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vii

The explosion of desktop computing power that started in the Eighties made computational modeling available
to engineers and scientists in exponentially increasing numbers. A key impediment to unlocking the potential,
however, was the necessity to formulate models in programming languages, for instance, FORTRAN and Algol.
Whereas organizations such as the national laboratories were able to employ software engineers who could
program mathematical models, desktop users did not have access to like resources.

As a natural course, more accessible languages for computational modeling were developed that aligned with
modeling practices and formalisms in various fields. To list a few examples, algorithmic array-based languages
such as MATLAB® proved exceedingly useful in Signal Processing. In Controls, models were often preferred
in the form of block diagrams. In Communications, protocols would be modeled well with Petri nets. Physics
would be most conviniently represented by noncausal models such as bond graphs. Moreover, not any less
important, intuitive environments for modeling were developed, oftentimes building on graphical user interface
(GUI) technology that emerged.

While the democratization of computational modeling that desktop computing brought about was initially
providing simulation as an aid in the work by engineers and scientists, in due time the computational artifacts
became of additional value. Not only to the point where modeling and computational simulation became a
critical step in individual analysis but also by an increasing value proposition in sharing models across teams,
departments, and even organizations.

It is around the turn of the millennium when this trend of models as first-class artifacts in engineered system
design starts to take shape. While I was employed by the DLR Oberpfaffenhofen, Hans Vangheluwe and I
meet during one of the Modelica language design meetings and our discussions start to uncover the necessary
research fundamental to addressing the growing need for model sharing and reuse. The magnificent challenge
before us is in connecting, combining, and integrating models with different syntax (e.g., textual, different
graphical elements, different types of relations), different semantics (e.g., imperative vs. declarative, data flow
vs. control flow, time-based vs. untimed), different contexts (individual vs. team based, critical design artifact
vs. one-off study, debugging vs. production), different perspectives (e.g., functional vs. performance, structure
vs. behavior), different purposes (e.g., analysis vs. synthesis, safety vs. creativity), different processes (from
mathematics to computation vs. computational semantics, first principle modeling vs. data-driven modeling),
and different workflows (e.g.. top-down vs. bottom-up, continuous integration vs. periodic sharing, continuous
refinement vs. back-to-back testing).

One day, the director of my group at the DLR Oberpfaffenhofen, Georg Gruebel and I are considering a
special session on the topic at the IEEE Computer Aided Control System Design symposium (CACSD) in 2000.
Our considerations of a title do not result in anything befitting and he leaves for home. Only to return to my
office after about fifteen minutes with a name for the budding field that was developing: Computer Automated
Multiparadigm Modeling (CAMPaM).

The CACSD 2000 initiative was successful enough that it required two conference sessions. We followed
that up with special issues of SCS SIMULATION and IEEE Transactions on Control System Technology. In
2004 we started a Bellairs series of workshops on CAMPaM that is active to this day.

Over time, the computer automated ambition proved to be overly optimistic and we tempered our enthusiasm
by extending the scope to multiparadigm modeling (MPM) in the large, including computer-aided approaches.
Correspondingly, a series of MPM workshops were organized at the ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems (MODELS)from 2010 through 2015.
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Today, the prescience of our observation at the turn of the millennium is reflected by the critical need
for models in the emerging proliferation of Cyber-Physical Systems (CPS). CPS embed computation and
communication as central to their physical operation. Most prominently, this enables a degree of flexibility or
openness that is distinctly different from the rigidly singular operation of computation in the embedded systems
paradigm that preceded CPS. CPS are open in a vertical sense such that compute platforms in hardware and
software may change independent of the logic that the computations implement. CPS are open in a horizontal
sense such that systems connect with other systems to achieve overall goals as a result of behavior that emerges
post deployment. And it is precisely this trend toward ever more openness that necessitates an increasing use of
models across paradigms, not limited to system design but just as much during operation (at run time).

And so the compilation of this textbook on Foundations of Multi-Paradigm Modelling for Cyber-Physical
Systems is exceedingly timely. Much of the research efforts have solidified over the years while the underlying
needs for multiparadigm modeling by the practitioner are still growing. This books provides an excellent
collection of content that focuses on key aspects of CPS, ranging from modeling the physics, the computation
and communication, control, performance characteristics, and system architecture. As an essential textbook on
mutiparadigm modeling for Cyber-Physical Systems, all of these aspects are layered on top of foundations of
multiparadigm modeling.

Over the years it has been a great pleasure working with all of the authors and editors of this collection. I
am excited to see the field of CAMPaM coming into maturity as signified by this book. Many thanks to all
involved for their time and effort to make this happen!

Natick, MA, USA, May 2019 Pieter J. Mosterman
Chief Research Scientist and Director of the

MathWorks Advanced Research & Technology Office
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Modelling and analysis are essential activities in the development of Cyber-Physical Systems. The inherent
cross-disciplinary nature of CPS requires distinct modelling techniques related to different disciplines to be
employed. At the same time, to enable communication between all specialities, common background knowledge
of formalisms is expected.

An important realization is that distinct models need to be woven together consistently to form a complete
representation of a system to enable, among other global aspects, performance analysis, exhaustive simulation
and verification, hardware-in-the-loop simulation, determining the best overall parameters for the system,
prototyping, and implementation. Conceivably, a unifying formalism would represent the connections between
the mentioned distinct models to enable reasoning about them. Likewise, recent advances show that coupling
disciplines by using co-simulation will allow them to cooperate without enforcing new tools or design methods.

As first, CPS is a relatively new field, with no established standards and with different actors, each of which
adopts a slightly different definition and a different approach for the topic. While multi-paradigm modelling
embraces a vast spectrum of distinct topics and has a very elastic and generic (informal) definition, the result is
that existing tools were created from different directions, as the field spans from very theoretical to application-
oriented approaches.

The goal of this book volume is to serve as a reference text that compiles, in a coherent manner, well-
established knowledge around fundamentals and formalisms for modelling of CPS.
of-the-art solid knowledge and
treatment of the cross-
from any of the related
Though chiefly intended
also serve as a reference text for practitioners at large.

practice, or fundamentals (not research) and strives to provide a homogeneous
disciplinary nature of CPS modelling. It can be used as a bridge for anyone entering CPS
areas of engineering (e.g., electric engineering, mechanics, physics, computer science).
for master and post-graduate level students in computer science and engineering, it can

The book focuses on state-



Acknowledgements

This book was supported by the COST Action IC1404 Multi-Paradigm Modelling for Cyber-Physical Systems
(MPM4CPS), COST is supported by the EU Framework Programme Horizon 2020.

xi



Contents

1 Multi-Paradigm Modelling for Cyber-Physical Systems: Foundations . . . . . . . . . . . . . . . . . . . . . . . 1
Paulo Carreira, Vasco Amaral, and Hans Vangheluwe
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Understanding Cyber-Physical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Systems and their models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Types of systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.3 What are Cyber-Physical Systems? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.4 Sources of Engineering Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Modeling of a Cyber-Physical System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.1 What is a Model? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.2 Multiple Formalisms in CPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Multi-Paradigm Modelling of CPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.1 What is a Paradigm? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.2 The dimensions of Multi-Paradigm Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 A foundation for MPM4CPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5.1 Modelling physical components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5.2 Joining the ‘Physical’ with the ‘Cyber’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5.3 Tooling support for MPM4CPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Bond Graphs: A Unifying Framework for Modelling of Physical Systems . . . . . . . . . . . . . . . . . . . . 15
Jan F. Broenink
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Bond-Graph Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Foundation of Bond Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Starting Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Bonds and Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Bond-Graph Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.1 Storage Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.2 Resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.3 Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.4 Transformers and Gyrators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.5 Junctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.6 Positive Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.7 Duality and Dual Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Systematic Procedure to Derive a Bond-Graph Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.1 The Eight Steps of the Systematic Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.2 Illustration of the Systematic Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6 Causal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6.1 Causal Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6.2 Causal Analysis Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

xiii



Contents

2.6.3 Model Insight via Causal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.6.4 Order of the Set State Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.6.5 Matrix Form of Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.7 Generation of Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.8 Expansion to Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.9 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.11 Literature and Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.12 Self-Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Modelica: Equation-Based, Object-Oriented Modelling of Physical Systems . . . . . . . . . . . . . . . . . . 45
Peter Fritzson
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Getting Started with Modelica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.1 Variables and Predefined Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.2 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.3 Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.4 Variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.5 Default Start Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Object-Oriented Mathematical Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3.1 Classes and Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.2 Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.3 Generic Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4.1 Repetitive Equation Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4.2 Partial Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5 Acausal Physical modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.6 The Modelica Software Component Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6.1 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.6.2 Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.6.3 Connectors and Connector Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.6.4 Partial Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.6.5 Reuse of Partial Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.7 Component Library Design and Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.7.1 The Simple Circuit Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.7.2 Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.8 Algorithmic Constructs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.8.1 Algorithm Sections and Assignment Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.8.2 Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.8.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.8.4 Operator Overloading and Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.8.5 External Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.8.6 Algorithms Viewed as Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.9 Discrete Event and Hybrid modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.10 Modularity Facilites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.10.1 Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.10.2 Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.10.3 Naming Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.11 Modelica Standard Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.12 Implementation and Execution of Modelica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.12.1 Hand Translation of the Simple Circuit Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.12.2 Transformation to State Space Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.12.3 Solution Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.13 Tool Interoperability through Functional Mockup Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.14 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

xiv



Contents

3.15 Literature and Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.16 Self-assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4 Causal-Block Diagrams: A Family of Languages for Causal Modelling of Cyber-Physical
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Cláudio Gomes, Joachim Denil, and Hans Vangheluwe
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.2.1 Models of Physical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2.2 Discrete Time Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.3 Algebraic Causal Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.3.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.3.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.4 Discrete-time CBDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.4.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.4.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.5 Continuous-time CBDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.5.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.5.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.6 Advanced Concepts and Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.6.1 Approximation Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.6.2 Other Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.6.3 Adaptive-Step Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.6.4 Logic Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.7 Global Error Euler Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.9 Literature and Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.10 Self Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5 DEVS: Discrete-Event Modelling and Simulation for Performance Analysis of
Resource-Constrained Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Yentl Van Tendeloo and Hans Vangheluwe
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.2 Atomic DEVS models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.2.1 Autonomous Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.2.2 Autonomous Model with Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.2.3 Interruptable Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.3 Coupled DEVS Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.3.1 Basic Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.3.2 Input and Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.3.3 Tie-breaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.3.4 Translation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.3.5 Closure Under Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.4 The DEVS Abstract Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.5 Application to Queueing Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.5.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.5.2 Description in DEVS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.5.3 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.6 DEVS Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.6.1 Parallel DEVS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.6.2 Dynamic Structure DEVS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.6.3 Cell-DEVS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.6.4 Other Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.8 Literature and Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.9 Self-Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

xv



Contents

6 Statecharts: A Formalism to Model, Simulate and Synthesize Reactive and Autonomous
Timed Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Simon Van Mierlo and Hans Vangheluwe
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.2.1 Running Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.2.2 Discrete-Event Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.2.3 Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.3 Modelling with Statecharts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.3.1 States and Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.3.2 Composite States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.3.3 Orthogonal Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.3.4 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.3.5 Syntactic Sugar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.3.6 Full Statechart Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.4 Detailed Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.5 Testing Statecharts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.6 Deploying Statecharts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.7 Advanced Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.7.1 Semantic Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
6.7.2 Execution Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.7.3 Dynamic Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
6.9 Literature and Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
6.10 Self Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7 Petri Nets: A Formal Language to Specify and Verify Concurrent Non-Deterministic Event
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Didier Buchs, Stefan Klikovits, and Alban Linard
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
7.2 Modelling Concurrency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

7.2.1 Petri Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
7.2.2 Common Petri net patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
7.2.3 Formal syntax and semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
7.2.4 Deduction Based on Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
7.2.5 Reachability Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
7.2.6 Monotony . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

7.3 Properties of Petri Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
7.3.1 Marking Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
7.3.2 Sequence Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
7.3.3 Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
7.3.4 Formal Definition of Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
7.3.5 Computing P-invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
7.3.6 Using Invariants for Proving Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

7.4 Techniques for Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
7.5 Data manipulation in Petri nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

7.5.1 Drone Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
7.5.2 Formalising High-level Petri nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
7.5.3 Other High-level nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

7.6 Combining Model Semantics and Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
7.6.1 PNFMU Formalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
7.6.2 PNFMU Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
7.6.3 PNFMU Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
7.6.4 Advanced Composition Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

7.7 Tooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

xvi



Contents

7.7.1 Tools for Petri net Modelling and Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
7.7.2 Evaluation of Model Checking Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

7.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
7.9 Literature and Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
7.10 Self Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

8 AADL: A Language to Specify the Architecture of Cyber-Physical Systems . . . . . . . . . . . . . . . . . . 209
Dominique Blouin and Etienne Borde
8.1 Learning Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
8.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

8.2.1 Increasing Systems Complexity and Unaffordable Development Costs . . . . . . . . . . . . 210
8.2.2 Mismatched Assumptions in Collaborative Engineering . . . . . . . . . . . . . . . . . . . . . . . . 211
8.2.3 System Architecture Virtual Integration: Integrate, Analyze then Build . . . . . . . . . . . . 212
8.2.4 Architecture-Centric Authoritative Source of Truth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
8.2.5 Organisation of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

8.3 AADL Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
8.4 CPS Running Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
8.5 The Development Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
8.6 Modelling the Line Follower Robot with AADL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

8.6.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
8.6.2 Operational Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
8.6.3 Environmental Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
8.6.4 Functional Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
8.6.5 Physical Plant Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
8.6.6 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
8.6.7 Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
8.6.8 Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

8.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
8.8 Literature and Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
8.9 Self Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

9 FTG+PM: Describing Engineering Processes in Multi-Paradigm Modelling . . . . . . . . . . . . . . . . . . 259
Moharram Challenger, Ken Vanherpen, Joachim Denil, and Hans Vangheluwe
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
9.2 Model-based Systems Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
9.3 Development Lifecycle Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

