite set of closed subsets
of X consisting of ), X, Uf, V< and finite intersections of these. Write S = {Z,}.
If s € S, then Zs is constructible (Lemma . Moreover, Zs; N Zy € S for all
s,s' € S. Define a partial ordering on S by inclusion. Then set Y = Z,\ U,/ ., Zs
to get the desired stratification. O

Lemma 5.27.8. Let X be a Noetherian topological space. Any finite partition of
X can be refined by a finite good stratification.

Proof. Let X = ] X; be a finite partition of X. Let Z be an irreducible component
of X. Since X = UK with finite index set, there is an ¢ such that Z C X;. Since X;
is locally closed this implies that ZNX; contains an open of Z. Thus ZNX; contains
an open U of X (Lemmal5.8.2). Write X; = U1 X} 11 X? with X} = (X;\U)NTU
and X2 = (X;\U)NTU". For i’ #i weset X} = X;NU and X2 = X;; NU". Then

X\U =[] x¢

is a partition such that U \ U = |JX. Note that X \ U is closed and strictly
smaller than X. By Noetherian induction we can refine this partition by a finite
good stratification X \ U = [[,c4 Ta- Then X = UII[] .4 T. is a finite good
stratification of X refining the partition we started with. O

5.28. Colimits of spaces

The category of topological spaces has coproducts. Namely, if I is a set and for
i € I we are given a topological space X; then we endow the set [],.; X; with the
coproduct topology. As a basis for this topology we use sets of the form U; where
U; C X, is open.
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The category of topological spaces has coequalizers. Namely, if a,b: X — Y are
morphisms of topological spaces, then the equalizer of a and b is the coequalizer
Y/ ~ in the category of sets endowed with the quotient topology (Section [5.5)).

Lemma 5.28.1. The category of topological spaces has colimits and the forgetful
functor to sets commutes with them.

Proof. This follows from the discussion above and Categories, Lemma [4.14.11
Another proof of existence of colimits is sketched in Categories, Remark It
follows from the above that the forgetful functor commutes with colimits. Another
way to see this is to use Categories, Lemma[{.24.4] and use that the forgetful functor
has a right adjoint, namely the functor which assigns to a set the corresponding
chaotic (or indiscrete) topological space. O

5.29. Topological groups, rings, modules
This is just a short section with definitions and elementary properties.

Definition 5.29.1. A topological group is a group G endowed with a topology
such that multiplication G x G — G, (z,y) — 2y and inverse G — G, z +— 2~ ! are
continuous. A homomorphism of topological groups is a homomorphism of groups
which is continuous.

If G is a topological group and H C G is a subgroup, then H with the induced
topology is a topological group. If G is a topological group and G — H is a
surjection of groups, then H endowed with the quotient topology is a topological

group.

Example 5.29.2. Let E be a set. We can endow the set of self maps Map(F, E)
with the compact open topology, i.e., the topology such that given f : £ — E
a fundamental system of neighbourhoods of f is given by the sets Us(f) = {f’ :
E = E| f'ls = fls} where S C E is finite. With this topology the action of
Map(E, E) x E — FE and the composition Map(F, E) x Map(E, E) — Map(F, E)
are continuous. Finally, if Aut(E) C Map(FE, E) is the subset of invertible maps,
then the inverse i : Aut(E) — Aut(E), f ~ f~! is continuous too. Namely, say
S C E is finite, then i ' (Ug(f')) = Up-1(s)(f). Hence Aut(E) is a topological
group as in Definition

Lemma 5.29.3. The category of topological groups has limits and limits com-
mute with the forgetful functors to (a) the category of topological spaces and (b) the
category of groups.

Proof. It is enough to prove the existence and commutation for products and
equalizers, see Categories, Lemma [£.14.10] Let G;, i € I be a collection of topolog-
ical groups. Take the usual product G = [[G; with the product topology. Since
G x G = JI(G; x G;) as a topological space (because products commutes with
products in any category), we see that multiplication on G is continuous. Simi-
larly for the inverse map. Let a,b: G — H be two homomorphisms of topological
groups. Then as the equalizer we can simply take the equalizer of a and b as maps
of topological spaces, which is the same thing as the equalizer as maps of groups
endowed with the induced topology. (|

Lemmal 5.29.4. Let G be a topological group. The following are equivalent
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(1) G as a topological space is profinite,
(2) G is a limit of a diagram of finite discrete topological groups,
(3) G is a cofiltered limit of finite discrete topological groups.

Proof. We have the corresponding result for topological spaces, see Lemma [5.21.2
Combined with Lemma [5.29.3| we see that it suffices to prove that (1) implies (3).

We first prove that every neighbourhood E of the neutral element e contains an
open subgroup. Namely, since G is the cofiltered limit of finite discrete topological
spaces (Lemma [5.21.2)), we can choose a continuous map f : G — T to a finite
discrete space T' such that f=1(f({e})) C E. Consider

H={geG|flgg") = f(g) for all g’ € G}

This is a subgroup of G and contained in E. Thus it suffices to show that H is
open. Pick t € T and set W = f~1({t}). Observe that W C G is open and closed,
in particular quasi-compact. For each w € W there exist open neighbourhoods
ee€ U, C Gand w € U, C W such that U,U/, C W. By quasi-compactness we
can find wq,...,w, such that W = UULJ Then Uy = Uy, N...NU,, is an open
neighbourhood of e such that f(gw) =t for all w € W. Since T is finite we see that
Nier Us C H is an open neighourhood of e. Since H C G is a subgroup it follows
that H is open.

Suppose that H C G is an open subgroup. Since G is quasi-compact we see that
the index of H in G is finite. Say G = Hg1U...UHg,. Then N = mi:l,...,n gngi_1
is an open normal subgroup contained in H. Since N also has finite index we see
that G — G/N is a surjection to a finite discrete topological group.

Consider the map
G — thCG open and normal G/N

We claim that this map is an isomorphism of topological groups. This finishes the
proof of the lemma as the limit on the right is cofiltered (the intersection of two open
normal subgroups is open and normal). The map is continuous as each G — G/N
is continuous. The map is injective as G is Hausdorf and every neighbourhood of
e contains an N by the arguments above. The map is surjective by Lemma [5.11.6
By Lemma, the map is a homeomorphism. O

Definition 5.29.5. A topological group is called a profinite group if it satisfies
the equivalent conditions of Lemma

If Gy - G2 — G3 — ... is a system of topological groups then the colimit G =

colim GG, as a topological group (Lemma [5.29.6) is in general different from the
colimit as a topological space (Lemma [5.28.1)) even though these have the same

underlying set. See Examples, Section 88.65[

Lemma 5.29.6. The category of topological groups has colimits and colimits com-
mute with the forgetful functor to the category of groups.

Proof. We will use the argument of Categories, Remark |4.25.2| to prove existence
of colimits. Namely, suppose that Z — Top, i — G; is a functor into the category
TopGroup of topological groups. Then we can consider

F : TopGroup — Sets, H +—— limz Mor 1opGroup(Gi, H)

This functor commutes with limits. Moreover, given any topological group H and
an element (yp; : G; — H) of F(H), there is a subgroup H' C H of cardinality
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at most | [[ G;| (coproduct in the category of groups, i.e., the free product on the
G;) such that the morphisms ¢; map into H’. Namely, we can take the induced
topology on the subgroup generated by the images of the ;. Thus it is clear that
the hypotheses of Categories, Lemma [4.25.1] are satisfied and we find a topological
group G representing the functor F', which precisely means that G is the colimit of
the diagram i — G;.

To see the statement on commutation with the forgetful functor to groups we will
use Categories, Lemma [£.:24.4] Indeed, the forgetful functor has a right adjoint,
namely the functor which assigns to a group the corresponding chaotic (or indis-
crete) topological group. ([l

Definition 5.29.7. A topological ring is a ring R endowed with a topology such
that addition Rx R — R, (x,y) — z+y and multiplication Rx R — R, (z,y) — xy
are continuous. A homomorphism of topological rings is a homomorphism of rings
which is continuous.

In the Stacks project rings are commutative with 1. If R is a topological ring, then
(R, +) is a topological group since x — —z is continuous. If R is a topological ring
and R’ C R is a subring, then R’ with the induced topology is a topological ring. If
R is a topological ring and R — R’ is a surjection of rings, then R’ endowed with
the quotient topology is a topological ring.

Lemma) 5.29.8. The category of topological Tings has limits and limits commute
with the forgetful functors to (a) the category of topological spaces and (b) the cat-
egory of rings.

Proof. It is enough to prove the existence and commutation for products and
equalizers, see Categories, Lemma Let R;, i € I be a collection of topo-
logical rings. Take the usual product R = [[ R; with the product topology. Since
R x R = [[(R; x R;) as a topological space (because products commutes with
products in any category), we see that addition and multiplication on R are con-
tinuous. Let a,b : R — R’ be two homomorphisms of topological rings. Then as
the equalizer we can simply take the equalizer of a¢ and b as maps of topological
spaces, which is the same thing as the equalizer as maps of rings endowed with the
induced topology. O

Lemma 5.29.9. The category of topological rings has colimits and colimits com-
mute with the forgetful functor to the category of rings.

Proof. The exact same argument as used in the proof of Lemma shows
existence of colimits. To see the statement on commutation with the forgetful
functor to rings we will use Categories, Lemma[4.24.4] Indeed, the forgetful functor
has a right adjoint, namely the functor which assigns to a ring the corresponding
chaotic (or indiscrete) topological ring,. O

Definition 5.29.10. Let R be a topological ring. A topological module is an R-
module M endowed with a topology such that addition M x M — M and scalar
multiplication Rx M — M are continuous. A homomorphism of topological modules
is a homomorphism of modules which is continuous.

If R is a topological ring and M is a topological module, then (M, +) is a topological
group since z — —z is continuous. If R is a topological ring, M is a topological
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module and M’ C M is a submodule, then M’ with the induced topology is a
topological module. If R is a topological ring, M is a topological module, and
M — M’ is a surjection of modules, then M’ endowed with the quotient topology
is a topological module.

Lemma 5.29.11. Let R be a topological ring. The category of topological modules
over R has limits and limits commute with the forgetful functors to (a) the category
of topological spaces and (b) the category of R-modules.

Proof. It is enough to prove the existence and commutation for products and
equalizers, see Categories, Lemma[£.14.10] Let M;, i € I be a collection of topolog-
ical modules over R. Take the usual product M = [[ M; with the product topology.
Since M x M = [[(M; x M;) as a topological space (because products commutes
with products in any category), we see that addition on M is continuous. Similarly
for multiplication R x M — M. Let a,b : M — M’ be two homomorphisms of
topological modules over R. Then as the equalizer we can simply take the equalizer
of a and b as maps of topological spaces, which is the same thing as the equalizer
as maps of modules endowed with the induced topology. (I

Lemma 5.29.12. Let R be a topological ring. The category of topological modules
over R has colimits and colimits commute with the forgetful functor to the category
of modules over R.

Proof. The exact same argument as used in the proof of Lemma [5.29.6| shows
existence of colimits. To see the statement on commutation with the forgetful
functor to R-modules we will use Categories, Lemma [£.24.4] Indeed, the forgetful
functor has a right adjoint, namely the functor which assigns to a module the
corresponding chaotic (or indiscrete) topological module. ([l
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CHAPTER 6

Sheaves on Spaces

006A

6.1. Introduction

006B Basic properties of sheaves on topological spaces will be explained in this document.
A reference is [God73|.

This will be superseded by the discussion of sheaves over sites later in the docu-
ments. But perhaps it makes sense to briefly define some of the notions here.

6.2. Basic notions

006C  The following is a list of basic notions in topology.

(1) Let X be a topological space. The phrase: “Let U = | J;.; U; be an open
covering” means the following: [ is a set and for each ¢ € I we are given
an open subset U; C X such that U is the union of the U;. It is allowed
to have I = ) in which case there are no U; and U = (). It is also allowed,
in case I # () to have any or all of the U; be empty.

(2) etc, etc.

6.3. Presheaves

006D

006E |Definition 6.3.1. Let X be a topological space.

(1) A presheaf F of sets on X is a rule which assigns to each open U C X a
set F(U) and to each inclusion V C U a map p¥ : F(U) — F(V) such
that pf; = idz(y) and whenever W C V C U we have pfj, = p}j, o p{/.

(2) A morphism ¢ : F — G of presheaves of sets on X is a rule which assigns
to each open U C X a map of sets ¢ : F(U) — G(U) compatible with
restriction maps, i.e., whenever V.C U C X are open the diagram

%)

FU)——G(U)
e
F(V)——=G(V)

commutes.
(3) The category of presheaves of sets on X will be denoted PSh(X).

The elements of the set F(U) are called the sections of F over U. For every V. C U
the map pY : F(U) — F(V) is called the restriction map. We will use the notation
slv = pY(s) if s € F(U). This notation is consistent with the notion of restriction

216
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of functions from topology because if W C V C U and s is a section of F over
U then s|lw = (s|v)|w by the property of the restriction maps expressed in the
definition above.

Another notation that is often used is to indicate sections over an open U by
the symbol I'(U, —) or by H°(U,—). In other words, the following equalities are
tautological

(U, F) = F(U) = H (U, F).

In this chapter we will not use this notation, but in others we will.

Definition 6.3.2. Let X be a topological space. Let A be a set. The constant
presheaf with value A is the presheaf that assigns the set A to every open U C X,
and such that all restriction mappings are id 4.

6.4. Abelian presheaves

In this section we briefly point out some features of the category of presheaves that
allow one to define presheaves of abelian groups.

Example 6.4.1. Let X be a topological space X. Consider a rule F that associates
to every open subset a singleton set. Since every set has a unique map into a
singleton set, there exist unique restriction maps pg. The resulting structure is a
presheaf of sets. It is a final object in the category of presheaves of sets, by the
property of singleton sets mentioned above. Hence it is also unique up to unique
isomorphism. We will sometimes write * for this presheaf.

Lemma 6.4.2. Let X be a topological space. The category of presheaves of sets on
X has products (see Categories, Definition . Moreover, the set of sections
of the product F x G over an open U is the product of the sets of sections of F and
G over U.

Proof. Namely, suppose F and G are presheaves of sets on the topological space
X. Consider the rule U — F(U) x G(U), denoted F x G. If V.C U C X are open
then define the restriction mapping

(FxG)U) — (FxG)(V)

by mapping (s, t) — (s|v,t|y). Then it is immediately clear that F x G is a presheaf.
Also, there are projection maps p: F X G — F and ¢ : F X G — G. We leave it
to the reader to show that for any third presheaf % we have Mor(H,F x G) =
Mor(H, F) x Mor(H,G). O

Recall that if (A,+: Ax A — A —: A— A,0¢€ A)is an abelian group, then the
zero and the negation maps are uniquely determined by the addition law. In other
words, it makes sense to say “let (A4, +) be an abelian group”.

Lemmal 6.4.3. Let X be a topological space. Let F be a presheaf of sets. Consider
the following types of structure on F:

(1) For every open U the structure of an abelian group on F(U) such that all
restriction maps are abelian group homomorphisms.

(2) A map of presheaves + : F x F — F, a map of presheaves — : F — F and
amap 0:x — F (see E:mmple satisfying all the azioms of +,—,0
in a usual abelian group.
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(3) A map of presheaves + : F X F — F, a map of presheaves — : F — F
and a map 0 : x — F such that for each open U C X the quadruple
(F(U),+,—,0) is an abelian group,

(4) A map of presheaves + : F x F — F such that for every open U C X the
map + : F(U) x F(U) — F(U) defines the structure of an abelian group.

There are natural bijections between the collections of types of data (1) - (4) above.
Proof. Omitted. (|

The lemma says that to give an abelian group object F in the category of presheaves
is the same as giving a presheaf of sets F such that all the sets F(U) are endowed
with the structure of an abelian group and such that all the restriction mappings
are group homomorphisms. For most algebra structures we will take this approach
to (pre)sheaves of such objects, i.e., we will define a (pre)sheaf of such objects to
be a (pre)sheaf F of sets all of whose sets of sections F(U) are endowed with this
structure compatibly with the restriction mappings.

Definition 6.4.4. Let X be a topological space.

(1) A presheaf of abelian groups on X or an abelian presheaf over X is a
presheaf of sets F such that for each open U C X the set F(U) is endowed
with the structure of an abelian group, and such that all restriction maps
pg are homomorphisms of abelian groups, see Lemma above.

(2) A morphism of abelian presheaves over X ¢ : F — G is a morphism
of presheaves of sets which induces a homomorphism of abelian groups
F(U) = G(U) for every open U C X.

(3) The category of presheaves of abelian groups on X is denoted PAb(X).

Example 6.4.5. Let X be a topological space. For each x € X suppose given an
abelian group M,. For U C X open we set

FU) =D, _, M.

We denote a typical element in this abelian group by Y7, m,,, where x; € U
and my, € M,,. (Of course we may always choose our representation such that
Z1,...,%, are pairwise distinct.) We define for V- C U C X open a restriction
mapping F(U) — F(V) by mapping an element s = > ., m,, to the element
slv = > .. ey Ma;- We leave it to the reader to verify that this is a presheaf of
abelian groups.

6.5. Presheaves of algebraic structures

Let us clarify the definition of presheaves of algebraic structures. Suppose that
C is a category and that F' : C — Sets is a faithful functor. Typically F is a
“forgetful” functor. For an object M € Ob(C) we often call F(M) the underlying
set of the object M. If M — M’ is a morphism in C we call F(M) — F(M’) the
underlying map of sets. In fact, we will often not distinguish between an object
and its underlying set, and similarly for morphisms. So we will say a map of sets
F(M) — F(M') is a morphism of algebraic structures, if it is equal to F(f) for
some morphism f: M — M’ in C.

In analogy with Definition [6.4.4] above a “presheaf of objects of C” could be defined
by the following data:
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(1) a presheaf of sets F, and
(2) for every open U C X a choice of an object A(U) € Ob(C)

subject to the following conditions (using the phraseology above)

(1) for every open U C X the set F(U) is the underlying set of A(U), and
(2) for every V. .C U C X open the map of sets pl : F(U) — F(V) is a
morphism of algebraic structures.

In other words, for every V' C U open in X the restriction mappings p¥ is the
image F(af}) for some unique morphism of} : A(U) — A(V) in the category C.
The uniqueness is forced by the condition that F' is faithful; it also implies that
Y, = aly o oY whenever W C V C U are open in X. The system (A(—),a¥) is
what we will define as a presheaf with values in C on X, compare Sites, Definition

V}fe 5§cover our presheaf of sets (F, p¥) via the rules F(U) = F(A(U)) and
py = Flay).

Definition 6.5.1. Let X be a topological space. Let C be a category.

(1) A presheaf F on X with values in C is given by a rule which assigns to
every open U C X an object F(U) of C and to each inclusion V C U a
morphism p§ : F(U) — F(V) in C such that whenever W C V C U we
have p‘[fv = p¥v o pg.

(2) A morphism ¢ : F — G of presheaves with value in C is given by a
morphism ¢ : F(U) = G(U) in C compatible with restriction morphisms.

Definition 6.5.2. Let X be a topological space. Let C be a category. Let F :
C — Sets be a faithful functor. Let F be a presheaf on X with values in C. The
presheaf of sets U — F(F(U)) is called the underlying presheaf of sets of F.

It is customary to use the same letter F to denote the underlying presheaf of sets,
and this makes sense according to our discussion preceding Definition [6.5.1} In
particular, the phrase “let s € F(U)” or “let s be a section of F over U” signifies
that s € F(F(U)).

This notation and these definitions apply in particular to: Presheaves of (not nec-
essarily abelian) groups, rings, modules over a fized ring, vector spaces over a fized
field, etc and morphisms between these.

6.6. Presheaves of modules

Suppose that O is a presheaf of rings on X. We would like to define the notion of
a presheaf of O-modules over X. In analogy with Definition we are tempted
to define this as a sheaf of sets F such that for every open U C X the set F(U) is
endowed with the structure of an O(U)-module compatible with restriction map-
pings (of F and O). However, it is customary (and equivalent) to define it as in
the following definition.

Definition 6.6.1. Let X be a topological space, and let O be a presheaf of rings
on X.
(1) A presheaf of O-modules is given by an abelian presheaf F together with
a map of presheaves of sets
OxF—F

such that for every open U C X the map O(U) x F(U) — F(U) defines
the structure of an O(U)-module structure on the abelian group F(U).
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(2) A morphism ¢ : F — G of presheaves of O-modules is a morphism of
abelian presheaves ¢ : F — G such that the diagram

OxF——F

Oxg—>g

commutes.
(3) The set of O-module morphisms as above is denoted Home (F, G).
(4) The category of presheaves of O-modules is denoted PMod(O).

Suppose that O; — O is a morphism of presheaves of rings on X. In this case, if
F is a presheaf of Oy-modules then we can think of F as a presheaf of O1-modules
by using the composition

Oy xF— 0Oy x F— F.

We sometimes denote this by Fp, to indicate the restriction of rings. We call this
the restriction of F. We obtain the restriction functor

PMod(O3) — PMod(O:)

On the other hand, given a presheaf of O;-modules G we can construct a presheaf
of Os-modules Oz ®,,. 0, G by the rule
(02 ®p,0, 9) (U) = O2(U) ®o, 1) G(U)
The index p stands for “presheaf” and not “point”. This presheaf is called the
tensor product presheaf. We obtain the change of rings functor
PMod(O1) — PMod(O3)
006R |Lemma 6.6.2. With X, Oy, Oy, F and G as above there exists a canonical
bijection
Homol (gv }—(91) = HOHI(92 (02 ®P1@1 g? ]:)
In other words, the restriction and change of rings functors are adjoint to each

other.

Proof. This follows from the fact that for a ring map A — B the restriction functor
and the change of ring functor are adjoint to each other. [

6.7. Sheaves
006S In this section we explain the sheaf condition.

006T Definition 6.7.1. Let X be a topological space.

(1) A sheaf F of sets on X is a presheaf of sets which satisfies the follow-
ing additional property: Given any open covering U = J;c; U; and any
collection of sections s; € F(U;), ¢ € I such that Vi,j € I

Si‘UiﬂUj = S]‘U/LOU‘]

there exists a unique section s € F(U) such that s; = s|y, for all i € I.
(2) A morphism of sheaves of sets is simply a morphism of presheaves of sets.
(3) The category of sheaves of sets on X is denoted Sh(X).
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Remark| 6.7.2. There is always a bit of confusion as to whether it is necessary
to say something about the set of sections of a sheaf over the empty set ) C X. It
is necessary, and we already did if you read the definition right. Namely, note that
the empty set is covered by the empty open covering, and hence the “collection of
section s;” from the definition above actually form an element of the empty product
which is the final object of the category the sheaf has values in. In other words, if
you read the definition right you automatically deduce that F(0) = a final object,
which in the case of a sheaf of sets is a singleton. If you do not like this argument,
then you can just require that F(0)) = {x}.

In particular, this condition will then ensure that if U,V C X are open and disjoint
then

FUUV)=FU) x F(V).
(Because the fibre product over a final object is a product.)

Example| 6.7.3. Let X, Y be topological spaces. Consider the rule F wich
associates to the open U C X the set

FU)={f:U—Y| fis continuous}

with the obvious restriction mappings. We claim that F is a sheaf. To see this
suppose that U = | J,; U; is an open covering, and f; € F(U;), i € I with fi|y,nu, =
filvinu, for all4,j € I. In this case define f : U — Y by setting f(u) equal to the
value of f;(u) for any ¢ € I such that v € U;. This is well defined by assumption.
Moreover, f : U — Y is a map such that its restriction to U; agrees with the
continuous map U;. Hence clearly f is continuous!

We can use the result of the example to define constant sheaves. Namely, suppose
that A is a set. Endow A with the discrete topology. Let U C X be an open subset.
Then we have

{f:U— A| f continuous} = {f : U — A | f locally constant}.
Thus the rule which assigns to an open all locally constant maps into A is a sheaf.

Definition 6.7.4. Let X be a topological space. Let A be a set. The constant
sheaf with value A denoted A, or Ay is the sheaf that assigns to an open U C X
the set of all locally constant maps U — A with restriction mappings given by
restrictions of functions.

Example 6.7.5. Let X be a topological space. Let (A4,).cx be a family of sets
A, indexed by points € X. We are going to construct a sheaf of sets II from this

data. For U C X open set
nw) =1I,_, A=

For V.C U C X open define a restriction mapping by the following rule: An
element s = (a;)zcy € H(U) restricts to s|y = (az)zev. It is obvious that this
defines a presheaf of sets. We claim this is a sheaf. Namely, let U = |JU; be an
open covering. Suppose that s, € II(U;) are such that s; and s; agree over U; NU;.
Write s; = (aiz)zcv;- The compatibility condition implies that a; , = a;, in the
set A, whenever & € U; N U;. Hence there exists a unique element s = (az)zecr in
(U) = [,cv Ae with the property that a, = a;, whenever x € U; for some i. Of
course this element s has the property that s|y, = s; for all i.
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Example 6.7.6. Let X be a topological space. Suppose for each z € X we are
given an abelian group M,. Consider the presheaf F : U — @, ., M, defined
in Example [6.4.5] This is not a sheaf in general. For example, if X is an infinite
set with the discrete topology, then the sheaf condition would imply that F(X) =
[I.cx F({z}) but by definition we have F(X) = P, x Mz = P, cx F({z}). And
an infinite direct sum is in general different from an infinite direct product.

However, if X is a topological space such that every open of X is quasi-compact,
then F is a sheaf. This is left as an exercise to the reader.

6.8. Abelian sheaves

Definition/ 6.8.1. Let X be a topological space.
(1) An abelian sheaf on X or sheaf of abelian groups on X is an abelian
presheaf on X such that the underlying presheaf of sets is a sheaf.
(2) The category of sheaves of abelian groups is denoted Ab(X).

Let X be a topological space. In the case of an abelian presheaf F the sheaf
condition with regards to an open covering U = |JU; is often expressed by saying
that the complex of abelian groups

0 FU)—[[ 7w — H(

is exact. The first map is the usual one, whereas the second maps the element
(8i)icr to the element

).F(Uio NU;,)

10,01

(S’io |U'iOnU1',1 — Sy |U'i0mUi1 )(imil) € H ) ‘F(Uio N Ull)

(i0,%1
6.9. Sheaves of algebraic structures

Let us clarify the definition of sheaves of certain types of structures. First, let us
reformulate the sheaf condition. Namely, suppose that F is a presheaf of sets on
the topological space X. The sheaf condition can be reformulated as follows. Let
U = ;e Ui be an open covering. Consider the diagram

FU) — 1L F(Ui) [ioinyerxs FUig NUiy)

P

Here the left map is defined by the rule s — [[,.; s|u,. The two maps on the right

are the maps
U;,NU;, Tesp. Hl Si H(

L1l

The sheaf condition exactly says that the left arrow is the equalizer of the right two.
This generalizes immediately to the case of presheaves with values in a category as
long as the category has products.

Sio Sil UiomUil .

(30,11) 10,%1)

Definition 6.9.1. Let X be a topological space. Let C be a category with products.
A presheaf F with values in C on X is a sheafif for every open covering the diagram

F(U) = Licr F(UD) " 1ig,inyerxs FUio NU;,)

is an equalizer diagram in the category C.
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Suppose that C is a category and that F' : C — Sets is a faithful functor. A good
example to keep in mind is the case where C is the category of abelian groups and
F is the forgetful functor. Consider a presheaf F with values in C on X. We would
like to reformulate the condition above in terms of the underlying presheaf of sets
(Definition . Note that the underlying presheaf of sets is a sheaf of sets if and
only if all the diagrams

F(FU)) —ILie; F(F(U) 2 i inyerss F(F Ui, NU))

of sets — after applying the forgetful functor F' — are equalizer diagrams! Thus we
would like C to have products and equalizers and we would like F' to commute with
them. This is equivalent to the condition that C has limits and that F' commutes
with them, see Categories, Lemma But this is not yet good enough (see
Example ; we also need F' to refiect isomorphisms. This property means that
given a morphism f: A — A’ in C, then f is an isomorphism if (and only if) F(f)
is a bijection.

Lemma 6.9.2. Suppose the category C and the functor F : C — Sets have the
following properties:

(1) F is faithful,

(2) C has limits and F commutes with them, and

(3) the functor F reflects isomorphisms.

Let X be a topological space. Let F be a presheaf with values in C. Then F is a
sheaf if and only if the underlying presheaf of sets is a sheaf.

Proof. Assume that F is a sheaf. Then F(U) is the equalizer of the diagram above
and by assumption we see F(F(U)) is the equalizer of the corresponding diagram
of sets. Hence F(F) is a sheaf of sets.

Assume that F(F) is a sheaf. Let E € Ob(C) be the equalizer of the two parallel
arrows in Definition m We get a canonical morphism F(U) — E, simply be-
cause F is a presheaf. By assumption, the induced map F(F(U)) — F(E) is an
isomorphism, because F'(F) is the equalizer of the corresponding diagram of sets.
Hence we see F(U) — E is an isomorphism by condition (3) of the lemma. O

The lemma in particular applies to sheaves of groups, rings, algebras over a fixed
ring, modules over a fized ring, vector spaces over a fixed field, etc. In other words,
these are presheaves of groups, rings, modules over a fixed ring, vector spaces over
a fixed field, etc such that the underlying presheaf of sets is a sheaf.

Example 6.9.3. Let X be a topological space. For each open U C X consider the
R-algebra C°(U) = {f : U — R | f is continuous}. There are obvious restriction
mappings that turn this into a presheaf of R-algebras over X. By Example [6.7.3
it is a sheaf of sets. Hence by the Lemma [6.9.2it is a sheaf of R-algebras over X.

Example 6.9.4. Consider the category of topological spaces Top. There is a
natural faithful functor Top — Sets which commutes with products and equalizers.
But it does not reflect isomorphisms. And, in fact it turns out that the analogue
of Lemma [6.9.2]is wrong. Namely, suppose X = N with the discrete topology. Let
A;, for i € N be a discrete topological space. For any subset U C N define F(U) =
[I;cy Ai with the discrete topology. Then this is a presheaf of topological spaces
whose underlying presheaf of sets is a sheaf, see Example[6.7.5] However, if each A;
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has at least two elements, then this is not a sheaf of topological spaces according to
Definition The reader may check that putting the product topology on each
F(U) = I],crs Ai does lead to a sheaf of topological spaces over X.

6.10. Sheaves of modules

Definition 6.10.1. Let X be a topological space. Let O be a sheaf of rings on X.

(1) A sheaf of O-modules is a presheaf of O-modules F, see Definition m
such that the underlying presheaf of abelian groups F is a sheaf.

(2) A morphism of sheaves of O-modules is a morphism of presheaves of O-
modules.

(3) Given sheaves of O-modules F and G we denote Homep (F,G) the set of
morphism of sheaves of O-modules.

(4) The category of sheaves of O-modules is denoted Mod(O).

This definition kind of makes sense even if O is just a presheaf of rings, although
we do not know any examples where this is useful, and we will avoid using the
terminology “sheaves of O-modules” in case O is not a sheaf of rings.

6.11. Stalks

Let X be a topological space. Let z € X be a point. Let F be a presheaf of sets
on X. The stalk of F at x is the set

F = colimgey F(U)

where the colimit is over the set of open neighbourhoods U of z in X. The set
of open neighbourhoods is (partially) ordered by (reverse) inclusion: We say U >
U' < U c U'. The transition maps in the system are given by the restriction
maps of F. See Categories, Section [£:2]] for notation and terminology regarding
(co)limits over systems. Note that the colimit is a directed colimit. Thus it is easy
to describe F,. Namely,

Fr.={(Us)|ze€UsecFU)} ~

with equivalence relation given by (U, s) ~ (U’,s’) if and only if there exists an
open U" C UNU’ with x € U” and s|y» = §'|y». By abuse of notation we will
often denote (U, s), sz, or even s the corresponding element in F,. Also we will say
s = s in F, for two local sections of F defined in an open neighbourhood of z to
denote that they have the same image in F,.

An obvious consequence of this definition is that for any open U C X there is a
canonical map

F)y—1I_, %
defined by s+ ], (U, s). Think about it!

Lemmal 6.11.1. Let F be a sheaf of sets on the topological space X. For every
open U C X the map
FU) — Fa
zeU
1s injective.
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Proof. Suppose that s,s" € F(U) map to the same element in every stalk F, for
all z € U. This means that for every x € U, there exists an open V¥ C U, z € V*
such that s|y« = s'|y=. But then U = [J,.,; V* is an open covering. Thus by the
uniqueness in the sheaf condition we see that s = s’. O

Definition 6.11.2. Let X be a topological space. A presheaf of sets F on X is
separated if for every open U C X the map F(U) — [[, ¢ Fu is injective.

Another observation is that the construction of the stalk F, is functorial in the
presheaf F. In other words, it gives a functor

PSh(X) — Sets, F — Fy.

This functor is called the stalk functor. Namely, if ¢ : F — G is a morphism
of presheaves, then we define ¢, : F, — G, by the rule (U,s) — (U, ¢(s)). To
see that this works we have to check that if (U,s) = (U’,s’) in F, then also
(U, ¢(s)) = (U, ¢(s")) in G,. This is clear since ¢ is compatible with the restriction
mappings.

Example 6.11.3. Let X be a topological space. Let A be a set. Denote tem-
porarily A, the constant presheaf with value A (p for presheaf — not for point).
There is a canonical map of presheaves A, — A into the constant sheaf with value
A. For every point we have canonical bijections A = (A4,), = A,, where the second
map is induced by functoriality from the map A, — A.

Example 6.11.4. Suppose X = R" with the Euclidean topology. Consider the
presheaf of C*>° functions on X, denoted Cg.. In other words, Cg.(U) is the set
of C*>°-functions f : U — R. As in Example it is easy to show that this is a
sheaf. In fact it is a sheaf of R-vector spaces.

Next, let x € X = R"™ be a point. How do we think of an element in the stalk
CRn .. Such an element is given by a C*°-function f whose domain contains z. And
a pair of such functions f, g determine the same element of the stalk if they agree
in a neighbourhood of x. In other words, an element if Cg’, , is the same thing as
what is sometimes called a germ of a C*-function at x.

s T

Example| 6.11.5. Let X be a topological space. Let A, be a set for each x € X.
Consider the sheaf F : U + [], .y A of Example We would just like to point
out here that the stalk F,, of F at x is in general not equal to the set A,. Of course
there is a map F, — A,, but that is in general the best you can say. For example,
suppose = = limx,, with z,, # z,, for all n # m and suppose that A, = {0,1}
for all y € X. Then F, maps onto the (infinite) set of tails of sequences of Os and
1s. Namely, every open neighbourhood of x contains almost all of the z,. On the
other hand, if every neighbourhood of = contains a point y such that A, = 0, then

Fo=0.
6.12. Stalks of abelian presheaves

We first deal with the case of abelian groups as a model for the general case.

Lemmal 6.12.1. Let X be a topological space. Let F be a presheaf of abelian
groups on X . There exists a unique structure of an abelian group on F, such that
for every U C X open, x € U the map F(U) — F, is a group homomorphism.
Moreover,

Fy = colimgepy F(U)
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holds in the category of abelian groups.

Proof. We define addition of a pair of elements (U, s) and (V,t) as the pair (U N
V,slunv + tlunv). The rest is easy to check. O

What is crucial in the proof above is that the partially ordered set of open neigh-
bourhoods is a directed system (compare Categories, Definition . Namely,
the coproduct of two abelian groups A, B is the direct sum A @& B, whereas the
coproduct in the category of sets is the disjoint union A Il B, showing that colimits
in the category of abelian groups do not agree with colimits in the category of sets
in general.

6.13. Stalks of presheaves of algebraic structures

The proof of Lemma [6.12.1 will work for any type of algebraic structure such that
directed colimits commute with the forgetful functor.
Lemmal 6.13.1. Let C be a category. Let F : C — Sets be a functor. Assume that
(1) F is faithful, and
(2) directed colimits exist in C and F commutes with them.

Let X be a topological space. Let x € X. Let F be a presheaf with values in C.
Then

F, = colimgey F(U)
exists in C. Its underlying set is equal to the stalk of the underlying presheaf of
sets of F. Furthermore, the construction F — F, is a functor from the category of
presheaves with values in C to C.

Proof. Omitted. O

By the very definition, all the morphisms F(U) — F, are morphisms in the category
C which (after applying the forgetful functor F') turn into the corresponding maps
for the underlying sheaf of sets. As usual we will not distinguish between the
morphism in C and the underlying map of sets, which is permitted since F' is
faithful.

This lemma applies in particular to: Presheaves of (not necessarily abelian) groups,

rings, modules over a fixed ring, vector spaces over a fixed field.

6.14. Stalks of presheaves of modules

Lemmal 6.14.1. Let X be a topological space. Let O be a presheaf of rings on X.
Let F be a presheaf of O-modules. Let x € X. The canonical map O, X Fp — Fy
coming from the multiplication map O x F — F defines a O, -module structure on
the abelian group F,.

Proof. Omitted. (]

Lemmal 6.14.2. Let X be a topological space. Let O — O’ be a morphism of
presheaves of rings on X. Let F be a presheaf of O-modules. Let x € X. We have

Fz ®o, O; = (F ®p.0 0N,
as O -modules.

Proof. Omitted. O
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6.15. Algebraic structures

In this section we mildly formalize the notions we have encountered in the sections
above.

Definition 6.15.1. A type of algebraic structure is given by a category C and a
functor F': C — Sets with the following properties

(1) F is faithful,

(2) C has limits and F' commutes with limits,

(3) C has filtered colimits and F' commutes with them, and
(4) F reflects isomorphisms.

We make this definition to point out the properties we will use in a number of
arguments below. But we will not actually study this notion in any great detail,
since we are prohibited from studying “big” categories by convention, except for
those listed in Categories, Remark [£.2.2] Among those the following have the
required properties.

Lemma 6.15.2. The following categories, endowed with the obvious forgetful func-
tor, define types of algebraic structures:

(1) The category of pointed sets.

) The category of abelian groups.

) The category of groups.

) The category of monoids.

) The category of rings.

) The category of R-modules for a fixed ring R.
) The category of Lie algebras over a fized field.

Proof. Omitted. (]

From now on we will think of a (pre)sheaf of algebraic structures and their stalks,
in terms of the underlying (pre)sheaf of sets. This is allowable by Lemmas
and [6.13.1]

In the rest of this section we point out some results on algebraic structures that
will be useful in the future.

Lemma 6.15.3. Let (C, F) be a type of algebraic structure.

(1) C has a final object 0 and F(0) = {*}.

(2) C has products and F(]] A;) = [[ F(4;).

(3) C has fibre products and F(A xp C) = F(A) xpy F(C).

(4) C has equalizers, and if E — A is the equalizer of a,b : A — B, then
F(E) — F(A) is the equalizer of F(a), F(b) : F(A) — F(B).

(5) A — B is a monomorphism if and only if F(A) — F(B) is injective.

(6) if F(a): F(A) — F(B) is surjective, then a is an epimorphism.

(7) given Ay — Ay — Az — ..., then colim A; exists and F(colim A;) =
colim F'(A;), and more generally for any filtered colimit.

Proof. Omitted. The only interesting statement is (5) which follows because A —
B is a monomorphism if and only if A —+ A xg A is an isomorphism, and then
applying the fact that F reflects isomorphisms. O
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Lemma 6.15.4. Let (C, F) be a type of algebraic structure. Suppose that A, B,C €
Ob(C). Let f : A— B and g : C — B be morphisms of C. If F(g) is injective, and
Im(F(f)) C Im(F(g)), then f factors as f = got for some morphismt: A — C.

Proof. Consider A xp C. The assumptions imply that F(A xp C) = F(A) Xp(p)
F(C) = F(A). Hence A = A xpg C because F reflects isomorphisms. The result
follows. (]

Example 6.15.5. The lemma will be applied often to the following situation.
Suppose that we have a diagram

A——2B

C——=D

in C. Suppose C — D is injective on underlying sets, and suppose that the compo-
sition A — B — D has image on underlying sets in the image of C — D. Then we
get a commutative diagram

A B

C D

Example 6.15.6. Let F' : C — Sets be a type of algebraic structures. Let X
be a topological space. Suppose that for every x € X we are given an object
A, € ob(C). Consider the presheaf IT with values in C on X defined by the rule
(U) = [l,ev Ax (with obvious restriction mappings). Note that the associated
presheaf of sets U — F(II(U)) = [[,cy F(Az) is a sheaf by Example m Hence
IT is a sheaf of algebraic structures of type (C,F'). This gives many examples of
sheaves of abelian groups, groups, rings, etc.

—_—

—_—

in C.

6.16. Exactness and points

In any category we have the notion of epimorphism, monomorphism, isomorphism,
etc.

Lemma 6.16.1. Let X be a topological space. Let ¢ : F — G be a morphism of
sheaves of sets on X.

(1) The map ¢ is a monomorphism in the category of sheaves if and only if
for all x € X the map ¢, : Fo — G, is injective.

(2) The map ¢ is an epimorphism in the category of sheaves if and only if for
all x € X the map ¢ : Fr — G is surjective.

(3) The map ¢ is an isomorphism in the category of sheaves if and only if for
all x € X the map ¢, : Fz — G, is bijective.

Proof. Omitted. O

It follows that in the category of sheaves of sets the notions epimorphism and
monomorphism can be described as follows.

Definition| 6.16.2. Let X be a topological space.
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(1) A presheaf F is called a subpresheaf of a presheaf G if F(U) C G(U) for
all open U C X such that the restriction maps of G induce the restriction
maps of F. If F and G are sheaves, then F is called a subsheaf of G. We
sometimes indicate this by the notation F C G.

(2) A morphism of presheaves of sets ¢ : F — G on X is called injective if
and only if F(U) — G(U) is injective for all U open in X.

(3) A morphism of presheaves of sets ¢ : F — G on X is called surjective if
and only if F(U) — G(U) is surjective for all U open in X.

(4) A morphism of sheaves of sets ¢ : F — G on X is called injective if and
only if F(U) — G(U) is injective for all U open in X.

(5) A morphism of sheaves of sets ¢ : F — G on X is called surjective if and
only if for every open U of X and every section s of G(U) there exists an
open covering U = |JU; such that s|y, is in the image of F(U;) — G(U)
for all i.

Lemma 6.16.3. Let X be a topological space.

(1) Epimorphisms (resp. monomorphisms) in the category of presheaves are
exactly the surjective (resp. injective) maps of presheaves.

(2) Epimorphisms (resp. monomorphisms) in the category of sheaves are ex-
actly the surjective (resp. injective) maps of sheaves, and are exactly those
maps with are surjective (resp. injective) on all the stalks.

(3) The sheafification of a surjective (resp. injective) morphism of presheaves
of sets is surjective (resp. injective).

Proof. Omitted. O

Lemma 6.16.4. let X be a topological space. Let (C,F) be a type of algebraic
structure. Suppose that F, G are sheaves on X with values in C. Let ¢ : F — G be
a map of the underlying sheaves of sets. If for all points x € X the map F, — G,
is a morphism of algebraic structures, then ¢ is a morphism of sheaves of algebraic
structures.

Proof. Let U be an open subset of X. Consider the diagram of (underlying) sets
FU) —=1lscv 7=

.

g(U) - HwEU gx

By assumption, and previous results, all but the left vertical arrow are morphisms
of algebraic structures. In addition the bottom horizontal arrow is injective, see
Lemma[6.11.1] Hence we conclude by Lemma [6.15.4] see also Example [6.15.5] [

Short exact sequences of abelian sheaves, etc will be discussed in the chapter on
sheaves of modules. See Modules, Section [17.3

6.17. Sheafification

In this section we explain how to get the sheafification of a presheaf on a topological
space. We will use stalks to describe the sheafification in this case. This is different
from the general procedure described in Sites, Section [7.10] and perhaps somewhat
easier to understand.
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The basic construction is the following. Let F be a presheaf of sets F on a topo-
logical space X. For every open U C X we define

FHU) = {(su) € ], Fu such that ()}

where (x) is the property:
() For every u € U, there exists an open neighbourhood v € V' C U, and a
section o € F(V) such that for all v € V we have s, = (V,0) in F,.
Note that (*) is a condition for each u € U, and that given w € U the truth of
this condition depends only on the values s, for v in any open neighbourhood of w.
Thus it is clear that, if V' C U C X are open, the projection maps

HueU Fu— Huev Fo

maps elements of F#(U) into F# (V). In other words, we get the structure of a
presheaf of sets on F7.

