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Preface

This book is immersed in the ubiquitous understanding of artificial intelligence with
an overview of stochastic artificial intelligence followed by four chapters on such
algorithms. A particularly important contribution prepares readers for the deter-
ministic (non-stochastic) treatment of the topic: namely, deterministic algorithms
can be used in stochastic artificial intelligence, but the approach remains stochastic.
Deterministic artificial intelligence is examined next in three chapters that apply the
approach to disparate facets of mechanical motion control.

Deterministic artificial intelligence applied to motion control typically necessitates
analytic expressions of desired motion displacement, velocity, and acceleration. The
first two chapters of the section of this text examine methods of autonomous
generation of such trajectories. The final chapter utilizes the prerequisite material to
enumerate and critically evaluate the deterministic approach compared to nominal
methods, including optimal and classical feedback methods.

The text is meant for basic scientifically inclined readers who possess the basics
of mathematics (while calculus certainly aids the reader to get more out of the
chapters). The topics learned from reading this text will prepare students and
faculty to investigate interesting problems, while readers able to understand and
abstract the general method will be able to apply it to any area whose defining
principles can be found, either by adherence to a natural law or by using the
certainty equivalence principle to assert self-awareness following system identifi-
cation. This claim is buttressed by the disparate nature of illustrative systems. The
first chapter in the second section applies the methodology to the famous forced van
der Pol equation (an electromechanics example), while the second applies the
method to sinusoidal trajectories for mechanical motion. The final chapter uses
Euler’s moment equations for deterministic self-awareness, allowing rigid bodies to
be aware of the existence in the context of knowledge of the natural laws that
govern its behavior. It is the fondest hope of the editor and authors that readers
enjoy the book.

Dr. Timothy Sands
Columbia University (CVN),

USA

Naval Postgraduate School,
Stanford University,

USA
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Chapter 1

Stochastic Artificial Intelligence:
Review Article
T.D. Raheni and P. Thirumoorthi

Abstract

Artificial intelligence (AI) is a region of computer techniques that deals with the
design of intelligent machines that respond like humans. It has the skill to operate as
a machine and simulate various human intelligent algorithms according to the user’s
choice. It has the ability to solve problems, act like humans, and perceive informa-
tion. In the current scenario, intelligent techniques minimize human effort espe-
cially in industrial fields. Human beings create machines through these intelligent
techniques and perform various processes in different fields. Artificial intelligence
deals with real-time insights where decisions are made by connecting the data to
various resources. To solve real-time problems, powerful machine learning-based
techniques such as artificial intelligence, neural networks, fuzzy logic, genetic
algorithms, and particle swarm optimization have been used in recent years. This
chapter explains artificial neural network-based adaptive linear neuron networks,
back-propagation networks, and radial basis networks.

Keywords: artificial intelligence, artificial neural network, functions, weights, bias,
Adaline network, back-propagation network, radial basis network

1. Introduction

In day-to-day life, artificial intelligence (AI) has brought further advantages to
pattern features and human expert systems. Based on experience and through
learning, it continues to gain further potential in industrial growth. The primary
elements for a neural network are the neurons, which are special types of brain
cells. The neuron has the ability to retain, realize, and execute the previous exis-
tence of every action.

A neural network is an analytical model that is inspired directly by biological
neural networks. An artificial neural network (ANN) is an information processing
system and is capable of processing nonlinear relationships between inputs and
outputs. The network consists of interconnected neurons and functions to produce
an output pattern of a given input pattern [1]. The learning process of a neural
network takes place by itself, which means the network learns by examples that
make it more powerful, so there is no need to devise an algorithm to perform a
particular task. Because of the above reasons, a neural network has no internal
mechanism to perform a specific task [2].

The network consists of nodes that are connected by weights and obtains
knowledge through variations in the node weights that are being exposed as sam-
ples. Every neuron is linked to other neurons by a network link, and the network
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link is associated with the weights that contain instructions in the input signal. In
addition, each neuron has a centralized state of its own. The centralized state is the
activation level of the neuron that serves as input to the neurons. The activation
level of the neuron is imparted to the other neurons. To make the neural process
more beneficial, mainframe computers are used. Various computational tasks are
developed using ANNs at a more rapid rate than traditional systems.

2. Biological neural network

Human brains consist of neurons with a number of connections. The basic
element of a neural network is called a neuron. The biological neural network
consists of axons, dendrites, and a cell body (soma). Each cell performs relatively
simple computations, whose nature is indistinct from slow-style networks.
Dendrites are tree-like structures (dendrite trees) that accept signals from the
neighboring neurons, and each branch is connected to one neuron. The tree-like
dendrite structure is connected to the main body of the neuron called the soma (cell
body). The cell body is a cylindrical shape that sums the incoming signal. Dendrites
are connected by a synapse. A synapse is a structure that allows a nerve cell to
pass electric signals to another nerve cell. An axon is a thin cylindrical cell that
carries the impulse of the nerve cell. A single nerve cell has 1000 to 10,000
synapses, while 100 billion neurons are present in our brain, and every neuron
has 1000 dendrites. The processing of a biological neural network is a slow process
and the learning process is uncertain [3].

The simple biological neural network architecture is shown in Figure 1.

Figure 1.
Biological neural network—Simple biological neuron architecture.

Figure 2.
ANN model.
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2.1 Model and elements of an artificial neural network

The network is observed as weighted direct graphs in which the directed edges
of corresponding weights are connected to input and output neurons. The network
receives the input in the form of a pattern and image in point (vector) form. The
inputs are mathematically assigned by the notation x(n) for “n” number of inputs.
An ANN model is shown in Figure 2.

Every input is multiplied by its corresponding weights. To solve a problem with
the network, weight is used and correspondingly weight is represented as the
strength of connections between the neurons. If the weighted sum is zero, then bias
is added to make the output not zero. Bias has the weight in which the input is
always equal to 1 [4].

3. Classification of a neural network

Neural networks are classified on the basis of patterns to determine the weights
correspondingly. The neurons are arranged in the form of layers and have the same
activation function. Neural network processing depends on the following segments:

i. Network topology

ii. Learning methods

iii. Adjustment of weights and activation functions

The networks are arranged by connecting the points or with connecting lines.
Depending on the topology of the network, it is classified as follows:

i. Single-layer feed-forward network

ii. Multilayer feed-forward network

3.1 Single-layer feed-forward network

In this network, the signals or the information move only in a forward (one)
direction from the input nodes, through the hidden nodes and to the output nodes.
A single-layer network does not require cycles or loops. The network consists of
output nodes in a single layer, while the inputs are directly fed to the outputs
through a series of interconnected weights. Every node is calculated by its sum of
the product of the weights. If the value is above threshold (above zero), then the
activated value is 1 (positive), and if the value is below threshold (below zero), then
the activated value is �1 (negative) [5]. The above network functions such that
input nodes are connected to the corresponding hidden nodes with different
weights and result in a series of output per node. It consists of multiple neurons that
are interconnected to form a single-layer network. The two layers, namely input
and output layers, are used. In the input layer, the neurons pass data from one node
to the other node and the inputs are scattered and perform no calculation. Each
input layer a1, a2, a3, … , an is linked to each neuron in the output layer through the
connection weight. Each output neuron value such as b1, b2, b3, … , bn is calculated
according to the set of input values. Based on the connection weights the values of
the output layer are varied accordingly. This type of network is widely used in
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applications like computer vision, speech recognition, and pattern classification
problems. A single-layer neural network is shown in Figure 3.

3.2 Multilayer neural network

A multilayer neural network is an interconnection of signals in which the
inputs and calculations flow forward from the input nodes to the output nodes.
The number of signals in a neural network is the number of layers in the network.
It consists of more layers for estimated units, and usually the connections are inter-
dependent in the forward path. Every neuron in a single layer is interconnected
with neurons of the consequent layer. Multilayer networks use other learning algo-
rithms such as back propagation, Hopfield, Adaline (adaptive linear neuron), etc.
In this network, if a layer is connected to the input, then the layer is a hidden layer.
The multilayer network is shown in Figure 4.

Figure 3.
Single-layer neural network.

Figure 4.
Multilayer neural network.
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The network consists of input layers A1, A2, … , An. To train the network
we require training layers, i.e., input layers {(a(1), b(1))… (a(m), b(m))} of m
training sets. To train the network, the gradient descent method is one of the best
methods. This method seeks to find the minimum function in the network set.

3.3 Learning methods of a neural network

The key aspect of a neural network is the ability to learn by itself. Training or
learning methods help the neural network adapt itself by making appropriate
adjustments and good responses. To train the network according to custom needs,
there are three types of learning. Once a network has been designed for a precise
application, then the network is equipped to be trained. To begin these processes,
the initial weights are chosen randomly. Then, the training or learning process
begins with the following techniques:

i. Supervised learning

ii. Unsupervised learning

iii. Reinforcement learning

3.3.1 Supervised learning

Supervised learning is one of the learning methods in which the data, observa-
tions, and measurements are defined with predefined classes. It is similar to how a
“teacher” explains content to students. The pairing of each input vector with the
target vector determines the desired output. Training pairs mainly deal with the
input vector and the corresponding target vector. The training process takes place
when the input vector is applied, resulting in an output vector. If the actual
response differs from the target response, the network will obtain an error signal.
The corresponding error signal is used to calculate the adjustment of weights so that
both the actual and target outputs match.

A supervised algorithm in a neural network encompasses classification and
regression types for learning processes [6]. In the classification type, outputs are
confined to a finite set of data, whereas in the regression type, the output may contain
analytical data within the given limits. The best execution process for error minimi-
zation is the supervised learning algorithm. Input and output data are used to train
the mapping function of the network and are given by the following relation:

B ¼ f ðaÞ (1)

where f(a) is the function of input a.
The aim is to provide an approximate mapping function so that new input data (a)

help to predict the output (B). The supervised learning algorithm is shown in Figure 5.
The purpose of supervised learning is to vary its weights according to the

input/output samples. After executing this network, input-to-output mapping with
minimum error has been achieved. Without proper training sets, performance is
no longer determined, while it seems stochastic in either case.

3.3.2 Unsupervised learning

Unsupervised learning is the type of machine learning function that describes
the hidden layer from the unviable data. The unviable data explain the classification
and measurements that are not included in the observations. Because of unviable
data, there can be no calculation to reach an accuracy level.
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minimum error has been achieved. Without proper training sets, performance is
no longer determined, while it seems stochastic in either case.

3.3.2 Unsupervised learning

Unsupervised learning is the type of machine learning function that describes
the hidden layer from the unviable data. The unviable data explain the classification
and measurements that are not included in the observations. Because of unviable
data, there can be no calculation to reach an accuracy level.
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Unsupervised learning is utilized in self-organizing neural networks, and this
type of learning does not require a teacher to teach the network [7]. To train the
network, data sets used in the supervised model are used along with the synaptic
weights, which are assigned as:

Unsupervised training ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Number of input attributes

p (2)

It has the ability to solve complex problems and analyze the changes that occur
in undefined data. It is widely used for preprocesses in the network of a supervised
learning algorithm. A block diagram of unsupervised learning is shown in Figure 6.

Unsupervised learning methods can be further grouped into clustering and
association problems.

Clustering is a basic method to analyze the data that occur in the network.
It spots some inherent structures present in a set of objects based on a similarity
measure. The clustering technique is based on statistical model identification or
competitive learning. It is widely used for feature extraction, vector quantization,
image segmentation, function approximation, and data mining [8]. The association
learning rule is a machine learning method to create relations between variables in
large databases, and the approach to unsupervised learning is of two types, namely:

• Anomaly detection

• Neural networks learning—Hebbian learning method

Anomaly detection is used for analyzing events and observations. The system
is broadly classified into three types such as unsupervised anomaly detection,
supervised anomaly detection, and semisupervised anomaly detection. It prepro-
cesses the data sets and detects the faults that occur in the system.

Figure 6.
Unsupervised learning.

Figure 5.
Supervised learning.
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The Hebbian method is a learning rule that determines the weight of the two
different units either to increase or to decrease the weight to activate the function.
Learning is performed by varying the synaptic gap between the weights. The weight
of the vector increases gradually with respect to the input. The Hebbian rule for
updating the weight is given by:

wa newð Þ ¼ wa oldð Þ þ Ca ∗B (3)

where wa(new) is the new weight equal to the sum of the old weight and the
learning method Ca * B.

3.3.3 Reinforcement learning

This learning is identical to supervised learning and the difference in operating
the network from its actual output for about 50%. In supervised learning, for each
output data, the simultaneous input data are known when compared to reinforce-
ment learning. Due to the absence of a training data set, reinforcement learning
learns from its experience.

The trial and error process is designed to maximize the expected value of a
criterion of functions and actions followed by an improvement, so it is referred to as
reinforced learning. The reinforcement signal and the corresponding input patterns
depend on the previous data of the stochastic unit. Gaussian processes combine the
neural networks for model-based reinforcement learning [9]. A block diagram of
reinforcement learning is shown in Figure 7.

3.4 Activation functions of a neural network

3.4.1 Weights

W1, W2, … , Wn are the factors of the weight that are associated with each node
to determine the quality of input row vector Y = [Y1, Y2, … , Yn]T. Every single
input is multiplied by a related weight by connecting the activation function.
Figure 8 shows the basic elements of a neural network.

3.4.2 Threshold

The internal threshold is the offset that marks the activation function of the
output node Z and is given by:

Figure 7.
Block diagram of reinforcement learning.
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Z ¼
Xn
i¼1

XiWið Þ � θk (4)

Threshold function may be either binary type or bipolar type, respectively.
The output of a binary threshold function is given by:

Z ¼ f pð Þ (5)

condition is}0}if p<0s

condition is}1}if p≥0

3.4.3 Linear activation function

Linear function fulfills the superposition concept. The activation function per-
forms mathematical operations on a signal output, and the equation for linear
activation function is given by:

Z ¼ f pð Þ ¼ α:p (6)

where α is the slope of the linear activation function. The linear activation curve
is shown in Figure 9.

Figure 8.
Basic elements of a neural network.

Figure 9.
Linear activation curve.
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Slope 1 is the identity function. The output Z of the identity function is equal to
the input function (p).

4. Methods of implementing a neural network

The methods of implementing a neural network are the adaline method,
back-propagation method, and radial basis method.

4.1 Adaptive linear neuron network

The Adaline model was developed by Widrow Hoff. It is a single-layer network
consisting of other nodes. The network is classified by varying the weights in such
a manner that it diminishes mean square error for every iteration. An Adaline
network is shown in Figure 10.

Each node acquires a number of inputs and propagates a single output. The input
and output signals to the Adaline network use bipolar activation function. When
compared to other types of networks, the input and output function of the Adaline
network is linear. The weights are bounded by the input and varied accordingly to
the user’s choice. The bias in the network acts as an adjustable weight where the
activation function is always 1. The output function of the Adaline network has one
output unit and the network is a trained delta rule. This rule is otherwise known as
the least mean square rule. This type of learning rule is used to decrease the mean
squared error between the output and activation function [10]. An Adaline network
is implemented by using the three steps, which are shown in Figure 11.

i. Initialize: assume random weights to all the links that are connected to the
network.

ii.Training: initialize the input weights and arrange the known inputs in a
random sequence. Compare errors between input and output by simulating
the network. This forms an error function and by adjusting the weights,
learning function takes place. Repeat the process until the total error is less
than ⅀.

iii.Thinking: in the thinking process, the network will respond to input nodes.
Even for trained inputs, it does not provide a good result. By defining an error

Figure 10.
Adaline network.
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function, it measures the performance in terms of weights. The derivative of
the function with respect to weights is obtained by varying the weights, and
error in the system is decreased. A block diagram of an Adaline network is
shown in Figure 12.

The input to the neural network is represented as A.
A = [1 A1, A2, … , Am], whereas 1 = A0 = bias.
W = [W0, W1, W2, … , Wm] represents the weight in the network.
Initially, weights are chosen in a randommanner. The value of �1 and 1 is taken.

The weighted sum of input neurons, including a bias term, is calculated by com-
paring with output neurons. Based on the delta rule, the weights are adjusted. The
output equation for the network is given by:

C ¼
Xn

k¼1
akwk þ α (7)

where a is the input vector, w is the weight of the vector, n is the number of
inputs, α is a constant, and C is the output vector.

By assuming a0 = 1 and w0 = α, the output equation is further minimized to:

Figure 11.
Steps—Adaline network.

Figure 12.
Block diagram of an Adaline network.
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C ¼
Xn

k¼0
akwk (8)

4.1.1 Adaline learning algorithm

The learning algorithm of a network is a delta rule but its base is different. To
reduce variation between the input and output, the delta rule is preferred and
improves the weight between the connections. The main objective is to reduce error
that occurs in overall training networks [11, 12]. The updated weight in the network
is given by the following equation:

w wþ δ t� Cð Þa (9)

where δ is the learning rate of the network, C is the model output, and t is the
desired target output.

The Adaline network merges with the least square error and the equation is
given by:

E ¼ t� kð Þ2 (10)

where E is the least mean square error.
According to the input response, the system is activated and training is started.

Consider Y as an input and W is the weight. Let us assume xnþ1 ¼ 1 and xnþ1 as the
bias weight. Therefore, the weighted sum “S” is a dot product of the function given
in the equation:

S ¼W:Y ¼
X
i

wiyi (11)

The identity function of the network is chosen as I ¼ S and considered as an
activation function. The squared error E ¼ O� Ið Þ2 is the error function. The
network defines error function and determines performance of input, weight, and
desired output. Adaline networks are used in net input values and noise correction.
The following are the steps for learning the Adaline algorithm:

Step 1: Assume the synaptic weight values in the range from �1 to +1.
Step 2: Set activation functions of the input units:

A0 ¼ 1 and Ai ¼ Sði ¼ 1, 2, 3, … ,  nÞ

Step 3: Compute the net input to the neuron as:

S ¼W:Y ¼
X
i

wiyi

Step 4: Update the corresponding bias and weights:

W0 Newð Þ ¼W0 Oldð Þ þ α t� yin
� �

(12)

W1 Newð Þ ¼Wi Oldð Þ þ α t� yin
� �

xi (13)

where i = 1, 2, 3, … , n.
Step 5: If the following conditions are satisfied, then the network is stopped

or else:
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The steps from the initial conditions are repeated.
Adaline network example:
By using an Adaline network, train the AND, NOT gate function with bipolar

inputs and targets performs one epoch of training. The input values are given as:

X1 X2 t

1 1 �1
1 �1 1

Solution:
The initial weights are taken to be W1 = 0.1, W2 = 0.2, b = 0.4, learning rate

α = 0.6.
The weights are calculated until the least mean square is obtained.
First input:
X1 = 1; X2 = 1; t = �1; b = 0.4; W1 = o.1; W2 = 0.2; α = 0.6.
Yin = b + W1X1 + W2X2 = 0.7.
(t – Yin) = �1.7 not equal to zero, then update the weights,
W1 (New) = W1 (Old) + α(t – Yin)X1 = �0.42.
W2 (New) = W1 (Old) + α(t – Yin)X2 = �0.82.
b (New) = b (Old) + α(t – Yin) = �0.62.
ΔW1 = α(t – Yin)X1 = �0.102; ΔW2 = α(t – Yin)X2 = �0.204;
Δb = α(t – Yin) = �1.02.
To compute the error, E = (t – Yin)

2 = 2.89.
Similarly, for the second input:
X1 = 1; X2 = �1; t = 1; W1 = �o.41; W2 = �0.82; b = �0.62.
Yin = b + W1X1 + W2X2 = �0.24.
(t – Yin) = 1.24 not equal to zero.
Update the weights:
W1 (New) = W1 (Old) + α(t – Yin)X1 = 0.324.
W2 (New) = W1 (Old) + α(t – Yin)X2 = �1.564.
b (New) = b (Old) + α(t – Yin) = 0.124; E = (t – Yin)

2 = 1.5376.
Epoch 1: For the first input, Yin = b + W1X1 + W2X2 = �1.116.
(t – Yin) = 0.116; update the weights W1 (New) = W1 (Old) + α(t – Yin)

X1 = 0.3936.
W2 (New) = W1 (Old) + α(t – Yin)X2 = �1.4944; b (New) = b (Old) +

α(t – Yin) = 0.1936; E = (t – Yin)
2 = 0.01345; ΔW1 = α(t – Yin)X1 = 0.0696.

ΔW2 = α(t – Yin)X2 = 0.0696; Δb = α(t – Yin) = 0.0696.
So now the error for two inputs varies from 2.89 to 0.013435.
Mean error = 2.89 + 0.01345 = 3.0245.

4.2 Back-propagation network

A back-propagation network is a common method of training a neural network.
The training method is used for a multilayer neural network. The network consists
of processing elements with continuous differentiable activation function. In this
network, a gradient descent method is used for minimizing the total squared error
of the network. Training the network of a given set of input/output pairs is identi-
fied and the network has a procedure for changing the weights to classify given
input patterns correctly. This is the network where the error is propagated back to
the hidden unit [13]. A back-propagation network is a sensitive approach for
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dividing the contribution to each weight. The two differences between updating the
rule are as follows:

i. Activation of the hidden unit/neurons is used instead of activation of the
input value or input neuron.

ii. The rule contains a gradient descent for the activation function to operate.

The back-propagation network is the reformation of the least mean square
algorithm and varies the network weights to minimize mean squared error between
the actual and desired outputs of the network. The network is trained and exerted
using training samples of respective inputs and desired outputs are fetched. The
algorithm consists of input and output layers to vary weights and analyze the
arrangements of input in an acceptable manner. This algorithm takes a unique set
compared to other techniques—during the learning period itself the weights are
calculated [14]. The error signal is calculated by taking the difference between the
calculated and target output. The result is measured in the output layer.

In the back-propagation network, the testing of data is implemented in the feed-
forward path. While executing the network, it has the ability to operate in other
hidden layers and is more efficient than operating with one hidden layer. The
training process requires further time to train the network but the net result of the
network during the training process produces a better result. The network is
disintegrated into three categories, namely: (i) computation of the feed-forward
network, (ii) back propagation to the output and hidden layer, and (iii) updating of
weights. The algorithm will be terminated as the error value approaches a negligible
numerical value.

The feed-forward computation network undergoes two processes. The first pro-
cess receives the values of the hidden layer nodes, and in the second process the
value from the hidden layer is used to compute the values of the output layer. Once
the hidden layer values are determined, the network produces values from the
hidden layer to the output layer. The hidden layer is observed once when the error
from the output layer is propagated to the hidden layer. Weights are updated only if
all the errors in the network are calculated. Further iterations help the network to
train and produce a good training result. Block diagram of back propagation
network is shown in Figure 13.

To calculate the derivative function for the squared error with respect to the
weights of the network, the gradient descent method is used in the back-
propagation network. The squared error function is defined by:

E ¼ 1
2

t� cð Þ2 (14)

where E is the squared error, t is the target output for a given sample, and c is the
actual output of the output neuron.

The constant (1/2) is included, while the differentiating constant is canceled. A
limitation of using the back-propagation algorithm is that the input vectors are not
normalized and because of that, its performance is not improved. The network
identifies only the local minimum values not the global minimum function to
determine the errors.

There are two types of back-propagation networks, namely static and recurrent
neural networks. The static network produces a mapping of static input for static
output. It helps to solve static classification issues like optical character recognition.
The recurrent type is a feed-forward network, until a fixed value is obtained.
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value from the hidden layer is used to compute the values of the output layer. Once
the hidden layer values are determined, the network produces values from the
hidden layer to the output layer. The hidden layer is observed once when the error
from the output layer is propagated to the hidden layer. Weights are updated only if
all the errors in the network are calculated. Further iterations help the network to
train and produce a good training result. Block diagram of back propagation
network is shown in Figure 13.

To calculate the derivative function for the squared error with respect to the
weights of the network, the gradient descent method is used in the back-
propagation network. The squared error function is defined by:

E ¼ 1
2

t� cð Þ2 (14)

where E is the squared error, t is the target output for a given sample, and c is the
actual output of the output neuron.

The constant (1/2) is included, while the differentiating constant is canceled. A
limitation of using the back-propagation algorithm is that the input vectors are not
normalized and because of that, its performance is not improved. The network
identifies only the local minimum values not the global minimum function to
determine the errors.

There are two types of back-propagation networks, namely static and recurrent
neural networks. The static network produces a mapping of static input for static
output. It helps to solve static classification issues like optical character recognition.
The recurrent type is a feed-forward network, until a fixed value is obtained.
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The error is computed and propagated backward. Mapping of the recurrent
network is nonstatic.

4.2.1 Learning process of the back-propagation network

Each neuron is composed of two units. The primary unit sums the product of
weight coefficients and input signals. The secondary unit realizes the nonlinear
function, in which the neurons are transferred to the activation function. Signal e is
the adder output signal, and Y = F(e) is the output signal of the nonlinear element.
Signal y is also the output signal of the neuron. Figure 14 shows the learning process
of the network.

A training data set is required to instruct the neural network. The training data
set consists of input signals (X1 and X2) assigned to corresponding target output.
The training network is an iterative process, and for each iteration, weight coeffi-
cients of nodes are changed using new data from the training data set. Each training

Figure 14.
Learning process of the back-propagation network.

Figure 13.
Block diagram–Back propagation network.
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step starts by forcing both input signals from the training set. It is possible to
determine the output signal values for each neuron in every network layer.

Training steps of the back-propagation algorithm:

Step 1: The network of random weights is initialized.
Step 2: The training process takes place using the following steps:

i. Initially, training values are given as input to network and calculate the
output of the network.

ii. The training process (i.e., starting with the output layer, back to the
input layer):

a. Compares the network output with the correct output (an error
function).

b. Adapts the weights in the current layer.

Step 3: By using the gradient descent method, the error is minimized.
Step 4: The propagating delta rule is used to adjust the error backward from the

output to the hidden layer to the inputs. The back-propagation network is shown in
Figure 15.

Back-propagation neural network example problem:
By using the back-propagation network, train the input vectors for the following

functions: X1 = 0.15; X2 = 0.10; b1 = 0.45; b2 = 0.80; t1 = 0.10; t2 = 0.85. The example
of back propagation network is shown in Figure 16.

Solution:
Initialize the weights as W1 = 0.35; W2 = 0.50; W3 = 0.75; W4 = 1.25; W5 = 0.80;

W6 = 0.56; W7 = 0.45; W8 = 0.56.
Activation function, H1 ¼ 1

1þe�H1:

Forward pass:
H1 = b1 + W1X1 + W2X2 = 0.55215
Out H1 ¼ 1

1þe�H1 = 0.6346
H2 = b1 + W3X1 + W4X2 = 0.6875
Out H2 ¼ 1

1þe�H2 = 0.66541
Now, for calculating Y1:
Y1 = Out H1 * W5 + Out H2 * W6 + b2 = 1.6803096
Out Y1 ¼ 1

1þe�y1 = 0.842945
In the same way:
Y1 = Out H2 * W8 + Out H1 * W7 + b2 = 1.45819

Figure 15.
Layer of back-propagation network.

17

Stochastic Artificial Intelligence: Review Article
DOI: http://dx.doi.org/10.5772/intechopen.90003



The error is computed and propagated backward. Mapping of the recurrent
network is nonstatic.

4.2.1 Learning process of the back-propagation network

Each neuron is composed of two units. The primary unit sums the product of
weight coefficients and input signals. The secondary unit realizes the nonlinear
function, in which the neurons are transferred to the activation function. Signal e is
the adder output signal, and Y = F(e) is the output signal of the nonlinear element.
Signal y is also the output signal of the neuron. Figure 14 shows the learning process
of the network.

A training data set is required to instruct the neural network. The training data
set consists of input signals (X1 and X2) assigned to corresponding target output.
The training network is an iterative process, and for each iteration, weight coeffi-
cients of nodes are changed using new data from the training data set. Each training

Figure 14.
Learning process of the back-propagation network.

Figure 13.
Block diagram–Back propagation network.

16

Deterministic Artificial Intelligence

step starts by forcing both input signals from the training set. It is possible to
determine the output signal values for each neuron in every network layer.

Training steps of the back-propagation algorithm:

Step 1: The network of random weights is initialized.
Step 2: The training process takes place using the following steps:

i. Initially, training values are given as input to network and calculate the
output of the network.

ii. The training process (i.e., starting with the output layer, back to the
input layer):

a. Compares the network output with the correct output (an error
function).

b. Adapts the weights in the current layer.

Step 3: By using the gradient descent method, the error is minimized.
Step 4: The propagating delta rule is used to adjust the error backward from the

output to the hidden layer to the inputs. The back-propagation network is shown in
Figure 15.

Back-propagation neural network example problem:
By using the back-propagation network, train the input vectors for the following

functions: X1 = 0.15; X2 = 0.10; b1 = 0.45; b2 = 0.80; t1 = 0.10; t2 = 0.85. The example
of back propagation network is shown in Figure 16.

Solution:
Initialize the weights as W1 = 0.35; W2 = 0.50; W3 = 0.75; W4 = 1.25; W5 = 0.80;

W6 = 0.56; W7 = 0.45; W8 = 0.56.
Activation function, H1 ¼ 1

1þe�H1:

Forward pass:
H1 = b1 + W1X1 + W2X2 = 0.55215
Out H1 ¼ 1

1þe�H1 = 0.6346
H2 = b1 + W3X1 + W4X2 = 0.6875
Out H2 ¼ 1

1þe�H2 = 0.66541
Now, for calculating Y1:
Y1 = Out H1 * W5 + Out H2 * W6 + b2 = 1.6803096
Out Y1 ¼ 1

1þe�y1 = 0.842945
In the same way:
Y1 = Out H2 * W8 + Out H1 * W7 + b2 = 1.45819

Figure 15.
Layer of back-propagation network.

17

Stochastic Artificial Intelligence: Review Article
DOI: http://dx.doi.org/10.5772/intechopen.90003



Out Y2 ¼ 1
1þe�y2 = 0.811255

Calculating total error:
ETotal = ⅀ 1

2 Target�Outputð Þ2 = 1
2 T1 � Out Y1ð Þ2 þ 1

2 T2 � Out Y2ð Þ2 = 0.27665
Backward pass:
To update weights, consider W5

Error at W5 ¼ ΔETotal
ΔW5

= ΔETotal
ΔOutY1 *

ΔOutY1
ΔY1

* ΔY1
ΔW5 = 0.07035

Updating W5, W5 = W5 – Ƞ * ΔETotal
ΔW5

Ƞ is the learning rate = 0.1; W5 = 0.7929
In the same way, calculations are done for updating the weights forW6,W7, and

W8. In a similar manner, the weights are updated for W1,W2,W3, and W4 by using
hidden layers in the network.

Advantages of the back-propagation network:

i. The network is fast, simple, and programming code is easy when compared to
other networks. It supports high-speed applications.

ii. It does not require any parameters to tune except for the number of inputs,
and the network does not require prior knowledge to implement.

Disadvantages of the back-propagation network:

i. The network consumes more time for training and is stuck in local minima
resulting in suboptimal solutions.

ii. A broad amount of input and output data is required, so there exists a
complexity when solving a problem. The network is quite sensitive for noisy
data.

iii. A major drawback occurs in a single-layer signal and the network cannot
learn the process. It approximates nonlinear separable tasks and functions.

Figure 16.
Back-propagation network.
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Applications of the back-propagation network:

The network is especially useful for machine learning processes, face recognition
systems, image or speech recognition, classification, function approximation, time
series prediction, etc.

4.3 Radial basis function

The radial basis function is a three-layer feed-forward neural network. The
transfer function of the hidden layer is the radial basis function. It is derived from
function approximation theory. In a neural network, the radial basis function is
modeled by the narrow-tuned feedback that is viewed in biological neurons [15].
This type of tuned response is found in several parts of nervous systems. In a feed-
forward network, one hidden layer is required for the design of simple structures of
lower computational cost. A radial basis network is a nonlinear type that makes the
bias function change. The network is used to create regression-type problems.

The radial basis function is composed of three layers, namely input layer, hidden
layer, and output layer. The sigmoid type of activation function is not used as in the
case of the back-propagation algorithm, whereas the radial basis network uses
Gaussian function as an activation function. The input layer consists of neurons
with a linear activation function given to the hidden layer. The connection between
input and hidden layers is not observed, which means that input neurons received
from each hidden neuron remain the same in the network [16]. The Gaussian
activation function is determined by:

F dð Þ ¼ exp �d2=μ2� �
(15)

where μ is the real parameter value and d is the distance between the input and
intermediate vector (the distance is usually measured in terms of Euclidean norm).

Consider the input vector for a period of “m” time denoted by:

Y mð Þ ¼ y1 mð Þ, y2 mð Þ, y3 mð Þ… ::yn mð Þ� �
T (16)

The intermediate vector for each hidden neuron is denoted by Bi (for i = 1, 2, 3,
..., k), where “k” is the number of neurons in the hidden layer. The output of each
neuron in the radial basis function is given by:

hi nð Þ ¼ Fi ǁ Y mð Þ � Biǁð Þ, for i ¼ 1, 2, … , k (17)

Operation of the radial basis network is based on a least mean square algorithm
and the local minima values are used for training the neural network. The training
process requires a longer computation time but the learning period is less in the
network [17]. Schematic representation of the radial basis network is shown in
Figure 17.

Every neuron in the radial basis function stores a sample vector from the train-
ing set. The neuron in the network compares the input vector with its sample
vector, and outputs a value between 0 and 1. If the input is equal to the sample
vector, then the output of that neuron will be 1. The neuron’s response value is
called the activation value.

Every neuron in the radial basis function computes a measure of the similarity
between input and sample vector. The values are obtained from the training set.
Input vectors are similar to sample vectors and return a value closer to 1. There are
different possible choices of similarity functions, but the most popular is based on

19

Stochastic Artificial Intelligence: Review Article
DOI: http://dx.doi.org/10.5772/intechopen.90003



Out Y2 ¼ 1
1þe�y2 = 0.811255

Calculating total error:
ETotal = ⅀ 1

2 Target�Outputð Þ2 = 1
2 T1 � Out Y1ð Þ2 þ 1

2 T2 � Out Y2ð Þ2 = 0.27665
Backward pass:
To update weights, consider W5

Error at W5 ¼ ΔETotal
ΔW5

= ΔETotal
ΔOutY1 *

ΔOutY1
ΔY1

* ΔY1
ΔW5 = 0.07035

Updating W5, W5 = W5 – Ƞ * ΔETotal
ΔW5

Ƞ is the learning rate = 0.1; W5 = 0.7929
In the same way, calculations are done for updating the weights forW6,W7, and

W8. In a similar manner, the weights are updated for W1,W2,W3, and W4 by using
hidden layers in the network.

Advantages of the back-propagation network:

i. The network is fast, simple, and programming code is easy when compared to
other networks. It supports high-speed applications.

ii. It does not require any parameters to tune except for the number of inputs,
and the network does not require prior knowledge to implement.

Disadvantages of the back-propagation network:

i. The network consumes more time for training and is stuck in local minima
resulting in suboptimal solutions.

ii. A broad amount of input and output data is required, so there exists a
complexity when solving a problem. The network is quite sensitive for noisy
data.

iii. A major drawback occurs in a single-layer signal and the network cannot
learn the process. It approximates nonlinear separable tasks and functions.

Figure 16.
Back-propagation network.

18

Deterministic Artificial Intelligence
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transfer function of the hidden layer is the radial basis function. It is derived from
function approximation theory. In a neural network, the radial basis function is
modeled by the narrow-tuned feedback that is viewed in biological neurons [15].
This type of tuned response is found in several parts of nervous systems. In a feed-
forward network, one hidden layer is required for the design of simple structures of
lower computational cost. A radial basis network is a nonlinear type that makes the
bias function change. The network is used to create regression-type problems.
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layer, and output layer. The sigmoid type of activation function is not used as in the
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input and hidden layers is not observed, which means that input neurons received
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ing set. The neuron in the network compares the input vector with its sample
vector, and outputs a value between 0 and 1. If the input is equal to the sample
vector, then the output of that neuron will be 1. The neuron’s response value is
called the activation value.

Every neuron in the radial basis function computes a measure of the similarity
between input and sample vector. The values are obtained from the training set.
Input vectors are similar to sample vectors and return a value closer to 1. There are
different possible choices of similarity functions, but the most popular is based on

19

Stochastic Artificial Intelligence: Review Article
DOI: http://dx.doi.org/10.5772/intechopen.90003



the Gaussian function. The equation for a Gaussian function with a one-dimensional
input is given by:

F xð Þ ¼ 1
σ
ffiffiffiffiffiffi
2П
p e�

x�μð Þ2
2σ2 (18)

where x is the input, μ is the mean, and σ is the standard deviation.
Training steps of the radial basis function:
Step 1: Initialize the input vector Y from the obtained training set.
Step 2: Determine the output of the hidden layer.
Step 3: Compute the output Z and compare with the desired value. Adjust each

weight W accordingly:

Z ¼Wij nþ 1ð Þ ¼Wij nð Þ þ η yj � zj
� �

yi (19)

Step 4: Repeat the steps from 1 to 3 for each vector in the training set.
Step 5: Repeat the steps from 1 to 4 unless the error is smaller than the maximum

acceptable limit.

Applications of the radial basis function:
Applications of the radial basis function are function approximation type,

classification, interpolation, and time series prediction. These applications provide
various industrial uses like stock price prediction, fraud detection in financial
transactions, and anomaly detection of data.

5. Conclusion

This chapter encompassed the learning algorithms of neural networks such as
adaline, back-propagation, and the radial basis network. Of all the learning
methods, the back-propagation network is effective in training because of its
mature back-propagating mechanism. The training process of the radial basis func-
tion is rapid and almost matches the ability of the back-propagation network. The
radial basis function is a good substitute for the back-propagation network. When

Figure 17.
Radial basis network.
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the selected features are clear enough, then the back-propagation network produces
satisfactory results. The study of neural network has been slow, but now computers
have better processing power. The back-propagation network effectively solves the
exclusive-OR problem.
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Chapter 2

Simulated Real-Time Controller
for Tuning Algorithm Using
Modified Hill Climbing Approach
Based on Model Reference
Adaptive Control System
Ahmed Abdulelah Ahmed, Azura Che Soh,
Mohd Khair Hassan, Samsul Bahari Mohd Noor
and Hafiz Rashidi Harun

Abstract

In this chapter, an intelligent algorithmic tuning technique suitable for real-time
system tuning based on hill climbing optimization algorithm and model reference
adaptive control (MRAC) system technique is proposed. Although many adaptive
control tuning methodologies depend partially or completely on online plant system
identification, the proposed method uses only the model that is used to design the
original controller, leading to simplified calculations that do not require neither
high processing power nor long processing time, as opposed to identification tech-
nique calculations. Additionally, a modified hill climbing algorithm that is devel-
oped in this research is specifically designed, configured and tailored for the
automatic tuning of control systems. The modified hill climbing algorithm uses a
systematic movement when searching for new solution candidates. The algorithm
measures the quality of the solution candidate based on error function. The error
function is generated by comparing the system response with a desired reference
response. The algorithm tests new solution candidates using step signals iteratively.
The results showed the algorithm effectiveness to drive the system response. The
simulation results illustrate that the method schemes proposed in this study show a
viable and versatile solution to deal with controller tuning for systems with model
inaccuracies as well as controller real-time calibration problem.