9.3.1 Waterfall Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
9.3.2 V Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
9.3.3 Spiral Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
9.3.4 Agile Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

9.4 Modelling the Design Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
9.4.1 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
9.4.2 What to model? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
9.4.3 Reasoning about maturity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

9.5 Activities 2.0 for modelling processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
9.6 The tool perspective: Formalism Transformation Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
9.7 FTG+PM: Formalism Transformation Graph and Process Model . . . . . . . . . . . . . . . . . . . . . . . . . 267

9.7.1 Reasoning about appropriateness of formalisms and heterogeneous modelling . . . . . . 268
9.7.2 Orchestrating Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

9.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
9.9 Literature and Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
9.10 Self-Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

xvii



List of Contributors

Albin Linard
Computer Science Department, University of Geneva, 7 route de Drize, Bât. A, Office 217, CH-1227 Carouge,
Switzerland, e-mail: albinalban.linard@unige.ch

Cláudio Gomes
University of Antwerp, Campus Middelheim, Middelheimlaan 1, M.G.028, 2020 Antwerpen, Belgium, e-mail:
claudio.goncalvesgomes@uantwerpen.be

Didier Buchs
Computer Science Department, University of Geneva, 7 route de Drize, Bât. A, Office 217, CH-1227 Carouge,
Switzerland, e-mail: Didier.Buchs@unige.ch

Dominique Blouin
COMELEC / INFRES, Telecom ParisTech, 46 rue Barrault, 75013 Paris, France, e-mail: dominique.blouin@
telecom-paristech.fr

Etienne Borde
COMELEC / INFRES, Telecom ParisTech, 46 rue Barrault, 75013 Paris, France, e-mail: etienne.borde@
telecom-paristech.fr

Hans Vangheluwe
University of Antwerp, Campus Middelheim, Middelheimlaan 1, M.G.116 , 2020 Antwerpen, Belgium ,
e-mail: Hans.Vangheluwe@uantwerpen.be

Jan F. Broenink
University of Twente, Faculty EE-Math-CS, Department of Electrical Eng., Robotics and Mechatronics, Room
Carre 3437, P.O. Box 217, NL-7500 AE Enschede, Netherlands, e-mail: j.f.broenink@utwente.nl

Joachim Denil
University of Antwerp, Campus Groenenborger,Groenenborgerlaan 171, G.U.135, 2020 Antwerpen, Belgium
e-mail: Joachim.Denil@uantwerpen.be

Ken Vanherpen
University of Antwerp, Campus Groenenborger Groenenborgerlaan 171, G.U.123, 2020 Antwerpen , Belgium
e-mail: ken.vanherpen@uantwerpen.be

Moharram Challenger
University of Antwerp, Campus Groenenborger Groenenborgerlaan 171, G.U.122, 2020 Antwerpen,
Belgiume-mail: moharram.challenger@uantwerpen.be

Paulo Carreira
Instituto Superior Técnico, Universidade de Lisboa, and INESC-ID, Gab. 2N.5.17, DEI/IST Taguspark, Av.
Prof Cavaco Silva, 2780-990, Porto Salvo, PORTUGAL e-mail: paulo.carreira@tecnico.ulisboa.pt

Peter Fritzson
Linköping University, 581 83 Linköping, Sweden e-mail: peter.fritzson@liu.se

xix

mailto:albinalban.linard@unige.ch
mailto:claudio.goncalvesgomes@uantwerpen.be
mailto:dominique.blouin@telecom-paristech.fr
mailto:Hans.Vangheluwe@uantwerpen.be
mailto:j.f.broenink@utwente.nl
mailto:Joachim.Denil@uantwerpen.be
mailto:ken.vanherpen@uantwerpen.be
mailto:moharram.challenger@uantwerpen.be
mailto:paulo.carreira@tecnico.ulisboa.pt
mailto:peter.fritzson@liu.se
mailto:etienne.borde@telecom-paristech.fr
mailto:dominique.blouin@telecom-paristech.fr
mailto:etienne.borde@telecom-paristech.fr
mailto:Didier.Buchs@unige.ch


List of Contributors

Simon Van Mierlo
University of Antwerp, Campus Middelheim, Middelheimlaan 1, M.G.330 , 2020 Antwerpen, Belgium, e-mail:
simon.vanmierlo@uantwerpen.be

Stefan Klikovits e-mail: stefan.klikovits@unige.ch
Computer Science Department, University of Geneva, 7 route de Drize, Bât. A, Office 217, CH-1227 Carouge,
Switzerland,

Vasco Amaral
Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa,Quinta da
Torre, 2829 -516 Caparica, Portugal e-mail: vasco.amaral@fct.unl.pt

Yentl Van Tendeloo
University of Antwerp, Campus Groenenborger,Groenenborgerlaan 171, G.U.135, 2020 Antwerpen, Belgium
e-mail: yentl.vantendeloo@uantwerpen.be

xx

mailto:simon.vanmierlo@uantwerpen.be
mailto:stefan.klikovits@unige.ch
mailto:vasco.amaral@fct.unl.pt
mailto:yentl.vantendeloo@uantwerpen.be


Chapter 1
Multi-Paradigm Modelling for Cyber-Physical Systems:
Foundations

Paulo Carreira, Vasco Amaral, and Hans Vangheluwe

AbstractModeling and analysis of Cyber-Physical Systems (CPS) is an inherently multi-disciplinary endeavour.
Anyone starting in this field will unavoidably face the need for a literature reference that delivers solid founda-
tions. Although, in specific disciplines, many techniques are used already as a matter of standard practice, their
fundamentals and application are typically far from practitioners of another area. Overall, practitioners tend to
use the technique that they are most familiar with, disregarding others that would be adequate for the problem at
hand. The inherent cross-disciplinary nature of CPS requires distinct modelling techniques to be employed, thus
prompting for a common background formalism that enables communication between all specialities. However,
to this date, no such single super-formalism exists to support the multiple dimensions of the design of a CPS.
Indeed, to effectively design a CPS, engineers (in the role of modellers) either need to be versed in multiple
formalisms, or a fundamentally new modelling approach has to emerge. Herein, we motivate Multi-Paradigm
Modelling of CPS (MPM4CPS), introducing fundamental definitions and terminology regarding CPSmodelling
and Multi-Paradigm, and finally, laying the ground for the rest of the book.

1.1 Introduction

Cyber-Physical Systems (CPS) refer to systems that consist of cyber (as computerised implementations) and
physical components [130]. The general idea is that the cyber and physical components influence each other in
such way that the cyber is able to cause the physical component to change state, and that the change, in turn,
will feed-back, resulting in a change of state on the cyber component.

Having emerged from earlier concepts, among other, in the fields of mechatronics, embedded systems,
and cybernetics, literature gives the coining of the term ‘Cyber-Physical System’ (CPS) to Hellen Guille in
2006 [130]. CPS are often regarded as networks of multi-physical (mechanical, electrical, biochemical, etc) and
computational (control, signal processing, logical inference, planning, etc) processes, often interacting with a
highly uncertain and adverse environment, including human actors and other CPS.

Example application domains of CPS include energy conservation, environmental control, avionics, critical
infrastructure control (electric power, water resources, and communications systems), high confidence medical
devices and systems, traffic control and safety, advanced automotive systems, process control, distributed robotics
(telepresence, telemedicine), manufacturing, and smart city engineering. The design of CPS is currently a driver
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for innovation across various industries, creating entirely new markets. More efficient and cheaper CPS will
have a positive economic impact on any one of these applications areas.

CPS are notoriously complex to design and implement mostly because of their cross-discipline borders,
leading to inter-domain interactions, in applications that are often safety-critical. Indeed, due to the nature of
their application, failure or underperformance of CPS can have direct, measurable economic costs, can harm
the environment or even directly affect humans. Expectably, engineering practice has, over the years, sought to
address these concerns by improving the languages, frameworks, and tools used in the design and analysis of
CPS. This effort led to the emergence and strong adoption of model-based design, in which systems are designed
at a higher level of abstraction, and an implementation is then produced by automatic generation.

A striking aspect of CPS design is that it is inherently multi-disciplinary. One source of this multi-
disciplinarity arises from the domain of the application itself, such as e.g., medical, biological, or aeronautical
industries. Another source is the heterogeneous nature of CPS, which consists of computerised, electronic, and
mechanic parts. To design a CPS, engineers from various disciplines need to explore system designs collabora-
tively, to agree, to allocate responsibilities to software and physical elements, and to analyse trade-offs between
them.

Originating from the Modelling and Simulation Community, the term Multi-Paradigm-Modelling (MPM)
finds its origin in 1996, when the EU ESPRIT Basic Research Working Group 8467 formulated a series of
simulation policy guidelines [286] identifying the need for “a multi-paradigm methodology to express model
knowledge using a blend of different abstract representations rather than inventing some new super-paradigm”,
and later on proposing a methodology focusing on combining multiple formalisms [294]. Since 2004, during the
yearly Computer Automated Multi-Paradigm Modelling (CAMPaM) Workshop series at McGill University’s
Bellairs Research Institute, many ideas surrounding MPM were developed. Since then, MPM became a well-
recognised research field with a large body of research produced and published, in particular in the MPM
Workshops co-located with MoDELS.

The recent COST Action IC1404 MPM4CPS (http://mpm4cps.eu) aimed at exploring how MPM can be
employed to alleviate the engineering complexity surrounding the conception of CPS. Among other efforts, the
scientific community gathered around this action surveyed existing languages, techniques, and tools commonly
used for modelling CPS and organized them into an ontology [167].

This work identified the need come up with a theoretical foundation for MPM and identified useful language
features. Among other, the most relevant can be summarised as follows: Closeness to the essential concepts that
engineers use to reason about the behaviour of physical systems, in a computationally a-causal fashion (i.e.,
without the need to specify early on what are inputs and outputs); the ability to precisely describe computation, at
different levels of detail of the time dimension; the ability to elegantly express concurrency, synchronisation and
non-determinism and to reason about properties over all possible behaviours of a system; the ability to express
modal, timed, reactive and autonomous behaviour and to synthesise code; suitability to model competition
for shared resources, which leads to queueing, as a basis for quantitative performance analysis; suitability for
easy and correct architectural composition; the ability to express workflows at a high level of abstraction and
finally, the high-level feature of modularity, supporting re-use, compositional verification of properties and the
integration of black-box components such as co-simulation units. The breath of the techniques is broad.

The results of the efforts held by the MPM community, mentioned above, culminated in a book that compiles
in a coherent manner well-established knowledge around fundamentals and formalisms for modelling of CPSs
with a particular focus on tools and techniques that are multi-paradigm.

1.2 Understanding Cyber-Physical Systems

We now turn to discussing which classes of systems can be considered a CPS, what are their properties, and the
sources of engineering complexity worth solving using the so-called MPM approach. Before embarking in the
discussion some preliminary concepts need to be made clear.

http://mpm4cps.eu
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1.2.1 Systems and their models

The notion of system is a fundamental concept used in multiple disciplines. The term conceptualises a physical
existence such as an ecosystem, an organism, a machine, or a purely abstract existence. The latter case refers
to processes, rules (such as a socio-economic system), or mathematical models. Regardless, any conception
of a system is understood (i) as a set of components (ii) identifiable as a whole, that (iii) cooperate (also said
to interact) to (iv) perform a particular function. There is a distinction between the actual systems (physical
or abstract) and the human understanding of them. The formalisation of this understanding, usually limited, is
called a model. [308]

According to Systems Theory, a system can be understood in two ways. One way is the black-box approach
that seeks to model the external behaviour of the system in terms of how it interacts with the environment. Here,
the behaviour of the system is seen as the relationship between the evolution of the history ofmanifestations (also
said outputs) and the history of stimuli (also said inputs). Another way to understand the system is the white-box
approach, that seeks to understand its internal structure in terms of components and connectors through which
interaction occurs.

Both the black-box and the white-box approach formalise knowledge about the behaviour of the system with
models1, which are simplified representations of the system.The utility of working representations is that they
are cognitively effective means to reason about the actual system (or systems) they represent. By reasoning, we
mean analysing properties of the system or predicting the future behaviour of the system. A system can thus have
multiple models that cater to distinct requirements in terms of reasoning. Control Theory has historically taken
the black-box approach where outputs are modelled in terms of inputs using differential equations; Computer
Science has traditionally taken the white-box approach by modelling the internal structure of systems using
object diagrams.

The driving idea behind understanding the internal structure is that components, bound through a certain
arrangement of connections, display specific external behaviour. Moreover, the overall behaviour can be derived
from (i) the known behaviour of the components and (ii) the characteristics of the connectors. Connections
are abstract flows of information, or energy, that bind components through pre-designated points of interaction
known as ports. Some component ports are directional, we can thus talk about input ports (inputs), and output
ports (outputs). Other ports are adirectional in that they model an exchange and not necessarily a flow (consider
a thermal coupler, for example).

A component can itself be seen as a system itself with its own components and connectors. The ability
to continue composing systems from previously constructed ones is known as hierarchical construction. It is
common also to model components with a internal state that reflects (partially and sometimes inaccurately)
what the system knows about the surrounding environment and a state-transition mechanism typically referred
to as transition function that is capable of producing new states from previous states upon receiving certain
inputs and creating certain outputs.

1.2.2 Types of systems

Inputs, outputs and the state of the components are modelled in terms of variables that can take values from
their corresponding support sets. These variables are said to be continuous or discrete if their support sets are,
in a mathematical sense, dense or discrete, respectively. The behaviour of the system, as modelled in terms
of internal state and outputs, evolves from a previous state according to some notion of time. Time can also
be understood as continuous or discrete. In continuous time, it is possible to derive the new state and the new
outputs for the system for an arbitrarily small time delta; whereas in discrete time, the new state and outputs can
be derived only at predefined intervals, or upon the occurrence of a certain event.