Furthermore, the map F(U) — [],cy Fu described in Section clearly has
image in F#(U). In addition, if V C U C X are open then we have the following
commutative diagram

F(U) —=FHU) —= [luev Fu

.

FV) = FAV) ey Fo

where the vertical maps are induced from the restriction mappings. Thus we see
that there is a canonical morphism of presheaves F — F#.

In Example we saw that the rule II(F) : U ~ [],cy Fu is a sheaf, with
obvious restriction mappings. And by construction F# is a subpresheaf of this. In
other words, we have morphisms of presheaves

F = F* 5 11(F).

In addition the rule that associates to F the sequence above is clearly functorial in
the presheaf F. This notation will be used in the proofs of the lemmas below.

Lemma 6.17.1. The presheaf F# is a sheaf.

Proof. It is probably better for the reader to find their own explanation of this
than to read the proof here. In fact the lemma is true for the same reason as why
the presheaf of continuous function is a sheaf, see Example m (and this analogy
can be made precise using the “espace étalé”).

Anyway, let U = | JU; be an open covering. Suppose that s; = (s; 4 )ucv, € F7 (U;)
such that s; and s; agree over U; NU;. Because II(F) is a sheaf, we find an element
5 = (8u)uev in [],cy Fu restricting to s; on U;. We have to check property (x).
Pick w € U. Then u € U; for some i. Hence by (x) for s;, there exists a V' open,
u €V CU; and a o € F(V) such that s;,, = (V,0) in F, for all v € V. Since
Siw = S, we get (x) for s. O

Lemma 6.17.2. Let X be a topological space. Let F be a presheaf of sets on X.
Let v € X. Then F, = FF.
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Proof. The map F, — FF is injective, since already the map F, — II(F), is
injective. Namely, there is a canonical map II(F), — F, which is a left inverse to
the map F, — II(F),, see Example To show that it is surjective, suppose
that 3 € 7. We can find an open neighbourhood U of x such that 5 is the
equivalence class of (U, s) with s € F#(U). By definition, this means there exists
an open neighbourhood V' C U of x and a section o € F(V) such that s|y is the
image of o in II(F) (V). Clearly the class of (V, o) defines an element of F,, mapping
to s. (]

Lemmal 6.17.3. Let F be a presheaf of sets on X. Any map F — G into a sheaf
of sets factors uniquely as F — F# — G.

Proof. Clearly, there is a commutative diagram

F—— F#* — > TI(F)

|

G —— g% ——1I(9)

So it suffices to prove that G = G#. To see this it suffices to prove, for every point
r € X the map G, — G is bijective, by Lemma |6.16.1, And this is Lemma [6.17.2
above. (]

This lemma really says that there is an adjoint pair of functors: 4 : Sh(X) — PSh(X)
(inclusion) and # : PSh(X) — Sh(X) (sheafification). The formula is that

Mor pn(x) (F,1(G)) = Morgyx)(F*, G)

which says that sheafification is a left adjoint of the inclusion functor. See Cate-
gories, Section [£:24]

Example 6.17.4. See Example [6.11.3| for notation. The map A, — A induces
a map Aff — A. It is easy to see that this is an isomorphism. In words: The
sheafification of the constant presheaf with value A is the constant sheaf with value

A.

Lemmal 6.17.5. Let X be a topological space. A presheaf F is separated (see
Definition if and only if the canonical map F — F7 is injective.

Proof. This is clear from the construction of F# in this section. O

6.18. Sheafification of abelian presheaves

The following strange looking lemma is likely unnecessary, but very convenient to
deal with sheafification of presheaves of algebraic structures.

Lemmal 6.18.1. Let X be a topological space. Let F be a presheaf of sets on X.
Let U C X be open. There is a canonical fibre product diagram

F#(U) ——I(F)(U)

| |

HmeU]:ﬂU > HzeU H(]:)z

where the maps are the following:
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(1) The left vertical map has components F#(U) — Fif = F, where the
equality is Lemma[6.17.2

(2) The top horizontal map comes from the map of presheaves F — II(F)
described in Section [6.17,

(3) The right vertical map has obvious component maps IL(F)(U) — II(F),.

(4) The bottom horizontal map has components F, — II(F), which come
from the map of presheaves F — II(F) described in Section .

Proof. It is clear that the diagram commutes. We have to show it is a fibre product
diagram. The bottom horizontal arrow is injective since all the maps F, — II(F),
are injective (see beginning proof of Lemma [6.17.2)). A section s € II(F)(U) is in
F# if and only if () holds. But (%) says that around every point the section s
comes from a section of F. By definition of the stalk functors, this is equivalent to
saying that the value of s in every stalk II(F), comes from an element of the stalk
F.. Hence the lemma. O

Lemmal 6.18.2. Let X be a topological space. Let F be an abelian presheaf on
X. Then there exists a unique structure of abelian sheaf on F7 such that F — F#

is a morphism of abelian presheaves. Moreover, the following adjointness property
holds

Mor pap(x) (F,i(G)) = Mor ap x) (F#,G).

Proof. Recall the sheaf of sets II(F) defined in Section All the stalks F,
are abelian groups, see Lemma Hence II(F) is a sheaf of abelian groups by
Example Also, it is clear that the map F — II(F) is a morphism of abelian
presheaves. If we show that condition () of Section defines a subgroup of
I(F)(U) for all open subsets U C X, then F# canonically inherits the structure
of abelian sheaf. This is quite easy to do by hand, and we leave it to the reader
to find a good simple argument. The argument we use here, which generalizes to
presheaves of algebraic structures is the following: Lemma show that F7#(U)
is the fibre product of a diagram of abelian groups. Thus F# is an abelian subgroup
as desired.

Note that at this point F7* is an abelian group by Lemmaand that F, — F7
is a bijection (Lemma and a homomorphism of abelian groups. Hence
F. — Fi is an isomorphism of abelian groups. This will be used below without
further mention.

To prove the adjointness property we use the adjointness property of sheafification
of presheaves of sets. For example if ¢ : F — i(G) is morphism of presheaves then
we obtain a morphism of sheaves ¢/ : F# — G. What we have to do is to check
that this is a morphism of abelian sheaves. We may do this for example by noting
that it is true on stalks, by Lemmal[6.17.2] and then using Lemma[6.16.4 above. [

6.19. Sheafification of presheaves of algebraic structures

Lemma 6.19.1. Let X be a topological space. Let (C,F) be a type of algebraic
structure. Let F be a presheaf with values in C on X. Then there exists a sheaf F#
with values in C and a morphism F — F7 of presheaves with values in C with the
following properties:
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(1) The map F — F7* identifies the underlying sheaf of sets of F# with the
sheafification of the underlying presheaf of sets of F.

(2) For any morphism F — G, where G is a sheaf with values in C there exists
a unique factorization F — F#* — G.

Proof. The proof is the same as the proof of Lemma [6.18.2] with repeated appli-
cation of Lemma [6.15.4] (see also Example [6.15.5). The main idea however, is to
define F#(U) as the fibre product in C of the diagram

I(F)(U)

|

HzeU]:I ’ erU H(]:)I
compare Lemma O

6.20. Sheafification of presheaves of modules

Lemma 6.20.1. Let X be a topological space. Let O be a presheaf of rings on X.
Let F be a presheaf O-modules. Let OF be the sheafification of O. Let F# be the

sheafification of F as a presheaf of abelian groups. There exists a map of sheaves
of sets

O# x F# — F#
which makes the diagram

OxF F

L

O# x F# — > F#

commute and which makes F# into a sheaf of O% -modules. In addition, if G is
a sheaf of O -modules, then any morphism of presheaves of O-modules F — G
(into the restriction of G to a O-module) factors uniquely as F — F# — G where
F# — G is a morphism of O -modules.

Proof. Omitted. O

This actually means that the functor i : Mod(O#) — PMod(Q) (combining restric-
tion and including sheaves into presheaves) and the sheafification functor of the
lemma # : PMod(Q) — Mod(O%) are adjoint. In a formula

Mor pasoa(0) (F, iG) = Mor proqio) (F7, G)
Let X be a topological space. Let O; — O be a morphism of sheaves of rings on

X. In Section we defined a restriction functor and a change of rings functor on
presheaves of modules associated to this situation.

If F is a sheaf of Oz-modules then the restriction Fp, of F is clearly a sheaf of
O1-modules. We obtain the restriction functor

MOd(OQ) — MOd(Ol)
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On the other hand, given a sheaf of O;-modules G the presheaf of Os-modules
O3 ®p,0, G is in general not a sheaf. Hence we define the tensor product sheaf
Oz ®o, G by the formula

02 ®0, G = (02 @0, )%

as the sheafification of our construction for presheaves. We obtain the change of
rings functor

MOd(Ol) — MOd(OQ)

Lemma 6.20.2. With X, Oy, Oz, F and G as above there exists a canonical
bijection
Homo, (G, Fo,) = Homop, (02 ®o, G, F)

In other words, the restriction and change of rings functors are adjoint to each
other.

Proof. This follows from Lemma and the fact that Homp, (02 ®0, G, F) =
Homop, (02 ®p.0, G, F) because F is a sheaf. O

Lemmal 6.20.3. Let X be a topological space. Let O — O’ be a morphism of
sheaves of rings on X. Let F be a sheaf O-modules. Let x € X. We have

Fu Ko, O; = (]'— XRo O/)z
as Ol -modules.

Proof. Follows directly from Lemma and the fact that taking stalks com-
mutes with sheafification. O

6.21. Continuous maps and sheaves

Let f : X — Y be a continuous map of topological spaces. We will define the
pushforward and pullback functors for presheaves and sheaves.

Let F be a presheaf of sets on X. We define the pushforward of F by the rule
LFWV)=F(fF7HV)

for any open V C Y. Given Vi C V5 C Y open the restriction map is given by the
commutativity of the diagram

L F (Vo) == F(f~1(\2))
i lrestriction for F
[ FW) =—=F(f"'(W))

It is clear that this defines a presheaf of sets. The construction is clearly functorial
in the presheaf F and hence we obtain a functor

fo : PSh(X) — PSh(Y).

Lemma 6.21.1. Let f : X — Y be a continuous map. Let F be a sheaf of sets on
X. Then f.F is a sheaf on Y.

Proof. This immediately follows from the fact that if V' = |V} is an open covering
in Y, then f~1(V) = f~1(V;) is an open covering in X. O
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As a consequence we obtain a functor
fie i SW(X) — SK(Y).
This is compatible with composition in the following strong sense.

Lemma 6.21.2. Let f: X =Y and g:Y — Z be continuous maps of topological
spaces. The functors (go f)« and g. o fx are equal (on both presheaves and sheaves
of sets).

Proof. This is because (g o f).F(W) = F((go f)"'W) and (g« o fu)F(W) =
F(f~rg™'W)and (go f)~'W = f~lg7'W. 0

Let G be a presheaf of sets on Y. The pullback presheaf f,G of a given presheaf G
is defined as the left adjoint of the pushforward f. on presheaves. In other words
it should be a presheaf f,G on X such that

Mor psi(x) (fpG, F) = Mor pgpy) (G, foF).

By the Yoneda lemma this determines the pullback uniquely. It turns out that it
actually exists.

Lemma 6.21.3. Let f : X — Y be a continuous map. There exists a functor
fp 1 PSKY) — PSh(X) which is left adjoint to f.. For a presheaf G it is determined
by the rule

fpG(U) = colimyrycv G(V)
where the colimit is over the collection of open neighbourhoods V' of f(U) in Y.
The colimits are over directed partially ordered sets. (The restriction mappings of
fpG are explained in the proof.)

Proof. The colimit is over the partially ordered set consisting of open subset V C Y
which contain f(U) with ordering by reverse inclusion. This is a directed partially
ordered set, since if V, V'’ are in it then so is V NV’. Furthermore, if U; C Uy, then
every open neighbourhood of f(Uz) is an open neighbourhood of f(U;). Hence the
system defining f,G(Us) is a subsystem of the one defining f,G(U;) and we obtain
a restriction map (for example by applying the generalities in Categories, Lemma

o)

Note that the construction of the colimit is clearly functorial in G, and similarly for
the restriction mappings. Hence we have defined f, as a functor.

A small useful remark is that there exists a canonical map G(U) — f,G(f~1(U)),
because the system of open neighbourhoods of f(f~1(U)) contains the element U.
This is compatible with restriction mappings. In other words, there is a canonical
map ig : G = f« fpG.

Let F be a presheaf of sets on X. Suppose that ¢ : f,G — F is a map of presheaves
of sets. The corresponding map G — f.F is the map fipoig: G — fifpG — fuF.

Another small useful remark is that there exists a canonical map cr : fp fuF = F.
Namely, let U C X open. For every open neighbourhood V' O f(U) in Y there exists
amap f. F(V)=F(f1(V)) = F(U), namely the restriction map on F. And this
is compatible with the restriction mappings between values of F on f~! of varying
opens containing f(U). Thus we obtain a canonical map f,f.F(U) — F(U).
Another trivial verification shows that these maps are compatible with restriction
maps and define a map ¢ of presheaves of sets.


http://stacks.math.columbia.edu/tag/008E
http://stacks.math.columbia.edu/tag/008F

008G

008H

008I

008J

008K

6.21. CONTINUOUS MAPS AND SHEAVES 236

Suppose that ¢ : G — f.F is a map of presheaves of sets. Consider f,¢ : f,G —
fpf«F. Postcomposing with cr gives the desired map cr o fop : f,G6 — F. We
omit the verification that this construction is inverse to the construction in the
other direction given above. [

Lemma 6.21.4. Let f: X — Y be a continuous map. Let x € X. Let G be a
presheaf of sets on'Y. There is a canonical bijection of stalks (f,G)z = Gf(a)-

Proof. This you can see as follows

(fpg)w = colimgey fpg(U)

= colimgey colim (v G(V)

= Colimf(g;)ev Q(V)
Gr()
Here we have used Categories, Lemma and the fact that any V open in Y
containing f(z) occurs in the third description above. Details omitted. O
Let G be a sheaf of sets on Y. The pullback sheaf f~'G is defined by the formula
16 = (f,9)".

Sheafification is a left adjoint to the inclusion of sheaves in presheaves, and f, is a
left adjoint to f, on presheaves. As a formal consequence we obtain that f~! is a
left adjoint of pushforward on sheaves. In other words,

Morgy(x)(f7'G, F) = Morgpy) (G, f.F).
The formal argument is given in the setting of abelian sheaves in the next section.

Lemmal 6.21.5. Let x € X. Let G be a sheaf of sets on' Y. There is a canonical
bijection of stalks (f~1G), = Gf(a)-

Proof. This is a combination of Lemmas 16.17.2| and [6.21.4} O

Lemma 6.21.6. Let f: X =Y and g:Y — Z be continuous maps of topological
spaces. The functors (go f)~! and f~tog™! are canonically isomorphic. Similarly
(go f)p = fpogp on presheaves.

Proof. To see this use that adjoint functors are unique up to unique isomorphism,
and Lemma [6.21.2) O

Definition 6.21.7. Let f : X — Y be a continuous map. Let F be a sheaf of
sets on X and let G be a sheaf of sets on Y. An f-map £ : G — F is a collection of
maps &y : G(V) — F(f~1(V)) indexed by open subsets V' C Y such that

G(V) —= F(fV)

restriction of Q\L ircstriction of F
v
GV —=F(f'v")
commutes for all V! C V C Y open.

Lemma 6.21.8. Let f : X — Y be a continuous map. Let F be a sheaf of sets
on X and let G be a sheaf of sets on'Y. There are canonical bijections between the
following three sets:
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(1) The set of maps G — f.F.
(2) The set of maps f~1G — F.
(3) The set of f-maps & :G — F.

Proof. We leave the easy verification to the reader. O

It is sometimes convenient to think about f-maps instead of maps between sheaves
either on X or on Y. We define composition of f-maps as follows.

Definition 6.21.9. Suppose that f: X — Y and ¢g: Y — Z are continuous maps
of topological spaces. Suppose that F is a sheaf on X, G is a sheaf on Y, and H
is a sheaf on Z. Let ¢ : G — F be an f-map. Let v : H — G be an g-map. The
composition of ¢ and 1 is the (g o f)-map ¢ o ¢ defined by the commutativity of
the diagrams

W) o FUW)

k Pg—1w

Glg~'w)

We leave it to the reader to verify that this works. Another way to think about
this is to think of ¢ o ¢ as the composition

H & 9+G R GxfsF = (g © f)*]:
Now, doesn’t it seem that thinking about f-maps is somehow easier?
Finally, given a continuous map f : X — Y, and an f-map ¢ : G — F there is a
natural map on stalks
for all z € X. The image of a representative (V, s) of an element in Gy, is mapped
to the element in F, with representative (f~1V, oy (s)). We leave it to the reader

to see that this is well defined. Another way to state it is that it is the unique map
such that all diagrams

]:(f_lV) Fu
Gg(v) Gt(w)

(for x € V C Y open) commute.

Lemma 6.21.10. Suppose that f : X — Y and g : Y — Z are continuous maps
of topological spaces. Suppose that F is a sheaf on X, G is a sheaf on'Y, and H is
a sheaf on Z. Let ¢ : G — F be an f-map. Let Y : H — G be an g-map. Let x € X
be a point. The map on stalks (p 0 )y : Hy((a)) — Fa is the composition

b () [
Hy(f@) — 9f@) — Fo

Proof. Immediate from Definition [6.21.9] and the definition of the map on stalks
above. (]
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6.22. Continuous maps and abelian sheaves

Let f: X = Y be a continuous map. We claim there are functors

PAb( ) —  PAKY)
Ab(X) —  Ab(Y)

fp PAb(Y) —  PAN(X)
o AnY) —  Ab(X)

with similar properties to their counterparts in Section To see this we argue
in the following way.

Each of the functors will be constructed in the same way as the corresponding
functor in Section [6.21l This works because all the colimits in that section are
directed colimits (but we will work through it below).

First off, given an abelian presheaf 7 on X and an abelian presheaf G on Y we
define

LFV) = F(FH(v)
fpG(U) = colimyip)cy G(V)

as abelian groups. The restriction mappings are the same as the restriction map-
pings for presheaves of sets (and they are all homomorphisms of abelian groups).

The assignments F — f.F and G — f,G are functors on the categories of presheaves
of abelian groups. This is clear, as (for example) a map of abelian presheaves
G1 — G gives rise to a map of directed systems {G1(V)} rwycv — {G2(V)} rw)cv
all of whose maps are homomorphisms and hence gives rise to a homomorphism of
abelian groups f,G1(U) — f,G2(U).

The functors f. and f, are adjoint on the category of presheaves of abelian groups,
i.e., we have

Mor pay(x) (fpG, F) = Mot payy)(G, [« F)-

To prove this, note that the map ig : G — f. f,G from the proof of Lemmal[6.2T.3]is
a map of abelian presheaves. Hence if ¢ : f,G — F is a map of abelian presheaves,
then the corresponding map G — f.F is the map fipoig : G — f.fpG — fuF
is also a map of abelian presheaves. For the other direction we point out that
the map cr : fpfs F — F from the proof of Lemma is a map of abelian
presheaves as well (since it is made out of restriction mappings of F which are all
homomorphisms). Hence given a map of abelian presheaves ¢ : G — f.F the map
crofpp: fpG — F is a map of abelian presheaves as well. Since these constructions
Y — fup and ¢ — cr o fpp are inverse to each other as constructions on maps
of presheaves of sets we see they are also inverse to each other on maps of abelian
presheaves.

If F is an abelian sheaf on Y, then f.F is an abelian sheaf on X. This is true
because of the definition of an abelian sheaf and because this is true for sheaves
of sets, see Lemma [6.21.1] This defines the functor f. on the category of abelian
sheaves.



0080

008P

6.23. CONTINUOUS MAPS AND SHEAVES OF ALGEBRAIC STRUCTURES 239

We define f~1G = (f,G)* as before. Adjointness of f, and f~! follows formally as
in the case of presheaves of sets. Here is the argument:

Mor apx)(f'G,F) = Morpapx)(fG,F)
= Morpayy)(G, f+F)
Mor 4p(v)(G, f+F)

Lemma 6.22.1. Let f: X — Y be a continuous map.

(1) Let G be an abelian presheaf on Y. Let x € X. The bijection Gy —
(fpG)s of Lemma s an isomorphism of abelian groups.

(2) Let G be an abelian sheaf onY . Letx € X. The bijection Gpzy — (f71G)a
of Lemma[6.21.5] is an isomorphism of abelian groups.

Proof. Omitted. ]

Given a continuous map f : X — Y and sheaves of abelian groups F on X, G
on Y, the notion of an f-map G — F of sheaves of abelian groups makes sense.
We can just define it exactly as in Definition (replacing maps of sets with
homomorphisms of abelian groups) or we can simply say that it is the same as a
map of abelian sheaves G — f,F. We will use this notion freely in the following.
The group of f-maps between G and F will be in canonical bijection with the groups

Mor ap(x)(f1G, F) and Mor ap(v)(G, f+ F).

Composition of f-maps is defined in exactly the same manner as in the case of f-
maps of sheaves of sets. In addition, given an f-map G — F as above, the induced
maps on stalks

are abelian group homomorphisms.

6.23. Continuous maps and sheaves of algebraic structures

Let (C, F) be a type of algebraic structure. For a topological space X let us intro-
duce the notation:

(1) PSh(X,C) will be the category of presheaves with values in C.
(2) Sh(X,C) will be the category of sheaves with values in C.

Let f: X — Y be a continuous map of topological spaces. The same arguments as
in the previous section show there are functors

f«: PSH(X,C) — PSh(Y,C)
fe:SH(X,C) — SKY,C)
fp: PSH(Y,C) — PSh(X,C)
7l Sy, ) — Sh(X,C)
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constructed in the same manner and with the same properties as the functors
constructed for abelian (pre)sheaves. In particular there are commutative diagrams

PSK(X,C) —L~ PSK(Y,C) Sh(X,C) —L = sn(y,c)
| I T
PSH(X) —L~ PSH(Y) Sh(X) —L sn(Y)
PSh(Y,C) —1*~ PSH(X,C) Sh(Y.C) —1—> Sh(X,C)
| I Pk
PSh(Y) ——~ PSh(X) Sh(Y) —L > Sh(X)
The main formulas to keep in mind are the following
LFV) = F(fH(V))
[rGU) = colimpp)cv G(V)

f_lg = (fpg)#
(fpg)x = gf(z)
(f7'G9)e = G
Each of these formulas has the property that they hold in the category C and that

upon taking underlying sets we get the corresponding formula for presheaves of
sets. In addition we have the adjointness properties

Morpgi(x,c)(fpG, F) = Morpgny,c)(G, f+F)
Morgpx,c)(f7'G, F) = Morgpy,c)(G, f+F).
To prove these, the main step is to construct the maps
ig:G — fufpg

and
cr: fpfsF — F

which occur in the proof of Lemma [6.21.3] as morphisms of presheaves with values
in C. This may be safely left to the reader since the constructions are exactly the
same as in the case of presheaves of sets.

Given a continuous map f : X — Y and sheaves of algebraic structures F on X,
G on Y, the notion of an f-map G — F of sheaves of algebraic structures makes
sense. We can just define it exactly as in Definition (replacing maps of sets
with morphisms in C) or we can simply say that it is the same as a map of sheaves
of algebraic structures G — f.F. We will use this notion freely in the following.
The set of f-maps between G and F will be in canonical bijection with the sets
Morgy(x,c)(f~'G, F) and Morgyy,c) (G, foF).

Composition of f-maps is defined in exactly the same manner as in the case of f-
maps of sheaves of sets. In addition, given an f-map G — F as above, the induced
maps on stalks

Po i Gfa) — Fa
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are homomorphisms of algebraic structures.

Lemma 6.23.1. Let f : X — Y be a continuous map of topological spaces.
Suppose given sheaves of algebraic structures F on X, G on'Y. Let ¢ : G — F be
an f-map of underlying sheaves of sets. If for every V.C Y open the map of sets
oy : G(V) = F(f~1V) is the effect of a morphism in C on underlying sets, then @
comes from a unique f-morphism between sheaves of algebraic structures.

Proof. Omitted. O

6.24. Continuous maps and sheaves of modules

The case of sheaves of modules is more complicated. The reason is that the natural
setting for defining the pullback and pushforward functors, is the setting of ringed
spaces, which we will define below. First we state a few obvious lemmas.

Lemmal 6.24.1. Let f: X — Y be a continuous map of topological spaces. Let O
be a presheaf of rings on X. Let F be a presheaf of O-modules. There is a natural
map of underlying presheaves of sets

f+:O X fuF — fulF

which turns foF into a presheaf of f.O-modules. This construction is functorial in

F.
Proof. Let V C Y is open. We define the map of the lemma to be the map
LOW) x fF(V) = O(f V) x F(f7IV) = F(f71V) = fF(V).

Here the arrow in the middle is the multiplication map on X. We leave it to the
reader to see this is compatible with restriction mappings and defines a structure
of f,O-module on f,F. O

Lemma 6.24.2. Let f: X — Y be a continuous map of topological spaces. Let O
be a presheaf of rings on Y. Let G be a presheaf of O-modules. There is a natural
map of underlying presheaves of sets

foO X G — G

which turns f,G into a presheaf of f,O-modules. This construction is functorial in

g.
Proof. Let U C X is open. We define the map of the lemma to be the map

[pOWU) x f,G(U) = colimgncy O(V) x colimyrycyv G(V)
= colimsr)cv (O(V) x G(V))
—  colimyycy G(V)
= f[GU).
Here the arrow in the middle is the multiplication map on Y. The second equality
holds because directed colimits commute with finite limits, see Categories, Lemma

[419:2] We leave it to the reader to see this is compatible with restriction mappings
and defines a structure of f,O-module on f,G. (]
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Let f: X — Y be a continuous map. Let Ox be a presheaf of rings on X and let
Oy be a presheaf of rings on Y. So at the moment we have defined functors

f«: PMod(Ox) — PMod(f.Ox)
fp: PMod(Oy) — PMod(f,Ov)
These satisfy some compatibilities as follows.
Lemma 6.24.3. Let f: X — Y be a continuous map of topological spaces. Let O

be a presheaf of rings on'Y . Let G be a presheaf of O-modules. Let F be a presheaf
of fpO-modules. Then

Mor pusodr,0) (fpG5 F) = Mor parog0) (G, fF)-
Here we use Lemmas |[6.24.4 and |6.24.1], and we think of f«+F as an O-module via
the map io : O — f.f,O (defined first in the proof of Lemma .
Proof. Note that we have

Mor pap(x)(fpG, F) = Morpayyy (G, foF)-

according to Section [6.22] So what we have to prove is that under this correspon-
dence, the subsets of module maps correspond. In addition, the correspondence is
determined by the rule

(2 fpG = F)— (futhoig: G = fiF)
and in the other direction by the rule
(0:G = fuF) — (cro fpp: [,G — F)
where ig and cz are as in Section [6.22} Hence, using the functoriality of f. and f,

we see that it suffices to check that the maps ig : G = f.f,G and cr : fpfuF = F
are compatible with module structures, which we leave to the reader. O

Lemma 6.24.4. Let f: X — Y be a continuous map of topological spaces. Let O
be a presheaf of rings on X. Let F be a presheaf of O-modules. Let G be a presheaf
of f+O-modules. Then

Mor prrod(0) (O @p, 1, 1.0 fpG, F) = Mot prro(r. 0y (G, f« F).

Here we use Lemmas [0.24.4 and |0.24.1, and we use the map co : fpfiO — O in
the definition of the tensor product.

Proof. This follows from the equalities

Mor parod(0) (O @y 1, 5.0 [pG, F) = Morpuods, £.0) (o9, Fr,1.0)
Mor pasod(r. 0y (G f«(F,1.0))
= Morpyod(f.0)(G, [+F).
The first equality is Lemmal[6.6.2] The second equality is Lemma[6.24.3] The third
equality is given by the equality f.(F I r.0) = [ F of abelian sheaves which is

f«O-linear. Namely, id¢, o corresponds to co under the adjunction described in the
proof of Lemma [6.21.3 and thus idy,0 = feco oif, 0. O

Lemma 6.24.5. Let f: X — Y be a continuous map of topological spaces. Let O
be a sheaf of rings on X. Let F be a sheaf of O-modules. The pushforward f.F,
as defined in Lemma|6.24.1] is a sheaf of f.O-modules.

Proof. Obvious from the definition and Lemma [6.21.1] O
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Lemma 6.24.6. Let f: X — Y be a continuous map of topological spaces. Let O
be a sheaf of rings on'Y. Let G be a sheaf of O-modules. There is a natural map
of underlying presheaves of sets

fTlOx 6 — 716
which turns f~1G into a sheaf of f~1O-modules.

Proof. Recall that f~! is defined as the composition of the functor f, and sheafifi-
cation. Thus the lemma is a combination of Lemma [6.24.2] and Lemma [6.20.1l [T

Let f: X — Y be a continuous map. Let Ox be a sheaf of rings on X and let Oy
be a sheaf of rings on Y. So now we have defined functors
fe: Mod(Ox) — Mod(f.Ox)
f71: Mod(Oy) — Mod(f~'Oy)
These satisfy some compatibilities as follows.

Lemma 6.24.7. Let f : X — Y be a continuous map of topological spaces. Let
O be a sheaf of rings on Y. Let G be a sheaf of O-modules. Let F be a sheaf of
f~tO-modules. Then

MorMod(f*IO)(f71g7‘F) = MorMod(O) (g7 f*]:)

Here we use Lemmas [6.24.0] and |6.24.5, and we think of f.F as an O-module by
restriction via O — f,f10O.

Proof. Argue by the equalities

MorMod(f_lo)(f_lgaf) = MorMod(fp(’))(fpgvf>
= MorMod(O)(gvf*]:)'
where the second is Lemmas [6.24.3] and the first is by Lemma 4

Lemma 6.24.8. Let f : X — Y be a continuous map of topological spaces. Let
O be a sheaf of rings on X. Let F be a sheaf of O-modules. Let G be a sheaf of
f+O-modules. Then

MOr p104(0) (O @150 f1G, F) = Mot soa( .0y (G, [+ F)-

Here we use Lemmas|6.24.6 and[6.24.8, and we use the canonical map f~1f.O — O
in the definition of the tensor product.

Proof. This follows from the equalities

Mor pod(0) (O @-11.0 [ G, F)

Mor yoaf-11.0)(f G, Fi-15.0)
Mor azoacf, 0y (G, foF)-
which are a combination of Lemma, [6.20.2] and [6.24.7] O

Let f: X — Y be a continuous map. Let Ox be a (pre)sheaf of rings on X and
let Oy be a (pre)sheaf of rings on Y. So at the moment we have defined functors

f«: PMod(Ox) — PMod(f.Ox)
fe: Mod(Ox) — Mod(f.Ox)
fp: PMod(Oy) — PMod(f,0Oy)
f71: Mod(Oy) — Mod(f~'Oy)
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Clearly, usually the pair of functors (f,, f~1) on sheaves of modules are not adjoint,
because their target categories do not match. Namely, as we saw above, it works
only if by some miracle the sheaves of rings Ox, Oy satisfy the relations Ox =
f~ 'Oy and Oy = f.Ox. This is almost never true in practice. We interrupt the
discussion to define the correct notion of morphism for which a suitable adjoint pair
of functors on sheaves of modules exists.

6.25. Ringed spaces

Let X be a topological space and let Ox be a sheaf of rings on X. We are supposed
to think of the sheaf of rings Ox as a sheaf of functions on X. And if f: X - Y
is a “suitable” map, then by composition a function on Y turns into a function on
X. Thus there should be a natural f-map from Oy to Ox See Definition [6.21.7]
and the remarks in previous sections for terminology. For a precise example, see
Example below. Here is the relevant abstract definition.

Definition 6.25.1. A ringed space is a pair (X, Ox) consisting of a topological
space X and a sheaf of rings Ox on X. A morphism of ringed spaces (X,0x) —
(Y,Oy) is a pair consisting of a continuous map f : X — Y and an f-map of
sheaves of rings f¥: Oy — Ox.

Example| 6.25.2. Let f : X — Y be a continuous map of topological spaces.
Consider the sheaves of continuous real valued functions C% on X and C% on Y, see
Example We claim that there is a natural f-map f* : C) — C% associated
to f. Namely, we simply define it by the rule

(V) — CX(f7V)
h — hof
Strictly speaking we should write f¥(h) = ho flg=1¢vy. It is clear that this is a

family of maps as in Definition and compatible with the R-algebra structures.
Hence it is an f-map of sheaves of R-algebras, see Lemma [6.23.1

Of course there are lots of other situations where there is a canonical morphism of
ringed spaces associated to a geometrical type of morphism. For example, if M, N
are C*°-manifolds and f : M — N is a infinitely differentiable map, then f induces a
canonical morphism of ringed spaces (M, C37) — (N,CS). The construction (which
is identical to the above) is left to the reader.

It may not be completely obvious how to compose morphisms of ringed spaces hence
we spell it out here.

Definition 6.25.3. Let (f, f!) : (X,0x) — (Y,0y) and (g,¢%) : (Y,0y) —
(Z,0z) be morphisms of ringed spaces. Then we define the composition of mor-
phisms of ringed spaces by the rule

(9,9") o (f,f) = (go f, fFogb).
Here we use composition of f-maps defined in Definition [6.21.9]

6.26. Morphisms of ringed spaces and modules

We have now introduced enough notation so that we are able to define the pullback
and pushforward of modules along a morphism of ringed spaces.
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Definition 6.26.1. Let (f, %) : (X,0x) — (Y,0Oy) be a morphism of ringed
spaces.

(1) Let F be a sheaf of Ox-modules. We define the pushforward of F as the
sheaf of Oy-modules which as a sheaf of abelian groups equals f.F and
with module structure given by the restriction via f# : Oy — f.Ox of
the module structure given in Lemma [6.24.5

(2) Let G be a sheaf of Oy-modules. We define the pullback f*G to be the
sheaf of Ox-modules defined by the formula

f*G=0x®10, f7'G

where the ring map f~'0y — Ox is the map corresponding to f*, and
where the module structure is given by Lemma [6.24.6]

Thus we have defined functors
fx: Mod(Ox) — Mod(Oy)
f7i Mod(Oy) — Mod(Ox)
The final result on these functors is that they are indeed adjoint as expected.

Lemma 6.26.2. Let (f, f*): (X,0x) — (Y,0y) be a morphism of ringed spaces.
Let F be a sheaf of Ox-modules. Let G be a sheaf of Oy-modules. There is a
canonical bijection

Homo, (f*G,F) = Homo, (G, f.F).
In other words: the functor f* is the left adjoint to fi.

Proof. This follows from the work we did before:
Homo, (f*G,F) = Mory,iox)(Ox @s-10, f'G,F)
= Mot uoas-104)(f G, Fr-10y)
= Homop, (G, f.F).
Here we use Lemmas and O

Lemma 6.26.3. Let f: X =Y and g: Y — Z be morphisms of ringed spaces.
The functors (g o f)« and g o f. are equal. There is a canonical isomorphism of
functors (go f)* = f*og*.

Proof. The result on pushforwards is a consequence of Lemma and our
definitions. The result on pullbacks follows from this by the same argument as in
the proof of Lemma [6.21.6 ]

Given a morphism of ringed spaces (f, f%) : (X,0x) — (Y,0y), and a sheaf of
Ox-modules F, a sheaf of Oy-modules G on Y, the notion of an f-map ¢ : G — F
of sheaves of modules makes sense. We can just define it as an f-map ¢ : G — F
of abelian sheaves such that for all open V C Y the map

G(V) — F(fv)

is an Oy (V)-module map. Here we think of F(f~'V) as an Oy (V)-module via
the map f‘i} : Oy (V) = Ox(f~1V). The set of f-maps between G and F will be
in canonical bijection with the sets Moroq(0)(f*G, F) and Mor yo4(0y) (G, f+ F)-
See above.
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Composition of f-maps is defined in exactly the same manner as in the case of
f-maps of sheaves of sets. In addition, given an f-map G — F as above, and z € X
the induced map on stalks

is an Oy, f(y)-module map where the Oy, -module structure on F, comes from
the Ox z-module structure via the map fﬁ : Oy fz) = Ox. Here is a related
lemma.

Lemma 6.26.4. Let (f, f*): (X,0x) — (Y,Oy) be a morphism of ringed spaces.
Let G be a sheaf of Oy -modules. Let © € X. Then

(f*G)z = gf(ﬂi) QOy, () Ox .z
as Ox -modules where the tensor product on the right uses fﬁ : Oy,f(x) — Ox -

Proof. This follows from Lemma [6.20.3] and the identification of the stalks of
pullback sheaves at x with the corresponding stalks at f(z). See the formulae in
Section for example. O

6.27. Skyscraper sheaves and stalks

Definition| 6.27.1. Let X be a topological space.

(1) Let € X be a point. Denote i, : {x} — X the inclusion map. Let A be
a set and think of A as a sheaf on the one point space {z}. We call i, A
the skyscraper sheaf at x with value A.

(2) If in (1) above A is an abelian group then we think of i, . A as a sheaf of
abelian groups on X.

(3) Ifin (1) above A is an algebraic structure then we think of i, . A as a sheaf
of algebraic structures.

(4) If (X, Ox) is a ringed space, then we think of i, : {z} — X as a morphism
of ringed spaces ({z}, Ox ) — (X,0Ox) and if A is a Ox y-module, then
we think of i, . A as a sheaf of Ox-modules.

(5) We say a sheaf of sets F is a skyscraper sheaf if there exists an point x of
X and a set A such that F =i, ,A.

(6) We say a sheaf of abelian groups F is a skyscraper sheaf if there exists an
point z of X and an abelian group A such that F = 4, , A as sheaves of
abelian groups.

(7) We say a sheaf of algebraic structures F is a skyscraper sheaf if there
exists an point x of X and an algebraic structure A such that 7 =i, . A
as sheaves of algebraic structures.

(8) If (X, Ox) is a ringed space and F is a sheaf of Ox-modules, then we say
F is a skyscraper sheaf if there exists a point £ € X and a Ox ;-module
A such that F =i, . A as sheaves of Ox-modules.

Lemmal 6.27.2. Let X be a topological space, x € X a point, and A a set. For
any point ¥’ € X the stalk of the skyscraper sheaf at v with value A at =’ is

. A if o e}
Z:L’,*A ! = . Y
R (At
A similar description holds for the case of abelian groups, algebraic structures and
sheaves of modules.
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Proof. Omitted. O

009C Lemma 6.27.3. Let X be a topological space, and let x € X a point. The functors
F = Fy and A — iy A are adjoint. In a formula

MorSets(]:;m A) = MorSh(X) (]:, Zw,*A)
A similar statement holds for the case of abelian groups, algebraic structures. In
the case of sheaves of modules we have

Homox,x ('7:1714) = Homox (-Fv Zm,*A)

Proof. Omitted. Hint: The stalk functor can be seen as the pullback functor for
the morphism i, : {x} — X. Then the adjointness follows from adjointness of i, !
and i, . (resp. i% and i, . in the case of sheaves of modules). O

6.28. Limits and colimits of presheaves

009D Let X be a topological space. Let Z — PSh(X), i — F; be a diagram.
(1) Both lim; F; and colim; F; exist.
(2) For any open U C X we have
(limi ]:Z)(U) = limi ]:z(U)
and
(colim; F3)(U) = colim; F;(U).
(3) Let z € X be a point. In general the stalk of lim; F; at x is not equal

to the limit of the stalks. But if the diagram category is finite then it is
the case. In other words, the stalk functor is left exact (see Categories,

Definition [1.23.1).
(4) Let x € X. We always have

(colim; F;), = colim; F; ,

The proofs are all easy.

6.29. Limits and colimits of sheaves

009E Let X be a topological space. Let T — Sh(X), i — F; be a diagram.

(1) Both lim; F; and colim; F; exist.

(2) The inclusion functor ¢ : Sh(X) — PSh(X) commutes with limits. In
other words, we may compute the limit in the category of sheaves as the
limit in the category of presheaves. In particular, for any open U C X we
have

(3) The inclusion functor i : Sh(X) — PSh(X) does not commute with col-
imits in general (not even with finite colimits — think surjections). The
colimit is computed as the sheafification of the colimit in the category of
presheaves:

#
(MWE:@NMmeWD

(4) Let € X be a point. In general the stalk of lim; F; at x is not equal to
the limit of the stalks. But if the diagram category is finite then it is the
case. In other words, the stalk functor is left exact.
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(5) Let z € X. We always have
(colim; F;), = colim; F;

(6) The sheafification functor # : PSh(X) — Sh(X) commutes with all colim-
its, and with finite limits. But it does not commute with all limits.

The proofs are all easy. Here is an example of what is true for directed colimits of
sheaves.

Lemma 6.29.1. Let X be a topological space. Let I be a directed partially ordered
set. Let (F;, pur) be a system of sheaves of sets over I, see Categories, Section
[£.211 Let U C X be an open subset. Consider the canonical map

U : colim; F;(U) — (colim; F;) (U)

(1) If all the transition maps are injective then W is injective for any open U.

(2) If U is quasi-compact, then W is injective.

(3) If U is quasi-compact and all the transition maps are injective then U is
an isomorphism.

(4) If U has a cofinal system of open coveringsU : U = UjeJ U; with J finite
and U; N Uy quasi-compact for all §,j' € J, then ¥ is bijective.

Proof. Assume all the transition maps are injective. In this case the presheaf
F' 2V s colim; F;(V) is separated (see Definition [6.11.2)). By the discussion above
we have (F')# = colim; F;. By Lemma [6.17.5| we see that ' — (F')# is injective.
This proves (1).

Assume U is quasi-compact. Suppose that s € F;(U) and s’ € F;/(U) give rise to
elements on the left hand side which have the same image under W. Since U is
quasi-compact this means there exists a finite open covering U = i—1.m U; and
for each j an index i; € I, i > i, i; > i’ such that o, (s) = i, (s). Let i € T
be > than all of the i;. We conclude that ¢;;(s) and ¢, (s) agree on the opens
U, for all j and hence that ;v (s) = @7 (s). This proves (2).

Assume U is quasi-compact and all transition maps injective. Let s be an element
of the target of ¥. Since U is quasi-compact there exists a finite open covering
U=Uj-1, . Uj, foreach j an index i; € I and s; € F;;(U;) such that s|y; comes
from s; for all j. Pick ¢ € I which is > than all of the i;. By (1) the sections
@i,i(s;) agree over the overlaps U; N Uj.. Hence they glue to a section s" € F;3(U)
which maps to s under ¥. This proves (3).

Assume the hypothesis of (4). Let s be an element of the target of ¥. By assumption
there exists a finite open covering U = Uj:L__'7m U;, with U; N U quasi-compact
for all j, 5/ € J and for each j an index i; € I and s; € F;,(U;) such that s|y,
is the image of s; for all j. Since U; NUjs is quasi-compact we can apply (2) and
we see that there exists an i;; € I, 455 > 4j, i;5 > 4; such that @i_jijj,(sj) and
@i, (s5) agree over Uy NUy. Choose an index i € I wich is bigger or equal than
all the 7;;,. Then we see that the sections ()Oiji(Sj) of F; glue to a section of F; over
U. This section is mapped to the element s as desired. (I

Example 6.29.2. Let X = {s1, $2,&1,&2,&3,...} as a set. Declare a subset U C X
to be open if s € U or so € U implies U contains all of the &. Let U, =
{&n, &ns1, ...}, and let 4, : U,, — X be the inclusion map. Set F,, = j, +Z. There
are transition maps F,, = Fn11. Let F = colim F,,. Note that F,, ¢, =0if m <n
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because {&,,} is an open subset of X which misses U,,. Hence we see that F¢, =0
for all n. On the other hand the stalk Fg,, ¢ = 1,2 is the colimit
M = colim,, H Z

m>n

which is not zero. We conclude that the sheaf F is the direct sum of the skyscraper
sheaves with value M at the closed points s; and s3. Hence I'(X,F) = M & M.
On the other hand, the reader can verify that colim, I'(X,F,) = M. Hence some
condition is necessary in part (4) of Lemma above.