Keywords: real-time controller, auto-tuning algorithm, optimization, modified hill
climbing approach, model reference adaptive control system (MRAC)

1. Introduction

The increasing complexity of industrial processes is always pushing for
advancements and innovations in technologies involved in industrial processing,
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Abstract

In this chapter, an intelligent algorithmic tuning technique suitable for real-time
system tuning based on hill climbing optimization algorithm and model reference
adaptive control (MRAC) system technique is proposed. Although many adaptive
control tuning methodologies depend partially or completely on online plant system
identification, the proposed method uses only the model that is used to design the
original controller, leading to simplified calculations that do not require neither
high processing power nor long processing time, as opposed to identification tech-
nique calculations. Additionally, a modified hill climbing algorithm that is devel-
oped in this research is specifically designed, configured and tailored for the
automatic tuning of control systems. The modified hill climbing algorithm uses a
systematic movement when searching for new solution candidates. The algorithm
measures the quality of the solution candidate based on error function. The error
function is generated by comparing the system response with a desired reference
response. The algorithm tests new solution candidates using step signals iteratively.
The results showed the algorithm effectiveness to drive the system response. The
simulation results illustrate that the method schemes proposed in this study show a
viable and versatile solution to deal with controller tuning for systems with model
inaccuracies as well as controller real-time calibration problem.

Keywords: real-time controller, auto-tuning algorithm, optimization, modified hill
climbing approach, model reference adaptive control system (MRAC)

1. Introduction

The increasing complexity of industrial processes is always pushing for
advancements and innovations in technologies involved in industrial processing,
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including control systems engineering. The invention of computers paved the way
for new and intelligent possibilities in control system technologies [1]. The last four
decades witnessed a rapid movement towards the field of intelligent control [2–5].
This movement was being coupled with what were already growing new ways and
paradigms of applying automatic control for even more decades prior to computer
inception [6]. Control systems advanced from having a sensor-actuator relationship
moulded together in feedback paradigm to complex multilayer interrelated sets of
systems [2].

In designing control systems, system modelling can be considered the backbone
of the design process. Many modelling techniques were introduced by researchers
through time. The introduction of computers pushed towards better models [7].
However, no matter how good modelling techniques are getting, whether being
based on analytical analysis or identification methods, no model would be a perfect
match to the system it is depicting. There would always be an accuracy factor
affecting the model quality.

The controller design is dependent upon the system model. As a result, the end-
product controller quality is hugely dependent upon the model quality, and, to a
degree, the model mimics the behaviour of the system it represents [8]. However,
due to the vast and deep complexity of most systems humans encounter in the
world, whether physical, economical or any other types of systems, humans tend to
build mathematical models for control purposes as simplified as possible in order to
simplify the controller design process. That simplification comes with a major flaw,
which is a decreased accuracy of system presentation by the model. The effects of
this flaw, however, are often not important or of insignificant consideration for the
control system. However, sometimes it is effective to a degree of generating a
degraded control quality over the system. That is especially present when models
encounter even more degradation in quality due to system parameter fluctuation
over time due to various operational effects.

However, sometimes control strategy should be built to deal with a high or
variable model inaccuracy. Complex systems would often be represented with
simplified models to reduce calculation time and efforts [9], which result in less
accurate models [8], while in many cases, the model accuracy degrades over time
due to either sudden system variable change due to undisclosed reasons or gradual
variable change from normal wear and tear of system components [10].

Due to control system design procedures being highly dependent on the
mathematical model of the controlled plant [9], a high model quality and accuracy
is critically needed. However, in some dynamic systems, it is very difficult (or even
impossible) to have models with good accuracy that are sufficient to predict the
plant behaviour in a way that an acceptably controlled performance can be
produced.

On the other hand, sometimes even if mathematical models are sufficiently
accurate in a way that a good controlled performance can be obtained, long-term
operation (or even short term in some cases) gradually increases the difference
between the plant and its dynamical model, which, in turn, would lead to a
degraded performance.

It is a common task in industrial applications to recalibrate the control system
periodically, as the plant parameters suffer various fluctuations from their original
values that were used in designing the control system. The calibration procedure
usually requires professional attendance, which adds up to more maintenance costs.
Also, the experimental nature of the manual calibration often requires at least part
of the plant operations to be halted [2, 11].

Instead of relying on manual calibration, this research proposes an automatic
tuning scheme and algorithm specifically designed for control systems to deal with
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model inaccuracies and parameter fluctuations during real-time operation without
the need to halt plant operation.

2. Model reference adaptive control (MRAC)

Adaptive control systems were among the first techniques in automatic control
to tackle the problem of parameter fluctuation [12]. The various techniques
required a continuous system observation or identification to improve the model
quality while adapting the controller parameters according to the new model
[13, 14]. However, the general approach of adaptive control is different to that of
real-time optimization. Real-time optimization techniques attempt to tune or opti-
mize the control system generally by changing the operating conditions in order to
get the desired response. There is no online modelling involved. It was introduced
mainly in chemical processes and plants to deal with the autonomous calibration
problem [15]. However, it is possible to generalize its framework to deal with other
types of control systems [16].

Model reference adaptive control (MRAC) is one of the most important adaptive
techniques in control engineering [12, 13], as it provides a good viewpoint to
thoroughly analyse adaptive systems [12].

The MRAC system structure is generally considered to have two feedback loops
[12, 17], an inner feedback loop that is the ordinary feedback that is compared with
the set point and fed to the controller and an outer feedback loop that modifies
controller parameters based on the adaptation mechanism. In this technique, a
reference response is to be followed by the system. The reference response is
generated by using a prebuilt reference model [12]. The controller parameters are
adjusted based on the difference error between the reference model response and
the controlled process response as shown in Figure 1.

The adaptation algorithm adjusts the controller parameters so that the error is
reduced to zero [12]. Parameter estimation or process measurements help in
forming the adaptation rule that the controller would be adjusted according to.

MRAC uses one of three mechanics to adjust controller parameters by finding an
adaptation law. The Massachusetts Institute of Technology (MIT) rule is a gradient
method that was the first used mechanic [12]. However, the MIT rule could some-
times lead to unstable system response [13]. Later, the Lyapunov stability theory
and the passivity theory were also used to generate the adaptation law that was
proved to be robust and stable [12, 13].

It should be noted that there is a large correlation between MRAC and self-
tuning regulator (STR). Actually, some STRs can be considered as MRAC and vice
versa [12, 17].

Figure 1.
Model reference adaptive control schematic diagram [12–13, 17].
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3. Overview of hill climbing algorithm

It was proved that although process models are often inaccurate, they are suffi-
cient to provide general knowledge for real-time optimization problem [18], while
real-time optimization problem can be solved iteratively [16, 19]. The tuning oper-
ation includes searching for new actuator settings (e.g. gains) to achieve the desired
performance [16]. Many optimization algorithms are available, but most of these
algorithms are not suitable for real-time tuning due to several reasons such as time-
consuming calculation or the algorithm’s inability to provide a transitional solution
until a satisfactory solution is found [20]. Obviously, the latter is essential for real-
time operation.

In this research, a real-time controller tuning algorithm based on the principles
of hill climbing optimization algorithm is proposed. The algorithm is suitable for
controller automatic tuning in real-time. Hill climbing is one of the oldest tradi-
tional optimization algorithms. The procedure begins by selecting an arbitrary
solution in the searching space and then testing the surrounding solutions, one at a
time. If the algorithm finds a better solution than the currently selected solution, the
better solution is selected, and the procedure is done again until the algorithm
cannot find a solution that is better than the currently selected one, and at that
point, the optimization stops, and the best found solution is considered the best
solution [21].

In Figure 2, searching for a maximum height point is assumed. Let’s suppose that
the arbitrary starting point was point a. When the optimization starts, hill climbing
would check the sides of point a and decide to move in the shown direction, since
the left side gives a larger (height) value than the value of point a. On the other
hand, the algorithm would not select to move to the right, since the value is less than
that of point a. This movement would continue until the selection reaches the
maximum point denoted as ‘maximum height (global)’ at which the optimization is
considered finished and the selected point is the optimum, since no more movement
is possible because points on both sides hold less value than the selected one.

However, starting arbitrarily at point b of Figure 2 would result in the optimi-
zation to stop when reaching the point denoted as ‘maximum (local)’. When the
optimization starts from point b, the selection would take the direction shown in the
figure. But that movement would stop upon reaching the local optimum point
because the algorithm would be trapped at a point that is better than all its neigh-
bours, although that point is not the overall best point of the search space.

The above example demonstrates a major flaw of the hill climbing algorithm,
which is that the choice of the first solution at beginning of optimization can lead to
a huge impact on the final result in case the function being optimized has multiple

Figure 2.
An illustration of how hill climbing works.
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optimum points [22, 23]. Therefore, hill climbing can easily be trapped in local
optimum if applied to functions with non-uni-model landscapes [21]. In the same
way, it can be trapped in plateaux or ridges also [21–23].

Even with its shortcomings, hill climbing is considered one of the best local
searching algorithms [21] because it tends to move towards the local optimum
quite fast [21, 23]. Therefore, many modifications to simple hill climbing were
proposed by researchers to overcome its negatives and making it usable for a
wider scope [21].

Stochastic hill climbing uses a random choice on the next uphill movement,
which can give better results in some cases. Another variant is first-choice hill
climbing, which is a modified form of stochastic hill climbing. In this algorithm,
random steps are generated, and the movement occurs when a solution better than
the current solution is found [21]. One of the other modifications is random-restart
hill climbing. In this algorithm, simple hill climbing is used but with restarting from
a new arbitrary point after each local search finds the optima. Hence, the probabil-
ity of finding the global optimum is increased after several repetitions [21, 23].

Hill climbing, at its simple form, is very useful for real-time controller tuning,
since the algorithm moves in the search space with small steps by changing one
variable at a time while promoting a transitional solution until a final solution can
be found [6, 10, 20]. On the other hand, all modifications to hill climbing that could
be used to overcome its shortcomings are based on a random selection or movement
in the search space [21]. Therefore, these variants produce the same consequences
of genetic algorithms regarding controller tuning in real time. Unpredictability and
instability of the response are not far from being possible.

4. The modified hill climbing algorithm

A systematic movement modification to hill climbing algorithm is suggested.
Our modification is targeted at real-time tuning of control systems.

The main concept suggested as modification is to keep exploring the
neighbourhood of the current best solution and keep moving candidates further
from the best solution in both directions alternately (moving towards a bigger and a
smaller value for each variable, one variable at a time), even if the surrounding
candidates yield a degraded quality, until a satisfactory solution is found after
searching for best values to all the elements of the controller. This is done by
changing one variable at a time and testing the system by applying a testing step
input iteratively [16].

An offset value must be specified that represents the minimum movement size
from the current best value to the next candidate. This offset will be used as the
discretization interval to find the movement amount for each variable in each
iteration. That is done by simply increasing the movement amount by the value of
the offset. Figure 3 shows the general tuning operation workflow.

Instead of moving in one direction when searching for new candidates in classic
hill climbing (the direction of the best neighbourhood of starting position), and
keeping on moving until no further improvement in the fitness function is met,
searching in the proposed algorithm would keep moving alternately between two
directions and will not stop at maxima points. The searching for new candidates
would stop when fitness (error function result) achieves the designer’s requirements.

To demonstrate the moving mechanics when searching for candidates, it will be
assumed that a function that has a single variable parameter is required to be tuned
in order to achieve certain function fitness. It is also assumed that an arbitrary
starting value of ‘a’ is assigned to the variable parameter, which gives a fitness value
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of ‘1’, as demonstrated in Figure 4. It is also assumed that the performance would
be acceptable if fitness is equal or greater than ‘4’, and therefore, tuning will stop if
a fitness value of ‘4’ or greater is reached, regardless if that value is the best value
possible or not.

Each point in Figure 4 is larger than the point to its left by an amount, called
‘offset’, and smaller than the point to its right by the same amount. The offset is the
smallest movement the tuning algorithm is allowed to move when searching for
candidates. The offset value must be determined by the designer depending on the
system sensitivity to gain changes.

Considering tuning the function of Figure 4 again, if the tuning started from
point ‘a’, where tuning is required due to it having fitness of ‘1’, the algorithm
moves the candidate selection to the right by the amount of offset, so point ‘b’ is
chosen as the new candidate. When testing fitness of point ‘b’, the algorithm finds it
better than that of point ‘a’, and therefore, point ‘b’ will be promoted as the current
best solution. However, fitness is still less than the minimum required value of ‘4’;
hence, tuning continues. The movement amount is increased by the amount of
offset and reversed in direction, which will result in selecting point ‘c’ as the new
candidate. Testing the fitness of point ‘c’ shows that it is equal to the current best
fitness, and as a result, no promoting is required, since no advantage will be
acquired. Next, the movement amount is increased by the amount of offset again
and reversed in direction.

The next candidate will therefore be point ‘d’, which has fitness less than the
current best fitness, so this point will not be promoted. Increasing the movement
amount by offset and reversing direction will select point ‘e’ as the next candidate.

Figure 3.
Tuning algorithm schematic diagram for system with (n) variables.

Figure 4.
Demonstration of movement when searching for new candidates.
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There is still a fitness of point ‘b’ as the best, so point ‘b’ remains promoted as the
best parameter value until now, even though it doesn’t satisfy the design require-
ments. When checking the fitness of the last selected candidate, point ‘e’, the
algorithm finds that this fitness is better than the last best fitness. Therefore, point
‘e’ is promoted as the best current solution, although it also doesn’t satisfy the
design requirements. The performance of point ‘b’ (and all other points other than
the best point) is forgotten and won’t be memorized. The same procedure will
continue until a parameter value with a satisfactory fitness is found (point ‘g’ in this
example) by the algorithm, and then the tuning will stop, and the last best param-
eter selection is fixed to the system. If fitness is degraded for any reason once again,
the tuning procedure will start again until it finds new satisfactory parameters. It is
noticed that the algorithm doesn’t necessarily lead to finding the global best solution
(point ‘i’ in the example), but if a solution exists, then it will be found, since the
algorithm would theoretically pass through every possible candidate unless a solu-
tion is found.

Steps being done when tuning consists of the following:

1.Calculate variable candidate according to the following equation:

newVc ¼ oldVc þ Vmd ∗Vmð Þ (1)

2.Store current variable value as the best.

3.Change the variable value to the candidate value.

4.Check performance.

i. If not improved, restore the best value to the variable, and set flag to
change next variable.

ii. If improved, reset all other variables movements around their best
values.

5.Calculate the next direction of movement.

newVmd ¼ �1 ∗ oldVmd (2)

6.Calculate the next amount of movement.

newVm ¼ oldVm þ offset (3)

7.Check flag to decide on what variable to tune.

Notes
Vc: variable candidate
Vm: variable candidate movement amount
Vmd: variable candidate movement direction

The following Figure 5 below demonstrates operations to be done when tuning
each single variable.

Like most optimization algorithms in general, and hill climbing specifically, the
use of the algorithm does not guarantee the best solution for certain systems under
certain conditions. However, if some solutions do exist, it is guaranteed that this
modified algorithm will find one of them. The solution under the same circum-
stances would always be unique assuming similar starting conditions. However,
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better than that of point ‘a’, and therefore, point ‘b’ will be promoted as the current
best solution. However, fitness is still less than the minimum required value of ‘4’;
hence, tuning continues. The movement amount is increased by the amount of
offset and reversed in direction, which will result in selecting point ‘c’ as the new
candidate. Testing the fitness of point ‘c’ shows that it is equal to the current best
fitness, and as a result, no promoting is required, since no advantage will be
acquired. Next, the movement amount is increased by the amount of offset again
and reversed in direction.

The next candidate will therefore be point ‘d’, which has fitness less than the
current best fitness, so this point will not be promoted. Increasing the movement
amount by offset and reversing direction will select point ‘e’ as the next candidate.

Figure 3.
Tuning algorithm schematic diagram for system with (n) variables.

Figure 4.
Demonstration of movement when searching for new candidates.
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There is still a fitness of point ‘b’ as the best, so point ‘b’ remains promoted as the
best parameter value until now, even though it doesn’t satisfy the design require-
ments. When checking the fitness of the last selected candidate, point ‘e’, the
algorithm finds that this fitness is better than the last best fitness. Therefore, point
‘e’ is promoted as the best current solution, although it also doesn’t satisfy the
design requirements. The performance of point ‘b’ (and all other points other than
the best point) is forgotten and won’t be memorized. The same procedure will
continue until a parameter value with a satisfactory fitness is found (point ‘g’ in this
example) by the algorithm, and then the tuning will stop, and the last best param-
eter selection is fixed to the system. If fitness is degraded for any reason once again,
the tuning procedure will start again until it finds new satisfactory parameters. It is
noticed that the algorithm doesn’t necessarily lead to finding the global best solution
(point ‘i’ in the example), but if a solution exists, then it will be found, since the
algorithm would theoretically pass through every possible candidate unless a solu-
tion is found.

Steps being done when tuning consists of the following:

1.Calculate variable candidate according to the following equation:

newVc ¼ oldVc þ Vmd ∗Vmð Þ (1)

2.Store current variable value as the best.

3.Change the variable value to the candidate value.

4.Check performance.

i. If not improved, restore the best value to the variable, and set flag to
change next variable.

ii. If improved, reset all other variables movements around their best
values.

5.Calculate the next direction of movement.

newVmd ¼ �1 ∗ oldVmd (2)

6.Calculate the next amount of movement.

newVm ¼ oldVm þ offset (3)

7.Check flag to decide on what variable to tune.

Notes
Vc: variable candidate
Vm: variable candidate movement amount
Vmd: variable candidate movement direction

The following Figure 5 below demonstrates operations to be done when tuning
each single variable.

Like most optimization algorithms in general, and hill climbing specifically, the
use of the algorithm does not guarantee the best solution for certain systems under
certain conditions. However, if some solutions do exist, it is guaranteed that this
modified algorithm will find one of them. The solution under the same circum-
stances would always be unique assuming similar starting conditions. However,
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during the experiments at least one solution was assumed to be available within a
certain error margin.

5. Control paradigm

The suggested control paradigm is to compare the actual system response with a
desired reference response and then generate an error function that decides on
whether to tune the system controller or not as demonstrated in Figure 6. This
paradigm is inspired by the adaptive control paradigm, although it is not a complete
replication, since no parameter estimation is involved. The desired reference
response is generated by designing a controller for the system model.

The tuning drives the actual system response to act the same way as that of the
modelled system. This is to be done by tuning the actual system controller [24].

In order to make a decision on whether it is required to tune the process con-
troller or to check whether the latest modification improved the performance, a
comparison between the desired reference response and the process response must
be conducted.

This comparison generates an error signal using the error function block in
Figure 5. If the error signal is smaller than the maximum allowed error, then tuning
is not needed. If the error signal is larger than the maximum allowed error, then
tuning is needed. This is also done after each tuning iteration. If the error signal
becomes smaller than the maximum allowed error after making a tuning pass over
all the tuneable parameters, tuning will stop. Otherwise, tuning will continue.

Figure 5.
Operations when tuning the m-th variable.
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The error function itself is not a mere subtraction equation. In order to get
sufficient clarification about the amount of the difference between the process
response and the desired reference response, the designer needs to consider a period
that covers both transient response to the experimental step input change and a
steady-state response. Consequently, the designer must specify an inspection period
so error measurements can be collected. Next, the error function can be the average
value of the errors measured over a specified period of time, or it can be the
summation of those error values or any other suitable function. The period can be
identified from prior knowledge of the system, since the designer has a model of the
process; though not accurate, it can give a general assessment of the required
period. Meanwhile, error reading should be put in discrete form as pairs of model
and process outputs that were taken simultaneously.

Hence, it can be considered that the error function is a cost function that is to be
minimized below a certain value. That value is the maximum allowed error, which
is also to be specified by the designer, reflecting the closeness required between
process response and the desired reference response.

If tuning is needed (when the error generated by the error function is larger than
the maximum allowed error), then the tuning algorithm will start to change the
controller variables (e.g. Kp, Ki and Kd in a PID controller) one by one and measure
the error after each single variable change. If the error is reduced, the algorithm
would keep the new value for the variable and move on to change the next variable.
Otherwise the algorithm would reset the variable to its best value and move on to
change the next variable.

If a value substitution happened (when finding a better value for one of the
variables), the movement amount for each other variable is reset to the minimum,
which is the offset value. This is to make sure that the algorithm would search the
neighbourhoods of the best values of variables again when any change happens to
one of them in order to find the best possible values for them, since they could be
strongly related to each other dynamically. For example, if we have a PID controller
being optimized and the value of Kp is increased, then the system will be faster but
will generate a higher overshoot. So, Kd should be tuned a little to lower the
overshoot.

This procedure should be repeated until the error becomes less than the maxi-
mum allowed error. Then, the tuning will be stopped until the error fluctuates
outside the allowed margins again. The model controller can be of any type.

Figure 6.
Schematic diagram of the proposed design.
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5.1 Algorithm properties

To emphasize the advantages and usability of the proposed modified hill
climbing algorithm, this section discusses the properties of the algorithm under
real-time controller tuning considerations.

Firstly, the algorithm uses very simple calculations during system monitoring
and controller tuning. All equations involved in the design consist of basic combi-
nations of principal operations such as addition or division only. Therefore, the
algorithm retains high applicability for real-time execution, since the calculation
time of such simple equations can be considered irrelevant in current electronics;
hence, it is very easy to be implemented using embedded computer systems. The
shear simplicity of the calculations is largely attributed to the lack of online param-
eter estimation and to the simplicity of searching for a candidate mechanism which
is partly inherited from hill climbing.

Secondly, due to its hill climbing inheritance, the algorithm is very applicable to
tune multivariable controllers. Dealing with controller variables one at a time is one
of the core principles taken from hill climbing that serves very well to overcome the
tuning task in a systematic and procedural approach, without the need for random-
ness in candidates’ selection which nullifies the ability to tune the controller based
on the dynamic relation between the controller variables.

Thirdly, in principle, the algorithm is not tied to a specific type of controller.
Any type of controllers can be tuned theoretically, using any heuristic tuning
method. Although certain algorithms can be more suitable for certain types of
controllers than to others, some controllers are better not be tuned heuristically.
However, in the case study included in this paper, PID controllers were used. This is
a result of PID controllers themselves being suitable for heuristic controller tuning
in general, and real-time tuning specifically, as PID has few parameters to tune,
reducing tuning time and effort.

Fourthly, an important property of the proposed algorithm, which is also
inherited from classic hill climbing, is the ability to promote transitional solutions
until a satisfactory solution can be found. In fact, this transitional solution is part of
the overall tuning procedure, since the proposed algorithm repeatedly compares last
candidate performance with the last best available solution performance. This
property is essential for real-time tuning, as it keeps the controller running with the
best possible variable selection periodically between new candidate testing
instances, sustaining the best possible output performance for the furthest possible
period and, in turn, reducing the chances of instability or other undesirable
possibilities.

5.2 Important aspects to consider when applying the proposed design

Many design considerations should be taken during the design of any control
system. These considerations are dependent on the performance requirements and
design methodology. Here the concentration is put on the considerations that are
related to the real-time controller tuning paradigm using the modified hill climbing
algorithm.

Quality of the controller (model controller in Figure 6) used to generate desired
reference response is a very sensitive aspect. Great care should be taken as this step
will decide the shape of the response that we are aiming for. The desired reference
response should be physically viable (within an allowed error margins).

The error function must be made so that it can detect the variable changing
effect on the response. That is also directly related to the maximum error value and
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how the error is (difference between model and process outputs) being recorded
(the period being considered after the change and the timing of collecting the
signal). Consequently, the period spent on recording the outputs of the model and
process should start from, or before applying, the experimental step input and end
sometime after reaching a steady state.

The offset value should be chosen in the middle ground between the system
sensitivity to variable or gain changes and the speed at which the candidates will
move in the search space. To clarify this, it should be noted that the larger the offset
value, the faster the algorithm reaches a solution, since the offset value would
affect the new candidate movement amount. However, that would be on the
expense of a reduced fine tuning accuracy, since no smaller steps than the offset is
possible, which could mean missing a better parameter value point close to a
relatively good point.

If necessary, some simple conditions can be applied to avoid well-known
undesired candidates (e.g. negative gains for PID controller).

6. Simulation experiment

In order to demonstrate the design success, it was applied to a twin rotor MIMO
system (TRMS). The results were obtained using simulations on MATLAB and
Simulink software. The TRMS system used in the experiment is provided by
Quanser [25]. This system is a two degree of freedom (2-DOF) mechanical system.
It resembles a helicopter system using two rotors, one as a main rotor and one as a
tail rotor, as seen in Figure 7.

It has two degrees of freedom: one for pitch angle and one for yaw angle.
The device manual includes a linearized state-space model of the system [25],
while the software bundled with the device includes a nonlinear Simulink
model of the system. The linearized model was used to generate the desired
reference signal, which was used for tuning the nonlinear model controller in
Simulink.

Figure 7.
Quanser 2-DOF helicopter [25].
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Each degree of freedom is driven using a DC motor. The front head of the
helicopter moves in the pitch angle and is driven by a 24 volt motor. The tail of the
helicopter moves in the yaw angle and is driven by a 12 volt motor. The process
is a highly nonlinear system with a very strong cross coupling between pitch and
yaw angles.

The model uses the free-body diagram of Figure 8 below.
The following modeling conventions were assumed [25]:

• The helicopter is horizontal when θ ¼ 0.

• The pitch angle increases positively, dθ tð Þ
dt >0 when rotating in the counter-

clockwise direction.

• The yaw angle increases positively, dψ tð Þ
dt >0 when rotating in the clockwise

direction.

• The pitch angle increases when pitch thrust force is positive, Fp >0.

• The yaw angle increases when the yaw thrust force is positive, Fy >0.

The model is a state-space representation of the system using the standard
form of

_x ¼ Axþ Bu (4)

_y ¼ CyþDu (5)

where the state vector and output vector are defined by

xT ¼ θ; λ; _θ; _λ
� �

yT ¼ θ; λ½ �

where A, B, C and D are defined as (all parameters are defined in [25]):

Figure 8.
Free-body diagram of Quanser helicopter [25].

34

Deterministic Artificial Intelligence

A ¼

0 0 1 0

0 0 0 1

0 0 � Bp

Jeq_p þmhelil
2
cm

0

0 0 0 � By

Jeq_y þmhelil
2
cm

2
6666666664

3
7777777775

B ¼

0 0

0 0
Kpp

Jeq_p þmhelil
2
cm

Kpy

Jeq_p þmhelil
2
cm

Kyp

Jeq_y þmhelil
2
cm

Kyy

Jeq_y þmhelil
2
cm

2
6666666664

3
7777777775

C ¼
1 0 0 0

0 1 0 0

" #

D ¼
0 0

0 0

" #

The system exhibits a high cross coupling between the pitch and yaw angles. The
main feature of the suggested controller is to use two separated PID controllers, one
for each degree of freedom, so that a simple design procedure can be applied.

Each of the fuzzy controllers, a PID controller and an LQR, was used to generate
the desired reference response in order to tune PID controllers that govern the
nonlinear model for both pitch and yaw. In all the cases, an arbitrary PID was used
in the beginning. The values of Kp, Ki and Kd were all set to a gain value of 1. Both
the fuzzy controller and PID controller were designed for the system, while the LQR
is taken from a suggested design in the device manual [25].

7. Results and discussions

In addition to observing how much the process will follow the desired reference
response in the twin rotor system, it will be checked whether the decoupling
strategy is successful enough, since the twin rotor system inherits strong coupling
between pitch and yaw angles.

In all the following cases, the initial parameter values of the process PID con-
troller were set arbitrarily to 1 before the start of the tuning process. Stable
responses were already achieved but with unacceptable performances. The perfor-
mances of the initial PID controllers are shown when compared to the tuned sys-
tems below.

7.1 TRMS process controller tuning using PID controller to generate the
desired reference response

In this case, a huge improvement was achieved in the process response after
tuning. The tuning algorithm steered the process output to follow the desired
reference response closely. Pitch angle controller tuning results are shown in
Figure 9. The tuning results for the pitch were nearly perfect.
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The system exhibits a high cross coupling between the pitch and yaw angles. The
main feature of the suggested controller is to use two separated PID controllers, one
for each degree of freedom, so that a simple design procedure can be applied.

Each of the fuzzy controllers, a PID controller and an LQR, was used to generate
the desired reference response in order to tune PID controllers that govern the
nonlinear model for both pitch and yaw. In all the cases, an arbitrary PID was used
in the beginning. The values of Kp, Ki and Kd were all set to a gain value of 1. Both
the fuzzy controller and PID controller were designed for the system, while the LQR
is taken from a suggested design in the device manual [25].

7. Results and discussions

In addition to observing how much the process will follow the desired reference
response in the twin rotor system, it will be checked whether the decoupling
strategy is successful enough, since the twin rotor system inherits strong coupling
between pitch and yaw angles.

In all the following cases, the initial parameter values of the process PID con-
troller were set arbitrarily to 1 before the start of the tuning process. Stable
responses were already achieved but with unacceptable performances. The perfor-
mances of the initial PID controllers are shown when compared to the tuned sys-
tems below.

7.1 TRMS process controller tuning using PID controller to generate the
desired reference response

In this case, a huge improvement was achieved in the process response after
tuning. The tuning algorithm steered the process output to follow the desired
reference response closely. Pitch angle controller tuning results are shown in
Figure 9. The tuning results for the pitch were nearly perfect.
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Tuning using the basic hill climbing did not achieve the same level of success in
following the reference response; although the overshoot was reduced, the system
response was slower in comparison.

The above result was achieved because the desired reference response was
physically viable and that, in turn, it helped to relatively reduce the maximum
allowed error margins; therefore, a very close following was achieved. The final
tuned parameters for pitch angle PID were 1.9 for proportional gain, 1.2 for integral
gain and 0.2 for derivative gain.

Figure 10 shows the error signal (difference between desired reference response
and process output) for the pitch angle before and after tuning. The excellent
tuning results are obvious in the error signal graph.

The yaw angle controller tuning also achieved very good results in bringing the
process response closer to the desired reference response than the initial response,
as seen in Figure 11.

Following the reference response was very good, and the overshoot was reduced
dramatically, although not perfectly as in the pitch response. The small overshoot
seen at the fifth second is due to coupling. This brings the researcher to mention
that the yaw angle looks more difficult to be stripped from coupling effects than the
pitch angle. Hence, there is no considerable effect when changing yaw angle on
pitch angle; however, changing the pitch angle still has a small effect on the yaw

Figure 9.
TRMS pitch angle response before and after tuning with desired reference response generated by PID.

Figure 10.
Pitch angle response error signal to step set-point change before and after tuning when using PID to generate the
desired reference response.
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angle. The effect is very minimal, and the system decoupling efforts can be consid-
ered marginally successful. The final tuned parameters for the yaw angle PID were
1.7 for proportional gain, 1.2 for integral gain and 0.4 for derivative gain.

The error signal for the yaw angle before and after tuning is shown in Figure 12,
where improvement in the response can clearly be seen.

7.2 TRMS process controller tuning using fuzzy controller to generate the
desired reference response

The pitch angle response tuning, when using the fuzzy controller, was success-
ful, as expected. Since the researchers had designed the desired reference response
with an emphasis on reducing the overshoot with high speed performance, the
tuned response of the process followed the design guidelines properly. It can be
observed in Figure 13 below how the process response moved from the initial PID
controlled response to the final tuned PID controlled response quite well.

The result shows successful tuning of the process controller using the proposed
algorithm. The effects of coupling were unnoticed, denoting the successful
decoupling strategy that was designed, which was suggested earlier. The final
parameters for the pitch angle process PID after tuning were 2.1 for proportional
gain, 0.4 for integral gain and 0.7 for derivative gain.

Figure 11.
TRMS yaw angle response before and after tuning with desired reference response generated by PID.

Figure 12.
Yaw angle response error signal to step set-point change before and after tuning when using PID to generate the
desired reference response.
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Tuning using the basic hill climbing did not achieve the same level of success in
following the reference response; although the overshoot was reduced, the system
response was slower in comparison.

The above result was achieved because the desired reference response was
physically viable and that, in turn, it helped to relatively reduce the maximum
allowed error margins; therefore, a very close following was achieved. The final
tuned parameters for pitch angle PID were 1.9 for proportional gain, 1.2 for integral
gain and 0.2 for derivative gain.

Figure 10 shows the error signal (difference between desired reference response
and process output) for the pitch angle before and after tuning. The excellent
tuning results are obvious in the error signal graph.

The yaw angle controller tuning also achieved very good results in bringing the
process response closer to the desired reference response than the initial response,
as seen in Figure 11.

Following the reference response was very good, and the overshoot was reduced
dramatically, although not perfectly as in the pitch response. The small overshoot
seen at the fifth second is due to coupling. This brings the researcher to mention
that the yaw angle looks more difficult to be stripped from coupling effects than the
pitch angle. Hence, there is no considerable effect when changing yaw angle on
pitch angle; however, changing the pitch angle still has a small effect on the yaw

Figure 9.
TRMS pitch angle response before and after tuning with desired reference response generated by PID.

Figure 10.
Pitch angle response error signal to step set-point change before and after tuning when using PID to generate the
desired reference response.
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angle. The effect is very minimal, and the system decoupling efforts can be consid-
ered marginally successful. The final tuned parameters for the yaw angle PID were
1.7 for proportional gain, 1.2 for integral gain and 0.4 for derivative gain.

The error signal for the yaw angle before and after tuning is shown in Figure 12,
where improvement in the response can clearly be seen.

7.2 TRMS process controller tuning using fuzzy controller to generate the
desired reference response

The pitch angle response tuning, when using the fuzzy controller, was success-
ful, as expected. Since the researchers had designed the desired reference response
with an emphasis on reducing the overshoot with high speed performance, the
tuned response of the process followed the design guidelines properly. It can be
observed in Figure 13 below how the process response moved from the initial PID
controlled response to the final tuned PID controlled response quite well.

The result shows successful tuning of the process controller using the proposed
algorithm. The effects of coupling were unnoticed, denoting the successful
decoupling strategy that was designed, which was suggested earlier. The final
parameters for the pitch angle process PID after tuning were 2.1 for proportional
gain, 0.4 for integral gain and 0.7 for derivative gain.

Figure 11.
TRMS yaw angle response before and after tuning with desired reference response generated by PID.

Figure 12.
Yaw angle response error signal to step set-point change before and after tuning when using PID to generate the
desired reference response.
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The error signal between the desired reference response and the process
response was reduced largely by the tuning algorithm. Figure 14 shows the error
signal graph of the pitch angle, both before and after tuning.

The yaw angle controller tuning did steer the process response from the initial
towards the desired reference response, resulting in better performance; however,
the response did not follow the reference perfectly. Namely, the response did have
a considerable overshoot, unlike the desired reference response, as shown in
Figure 15 below. This came as a result of pushing the desired reference response
beyond the physical nature of the actual process. The actual yaw angle system is
inherently highly under-damped. Consequently, obtaining a well-damped response
with decent speed seems unrealistic.

The final parameters for the yaw angle process PID after tuning were 1.7 for
proportional gain, 0.7 for integral gain and 0.9 for derivative gain.

The error signal between the desired reference response and the process
response was reduced by the tuning algorithm. A sizable error can be observed from
the start of second second until the fourth second in Figure 16, showing overshoot
difference as observed above. However, the error function was low enough to grant
the response as acceptable, since the error at other areas is minimal.

Figure 13.
TRMS pitch angle response before and after tuning with desired reference response generated by fuzzy controller.

Figure 14.
Pitch angle response error signal to step set-point change before and after tuning when using fuzzy controller to
generate the desired reference response.
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Both pitch and yaw outputs that were tuned using the basic hill climbing gave an
acceptable response speeds, but the overshoot amounts were high comparatively.

7.3 TRMS process controller tuning using LQR to generate the desired
reference response

The tuning algorithm, as in other cases, succeeded in reshaping the process
response so that it followed the desired reference response closely. This case gives
evidence that the performance of the tuned process controller is highly determined
by the performance of the desired reference response. In Figure 17, it can be seen
that the tuned response exhibits a relatively high overshoot with slow response,
because the desired reference response gave similar results.

The final PID parameters for pitch angle process after tuning were 1.5 for
proportional gain, 0.6 for integral gain and 0.9 for derivative gain.

Although the response was not the best when compared to the other cases, the
approach has again proven to be successful, as the error plot in Figure 18 shows the
improvement in reference following from the initial non-tuned response to the final
tuned response. Tuning will always depend on error to the reference response,
regardless of acquired performance, as shown in this case.

Figure 15.
TRMS yaw angle response before and after tuning with a desired reference response generated by fuzzy controller.

Figure 16.
Yaw angle response error signal to step set-point change before and after tuning when using fuzzy controller to
generate the desired reference response.
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proportional gain, 0.7 for integral gain and 0.9 for derivative gain.

The error signal between the desired reference response and the process
response was reduced by the tuning algorithm. A sizable error can be observed from
the start of second second until the fourth second in Figure 16, showing overshoot
difference as observed above. However, the error function was low enough to grant
the response as acceptable, since the error at other areas is minimal.

Figure 13.
TRMS pitch angle response before and after tuning with desired reference response generated by fuzzy controller.

Figure 14.
Pitch angle response error signal to step set-point change before and after tuning when using fuzzy controller to
generate the desired reference response.
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Both pitch and yaw outputs that were tuned using the basic hill climbing gave an
acceptable response speeds, but the overshoot amounts were high comparatively.

7.3 TRMS process controller tuning using LQR to generate the desired
reference response

The tuning algorithm, as in other cases, succeeded in reshaping the process
response so that it followed the desired reference response closely. This case gives
evidence that the performance of the tuned process controller is highly determined
by the performance of the desired reference response. In Figure 17, it can be seen
that the tuned response exhibits a relatively high overshoot with slow response,
because the desired reference response gave similar results.

The final PID parameters for pitch angle process after tuning were 1.5 for
proportional gain, 0.6 for integral gain and 0.9 for derivative gain.

Although the response was not the best when compared to the other cases, the
approach has again proven to be successful, as the error plot in Figure 18 shows the
improvement in reference following from the initial non-tuned response to the final
tuned response. Tuning will always depend on error to the reference response,
regardless of acquired performance, as shown in this case.

Figure 15.
TRMS yaw angle response before and after tuning with a desired reference response generated by fuzzy controller.

Figure 16.
Yaw angle response error signal to step set-point change before and after tuning when using fuzzy controller to
generate the desired reference response.
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The yaw angle response can be found in Figure 19.
The response is no different from the observations taken from the pitch

response, as the low-quality model controller generated a low-performance desired
reference response that, in turn, shadowed the performance of the tuned process

Figure 17.
TRMS pitch angle response before and after tuning with desired reference response generated by LQR.

Figure 18.
Pitch angle response error signal to step set-point change before and after tuning when using LQR to generate the
desired reference response.

Figure 19.
TRMS yaw angle response with desired reference response generated using LQR.
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PID controller. The final PID parameters for the yaw angle process after tuning
were 1.4 for proportional gain, 0.7 for integral gain and 1.2 for derivative gain.

The error plot of the response before and after tuning is shown in Figure 20.
Although the responses tuned using basic hill climbing were very close to the

desired reference response, they always lagged behind the proposed modified hill
climbing algorithm responses in almost every performance index.

7.4 Comparison among the TRMS cases

In all the cases presented for the TRMS, which is a highly nonlinear, strongly
inherited coupling system, the tuning algorithm proved to be highly successful,
regardless of the desired reference response performance in each case. The tuning
always brought the process response to act in a similar fashion to that of the desired
reference response. Therefore, the process controller performance expectations
should be relevant to the model controller performance on the one hand and to the
applicability of that model controller performance to the process controller on the
other hand. That can be clearly evident when checking the comparative results in
Table 1.

Generally, the performance values have shown improvement on that of the
initial response, except for the LQR case, where some performances were lower due
to the low quality of the desired reference response (settling time for pitch and
rising time for yaw). This, once again, confirms the importance of the desired
reference response preparation to achieve the best possible results.