Systems can be classified into distinct types depending on the nature of inputs, outputs, state variables, state
transition function, and the notion of time. A well-accepted classification is as follows [308]:

• Static vs Dynamic Systems. A system is said to static if its output depends only on the present input. If the
output of the system depends on the history of past inputs, then the system is said to be dynamic.

1 The precise meaning of the term ‘model’ is discussed later in Section 1.3.1
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• Causal vs Acausal (Non-causal).Whenever the output value of the system is independent of future values
of input, the system is said to be a causal system; whenever the output values of the system depend on input
values at any instant of time, the system is said to be a acausal system.

• Linear vs Non-linear. A system is said to be linear (respectively, non-linear) if changes on the output are
proportional (respectively, not proportional) to the changes of the input.

• Discrete State vs. Continuous State. Those systems in which the state variable(s) change only at a discrete
set of points in time are said to be discrete state systems; systems in which the state variable(s) change
continuously over time (e.g., a water tank filling in), are said to be continuous state systems.

• Discrete Time vs Continuous Time. A system is said to be discrete, in contrast with continuous, if it has
a countable number of states.

• Time-Driven vs. Event-Driven.A time-driven system changes state in response to a uniform physical time.
While, a event-driven system changes state in reaction to the occurrence of asynchronous discrete events
(not changing state between event occurrences).

• Time-Variant vs. Time-Invariant. A system in which certain state variables change with time causing the
system to respond differently to the same input at different times is called time-variant; a system that yields
the same output for a given input at distinct points in time is said to be time-invariant.

A dynamic system that exhibits both continuous and discrete time behaviour is said to be an hybrid system.
The study of hybrid systems is very important as they arise often in the composition of discrete with continuous
components typical of cyber-physical systems.

1.2.3 What are Cyber-Physical Systems?

It is assumed that the cyber component controls the physical component in the sense that the cyber component
has some ‘intelligence’ or, at least, some strategy to drive the physical to reach a predefined observable goal.
The converse is not true, i.e., the physical does not aim at driving the cyber to reach a certain predefined goal.
This formulation puts CPS in the realm of Control Systems theory. Despite de comprehensive nature of Control
Systems theory, CPS are not a particular case of Control Systems.

In a control system one component, known as the controller realises a control model that acts upon the
physical environment component known as plant by means of a control action. The controller knows the desired
value of a variable and the current value of that variable in the physical component. The controller then creates a
sequence of control actions to correct (i.e., to minimise the distance over time) of a variable (measured from the
physical system) to the desired value (the goal). This arrangement is known as control system. It is, therefore,
reasonable to ask: "what distinguishes a control system from a CPS?" Besides the very idea of a cyber control
component—a discrete computer algorithm controlling continuous physical phenomena—it seems that there is
no single characteristic that of itself defines a CPS. However, it is well-accepted that cyber-physical systems
consist of a large number of interacting components and display a number of recurring characteristics that
distinguish them from classic control systems. In particular:

• Extensive ‘cyber’ components that encode complex control and supervisory control logic. Typically, they
have multiple cyber sub-components that support complex action coordination and require the processing
of very large amounts of historical data.

• Very large scale of operation outreaching several millions of elements (sometimes heterogeneous) involv-
ing an inherent complexity of hierarchies and interactions. Examples of those systems are Smart grids,
Smart cities, Particle Physics Detectors, among others.

• Hybrid discrete-continuous nature -where a very large number of discrete components (especially ‘cyber’
components) are connected to physical components (continuous in nature) thus creating a hybrid system.
Also, many of these components are quite heterogeneous with respect to their types (Section 1.2.2).

• Integration withmultiple external systems by processing data and events in distinct formats frommultiple
systems with varying bandwidth and message delivery guarantees.

• Highly networked and hierarchical connecting many components typically through digital networks with
distinct communication buses and protocols.

• Adaptable where the system must adjust their behaviour to patterns that could not be accounted for at
design time.
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• Human in the loop offering specific provision for Human actors to consume outputs and give inputs.
Human actors are often modelled as components with specific behaviour requirements. and assumptions.

The pervasiveness of IoT with a large number of connected devices has created an upsurge of interest in
CPS. However, the term is somewhat overused, and it has now become an umbrella for any system that interacts
with the physical environment. For instance, at the current state of practice, a developer of a temperature logger
might as well claim that his device is a CPS. This raises the question of what is the minimum requirements for a
system to be considered a CPS? One key observation is that having identifiable cyber and physical components
are not enough for a system to be considered cyber-physical; the cyber and physical components must influence
each other2. Another reasonable question is whether this relationship must be of mutual influence, or whether,
instead, the cyber component may not be influenced by the physical component. It is clear that since the cyber
controls the physical, the cyber must have the means to influence (act upon) the physical. It follows, that a system
where the cyber component does not influence the physical component is not a CPS.

CPS also builds on embedded systems, which are self-contained systems that incorporate elements of control
logic and real-world interaction. An embedded system is typically a single device, while CPS include many
constituent systems. Further, embedded systems are specifically designed to achieve a limited number of tasks,
often with limited resources. A CPS, in contrast, operates at a much larger scale, potentially including many
embedded systems or other CPS elements including human and socio-technical systems.

It becomes clear from the above that having a cyber and a physical component is not a suficient condition
for system to be considered cyber-physical systems. The example of the temperature logger system, which only
reads from the physical system, despite having a cyber and a physical component, is not a CPS.

1.2.4 Sources of Engineering Complexity

Cyber-physical systems are complex to build due to the inherent complexity of the problems they solve that
consist of coordinating action to optimise multiple (possibly contradicting) goals in systems with vast numbers
of sensors and actuators. The other source of complexity is, more of accidental nature, and has to do with the
heterogeneity of the components.

One starting source of complexity is that cyber components are discrete in nature but must act in a time-driven
fashion and, for that matter, they must reason about time. Concepts of duration, deadlines, and simultaneity,
must be dealt with and modelled explicitly. Yet, programming languages abstract away the notion of time and
provide little or no support for time3. Timing behaviour is achieved through dedicated timing hardware, interrupt
control routines, and timer libraries—in the words of Eduard Lee, “programmers have to step out outside of the
programming abstraction to specify timing behaviour.” Instead of being explicitly modelled, timing behaviour is
obfuscated and buried under the complexity of the orchestration of these mechanisms making the correctness of
the composition between the cyber and physical components very hard to achieve. The problem is exacerbated
as more components are added onto the system.

Not only discrete components often display incorrect timing behaviour but interfacing discrete and continuous
components poses another unexpected engineering challenge. The composition of a deterministic model of the
cyber with a deterministic model of the physical results in a non-deterministic model that is very difficult to
analyse. To understand why to consider that it is impossible, in practice, to guarantee that the components that
implement the two models will be perfectly aligned, concerning time. This applies especially to the mechanism
that they use to communicate and synchronise because thismechanism operates according to certain assumptions
(constraints) of time.

The actual implementation of CPS is largely component-based. These components are multi-vendor and
multi-technology and, as a result, they often have different communication protocols, response timings, distinct
tolerances and operating conditions. One side of the problem is that some of these constraints are not known or
accounted for upfront. Another side of the problem is that while constructing the system, these constraints are
not modelled and handled explicitly. A lot of accidental complexity arises when trying to assemble components
with such variability, especially because typical CPS consists of a large number of components.

2 In terms of modelling, this means that they must be bound through at least one connector
3 A rigorous semantics of time is absent from standard computer languages
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Fig. 1.1: Illustration of the tale of the 6 blind men. Each blind man, from his own perspective, understands the
elephant as a diferent object.

CPS also have stringent requirements that cannot be relaxed. Besides the usual guarantees of functional
correctness that apply to any engineered object, CPS are especially known for their large number of extra-
functional (also known and ‘non-functional’) requirements that cover issues of reliability, performance, safety,
security, among other. What is relevant to note is that extra-functional requirements are known to pose complex
constraints to timing component design and to timing behaviour. Moreover, since these systems are critical,
they often have to undergo strict qualification/testing processes. When changes to the system are needed, they
are often discouraged due to the costs involved, making CPS difficult to adapt to changing requirements. There
should be a reliable means to guarantee that certain aspects of a system remain untouched and therefore, do not
need to be tested again.

Actual realisations of components sometimes interact in ways that were not designed upfront. Often physical
components interfere due to electromagnetic or thermal interference. Emerging behaviour as of complex be-
haviour that arises from the interaction between components, which was not planned upfront. While developing
CPS, it is important to have the means to explore alternative designs.

1.3 Modeling of a Cyber-Physical System

The engineering process of CPS requires distinct disciplines to be employed. Each discipline typically creates a
design (also said to be a view or understanding) of the system for its own purposes in the form of amodel. Models
are created using abstractions, heuristics of decomposition, and tools of analysis typical of each discipline. Each
discipline also brings along a body of knowledge that enables humans in charge of modelling the reality to
critically assess the correctness and soundness of the model being produced. In this sense, the piecemeal
approach of having distinct models organised by discipline is effective. Another motivation for having distinct
models is that, even within the same discipline, they are required to answer distinct questions. Models also have
to be produced with distinct levels of detail, and therefore, the modeller has to find the right balance and capture
the right things creating a model adequate to the question being studied.

Modelling of a CPS system is inherently represented in multiple views of the system (most of the times
following the principle of separation of concerns). As in the ancient tale of the six blind men (see Fig. 1.1),
no single view (nor corresponding modelling formalism) can model all aspects of a system. Similarly, in CPS
engineering, the results are models reflecting distinct views of the problem, expressed in multiple notations.
One problem for the CPS engineer, as it is also for blind men, is “how to integrate knowledge to form a more
approximate model of the reality?” Naturally, modelling of CPS systems calls for a trans-disciplinary approach
that merges the different models into a unified abstraction of reality. An essential challenge of CPS is thus how
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Fig. 1.2: Models of an airplane: The CAD model on the left to study volume; on the right side the model for
studying gravity.

to conjoin abstractions of the various engineering disciplines and the models for physical processes including
differential equations, stochastic processes, among others.

Currently, there is no standard design and modelling approach to integrate models produced by distinct
disciplines of CPS. Indeed, the knowledge captured in models only comes together when assembling physical
(prototype) implementations to evaluate some relevant properties of a given CPS. Amore sophisticated approach
is to avoid creating prototypical implementation altogether and (co-)simulate the models. This is a more generic
approach as it enables verifying properties independently from the particularities of the implemented prototype.

Previously, we have mentioned the term model assuming some implicit notion of modelling based on
abstraction, which is the process of removing details in the study of objects or systems in order to focus attention
on details of higher importance. However, not all conceivable abstractions or representations of a system can be
considered a model. Indeed, a more precise understanding of these concepts is required. Let us look at these in
further detail.

1.3.1 What is a Model?

A model of a system is an abstraction (a representation) to make predictions or inferences [176] about a reality.
More specifically, this reality is a system under study (SUS), whose governing rules and properties we want to
understand, within the context of a given experimental frame. An experimental frame denotes the limited set of
circumstances under which a system is to be observed or subject to experimentation.

According Stachowiak [256], three main properties should hold in a model. The first property is themapping
feature, which means that any model, to be called as such, should be faithful to or based on an original, that
exists or simply be the formalisation of an idea to be realised at some point in the future. The second property
is reduction feature. In this case, there is no model if it does not remove unnecessary detail, and select original
properties useful to the purpose of the model in hands. The third is the pragmatic feature. In this last property,
a model needs to be usable in place of an original with respect to some purpose. Other important, yet not
fundamental characteristics of a model are purposeful [243], understandable and cost-effective.

To make the idea of models more concrete, let us illustrate these properties with a simple example. Consider
the case of an aircraft where we are concentrating on the study of the single properties of mass and gravity. For
this purpose, we can claim that a glass of water is a rough approximation of an aircraft (and it is chosen as a
physical representation of the SUS). When it falls, it takes some time to reach the floor, and then it breaks. Can
the glass be considered a model for the aircraft? For the purpose of evaluating the effects of gravity (our scope)
we have (i) a mapping feature, as the object (glass) represents the original (the airplane); (ii) a reduction feature,
as all the unnecessary details like shape, aerodynamics, architecture, among other, are removed, and (iii) it is
pragmatic in terms that we can substitute the glass for the real airplane. Finally, it is (iv) purposeful, as it is meant
to study gravity, (v) understandable, as it is a straightforward representation that everyone understands; and (iv)
cost-effective, to study and substitute the real one during the fall it is several orders of magnitude cheaper and
ethically acceptable. Another possible example of a model, for the same case study, can be the CAD drawing
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of the aeroplane for the goal of studying the volume of the machine, for purposes like studying how it fits in a
hangar or what is the internal volume for the purpose of choosing the proper ventilation system.

1.3.2 Multiple Formalisms in CPS

As it became clear above, the engineering process of CPS results in a collection of models. Models are
abstractions of a system (a reality) that has properties worth studying. It is well known as well that models,
especially of distinct disciplines, are are expressed using correspondingly different modelling formalisms. A
modelling formalism is a language that has formal syntax and semantics. The usual meaning of ‘formal’
is precisely and unambiguously defined, mathematically, in the form of Differential Equations, Finite State
Automata, State Charts, Petri Nets, among others. Distinct formalisms exist because they are more concise and
enable answering efficiently to distinct classes of questions. Indeed, no single formalism can be used to model
all aspects of a system, as the formalism to be used depends on the nature of the problem to be solved.

Formalisms also enable the manipulation and re-writing of models, or parts of models, into other that are
equivalent to the originals (for a given semantics), and whose realisations have more desirable properties. Such
as, being less redundant, more compact, faster, or consuming less energy, for example.