There is a version of the previous lemma dealing with sheaves on a diagram of
spectral spaces. To state it we introduce some notation. Let Z be a cofiltered index
category. Let ¢ — X; be a diagram of spectral spaces over Z such that for a: j —
in Z the corresponding map f, : X; — X; is spectral. Set X = lim X; and denote
pi : X — X; the projection.

Lemma 6.29.3. In the situation described above, let i € Ob(Z) and let G be a
sheaf on X;. For U; C X; quasi-compact open we have

p; G p; (Uy)) = colimg.jy; £ G(f 1 (UY))

Proof. Let us prove the canonical map colimg.;; f; 'G(f7*(U;)) — p; 'G(p; (Uh))
is injective. Let s,s’ be sections of f G over f.1(U;) for some a : j — i. For
b:k— jlet Z, C f,;(U;) be the closed subset of points = such that the image
of s and s’ in the stalk (f,;G), are different. If Zj is nonempty for all b : k — j,
then by Topology, Lemma, we see that limy.y_,; Z; is nonempty too. Then
for z € limp.x—; Z C X (observe that Z/j — 7 is initial) we see that the image
of s and s’ in the stalk of p; 'G at x are different too since (p; 'G), = (fl;;g)m(z)
for all b: k — j as above. Thus if the images of s and s in p; 'G(p; }(U;)) are the
same, then Z; is empty for some b : k — j. This proves injectivity.

Surjectivity. Let s be a section of p; 'G over p; ' (U;). By Topology, Lemma
the set p; 1(U¢) is a quasi-compact open of the spectral space X. By construction
of the pullback sheaf, we can find an open covering p{l(Ui) = Uier Wi, opens
Vii C X, sections s;; € G(Vi;) such that p;(W;) C V;; and pi_lsl,i|wl = slw,.
Because X and X are spectral and p; 1(Ui) is quasi-compact open, we may assume
L is finite and W; and V} ; quasi-compact open for all {. Then we can apply Topology,
Lemma to find a : j — 4 and open covering f, 1(U;) = Uier Wi by quasi-
compact opens whose pullback to X is the covering pi_l(Ui) = Ujer, Wi and such
that moreover Wy ; C fafl(‘/},i). Write s; ; the restriction of the pullback of s;; by
fa to Wy ;. Then we see that s; ; and sy ; restrict to elements of (f;lg)(Wl,ijl/,j)
which pullback to the same element (p; 'G)(W; N Wy/), namely, the restriction of s.
Hence by injectivity, we can find b : £k — j such that the sections fbflsl,j glue to a
section over f,}(U;) as desired. O

Next, in addition to the cofiltered system X; of spectral spaces, assume given

(1) a sheaf F; on X; for all i € Ob(Z),
(2) for a:j —ian fo-map @4 : F; — F;

such that ¢, = ¢y 0 p, whenever c =aob. Set F = colimpi_l]-',; on X.


http://stacks.math.columbia.edu/tag/0A32

0A33

009H

0091

009J

6.30. BASES AND SHEAVES 250

Lemma 6.29.4. In the situation described above, let i € Ob(T) and let U; C X;
be a quasi-compact open. Then

COlima:j—)i f](fa_l(U’L)) = ‘F(p;1<Ul))

Proof. Recall that p; 1(Ui) is a quasi-compact open of the spectral space X, see
Topology, Lemma [5.23.5] Hence Lemma [6.29.1] applies and we have

Fp;y (Uy) = COhma:j—)ipj_lfj(pi_l(Ui))~
A formal argument shows that
colimg.j_y; fj(fa_l(Ui)) = colimg.j_,; colimp.j—y fljlfj(f(;i(Ui))
Thus it suffices to show that
p; ' Fi(pi (U3)) = colimpgj fo ' Fj(fauy(Us))
This is Lemma applied to F; and the quasi-compact open f, *(U;). |

6.30. Bases and sheaves

Sometimes there exists a basis for the topology consisting of opens that are easier
to work with than general opens. For convenience we give here some definitions and
simple lemmas in order to facilitate working with (pre)sheaves in such a situation.

Definition 6.30.1. Let X be a topological space. Let B be a basis for the topology
on X.

(1) A presheaf F of sets on B is a rule which assigns to each U € B a set F(U)
and to each inclusion V' C U of elements of B a map p¥ : F(U) — F(V)
such that whenever W C V C U in B we have pY, = p}j; o p{/.

(2) A morphism ¢ : F — G of presheaves of sets on B is a rule which assigns
to each element U € B a map of sets ¢ : F(U) — G(U) compatible with
restriction maps.

As in the case of usual presheaves we use the terminology of sections, restrictions
of sections, etc. In particular, we may define the stalk of F at a point z € X by
the colimit

Fy = colimpyep zev F(U).

As in the case of the stalk of a presheaf on X this limit is directed. The reason is
that the collection of U € B, x € U is a fundamental system of open neighbourhoods
of z.

It is easy to make examples to show that the notion of a presheaf on X is very
different from the notion of a presheaf on a basis for the topology on X. This does
not happen in the case of sheaves. A much more useful notion therefore, is the
following.

Definition 6.30.2. Let X be a topological space. Let B be a basis for the topology
on X.
(1) A sheaf F of sets on B is a presheaf of sets on B which satisfies the
following additional property: Given any U € B, and any covering U =
Uies Us with U; € B, and any coverings U; NU; = Ukelij Uijr with U;ji, €
B the sheaf condition holds:
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(%) For any collection of sections s; € F(U;), ¢ € I such that Vi,j € I,
Vk € I;
SiIUijk = Sj‘Ui,jk
there exists a unique section s € F(U) such that s; = s|y, for all
1el.
(2) A morphism of sheaves of sets on B is simply a morphism of presheaves
of sets.

First we explain that it suffices to check the sheaf condition (*+*) on a cofinal system
of coverings. In the situation of the definition, suppose U € B. Let us temporarily
denote Covg(U) the set of all coverings of U by elements of B. Note that Covg(U)
is partially ordered by refinement. A subset C C Covg(U) is a cofinal system, if
for every U € Covg(U) there exists a covering V € C which refines U.

Lemma 6.30.3. With notation as above. For each U € B, let C(U) C Couvg(U)
be a cofinal system. For each U € B, and eachU : U = JU; in C(U), let coverings
Uij - U;NU; = JUijk, Usji € B be given. Let F be a presheaf of sets on B. The
following are equivalent
(1) The presheaf F is a sheaf on B.
(2) For every U € B and every covering U : U = |JU; in C(U) the sheaf
condition (xx) holds (for the given coverings U;; ).

Proof. We have to show that (2) implies (1). Suppose that U € B, and that
U : U = ;e Ui is an arbitrary covering by elements of B. Because the system
C(U) is cofinal we can find an element V : U = (J,c; V; in C(U) which refines U.
This means there exists a map a : J — I such that V; C Ugyy.

Note that if s, s’ € F(U) are sections such that s|y, = §'|v,, then
slv, = (Slua)lv; = (8'uagy)lv; = 8'lv;

for all j. Hence by the uniqueness in (xx) for the covering V we conclude that
s = s'. Thus we have proved the uniqueness part of (xx) for our arbitrary covering

u.

Suppose furthermore that U;NUy = |, cr.., Uik are arbitrary coverings by Ui €
B. Let us try to prove the existence part of (sx) for the system (U,U;;). Thus let
s; € F(U;) and suppose we have

SilU = iU,

for all 4,i", k. Set t; = so(;)|v,, where V and « are as above.

There is one small kink in the argument here. Namely, let V;; @ V; NVy =
Uies , Vijn be the covering given to us by the statement of the lemma. It is not a
73

priori clear that
tilvn = tir vy,
for all j,4',1. To see this, note that we do have
tilw =ty |w for all W e B,W C Vjjn N Uqsjya(n)k
for all & € I,(j)a(jr), by our assumption on the family of elements s;. And since

VNV C Uqy) NUqyry We see that t.j|‘/jj/l and tj/\vjj,l agree on the members of a
covering of Vj;, by elements of B. Hence by the uniqueness part proved above we
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finally deduce the desired equality of |y, , and ¢;|v, . Then we get the existence
of an element ¢ € F(U) by property (xx) for (V,V;;).

Again there is a small snag. We know that ¢ restricts to ¢; on V; but we do not yet
know that ¢ restricts to s; on U;. To conclude this note that the sets U; NV}, j € J
cover U;. Hence also the sets Ujo(j)x NVj, J € J, k € L) cover U;. We leave it
to the reader to see that ¢ and s; restrict to the same section of F on any W € B
which is contained in one of the open sets Ujo(jyx NV}, j € J, k € Lin(;). Hence by
the uniqueness part seen above we win.

Lemma 6.30.4. Let X be a topological space. Let B be a basis for the topology
on X. Assume that for every pair U,U’ € B we have UNU' € B. For each U € B,
let C(U) C Coug(U) be a cofinal system. Let F be a presheaf of sets on B. The
following are equivalent

(1) The presheaf F is a sheaf on B.

(2) For every U € B and every coveringU : U = JU; in C(U) and for every
family of sections s; € F(U;) such that s; U;nU; = Sjlu,nu; there exists a
unique section s € F(U) which restricts to s; on U;.

Proof. This is a reformulation of Lemma [6.30.3] above in the special case where
the coverings U;; each consist of a single element. But also this case is much easier
and is an easy exercise to do directly. O

Lemma 6.30.5. Let X be a topological space. Let B be a basis for the topology
on X. Let U € B. Let F be a sheaf of sets on B. The map

F) =11,

identifies F(U) with the elements (s;)zcu with the property

(¥) For any x € U there exists a V € B, x € V and a section o € F(V) such
that for all y € V we have s, = (V,0) in Fy.

Proof. First note that the map F(U) — [] ¢ Fu is injective by the uniqueness
in the sheaf condition of Definition Let (s;) be any element on the right
hand side which satisfies (x). Clearly this means we can find a covering U = |J U,
U, € B such that (s;)zey, comes from certain o; € F(U;). For every y € U;NU; the
sections ¢; and o; agree in the stalk F,. Hence there exists an element V;;, € B,
y € Vijy such that o]y, = oj|v;,,. Thus the sheaf condition (*) of Definition
applies to the system of o; and we obtain a section s € F(U) with the desired
property. ([

Let X be a topological space. Let B be a basis for the topology on X. There is a
natural restriction functor from the category of sheaves of sets on X to the category
of sheaves of sets on B. It turns out that this is an equivalence of categories. In
down to earth terms this means the following.

Lemma 6.30.6. Let X be a topological space. Let B be a basis for the topology on
X. Let F be a sheaf of sets on B. There exists a unique sheaf of sets Fé*t on X
such that Fe**(U) = F(U) for all U € B compatibly with the restriction mappings.

Proof. We first construct a presheaf F¢** with the desired property. Namely, for
an arbitrary open U C X we define F**(U) as the set of elements (s;),ecr such that
(x) of Lemma [6.30.5| holds. It is clear that there are restriction mappings that turn
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Fe® into a presheaf of sets. Also, by Lemma [6.30.5| we see that F(U) = F*(U)
whenever U is an element of the basis B. To see F¢*! is a sheaf one may argue as
in the proof of Lemma [6.17.1 (]

Note that we have

Fp = Feot
in the situation of the lemma. This is so because the collection of elements of B
containing x forms a fundamental system of open neighbourhoods of .

Lemma 6.30.7. Let X be a topological space. Let B be a basis for the topology
on X. Denote Sh(B) the category of sheaves on B. There is an equivalence of
categories

Sh(X) — Sh(B)
which assigns to a sheaf on X its restriction to the members of B.

Proof. The inverse functor in given in Lemma [6.30.6| above. Checking the obvious
functorialities is left to the reader. O

This ends the discussion of sheaves of sets on a basis B. Let (C, F') be a type of
algebraic structure. At the end of this section we would like to point out that the
constructions above work for sheaves with values in C. Let us briefly define the
relevant notions.

Definition 6.30.8. Let X be a topological space. Let B be a basis for the topology
on X. Let (C, F) be a type of algebraic structure.

(1) A presheaf F with values in C on B is a rule which assigns to each U € B
an object F(U) of C and to each inclusion V' C U of elements of B a
morphism pY : F(U) — F(V) in C such that whenever W C V C U in B
we have pYj, = pl}; o p¥/.

(2) A morphism ¢ : F — G of presheaves with values in C on B is a rule
which assigns to each element U € B a morphism of algebraic structures
¢ : F(U) = G(U) compatible with restriction maps.

(3) Given a presheaf F with values in C on B we say that U — F(F(U)) is
the underlying presheaf of sets.

(4) A sheaf F with values in C on B is a presheaf with values in C on B whose
underlying presheaf of sets is a sheaf.

At this point we can define the stalk at x € X of a presheaf with values in C on B
as the directed colimit

Fy = colimpyep zecv F(U).
It exists as an object of C because of our assumptions on C. Also, we see that the
underlying set of F, is the stalk of the underlying presheaf of sets on B.

Note that Lemmas [6.30.0} [6.30.4] and [6.30.5] refer to the sheaf property which we
have defined in terms of the associated presheaf of sets. Hence they generalize
without change to the notion of a presheaf with values in C. The analogue of
Lemma need some care. Here it is.

Lemma 6.30.9. Let X be a topological space. Let (C,F) be a type of algebraic
structure. Let B be a basis for the topology on X. Let F be a sheaf with values
in C on B. There exists a unique sheaf F°*' with values in C on X such that
Fet(U) = F(U) for all U € B compatibly with the restriction mappings.
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Proof. By the conditions imposed on the pair (C, F') it suffices to come up with
a presheaf 7¢** which does the correct thing on the level of underlying presheaves
of sets. Thus our first task is to construct a suitable object F**(U) for all open
U C X. We could do this by imitating Lemma [6.18.1]in the setting of presheaves on
B. However, a slightly different method (but basically equivalent) is the following:
Define it as the directed colimit

FH(U) := colimy FIB(U)
U; by U; € B of the fibre product

FIBU) [Lcv Fe

| |

HiGI]:(Ui) - Hiel HIGUi Fa

By the usual arguments, see Lemma and Example [6.15.5] it suffices to show
that this construction on underlying sets is the same as the definition using (xx)
above. Details left to the reader. O

over all coverings U : U = J,¢;

Note that we have

Fp = Fet
as objects in C in the situation of the lemma. This is so because the collection of
elements of B containing x forms a fundamental system of open neighbourhoods of
x.

Lemmal 6.30.10. Let X be a topological space. Let B be a basis for the topology
on X. Let (C,F) be a type of algebraic structure. Denote Sh(BB,C) the category of
sheaves with values in C on B. There is an equivalence of categories

Sh(X,C) — Sh(B,C)
which assigns to a sheaf on X its restriction to the members of B.

Proof. The inverse functor in given in Lemma [6.30.9]above. Checking the obvious
functorialities is left to the reader. ]

Finally we come to the case of (pre)sheaves of modules on a basis. We will use the
easy fact that the category of presheaves of sets on a basis has products and that
they are described by taking products of values on elements of the bases.

Definition 6.30.11. Let X be a topological space. Let B be a basis for the
topology on X. Let O be a presheaf of rings on B.

(1) A presheaf of O-modules F on B is a presheaf of abelian groups on B
together with a morphism of presheaves of sets O x F — F such that for
all U € B the map O(U) x F(U) — F(U) turns the group F(U) into an
O(U)-module.

(2) A morphism ¢ : F — G of presheaves of O-modules on B is a morphism of
abelian presheaves on B which induces an O(U)-module homomorphism
F(U)— G(U) for every U € B.

(3) Suppose that O is a sheaf of rings on B. A sheaf F of O-modules on B is a
presheaf of O-modules on B whose underlying presheaf of abelian groups
is a sheaf.
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We can define the stalk at x € X of a presheaf of O-modules on B as the directed
colimit

Fy = colimyep gev F(U).
It is a Oz-module.

Note that Lemmas [6.90.0} [6.30.4] and [6.30.5] refer to the sheaf property which we
have defined in terms of the associated presheaf of sets. Hence they generalize
without change to the notion of a presheaf of O-modules. The analogue of Lemma

[6.30.6] is as follows.

Lemmal 6.30.12. Let X be a topological space. Let O be a sheaf of rings on B.
Let B be a basis for the topology on X. Let F be a sheaf with values in C on B. Let
Ot be the sheaf of rings on X extending O and let Fé*t be the abelian sheaf on
X extending F, see Lemma|06.30.9 There exists a canonical map

Oewt X ]_-e;ct ]_-ewt

which agrees with the given map over elements of B and which endows F¢*t with
the structure of an O°“t-module.

Proof. It suffices to construct the multiplication map on the level of presheaves of
sets. Perhaps the easiest way to see this is to prove directly that if (f,)zev, fo € Ox
and (Mmg)zer, My € Fy satisfy (x), then the element (f,m,).cu also satisfies (x).
Then we get the desired result, because in the proof of Lemma, we construct
the extension in terms of families of elements of stalks satisfying (x). g

Note that we have

Fp = Feot
as O -modules in the situation of the lemma. This is so because the collection of
elements of B containing x forms a fundamental system of open neighbourhoods of
x, or simply because it is true on the underlying sets.

Lemma 6.30.13. Let X be a topological space. Let B be a basis for the topology
on X. Let O be a sheaf of rings on X. Denote Mod(O|g) the category of sheaves
of O|g-modules on B. There is an equivalence of categories

Mod(O) — Mod(O|p)
which assigns to a sheaf of O-modules on X its restriction to the members of B.

Proof. The inverse functor in given in Lemmal[6.30.12]above. Checking the obvious
functorialities is left to the reader. O

Finally, we address the question of the relationship of this with continuous maps.
This is now very easy thanks to the work above. First we do the case where there
is a basis on the target given.

Lemma 6.30.14. Let f: X — Y be a continuous map of topological spaces. Let
(C,F) be a type of algebraic structures. Let F be a sheaf with values in C on X.
Let G be a sheaf with values in C on Y. Let B be a basis for the topology on Y .
Suppose given for every V € B a morphism

pv :G(V) — F(f7V)

of C compatible with restriction mappings. Then there is a unique f-map (see

Definition and discussion of f-maps in Section[6.25) ¢ : G — F recovering
oy forV e B.
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Proof. This is trivial because the collection of maps amounts to a morphism be-
tween the restrictions of G and f,F to B. By Lemma this is the same as
giving a morphism from G to f.F, which by Lemma|[6.21.8]is the same as an f-map.
See also Lemma [6.23.1] and the discussion preceding it for how to deal with the case
of sheaves of algebraic structures. O

Here is the analogue for ringed spaces.

Lemma 6.30.15. Let (f, f*) : (X,0x) — (Y,Oy) be a morphism of ringed spaces.
Let F be a sheaf of Ox-modules. Let G be a sheaf of Oy -modules. Let B be a basis
for the topology on'Y . Suppose given for every V € B a Oy (V)-module map

pv 1 G(V) — F(f71V)

(where F(f~'V) has a module structure using f& : Oy (V) = Ox(f~V)) com-
patible with restriction mappings. Then there is a unique f-map (see discussion of
f-maps in Section @ : G — F recovering py for'V € B.

Proof. Same as the proof of the corresponding lemma for sheaves of algebraic
structures above. (]

Lemma 6.30.16. Let f: X — Y be a continuous map of topological spaces. Let
(C, F) be a type of algebraic structures. Let F be a sheaf with values in C on X . Let
G be a sheaf with values in C on Y. Let By be a basis for the topology on Y. Let
Bx be a basis for the topology on X. Suppose given for every V € By, and U € Bx
such that f(U) C V' a morphism

¢y G(V) — F(U)
of C compatible with restriction mappings. Then there is a unique f-map (see Def-

inition and the discussion of f-maps in Section ¢ : G — F recovering
oY as the composition

G(V) =% F(f7H(V) 5 F(U)
for every pair (U, V) as above.

Proof. Let us first proves this for sheaves of sets. Fix V' C Y open. Pick s € G(V).
We are going to construct an element ¢y (s) € F(f~1V). We can define a value
©(s), in the stalk F, for every # € f~1V by picking a U € Bx withz € U C f~1V
and setting ¢(s), equal to the equivalence class of (U, % (s)) in the stalk. Clearly,
the family (¢(s)z)ze p-1v satisfies condition (x) because the maps ¢ for varying U
are compatible with restrictions in the sheaf F. Thus, by the proof of Lemma[6.30.6
we see that (¢(s)g)zef-11 corresponds to a unique element oy (s) of F(f~1V).

Thus we have defined a set map oy : G(V) — F(f~1V). The compatibility between
ov and @Y follows from Lemma [6.30.5

We leave it to the reader to show that the construction of ¢y is compatible with
restriction mappings as we vary v € By. Thus we may apply Lemma [6.30.14] above
to “glue” them to the desired f-map.

Finally, we note that the map of sheaves of sets so constructed satisfies the property
that the map on stalks

Gi@) — Fa
is the colimit of the system of maps !, as V € By varies over those elements that
contain f(x) and U € Bx varies over those elements that contain z. In particular,
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if G and F are the underlying sheaves of sets of sheaves of algebraic structures, then
we see that the maps on stalks is a morphism of algebraic structures. Hence we
conclude that the associated map of sheaves of underlying sets f~1G — F satisfies
the assumptions of Lemma We conclude that f~'G — F is a morphism
of sheaves with values in C. And by adjointness this means that ¢ is an f-map of
sheaves of algebraic structures. O

Lemma/6.30.17. Let (f, f*) : (X,0x) — (Y, Oy) be a morphism of ringed spaces.
Let F be a sheaf of Ox-modules. Let G be a sheaf of Oy -modules. Let By be a
basis for the topology on'Y . Let Bx be a basis for the topology on X. Suppose given
for every V € By, and U € Bx such that f(U) CV a Oy (V)-module map

oy 1 G(V) — F(U)

compatible with restriction mappings. Here the Oy (V)-module structure on F(U)
comes from the Ox (U)-module structure via the map f‘ﬁ/ 0y (V) = Ox(f7V) —
Ox (U). Then there is a unique f-map of sheaves of modules (see Definition[6.21.7]
and the discussion of f-maps in Section ¢ G — F recovering oY as the
composition

G(V) =% F(f7H(V)) 755 F(U)
for every pair (U, V) as above.

Proof. Similar to the above and omitted. O

6.31. Open immersions and (pre)sheaves

Let X be a topological space. Let j : U — X be the inclusion of an open subset U
into X. In Section we have defined functors j, and j~! such that j, is right
adjoint to 7. It turns out that for an open immersion there is a left adjoint for
51, which we will denote j;. First we point out that j~! has a particularly simple
description in the case of an open immersion.

Lemmal 6.31.1. Let X be a topological space. Let j : U — X be the inclusion of
an open subset U into X.

(1) Let G be a presheaf of sets on X. The presheaf j,G (see Section is
given by the rule V +— G(V) for V.C U open.

(2) Let G be a sheaf of sets on X. The sheaf j~'G is given by the rule V
G(V) for V.C U open.

(3) For any point u € U and any sheaf G on X we have a canonical identifi-
cation of stalks

j_lgu - (g|U)u - gu
(4) On the category of presheaves of U we have jpj. = id.
(5) On the category of sheaves of U we have j~1j. = id.

The same description holds for (pre)sheaves of abelian groups, (pre)sheaves of al-
gebraic structures, and (pre)sheaves of modules.

Proof. The colimit in the definition of j,G(V) is over collection of all W C X open
such that V' C W ordered by reverse inclusion. Hence this has a largest element,
namely V. This proves (1). And (2) follows because the assignment V +— G(V) for
V' C U open is clearly a sheaf if G is a sheaf. Assertion (3) follows from (2) since
the collection of open neighbourhoods of w which are contained in U is cofinal in
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the collection of all open neighbourhoods of u in X. Parts (4) and (5) follow by
computing j 1. F(V) = j. F(V) = F(V).

The exact same arguments work for (pre)sheaves of abelian groups and (pre)sheaves
of algebraic structures. O

00A1 Definition/6.31.2. Let X be a topological space. Let j : U — X be the inclusion
of an open subset.

(1) Let G be a presheaf of sets, abelian groups or algebraic structures on X.
The presheaf j,G described in Lemma[6.31.1]is called the restriction of G
to U and denoted G|y .

(2) Let G be a sheaf of sets on X, abelian groups or algebraic structures on
X. The sheaf j=1G is called the restriction of G to U and denoted G| .

(3) If (X, 0) is a ringed space, then the pair (U, O|y) is called the open sub-
space of (X, 0) associated to U.

(4) If G is a presheaf of O-modules then G|y together with the multiplication

map Oly X Glu — G|y (see Lemma [6.24.6) is called the restriction of G
to U.

We leave a definition of the restriction of presheaves of modules to the reader. Ok,
so in this section we will discuss a left adjoint to the restriction functor. Here is
the definition in the case of (pre)sheaves of sets.

00A2 |Definition/6.31.3. Let X be a topological space. Let j : U — X be the inclusion
of an open subset.
(1) Let F be a presheaf of sets on U. We define the extension of F by the
empty set joiF to be the presheaf of sets on X defined by the rule

. [0 i VgU
J“Hw_{fw)ﬁ Vcu

with obvious restriction mappings.
(2) Let F be a sheaf of sets on U. We define the extension of F by the empty
set jiF to be the sheafification of the presheaf j,F.

00A3 |Lemmal 6.31.4. Let X be a topological space. Let j : U — X be the inclusion of
an open subset.

(1) The functor jy is a left adjoint to the restriction functor j, (see Lemma

3T,

(2) The functor jy is a left adjoint to restriction, in a formula
Mor gy x) (i1 F, G) = Mor gy (F, 571 G) = Morgpn (F, Glv)

bifunctorially in F and G.
(3) Let F be a sheaf of sets on U. The stalks of the sheaf ) F are described

as follows
L~ 0 if x¢U
ﬂﬂ_{a if veU

(4) On the category of presheaves of U we have jpjp = id.
(5) On the category of sheaves of U we have j~1j = id.
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Proof. To map j,F into G it is enough to map F(V) — G(V) whenever V. C U
compatibly with restriction mappings. And by Lemma [6.31.1] the same description
holds for maps F — G|y. The adjointness of j; and restriction follows from this
and the properties of sheafification. The identification of stalks is obvious from the
definition of the extension by the empty set and the definition of a stalk. Statements
(4) and (5) follow by computing the value of the sheaf on any open of U. O

Note that if F is a sheaf of abelian groups on U, then in general jF as defined
above, is not a sheaf of abelian groups, for example because some of its stalks are
empty (hence not abelian groups for sure). Thus we need to modify the definition
of ji depending on the type of sheaves we consider. The reason for choosing the
empty set in the definition of the extension by the empty set, is that it is the initial
object in the category of sets. Thus in the case of abelian groups we use 0 (and
more generally for sheaves with values in any abelian category).

Definition 6.31.5. Let X be a topological space. Let j : U — X be the inclusion
of an open subset.

(1) Let F be an abelian presheaf on U. We define the extension j,F of F by
0 to be the abelian presheaf on X defined by the rule

) (0 if VgU
JP’F(V)_{I(V) if VcU

with obvious restriction mappings.

(2) Let F be an abelian sheaf on U. We define the extension jF of F by 0
to be the sheafification of the abelian presheaf jj,F.

(3) Let C be a category having an initial object e. Let F be a presheaf on
U with values in C. We define the extension j,F of F by e to be the
presheaf on X with values in C defined by the rule

) _ e it VgU
V) = {J—'(V) if VcU

with obvious restriction mappings.

(4) Let (C, F) be a type of algebraic structure such that C has an initial object
e. Let F be a sheaf of algebraic structures on U (of the give type). We
define the extension j F of F by e to be the sheafification of the presheaf
JptF defined above.

(5) Let O be a presheaf of rings on X. Let F be a presheaf of O|y-modules.
In this case we define the extension by 0 to be the presheaf of O-modules
which is equal to j,F as an abelian presheaf endowed with the multipli-
cation map O X jp F = jpF.

(6) Let O be a sheaf of rings on X. Let F be a sheaf of O|y-modules. In this
case we define the extension by 0 to be the O-module which is equal to jF
as an abelian sheaf endowed with the multiplication map O x jiF — jiF.

It is true that one can define j in the setting of sheaves of algebraic structures (see
below). However, it depends on the type of algebraic structures involved what the
resulting object is. For example, if O is a sheaf of rings on U, then ji ;ingsO #
J1,abetian O since the initial object in the category of rings is Z and the initial object
in the category of abelian groups is 0. In particular the functor j, does not commute
with taking underlying sheaves of sets, in contrast to what we have seen so far! We
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separate out the case of (pre)sheaves of abelian groups, (pre)sheaves of algebraic
structures and (pre)sheaves of modules as usual.

Lemma 6.31.6. Let X be a topological space. Let j : U — X be the inclusion of
an open subset. Consider the functors of restriction and extension by 0 for abelian
(pre)sheaves.

(1) The functor jp is a left adjoint to the restriction functor j, (see Lemma

L),

(2) The functor jy is a left adjoint to restriction, in a formula

Mor ap(x) (1 F, G) = Mor a1y (F, 57 G) = Mor a1y (F, Glv)
bifunctorially in F and G.
(3) Let F be an abelian sheaf on U. The stalks of the sheaf jiF are described

as follows
. _J o i xz&U
ﬂﬁ—{a if zeU
(4) On the category of abelian presheaves of U we have jpj, = id.
(5) On the category of abelian sheaves of U we have j~1j = id.

Proof. Omitted. O

Lemma 6.31.7. Let X be a topological space. Let j : U — X be the inclusion of
an open subset. Let (C, F) be a type of algebraic structure such that C has an initial
object e. Consider the functors of restriction and extension by e for (pre)sheaves
of algebraic structure defined above.

(1) The functor jp is a left adjoint to the restriction functor j, (see Lemma

L),

(2) The functor jy is a left adjoint to restriction, in a formula

Mor i, x,¢) (1 F, G) = Morgy,c) (F. i 'G) = Morgw.e)(F,Glv)
bifunctorially in F and G.
(3) Let F be a sheaf on U. The stalks of the sheaf jiF are described as follows
. _Je if x¢U
“5_{5 if veU
(4) On the category of presheaves of algebraic structures on U we have jpjp =
id.
(5) On the category of sheaves of algebraic structures on U we have j~'j, = id.

Proof. Omitted. O

Lemma 6.31.8. Let (X,0) be a ringed space. Let j : (U, Oly) — (X,0) be
an open subspace. Consider the functors of restriction and extension by 0 for
(pre)sheaves of modules defined above.

(1) The functor jp is a left adjoint to restriction, in a formula
Mor prod(0) (JptF> G) = Mor parod(o) (F, Glu)
bifunctorially in F and G.
(2) The functor jy is a left adjoint to restriction, in a formula
Mor proa(0) (1F, G) = Mot yoao)) (F, Glu)
bifunctorially in F and G.
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(3) Let F be a sheaf of O-modules on U. The stalks of the sheaf jiF are
described as follows

.~ [0 if x¢U
Jlfw—{fm if el

(4) On the category of sheaves of O|y-modules on U we have j~1jy = id.
Proof. Omitted. U

Note that by the lemmas above, both the functors j. and j; are fully faithful
embeddings of the category of sheaves on U into the category of sheaves on X. It
is only true for the functor j; that one can easily describe the essential image of
this functor.

Lemma 6.31.9. Let X be a topological space. Let j : U — X be the inclusion of
an open subset. The functor

gi s SKU) — Sh(X)
is fully faithful. Its essential image consists exactly of those sheaves G such that
G =0 forallze X \U.

Proof. Fully faithfulness follows formally from j~'j; = id. We have seen that any
sheaf in the image of the functor has the property on the stalks mentioned in the
lemma. Conversely, suppose that G has the indicated property. Then it is easy to
check that

TG =G
is an isomorphism on all stalks and hence an isomorphism. U
Lemma 6.31.10. Let X be a topological space. Let j: U — X be the inclusion of
an open subset. The functor
g Ab(U) — Ab(X)

is fully faithful. Its essential image consists exactly of those sheaves G such that
Gy, =0 forallze X\U.

Proof. Omitted. (|

Lemma 6.31.11. Let X be a topological space. Let j: U — X be the inclusion of
an open subset. Let (C, F) be a type of algebraic structure such that C has an initial
object e. The functor

gi: SMU,C) — Sh(X,C)
is fully faithful. Its essential image consists exactly of those sheaves G such that
G, =€ forallz e X\U.
Proof. Omitted. O

Lemma 6.31.12. Let (X,0) be a ringed space. Let j : (U, Oly) — (X,0) be an
open subspace. The functor

Ji : Mod(Oly) — Mod(O)

is fully faithful. Its essential image consists exactly of those sheaves G such that
G, =0 forallz e X\U.

Proof. Omitted. O
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Remark| 6.31.13. Let j: U — X be an open immersion of topological spaces as
above. Let x € X, x € U. Let F be a sheaf of sets on U. Then F, = () by Lemma
Hence 7 does not transform a final object of SK(U) into a final object of
Sh(X) unless U = X. According to our conventions in Categories, Section [1.23|
this means that the functor ji is not left exact as a functor between the categories
of sheaves of sets. It will be shown later that j, on abelian sheaves is exact, see

Modules, Lemma

6.32. Closed immersions and (pre)sheaves

Let X be a topological space. Let i : Z — X be the inclusion of a closed subset Z
into X. In Section we have defined functors 4, and i~' such that i, is right
adjoint to i~ 1.
Lemma 6.32.1. Let X be a topological space. Let i : Z — X be the inclusion of
a closed subset Z into X. Let F be a sheaf of sets on Z. The stalks of i.F are
described as follows

. =} f xz¢Z

Z*ff_{a if €2
where {x} denotes a singleton set. Moreover, i~Yi, = id on the category of sheaves
of sets on Z. Moreover, the same holds for abelian sheaves on Z, resp. sheaves of
algebraic structures on Z where {*} has to be replaced by 0, resp. a final object of
the category of algebraic structures.

Proof. If x ¢ Z, then there exist arbitrarily small open neighbourhoods U of z
which do not meet Z. Because F is a sheaf we have F(i~1(U)) = {x} for any such
U, see Remark This proves the first case. The second case comes from the
fact that for z € Z any open neighbourhood of z is of the form ZNU for some open
U of X. For the statement that i~ '4, = id consider the canonical map i~ 14, F — F.
This is an isomorphism on stalks (see above) and hence an isomorphism.

For sheaves of abelian groups, and sheaves of algebraic structures you argue in the
same manner. O

Lemma 6.32.2. Let X be a topological space. Let i : Z — X be the inclusion of
a closed subset. The functor

ix 1 Sh(Z) — Sh(X)
is fully faithful. Its essential image consists exactly of those sheaves G such that
Gy ={*} forallz e X\ Z.

Proof. Fully faithfulness follows formally from i~'4, = id. We have seen that any

sheaf in the image of the functor has the property on the stalks mentioned in the
lemma. Conversely, suppose that G has the indicated property. Then it is easy to
check that

G—ii'G

is an isomorphism on all stalks and hence an isomorphism. (I

Lemma 6.32.3. Let X be a topological space. Leti: Z — X be the inclusion of
a closed subset. The functor

i Ab(Z) — Ab(X)
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is fully faithful. Its essential image consists exactly of those sheaves G such that
G.=0 forallz e X\ Z.

Proof. Omitted. (]

Lemma 6.32.4. Let X be a topological space. Let i : Z — X be the inclusion of
a closed subset. Let (C,F) be a type of algebraic structure with final object 0. The
functor

ix : SWZ,C) — SKX,C)
is fully faithful. Its essential image consists exactly of those sheaves G such that
Go=0 forallz e X\ Z.

Proof. Omitted. ]

Remark| 6.32.5. Let ¢ : Z — X be a closed immersion of topological spaces
as above. Let x € X, © ¢ Z. Let F be a sheaf of sets on Z. Then (i,F), =
{*} by Lemma Hence if F = * I %, where * is the singleton sheaf, then
ixFe = {*} # i.(%)p L ix(x), because the latter is a two point set. According to
our conventions in Categories, Section this means that the functor 7, is not
right exact as a functor between the categories of sheaves of sets. In particular, it
cannot have a right adjoint, see Categories, Lemma [4.24.5]

On the other hand, we will see later (see Modules, Lemma|17.6.3)) that i, on abelian
sheaves is exact, and does have a right adjoint, namely the functor that associates
to an abelian sheaf on X the sheaf of sections supported in Z.

Remark| 6.32.6. We have not discussed the relationship between closed immer-
sions and ringed spaces. This is because the notion of a closed immersion of ringed
spaces is best discussed in the setting of quasi-coherent sheaves, see Modules, Sec-
tion

6.33. Glueing sheaves

In this section we glue sheaves defined on the members of a covering of X. We first
deal with maps.

Lemma 6.33.1. Let X be a topological space. Let X = |JU; be an open covering.
Let F, G be sheaves of sets on X. Given a collection

901]:

of maps of sheaves such that for all i,j € I the maps ;, p; restrict to the same
map -7:|UmUj — g|Uint then there exists a unique map of sheaves

v, — G

U;

p: F—G
whose restriction to each U; agrees with ;.

Proof. Omitted. O

The previous lemma implies that given two sheaves F, G on the topological space
X the rule

U+ Mor gy (Flu, Glu)
defines a sheaf. This is a kind of internal hom sheaf. It is seldom used in the
setting of sheaves of sets, and more usually in the setting of sheaves of modules,
see Modules, Section
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Let X be a topological space. Let X = J;.; U; be an open covering. For each i € I
let F; be a sheaf of sets on U;. For each pair i,5 € I, let

wij : Filvinu, — Fjlunu;

be an isomorphism of sheaves of sets. Assume in addition that for every triple of
indices 7, j, k € I the following diagram is commutative

Filv.nu;nus, Frlv.nvu,nu,

Pik

‘F] IU,iﬁUjV"IUk

We will call such a collection of data (F;, ;) a glueing data for sheaves of sets with
respect to the covering X = JUs.

Lemma 6.33.2. Let X be a topological space. Let X = J;c;U; be an open
covering. Given any glueing data (F;, pi;) for sheaves of sets with respect to the
covering X = |JU; there exists a sheaf of sets F on X together with isomorphisms

QD,L.F

v, — Fi

such that the diagrams

Floinv; —57> Filvinu;

ml lw

P
fUiﬂUj Hfj UiﬁU]'

are commutative.

Proof. Actually we can write a formula for the set of sections of F over an open
W C X. Namely, we define

FW) = A{(si)icr | si € Fs(W N Us), 0i5(silwnu,nu;) = silwrvinu, }-

Restriction mappings for W’ C W are defined by the restricting each of the s; to
W' N U;. The sheaf condition for F follows immediately from the sheaf condition
for each of the F;.

We still have to prove that F|y, maps isomorphically to F;. Let W C U;. In this
case the condition in the definition of 7 (W) implies that s; = ©;;(silwnu;). And
the commutativity of the diagrams in the definition of a glueing data assures that
we may start with any section s € F;(W) and obtain a compatible collection by
setting s; = s and s; = @y (si|lwnv,). Thus the lemma follows. ]

Lemma 6.33.3. Let X be a topological space. Let X = |JU; be an open covering.
Let (F;, ¢ij) be a glueing data of sheaves of abelian groups, resp. sheaves of algebraic
structures, resp. sheaves of O-modules for some sheaf of rings O on X. Then the
construction in the proof of Lemma[6.33.9 above leads to a sheaf of abelian groups,
resp. sheaf of algebraic structures, resp. sheaf of O-modules.

Proof. This is true because in the construction the set of sections F (W) over an
open W is given as the equalizer of the maps

Hie[ ‘FZ(W n Ul) I Hi,jel E(W N Uz N Uj)
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And in each of the cases envisioned this equalizer gives an object in the relevant
category whose underlying set is the object considered in the cited lemma. ([

Lemma 6.33.4. Let X be a topological space. Let X = |J;c;Us be an open
covering. The functor which associates to a sheaf of sets F the following collection
of glueing data

(f|Ui7(‘F|Ui)|Uint - (‘F|Uj)|UimUj)
with respect to the covering X = |JU; defines an equivalence of categories between
Sh(X) and the category of glueing data. A similar statement holds for abelian
sheaves, resp. sheaves of algebraic structures, resp. sheaves of O-modules.

Proof. The functor is fully faithful by Lemma |6.33.1' and essentially surjective (via
an explicitly given quasi-inverse functor) by Lemma ‘6.33.2l g

This lemma means that if the sheaf F was constructed from the glueing data
(Fispij) and if G is a sheaf on X, then a morphism f : F — G is given by a
collection of morphisms of sheaves

fi: Fi — Glu,

compatible with the glueing maps ;;. Similarly, to give a morphism of sheaves
g: G — F is the same as giving a collection of morphisms of sheaves

Y
compatible with the glueing maps ¢;;.
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CHAPTER 7

Sites and Sheaves

7.1. Introduction

The notion of a site was introduced by Grothendieck to be able to study sheaves
in the étale topology of schemes. The basic reference for this notion is perhaps
[AGVTI1]. Our notion of a site differs from that in [AGVT1]; what we call a site
is called a category endowed with a pretopology in [AGV71] Exposé II, Définition
1.3]. The reason we do this is that in algebraic geometry it is often convenient to
work with a given class of coverings, for example when defining when a property
of schemes is local in a given topology, see Descent, Section [34.11] Our exposition
will closely follow [Art62]. We will not use universes.

7.2. Presheaves

Let C be a category. A presheaf of sets is a contravariant functor F from C to Sets
(see Categories, Remark . So for every object U of C we have a set F(U).
The elements of this set are called the sections of F over U. For every morphism
f:V = U the map F(f) : F(U) = F(V) is called the restriction map and is often
denoted f*: F(U) — F(V). Another way of expressing this is to say that f*(s) is
the pullback of s via f. Functoriality means that g*f*(s) = (f 0 g)*(s). Sometimes
we use the notation s|y := f*(s). This notation is consistent with the notion of
restriction of functions from topology because if W — V — U are morphisms in C
and s is a section of F over U then s|w = (s|v)|w by the functorial nature of F.
Of course we have to be careful since it may very well happen that there is more
than one morphism V' — U and it is certainly not going to be the case that the
corresponding pullback maps are equal.

Definition 7.2.1. A presheaf of sets on C is a contravariant functor from C to
Sets. Morphisms of presheaves are transformations of functors. The category of
presheaves of sets is denoted PSh(C).

Note that for any object U of C the functor of points hys, see Categories, Example
is a presheaf. These are called the representable presheaves. These presheaves
have the pleasing property that for any presheaf F we have

(7.2.1.1) MOI"pSh(c)(hU,]:) = F(U).
This is the Yoneda lemma (Categories, Lemma [4.3.5)).

Similarly, we can define the notion of a presheaf of abelian groups, rings, etc. More
generally we may define a presheaf with values in a category.

267
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Definition 7.2.2. Let C, A be categories. A presheaf F on C with values in A is
a contravariant functor from C to A, i.e., F : C°’P — A. A morphism of presheaves
F — G on C with values in A is a transformation of functors from F to G.

These form the objects and morphisms of the category of presheaves on C with
values in A.

Remark|7.2.3. As already pointed out we may consider the category of presheaves
with values in any of the “big” categories listed in Categories, Remark [£.2.2] These
will be “big” categories as well and they will be listed in the above mentioned
remark as we go along.

7.3. Injective and surjective maps of presheaves

Definition 7.3.1. Let C be a category, and let ¢ : F — G be a map of presheaves
of sets.

(1) We say that ¢ is injective if for every object U of C the map ¢y : F(U) —
G(U) is injective.