By examining Table 1, it can be seen that forcing the system to achieve a certain
milestone in one area may lead to degradation in quality in other areas. For exam-
ple, when using a fuzzy controller as a model controller, the desired reference
response was pushed to the extreme to fully eliminate overshoot. Although over-
shoot in the model responses was eliminated, the results were different for the
actual process. For the pitch angle, the overshoot was decreased by 3.2 degrees
when using a fuzzy controller as a model controller, compared to using PID con-
troller as model controller. However, both rising time and settling time were
increased by 0.77 and 1.13 s, respectively. Here, it is up to the system designer to
make a decision on which path to take, according to the operation preferences. For
the yaw angle, however, the outcome is different. As the yaw angle in the actual
process is naturally highly under-damped, trying to force it to achieve non-
overshooting response brought negative effects. All performance indexes were

Figure 20.
Yaw angle response error signal to step set-point change before and after tuning when using LQR to generate the
desired reference response.
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The yaw angle response can be found in Figure 19.
The response is no different from the observations taken from the pitch

response, as the low-quality model controller generated a low-performance desired
reference response that, in turn, shadowed the performance of the tuned process
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TRMS pitch angle response before and after tuning with desired reference response generated by LQR.
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Pitch angle response error signal to step set-point change before and after tuning when using LQR to generate the
desired reference response.

Figure 19.
TRMS yaw angle response with desired reference response generated using LQR.
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PID controller. The final PID parameters for the yaw angle process after tuning
were 1.4 for proportional gain, 0.7 for integral gain and 1.2 for derivative gain.

The error plot of the response before and after tuning is shown in Figure 20.
Although the responses tuned using basic hill climbing were very close to the

desired reference response, they always lagged behind the proposed modified hill
climbing algorithm responses in almost every performance index.

7.4 Comparison among the TRMS cases

In all the cases presented for the TRMS, which is a highly nonlinear, strongly
inherited coupling system, the tuning algorithm proved to be highly successful,
regardless of the desired reference response performance in each case. The tuning
always brought the process response to act in a similar fashion to that of the desired
reference response. Therefore, the process controller performance expectations
should be relevant to the model controller performance on the one hand and to the
applicability of that model controller performance to the process controller on the
other hand. That can be clearly evident when checking the comparative results in
Table 1.

Generally, the performance values have shown improvement on that of the
initial response, except for the LQR case, where some performances were lower due
to the low quality of the desired reference response (settling time for pitch and
rising time for yaw). This, once again, confirms the importance of the desired
reference response preparation to achieve the best possible results.

By examining Table 1, it can be seen that forcing the system to achieve a certain
milestone in one area may lead to degradation in quality in other areas. For exam-
ple, when using a fuzzy controller as a model controller, the desired reference
response was pushed to the extreme to fully eliminate overshoot. Although over-
shoot in the model responses was eliminated, the results were different for the
actual process. For the pitch angle, the overshoot was decreased by 3.2 degrees
when using a fuzzy controller as a model controller, compared to using PID con-
troller as model controller. However, both rising time and settling time were
increased by 0.77 and 1.13 s, respectively. Here, it is up to the system designer to
make a decision on which path to take, according to the operation preferences. For
the yaw angle, however, the outcome is different. As the yaw angle in the actual
process is naturally highly under-damped, trying to force it to achieve non-
overshooting response brought negative effects. All performance indexes were

Figure 20.
Yaw angle response error signal to step set-point change before and after tuning when using LQR to generate the
desired reference response.
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reduced in quality in comparison to using a PID controller as model controller, even
the overshoot itself. Rising time and settling time were increased by 0.92 and 3.88 s,
respectively, while overshoot was increased by 0.4%. This sheds some light on the
priority of not straining the process with unachievable performances.

In order to compare the proposed algorithm performance with that of basic hill
climbing, the following Table 2 is created.

Some of the settling time performances are slightly slower than basic hill
climbing (<1 s), but that was a result to reducing the overshoot amount signifi-
cantly. This is because the proposed modified hill climbing algorithm followed the
reference response better than the basic hill climbing.

8. Conclusions

In this chapter, a paradigm for real-time tuning of control systems is proposed.
The proposed paradigm facilitates the application of a tuning algorithm based on
simple error cost function calculations. Additionally, a modified hill climbing algo-
rithm is developed. The control paradigm allows the system controller to be tuned
iteratively to enhance the control performance using the suggested tuning algo-
rithm. The algorithm does not require complex calculations to move in the
searching space looking for suitable candidates. The algorithm always promotes the
best solution to be used until a better one is found, which makes it suitable for real-
time tuning problem. Simulation results clearly showed that the system response is
following the desired reference response after tuning. However, the reference
response should always be physically viable within an acceptable error margins.

Results have shown that the algorithm provides a very useful tool for control
systems’ engineers and specialists. The proposed system, overall, was proved to be
quite successful in driving controlled plant response by using an inaccurate model
of that plant. Therefore, the proposed design is suitable for tuning controllers based
on inaccurate models or for calibrating controllers of systems with parameters
deviation automatically.

This research introduced a very effective methodology to tune or calibrate
control systems in real time, without the need to intervene with the system’s oper-
ation. The proposed methodology is very flexible and can be used to achieve various
performance targets. It was implemented with control systems specifically in mind;
hence, the depth of achievement possibilities is high.

System Model controller type Improvement in

Overshoot (%) Settling time (s)

Pitch PID 9.6 1.34

Fuzzy 10.5 2.15

LQR 5.8 �0.86

Yaw PID 12.3 1.02

Fuzzy 9 �0.05

LQR 5.6 �0.38

Table 2.
Performance improvement when using the proposed design in comparison to the basic hill climbing with TRMS
cases.
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reduced in quality in comparison to using a PID controller as model controller, even
the overshoot itself. Rising time and settling time were increased by 0.92 and 3.88 s,
respectively, while overshoot was increased by 0.4%. This sheds some light on the
priority of not straining the process with unachievable performances.

In order to compare the proposed algorithm performance with that of basic hill
climbing, the following Table 2 is created.

Some of the settling time performances are slightly slower than basic hill
climbing (<1 s), but that was a result to reducing the overshoot amount signifi-
cantly. This is because the proposed modified hill climbing algorithm followed the
reference response better than the basic hill climbing.

8. Conclusions

In this chapter, a paradigm for real-time tuning of control systems is proposed.
The proposed paradigm facilitates the application of a tuning algorithm based on
simple error cost function calculations. Additionally, a modified hill climbing algo-
rithm is developed. The control paradigm allows the system controller to be tuned
iteratively to enhance the control performance using the suggested tuning algo-
rithm. The algorithm does not require complex calculations to move in the
searching space looking for suitable candidates. The algorithm always promotes the
best solution to be used until a better one is found, which makes it suitable for real-
time tuning problem. Simulation results clearly showed that the system response is
following the desired reference response after tuning. However, the reference
response should always be physically viable within an acceptable error margins.

Results have shown that the algorithm provides a very useful tool for control
systems’ engineers and specialists. The proposed system, overall, was proved to be
quite successful in driving controlled plant response by using an inaccurate model
of that plant. Therefore, the proposed design is suitable for tuning controllers based
on inaccurate models or for calibrating controllers of systems with parameters
deviation automatically.

This research introduced a very effective methodology to tune or calibrate
control systems in real time, without the need to intervene with the system’s oper-
ation. The proposed methodology is very flexible and can be used to achieve various
performance targets. It was implemented with control systems specifically in mind;
hence, the depth of achievement possibilities is high.

System Model controller type Improvement in

Overshoot (%) Settling time (s)

Pitch PID 9.6 1.34

Fuzzy 10.5 2.15

LQR 5.8 �0.86

Yaw PID 12.3 1.02

Fuzzy 9 �0.05

LQR 5.6 �0.38

Table 2.
Performance improvement when using the proposed design in comparison to the basic hill climbing with TRMS
cases.
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Appendix A

List of parameters that were used in expressing example models with their
values (if available) is presented in this appendix (Table A).

Parameter Brief explanation Value

θ Pitch angle

ψ Yaw angle

Fp Pitch thrust force

Fy Yaw thrust force

Bp Equivalent viscous damping about pitch axis 0.8 N/V

Jeq_p Total moment of inertia about pitch axis 0.0384 kg m2

mheli Total moving mass of the helicopter 1.3872 kg

lcm Centre of mass length along helicopter body from pitch axis 0.186 m

By Equivalent viscous damping about yaw axis 0.318 N/V

Jeq_y Total moment of inertia about yaw axis 0.0432 kg m2

Kpp Thrust force constant of yaw motor/propeller 0.204 N m/V

Kpy Thrust toque constant acting on pitch axis from yaw motor/propeller 0.0068 N m/V

Kyp Thrust toque constant acting on yaw axis from pitch motor/propeller 0.0219 N m/V

Kyy Thrust toque constant acting on yaw axis from yaw motor/propeller 0.072 N m/V

α Angle of attack

q Pitch rate

δ Elevator deflection angle

μ ρSc
4m

ρ Density of air

S Platform area of the wing

c Average cord length

m Mass of the aircraft

Ω 2U
c

U Equilibrium flight speed

CD Coefficient of drag

CL Coefficient of lift

Cw Coefficient of weight

CM Coefficient of pitch moment

γ Flight path angle

σ 1
1þμCL
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Parameter Brief explanation Value

iyy Normalized moment of inertia

η μσCM

V tð Þ Motor input voltage

e tð Þ Back electromotive force

La Motor armature electric inductance 0.15 H

i tð Þ Electric current

Ra Motor armature electric resistance 0.2 Ohm

Tm tð Þ Mechanical torque

Km Motor torque constant 9.14 � 10�5 N m/A

Kb Electromotive force constant 0.055 V/rad/sec

w tð Þ Angular velocity of motor shaft

TL tð Þ Load torque

Jm Moment of inertia of the rotor 1.36 � 10�5 kg m2

Bm Motor shaft viscous friction coefficient 0.5 � 10�5 N m sec

Table A.
List of parameters used in example models.
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lcm Centre of mass length along helicopter body from pitch axis 0.186 m

By Equivalent viscous damping about yaw axis 0.318 N/V

Jeq_y Total moment of inertia about yaw axis 0.0432 kg m2

Kpp Thrust force constant of yaw motor/propeller 0.204 N m/V

Kpy Thrust toque constant acting on pitch axis from yaw motor/propeller 0.0068 N m/V

Kyp Thrust toque constant acting on yaw axis from pitch motor/propeller 0.0219 N m/V

Kyy Thrust toque constant acting on yaw axis from yaw motor/propeller 0.072 N m/V

α Angle of attack

q Pitch rate

δ Elevator deflection angle

μ ρSc
4m

ρ Density of air

S Platform area of the wing

c Average cord length

m Mass of the aircraft

Ω 2U
c

U Equilibrium flight speed

CD Coefficient of drag

CL Coefficient of lift

Cw Coefficient of weight

CM Coefficient of pitch moment

γ Flight path angle

σ 1
1þμCL
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Parameter Brief explanation Value

iyy Normalized moment of inertia

η μσCM

V tð Þ Motor input voltage

e tð Þ Back electromotive force

La Motor armature electric inductance 0.15 H

i tð Þ Electric current

Ra Motor armature electric resistance 0.2 Ohm

Tm tð Þ Mechanical torque

Km Motor torque constant 9.14 � 10�5 N m/A

Kb Electromotive force constant 0.055 V/rad/sec

w tð Þ Angular velocity of motor shaft

TL tð Þ Load torque

Jm Moment of inertia of the rotor 1.36 � 10�5 kg m2

Bm Motor shaft viscous friction coefficient 0.5 � 10�5 N m sec

Table A.
List of parameters used in example models.
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Chapter 3

Random Forest-Based
Ensemble Machine Learning
Data-Optimization Approach for
Smart Grid Impedance Prediction
in the Powerline Narrowband
Frequency Band
Emmanuel Oyekanlu and Jia Uddin

Abstract

In this chapter, the random forest-based ensemble regression method is used for
the prediction of powerline impedance at the powerline communication (PLC)
narrowband frequency range. It is discovered that while PLC load transfer function,
phase, and frequency are crucial to powerline impedance estimation, the problem of
data multicollinearity can adversely impact accurate prediction and lead to exces-
sive mean square error (MSE). High MSE is obtained when multiple transfer func-
tions corresponding to different PLC load transfer functions are used for random
forest ensemble regression. Low MSE indicating more accurate impedance predic-
tion is obtained when PLC load transfer function data is selectively used. Using data
corresponding to 200, 400, 600, 800, and 1000 W PLC load transfer functions
together led to poor impedance prediction, while using lesser amount of carefully
selected data led to better impedance prediction. These results show that artificial
intelligence (AI) methods such as random forest ensemble regression and deter-
ministic data-optimization approach can be utilized for smart grid (SG) health
monitoring applications using PLC-based sensors. Machine learning can also be
applied to the design of better powerline communication signal transceivers and
equalizers.

Keywords: random forest, regression, impedance, data quality, prediction,
ensemble, machine learning, smart grid, deterministic artificial intelligence

1. Introduction

The utilization of powerline communication (PLC) as a tool for actualizing a
smart grid (SG) has grown beyond its traditional uses for two-way SG communica-
tion, advanced metering infrastructure (AMI) applications, demand response, and
power system control. As shown in Figure 1, cameras that can transmit data using
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PLC are now being used for monitoring of power system assets installed in remote
locations [1]. PLC is also being extensively used for broadband Internet applications
[2], consumer home automation applications [3], facilitating grid-wide artificial
intelligence (AI) applications [4–10], monitoring grid health using PLC modems
as sensors [11], etc.

Despite these uses, there are still numerous challenges militating against a more
effective deployment of PLC for SG applications. The powerline being primarily
designed for power transmission is a harsh environment for communication. As
such, there exist the problems of varying impedance, numerous white and different
nonwhite noise types, and excessive frequency-dependent attenuation [12–15]. To
ameliorate these problems and make PLC more useful for the SG, different parts
of the powerline used for PLC as shown in Figure 2 can be optimized from the
transmission (TX) end to the receiving (RX) end [16].

For PLC to be particularly useful for grid health monitoring, many researchers
worldwide have focused on the problem of powerline impedance estimation.
Powerline impedance is a very important parameter in the design of PLC trans-
ceivers and in installing a modem grid architecture [17]. In PLC, to achieve maxi-
mum power transfer between the PLC transmitting and receiving ends, powerline
TX (Figure 2), transmission line, and RX impedance must always be known by the
impedance matching network [17]. PLC impedance however is time varying since
electrical loads are always being connected to and disconnected from the PLC
networks, thus leading to the problem of PLC network impedance mismatches [18].
Accurate and real-time impedance information can be used to match impedance
variables in PLC couplers to decrease PLC data attenuation [19]. Also, online and
real-time knowledge of PLC network impedance is essential to overall grid health
monitoring of the SG. In addition, real-time PLC-based impedance information

Figure 1.
Powerline communication is being deployed for numerous smart grid applications including remote asset
monitoring using PLC-based cameras.
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can be useful for event detection [20], thus leading to lesser needs for having to
install very expensive phasor measurement units (PMUs).

To improve on available methods of powerline impedance estimation, in [13],
using an algorithm, the authors designed an adaptive inductor-capacitor-
resistor-capacitor (LCRC) impedance matching circuit for improving the imped-
ance matching problem in the PLC narrowband frequency region. Also, the authors
in [17] measured impedance and attenuation of the PLC at the CENELEC bands in
rural, urban, and industrial use cases, respectively. Results of the research are the
production of a set of formulas that can be used to deduce impedances of the PLC in
view of load variations on PLC networks. In [18], the authors produce a statistical
model of PLC network impedance. Results of work discussed in [19] are a novel
real-time impedance estimation method based on channel frequency response and
machine learning variational mode decomposition (VMD) method. In [20], the
authors propose a method by which powerline impedance can be estimated using
device status detection algorithm and device individual energy and impedance
signatures. In [21], the authors presented results of work in which the real-time
estimation of powerline impedance is based on modal analysis theory, while the
authors in [22] conducted a study on the design of a front-end optimal receiver
impedance that maximizes signal-to-noise ratio (SNR) in broadband PLC.

One significant drawback of majority of existing PLC impedance estimation
methods however is that they need dedicated equipment and the knowledge of the
network topology. This is the problem that our approach in present work seeks to
solve. We present a deterministic machine learning-based PLC impedance estima-
tion method by which common PLC network data such as the PLC channel load
transfer function, frequency, and phase can be used to estimate and predict PLC
network impedance. A benefit of the deterministic AI impedance prediction
approach adopted in our work is that data needed for impedance estimation and
prediction is not excessively superfluous and such data can be easily stored in low-
memory powerline network devices. In Section 2, we present a new set of results
that shows the transfer function and attenuation profile of PLC in the narrowband
frequency bands based on electrical loads connected to the powerline. In Section 3,
we briefly discussed the random forest ensemble method, and we present results
of how we used PLC network data to optimize results of PLC impedance prediction

Figure 2.
Different parts of powerline communication can be optimized from end to end for more effective powerline
communication [16].
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in the narrowband frequency bands. Section 4 details results and discussion and
Section 5 presents conclusion of the chapter.

2. New results on powerline communication attenuation profile in the
PLC narrowband frequency bands based on loads on the powerline

In literature, there exist several PLC models that are used to evaluate the
behavior and performance of PLC networks. In Philip’s echo model, the PLC
transfer function is given in [14] as

H fð Þ ¼
XN
i¼1

pie
�j2πf τi (1)

In Eq. (1), N is the number of possible signal propagation paths, with each path
in N delayed by time factor τi, while pi is the product of transmission and reflection
factors. Another popular model is the Zimmerman and Dostert model which
accounts for PLC signal attenuation. The model is given by

H fð Þ ¼
XN
i¼1

gie
� a0þa1 f kð Þdi e�j2πf

di
vp (2)

Similar to Philip’s echo model, gi in Eq. (2) is the product of transmission and
reflection. The path length for each path in N number of significant paths is di.
Attenuation parameters can be obtained from measurements and they are k, a0, and
a1. In Eq. (2), the term di

vp
can also be represented as the path delay where vp can be

represented as

vp ¼ coffiffiffiffi
ετ
p (3)

In Eq. (3), vp is the phase velocity, co= 3 x 108 m=s represents the speed of light in
a vacuum, while ετ is the dielectric constant. In narrowband PLC, few results exist
that directly evaluate and explain the behavior of narrowband PLC networks. A
recent result by the authors in [23] is given in Eq. (4).

H fð Þ ¼ A
XM

k¼1
gk fð Þ exp � α0 þ α1fð Þð Þvpτk exp �j2πf τk (4)

In Eq. (4), A is the constant coefficient for frequency response adjustment, and
M is the number of significant paths. The weighting factor corresponding to each
significant path is gk fð Þ, while α0 and α1 are constant coefficients for powerline
cable adjustment. However, in view of the importance, worldwide acceptability,
and the need to better understand the narrowband PLC region (below 500 kHz) for
powerline communication [23], this chapter presents new modeling results of the
narrowband PLC region. The presented model is a novel result as it is accomplished
by systematic addition of electrical loads for empirical evaluation of the PLC nar-
rowband region. Our methodology is as shown in Figure 3. A de-embedded E5071C
ENA vector network analyzer (VNA) is used to measure the attenuation profile of
the low-voltage region, an indoor environment, when loads are added to the
powerline segments between both ends of the VNA. In each measurement case, the
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attenuation profile and frequency data are obtained from the VNA in Excel file
sheet format, and for better visualization, the profile is plotted with Matlab. Elec-
trical loads are added to the powerline in 500 watt increments. In the first instance,
two 250 W-rated desktop computers were added to the powerline for a total of
500 W. In the second instance, a 500 W blender is added to the first two desktop
computers for a total 1000 W.

Finally, a 520 W coffee maker is added to make the overall load approximately
1500 W. In each case, the attenuation profile of the powerline is measured with the
aid of the de-embedded E5071C VNA. The indoor powerline cable used for this
experiment is the 10 AWG Romex SIMpull CU NM-B cable. To examine the effect
of distance, the cable distance is extended in increments of 100 m. Initially, a 150 m
Romex indoor cable is used, and attenuation profile is measured using the VNA
when 500 W load is connected to the 150 m cable located in between two ends of
the VNA (Figure 3). The loads are subsequently increased to 1000 and 1500 W,
respectively. The Romex cable length is increased to 250 and 350 m, respectively,
and the network loads and measurements are repeated. Results of the attenuation
profiles are shown in Figures 4–6, respectively. From Figures 4 to 6, effects of
powerline length are noticeable as the VNA shows a profile that is increasingly
attenuated as PLC channel length is increasing. Also, electrical loads on the
channel have significant effect on the attenuation profile. The attenuation profile
in Figure 4 shows a channel that has more channel notches as more electrical loads
are added to the network. When loads on the channel are only 500 W, the channel
shows lesser number of notches than when loads on the channel increase to 1000
and to 1500 W, respectively. The more the loads, the more the number of notches.
This indicates that when more electrical loads exist on the PLC channels, then data
or signal sent on the channel will suffer increased attenuation than when less
amounts of electrical loads exist on the network. Similar channel load effects are
observed on the 250 m long and on the 350 m long PLC channels in Figures 5 and 6,
respectively. However, the channel profile exhibits a characteristic similar to that
described by the Zimmerman and Dostert PLC channel model. Thus, the

Figure 3.
Experimental setup for load-based attenuation profile measurement in the PLC narrowband communication
band.
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in the narrowband frequency bands. Section 4 details results and discussion and
Section 5 presents conclusion of the chapter.
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trical loads are added to the powerline in 500 watt increments. In the first instance,
two 250 W-rated desktop computers were added to the powerline for a total of
500 W. In the second instance, a 500 W blender is added to the first two desktop
computers for a total 1000 W.

Finally, a 520 W coffee maker is added to make the overall load approximately
1500 W. In each case, the attenuation profile of the powerline is measured with the
aid of the de-embedded E5071C VNA. The indoor powerline cable used for this
experiment is the 10 AWG Romex SIMpull CU NM-B cable. To examine the effect
of distance, the cable distance is extended in increments of 100 m. Initially, a 150 m
Romex indoor cable is used, and attenuation profile is measured using the VNA
when 500 W load is connected to the 150 m cable located in between two ends of
the VNA (Figure 3). The loads are subsequently increased to 1000 and 1500 W,
respectively. The Romex cable length is increased to 250 and 350 m, respectively,
and the network loads and measurements are repeated. Results of the attenuation
profiles are shown in Figures 4–6, respectively. From Figures 4 to 6, effects of
powerline length are noticeable as the VNA shows a profile that is increasingly
attenuated as PLC channel length is increasing. Also, electrical loads on the
channel have significant effect on the attenuation profile. The attenuation profile
in Figure 4 shows a channel that has more channel notches as more electrical loads
are added to the network. When loads on the channel are only 500 W, the channel
shows lesser number of notches than when loads on the channel increase to 1000
and to 1500 W, respectively. The more the loads, the more the number of notches.
This indicates that when more electrical loads exist on the PLC channels, then data
or signal sent on the channel will suffer increased attenuation than when less
amounts of electrical loads exist on the network. Similar channel load effects are
observed on the 250 m long and on the 350 m long PLC channels in Figures 5 and 6,
respectively. However, the channel profile exhibits a characteristic similar to that
described by the Zimmerman and Dostert PLC channel model. Thus, the

Figure 3.
Experimental setup for load-based attenuation profile measurement in the PLC narrowband communication
band.
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Zimmerman and Dostert model is modified to show a narrowband channel model
that considers the effect of PLC channel load. The resulting model which focuses
primarily on the effect of electrical loads on the PLC channel at the PLC narrow-
band region is shown in Eq. (5), and it is simulated with Matlab and graphed in
Figure 7. Figure 7, which is the derived model based on Eq. (5), is generally similar
to the load-based PLC channel profile shown in Figures 4 to 6. In Eq. (5), μ is the
channel load index where μ ε 1, 2, 3, … .., n. To replicate the channel profile of
Figure 7, the load factor μ can be increased from 1 to n based on discrete channel
load increments of 200 W. For the purpose of clarity, in Eq. (5), N is the number of
significant paths, di is the path length of each significant path, vp is the phase

Figure 4.
Load-based attenuation profile for powerline communication at industrial indoor distance of 150 m.

Figure 5.
Load-based attenuation profile for powerline communication at industrial indoor distance of 250 m.
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velocity, and gi is the weighting factor corresponding to each significant path.
Constant coefficients of powerline cable adjustments are denoted with a0 and a1,
respectively.

H fð Þ ¼ �μ
XN
i¼1

gie
� a0þa1 f kð Þdi e�j2πf

di
vp (5)

The precise and deterministic nature of the channel load index μ in Eq. (5) and
the fact that the amount of PLC channel loads is directly related to the PLC channel

Figure 6.
Load-based attenuation profile for powerline communication at industrial indoor distance of 350 m.

Figure 7.
Narrowband PLC model showing load-based attenuation profile.
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impedance is exploited in this chapter to reduce the amount of data that can be used
in machine learning ensemble algorithm to predict the PLC channel impedance. Our
approach can thus be viewed as a deterministic data-optimization approach to PLC
impedance prediction. In deterministic AI, data produced by systems whose
behavior is governed by fundamental physical laws can utilize those laws for
reducing data used in machine learning and other AI applications [24]. Determinis-
tic AI methods have been successfully applied in large engineering systems such as
altitude control of spaceships suffering from loss of vital parts [25]. It has also been
applied for achieving better precision in AI algorithms [26] used for adaptive
control of actuators [24, 27], in system identification [26], and in plant control [28],
with results indicating that the deterministic AI method often leads to better preci-
sion in prediction performance and in reducing superfluous network data.

3. Machine learning ensemble regression method for PLC channel
impedance estimation

PLC network impedance has significant effect on communication over
powerline networks. The line impedance directly impacts the communication dis-
tance in an inverse relationship, i.e., the higher the line impedance, the lower the
distance at which good communication can be achieved over the powerline. Also, if
the powerline load impedance is lower than the PLC network transmitter imped-
ance, then the load will provide an easier grounding pathway for the communica-
tion signal. The signal, thus, will get easily attenuated. Hence, due to the importance
of impedance [29] to the success of communication over the powerline, it is essen-
tial that the impedance information of the PLC network is always available at the
transmitter and PLC receiver ends [30, 31]. However, it is challenging to always
predict the PLC network impedance in real time since electrical appliances are
always being switched on and off, thus causing network impedance to vary always.
In addition, VNA, PMUs, and other equipment useful for measuring PLC network
impedance are always expensive, and thus, it is impossible to install such equipment
at all possible nodes on the network for grid health monitoring. Hence, in this
chapter, we have devised machine learning and deterministic data optimization-
based approach by which PLC network impedance can be predicted using common
PLC network load data. The machine learning approach adopted for this work is the
use of random forest ensemble regression method.

In literature, different types of machine learning and artificial intelligence
methods have been used for different types of engineering and large network
problems [32–54]; however, the random forest ensemble regression method has
been proven to be very useful since it is known to have high prediction accuracy, it
is efficient on large datasets, and it also gives better predictive accuracy when there
are cases on missing data [52–54].

Random forest is an ensemble classifier that consists of many decision trees and
outputs the class that is the mode of the class’s output by individual trees. Random
forest works by training randomly selected subset of data from a large set of data on
decision trees and then aggregating the results of each decision tree to form an
ensemble result that often yields better prediction. In Figure 8, each decision tree is
trained using a method called bootstrap aggregating.

At each split node and the resulting child nodes, another metric called the
information gain which is the difference between the uncertainty of the starting
node and the weighted impurity of the resulting two-child nodes is used to decide
on which feature can be used to split the data. The combined use of the Gini index,
information gain, bootstrap aggregation, and decision trees serves to make the
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random forest a valuable method for both classification- and regression-based
predictions.

In our implementation of the random forest method for PLC impedance predic-
tion, the de-embedded E5071C VNA is used to measure the network when different
types and power ratings of electrical loads are plugged to the network of Figure 3.
About 200, 400, 600, 800, and 1000 W loads of different ratings are separately
plugged to the network, and PLC variables such as transfer function, frequency, phase,
distance, and frequency data are obtained and used to predict PLC network imped-
ance. Measurement data are obtained in Excel file format from the VNA, and random
forest ensemble regression is used to predict PLC network impedance using those
variables. Resulting Excel files are loaded onto an Ubuntu 18.04 Linux system. Python,
including python libraries such as sklearn, pandas, and numpy, is used to import
python-based random forest regression (ensemble-GradientBoostingRegressor)

Figure 8.
Random forest ensemble method of tree selection and result aggregation.

Frequency (kHz) Transfer function (1000 W loads) Predicted impedance (Ω)

10 �0.041888548 2.683132621

10.01 �0.083776438 2.620954991

10.02 �0.125664329 2.558777556

10.03 �0.167552219 2.496600312

10.04 �0.209440109 2.434423254

10.05 �0.251327999 2.372246379

10.06 �0.293215889 2.310069682

10.07 �0.335103779 2.24789316

499.93 �0.502655337 19.13619916

499.94 �0.544543227 19.07860685

499.95 �0.586431116 19.00921205

499.96 �0.628319005 19.92970978

499.97 �0.670206895 19.84181646

Only two features are used in this instance.

Table 1.
Snapshot of data used to predict network impedance. Only data from frequency ranges 10–10.07 kHz and
499.93–499.97 kHz are shown.
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based approach by which PLC network impedance can be predicted using common
PLC network load data. The machine learning approach adopted for this work is the
use of random forest ensemble regression method.

In literature, different types of machine learning and artificial intelligence
methods have been used for different types of engineering and large network
problems [32–54]; however, the random forest ensemble regression method has
been proven to be very useful since it is known to have high prediction accuracy, it
is efficient on large datasets, and it also gives better predictive accuracy when there
are cases on missing data [52–54].
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outputs the class that is the mode of the class’s output by individual trees. Random
forest works by training randomly selected subset of data from a large set of data on
decision trees and then aggregating the results of each decision tree to form an
ensemble result that often yields better prediction. In Figure 8, each decision tree is
trained using a method called bootstrap aggregating.

At each split node and the resulting child nodes, another metric called the
information gain which is the difference between the uncertainty of the starting
node and the weighted impurity of the resulting two-child nodes is used to decide
on which feature can be used to split the data. The combined use of the Gini index,
information gain, bootstrap aggregation, and decision trees serves to make the
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In our implementation of the random forest method for PLC impedance predic-
tion, the de-embedded E5071C VNA is used to measure the network when different
types and power ratings of electrical loads are plugged to the network of Figure 3.
About 200, 400, 600, 800, and 1000 W loads of different ratings are separately
plugged to the network, and PLC variables such as transfer function, frequency, phase,
distance, and frequency data are obtained and used to predict PLC network imped-
ance. Measurement data are obtained in Excel file format from the VNA, and random
forest ensemble regression is used to predict PLC network impedance using those
variables. Resulting Excel files are loaded onto an Ubuntu 18.04 Linux system. Python,
including python libraries such as sklearn, pandas, and numpy, is used to import
python-based random forest regression (ensemble-GradientBoostingRegressor)

Figure 8.
Random forest ensemble method of tree selection and result aggregation.

Frequency (kHz) Transfer function (1000 W loads) Predicted impedance (Ω)
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library to accomplish PLC impedance prediction. In each of the data set loaded onto
the Linux system, the last column (to be predicted) by the ensemble random forest
method is the PLC network impedance.

The random forest regressor parameters include splitting the training and test
data in an 80:20 ratio, the number of estimators in each case is 500, and the
maximum depth is 4. The learning rate of the network is 0.01. This rate is selected
based on similar data rate selection in literature [32]. Since it is established in
literature that random forest ensemble regression method works well for prediction
efforts, our objectives include finding correct features of the PLC network that will
yield the lowest possible MSE. Each data set exported from the de-embedded
E5071C VNA to the Linux system contains 49,101 data points. Initially, only the
frequency data and the transfer function of the 1000 W network load are used to
predict PLC network impedance. A snapshot of the dataset and the predicted
impedance yielded by the Linux system is shown in Table 1. A plot of the predicted
impedance using only those two variables (frequency and 1000W transfer function
data) is shown in Figure 9.

4. Results and discussion

The MSE of using only two PLC network variables to accomplish impedance
prediction is 0.005. As observed in Figure 9 and from the MSE result, there is
clearly an undesired effect of overfitting when only two features are used to predict
the PLC network impedance. It can be seen that the fitted regression line (red) and
the impedance prediction data (in blue) almost perfectly overlay each other. To
improve on prediction accuracy, several PLC network parameters including trans-
fer functions for 200, 400, 600, and 800 W, distance (150, 250, and 350 m), and
phase data are measured and added to our prediction data. A snapshot of the new
data used is shown in Table 2.

Results of using these data sets are shown from Figures 10 to 17. In Figure 10, it is
observable that using 200, 400, 600, 800, and 1000 W transfer function data,
frequency, phase, and 150 m distance data does not yield a very good impedance
prediction result since the measured MSE is 59.59. In Figure 11, 250 m distance is
added to the dataset that yielded result of Figure 10. It is also observed that the

Figure 9.
Narrowband PLC impedance prediction using only three features showing effects of overfitting.
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library to accomplish PLC impedance prediction. In each of the data set loaded onto
the Linux system, the last column (to be predicted) by the ensemble random forest
method is the PLC network impedance.

The random forest regressor parameters include splitting the training and test
data in an 80:20 ratio, the number of estimators in each case is 500, and the
maximum depth is 4. The learning rate of the network is 0.01. This rate is selected
based on similar data rate selection in literature [32]. Since it is established in
literature that random forest ensemble regression method works well for prediction
efforts, our objectives include finding correct features of the PLC network that will
yield the lowest possible MSE. Each data set exported from the de-embedded
E5071C VNA to the Linux system contains 49,101 data points. Initially, only the
frequency data and the transfer function of the 1000 W network load are used to
predict PLC network impedance. A snapshot of the dataset and the predicted
impedance yielded by the Linux system is shown in Table 1. A plot of the predicted
impedance using only those two variables (frequency and 1000W transfer function
data) is shown in Figure 9.

4. Results and discussion

The MSE of using only two PLC network variables to accomplish impedance
prediction is 0.005. As observed in Figure 9 and from the MSE result, there is
clearly an undesired effect of overfitting when only two features are used to predict
the PLC network impedance. It can be seen that the fitted regression line (red) and
the impedance prediction data (in blue) almost perfectly overlay each other. To
improve on prediction accuracy, several PLC network parameters including trans-
fer functions for 200, 400, 600, and 800 W, distance (150, 250, and 350 m), and
phase data are measured and added to our prediction data. A snapshot of the new
data used is shown in Table 2.

Results of using these data sets are shown from Figures 10 to 17. In Figure 10, it is
observable that using 200, 400, 600, 800, and 1000 W transfer function data,
frequency, phase, and 150 m distance data does not yield a very good impedance
prediction result since the measured MSE is 59.59. In Figure 11, 250 m distance is
added to the dataset that yielded result of Figure 10. It is also observed that the

Figure 9.
Narrowband PLC impedance prediction using only three features showing effects of overfitting.
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prediction result in this instance is poor since MSE is 59.02. Likewise, when 350 m
data is added (Figure 12), the MSE is 59.17, indicating poor performance by the
ensemble regression method. Next, all the distance data were removed, leaving only
200, 400, 600, 800, and 100W transfer function, phase, and frequency data.
Impedance prediction result is shown in Figure 13, and the MSE is 37.82. It is also
observed in Figure 13 that the collective impedance result is approaching true values

Figure 10.
Narrowband PLC impedance prediction using several features including 150 m distance data.
Multicollinearity effect prevents optimized prediction; MSE = 56.59.

Figure 11.
Narrowband PLC impedance prediction using several features including 150 and 250 m distance data;
MSE = 59.02.
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of between 17 and 25 Ω for home PLC impedance [17] as shown by the inserted blue
ring. Prior results from Figures 10 to 12 do not yield such improved prediction.

To further optimize impedance prediction result using common PLC network
data, only 200, 400, and 600 W, frequency, and phase data were used to predict
impedance. The result of this is shown in Figure 14.

It is observable (using the inserted blue ring) that the impedance prediction is
even better. The MSE for this result is 31.63. Figure 15 shows the result of using
only 200 and 400 W, phase, and frequency data. The MSE in this instance is only

Figure 12.
Narrowband PLC impedance prediction using several features including 150, 250, and 350 m distance data.
Multicollinearity effect prevents optimized prediction; MSE = 59.17.

Figure 13.
Narrowband PLC impedance prediction with 200, 400, 600, 800, and 1000 W, frequency, and phase data.
No distance data; MSE = 37.82.
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17.02. In Figure 16, only 400 W, frequency, and phase data were used for predic-
tion, and the resulting MSE is 22.79. From the foregoing, it can be deduced that
using two columns (200 and 400 W) of PLC network electrical load transfer
function, frequency, and phase data works very well when random forest regression
method is used for PLC network impedance prediction. To further test this deter-
ministic hypothesis, a different set of 200 and 400 W load ratings are plugged into
the PLC network, and the resulting impedance prediction shown in Figure 17
yielded only an MSE of 17.12.

Figure 14.
Narrowband PLC impedance prediction with 200, 400, and 600 W, frequency, and phase data. No distance
data; MSE = 31.63.

Figure 15.
Narrowband PLC impedance prediction using frequency, 200 and 400 W, and phase data; MSE = 17.02.
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5. Conclusion

In this chapter, a new set of attenuation profile result based on the load ratings
of electrical devices existing on PLC network in the narrowband PLC frequency
range has been obtained. The new result can be used to model the attenuation

Figure 16.
Narrowband PLC impedance prediction using frequency and 400 W data only; MSE = 22.79.

Figure 17.
Narrowband PLC impedance prediction using frequency, phase, and 200 and 400 W data; MSE = 17.12
(other sets of electrical loads).
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profile of the PLC network when the number and ratings of electrical loads on the
network are considered. In addition, the random forest ensemble regression method
is used to predict the PLC network impedance using commonly available PLC
network data.

MSE result shows that using only four features including two columns of net-
work load transfer functions, frequency, and PLC network phase data leads to
optimized impedance prediction for the PLC network. Our result indicates that
commonly available PLC network devices reinforced with deterministic data-
optimization approach can be used for PLC impedance prediction. This is different
from the state of the art, where very expensive devices are used for PLC network
impedance measurement and prediction.

Acknowledgements

The authors wish to recognize the contributions of Schweitzer Engineering
Laboratory (SEL), Pullman Washington, by donating research equipment that in
part facilitated this research work.