In order to overcome the complexity of the problem, a common modelling practice, is to describe models of
the same reality at different levels of abstraction (sometimes using correspondingly distinct formalisms.) Models
expressed at distinct levels of abstraction are linked to one another through structure-preserving maps. Indeed,
an overarching issue with distinct formalisms is merging models of the same system through these maps. There
needs to be a notion of consistency among them.

These multiple formalisms are used to model a system interacting with its environment, its architecture
and components, at different levels of detail, approximation and abstraction, and from different viewpoints, as
well as the platforms the software components of the system will be deployed on. The integration of models
produced according to distinct formalisms is achieved by mapping (compiling) the model into lower level super
formalisms that integrate different domains such as Bond Graphs, or other formalisms to integrate discrete and
continuous modelling constructs such as DEVS.

To support the design of CPS, not one single super-formalism, but rather of a multitude of modelling
formalisms, chosen for their particular reasoning and analysis features need to be employed. These features
make each of them most appropriate for a particular CPS design (sub-)goal. Pragmaticaly, the engineer (in the
role of modeller) needs also to know the strategies (formalised as processes) to describe reality according to
the formalism. The formalism together with these said processes and constraints form what is otherwise known
and as a modeling paradigm—the object of study of Multi-Paradigm Modelling [286].

1.4 Multi-Paradigm Modelling of CPS

Multi-Paradigm Modelling (MPM) has been recognised as a powerful approach (a paradigm in its own right)
that may be helpful in designing, as well as communicating and reasoning about CPS, which are notoriously
complex because of their cross-discipline borders and inter-domain interactions.

To develop aCPS, projectmanagers and engineers need to select themost appropriate development languages,
software lifecycles and “interfaces” to specify the different views, components and their interactions of the system
with as little “accidental complexity” [52] as possible. For example, when it is known that system/software
requirements are likely to change frequently during the project’s course, selecting an Agile development process
may help to cope with evolution and change. If the system’s behaviour requires that operations are triggered
when data becomes available, similar to reactive systems, Data Flow languages may help to specify the most
critical parts of the software behaviour in a precise way, making it amenable for timing analysis.
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1.4.1 What is a Paradigm?

In Computer Science, general-purpose programming languages (GPLs) can be classified according to the
paradigm(s) they support. For example, Eiffel is object-oriented and supports the contract-based-design
paradigm, Prolog is declarative, and Lisp is functional. The paradigm characterises the underlying syntac-
tic and semantic structures and principles that govern these GPLs. In particular, object orientation is imperative
in nature and imposes viewing the world in terms of classes and communicating objects, whereas the declarative
style relies on term substitution and rewriting. As a consequence, a statement in Eiffel has very little in common
with a Prolog sentence due to the very different view supported by each language. A programming paradigm
directly translates into different concepts encoded in the GPL syntax definition (known as a metamodel in the
Model-Driven Engineering world). Very naturally, the idea of combining several paradigms at the level of GPLs
led to more expressive, powerful programming languages such as Java (which is imperative, object-oriented,
concurrent, and real-time and, recently, functional) and Maude (which is declarative, object-oriented and also
concurrent and real-time).

What is a paradigm then? The science philosopher Kuhn [175], while investigating how science evolves
through paradigm shifts, defines it as an open-ended contribution that frames the thinking of an object of
study with concepts, results and procedures that structure future achievements. Though seemingly far from the
concerns in the discipline of Computer Science, this definition does highlight the emergence of a structure
(a formalism) that captures the object of discourse, and the notion of procedures (the processes) that guide
achievements.

1.4.2 The dimensions of Multi-Paradigm Modelling

The application of MPM requires modeling everything explicitly, using the most appropriate formalism(s),
at the most appropriate level(s) of abstraction [266]. This suggests that a paradigm can be understood as an
arrangement of the properties in each of the dimensions described above: the formalisms and the levels of
abstraction in the modelling activities.

Oftentimes, formalisms are general-purpose, and hard to be used by modellers (domain users, or domain
experts) who need to start by picking the most adequate formalism based on its well-known semantics, e.g., Petri
Nets for workflows and concurrency, or Statecharts for describing event-based systems, among others. However,
having to master mathematical notation poses a steep learning curve. To alleviate this problem, specialised
languages, called Domain-Specific Modelling Languages, are created to simplify the act of expressing the
modeller’s specification intent. The constructs in these languages are designed to be closer to the way domain
experts are used to conceptualize problems. The systematic approach of building new modelling languages, is
called Modelling Language Engineering (MLE) and must, itself, follow an engineering process [?].

To tackle complexity during the course of system development, three basic abstraction approaches are
commonly combined: Abstraction/Refinement, Architectural decomposition, and View decomposition.

• Model abstraction (and its dual, refinement) is used when focusing on a particular set of properties
of interest. While abstraction implies removing unnecessary detail, in opposition to refinement, the same
set of chosen properties should hold both on the abstract and detailed models. Verifying the property on
the abstract model is, expectably, cheaper (or simpler) than in the detailed model. Yet, note that the more
detailed model does have some advantages as it will allow the correct assessment of a larger set of properties
which can not be covered otherwise.

• Architectural decomposition (and its dual, component composition) is used when the problem can be
broken into parts, each with an appropriate interface. Such an encapsulation reduces a problem to (i) a
number of sub-problems, each requiring the satisfaction of its own properties, and each leading to the
design of a component and (ii) the design of an appropriate architecture connecting the components in a
way that the composition satisfies the original required properties. This a breakdown often comes naturally
at some levels of abstraction, using appropriate formalisms (which support hierarchy), for example, thanks
to locality or continuity in the problem/solution domain. Note that the above describes a top-down workflow
where decomposition of the requirements leads to the design of components followed by the architectural
composition of these components. A bottom-up workflow is also possible, where existing components are
combined to satisfy full-system requirements.
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• View decomposition (and its dual, view merge) is used to enable the collaboration between multiple
stakeholders, each with different concerns. Each viewpoint allows the evaluation of a stakeholder-specific
set of properties. When concrete views are merged, the conjunction of all the views’ properties must hold. In
the software realm, IEEE Standard 1471 defines the relationships between viewpoints and their realisations,
views. Note that the views may be described in different formalisms.

One particular combination of the former approaches leads to Contract-Based System Design [84]. Indeed,
modelling activities are combined into processes (or workflows) that relate the variousMPMactivities. Processes
may be descriptive, charting the sequence of activities carried out as well as the artefacts involved, proscriptive by
declaratively specifying constraints on the allowed activities and their combinations, and prescriptive allowing
enactment. Processes are often supported by toolchains whereby different tools support different activities. It
can be said that a MPM framework aims to support (meta-)tool builders who assist practitioners to reason about
CPS and figure out which formalisms, abstractions, workflows and supporting methods, techniques and tools
are most appropriate to carry out their task(s).

Ultimately, by selecting, organising and managing the three dimensions above (formalisms, abstractions, and
processes), MPM facilitates the communication between experts to help them better grasp the essence of how
their CPS are built. Moreover, it also facilitates a rigorous comparison of distinct approaches to MPM based on
their coreMPM components. The implications and challenges that MPM brings to formalisms and to abstraction
mechanisms need to be discussed further.

1.5 A foundation for MPM4CPS

This book introduces a representative set of modelling formalisms, each with a characteristic collection of
features. The set is by no means complete but rather intended to showcase the wide variety of features available
in well-established formalisms, often supported by scale-able tools. These may be used to choose a most
appropriate formalism for a particular task at hand, as a starting point for looking into more formalisms, with
other desirable features (such as the inclusion of spatial distribution as found in Cellular Automata or Partial
Differential Equations), or as a basis for the design of Domain-Specific Modelling Languages (DSMLs) to
maximally constrain a modeller to a specific application domain.

The formalisms introduced in this book may also be combined, leading to “hybrid” languages, when a
particular combination of features is required that is not available in a single formalism. Note, however, that
some of the formalisms introduced in this book are already hybrid in the above sense. Bond Graphs, for
example, unify modelling of systems in various physical domains by focusing on power flow, and Modelica
combines features ofObject-Orientationwith those of computationally a-causal (equation-based)modelling. The
Architecture Analysis and Design Language (AADL), which focuses on embedded systems, with architecture at
its core, brings together different viewpoints, making it suitable for documentation, analysis and code synthesis.

The material is presented in a bottom-up fashion. Starts by presenting the formalisms to model physical
components. Then mechanisms encapsulate and re-use description of CPS components are presented as a
means to tame the complexity of large descriptions. We then present formalisms analyse the behaviour of CPS.
Finally, these formalisms are put together through the use of architectural descriptions and processes.

1.5.1 Modelling physical components

When modelling a physical system, the first decision to make is whether the properties of interest of the system
depend on the spatial dimension. The heating of a metal object due to an electrical current flowing through it,
for example, is determined by the interaction between the electrical and thermal physical domains. It depends on
the geometry of that object as well as on the object’s material properties such as density, electrical conductivity,
relative permittivity, heat capacity, and thermal conductivity, and their distribution across the entire object. The
object’s dynamics can then be described using the mathematical expression of the relationships between the
physical quantities of interest. Due to the dependence on spatial coordinates, this requires the use of “distributed
parameter” models. These are typically expressed using the Partial Differential Equation (PDE) formalism.
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When the parameters of an object are sufficiently homogeneous over its geometry, the properties of interest
may not depend on the spatial dimension. In that case, the parameters may be aggregated over an entire object,
and it may be reduced to its dimensionless essence. A rigid body in the mechanical domain with a constant
density over its geometry may, for example, be reduced to a simple “point mass”. Its dynamics can be described
using Newton’s Laws or a Hamiltonian or Lagrangian formulation. Such “lumped parameter” models are
typically expressed using the Ordinary Differential Equation (ODE) or Differential Algebraic Equation (DAE)
formalisms.

Often, the physical components of a Cyber-Physical System span distinct physical domains (electrical,
mechanical, thermodynamic, hydraulic, etc.). The Bond Graphs formalism described in Chapter 2 unifies the
different domains at a “lumped parameter” level of detail. It recognises the analogy between physical processes
in different physical domains, such as energy storage and dissipation. A system is modelled as a Bond Graph
connecting nodes representing physical elements. These nodes encode how physical quantities such as voltage
and current are related in, for example, a resistor. The Bond Graph’s edges—called Power Bonds—denote
the power flow between the nodes. Special nodes—junctions— encode conservation laws, generalisations of
Kirchoff’s current and voltage laws in the electrical domain. The chapter introduces a systematic procedure
for modelling multi-domain physical systems. It starts from Idealised Physical Models and converts these into
Bond Graph models. These Bond Graph models are computationally a-causal and can be translated to a set of
Differential-Algebraic Equations (DAEs). Computational a-causal models consist of equations relating signals
(variables, functions of continuous-time), without specifying which variables are known (inputs) and which
are unknown (outputs), nor how these equations need to be solved (i.e., how the unknowns are computed from
the knowns). Such DAEs can be represented in (mathematical) Equation-Based modelling languages such as
Modelica. Modelica is described in Chapter 3 The Bond Graph chapter then shows how computational causality
can be assigned, effectively converting to a Continuous-Time Causal Block Diagram (CT-CBD). Causal Block
Diagrams are described in Chapter 4. Causality assignment on a Bond Graph model may give insight based on
physics, into flaws in the model. This aid in “model debugging” is thanks to the (physical) domain-specificity
of the Bond Graph formalism.

1.5.2 Joining the ‘Physical’ with the ‘Cyber’

Cyber-Physical Systems are composed of networked physical and computational components. To allow for a
modular and hierarchical design of such systems, maximising model re-use and enabling the construction of
model libraries, the Modelica language, described in Chapter 3 combines features of Object-Orientation such
as encapsulation and inheritance with those of computationally a-causal (equation-based) modelling. Compu-
tationally a-causal models allow the modeller to express the fundamental laws of physics using mathematical
equations. The semantics of Modelica is given by expanding object-oriented constructs such as inheritance, by
instantiating classes, and by flattening the hierarchy. This results in a set of (hybrid) Differential-Algebraic Equa-
tions. For each particular simulation experiment context, computational causality can be assigned by aModelica
compiler. This effectively generates a model in the Continuous-Time Causal Block Diagram formalism. Most
Modelica compilers will further (time-)discretise these models, either symbolically through "inline integration"
or by calling upon external numerical solvers. This ultimately leads to an executable simulation code. Note that
it is possible to create a Modelica library with Bond Graph components. In this case, the Bond Graph causality
assignment procedure will not be used. Rather, Modelica’s causality assignment will be applied to the entire
model, including non-Bond Graph parts. Through the code-based specification of functions, Modelica also
allows traditional object-oriented code to be represented. It is this combination of code, equations, and hybrid
constructs such as "when" (which allows the introduction of discrete events, so-called "state events", based on
conditions over continuous behaviour such a crossing a threshold value) that makes Modelica suited to build
models of Cyber-Physical Systems, spanning their physical, network and computational parts.

As mentioned earlier, declarative, computationally a-causal models need to ultimately be transformed into
a causal form, which allows for their computational solution. In Chapter 4, a family of Causal Block Diagram
(CBD) formalisms is introduced. Causal Block Diagrams consist of a network of computational blocks. Each
block specifies the computationally causal relationship between its input and output signals. The block diagram
network specifies how outputs of one block are connected to inputs of other blocks. Such a connection denotes
that the values at connected output and input ports must at all times be equal. The three CBD variants are built
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up gradually. The Algebraic Causal Block Diagram (ALG-CBD) formalism has no notion of time: values are
propagated through a CBD according to a computation “schedule” (i.e., the order in which block computations
are invoked) derived from the dependency structure encoded in the block diagram network. Special care needs
to be taken to detect and properly solve dependency cycles known as “algebraic loops”. A discrete (Natural
Number) notion of time is then added, as well as a delay/memory block, resulting in Discrete-Time Causal
Block Diagrams (DT-CBDs). These are equivalent to Synchronous Data Flow (SDF) models. Finally, the Real
Numbers are introduced as a time base to give Continuous-TimeCausal BlockDiagrams (CT-CBDs). These have
the same expressiveness as mathematical equations and need to be discretised to allow for their computational
solution. Numerical discretisation techniques are used to turn a CT-CBD into a DT CBD.