(2) We say that ¢ is surjective if for every object U of C the map oy : F(U) —
G(U) is surjective.

Lemma 7.3.2. The injective (resp. surjective) maps defined above are exactly the
monomorphisms (resp. epimorphisms) of PSh(C). A map is an isomorphism if and
only if it is both injective and surjective.

Proof. We shall show that ¢ : 7 — G is injective if and only if it is a monomor-
phism of PSh(C). Indeed, the “only if” direction is straightforward, so let us show
the “if” direction. Assume that ¢ is a monomorphism. Let U € Ob(C); we need
to show that ¢y is injective. So let a,b € F(U) be such that ¢y (a) = oy (b); we
need to check that @ = b. Under the isomorphism (7.2.1.1)), the elements a and b of
F(U) correspond to two natural transformations a’,b" € Morpgyc)(hv, F). Sim-
ilarly, under the analogous isomorphism Mor pgyc)(hr,G) = G(U), the two equal
elements ¢y (a) and oy (b) of G(U) correspond to the two natural transformations
woa’, pob’ € Mor pgyc)(hu, G), which therefore must also be equal. So poa’ = pol/,
and thus ¢’ = b’ (since ¢ is monic), whence a = b. This finishes (1).

We shall show that ¢ : F — G is surjective if and only if it is an epimorphism of
PSh(C). Indeed, the “only if” direction is straightforward, so let us show the “if”
direction. Assume that ¢ is an epimorphism.

For any two morphisms f : A — B and g : A — C in the category Sets, we let
inly , and inry ; denote the two canonical maps from B and C to B[], C. (Here,
the pushout is evaluated in Sets.)

Now, we define a presheaf H of sets on C by setting H(U) = G(U) [1 ) G(U)
(where the pushout is evaluated in Sets and induced by the map oy : F(U) — G(U))
for every U € Ob(C); its action on morphisms is defined in the obvious way (by the
functoriality of pushout). Then, there are two natural transformations i1 : G — H
and i3 : G — H whose components at an object U € Ob(C) are given by the
maps inly,, o, and inry,; ., , respectively. The definition of a pushout shows that
i1 0 ¢ = iy 0, whence i; = iy (since ¢ is an epimorphism). Thus, for every
U € Ob(C), we have inl,, o, = inry, ,,. Thus, ¢y must be surjective (since a
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simple combinatorial argument shows that if f : A — B is a morphism in Sets,
then inly y = inry ¢ if and only if f is surjective). In other words, ¢ is surjective,
and (2) is proven.

We shall show that ¢ : F — G is both injective and surjective if and only if it is
an isomorphism of PSh(C). This time, the “if” direction is straightforward. To
prove the “only if” direction, it suffices to observe that if ¢ is both injective and
surjective, then ¢r is an invertible map for every U € Ob(C), and the inverses of
these maps for all U can be combined to a natural transformation G — F which is
an inverse to . (]

Definition 7.3.3. We say F is a subpresheaf of G if for every object U € Ob(C)
the set F(U) is a subset of G(U), compatibly with the restriction mappings.

In other words, the inclusion maps F(U) — G(U) glue together to give an (injective)
morphism of presheaves F — G.

Lemma 7.3.4. Let C be a category. Suppose that ¢ : F — G is a morphism
of presheaves of sets on C. There exists a unique subpresheaf G' C G such that ¢
factors as F — G' — G and such that the first map is surjective.

Proof. To prove existence, just set G'(U) = ¢y (F(U)) for every U € Ob(C') (and
inherit the action on morphisms from G), and prove that this defines a subpresheaf
of G and that ¢ factors as F — G’ — G with the first map being surjective.
Uniqueness is straightforward. (I

Definition 7.3.5. Notation as in Lemma We say that G’ is the image of .

7.4. Limits and colimits of presheaves

Let C be a category. Limits and colimits exist in the category PSh(C). In addition,
for any U € ob(C) the functor

PSh(C) —» Sets, F+— F(U)

commutes with limits and colimits. Perhaps the easiest way to prove these state-
ments is the following. Given a diagram F : Z — PSh(C) define presheaves

]:lim U — limiez fl(U) and ]:colim U — COIimieI ]:Z(U)

There are clearly projection maps Fj, — F; and canonical maps F; — Feolim-
These maps satisfy the requirements of the maps of a limit (reps. colimit) of Cat-
egories, Definition (resp. Categories, Definition . Indeed, they clearly
form a cone, resp. a cocone, over F. Furthermore, if (G,¢q; : G — F;) is another
system (as in the definition of a limit), then we get for every U a system of maps
G(U) — F;(U) with suitable functoriality requirements. And thus a unique map
G(U) = FAim(U). Tt is easy to verify these are compatible as we vary U and arise
from the desired map G — Fj,. A similar argument works in the case of the
colimit.

7.5. Functoriality of categories of presheaves

Let u : C — D be a functor between categories. In this case we denote

uP : PSh(D) —s PSh(C)
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the functor that associates to G on D the presheaf uPG = G o u. Note that by the
previous section this functor commutes with all limits.

For V € ob(D) let Z{ denote the category with

Ob(Z}) = {(U,¢)|U€Ob(C),¢:V —ul)}
Morzy (U, ), (U",¢")) = {f:U—=U"inClu(f)op=7¢"}
We sometimes drop the subscript “ from the notation and we simply write Zy. We

will use these categories to define a left adjoint to the functor uP. Before we do so
we prove a few technical lemmas.

(7.5.0.1)

Lemma 7.5.1. Let u:C — D be a functor between categories. Suppose that C has
fibre products and equalizers, and that u commutes with them. Then the categories

(Zy)°PP satisfy the hypotheses of Categories, Lemmal4.19.7

Proof. There are two conditions to check.

First, suppose we are given three objects ¢ : V. — w(U), ¢' : V — w(U’), and
¢" 'V — w(U"”) and morphisms a : U' — U, b: U” — U such that u(a) o ¢’ = ¢
and u(b)og” = ¢. We have to show there exists another object ¢"’ : V' — w(U"") and
morphisms ¢ : U" — U’ and d : U"”" — U” such that u(c)o¢"" = ¢', u(d) o ¢"" = ¢
and aoc=bod. We take U"" = U’ xy U” with ¢ and d the projection morphisms.
This works as u commutes with fibre products; we omit the verification.

Second, suppose we are given two objects ¢ : V — u(U) and ¢’ : V — «(U’) and
morphisms a,b : (U,¢) — (U’,¢’). We have to find a morphism ¢ : (U",¢") —
(U, ¢) which equalizes a and b. Let ¢ : U” — U be the equalizer of a and b in the
category C. As u commutes with equalizers and since u(a) o ¢ = u(b) o ¢p = ¢' we
obtain a morphism ¢” : V- — w(U"). O

Lemmal 7.5.2. Let u:C — D be a functor between categories. Assume

(1) the category C has a final object X and uw(X) is a final object of D , and
(2) the category C has fibre products and u commutes with them.

Then the index categories (I34)°PP are filtered (see Categories, Definition |4.19.1).

Proof. The assumptions imply that the assumptions of Lemma [7.5.1] are satisfied
(see the discussion in Categories, Section . By Categories, Lemma we
see that Zy is a (possibly empty) disjoint union of directed categories. Hence it
suffices to show that Zy, is connected.

First, we show that Zy is nonempty. Namely, let X be the final object of C, which
exists by assumption. Let V' — u(X) be the morphism coming from the fact that
u(X) is final in D by assumption. This gives an object of Zy .

Second, we show that Zy is connected. Let ¢1 : V — w(U;) and ¢ : V — u(Us)
be in Ob(Zy). By assumption Uy x Us exists and w(U; x Us) = u(Uy) X u(Us).
Consider the morphism ¢ : V. — wu(U; x Uy) corresponding to (¢1,d2) by the
universal property of products. Clearly the object ¢ : V' — u(U; x Us) maps to
both ¢1 : V = w(Uy) and ¢g : V — u(Us). O

Given g : V! = V in D we get a functor g : Zyy — Iy by setting g(U, ¢) = (U, pog)
on objects. Given a presheaf F on C we obtain a functor

Fv : TP — Sets, (U, ¢) —s F(U).
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In other words, Fy is a presheaf of sets on Zy,. Note that we have Fy: 0o g = Fy .
We define
UP}—(V) = COlimzapp .FV

As a colimit we obtain for each (U,¢) € Ob(Zy) a canonical map F(U) 9,

upF(V). For g : V! — V as above there is a canonical restriction map g¢* :
upF (V) = upF (V') compatible with Fy/ o g = Fy by Categories, Lemma [4.14.7
It is the unique map so that for all (U, ¢) € Ob(Zy ) the diagram

FU) L u, 7 (V)

| )

FU) 20 F v
commutes. The uniqueness of these maps implies that we obtain a presheaf. This
presheaf will be denoted u,F.

Lemma 7.5.3. There is a canonical map F(U) — upF (uw(U)), which is compatible
with restriction maps (on F and on upF).

Proof. This is just the map c(id, ) introduced above. O

Note that any map of presheaves F — F’ gives rise to compatible systems of maps
between functors Fy — Fy, and hence to a map of presheaves u,F — u,F’. In
other words, we have defined a functor

u, : PSh(C) —+ PSh(D)

Lemma 7.5.4. The functor uy is a left adjoint to the functor uP. In other words
the formula

Mor pgp(c) (F, uPG) = Mor pgp(p) (upF, G)
holds bifunctorially in F and G.

Proof. Let G be a presheaf on D and let F be a presheaf on C. We will show that
the displayed formula holds by constructing maps either way. We will leave it to
the reader to verify they are each others inverse.

Given a map o : upF — G we get vPa : vPu,F — uPG. Lemma says that
there is a map F — wPu,F. The composition of the two gives the desired map.
(The good thing about this construction is that it is clearly functorial in everything
in sight.)

Conversely, given a map 3 : F = uPG we get a map u,f3 : upF — upuPG. We claim
that the functor uPGy on Zy has a canonical map to the constant functor with
value G(Y'). Namely, for every object (X, ¢) of Zy, the value of uPGy on this object
is G(u(X)) which maps to G(Y) by G(¢) = ¢*. This is a transformation of functors
because G is a functor itself. This leads to a map u,u?G(Y) — G(Y). Another
trivial verification shows that this is functorial in Y leading to a map of presheaves
upuPG — G. The composition upF — u,uPG — G is the desired map. O

Remark]| 7.5.5. Suppose that A is a category such that any diagram Zy — A has
a colimit in A. In this case it is clear that there are functors u? and u,, defined in
exactly the same way as above, on the categories of presheaves with values in A.
Moreover, the adjointness of the pair v” and u, continues to hold in this setting.
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Lemma 7.5.6. Let u:C — D be a functor between categories. For any object U
of C we have uphy = hy ).

Proof. By adjointness of u, and u? we have
Mor pgi(p) (uphtr, G) = Mor pgpc) (hu, uPG) = uPG(U) = G(u(U))

and hence by Yoneda’s lemma we see that uyhy = hyy as presheaves. O

7.6. Sites
Our notion of a site uses the following type of structures.

Definition 7.6.1. Let C be a category, see Conventions, Section A family
of morphisms with fixed target in C is given by an object U € Ob(C), a set I and
for each ¢ € I a morphism U; — U of C with target U. We use the notation
{U; = U};er to indicate this.

It can happen that the set I is empty! This notation is meant to suggest an open
covering as in topology.

Definition 7.6.2. A sit{| is given by a category C and a set Cov(C) of families
of morphisms with fixed target {U; — U}ier, called coverings of C, satisfying the
following axioms

(1) If V — U is an isomorphism then {V — U} € Cov(C).

(2) If {U; = U}ier € Cov(C) and for each i we have {V;; — U, };c, € Cov(C),
then {V;; = U}icr jes, € Cov(C).

(3) If {U; — U}ier € Cov(C) and V — U is a morphism of C then U; xy V
exists for all ¢ and {U; xy V — V}ier € Cov(C).

Remark 7.6.3. (On set theoretic issues — skip on a first reading.) The main
reason for introducing sites is to study the category of sheaves on a site, because
it is the generalization of the category of sheaves on a topological space that has
been so important in algebraic geometry. In order to avoid thinking about things
like “classes of classes” and so on, we will not allow sites to be “big” categories, in
contrast to what we do for categories and 2-categories.

Suppose that C is a category and that Cov(C) is a proper class of coverings satisfying
(1), (2) and (3) above. We will not allow this as a site either, mainly because we
are going to take limits over coverings. However, there are several natural ways to
replace Cov(C) by a set of coverings or a slightly different structure that give rise
to the same category of sheaves. For example:

(1) In Sets, Section we show how to pick a suitable set of coverings that
gives the same category of sheaves.

(2) Another thing we can do is to take the associated topology (see Definition
7.46.2)). The resulting topology on C has the same category of sheaves.
Two topologies have the same categories of sheaves if and only if they
are equal, see Theorem A topology on a category is given by a
choice of sieves on objects. The collection of all possible sieves and even
all possible topologies on C is a set.

IThis notation differs from that of [AGV71], as explained in the introduction.
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(3) We could also slightly modify the notion of a site, see Remark [7.46.4
below, and end up with a canonical set of coverings which is contained in
the powerset of the set of arrows of C.

Each of these solutions has some minor drawback. For the first, one has to check
that constructions later on do not depend on the choice of the set of coverings. For
the second, one has to learn about topologies and redo many of the arguments for
sites. For the third, see the last sentence of Remark

Our approach will be to work with sites as in Definition above. Given a
category C with a proper class of coverings as above, we will replace this by a set
of coverings producing a site using Sets, Lemma It is shown in Lemma
below that the resulting category of sheaves (the topos) is independent of this
choice. We leave it to the reader to use one of the other two strategies to deal with
these issues if he/she so desires.

Example 7.6.4. Let X be a topological space. Let Xz, be the category whose
objects consist of all the open sets U in X and whose morphisms are just the
inclusion maps. That is, there is at most one morphism between any two objects in
X zar. Now define {U; — U}ier € Cov(Xza,) if and only if | JU; = U. Conditions
(1) and (2) above are clear, and (3) is also clear once we realize that in Xz,
we have U x V = U NV. Note that in particular the empty set has to be an
element of Xy, since otherwise this would not work in general. Furthermore, it
is equally important, as we will see later, to allow the empty covering of the empty
set as a covering! We turn Xz, into a site by choosing a suitable set of coverings
Cov(Xzar)r,a as in Sets, Lemma Presheaves and sheaves (as defined below)
on the site Xz, agree exactly with the usual notion of a presheaves and sheaves
on a topological space, as defined in Sheaves, Section [6.1

Example 7.6.5. Let G be a group. Consider the category G-Sets whose objects
are sets X with a left G-action, with G-equivariant maps as the morphisms. An
important example is ¢G which is the G-set whose underlying set is G and action
given by left multiplication. This category has fiber products, see Categories, Sec-
tion We declare {¢; : U; = U}icr to be a covering if | J;c; wi(U;) = U. This
gives a class of coverings on G-Sets which is easily see to satisfy conditions (1), (2),
and (3) of Definition [7.6.2] The result is not a site since both the collection of ob-
jects of the underlying category and the collection of coverings form a proper class.
We first replace by G-Sets by a full subcategory G-Sets,, as in Sets, Lemma
After this the site (G-Setsy, Covy, o (G-Setsy)) gotten by suitably restricting the
collection of coverings as in Sets, Lemma [3.11.1] will be denoted 7¢.

As a special case, if the group G is countable, then we can let T be the category
of countable G-sets and coverings those jointly surjective families of morphisms
{vi : Uy = U}ier such that I is countable.

Example| 7.6.6. Let C be a category. There is a canonical way to turn this into a
site where {idy : U — U} are the coverings. Sheaves on this site are the presheaves
on C. This corresponding topology is called the chaotic or indiscrete topology.

7.7. Sheaves

Let C be a site. Before we introduce the notion of a sheaf with values in a category
we explain what it means for a presheaf of sets to be a sheaf. Let F be a presheaf
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of sets on C and let {U; — U}ier be an element of Cov(C). By assumption all the
fibre products U; xy U; exist in C. There are two natural maps

*
Prg

Hie[ F(U:) — H(io,il)elxjf(Uio xu Ui,)

pry

which we will denote pr}, ¢ = 0,1 as indicated in the displayed equation. Namely,
an element of the left hand side corresponds to a family (s;);cr, where each s; is a
section of F over U;. For each pair (ig,41) € I x I we have the projection morphisms

prz(-z(”il) Uiy v Uiy — Uy, and prgf"’il) Uiy xu Uiy — Uy,
Thus we may pull back either the section s;, via the first of these maps or the

section s;, via the second. Explicitly the maps we referred to above are

* (i0,i1),* )
pro ¢ (8i)ier (pl"m (8i0) io,in)EIxT
and

. (10,31) )
Ty (Si)ier — | pr; S; .
pri : (si)ier (p i1 (54,) (iosin)eIx

Finally consider the natural map

FU) — Hiel F(Uy), s+ (s

Ui)iEI

where we have used the notation s|y, to indicate the pullback of s via the map
U; — U. It is clear from the functorial nature of F and the commutativity of the
fibre product diagrams that pr§((s|u,)icr) = pri((s|u,)icr)-

Definition 7.7.1. Let C be a site, and let F be a presheaf of sets on C. We say
F is a sheaf if for every covering {U; — U}ier € Cov(C) the diagram

*
Prg

(7.7.1.1) FU) ——1Lie; F(Ui) iinyersr F WUip xv Usy)

- s
*
pry

represents the first arrow as the equalizer of prj and prj.

Loosely speaking this means that given sections s; € F(U;) such that

s’i UiXUUj = Sj UiXUUj
in F(U; xy Uj) for all pairs (4, j) € I x I then there exists a unique s € F(U) such

that s; = s|y,.

Remark 7.7.2. If the covering {U; — U};e; is the empty family (this means that
I =0), then the sheaf condition signifies that F(U) = {*} is a singleton set. This
is because in the second and third sets are empty products in the category
of sets, which are final objects in the category of sets, hence singletons.

Example 7.7.3. Let X be a topological space. Let Xz, be the site constructed
in Example [7.6.4] The notion of a sheaf on Xz, coincides with the notion of a
sheaf on X introduced in Sheaves, Definition [6.7.1

Example 7.7.4. Let X be a topological space. Let us consider the site X/, .
which is the same as the site Xz, of Example [7.6.4] except that we disallow the
empty covering of the empty set. In other words, we do allow the covering {f) — (}
but we do not allow the covering whose index set is empty. It is easy to show that
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this still defines a site. However, we claim that the sheaves on X7, . are different
from the sheaves on Xz,,. For example, as an extreme case consider the situation
where X = {p} is a singleton. Then the objects of X/, . are (), X and every covering
if @ can be refined by {# — 0} and every covering of X by {X — X}. Clearly, a
sheaf on this is given by any choice of a set F((}) and any choice of a set F(X),
together with any restriction map F(X) — F(0). Thus sheaves on X/, . are the
same as usual sheaves on the two point space {7, p} with open sets {0, {n}, {p,n}}.
In general sheaves on X7 . are the same as sheaves on the space X II {n}, with
opens given by the empty set and any set of the form U U {n} for U C X open.

Definition 7.7.5. The category Sh(C) of sheaves of sets is the full subcategory of
the category PSh(C) whose objects are the sheaves of sets.

Let A be a category. If products indexed by I, and I x I exist in A for any I that
occurs as an index set for covering families then Definition above makes sense,
and defines a notion of a sheaf on C with values in A. Note that the diagram in A

prg
FU) —— 1L, F(Ui) ﬁn(io,il)eIxI FUi, xu Uiy)

pry
is an equalizer diagram if and only if for every object X of A the diagram of sets
prg

Mora(X, F(U)) —— [[Mora(X, F(Ui)) : [TMor (X, F(Ui, xu Us,))

pry
is an equalizer diagram.
Suppose A is arbitrary. Let F be a presheaf with values in 4. Choose any object
X € Ob(A). Then we get a presheaf of sets Fx defined by the rule
Fx(U) = Mora(X, F(U)).

From the above it follows that a good definition is obtained by requiring all the
presheaves Fx to be sheaves of sets.

Definition 7.7.6. Let C be a site, let A be a category and let F be a presheaf on
C with values in A. We say that F is a sheaf if for all objects X of A the presheaf
of sets Fx (defined above) is a sheaf.

7.8. Families of morphisms with fixed target

This section is meant to introduce some notions regarding families of morphisms
with the same target.

Definition 7.8.1. Let C be a category. Let U = {U; — U}ier be a family of
morphisms of C with fixed target. Let V = {V; — V},cs be another.

(1) A morphism of families of maps with fized target of C from U to V, or
simply a morphism from U to V is given by a morphism U — V', a map
of sets a: I — J and for each ¢ € I a morphism U; — V,,(;) such that the
diagram

— Vo

|

S<—8

——
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is commutative.
(2) In the special case that U = V and U — V is the identity we call U a
refinement of the family V.

A trivial but important remark is that if V = {V; — V};c; is the empty family of
maps, i.e., if J =0, then no family U = {U; — V}c; with I # () can refine V!

Definition 7.8.2. Let C be a category. Let U = {p; : U; = U}icr, and V = {¢; :
Vj — U}jes be two families of morphisms with fixed target.

(1) We say U and V are combinatorially equivalent if there exist maps «v: I —
J and B :J — I such that p; = 14@;) and ¥; = @g(j)-

(2) We say U and V are tautologically equivalent if there exist maps o : [ — J
and f:J — I and for all ¢ € I and j € J commutative diagrams

Ui \ Vai) % \ Us(j)
U U

with isomorphisms as horizontal arrows.

Lemma 7.8.3. Let C be a category. Let U = {p; : Uy = Utier, and V = {9, :
V; = Uljes be two families of morphisms with the same fized target.

(1) If U and V are combinatorially equivalent then they are tautologically
equivalent.

(2) IfU and V are tautologically equivalent then U is a refinement of V and
V is a refinement of U.

(3) The relation “being combinatorially equivalent” is an equivalence relation
on all families of morphisms with fixed target.

(4) The relation “being tautologically equivalent” is an equivalence relation on
all families of morphisms with fized target.

(5) The relation ‘U refines V and V refines U” is an equivalence relation on
all families of morphisms with fized target.

Proof. Omitted. O

In the following lemma, given a category C, a presheaf F on C, a family U = {U; —
U}ier such that all fibre products U; xy Uy exist, we say that the sheaf condition
for F with respect to U holds if the diagram (|7.7.1.1)) is an equalizer diagram.

Lemma 7.8.4. Let C be a category. Let U = {p; : Uy = Uticr, and V = {9, :
V; = Uljes be two families of morphisms with the same fized target. Assume that
the fibre products U; xy Uy and V; xy Vj exist. If U and V are tautologically
equivalent, then for any presheaf F on C the sheaf condition for F with respect to
U is equivalent to the sheaf condition for F with respect to V.

Proof. First, note that if ¢ : A — B is an isomorphism in the category C, then
©* : F(B) — F(A) is an isomorphism. Let 5 :J — I be a map and let ¢, : V; —
Ug(j) be isomorphisms over U which are assumed to exist by hypothesis. Let us
show that the sheaf condition for V implies the sheaf condition for /. Suppose
given sections s; € F(U;) such that

Si

UixuU;y = Sit UixuUy;r
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in F(U; xu Uyir) for all pairs (i,i") € I x I. Then we can define s; = 7 sg(;). For
any pair (4, j') € J x J' the morphism v; Xiq,, ¥ = V; xu Vjr = Up(jy xu Up(jry is
an isomorphism as well. Hence by transport of structure we see that
sjlv; xXuVy = Sj’|vijVj,

as well. The sheaf condition w.r.t. ¥V implies there exists a unique s such that
sly, = s;j for all j € J. By the first remark of the proof this implies that s|y, = s;
for all i« € ITm(B) as well. Suppose that ¢ € I, i & Im(8). For such an i we
have isomorphisms U; — Vi) — Upga(s)) over U. This gives a morphism U; —
Ui xu Ug(a(iy) Which is a section of the projection. Because s; and sg(q(s)) restrict
to the same element on the fibre product we conclude that sg(,(;)) pulls back to s;
via U; = Ug(a(i))- Thus we see that also s; = sy, as desired. O

Lemma 7.8.5. Let C be a category. Let Cov;, i = 1,2 be two sets of families of
morphisms with fized target which each define the structure of a site on C.

(1) If every U € Couvy is tautologically equivalent to some V € Couvs, then
Sh(C, Couvy) C Sh(C, Couvy). If also, everyU € Couy is tautologically equiv-
alent to some V € Couy then the category of sheaves are equal.

(2) Suppose that for eachU € Couvy there exists a V € Couvy such thatV refines
U. In this case Sh(C, Covy) C Sh(C, Covy). If also for every U € Couy
there exists a V € Covy such that V refines U, then the categories of
sheaves are equal.

Proof. Part (1) follows directly from Lemma and the definitions.

We advise the reader to skip the proof of (2) on a first reading. Let F be a
sheaf of sets for the site (C,Covs). Let U € Covy, say U = {U; — U}ier. Choose a
refinement V € Cov, of U, say V = {V; = U},cs and refinement given by o : J — I
and fj : VJ — Ua(j)~

First let s,s' € F(U). If for all ¢ € I we have s|y, = §'|y,, then we also have
sy, = §'|y, for all j € J. This implies that s = s’ by the sheaf condition for F
with respect to Covy. Hence we see that the unicity in the sheaf condition for F
and the site (C, Covy) holds.

Next, suppose given s; € F(U;) such that s;|y,x,v, = sitlv,xyu, foralli,i" € I.
Set s; = ff(sa()) € F(Vj). Since the morphisms f; are morphisms over U we
obtain induced morphisms fj; : V; xu Vjr — Uq(iy Xu Uq(iry compatible with the
fi, fj via the projection maps. It follows that

S]“/] xu Vi = f;j’(sa(j)|Ua(j)XUUQ(j/)) = f]*]’(sa(]’) U(Y(j)XUUQ(j/)) = Sj/|Vj><UVj/

for all j, 5" € J. Hence, by the sheaf condition for F with respect to Covy, we get a
section s € F(U) which restricts to s; on each V;. We are done if we show s restricts
to s;, on U, for any ig € I. For each ig € I the family U’ = {U; xy Ui, = Uiy }ier
is an element of Covy by the axioms of a site. Also, the family V' = {V; xy U;;, —
Uiy }jes is an element of Covy. Then V' refines U’ via o : J — I and the maps
fJ’ = f; x idUiO' The element s;, restricts to s; UixuUs, ON the members of the
covering U’ and hence via (f)* to the elements s;|v;x,v,, on the members of the
covering V’'. By construction of s this is the same as the family of restrictions of
s|Ui0 to the members of the covering V’. Hence by the sheaf condition for F with
respect to Covy we see that s|y, = si, as desired. O
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00VY Lemma 7.8.6. Let C be a category. Let Cov(C) be a proper class of coverings

00vz

satisfying conditions (1), (2) and (3) of Definition[7.6.4 Let Covy, Covs C Cou(C)
be two subsets of Cov(C) which endow C with the structure of a site. If every covering
U € Cov(C) is combinatorially equivalent to a covering in Covy and combinatorially
equivalent to a covering in Cova, then Sh(C, Couy) = Sh(C, Covy).

Proof. This is clear from Lemmas and above as the hypothesis implies
that every covering U € Covy C Cov(C) is combinatorially equivalent to an element
of Covs, and similarly with the roles of Covy; and Covy reversed. O

7.9. The example of G-sets

As an example, consider the site 7¢ of Example[7.6.5] We will describe the category
of sheaves on 7. The answer will turn out to be independent of the choices made
in defining 7¢. In fact, during the proof we will need only the following properties
of the site Tg:

(a) Tg is a full subcategory of G-Sets,
) T contains the G-set ¢G,
(¢) T has fibre products and they are the same as in G-Sets,
) given U € Ob(7¢) and a G-invariant subset O C U, there exists an object
of Tg isomorphic to O, and
(e) any surjective family of maps {U; — U}y, with U, U; € Ob(7¢) is com-
binatorially equivalent to a covering of 7.

These properties hold by Sets, Lemmas [3.10.2] and [3.11.1]

Remark that the map
Homg (G, ¢G) — GPP o — (1)

is an isomorphism of groups. The inverse map sends g € G to the map R, : s — sg
(i.e. right multiplication). Note that Ry, 4, = Ry, © Ry, so the opposite is necessary.

This implies that for every presheaf F on Tg the value F(G) inherits the structure
of a G-set as follows: ¢g-s for g € G and s € F(¢G) defined by F(R,)(s). This is
a left action because

(9192) - 5 = F(Rgy4,)(5) = F(Ry, © Ry, )(5) = F(Rg,)(F(Ryg,)(5)) = 91 - (92 - 5)-

Here we’ve used that F is contravariant. Note that if 7 — G is a morphism of
presheaves of sets on T then we get a map F(¢G) — G(¢G) which is compatible
with the G-actions we have just defined. All in all we have constructed a functor

PSW(Tg) — G-Sets, F+— F(cG).

We leave it to the reader to verify that this construction has the pleasing property
that the representable presheaf hyy is mapped to something canonically isomorphic
to U. In a formula hy(¢G) = Homg(¢G,U) 2 U.

Suppose that S is a G-set. We define a presheaf Fg by the formulaﬁ
.Fs(U) = MOrG_sets(U, S)

214 may appear this is the representable presheaf defined by S. This may not be the case
because S may not be an object of 7¢ which was chosen to be a sufficiently large set of G-sets.
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This is clearly a presheaf. On the other hand, suppose that {U; — U}er is a
covering in 7¢. This implies that [[, U; — U is surjective. Thus it is clear that the
map
Fs(U) = Morc-sets(U, §) — [ [ Fs(Us) = [[ Morc-sets(Us, S)
is injective. And, given a family of G-equivariant maps s; : U; — S, such that all
the diagrams
Ui XU Uj E— Uj

Lk

Sq S

commute, there is a unique G-equivariant map s : U — S such that s; is the
composition U; — U — S. Namely, we just define s(u) = s;(u;) where ¢ € [ is any
index such that there exists some u; € U; mapping to u under the map U; — U.
The commutativity of the diagrams above implies exactly that this construction is
well defined. All in all we have constructed a functor

G-Sets — SW(Tg), S+ Fg.

We now have the following diagram of categories and functors

PSh(Te) — 27D GSets
T
Sh(Tc)

It is immediate from the definitions that Fs(¢G) = Morg(¢G,S) = S, the last
equality by evaluation at 1. This almost proves the following.

Proposition 7.9.1. The functors F — F(cG) and S — Fs define quasi-inverse
equivalences between Sh(Tg) and G-Sets.

Proof. We have already seen that composing the functors one way around is iso-
morphic to the identity functor. In the other direction, for any sheaf H there is a
natural map of sheaves

can : H — Fyea)-
Namely, for any object U of T¢ we let cany be the map

H(U) — fH(Gg)(U) = Mor(;(U,H(GG))
s > (ur— als).

Here oy, : ¢G — U is the map a,(g9) = gu and o : H(U) — H(cG) is the
pullback map. A trivial but confusing verification shows that this is indeed a map
of presheaves. We have to show that can is an isomorphism. We do this by showing
cany is an isomorphism for all U € ob(7¢). We leave the (important but easy)
case that U = ¢G to the reader. A general object U of T¢ is a disjoint union of G-
orbits: U = [],c; O;. The family of maps {O; — U}icr is tautologically equivalent
to a covering in T¢ (by the properties of T listed at the beginning of this section).
Hence by Lemma the sheaf H satisfies the sheaf property with respect to
{O; — U}icr. The sheaf property for this covering implies H(U) = [], H(O;).
Hence it suffices to show that cany is an isomorphism when U consists of a single
G-orbit. Let u € U and let H C G be its stabilizer. Clearly, Morg (U, H(cG)) =
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H(cG) equals the subset of H-invariant elements. On the other hand consider the
covering {¢G — U} given by g — gu (again it is just combinatorially equivalent to
some covering of 7¢, and again this doesn’t matter). Note that the fibre product
(6G) xv (@) is equal to {(g,9h),9 € G,h € H} =[],y ¢G. Hence the sheaf
property for this covering reads as

HU) —> H(cG) = [len H(aG).

*
pry

The two maps pr} into the factor H(¢G) differ by multiplication by h. Now the
result follows from this and the fact that can is an isomorphism for U = ¢G. 0O

7.10. Sheafification

In order to define the sheafification we study the zeroth Cech cohomology group of
a covering and its functoriality properties.

Let F be a presheaf of sets on C, and let U = {U; — U};ecr be a covering of C. Let
us use the notation F(U) to indicate the equalizer

HO(U,J—") = {(Si)ieI e HZ ]_.(Ul) ‘ 5i|Uz‘><UUj = Sj‘U'iXUUj Vi,j € I}

As we will see later, this is the zeroth Cech cohomology of F over U with respect
to the covering Y. A small remark is that we can define H°(U, F) as soon as all
the morphisms U; — U are representable, i.e., U need not be a covering of the
site. There is a canonical map F(U) — H°(U, F). It is clear that a morphism of
coverings U — V induces commutative diagrams

U; Va(i) .

Ui Xu Uj

Uj Va)

This in turn produces a map H°(V,F) — H°(U,F), compatible with the map
FV)—= FU).

By construction, a presheaf F is a sheaf if and only if for every covering U of C the
natural map F(U) — HO(U, F) is bijective. We will use this notion to prove the
following simple lemma about limits of sheaves.

Lemma 7.10.1. Let F : Z — Sh(C) be a diagram. Then limz F exists and is equal
to the limit in the category of presheaves.

Proof. Let lim; F; be the limit as a presheaf. We will show that this is a sheaf and
then it will trivially follow that it is a limit in the category of sheaves. To prove the
sheaf property, let V = {V; — V};c; be a covering. Let (s;);cs be an element of
H°(V,lim; ;). Using the projection maps we get elements (s;;);es in HO(V, F;).
By the sheaf property for F; we see that there is a unique s; € F;(V) such that
554 = silv;. Let ¢ 14 — 4’ be a morphism of the index category. We would like to
show that F(¢) : F; — Fy maps s; to si. We know this is true for the sections
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si,; and sy ; for all j and hence by the sheaf property for F;s this is true. At this
point we have an element s = (s;);cob(z) of (lim; F3)(V). We leave it to the reader
to see this element has the required property that s; = s|y,. ([l

Example|7.10.2. A particular example is the limit over the empty diagram. This
gives the final object in the category of (pre)sheaves. It is the sheaf that associates
to each object U of C a singleton set, with unique restriction mappings. We often
denote this sheaf by x.

Let Jy be the category of all coverings of U. In other words, the objects of Jy are
the coverings of U in C, and the morphisms are the refinements. By our conventions
on sites this is indeed a category, i.e., the collection of objects and morphisms forms
a set. Note that Ob(Jy) is not empty since {idy} is an object of it. According to
the remarks above the construction U + H°(U,F) is a contravariant functor on
Ju. We define

.7:+(U) = COlimng HO(U,}")

See Categories, Section for a discussion of limits and colimits. We point out
that later we will see that F*(U) is the zeroth Cech cohomology of F over U.

Before we say more about the structure of the colimit, we turn the collection of
sets FT(U), U € Ob(C) into a presheaf. Namely, let V' — U be a morphism of C.
By the axioms of a site there is a functoif]

Jo — Jv, {Ui—=U}r—{U;xyV =V}

Note that the projection maps furnish a functorial morphism of coverings {U; X
V — V} — {U; — U} and hence, by the construction above, a functorial map
of sets H'{U; — U}, F) — H°({U; xy V. — V},F). In other words, there
is a transformation of functors from H°(—,F) : Jy — Sets to the composition

HO(-,F o o . .
Ju — Jv ’(——)—> Sets. Hence by generalities of colimits we obtain a canonical

map FT(U) — FH(V). In terms of the description of the set F*(U) above, it
just takes the element associated with s = (s;) € H°({U; — U}, F) to the element
associated with (s;|vx,v,) € H'({U; xy V — V}, F).

Lemma 7.10.3. The constructions above define a presheaf F+ together with a
canonical map of presheaves F — FT.

Proof. All we have to do is to show that given morphisms W — V — U the
composition FT(U) — FH(V) — FT(W) equals the map FT(U) — FT(W).
This can be shown directly by verifying that, given a covering {U; — U} and
s = (s;) € H'({U; — U}, F), we have canonically W xy U; 2 W xy (V xy U;),
and 8;|w v, corresponds to (s;|vx,u;)

Wxy (VxpU;) vVia this isomorphism. (I

More indirectly, the result of Lemma|7.10.6[shows that we may pullback an element
s as above via any morphism from any covering of W to {U; — U} and we will
always end up with the same element in F+(W).

Lemma 7.10.4. The association F + (F — F1) is a functor.

3This construction actually involves a choice of the fibre products U; Xy V' and hence the
axiom of choice. The resulting map does not depend on the choices made, see below.
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Proof. Instead of proving this we state exactly what needs to be proven. Let
F — G be a map of presheaves. Prove the commutativity of:

F——F*
G——g*

O

The next two lemmas imply that the colimits above are colimits over a directed
partially ordered set.

Lemma 7.10.5. Given a pair of coverings {U; — U} and {V; — U} of a given
object U of the site C, there exists a covering which is a common refinement.

Proof. Since C is a site we have that for every ¢ the family {V; xy U; — U}, is a
covering. And, then another axiom implies that {V; xy U; — U}, ; is a covering of
U. Clearly this covering refines both given coverings. O

Lemmal 7.10.6. Any two morphisms f,g : U — V of coverings inducing the same
morphism U — V induce the same map H°(V,F) — H°(U, F).

Proof. Let Y = {U; = U}icy and V = {V; = V},c;. The morphism f consists of
amap U — V,amap «: I — J and maps f; : Uy — V(). Likewise, g determines
amap 8 :1 — J and maps g; : U; — Vj@;). As f and g induce the same map

U — V, the diagram
Vo)
AN
U; %
)

Vs

is commutative for every ¢ € I. Hence f and g factor through the fibre product

Ui =2 Viiy xv Vi
V-
Now let s = (s;); € H°(V, F). Then for all i € I:
(f78)i = [ (sa@)) = € Pri(sa()) = ¢ Pra(ssu) = 9 (ss()) = (97)i,

where the middle equality is given by the definition of H°(V, F). This shows that
the maps H°(V, F) — H°(U,F) induced by f and g are equal. O
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Remark| 7.10.7. In particular this lemma shows that if ¢/ is a refinement of V,

and if V is a refinement of U, then there is a canonical identification H°(U, F) =
HO(V, F).

From these two lemmas, and the fact that [Jy is nonempty, it follows that the
diagram HO(—,F) : JP" — Sets is filtered, see Categories, Definition
Hence, by Categories, Section the colimit F(U) may be described in the
following straightforward manner. Namely, every element in the set FT(U) arises
from an element s € H(U, F) for some covering U of U. Given a second element
s’ € H'U', F) then s and s’ determine the same element of the colimit if and only
if there exists a covering V of U and refinements f : V — U and f' : V — U’ such
that f*s = (f')*s’ in H°(V,F). Since the trivial covering {idy} is an object of Jis
we get a canonical map F(U) — FH(U).

Lemma 7.10.8. The map 0 : F — FT has the following property: For every
object U of C and every section s € Ft(U) there exists a covering {U; — U} such
that s|y, is in the image of 0 : F(U;) — F+(U;).

Proof. Namely, let {U; — U} be a covering such that s arises from the element
(s;) € H'({U; — U}, F). According to Lemmawe may consider the covering
{U; — U;} and the (obvious) morphism of coverings {U; — U;} — {U; — U} to
compute the pullback of s to an element of T (U;). And indeed, using this covering
we get exactly 6(s;) for the restriction of s to Uj. O

Definition 7.10.9. We say that a presheaf of sets F on a site C is separated if,
for all coverings of {U; — U}, the map F(U) — [[ F(U;) is injective.

Theorem 7.10.10. With F as above

(1) The presheaf F* is separated.

(2) If F is separated, then F+ is a sheaf and the map of presheaves F — F+
18 injective.

(3) If F is a sheaf, then F — F7 is an isomorphism.

(4) The presheaf F*T is always a sheaf.

Proof. Proof of . Suppose that s,s' € FT(U) and suppose that there exists
some covering {U; — U} such that s|y, = §'|y, for all . We now have three
coverings of U: the covering {U; — U} above, a covering U for s as in Lemma
and a similar covering U’ for s’. By Lemma we can find a common
refinement, say {W; — U}. This means we have s;, s} € F(W;) such that s|lw, =
0(s;), similarly for s'|yy;, and such that 6(s;) = 6(s;). This last equality means
that there exists some covering {W;; — W;} such that sj|lw,, = sj|lw,,. Then

since {Wj,, — U} is a covering we see that s,s’ map to the same element of
H°({Wj, — U}, F) as desired.

Proof of . It is clear that F — F* is injective because all the maps F(U) —
HO(U,F) are injective. It is also clear that, if 4/ — U’ is a refinement, then
HOU',F) — H°(U, F) is injective. Now, suppose that {U; — U} is a covering, and
let (s;) be a family of elements of F*(U;) satisfying the sheaf condition s;|v, x, v, =
5jlv;xyu; for all 4,5 € I. Choose coverings (as in Lemma {Ui; — U;} such
that s;|y,; is the image of the (unique) element s;; € F(U;;). The sheaf condition
implies that s;; and s+ agree over U;; Xy Uy j» because it maps to U; xy Uy and we



http://stacks.math.columbia.edu/tag/00W8
http://stacks.math.columbia.edu/tag/00W9
http://stacks.math.columbia.edu/tag/00WA
http://stacks.math.columbia.edu/tag/00WB

00WG

00WH

00WI

00WJ

00WK

7.10. SHEAFIFICATION 284

have the equality there. Hence (s;;) € H°({U;; — U}, F) gives rise to an element
s € FT(U). We leave it to the reader to verify that s|y, = s;.

Proof of . This is immediate from the definitions because the sheaf property
says exactly that every map F — HC(U, F) is bijective (for every covering U of U).

Statement is now obvious. O

Definition| 7.10.11. Let C be a site and let F be a presheaf of sets on C. The
sheaf F# := F*T together with the canonical map F — F# is called the sheaf
associated to F.

Proposition 7.10.12. The canonical map F — F* has the following universal
property: For any map F — G, where G is a sheaf of sets, there is a unique map
F# — G such that F — F# — G equals the given map.

Proof. By Lemma [7.10.4] we get a commutative diagram

F > F+ > Ft++

N

g4>g+4)g++

and by Theorem |7.10.10| the lower horizontal maps are isomorphisms. The unique-
ness follows from Lemma [7.10.8] which says that every section of F# locally comes
from sections of F. O

It is clear from this result that the functor F + (F — F#) is unique up to unique
isomorphism of functors. Actually, let us temporarily denote i : Sh(C) — PSh(C)
the functor of inclusion. The result above actually says that

Mor pgi(c) (F,i(G)) = Morgye) (F#, ).

In other words, the functor of sheafification is the left adjoint to the inclusion
functor ¢. We finish this section with a couple of lemmas.

Lemma 7.10.13. Let F : T — Sh(C) be a diagram. Then colimz F exists and is
the sheafification of the colimit in the category of presheaves.

Proof. Since the sheafification functor is a left adjoint it commutes with all colim-
its, see Categories, Lemmal4.24.4] Hence, since PSh(C) has colimits, we deduce that
Sh(C) has colimits (which are the sheafifications of the colimits in presheaves). [

Lemma 7.10.14. The functor PSh(C) — Sh(C), F + F¥ is exact.