Author details

Emmanuel Oyekanlu1* and Jia Uddin2

1 Physics Department, Drexel University, Philadelphia, Pennsylvania, USA

2 Computer Science and Engineering Department, BRAC University, Dhaka,
Bangladesh

*Address all correspondence to: manuelbomi@yahoo.com; eao48@drexel.edu

©2020TheAuthor(s). Licensee IntechOpen.Distributed under the terms of theCreative
CommonsAttribution -NonCommercial 4.0 License (https://creativecommons.org/
licenses/by-nc/4.0/),which permits use, distribution and reproduction for
non-commercial purposes, provided the original is properly cited. –NC

64

Deterministic Artificial Intelligence

References

[1] Ghasmpour A. Internet of things in
smart grid: Architecture, applications,
services, key technologies and
challenges. MDPI Inventions. 2019.
DOI: 10.3390/inventions 4010022

[2] Mahmood S, Salih A, and Khalil M.
Broadband Services on Power Line
Communication Systems: A Review;
2019 22nd International Conference on
Control Systems and Computer Science
(CSCS), Bucharest, Romania; 2019.
pp. 465-470

[3] Dange H, Gondi V. Powerline
communication based home automation
and electricity distribution system. In:
2011 International Conference on
Process Automation, Control and
Computing, Coimbatore; 2011. pp. 1-6

[4] Stevan SL, Farias L, Barreto M,
Leme M. Technical feasibility and
performance analysis of G3-PLC
standard for monitoring in industrial
environment. IEEE Latin America
Transactions. 2016;14(10):4241-4248.
DOI: 10.1109/TLA.2016.7786300

[5] Farias L, Monteiro L, Leme M,
Stevan SL. Empirical analysis of the
communication in industrial
environment based on G3-power line
communication and influences from
electrical grid. Electronics. 2018;7:194.
DOI: 10.3390/electronics7090194

[6] Oyekanlu E. Powerline
communication for the smart grid and
internet of things – powerline
narrowband frequency channel
characterization based on
TMS320C2000 C28x Digital Signal
Processor; ProQuest, Drexel University,
2018

[7] Shekoni ON, Hasan AN, Shongwe T.
Applications of artificial intelligence in
powerline communications in terms of
noise reduction: A review. Australian
Journal of Electrical and Electronics

Engineering. 2018;15(1–2):29-37. DOI:
10.1080/1448837X.2018.1496689

[8] Crăciunescu M, Chenaru O,
Dobrescu R, Florea G, Mocanu Ş. IIoT
gateway for edge Computing
applications. In: Borangiu T,
Trentesaux D, Leitão P, Giret
Boggino A, Botti V, editors. Service
Oriented, Holonic and Multi-Agent
Manufacturing Systems for Industry of
the Future. SOHOMA 2019. Studies in
Computational Intelligence. Vol. 853.
Cham: Springer; 2019

[9] Cristescu C, Dobrescu R, Chenaru O,
and Florea G, DEW: A New Edge
Computing Component for Distributed
Dynamic Networks. In: 2019 22nd
International Conference on Control
Systems and Computer Science (CSCS),
Bucharest, Romania; 2019. pp. 547-551

[10] Oyekanlu E. Fuzzy inference based
stability optimization for IoT data
Centers DC microgrids: Impact of
constant power loads on smart grid
communication over the Powerline.
Journal of Energy – Energija. 2019;68(1)

[11] Huo Y, Prasad G, Atanackovic L,
Lampe L, Leung V. Cable diagnostics
with power line modems for smart grid
monitoring. IEEE Access. 2019;7:
60206-60220. DOI: 10.1109/
ACCESS.2019.2914580

[12] Yousuf MS, El-Shafei M. Power line
communications: An overview - part I.
Innovations in Information
Technologies (IIT), Dubai. 2007;2007:
218-222. DOI: 10.1109/IIT.2007.
4430363

[13] Chin PR, Wong A, Wong K,
Barsoum N. Modelling of LCRC
Adaptive Impedance Matching Circuit
in Narrowband Power Line
Communication, 2015 IEEE 11th
International Conference on Power

65

Random Forest-Based Ensemble Machine Learning Data-Optimization Approach for Smart…
DOI: http://dx.doi.org/10.5772/intechopen.91837



profile of the PLC network when the number and ratings of electrical loads on the
network are considered. In addition, the random forest ensemble regression method
is used to predict the PLC network impedance using commonly available PLC
network data.

MSE result shows that using only four features including two columns of net-
work load transfer functions, frequency, and PLC network phase data leads to
optimized impedance prediction for the PLC network. Our result indicates that
commonly available PLC network devices reinforced with deterministic data-
optimization approach can be used for PLC impedance prediction. This is different
from the state of the art, where very expensive devices are used for PLC network
impedance measurement and prediction.

Acknowledgements

The authors wish to recognize the contributions of Schweitzer Engineering
Laboratory (SEL), Pullman Washington, by donating research equipment that in
part facilitated this research work.

Author details

Emmanuel Oyekanlu1* and Jia Uddin2

1 Physics Department, Drexel University, Philadelphia, Pennsylvania, USA

2 Computer Science and Engineering Department, BRAC University, Dhaka,
Bangladesh

*Address all correspondence to: manuelbomi@yahoo.com; eao48@drexel.edu

©2020TheAuthor(s). Licensee IntechOpen.Distributed under the terms of theCreative
CommonsAttribution -NonCommercial 4.0 License (https://creativecommons.org/
licenses/by-nc/4.0/),which permits use, distribution and reproduction for
non-commercial purposes, provided the original is properly cited. –NC

64

Deterministic Artificial Intelligence

References

[1] Ghasmpour A. Internet of things in
smart grid: Architecture, applications,
services, key technologies and
challenges. MDPI Inventions. 2019.
DOI: 10.3390/inventions 4010022

[2] Mahmood S, Salih A, and Khalil M.
Broadband Services on Power Line
Communication Systems: A Review;
2019 22nd International Conference on
Control Systems and Computer Science
(CSCS), Bucharest, Romania; 2019.
pp. 465-470

[3] Dange H, Gondi V. Powerline
communication based home automation
and electricity distribution system. In:
2011 International Conference on
Process Automation, Control and
Computing, Coimbatore; 2011. pp. 1-6

[4] Stevan SL, Farias L, Barreto M,
Leme M. Technical feasibility and
performance analysis of G3-PLC
standard for monitoring in industrial
environment. IEEE Latin America
Transactions. 2016;14(10):4241-4248.
DOI: 10.1109/TLA.2016.7786300

[5] Farias L, Monteiro L, Leme M,
Stevan SL. Empirical analysis of the
communication in industrial
environment based on G3-power line
communication and influences from
electrical grid. Electronics. 2018;7:194.
DOI: 10.3390/electronics7090194

[6] Oyekanlu E. Powerline
communication for the smart grid and
internet of things – powerline
narrowband frequency channel
characterization based on
TMS320C2000 C28x Digital Signal
Processor; ProQuest, Drexel University,
2018

[7] Shekoni ON, Hasan AN, Shongwe T.
Applications of artificial intelligence in
powerline communications in terms of
noise reduction: A review. Australian
Journal of Electrical and Electronics

Engineering. 2018;15(1–2):29-37. DOI:
10.1080/1448837X.2018.1496689

[8] Crăciunescu M, Chenaru O,
Dobrescu R, Florea G, Mocanu Ş. IIoT
gateway for edge Computing
applications. In: Borangiu T,
Trentesaux D, Leitão P, Giret
Boggino A, Botti V, editors. Service
Oriented, Holonic and Multi-Agent
Manufacturing Systems for Industry of
the Future. SOHOMA 2019. Studies in
Computational Intelligence. Vol. 853.
Cham: Springer; 2019

[9] Cristescu C, Dobrescu R, Chenaru O,
and Florea G, DEW: A New Edge
Computing Component for Distributed
Dynamic Networks. In: 2019 22nd
International Conference on Control
Systems and Computer Science (CSCS),
Bucharest, Romania; 2019. pp. 547-551

[10] Oyekanlu E. Fuzzy inference based
stability optimization for IoT data
Centers DC microgrids: Impact of
constant power loads on smart grid
communication over the Powerline.
Journal of Energy – Energija. 2019;68(1)

[11] Huo Y, Prasad G, Atanackovic L,
Lampe L, Leung V. Cable diagnostics
with power line modems for smart grid
monitoring. IEEE Access. 2019;7:
60206-60220. DOI: 10.1109/
ACCESS.2019.2914580

[12] Yousuf MS, El-Shafei M. Power line
communications: An overview - part I.
Innovations in Information
Technologies (IIT), Dubai. 2007;2007:
218-222. DOI: 10.1109/IIT.2007.
4430363

[13] Chin PR, Wong A, Wong K,
Barsoum N. Modelling of LCRC
Adaptive Impedance Matching Circuit
in Narrowband Power Line
Communication, 2015 IEEE 11th
International Conference on Power

65

Random Forest-Based Ensemble Machine Learning Data-Optimization Approach for Smart…
DOI: http://dx.doi.org/10.5772/intechopen.91837



Electronics and Drive Systems, Sydney,
NSW; 2015. pp. 132-135

[14] Anatory J, Theethayi N. Broadband
Power-Line Communication Systems
Theory and Applications. Southampton,
UK:WIT Press; 2010

[15] Oyekanlu E, Oladele P. Smart grid
communication over DC powerline:
Evaluation of powerline communication
OFDM PAPR for new types of
destabilizing electrical loads. In: IEEE
2018 First International Colloquium on
Smart Grid Metrology (SmaGriMet),
Split; 2018. pp. 1-7

[16] Powerline Carrier Communication
[Internet]. 2018. Available from: https://
www.electrical4u.com/power-line-ca
rrier-communication/

[17] Cavdar H, Karadeniz E.
Measurements of impedance and
attenuation at CENELEC bands for
power line communication systems.
Sensors. 2008;8:8027-8036. DOI:
10.3390/s8128027

[18] Rasool B, Rasool A, Khan I.
Impedance characterization of power
line communication networks. Arabian
Journal for Science and Engineering.
2014;39:6255-6267. DOI: 10.1007/
s1339-014-1235-z

[19] Liang D, Guo H, Zheng T. Real-
Time Impedance Estimation for Power
Line Communication. In: Special Section
on Advances in Power Line
Communication and Its Applications,
IEEE Access; 2019

[20] Pasdar AM, Cavdar IH, Sozer Y.
Power-line impedance estimation at FCC
band based on intelligent home
appliances status detection algorithm
through their individual energy and
impedance signatures. IEEE Transactions
on Power Delivery. 2014;29(3)

[21] Asti GA, Kurokawa S, Costa ECM,
Pissolato J. Real-Time Estimation of

Transmission Line Impedance Based on
Modal Analysis Theory. 2011 IEEE
Power and Energy Society General
Meeting, MI, USA; 2011. pp. 1-7

[22] Antoniali M, Tonello AM,
Versolatto F. A study on the optimal
receiver impedance for SNR
maximization in broadband PLC.
Journal of Electrical and Computer
Engineering. 2013. Article ID 635086.
DOI: 10.1155/2013/635086

[23] Gassara H, Rouissi F, Ghazel A.
Empirical modeling of the narrowband
power line communication channel;
IEEE 2016

[24] Baker K, Cooper M, Heidlauf P,
Sands T. Autonomous trajectory
generation for deterministic artificial
intelligence. Electrical & Electronics
Eng. 2018;8(3):59-68

[25] Lobo K, Lang J, Starks A, Sands T.
Analysis of deterministic artificial
intelligence for inertia modification and
orbital disturbances. International
Journal of Control Science and
Engineering. 2018;8:53-62

[26] Sands T. Space system identification
algorithms. Journal of Space
Exploration. 2017;6(3):138

[27] Nakatami S, Sands T. Battale-
damage tolerant automatic controls.
Electrical and Electronics Engineering.
2018;8(1):10-23

[28] Sands T. Comparison and
interpretation methods for predictive
control of mechanics. Algorithms. 2019;
12:232

[29] Shaver D, Su D, Popa D.
Narrowband OFDM power line
communication challenges,
standardization, and semiconductor's
role, 2013 IEEE Global Communications
Conference (GLOBECOM), Atlanta,
GA; 2013. pp. 2993-2997

66

Deterministic Artificial Intelligence

[30] AN58825, Cypress Powerline
Communication Debugging Tools;
Cypress White Paper, April 2013

[31] Piante MD, Tonello AM. On
Impedance Matching in a Power-Line
Communication System. IEEE
Transactions on Circuits and Systems II:
Express Briefs. 2016;63(7)

[32] Uddin J, Kang M, Nguyen D, Kim J.
Reliable fault classification of induction
motors using texture feature extraction
and a multiclass support vector
machine. Mathematical Problems
in Engineering. 2014;2014. Article ID:
814593, 9 p. DOI: 10.1155/2014/814593

[33] Oyekanlu E. Distributed osmotic
computing approach to implementation
of explainable predictive deep learning
at industrial IoT network edges with
real-time adaptive wavelet graphs. In:
2018 IEEE First International
Conference on Artificial Intelligence
and Knowledge Engineering
(AIKE), Laguna Hills, CA; 2018.
pp. 179-188

[34] Fallah S, Deo R, Shojafar M,
Conti M, Shamshirband S.
Computational intelligence approaches
for energy load forecasting in smart
energy management grids: State of the
art, future challenges, and research
directions. Energies. 2018;11:596. DOI:
10.3390/en11030596

[35] Androcec D, Vrcek N. Machine
learning for the Internet of things
security: A systematic review. In: The
13th International Conference on
Software Technologies; 2018.
pp. 563-570

[36] Shojafar M, Sookhak M. Internet of
everything, networks, applications and
computing systems (IoENACS).
International Journal of Computers and
Applications. 2020;42(3):213-215

[37] Uddin J, Islam R, Kim J. Texture
feature extraction techniques for fault

diagnosis of induction motors. Journal
of Convergence. 2014;5:15-20

[38] Rawal BS. A proxy re-encryption-
based webmail and file sharing system
for collaboration in cloud computing
environment. In: 2018 International
Conference on Computational
Techniques, Electronics and Mechanical
Systems (CTEMS), Belgaum, India;
2018. pp. 213-218

[39] Mijac M, Androcec D, Picek R.
Smart city services driven by IoT:
A systematic review. Journal of
Economic & Social Development. Sept.,
2017;4(2):40-50

[40] Shojafar M, Cordeschi N,
Amendola D, Baccarelli E. Energy-
saving adaptive computing and traffic
engineering for real-time-services data
centers. In: Proceedings of the IEEE
International Conference.
Communications Workshop; 2015.
pp. 1800-1806

[41] Oyekanlu E. Osmotic collaborative
computing for machine learning and
cybersecurity applications in industrial
IoT networks and cyber physical
systems with Gaussian mixture models.
In: 2018 IEEE 4th International
Conference on Collaboration and
Internet Computing (CIC),
Philadelphia, PA; 2018. pp. 326-335

[42] Androcec D. Systematic mapping
study on osmotic computing. In: The
30th Central European Conference on
Information & Intelligent Systems;
2019. pp. 79-84

[43] Javanmardi S, Shojafar M,
Amendola D, Cordeschi N, Liu H,
Abraham A. Hybrid Job Scheduling
Algorithm for Cloud Computing
Environment. In: Kömer P, Abraham A,
Snášel V, editors. Proceedings of the
Fifth International Conference on
Innovations in Bio-Inspired Computing
and Applications IBICA 2014. Advances

67

Random Forest-Based Ensemble Machine Learning Data-Optimization Approach for Smart…
DOI: http://dx.doi.org/10.5772/intechopen.91837



Electronics and Drive Systems, Sydney,
NSW; 2015. pp. 132-135

[14] Anatory J, Theethayi N. Broadband
Power-Line Communication Systems
Theory and Applications. Southampton,
UK:WIT Press; 2010

[15] Oyekanlu E, Oladele P. Smart grid
communication over DC powerline:
Evaluation of powerline communication
OFDM PAPR for new types of
destabilizing electrical loads. In: IEEE
2018 First International Colloquium on
Smart Grid Metrology (SmaGriMet),
Split; 2018. pp. 1-7

[16] Powerline Carrier Communication
[Internet]. 2018. Available from: https://
www.electrical4u.com/power-line-ca
rrier-communication/

[17] Cavdar H, Karadeniz E.
Measurements of impedance and
attenuation at CENELEC bands for
power line communication systems.
Sensors. 2008;8:8027-8036. DOI:
10.3390/s8128027

[18] Rasool B, Rasool A, Khan I.
Impedance characterization of power
line communication networks. Arabian
Journal for Science and Engineering.
2014;39:6255-6267. DOI: 10.1007/
s1339-014-1235-z

[19] Liang D, Guo H, Zheng T. Real-
Time Impedance Estimation for Power
Line Communication. In: Special Section
on Advances in Power Line
Communication and Its Applications,
IEEE Access; 2019

[20] Pasdar AM, Cavdar IH, Sozer Y.
Power-line impedance estimation at FCC
band based on intelligent home
appliances status detection algorithm
through their individual energy and
impedance signatures. IEEE Transactions
on Power Delivery. 2014;29(3)

[21] Asti GA, Kurokawa S, Costa ECM,
Pissolato J. Real-Time Estimation of

Transmission Line Impedance Based on
Modal Analysis Theory. 2011 IEEE
Power and Energy Society General
Meeting, MI, USA; 2011. pp. 1-7

[22] Antoniali M, Tonello AM,
Versolatto F. A study on the optimal
receiver impedance for SNR
maximization in broadband PLC.
Journal of Electrical and Computer
Engineering. 2013. Article ID 635086.
DOI: 10.1155/2013/635086

[23] Gassara H, Rouissi F, Ghazel A.
Empirical modeling of the narrowband
power line communication channel;
IEEE 2016

[24] Baker K, Cooper M, Heidlauf P,
Sands T. Autonomous trajectory
generation for deterministic artificial
intelligence. Electrical & Electronics
Eng. 2018;8(3):59-68

[25] Lobo K, Lang J, Starks A, Sands T.
Analysis of deterministic artificial
intelligence for inertia modification and
orbital disturbances. International
Journal of Control Science and
Engineering. 2018;8:53-62

[26] Sands T. Space system identification
algorithms. Journal of Space
Exploration. 2017;6(3):138

[27] Nakatami S, Sands T. Battale-
damage tolerant automatic controls.
Electrical and Electronics Engineering.
2018;8(1):10-23

[28] Sands T. Comparison and
interpretation methods for predictive
control of mechanics. Algorithms. 2019;
12:232

[29] Shaver D, Su D, Popa D.
Narrowband OFDM power line
communication challenges,
standardization, and semiconductor's
role, 2013 IEEE Global Communications
Conference (GLOBECOM), Atlanta,
GA; 2013. pp. 2993-2997

66

Deterministic Artificial Intelligence

[30] AN58825, Cypress Powerline
Communication Debugging Tools;
Cypress White Paper, April 2013

[31] Piante MD, Tonello AM. On
Impedance Matching in a Power-Line
Communication System. IEEE
Transactions on Circuits and Systems II:
Express Briefs. 2016;63(7)

[32] Uddin J, Kang M, Nguyen D, Kim J.
Reliable fault classification of induction
motors using texture feature extraction
and a multiclass support vector
machine. Mathematical Problems
in Engineering. 2014;2014. Article ID:
814593, 9 p. DOI: 10.1155/2014/814593

[33] Oyekanlu E. Distributed osmotic
computing approach to implementation
of explainable predictive deep learning
at industrial IoT network edges with
real-time adaptive wavelet graphs. In:
2018 IEEE First International
Conference on Artificial Intelligence
and Knowledge Engineering
(AIKE), Laguna Hills, CA; 2018.
pp. 179-188

[34] Fallah S, Deo R, Shojafar M,
Conti M, Shamshirband S.
Computational intelligence approaches
for energy load forecasting in smart
energy management grids: State of the
art, future challenges, and research
directions. Energies. 2018;11:596. DOI:
10.3390/en11030596

[35] Androcec D, Vrcek N. Machine
learning for the Internet of things
security: A systematic review. In: The
13th International Conference on
Software Technologies; 2018.
pp. 563-570

[36] Shojafar M, Sookhak M. Internet of
everything, networks, applications and
computing systems (IoENACS).
International Journal of Computers and
Applications. 2020;42(3):213-215

[37] Uddin J, Islam R, Kim J. Texture
feature extraction techniques for fault

diagnosis of induction motors. Journal
of Convergence. 2014;5:15-20

[38] Rawal BS. A proxy re-encryption-
based webmail and file sharing system
for collaboration in cloud computing
environment. In: 2018 International
Conference on Computational
Techniques, Electronics and Mechanical
Systems (CTEMS), Belgaum, India;
2018. pp. 213-218

[39] Mijac M, Androcec D, Picek R.
Smart city services driven by IoT:
A systematic review. Journal of
Economic & Social Development. Sept.,
2017;4(2):40-50

[40] Shojafar M, Cordeschi N,
Amendola D, Baccarelli E. Energy-
saving adaptive computing and traffic
engineering for real-time-services data
centers. In: Proceedings of the IEEE
International Conference.
Communications Workshop; 2015.
pp. 1800-1806

[41] Oyekanlu E. Osmotic collaborative
computing for machine learning and
cybersecurity applications in industrial
IoT networks and cyber physical
systems with Gaussian mixture models.
In: 2018 IEEE 4th International
Conference on Collaboration and
Internet Computing (CIC),
Philadelphia, PA; 2018. pp. 326-335

[42] Androcec D. Systematic mapping
study on osmotic computing. In: The
30th Central European Conference on
Information & Intelligent Systems;
2019. pp. 79-84

[43] Javanmardi S, Shojafar M,
Amendola D, Cordeschi N, Liu H,
Abraham A. Hybrid Job Scheduling
Algorithm for Cloud Computing
Environment. In: Kömer P, Abraham A,
Snášel V, editors. Proceedings of the
Fifth International Conference on
Innovations in Bio-Inspired Computing
and Applications IBICA 2014. Advances

67

Random Forest-Based Ensemble Machine Learning Data-Optimization Approach for Smart…
DOI: http://dx.doi.org/10.5772/intechopen.91837



in Intelligent Systems and Computing,
Vol. 303. Cham: Springer;

[44] Shojafar M, Pooranian Z,
Sookhak M, Buyya R. Recent advances
in cloud data centers towards fog data
centers. Concurrency and Computation.
2019;31(8):e5164

[45] Islam R, Uddin J, Kim JM. Texture
analysis based feature extraction using
Gabor filter and SVD for reliable fault
diagnosis of an induction motor.
International Journal of Information
Technology and Management. 2018;17:
20-32

[46] Rawal BS. Attack countermeasure
tree (ACT) meets with the split-
protocol. International Journal of
Computer Networks &
Communications (IJCNC). 2015;7(4)

[47] Androcek D. Overcoming Service-
Level Interoperability Challenges of the
IoT. In: Connected Environments for
the Internet of Things. Springer; 2017.
pp. 83-101

[48] Sodhro AH, Pirbhulal S, de
Albuquerque VHC. Artificial
intelligence-driven mechanism for edge
Computing-based industrial
applications. IEEE Transactions on
Industrial Informatics. 2019;15(7):
4235-4243. DOI: 10.1109/TII.2019.
2902878

[49] Vijay A, Umadevi K. Explainable AI
controlled architecture of D2D system
for massive MIMO based 5G networks.
International Journal of Scientific
Research and Review. 2019;07(03):
33-40

[50] Tonello A, Letizia N, Righini D,
Marcuzzi F. Machine learning tips and
tricks for power line communication. In:
Special Section on Advances in Power
Line Communication and Its
Applications, IEEE Access; 2019

[51] Oyekanlu E, Nelatury C, Fatade A,
Alaba O, Abass O. Edge computing for
industrial IoT and the smart grid:
Channel capacity for M2M
communication over the power line. In:
2017 IEEE 3rd International Conference
on Electro-Technology for National
Development, Owerri; 2017. pp. 1-11

[52] Valecha H, Varma A, Khare I,
Sachdeva A, Goyal M. Prediction of
consumer behavior using random forest
algorithm. In: 2018 5th IEEE
International Conference on Electrical,
Electronics & Computer Engineering,
Gorakhpur; 2018

[53] Kaur A, Malhotra R. Application of
random forest in predicting fault-prone
classes. In: 2008 IEEE International
Conference on Advanced Computer
Theory & Engineering; 2008

[54] Jaiswal J, Samikanu R. Application
of random forest on feature subset
selection and classification and
regression. In: IEEE 2017 World
Congress on Computing and
Communication Technologies; 2017

68

Deterministic Artificial Intelligence

Chapter 4

Application of Artificial Neural
Networks for Accurate Prediction
of Thermal and Rheological
Properties of Nanofluids
Behzad Vaferi

Abstract

Nanofluids have recently been considered as one of the most popular working
fluid in heat transfer and fluid mechanics. Accurate estimation of thermophysical
properties of nanofluids is required for the investigation of their heat transfer
performance. Thermal conductivity coefficient, convective heat transfer coeffi-
cient, and viscosity are some the most important thermophysical properties that
directly influence on the application of nanofluids. The aim of the present chapter is
to develop and validate artificial neural networks (ANNs) to estimate these
thermophysical properties with acceptable accuracy. Some simple and easy mea-
surable parameters including type of nanoparticle and base fluid, temperature and
pressure, size and concentration of nanoparticles, etc. are used as independent
variables of the ANN approaches. The predictive performance of the developed
ANN approaches is validated with both experimental data and available empirical
correlations. Various statistical indices including mean square errors (MSE), root
mean square errors (RMSE), average absolute relative deviation percent (AARD%),
and regression coefficient (R2) are used for numerical evaluation of accuracy of the
developed ANN models. Results confirm that the developed ANN models can be
regarded as a practical tool for studying the behavior of those industrial applica-
tions, which have nanofluids as operating fluid.

Keywords: artificial neural networks, solid-liquid suspension, nanofluids,
thermal property, rheological property

1. Introduction

Increasing price of fuels as well as hardening the environmental regulations/laws
enforces the industrial processes to increase the efficiency of their consumed
energy. Therefore, concentrations are focused on the technologies that improve the
performance of heat transfer equipment. This improvement is often achieved by
either enhancing the thermophysical characteristics of the traditional operating
fluids or modifying the structure of heat exchangers [1–3]. Unfortunately, conven-
tional heat transfer fluids (e.g. water, engine oil, and ethylene glycol) suffer from
inherently low thermal properties and poor heat transfer characteristics [4, 5].
Conducting research for modifying poor thermophysical properties of the
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properties of nanofluids is required for the investigation of their heat transfer
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tional heat transfer fluids (e.g. water, engine oil, and ethylene glycol) suffer from
inherently low thermal properties and poor heat transfer characteristics [4, 5].
Conducting research for modifying poor thermophysical properties of the
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traditional fluids confirmed that adding solid particles to the base fluids can
improve their heat transfer properties [6]. Since a solid metal has a larger thermal
conductivity than a pure fluid, adding some of metallic solid particles in base fluids
may improve their thermal behavior [7, 8]. Although, thermal conductivity of solid
particle is typically an order-of-magnitude higher than the base fluid, adding micro-
sized solid particles is not practically possible. The micro-sized solid particles that
often simply settled down are responsible for some major problems including clog-
ging the small passages, high pressure drop, and components erosion by abrasive
action [9–12]. For solving these problems, most of the new studies have concen-
trated on synthesizing materials of nano-sized scale [9, 12]. Rapid progress of
nanotechnology has motivated researchers to disperse various nanoscale particles
(1–100 nm) in the operating fluids to form the new class of heat transfer fluid
namely nanofluids [13–18]. The term of nanofluids was firstly proposed by Choi for
addressing the homogeneous suspensions of nanoscale particles in base fluid [19].
Large relative surface area, higher heat conduction, excellent stability, and minimal
clogging are the main advantages of nano-sized materials respect to micro-sized
ones. It is possible to improve the thermophysical properties of the conventional
fluids, and enhance their heat transfer ability by adding small amount of nano-sized
solid particles [20]. It has been claimed that nanofluids are the best choice for the
next generation of heat transfer fluids [5, 11].

Nanofluids have found high popularity due to their excellent ability in enhance-
ment of heat transfer performances of various thermal systems during the recent
years [16, 21, 22]. In spite of such potential benefits, nanofluid technology is still
limited for commercial use as there are no proven standardized techniques for
accurate prediction of important heat transfer characteristics of nanofluids [23, 24].
Availability of some accurate correlations/models for estimation of heat transfer
characteristics of nanofluids is necessary during design, optimization, and control
of those heat transfer devices that use these operating fluids. Therefore, in this
chapter, great deals of efforts are made to correlate some thermophysical properties
of nanofluids by artificial neural networks. In the next section, the procedure of
working of artificial neural networks and four different types of ANN are briefly
explained.

2. Artificial neural networks

Simulation of working procedures of the biological nervous system of the human
brain is the basic idea for designing artificial neural networks [25]. Artificial neural
network, as its name clearly implies is composed of some well-organized processing
elements, namely neurons. Indeed, various types of these smart networks are con-
stituted of a common processing unit namely artificial neuron or perceptron. The
neuron has two regulating parameters that are often known as weight (w) and bias
(b). The perceptrons receive their entry information from either other neurons or
external source (x), and produces an output signal using Eq. (1).

out ¼ f
Xk
r¼1

wr xr þ b

 !
(1)

where out denotes the perceptron’s output, and f is the activation function. ANN
models often require different number of neurons in their layers for solving specific
problems. Artificial neural networks can extract a function g �ð Þ : RInd ! RDep by
training on a dataset, where Ind and Dep indicate the number of dimensions for
independent and dependent variables, respectively. Providing the ANN with a

70

Deterministic Artificial Intelligence

databank of independent variables X ¼ Ind1 Ind2⋯Indn½ �T and their related depen-
dent variable(s), their parameters can be tuned by a proper backpropagation train-
ing algorithm. In this way, it is possible to simulate the behavior of even the most
complicated nonlinear systems with an acceptable accuracy often smaller than
AARD = 10% [26, 27]. Activation functions are responsible for providing the artifi-
cial neural networks with nonlinear behavior. Different types of ANN paradigm
have found high popularity as a technique for parameter estimation, pattern detec-
tion, data clustering, text processing, fault discovery, and so on [28].

2.1 Types of ANN model

In this chapter, four different types of artificial neural networks include multi-
layer perceptron (MLP), cascade feedforward (CFF), radial basis function (RBF),
and generalized regression (GR) neural networks that are used as artificial intelli-
gent techniques for characterization of thermophysical properties of nanofluids.
These types of ANN model are briefly illustrated in the following four subsections.

2.1.1 Multilayer perceptron neural networks

The MLP is the most well-known feedforward approach that often has one or
more hidden layers between dependent and independent variables. This type of
ANN methodologies is used in the supervised learning process for the adjustment of
its parameters. The term feedforward implies that the entry signals can only move
inside the neural network from input layer toward an output layer. The backward
flow for signal is not allowed in the MLP neural networks. The multi-layer
perceptron constitutes of several layers of nodes including one input layer, one or
more hidden layer(s), and one output layer. This type of ANN models has found
high-reputation because of its excellent performances for handling of both regres-
sion and classification problems [25–27].

2.1.2 Cascade feedforward neural networks

By conducting some modifications on the topology of the multi-layer perceptron
networks, Fahlman and Lebiere designed a new class of ANN namely cascade
feedforward neural network [29]. They do their modification by providing the CFF
neural networks with synaptic connections for neuron of each layer with neurons of
all subsequent layers [30]. It has been claimed that convergence rate of learning
process of the CFB model is better than other ANN topologies [31].

2.1.3 Radial basis function neural networks

RBF neural network has been structured as a two-layer feedforward neural
network model [32]. In the hidden and output layer of the RBF approach, Gaussian
and linear transfer functions are always used, respectively [32]. The radial basis
neural network that originally developed by Broomhead and Lowe in 1988, is a
powerful tool for interpolation among data in multi-dimensional problems [33, 34].

2.1.4 Generalized regression neural networks

The GR neural network that was firstly developed in 1991 by Specht is often
viewed as a special reformation of the RBF model [35]. The main benefit of the GR
paradigm is that its parameters can be easily adjusted during training stage.
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Parameters of the general regression neural network can be simply tuned by only
one-pass training with the sufficient number of experimental data.

2.2 Training of artificial neural networks

The training process is a well-established procedure that tries to adjust parame-
ters of the ANN model, i.e., biases and connection weights. During the learning
process, the ANN model is provided with a sufficient number of experimental data
containing both independent and dependent variables of the considered phenom-
ena. Thereafter, an appropriate training algorithm is employed to adjust the param-
eters of ANN model in such a way that it could predict the actual targets with
acceptable accuracy. The training stage begins with random values for the weights
and biases of ANNmodel. Thereafter, the numerical signals of independent variable
(s) are fed to the artificial network and are made to flow through it until they reach
the output layer. Finally, the output layer is responsible for producing the output
signal(s). A training algorithm is then applied to minimize the difference between
the actual and calculated values for dependent variable(s) by regulating the param-
eters of the ANN model. This adjustment continues as far as the deviation between
calculated and actual target values reaches the predefined tolerance. As soon as the
training stage is completed, the weights and biases are adjusted and they are kept
unchanged. In this stage, it is possible to employ the trained ANN approach for
estimating the dependent variable(s) from new independent datasets.

2.3 Performance analyses of artificial neural networks

Several statistical accuracy indices including MSE, RMSE, AARD%, and R2

have been applied to investigate accuracy of various ANN models. Values of
MSE, RMSE, AARD%, and R2 are mathematically calculated by Eq. (2) to Eq. (5),
respectively.

MSE ¼
XN
i¼1

D exp : ið Þ �Dcal: ið Þ� �
N

2

(2)

RMSE ¼
XN

i¼1
D exp : ið Þ �Dcal: ið Þ� �

N

2( )0:5

(3)

AARD% ¼ 100
N

XN
i¼1

D exp : ið Þ �Dcal: ið Þ
D exp : ið Þ

����
����

� �
(4)

R2 ¼
PN

i¼1 D exp : ið Þ � ΔD
� �2 �PN

i¼1 D exp : ið Þ � ΔDcal: ið Þ� �2
PN

i¼1 D exp : ið Þ � ΔD
� �2 (5)

where D and N represent dependent variable and number of experimental data,
respectively. Dexp

i is the experimental dependent variable, Dcal
i presents the value of

ith predicted dependent variable by ANN model, and ΔD is the average value of the
experimental data points for dependent variable.

3. Characterization of properties of nanofluids by ANN approaches

In this section, different types on ANN are used for systematic estimation of
thermophysical properties of nanofluids. The focus is concentrated on two thermal
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and a rheological property of nanofluids. Thermal conductivity coefficient, convec-
tive heat transfer coefficient, and viscosity of nanofluids tried to be modeled by
ANN approaches. For each parameter, experimental data and procedure of devel-
oping ANN model are collected, and evaluation of performance of the developed
model is presented.

3.1 Thermal conductivity coefficient

Thermal conductivity of homogeneous dispersion of solid particles in liquids has
its own importance for dozen of decades [36]. Since the uniform suspensions of
nano-sized solid particles in liquids have better thermal characteristics than their
associated base liquids, they may be considered as operating fluids for heat transfer
systems [7, 9, 37–41]. Maxwell [36] and Hamilton and Crosser [42] proposed some
basic correlations for the calculation of thermal conductivity of the homogeneous
suspensions from their particle dosage, thermal conductivity of base fluids as well as
particles. Moreover, effects of shape and size of nanoparticle, chemistry of base
fluids, temperature, and pH on the level of enhancement of thermal conductivity of
pure base fluids have been deeply investigated [39, 43, 44]. Some researchers
observed that thermal conductivity of nanofluids is dramatically increased by
increasing temperature [39, 43–46]. Brownian motion of nanoparticles is often
considered as a key mechanism to explain enhancement of thermal conductivity of
uniform dispersion of nano-sized materials in different base fluids [39, 44]. It is a
widely accepted theory that Brownian motion has a direct relation with the fluid
temperature and it increases by increasing temperature. Indeed, particle motions
increase by temperature and it results in increasing the thermal conductivity of
nanofluid [39]. Enhancement of thermal conductivity of nanofluids by increasing
the suspension temperature has been reported by different groups of researchers
[45–48]. Increasing concentration of nanoparticles in base liquids that increase the
possibility of collisions between fluid molecules and solid particles can also improve
the thermal conductivity of nanofluids. Influence of shape and size of nanoparticle
on thermal conductivity of nanofluids was comprehensively studied by different
groups of researchers [7, 9, 37, 45, 48]. It is worthy to be noted that the thermal
conductivity of nanofluid was reported, which may be lower than the base liquids
under some specific circumstances [45, 48].

3.1.1 Experimental data

Available correlations in the literatures approve that the thermal conductivity
ratio (TCR) of alumina-water nanofluid has relationship with nanoparticle size,
concentration of nanoparticle in base liquids, and temperature of suspension
[39, 45–58]. Therefore, these parameters are considered as independent variables
for the estimation of TCR of alumina water-based nanofluid using MLP network. As
reported in Table 1, 280 experimental datasets for TCR of alumina-water
nanofluids are collected from various literatures [39, 45–58]. The collected experi-
mental data covers the fluid temperature ranging from 1 to 133.8°C, alumina nano-
particle size of 8–283 nm, volume fraction from 0.0013 to 0.16, and TCR values
ranging from 0.99 to 1.2902.

There exists a well-known role of thumb that states the multi-layer perceptron
neural networks with a single hidden layer can precisely learn a behavior of any
multi-variable function with a desired tolerance [22]. Therefore, in this section, a
MLP network is structured with only one hidden layer to predict thermal conduc-
tivity ratio of the alumina-water nanofluid. Number of hidden neurons has been
selected using trial and error procedure on minimizing both MSE and AARD%, and
maximizing R2 values for training as well as testing datasets. Table 2 reports
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observed that thermal conductivity of nanofluids is dramatically increased by
increasing temperature [39, 43–46]. Brownian motion of nanoparticles is often
considered as a key mechanism to explain enhancement of thermal conductivity of
uniform dispersion of nano-sized materials in different base fluids [39, 44]. It is a
widely accepted theory that Brownian motion has a direct relation with the fluid
temperature and it increases by increasing temperature. Indeed, particle motions
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the thermal conductivity of nanofluids. Influence of shape and size of nanoparticle
on thermal conductivity of nanofluids was comprehensively studied by different
groups of researchers [7, 9, 37, 45, 48]. It is worthy to be noted that the thermal
conductivity of nanofluid was reported, which may be lower than the base liquids
under some specific circumstances [45, 48].

3.1.1 Experimental data

Available correlations in the literatures approve that the thermal conductivity
ratio (TCR) of alumina-water nanofluid has relationship with nanoparticle size,
concentration of nanoparticle in base liquids, and temperature of suspension
[39, 45–58]. Therefore, these parameters are considered as independent variables
for the estimation of TCR of alumina water-based nanofluid using MLP network. As
reported in Table 1, 280 experimental datasets for TCR of alumina-water
nanofluids are collected from various literatures [39, 45–58]. The collected experi-
mental data covers the fluid temperature ranging from 1 to 133.8°C, alumina nano-
particle size of 8–283 nm, volume fraction from 0.0013 to 0.16, and TCR values
ranging from 0.99 to 1.2902.

There exists a well-known role of thumb that states the multi-layer perceptron
neural networks with a single hidden layer can precisely learn a behavior of any
multi-variable function with a desired tolerance [22]. Therefore, in this section, a
MLP network is structured with only one hidden layer to predict thermal conduc-
tivity ratio of the alumina-water nanofluid. Number of hidden neurons has been
selected using trial and error procedure on minimizing both MSE and AARD%, and
maximizing R2 values for training as well as testing datasets. Table 2 reports
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numerical values for the observed MSE and AARD% between calculated TCRs and
their associated experimental data. It should be mentioned that the only difference
between these MLP models is the number of hidden neurons. For reducing the
effect of random selection of weights and biases on the final results, all of the MLP
models are trained and tested 10 different times, and only the best obtained results
for each topology is reported in Table 2. Indeed, in this section, we checked 200
MLP paradigms to find the best one.

3.1.2 Development of ANN model

It can be simply understood from Table 2 that predictive performance of the
MLP for the training subset is improved by increasing the number of hidden
neurons. The AARD% for MLP model having 1–20 hidden neurons continuously
decreases from 4.24 to 0.91%. But, performance of the MLP approach for estima-
tion of the testing dataset only improves up to 14 hidden neurons, and thereafter no
impressive progress is observed. It can be concluded that increasing the hidden
neurons more than 14 only enlarges the MLP networks and has no positive effect on
improving the accuracy [59]. Therefore, by considering the reported results in
Table 2, a MLP approach with single hidden layer having 14 neurons (the bold row)
is selected as the best structure for estimation of thermal conductivity ration of
alumina-water nanofluid. This optimal MLP model is capable to estimate the testing
dataset by MSE and AARD% of 6.3 � 10�4 and 1.75%, respectively.