Very often, it is reasonable to abstract away many of the details of the behaviour of a system and to only focus
on pertinent “events”. Such Discrete-Event abstractions see a system as changing its internal state, either reacting
to input events of autonomously changing its state after a certain time (due to an internal “time event”) and
possibly producing output events at certain times. As only the events are what changes the state of the system,
and in between event instances, nothing pertinent is assumed to happen, the evolution of the state over time is
piecewise constant. Unlike inDiscrete-Time (DT) formalisms, inDiscrete-Event (DE) formalisms, time advances
in leaps and bounds, from pertinent event to pertinent event. One advantage of DE abstraction is performance:
a simulator will directly step to the next time at which an event occurs whereas a DT simulator would have to
step through time in fixed increments even if nothing noteworthy happens (i.e., the state remains unchanged).
The DE abstraction is commonly used to study the competition of different processes for shared resources. If
resources are constrained, this inevitably leads to queueing. The abstraction is hence useful for simulation-based
performance analysis. Utilization of resources, time spent to complete an activity, the distribution of queue
length and queueing time are all examples of the typical performance measures that are obtained from discrete-
event simulations. Note that DE formalisms are often deterministic. Through the inclusion of distributions for
parameter values such as Inter Arrival Time rather than unique values, and using Monte-Carlo simulation,
distributions of performance measures are obtained. Thus, repeatable (as pseudo-random number generators –
which are deterministic– are used to sample from distributions) stochastic simulations are obtained. Many DE
formalisms were developed over the years. The Discrete EVent Specification (DEVS) formalism described in
Chapter 5 is a DE formalism that is primitive and expressive enough to act as a DE "assembly language": models
in all DE simulation formalisms can bemapped onto aDEVS equivalent. As such, it can be used to architecturally
connect models in different formalisms by first mapping all components onto DEVS. The resulting architecture
only contains DEVS components. As DEVS is modular and supports hierarchical architectural composition, the
resulting model has a precise meaning. DEVS’s support for hierarchy makes it suitable to build model libraries
and to subsequently build up highly complex models.

A different way of modularly combining state automata is found in the Statecharts formalism described in
Chapter 6. The Statecharts formalism consists of hierarchies of state automata, of parallel composition of these
automata, of a notion of time, and an event broadcast mechanism. The popularity of Statecharts is partly due
to its intuitive visual notation. The main purpose of Statecharts is to not only simulate models, but also to
synthesise from them, autonomous, timed and reactive software and/or hardware.

When a parallel composition is made of state automata, many interleavings are possible. One option is to
choose a unique interleaving, leading to a unique, deterministic behaviour trace. This is what is done in the
DEVS and Statecharts formalisms. To model true concurrency, this artificial sequentialisation is not always
appropriate. Rather, a non-deterministic choice should be allowed. This leads, not to a single behaviour trace,
but to a collection of possible behaviour traces. This collection of traces may be summarised in a compact
representation in the form of a state reachability graph. The satisfaction of interesting properties may then
be checked over the collection of traces. An example is the reachability of a certain undesirable state. Such
properties are also expressed in an appropriate property language. Non-deterministic languages, as described
above, usually have a weak notion of time: not the Natural or Real numbers are used as a time basis, but only
a (partial) ordering of event instants. The focus is on concurrency and synchronisation. Rather than simulation
or synthesis, such formalisms are mostly used for the analysis of properties, across all possible behaviours
of a system. This makes them suited for, for instance, safety analysis. One such formalism is Petri Nets, as
described in Chapter 7. Petri Nets encode state as a "marking", an n-dimensional vector of Natural numbers.
Each element of the vector corresponds to the number of "tokens" in a Petri Net Place. The evolution of the
state is encoded in a Petri Net graph which, apart from Places, contains transitions and Arcs. Thanks to the
use of Natural numbers, the number of possible states can be infinite (but countable). Petri Nets are a simple
formalism that, like DEVS, is often used as a common semantic domain onto which to map diverse other,
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often domain-specific, formalisms. The chapter also demonstrates how Petri Nets can be combined with other
formalisms. In particular, the co-simulation of Petri Nets with Functional Mockup Units (encoding discretised
continuous models) is introduced. This effectively leads to non-deterministic hybrid models.

1.5.3 Tooling support for MPM4CPS

Complex engineered systems consist of heterogenous components arranged in an architecture. Furthermore,
multiple viewpoints on the same system may be of interest and ultimately (part of) a system model needs to
be "deployed" on an often embedded software/hardware architecture. The Architecture Analysis and Design
Language (AADL) described in Chapter 8.1 is foremost an Architecture Description Language. It allows one
to provide a description of the overall system and the environment into which it will operate. From such a
description, other models in other formalisms such as those described in this book can be generated. These can
be further augmented to study various aspects of the system, which is essential for its optimisation, verification
and validation. After a brief introduction to ADLs and their role in MPM4CPS, the AADL is presented and
its use illustrated through the modelling, analysis and code generation for a simple Lego Mindstorm robot for
carrying objects in a warehouse. A simple top-down architecture-centric design process is followed, starting
from the capture of stakeholder goals and system requirements, followed by system design, design analysis and
verification and finally automated code synthesis.

It becomes apparent from the above that complex systems modelling involves not only different abstractions,
architectures and views, modelled using varying formalisms but also complex development workflows. Chapter 9
looks into the topic of process (workflow) modelling. Often complex, concurrent development processes,
modelled in the form of a Process Model (PM) are built up of primitive activities which take as input,
modelling artefacts and produce modified or new modelling artefacts as output. The activities may require
human or computer resources, possibly leading to delays as described in the chapter on DEVS. As the artefacts
manipulated by activities are models in various formalisms, it makes sense to “type” them with the appropriate
formalisms. To chart the many formalisms used, and to show how they are related, a Formalism Transformation
Graph (FTG) is introduced. The FTG+PM, combining FTG with PM, allows one to characterise the essence
of Multi-Paradigm Modelling solution patterns to CPS development problems. One advantage of the explicit
representation of the FTG+PM is that is can be used as a basis for the synthesis of MPM tools.

1.6 Summary

The field of CPS is affected by the complexity of different approaches, processes, and modelling languages.
Indeed, this field is well-known to have an inherently multi-displinary nature and, since there is no single
well accepted modelling approach, multi-paradigm modelling has been advanced as a solution. Yet, to date,
literature still lacks a solid reference that introduces distinct CPS modelling and analysis techniques towards a
multi-paradigm approach.

This first chapter motivates Multi-Paradigm Modelling for CPS and the need for its clear foundations.
Staring from an introduction to the concept of System, it introduces distinct classes of systems, discusses their
characteristics, and then derives a definition of CPS. As CPS are complex to build, we dedicate part of the
chapter to discussing and drilling down on their common sources of complexity. Overall, designing a system
means that one has to make use of several kinds of abstractions to describe different properties and system’s
concerns, using languages (with existing, modelling formalisms and paradigms) and processes to be able to
avoid unnecessary complexity. The chapter then defines what a model is, and what does it mean to use multiple
formalisms when engaging in multi-paradigm modelling. Finally, a structure of the book is described, further
explaining how the formalisms and techniques presented fit together.
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Chapter 2
Bond Graphs: A Unifying Framework for Modelling of Physical
Systems

Jan F. Broenink

Abstract This chapter introduces a formalism to model the dynamic behaviour of physical systems known as
bond graphs. A important property of this formalism is that systems from different domains (cf. electrical,
mechanical, hydraulical, acoustical, thermodynamical, material) are described in the same way an integrated
under the unifying concept of energy exchange. Bond graph models are directed graphs where parts are
interconnected by bonds, along which exchange of energy occurs. We present a method to systematically build
a bond graph starting from an ideal physical model and present methods to perform the causal analysis of bond
graphs and procedures to generate equations to enable simulation.

Learning Objectives

After reading this chapter, we expect you to be able to:

• Use bond graphs as an abstraction to model bi-directional energy exchange between components in a
domain-neutral fashion

• Be able to translate domain dependent diagrams into ideal physicalmodels and subsequently into bond-graph
models

• Translate bond graph models into systems of differential equations for simulation and analysis

2.1 Introduction

Bond graphs are a domain-independent graphical description of dynamic behaviour of physical systems. This
means that systems from different domains (cf. electrical, mechanical, hydraulical, acoustical, thermodynamical,
material) are described in the same way. The basis is that bond graphs are based on energy and energy exchange.
Analogies between domains are more than just equations being analogous: the used physical concepts are
analogous.

Bond-graph modelling is a powerful tool for modelling engineering systems, especially when different
physical domains are involved. Furthermore, bond-graph submodels can be re-used elegantly, because bond-
graph models are non-causal. The submodels can be seen as objects; bond-graph modelling is a form of
object-oriented physical systems modelling.

Bond graphs are labelled and directed graphs, in which the vertices represent submodels and the edges
represent an ideal energy connection between power ports. The vertices are idealised descriptions of physical
phenomena: it are concepts, denoting the relevant (i.e. dominant and interesting) aspects of the dynamic
behaviour of the system. It can be bond graphs itself, thus allowing hierarchical models, or it can be a set of

Jan F. Broenink
University of Twente, Netherlands
e-mail: j.f.broenink@utwente.nl

15
P. Carreira et al. (eds.), Foundations of Multi-Paradigm Modelling for Cyber-Physical Systems, 

https://doi.org/10.1007/978-3-030-43946-0_2

© The Author(s) 2020

https://doi.org/10.1007/978-3-030-43946-0_2
mailto:j.f.broenink@utwente.nl
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43946-0_2&domain=pdf


16 Jan F. Broenink

equations in the variables of the ports (two at each port). The edges are called bonds. They denote point-to-point
connections between submodel ports.

When preparing for simulation, the bonds are embodied as two-signal connections with opposite directions.
Furthermore, a bond has a power direction and a computational causality direction. Proper assigning the
power direction resolves the sign-placing problem when connecting submodels structures. The internals of the
submodels give preferences to the computational direction of the bonds to be connected. The eventually assigned
computational causality dictates which port variable will be computed as a result (output) and consequently,
the other port variable will be the cause (input). Therefore, it is necessary to rewrite equations if another
computational form is specified then is needed. Since bond graphs can be mixed with block-diagram parts,
bond-graph submodels can have power ports, signal inputs and signal outputs as their interfacing elements.
Furthermore, aspects like the physical domain of a bond (energy flow) can be used to support the modelling
process.

The concept of bond graphs was originated by [228]. The idea was further developed by Karnopp and
Rosenberg in their textbooks ([161, 162, 160]), such that it could be used in practice [268, 86]. By means of the
formulation by Breedveld [43, 44] of a framework based on thermodynamics, bond-graph model descriptions
evolved to a systems theory.

In the next section, we will introduce the bond graph method by some examples, where we start from a given
network composed of ideal physical models. Transformation to a bond graph leads to a domain independent
model. In Section 3, wewill introduce the foundations of bond graphs, and present the basic bond graph elements
in Section 4. We will discuss a systematic method for deriving bond graphs from engineering systems in Section
5. How to enhance bond-graph models to generate the model equations and for analysis is presented in Section
6, and is called Causal Analysis. The equations generation and block diagram expansion of causal bond graphs
is treated in Sections 7 and 8. Section 9 discusses simulation issues. In Section 10 we review this chapter, and
also include some hints for further reading.

2.2 Bond-Graph Examples

To introduce bond graphs, we will discuss examples of two different physical domains, namely an RLC circuit
(electrical domain) and a damped mass-spring system (mechanical domain, translation). The RLC circuit is
given in Figure 2.1. Intro Bond Graphs

Figure 1: The RLC circuit

In electrical networks, the port variables of the bond graph elements are the 
element port and electrical current through the element port. Note that a port
element to other elements; it is the connection point of the bonds. The power
port with the rest of the system is the product of voltage and current: P = ui
resistor, capacitor and inductor are:
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In order to facilitate the conversion to bond graphs, we draw the different elements of the electric
domain in such a way that their ports become visible (Figure 2). To this port, we connect a 
bond or bond for short. This bond denotes the energy exchange between the elements. A bond is
drawn as an edge with half an arrow. The direction of this half arrow denotes the positive direction of
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Fig. 2.1: The RLC cicuit

In electrical networks, the port variables of the bond-graph elements are the electrical voltage over the
element port and electrical current through the element port. Note that a port is an interface of an element to
other elements; it is the connection point of the bonds. The power being exchanged by a port with the rest of the
system is the product of voltage and current: P = ui. The equations of a resistor, capacitor and inductor are:
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uR = iR

uC =
1
C

∫
i dt

iL =
1
I

∫
u dt

In order to facilitate the conversion to bond graphs, we draw the different elements of the electric domain in
such a way that their ports become visible. For brevity, we only show this for the Capacitor Figure 2.2. To this
port, we connect a power bond or bond for short. This bond denotes the energy exchange between the elements.
A bond is drawn as an edge with half an arrow. The direction of this half arrow denotes the positive direction
of the energy flow. In principle, the voltage source delivers power and the other elements absorb power.
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In order to facilitate the conversion to bond graphs, we draw the different elements of the electric
domain in such a way that their ports become visible (Figure 2). To this port, we connect a power
bond or bond for short. This bond denotes the energy exchange between the elements. A bond is
drawn as an edge with half an arrow. The direction of this half arrow denotes the positive direction of
the energy flow. In principle, the voltage source delivers power and the other elements absorb power.
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Figure 2: Electric elements with power ports
Considering the circuit of Figure 2, we see that the voltage over the elements are different and through
all elements flows the same current. We indicate this current with i and connect the bonds of all
elements with this current I (Figure 3). Changing the electric symbols into corresponding bond graph
mnemonics, result in the bond graph of the electrical circuit. The common i is changed to a ‘1’, a so-
called 1-junction. Writing the specific variables along the bonds makes the bond graph an electric
bond graph. The voltage is mapped onto the domain–independent effort variable and the current maps
onto the domain–independent flow variable (the current always on the side of the arrow). The 1-
junction means that the current (flow) through all connected bonds is the same, and that the voltages
(efforts) sum to zero, considering the sign. This sign is related to the power direction (i.e. direction of
the half arrow) of the bond. This summing equation is the Kirchhoff voltage law.