Proof. Since it is a left adjoint it is right exact, see Categories, Lemma [4.24.5
On the other hand, by Lemmas and Lemma the colimits in the con-
struction of FT are really over the directed partially ordered set Ob(Jy) where
U > U’ if and only if U is a refinement of ¢’. Hence by Categories, Lemma
we see that F — F*1 commutes with finite limits (as a functor from presheaves to
presheaves). Then we conclude using Lemma O

Lemma 7.10.15. Let C be a site. Let F be a presheaf of sets on C. Denote
0% : F — F# the canonical map of F into its sheafification. Let U be an object of
C. Let s € F#(U). There exists a covering {U; — U} and sections s; € F(U;) such
that
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(1) sly, = 0%(s;), and
(2) for everyi,j there exists a covering {U;jr — U; xy U;} of C such that the
pullback of s; and s;j to each Uyji, agree.
Conversely, given any covering {U; — U}, elements s; € F(U;) such that (2) holds,
then there exists a unique section s € F#(U) such that (1) holds.

Proof. Omitted. O

7.11. Quasi-compact objects and colimits

To be able to use the same language as in the case of topological spaces we introduce
the following terminology.

Definition 7.11.1. Let C be a site. An object U of C is quasi-compact if every
covering of U in C can be refined by a finite covering.

The following lemma is the analogue of Sheaves, Lemma for sites.

Lemma 7.11.2. Let C be a site. Let T — Sh(C), i — F; be a filtered diagram of
sheaves of sets. Let U € Ob(C). Consider the canonical map
U : colim; F;(U) — (colim; F;) (U)
With the terminology introduced above:
(1) If all the transition maps are injective then U is injective for any U.
(2) If U is quasi-compact, then ¥ is injective.
(3) If U is quasi-compact and all the transition maps are injective then U is
an isomorphism.
(4) If U has a cofinal system of coverings {U; — U}jcy with J finite and
U; xuy Uy quasi-compact for all j,j" € J, then U is bijective.

Proof. Assume all the transition maps are injective. In this case the presheaf
F': V s colim; F;(V) is separated (see Definition [7.10.9). By Lemma we
have (F')# = colim; F;. By Theorem [7.10.10[ we see that F' — (F')¥ is injective.
This proves (1).

Assume U is quasi-compact. Suppose that s € F;(U) and s’ € F;/(U) give rise to
elements on the left hand side which have the same image under W. Since U is
quasi-compact this means there exists a finite covering {U; — U}j=1, . and for
each j an index 4; € I, i; >4, i; > i’ such that ;;;(s) = @iri, (s'). Let i € I be >
than all of the i;. We conclude that ;i (s) and ¢~ (s) agree on U; for all j and
hence that @;;(s) = @i (s). This proves (2).

Assume U is quasi-compact and all transition maps injective. Let s be an element
of the target of ¥. Since U is quasi-compact there exists a finite covering {U; —
U}j=1,...m, for each j an index i; € I and s; € F;,(U;) such that sy, comes from
s; for all j. Pick i € I which is > than all of the i;. By (1) the sections ¢; ;(s;)
agree over U; xy Uj. Hence they glue to a section s’ € F;(U) which maps to s
under ¥. This proves (3).

Assume the hypothesis of (4). Let s be an element of the target of ¥. By assumption
there exists a finite covering {U; — U} =1, n,U;, with U; Xy Ujs quasi-compact
for all j, j € J and for each j an index i; € I and s; € F;,(Uj) such that s|y; is
the image of s; for all j. Since U; xy U is quasi-compact we can apply (2) and
we see that there exists an i;;; € I, 45,7 > 44, i;;7 > 45 such that wijijj,(sj) and
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@ij/ijj/(Sj/) agree over U; xy Uj. Choose an index i € I wich is bigger or equal
than all the i;;. Then we see that the sections ;;;(s;) of F; glue to a section of
F; over U. This section is mapped to the element s as desired. ([

We need an analogue of the above result in the case that the site is the limit of an
inverse system of sites. For simplicity we only explain the construction in case the
index sets of coverings are finite.

Situation 7.11.3. Here we are given

(1) a cofiltered index category Z,

(2) for i € Ob(Z) a site C; such that every covering in C; has a finite index
set,

(3) for a morphism a : i — j in 7 a morphism of sites f, : C; — C; given by a
continuous functor u, : C; — C;,

such that f, o f, = f. whenever c=aob in Z.

Lemma 7.11.4. In Situation we can construct a site (C, Cov(C)) as follows

(1) as a category C = colimC;, and
(2) Cou(C) is the union of the images of Cov(C;) by u; : C; — C.

Proof. Our definition of composition of morphisms of sites implies that uyou, = u.
whenever ¢ = aob in Z. The formula C = colim C; means that Ob(C) = colim Ob(C;)
and Arrows(C) = colim Arrows(C;) . Then source, target, and composition are
inherited from the source, target, and composition on Arrows(C;). In this way we
obtain a category. Denote u; : C; — C the obvious functor. Remark that given
any finite diagram in C there exists an ¢ such that this diagram is the image of a
diagram in C;.

Let {U* — U} be a covering of C. We first prove that if V — U is a morphism
of C, then U! xy V exists. By our remark above and our definition of coverings,
we can find an i, a covering {U/ — U,;} of C; and a morphism V; — U; whose
image by wu; is the given data. We claim that U’ xy V is the image of U} xy, V;
by w;. Namely, for every a : j — ¢ in Z the functor u, is continuous, hence
ua (U} xu, Vi) = ua(Uf) Xy, ) a(Vi). In particular we can replace i by j, if we
so desire. Thus, if W is another object of C, then we may assume W = u;(W;) and
we see that

More (W, u; (U} xu, Vi)
= colimg;.; More, (uq(W5), uo (U} %y, V3))
= colimg;j—; More, (ua(Wi), ua(U})) XMorc, (ua(Ws),ua (U:)) MOTC, (Ua (W), ua (V7))
= More (W, U") Xnore (w,r) More (W, V)
as filtered colimits commute with finite limits (Categories, Lemma . It also

follows that {U* xy V — V'} is a covering in C. In this way we see that axiom (3)
of Definition [7.6.2] holds.

To verify axiom (2) of Definition let {U* — U}ier be a covering of C and for
each t let {U* — U'} be a covering of C. Then we can find an i and a covering
{U}' — U;}ier of C; whose image by u; is {U' — U}. Since T is finite we may
choose an a : j — i in Z and coverings {U}* — u,(U{)} of C; whose image by u;
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gives {U* — U'}. Then we conclude that {U'* — U} is a covering of C by an
application of axiom (2) to the site C;.

We omit the proof of axiom (1) of Definition [7.6.2] O

Lemma 7.11.5. In Situation let u; : C; — C be as constructed in Lemma
7.11.4. Then u; defines a morphism of sites f; : C — C;. For U; € Ob(C;) and sheaf
F on C; we have

(7.11.5.1) 7 F(ui(Uy)) = colimg.j—; £ " F (ua(Us))

Proof. It is immediate from the arguments in the proof of Lemma [7.11.4] that the
functors u; are continuous. To finish the proof we have to show that f;l =, 1S
an exact functor Sh(C;) — Sh(C). In fact it suffices to show that f; ' is left exact,
because it is right exact as a left adjoint (Categories, Lemma. We first prove
(7.11.5.1) and then we decuce exactness.

For an arbitrary object V' of C we can pick a a : j — ¢ and an object V; € Ob(C)
with V' = u;(V}). Then we can set

G(V) = colimy; oo, F (us(V5))

The value G(V') of the colimit is independent of the choice of b : j — i and of the
object V; with w;(V;) = V; we omit the verification. Moreover, if a« : V — V' is a
morphism of C, then we can choose b : j — ¢ and a morphism «a; : V; — Vj’ with
uj(o) = a. This induces a map G(V’) — G(V') by using the restrictions along the
morphisms up(a;) : up(V;) = up(V}). A check shows that G is a presheaf (omitted).
In fact, G satisfies the sheaf condition. Namely, any covering U = {U* — U} in
C comes from a finite level. Say U; = {U]t — U;} is mapped to U by u; for some
a:j—1in Z. Then we have

H°(U. G) = colimyj; H (uy(Uy), foonF) = colimys; foonF (us(U;)) = G(U)

as desired. The first equality holds because filtered colimits commute with finite

limits (Categories, Lemma[4.19.2)). By construction G(U) is given by the right hand
side of (7.11.5.1f). Hence (7.11.5.1)) is true if we can show that G is equal to f;l]-'.

In this paragraph we check that G is canonically isomorphic to fi_l]: . We strongly
encourage the reader to skip this paragraph. To check this we have to show there
is a bijection Morgy(cy (G, H) = Morgpc,)(F, fi,«H) functorial in the sheaf H on C
where f; . =ul. A map G — H is the same thing as a compatible system of maps

Pab vy FoopF (us(V3)) — H(ui(V;))

foralla:j —i,b:k— jand V; € Ob(C;). The compatibilities force the maps
®ab,v; to be equal t0 Puobid,uy(v;)- Given a : j — i, the family of maps ¢qa,v;
corresponds to a map of sheaves ¢, : f, ' F — f; . H. The compatibilities between
the ¢4 id,u, (v;) and the piq,iq,1; implies that ¢, is the adjoint of the map ;g4 via

Morgpc,)(fa ' F, fixH) = Morgyc,)(F, faefinH) = Morgpc,) (Fs finH)

Thus finally we see that the whole system of maps ¢ v, is determined by the
map @;q : F — fi«H. Conversely, given such a map ¢ : F — f; ., H we can read
the argument just given backwards to construct the family of maps ¢4 p,v;. This
finishes the proof that G = fi_l]-".
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Assume (7.11.5.1) holds. Then the functor F + f;'F(U) commutes with finite
limits because finite limits of sheaves are computed in the category of presheaves
(Lemma, the functors f; ! commutes with finite limits, and filtered colimits
commute with finite limits. To see that F — f; ' F(V) commutes with finite limits
for a general object V' of C, we can use the same argument using the formula for
f1F(V) = G(V) given above. Thus f; ! is left exact and the proof of the lemma
is complete. ([l

Lemma) 7.11.6. In Situation assume given
(1) a sheaf F; on C; for all i € Ob(Z),
(2) fora:j—i amap @, : f; ' Fi — Fj of sheaves on C,

such that p. = ¢y 0 fb_lgpa whenever ¢ = aob. Set F = colim fi_l]-"i on the site C
of Lemma|7.11.4 Leti € Ob(Z) and X; € Ob(C;). Then

COlima;j_m' ]:j (Ua(XZ)) = f(ui (Xz))
Proof. A formal argument shows that
colimg;j—; Fi(uq(X;)) = colimg.j; colimyp. s f;l}'j (Uaob(X5))

By (7.11.5.1) we see that the inner colimit is equal to fj_lfj(u,»(Xi)) hence we
conclude by Lemma O

7.12. Injective and surjective maps of sheaves

Definition 7.12.1. Let C be a site, and let ¢ : F — G be a map of sheaves of
sets.

(1) We say that ¢ is injective if for every object U of C the map ¢ : F(U) —
G(U) is injective.

(2) We say that ¢ is surjective if for every object U of C and every section
s € G(U) there exists a covering {U; — U} such that for all ¢ the restriction
sly, is in the image of ¢ : F(U;) — G(U;).

Lemma 7.12.2. The injective (resp. surjective) maps defined above are exactly
the monomorphisms (resp. epimorphisms) of the category Sh(C). A map of sheaves
is an isomorphism if and only if it is both injective and surjective.

Proof. Omitted. O

Lemmal 7.12.3. Let C be a site. Let F — G be a surjection of sheaves of sets.
Then the diagram

FxgF T F—>¢

represents G as a coequalizer.

Proof. Let H be a sheaf of sets and let ¢ : F — H be a map of sheaves equalizing
the two maps F xg F — F. Let G’ C G be the presheaf image of the map F — G.
As the product F xg F may be computed in the category of presheaves we see
that it is equal to the presheaf product F xg F. Hence ¢ induces a unique map
of presheaves 1’ : G’ — H. Since G is the sheafification of G’ by Lemma we
conclude that v’ extends uniquely to a map of sheaves v : G — H. We omit the
verification that ¢ is equal to the composition of i) and the given map. (I
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7.13. Representable sheaves

Let C be a category. The canonical topology is the finest topology such that all
representable presheaves are sheaves (it is formally defined in Definition
but we will not need this). This topology is not always the topology associated to
the structure of a site on C. We will give a collection of coverings that generates
this topology in case C has fibered products. First we give the following general
definition.

Definition 7.13.1. Let C be a category. We say that a family {U; — U}er

is an effective epimorphism if all the morphisms U; — U are representable (see

Categories, Definition 4.6.4), and for any X € Ob(C) the sequence
Morc(U, X) —— [[,.; More(U;, X) [1,jyer2 More(Us xu Uy, X)

el e
is an equalizer diagram. We say that a family {U; — U} is a universal effective
epimorphism if for any morphism V' — U the base change {U; xy V — V} is an

effective epimorphism.

The class of families which are universal effective epimorphisms satisfies the axioms
of Definition If C has fibre products, then the associated topology is the
canonical topology. (In this case, to get a site argue as in Sets, Lemma [3.11.1])

Conversely, suppose that C is a site such that all representable presheaves are
sheaves. Then clearly, all coverings are universal effective epimorphisms. Thus
the following definition is the “correct” one in the setting of sites.

Definition 7.13.2. We say that the topology on a site C is weaker than the
canonical topology, or that the topology is subcanonical if all the coverings of C are
universal effective epimorphisms.

A representable sheaf is a representable presheaf which is also a sheaf. Since it is
perhaps better to avoid this terminology when the topology is not subcanonical,
we only define it formally in that case.

Definition 7.13.3. Let C be a site whose topology is subcanonical. The Yoneda
embedding h (see Categories, Section presents C as a full subcategory of the
category of sheaves of C. In this case we call sheaves of the form hy with U €
Ob(C) representable sheaves on C. Notation: Sometimes, the representable sheaf
hy associated to U is denoted U.

Note that we have in the situation of the definition
Mor gpey(hu, F) = F(U)

for every sheaf F, since it holds for presheaves, see (7.2.1.1). In general the
presheaves hy are not sheaves and to get a sheaf you have to sheafify them. In this
case we still have

(7.13.3.1) Mor gy ) (hf, F) = Morpsye (hu, F) = F(U)

for every sheaf F. Namely, the first equality holds by the adjointness property of
# and the second is (7.2.1.1)).

Lemma 7.13.4. Let C be a site. If {U; — Ul}icr is a covering of the site C, then
the morphism of presheaves of sets

Hie] ho, = hy
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becomes surjective after sheafification.

Proof. By Lemma above we have to show that [, ; hﬁ — hﬁ is an epi-
morphism. Let F be a sheaf of sets. A morphism h?}é — JF corresponds to a section
s € F(U). Hence the injectivity of Mor(h#, F) =1L Mor(hi, F) follows directly
from the sheaf property of F. O

The next lemma says, in the case the topology is weaker than the canonical topology,
that every sheaf is made up out of representable sheaves in a way.

Lemma 7.13.5. Let C be a site. Let E C Ob(C) be a subset such that every object
of C has a covering by elements of E. Let F be a sheaf of sets. There ezists a
diagram of sheaves of sets

Fi__ _Fo——>F

which represents F as a coequalizer, such that F;, i = 0,1 are coproducts of sheaves
of the form hﬁ with U € E.

Proof. First we show there is an epimorphism Fy — F of the desired type. Namely,
just take

_ #
Fo= HUEE,seF(U)(hU) —F

Here the arrow restricted to the component corresponding to (U, s) maps the ele-

ment idy € hﬁ(U) to the section s € F(U). This is an epimorphism according to
Lemma[7.12.2] and our condition on E. To construct F; first set G = Fo X  Fo and
then construct an epimorphism F; — G as above. See Lemma [7.12.3] O

7.14. Continuous functors

Definition 7.14.1. Let C and D be sites. A functor v : C — D is called continuous
if for every {V; — V}ier € Cov(C) we have the following

(1) {u(V;) = uw(V)}ier is in Cov(D), and
(2) for any morphism 7" — V in C the morphism u(T" xy V;) = u(T) xyv)
u(V;) is an isomorphism.
Recall that given a functor u as above, and a presheaf of sets F on D we have
defined P F to be simply the presheaf F o u, in other words
wWF(V) = Fu(V))
for every object V of C.

Lemmal 7.14.2. Let C and D be sites. Let u: C — D be a continuous functor. If
F is a sheaf on D then uPF is a sheaf as well.

Proof. Let {V; — V} be a covering. By assumption {u(V;) — u(V)} is a covering
in D and u(V; xv V;) = u(V;) xyv) u(V;). Hence the sheaf condition for u?F and
the covering {V; — V'} is precisely the same as the sheaf condition for F and the
covering {u(V;) = u(V)}. O
In order to avoid confusion we sometimes denote

u® : Sh(D) — Sh(C)

the functor u? restricted to the subcategory of sheaves of sets.
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Lemma 7.14.3. In the situation of Lemma|7.14.4 The functor us : G — (u,G)#
is a left adjoint to u®.

Proof. Follows directly from Lemma and Proposition [7.10.12 O

Here is a technical lemma.

Lemma 7.14.4. In the situation of Lemma . For any presheaf G on C we
have (upg)# = (up(g#)>#'

Proof. For any sheaf F on D we have

Mor gpp) (us(G#), F) = Morgyc)(G#,uF)
= Morpgy(c)(G%, uPF)
= Morpgye) (G, uP F)
= Morpgy(p)(upG, F)
= MorSh(D)((upg)#,]:)

and the result follows from the Yoneda lemma. O

Lemmal 7.14.5. Let u : C — D be a continuous functor between sites. For any

object U of C we have ushfs = hf(U)'

Proof. Follows from Lemmas and [[.14.4 O

Remark 7.14.6. (Skip on first reading.) Let C and D be sites. Let us use
the definition of tautologically equivalent families of maps, see Definition to
(slightly) weaken the conditions defining continuity. Let u : C — D be a functor.
Let us call u quasi-continuous if for every V = {V; — V},c; € Cov(C) we have the
following

(1’) the family of maps {u(V;) — w(V)}ier is tautologically equivalent to an
element of Cov(D), and

(2) for any morphism 7" — V' in C the morphism u(T xv Vi) — u(T) Xy v)
u(V;) is an isomorphism.

We are going to see that Lemmas|[7.14.2|and [7.14.3] hold in case u is quasi-continuous
as well.

We first remark that the morphisms u(V;) — u(V') are representable, since they are
isomorphic to representable morphisms (by the first condition). In particular, the
family u(V) = {u(V;) — w(V)}ier gives rise to a zeroth Cech cohomology group
H°(u(V),F) for any presheaf F on D. Let U = {U; — u(V)};cs be an element
of Cov(D) tautologically equivalent to {u(V;) — w(V)}ier. Note that u(V) is a
refinement of ¢/ and vice versa. Hence by Remark We see that HO(u(V), F) =
H°U, F). In particular, if F is a sheaf, then F(u(V)) = H°(u(V), F) because of the
sheaf property expressed in terms of zeroth Cech cohomology groups. We conclude
that uP F is a sheaf if F is a sheaf, since H°(V,u?F) = H(u(V), F) which we just
observed is equal to F(u(V)) = uPF(V). Thus Lemma[7.14.2 holds. Lemma [7.14.3]

follows immediately.
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7.15. Morphisms of sites

Definition 7.15.1. Let C and D be sites. A morphism of sites f : D — C is given
by a continuous functor u : C — D such that the functor u, is exact.

Notice how the functor u goes in the direction opposite the morphism f. If f <> u
is a morphism of sites then we use the notation f~! = u, and f. = u*. The functor
f~1 is called the pullback functor and the functor f, is called the pushforward
functor. As in topology we have the following adjointness property

Mor gi(p) (f 7'G, F) = Morgyc)(G, f.F)

The motivation for this definition comes from the following example.

Example| 7.15.2. Let f : X — Y be a continuous map of topological spaces.
Recall that we have sites X 74, and Yz,,, see Example Consider the functor
w:Yzar — Xzar, V + f~1(V). This functor is clearly continuous because inverse
images of open coverings are open coverings. (Actually, this depends on how you
chose sets of coverings for Xz, and Yz,,-. But in any case the functor is quasi-
continuous, see Remark ) It is easy to verify that the functor u® equals the
usual pushforward functor f, from topology. Hence, since uy is an adjoint and since
the usual topological pullback functor f~! is an adjoint as well, we get a canonical
isomorphism f~! = u,. Since f! is exact we deduce that u, is exact. Hence u
defines a morphism of sites f : Xz, — Y74, which we may denote f as well since
we’ve already seen the functors u,, u® agree with their usual notions anyway.

Lemma 7.15.3. Let C;, i = 1,2,3 be sites. Let u:Co — C; and v : C3 — Co be
continuous functors which induce morphisms of sites. Then the functor uov : Cs —
Cy is continuous and defines a morphism of sites C; — Cs.

Proof. It is immediate from the definitions that w o v is a continuous functor. In
addition, we clearly have (u o v)? = vP o u?, and hence (uov)® = v® ou®. Hence
functors (uov), and usov, are both left adjoints of (uov)®. Therefore (uov), = uz0vs
and we conclude that (u o v) is exact as a composition of exact functors. g

Definition 7.15.4. Let C;, i =1,2,3 be sites. Let f:C; — Cy and g : Co — C3 be
morphisms of sites given by continuous functors u : Co — C; and v : C3 — Co. The
composition g o f is the morphism of sites corresponding to the functor u o v.

1

In this situation we have (go f). = g. o fx and (go f)~t = f~tog~! (see proof of

Lemma [7.15.3).

Lemma 7.15.5. Let C and D be sites. Let u : C — D be continuous. Assume
all the categories (Z)°PP of Section are filtered. Then u defines a morphism of
sites D — C, in other words ug is exact.

Proof. Since u; is the left adjoint of u® we see that ug is right exact, see Categories,
Lemma [4.24.5] Hence it suffices to show that ug is left exact. In other words we
have to show that us commutes with finite limits. Because the categories Zy*”
are filtered we see that u, commutes with finite limits, see Categories, Lemma
(this also uses the description of limits in PSh, see Section [7.4)). And since
sheafification commutes with finite limits as well (Lemma we conclude
because us = # o up. [l
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Proposition 7.15.6. Let C and D be sites. Let u : C — D be continuous. Assume
furthermore the following:

(1) the category C has a final object X and uw(X) is a final object of D , and
(2) the category C has fibre products and u commutes with them.

Then u defines a morphism of sites D — C, in other words us is ezract.
Proof. This follows from Lemmas[7.5.2] and [7.15.5] O

Remark| 7.15.7. The conditions of Proposition above are equivalent to
saying that u is left exact, i.e., commutes with finite limits. See Categories, Lemmas
[£.184) and [£.23.2] It seems more natural to phrase it in terms of final objects and
fibre products since this seems to have more geometric meaning in the examples.

Lemma will provide another way to prove a continuous functor gives rise to
a morphism of sites.

Remark 7.15.8. (Skip on first reading.) Let C and D be sites. Analogously to
Definition [7.I5.1] we say that a quasi-morphism of sites f : D — C is given by a
quasi-continuous functor u : C — D (see Remark such that u, is exact. The
analogue of Proposition [7.15.6] in this setting is obtained by replacing the word
“continuous” by the word “quasi-continuous”, and replacing the word “morphism”
by “quasi-morphism”. The proof is literally the same.

In Definition [7.15.1] the condition that us be exact cannot be omitted. For example,
the conclusion of the following lemma need not hold if one only assumes that u is
continuous.

Lemmal 7.15.9. Let f : D — C be a morphism of sites given by the functor
u:C — D. Given any object V' of D there exists a covering {V; — V'} such that
for every j there exists a morphism V; — u(U;) for some object U; of C.

Proof. Since f~! = u, is exact we have f~'% = * where * denotes the final object
of the category of sheaves (Example [7.10.2). Since f~1% = ug* is the sheafification
of uy* we see there exists a covering {V; — V} such that (u,*)(V;) is nonempty.
Since (up*)(V;) is a colimit over the category 1y, whose objects are morphisms
V; = w(U) the lemma follows. O

7.16. Topoi

Here is a definition of a topos which is suitable for our purposes. Namely, a topos
is the category of sheaves on a site. In order to specify a topos you just specify
the site. The real difference between a topos and a site lies in the definition of
morphisms. Namely, it turns out that there are lots of morphisms of topoi which
do not come from morphisms of the underlying sites.

Definition 7.16.1 (Topoi). A topos is the category Sh(C) of sheaves on a site C.
(1) Let C, D be sites. A morphism of topoi f from Sh(D) to Sh(C) is given by
a pair of functors f, : Sh(D) — Sh(C) and =1 : SK(C) — Sh(D) such that
(a) we have
Morgpp) (f~'G, F) = Morgic) (G, f+F)

bifunctorially, and
(b) the functor f~! commutes with finite limits, i.e., is left exact.
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(2) Let C, D, &€ be sites. Given morphisms of topoi f : Sh(D) — Sh(C) and
g : Sh(E) — Sh(D) the composition f o g is the morphism of topoi defined
by the functors (fog)s = fxog. and (fog) ' =g lof L

Suppose that « : S — Ss is an equivalence of (possibly “big”) categories. If Sy,
S, are topoi, then setting f, = o and f~! equal to a quasi-inverse of a gives a
morphism f : §§ — Ss of topoi. Moreover this morphism is an equivalence in the
2-category of topoi (see Section . Thus it makes sense to say “S is a topos”
if S is equivalent to the category of sheaves on a site (and not necessarily equal to
the category of sheaves on a site). We will occasionally use this abuse of notation.

Two examples of topoi. The empty topos is topos of sheaves on the site C, where
C has a single object () and a single morphism idy and a single covering, namely
the empty covering of (). We will sometimes write () for this site. This is a site and
every sheaf on C assigns a singleton to §). Thus Sh() is equivalent to the category
having a single object and a single morphism. The punctual topos is the topos of
sheaves on the site C which has a single object pt and one morphism id,; and whose
only covering is the covering {id,;}. We will simply write pt for this site. It is clear
that the category of sheaves = the category of presheaves = the category of sets.
In a formula Sh(pt) = Sets.

Let C and D be sites. Let f : Sh(D) — Sh(C) be a morphism of topoi. Note
that f. commutes with all limits and that f~! commutes with all colimits, see
Categories, Lemma In particular, the condition on f~! in the definition
above guarantees that f~! is exact. Morphisms of topoi are often constructed
using either Lemma or the following lemma.

Lemma 7.16.2. Given a morphism of sites f : D — C corresponding to the
functor u : C — D the pair of functors (f~1 = us, f« = u®) is a morphism of topoi.

Proof. This is obvious from Definition [7.15.11 O

Remark 7.16.3. There are many sites that give rise to the topos Sh(pt). A useful
example is the following. Suppose that S is a set (of sets) which contains at least
one nonempty element. Let S be the category whose objects are elements of S and
whose morphisms are arbitrary set maps. Assume that S has fibre products. For
example this will be the case if S = P(infinite set) is the power set of any infinite
set (exercise in set theory). Make S into a site by declaring surjective families of
maps to be coverings (and choose a suitable sufficiently large set of covering families
as in Sets, Section . We claim that Sh(S) is equivalent to the category of sets.

We first prove this in case S contains e € S which is a singleton. In this case, there
is an equivalence of topoi i : Sh(pt) — Sh(S) given by the functors
(7.16.3.1) i 'F=F(e), i.E = (U Morges(U, E))

Namely, suppose that F is a sheaf on S. For any U € Ob(S) = S we can find
a covering {y, : e = U}yevu, where ¢, maps the unique element of e to u €
U. The sheaf condition implies in this case that F(U) = [[,cy F(e). In other
words F(U) = Morges(U, F(e)). Moreover, this rule is compatible with restriction
mappings. Hence the functor

ix : Sets = Sh(pt) — Sh(S), E +—— (U — Morges(U, E))

is an equivalence of categories, and its inverse is the functor i~ given above.
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If S does not contain a singleton, then the functor i, as defined above still makes
sense. To show that it is still an equivalence in this case, choose any nonempty
€ € S and a map ¢ : € — € whose image is a singleton. For any sheaf F set

F(e) :=Im(F(p): F(e) — F(é))
and show that this is a quasi-inverse to .. Details omitted.

Remark 7.16.4. (Set theoretical issues related to morphisms of topoi. Skip on
a first reading.) A morphism of topoi as defined above is not a set but a class.
In other words it is given by a mathematical formula rather than a mathematical
object. Although we may contemplate the collection of all morphisms between two
given topoi, it is not a good idea to introduce it as a mathematical object. On the
other hand, suppose C and D are given sites. Consider a functor ® : C — Sh(D).
Such a thing is a set, in other words, it is a mathematical object. We may, in
succession, ask the following questions on ®.

(1) Is it true, given a sheaf F on D, that the rule U +— Morgpy(®(U), F)

defines a sheaf on C? If so, this defines a functor @, : SK(D) — Sh(C).
(2) Is it true that ®, has a left adjoint? If so, write ®~! for this left adjoint.
(3) Is it true that ®~! is exact?

If the last question still has the answer “yes”, then we obtain a morphism of topoi
(®,,®~1). Moreover, given any morphism of topoi (f., f~!) we may set ®(U) =
f_l(h#) and obtain a functor ® as above with f, = ®, and f~! = ®~! (compatible
with adjoint property). The upshot is that by working with the collection of ®
instead of morphisms of topoi, we (a) replaced the notion of a morphism of topoi
by a mathematical object, and (b) the collection of ® forms a class (and not a
collection of classes). Of course, more can be said, for example one can work out
more precisely the significance of conditions (2) and (3) above; we do this in the
case of points of topoi in Section [7.31}

Remark 7.16.5. (Skip on first reading.) Let C and D be sites. A quasi-morphism

of sites f : D — C (see Remark [7.15.8)) gives rise to a morphism of topoi f from
Sh(D) to Sh(C) exactly as in Lemma [7.16.2

7.17. G-sets and morphisms

Let ¢ : G — H be a homomorphism of groups. Choose (suitable) sites Tg and Tg
as in Example [7.6.5] and Section[7.9] Let u : Ty — T be the functor which assigns
to a H-set U the G-set U, which has the same underlying set but G action defined
by g - u = @(g)u. It is clear that v commutes with finite limits and is continuousﬂ

Applying Proposition and Lemma we obtain a morphism of topoi
f:SMTg) — SM(Th)

associated with ¢. Using Proposition [7.9.1] we see that we get a pair of adjoint
functors

fo: G-Sets — H-Sets, f~':H-Sets — G-Sets.
Let’s work out what are these functors in this case.

4Set theoretical remark: First choose Tz. Then choose Tg to contain u(Tg) and such that
every covering in Ty corresponds to a covering in 7¢. This is possible by Sets, Lemmas [3.10.1}
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We first work out a formula for f,.. Recall that given a G-set S the corresponding
sheaf Fs on 7¢ is given by the rule Fg(U) = Morg (U, S). And on the other hand,
given a sheaf G on Ty the corresponding H-set is given by the rule G(y H). Hence
we see that

f*S = MorG-Sets((HH)cpv S)
If we work this out a little bit more then we get

foS=Ha: H — S]a(gh) = ga(h)}
with left H-action given by (h-a)(h') = a(h'h) for any element a € f.S.

Next, we explicitly compute f~!. Note that since the topology on T¢ and Ty is
subcanonical, all representable presheaves are sheaves. Moreover, given an object
V of Ty we see that f~'hy is equal to hyvy (see Lemma [7.14.5). Hence we see
that f~1S = S, for representable sheaves. Since every sheaf on Tp is a coproduct
of representable sheaves we conclude that this is true in general. Hence we see that
for any H-set T we have
T =1,
The adjunction between f~! and f, is evidenced by the formula
MorG—Sets(TLpa S) = MorH—Sets(Ta f*S)

with f,S as above. This can be proved directly. Moreover, it is then clear that
(f~%, f) form an adjoint pair and that f~! is exact. So alternatively to the above
the morphism of topoi f : G-Sets — H-Sets can be defined directly in this manner.

7.18. More functoriality of presheaves

In this section we revisit the material of Section [[.5l Let v : C — D be a functor
between categories. Recall that

u? : PSh(D) —+ PSh(C)

is the functor that associates to G on D the presheaf uPG = G ow. It turns out that
this functor not only has a left adjoint (namely u,) but also a right adjoint.

Namely, for any V' € Ob(D) we define a category vZ = %Z. Its objects are pairs
(U,% : u(U) — V). Note that the arrow is in the opposite direction from the arrow
we used in defining the category Zj; in Section A morphism (U,v) — (U',¢")
is given by a morphism « : U — U’ such that ¢ = ¢’ o u(a). In addition, given
any presheaf of sets F on C we introduce the functor y.F : vZ°PP — Sets, which is
defined by the rule v F(U,v) = F(U). We define

pu(]:)(V) = limvzopp V.F
As a limit there are projection maps c(¢) : pu(F)(V) — F(U) for every object
(U, ) of vZ. In fact,
collections sy € F(U)
pU(F)(V) = VB : (Ur,¢1) — (Uz,¢2) in vZ
we have 375y, y.) = S(Uy 1)
where the correspondence is given by s — s@) = c(¥)(s). We leave it to the

reader to define the restriction mappings ,u(F)(V) — ,u(F)(V’) associated to any
morphism V' — V of D. The resulting presheaf will be denoted ,uF.
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Lemma 7.18.1. There is a canonical map puF (w(U)) — F(U), which is compat-
ible with restriction maps.

Proof. This is just the projection map c(id, ) above. O

Note that any map of presheaves F — F’ gives rise to compatible systems of maps
between functors v F — v F’, and hence to a map of presheaves yuF — ,uF’. In
other words, we have defined a functor

pu : PSh(C) — PSKh(D)

Lemma 7.18.2. The functor pu is a right adjoint to the functor uP. In other
words the formula

Mor psp(ey (uPG, F) = Mor pgp(p) (G, puF)
holds bifunctorially in F and G.

Proof. This is proved in exactly the same way as the proof of Lemma We
note that the map u?,uf — F from Lemma [7.18.1]is the map that is used to go
from the right to the left.

Alternately, think of a presheaf of sets F on C as a presheaf F’ on C°PP with values in
Sets”PP, and similarly on D. Check that (,uF)" = u,(F’), and that (uPG)" = uP(G’).
By Remark [7.5.5 we have the adjointness of u, and u for presheaves with values
in SetsP. The result then follows formally from this. a

Thus given a functor u : C — D of categories we obtain a sequence of functors
Up, U, pu

between categories of presheaves where in each consequtive pair the first is left
adjoint to the second.

Lemmal 7.18.3. Letu:C — D and v : D — C be functors of categories. Assume
that v is right adjoint to u. Then we have

(1) wPhy = hyyy for any V in D,
(2) the category I, has an initial object,
(3) the category \"Z has a final object,
) pu =P, and
)

Proof. Proof of (1). Let V' be an object of D. We have uPhy = h,(y) because
uPhy (U) = Morp(u(U), V) = More(U,v(V)) by assumption.

Proof of (2). Let U be an object of C. Let n: U — v(u(U)) be the map adjoint
to the map id : w(U) — w(U). Then we claim (u(U),n) is an initial object of Z;.
Namely, given an object (V,¢ : U — v(V)) of I} the morphism ¢ is adjoint to a
map ¢ : u(U) — V which then defines a morphism (u(U),n) — (V, ¢).

Proof of (3). Let V be an object of D. Let £ : u(v(V)) — V be the map adjoint
to the map id : v(V) — v(V). Then we calim (v(V),§) is a final object of 1, Z.
Namely, given an object (U, ¢ : u(U) — V) of {,Z the morphism ¢ is adjoint to a
map ¢ : U — v(V) which then defines a morphism (U, ) — (v(V),§).
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Hence for any presheaf F on C we have
VPFV) = Fu(V))
= Morpgpe) (huvy, F)
= Morpgpe)(uhy, F)
= Morpgpp)(hv, puF)
= puf(V)
which proves part (2). Part (3) follows by the uniqueness of adjoint functors. O

Lemmal 7.18.4. A continuous functor of sites which has a continuous left adjoint
defines a morphism of sites.

Proof. Let u : C — D be a continuous functor of sites. Let w : D — C be a
continuous left adjoint. Then u, = w? by Lemma[7.18.3] Hence u, = w*® has a left
adjoint, namely w;s (Lemma . Thus u, has both a right and a left adjoint,
whence is exact (Categories, Lemma [4.24.5). O

7.19. Cocontinuous functors

There is another way to construct morphisms of topoi. This involves using cocon-
tinuous functors between sites defined as follows.

Definition 7.19.1. Let C and D be sites. Let u : C — D be a functor. The
functor w is called cocontinuous if for every U € Ob(C) and every covering {V; —
w(U)}jes of D there exists a covering {U; — U}ier of C such that the family of
maps {u(U;) = u(U)}ier refines the covering {V; — u(U)}jey.

Note that {u(U;) = w(U)}ser is in general not a covering of the site D.

Lemma) 7.19.2. Let C and D be sites. Let u : C — D be cocontinuous. Let F be
a sheaf on C. Then puF is a sheaf on D, which we will denote ;uF.

Proof. Let {V; — V};c; be a covering of the site D. We have to show that
puF (V) —— [T puF(Vj) [TpuF(V; xv Vj)

e

is an equalizer diagram. Since pu is right adjoint to u” we have
pu]-'(V) = Morpgh(p)(hv,pu}') = MOI‘PSh(C)('U,phv,]:) = MOI‘Sh(C)((Uphv)#, f)
Hence it suffices to show that

(7.19.2.1) HupthXVVj/ Huphvj ——uPhy

becomes a coequalizer diagram after sheafification. (Recall that a coproduct in
the category of sheaves is the sheafification of the coproduct in the category of

presheaves, see Lemma [7.10.13])

We first show that the second arrow of becomes surjective after sheafi-
fication. To do this we use Lemma Thus it suffices to show a section s
of uPhy over U lifts to a section of []uPhy, on the members of a covering of U.
Note that s is a morphism s : w(U) — V. Then {V; xvs u(U) — w(U)} is a
covering of D. Hence, as u is cocontinuous, there is a covering {U; — U} such that
{u(U;) = w(U)} refines {V; xy s w(U) — w(U)}. This means that each restriction
sly, : w(U;) — V factors through a morphism s; : u(U;) — V; for some j, i.e., s|y,
is in the image of uPhy, (U;) — uPhy (U;) as desired.


http://stacks.math.columbia.edu/tag/09VR
http://stacks.math.columbia.edu/tag/00XJ
http://stacks.math.columbia.edu/tag/00XK

00XL

00XM

09W7

7.19. COCONTINUOUS FUNCTORS 299

Let s,s" € ([JuPhy,)#(U) map to the same element of (uhy )#(U). To finish the
proof of the lemma we show that after replacing U by the members of a covering
that s, s’ are the image of the same section of ]_[uphvjxvvj, by the two maps of
. We may first replace U by the members of a covering and assume that
s € uPhy;(U) and s" € uPhy,, (U). A second such replacement guarantees that s
and s’ have the same image in uPhy (U) instead of in the sheafification. Hence
s:u(U) = V;and s’ : u(U) — Vs, are morphisms of D such that

V; 1%

is commutative. Thus we obtain ¢ = (s,¢") : w(U) — V; xy Vj, ie., a section
t € uPhy, x v, (U) which maps to s, s’ as desired. O

Lemma 7.19.3. Let C and D be sites. Let u : C — D be cocontinuous. The
functor Sh(D) — Sh(C), G + (uPG)¥ is a left adjoint to the functor su introduced
in Lemma [7.19.9 above. Moreover, it is exact.

Proof. Let us prove the adjointness property as follows

Mor gy c) (uPG)#, F) Mor pgp(cy (uPG, F)

= Morpgyp)(G, puF)

= MOTSh(D)(ng]:)-
Thus it is a left adjoint and hence right exact, see Categories, Lemma [4.24.5]
We have seen that sheafification is left exact, see Lemma Moreover, the
inclusion ¢ : Sh(D) — PSh(D) is left exact by Lemma [7.10.1} Finally, the functor

uP is left exact because it is a right adjoint (namely to u,). Thus the functor is the
composition # o uP o of left exact functors, hence left exact. O

‘We finish this section with a technical lemma.

Lemma 7.19.4. In the situation of Lemma . For any presheaf G on D we
have (uPG)# = (uP(G#))¥.

Proof. For any sheaf F on C we have
Morgye) (WP (G#))#, F) = Morgyp)(G%, suF)
= Morgyp) ((_}#7 puF)
= Morpgyp)(G, puF)
= Morpgpe)(u?G, F)
= Morgyc((uPG)#, F)
and the result follows from the Yoneda lemma. O
Remark|7.19.5. Let u : C — D be a functor between categories. Given morphisms

g:u(U)—=Vand f: W — V in D we can define consider the functor
CP? — Sets, T +— More(T,U) Xmorp (u(T),v) Morp (u(T), W)
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If this functor is representable, denote U x4 v,s W the corresponding object of
C. Assume that C and D are sites. Consider the property P: for every covering
{f; : V; =V} of D and any morphism g : u(U) — V we have

(1) U xg4,v.1, Vi exists for all ¢, and

(2) {U xg,v,5, Vi = U} is a covering of C.
Please note the similarity with the definition of continuous functors. If v has P
then u is cocontinuous (details omitted). Many of the cocontinuous functors we
will encounter satisfy P.

7.20. Cocontinuous functors and morphisms of topoi

It is clear from the above that a cocontinuous functor w gives a morphism of topoi in
the same direction as w. Thus this is in the opposite direction from the morphism
of topoi associated (under certain conditions) to a continuous « as in Definition

[715.1] Proposition [7.15.6] and Lemma[7.16.2]

Lemma 7.20.1. Let C and D be sites. Let u : C — D be cocontinuous. The
functors g, = su and g~' = (uP )# define a morphism of topoi g from Sh(C) to
Sh(D).

Proof. This is exactly the content of Lemma [7.19.3 (]

Lemmal 7.20.2. Letu:C — D, and v : D — & be cocontinuous functors. Then
v owu 1s cocontinuous and we have h = g o f where f : Sh(C) — Sh(D), resp.
g : Sh(D) — Sh(E), resp. h : SK(C) — Sh(E) is the morphism of topoi associated to
U, Tesp. v, TESP. V O U.

Proof. Let U € Ob(C). Let {E; — v(u(U))} be a covering of U in £. By as-
sumption there exists a covering {D; — u(U)} in D such that {v(D;) — v(uw(U))}
refines {E; — v(u(U))}. Also by assumption there exists a covering {C; — U}
in C such that {u(C;) — u(U)} refines {D; — u(U)}. Then it is true that
{v(u(C})) = v(u(U))} refines the covering {E; — v(u(U))}. This proves that v ou
is cocontinuous. To prove the last assertion it suffices to show that ;vosu = s(vou).
It suffices to prove that ,v o ,u = ,(v o u), see Lemma Since pu, resp. pv,
resp. p(v o w) is right adjoint to u?, resp. vP, resp. (v o w)? it suffices to prove that
uP ovP = (vowu)P. And this is direct from the definitions. O

Example 7.20.3. Let X be a topological space. Let j : U — X be the inclusion
of an open subspace. Recall that we have sites X z,, and Uz, see Example
Recall that we have the functor v : Xz, — Uzq, associated to j which is continuous
and gives rise to a morphism of sites Uz, — X zqr, see Example [7.15.2] This also
gives a morphism of topoi (j.,j~!). Next, consider the functor v : Uzer — Xzar,
V i (V) =V (just the same open but now thought of as an object of Xz,.).
This functor is cocontinuous. Namely, if v(V) = ;e7 Wj is an open covering in X,
then each W, must be a subset of U and hence is of the form v(V}), and trivially
V= UjeJ V; is an open covering in U. We conclude by Lemma [7.20.1 above that

there is a morphism of topoi associated to v
Sh(U) — Sh(X)
given by sv and (vP )#. We claim that actually (v )#* = j~! and that ;v = j,,

in other words, that this is the same morphism of topoi as the one given above.
Perhaps the easiest way to see this is to realize that for any sheaf G on X we have

1
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vPG (V) = G(V) which according to Sheaves, Lemma|6.31.1|is a description of j71G
(and hence sheafification is superfluous in this case). The equality of sv and j,
follows by uniqueness of adjoint functors (but may also be computed directly).