This optimal MLP paradigm provides excellent R2 values between the predicted
and the actual values of TCR for both training and testing dataset. The calculated
values of R2 for the MLP models with 1–20 hidden neurons are depicted in Figure 1.

Temperature
range (°C)

Nanoparticle
volume fraction

Nanoparticle
diameter (nm)

Thermal
conductivity ratio

N* References

21–51 0.01–0.04 38.4 1.02–1.242 12 [39]

21–71 0.01–0.04 11–150 1.01–1.2902 34 [45]

27.5–34.7 0.02–0.1 36 1.077–1.1513 22 [46]

21–60 0.01 80–150 1.033–1.106 10 [47]

10–50 0.0013–0.0052 20–100 1.004–1.147 36 [48]

20–40 0.031–0.09 36 1.157–1.259 30 [49]

1–40 0.01–0.04 30 0.99–1.219 15 [50]

10–60 0.05 40 1.096–1.128 6 [51]

10–50 0.03–0.16 20 1.06–1.214 12 [52]

15–60 0.01–0.08 120 1.025–1.257 30 [53]

20–60 0.03–0.13 30–80 1.041–1.257 24 [54]

23.5–27.4 0.0186–0.04 8–283 1.0214–1.185 21 [55]

24–133.8 0.01–0.04 12 0.99–1.228 24 [56]

35.5 0.0033–0.03 36 1.015–1.096 5 [57]

20 0.005–0.06 43 1.063–1.28 4 [58]

*Number of experimental data.

Table 1.
Physical and operating conditions of various experimental datasets.
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The values of observed AARD% and MSE by MLP models with different
numbers of hidden neurons for the overall dataset (training + test) are shown in
Figure 2.

To simulate behavior of a given system by the MLP neural network, a relatively
huge amount of experimental data is required. Figure 3 depicts variation of
observed mean square errors (between MLP predictions and actual data of TCR of
alumina-water nanofluids) as function of the number of epoch. As mentioned
earlier, the procedure of adjustment of weights and biases of the MLP model is done
by an optimization technique namely training algorithm. It is obvious that the
optimization technique tries to minimize the observed MSE by an iteration proce-
dure. In Figure 3, the term of epoch shows the number of interactions that the
training algorithm has tried to tune the MLP parameter using the given procedure
in Section 2.2. It can be seen from Figure 1 that by increasing the number of
iterations (i.e. epoch), weights and biases of the MLP model converge to their
optimized values, and therefore, the observed MSE continuously decreases. After
800 iterations, the training algorithm enforces the MSE to converge 3.3 � 10�4.
Since this level of MSE between predicted and actual values of TCR is relatively
small value, it can be said that the training was successful.

Number of hidden neuron* AARD% MSE

Training Testing Training Testing

1 4.24 4.42 0.004542 0.004210

2 3.86 3.48 0.003877 0.003723

3 3.48 4.06 0.003397 0.004666

4 3.04 3.51 0.002563 0.003569

5 2.94 2.97 0.002171 0.001974

6 2.41 3.06 0.001696 0.002183

7 1.81 2.97 0.000736 0.002246

8 2.39 3.22 0.001295 0.002848

9 1.75 2.79 0.000681 0.003002

10 1.66 1.83 0.000687 0.001031

11 1.78 1.92 0.000781 0.000741

12 1.37 2.43 0.000429 0.001689

13 1.14 2.64 0.000345 0.002499

14 1.23 1.75 0.000330 0.000630

15 1.11 1.94 0.000303 0.001152

16 1.02 2.14 0.000273 0.00139

17 1.14 2.76 0.000343 0.002737

18 1.07 2.67 0.000354 0.003447

19 1.28 2.45 0.000484 0.002184

20 0.91 2.16 0.000201 0.001754

*The best obtained results among 10 various trained network per each topology.
The bold values indicate the best obtained results for the considered AI models.

Table 2.
Evaluation of the best topology of the MLP model.
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3.1.3 ANN model evaluation

A databank with 228 experimental datasets for TCR of water-alumina nanofluids
has been collected from different literatures [39, 45–58]. These datasets have been
used to design and validate the accuracy performances of different MLP networks
as well as to find the best topology of the MLP model. Moreover, 57 experimental

Figure 1.
R2 values of the proposed model for training and testing subsets.

Figure 2.
Overall AARD% and MSE of various ANN models over training and testing subsets.
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TCR data-points, which were not utilized in the training process have been used to
check the predictive accuracy of the proposed MLP paradigm.

In this part, performance of the proposed MLP approach tried to be evaluated by
plotting the predicted values of TCRs as function of their associated experimental
values for both testing and training subsets. Figure 4 confirms an excellent perfor-
mance and remarkable accuracy of the optimal MLP model for the estimation of
experimental values of TCR of water-alumina nanofluids for overall databank. The
most exact prediction (calculated TCRs = experimental data) is shown by a solid
dashed 45° line. A relatively large R2 = 0.971875 that observed for predicting all the
experimental TCRs justifies that there is an excellent agreement between the pred-
ications of MLP model and the actual experimental data.

Figure 3.
Variations of the mean squared errors with epoch during MLP training.

Figure 4.
Predicted thermal conductivity ratio vs. measured ones for the overall dataset.
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Table 3 summarizes an accuracy of the optimal MLP model with the six well-
known empirical correlations for prediction of experimental data reported by Das
et al. [39, 45, 47, 49, 60–62]. This table shows that the proposed MLP model pre-
sents the best overall AARD of 0.866% for the considered experimental data. The
proposed model by Chon et al. [45] provides an AARD = 1.331% that is the best
results among the considered correlations.

Table 4 reports results of estimation of experimental TCR data reported by
Chandrasekar et al. [57] using our smart model as well as various empirical correla-
tions [45, 47, 49, 60–62]. It can be simply seen that our proposed MLP model
predicts the experimental data with the smallest deviation (AARD = 0.117%). The
proposed correlations by Yu and Choi [60] and Xie et al. [61] that provide relatively
similar results (AARD = 0.39%) are the best empirical correlations.

3.2 Convective heat transfer coefficient

It is obvious that a convective heat transfer coefficient (HTC) of nanofluids
depends on concentration of the dispersed nanoparticles, their shape and size, flow
structure, thermal conductivity and heat capacity of both nanoparticles and base
liquid, and viscosity of nanofluid. Generally, addition of nanoparticles to the base
liquid improves its thermal conductivity. Increasing an amount of energy transfer
by the liquid leads to a higher temperature gradient between tube wall and bulk of
nanofluid. It is a reason that is often highlighted for explanation is an increasing rate
of convection heat transfer between nanofluid and tube wall [63].

Volume
fraction
of Al2O3

The considered intelligent approach and empirical correlations

Chonet al.
[45]

Murshedet al.
[47]

Mintsaet al.
[49]

Yu and
Choi [60]

Xieet al.
[61]

Nanet al.
[62]

MLP
model

Actual
TCR [57]

0.003 1.0136 1.0253 1.0058 1.0117 1.0118 1.0097 1.0145 1.015

0.0075 1.0220 1.0594 1.0136 1.0230 1.0231 1.0214 1.0306 1.031

0.010 1.0331 1.0818 1.0175 1.0341 1.0343 1.0292 1.0316 1.032

0.020 1.0545 1.1646 1.0351 1.0672 1.0673 1.0584 1.0750 1.074

0.030 1.0760 1.2523 1.0516 1.1023 1.1025 1.0896 1.0920 1.096

AARD% 0.587 3.406 1.524 0.388 0.386 0.635 0.117 —

Table 4.
Comparisons of the predictive accuracy of different smart and empirical correlations over experimental TCR
measured by Chandrasekar et al. [57] (T = 35.5 °C, Dp = 36 nm).

Volume
fraction
of Al2O3

The considered intelligent approach and empirical correlations

Chonet al.
[45]

Murshedet al.
[47]

Mintsaet al.
[49]

Yu and
Choi [60]

Xieet al.
[61]

Nanet al.
[62]

MLP
model

Actual
TCR [39]

0.01 1.09 1.08 1.02 1.03 1.03 1.03 1.10 1.111

0.02 1.15 1.16 1.04 1.07 1.07 1.06 1.14 1.141

0.03 1.20 1.25 1.05 1.10 1.10 1.09 1.16 1.170

0.04 1.24 1.34 1.07 1.14 1.14 1.12 1.26 1.241

AARD% 1.331 4.818 10.270 6.909 6.909 7.744 0.866 —

Table 3.
Comparison among accuracy of various approaches for the prediction of experimental TCRs measured by Das
et al. [39] (T = 51°C, Dp = 38.4 nm).
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The objective of this part of chapter is to design a smart approach based on
artificial neural networks for accurate estimation of convective HTC of different
nanofluids flowing inside circular tubes. The great deals of effort are made to
predict the HTC of nanofluids from the easily measurable characteristics of a sys-
tem. Correlation matrix analysis approves that size of nanoparticles, their molecular
weight (Mw) and volume concentration fraction (Vf), critical pressure and tem-
perature of the base fluids (Pc and Tc), their acentric factor (ω), Reynolds number
(Re), and the wall condition are the most important factors that influence on the
convective HTC of nanofluids. It should be mentioned that we consider two differ-
ent conditions for tube wall including uniform heat flux and constant temperature.
From practical point of view, these two conditions are often encountered in various
industrial applications.

The major part of the current section is dedicated to find the best ANN type as
well as its topology for the considered task. Indeed, the ANN type with the smallest
size that could provide the most accurate results for estimation of HTC of
nanofluids is considered as the best topology. After evaluating the most accurate
ANN type and its topology, we tried to compare its prediction results with available
empirical correlations in different literatures.

3.2.1 Experimental databank

For the convective HTCs, 346 experimental data which covered the Reynolds
number 600–8.9 � 104 and nanoparticle size of 20–100 nm are collected from
different literatures [64–68]. The considered physical properties and their ranges as
well as minimum-maximum values of convective HTCs of the collected experi-
mental data, which collected from various literatures are presented in Table 5.
These experimental data are used for developing ANN models and validating their
predictive capabilities.

3.2.2 Designing an ANN model

All the experimental datasets have been randomly allocated to two different
subsets namely train and test subsets. These two subsets have different application

Nanofluid Nanoparticle
size (nm)

Heat
flux (W/m2)

Temperature,
Range (K)

Vf,
Range
(%v)

Re h (W/m2 K) N* Reference

Al2O3/Water 45 8842 — 0.25–1.5 600–2200 600–2000 58 [64]

Water — 8842 — — 900–2100 500–800 6 [64]

Al2O3/EG-W 45 218,000 — 2–10 3000–15,000 8000–19,000 57 [65]

SiO2/EG-W 20, 50, 100 218,000 — 4, 2 3000–15,000 6000–19,000 37 [65]

CuO/EG-W 29 218,000 — 4 3000–12,000 8000–18,000 10 [65]

EG-W — 218,000 — — 4000–17,000 5000–16,000 11 [65]

Al2O3/Water 40 — 20–60 0.1–2 3000–18,000 2000–13,000 76 [66]

Water — — 20–60 — 3000–18,000 2000–11,000 17 [66]

Fe3O4/Water 36 12,489 — 0.02–
0.6

3000–22,000 2000–49,000 51 [67]

Water — 12,489 — — 3000–22,000 900–8000 13 [67]

EG-W — 500,000 — — 10,000–89,000 7000–38,000 10 [68]

*Number of experimental data.

Table 5.
Physical and operational conditions of various datasets.
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Table 3 summarizes an accuracy of the optimal MLP model with the six well-
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mental data, which collected from various literatures are presented in Table 5.
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3.2.2 Designing an ANN model

All the experimental datasets have been randomly allocated to two different
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Nanofluid Nanoparticle
size (nm)

Heat
flux (W/m2)

Temperature,
Range (K)

Vf,
Range
(%v)

Re h (W/m2 K) N* Reference

Al2O3/Water 45 8842 — 0.25–1.5 600–2200 600–2000 58 [64]

Water — 8842 — — 900–2100 500–800 6 [64]

Al2O3/EG-W 45 218,000 — 2–10 3000–15,000 8000–19,000 57 [65]

SiO2/EG-W 20, 50, 100 218,000 — 4, 2 3000–15,000 6000–19,000 37 [65]

CuO/EG-W 29 218,000 — 4 3000–12,000 8000–18,000 10 [65]

EG-W — 218,000 — — 4000–17,000 5000–16,000 11 [65]

Al2O3/Water 40 — 20–60 0.1–2 3000–18,000 2000–13,000 76 [66]

Water — — 20–60 — 3000–18,000 2000–11,000 17 [66]

Fe3O4/Water 36 12,489 — 0.02–
0.6

3000–22,000 2000–49,000 51 [67]

Water — 12,489 — — 3000–22,000 900–8000 13 [67]

EG-W — 500,000 — — 10,000–89,000 7000–38,000 10 [68]

*Number of experimental data.

Table 5.
Physical and operational conditions of various datasets.
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in the development of ANN model. Indeed, the training datasets have been used for
adjusting weights and biases of the ANN approach as well as selecting its best
structure. On the other hand, the predictive performance of this trained ANN
model is often validated by the testing subsets. Since the testing datasets are not
used during training stage and the ANN model did not see them previously, they
could be considered as a reliable benchmark for evaluation/validation performance
of the model in the unknown situations.

Various ANN types including RBF, MLP, CFB, and GR neural network are
checked and the best one is selected based on its predictive capabilities. The optimal
size of ANN approach (number of hidden neurons) is the smallest network, which
can predict both train and test subsets within an acceptable error.

In this section, an iterative constructive method is used for determination of an
optimal numbers of hidden neurons. Iterative constructive method increases the
number of neurons in hidden layer gradually as long as a testing error be fixed or
begins to rise. Values of observed AARD% for estimation of both testing and overall
experimental data for 20 different MLP models that have 1–20 neurons in their
hidden layer are presented in Figure 5. It can be simply understood from Figure 5
that the testing errors are decreased by increasing the number of hidden neurons up
to 10. Thereafter, no significant reduction in AARD% can be seen. Accordingly, the
single hidden layer MLP approach having 10 hidden neurons is selected as the best
structure for estimation of convective HTC of six different nanofluids and five
considered pure liquids.

Values of the R2 and MSE between experimental convective HTC and those HTC
values predicted by various MLP networks are presented in Figures 6 and 7,
respectively. It can be seen from these figures, the 10 hidden neurons that present
the largest value for R2 as well as the smallest value for MSE over huge experimental
databank can be regarded as the optimum value. It is worthy to be mentioned that
vertical axis of Figure 6 is in logarithmic scale to magnify increasing trend of MSE
after 10 hidden neurons. The observed MSE for estimation of the testing datasets
decreases by increasing the number of hidden neurons up to 10. After that no
notable improvement in expense of enlarging the MLP model can be found. It can

Figure 5.
AARD% of various MLP topologies for testing and overall subsets.
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be said that using more than 10 hidden neurons for the MLP models not only
increase the size of the model but it has no positive effect on reducing the magni-
tude of the errors.

Here, we tried to do some comparisons between predictive performance of the
optimum MLP model with other available feedforward neural networks, i.e., radial
basis, cascade feedforward, and generalized regression neural networks. Table 6
summarizes the result of four smart models for simulation of the behavior of
convective HTC of different pure fluids and nanofluids. It should be mentioned that
all of these four intelligent models, i.e., MLP, RBF, GR, and CFF neural networks

Figure 6.
MSE logarithm of various ANN topologies for testing and overall sets.

Figure 7.
Associated R2 values of ANN topologies for testing and overall sets.
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have single hidden layer with 10 neurons. The multi-layer perceptron, cascade
feedforward, radial basis function, and generalized regression approach shows
AARDs of 2.41, 2.46, 3.01, and 14.59% for prediction of whole experimental
databank, respectively. It is clear that the MLP model presents the smallest error
(AARD% = 2.63) for training subset while the worst results for estimation of this
dataset (AARD% = 12.82) was presented by the GR model. It is widely accepted that
a GR approach in which hidden neurons equals with the number of training data-
points can provide the best accuracy for estimation of any continuous function. The
worst result that is provided by the GR neural network in this study may be
associated with the discontinuity in the experimental data of convective HTC or/
and the number of 10 hidden neurons that is very low than its theoretical threshold.
Comparison among the predictive performances of these four ANN paradigms
reveals that the MLP approach simply outperforms other ANN model for predicting
the experimental values of convective HTC of both pure fluids and nanofluids.
Therefore, a single hidden layer MLP model with 10 neurons that present the best
performance for estimation of the convective HTC is considered as the best neural
network model.

Figure 8 depicts change of the MSE for training dataset for the best MLP model.
It is obvious that the MSE reaches relatively small value of 1.6 � 10�5 after 1000
iterations. Consequently, it can be claimed that the learning procedure of the MLP
model was successful and this trained model can be used for more analyses.

3.2.3 Evaluation of the performance of developed MLP model

Figure 9 illustrates the plot of training (square symbols) and testing groups
(spheres symbols) for experimental data of convective HTC as function of
predicted values by the best MLP model. The most exact predictions, i.e., (pre-
dictions = experimental) is depicted by the dashed 45° line. The relatively slight
deviations from the dashed line justify that MLP predictions are properly mapped
on their associated experimental data.

ANN model Accuracy indices

MSE AARD (%) R2

Multi-layer perceptron neural network Train subset 0.000016 2.63 0.999692

Test subset 0.000019 2.36 0.999512

Whole databank 0.000017 2.41 0.999664

Cascade feedforward neural network Train subset 0.002319 2.67 0.999774

Test subset 0.013574 2.41 0.999156

Whole databank 0.004628 2.46 0.999596

Radial basis function neural network Train subset 0.002413 3.54 0.999767

Test subset 0.023266 2.88 0.998812

Whole databank 0.006692 3.01 0.999439

Generalized regression neural network Train subset 3.194334 12.82 0.639363

Test subset 6.687986 15.05 0.386423

Whole databank 3.911239 14.59 0.579964

Table 6.
Comparison of performances of different ANN models.
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Our developed MLP model with optimum configuration shows regression coef-
ficient of 0.999692 for the prediction of training dataset of convective HTCs. It also
presented the MSE and AARD of 1.6 � 10�5 and 2.63% for training group, respec-
tively. Moreover, it can predict the testing dataset with impressing R2 = 0.999512,
AARD = 2.365%, and MSE = 1.9 � 10�5.

Figure 8.
MSE variation versus epoch for optimal MLP model predicting heat transfer coefficient, solid line represents
goal while dashed line is training.

Figure 9.
Schematic presentation of the proposed optimal MLP network capability in estimating the experimental heat
transfer coefficient over training + testing datasets.
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The effect of particle volumetric concentration on the convective heat transfer
coefficient of Al2O3 nanofluid flowing through a circular tube is investigated in
Figure 10. It is obvious that the convective HTC increases by increasing the nano-
particle concentration in base fluid. Moreover, the level of this increase for higher
Reynolds number (higher velocity) is more substantial. This behavior may be
explained by more turbulence movement of nanoparticles in higher Reynolds num-
ber. High concentration of nanoparticles in base fluids is a factor that is responsible
for increasing the interface between fluid and particles and enhancement of heat
transfer rate.

Result of another analysis that is performed to investigate an effect of type of
nanoparticles including Al2O3, CuO, and SiO2 on HTC of water-based nanofluids is
shown in Figure 11. It can be simply understood that the convective HTC of water-
based nanofluids is remarkably higher than the pure water. Chaotic movement of
nanoparticles as well as higher thermal conductivity of nanofluids may be respon-
sible for higher heat transfer rate of nanofluids than the pure base fluids. A signif-
icant difference between convective HTC of the considered nanoparticles can also
be seen in Figure 11. A possible reason for this difference may be the difference in
thermophysical properties of nanoparticles. Since the metallic particles (CuO and
Al2O3) have higher density, higher thermal conductivity in comparison with non-
metallic particles (SiO2), a higher heat transfer coefficients are provided in the
presence of metallic particles.

3.3 Viscosity

Viscosity is one of the most important properties of fluids/nanofluids that
directly influences on their heat transfer applications and flow behavior. Accurate
and reliable estimation of viscosity is required for calculation of convection HTC,
Prandtl, and Reynolds numbers, amount of pressure drop, and theoretical power of
pump.

Figure 10.
Effect of particle volumetric concentration on the convective heat transfer coefficient, closed circles represent
experimental data and solid lines are the results of MLP model.
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3.3.1 Experimental databank

Both empirical correlations [57, 69–77] and published literature data [24, 78–88]
approved that the dynamic viscosity of nanofluids is essentially dependent on
chemistry of base liquid, characteristics of nanoparticle, and ranges of operating
conditions. Considering the corresponding state theory, the base fluids are tried to
be introduced based on their critical temperature, critical pressure, and acentric
factor [89]. Numerical values of these fundamental parameters for different base
liquids are reported in Table 7. It is worthy to be noted that critical temperature,
critical pressure, and acentric factor for mixtures of water-ethylene glycol are
obtained using the Kay’s mixing rule [90].

Temperature is likely the most important operating condition that could change
the viscosity of both pure fluids and nanofluids. For incorporation, the effect of

Figure 11.
Effect of particle type on the heat transfer coefficient, closed circles represent experimental data and solid lines
are the results of MLP model.

Liquid Pc (MPa) Tc (K) Acentric factor

Water 22.06 647.1 0.343

Propylene Glycol (PG) 6.04 626 1.102

EG/water (60/40) 17.71 669.1 0.387

EG/Water (45/55) 19.31 661 0.371

EG/Water (40/60) 19.73 658.9 0.366

Ethylene glycol (EG) 7.71 719.7 0.487

Table 7.
Acentric factor and critical properties of the pure base liquids.
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nanoparticles, their diameter, and volumetric concentration (Vp) in liquid are also
regarded as independent factors. A brief description of experimental databank
including independent and dependent variable(s), their associated ranges, and
number of collected datasets from different literatures are presented in Table 8
[24, 78–85].

Table 8 states that our experimental databank for viscosity of different base
fluids - alumina nanoparticle has 674 data-points. The databank includes seven
different base liquids in temperature range of 273–345 K. These base liquids
may have up to 9.4 volume percent of alumina nanoparticle with diameter of 8 to
50 nm. The dynamic viscosity of the considered nanofluids varies from 0.43 to
81.51 mPa.

3.3.2 ANN model development

Similar to two previous modelings, the best structure of MLP model is selected
through trial and error analyses. The results of this trial and error procedure on the
number of hidden neurons for the MLP network were reported in Table 9. Differ-
ent MLP models having 1 to 15 hidden neurons were developed, trained, tested, and
their performances were evaluated. The smallest number of hidden neurons that
provides an acceptable accuracy is often selected as an optimum structure.

Table 9 clearly shows that performance of the MLP model got better by
increasing the number of hidden neuron up to 14. After that, a relatively worse
result is obtained for testing subset even by spending higher computational time
and effort. Thus, a two-layer MLP approach constituting of 14 hidden neurons (the
bold rows) was selected as the best topology for prediction of dynamic viscosity of
dispersion of alumina nanoparticles in different base fluids. It is obvious that this
MLP model predicted whole of the experimental data-points with R2 of 0.99947,
MSE of 0.1442, AARD of 4.13%, and RMSE of 0.3797.

It is common to compare the predictive performance of various types of ANN
and find the best one in terms of some statistical indices. Table 10 summarizes the

Liquid Dp
(nm)

Vp (%) Temperature
(K)

Viscosity
(mPa.s)

No. of
data

Reference

Water 47 1–9.4 294–343 0.43–4.91 81 [80]

Water 13 1.34–2.78 293–345 0.63–2.49 14 [81]

Water 30 0.01–0.3 294–312 0.66–1.00 114 [82]

Water 33 1–2 293–313 0.65–1.09 10 [83]

Ethylene glycol (EG) 8–43 0.5–6.6 283–323 7.51–81.51 96 [78]

Ethylene glycol (EG) 10 1–5 298–328 8.14–37.28 21 [79]

Propylene glycol (PG) 27–50 0.5–3 303–333 7.9–38.6 36 [85]

EG/water (20/80) 36 0–1.5 273–333 0.59–4.6 89 [84]

EG/water (40/60) 36 0–1.5 273–333 0.96–13.64 90 [84]

EG/water(45/55) 30 0–2 283–333 1.54–11.08 33 [24]

EG/water(60/40) 36 0–1.5 273–333 1.5–35.35 90 [84]

Overall ranges 8–50 0–9.4 273–345 0.43–81.51 674 [24, 78–85]

Table 8.
Brief description of collected experimental datasets for dynamic viscosity of alumina-based nanofluids.
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obtained results by the best topology of the CFF, MLP, RBF, and least square
support vector machines (LS-SVM) models for training, testing, and overall
datasets in term of AARD%, MSE, R2, and RMSE.

Focusing on reported results in Table 10 clearly confirms that the MLP neural
network provides the best predictive performance for prediction of dynamic vis-
cosity of different Al2O3-based nanofluids. Since, it outperforms other

Number of hidden neurons Database Sensitivity accuracy analyses

AARD% MSE R2 RMSE

2 Training 24.62 3.4708 0.98488 1.8630

Testing 27.07 6.5978 0.99033 2.5686

Overall 24.99 3.9394 0.98562 1.9848

4 Training 17.02 1.5977 0.99414 1.2640

Testing 17.79 1.5941 0.99402 1.2626

Overall 17.14 1.5972 0.99409 1.2638

6 Training 12.94 0.5584 0.99795 0.7473

Testing 15.09 0.7587 0.99726 0.8710

Overall 13.26 0.5884 0.99783 0.7671

8 Training 8.80 0.3267 0.99876 0.5715

Testing 10.79 1.0471 0.99723 1.0233

Overall 9.10 0.4346 0.99841 0.6593

9 Training 8.20 0.1343 0.99946 0.3665

Testing 9.64 0.2289 0.99961 0.4784

Overall 8.41 0.1485 0.99946 0.3853

10 Training 6.55 0.1183 0.99956 0.3440

Testing 7.81 0.1864 0.99940 0.4318

Overall 6.74 0.1285 0.99953 0.3585

11 Training 6.53 0.1263 0.99956 0.3554

Testing 8.19 1.7631 0.99352 1.3278

Overall 6.78 0.3716 0.99866 0.6096

Training 5.63 0.0906 0.99968 0.3011

12 Testing 6.04 0.2209 0.99891 0.4700

Overall 5.69 0.1102 0.99959 0.3319

13 Training 4.38 0.0859 0.99969 0.2931

Testing 6.30 0.3259 0.99869 0.5709

Overall 4.67 0.1219 0.99955 0.3491

14 Training 4.11 0.1025 0.99962 0.3202

Testing 4.22 0.3804 0.99867 0.6167

Overall 4.13 0.1442 0.99947 0.3797

15 Training 4.72 0.0799 0.99971 0.2827

Testing 5.91 0.3091 0.99861 0.5560

Overall 4.90 0.1143 0.99958 0.3381

The bold values indicate the best obtained results for the considered AI models.

Table 9.
Trial and error procedure for finding the best structure for MLPNN model.
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No. of
data

Reference

Water 47 1–9.4 294–343 0.43–4.91 81 [80]

Water 13 1.34–2.78 293–345 0.63–2.49 14 [81]

Water 30 0.01–0.3 294–312 0.66–1.00 114 [82]

Water 33 1–2 293–313 0.65–1.09 10 [83]

Ethylene glycol (EG) 8–43 0.5–6.6 283–323 7.51–81.51 96 [78]

Ethylene glycol (EG) 10 1–5 298–328 8.14–37.28 21 [79]

Propylene glycol (PG) 27–50 0.5–3 303–333 7.9–38.6 36 [85]

EG/water (20/80) 36 0–1.5 273–333 0.59–4.6 89 [84]

EG/water (40/60) 36 0–1.5 273–333 0.96–13.64 90 [84]

EG/water(45/55) 30 0–2 283–333 1.54–11.08 33 [24]

EG/water(60/40) 36 0–1.5 273–333 1.5–35.35 90 [84]

Overall ranges 8–50 0–9.4 273–345 0.43–81.51 674 [24, 78–85]

Table 8.
Brief description of collected experimental datasets for dynamic viscosity of alumina-based nanofluids.
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obtained results by the best topology of the CFF, MLP, RBF, and least square
support vector machines (LS-SVM) models for training, testing, and overall
datasets in term of AARD%, MSE, R2, and RMSE.

Focusing on reported results in Table 10 clearly confirms that the MLP neural
network provides the best predictive performance for prediction of dynamic vis-
cosity of different Al2O3-based nanofluids. Since, it outperforms other

Number of hidden neurons Database Sensitivity accuracy analyses

AARD% MSE R2 RMSE

2 Training 24.62 3.4708 0.98488 1.8630

Testing 27.07 6.5978 0.99033 2.5686

Overall 24.99 3.9394 0.98562 1.9848

4 Training 17.02 1.5977 0.99414 1.2640

Testing 17.79 1.5941 0.99402 1.2626

Overall 17.14 1.5972 0.99409 1.2638

6 Training 12.94 0.5584 0.99795 0.7473

Testing 15.09 0.7587 0.99726 0.8710

Overall 13.26 0.5884 0.99783 0.7671

8 Training 8.80 0.3267 0.99876 0.5715

Testing 10.79 1.0471 0.99723 1.0233

Overall 9.10 0.4346 0.99841 0.6593

9 Training 8.20 0.1343 0.99946 0.3665

Testing 9.64 0.2289 0.99961 0.4784

Overall 8.41 0.1485 0.99946 0.3853

10 Training 6.55 0.1183 0.99956 0.3440

Testing 7.81 0.1864 0.99940 0.4318

Overall 6.74 0.1285 0.99953 0.3585

11 Training 6.53 0.1263 0.99956 0.3554

Testing 8.19 1.7631 0.99352 1.3278

Overall 6.78 0.3716 0.99866 0.6096

Training 5.63 0.0906 0.99968 0.3011

12 Testing 6.04 0.2209 0.99891 0.4700

Overall 5.69 0.1102 0.99959 0.3319

13 Training 4.38 0.0859 0.99969 0.2931

Testing 6.30 0.3259 0.99869 0.5709

Overall 4.67 0.1219 0.99955 0.3491

14 Training 4.11 0.1025 0.99962 0.3202

Testing 4.22 0.3804 0.99867 0.6167

Overall 4.13 0.1442 0.99947 0.3797

15 Training 4.72 0.0799 0.99971 0.2827

Testing 5.91 0.3091 0.99861 0.5560

Overall 4.90 0.1143 0.99958 0.3381

The bold values indicate the best obtained results for the considered AI models.

Table 9.
Trial and error procedure for finding the best structure for MLPNN model.
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considered AI approaches; it therefore can be regarded as the best AI approach for
considered task.

3.3.3 Evaluation the ANN model performances

Plot of estimated viscosity for different nanofluids by the optimum MLP net-
work with respect to their associated experimental data for training and testing
datasets are depicted in Figure 12. Aggregation of the symbols for training as well as
testing subsets around the 45° solid line approves that the developed MLP model is a

AI model Dataset AARD% MSE R2 RMSE

MLP Training stage 4.11 0.1025 0.99962 0.3202

Testing stage 4.22 0.3804 0.99867 0.6167

Overall data 4.13 0.1442 0.99947 0.3797

CFF Training stage 4.13 0.0989 0.99965 0.3144

Testing stage 4.74 0.1850 0.99911 0.4302

Overall data 4.22 0.1118 0.99959 0.3343

LS-SVM Training stage 6.33 0.0791 0.99971 0.2812

Testing stage 10.27 2.5489 0.99073 1.5965

Overall data 6.92 0.4492 0.99834 0.6702

RBF Training stage 57.91 5.599 0.9759 2.366

Testing stage 50.58 14.425 0.9753 3.798

Overall data 56.81 6.922 0.9745 2.631

The bold values indicate the best obtained results for the considered AI models.

Table 10.
Comparison among the capabilities of different AI approaches in prediction of viscosity of nanofluids.

Figure 12.
Performance of the best AI model for estimation of viscosity of alumina-based nanofluids.
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considered AI approaches; it therefore can be regarded as the best AI approach for
considered task.

3.3.3 Evaluation the ANN model performances

Plot of estimated viscosity for different nanofluids by the optimum MLP net-
work with respect to their associated experimental data for training and testing
datasets are depicted in Figure 12. Aggregation of the symbols for training as well as
testing subsets around the 45° solid line approves that the developed MLP model is a

AI model Dataset AARD% MSE R2 RMSE

MLP Training stage 4.11 0.1025 0.99962 0.3202

Testing stage 4.22 0.3804 0.99867 0.6167

Overall data 4.13 0.1442 0.99947 0.3797

CFF Training stage 4.13 0.0989 0.99965 0.3144

Testing stage 4.74 0.1850 0.99911 0.4302

Overall data 4.22 0.1118 0.99959 0.3343

LS-SVM Training stage 6.33 0.0791 0.99971 0.2812

Testing stage 10.27 2.5489 0.99073 1.5965

Overall data 6.92 0.4492 0.99834 0.6702

RBF Training stage 57.91 5.599 0.9759 2.366

Testing stage 50.58 14.425 0.9753 3.798

Overall data 56.81 6.922 0.9745 2.631

The bold values indicate the best obtained results for the considered AI models.

Table 10.
Comparison among the capabilities of different AI approaches in prediction of viscosity of nanofluids.

Figure 12.
Performance of the best AI model for estimation of viscosity of alumina-based nanofluids.
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practical tool for accurate estimation of the dynamic viscosity of different Al2O3-
based nanofluids in wide ranges of operating conditions.

In this section, some analyses are performed to compare predictive accuracy of
the proposed AI model with 10 well-known empirical correlations in literature
[57, 69–77]. The obtained AARD% values by the considered empirical correlations
for prediction of dynamic viscosity of nanofluids are reported in Table 11. It is
obvious that the proposed model by Maiga et al. [74] is the most accurate empirical
correlation, while the model developed by Frankel and Acrivos [71] presents the
worst results. The earlier one has an AARD of 16.76%, while the later shows the
AARD of 180.25%.

The obtained values for AARD by various AI models and the best obtained
results by the considered empirical correlations are summarized in Table 12. It can
be easily understood that the best results among 10 empirical correlations only
outperforms the RBF model and predictive performance of other AI models is more
better than the empirical correlations.

4. Conclusions

Nanofluids are new and high-tech class of operating fluids that recently found
high popularity in the field of heat transfer equipment. In spite of both practical and
potential application of nanofluids, three developed no accurate correlations for
estimation of thermophysical properties of nanofluids in wide ranges of conditions.
In this chapter, the focus was concentrated on estimation of conduction heat trans-
fer coefficient, convective HTC, and viscosity of different nanofluids by four dif-
ferent artificial neural networks. MLP, RBF, CFF, and GR are the types of ANN
methodology that are employed for these estimations. The best structures of ANN
models are determined, their predictive performances are compared and the best
one is presented. Some statistical error indices including MSE, RMSE, AARD%, and
R2 are used for evaluation of the accuracy of the ANN models. Results confirm that

Experimental data MLP CFF LS-SVM Correlation* RBF

Ethylene glycol [78] 1.94 1.67 2.28 11.56 7.56

Ethylene glycol [79] 3.61 3.53 2.72 24.95 12.34

Water [80] 2.82 4.58 4.59 11.92 170.58

Water [81] 7.65 5.93 15.68 11.04 100.90

Water [82] 2.59 1.19 8.94 1.26 28.11

Water [83] 29.02 11.26 35.64 5.8 53.48

EG/water (20/80) [84] 5.96 6.30 11.71 5.35 84.15

EG/water (40/60) [84] 4.53 6.12 8.16 27.68 62.74

EG/water (45/55) [24] 5.42 5.43 7.10 24.17 35.03

EG/water (60/40) [84] 4.75 6.63 4.29 31.12 38.29

Propylene glycol [85] 1.56 0.90 0.33 7.06 16.70

Overall AARD% 4.13 4.24 6.92 14.50 56.81

*The best obtained result among all of the considered empirical correlations.

Table 12.
Provided AARD% for prediction of experimental datasets by different methodologies.
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ANN models capable of accurate estimation of thermophysical properties of
nanofluids and show better performances than the available empirical correlations.

Acronyms and abbreviations

ANN artificial neural network
MSE mean square errors
RMSE root mean square errors
AARD% average absolute relative deviation percent
MLP multilayer perceptron
CFF cascade feedforward
RBF radial basis function
GR generalized regression
TCR thermal conductivity ratio
HTC heat transfer coefficient
EG ethylene glycol
PG propylene glycol
LS-SVM least square support vector machines

Appendices and nomenclature

R2 regression coefficient
w weight
b bias
out perceptron’s output
f activation function
Ind number of dimensions of independent variable
Dep number of dimensions of dependent variable
N number of experimental data
D value of dependent variable
Exp experimental data
Cal calculated values
Dp diameter of nanoparticle
T temperature
Mw molecular weight
Vf volume fraction of nanoparticle
ω acentric factor
Pc critical pressure of base fluids
Tc critical temperature of base fluids
Re Reynolds number
h convective heat transfer coefficient
Vp volume percent of nanoparticle
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practical tool for accurate estimation of the dynamic viscosity of different Al2O3-
based nanofluids in wide ranges of operating conditions.

In this section, some analyses are performed to compare predictive accuracy of
the proposed AI model with 10 well-known empirical correlations in literature
[57, 69–77]. The obtained AARD% values by the considered empirical correlations
for prediction of dynamic viscosity of nanofluids are reported in Table 11. It is
obvious that the proposed model by Maiga et al. [74] is the most accurate empirical
correlation, while the model developed by Frankel and Acrivos [71] presents the
worst results. The earlier one has an AARD of 16.76%, while the later shows the
AARD of 180.25%.

The obtained values for AARD by various AI models and the best obtained
results by the considered empirical correlations are summarized in Table 12. It can
be easily understood that the best results among 10 empirical correlations only
outperforms the RBF model and predictive performance of other AI models is more
better than the empirical correlations.

4. Conclusions

Nanofluids are new and high-tech class of operating fluids that recently found
high popularity in the field of heat transfer equipment. In spite of both practical and
potential application of nanofluids, three developed no accurate correlations for
estimation of thermophysical properties of nanofluids in wide ranges of conditions.
In this chapter, the focus was concentrated on estimation of conduction heat trans-
fer coefficient, convective HTC, and viscosity of different nanofluids by four dif-
ferent artificial neural networks. MLP, RBF, CFF, and GR are the types of ANN
methodology that are employed for these estimations. The best structures of ANN
models are determined, their predictive performances are compared and the best
one is presented. Some statistical error indices including MSE, RMSE, AARD%, and
R2 are used for evaluation of the accuracy of the ANN models. Results confirm that

Experimental data MLP CFF LS-SVM Correlation* RBF

Ethylene glycol [78] 1.94 1.67 2.28 11.56 7.56

Ethylene glycol [79] 3.61 3.53 2.72 24.95 12.34

Water [80] 2.82 4.58 4.59 11.92 170.58

Water [81] 7.65 5.93 15.68 11.04 100.90

Water [82] 2.59 1.19 8.94 1.26 28.11

Water [83] 29.02 11.26 35.64 5.8 53.48

EG/water (20/80) [84] 5.96 6.30 11.71 5.35 84.15

EG/water (40/60) [84] 4.53 6.12 8.16 27.68 62.74

EG/water (45/55) [24] 5.42 5.43 7.10 24.17 35.03

EG/water (60/40) [84] 4.75 6.63 4.29 31.12 38.29

Propylene glycol [85] 1.56 0.90 0.33 7.06 16.70

Overall AARD% 4.13 4.24 6.92 14.50 56.81

*The best obtained result among all of the considered empirical correlations.