Fig. 2.2: Electric Capacitor: Circuit (left) and with bond (right)

Considering the circuit of Figure 2.1, we see that the voltage over the elements are different and through
all elements flows the same current. We indicate this current with i and connect the bonds of all elements
with this current i (2.3). Changing the electric symbols into corresponding bond graph mnemonics, result in
the bond graph of the electrical circuit. The common i is changed to a ’1‘, a so-called 1-junction. Writing the
specific variables along the bonds makes the bond graph an electric bond graph. The voltage is mapped onto
the domain-independent effort variable and the current maps onto the domain-independent flow variable (the
current always on the side of the arrow). The 1-junction means that the current (flow) through all connected
bonds is the same, and that the voltages (efforts) sum to zero, considering the sign. This sign is related to the
power direction (i.e. direction of the half arrow) of the bond. This summing equation is the Kirchhoff voltage
law.

Parallel connections, in which the voltage over all connected elements is the same, are denoted by a u in the
port-symbol network. The bond–graph mnemonic is a 0, the so-called 0-junction. A 0-junction means that the
voltage (effort) over all connected bonds is the same, and that the currents (flows) sum to zero, considering the
sign. This summing equation is the Kirchhoff current law.

The second example is the damped mass-spring system, a mechanical system shown in 2.4. In mechanical
diagrams, the port variables of the bond graph elements are the force on the element port and velocity of the
element port. For the rotational mechanical domain, the port variables are the torque and angular velocity.
Again, two variables are involved. The power being exchanged by a port with the rest of the system is the
product of force and velocity: P = Fv (P = Tω for the rotational case). The equations of a damper, spring and
mass are (we use damping coefficient a, spring coefficient Ks , mass m and applied force Fa):

Fd = αv

Fs = Ks

∫
v dt =

1
Cs

∫
v dt

Fm = m
dv
dt

or v =
1
m

∫
Fm dt

Fa = f orce
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Fig. 2.3: Bond graph with electrical symbols (left) and with standard symbols (right). The standard bond-graph
symbols are defined in 2.4

Figure 3: Bond graph with electrical symbols (left) and with standard symbols (right). The standard
bond-graph symbols are defined in the section 4

Parallel connections, in which the voltage over all connected elements is the same, are denoted by a 
in the port–symbol network. The bond–graph mnemonic is a 0, the so–called 
means that the voltage (effort) over all connected bonds is the same, and that the currents (flows) sum
to zero, considering the sign. This summing equation is the Kirchhoff current law.

Figure 4: The damped mass spring system

The second example is the damped mass–spring system, a mechanical system shown in 
mechanical diagrams, the port variables of the bond graph elements are the 
and velocity of the element port. For the rotational mechanical domain, the port variables are the
torque and angular velocity. Again, two variables are involved. The power
with the rest of the system is the product of force and velocity: P = Fv (P = 
The equations of a damper, spring and mass are (we use damping coefficient 
mass m and applied force Fa):
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In the same way as with the electrical circuit, we can redraw the element such that their ports become
visible (Figure 5). The loose ends of the example all have the same velocity, which is indicated by a 
This junction element also implies that the forces sum up to zero, considering the sign (related to the
power direction). The force is mapped onto an effort and the velocity onto a 
mechanical domain , the torque is mapped onto an effort and the angular velocity
implies that force is related to electric voltage and that velocity is related to 
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Fig. 2.4: The damped mass-spring system

In the same way as with the electrical circuit, we can redraw the element such that their ports become visible
(2.5). The loose ends of the example all have the same velocity, which is indicated by a v. This junction element
also implies that the forces sum up to zero, considering the sign (related to the power direction). The force is
mapped onto an effort and the velocity onto a flow. For the rotational mechanical domain , the torque is mapped
onto an effort and the angular velocity onto a flow. This implies that force is related to electric voltage and that
velocity is related to electric current.

We see the following analogies between the mechanical and electrical elements:

• The damper is analogous to the resistor.
• The spring is analogous to the capacitor; themechanical compliance correspondswith the electrical capacity.
• The mass is analogous to the inductor.
• The force source is analogous to the voltage source.
• The common velocity is analogous to the loop current.

Besides points with common velocity, also points with common force exist in mechanical systems. Then
forces are all equal and velocities sum up to zero, considering the sign (related to the power direction). These
common force points are denoted as 0-junctions in a bond graph (an example is a concatenation of a mass, a
spring and a damper: the three elements are connected in ’series‘). A further elaboration on analogies can be
found in the next section, where the foundations of bond graphs are discussed.

Through these two examples, we have introducedmost bond graph symbols and indicated how in two physical
domains the elements are transformed into bond graph mnemonics. One group of bond graph elements was not
yet introduced: namely the transducers. Examples are the electric transformer, an electric motor and toothed
wheels. In the next section, we will discuss the foundations of bond graphs.



2 Bond Graphs: A Unifying Framework for Modelling of Physical Systems 19

c

1

R

F a

F D

F S

Fm

V

V

I

c:C

1 l : m
F a

F d

F S

Fm

V

V

R : R

Se : Fa

C : C = 1/K

V
m

VVV

F a

Fig. 2.5: Bond graph with mechanical symbols (left) and with standard symbols (right)

2.3 Foundation of Bond Graphs

Analogies between different systems were shown in the previous section: Different systems can be represented
by the same set of differential equations. These analogies have a physical foundation: the underlying physical
concepts are analogous, and consequently, the resulting differential equations are analogous. The physical
concepts are based on energy and energy exchange. Behaviour with respect to energy is domain independent.
It is the same in all engineering disciplines, as can be concluded when comparing the RLC circuit with the
damped mass spring system. This leads to identical bond graphs.

2.3.1 Starting Points

Before discussing the specific properties of bond graphs and the elementary physical concepts, we first recall
the assumptions general for network like descriptions of physical systems, like electrical networks, mechanical
or hydraulic diagrams:

• The conservation law of energy is applicable.
• It is possible to use a lumped approach.

This implies that it is possible to separate system properties from each other and to denote them distinctly,
while the connections between these submodels are ideal. Separate system properties mean physical concepts
and the ideal connections represent the energy flow, i.e. the bonds between the submodels. This idealness
property of the connections means that in these connections no energy can be generated or dissipated. This is
called power continuity. This structure of connections is a conceptual structure, which does not necessary have
a size. This concept is called reticulation [228] or tearing [173]. See also [304].

The system’s submodels are concepts, idealised descriptions of physical phenomena, which are recognised
as the dominating behaviour in components (i.e. real-life, tangible system parts). This implies that a model of a
concrete part is not necessary only one concept, but can consist of a set of interconnected concepts.
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2.3.2 Bonds and Ports

The contact point of a submodel where an ideal connection will be connected to is called a power port or port
for short. The connection between two submodels is called a power bond or bond; it is drawn as a single line
(2.6). This bond denotes an ideal energy flow between the two connected submodels. The energy entering the
bond on one side immediately leaves the bond at the other side (power continuity).

element element
bond

Ports

Fig. 2.6: The energy flow between two submodels represented by a bond.

The energy flow along a bond has the physical dimension of power, being the product of two variables. In
each physical domain, there is such a combination of variables, for which a physical interpretation is useful.
In electrical networks, the two variables are voltage and current. In mechanical systems, the variable pairs are
force and velocity for translation and torque and angular velocity for rotation. In hydraulics, it is pressure and
volume flow. For thermodynamic systems, temperature and entropy flow are used. These pairs of variables are
called (power-) conjugated variables.

In order to understand the connection as established by a bond, this bond can be interpreted in two different
ways, namely:

1. As an interaction of energy.
The connected subsystems form a load to each other by their energy exchange. A power bond embodies a
connection where a physical quantity is exchanged.

2. As a bilateral signal flow.
The connection is interpreted as two signals, an effort and flow, flowing in opposite direction, thus deter-
mining the computational direction of the bond variables. With respect to one of the connected submodels,
the effort is the input and the flow the output, while for the other submodel input and output are of course
established by the flow and effort respectively.

These two ways of conceiving a bond is essential in bond graph modelling. Modelling is started by indicating
the physical structure of the system. The bonds are first interpreted as interactions of energy, and then the
bonds are endowed with the computational direction, interpreting the bonds as bilateral signal flows. During
modelling, it need not be decided yet what the computational direction of the bond variables is. Note that,
determining the computational direction during modelling restricts submodel reuse. It is however necessary to
derive the mathematical model (set of differential equations) from the graph. The process of determining the
computational direction of the bond variables is called causal analysis. The result is indicated in the graph by
the so-called causal stroke, indicating the direction of the effort, and is called the causality of the bond (2.7).

In equation form, 2.7 can be written as:

element1.e := element2.e element2.e := element1.e
element2. f := element1. f element1. f := element2. f

2.4 Bond-Graph Elements

The constitutive equations of the bond graph elements are introduced via examples from the electrical and
mechanical domains. The nature of the constitutive equations lay demands on the causality of the connected
bonds. Bond graph elements are drawn as letter combinations (mnemonic codes) indicating the type of element.
The bond graph elements are the following:
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Fig. 2.7: Determine the signal direction of the effort and flow (we do not use the power direction at the bonds,
so it is not shown here)

C storage element for a q-type variable, e.g. capacitor (stores charge), spring (stores displacement).
I storage element for a p-type variable, e.g. inductor (stores flux linkage), mass (stores momentum).
R Resistor dissipating free energy, e.g. electric resistor, mechanical friction.

Se, Sf sources, e.g. electric mains (voltage source), gravity (force source), pump (flow source).
TF transformer, e.g. an electric transformer, toothed wheels, lever.
GY gyrator, e.g. electromotor, centrifugal pump.
0, 1 0- and 1-junctions, for ideal connecting two or more submodels.

2.4.1 Storage Elements

Storage elements store all kinds of free energy. As indicated above, there are two types of storage elements:
C-elements and I-elements. The q-type and p-type variables are conserved quantities and are the result of an
accumulation (or integration) process. They are the (continuous) state variables of the system.

In C-elements, like a capacitor or spring, the conserved quantity, q, is stored by accumulating the net flow,
f , to the storage element. This results in the differential equation:

q̇ = f

which is called a balance equation, and forms a part of the constitutive equations of the storage element. In
the other part of the constitutive equations, the state variable, q, is related to the effort,e:

e = e(q)

This relation depends on the specific shape of the particular storage element.
In 2.8, examples of C-elements are given together with the equivalent block diagram. The equations for a

linear capacitor and linear spring are:

q̇ = i, u =
1
C

q

ẋ = v, F = K x =
1
C

x

For a capacitor, C [F] is the capacitance and for a spring, K [N/m] is the stiffness and C [m/N] the compliance.
For all other domains, a C-element can be defined.

The effort variable is equal when two C-storage elements connected in parallel with a resistor in between are
in equilibrium. Therefore, the domain-independent property of an effort is determination of equilibrium.

In I-elements, like a inductor or mass, the conserved quantity, p, is stored by accumulating the net flow, e, to
the storage element. This results in the differential equation:
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ṗ = e

which is called a balance equation, and forms a part of the constitutive equations of the storage element. In
the other part of the constitutive equations, the state variable, q, is related to the effort,e:

f = f (q)

This relation depends on the specific shape of the particular storage element.
In 2.9, examples of I-elements are given together with the equivalent block diagram. The equations for a

linear inductor and linear mass are:

λ̇ = u, i = 1
L λ (2.1)

ṗ = F, v = 1
m p (2.2)

For an inductor, L [H] is the inductance and for a mass, m [kg] is the mass. For all other domains, an I-element
can be defined.

The flow variable is equal when two I-storage elements connected in parallel with a resistor in between,
are in equilibrium. Therefore, at I-elements, the domain-independent property of the flow is determination of
equilibrium. F or example, when two bodies, moving freely in space each having a different momentum, are
being coupled (collide and stick together), the momentum will divide among the masses such that the velocity
of both masses is the same (this is the conservation law of momentum).

Note that when at the two types of storage elements, the role of effort and flow are exchanged: the C- element
and the I-element are each other’s dual form.

The block diagrams in 2.8 and 2.9, and also in the next Figures 10 to 16, show the computational direction
of the signals involved. They are indeed the expansion of the corresponding causal bond graph. The equations
are given in computational form, consistent with the causal bond graph and the block diagram.

2.4.2 Resistors

Resistors, R-elements, dissipate free energy. Examples are dampers, frictions and electric resistors (2.10). In
real-life mechanical components, friction is always present. Energy from an arbitrary domain flows irreversibly
to the thermal domain (and heat is produced). This means that the energy flow towards the resistor is always
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positive. The constitutive equation is an algebraic relation between the effort and flow, and lies principally in
the first or third quadrant.

e = f ( f )
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Fig. 2.10: Examples of resistors

An electrical resistor is mostly linear (at constant temperature), namely Ohm’s law. The electrical resistance
value is in [Ω].

u = Ri

Mechanical friction mostly is non-linear. The resistance function is a combination of dry friction and viscous
friction. Dry friction is a constant friction force and viscous friction is the linear term. Sometimes, also stiction
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is involved, a tearing-loose force only applicable when starting a movement. All these forms of friction can be
modelled with the R-element. The viscous friction has as formula (R in [Ns/m]:

F = Rv

If the resistance value can be controlled by an external signal, the resistor is a modulated resistor, with
mnemonic MR. An example is a hydraulic tap: the position of the tap is controlled from the outside, and it
determines the value of the resistance parameter.