Example 7.20.4. This example is a slight generalization of Example Let
f : X = Y be a continuous map of topological spaces. Assume that f is open.
Recall that we have sites Xz, and Yyzq,, see Example [7.6.4] Recall that we have
the functor u : Yz, — Xz associated to f which is continuous and gives rise to
a morphism of sites Xz, = Yz4r, see Example This also gives a morphism
of topoi (f., f~1). Next, consider the functor v : X4 — Yzar, U = v(U) = f(U).
This functor is cocontinuous. Namely, if f(U) = U,c;V; is an open covering in
Y, then setting U; = f~!(V;) N U we get an open covering U = |JU; such that
fU) = U f(U,) is a refinement of f(U) = JV;. We conclude by Lemma
above that there is a morphism of topoi associated to v

Sh(X) —s Sh(Y)

given by qv and (vP )#. We claim that actually (vP )# = f~! and that ;v = f,, in
other words, that this is the same morphism of topoi as the one given above. For
any sheaf G on Y we have vPG(U) = G(f(U)). On the other hand, we may compute
u,G(U) = colimyncv G(V) = G(f(U)) because clearly (f(U), U C f~1(f(U))) is
an initial object of the category Zy; of Section @ Hence u,, = v? and we conclude
f~!' = us = (v )#. The equality of v and f, follows by uniqueness of adjoint
functors (but may also be computed directly).

In the first Example the functor v is also continuous. But in the second
Example it is generally not continuous because condition (2) of Definition
7.14. 1] may fail. Hence the following lemma applies to the first example, but not to
the second.

Lemmal 7.20.5. Let C and D be sites. Let u:C — D be a functor. Assume that

(a) u is cocontinuous, and
(b) w is continuous.
Let g : Sh(C) — Sh(D) be the associated morphism of topoi. Then
(1) sheafification in the formula g=' = (uP )# is unnecessary, in other words
97 HG)U) = G(u(U)),
(2) g7 has a left adjoint g = (u, )#, and
(3) g~ commutes with arbitrary limits and colimits.

Proof. By Lemma for any sheaf G on D the presheaf uPG is a sheaf on C.
And then we see the adjointness by the following string of equalities
Morgey(F,97'G) = Morpgpc)(F,u’G)
= Morpgy(p) (upF,G)
= Morgyp)(91F,G)
The statement on limits and colimits follows from the discussion in Categories,

Section [4.24] O

In the situation of Lemma [7.20.5| above we see that we have a sequence of adjoint
functors

g, g 17 Gx-
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The functor g is not exact in general, because it does not transform a final object
of Sh(C) into a final object of Sh(D) in general. See Sheaves, Remark On
the other hand, in the topological setting of Example the functor 7 is exact
on abelian sheaves, see Modules, Lemma The following lemma gives the
generalization to the case of sites.

Lemmal 7.20.6. Let C and D be sites. Let u:C — D be a functor. Assume that

(a) u is cocontinuous,
(b) w is continuous, and
(c) fibre products and equalizers exist in C and u commutes with them.

In this case the functor gi above commutes with fibre products and equalizers (and
more generally with finite connected limits).

Proof. Assume (a), (b), and (c). We have g1 = (u, )#. Recall (Lemma
that limits of sheaves are equal to the corresponding limits as presheaves. And
sheafification commutes with finite limits (Lemma [7.10.14). Thus it suffices to
show that u, commutes with fibre products and equalizers. To do this it suffices
that colimits over the categories (Z;)°PP of Section commute with fibre products
and equalizers. This follows from Lemma [7.5.1] and Categories, Lemma[4.19.8] O

The following lemma deals with a case that is even more like the morphism associ-
ated to an open immersion of topological spaces.

Lemma, 7.20.7. Let C and D be sites. Let u: C — D be a functor. Assume that

(a) u is cocontinuous,

(b) w is continuous, and

(c) w is fully faithful.
For 1,971, g« as above the canonical maps F — g 'qF and g 'g.F — F are
isomorphisms for all sheaves F on C.

Proof. Let X be an object of C. In Lemmas [7.19.2] and [7.20.5] we have seen that
sheafification is not necessary for the functors g=! = (u? )# and g. = (,u )¥. We
may compute (¢~ 1g.F)(X) = g.F(u(X)) = lim F(Y). Here the limit is over the
category of pairs (Y, u(Y) — w(X)) where the morphisms u(Y) — u(X) are not
required to be of the form u(a) with o a morphism of C. By assumption (c) we see
that they automatically come from morphisms of C and we deduce that the limit

is the value on (X,u(idx)), i.e., F(X). This proves that g~ 'g.F = F.

On the other hand, (7' F)(X) = g F(u(X)) = (upF)# (u(X)), and u, F(u(X)) =
colim F(Y"). Here the colimit is over the category of pairs (Y, u(X) — u(Y)) where
the morphisms u(X) — wu(Y') are not required to be of the form u(a) with o a
morphism of C. By assumption (c¢) we see that they automatically come from
morphisms of C and we deduce that the colimit is the value on (X, u(idx)), i.e.,
F(X). Thus for every X € Ob(C) we have upF(u(X)) = F(X). Since u is co-
continuous and continuous any covering of u(X) in D can be refined by a covering
(N {u(X;) = u(X)} of D where {X; — X} is a covering in C. This implies that
(upF) T (u(X)) = F(X) also, since in the colimit defining the value of (u,F)" on
u(X) we may restrict to the cofinal system of coverings {u(X;) — u(X)} as above.
Hence we see that (u,F)" (u(X)) = F(X) for all objects X of C as well. Repeat-
ing this argument one more time gives the equality (u,F)# (u(X)) = F(X) for all
objects X of C. This produces the desired equality ¢~ 'g.F = F.
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Finally, here is a case that does not have any corresponding topological example.
We will use this lemma to see what happens when we enlarge a “partial universe”
of schemes keeping the same topology. In the situation of the lemma, the morphism
of topoi g : Sh(C) — Sh(D) identifies Sh(C) as a subtopos of Sh(D) (Section
and moreover, the given embedding has a retraction.

Lemmal 7.20.8. Let C and D be sites. Let u:C — D be a functor. Assume that

(a) u is cocontinuous,

(b) w is continuous,

(c) w is fully faithful,

(d) fibre products exist in C and u commutes with them, and

(e) there exist final objects ec € Ob(C), ep € Ob(D) such that u(ec) = ep.

Let 1,971, g« be as above. Then, u defines a morphism of sites f : D — C with
fo=g¢7", f~' = q. The composition

Sh(C) —~ SWD) —L~ sn(C)
is isomorphic to the identity morphism of the topos Sh(C). Moreover, the functor
FL s fully faithful.

Proof. By assumption the functor u satisfies the hypotheses of Proposition
Hence u defines a morphism of sites and hence a morphism of topoi f as in Lemma
The formulas f, = ¢! and f~! = gy are clear from the lemma cited and
Lemma[7.20.5, We have f. 0g. =g ' og, =id, and g~ o f~1 =g~ ' o g =id by
Lemma

We still have to show that f~! is fully faithful. Let F,G € Ob(Sh(C)). We have to
show that the map

Mor gpc)(F,G) — Morgyp) (f ' F, f'G)

is bijective. But the right hand side is equal to

Morgpy (f L F, £ 71G) = Morgue) (fo f "' F,G)
= Morgye) (9~ f'F.,G)
= Morgpc)(F,9)

(the first equality by adjunction) which proves what we want. (I

Example 7.20.9. Let X be a topological space. Let i : Z — X be the inclusion
of a subset (with induced topology). Consider the functor v : Xz. — Zzar,
Uw— uw(U)=2ZNU. At first glance it may appear that this functor is cocontinuous
as well. After all, since Z has the induced topology, shouldn’t any covering of UNZ
it come from a covering of U in X? Not so! Namely, what if UNZ = (7 In that case,
the empty covering is a covering of UNZ, and the empty covering can only be refined
by the empty covering. Thus we conclude that u cocontinuous = every nonempty
open U of X has nonempty intersection with Z. But this is not sufficient. For
example, if X = R the real number line with the usual topology, and Z = R\ {0},
then there is an open covering of Z, namely Z = {z < 0} UJ,,{1/n < x} which
cannot be refined by the restriction of any open covering of X.
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7.21. Cocontinuous functors which have a right adjoint

It may happen that a cocontinuous functor u has a right adjoint v. In this case it
is often the case that v is continuous, and if so, then it defines a morphism of topoi
(which is the same as the one defined by u).

Lemma 7.21.1. Let C and D be sites. Let u : C — D, and v : D — C be
functors. Assume that u is cocontinuous, and that v is a right adjoint to w. Let
g : SK(C) — Sh(D) be the morphism of topoi associated to u, see Lemma [7.20.1]
Then g.F is equal to the presheaf vPF, in other words, (g.F)(V) = F(v(V)).

Proof. We have uPhy = h, ) by Lemma @ By Lemma |T_M| this implies
that gil(h?‘%) = (uphﬁ)# = (uPhy)# = hf(\/)' Hence for any sheaf F on C we have

(0 F)(V) = Morgyp)(hi, 9.F)
= Morgyc) (g_l(h\?%)»}-)
= MOYSh(c)(hf(V)y]:)
= F(v(V))
which proves the lemma. (I

In the situation of Lemma [T.21.1] we see that v” transforms sheaves into sheaves.
Hence we can define v* = vP restricted to sheaves. Just as in Lemma [7.14.3] we see
that vg : G — (vpg)# is a left adjoint to v*. On the other hand, we have v® = g,

and g~ is a left adjoint of g, as well. We conclude that ¢~ = v, is exact.
Lemmal 7.21.2. In the situation of Lemma |7.21.1. We have g, = v® = vP and
g =5 = (v, Y#. If v is continuous then v defines a morphism of sites f from

C to D whose associated morphism of topoi is equal to the morphism g associated
to the cocontinuous functor w. In other words, a continuous functor which has a
cocontinuous left adjoint defines a morphism of sites.

Proof. Clear from the discussion above the lemma and Definitions [.15.1] and

Lemma [7.16.2] |

7.22. Cocontinuous functors which have a left adjoint

It may happen that a cocontinuous functor u has a left adjoint w.

Lemma 7.22.1. Let C and D be sites. Let g : Sh(C) — Sh(D) be the morphism of
topoi associated to a continuous and cocontinuous functor u : C — D, see Lemmas
[7-20.1) and[7.20.5.
(1) If w: D — C is a left adjoint to u, then
(a) g F is the sheaf associated to the presheaf wPF, and
(b) g1 is exact.
(2) if w is a continuous left adjoint, then g has a left adjoint.
(3) If w is a cocontinuous left adjoint, then gy = h™! and g~
h: Sh(D) — Sh(C) is the morphism of topoi associated to w.

Proof. Recall that giF is the sheafification of u,F. Hence (1)(a) follows from the
fact that u, = w? by Lemma [7.18.3

To see (1)(b) note that g commutes with all colimits as g is a left adjoint (Cat-
egories, Lemma {4.24.4). Let ¢ — JF; be a finite diagram in Sh(C). Then lim F; is

L = h, where
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computed in the category of presheaves (Lemma [7.10.1). Since w? is a right ad-
joint (Lemma [7.5.4]) we see that wP lim F; = lim wPF;. Since sheafification is exact
(Lemma [7.10.14) we conclude by (1)(a).

Assume w is continuous. Then g = (w? )# = w*® but sheafification isn’t necessary
and one has the left adjoint wy, see Lemmas [7.14.2] and [7.14.3]

Assume w is cocontinuous. The equality gy = h~! follows from (1)(a) and the defi-
nitions. The equality g~ = h, follows from the equality g1 = h~' and uniqueness
of adjoint functor. Alternatively one can deduce it from Lemma [7.21.1] O

7.23. Existence of lower shriek

In this section we discuss some cases of morphisms of topoi f for which f~! has a
left adjoint fi.

Lemma 7.23.1. Let C, D be two sites. Let f : Sh(D) — Sh(C) be a morphism of
topoi. Let E C Ob(D) be a subset such that

(1) forV € E there exists a sheaf G on C such that f 1 F(V) = Mor gp,(¢y (G, F)
functorially for F in Sh(C),
(2) every object of D has a covering by objects of E.

Then f~1 has a left adjoint fi.
Proof. By the Yoneda lemma (Categories, Lemma[4.3.5|) the sheaf Gy correspond-
ing to V € E is defined up to unique isomorphism by the formula f=*F(V) =
Morgpey(Gv, F). Recall that f~LF (V) = Morgpy (his, f~'F). Denote iy : hi —
f71Gy the map corresponding to id in Mor(Gy,Gy). Functoriality in (1) implies
that the bijection is given by

Mor ey (Gv, F) — Morgyp) (hir, f71F), ¢ flooiy

For any Vi, Vs € E there is a canonical map

MorSh(D) (hﬁw h?\i) - HomSh(C) (gvz ) ng )7 Y= f! ((p)
which is characterized by f~1(fi(¢)) o iy, = iy, o ¢. Note that ¢ + fi(p) is
compatible with composition; this can be seen directly from the characterization.
Hence hfﬁ — Gy and ¢ — fip is a functor from the full subcategory of Sh(D) whose
objects are the h?f.

Let J be a set and let J — E, j — V; be a map. Then we have a functorial bijection

Morsey(J [ v, F) — Morsuepy (] | hf/&j JJTHF)

using the product of the bijections above. Hence we can extend the functor f; to
the full subcategory of Sh(D) whose objects are coproducts of h?}é with V € F.

Given an arbitrary sheaf H on D we choose an coequalizer diagram

Hi_ T Ho——H

where H; =[] hf,i _is a coproduct with V; ; € E. This is possible by assumption
(2), see Lemma (for those worried about set theoretical issues, note that the
construction given in Lemma is canonical). Define fi(#) to be the sheaf on
C which makes

fiHy o — fiH
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Then
Mor(fiH, F) = Equalizer( Mor(fiHo, F) Mor(fiH1,F) )
= Equalizer( Mor(Ho, f~1F) Mor(Hy, f~1F) )
= Hom(H, f~'F)
Hence we see that we can extend fi to the whole category of sheaves on D. (I

7.24. Localization

Let C be a site. Let U € Ob(C). See Categories, Example [4.2.13[ for the definition
of the category C/U of objects over U. We turn C/U into a site by declaring a
family of morphisms {V; — V'} of objects over U to be a covering of C/U if and
only if it is a covering in C. Consider the forgetful functor
Jju: C/U — C.

This is clearly cocontinuous and continuous. Hence by the results of the previous
sections we obtain a morphism of topoi

ju : SKWC/U) — Sh(C)
given by jgl and jy., as well as a functor jy.

Definition 7.24.1. Let C be a site. Let U € Ob(C).

(1) The site C/U is called the localization of the site C at the object U.

(2) The morphism of topoi jy : Sh(C/U) — Sh(C) is called the localization
morphism.

(3) The functor jy. is called the direct image functor.

(4) For a sheaf F on C the sheaf j;;' F is called the restriction of F to C/U.

(5) For a sheaf G on C/U the sheaf jinG is called the extension of G by the
empty set.

The restriction j;'F is the sheaf defined by the rule j;'F(X/U) = F(X) as
expected. The extension by the empty set also has a very easy description in this
case; here it is.

Lemma 7.24.2. Let C be a site. Let U € Ob(C). Let G be a presheaf on C/U.
Then jin(G*) is the sheaf associated to the presheaf

®
Vi— HapGMorc(V,U) g(v - U)

with obvious restriction mappings.

Proof. By Lemma [7.20.5| we have ji1(G#) = ((ju),G%)#. By Lemma [7.14.4] this

is equal to ((ji),G)*. Hence it suffices to prove that (ji/), is given by the formula
above for any presheaf G on C/U. OK, and by the definition in Section we have

(Ju)pG (V) = colimyy,u,v—w) G(W)
Now it is clear that the category of pairs (W/U,V — W) has an object O, = (¢ :
V = U,id : V = V) for every ¢ : V — U, and moreover for any object there is a
unique morphism from one of the O, into it. The result follows. ([l
Lemma 7.24.3. Let C be a site. Let U € Ob(C). Let X/U be an object of C/U.
Then we have jUg(hﬁ/U) = h}%.
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Proof. Denote p: X — U the structure morphism of X. By Lemma[7.24.2] we see
jUg(h?é/U) is the sheaf associated to the presheaf

Vi H%Mmdm)w V= X |poy =g}
This is clearly the same thing as Mor¢(V, X). Hence the lemma follows. g

We have jyi(x) = hﬁ by either of the two lemmas above. Hence for every sheaf

G over C/U there is a canonical map of sheaves j;nG — hf]&. This characterizes
sheaves in the essential image of jy.

Lemma 7.24.4. Let C be a site. Let U € Ob(C). The functor juyi gives an
equivalence of categories

Sh(C/U) — Sh(C)/hi

Proof. We explain how to get a functor from AS”h(C)/h?:",E to Sh(C/U). Suppose

that ¢ : F — h’g is given. For any object @ : X — U of C/U we consider
the set F,(X — U) of elements s € F(X) which under ¢ map to the image of
a € More(X,U) = hy(X) in hf]&(X). It is easy to see that (X — U) — F,(X — U)
is a sheaf on C/U. The verification that (F,¢) +— F, is an inverse to the functor
ju is omitted. O

The lemma says the functor jy is the composition
Sh(C/U) — Sh(C)/hi — Sh(C)
where the first arrow is an equivalence.
Lemma 7.24.5. Let C be a site. Let U € Ob(C). The functor jyn commutes with

with fibre products and equalizers (and more generally finite connected limits). In
particular, if F C F' in SK(C/U), then jinF C jinF'.

Proof. This follows from the fact that an isomorphism of categories commutes
with all limits and the functor Sh(C)/ hﬁ — Sh(C) commutes with fibre products
and equalizers. Alternatively, one can prove this directly using the description of
jur in Lemma using that sheafification is exact. (Also, in case C has fibre
products and equalizers, the result follows from Lemma ) [

Lemma 7.24.6. Let C be a site. Let U € Ob(C). For any sheaf F on C we have
Jonjg ' F = F x hif.
Proof. This is clear from the description of jy in Lemma (I

Lemmal 7.24.7. Let C be a site. Let f:V — U be a morphism of C. Then there
exists a commutative diagram

c)V —— /U

J
C

of cocontinuous functors. Here j : C/V = C/U, (a: W = V)= (foa: W = U)
is identified with the functor jy,u : (C/U)/(V/U) — C/U wia the identification
(C/U)/(V/U) = C/V. Moreover we have jy1 = jin o ji, ji,* = j ' oj;', and
Jve = JUx © Jx-
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Proof. The commutativity of the diagram is immediate. The agreement of j with
Jvyu follows from the definitions. By Lemma [7.20.2f we see that the following
diagram of morphisms of topoi

Sh(C/V) Sh(C/U)
(7.24.7.1) \ /

-1

is commutative. This proves that j;l =7 oj[}1 and jy« = jus 0 j«. The equality
jvi = jur o 5 follows formally from adjointness properties. O

Lemmal 7.24.8. Notation C, f :' V — U, ju, jv, and j as in Lemma ,
Via the identifications Sh(C/V') = Sh(C)/h; and Sh(C/U) = Sh(C)/h}; of Lemma
the functor i~ has the following description

JTHH S R = (M X o ht — ).
Proof. Suppose that ¢ : H — h# is an object of Sh(C)/hf]ﬁ By the proof of
Lemma |7.24.4) this corresponds to the sheaf H,, on C/U defined by the rule
(a:W—=U)— {s€HW) | p(s) =a}
on C/U. The pullback j~'H,, to C/V is given by the rule
(a:W—=V)r—{seHW)|p(s)=foa}
by the description of j~! = j[}/lv as the restriction of H, to C/V. On the other
hand, applying the rule to the object

’_ # ¢ #
H —wa,hﬁ7th4>hV

of Sh(C)/h# we get H,,, given by
(a: W =V)—{s' e H'(W) | (s) =a}
={(s,a’) € H(W) x hf}(W) |’ = a and ¢(s) = foa'}
which is exactly the same rule as the one describing j~'H.,, above. |

Remark| 7.24.9. Localization and presheaves. Let C be a category. Let U be an

object of C. Strictly speaking the functors jljl, ju« and jy1 have not been defined
for presheaves. But of course, we can think of a presheaf as a sheaf for the chaotic
topology on C (see Example [7.6.6). Hence we also obtain a functor

;1 PSK(C) — PSh(C/U)
and functors
jU*,jU! : PSh(C/U) — PSh(C)
which are right, left adjoint to jljl. By Lemma |7.24.2| we see that jinG is the
presheaf

Vi— GV 5 U)

Hg&GMorc(V,U)
In addition the functor jy; commutes with fibre products and equalizers.
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Remark| 7.24.10. Let C be a site. Let U — V be a morphism of C. The cocon-
tinuous functors C/U — C and j : C/U — C/V (Lemma satisfy property
P of Remark For example, if we have objects (X/U), (W/V), a morphism
g:j(X/U) = (W/V), and a covering {f; : (W;/V) — (W/V)} then (X xw W;/U)
is an avatar of (X/U) x4 (w/vy,f, (Wi/V) and the family {(X xw W;/U) — (X/U)}
is a covering of C/U.

7.25. Glueing sheaves
This section is the analogue of Sheaves, Section [6.33}

Lemma 7.25.1. Let C be a site. Let {U; — U} be a covering of C. Let F, G be
sheaves on C. Given a collection

vi : Fleyu, — Gleyu,

of maps of sheaves such that for all i,5 € I the maps ;,p; restrict to the same
map ]:|C/Ui><UU]- — Q|C/UiXUU]. then there exists a unique map of sheaves

¢ : Fleyu — Gleyu
whose restriction to each C/U; agrees with ¢;.

Proof. Omitted. Note that the restrictions are always those of Lemmal[7.24.7] O

The previous lemma implies that given two sheaves F, G on a site C the rule

U — Morguc/vy(Fleyu, Gleyv)

defines a sheaf. This is a kind of internal hom sheaf. It is seldom used in the

setting of sheaves of sets, and more usually in the setting of sheaves of modules,
see Modules on Sites, Section

Let C be a site. Let {U; — U},er be a covering of C. For each i € I let F; be a
sheaf of sets on C/U;. For each pair i,j € I, let

Pij - ]‘-1'|C/UixUUj — ]'—j|C/UixUUj

be an isomorphism of sheaves of sets. Assume in addition that for every triple of
indices 1, j, k € I the following diagram is commutative

File v, xov; xuUs FrlevixuU; xuUs

‘Fj|C/U1,><UUj><UUk.

We will call such a collection of data (F;, ¢;;) a glueing data for sheaves of sets with
respect to the covering {U; — U}ier.

Lemma 7.25.2. Let C be a site. Let {U; — U}ier be a covering of C. Given any
glueing data (F;, @;j) for sheaves of sets with respect to the covering {U; — U }ier
there exists a sheaf of sets F on C/U together with isomorphisms

@i : Fleyu, = Fi
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such that the diagrams

Fleyvixovv; =57 Filevixou;

j
Fleyvixvv; —= Fileyvixuu,
are commutative.

Proof. Let us describe how to construct the sheaf 7 on C/U. Let a: V — U be
an object of C/U. Then

FV/U) ={(si)ier € [ [ FaU: xu VIU) | @ij(silvixov, <o) = 8ilvxov; xov '}
il
We omit the construction of the restriction mappings. We omit the verification

that this is a sheaf. We omit the construction of the isomorphisms ¢;, and we omit
proving the commutativity of the diagrams of the lemma. O

Let C be a site. Let {U; — U}ier be a covering of C. Let F be a sheaf on C/U.
Associated to F we have its canonical glueing data given by the restrictions ¢/,
and the canonical isomorphisms

(Fleyw,) leyvixwu, = (Fleyw,) leyvixwu,
coming from the fact that the composition of the functors C/U; xy U; — C/U; —
C/U and C/U; xy U; — C/U; — C/U are equal.

Lemma 7.25.3. LetC be a site. Let {U; — U};cr be a covering of C. The category
Sh(C/U) is equivalent to the category of glueing data via the functor that associates
to F on C/U the canonical glueing data.

Proof. In Lemma [7.25.1] we saw that the functor is fully faithful, and in Lemma
7.25.2) we proved that it is essentially surjective (by explicitly constructing a quasi-
inverse functor). O

7.26. More localization

In this section we prove a few lemmas on localization where we impose some addi-
tional hypotheses on the site on or the object we are localizing at.

Lemma 7.26.1. Let C be a site. Let U € Ob(C). If the topology on C is subcanon-
ical, see Deﬁm’tion and if G is a sheaf on C/U, then

jon@(V) =1 G(v LU,

in other words sheafification is not necessary in Lemma[7.24.9

p&eMorc (V,U)

Proof. Let V = {V; = V},cr be a covering of V in the site C. We are going to check
the sheaf condition for the presheaf H of Lemma directly. Let (s;,¢;)icr €
[T, H(V;), This means ¢; : V; — U is a morphism in C, and s; € G(V; =5 U). The
restriction of the pair (s;, ;) to V; xy V; is the pair (si|v,xv,,v,Pry © ¢i), and
likewise the restriction of the pair (s;, ¢;) to Vi xv Vj is the pair (s;|v,x v, /v, Prao
¢;). Hence, if the family (s;, ;) lies in HO(V, ), then we see that pr; o ¢; =
pryo¢;. The condition that the topology on C is weaker than the canonical topology
then implies that there exists a unique morphism ¢ : V' — U such that ¢; is the
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composition of V; — V with ¢. At this point the sheaf condition for G guarantees
that the sections s; glue to a unique section s € G(V % U). Hence (s, @) € H(V)
as desired. 0

Lemma 7.26.2. Let C be a site. Let U € Ob(C). Assume C has products of pairs
of objects. Then

(1) the functor ju has a continuous right adjoint, namely the functor v(X) =
X xU/U,

(2) the functor v defines a morphism of sites C/U — C whose associated
morphism of topoi equals ji : SK(C/U) — Sh(C), and

(3) we have jy.F(X)=F(X xU/U).

Proof. The functor v being right adjoint to jy means that given Y/U and X we
have

Mor¢ (Y, X) = More,y(Y/U, X x U/U)
which is clear. To check that v is continuous let {X; — X} be a covering of C. By
the third axiom of a site (Definition we see that

{Xixx (X xU)=> X xx (X xU)}={X; xU—->XxU}

is a covering of C also. Hence v is continuous. The other statements of the lemma

follow from Lemmas [[.21.1] and [7.21.2] |

Lemmal 7.26.3. Let C be a site. Let U — V be a morphism of C. Assume C has
fibre products. Let j be as in Lemma[7.2{. Then

(1) the functor j : C/U — C/V has a continuous right adjoint, namely the
functor v: (X/V) — (X xyv U/U),

(2) the functor v defines a morphism of sites C/U — C/V whose associated
morphism of topoi equals j, and

(3) we have j.F(X/U) = F(X xyv U/U).

Proof. Follows from Lemma since j may be viewed as a localization functor
by Lemma O

A fundamental property of an open immersion is that the restriction of the push-
forward and the restriction of the extension by the empty set produces back the
original sheaf. This is not always true for the functors associated to ji above. It
is true when U is a “subobject of the final object”.

Lemma 7.26.4. Let C be a site. Let U € Ob(C). Assume that every X in C
has at most one morphism to U. Let F be a sheaf on C/U. The canonical maps
F = jljljm}' and jgljy*}' — F are isomorphisms.

Proof. If C has fibre products, then this is a special case of Lemma In
general we have the following direct proof.

Let X/U be an object over U. In Lemmas [7.19.2] and [7.20.5| we have seen that
sheafification is not necessary for the functors j,;' = (u? )# and jy. = (,u)*. We
may compute (j;;'ju.F)(X/U) = ju.F(X) = lim F(Y/U). Here the limit is over
the category of pairs (Y/U,Y — X) where the morphisms Y — X are not required
to be over U. By our assumption however we see that they are automatically
morphisms over U and we deduce that the limit is the value on idx, i.e., F(X/U).
This proves that jj; ' ju.F = F.
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On the other hand, (j;'jinF)(X/U) = jinF(X) = (upF)#(X), and u,F(X) =
colim F(Y/U). Here the colimit is over the category of pairs (Y/U, X — Y) where
the morphisms X — Y are not required to be over U. By our assumption however
we see that they are automatically morphisms over U and we deduce that the
colimit is the value on idx, i.e., F(X/U). This shows that the sheafification is not
necessary (since any object over X is automatically in a unique way an object over
U) and the result follows. O

7.27. Localization and morphisms

The following lemma is important in order to understand relation between local-
ization and morphisms of sites and topoi.

Lemma 7.27.1. Let f : C — D be a morphism of sites corresponding to the
continuous functor u : D — C. Let V. € Ob(D) and set U = w(V). Then the
functor v : D)V — CJU, V'V +— w(V')/U determines a morphism of sites f' :
C/U — DJV. The morphism f' fits into a commutative diagram of topoi

Sh(C/U) — Sh(C)

‘

SK(D/V) 2~ S(D).

~

Using the identifications Sh(C/U) = Sh(C)/hﬁ and SW(D)V) = Sh(D)/hf,ﬁ of Lemma
7.24.4| the functor (f')~' is described by the rule

Finally, we have f.j;" = iy fe.

Proof. It is clear that v’ is continuous, and hence we get functors f, = (u’)* = (u/)?
(see Sectionsand 7.14) and an adjoint (f')~! = (u')s = ((v'), )#. The assertion
fligt = ji' f. follows as

Gy fF)V' V) = LF V') = Fu(V) = (g F)((V)/U) = (flig F)V'/V)

which holds even for presheaves. What isn’t clear a priori is that (f/)~! is exact,
that the diagram commutes, and that the description of (f’)~! holds.

Let H be a sheaf on D/V. Let us compute ji1(f')~*H. We have

Joi(f)TH = ((o)p(u, 1) #)#
= ((v)pu, H)*
= (up(jv)pH)#
= f~tviH
The first equality by unwinding the definitions. The second equality by Lemma
7.14.4] The third equality because u o ji = jy ou’. The fourth equality by Lemma

[T-14:4 again. All of the equalities above are isomorphisms of functors, and hence we
may interpret this as saying that the following diagram of categories and functors
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is commutative
Sh(C/U) ——= Sh(C) /h —— Sh(C)

(f/)lT f- 1T flT
(D/V)HSh D)/ — Sh(D)

The middle arrow makes sense as f_lh?f = (hu(V))# = ﬁ, see Lemmam In
particular this proves the description of (f’)~! given in the statement of the lemma.
Since by Lemma the left horizontal arrows are equivalences and since f~! is
exact by assumption we conclude that (f/)~! = u/ is exact. Namely, because it is
a left adjoint it is already right exact (Categories, Lemma . Hence we only
need to show that it transforms a final object into a final object and commutes with
fibre products (Categories, Lemma [4.23.2). Both are clear for the induced functor

ft: Sh(D)/h?‘% — Sh(C)/hﬁ. This proves that f’ is a morphism of sites.
We still have to verify that (f/)~'j;,' = j;;' f~!. To see this use the formula above

and the description in Lemma [7.24.6] Namely, combined these give, for any sheaf
G on D, that

()N G = vt = £ NG X W) = £ x b = o' TG
Since the functor jy induces an equivalence Sh(C/U) — Sh(C)/h# we conclude. [

The following lemma is a special case of the more general Lemma [7.27.1] above.

Lemma 7.27.2. Let C, D be sites. Let u:D — C be a functor. Let V € Ob(D).
Set U = u(V'). Assume that

(1) C and D have all finite limits,

(2) u is continuous, and

(3) u commutes with finite limits.

There exists a commutative diagram of morphisms of sites

Ju

|k

D)V X sD

where the right vertical arrow corresponds to u, the left vertical arrow corresponds
to the functor v’ : D)V — C/U, V')V — w(V')/u(V) and the horizontal arrows
correspond to the functors C = C/U, X — X xU and D - D/V, Y - Y XV as
in Lemma[7.26.2. Moreover, the associated diagram of morphisms of topoi is equal
to the diagram of Lemma . In particular we have f;jl}l = j‘;lf*,

Proof. Note that u satisfies the assumptions of Proposition and hence in-
duces a morphism of sites f : C — D by that proposition. It is clear that u induces
a functor v’ as indicated. It is clear that this functor also satisfies the assump-
tions of Proposition Hence we get a morphism of sites f' : C/U — D/V.
The diagram commutes by our definition of composition of morphisms of sites (see

Definition [7.15.4]) and because
w(Y xV)=ul) xuV)=ulY)xU
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which shows that the diagram of categories and functors opposite to the diagram
of the lemma commutes. ([

At this point we can localize a site, we know how to relocalize, and we can localize
a morphism of sites at an object of the site downstairs. If we combine these then
we get the following kind of diagram.

Lemma 7.27.3. Let f : C — D be a morphism of sites corresponding to the
continuous functor uw: D — C. Let V. € Ob(D), U € Ob(C) and c: U — w(V) a
morphism of C. There exists a commutative diagram of topoi

SK(C/U) —= Sh(C)

Jju

fCl f

SH(D/V) 2~ S(D).

We have f. = f' o jujuvy where f' : SK(C/u(V)) — Sh(D/V) is as in Lemma
and ju vy SWHC/U) — SW(C/u(V)) is as in Lemma[7.24.7 Using the
identifications Sh(C/U) = Sh(C)/h?}é and SW(D/V) = Sh(D)/hi of Lemma |7.24.4
the functor (f.)~! is described by the rule

(fo) 'R D RY) = (f "M x = h).

f_1W7hf<V)7
Finally, given any morphisms b: V' =V, a:U — U and ¢ : U — uw(V') such
that

U/ H] U(V’)

c

l |1

U—"=u(V)
commutes, then the diagram

Sh(C/U") ——= Sh(C/U)

Ju’ju
fc’l/ fe

jv’/v

SWD/V') L SKD/V).
commutes.

Proof. This lemma proves itself, and is more a collection of things we know at
this stage of the development of theory. For example the commutativity of the first
square follows from the commutativity of Diagram ([7.24.7.1]) and the commutativity
of the diagram in Lemma [7.27.1 The description of f-! follows on combining
Lemma [7.24.8) with Lemma [7.27.1]] The commutativity of the last square then
follows from the equality
-1 # # o p—1 # #
f H th{v)’c hU Xh# hi, = f (H Xh‘;% hV’) th(v’),d hU’
which is formal using that f_lhﬁ = hf(\/) and f_lhi/ = hf(v,), see Lemma
[[.14.5 [
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In the following lemma we find another kind of functoriality of localization, in case
the morphism of topoi comes from a cocontinuous functor. This is a kind of diagram
which is different from the diagram in Lemma and in particular, in general
the equality flj,, - j;l f+« seen in Lemma s not hold in the situation of
the following lemma.

Lemmal 7.27.4. Let C, D be sites. Let u:C — D be a cocontinuous functor. Let
U be an object of C, and set V- =u(U). We have a commutalive diagram

C/U——>C
J{ Ju l
D)V -2

where the left vertical arrow is ' : C/U — D/V, U'JU — V'/V. Then v is
cocontinuous also and we get a commutative diagram of topoi

SH(C/U) ——= Sh(C)

)

Sh(D/V) —¥~ Sh(D)
where f (resp. f') corresponds to u (resp. u’).

Proof. The commutativity of the first diagram is clear. It implies the commuta-
tivity of the second diagram provided we show that v’ is cocontinuous.

Let U’ /U be an object of C/U. Let {V;/V — w(U")/V };es be a covering of u(U")/V
in D/V. Since u is cocontinuous there exists a covering {U/ — U’};c such that the
family {u(U]) — w(U’)} refines the covering {V; — w(U’)} in D. In other words,
there exists a map of index sets o : I — .J and morphisms ¢; : u(U]) — Vy;) over
U’. Think of U] as an object over U via the composition U] — U’ — U. Then
{U//U — U'/U} is a covering of C/U such that {u(U})/V — w(U")/V} refines
{V;/V.—= w(U")/V'} (use the same « and the same maps ¢;). Hence v’ : C/U —
D/V is cocontinuous. O

7.28. Morphisms of topoi

In this section we show that any morphism of topoi is equivalent to a morphism
of topoi which comes from a morphism of sites. Please compare with [AGV71]
Exposé IV, Proposition 4.9.4].

Lemmal 7.28.1. Let C, D be sites. Let u: C — D be a functor. Assume that

(1) w is cocontinuous,

(2) u is continuous,

(3) given a,b:U" — U inC such that u(a) = u(b), then there exists a covering
{fi : U = U'} in C such that ao f; =bo f;,

(4) given U',U € Ob(C) and a morphism ¢ : uw(U’) — w(U) in D there exists
a covering {f; : Ul — U’} in C and morphisms ¢; : Ul — U such that
u(e;) = coul(fy), and

(5) given V € Ob(D) there exists a covering of V in D of the form {u(U;) —
V}ier.
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Then the morphism of topoi
g : Sh(C) — Sh(D)
associated to the cocontinuous functor u by Lemma[7.20.1] is an equivalence.

Proof. Assume u satisfies properties (1) — (5). We will show that the adjunction
mappings

G— 9.9 'G and ¢ '¢.F — F
are isomorphisms.

Note that Lemma applies and we have g~ 1G(U) = G(u(U)) for any sheaf G
on D. Next, let F be a sheaf on C, and let V' be an object of D. By definition we
have g, F (V) = lim,)v F(U). Hence

g 9. F(U) = limy o0y —u@n) F(U')
where the morphisms 9 : u(U’) — u(U) need not be of the form u(a). The category
of such pairs (U’, ) has a final object, namely (U, id), which gives rise to the map
from the limit into F(U). Let (s y)) be an element of the limit. We want to
show that 5.y ) is uniquely determined by the value s ;) € F(U). By property
(4) given any (U’, ) there exists a covering {U; — U’} such that the compositions
w(U!) = w(U") — u(U) are of the form u(c;) for some ¢; : U/ — U in C. Hence
sl = ¢ (swia))-
Since F is a sheaf it follows that indeed s ) is determined by s(iq). This
proves uniqueness. For existence, assume given any s € F(U), ¢ : u(U') — w(U),
{fi U] - U'} and ¢; : U] — U such that 1 o u(f;) = u(c;) as above. We claim
there exists a (unique) element sy ) € F(U’) such that
S(U/’w)|Ui/ = C:(S).
Namely, a priori it is not clear the elements c;‘(s)|U{XU,UJ/_ and C;(3)|U£><U/UJ’. agree,

since the diagram

J

b, l i

U —= U
need not commute. But condition (3) of the lemma guarantees that there exist
coverings { fijk : Ui’jk — U xur Uj}rek,; such that ¢; o pry o fijr = ¢j o pry o fijx.
Hence

! !/ !/
Ui XU’Uj?U-

fijn (Cfs U{xU/U;> = i (C§3\U{XU/U;>
Hence c’{(s)|U1{XU,UJ< =cj (5)|U{><U/U§ by the sheaf condition for F and hence the
existence of s(y 4 also by the sheaf condition for F. The uniqueness guarantees
that the collection (s(y y)) so obtained is an element of the limit with sy ) = s.
This proves that g~1g,F — F is an isomorphism.

Let G be a sheaf on D. Let V' be an object of D. Then we see that
9+97'G(V) = limy yu(v)—v G(u(U))

By the preceding paragraph we see that the value of the sheaf g,g~'G on an object
V of the form V = u(U) is equal to G(u(U)). (Formally, this holds because we

have g 'g.g~! = ¢!, and the description of ¢g~! given at the beginning of the
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proof; informally just by comparing limits here and above.) Hence the adjunction
mapping G — ¢.¢~'G has the property that it is a bijection on sections over any
object of the form u(U). Since by axiom (5) there exists a covering of V' by objects
of the form u(U) we see easily that the adjunction map is an isomorphism. [

It will be convenient to give cocontinuous functors as in Lemma a name.

Definition 7.28.2. Let C, D be sites. A special cocontinuous functor u from C to
D is a cocontinuous functor u : C — D satisfying the assumptions and conclusions

of Lemma [T.281]

Lemma 7.28.3. Let C, D be sites. Let u : C — D be a special cocontinuous
functor. For every object U of C we have a commutative diagram

c/U c

Ju

u
Ju(U)

D/u(U) LD

as in Lemma [7.272 The left vertical arrow is a special cocontinuous functor.
Hence in the commutative diagram of topoi

SH(C/U) —— SH(C)
SW(D Ju(U)) 2% Sh(D)

the vertical arrows are equivalences.

Proof. We have seen the existence and commutativity of the diagrams in Lemma

7.27.4L We have to check hypotheses (1) — (5) of Lemma [7.28.1| for the induced
functor w : C/U — D/u(U). This is completely mechanical.

Property (1). This is Lemma [7.27.4

Property (2). Let {U!/U — U’/U}ier be a covering of U’ /U in C/U. Because u is
continuous we see that {u(U])/u(U) = w(U")/u(U)}icr is a covering of u(U") /u(U)
in D/u(U). Hence (2) holds for u : C/U — D/u(U).

Property (3). Let a,b: U"”/U — U’ /U in C/U be morphisms such that u(a) = u(b)
in D/u(U). Because u satisfies (3) we see there exists a covering {f; : U’ — U"}

in C such that ao f; = bo f;. This gives a covering {f; : U/’/U — U"/U} in C/U
such that a o f; = bo f;. Hence (3) holds for u : C/U — D/u(U).

Property (4). Let U”/U,U’'/U € Ob(C/U) and a morphism ¢ : w(U")/u(U) —
w(U")/u(U) in D/u(U) be given. Because u satisfies property (4) there exists a
covering {f; : U/ — U"} in C and morphisms ¢; : U/ — U’ such that u(¢;) =
cou(f;). We think of U!” as an object over U via the composition U/ — U"” — U.
It may not be true that ¢; is a morphism over U! But since u(c;) is a morphism over
u(U) we may apply property (3) for u and find coverings {fir, : U/, — U/} such
that ¢ = ¢; 0 fix : Ul = U’ are morphisms over U. Hence {f; o fix : U,./U —
U"/U} is a covering in C/U such that u(c;) = ¢ o u(fir). Hence (4) holds for
u:C/U — DJu(U).
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Property (5). Let h : V — «(U) be an object of D/u(U). Because u satisfies
property (5) there exists a covering {c¢; : u(U;) — V} in D. By property (4)
we can find coverings {fij Uiy — U;} and morphisms cij : Uy — U such that
u(cij) = hoc;ou(fi;). Hence {u(U;;)/u(U) — V/u(U)} is a covering in D/u(U) of
the desired shape and we conclude that (5) holds for v : C/U — D/u(U). O

Lemma 7.28.4. Let C be a site. Let C' C Sh(C) be a full subcategory (with a set
of objects) such that

(1) b, € Ob(C') for all U € Ob(C), and
(2) C’ is preserved under fibre products in Sh(C).

Declare a covering of C' to be any family {F; — F }icr of maps such that [].., Fi —

F is a surjective map of sheaves. Then

(1) C' is a site (after choosing a set of coverings, see Sets, Lemma ,

(2) representable presheaves on C' are sheaves (i.e., the topology on C' is sub-
canonical, see Definition ,

(3) the functor v:C — C', U — h{; is a special cocontinuous functor, hence
induces an equivalence g : Sh(C) — Sh(C'),

(4) for any F € Ob(C") we have g~ hx = F, and

(5) for any U € Ob(C) we have g*hﬁ = hywy = hhﬁ'

el

Proof. Warning: Some of the statements above may look be a bit confusing at
first; this is because objects of C’ can also be viewed as sheaves on C! We omit the
proof that the coverings of C' as described in the lemma satisfy the conditions of
Definition [7.6.21

Suppose that {F; — F} is a surjective family of morphisms of sheaves. Let G be
another sheaf. Part (2) of the lemma says that the equalizer of

Morsu(ey (e Fi: G) 2~ Morgpe) (L i inyerxr Fio X7 Fir: G)

is Morgycy(F,G). This is clear (for example use Lemma [7.12.3)).