Table 12.
Provided AARD% for prediction of experimental datasets by different methodologies.
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ANN models capable of accurate estimation of thermophysical properties of
nanofluids and show better performances than the available empirical correlations.

Acronyms and abbreviations

ANN artificial neural network
MSE mean square errors
RMSE root mean square errors
AARD% average absolute relative deviation percent
MLP multilayer perceptron
CFF cascade feedforward
RBF radial basis function
GR generalized regression
TCR thermal conductivity ratio
HTC heat transfer coefficient
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PG propylene glycol
LS-SVM least square support vector machines

Appendices and nomenclature

R2 regression coefficient
w weight
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out perceptron’s output
f activation function
Ind number of dimensions of independent variable
Dep number of dimensions of dependent variable
N number of experimental data
D value of dependent variable
Exp experimental data
Cal calculated values
Dp diameter of nanoparticle
T temperature
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ω acentric factor
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Chapter 5

The Technique of Automated
Design of Technological Objects
with the Application of Artificial
Intelligence Elements
Tatyana Zubkova and Marina Tokareva

Abstract

The chapter describes the methodology of using artificial intelligence methods to
build an integrated environment for computer-aided design components of tech-
nological objects based on their classification, integration and configuration. It
describes the formation of CAD based on the object-oriented approach, methods of
configuring the integrated environment and the organization of single information
space. The configuration of the system components and the methodology for orga-
nizing the interaction of CAD components, obtaining the final CAD architecture,
focused on solving the problem, is shown. The application of the Mamdani method
for the formal description of project operations and the use of genetic algorithms to
optimize the operational parameters of the process and the design of the techno-
logical machine are described.

Keywords: technological machines, CAD, object-oriented approach,
information system, configuration of components, integration of components,
creation of a single information space, fuzzy inference algorithms,
genetic algorithm

1. Introduction

Technological machines have a fairly wide range of applications in all areas of
person’s production activity. Designing them, it is necessary to take into account the
properties of the material being processed, the requirements for the technological
process, the quality of the finished product, as well as the geometric and design
features of the machine itself. Market competition forces manufacturers to improve
and create new technologies to increase the range of their products. Therefore,
production must be flexible, with the ability to re-adjust to different types of raw
materials, product configurations, productivity, etc., depending on the current
market needs.

The design of sophisticated technological machines is currently focused on the
use of computer-aided design (CAD) systems to solve a wide range of engineering
problems: strength calculation, dynamics, kinematics, heat transfer, acoustics,
durability, etc., modeling of technological processes of manufacturing and product
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assembly. This is achieved by combining modern hardware and software, the
parameters and characteristics of which are selected with maximum consideration
for the features of the tasks of the design process.

The purpose of the work is to show the methodology of computer-aided design
of technological objects using intelligent methods. The volume of design and engi-
neering work, the proposed approaches, allows to increase the productivity of
design engineers. The use of artificial intelligence methods is particularly relevant
when there are no well-developed methods of designing or creating a fundamen-
tally new and demanding creative work.

2. Statement of the problem of CAD formation based on an
object-oriented approach

An adequate information system (IS) is necessary for designing technological
objects.

A feature of solving the problems of designing technological objects is the
presence of specialized subsystems. The need for a narrow specialization of the
components of the applied area is justified by the following factors:

• ease of component data abstraction for the users and for other software
components;

• the possibility of parallel development of components of a specific task;

• modification and replacement of the component with an alternative one, if the
equipment or the target platform has changed, without changing the other
components.

The requirements presented can be achieved by applying object-oriented
decomposition. Based on this decomposition for the designed CAD components, the
technological requirements may be as follows:

• components must have certain software interfaces for interaction;

• for the implementation of components it is necessary to use the principles of
object-oriented design and programming;

• component functions must solve certain tasks [1–4].

The object-oriented approach allows us to consider the CAD system as an inde-
pendent system S, the properties of which are inherited from the components
included in its composition. The system S has a finite number of characteristics
F ¼ Fif g, i ¼ 1, n, where n is the number of properties. Let it be m possible ways of
forming the system S. In the k � y (k∈m) method of formation
Sk ¼ Rp

� �
, p ¼ 1, Pk , where Pk is the number of subsystems in the S k � y decom-

position method, each CAD resource (component) is characterized by a set of
properties F ¼ FРk

� �
, k ¼ 1, K , each of which has an individual numerical measure.

The set of properties of all resources Rk in k � y the first decomposition
Fk ¼ ∪Pk

p¼1 FРk

� �
. Interacting with each other, resources generate many system pro-

cesses Zk ¼ Zkj
� �

, j ¼ 1, J , where J is the number of processes.

100

Deterministic Artificial Intelligence

The optimal organization of CAD is the selection and distribution of resources
r∈Rk between project tasks Zk according to a given decomposition scheme k to
ensure the extreme values of the system properties extr Fkð Þ necessary to perform
the required operations. At the same time, the time tk to solve each of the project
tasks Zk while ensuring extr Fkð Þ should be minimized (Figure 1).

Formalization of the selected conditions is represented as a system (1).

XJ

j¼1
Q j ∪

Pj

p¼1
Fjp
� �� �

! max;

XJ

j¼1
tj ∪

Pj

p¼1
Fjp
� �� �

! min:

;

8>>>>><
>>>>>:

(1)

where Qj is the selection function of system properties, under which the quality
characteristics for each design task are maximized; tj is the selection function of
system properties, which minimizes time for each project task; F—finite set of
characteristics; Р—number of subsystems; J—number of processes.

System (1) contains two particular criteria with different directions of optimi-
zation (for qualitative characteristics, maximization, for temporal characteristics,
minimization).

To determine the target function we use the additive criterion. The objective
function is formed by adding the normalized values of the partial criteria and in the
case of the application of the additive criterion will take the form:

XJ

j¼1
cj
Qj Fj
� �

Q0
j
� vj

tj Fj
� �
t0j

 !
! max, (2)

where Fj is the property of the alternative subsystem for solving the j-y design

problem (controlled parameter), and Fj ∈∪Pj

p¼1 Fjp
� �

, Q0
j, t0j—j-y normalizing

divider for quality and time characteristics, respectively; cj vj—weights of the j-y
particular criterion.

When searching for the values of the objective function, the qualitative charac-
teristics have a higher priority; if the values of the qualitative indicators are equal
(the presence of the required properties) of the program components, the choice is
made according to the time characteristics. Thus, the values of the weighting factors
must meet the condition cj

vj
! ∞:

Figure 1.
Organization and distribution of resources between project tasks.
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The controlled parameters are the properties of the system (F) and the totality of
the components (R) that provide these properties:

U ¼ F,
R:

�
(3)

In real conditions, the choice of the values of the controlled variables, most
often, is imposed by the limitations associated with the available resources, power
and other features. Functional limitations establish certain dependencies between
the controlled parameters, which cannot be violated under the terms of ensuring
the performance or efficiency of the technical system [1, 5].

The development of an integrated environment by adding new software mod-
ules that automate individual functional and managerial procedures makes it nec-
essary to create a methodology for managing the configuration of an integrated
environment.

3. Components of the methodology for configuring the integrated
environment and the organization of a single information space

In relation to the problem area of development, the following components of the
methodology are highlighted (Figure 2):

• single realizable environment;

• classification of system components;

• integration interfaces;

• integration principles of components;

• configuration of system components.

Classification of system components form a generalized representation of
groups and subgroups of components of a software system (PS).

A single executable environment is a software environment where components
function and interact with each other.

Integration interfaces are software interfaces that provide interaction between
software systems of a single executable environment and implemented components.

Component integration principles—a set of rules necessary for the interaction of
two or more components. Since complex CAD consists of components that perform

Figure 2.
Components of integrated CAD.
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synthesizing, analyzing, evaluating, converting functions, it is necessary to consider
various principles of the organization of interaction between subsystems.

Configuration of system components is a change in the set of software compo-
nents depending on the design tasks to be solved [6, 7].

The use of various automated systems (AS) by independent developers in the
product life cycle processes raises the problem of the information compatibility of
these systems, which limits the possibility of using the same data and sharing it.
This necessitates the presentation of data in the form of a single structured infor-
mation model that is accessible to all specialists in the design process. The common
information space (UIS) allows:

• accept and store the product design electronically;

• keep track of the current state of the product;

• organize a quick view of all models and documents;

• to ensure the rapid exchange of information between users of the integrated
environment;

• to ensure information consistency and exchange between all subsystems of
CAD.

These requirements for the UIS can be fulfilled if the synthesizing, constructive
and analyzing design processes in the CAD system are automated. And also, if the
project information enters the information space automatically and is available to all
users of the system in accordance with the existing access rights.

In most cases, the integration of various CAD subsystems is carried out using
API (application programming interface) interfaces (Figure 3) and CAD (computer
aided design), CAE (computer aided engineering) systems.

The disadvantages of organizing this interaction are:

• narrow specialization of the developed integration interface designed to solve
the interaction problem only for certain subsystems;

• dependence of the functioning of the system on changes in the API;

• the need to develop additional integration when introducing new CAD and
CAE systems;

• lack of free access to API software products.

Thus, the integration option, based only on the API, allows you to create the core
of the enterprise UIS, but in this case the system is limited from changes in API
functions to changes in the level of replacement of subsystems.

A fundamental solution to the problems considered is the introduction of CALS-
technologies. CALS (continuous acquisition and lifecycle support—continuous
information support for supplies and product life cycle) is a modern approach to the

Figure 3.
Interaction scheme of CAD-system and PS through API.
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design and manufacture of high-tech and knowledge-intensive products, which
consists in using computer technology and modern information technologies
at all stages of the product life cycle. The main CALS tool is SDE (shared data
environment).

The CALS approach is to free the user from dependence on the manufacturer of
the software being used. The basis of the approach is a single information space in
accordance with the international standard for data presentation. The main stan-
dard is ISO 10303 STEP (standard for exchange of product model data), based on
the express language. There are also standards IGES (international graphical
exchange format) and DXF (drawing interchange format), which are currently one
of the main data storage formats for some CAD-systems. As an alternative language
for the exchange of geometric and technical data about the product can be used
XML markup language. For CALS, of interest are the subsets of product definition
exchange (PDX) and 3D XML dedicated to data exchange in CAD.

Due to the considered features, the general organization of interaction between
the CAD subsystems looks like that shown in Figure 4. The use of CALS technolo-
gies can significantly reduce the scope of design work, since the descriptions of
machines and systems, many components of equipment that were previously
designed, will be stored in the PS database in unified format.

The solution of the integration task is to integrate ready-made software solutions
using interfaces into a single system of modules. The connecting element is a special
module designed for the transmission and transformation of data. Formed a single
executable environment provides a functional basis for the introduction of various
components into the system [8–10].

The interaction of integration components with external CAD systems (CAD
and CAE systems) and modules of the PS being developed is presented in Figure 5.

Figure 4.
CALS technology.

Figure 5.
The interaction of systems in the integrating complex.
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CALS standards have been chosen as the format for exchanging design data.
Thus, according to the presented scheme, geometric models presented in STEP,
DXF, IGES formats can be used as imported (exported) design information. The
format of data exchange between the internal components of the software core (PS)
is the product model, represented in the XMLmarkup language. The use of a similar
organization of the internal representation of the central module will allow to
include in the product model, in addition to the design parameters, also the
parameters of the technological process, the rheology of the material, temperature
characteristics in different parts of the machine and other characteristics necessary
for analyzing the designed structure and its identification in the system.

The interaction of external components of the integrated environment is
provided by:

• using exchange files;

• unidirectional or bidirectional software interfaces;

• using database tables (DB).

Figure 6.
Methods of organizing the interaction of CAD and CAE-systems.
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The use of the software interface provided by the manufacturers restricts the
functionality of the system, its extensibility and scale. Thus, exchange files are
selected as the main method of interaction between external CAD components.
The connection between the components of the central module is organized by
building a database of the subject area.

CAD systems for design and CAE systems for analysis interact poorly with each
other, despite their wide distribution. CAD and CAE models use different types of
geometric models, and there is no common unified model that contains information
for design and analysis.

As a solution to these problems, a variant of CAD-CAE bidirectional integration
is proposed. Then the system will allow the CAD system to automatically generate
models for analysis, and the CAE system will automatically modify the geometry of
the parts and carry out a new analysis. The transformation process will be repeated
until the specified criterion is reached.

Based on this approach, a method was developed for obtaining the required CAE
model from an imported structural drawing (Figure 6).

The technique is implemented by a sequence of steps performed in the
integration components. Each of the integration stages is implemented as a separate
functional unit.

According to the CAD/CAE-integrated approach, the implementation of the
inverse transform from the CAE model to the geometric representation of the
structure is also required. In this case, the technique will be similar to that shown in
Figure 6. At the same time, the functional blocks will also be located in the inte-
gration components, which will significantly reduce the complexity of
implementing the interaction between the CAD and CAE subsystems.

Based on the bi-directionality and versatility of this technique, it is possible to
track product adjustments at each of the design stages. This will automatically
modify the CAD/CAE model in accordance with the changes made.

4. Configuring system components and methods of organizing the
interaction of CAD components

In CAD, models are presented in the form of problem-solving algorithms, and
then in the form of software. Technological objects, divided into private sub-
models, are divided into simpler individual aspects of the object’s functioning (that
is, they are decomposed into particular models). Each individual model is
represented by some mathematical transformation (Figure 7).

Figure 7—Z ¼ zi; i ¼ 1;…; kf g is a set of output parameters of the model; V—
operator (model) of the transformation (V—function of the input variables); A
vector X ¼ xi; i ¼ 1::nf g is a set of external parameters coming from a model of a
more general system; A vector Y ¼ yi; i ¼ 1; ::m

� �
is a set of input controlled

Figure 7.
Mathematical transformation.
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parameters of the model that the designer can operate on during the design process.
Controlled input parameters can vary within specified limits, i.e., so-called para-
metric constraints are imposed on them: yнi ≤ yi ≤ yвi , i ¼ 1::m, where yнi and yвi are
lower and upper limits.

With regard to the technological machine, the requirements for the technologi-
cal process, which affect the kinematic parameters, the structural parameters of the
mechanism and the geometrical parameters of the interaction space, act as the
rheological properties of the material being processed as input parameters of the
mathematical model (MM). All this affects the internal characteristics of the
system, which determines the scale, efficiency of the process and the quality of
products.

Building techniques and methodological principles for the operation of complex
systems simplifies and streamlines the process of developing CAD software, and
presents a sequence of operations in the form of a logic diagram. This methodology
represents an approach to the design and development of CAD, based on the
interaction of software solutions available on the market in the field of automation
and its own software design algorithms.

Figure 8 shows the sequence of steps in the proposed method of functioning
CAD systems.

In the first step of the implementation of the methodology, tasks (including new
ones) and a set of components for their implementation are determined based on
the initial design requirements. The choice of a set of components is implemented
according to their classification by functionality. Next is the organization of the
interaction, configuration, and the formation and exchange of data. Thus, the final
set of components will allow you to find solutions to all the tasks, or to determine
the set of tasks that cannot be solved with the existing set of subsystems.

After performing the first step, we obtain a specific set of components and an
approximate system architecture. Each component performs a specific task at a
certain level of logical implementation.

In the second step, a single executable environment is formed.

Figure 8.
Technique of functioning of CAD.

107

The Technique of Automated Design of Technological Objects with the Application of Artificial…
DOI: http://dx.doi.org/10.5772/intechopen.88295



The use of the software interface provided by the manufacturers restricts the
functionality of the system, its extensibility and scale. Thus, exchange files are
selected as the main method of interaction between external CAD components.
The connection between the components of the central module is organized by
building a database of the subject area.

CAD systems for design and CAE systems for analysis interact poorly with each
other, despite their wide distribution. CAD and CAE models use different types of
geometric models, and there is no common unified model that contains information
for design and analysis.

As a solution to these problems, a variant of CAD-CAE bidirectional integration
is proposed. Then the system will allow the CAD system to automatically generate
models for analysis, and the CAE system will automatically modify the geometry of
the parts and carry out a new analysis. The transformation process will be repeated
until the specified criterion is reached.

Based on this approach, a method was developed for obtaining the required CAE
model from an imported structural drawing (Figure 6).

The technique is implemented by a sequence of steps performed in the
integration components. Each of the integration stages is implemented as a separate
functional unit.

According to the CAD/CAE-integrated approach, the implementation of the
inverse transform from the CAE model to the geometric representation of the
structure is also required. In this case, the technique will be similar to that shown in
Figure 6. At the same time, the functional blocks will also be located in the inte-
gration components, which will significantly reduce the complexity of
implementing the interaction between the CAD and CAE subsystems.

Based on the bi-directionality and versatility of this technique, it is possible to
track product adjustments at each of the design stages. This will automatically
modify the CAD/CAE model in accordance with the changes made.

4. Configuring system components and methods of organizing the
interaction of CAD components

In CAD, models are presented in the form of problem-solving algorithms, and
then in the form of software. Technological objects, divided into private sub-
models, are divided into simpler individual aspects of the object’s functioning (that
is, they are decomposed into particular models). Each individual model is
represented by some mathematical transformation (Figure 7).

Figure 7—Z ¼ zi; i ¼ 1;…; kf g is a set of output parameters of the model; V—
operator (model) of the transformation (V—function of the input variables); A
vector X ¼ xi; i ¼ 1::nf g is a set of external parameters coming from a model of a
more general system; A vector Y ¼ yi; i ¼ 1; ::m

� �
is a set of input controlled

Figure 7.
Mathematical transformation.

106

Deterministic Artificial Intelligence

parameters of the model that the designer can operate on during the design process.
Controlled input parameters can vary within specified limits, i.e., so-called para-
metric constraints are imposed on them: yнi ≤ yi ≤ yвi , i ¼ 1::m, where yнi and yвi are
lower and upper limits.

With regard to the technological machine, the requirements for the technologi-
cal process, which affect the kinematic parameters, the structural parameters of the
mechanism and the geometrical parameters of the interaction space, act as the
rheological properties of the material being processed as input parameters of the
mathematical model (MM). All this affects the internal characteristics of the
system, which determines the scale, efficiency of the process and the quality of
products.

Building techniques and methodological principles for the operation of complex
systems simplifies and streamlines the process of developing CAD software, and
presents a sequence of operations in the form of a logic diagram. This methodology
represents an approach to the design and development of CAD, based on the
interaction of software solutions available on the market in the field of automation
and its own software design algorithms.

Figure 8 shows the sequence of steps in the proposed method of functioning
CAD systems.

In the first step of the implementation of the methodology, tasks (including new
ones) and a set of components for their implementation are determined based on
the initial design requirements. The choice of a set of components is implemented
according to their classification by functionality. Next is the organization of the
interaction, configuration, and the formation and exchange of data. Thus, the final
set of components will allow you to find solutions to all the tasks, or to determine
the set of tasks that cannot be solved with the existing set of subsystems.

After performing the first step, we obtain a specific set of components and an
approximate system architecture. Each component performs a specific task at a
certain level of logical implementation.

In the second step, a single executable environment is formed.

Figure 8.
Technique of functioning of CAD.

107

The Technique of Automated Design of Technological Objects with the Application of Artificial…
DOI: http://dx.doi.org/10.5772/intechopen.88295



The first stage of formation is the realization of interaction between the selected
components. The interaction is carried out in accordance with the principles based
on the use of integration and implementation interfaces and a connecting compo-
nent. The interfaces required for the operation of each component are determined.

The second stage is the configuration of the selected components. This stage
involves the selection among alternative algorithms that involve solving the same
tasks, the most adapted for the design of a particular product (initial system
requirements) [11, 12].

Further, in the third stage of the second step, the source data is modified to
exchange them between the selected components. An example would be a change in
the geometric design in the product model required for analysis.

The result of the second step is a formed single executable system environment,
which has mechanisms for implementing external PSs and for ensuring their inter-
action with the components of the entire system. This is the final architecture of
CAD, focused on solving the problem (Figure 9).

5. Formal description of project operations

Supporting the choice of the right MM configuration among many alternatives is
similar to the task of building CAD systems, which consists in allocating resources
Rk between design tasks Zk in such a way as to ensure optimal values of system
properties extr Fkð Þ in the system Sk (Figure 1).

To apply each of the alternative mathematical models, it is required to check
the ability of its functioning in a given configuration of the system. The graph of
component configuration is supplemented with transition events (Uk) and is
represented as a Petri net for the system Sk method of decomposition
(Figure 10) [13].

As conditions for the transition (U) to a specific MM, we will use verification
of the required set of initial data, including constructive (UK), geometric (UG),
kinematic (UP) and rheological (UR) parameters.

Figure 9.
Configuring CAD components.
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Thus, the system Sk must solve many design problems Zk ¼ Zkj
� �

, j ¼ 1, J , J is
the number of tasks. To solve each project problem there is a set of alternative
resources (components) Rj ¼ Rjy

� �
, y ¼ 1, Y , Y—the number of resources intended

for solving the problem. Each resource Rjy is characterized by a set of properties
Fjy ¼ Fjyl

� �
, l ¼ 1, L, L is a set of properties of the j resource. The performance of

each of the properties of the resource is limited by the condition of transition to the
specified resource Uj ¼ Ujy

� �
, y ¼ 1, Y .

The task of optimal configuration of MM is to allocate resources r∈Rj between
project tasks Zk in such a way as to provide extreme values of system properties, as
well as to support the ability to use each of the selected resources
extr Fkð Þ∧Mj Uj; Rj; Zk; Sk

� �
(whereMj is the function of checking transition Uj to

a resource Rj to solve the problem Zk in the system Sk).
Thus, the objective function of building CAD (2) is relevant for the configura-

tion of MM. At the same time, the system of control parameters will not change its
composition (3), the system of restrictions, which is characterized by design tasks,
design features of the product, technological requirements of production will be
complemented by transition conditions (U):

С ¼

Z, where Z ∈ ZS; ZA; ZE; ZC; ZV ; ZDf g,
K, where K ⊆ KI; KZ; KS; KF; KFI; KO; KP; KFSf g,
T, where T ⊆ Tn; Tμ; Tσ; Tt

� �
,

U, where U ⊆ UK ; UG; UP; URf g:

8>>><
>>>:

But it is impossible to apply optimization tasks to the described subject domain
based on graph theory, since there is no complete information about the relation-
ships between the components:

• management;

• according to information;

• by placement;

• by effects.

Figure 10.
MM component configuration graph.
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Decision making in most cases consists in generating possible alternative
solutions, evaluating them and choosing the best option. When choosing an option,
one has to take into account a large number of uncertain and contradictory factors.
Uncertainty is an integral part of decision-making processes [14–16].

To do this, use systems based on “soft” calculations, which include:

• probabilistic calculations and fuzzy logic;

• neurocomputing—training, adaptation, classification, system modeling and
identification;

• genetic computation—synthesis, tuning, and optimization using systematic
random search and evolution.

Fuzzy inference algorithms mainly differ in the type of rules used, logical oper-
ations, and the type of dephasing method. There are models of Mamdani, Sugeno,
Larsen, Tsukamoto.

The Mamdani method is the most common method of inference in fuzzy sys-
tems. It uses the minimax composition of fuzzy sets. This method includes the
following sequence of actions in relation to the task of reconfiguring MM:

1.Formation of the rule base. The rules are as follows: If <condition 1> and
<condition 2> … and <condition n>, then <output>. The conditions indicate
the compliance of the input parameters Xi (i∈ 1;…; n½ �) to the requirements.
Based on the input parameters, as well as the estimated opinion, <condition>
takes a value in the interval [0 ... 1]. “Inference” corresponds to the choice of
using the component for which the rule is made.

2.Fuzzifikation of input variables. This stage is called reduction to illegibility. The
input contains the generated rule base and the input data array A ¼ a1;…; amf g,
where m is the number of input variables. The purpose of this stage is to obtain
truth values for all sub-conditions from the rule base. For each of the sub-
conditions, there is a value bi ¼ λi aj

� �
, where λ is the membership function,

which associates the specific values of the degree of truth with all values of the
input variables; j = 1,...,m; i = 1,..., k, where k is the total number of sub-
conditions in the rule base. Thus, a set of values is obtained bi.

3.Aggregation of sub-conditions. The purpose of this stage is to determine the
degree of truth of the conditions for each rule of the fuzzy inference system:
ci ¼ min bif g.

4.Activation of sub-conclusions. At this stage there is a transition from the
conditions to the sub-conclusions. For each subconclusions is the degree of
truth di ¼ ci � Fi, where i ¼ 1,…, q, q—the total number of subconclusions in
the rule base, F—weights, meaning the degree of confidence in the truth of the
subconclusions. Then, again, i for each subconclusion, the set is compared Di

with the new membership function. Its value is determined as a minimum
from di and the values of the component membership function from the
sub-clauses. This method is called min-activation, which is formally written as
follows: λ

0
i xð Þ ¼ min di; λi xð Þf g.

5.Accumulation of conclusions. The purpose of this stage is to obtain a fuzzy set
(or their union) for each of the output variables. It is executed as follows: i
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output variable is associated with the union of the sets Ei ¼ ∪Dj. Where j—
numbers of sub-conclusions in which the output i variable participates i ¼ 1::s.
The union of two fuzzy sets is the third fuzzy set with the following
membership function: λ

0
i xð Þ ¼ max λ1 xð Þ; λ2 xð Þf g, where λ1 xð Þ, λ2 xð Þ are the

membership functions of the joined sets.

6.Defusing output variables. The purpose of defuzzification is to obtain a
quantitative value (crisp value) for each of the output linguistic variables. The
i output variable and the related set are considered. Then, using the
defuzzification method, the total quantitative value of the output variable is
found Ei i ¼ 1::sð Þ. In this algorithm implementation, the center of gravity
method is used, in which the value of the i output variable is calculated using
the formula:

yi ¼
ÐMax
Min x � λi xð ÞdxÐMax
Min λi xð Þdx

,

where λi xð Þ—membership function of the corresponding fuzzy set Ei; Min and
Max—boundaries of the universe of fuzzy variables; yi—result of defuzzification.

The advantage of the method is the ability to take into account the unlimited
number of various conditions and make the rules of various forms. The accuracy of
the results depends on the size of the knowledge base.

Thus, based on the result of the defuzzification stage for a specific rule, one can
judge about the need to use a specific MM.

6. Optimization of process parameters and technological machine
design

On the basis of the decomposition of the technological process and its mathe-
matical model, a reverse action can be carried out—the compositional design of the
technological object. The method of composite design allows to achieve the optimal
design solution [7].

As a rule, when searching for the optimal combination of design parameters of a
technological machine, it is necessary to control its thermal and mechanical tension,
also the intensity of interaction of the material with the working parts of the
pressing mechanism and other control factors that limit the area of optimal search
and are limitations. In view of the presence of constraints on design optimization,
without the possibility of simplification and omission, it reduces the current type of
optimization to the problem of conditional multiparameter optimization.

Among the methods of conditional multiparameter optimization, there are three
approaches. The first is based on the distribution of criteria by importance and their
consistent optimization with allowance for the tolerance. The purpose of the second
approach is to single out the main criterion and translate the rest into restrictions.
The third approach is the convolution of a vector criterion into one generalized
criterion. However, this method is very inconvenient, since to find all effective
points (Pareto sets), it is required to change the coefficients of the parameterized
function of the global criterion. The second drawback is the need to repeat the
algorithm several times (the number of iterations is equal to the power of the Pareto
set) to obtain the entire set of effective points.

Thus, the considered classical methods have drawbacks when solving
multicriteria optimization problems. It seems more promising to use an
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sub-clauses. This method is called min-activation, which is formally written as
follows: λ

0
i xð Þ ¼ min di; λi xð Þf g.

5.Accumulation of conclusions. The purpose of this stage is to obtain a fuzzy set
(or their union) for each of the output variables. It is executed as follows: i
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output variable is associated with the union of the sets Ei ¼ ∪Dj. Where j—
numbers of sub-conclusions in which the output i variable participates i ¼ 1::s.
The union of two fuzzy sets is the third fuzzy set with the following
membership function: λ

0
i xð Þ ¼ max λ1 xð Þ; λ2 xð Þf g, where λ1 xð Þ, λ2 xð Þ are the

membership functions of the joined sets.

6.Defusing output variables. The purpose of defuzzification is to obtain a
quantitative value (crisp value) for each of the output linguistic variables. The
i output variable and the related set are considered. Then, using the
defuzzification method, the total quantitative value of the output variable is
found Ei i ¼ 1::sð Þ. In this algorithm implementation, the center of gravity
method is used, in which the value of the i output variable is calculated using
the formula:

yi ¼
ÐMax
Min x � λi xð ÞdxÐMax
Min λi xð Þdx

,

where λi xð Þ—membership function of the corresponding fuzzy set Ei; Min and
Max—boundaries of the universe of fuzzy variables; yi—result of defuzzification.

The advantage of the method is the ability to take into account the unlimited
number of various conditions and make the rules of various forms. The accuracy of
the results depends on the size of the knowledge base.

Thus, based on the result of the defuzzification stage for a specific rule, one can
judge about the need to use a specific MM.

6. Optimization of process parameters and technological machine
design

On the basis of the decomposition of the technological process and its mathe-
matical model, a reverse action can be carried out—the compositional design of the
technological object. The method of composite design allows to achieve the optimal
design solution [7].

As a rule, when searching for the optimal combination of design parameters of a
technological machine, it is necessary to control its thermal and mechanical tension,
also the intensity of interaction of the material with the working parts of the
pressing mechanism and other control factors that limit the area of optimal search
and are limitations. In view of the presence of constraints on design optimization,
without the possibility of simplification and omission, it reduces the current type of
optimization to the problem of conditional multiparameter optimization.

Among the methods of conditional multiparameter optimization, there are three
approaches. The first is based on the distribution of criteria by importance and their
consistent optimization with allowance for the tolerance. The purpose of the second
approach is to single out the main criterion and translate the rest into restrictions.
The third approach is the convolution of a vector criterion into one generalized
criterion. However, this method is very inconvenient, since to find all effective
points (Pareto sets), it is required to change the coefficients of the parameterized
function of the global criterion. The second drawback is the need to repeat the
algorithm several times (the number of iterations is equal to the power of the Pareto
set) to obtain the entire set of effective points.

Thus, the considered classical methods have drawbacks when solving
multicriteria optimization problems. It seems more promising to use an
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evolutionary approach to speed up the process of obtaining Pareto-optimal points,
thanks to the ability of genetic algorithms (GA) to find a solution even when the
algorithm is executed once.

GA do not guarantee that a global solution will be found, however, they are good
for finding a “good enough” problem solution “fast enough.” Even where existing
techniques work well, improvements can be achieved by combining them with GA.

The genetic algorithm works with a certain objective function Q u1; u2;…; unð Þ
and as a result finds either its maximum or minimum (depending on the task). It
does not require finding the derivative of the function Q and other calculations,
since the genetic algorithm considers the objective function as a block (a set of some
actions, operations and calculations), which at the input receives a certain set of
values u1, u2,…, un, u1, u2,…, un and the output gives the result, directly depen-
dent on them.

The GA, which includes the ability to set various selection criteria, will allow to
take into account the boundary conditions necessary for the successful course of the
technological process.

It should be noted that the use of classical (exact) mathematical optimization
methods is not always appropriate, because The simulation model is not an absolute
copy of the real system (there is a certain degree of accuracy), while the use of exact
methods requires significant computational costs, which is critical in many cases.
Therefore, as a search engine optimization algorithm, it is more expedient to use a
method that does not necessarily guarantee the achievement of an exact optimum,
but finds solutions that are close to optimal, and at the same time ensures fast search
convergence of the algorithm.

The work of a genetic algorithm is an iterative process that continues until a
specified number of generations or some other stopping criterion is fulfilled. A
generalized block diagram of the work of the GA is shown in Figure 11.

Of particular importance is the creation of the initial population. The rate of
convergence of the method and the place of the local maximum depend on the
choice of the initial data. Often this choice is made randomly, but it is rational to use
the results obtained earlier, which are contained in the database.

Figure 11.
Generic genetic algorithm scheme.
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As a method of selecting values from a set of results, taking into account the
criteria and objectives of optimization imposed on them, we will use the Mamdani
method (Section 4), based on “soft” calculations.

It uses a minimax composition of fuzzy sets:

MF ¼ max min Aik xkð Þð Þð Þ

where xk—input variables (extruder design parameters D1, sш, pш, hш, L); Aik—

given fuzzy sets with membership functions of input variables to the required
parameters.

At each iteration of the GA, selection, single-point crossover and mutation are
implemented.

At the selection stage, the “fitness” of each structure is evaluated. The selection
is made by assigning each structure a probability equal to the ratio of its adaptability
to the total adaptability of the population:

PS ið Þ ¼ f ið ÞPN
j¼1 f jð Þ ,

where i ¼ 1,…, N; N—number of estimated machine designs; f(i)—compliance
with the requirements i—construction.

In genetic algorithms, a crossover operator (crossover) is responsible for trans-
ferring descendants of parents to descendants. In the simplest case, the crossover in
the genetic algorithm is implemented as shown in Figure 12.

Since in this case the information about the construction is presented in the form
of a set of real numbers, therefore, a type of genetic algorithm is used, which is
called continuous GA or a genetic algorithm with real coding.

A continuous GA crossing operator generates one or more descendants from two
parent sets. As a matter of fact, it is required to get new vectors from two vectors of
real numbers according to some laws. Most of these algorithms generate new vec-
tors in the neighborhood of parent pairs.

In this case, an extended line crossover is considered (Figure 13), which can
formally be represented as a formula:

Figure 12.
Concept of crossing over.

Figure 13.
Line crossover.
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hk ¼ c1k þw� c2k � c1k
� �

where hk–k—construction parameter; H ¼ h1;…; hnð Þ, k ¼ 1, n; n—number of
parameters; cmk –k—parent element Cm ¼ hm1 ;…; hmn

� �
, k ¼ 1, n, m ¼ 1, 2; w—ran-

dom number of interval �0; 25; 1; 25½ �.
A mutation is a random change in one or more positions in a set of characteris-

tics, designed to maintain diversity and to protect against premature convergence.
The mutation element will be defined as follows:

xk ¼ ak þ bk � akð Þ � u,

where xk–k—construction parameter X ¼ x1;…; xnð Þ, k ¼ 1, n determined on
interval ak; bk½ � ak; bk½ �; u—random number of interval 0; 1½ � 0; 1½ �.

Crossing procedures, mutations, assessment of fitness, the choice of the best
solution are repeated in the cycle until the stop criterion works. The fulfillment of a
certain condition is used as such a criterion. The essence of the condition is as
follows: if the difference between the best solutions at the moment and at the
previous iteration is insignificant (less than a certain set ε), or the maximum
number of iterations is completed (the number of iterations performed is more than
a certain set n), the algorithm stops its work. The last best solution found is the
optimal set of parameters.

This method has several disadvantages—it is convergence to a local optimum,
lack of accuracy of the results.

Therefore, if it is necessary to optimize a specific parameter when changing only
one indicator and the invariance of others, then it is more rational to use exact
methods of multidimensional optimization (the coordinatewise descent method,
the Hook-Jeeves method, etc.).

The advantage of applying this modification of the genetic algorithm is the
scalability of the optimization problem. Using this method, it is possible to optimize
a different set of parameters, as well as to establish all possible optimization condi-
tions, both for a single resulting indicator and for several. The method does not
require significant computational costs, which are necessary for the implementation
of exact methods, and which are often impossible in complex systems. GA provides
fast search convergence of the algorithm. The results of the method satisfy the
conditions of the technological process, as obtained by simulation.

As a solution to the identified deficiencies, it is possible to combine the
presented method with accurate methods of multidimensional optimization.

7. Conclusion

The implementation of the developed methodology has several advantages for
developers and end users:

• costs are reduced for the development of user interface and application
applications (for example, control program editors, network connection
configurators, etc.);

• it is possible to determine the required set of components, and the tasks they
implement, in the early stages of designing applied software;

• reduced time of release of the new system, due to the possibility of issuing a
lightweight (preliminary) version with a subsequent increase in functionality.
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The developed technique with the use of artificial intelligence methods of
building an integrated environment allows organizing the interaction of CAD
components based on their classification, integration and configuration.
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Chapter 6

Deterministic Approaches to
Transient Trajectory Generation
Matthew A. Cooper

Abstract

This chapter studies a deterministic approach to transient trajectory generation
and control as applied to the forced Van der Pol oscillatory system. This type of
system tends towards a strongly nonlinear system, which can be considered chaotic.
A classical tuning method, targeted exponential weighting, and isolated trajectory
fractionalization trajectory generation methods are examined. Illustrating the given
deterministic approach via the Van der Pol system highlights the potentially itera-
tive nature of deterministic methods, and that traditional optimal linear time-
invariant control techniques are unable to perform as desired whereas even an
idealized nonlinear feedforward control significantly outperforms at the steady-
state. It will be shown that utilizing a-priori knowledge of the system dynamics will
enable the isolated trajectory fractionalization method to minimize the nonlinear
transient effects due to miss-modeled or unmodeled plant dynamics, and that this
benefit can be coupled with the targeted exponential weighting approach for greatly
decreased trajectory tracking error on the order of a 92% reduction of the objective
cost function in the presented case study based on the forced Van der Pol system.

Keywords: Van der Pol, trajectory generation, path planning, nonlinear transients,
control systems, nonlinear dynamic system, aerospace engineering, non-stochastic,
deterministic, autonomy, intelligent systems, feedforward, dynamic inversion,
disturbance modeling, phase portrait tuning

1. Introduction

Transient trajectory generation research is an interesting area, and often finds
itself in a highly nonlinear environment. Similar to trajectory optimization prob-
lems [1–9], the goal of designing transient trajectories is to reach the desired steady-
state trajectory more quickly while simultaneously minimizing and unwanted
micro-transients along the way. Micro-transients can be considered as a
subcategory of transient trajectories. Transient trajectories are smaller trajectories
that connect two steady-state trajectories and can be quite volatile and full of non-
linear micro transients that may push the system towards instability. Section 1 will
introduce the reader to basic control theory, and the Van der Pol oscillator which
will be used to illustrate transient trajectory generation approaches. Section 2 will
describe a classical tuning method, targeted exponential weighting, and isolated
trajectory fractionalization trajectory generation methods and present the
corresponding results of each method. Section 3 will finish off the chapter by
summarizing the results in table format.
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1.1 Basic control theory

An introduction to control theory will be conducted to set the understanding
baseline in common controls. This refresher will start with state-space nomencla-
ture and then quickly step through the most common feedback control,
feedforward control, observers, and adaptive designs. This will be the ground work
that is used to later illustrate to the trajectory generation techniques and the inher-
ent complexity in nonlinear dynamical systems such as the Van der Pol oscillator.
Any dynamical system can be represented in state-space matrix form [10] to
provide a solution formed as shown in Eq. (1):

ð1Þ

where A is a matrix representing the system states (also referred to as the plant).
B is an input matrix, C is the output matrix, and D is the feedback/feedforward
control input matrix. A symbolic representation of a feedback control loop is illus-
trated in Figure 1.