If the thermal domain is modelled explicitly, the production of thermal energy should explicitly be indicated.
Since the dissipator irreversibly produces thermal energy, the thermal port is drawn as a kind of source of
thermal energy. The R becomes an RS.

2.4.3 Sources

Sources represent the interaction of a system with its environment. Examples are external forces, voltage and
current sources, ideal motors, etc. (2.11). Depending on the type of the imposed variable, these elements are
drawn as Se or Sf.

Besides as a ’real’ source, source elements are used to give a variable a fixed value, for example, in case of
a point in a mechanical system with a fixed position, a Sf with value 0 is used (fixed position means velocity
zero). When a system part needs to be excited, often a known signal form is needed, which can be modelled by
a modulated source driven by some signal form. An example is shown in Figure 2.12.
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Besides as a ‘real’ source, source elements are used to give a variable a fixed value, for example, in
case of a point in a mechanical system with a fixed position, a Sf with value 0 is used (fixed position
means velocity zero).

When a system part needs to be excited, often a known signal form is needed, which can be modelled
by a modulated source driven by some signal form. An example is shown in Figure 12.

Figure 11: Examples of sources

Figure 12 : Example of a modulated voltage source

4.4 Transformers and Gyrators
An ideal transformer is represented by TF and is power continuous (i.e. no power is stored or
dissipated). The transformation can within the same domain (toothed wheel, lever) or between
different domains (electromotor, winch), see Figure 13. The equations are:
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2.4.4 Transformers and Gyrators

An ideal transformer is represented by TF and is power continuous (i.e. no power is stored or dissipated). The
transformation can within the same domain (toothed wheel, lever) or between different domains (electromotor,
winch), see Figure 13. The equations are:

e1 = ne2 (2.3)
f2 = n f1 (2.4)

Efforts are transduced to efforts and flows to flows. The parameter n is the transformer ratio. Due to the
power continuity, only one dimensionless parameter, n, is needed to describe both the effort transduction and
the flow transduction. The parameter n is unambiguously defined as follows: e1 and f1 belong to the bond
pointing towards the TF. This way of defining the transformation ratio is standard in leading publications
[160],[44],[269],[67]. If n is not constant, the transformer is a modulated transformer, a MTF. The transformer
ratio now becomes an input signal to the MTF.
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Fig. 2.13: Examples of transformers

An ideal gyrator is represented by GY, and is also power continuous (i.e. no power is stored or is dissipated.
Examples are an electromotor, a pump and a turbine. Real-life realisations of gyrators are mostly transducers
representing a domain-transformation (Figure 14). The equations are:

e1 = r f2 (2.5)
e2 = r f1 (2.6)

The parameter r is the gyrator ratio, and due to the power continuity, only one parameter to describe both
equations. No further definition is needed since the equations are symmetric (it does not matter which bond
points inwards, only that one bond points towards and the other points form the gyrator). r has a physical
dimension, since r is a relation between effort and flow (it has the same dimension as the parameter of the R
element). If r is not constant, the gyrator is a modulated gyrator, a MGY.
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Fig. 2.14: Examples of gyrators

2.4.5 Junctions

Junctions couple two or more elements in a power continuous way: there is no energy storage or dissipation
in a junction. Examples are a series connection or a parallel connection in an electrical network, a fixed
coupling between parts of a mechanical system. Junctions are port-symmetric: the ports can be exchanged in the
constitutive equations. Following these properties, it can be proven that there exist only two pairs of junctions:
the 1-junction and the 0-junction.

The 0-junction represents a node at which all efforts of the connecting bonds are equal (2.15). An example is
a parallel connection in an electrical circuit. Due to the power continuity, the sum of the flows of the connecting
bonds is zero, considering the sign. The power direction (i.e. direction of the half arrow) determines the sign
of the flows: all inward pointing bonds get a plus and all outward pointing bonds get a minus. (Figure X). This
summation is the Kirchhoff current law in electrical networks: all currents connecting to one node sum to zero,
considering their signs: all inward currents are positive and all outward currents are negative.

We can depict the 0-junction as the representation of an effort variable, and often the 0-junction will be
interpreted as such. The 0-junction is more than the (generalised) Kirchhoff current law, namely also the
equality of the efforts (like electrical voltages being equal at a parallel connection).

The 1-junction (2.16) is the dual form of the 0-junction (roles of effort and flow are exchanged). The 1-junction
represents a node at which all flows of the connecting bonds are equal. An example is a series connection in an
electrical circuit. The efforts sum to zero, as a consequence of the power continuity. Again, the power direction
(i.e. direction of the half arrow) determines the sign of the efforts: all inward pointing bonds get a plus and all
outward pointing bonds get a minus. This summation is the Kirchhoff voltage law in electrical networks: the
sum of all voltage differences along one closed loop (a mesh) is zero. In the mechanical domain, the 1-junction
represents a force balance (also called the principle of d’Alembert), and is a generalisation of Newton’s third
law, action = - reaction).

Just as with the 0-junction, the 1-junction is more than these summations, namely the equality of the flows.
Therefore, we can depict the 1-junction as the representation of a flow variable, and often the 1-junction will be
interpreted as such.

2.4.6 Positive Orientation

By definition, the power is positive in the direction of the power bond (i.e. direction of the half arrow). A port
that has an incoming bond connected to, consumes power if this power is positive (i.e. both effort and flow are
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either positive or negative, as the product of effort and flow is the power). In other words: the power flows in the
direction of the half arrow if it is positive and the other way if it is negative.

R-, C- and I-elements have an incoming bond (half arrow towards the element) as standard, which results
in positive parameters when modelling real-life components. For source elements, the standard is outgoing, as
sources mostly deliver power to the rest of the system. A real-life source then has a positive parameter. For
TF- and GY-elements (transformers and gyrators), the standard is to have one bond incoming and one bond
outgoing, to show the ’natural’ flow of energy. Furthermore, using the standard definition of the parameter at
the transformer (incoming bond is connected to port 1 and the ratio n is e1/e2) positive parameters will be the
result. Note that a gyrator does not need such a definition, since its equations are symmetric.

It is possible, however, that negative parameters occur. Namely, at transformers and sources in the mechanical
domain when there is a reverse of velocity or the source acts in the negative direction.

Using the definitions discussed in this section, the bond-graph definition is unambiguous, implying that
in principle there is no need for confusion. Furthermore, this systematic way will help resolving possible
sign-placing problems often encountered in modelling, especially in mechanical systems.
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2.4.7 Duality and Dual Domains

As indicated in 2.4.1, the two storage elements are each other’s dual form. The role of effort and flow in a
C-element and I-element are exchanged. Leaving one of the storage elements (and also one of the sources) out
of the list of bond graph elements, to make this list as small as possible, can be useful from a mathematical
viewpoint, but does not enhance the insight in physics.

Decomposing an I-element into a GY and a C, though, gives more insight. The only storage element now
is the C-element. The flow is only a time derivative of a conserved quantity, and the effort determines the
equilibrium. This implies that the physical domains are actually pairs of two dual domains: in mechanics,
we have potential and kinetic domains for both rotation and translation), in electrical networks, we have the
electrical andmagnetic domains. However, in the thermodynamic domain, no such dual form exists (Breedveld,
1982). This is consistent with the fact that no thermal I-type storage exists (as a consequence of the second law
of thermodynamics: in a thermally isolated system, the entropy never decreases).

2.5 Systematic Procedure to Derive a Bond-Graph Model

In the previsous section, we have discussed the basic bond-graph elements and the bonds, so we can transform
a domain-dependent ideal-physical model, written in domain-dependent symbols, into a bond graph. For this
transformation, there is a systematic procedure, which will be presented in the next section.

To generate a bond-graph model starting from an ideal-physical model, a systematic method exist, which
we will present here as a procedure. This procedure consists roughly of the identification of the domains and
basic elements, the generation of the connection structure (called the junction structure), the placement of the
elements, and possibly simplifying the graph. The procedure is different for the mechanical domain compared
to the other domains. These differences are indicated between parenthesis. The reason is that elements need to
be connected to difference variables or across variables. The efforts in the non-mechanical domains and the
velocities (flows) in the mechanical domains are the across variables we need.

2.5.1 The Eight Steps of the Systematic Procedure

Steps 1 and 2 concern the identification of the domains and elements.

1. Determine which physical domains exist in the system and identify all basic elements like C, I, R, Se, Sf,
TF and GY. Give every element a unique name to distinguish them from each other.

2. Indicate in the ideal-physical model per domain a reference effort (reference velocity with positive direction
for the mechanical domains).
Note that only the references in the mechanical domains have a direction.

Steps 3 through 6 describe the generation of the connection structure (called the junction structure).

3. Identify all other efforts (mechanical domains: velocities) and give them unique names.
4. Draw these efforts (mechanical: velocities), and not the references, graphically by 0-junctions (mechanical:

1-junctions). Keep if possible, the same layout as the IPM.
5. Identify all effort differences (mechanical: velocity (= flow) differences) needed to connect the ports of all

elements enumerated in step 1 to the junction structure. Give these differences a unique name, preferably
showing the difference nature. The difference between e1 and e2 can be indicated by e12.

6. Construct the effort differences using a 1-junction (mechanical: flow differenceswith a 0-junction) according
to Figure 2.17, and draw them as such in the graph.

The junction structure is now ready and the elements can be connected.

7. Connect the port of all elements found at step 1 with the 0-junctions of the corresponding efforts or effort
differences (mechanical: 1-junctions of the corresponding flows or flow differences).

8. Simplify the resulting graph by applying the following simplification rules (2.18):
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• A junction between two bonds can be left out, if the bonds have a ’through’ power direction (one bond
incoming, the other outgoing).

• A bond between two the same junctions can be left out, and the junctions can join into one junction.
• Two separately constructed identical effort or flow differences can join into one effort or flow difference.
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Fig. 2.18: Simplification rules for the junction structure: (a, b): elimination of a junction between bonds; (c,
d): contraction of two the same junctions; (e,f): two separately constructed identical differences fuse to one
difference.

2.5.2 Illustration of the Systematic Procedure

We will illustrate these steps with a concrete example consisting of an electromotor fed by electric mains, a
cable drum and a load (2.19).

A possible ideal-physical model (IPM) is given in Figure 2.20. The mains is modelled as an ideal voltage
source. At the electromotor, the inductance, electric resistance of the coils, bearing friction and rotary inertia
are taken into account. The cable drum is the transformation from rotation to translation, which we consider as
ideal. The load consists of a mass and the gravity force. Starting from the IPM of Figure 2.20, we will construct
a bond graph using the 8 steps mentioned above.
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bonds. (c, d) Contraction of two the same junctions. (e, f) Two separately constructed
identical differences fuse to one difference.

We will illustrate these steps with a concrete example consisting of an electromotor fed by electric
mains, a cable drum and a load (Figure 19).

Figure 19: Sketch of the hoisting device.

A possible ideal–physical model (IPM) is given in Figure 20. The mains is modelled as an ideal
voltage source. At the electromotor, the inductance, electric resistance of the coils, bearing friction and
rotary inertia are taken into account. The cable drum is the transformation from rotation to translation,
which we consider as ideal. The load consists of a mass and the gravity force. Starting from the IPM
of Figure 20, we will construct a bond graph using the 8 steps mentioned above.

Load

Cable drum

MotorMains

Fig. 2.19: Sketch of the hoisting device
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15 / 31

Figure 20: Possible ideal-physical model augmented with the domain information of step 1.

Step 1
This system contains:
• An electric domain part with a voltage source (Se), a resistor (R), an inductor (I) and the electric

port of the electromotor (GY port).

• A rotation mechanic domain  part with the rotation port of the electromotor (GY port), bearing
friction (R), inertia (I), and the axis of the cable drum (TF port).

• A translation mechanic domain  part with the cable of the cable drum (TF port), the mass of the
load (I) and the gravity force acting on the mass (Se).

In Figure 20, the domains are indicated and all elements have a unique name.

Step 2
The references are indicated in the ideal physical model: the voltage u0, the rotational velocity ω0 and
the linear velocity v0. The two velocities also get a positive orientation (i.e. a direction in which the
velocity is positive). This result is shown in Figure 21.

Figure 21: References added to the IPM.

Step3
The other voltages, angular velocities and linear velocities are sought for and are indicated in the IPM
(Figure 22). These variables are respectively u1, u2, u3 , ω1 , v1.
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Fig. 2.20: Possible ideal-physical model augmented with the domain information of step 1

Step 1

This system contains:

• An electric domain part with a voltage source (Se), a resistor (R), an inductor (I) and the electric port of the
electromotor (GY port).

• A rotation mechanic domain part with the rotation port of the electromotor (GY port), bearing friction (R),
inertia (I), and the axis of the cable drum (TF port).

• A translation mechanic domain part with the cable of the cable drum (TF port), the mass of the load (I) and
the gravity force acting on the mass (Se).

In Figure 2.20, the domains are indicated and all elements have a unique name.

Step 2

The references are indicated in the ideal physical model: the voltage u0, the rotational velocityω0 and the linear
velocity v0. The two velocities also get a positive orientation (i.e. a direction in which the velocity is positive).
This result is shown in Figure 2.21.
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friction (R), inertia (I), and the axis of the cable drum (TF port).

• A translation mechanic domain  part with the cable of the cable drum (TF port), the mass of the
load (I) and the gravity force acting on the mass (Se).