To prove (3) we have to check conditions (1) — (5) of Lemma[7.28.1] The fact that
v is cocontinuous is equivalent to the description of surjective maps of sheaves in
Lemma The functor v is continuous because U h# commutes with fibre
products, and transforms coverings into coverings (see Lemma and Lemma
7.13.4). Properties (3), (4) of Lemma are statements about morphisms f :
hi, — h¥. Such a morphism is the same thing as an element of h*(U’). Hence
(3) and (4) are immediate from the construction of the sheafification. Property (5)

of Lemma [7.28.1] is Lemma [7.13.5] Denote g : Sh(C) — Sh(C’) the equivalence of
topoi associated with v by Lemma [7.28.1
Let F be as in part (4) of the lemma. For any U € Ob(C) we have

g ' hr(U) = hp(v(U)) = Morgyc) (hff, F) = F(U)

The first equality by Lemma [7.20.5] Thus part (4) holds.
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Let F € Ob(C’). Let U € Ob(C). Then
9+hf: (F) = Morgner(hr, g« hfr)
= Morgyc) (g~ thr, hfy)
= Morgy(c) (F, hir)
= More: (F, hj)
as desired (where the third equality was shown above). O

Using this we can massage any topos to live over a site having all finite limits.

Lemma 7.28.5. Let Sh(C) be a topos. Let {F;}icr be a set of sheaves on C. There
exists an equivalence of topoi g : SK(C) — Sh(C') induced by a special cocontinuous
functor u : C — C' of sites such that

(1) C' has a subcanonical topology,

(2) a family {V; — V} of morphisms of C' is (combinatorially equivalent to)
a covering of C' if and only if [ hy, — hy is surjective,

(3) C' has fibre products and a final object (i.e., C' has all finite limits),

(4) every subsheaf of a representable sheaf on C' is representable, and

(5) each g.JF; is a representable sheaf.

Proof. Consider the full subcategory C; C Sh(C) consisting of all hﬁ for all U €
Ob(C), the given sheaves F; and the final sheaf % (see Example [7.10.2). We are
going to inductively define full subcategories

CiCCCCyC...CSHC)

Namely, given C,, let C,,41 be the full subcategory consisting of all fibre products and
subsheaves of objects of C,,. (Note that C,,41 has a set of objects.) Set C' = J,,~ Cn-
A covering in C’ is any family {G; — G} ;e of morphisms of objects of C’ such that
11G; — G is surjective as a map of sheaves on C. The functor v : C — C' is given

by U — hﬁ Apply Lemma [7.28.4 |

Here is the goal of the current section.

Lemma 7.28.6. Let C, D be sites. Let f : Sh(C) — Sh(D) be a morphism of topoi.
Then there exists a site C' and a diagram of functors

such that

(1) the functor v is a special cocontinuous functor,

(2) the functor u commutes with fibre products, is continuous and defines a
morphism of sites C' — D, and

(3) the morphism of topoi f agrees with the composition of morphisms of topoi

Sh(C) — Sh(C") — SK(D)
where the first arrow comes from v via Lemma[7.28.1] and the second arrow
from u via Lemma[7.16.9

Proof. Consider the full subcategory C; C Sh(C) consisting of all hﬁ and all f’lhff
for all U € Ob(C) and all V€ Ob(D). Let C,,41 be a full subcategory consisting
of all fibre products of objects of C,,. Set C' = J,,5, Cn. A covering in C’ is any

This statement is
closely related to
[AGVT1]
Proposition 4.9.4.
Exposé IV]. In order
to get the whole
result, one should
also use [AGVT1]
Remarque 4.7.4,
Exposé IV].
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family {F; — F}ier such that [[;,.; F; — F is surjective as a map of sheaves on
C. The functor v : C — C’ is given by U — h?f. The functor u : D — C’ is given by
Vs foUE

Part (1) follows from Lemma [7.28.4

Proof of (2) and (3) of the lemma. The functor u commutes with fibre products
as both V hé and f~!' do. Moreover, since f~! is exact and commutes with
arbitrary colimits we see that it transforms a covering into a surjective family of
morphisms of sheaves. Hence u is continuous. To see that it defines a morphism
of sites we still have to see that u, is exact. In order to do this we will show that
g ! ou, = f~'. Namely, then since ¢! is an equivalence and f~! is exact we will
conclude. Because g~ ! is adjoint to g¢., and u, is adjoint to u°, and f~! is adjoint
to f. it also suffices to prove that u® o g, = f.. Let U be an object of C and let V'
be an object of D. Then

(g hE) (V) = gl (f )
= Morgpe)(f ~ hir, hi)
= Morgypy (hir, fuhi)
= fh (V)

The first equality because u® = uP. The second equality by Lemma (5). The
third equality by adjointness of f, and f~! and the final equality by properties of
sheafification and the Yoneda lemma. We omit the verification that these identities
are functorial in U and V. Hence we see that we have u® o g, = f, for sheaves of
the form h}%. This implies that u®og, = f. and we win (some details omitted). O

Remark| 7.28.7. Notation and assumptions as in Lemma If the site D
has a final object and fibre products then the functor u : D — C’ satisfies all the
assumptions of Proposition[7.15.6f Namely, in addition to the properties mentioned
in the lemma u also transforms the final object of D into the final object of C'. This
is clear from the construction of u. Hence, if we first apply Lemmas to D
and then Lemma to the resulting morphism of topoi Sh(C) — Sh(D’) we
obtain the following statement: Any morphism of topoi f : Sh(C) — Sh(D) fits into
a commutative diagram

Sh(c') —L = sn(D’)

where the following properties hold:

(1) the morphisms e and g are equivalences given by special cocontinuous
functors C — C' and D — D/,

(2) the sites C’ and D’ have fibre products, final objects and have subcanonical
topologies,

(3) the morphism f’:C’" — D’ comes from a morphism of sites corresponding
to a functor u : D’ — C’ to which Proposition applies, and

(4) given any set of sheaves F; (resp. G;) on C (resp. D) we may assume each
of these is a representable sheaf on C’ (resp. D’).
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It is often useful to replace C and D by C' and D’.

Remark| 7.28.8. Notation and assumptions as in Lemma |7.28.61 Suppose that
in addition the original morphism of topoi Sh(C) — Sh(D) is an equivalence. Then
the construction in the proof of Lemma gives two functors

C—=>C «D

which are both special cocontinuous functors. Hence in this case we can actually
factor the morphism of topoi as a composition

Sh(C) — Sh(C') = Sh(D') < Sh(D)
as in Remark but with the middle morphism an identity.

7.29. Localization of topoi

We repeat some of the material on localization to the apparently more general
case of topoi. In reality this is not more general since we may always enlarge the
underlying sites to assume that we are localizing at objects of the site.

Lemma 7.29.1. LetC be a site. Let F be a sheaf on C. Then the category Sh(C)/F
1$ a topos. There is a canonical morphism of topoi

jr : Sh(C)/F — Sh(C)
which is a localization as in Section[7.24) such that

(1) the functor j;-l is the functor H— H x F/F, and
(2) the functor jr is the forgetful functor G/F — G.

Proof. Apply Lemma [7.2855] This means we may assume C is a site with sub-
canonical topology, and F = hy = hﬁ for some U € Ob(C). Hence the material

of Section applies. In particular, there is an equivalence Sh(C/U) = Sh(C)/ hﬁ
such that the composition

Sh(C/U) — Sh(C)/h¥ — Sh(C)

is equal to jy, see Lemma [7.24.4 Denote a : Sh(C)/hﬁ — Sh(C/U) the inverse
functor, so jr = juioa, jr = a"! ojal, and jr . = ju« o a. The description of
jr follows from the above. The description of j;-l follows from Lemma|7.24.6f O

Remark|7.29.2. In the situation of Lemma|7.29.1|we can also describe the functor
Jr.« It is the functor which associates to ¢ : G — F the sheaf

U+— {a: Fluy = G|y such that « is a right inverse to ¢|y}

In order to prove that this works the introduction of Hom-sheaves is desirable,
hence we postpone this to a later time.

Lemma 7.29.3. Let C be a site. Let F be a sheaf on C. Let C/F be the category
of pairs (U, s) where U € Ob(C) and s € F(U). Let a covering in C/F be a family
{(Ui,s;) = (U,s)} such that {U; — U} is a covering of C. Then j : C/F — C is
a continuous and cocontinuous functor of sites which induces a morphism of topoi
j: ShC/F) — Sh(C). In fact, there is an equivalence Sh(C/F) = Sh(C)/F which
turns j into jr.
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Proof. We omit the verification that C/F is a site and that j is continuous and
cocontinuous. By Lemma, there exists a morphism of topoi j as indicated,
with j71G(U, s) = G(U), and there is a left adjoint jy to j~'. A morphism ¢ : * —
G on C/F is the same thing as a rule which assigns to every pair (U, s) a section
©(s) € G(U) compatible with restriction maps. Hence this is the same thing as a
morphism ¢ : F — G over C. We conclude that jix = F. In particular, for every
H € Sh(C/F) there is a canonical map

M = gx=F

i.e., we obtain a functor j : Sh(C/F) — Sh(C)/F. An inverse to this functor is the
rule which assigns to an object ¢ : G — F of Sh(C)/F the sheaf

a(G/F): (U,s) — {t € G(U) | ¢(t) = s}
We omit the verification that a(G/F) is a sheaf and that a is inverse to ji. O

04IP |Definition 7.29.4. Let C be a site. Let F be a sheaf on C.

(1) The topos Sh(C)/F is called the localization of the topos Sh(C) at F.
(2) The morphism of topoi jz : Sh(C)/F — Sh(C) of Lemma is called
the localization morphism.

We are going to show that whenever the sheaf F is equal to hf; for some object
U of the site, then the localization of the topos is equal to the category of sheaves
on the localization of the site at U. Moreover, we are going to check that any
functorialities are compatible with this identification.

04IQ Lemma 7.29.5. Let C be a site. Let F = hﬁ for some object U of C. Then
7 SKC)/F — Sh(C) constructed in Lemma |7.29.1] agrees with the morphism
of topoi ju : Sh(C/U) — Sh(C) constructed in Section via the identification
Sh(C/U) = Sh(C)/h}; of Lemma|7.24.4,

Proof. We have seen in Lemma that the composition Sh(C/U) — Sh(C)/hﬁ —
Sh(C) is jin. The functor S(C)/hf, — Sh(C) is jr by Lemma [7.29.1] Hence
jF1 = jur via the identification. So j]__-1 = jal (by adjointness) and so jr . = ju«
(by adjointness again). O

04IR Lemma 7.29.6. LetC be a site. If s : G — F is a morphism of sheaves on C then
there exists a natural commutative diagram of morphisms of topoi

Sh(C)/G : ShC)/F

J

Sh(C)

where j = jg,F is the localization of the topos Sh(C)/F at the object G/F. In
particular we have

T H—=F)=HxrG—G)
and
HESF)=(250).
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Proof. The description of ;=1 and j; comes from the description of those functors
in Lemma|7.29.1} The equality of functors jg1 = jr10ji is clear from the description
of these functors (as forgetful functors). By adjointness we also obtain the equalities

gt =it ez and jg . = jF . © - O

Lemmal 7.29.7. Assume C and s : G — F are as in Lemma . If G = hff
and F = hﬁ and s : G — F comes from a morphism V. — U of C then the

diagram in Lemma is identified with diagram (7.24.7.1|) via the identifications
Sh(C/V) = Sh(C)/hT, and SK(C/U) = Sh(C)/h¥ of Lemma|7.24.4|

Proof. This is true because the descriptions of j~! agree. See Lemma [7.24.8| and
Lemma, [7.29.6 O

7.30. Localization and morphisms of topoi
This section is the analogue of Section [7.27] for morphisms of topoi.

Lemma 7.30.1. Let f: Sh(C) — SW(D) be a morphism of topoi. Let G be a sheaf
onD. Set F = f~1G. Then there exists a commutative diagram of topoi

Sh(C)/F —— Sh(C)

q )

SK(D)/G 2%~ Sh(D).
The morphism ' is characterized by the property that
()5 G) = (I F)
and we have flj7' = jg_lf*.

Proof. Since the statement is about topoi and does not refer to the underlying sites
we may change sites at will. Hence by the discussion in Remark we may as-
sume that f is given by a continuous functor u : D — C satisfying the assumptions
of Proposition [7.15.6] between sites having all finite limits and subcanonical topolo-
gies, and such that G = hy for some object V of D. Then F = f~'hy = huvy by
Lemma By Lemma we obtain a commutative diagram of morphisms
of topoi

Sh(C/U) —— Sh(C)
ffl lf
SK(D/V) 2~ S(D),

and we have f,,fjgl = j;lf*. By Lemma [7.29.5| we may identify jr and jy and jg
and jy. The description of (f/)~! is given in Lemma [7.27.1 O

Lemma 7.30.2. Let f: C — D be a morphism of sites given by the continuous
functor uw : D — C. Let V be an object of D. Set U = u(V). Set G = hi, and
F = hﬁ = f‘lhﬁ (see Lemma . Then the diagram of morphisms of topoi
of Lemma[7.30-1] agrees with the diagram of morphisms of topoi of Lemma[7.27.]]
via the identifications jr = ju and jg = jv of Lemma[7.29.5
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Proof. This is not a complete triviality as the choice of morphism of sites giving
rise to f made in the proof of Lemma may be different from the morphisms
of sites given to us in the lemma. But in both cases the functor (f’)~! is described
by the same rule. Hence they agree and the associated morphism of topoi is the
same. Some details omitted. O

Lemma 7.30.3. Let f: Sh(C) — Sh(D) be a morphism of topoi. Let G € Sh(D),
F € Sh(C) and s : F — f~1G a morphism of sheaves. There exists a commutative
diagram of topoi

SH(C)/F ——= Sh(C)

q |1

SH(D)/G —2%~ Sh(D).
We have fs = f'o jr/s-1g where f' : Sh(C)/f~'G — Sh(D)/F is as in Lemma
and jr;p-1g : SMC)/F — Sh(C)/f~'G is as in Lemma|7.29.0. The functor
(fs)~" is described by the rule
(fs)_l(H i> g) = (f_17'l X =14 f-1G,s F = ]:)

Finally, given any morphisms b : G — G, a : F' — F and s' : F' — f~1G’ such
that
f/ f—lg/

SI
a i l F
F——f7g
commutes, then the diagram

SHC)/F' S Sh(C)/F
fsr fs
SK(D) /G’ 2% SWD)/g.

commutes.

Proof. The commutativity of the first square follows from the commutativity of the
diagram in Lemma [7.29.6] and the commutativity of the diagram in Lemma[7.30.1]
The description of f; ! follows on combining the descriptions of (f/)~! in Lemma

7.30.1) with the description of (j]:/f—lg)_l in Lemma|7.29.6f The commutativity of

the last square then follows from the equality
FTH X pag  Fxp F =T (H xgG') xpig o F
which is formal. O

Lemma 7.30.4. Let f: C — D be a morphism of sites given by the continuous
functor w : D — C. Let V be an object of D. Let ¢ : U — u(V) be a morphism.
Set G = h‘#, and F = hﬁ = f_lh‘#,&. Let s : F — f~1G be the map induced by c.
Then the diagram of morphisms of topoi of Lemma[7.27.3 agrees with the diagram
of morphisms of topoi of Lemma[7.30.3 via the identifications jr = ju and jg = jv
of Lemma [7.29.5.

Proof. This follows on combining Lemmas [7.29.7] and [7.30.2] (]



http://stacks.math.columbia.edu/tag/04IV
http://stacks.math.columbia.edu/tag/04IW

00Y3
00Y4

04EH

00Y5

00Y6

7.31. POINTS 325

7.31. Points

Definition 7.31.1. Let C be a site. A point of the topos Sh(C) is a morphism of
topoi p from Sh(pt) to Sh(C).

We will define a point of a site in terms of a functor w : C — Sets. It will turn out

later that u will define a morphism of sites which gives rise to a point of the topos
associated to C, see Lemma [7.31.8

Let C be a site. Let p = u be a functor u : C — Sets. This curious language is
introduced because it seems funny to talk about neighbourhoods of functors; so we
think of a “point” p as a geometric thing which is given by a categorical datum,
namely the functor u. The fact that p is actually equal to u does not matter. A
neighbourhood of p is a pair (U,z) with U € Ob(C) and x € u(U). A morphism of
neighbourhoods (V,y) — (U, z) is given by a morphism « : V' — U of C such that
u(a)(y) = . Note that the category of neighbourhoods isn’t a “big” category.

We define the stalk of a presheaf F at p as
(73111) ]:P = COlim{(Uyz)}opp ]:(U)

The colimit is over the opposite of the category of neighbourhoods of p. In other
words, an element of F,, is given by a triple (U, z, s), where (U, ) is a neighbourhood
of p and s € F(U). Equality of triples is the equivalence relation generated by
(U,z,8) ~ (V,y,a*s) when « is as above.

Note that if ¢ : F — G is a morphism of presheaves of sets, then we get a canonical
map of stalks ¢, : F, = G,. Thus we obtain a stalk functor

PSh(C) — Sets, F — Fp.

We have defined the stalk functor using any functor p = w : C — Sets. No conditions
are necessary for the definition to Workﬂ On the other hand, it is probably better
not to use this notion unless p actually is a point (see definition below), since in
general the stalk functor does not have good properties.

Definition 7.31.2. Let C be a site. A point p of the site C is given by a functor
u : C — Sets such that
(1) For every covering {U; — U} of C the map [[u(U;) — u(U) is surjective.
(2) For every covering {U; — U} of C and every morphism V — U the maps
uw(Us xu V) = uw(Us) Xy u(V) are bijective.
(3) The stalk functor Sh(C) — Sets, F — F, is left exact.

The conditions should be familiar since they are modeled after those of Definitions
[7.14.1} and [7.15.1} Note that (3) implies that %, = {*}, see Example Hence
u(U) # () for at least some U (because the empty colimit produces the empty set).
We will show below (Lemma that this does give rise to a point of the topos
Sh(C). Before we do so, we prove some lemmas for general functors w.

Lemma) 7.31.3. Let C be a site. Let p = u : C — Sets be a functor. There are
functorial isomorphisms (hy), = w(U) for U € Ob(C).

50ne should try to avoid the case where u(U) = @ for all U.
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Proof. An element of (hy), is given by a triple (V,y, f), where V € Ob(C), y €
w(V) and f € hy(V) = More(V,U). Two such (V,y, f), (V',y/, f") determine the
same object if there exists a morphism ¢ : V' — V’ such that u(¢)(y) = 3’ and
f'o¢ = f, and in general you have to take chains of identities like this to get
the correct equivalence relation. In any case, every (V,y, f) is equivalent to the
element (U, u(f)(y),idy). If ¢ exists as above, then the triples (V,y, f), (V', ¢/, )
determine the same triple (U, u(f)(y),idy) = (U,u(f")(y’),idy). This proves that
the map w(U) — (hy)p, © — class of (U, z,idy) is bijective. O

Let C be asite. Let p = u : C — Sets be a functor. In analogy with the constructions
in Section [7.5] given a set E we define a presheaf u? E by the rule

(7.31.3.1) U+— v’ E(U) = Morgeis(u(U), E) = Map(u(U), E).
This defines a functor u? : Sets — PSh(C), E — wPE.

Lemmal 7.31.4. For any functor u : C — Sets. The functor uP is a right adjoint
to the stalk functor on presheaves.

Proof. Let F be a presheaf on C. Let E be a set. A morphism F — uPFE is given
by a compatible system of maps F(U) — Map(u(U), E), i.e., a compatible system
of maps F(U) x w(U) — E. And by definition of F, a map F, — E is given by
a rule associating with each triple (U, z,0) an element in E such that equivalent
triples map to the same element, see discussion surrounding Equation .
This also means a compatible system of maps F(U) x u(U) — E. O

In analogy with Section [7.14] we have the following lemma.

Lemma 7.31.5. Let C be a site. Let p=wu:C — Sets be a functor. Suppose that
for every covering {U; — U} of C

(1) the map [[uw(U;) = w(U) is surjective, and

(2) the maps w(U; xu U;) — u(Us) Xy u(Uj) are surjective.
Then we have

(1) the presheaf uPE is a sheaf for all sets E, denote it u*E,

(2) the stalk functor Sh(C) — Sets and the functor u® : Sets — Sh(C) are

adjoint, and
(3) we have F, = ]-";f for every presheaf of sets F.

Proof. The first assertion is immediate from the definition of a sheaf, assumptions
(1) and (2), and the definition of u? E. The second is a restatement of the adjointness
of uP and the stalk functor (but now restricted to sheaves). The third assertion
follows as, for any set E, we have

Map(Fp, E) = Mor pgp(cy (F,uP E) = Morgh(c)(f#, uw’'E) = Map(]:#, E)
by the adjointness property of sheafification. ]

In particular Lemma holds when p = u is a point. In this case we think of
the sheaf u®F as the “skyscraper” sheaf with value E at p.

Definition 7.31.6. Let p be a point of the site C given by the functor u. For a set
E we define p, E = u®FE the sheaf described in Lemma [7.31.5| above. We sometimes
call this a skyscraper sheaf.
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In particular we have the following adjointness property of skyscraper sheaves and
stalks:

Morgpey (F, p« E) = Map(Fp, E)

This motivates the notation p~'F = Fp which we will sometimes use.

Lemma 7.31.7. Let C be a site.

(1) Let p be a point of the site C. Then the pair of functors (p«,p~') introduced
above define a morphism of topoi Sh(pt) — Sh(C).

(2) Letp = (ps«,p~ 1) be a point of the topos Sh(C). Then the functor u : U
p_l(hﬁ) gives rise to a point p’ of the site C whose associated morphism
of topoi (pl,, (p')~1) is equal to p.

Proof. Proof of (1). By the above the functors p, and p~! are adjoint. The functor

p~ ! is required to be exact by Definition [7.31.2l Hence the conditions imposed in
Definition [7.16.1| are all satisfied and we see that (1) holds.

Proof of (2). Let {U; — U} be a covering of C. Then [[(hy,)# — h?f is surjective,
see Lemma Since p~! is exact (by definition of a morphism of topoi) we
conclude that [Ju(U;) — w(U) is surjective. This proves part (1) of Definition
Sheafification is exact, see Lemma Hence if U xy W exists in C,
then

W cpw =BT Xy Wiy

and we see that w(U xy W) = u(U) X,y u(W) since p~! is exact. This proves

part (2) of Definition [7.31.2] Let p’ = u, and let F,, be the stalk functor defined by
Equation (|7.31.1.1) using u. There is a canonical comparison map c: Fpy — Fp, =
p~'F. Namely, given a triple (U, z, o) representing an element & of F,, we think of &
as a map o : hﬁ — F and we can set ¢(¢) = p~1(o)(x) since x € u(U) = p‘l(h#).
By Lemma we see that (hy)y = w(U). Since conditions (1) and (2) of
Definition old for p’ we also have (hﬁ)p/ = (hy)p by Lemma Hence
we have

() = (hur)y = u(U) = p* (h)
We claim this bijection equals the comparison map c : (h’g)p/ — p’l(h’g) (verifica-
tion omitted). Any sheaf on C is a coequalizer of maps of coproducts of sheaves of
the form hﬁ, see Lemma The stalk functor F +— F,, and the functor p~*
commute with arbitrary colimits (as they are both left adjoints). We conclude ¢ is
an isomorphism for every sheaf 7. Thus the stalk functor F +— F is isomorphic to
p~! and we in particular see that it is exact. This proves condition (3) of Definition
holds and p’ is a point. The final assertion has already been shown above,
since we saw that p~! = (p/)~L. O

Actually a point always corresponds to a morphism of sites as we show in the
following lemma.

Lemma 7.31.8. Let C be a site. Let p be a point of C given by u : C — Sets.
Let Sy be an infinite set such that w(U) C Sy for allU € Ob(C). Let S be the site
constructed out of the powerset S = P(Sy) in Remark . Then

(1) there is an equivalence i : Sh(pt) — Sh(S),

(2) the functor u:C — S induces a morphism of sites f : S — C, and
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(3) the composition
Sh(pt) = Sh(S) — Sh(C)
is the morphism of topoi (p«,p~') of Lemma|7.31.7

Proof. Part (1) we saw in Remark Moreover, recall that the equivalence
associates to the set E the sheaf i, F on S defined by the rule V +— Morges(V, E).
Part (2) is clear from the definition of a point of C (Definition and the
definition of a morphism of sites (Definition . Finally, consider f.i.F. By
construction we have

fxtx BE(U) = i, E(uw(U)) = Morgess(u(U), E)
which is equal to p,E(U), see Equation (7.31.3.1]). This proves (3). O

Contrary to what happens in the topological case it is not always true that the
stalk of the skyscraper sheaf with value E is E. Here is what is true in general.

Lemma 7.31.9. Let C be a site. Let p : Sh(pt) — Sh(C) be a point of the topos
associated to C. For any set E there are canonical maps

E— (p«E)p, — E
whose composition is idg.

Proof. There is always an adjunction map (p.E), = p~'p,E — E. This map
is an isomorphism when E = {*} because p, and p~—! are both left exact, hence
transform the final object into the final object. Hence given e € E we can consider
the map 4. : {*} — E which gives

P pa{*} T p o E
{x} E
whence the map E — (p.E), = p~'p.E as desired. O

Lemma 7.31.10. Let C be a site. Let p : Sh(pt) — Sh(C) be a point of the topos
associated to C. The functor p, : Sets — Sh(C) has the following properties: It
commutes with arbitrary limits, it is left exact, it is faithful, it transforms surjec-
tions into surjections, it commutes with coequalizers, it reflects injections, it reflects
surjections, and it reflects isomorphisms.

Proof. Because p, is a right adjoint it commutes with arbitrary limits and it is
left exact. The fact that p~!p,.E — E is a canonically split surjection implies that
ps is faithful, reflects injections, reflects surjections, and reflects isomorphisms. By
Lemma we may assume that p comes from a point u : C — Sets of the
underlying site C. In this case the sheaf p. F is given by

P« E(U) = Morges(u(U), E)
see Equation ([7.31.3.1)) and Definition [7.31.6{ It follows immediately from this

formula that p, transforms surjections into surjections and coequalizers into co-
equalizers. (I
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7.32. Constructing points

In this section we give criteria for when a functor from a site to the category of sets
defines a point of that site.

Lemma 7.32.1. Let C be a site. Assume that C has a final object X and fibred
products. Let p=u :C — Sets be a functor such that
(1) w(X) is a singleton set, and
(2) for every pair of morphisms U — W and V. — W with the same target
the map w(U xw V) = u(U) xywy u(V') is bijective.
Then the opposite of the category of neighbourhoods of p is filtered. Moreover, the
stalk functor Sh(C) — Sets, F — F, commutes with finite limits.

Proof. This is analogous to the proof of Lemma [7.5.2] above. The assumptions
on C imply that C has finite limits. See Categories, Lemma Assumption
(1) implies that the category of neighbourhoods is nonempty. Suppose (U, z) and
(V,y) are neighbourhoods. Then u(U x V) = w(U xx V) = u(U) xyx) u(V) =
u(U) x w(V') by (2). Hence there exists a neighbourhood (U X x V, z) mapping to
both (U, z) and (V,y). Let a,b: (V,y) — (U, x) be two morphisms in the category
of neighbourhoods. Let W be the equalizer of a,b : V' — U. As in the proof of
Categories, Lemma [£.18.4) we may write W in terms of fibre products:

W= (V Xa,U,b V) X(pr1,pr2),VXV,A Vv

The bijectivity in (2) guarantees there exists an element z € u(W) which maps to
((y,y),y). Then (W, 2) — (V,y) equalizes a,b as desired.

Let Z — Sh(C), i — F; be a finite diagram of sheaves. We have to show that the
stalk of the limit of this system agrees with the limit of the stalks. Let F be the
limit of the system as a presheaf. According to Lemma this is a sheaf and it
is the limit in the category of sheaves. Hence we have to show that F, = limz F; .
Recall also that F has a simple description, see Section [7.4l Thus we have to show
that
lim; colimy (g z)yerr Fi(U) = colimy(y z)yors lim; F5(U).

This holds, by Categories, Lemma because we just showed the opposite of
the category of neighbourhoods is filtered. O

Proposition| 7.32.2. Let C be a site. Assume that finite limits exist in C. (Le.,
C has fibre products, and a final object.) A point p of such a site C is given by a
functor u : C — Sets such that

(1) u commutes with finite limits, and

(2) if {U; = U} is a covering, then [ [, u(U;) = w(U) is surjective.
Proof. Suppose first that p is a point (Definition [7.31.2)) given by a functor wu.
Condition (2) is satisfied directly from the definition of a point. By Lemma [7.31.3

we have (hy), = u(U). By Lemma [7.31.5| we have (hf;)p = (hy)p. Thus we see
that u is equal to the composition of functors

¢ psue) 5 sue) 22 Sets

Each of these functors is left exact, and hence we see u satisfies (1).

Conversely, suppose that u satisfies (1) and (2). In this case we immediately see
that v satisfies the first two conditions of Definition [[.31.21 And its stalk functor
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is exact, because it is a left adjoint by Lemma [7.31.5] and it commutes with finite
limits by Lemma|7.32.1 (]

Remark| 7.32.3. In fact, let C be a site. Assume C has a final object X and fibre
products. Let p = u : C — Sets be a functor such that

(1) u(X) = {«} a singleton, and

(2) for every pair of morphisms U — W and V' — W with the same target

the map u(U xw V) = u(U) xyw) w(V) is surjective.

(3) for every covering {U; — U} the map [[u(U;) — w(U) is surjective.
Then, in general, p is not a point of C. An example is the category C with two
objects {U, X} and exactly one non-identity arrow, namely U — X. We endow
C with the trivial topology, i.e., the only coverings are {U — U} and {X — X}.
A sheaf F is the same thing as a presheaf and consists of a triple (4, B, A — B):
namely A = F(X), B= F(U) and A — B is the restriction mapping corresponding
to U — X. Note that U xx U = U so fibre products exist. Consider the functor
u = p with u(X) = {*} and u(U) = {*1,*2}. This satisfies (1), (2), and (3), but
the corresponding stalk functor is the functor

(A,B,A— B)— BII4 B

which isn’t exact. Namely, consider (0, {1},0 — {1}) — ({1},{1},{1} — {1})
which is an injective map of sheaves, but is transformed into the noninjective map
of sets

{13 {1} — {1} Iy {1}
by the stalk functor.

Example 7.32.4. Let X be a topological space. Let Xz, be the site of Example
Let z € X be a point. Consider the functor

0 if z¢U

u: Xgar — Sets, U»—){{*} i orelU

This functor commutes with product and fibred products, and turns coverings into
surjective families of maps. Hence we obtain a point p of the site Xz, It is
immediately verified that the stalk functor agrees with the stalk at x defined in
Sheaves, Section [6.11

Example| 7.32.5. Let X be a topological space. What are the points of the topos
Sh(X)? To see this, let Xz, be the site of Example [7.6.4] By Lemma a
point of Sh(X) corresponds to a point of this site. Let p be a point of the site X 74,
given by the functor u : Xz, — Sets. We are going to use the characterization
of such a u in Proposition This implies immediately that u() = @ and
w(UNV) =ulU) x u(V). In particular we have w(U) = u(U) x u(U) via the
diagonal map which implies that u(U) is either a singleton or empty. Moreover, if
U = JU; is an open covering then

wU) =0=VYi, wU;) =0 and w(U)#0= 3, uw(U;) #0.

We conclude that there is a unique largest open W C X with w(WW) = (), namely
the union of all the opens U with u(U) =0. Let Z = X \W. If Z = Z; U Z, with
Z; C Z closed, then W = (X \ Z1)N (X \ Z2) s0 0 = u(W) = u(X \ Z1) x u(X \ Z2)
and we conclude that w(X \ Z;) = 0 or that w(X \ Z3) = 0. This means that
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X\ Zy =W or that X \ Z2 = W. In other words, Z is irreducible. Now we see
that u is described by the rule

0 if ZnU=0

U Xgar — Sets, UH{{*} it 20U £0

Note that for any irreducible closed Z C X this functor satisfies assumptions (1),
(2) of Proposition and hence defines a point. In other words we see that
points of the site Xz, are in one-to-one correspondence with irreducible closed
subsets of X. In particular, if X is a sober topological space, then points of Xz,
and points of X are in one to one correspondence, see Example [7.32.4]

Example|7.32.6. Consider the site 7g described in Exampleand Section
The forgetful functor u : T¢ — Sets commutes with products and fibred products
and turns coverings into surjective families. Hence it defines a point of Tg. We
identify Sh(7¢) and G-Sets. The stalk functor

p~ ' SK(Tg) = G-Sets —» Sets
is the forgetful functor. The pushforward p, is the functor
Sets — Sh(T¢) = G-Sets

which maps a set S to the G-set Map(G, S) with action g -1 = 1 o R, where Ry is
right multiplication. In particular we have p~1p,S = Map(G, S) as a set and the
maps S — Map(G, S) — S of Lemma|7.31.9| are the obvious ones.

Example 7.32.7. Let C be a category endowed with the chaotic topology (Exam-
ple[7.6.6)). For every object Uy of C the functor u : U — More(Uy, U) defines a point
p of C. Namely, conditions (1) and (2) of Definition are immediate as the
only coverings are given by identity maps. Condition (2) holds because F, = F(Up)
and since the topology is discrete taking sections over Uy is an exact functor.

7.33. Points and morphisms of topoi

In this section we make a few remarks about points and morphisms of topoi.

Lemma 7.33.1. Let f : D — C be a morphism of sites given by a continuous
functor w : C — D. Let p be a point of D given by the functor v : D — Sets, see
Definition [7.31.3, Then the functor vou : C — Sets defines a point q of C and
moreover there is a canonical identification

(1 F)p=Fq
for any sheaf F on C.

First proof Lemma Note that since u is continuous and since v defines a
point, it is immediate that v o u satisfies conditions (1) and (2) of Definition [7.31.2
Let us prove the displayed equality. Let F be a sheaf on C. Then

Fq = colimy 5 F(U)


http://stacks.math.columbia.edu/tag/00YF
http://stacks.math.columbia.edu/tag/08RH
http://stacks.math.columbia.edu/tag/05V1

05V2

7.33. POINTS AND MORPHISMS OF TOPOI 332

where the colimit is over objects U in C and elements z € v(u(U)). Similarly, we
have

(f'F)p = (upF)p
= colimy, ;) colimy, g.v (1) F(U)
= COlim(V,x7U,¢:V—>u(U)) F(U)
= colimy ) F(U)
= F,

Explanation: The first equality holds because f~'F = (u,F)# and because G, =
Qf for any presheaf G, see Lemma The second equality holds by the defi-
nition of u,. In the third equality we simply combine colimits. To see the fourth
equality we apply Categories, Lemma[£.17.5]to the functor F of diagram categories
defined by the rule F((V,z,U,¢ : V — w(U))) = (U,v(¢)(x)). The lemma applies,
because F' has a right inverse, namely (U, x) — (u(U),,U,id : w(U) = «w(U)) and
because there is always a morphism

(Via,U,¢: V = u(U)) — (w(U),v(¢)(2), U, id : w(U) — u(U))

in the fibre category over (U,x) which shows the fibre categories are connected.
The fifth equality is clear. Hence now we see that ¢ also satisfies condition (3) of
Definition [7.31.2] because it is a composition of exact functors. This finishes the
proof. |

Second proof Lemma By Lemma we may factor (p.,p~!) as
Sh(pt) % SK(S) L Sh(D)

where the second morphism of topoi comes from a morphism of sites h : S — D
induced by the functor v : D — S (which makes sense as S C Sets is a full
subcategory containing every object in the image of v). By Lemma the
composition vowu : C — S defines a morphism of sites g : S — C. In particular, the
functor vowu : C — § is continuous which by the definition of the coverings in S,
see Remark means that v o u satisfies conditions (1) and (2) of Definition
On the other hand, we see that

9+ E(U) = i, E(v(u(U)) = Morgets(v(u(U)), E)

by the construction of ¢ in Remark Note that this is the same as the formula
for which is equal to (vou)P E, see Equation . By Lemmathe functor
gxisx = (vou)? = (vou)?® is right adjoint to the stalk functor F +— F,. Hence we see
that the stalk functor ¢! is canonically isomorphic to i~ o g~!. Hence it is exact
and we conclude that ¢ is a point. Finally, as we have g = f o h by construction we
seethat 7' =i 'oh lof ' =plof! ie., we have the displayed formula of
the lemma. [

Lemma 7.33.2. Let f: Sh(D) — Sh(C) be a morphism of topoi. Let p : Sh(pt) —
Sh(D) be a point. Then q = f op is a point of the topos Sh(C) and we have a
canonical identification

(f'F)p=Fy
for any sheaf F on C.
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Proof. This is immediate from the definitions and the fact that we can compose
morphisms of topoi. ([

7.34. Localization and points

04EK In this section we show that points of a localization C/U are constructed in a simple
manner from the points of C.

04H2 |Lemmal 7.34.1. Let C be a site. Let p be a point of C given by u : C — Sets. Let
U be an object of C and let x € w(U). The functor

v:C/U — Sets, (p:V =U)r—{yeulV)]|ulp)(y) =z}
defines a point q of the site C/U such that the diagram

Sh(pt)
Sh(C/U) 22—~ Sh(C)

commutes. In other words F,, = (ji;' F)y for any sheaf on C.

Proof. Choose S and S as in Lemma [7.31.80 We may identify Sh(pt) = Sh(S) as
in that lemma, and we may write p = f : Sh(S) — Sh(C) for the morphism of topoi
induced by u. By Lemma we get a commutative diagram of topoi

SH(S/u(U)) —= Sh(S)

/| l

Sh(C/U) Y= Sh(C),

where p’ is given by the functor v’ : C/U — §/u(U), V/U — w(V)/u(U). Consider
the functor j, : S = §/x obtained by assigning to a set F the set F endowed with
the constant map F — u(U) with value z. Then j, is a fully faithful cocontinuous
functor which has a continuous right adjoint v, : (¢ : E — w(U)) = ¥~ 1({x}).
Note that j,() © j» = ids, and v, ou’ = v. These observations imply that we have
the following commutative diagram of topoi

Sh(S)
N

Sh(S/u(U)) —= Sh(S) p

Ju(U)
J/pl lp

Sh(C/U) Sh(C)

q

Namely:

(1) The morphism a : SK(S) — Sh(S/u(U)) is the morphism of topoi associ-
ated to the cocontinuous functor j,, which equals the morphism associated
to the continuous functor v,, see Lemma [7.20.1] and Section [7.21]

(2) The composition p o j, ) 0 a = p since j, ) © j = ids.
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(3) The composition p’ o a gives a morphism of topoi. Moreover, it is the
morphism of topoi associated to the continuous functor v, ou’ = v. Hence
v does indeed define a point ¢ of C/U which fits into the diagram above
by construction.

This ends the proof of the lemma. (I

Lemmal 7.34.2. Let C, p, u, U be as in Lemma |7.34.1. The construction of
Lemma |7.34.1) gives a one to one correspondence between points q of C/U lying
over p and elements x of u(U).

Proof. Let ¢ be a point of C/U given by the functor v : C/U — Sets such that
ju © g = p as morphisms of topoi. Recall that u(V) = p’l(h‘#/) for any object V' of
C, see Lemma Similarly v(V/U) = q_l(hﬁ/U) for any object V/U of C/U.
Consider the following two diagrams

Morc, 7 (W/U, V/U) —— Morc(W,V)

l L

Morc/U(W/U,U/U)HMorC(W,U) h#

The right hand diagram is the sheafification of the diagram of presheaves on C/U
which maps W/U to the left hand diagram of sets. (There is a small technical
point to make here, namely, that we have (j;'hy)# = j(}l(hﬁ) and similarly for
hy, see Lemma ) Note that the left hand diagram of sets is cartesian. Since
sheafification is exact (Lemma we conclude that the right hand diagram is
cartesian.

Apply the exact functor ¢! to the right hand diagram to get a cartesian diagram
v(V/U) ——u(V)

.

v(U/U) —u(U)
of sets. Here we have used that ¢~ o j=! = p~!. Since U/U is a final object of
C/U we see that v(U/U) is a singleton. Hence the image of v(U/U) in u(U) is an
element z, and the top horizontal map gives a bijection v(V/U) — {y € w(V) | y —
x in u(U)} as desired. O

Lemma 7.34.3. Let C be a site. Let p be a point of C given by u : C — Sets. Let
U be an object of C. For any sheaf G on C/U we have

(Ju1G)p = Hq 9y

where the coproduct is over the points q of C/U associated to elements x € u(U) as
in Lemma [7.57.1}

Proof. We use the description of jinG as the sheaf associated to the presheaf

Ve Hoemore vy 9(V/oU) of Lemma(7.24.2 Also, the stalk of jinG at p is equal
to the stalk of this presheaf, see Lemma/|7.31.5 Hence we see that

(jn@)p = colimqvyy [T G(V/eU)



http://stacks.math.columbia.edu/tag/04H3
http://stacks.math.columbia.edu/tag/04H4

04H5

0419
04IA

7.35. 2-MORPHISMS OF TOPOI 335

To each element (V,y,p,s) of this colimit, we can assign x = u(p)(y) € u(U).
Hence we obtain

G0y =1, .., 0, v -v0), werw)=2 G(V/oU)-
This is equal to the expression of the lemma by our construction of the points ¢. [

Remark 7.34.4. Warning: The result of Lemma |7.34.3| has no analogue for jy ..

7.35. 2-morphisms of topoi

This is a brief section concerning the notion of a 2-morphism of topoi.

Definition 7.35.1. Let f,g : Sh(C) — Sh(D) be two morphisms of topoi. A
2-morphism from f to g is given by a transformation of functors ¢ : f, — g..

Pictorially we sometimes represent ¢ as follows:

f

— T

Sh(C) t Sh(D)
g
Note that since f~! is adjoint to f, and ¢~ ! is adjoint to ¢. we see that ¢t induces

also a transformation of functors t : g=! — f~! (usually denoted by the same
symbol) uniquely characterized by the condition that the diagram

MorSh(C) (g, f*f) _— MOTSh(C) (filg, _F)
to—l l_ot
MorSh(C) (g7 g*f) = MOI’Sh(C)(gilgv f)

commutes. Because of set theoretic difficulties (see Remark[7.16.4)) we do not obtain
a 2-category of topoi. But we can still define horizontal and vertical composition and
show that the axioms of a strict 2-category listed in Categories, Section hold.
Namely, vertical composition of 2-morphisms is clear (just compose transformations
of functors), composition of 1-morphisms has been defined in Deﬁnition and
horizontal composition of

I N
Sh(C) It SWD) {s Sh(E)

is defined by the transformation of functors s+t introduced in Categories, Definition
4.27.1} Explicitly, s xt is given by

fit

/ / S / / s ’ gut /

(these maps are equal). Since these definitions agree with the ones in Categories,
Section [4.27] it follows from Categories, Lemma [£.27.2] that the axioms of a strict
2-category hold with these definitions.
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7.36. Morphisms between points
00YG

00YH |Lemma 7.36.1. Let C be a site. Let u,u’ : C — Sets be two functors, and let t :
u' — u be a transformation of functors. Then we obtain a canonical transformation
of stalk functors tean @ Fpy — Fp which agrees with t via the identifications of

Lemma[7.31.3

Proof. Omitted. O

00YI Definition| 7.36.2. Let C be a site. Let p,p’ be points of C given by functors
u,u’ : C — Sets. A morphism f :p — p' is given by a transformation of functors

fuitu — u.

Note how the transformation of functors goes the other way. This makes sense, as
we will see later, by thinking of the morphism f as a kind of 2-arrow pictorially as

follows:
p

Sets = Sh(pt) @ Sh(C)

’

p

Namely, we will see later that f, induces a canonical transformation of functors
P« — Pl between the skyscraper sheaf constructions.

This is a fairly important notion, and deserves a more complete treatment here.
List of desiderata
(1) Describe the automorphisms of the point of 7g described in Example
1(.22.0l
(2) Describe Mor(p,p') in terms of Mor(p., p,). L
(3) Specialization of points in topological spaces. Show that if 2/ € {z} in
the topological space X, then there is a morphism p — p’, where p (resp.
p’) is the point of Xz, associated to x (resp. z).