The input to Figure 1 is nominally a desired position (output) from a user which
may be converted to a usable command in the generate trajectory block. For the
initial output the input will be fed directly to the plant for a resulting position. If this
is not the desired position, then the feedback controller will calculate that error
between the desired and resulting position and produced an appropriately weighted
control signal to adjust the input. This will happen cyclically until the error
approaches zero, and is typically referred to as a zero-seeking negative-feedback
approach [10]. A common way to represent the interaction between the input and
output of a system is as a transfer function [11], and is usually presented in the
Laplacian domain as shown as H in Eq. (2). Also known as the S-domain, this can be
an easier format to mathematically manipulate the system variables primarily due
to the fact that the system blocks interact in a convolutional way in the time-domain
whereas in the S-domain one can just performmultiplication and achieve equivalent
results [11].

ð2Þ

A very common way to implement a feedback controller is through the use of a
proportional-integral-derivative (PID) controller [11] as shown in Figure 2.

The PID controller is the staple of many feedback control systems [11], and can
be formulated such that it is a zero-seeking architecture by calculating the differ-
ence between the measured output of the system and the desired output as shown in
Figure 2 and Eq. (4). The error signal is then fed into the proportional, integral, and
derivative blocks, and summed together to provide an additional control input to
the plant. The proportional block assigns a constant gain (Kp) to the error signal, the

Figure 1.
Generic feedback control schematic.
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integral block calculates the integral of the error signal and applies a different gain
(Ki). There are many different ways and variations of implementing a PID control-
ler such as sometimes only utilizing one or two components as shown in Eq. (3) as a
typical PI controller example.

ð3Þ

where q is the desired position and is the measured position and the error is
defined as:

ð4Þ

The third and final component of the PID feedback controller is the derivative
block which calculated the derivative of the error signal and assigns a corresponding
gain (Kd) to it. If all three components are summed together as shown in Figure 2, it
will result in Eq. (5) for the time-domain solution, and Eq. 6 for the S-domain.
Eqs. (5) and (6) illustrate both the time-domain equation and the S-domain
equation for ease of comparison.

ð5Þ

ð6Þ

Another common feedback control method extends into the realm of optimal
control [1, 2] which is focused primarily at looking at control as a cost minimization
problem. A linear quadratic regulator (LQR) is one way to treat a feedback control
system as an optimal control problem [1]. One variation based in the continuous
time-domain treats the problem with a focus on the infinite steady-state, the
infinite-horizon continuous-time LQR. The cost function of this type of solution is
identified in Eq. (7).

ð7Þ

where Q is the state cost matrix, R is the input cost matrix, and N is the final
state cost matrix with a feedback control law of:

u ¼ �Kx (8)

Figure 2.
Generalized PID feedback controller.

121

Deterministic Approaches to Transient Trajectory Generation
DOI: http://dx.doi.org/10.5772/intechopen.84476



1.1 Basic control theory

An introduction to control theory will be conducted to set the understanding
baseline in common controls. This refresher will start with state-space nomencla-
ture and then quickly step through the most common feedback control,
feedforward control, observers, and adaptive designs. This will be the ground work
that is used to later illustrate to the trajectory generation techniques and the inher-
ent complexity in nonlinear dynamical systems such as the Van der Pol oscillator.
Any dynamical system can be represented in state-space matrix form [10] to
provide a solution formed as shown in Eq. (1):

ð1Þ

where A is a matrix representing the system states (also referred to as the plant).
B is an input matrix, C is the output matrix, and D is the feedback/feedforward
control input matrix. A symbolic representation of a feedback control loop is illus-
trated in Figure 1.

The input to Figure 1 is nominally a desired position (output) from a user which
may be converted to a usable command in the generate trajectory block. For the
initial output the input will be fed directly to the plant for a resulting position. If this
is not the desired position, then the feedback controller will calculate that error
between the desired and resulting position and produced an appropriately weighted
control signal to adjust the input. This will happen cyclically until the error
approaches zero, and is typically referred to as a zero-seeking negative-feedback
approach [10]. A common way to represent the interaction between the input and
output of a system is as a transfer function [11], and is usually presented in the
Laplacian domain as shown as H in Eq. (2). Also known as the S-domain, this can be
an easier format to mathematically manipulate the system variables primarily due
to the fact that the system blocks interact in a convolutional way in the time-domain
whereas in the S-domain one can just performmultiplication and achieve equivalent
results [11].

ð2Þ

A very common way to implement a feedback controller is through the use of a
proportional-integral-derivative (PID) controller [11] as shown in Figure 2.

The PID controller is the staple of many feedback control systems [11], and can
be formulated such that it is a zero-seeking architecture by calculating the differ-
ence between the measured output of the system and the desired output as shown in
Figure 2 and Eq. (4). The error signal is then fed into the proportional, integral, and
derivative blocks, and summed together to provide an additional control input to
the plant. The proportional block assigns a constant gain (Kp) to the error signal, the

Figure 1.
Generic feedback control schematic.

120

Deterministic Artificial Intelligence

integral block calculates the integral of the error signal and applies a different gain
(Ki). There are many different ways and variations of implementing a PID control-
ler such as sometimes only utilizing one or two components as shown in Eq. (3) as a
typical PI controller example.

ð3Þ

where q is the desired position and is the measured position and the error is
defined as:

ð4Þ

The third and final component of the PID feedback controller is the derivative
block which calculated the derivative of the error signal and assigns a corresponding
gain (Kd) to it. If all three components are summed together as shown in Figure 2, it
will result in Eq. (5) for the time-domain solution, and Eq. 6 for the S-domain.
Eqs. (5) and (6) illustrate both the time-domain equation and the S-domain
equation for ease of comparison.

ð5Þ

ð6Þ

Another common feedback control method extends into the realm of optimal
control [1, 2] which is focused primarily at looking at control as a cost minimization
problem. A linear quadratic regulator (LQR) is one way to treat a feedback control
system as an optimal control problem [1]. One variation based in the continuous
time-domain treats the problem with a focus on the infinite steady-state, the
infinite-horizon continuous-time LQR. The cost function of this type of solution is
identified in Eq. (7).

ð7Þ

where Q is the state cost matrix, R is the input cost matrix, and N is the final
state cost matrix with a feedback control law of:

u ¼ �Kx (8)

Figure 2.
Generalized PID feedback controller.

121

Deterministic Approaches to Transient Trajectory Generation
DOI: http://dx.doi.org/10.5772/intechopen.84476



where:

ð9Þ

and P is found by solving the continuous time Riccati equation [11]:

ð10Þ

For a linear system, with a linear response, an appropriately chosen cost func-
tion, J, can achieve optimal feedback control parameters and find the feedback
control parameters that minimize the control cost J.

When full-state feedback is not present in a system, i.e. the outputs cannot be
fully known, the control system will either need to be designed without the need for
the missing information or those states will need to be estimated based on the
sensed outputs as seen in Figure 3. In this case an estimator is also referred to as a
state observer. A state observer’s role is to estimate the internal states of a given
system based on the current inputs and outputs. For a more thorough discussion the
reader is referred to [10].

An example of taking the general formulation above and applying it to a specific
system is illustrated in Figure 4 for a spacecraft, more specifically a satellite. Here
the system dynamics will also include control moment gyros, and other physical
restraints/limitations of a real-world plant [12–20]. Additionally, the control vari-
ables here are in angle, angular rate, and angular acceleration in order to apply the
correct torque on the motors to affect the desired outcome.

The key takeaway here is that the high-level depiction of the system identified in
Figure 4 is not very different from the general case, only that the details within the
blocks encompass many more physical variables.

1.2 The Van der Pol oscillator

Balthasar van der Pol (1889–1959) was a Dutch physicist who became interested
in the differential equations of coupled electrical systems, which formed into

Figure 3.
Generic nonlinear feedforward/feedback control schematic.

Figure 4.
Nonlinear feedforward/feedback spacecraft control schematic.
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relaxation oscillators, what later became a description of what we now call limit
cycles [22]. His initial investigation began with describing the human heartbeat, and
later when turning towards the issues of radio communication [23–25] at the time
(the result of deterministic chaos) and is illustrated with the resistor-inductor-
capacitor (RLC) circuit shown in Figure 5.

The circuit in Figure 5 represents a schematic for an RLC circuit comprised of a
nonlinear resistor (R), an inductor (L), and a capacitor (C). This common circuit
can be described by the differential equation [21] in Eq. (11):

ð11Þ

where:

ð12Þ

and where is the damping coefficient, and can be rearranged to get in the
form of the differential equation that describes the Van der Pol equation for limit
cycle oscillations in Eq. (13).

ð13Þ

By using the simplification assumption in Eq. (15), one can simulate the VPD as
a plant to a controls simulation in MATLAB/Simulink structured around the model
presented previously in Figure 3. The natural periodic oscillations in the phase
portrait can be seen in Figure 6, which are shown to converge to the same limit
cycle from any initial condition nearby (local). This model will be discussed in
greater detail in Section 2.

Phase portraits are ways to represent the performance of a system, and to also
analyze the expected stability within some local bounds usually determined by the
anticipated operational bounds [10, 11, 23]. These portraits display the state of
interest with respect to the derivative of that state. Ideally, the goal is such that the
state is controllable enough so that the state can be forced to zero within a given
time-constant. Sometimes, in a nonlinear system, just being able to prevent the state
from growing unbounded (blowing up) and towards an arbitrary asymptotic limit
is acceptable [11].

Taking the unforced VPD equation and adding a sinusoidal forcing function to
Eq. (13) gives Eq. (14):

Figure 5.
RLC schematic for VDP derivation.
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cycle oscillations in Eq. (13).

ð13Þ

By using the simplification assumption in Eq. (15), one can simulate the VPD as
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state is controllable enough so that the state can be forced to zero within a given
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ð14Þ

Using the forced VDP equation, and simplifying it by using the outlined
assumptions in Eq. (15) to achieve a perfectly circular limit cycle:

ð15Þ

to get Eq. (16):

ð16Þ

In order to implement the forcing function onto the VDP system, it is needed to
invert the dynamics such that the VDP equation is used as the feedforward control
signal, which will feed into the plant. The steady-state results can be seen in
Figure 7, with a severe amount to transient phenomenon before reaching the
perfectly circular limit-cycle steady-state response.

1.3 What are transient trajectories?

What are transient trajectories? This is a good question, and one with issues and
difficulties that the reader may understand without explicitly realizing it. Transient
trajectories are those trajectories that transition between the intended steady-state
trajectories, and are often short lived [1, 10, 11, 26–28]. The most common types of
transient trajectories are of the variety if initial start-up of a system [11]. For
example; let us say we have a satellite pointing at some location (x1, y1) on Earth,
and now it is needed to point a different location (x2, y2). The desired control and
corresponding control trajectory (if a solely feedback control loop is not
implemented) will comprise the transient trajectory. It starts at (x1, y1), ends at
(x2, y2), and incorporates every point in the resulting path between those two

Figure 6.
Phase portrait illustration of unforced VDP system.
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points that the platform takes to include the multiple controllable states of the
system.

Figure 8 shows an example of a desired transient trajectory. In this example a
satellite with an electro-optical telescope is being steered by directing the pointing
vector of the staring sensor it employs. The sensor starts at a (0°, 0°, 0°) in the
standard (roll, pitch, yaw) coordinate system, and then the user desires the sensor
to move to (0°, 0°, 30°). The user inputs a command of 30° yaw to the system, and
can be interpreted in many ways. The red, yellow, and blue lines represent different
variations of the interpretation across the desired angle, angular rate, and angular
acceleration. The trajectory in red represents a sinusoidal-based step function that
takes on discontinuities in the angular rate and acceleration terms, whereas the
trajectories in yellow and blue are entirely continuous.

The effects of transient trajectories can be illustrated via phase portraits like
those presented in Figures 6 and 7, with the main concern in affecting the stability
of a system of interest. If the transients couple with the potential variations in initial
conditions to produce deleterious effects on the stability, it will be illustrated very
clearly in a phase portrait as it will likely grow unbounded. Another method on
evaluating the performance of a system when evaluating the effects of transients is
through the use of an object cost function [10]. A common approach is by using the
root-mean-square (RMS) value between the desired trajectory and the measured
trajectory to gain an RMS error value as shown in Eq. (17).

ð17Þ

where is the measured trajectory, and is the desired trajectory.

Figure 7.
Phase portrait illustration of forced VDP system.

125

Deterministic Approaches to Transient Trajectory Generation
DOI: http://dx.doi.org/10.5772/intechopen.84476



ð14Þ

Using the forced VDP equation, and simplifying it by using the outlined
assumptions in Eq. (15) to achieve a perfectly circular limit cycle:

ð15Þ

to get Eq. (16):

ð16Þ

In order to implement the forcing function onto the VDP system, it is needed to
invert the dynamics such that the VDP equation is used as the feedforward control
signal, which will feed into the plant. The steady-state results can be seen in
Figure 7, with a severe amount to transient phenomenon before reaching the
perfectly circular limit-cycle steady-state response.

1.3 What are transient trajectories?

What are transient trajectories? This is a good question, and one with issues and
difficulties that the reader may understand without explicitly realizing it. Transient
trajectories are those trajectories that transition between the intended steady-state
trajectories, and are often short lived [1, 10, 11, 26–28]. The most common types of
transient trajectories are of the variety if initial start-up of a system [11]. For
example; let us say we have a satellite pointing at some location (x1, y1) on Earth,
and now it is needed to point a different location (x2, y2). The desired control and
corresponding control trajectory (if a solely feedback control loop is not
implemented) will comprise the transient trajectory. It starts at (x1, y1), ends at
(x2, y2), and incorporates every point in the resulting path between those two

Figure 6.
Phase portrait illustration of unforced VDP system.

124

Deterministic Artificial Intelligence

points that the platform takes to include the multiple controllable states of the
system.
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evaluating the performance of a system when evaluating the effects of transients is
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2. Transient trajectory generation case study

At this point it is relevant to apply the basic components introduced in the
previous section to the common nonlinear, and slightly chaotic VDP system to
illustrate the benefits and highlight potential areas for further discussion.

Taking the Van der Pol oscillatory system as described by Eq. (16), and model-
ing it as the system plant we get the MATLAB/Simulink model in Figure 9. This
model receives a control signal, and generates a new position. Inverting the
dynamics result in a similarly defined model for a feedforward controller identified
in Figure 10. Here, the model receives a defined trajectory vector comprised of the
position, velocity, and acceleration ( , and respectively). Propagating those
trajectories through the model creates an “ideal” control signal for the plant
dynamics.

The plant dynamics and the feedforward controller form the heart of the simu-
lation as the rest of the system parameters will change relative to the different
approaches. Both of these models are incorporated in the high-level system diagram
illustrated in Figure 11. The high-level diagram also shows the user input starting
from the right-hand-side, which is fed in multiple trajectory generation functions.

Figure 8.
Desired transient trajectory for a 300 yaw Maneuver of an optical pointing satellite vector.

Figure 9.
Van der Pol plant dynamics.
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The output of the desired trajectory function is then fed into both the feedback and
the feedforward controllers. Here, the output of the controllers can be turned on or
off as desired to evaluate the performance of the controllers. For deterministic
control algorithms it is necessary to assume either full-state feedback, or non-
stochastic signals on the output.

2.1 Classical tuning method

One can apply classical tuning methods to the feedback controllers such as PID,
and LQR to treat this nonlinear system as a linear system. The PID controller in
Figure 2 can serve as a foundation for multiple variants of a linear feedback con-
troller by modifying the gain coefficients Ki, Kd, and Kp. Due to the ineffectiveness
of linear control algorithms on the highly nonlinear VDP plant, the LQR feedback
controller will be the only approach illustrated. Calculating the LQR coefficients are
somewhat trivial in MATLAB/Simulink if the system description is in a compatible
form and the MATLAB function call can be used: [K, S,e] = LQR (A,B,Q,R,N) [29],
which gives the relevant Kd, and Kp values. In this instance, the system is described
in state-space as shown in Eq. (18):

ð18Þ

to get a resulting control law of:

ð19Þ

Figure 10.
Inverted Van der Pol system for feedforward controller.

Figure 11.
High level system simulation in MATLAB/Simulink.
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or Eq. (22) when coupling the ideal forced VDP feedforward controller with
LQR:

ð20Þ

The resulting phase portrait with only incorporating the LQR gains implemented
in Eq. (19) are displayed in the left side of Figure 12. It can be seen that the stability
is affected such that the system steadily grows unbounded and not to an asymptotic
limit which is desired for illustrating stability. Investigating the nearby initial con-
ditions does not identify any condition that produces a stable system.

The right side of Figure 12 illustrates similar results from coupling the ideal
nonlinear feedforward controller with the LQR feedback gains. Again, it can be seen
that the system grows unbounded with no identified initial conditions providing
stability. It can also be seen that the trends in the trajectories are influenced by both
the LQR feedback only system and the ideal feedforward controller, although the
feedforward controller in not robust enough to bring the system back to an asymp-
totic limit cycle.

2.2 Isolated trajectory fractionalization

With the results identified in Section 2.1 using linear feedback methods to
compensate for trajectory tracking error of the nonlinear VDP system, it is neces-
sary to try something different. One way is to incorporate isolated trajectory frac-
tionalization (ITF). This train of thought assumes the ability of the transient
trajectory to be fractured into sub components which can be elegantly stitched
together to form the desired transient trajectory. There are many ways to stitch
trajectories utilizing the mathematical principles of spline interpolation, Chebyshev
polynomials, Lagrange polynomials, and the Runge Kutta methods [30] for exam-
ple. Here we will illustrate the micro-transient generation to get a better performing
transient trajectory via the 8-term Fourier Series fitting method. Under the theory
that any periodic signal can be broken up to an infinite series of orthogonal basis
functions based on a combination of sines and cosines [30] as defined by Eq. (21):

ð21Þ

Figure 12.
Applying the optimal linear-quadratic-regulator feedback approach to the forced Van der Pol oscillator.
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where Tn is the resulting sum of the functions used to replicate the originally
desired trajectory. a0 is a steady state offset, while ai and bi are the corresponding
constant coefficients for each orthogonal basis set.

In the case of the sinusoidally forced VDP system illustrated in Figure 7, the
unwanted transient response is primarily within the first few cycles of oscillations
then after the sharp initial transients the tracking error slowly reduces over time
until the trajectory is a perfect match to the desired trajectory. One way to split this
desired trajectory is to heuristically describe the sinusoid function that will
smoothly and quickly travel between the initial conditions and the desired steady
state response. Taking advantage of the a-priori knowledge of how sinusoidal func-
tion performs with the VDP system a simple sine function with a phase shift is
chosen as described by Eq. (22):

x01 ¼ A1 sin t� π

2

� �
, (22)

where A1 is a scaling coefficient proportional to the desired oscillatory radius in
the phase plane. And the resulting derivative is:

_x01 ¼ A2 cos t� π

2

� �
, (23)

resulting in a new scaling coefficient A2: Using Eqs. (22) and (23) as the starting
points, the steady state trajectory is then described by Eqs. (24) and (25) in order to
match the initial conditions.

x23 ¼ A� 0:8ð Þ
2

sin t� π

2

� �
þ π

2
þ 0:4, (24)

_x23 ¼ Að Þ
2

cos t� π

2

� �
(25)

Next, by using the Fourier decomposition described in Eq. (21), the resulting
trajectory can be planned as illustrated in Figure 13. This initial attempt is fairly
close but still allows for large residual error. Figure 13 displays the desired total
trajectories for and with a Fourier fit line plotted for comparison. The Fourier
fit line of the resulting trajectory using this transient trajectory fractionalization

Figure 13.
Trajectory fractionalization via Fourier fitting.
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ð21Þ

Figure 12.
Applying the optimal linear-quadratic-regulator feedback approach to the forced Van der Pol oscillator.
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where Tn is the resulting sum of the functions used to replicate the originally
desired trajectory. a0 is a steady state offset, while ai and bi are the corresponding
constant coefficients for each orthogonal basis set.

In the case of the sinusoidally forced VDP system illustrated in Figure 7, the
unwanted transient response is primarily within the first few cycles of oscillations
then after the sharp initial transients the tracking error slowly reduces over time
until the trajectory is a perfect match to the desired trajectory. One way to split this
desired trajectory is to heuristically describe the sinusoid function that will
smoothly and quickly travel between the initial conditions and the desired steady
state response. Taking advantage of the a-priori knowledge of how sinusoidal func-
tion performs with the VDP system a simple sine function with a phase shift is
chosen as described by Eq. (22):

x01 ¼ A1 sin t� π

2

� �
, (22)

where A1 is a scaling coefficient proportional to the desired oscillatory radius in
the phase plane. And the resulting derivative is:

_x01 ¼ A2 cos t� π

2

� �
, (23)

resulting in a new scaling coefficient A2: Using Eqs. (22) and (23) as the starting
points, the steady state trajectory is then described by Eqs. (24) and (25) in order to
match the initial conditions.

x23 ¼ A� 0:8ð Þ
2

sin t� π

2

� �
þ π

2
þ 0:4, (24)

_x23 ¼ Að Þ
2

cos t� π

2

� �
(25)

Next, by using the Fourier decomposition described in Eq. (21), the resulting
trajectory can be planned as illustrated in Figure 13. This initial attempt is fairly
close but still allows for large residual error. Figure 13 displays the desired total
trajectories for and with a Fourier fit line plotted for comparison. The Fourier
fit line of the resulting trajectory using this transient trajectory fractionalization

Figure 13.
Trajectory fractionalization via Fourier fitting.
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method. One way to mitigate this residual error is by given the fitting algorithm
more “flexibility” to merge the trajectories.

To allow the fitting algorithm more flexibility, a large section isolated between
the desired trajectories is introduced. The missing data is strategically placed such
that the points where the 2nd derivative is zero. This allows for an extremely
smooth function across the 1st derivative. Any sharp discontinuities can introduce
large unwanted transients. The next iteration in the isolated trajectory fractionali-
zation routine is illustrated in Figure 14.

The Fourier fit in Figure 14 was built with the following parameters:

δt ¼ 0:001, t0 ¼ 0, t1 ¼ 2500, t2 ¼ 4000, t3 ¼ 12000 (26)

where δt is the time step, t0 is the initial time, t1 is the end time of the first
trajectory fraction, t2 is the start of the 2nd trajectory fraction, and t3 is the final
time. The resulting parameters allow the fitting algorithm 1500 (1.5 second) time
steps to find a sm0oth fit. The resulting trajectories form the desired phase plane
trajectory being fed into the feedforward controller is illustrated on the left in
Figure 15. The right side of Figure 15 illustrates the actual results on the output of
the VDP system.

Figure 14.
Isolated trajectory fractionalization via Fourier fitting.

Figure 15.
Phase plane error in forced VDP system using isolated trajectory fractionalization via Fourier fitting.
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The corresponding , , and tracking error is illustrated in Figure 16. It’s
interesting to note that the large disturbance in the trajectories seen if Figure 15
occur during the transition to the steady-state trajectory and that a spike in the
error happens about 1 second later. The results shown here highlight the need to
ensure that multiple derivative states are smooth when implementing the fitting
algorithms, due to unforeseen perturbations. Even though the desired phase plane
in Figure 15 is perfectly smooth, the unidentified perturbations in the second
derivative are affecting the results.

Utilizing the tracking error values along the entire transient trajectory an objec-
tive cost function can be defined and evaluated. In the case of the VDP system, the
goal is to match the actual trajectory with the desired trajectory with respect to the
phase plane. Therefore the parameters of interest are , , and along the entire
trajectory resulting in the objective cost function, J, in Eq. (27).

ð27Þ

where RMSe is the RMS value of the error along the entire trajectory on each
component. This provides a single metric to evaluate how well the actual trajectory
fits to the desired trajectory. Once evaluated, a value of J = 1.0604 is achieved using
the isolated trajectory fractionalization technique, whereas the objective cost func-
tion for the sinusoidal forced VDP system is J = 4.9603. This shows a 78% reduction
in trajectory tracking error via this technique.

Figure 16.
Trajectory tracking error using ITF.
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2.3 Targeted exponential weighting

2.3.1 1-term targeted exponential weighting

The targeted exponential weighting method is another technique to deterministi-
cally modify transient trajectories, and is ideally applied to the extrema in the tran-
sients via a-priori knowledge of the system characteristics. By taking advantage of the
mathematical approach of exponential decay (or growth), one can modify an existing
control trajectory via the cyclical parameter tuning process shown in Figure 17.

The parameter tuning process outlined in Figure 17 starts with a-priori infor-
mation of the system’s characteristic behavior, this is then used to tailor a trajectory
for the system. The trajectory is fed through the feedforward controller/plant. The
output is then evaluated along the trajectory and compared to the desired. If the
error is greater than a given tolerance value then the new information gained from
the input parameters are compared to what was previously known and a new set of
parameters are generated for the next evaluation. This is repeated until the error is
within the given tolerance or until a pseudo-global minimum is found.

Considering the forced Van der Pol system, again it is now known that the initial
conditions give rise to the largest perturbations to the ideal trajectory of a perfect circle
in the phase plane. With this in mind the targeted exponential weighting technique
will be targeted for those initial transient behaviors in order to minimize their impact.

For the forced VDP system under investigation, the initial configuration will
take the original forcing function, xd = Asin(t), as the ideal trajectory for the
position. This will give the desired steady state response. Next, the derivative will be
evaluated to get , and here we need to look at the trajectory error from the
baseline forced VDP case to decide the next course of action. The tracking error can
be found in Figure 18.

xd ¼ Asin tð Þ, _xd ¼ A 1� e�10t� �
cos tð Þ, €xd ¼ dx

dt
_xd (28)

It can be seen in Figure 18 that the most severe trajectory transients are in the
initial states of , and , in addition to the transients on beyond t = 1 second.
The first focus area will be on because there is no desire to reduce as that will
help preserve the final desired trajectory. Additionally, the large transients are
periodic in nature and therefore if the initial spike can be minimized then the
following periodic spikes should be greatly reduced. In order to minimize the initial
transients in an increasing exponential will be used to force the derivative to zero
at time = 0. The desired trajectory response will grow exponentially to the final state
and the exponential rate will be tuned deterministically to get the resulting trajec-
tory equations in Eq. (28). Taking the derivative of the tuned exponentially increase

Figure 17.
Cyclical process of deterministic parameter tuning.
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trajectory will provide . where A = 5, for an arbitrary circle radius of 5 in the phase
plane.

This approach takes the ideal forcing function for the Van der Pol oscillator, Asin
(⍵ t), and by modifying the nominal derivative, ⍵ Acos(⍵ t), via an exponential
dithering method (1� e�Bt) manipulates the targeted trajectory section (in this case
where t < 2) in order to attempt to minimize the unwanted micro-transients.
Generating the three trajectories in , , and via the expressions in Eq. (28)
result in a output phase portrait as illustrated in Figure 19, with the residual
tracking error on each trajectory component in Figure 20.

The benefits by utilizing the targeted exponential weighting method are imme-
diately noticeable when comparing the original phase portrait of the forced VDP
system in Figure 7, and the results using the isolated trajectory fractionalization

Figure 18.
Trajectory tracking error in forced VDP system.
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method in Figure 15. Additionally, the objective cost function, J, decreases from
J = 4.9603, to J = 1.0604, to J = 0.6328 for an overall reduction of 87% from
implementing target exponential weighting algorithm. The next step will be to
implement the same methodology on to gain further improvement.

Figure 19.
Phase plane error in forced VDP system using 1-term targeted exponential weighting.

Figure 20.
Trajectory tracking error in forced VDP system using 1-term targeted exponential weighting.
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2.3.2 2-term targeted exponential weighting

Using the same methodology in the 1-term method previously described, the
exponential dithering will be applied to the 2nd derivative, €xd. Starting with
Eq. (29) where xd is of the form: A(1 � e�Bt)cos(t). The direct derivative is of the

Figure 21.
Phase plane error in forced VDP system using 2-term targeted exponential weighting.

Figure 22.
Trajectory tracking error in forced VDP system using 2-term targeted exponential weighting.
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form: �Ae�Bt((e�Bt � 1)sin(t) � Bcos(t)). And making the assumption from a
heuristic approach that e�Bt≈Bt in the dithering sine term to get Eq. (30).

Xd ¼ Asin tð Þ, _xd ¼ A 1� e�5:5t� �
cos tð Þ, (29)

€xd ¼ �Ae�3:17t 3:17t� 1ð Þ sin tð Þ � 3:17 cos tð Þð Þ (30)

Generating the three trajectories in , and via the expressions in Eqs. (29)
and (30) result in a output phase portrait as illustrated in Figure 21, with the
residual tracking error on each trajectory component in Figure 22.

The 2-term targeted exponential weighting method does indeed show an
improvement over the 1-term variation. The resulting improvement based on the
objective cost function shows an extra 5% decrease in trajectory tracking error to
get J = 0.3758, which results in an overall reduction in tracking error on the order of
92% over the baseline forced Van der Pol system.

3. Conclusion

This chapter presented a small set of deterministic approaches to transient
trajectory generation with particular interest in minimizing unwanted micro-
transients that may cause havoc on a control system performance. Beginning with a
brief introduction to control theory terminology which introduced state-space
notation, transfer functions, feedback controllers, and the concept of observers for
estimating unknown system states. From there the Van der Pol oscillatory equation
was introduced and presented as a system under test to apply the deterministic
trajectory generation techniques to.

Using the Van der Pol oscillator, feedforward controllers were introduced
through the forced Van der Pol system and initial results of system performance
were discussed and evaluated through the use of phase portraits. The micro-
transients in the baseline case, the forced Van der Pol system using a forcing
function in the form of Asin(t), were illustrated and compared to three different
approaches. The first approach utilized a common feedback technique for linear
system, the linear quadratic regulator (LQR). This was shown to be unstable.

Sinusoidal
(base)

LQR FB LQR w/
FF

Custom FF
trajectory

Exp Xdot
w/FF

Exp Xddot
w/FF

RMSe on 0.4171 1.9181 0.9624 0.1044 0.0739 0.0616

RMSe on 1.065 3.1803 2.2486 0.2206 0.1062 0.078

RMSe on 4.8266 13.8416 11.7283 1.0319 0.6194 0.3624

Kp �2.6818 �2.6818

Kd �0.4142 �0.4142

Ki �0.2682 �0.2682

J( , ) 1.1438 3.7139 2.4459 0.2441 0.1294 0.0994

J( ) 4.9603 14.3312 11.9806 1.0604 0.6328 0.3758

% error
reduction

0 n/a n/a 78% 87% 92%

Table 1.
Summary of case study results.
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The next approach utilized the isolated trajectory fractionalization technique which
segmented the desired trajectory into sub-trajectories, and isolated the transition
points and applying a Fourier fitting routine to stich the desired trajectories back
together. This approach led to a reduction in trajectory error (as evaluated by an
objective cost function) by 78%.

The final method was split into two slightly different variants. The first one
presented was the 1-term targeted exponential weighting method. This method
utilized a-priori knowledge of where the largest micro-transient response and
applied dithering techniques to minimize those unwanted transients in the deriva-
tive of the desired trajectory. The second variation, the 2-term targeted exponential
weighting method, applied a similar approach to the 2nd derivative of the desired
trajectory. The resulting improvement over the baseline case was an 87, and 92%
trajectory tracking error reduction.

For ease of comparison, the results are summarized in Table 1.
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Chapter 7

Sinusoidal Trajectory Generation
Methods for Spacecraft
Feedforward Control
Kyle A. Baker

Abstract

The following is a brief walkthrough of material related to the modeling of
spacecraft dynamics with feedforward control as the self-awareness declaration for
deterministic artificial intelligence. Specifically, the focus will be on the analysis
of various sinusoidal trajectory methods. The methods utilized are the basic
MATLAB sine generation function, a Taylor series implementation, and two alter-
nate algorithms for higher speed, lower precision and lower speed, higher precision
implementations. The chapter features a brief summary of previous work investi-
gating the impact of step size on Euler and Body angles. This is followed by a high
level overview of Euler angle theory, quaternions, direction cosine matrices, kine-
matics, and dynamics to form a mathematical basis for the core material. With the
numerical basis for the modeling efforts outlined, the results of running a
SIMULINK model of spacecraft dynamics with feedforward control will be briefly
analyzed and explored. The analysis will cover the impacts of varying step size with
various sinusoidal trajectory generation methodologies.

Keywords: sine wave approximation, sinusoidal trajectory generation,
feedforward control, Taylor Series approximation, spacecraft torque generation,
space vehicle rotational mechanics, SIMULINK

1. Introduction

The study of spacecraft rotational mechanics includes three core functional
areas: kinematics, dynamics, and disturbances. This chapter will be primarily
focused on the trajectory generation methodology used to drive the space vehicle
dynamics. In the model shown in Figure 1, a commanded spacecraft body move-
ment is taken in and translated into both an input torque (T) and an angular
velocity (ω) for the spacecraft body. A quaternion and direction cosine matrix are
then calculated and employed to find Euler Angles for the spacecraft’s attitude with
respect to an inertial frame.

Previously unpublished academic work, based on the topology found in
Figure 1, delved into the effects of varying time steps and maneuver time in
feedforward control (everything to the left of dynamics) but considered only a
single method of sinusoid generation. Eq. (1) is the idealized feedforward control
for the simulation and it can additionally function as the self-awareness declaration
for deterministic artificial intelligence [1–9]. In this chapter, the Torque generator
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driven by Eq. (1) will remain unchanged but we will investigate the impact of four
different sinusoid generation methods in the Trajectory generator, namely:

• MATLAB’s sine function

• 4th order Taylor series approximation

• Low precision approximation algorithm

• High precision approximation algorithm

These methodologies require examination due to the inherent errors in an actual
spacecraft’s measurement apparatus. No onboard system can ever measure a space-
craft’s angular position, velocity, or acceleration at infinite precision. Additionally,
any disturbances accounted for in the coarse control from feedforward design
implementations will still require additional feedback control for robust, fine
tuning. As such, it may be more prudent to embrace a small amount of course
control error in order to speed up overall computation time. In order to assess these
methodologies, a SIMULINK model for each Trajectory generator method was
created and their outputs were compared for error and computation time.

Tx

Ty

Tz

2
64

3
75 ¼

Jxx _ωx þ Jxy _ωy þ Jxz _ωz � Jxyωxωz � Jyyωyωz � Jyzω2
z þ Jxzωxωy þ Jzzωzωy þ Jyzω2

y

Jyx _ωx þ Jyy _ωy þ Jyz _ωz � Jyzωxωy � Jzzωxωz � Jxzω2
x þ Jxxωxωz þ Jxyωzωy þ Jxzω2

z

Jzx _ωx þ Jzy _ωy þ Jzz _ωz � Jxxωxωy � Jxzωyωz � Jxyω2
y þ Jyyωxωy þ Jyzωzωx þ Jxyω2

x

2
664

3
775

(1)

2. Sinusoidal trajectory generation

In the previous work referred to in Section 1 of this chapter it was found that a
sufficiently small time step size must be utilized in order to adequately model the
commanded input as a sinusoid. This can be seen with a snapshot of the experi-
mental results as shown in Figure 2.

These graphs were generated when the model shown in Figure 1was tested with
a commanded input of [0, 0, 30]T which corresponds to zero roll, zero pitch, and a
30° yaw. This allowed analysis to focus on time step impacts to one axis of rotation
of MATLAB sinusoidal generation methodology. The quiescent and post-maneuver
timeframes were both set to 5 s and the maneuver was conducted over a 10 s
interval. Figure 2 shows the results of a time step of 1 s and a time step of 0.01 s,

Figure 1.
Simulink model topology.
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both using the Runge-Kutta solver. With the larger step size of 1 s, the Euler angles
lost tracking and went slightly above the commanded angle while the smaller step
size of 0.01 s afforded better tracking between Euler angle and Body angle. The
main takeaway was that with finer step size resolution one could essentially equate
the Euler and Body angles on a given model even though the former is in the inertial
reference frame and the latter is in the spacecraft body reference frame.

Additionally, 100 iterations were run over a range of step sizes between 1 and
0.01 s to see what impact a chosen step size would have on error between Body and
Euler Angles at the end of the maneuver phase. The results of this study can be seen
below in Figure 3.

From this graph you can clearly see the benefit of reducing step size. It should be
noted, however, that once step size was reduced to 0.01119 s the model reached a

Figure 2.
Position vs. time graphs as a function of time step.

Figure 3.
Error vs. step size.
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point where CPU and MATLAB precision comes into play and shrinking step size
did not necessarily result in reducing error. This is noticeable with the erratic
nature of the curve on the left side of the graph when approaching a much
small step size.

Since it was found that we could adequately model our system with a small
enough step size this allowed further investigation into other areas within the model
which could be changed and optimized. This line of thought led us to create a new
model which could be utilized to compare and contrast various sinusoidal genera-
tion methodologies. This new model’s numerical basis and simulation results will be
shown in the following two subsections.

2.1 Model creation

Before adding changes for various sinusoidal generation methodologies the
mathematical basis and assumptions used in the previous model were re-verified.
The first step used in model creation (and re-verification) was the implementation
of a direction cosine matrix to numerically represent rotations about a set of axes to
project a starting frame onto a desired reference frame in order to outline the
system kinematics [10–14]. Figures 4 and 5 provide visual depictions of the process
driven by Eq. (2) through Eq. (4). Each direction cosine matrix equation takes an
axial rotation as depicted by the series of rotations in Figure 4 and represents it as
an orthonormal matrix consisting of sines, cosines, zeroes, and ones per the trigo-
nometry rules shown in Figure 5.

1 RotationDCM ¼
1 0 0

0 cosΦ sinΦ
0 � sinΦ cosΦ

2
64

3
75 (2)

2 RotationDCM ¼
cos θ 0 � sin θ
0 1 0

sin θ 0 cos θ

2
64

3
75 (3)

3 RotationDCM ¼
cosΨ sinΨ 0

� sinΨ cosΨ 0

0 0 1

2
64

3
75 (4)

For more complicated movements, direction cosine matrices are multiplied
together resulting in a more intricate matrix. Eq. (5) is an example of this for a 3-2-1
Rotation. This direction cosine matrix sequence and others are provided a more in
depth treatment in Refs. [14-16] and as well as other chapters in this book. Note that
in Eq. (5), the “C” and “S” characters are utilized as shorthand for the sine and
cosine trigonometric functions.

321 DCM Rotation ¼
CθCΨ CΦSΨ �Sθ

SΦSθCΨ� CΦSΨ SΦSθSΨþ CΦCΨ SΦCθ
CΦSθCΨþ SΦSΨ CΦSθSΨ� SΦC0 CΦCθ

2
64

3
75 (5)

The other major workhorse of the model’s kinematics is the orthonormal qua-
ternion matrix [17–19], which accomplishes the same feat as the direction cosine
matrix but with intrinsic divide by zero protection. The particular quaternion
calculation format implemented in the model can be seen in Eq. (6).
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_q ¼

0 ω3 �ω2
�ω3 0 ω1
ω2

�ω1

�ω1

�ω2

0

�ω3

ω1

ω2
ω3

0

2
666664

3
777775

q1
q2
q3

q4

2
66664

3
77775

(6)

To find the quaternion from Eq. (6), it is a simple matter of initializing the
quaternion vectors with an orthonormal set (i.e., [0,0,0,1]T) and integrating the
output.

The final matrix utilized, shown in Eq. (7), is an equation equivalent to the
previously shown 3-2-1 rotational matrix Eq. (5) but written in terms of quaternion
elements. This quaternion based 3-2-1 rotation is depicted below in Eq. (7).

321 DCMRotation ¼
1� 2 q22 þ q23

� �
2 q1q2 þ q3q4
� �

2 q1q3 � q2q4
� �

2 q1q2 � q3q4
� �

1� 2 q21 þ q23
� �

2 q2q3 þ q1q4
� �

2 q1q3 þ q2q4
� �

2 q3q2 � q1q4
� �

1� 2 q21 þ q22
� �

2
64

3
75 (7)

In actual implementation, the SIMULINK model uses Eq. (7) but for calculation
purposes takes advantage of Eq. (5). Combining terms leaves us with Eq. (8)
through Eq. (10) for Euler Angles:

θ ¼ sin �1 1� 2 q22 þ q23
� �� �

(8)

Φ ¼ atan2 2 q2q3 þ q1q4
� �

=1� 2 q21 þ q22
� �� �

(9)

Ψ ¼ atan2 2 q1q2 þ q3q4
� �

=1� 2 q22 þ q23
� �� �

(10)

Referring back to Figure 1, the Dynamics block is driven by Eq. (11) (the Euler
moment equation) when a torque is provided by the Feedforward Control section’s
Torque generator.

∑T ¼ _H ¼ J _ω þ ω� Jω (11)

Figure 4.
Simple 3-2-1 rotation.
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ternion matrix [17–19], which accomplishes the same feat as the direction cosine
matrix but with intrinsic divide by zero protection. The particular quaternion
calculation format implemented in the model can be seen in Eq. (6).
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_q ¼

0 ω3 �ω2
�ω3 0 ω1
ω2

�ω1

�ω1

�ω2

0

�ω3

ω1

ω2
ω3

0

2
666664

3
777775

q1
q2
q3

q4

2
66664

3
77775

(6)

To find the quaternion from Eq. (6), it is a simple matter of initializing the
quaternion vectors with an orthonormal set (i.e., [0,0,0,1]T) and integrating the
output.

The final matrix utilized, shown in Eq. (7), is an equation equivalent to the
previously shown 3-2-1 rotational matrix Eq. (5) but written in terms of quaternion
elements. This quaternion based 3-2-1 rotation is depicted below in Eq. (7).

321 DCMRotation ¼
1� 2 q22 þ q23

� �
2 q1q2 þ q3q4
� �

2 q1q3 � q2q4
� �

2 q1q2 � q3q4
� �

1� 2 q21 þ q23
� �

2 q2q3 þ q1q4
� �

2 q1q3 þ q2q4
� �

2 q3q2 � q1q4
� �

1� 2 q21 þ q22
� �

2
64

3
75 (7)

In actual implementation, the SIMULINK model uses Eq. (7) but for calculation
purposes takes advantage of Eq. (5). Combining terms leaves us with Eq. (8)
through Eq. (10) for Euler Angles:

θ ¼ sin �1 1� 2 q22 þ q23
� �� �

(8)

Φ ¼ atan2 2 q2q3 þ q1q4
� �

=1� 2 q21 þ q22
� �� �

(9)

Ψ ¼ atan2 2 q1q2 þ q3q4
� �

=1� 2 q22 þ q23
� �� �

(10)

Referring back to Figure 1, the Dynamics block is driven by Eq. (11) (the Euler
moment equation) when a torque is provided by the Feedforward Control section’s
Torque generator.

∑T ¼ _H ¼ J _ω þ ω� Jω (11)

Figure 4.
Simple 3-2-1 rotation.
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To derive the angular velocity of the body (ωBODY) fed from dynamics to kine-
matics, we multiply moment of inertia (J) by the time derivative of angular veloc-
ity, i.e., angular acceleration ( _ω). This J _ω term is multiplied by the inverse of J and
then integrated as per Eq. (12).

ð
J�1 ∗ J _ω
� �

dt ¼ ωBODY (12)

Afterwards, the ωBODY is used to obtain the spacecraft attitude’s Euler angles.
The feedforward control blocks in Figure 1 contain the Trajectory generator and

the Torque generator. The Trajectory generator takes in a commanded body angle
and then uses a sine wave in order to approximate the commanded maneuver. To
help elaborate on this point, Figure 6 shows a square wave and a sine wave, both
shifted up in amplitude such that they operate from zero to two instead of between
negative and positive one.

We can see that if a square wave was used to approximate the commanded
maneuver, the spacecraft would essentially be expected to transition from the zero
position up to its max amplitude at the two positions instantaneously. This is a
physical impossibility. With the sine wave in the same figure we can see that the

Figure 6.
Visual depiction of square and sine waves.

Figure 5.
Depiction of a Φ rotation about the X axis.
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spacecraft machinery is afforded a ramp up and slow down period along with
a relatively linearly slope in the middle. Basically, the half period of sinusoid within
the square pulse of Figure 6 is used to provide a smooth, achievable input to the
system.

Our original model’s Trajectory generator follows Eq. (13) through Eq. (15) to
approximate the commanded maneuver for angular position, angular velocity (ω),
and angular acceleration ( _ω) via the MATLAB sine wave function.

AngularPosition ¼ 1
2

Aþ A ∗ sin
π

Δt

� �
t� twaitð Þ � π

2

� ��
(13)

AngularVelocity ¼ 1
2
A ∗

π

Δt

� �
cos

π

Δt

� �
t� twaitð Þ � π

2

� �
(14)

AngularAcceleration ¼ � 1
2
A ∗

π

Δt

� �2
sin

π

Δt

� �
t� twaitð Þ � π

2

� �
(15)

Eq. (13) models the input command, where “A” is the maneuver’s commanded
angle. The base frequency of the sinusoid (ωsine) is π

Δt

� �
where Δtð Þ is the desired

maneuver time. The twait term allows for a quiescent period and � π
2 term allows for

a proper phase shift to implement the sinusoidal half period of Figure 4. The effect
of this can be seen later on in Figure 7. Eqs. (14) and (15) are just successive
derivatives of Eq. (13) used to generate angular velocity and acceleration which are
fed into Eq. (1) in the Torque generator from Figure 1. This produces an output
torque which drives the dynamics.

From Eq. (13) through Eq. (15) it can be clearly seen that the argument of the
sine and cosine terms always follows the form of Eq. (16). We can use this to
implement our Taylor series and the other two other algorithms on equal footing.

Arg ¼ π

Δt

� �
t� twaitð Þ � π

2
(16)

The Taylor series, as detailed in Ref. [20], is a numerical method that can be
used to approximate other functions. In our model we substitute the sine and cosine
in Eq. (13) through Eq. (15) with Eqs. (17) and (18).

Taylor Sin ¼ Arg � Arg3

3!
� Arg5

5!
� Arg7

7!
(17)

Taylor Cos ¼ 1� Arg2

2!
� Arg4

4!
� Arg6

6!
(18)

The Taylor series is a power series and additional terms could be included ad
infinitum for greater precision; however, initial testing found that four series terms
provided a reasonable approximation while maintaining a viable runtime.
Additionally, it was found that pre-calculating the factorial terms sped up
computation time.

The last set of sinusoidal generation methodologies tested was the low precision
(LP) and high precision (HP) algorithms. These were found to be used in many
applications, especially ones which limited by lower processing power such as
mobile gaming. Refs. [21, 22] provided the baseline for adaptation of the baseline
Eqs. (19) and (20). Note that the same equation is used for sine and cosine except
that the argument term is given a positive π

2 phase shift when applied to the cosine in
Eq. (14). In Eq. (19), þ=�ð Þ indicates that a plus is used if Arg is less than zero and
a minus is used otherwise.
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spacecraft machinery is afforded a ramp up and slow down period along with
a relatively linearly slope in the middle. Basically, the half period of sinusoid within
the square pulse of Figure 6 is used to provide a smooth, achievable input to the
system.

Our original model’s Trajectory generator follows Eq. (13) through Eq. (15) to
approximate the commanded maneuver for angular position, angular velocity (ω),
and angular acceleration ( _ω) via the MATLAB sine wave function.

AngularPosition ¼ 1
2

Aþ A ∗ sin
π

Δt

� �
t� twaitð Þ � π

2

� ��
(13)

AngularVelocity ¼ 1
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π

Δt

� �
cos

π

Δt

� �
t� twaitð Þ � π

2

� �
(14)

AngularAcceleration ¼ � 1
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π

Δt
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π
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2

� �
(15)

Eq. (13) models the input command, where “A” is the maneuver’s commanded
angle. The base frequency of the sinusoid (ωsine) is π

Δt

� �
where Δtð Þ is the desired

maneuver time. The twait term allows for a quiescent period and � π
2 term allows for

a proper phase shift to implement the sinusoidal half period of Figure 4. The effect
of this can be seen later on in Figure 7. Eqs. (14) and (15) are just successive
derivatives of Eq. (13) used to generate angular velocity and acceleration which are
fed into Eq. (1) in the Torque generator from Figure 1. This produces an output
torque which drives the dynamics.

From Eq. (13) through Eq. (15) it can be clearly seen that the argument of the
sine and cosine terms always follows the form of Eq. (16). We can use this to
implement our Taylor series and the other two other algorithms on equal footing.

Arg ¼ π

Δt

� �
t� twaitð Þ � π

2
(16)

The Taylor series, as detailed in Ref. [20], is a numerical method that can be
used to approximate other functions. In our model we substitute the sine and cosine
in Eq. (13) through Eq. (15) with Eqs. (17) and (18).

Taylor Sin ¼ Arg � Arg3

3!
� Arg5

5!
� Arg7

7!
(17)

Taylor Cos ¼ 1� Arg2

2!
� Arg4

4!
� Arg6

6!
(18)

The Taylor series is a power series and additional terms could be included ad
infinitum for greater precision; however, initial testing found that four series terms
provided a reasonable approximation while maintaining a viable runtime.
Additionally, it was found that pre-calculating the factorial terms sped up
computation time.

The last set of sinusoidal generation methodologies tested was the low precision
(LP) and high precision (HP) algorithms. These were found to be used in many
applications, especially ones which limited by lower processing power such as
mobile gaming. Refs. [21, 22] provided the baseline for adaptation of the baseline
Eqs. (19) and (20). Note that the same equation is used for sine and cosine except
that the argument term is given a positive π

2 phase shift when applied to the cosine in
Eq. (14). In Eq. (19), þ=�ð Þ indicates that a plus is used if Arg is less than zero and
a minus is used otherwise.
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LP ¼ 1:27323954 ∗Arg þ=�ð Þ 0:405284735 ∗Arg2 (19)

HP ¼ :225 ∗ LP ∗ abs LPð Þ � LP½ � þ LP (20)

Eq. (20) provides additional smoothing to Eq. (16) at the cost of computation
time to implement a high precision mode. This equation could be implemented such
that “LP ∗ abs LPð Þ” essentially become the magnitude of LP2. While this analysis
used “if then” statements, there may be more efficient ways to implement Eqs. (19)
and (20) depending on the software package being utilized.

2.2 Model simulation and analysis

For the purpose of model verification, commands are initially held constant at
zero resulting in zero torque to allow us to evaluate model operation during a
quiescent period. With zero input torque, Eq. (11) shows us that the change in
angular momentum should be zero as well; therefore the model should not change.
After a 5 s quiescent period, a 30° yaw maneuver was input into each model and the
maneuver was conducted over a 10 s period at which point the commanded body
angle went to zero (indicating no more change required). Afterwards the output
Euler angles should remain constant with the spacecraft’s new attitude. The results
of this test were plotted in Figure 7. Additionally, note that the model was setup
with an arbitrary diagonalized inertia matrix (J) per Eq. (21). The roll and pitch
Euler angles remained at zero, as they should have, and as such are not shown.

J ¼
150 0 0

0 90 0

0 0 35

2
64

3
75 (21)

Figure 7.
Feedforward control for 30° yaw maneuver.
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From a qualitative standpoint you can see that each sine generation algorithm
created the intended Euler angle movement shown earlier in Figure 4. Upon closer
examination the only algorithm that appeared to lose tracking on the body angle
was the low precision algorithm. Since we achieved the basic shape from each
method, we now turn our attention to analyzing the error and computation time
associated with each for a given time step interval.

In the previous work addressed in the beginning of Section 2 of this we found
that for a Runge-Kutta solver with step size of 0.01119, the MATLAB sine function
reached a point where CPU and MATLAB precision started to affect the gains
offered by shrinking step size. With this in mind, step sizes of 0.1, 0.05, and 0.1 s
were chosen for analysis, results of which can be seen in Figure 8 and Table 1.

One major inference to be drawn from Table 1 is that the normalized error
columns show Taylor, LP, and HP algorithms are roughly step-size invariant within
our test range; only the MATLAB function’s error reduces with step size in our
model. Interestingly, the LP and HP functions can be more accurate than Taylor but
we are more concerned with the final angle in coarse control (corresponding to the
peak of sine curve) rather than the intermediate steps—so in this case, the Taylor
series is considered more accurate.

The other major item of note is the difference in average computation time.
While the MATLAB command is ultimately the most accurate at all step sizes, we
can see that the LP and HP algorithms generally run faster. It should be noted that
results were relatively inconsistent when run below 200 iterations but at 500

Figure 8.
Computation time results.

Method Step size Step size Step size

0.01 s 0.5 s 0.1 s

Time(s) Error Time(s) Error Time(s) Error

1-MATLAB 0.2423 1.02E-9 0.2459 6.36E-11 0.2685 1.02E-13

2-Taylor 0.2434 3.53E-5 0.2471 3.53E-5 0.2720 3.53E-5

3-LP 0.2416 2.81E-2 0.2459 2.81E-2 0.2682 2.81E-2

4-HP 0.2417 3.25E-4 0.2456 3.25E-4 0.2666 3.25E-4

Time and error results averaged over 500 iterations per model.

Table 1.
Timing and error results.
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From a qualitative standpoint you can see that each sine generation algorithm
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was the low precision algorithm. Since we achieved the basic shape from each
method, we now turn our attention to analyzing the error and computation time
associated with each for a given time step interval.

In the previous work addressed in the beginning of Section 2 of this we found
that for a Runge-Kutta solver with step size of 0.01119, the MATLAB sine function
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One major inference to be drawn from Table 1 is that the normalized error
columns show Taylor, LP, and HP algorithms are roughly step-size invariant within
our test range; only the MATLAB function’s error reduces with step size in our
model. Interestingly, the LP and HP functions can be more accurate than Taylor but
we are more concerned with the final angle in coarse control (corresponding to the
peak of sine curve) rather than the intermediate steps—so in this case, the Taylor
series is considered more accurate.

The other major item of note is the difference in average computation time.
While the MATLAB command is ultimately the most accurate at all step sizes, we
can see that the LP and HP algorithms generally run faster. It should be noted that
results were relatively inconsistent when run below 200 iterations but at 500
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iterations they stabilized with HP and LP usually running faster during a given test.
Since HP would run faster than LP sometimes and vice versa, even at greater
iterations; it is believed that this may come down to specific CPU architecture used
and how a dual core processor handles calculations.

3. Conclusions

When it comes to sinusoidal trajectory generation, if your spacecraft design has
accurate fine control (e.g., robust feedback mechanisms) and can handle coarse
control error on the order of 10�4, then it may be more prudent to utilize the HP
algorithm. This would allow you to reduce processing power and time resulting in
lower power requirements and faster onboard calculations. A fourth order Taylor
series would not be beneficial due to longer computation times and less accuracy
than the MATLAB function; extending the order of the series would increase accu-
racy but also extend its runtime, thereby, losing viability. Additionally, simulation
results reveal that the fastest methodology may vary with CPU architecture indi-
cating that there may not be a definitive answer for “best” trajectory generation
method. This should be evaluated within the specific spacecraft design trade space.
Very little information is available on the proprietary MATLAB sine calculations but
future testing will investigate the LP and HP algorithms against MATLAB on a
variety of CPU architectures and organic sinusoidal generation on other platforms
such as PYTHON.
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Abstract

This manuscript will explore and analyze the effects of different controllers in
an overall spacecraft’s attitude determination and control system (ADCS). The
experimental setup will include comparing an ideal nonlinear feedforward control-
ler, a feedback controller, and a combined ideal nonlinear feedforward + feedback
controller within a Simulink simulation. A custom proportional, derivative, integral
controller was implemented in the feedback control, adding an additional term to
account for the nonlinear coupled motion. Consistent proportional, derivative, and
integral gains were used throughout the duration of the experiment. The simulated
results will show that the ideal nonlinear feedforward controller lacked an error
correction mechanism and took extra time to execute, the feedback controller faired
only slightly better, but the combined ideal nonlinear feedforward controller with
feedback correction yielded the highest accuracy with the lowest execution time.
This highlights the potential effectiveness for a learning control system.

Keywords: control systems, feedforward, feedback, learning systems

1. Introduction

The goal of a spacecraft’s attitude determination and control system (ADCS) is
to have a system that can move to and hold a specific orientation in three-
dimensional space, relative to an inertial frame. This project can be viewed through
three different lenses: classical control, modern control, and/or machine learning.
These lenses explain the same control theory in three different contexts. For all the
control theories, the ADCS considers the kinetics, kinematics, disturbances, con-
trols, and actuators that dictate the system’s motion [1]. Specifically, with regard to
classical control, both feedforward and feedback controller are implemented in
order to eliminate the error between a desired and commanded signal [1]. With
regard to modern control, a similar estimation and correction method is
implemented using either an extended Kalman controller, which relies upon on a
nonlinear control estimator coupled with a linear control corrector, or an unscented
Kalman controller, which uses both a nonlinear control estimator and nonlinear
control corrector, in order to reduce error [2–6]. The third context relates control
systems to deterministic artificial intelligence and machine learning. The control
estimate derives from self-awareness of its own attributes that update every time-
step with new information. This self-updating learning mechanism can be viewed
akin to the update cycle used by supervised learning algorithms to model a system’s
performance. As an example, the updating mechanism is either a linear or nonlinear
method to update an unknown inertia matrix for a spacecraft [7–13].

Figure 1 depicts the topology of the computational steps that take desired angle
inputs and calculates Euler angle outputs: φ, θ, and ψ. The desired angle inputs are
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processed through the trajectory, controls, actuators, dynamics, and disturbances
blocks. Section II will explain the theory behind the overall control system, Section
III will detail the experimental setup, Section IV will show the results, and Section V
will conclude this paper.

2. Background and theory

The rotation maneuver from one position to another is measured from the
inertial reference frame or [XI, YI, ZI] to the final position, the body reference
frame or [XB, YB, ZB], as depicted in Figure 2. For this simulation, a model was
created to rotate from orientation A, [XA, YA, ZA], to orientation B, [XB, YB, ZB].
The kinetics, kinematics, orbital frame, and disturbance calculations are explained
in Ref. [1]. This paper focuses on a combined feedforward plus feedback controller
as an error estimation and correction mechanism. This simulation utilizes three
control moment gyroscopes (CMG) that are responsible for physically moving the
system according to the inputted control signal. Additionally, this paper will focus
on how the control system implementation affects the rotational maneuver and
final orientation of a spacecraft.

Figure 1.
The overview of the control system from the desired φ, θ, and ψ inputs (white box), through calculations steps
(light gray boxes) to φ, θ, and ψ Euler angle outputs (dark gray box).

Figure 2.
Execution of a rotation from XI to XB; blue arrows denote angle rotations which can be seen to rotate around the
quaternion axis, q4 in red.
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2.1 Control moment gyroscopes

A CMG acts like a large reaction wheel spinning at a constant speed that trans-
fers energy by changing its orientation. It successfully induces motion by following
the governing equations of rotational mechanics, detailed in Eqs. (1) and (2):

T ¼ _Hs þ ω�Hs ¼ u ∗ ¼ _H (1)

Hs ¼ Jωþ h (2)

These governing equations apply to any rotating, rigid body of mass. T repre-
sents the torque which is equal to the optimal control, u ∗ ; Hs represents the total
system’s angular momentum; ω represents the angular velocity of the body; J is the
inertia matrix for the entire body, including the CMGs; and h is the momentum
produced by the CMGs. All these variables are expressed in the body frame of the
spacecraft.

Physically on a spacecraft, the CMGs are typically one of several cylinders
located at different orientations within the spacecraft’s bus, used to perform
reorientation maneuvers. In Figure 1, the CMGs are represented within the actua-
tors block, which is directly before the dynamics block. The actuator input is a
commanded torque u ¼ _H, and the output is an actual torque that is fed to the
system using a sinusoidal trajectory described in [14].

The method of transforming a commanded torque, T, into an actual torque using
the CMGs is described in Eqs. (3), (4), and (5). In these equations, the variable θi is
the rotation about the gimbal axis, and β is the skew angle orientation of the
respective CMG. The notations have also been shortened so that sine and cosine trig
functions are “s” and “c,” respectively:

A½ � ¼ δH
δθ
¼

sin θ1 cos β2 cos θ2 � sin θ3
� cos β1 cos θ1 sin θ2 cos β3 cos θ3
sin β1 cos θ1 sin β2 cos θ2 sin β3 cos θ3

2
64

3
75 (3)

A½ ��1 _H ¼ A½ ��1 A½ � _θ
� � ¼ _θ

� �
(4)

A½ ��1 ¼

c θ3ð Þ
cθ1sθ3 þ sθ1θ3

�s θ3ð Þ
cθ1sθ3 þ sθ1θ3ð Þtθ2

s θ3ð Þ
cθ1sθ3 þ sθ1θ3

0
1
sθ2

0

�c θ1ð Þ
cθ1sθ3 þ sθ1θ3

�s θ1ð Þ
cθ1sθ3 þ sθ1θ3ð Þtθ2

s θ1ð Þ
cθ1sθ3 þ sθ1θ3

2
66666664

3
77777775

(5)

The first step is to build [A], commonly referred to as the Jacobian matrix or the
spatial matrix. This matrix takes the angular changes in H and compares them to the
changes in θi. This concept is visually represented in Figure 3, given a fixed β and
fixed θi from (3).

The second step is based on the “so-called” inverse steering law, which is
represented in (4). This equation relates the commanded torque to the gimbal rate,
where the commanded torque is also known as the rate of change of the angular
momentum. This calculation can be done with a variety of methods. A few potential
methods for inversion include singular value decomposition, matrix inversion for
square matrices, matrix pseudo-inversion for non-square matrices, or element by
element in [A]�1 as defined in (5). Each of these methods yields a commanded
gimbal rate, _θ. For simplification, the actuator is assumed to be perfect and
produces the actual gimbal rate commanded without error or loss.

155

Modern Control System Learning
DOI: http://dx.doi.org/10.5772/intechopen.90198



processed through the trajectory, controls, actuators, dynamics, and disturbances
blocks. Section II will explain the theory behind the overall control system, Section
III will detail the experimental setup, Section IV will show the results, and Section V
will conclude this paper.

2. Background and theory

The rotation maneuver from one position to another is measured from the
inertial reference frame or [XI, YI, ZI] to the final position, the body reference
frame or [XB, YB, ZB], as depicted in Figure 2. For this simulation, a model was
created to rotate from orientation A, [XA, YA, ZA], to orientation B, [XB, YB, ZB].
The kinetics, kinematics, orbital frame, and disturbance calculations are explained
in Ref. [1]. This paper focuses on a combined feedforward plus feedback controller
as an error estimation and correction mechanism. This simulation utilizes three
control moment gyroscopes (CMG) that are responsible for physically moving the
system according to the inputted control signal. Additionally, this paper will focus
on how the control system implementation affects the rotational maneuver and
final orientation of a spacecraft.

Figure 1.
The overview of the control system from the desired φ, θ, and ψ inputs (white box), through calculations steps
(light gray boxes) to φ, θ, and ψ Euler angle outputs (dark gray box).

Figure 2.
Execution of a rotation from XI to XB; blue arrows denote angle rotations which can be seen to rotate around the
quaternion axis, q4 in red.

154

Deterministic Artificial Intelligence

2.1 Control moment gyroscopes

A CMG acts like a large reaction wheel spinning at a constant speed that trans-
fers energy by changing its orientation. It successfully induces motion by following
the governing equations of rotational mechanics, detailed in Eqs. (1) and (2):

T ¼ _Hs þ ω�Hs ¼ u ∗ ¼ _H (1)

Hs ¼ Jωþ h (2)

These governing equations apply to any rotating, rigid body of mass. T repre-
sents the torque which is equal to the optimal control, u ∗ ; Hs represents the total
system’s angular momentum; ω represents the angular velocity of the body; J is the
inertia matrix for the entire body, including the CMGs; and h is the momentum
produced by the CMGs. All these variables are expressed in the body frame of the
spacecraft.

Physically on a spacecraft, the CMGs are typically one of several cylinders
located at different orientations within the spacecraft’s bus, used to perform
reorientation maneuvers. In Figure 1, the CMGs are represented within the actua-
tors block, which is directly before the dynamics block. The actuator input is a
commanded torque u ¼ _H, and the output is an actual torque that is fed to the
system using a sinusoidal trajectory described in [14].

The method of transforming a commanded torque, T, into an actual torque using
the CMGs is described in Eqs. (3), (4), and (5). In these equations, the variable θi is
the rotation about the gimbal axis, and β is the skew angle orientation of the
respective CMG. The notations have also been shortened so that sine and cosine trig
functions are “s” and “c,” respectively:

A½ � ¼ δH
δθ
¼

sin θ1 cos β2 cos θ2 � sin θ3
� cos β1 cos θ1 sin θ2 cos β3 cos θ3
sin β1 cos θ1 sin β2 cos θ2 sin β3 cos θ3

2
64

3
75 (3)

A½ ��1 _H ¼ A½ ��1 A½ � _θ
� � ¼ _θ

� �
(4)

A½ ��1 ¼

c θ3ð Þ
cθ1sθ3 þ sθ1θ3

�s θ3ð Þ
cθ1sθ3 þ sθ1θ3ð Þtθ2

s θ3ð Þ
cθ1sθ3 þ sθ1θ3

0
1
sθ2

0

�c θ1ð Þ
cθ1sθ3 þ sθ1θ3

�s θ1ð Þ
cθ1sθ3 þ sθ1θ3ð Þtθ2

s θ1ð Þ
cθ1sθ3 þ sθ1θ3

2
66666664

3
77777775

(5)

The first step is to build [A], commonly referred to as the Jacobian matrix or the
spatial matrix. This matrix takes the angular changes in H and compares them to the
changes in θi. This concept is visually represented in Figure 3, given a fixed β and
fixed θi from (3).

The second step is based on the “so-called” inverse steering law, which is
represented in (4). This equation relates the commanded torque to the gimbal rate,
where the commanded torque is also known as the rate of change of the angular
momentum. This calculation can be done with a variety of methods. A few potential
methods for inversion include singular value decomposition, matrix inversion for
square matrices, matrix pseudo-inversion for non-square matrices, or element by
element in [A]�1 as defined in (5). Each of these methods yields a commanded
gimbal rate, _θ. For simplification, the actuator is assumed to be perfect and
produces the actual gimbal rate commanded without error or loss.

155

Modern Control System Learning
DOI: http://dx.doi.org/10.5772/intechopen.90198



The last step is to invoke the inverse steering law in (6) to relate the Jacobian
matrix to the actual gimbal rate and determine the actual torque produced. This can
be completed using decoupled equations, as shown in [15]:

T ¼ A½ � _θ
� � ¼ _H (6)

Alternatively, Eqs. (4), (5), and (6) can be combined algorithmically and solved
for using Eq. (7):

det Aj j ¼ sθ1 sθ2sβcθ3 � cβcθ3sβcθ2ð Þ þ cβcθ2 cβcθ1sβcθ3 þ cβcθ3sβcθ1ð Þ
þ sθ3 cβcθ1sβcθ2 þ sθ2sβcθ1ð Þ where β1 6¼ β2 6¼ β3

(7)

In one calculated step, an output torque is yielded. This torque will feed into the
dynamics as described in (1), using the process detailed above and in [1].

2.2 Singularities

A singularity occurs when an element in the Jacobian matrix, from (3), is
resolved to an undefined value. This is caused by a zero existing within the denom-
inator of (5), which complicates the calculation when solving for the determinant
of [A]. Eq. (7) shows that singularities depend upon θ1, θ2, θ3, β1, β2, and β3 values.
Conceptually, this occurs at certain θ and β combinations because infinite torque is
required to move the CMG when the torque vector is orthogonal to the gimbal axis.
Trying to do so is impossible and yields unstable behavior as the CMG acts errone-
ously and tries to resolve a 1/0 calculation and command an undefined torque.
Furthermore, when all the β angles are equal, β1 = β2 = β3, (7) simplifies further but
is depicted as is for thoroughness.

This analysis is completed by taking (7) and stepping through θ and β combina-
tions to verify which yield a zero determinant. For example, with sin θ1, cos β2, cos
θ2, and sin θ3 all equal 0, the determinant of [A] is zero, yielding a possible solution

Figure 3.
CMG diagram with blue for axes and β angles, red for angular momentum vectors, green for θ rotation axes,
and purple for the direction of θ rotation.
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of θ1 = θ2 = θ3 = 0°. However, this is a long process with the many permutations of
solutions, which are omitted in this manuscript [15].

2.3 Controllers and observers

The input to a CMG is a torque vector, [Tx, Ty, Tz], which is a signal generated
by the trajectory block in Figure 1. However, this signal is not tuned to adjust to real
world influences, where mechanical hardware can introduce errors due to incor-
rectly or un-modeled attributes, noise, etc. In order to overcome these losses, either
a feedforward controller, a feedback controller, or a combination of both controllers
can be used to counter introduce errors. More specifically, proportional, integral,
and derivative (PID) gains are correlated to the position error generated when
moving from one position to another position to correct the errors. However, using
only the position error eθ, its integral

Ð
eθdt and its derivative d

dt eθ result in inaccu-
racies. This is due to the derivative calculation, which is both inefficient and inac-
curate as a result of the virtual-zero reference created in the cascaded topology of a
PID controller when the computation is initialized [16–19]. This inaccuracy can be
prevented by sending in both the position error and the velocity error, which has
been done in this experiment via an enhanced Luenberger proportional, derivative,

Figure 4.
Topology of a feedback controller with two methods of control: A classic PID controller or an enhanced
Luenberger PDI controller.

Figure 5.
PDI controller with ω input to remove virtual-zero reference with Kp, Kd, and Ki gains.
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integral (PDI) controller [16–19]. Additionally, the enhanced Luenberger controller
differs from the conventional PID controller which only receives a position error.
The result is a controller that outputs a commanded torque to the actuator block in
Figure 1. Topologies are shown of the overall feedback controller in Figure 4, and
the enhanced Luenberger PDI controller in Figure 5.

The simulation in this experiment utilized an observer to eliminate the virtual-
zero reference described above. An observer is comparable to a controller as they
both take in a position via system sensors and output a twice differentiated term to
produce full-state feedback knowledge. However, it provides an advantage: because
it is not implemented on a specific piece of hardware, much higher gains can be
utilized than can be used otherwise. A topology of the observer is shown in Figure 6
in the controller/observer block.

2.4 Control system learning

A control system is capable of learning by estimating its desired position and
then updating the control to correct for errors. In a learning control system, the
control estimator is the feedforward controller defined by (8), and the corrector or
learning mechanism is the feedback controller defined by (9), where Φ and Θ are
defined by (10) and (11), respectively. The feedback controller can also be written
in terms of the gains and the position error, eθ, as shown in (12). Combining (8) and
(9) yields a learning system that develops a more accurate control over time
through (13):

uff ¼
X

T ¼ J _ωd þ ωd � Jωd ¼ ΦΘ (8)

ufb ¼ Φ½ � Θ̂� � ¼ Φ ΦTΦ
� ��1ΦTδu (9)

Φ ¼
_ωx _ωy _ωz

ωxωz _ωx 0

�ωxωy 0 _ωx

�ωyωz 0 ωzωy

_ωy _ωz �ωzωx

ωyωx _ωy _ωz

2
664

3
775 (10)

Θ ¼ Jxx, Jxy, Jxz, Jyy, Jyz, Jzz
n oT

(11)

ufb ¼ kpeθ þ kd _eθ þ ki
ð
eθ (12)

Figure 6.
Topology of an observer based upon a PID controller and two sets of differentiation to yield full-state knowledge.
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utot ¼ uff þ ufb

¼ J _ωd þ ωd � Jωd þΦ ΦTΦ
� ��1ΦTδu

¼ ΦΘþΦ ΦTΦ
� ��1ΦTdu ¼ Φ Θþ ΦTΦ

� ��1ΦTδu
h i (13)

Overall, the term “ Φ½ � Θ̂� �
” in (9) represents the self-awareness statement. The

nonlinear state transition matrix, Φ½ �, was built by knowing the dynamics of the
system, and Θ̂

� �
is the vector of unknown variables. Another application includes

analyzing a changing inertia matrix, where it is assumed that the mass of the system
is varying. The vector of unknowns, Θ̂

� �
, is the learned moment of inertia that is

recalculated at every iteration of the model and determining its new mass [9].

3. Experimental setup

This manuscript documents the implementation of three different control algo-
rithm combinations to induce a yawing motion on a spacecraft by generating the
commanded torque to a three-gimballed spacecraft ACS. The three cases are a
nonlinear feedforward control (case 1), a linear feedback control (case 2), and a
combination of both nonlinear feedforward + linear feedback (case 3). The gains for
these controllers are found in Table 1.

The model in this manuscript was built in MATLAB and Simulink, where inte-
grations were calculated using the ode45 with the Runge–Kutta solver and a fixed
time-step. Euler angles were resolved using a 3-2-1 rotation sequence with the atan2
trigonometry function.

As per [1], initialized values include torque = [0,0,0] and quaternion = [0,0,0,1].
The spacecraft’s inertia matrix is J = [10,0.1,0.1; 0.1,10,0.1; 0.1,0.1,10]. The distur-
bances are defined in [1]. The orbital altitude was set at 150 km with a drag
coefficient of 2.5 and orbital motion off. Each simulation executed over a five-
second quiescent period, five-second maneuver time, and five-second post-
maneuver observation period, totaling 60 seconds and yielding a ωf ¼ π=2 and
φ ¼ π=2 for the sinusoidal trajectory of the controller.

4. Experimental results and analysis

4.1 Time-step analysis

Time-step analysis was completed to determine whether reducing the time-step
would help minimize the body frame to the inertial frame error deviations.
The results of executing a maneuver with a feedforward + feedback controller
utilizing two different time-steps are depicted in Figure 7. Expectations were that a
smaller time-step would result in more precise results, meaning a smaller deviation

Kp gain Kd gain Ki gain

PDI controller 1000 10 0.1

Observer 100,000 500 0.1

Table 1.
Tuned gain values for the PDI controller and observer.
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ωxωz _ωx 0

�ωxωy 0 _ωx

�ωyωz 0 ωzωy

_ωy _ωz �ωzωx

ωyωx _ωy _ωz

2
664

3
775 (10)
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n oT

(11)

ufb ¼ kpeθ þ kd _eθ þ ki
ð
eθ (12)

Figure 6.
Topology of an observer based upon a PID controller and two sets of differentiation to yield full-state knowledge.
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between the commanded and executed Euler angles. However, comparing the red
and blue trajectories within each of the three plots in Figure 7 shows that although
some refinement is gained by decreasing the time-step, the gain is minimal. There-
fore, a larger time-step can be used without losing much accuracy.

Comparing the θactual � θdesired and ωactual � ωdesired errors for time-steps of 0.01
and 0.001 in Figure 8 yielded a similar result. The θz channel did receive the
greatest amount of refinement with a smaller time-step, but no order of magnitude
increase resulted. Therefore, these results confirm that varying the time-step has
limited impact on the trajectories. Therefore, for the gains in Table 1, a minimum
time-step of 0.01 is recommended, and decreasing it provides no additional benefit.

4.2 Control implementation

The performance of the three control system implementations is depicted in
Figure 9. Comparing the three cases allowed further analysis on the differences
between feedforward, feedback, and the combined feedforward + feedback control
system. The feedforward and feedforward + feedback controllers are more precise
than the feedback method. This is because it is based off an exact control equation,
Eq. (8). Conversely, the feedback controller is based off a PDI controller that has
one time-step of induced lag and is therefore less precise. Additionally, the gains in
a PDI or PID controller must be finely tuned with predetermined gain values, which
can be an iterative and time-consuming task because controller performance varies
greatly depending on the values. Lastly, the combined controller configuration
represents an error combination of both the feedforward and feedback plots. It
allows the analytical accuracy of the feedforward equation to be updated with the
responsiveness of the feedback correction, but too little error exists in this case for
the results to be visible.

Figure 10 shows the error of the commanded Euler angle over time. The two
left-most plots in Figure 10 show that the error is different for each controller. The

Figure 7.
Time-step analysis for the ϕ, θ, and ψ Euler angles for two time-steps.

160

Deterministic Artificial Intelligence

feedback controller fluctuates initially as it corrects to minimize error over time.
The feedforward controller is excellent initially but slowly deviates as error accrues
without correction. Lastly, the combined controller is the best of both and starts
with minimal error but then corrects that error over time. However, note that the
error is minimal because no movement was commanded in either the φ or θ chan-
nels; the residual error exists because of cross-chatter between channels resultant
from Eqs. (3) and (5).

Figure 8.
Time-step analysis comparing θactual�θdesired and ωactual�ωdesired errors.

Figure 9.
Controller error over time for the three configurations.
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The third plot from the left shows the position error in the ψ channel, which is
the channel in which a 30-degree maneuver was commanded. Before the maneuver
was started, the desired versus commanded error starts at 30°. At each time-step,
the position is updated and the error decreases. Due to the scale of the maneuver, all
three controllers appear to do well during the maneuver. To better understand the
performance, the fourth and right-most plot is a zoom-in of the third plot, illus-
trating the accuracies of the feedforward controller due to the forward propagation
accuracy of (8), the lag induced error and imperfect gain tuning of the feedback
controller, and the results of the combined feedforward + feedback controllers. It is
a better example of how each controller operates: the feedforward controller again
starts off with minimal error before deviating over time, the feedback controller
starts with the greatest amount of error that is overshot and damped, and the
combined controller, which is the best of both the minimal starting error and
correction capability of the other controllers.

Lastly, Table 2 compares the boundary condition satisfaction at the final time of
the maneuver. The results show that the feedforward + feedback controller has both
the least amount of error and the shortest runtime. Conversely, the feedforward
controller is the worst in both accuracy and runtime but only by a small margin
compared to the feedback controller. The feedforward controller is hypothesized to
perform worse because (12) tries to model (1) but can only poorly approximate it,
yielding inaccuracies, which accrue over time.

Figure 11 is a revisualization of the data in Figure 10. This depiction is more
intuitive and breaks down the change in angular position over time for each

Figure 10.
Euler angle error for the three controller configurations.

φactual � φdesired θactual � θdesired ψactual � ψdesired Run time (seconds)

uff �3.93e-04° 4.18e-04° �1.48e-02° 20.7

ufb 6.03e-09° �9.01e-08° 4.66e-08° 20.5

uffþfb 1.06e–08° �7.94e-09° 4.38e-09° 20.3

Table 2.
The actual-desired Euler angle errors for the three cases using a 0.001 time-step and their associated run times.
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controller, as well as magnifying the post-maneuver oscillations and damping.
Commanding [0;0;30], we see that all controller configurations are responsive to
this input, with the expected differences. The accuracy of the feedforward control
in the left-most plots, combined with the undamped response of feedback control
of the middle plots, gives dampened response of the combined controller in the
right-most plots.

5. Conclusion

This experiment implemented and compared the effects of a feedforward,
feedback, and a combined forward + feedback control system. A yaw maneuver was
commanded, and the response was measured to show that an ADCS can estimate and
then update its control over time, similar to a feedforward and feedback learning
mechanism. The results showed that the feedforward controller lacks a correction
mechanism that accrues error and takes time; the feedback system is slightly better in
both metrics, but the combined feedforward + feedback system combines the best of
both systems for superior accuracy in the shortest time. Therefore, the combined
system is the best choice for its accuracy and adaptability. However, this combined
system needs to be further researched by subjecting the system to noise and induced
disturbances to validate the combined system’s responsiveness.
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