7.37. Sites with enough points
00YJ
00YK |Definition| 7.37.1. Let C be a site.

(1) A family of points {p; }ics is called conservative if for every map of sheaves
¢ : F — G which is an isomorphism on all the fibres F,, — G, is an
isomorphism.

(2) We say that C has enough points if there exists a conservative family of
points.

It turns out that you can then check “exactness” at the stalks.

00YL |Lemma 7.37.2. LetC be a site and let {p;}icr be a conservative family of points.
Then

(1) Given any map of sheaves ¢ : F — G we have Vi, p,, injective implies ¢
mjective.

(2) Given any map of sheaves ¢ : F — G we have Vi, ¢, surjective implies ¢
surjective.
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(3) Given any pair of maps of sheaves @1, 92 : F — G we have Vi, 1., = @2 p,
implies o1 = 3.

(4) Given a finite diagram G : J — Sh(C), a sheaf F and morphisms q; :
F — Gj then (F,q;) is a limit of the diagram if and only if for each i the
stalk (Fp,, (q;)p;) is one.

(5) Given a finite diagram F : J — Sh(C), a sheaf G and morphisms e; :
F; — G then (G, e;) is a colimit of the diagram if and only if for each i
the stalk (Gp,, (e;)p,) is one.

Proof. We will use over and over again that all the stalk functors commute with
any finite limits and colimits and hence with products, fibred products, etc. We
will also use that injective maps are the monomorphisms and the surjective maps
are the epimorphisms. A map of sheaves ¢ : F — G is injective if and only if
F — F xg F is an isomorphism. Hence (1). Similarly, ¢ : F — G is surjective if
and only if G lIx G — G is an isomorphism. Hence (2). The maps a,b: F — G
are equal if and only if F X465 F — F x F is an isomorphism. Hence (3). The
assertions (4) and (5) follow immediately from the definitions and the remarks at
the start of this proof. O

Lemma 7.37.3. Let C be a site and let {(p;, u;)}ier be a family of points. The
family is conservative if and only if for every sheaf F and every U € Ob(C) and
every pair of distinct sections 8,8 € F(U), s # s’ there exists an i and x € u;(U)
such that the triples (U,x,s) and (U,x,s") define distinct elements of Fp,.

Proof. Suppose that the family is conservative and that F, U, and s, s’ are as in
the lemma. The sections s, s’ define maps a,a’ : (hy)* — F which are distinct.
Hence, by Lemma [7.37.2| there is an i such that a,, # a}, . Recall that (hy)# =
u;(U), by Lemmas [7.31.3] and [7.31.5] Hence there exists an @ € u;(U) such that
ap, (v) # a;, () in Fp,. Unwinding the definitions you see that (U, x, s) and (U, z, s")
are as in the statement of the lemma.

To prove the converse, assume the condition on the existence of points of the lemma.
Let ¢ : F — G be a map of sheaves which is an isomorphism at all the stalks. We
have to show that ¢ is both injective and surjective, see Lemma Injectivity
is an immediate consequence of the assumption. To show surjectivity we have to
show that G lIx G — G is an isomorphism (Categories, Lemma . Since this
map is clearly surjective, it suffices to check injectivity which follows as GIIxG — G
is injective on all stalks by assumption. ([l

In the following lemma the points ¢; , are exactly all the points of C/U lying over
the point p; according to Lemma

Lemma 7.37.4. Let C be a site. Let U be an object of C. let {(pi,w;)}ier be a
family of points of C. For x € w;(U) let ¢; 5 be the point of C/U constructed in

Lemma |7.84.1. If {p:} is a conservative family of points, then {qi s }icr zeu (v) 15
a conservative family of points of C/U. In particular, if C has enough points, then
so does every localization C/U.

Proof. We know that jy induces an equivalence jyy : Sh(C/U) — Sh(C)/hﬁ, see
Lemma [7.24.4L Moreover, we know that (ji1G),, = [, Gq..., see Lemma [7.34.3
]

Hence the result follows formally.
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The following lemma tells us we can check the existence of points locally on the
site.

Lemma 7.37.5. Let C be a site. Let {U,;}icr be a family of objects of C. Assume

(1) ]_[h?éE — % is a surjective map of sheaves, and
(2) each localization C/U; has enough points.

Then C has enough points.

Proof. For each i € I let {p;}jecs, be a conservative family of points of C/U;.
For j € J; denote ¢; : Sh(pt) — Sh(C) the composition of p; with the localization
morphism Sh(C/U;) — Sh(C). Then g¢; is a point, see Lemma We claim
that the family of points {g;} 17, is conservative. Namely, let 7 — G be a map
of sheaves on C such that F,, — G, is an isomorphism for all j € J]J;. Let W
be an object of C. By assumption (1) there exists a covering {W, — W} and
morphisms W, — Uj). Since (Flev, ., )p;, = Fo; and (Glejv,.,))p; = Gg; by
Lemma we see that Fly,,, — Glu,,, is an isomorphism since the family
of points {p;}jes,,, is conservative. Hence F(W,) — G(W,) is bijective for each
a. Similarly F(W, xw Wp) — G(W, xw Wp) is bijective for each a,b. By the
sheaf condition this shows that F(W) — G(W) is bijective, i.e., F — G is an
isomorphism. ([l

7.38. Criterion for existence of points

This section corresponds to Deligne’s appendix to [AGVT1, Exposé VI]. In fact it
is almost literally the same.

Let C be a site. Suppose that (I,>) is a directed partially ordered set, and that
(Ui, fiir) is an inverse system over I, see Categories, Definition 4.21.1] Given the
data (I,>,U;, fiir) we define

u:C — Sets, u(V) = colim; Mor¢(U;, V)

Let F — F, be the stalk functor associated to u as in Section It is direct
from the definition that actually

F, = colim; F(U;)

in this special case. Note that u commutes with all finite limits (I mean those
that are representable in C) because each of the functors V' +— Morc(U;, V') do, see

Categories, Lemma[4.19.2]

We say that a system (I,>,U;, fiiv) is a refinement of (J,>,V}, g;;) it J C I, the
ordering on J induced from that of I and V; = Uj, g;;» = fj;» (in words, the
inverse system over J is induced by that over I). Let u be the functor associated to
(I,>,U;, fiir) and let u' be the functor associated to (J,>,V}, g;5-). This induces a
transformation of functors

u—u
simply because the colimits for v’ are over a subsystem of the systems in the colimits

for u. In particular we get an associated transformation of stalk functors F,y — F,
see Lemma [7.36.1
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Lemma 7.38.1. Let C be a site. Let (J,>,V},g;;/) be a system as above with
associated pair of functors (u',p’). Let F be a sheaf on C. Let s, s’ € Fy be distinct
elements. Let {W}y, — W} be a finite covering of C. Let f € u/(W). There exists a
refinement (I,>,U;, fiir) of (J,>,V},gj;:) such that s,s’ map to distinct elements
of F, and that the image of f in u(W) is in the image of one of the u(Wy).

Proof. There exists a jo € J such that f is defined by f’: V;, — W. For j > jo
we set Vi = Vj X o, w Wi. Then {V; — V;} is a finite covering in the site C.
Hence F(V;) C [[, F(Vjx). By Categories, Lemma [4.19.2] once again we see that

Fpr = colim; F(V;) — Hk colim; F(V; 1)

is injective. Hence there exists a k such that s and s’ have distinct image in
colimj F(V; ). Let Jo = {j € J,j > jo} and I = J I Jy. We order I so that
no element of the second summand is smaller than any element of the first, but
otherwise using the ordering on J. If j € I is in the first summand then we use V;
and if j € I is in the second summand then we use V; . We omit the definition of
the transition maps of the inverse system. By the above it follows that s,s’ have
distinct image in F,,. Moreover, the restriction of f’ to Vj; factors through Wj by
construction. (I

Lemma 7.38.2. Let C be a site. Let (J,>,V},g;;/) be a system as above with
assoctated pair of functors (u',p’). Let F be a sheaf onC. Let s,s' € F be distinct
elements. There exists a refinement (I,>,U;, fir) of (J,>,Vj,g;;) such that s, s
map to distinct elements of F, and such that for every finite covering {W;, — W}
of the site C, and any f € v/ (W) the image of [ in u(W) is in the image of one of
the u(Wy).

Proof. Let E be the set of pairs ({W), — W}, f € «/(W)). Consider pairs (E' C
E,(I,>,U;, fiir)) such that

(1) (I,>,U;,gis) is a refinement of (J,>,V;,g;5),

(2) s,s’ map to distinct elements of F,, and

(3) for every pair ({Wy, — W}, f € u/(W)) € E' we have that the image of f

in w(W) is in the image of one of the u(Wy).
We order such pairs by inclusion in the first factor and by refinement in the second.
Denote S the class of all pairs (E' C E,(I,>,U;, fir)) as above. We claim that
the hypothesis of Zorn’s lemma holds for §. Namely, suppose that (E!, (I, >
y Ui, fiir))aca s a totally ordered subset of S. Then we can define E' = | J,,. 4 £, and
we can set [ = |J,c 4 [o. We claim that the corresponding pair (E', (I, >, Us, fiir))
is an element of S. Conditions (1) and (3) are clear. For condition (2) you note
that
u = colimgec 4 u, and correspondingly F, = colimg,ca Fp,

The distinctness of the images of s, s’ in this stalk follows from the description
of a directed colimit of sets, see Categories, Section We will simply write
(E',(1,...)) = Upea(Ey, (Ia,...)) in this situation.

OK, so Zorn’s Lemma would apply if S was a set, and this would, combined with
Lemma above easily prove the lemma. It doesn’t since S is a class. In order
to circumvent this we choose a well ordering on E. For e € E set E, = {¢' € E |
¢/ < e}. By transfinite induction we construct pairs (EZ, (I.,...)) € S such that
e1 <ex = (E.,(Ie,,...)) <(EL,,(Ic,,...)). Let e € E,say e = ({W), = W}, f €

ey’


http://stacks.math.columbia.edu/tag/00YO
http://stacks.math.columbia.edu/tag/00YP

00YQ

090J

090K

090L

7.39. WEAKLY CONTRACTIBLE OBJECTS 340

u'(W)). If e has a predecessor e—1, then we let (I, . . .) be a refinement of (I._1,...)
as in Lemma [7.38.1| with respect to the system e = ({Wy, — W}, f € /(W)). If e

does not have a predecessor, then we let (I, ...) be a refinement of J,, (e, .. .)
with respect to the system e = ({W, — W}, f € «/(W)). Finally, the union
Ue.c g Ie will be a solution to the problem posed in the lemma. ([l

Proposition 7.38.3. Let C be a site. Assume that

(1) finite limits exist in C, and
(2) every covering {U; — U}tier has a refinement by a finite covering of C.

Then C has enough points.

Proof. We have to show that given any sheaf F on C, any U € Ob(C), and any
distinct sections s, s’ € F(U), there exists a point p such that s, s have distinct
image in F,. See Lemma Consider the system (J, >, V}, g;;-) with J = {1},
Vi = U, g11 = idy. Apply Lemma [7.38:2] By the result of that lemma we get a
system (I, >, Uj, fii+) refining our system such that s, # sj, and such that moreover
for every finite covering {Wj, — W} of the site C the map [[, w(Wi) — u(W) is
surjective. Since every covering of C can be refined by a finite covering we conclude
that [, w(Wy) — w(W) is surjective for any covering {W), — W} of the site C.
This implies that v = p is a point, see Proposition (and the discussion at the
beginning of this section which guarantees that u commutes with finite limits). O

7.39. Weakly contractible objects

A weakly contractible object of a site is one that satisfies the equivalent conditions
of the following lemma.

Lemma 7.39.1. Let C be a site. Let U be an object of C. The following conditions
are equivalent

(1) For every covering {U; — U} there exists a map of sheaves hﬁ — 11 hf;_
right inverse to the sheafification of [[ hy, — hy.

(2) For every surjection of sheaves of sets F — G the map F(U) — G(U) is
surjective.

Proof. Assume (1) and let F — G be a surjective map of sheaves of sets. For
s € G(U) there exists a covering {U; — U} and ¢; € F(U;) mapping to s|y,,
see Definition Think of t; as a map t; : hﬁi — F via . Then
precomposing [[#; : ]_[fﬁéé — F with the map hf]ﬁ — ]_[if;}E we get from (1) we
obtain a section ¢ € F(U) mapping to s. Thus (2) holds.

Assume (2) holds. Let {U; — U} be a covering. Then ]_[hﬁ — hﬁ is surjective

Lemma |7.13.4). Hence by (2) there exists a section s of ia mapping to the
U;

section idy of hﬁ. This section corresponds to a map hf; =l hi which is right
inverse to the sheafification of [[ hy, — hy which proves (1). O

Definition 7.39.2. Let C be a site.
(1) We say an object U of C is weakly contractible if the equivalent conditions
of Lemma [7.39.1] hold.
(2) We say a site has enough weakly contractible objects if every object U of
C has a covering {U; — U} with U; weakly contractible for all 1.
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(3) More generally, if P is a property of objects of C we say that C has enough
P objects if every object U of C has a covering {U; — U} such that U; has
P for all 1.

The small étale site of A& does not have any weakly contractible objects. On the
other hand, the small pro-étale site of any scheme has enough contractible objects.

7.40. Exactness properties of pushforward

Let f be a morphism of topoi. The functor f, in general is only left exact. There are
many additional conditions one can impose on this functor to single out particular
classes of morphisms of topoi. We collect them here and note some of the logical
dependencies. Some parts of the following lemma are purely category theoretical
(i.e., they do not depend on having a morphism of topoi, just having a pair of
adjoint functors is enough).

Lemma 7.40.1. Let f : Sh(C) — Sh(D) be a morphism of topoi. Consider the
following properties (on sheaves of sets):

) fe is fully faithful,

) f7YfoF — F is surjective for all F in Sh(C),

) f« transforms surjections into surjections,

) f« commutes with coequalizers,

) f« commutes with pushouts,

) f7YfoF — F is an isomorphism for all F in Sh(C),

) f« reflects injections,

) f« reflects surjections,

) f« reflects bijections, and

) for any surjection F — f~1G there exists a surjection G' — G such that

f~1G" — f71G factors through F — f~1G.
Then we have the following implications

a) (2) = (1),

(
(b) (3)= (1),
() (7)= (1), (2), (3), (8), (9). (10).
(d) (3) < (9).
(e) (6) = (4) and (5) = (4),
() (4) = (11),
(8) (9)= (8), (10), and
(h) (2) < (7).
Picture
(6)\ /(9)<(8)
(4) <= (11) (2) <= (1) (10)
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Proof. Proof of (a): This is immediate from the definitions.

Proof of (b). Suppose that a,b: F — F’ are maps of sheaves on C. If f.a = f.b,
then f~!f.,a = f~1f.b. Consider the commutative diagram

F F

]

fUF _ZUAF
If the bottom two arrows are equal and the vertical arrows are surjective then the
top two arrows are equal. Hence (b) follows.

_—

Proof of (c). Suppose that a : F — F’ is a map of sheaves on C. Consider the
commutative diagram

F—F

]

fUF— [

If (7) holds, then the vertical arrows are isomorphisms. Hence if f.a is injective
(resp. surjective, resp. bijective) then the bottom arrow is injective (resp. surjective,
resp. bijective) and hence the top arrow is injective (resp. surjective, resp. bijective).
Thus we see that (7) implies (8), (9), (10). It is clear that (7) implies (3). The
implications (7) = (2), (1) follow from (a) and (h) which we will see below.

Proof of (d). Assume (3). Suppose that a : F — F’ is a map of sheaves on C
such that f.a is surjective. As f~! is exact this implies that f~'f.a : f~1f. F —
f7Lf.F" is surjective. Combined with (3) this implies that a is surjective. This
means that (9) holds. Assume (9). Let F be a sheaf on C. We have to show that
the map f~1f.F — F is surjective. It suffices to show that f.f 1f.F — f.F is
surjective. And this is true because there is a canonical map f.F — fof ' foF
which is a one-sided inverse.

Proof of (e). We use Categories, Lemma[4.13.3|without further mention. If ¥ — F’
is surjective then ' Iz 7/ — F’ is an isomorphism. Hence (6) implies that

[ F Up 5 [ F' = fo(F e F') — f.F

is an isomorphism also. And this in turn implies that f.F — f.F’ is surjective.
Hence we see that (6) implies (4). If F — F’ is surjective then F is the coequalizer
of the two projections F xz F — F by Lemma Hence if (5) holds, then
f«F' is the coequalizer of the two projections

f*(]'— X Fr f") = f*]: X f . F! f*]: — f*]:
which clearly means that f.F — f.F’ is surjective. Hence (5) implies (4) as well.

Proof of (f). Assume (4). Let F — f~1G be a surjective map of sheaves on C. By
(4) we see that f.F — f.f'G is surjective. Let G’ be the fibre product

f*fﬂf*filg

]

g —G
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so that G" — G is surjective also. Consider the commutative diagram

F——77g

| T

e e

T T

f—lg/ - o fflg
and we see the required result. Conversely, assume (11). Let a : F — F' be
surjective map of sheaves on C. Consider the fibre product diagram

F F

]

]:// f— 1 f*]:/

Because the lower horizontal arrow is surjective and by (11) we can find a surjection
~v:G" = f.F' such that f~'y factors through F" — f~'f.F"

F F

]

fflg/ .T"” f—l f*]:/
Pushing this down using f, we get a commutative diagram

foF —— [.F

]

f*fflg/ - f*]:” - f*fflf*‘/—_'l

| T

g/ f*]_-/
which proves that (4) holds.
Proof of (g). Assume (9). We use Categories, Lemma [4.13.3) without further men-
tion. Let a : F — F’ be a map of sheaves on C such that f.a is injective. This
means that f.F — foF X s, 7 foF = fo(F Xz F) is an isomorphism. Thus by (9)
we see that F — F Xz F is surjective, i.e., an isomorphism. Thus a is injective,
i.e., (8) holds. Since (10) is trivially equivalent to (8) + (9) we are done with (g).

Proof of (h). This is Categories, Lemma |4.24.3 d

Here is a condition on a morphism of sites which guarantees that the functor f,
transforms surjective maps into surjective maps.

Lemma 7.40.2. Let f : D — C be a morphism of sites associated to the continuous
functor u : C — D. Assume that for any object U of C and any covering {V; —
w(U)} in D there exists a covering {U; — U} in C such that the map of sheaves

# #
7w, = bl
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factors through the map of sheaves
H hffj — hf(U).

Then f. transforms surjective maps of sheaves into surjective maps of sheaves.

Proof. Let a : F — G be a surjective map of sheaves on D. Let U be an object of C
and let s € £,.G(U) = G(u(U)). By assumption there exists a covering {V; — w(U)}
and sections s; € F(Vj) with a(s;) = s|y;. Now we may think of the sections s, s;
and a as giving a commutative diagram of maps of sheaves

By assumption there exists a covering {U; — U} such that we can enlarge the
commutative diagram above as follows

W o 7
# # s l
IR haw) g

Because F is a sheaf the map from the left lower corner to the right upper corner
corresponds to a family of sections s; € F(u(U;)), i.e., sections s; € f.F(U;). The
commutativity of the diagram implies that a(s;) is equal to the restriction of s to
U;. In other words we have shown that f.a is a surjective map of sheaves. O

Example| 7.40.3. Assume f : D — C satisfies the assumptions of Lemma
Then it is in general not the case that f, commutes with coequalizers or pushouts.
Namely, suppose that f is the morphism of sites associated to the morphism of
topological spaces X = {1,2} — Y = {x} (see Example [7.15.2)), where Y is a
singleton space, and X = {1,2} is a discrete space with two points. A sheaf F on
X is given by a pair (A;, Ag) of sets. Then f.F corresponds to the set A; x As.
Hence if a = (a1,a2),b = (b1,b2) : (A1, As) — (B1, Ba) are maps of sheaves on X,
then the coequalizer of a,b is (C1,Cs) where C; is the coequalizer of a;, b;, and the
coequalizer of f.a, fib is the coequalizer of

alxag,blbe:Ale2—>Bl><Bg

which is in general different from C7 x Cy. Namely, if Ay = () then Ay x A3 = (), and
hence the coequalizer of the displayed arrows is By X B, but in general C # B;.
A similar example works for pushouts.

The following lemma gives a criterion for when a morphism of sites has a functor
f+ which reflects injections and surjections. Note that this also implies that f, is
faithful and that the map f~!f,F — F is always surjective.

Lemma 7.40.4. Let f : D — C be a morphism of sites given by the functor
u: C — D. Assume that for every object V of D there exist objects U; of C and
morphisms uw(U;) — V such that {u(U;) — V'} is a covering of D. In this case the
functor f. : SW(D) — Sh(C) reflects injections and surjections.
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Proof. Let o : F — G be maps of sheaves on D. By assumption for every object
V of D we get F(V) C [[F(uw(U;)) =[] f+F(U;) by the sheaf condition for some
U; € Ob(C) and similarly for G. Hence it is clear that if f.« is injective, then « is
injective. In other words f, reflects injections.

Suppose that f.a is surjective. Then for V,U;,u(U;) — V as above and a section
s € G(V), there exist coverings {U;; — U} such that s|,,,) is in the image of
F(u(Uij;)). Since {u(U;;) — V'} is a covering (as u is continuous and by the axioms
of a site) we conclude that s is locally in the image. Thus « is surjective. In other
words f, reflects surjections. O

Example 7.40.5. We construct a morphism f : D — C satisfying the assumptions
of Lemma[7.40.4] Namely, let ¢ : G — H be a morphism of finite groups. Consider
the sites D = Tg and C = Ty of countable G-sets and H-sets and coverings count-
able families of jointly surjective maps (Example . Let u : Ty — T be the
functor described in Section [7.17] and f : T¢ — Ty the corresponding morphism of
sites. If ¢ is injective, then every countable G-set is, as a G-set, the quotient of a
countable H-set (this fails if ¢ isn’t injective). Thus f satisfies the hypothesis of
Lemmal[7.40.4] If the sheaf F on T¢ corresponds to the G-set S, then the canonical
map

fHTF— F

corresponds to the map
Map.(H,S) — S, av+— a(ly)

If ¢ is injective but not surjective, then this map is surjective (as it should ac-
cording to Lemma but not injective in general (for example take G = {1},
H = {1,0}, and S = {1,2}). Moreover, the functor f. does not commute with
coequalizers or pushouts (for G = {1} and H = {1,0}).

7.41. Almost cocontinuous functors

Let C be a site. The category PSh(C) has an initial object, namely the presheaf
which assigns the empty set to each object of C. Let us denote this presheaf by (.
It follows from the properties of sheafification that the sheafification 0# of §) is an
initial object of the category Sh(C) of sheaves on C.

Definition 7.41.1. Let C be a site. We say an object U of C is sheaf theoretically
empty if 0% — hf]é is an isomorphism of sheaves.

The following lemma makes this notion more explicit.

Lemmal 7.41.2. Let C be a site. Let U be an object of C. The following are
equivalent:

(1) U is sheaf theoretically empty,

(2) F(U) is a singleton for each sheaf F,

(3) 0#(U) is a singleton,

(4) 0#(U) is nonempty, and

(5) the empty family is a covering of U in C.
Moreover, if U is sheaf theoretically empty, then for any morphism U — U of C
the object U’ is sheaf theoretically empty.
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Proof. For any sheaf F we have F(U) = MorSh(c)(hﬁ, F). Hence, we see that (1)
and (2) are equivalent. It is clear that (2) implies (3) implies (4). If every covering
of U is given by a nonempty family, then @7 (U) is empty by definition of the plus
construction. Note that 01 = (# as () is a separated presheaf, see Theorem
Thus we see that (4) implies (5). If (5) holds, then F(U) is a singleton for every
sheaf F by the sheaf condition for F, see Remark Thus (5) implies (2) and
(1) — (5) are equivalent. The final assertion of the lemma follows from Axiom (3)
of Definition [7.6.2] applied the empty covering of U. O

Definition 7.41.3. Let C, D be sites. Let u : C — D be a functor. We say u is
almost cocontinuous if for every object U of C and every covering {V; — w(U)} cs
there exists a covering {U; — U};cr in C such that for each ¢ in I we have at least
one of the following two conditions

(1) u(Uy;) is sheaf theoretically empty, or
(2) the morphism u(U;) — u(U) factors through V; for some j € J.

The motivation for this definition comes from a closed immersion ¢ : Z — X of
topological spaces. As discussed in Example the continuous functor Xz, —
Zzar, U — Z NU is not cocontinuous. But it is almost cocontinuous in the sense
defined above. We know that i, while not exact on sheaves of sets, is exact on
sheaves of abelian groups, see Sheaves, Remark [6.32.5] And this holds in general
for continuous and almost cocontinuous functors.

Lemmal 7.41.4. Let C, D be sites. Let u:C — D be a functor. Assume that u is
continuous and almost cocontinuous. Let G be a presheaf on D such that G(V') is a
singleton whenever V is sheaf theoretically empty. Then (uPG)* = uP(G#).

Proof. Let U € Ob(C). We have to show that (u?G)#(U) = uP(G#)(U). It suffices
to show that (uPG)T(U) = wP(GT)(U) since GT is another presheaf for which the
assumption of the lemma holds. We have

u?(GH)(U) = G (u(U)) = colimy H*(V,G)
where the colimit is over the coverings V of u(U) in D. On the other hand, we see
that
uP(G) T (U) = colimy H® (u(U4), G)
where the colimit is over the category of coverings Y = {U; — U}iey of U in C and

u(l) = {u(U;) = w(U)}ier. The condition that u is continuous means that each
u(U) is a covering. Write I = I II I5, where

I, = {i € I | u(U;) is sheaf theoretically empty}

Then u(U)" = {uw(U;) — w(U)}ier, is still a covering of because each of the other
pieces can be covered by the empty family and hence can be dropped by Axiom
(2) of Definition Moreover, H%(u(U),G) = H°(u(U)',G) by our assumption
on G. Finally, the condition that u is almost cocontinuous implies that for every
covering V of u(U) there exists a covering U of U such that u(U)’ refines V. Tt
follows that the two colimits displayed above have the same value as desired. [J

Lemma 7.41.5. Let C, D be sites. Let u : C — D be a functor. Assume that u
is continuous and almost cocontinuous. Then u® = uP : Sh(D) — Sh(C) commutes
with pushouts and coequalizers (and more generally finite connected colimits).
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Proof. Let Z be a finite connected index category. Let Z — Sh(D), i — G; by

a diagram. We know that the colimit of this diagram is the sheafification of the

colimit in the category of presheaves, see Lemma [7.10.13] Denote colim®*" the

colimit in the category of presheaves. Since 7 is finite and connected we see that
. Psh . . . .

colim; °" G, is a presheaf satisfying the assumptions of Lemma [7.41.4] (because a

finite connected colimit of singleton sets is a singleton). Hence that lemma gives

u®(colim; G;) = u®((colim?*" G;)#)
— (u?(colim!™" G;))*
= (colimI" P (G;))#
= colim; u*(G;)
as desired. 0
04BA Lemma 7.41.6. Let f : D — C be a morphism of sites associated to the continuous

functor u : C — D. If u is almost cocontinuous then f, commutes with pushouts
and coequalizers (and more generally finite connected colimits).

Proof. This is a special case of Lemma [7.41.5 (]

7.42. Subtopoi
OSLT Here is the definition.

08LU Definition|7.42.1. Let C and D be sites. A morphism of topoi f : Sh(D) — Sh(C)
is called an embedding if f. is fully faithful.

According to Lemmal7.40.1]this is equivalent to asking the adjunction map f~! f,F —
F to be an isomorphism for every sheaf F on D.

O08LV Definition 7.42.2. Let C be a site. A strictly full subcategory E C Sh(C) is a
subtopos if there exists an embedding of topoi f : Sh(D) — Sh(C) such that E is
equal to the essential image of the functor fi..

The subtopoi constructed in the following lemma will be dubbed "open” in the
definition later on.

08LW |Lemma 7.42.3. Let C be a site. Let F be a sheaf on C. The following are
equivalent

(1) F is a subobject of the final object of Sh(C), and
(2) the topos Sh(C)/F is a subtopos of Sh(C).

Proof. We have seen in Lemma [7.29.1] that Sh(C)/F is a topos. In fact, we recall
the proof. First we apply Lemma [7.28.F] to see that we may assume C is a site
with a subcanonical topology, fibre products, a final object X, and an object U
with F = hy. The proof of Lemma shows that the morphism of topoi
jr : SKC)/F — Sh(C) is equal (modulo certain identifications) to the localization
morphism jy : SK(C/U) — Sh(C).

Assume (2). This means that j;;'ji«G — G is an isomorphism for all sheaves G on
C/U. For any object Z/U of C/U we have

(Juxhz/w)(U) = More,u(U xx U/U, Z/U)
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by Lemma [7.26.2} Setting G = hzy in the equality above we obtain
Morc/U(U xx U/U,Z/U) = Morc/U(U, Z/U)

for all Z/U. By Yoneda’s lemma (Categories, Lemma [4.3.5)) this implies U x x U =
U. By Categories, Lemma [4.13.3| U — X is a monomorphism, in other words (1)
holds.

Assume (1). Then jaljU,* = id by Lemma |7.26.4 O

Definition 7.42.4. Let C be a site. A strictly full subcategory E C Sh(C) is an
open subtopos if there exists a subsheaf F of the final object of Sh(C) such that E
is the subtopos Sh(C)/F described in Lemma [7.42.3

This means there is a bijection between the collection of open subtopoi of Sh(C)
and the set of subobjects of the final object of Sh(C). Given an open subtopos there
is a ”"closed” complement.

Lemma 7.42.5. Let C be a site. Let F be a subsheaf of the final object x of Sh(C).
The full subcategory of sheaves G such that F x G — F is an isomorphism is a
subtopos of Sh(C).

Proof. We apply Lemma to see that we may assume C is a site with the
properties listed in that lemma. In particular C has a final object X (so that
* = hy) and an object U with F = hy.

Let D = C as a category but a covering is a family {V; — V'} of morphisms such
that {V; - V}U{U xx V — V} is a covering. By our choice of C this means
exactly that

hUXXVHHhW *)hv

is surjective. We claim that D is a site, i.e., the coverings satisfy the conditions (1),
(2), (3) of Definition Condition (1) holds. For condition (2) suppose that
{Vi = V} and {V;; — V;} are coverings of D. Then the composition

H(hUXX‘/iHHh‘/ij) *}hUXXVHHhVi — hy

is surjective. Since each of the morphisms U x x V; — V factors through U xx V'
we see that

hUXXV HHh’ViJ — hv

is surjective, i.e., {V;; = V'} is a covering of V in D. Condition (3) follows similarly
as a base change of a surjective map of sheaves is surjective.

Note that the (identity) functor u : C — D is continuous and commutes with
fibre products and final objects. Hence we obtain a morphism f : D — C of
sites (Proposition . Observe that f,. is the identity functor on underlying
presheaves, hence fully faithful. To finish the proof we have to show that the
essential image of f, is the full subcategory E C Sh(C) singled out in the lemma.
To do this, note that G € Ob(Sh(C)) isin F if and only if G(U x x V) is a singleton for
all objects V of C. Thus such a sheaf satisfies the sheaf property for all coverings of
D (argument omitted). Conversely, if G satisfies the sheaf property for all coverings
of D, then G(U x x V) is a singleton, as in D the object U x x V is covered by the
empty covering. O
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Definition 7.42.6. Let C be a site. A strictly full subcategory E C Sh(C) is an
closed subtopos if there exists a subsheaf F of the final object of Sh(C) such that E
is the subtopos described in Lemma [7.42.7]

All right, and now we can define what it means to have a closed immersion and an
open immersion of topoi.

Definition 7.42.7. Let f: Sh(D) — Sh(C) be a morphism of topoi.

(1) We say f is an open immersion if f is an embedding and the essential
image of f. is an open subtopos.

(2) We say f is a closed immersion if f is an embedding and the essential
image of f, is a closed subtopos.

Lemma 7.42.8. Let i : Sh(D) — Sh(C) be a closed immersion of topoi. Then
14 18 fully faithful, transforms surjections into surjections, commutes with coequal-
izers, commutes with pushouts, reflects injections, reflects surjections, and reflects
bijections.

Proof. Let F be a subsheaf of the final object * of Sh(C) and let E C Sh(C) be the
full subcategory consisting of those G such that F x G — F is an isomorphism. By
Lemma [7.42.5| the functor i, is isomorphic to the inclusion functor ¢ : E — Sh(C).

Let jF : Sh(C)/F — Sh(C) be the localization functor (Lemma [7.29.1)). Note that
E can also be described as the collection of sheaves G such that jz G = .

Let a,b : G; — G be two morphism of E. To prove ¢« commutes with coequalizers it
suffices to show that the coequalizer of a, b in Sh(C) lies in E. This is clear because
the coequalizer of two morphisms * — * is * and because j;-l is exact. Similarly
for pushouts.

Thus i, satisfies properties (5), (6), and (7) of Lemma [7.40.1| and hence the mor-
phism i satisfies all properties mentioned in that lemma, in particular the ones
mentioned in this lemma. (]

7.43. Sheaves of algebraic structures

In Sheaves, Section [6.15) we introduced a type of algebraic structure to be a pair
(A, s), where A is a category, and s : A — Sets is a functor such that

(1) s is faithful,

(2) A has limits and s commutes with limits,

(3) A has filtered colimits and s commutes with them, and
(4) s reflects isomorphisms.

For such a type of algebraic structure we saw that a presheaf F with values in A on a
space X is a sheaf if and only if the associated presheaf of sets is a sheaf. Moreover,
we worked out the notion of stalk, and given a continuous map f : X — Y we
defined adjoint functors pushforward and pullback on sheaves of algebraic structures
which agrees with pushforward and pullback on the underlying sheaves of sets. In
addition extending a sheaf of algebraic structures from a basis to all opens of a
space, works as expected.

Part of this material still works in the setting of sites and sheaves. Let (A, s) be a
type of algebraic structure. Let C be a site. Let us denote PSh(C,.A), resp. Sh(C,.A)
the category of presheaves, resp. sheaves with values in A on C.
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(a) A presheaf with values in A is a sheaf if and only if its underlying presheaf
of sets is a sheaf. See the proof of Sheaves, Lemma |6.9.2

(B) Given a presheaf F with values in A the presheaf F# = (F*)* is a sheaf.
This is true since the colimits in the sheafification process are filtered,
and even colimits over directed partially ordered sets (see Section
especially the proof of Lemma[7.10.14)) and since s commutes with filtered
colimits.

() We get the following commutative diagram

Sh(C, A) — PSh(C, A)

|
Sh(C) ——— PSK(C)

(8) We have F = F# if and only if F is a sheaf of algebraic structures.
(€) The functor # is adjoint to the inclusion functor:

Mor psp(c,.4)(G, F) = Morgyc, 4)(G¥, F)

The proof is the same as the proof of Proposition |7.10.12
(¢) The functor F + F7# is left exact. The proof is the same as the proof of
Lemma [[10.14

Definition 7.43.1. Let f : D — C be a morphism of sites given by a functor
u : C — D. We define the pushforward functor for presheaves of algebraic structures
by the rule P F(U) = F(uU), and for sheaves of algebraic structures by the same
rule, namely f.F(U) = F(uU).

The problem comes with trying the define the pullback. The reason is that the
colimits defining the functor u, in Section may not be filtered. Thus the axioms
above are not enough in general to define the pullback of a (pre)sheaf of algebraic
structures. Nonetheless, in almost all cases the following lemma is sufficient to
define pushforward, and pullback of (pre)sheaves of algebraic structures.

Lemma 7.43.2. Suppose the functor u : C — D satisfies the hypotheses of Propo-
sition and hence gives rise to a morphism of sites f : D — C. In this case
the pullback functor f=1 (resp. u,) and the pushforward functor f. (resp. uP) ex-
tend to an adjoint pair of functors on the categories of sheaves (resp. presheaves) of
algebraic structures. Moreover, these functors commute with taking the underlying
sheaf (resp. presheaf) of sets.

Proof. We have defined f, = u” above. In the course of the proof of Proposi-
tion we saw that all the colimits used to define u, are filtered under the
assumptions of the proposition. Hence we conclude from the definition of a type
of algebraic structure that we may define u, by exactly the same colimits as a
functor on presheaves of algebraic structures. Adjointness of u, and u? is proved
in exactly the same way as the proof of Lemma [7.5.4] The discussion of sheafifi-
cation of presheaves of algebraic structures above then implies that we may define
FHF) = (wpF)*. .

We briefly discuss a method for dealing with pullback and pushforward for a general
morphism of sites, and more generally for any morphism of topoi.
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Let C be a site. In the case A = Ab, we may think of an abelian (pre)sheaf on C as
a quadruple (F,+,0,4). Here the data are

(D1) F is a sheaf of sets,

(D2) +: F x F — F is a morphism of sheaves of sets,

(D3) 0: % — F is a morphism from the singleton sheaf (see Example[7.10.2)) to
F, and

(D4) i: F — F is a morphism of sheaves of sets.

These data have to satisfy the following axioms

(Al) + is associative and commutative,

(A2) 0is a unit for +, and

(A3) +0(1,i) =00 (F — *).
Compare Sheaves, Lemma[6.4.3] Let f: D — C be a morphism of sites. Note that
since f~!is exact we have f~1x = x and f~1(F x F) = f~1F x f~LF. Thus we can
define f~1F simply as the quadruple (f~1F, f~1+, f710, f~1i). The axioms are
going to be preserved because f~! is a functor which commutes with finite limits.
Finally it is not hard to check that f. and f~' are adjoint as usual.

In [AGVT1] this method is used. They introduce something called an “espéce the
structure algébrique << définie par limites projectives finie>>”. For such an espece
you can use the method described above to define a pair of adjoint functors f~! and
f« as above. This clearly works for most algebraic structures that one encounters
in practice. Instead of formalizing this construction we simply list those algebraic
structures for which this method works (to be verified case by case). In fact, this
method works for any morphism of topoi.

Proposition 7.43.3. Let C, D be sites. Let f = (f~1, f.) be a morphism of topoi
from Sh(D) — Sh(C). The method introduced above gives rise to an adjoint pair
of functors (f~1, f.) on sheaves of algebraic structures compatible with taking the
underlying sheaves of sets for the following types of algebraic structures:

1) pointed sets,
2) abelian groups,
3) groups,
4) monoids,
5) rings,

6) modules over a fized ring, and

(7) lie algebras over a fized field.

Moreover, in each of these cases the results above labeled («), (B), (v), (9), (€),
and () hold.

Proof. The final statement of the proposition holds simply since each of the listed
categories, endowed with the obvious forgetful functor, is indeed a type of algebraic
structure in the sense explained at the beginning of this section. See Sheaves,
Lemma [6.15.2]

Proof of (2). We think of a sheaf of abelian groups as a quadruple (F,+,0,%)
as explained in the discussion preceding the proposition. If (F,+,0,7) lives on
C, then its pullback is defined as (f~1F, f~t+, f10, f~1i). If (G,+,0,i) lives
on D, then its pushforward is defined as (f.G, f«+, [0, f«i). This works because
f+(G x G) = f.G x f.G. Adjointness follows from adjointness of the set based
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functors, since

, . M
MOI‘Ab(C)((]:l, +7Oal)7 (]:27 +7O7l)) = { ve O Sh(C) (fl’fQ) }

 is compatible with +,0, ¢
Details left to the reader.

This method also works for sheaves of rings by thinking of a sheaf of rings (with
unit) as a sixtuple (O, +,0,4,-, 1) satisfying a list of axioms that you can find in
any elementary algebra book.

A sheaf of pointed sets is a pair (F,p), where F is a sheaf of sets, and p : x — F is
a map of sheaves of sets.

A sheaf of groups is given by a quadruple (F,-, 1,4) with suitable axioms.
A sheaf of monoids is given by a pair (F,-) with suitable axiom.

Let R be aring. An sheaf of R-modules is given by a quintuple (F, +, 0,7, {\; }rer),
where the quadruple (F, +,0,4) is a sheaf of abelian groups as above, and A, : F —
F is a family of morphisms of sheaves of sets such that \.00 = 0, Ao+ = +0o(A, A),
Argrr =+ 0 X X A 0 (id,1d), Appr = A 0 Ay Ay = id, Ag = 00 (F — %). O

We will discuss the category of sheaves of modules over a sheaf of rings in Modules
on Sites, Section [18.10)

Remark| 7.43.4. Let C, D be sites. Let w : D — C be a continuous functor which
gives rise to a morphism of sites C — D. Note that even in the case of abelian
groups we have not defined a pullback functor for presheaves of abelian groups.
Since all colimits are representable in the category of abelian groups, we certainly
may define a functor ugb on abelian presheaves by the same colimits as we have
used to define u;, on presheaves of sets. It will also be the case that u4” is adjoint
to uP on the categories of abelian presheaves. However, it will not always be the

case that ugb agrees with u, on the underlying presheaves of sets.

7.44. Pullback maps

It sometimes happens that a site C does not have a final object. In this case we
define the global section functor as follows.

Definition 7.44.1. The global sections of a presheaf of sets F over a site C is the
set

[(C, F) = Morpgpcy (*, F)
where * is the final object in the category of presheaves on C, i.e., the presheaf
which associates to every object a singleton.

Of course the same definition applies to sheaves as well. Here is one way to compute
global sections.

Lemmal 7.44.2. Let C be a site. Let a,b:V — U be objects of C such that
hﬁ - hﬁ — %

is a coequalizer in Sh(C). Then I'(C,F) is the equalizer of a*,b* : F(U) — F(V).
Proof. Since MorSh(C)(h#, F) = F(U) this is clear from the definitions. O
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Now, let f : Sh(D) — Sh(C) be a morphism of topoi. Then for any sheaf F on C
there is a pullback map

71T, F) —T([D,f'F)

Namely, as f~! is exact it transforms * into *. We can generalize this a bit by
considering a pair of sheaves F,G on C,D together with a map f~'F — G. Then
we compose to get a map

I, F)—T(D,9)

A slightly more general construction which occurs frequently in nature is the fol-
lowing. Suppose that we have a commutative diagram of morphisms of topoi

Sh(D) - Sh(C)

N A

Sh(B)

Next, suppose that we have a sheaf F on C. Then there is a pullback map
g F — hof'F

Namely, it is just the map coming from the identification h,f 'F = g.fof ' F
together with the canonical map F — f,f~'F pushed down to B. Again, if we
have a pair of sheaves F,G on C,D together with a map f~'F — G, then we
compose to get a map

Restricting to sections over an object of B one recovers the pullback map on global
sections in many cases, see (insert future reference here). A seemingly more general
situation is where we have a commutative diagram of topoi

Sh(D) ——= Sh(C)

! |

Sh(B) —> Sh(A)

and a sheaf G on C. Then there is a map e~'g.G — h,f~'G. Namely, this map is
adjoint to a map .G — e h.f1G = (e o h).f~'G which is the pullback map just
described.

7.45. Topologies

In this section we define what a topology on a category is as defined in [AGV71].
One can develop all of the machinery of sheaves and topoi in this language. A
modern exposition of this material can be found in [KS06]. However, the case
of most interest for algebraic geometry is the topology defined by a site on its
underlying category. Thus we strongly suggest the first time reader skip this
section and all other sections of this chapter!

Definition 7.45.1. Let C be a category. Let U € Ob(C). A sieve S on U is a
subpresheaf S C hy.


http://stacks.math.columbia.edu/tag/00YX
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In other words, a sieve on U picks out for each object T' € Ob(C) a subset S(T') of
the set of all morphisms 7" — U. In fact, the only condition on the collection of
subsets S(T") C hy(T') = Mor¢(T, U) is the following rule

(a: T—=U)e ST
g: 7' —T

A good mental picture to keep in mind is to think of the map S — hy as a

“morphism from S to U”.

Lemma 7.45.2. Let C be a category. Let U € Ob(C).

(1) The collection of sieves on U is a set.

) Inclusion defines a partial ordering on this set.

) Unions and intersections of sieves are sieves.