In Figure 20, the domains are indicated and all elements have a unique name.
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The references are indicated in the ideal physical model: the voltage u0, the rotational velocity ω0 and
the linear velocity v0. The two velocities also get a positive orientation (i.e. a direction in which the
velocity is positive). This result is shown in Figure 21.
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Step3
The other voltages, angular velocities and linear velocities are sought for and are indicated in the IPM
(Figure 22). These variables are respectively u1, u2, u3 , ω1 , v1.
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Fig. 2.21: References added to the IPM.
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Step 3

The other voltages, angular velocities and linear velocities are sought for and are indicated in the IPM (2.22).
These variables are respectively u1, u2, u3 , ω1, v1.Intro Bond Graphs Jan F. Broenink, © 1999
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Figure 22: The IPM augmented with relevant voltages, velocities and angular velocities.

Step 4
The variables found in step 3 are depicted with 0– respectively 1–junctions in Figure 23, in a layout
compatible to the IPM. The references are not drawn, because they are so to speak eliminated
(references have the value 0 and do not contribute to the dynamic behaviour).

Figure 23: First skeleton of the bond graph: Voltages are shown as 0–junctions and velocities as 1–
junctions.

Step 5
When checking all ports of the elements found in step 1 for voltage differences, angular velocity
differences and linear velocity differences, only u12 and u23 are identified. No velocity differences are
needed.

Step 6
The difference variables are drawn in the bond graph, see Figure 24. After this step, the junction
structure is generated and the elements can be connected.

Figure 24: Difference variables (u12 and u23) shown in the bond graph.

Step 7
All elements are connected to the appropriate junctions, as shown in Figure 25. Note that non-
mechanical domain elements are always connected to 0-junctions (efforts or effort differences) and
that mechanical domain elements are always connected to 1–junctions.
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Fig. 2.22: The IPM augmented with relevant voltages, velocities, and angular velocities.

Step 4

The variables found in step 3 are depicted with 0- respectively 1-junctions in Figure 2.23, in a layout compatible
to the IPM. The references are not drawn, because they are so to speak eliminated (references have the value 0
and do not contribute to the dynamic behaviour).
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Figure 22: The IPM augmented with relevant voltages, velocities and angular velocities.

Step 4
The variables found in step 3 are depicted with 0– respectively 1–junctions in Figure 23, in a layout
compatible to the IPM. The references are not drawn, because they are so to speak eliminated
(references have the value 0 and do not contribute to the dynamic behaviour).
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junctions.

Step 5
When checking all ports of the elements found in step 1 for voltage differences, angular velocity
differences and linear velocity differences, only u12 and u23 are identified. No velocity differences are
needed.

Step 6
The difference variables are drawn in the bond graph, see Figure 24. After this step, the junction
structure is generated and the elements can be connected.

Figure 24: Difference variables (u12 and u23) shown in the bond graph.

Step 7
All elements are connected to the appropriate junctions, as shown in Figure 25. Note that non-
mechanical domain elements are always connected to 0-junctions (efforts or effort differences) and
that mechanical domain elements are always connected to 1–junctions.
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Fig. 2.23: First skeleton of the bond graph: Voltages are shown as 0-junctions and velocities as 1-junctions.

Step 5

When checking all ports of the elements found in step 1 for voltage differences, angular velocity differences
and linear velocity differences, only u12 and u23 are identified. No velocity differences are needed.

Step 6

The difference variables are drawn in the bond graph, see Figure 2.24. After this step, the junction structure is
generated and the elements can be connected.

Step 7

All elements are connected to the appropriate junctions, as shown in Figure 2.25. Note that non-mechanical
domain elements are always connected to 0-junctions (efforts or effort differences) and that mechanical domain
elements are always connected to 1-junctions.

Step 8

As last action, the bond graph needs to be simplified, to eliminate superfluous junctions (according to the rules
given in Figure 2.18). The resulting bond graph is the outcome of the systematic method, see Figure 2.26.

Obviously, this systematic method is not the onlymethod for deriving bond graphs from ideal physical models
(IPMs). Another method is the so-called inspection method, where parts of the IPM are recognised that can be
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Step 6
The difference variables are drawn in the bond graph, see Figure 24. After this step, the junction
structure is generated and the elements can be connected.

Figure 24: Difference variables (u12 and u23) shown in the bond graph.

Step 7
All elements are connected to the appropriate junctions, as shown in Figure 25. Note that non-
mechanical domain elements are always connected to 0-junctions (efforts or effort differences) and
that mechanical domain elements are always connected to 1–junctions.
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Fig. 2.24: Junction Structure ready: Difference variables (u12 and u23) shown in the bond graph.University of Twente, Dept EE Intro Bond Graphs

Figure 25: The complete bond graph.
Step 8
As last action, the bond graph needs to be simplified, to eliminate superfluous junctions (according to
the rules given in Figure 18). The resulting bond graph is the outcome of the systematic method.

Figure 26: The simplified bond graph, the result of the systematic method.
Obviously, this systematic method is not the only  method for deriving bond graphs from ideal physical
models (IPMs). Another method is the so–called inspection method, where parts of the IPM are
recognised that can be represented by one junction. An example is a series connection in an electrical
network, which is drawn as one 1–junction. This is the case in the example above: The voltage source,
inductor, electric resistor and electric port of the motor are directly connected to one 1–junction.
Although the inspection method is shorter than the systematic method, it is rather error prone.

6 Causal analysis
Causal analysis is the determination of the signal direction of the bonds. The energetic connection
(bond) is now interpreted as a bi-directional signal flow. The result is a causal bond graph, which can
be seen as a compact block diagram. Causal analysis is in general completely covered by modelling
and simulation software packages that support bond graphs like Enport (Rosenberg, 1974), MS1
(Lorenz, 1997), CAMP (Granda, 1985) and 20- SIM (Broenink, 1990, 1995, 1997, 1999b; Broenink and
Kleijn, 1999). Therefore, in practice, causal analysis need not be done by hand. Besides derivation of
equations, causal analysis can give insight in the correctness and competency of the model. This last
reason especially motivates the discussion of causal analysis in this chapter.
Dependent on the kind of equations of the elements, the element ports can impose constraints on the
connected bonds. There are four different constraints, which will be treated before a systematic
procedure for causal analysis of bond graphs is discussed.
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Fig. 2.25: The IPM augmented with relevant voltages, velocities, and angular velocities.
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Figure 25: The complete bond graph.
Step 8
As last action, the bond graph needs to be simplified, to eliminate superfluous junctions (according to
the rules given in Figure 18). The resulting bond graph is the outcome of the systematic method.

Figure 26: The simplified bond graph, the result of the systematic method.
Obviously, this systematic method is not the only  method for deriving bond graphs from ideal physical
models (IPMs). Another method is the so–called inspection method, where parts of the IPM are
recognised that can be represented by one junction. An example is a series connection in an electrical
network, which is drawn as one 1–junction. This is the case in the example above: The voltage source,
inductor, electric resistor and electric port of the motor are directly connected to one 1–junction.
Although the inspection method is shorter than the systematic method, it is rather error prone.

6 Causal analysis
Causal analysis is the determination of the signal direction of the bonds. The energetic connection
(bond) is now interpreted as a bi-directional signal flow. The result is a causal bond graph, which can
be seen as a compact block diagram. Causal analysis is in general completely covered by modelling
and simulation software packages that support bond graphs like Enport (Rosenberg, 1974), MS1
(Lorenz, 1997), CAMP (Granda, 1985) and 20- SIM (Broenink, 1990, 1995, 1997, 1999b; Broenink and
Kleijn, 1999). Therefore, in practice, causal analysis need not be done by hand. Besides derivation of
equations, causal analysis can give insight in the correctness and competency of the model. This last
reason especially motivates the discussion of causal analysis in this chapter.
Dependent on the kind of equations of the elements, the element ports can impose constraints on the
connected bonds. There are four different constraints, which will be treated before a systematic

u1 u2 u3

ω1

v1

u12 u23

..Usource

1

TF: /2D

Se: -mg

I:m

0 0 0 11 1

00

Se

R:Rel I:L

I:J

R:Rbearing

GY..
K

..
Usource

GY 1

1

1 TF: /2DSe

I:L

Se: -mg

I:m

I:J

R:RbearingR:Rel

..
K

Fig. 2.26: The simplified bond graph, the result of the systematic method.

represented by one junction. An example is a series connection in an electrical network, which is drawn as one
1-junction. This is the case in the example above: The voltage source, inductor, electric resistor and electric
port of the motor are directly connected to one 1-junction. Although the inspection method is shorter than the
systematic method, it is rather error prone.
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2.6 Causal Analysis

Causal analysis is the determination of the signal direction of the bonds. The energetic connection (bond) is
now interpreted as a bi-directional signal flow. The result is a causal bond graph, which can be seen as a compact
block diagram. Causal analysis is in general completely covered by modelling and simulation software packages
that support bond graphs like Enport [242], MS1 [191], CAMP [129] and 20-sim [46, 48, 49, 50]. Therefore,
in practice, causal analysis need not be done by hand. Besides derivation of equations, causal analysis can give
insight in the correctness and competency of the model. This last reason especially motivates the discussion of
causal analysis in this chapter.

2.6.1 Causal Constraints

Dependent on the kind of equations of the elements, the element ports can impose constraints on the connected
bonds. There are four different constraints, whichwill be treated before a systematic procedure for causal analysis
of bond graphs is discussed.

2.6.1.1 Fixed causality

Fixed causality is the case, when the equations only allow one of the two port variables to be the outgoing
variable. This occurs at sources: an effort source (Se) has by definition always its effort variable as signal output,
and has the causal stroke outwards. This causality is called effort-out causality or effort causality. A flow source
(Sf) clearly has a flow-out causality or flow causality.

Another situation where fixed causality occurs is at nonlinear elements, where the equations for that port
cannot be inverted (for example, division by zero). This is possible at R, GY, TF, C and I elements. Thus, there
are two reasons to impose a fixed causality:

1. There is no relation between the port variables.
2. The equations are not invertible (’singular’).

2.6.1.2 Constrained Causality

At TF, GY, 0- and 1-junction, relations exist between the causalities of the different ports of the element. These
relations are causal constraints, since the causality of a particular port imposes the causality of the other ports.
At a TF, one of the ports has effort-out causality and the other has flow-out causality. At a GY, both ports have
either effort-out causality or flow-out causality.

At a 0-junction, where all efforts are the same, exactly one bond must bring in the effort. This implies that
0-junctions always have exactly one causal stroke at the side of the junction. The causal condition at a 1-junction
is the dual form of the 0-junction. All flows are equal, thus exactly one bond will bring in the flow, implying
that exactly one bond has the causal stroke away from the 1-junction.

2.6.1.3 Preferred Causality

At the storage elements, the causality determines whether an integration or differentiation with respect to time
will be the case. Integration has preference above a differentiation. At the integrating form, an initial condition
must be specified. Besides, integration with respect to time is a process, which can be realised physically.
Numerical differentiation is not physically realisable, since information at future time points is needed. Another
drawback of differentiation occurs when the input contains a step function: the output will then become infinite.
Therefore, integrating causality is seen as the preferred causality. This implies that a C-element has effort-
out causality and an I-element has flow-out causality at its preference. These preferences are also illustrated
in Figure 2.8 and Figure 2.9, when looking at the block-diagram expansion.
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Effort-out vs. flow-out causality

When a voltage u is imposed on an electrical capacitor (a C-element), the current i is the result of the constitutive
equation of the capacitor:

i = C
du
dt

A differentiation is thus happening. We have a problem when the voltage instantly steps to another value,
since the current will be infinite (the derivative of a step is infinite). This is not the case when the current is
imposed on a capacitor. Now, an integral is used:

u = u0 +
∫

idt

The first case is flow-out causality (effort imposed, flow the result), and the second case is effort-out causality,
which is the preferred causality. Furthermore, an effort-out causality also results in a state variable with initial
condition u0. At an inductor, the dual form of the C-element is the case: flow-out causality will result in an
integral causality, being the preference.

2.6.1.4 Indifferent Causality

Indifferent causality is used, when there are no causal constraints! At a linear R, it does not matter which of the
port variables is the output. Consider an electrical resistor. Imposing a current (flow) yields:

u = Ri

It is also possible to impose a voltage (effort) on the linear resistor:

i =
u
R

There is no difference choosing the current as incoming variable and the voltage as outgoing variable, or the
other way around.

2.6.2 Causal Analysis Procedure

In terms of causal constraints, we can say that the Se and Sf have a fixed causality, the C and I have a preferred
causality, the TF, GY, 0 and 1 have constrained causality, and the R has an indifferent causality (provided that
the equations of these basic elements all are invertible). These causal forms have been shown in 2.4. When the
equations are not invertible, a fixed causality must be used.

The procedure for assigning causality on a bond graph starts with those elements that have the strongest
causality constraint namely fixed causality (deviation of the causality condition cannot be granted by rewriting
the equations, since rewriting is not possible). Via the bonds (i.e. connections) in the graph, one causality
assignment can cause other causalities to be assigned. This effect is called causality propagation: after one
assignment, the causality propagates through the bond graph due to the causal constraints.

The causality assignment algorithm is as follows:

1a Chose a fixed causality of a source element, assign its causality, and propagate this assignment through the
graph using the causal constraints. Go on until all sources have their causalities assigned.

1b Chose a not yet causal port with fixed causality (non-invertible equations), assign its causality, and propagate
this assignment through the graph using the causal constraints. Go on until all ports with fixed causality
have their causalities assigned.

2 Chose a not yet causal port with preferred causality (storage elements), assign its causality, and propagate
this assignment through the graph using the causal constraints. Go on until all ports with preferred causality
have their causalities assigned.
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3 Chose a not yet causal port with indifferent causality, assign its causality, and propagate this assignment
through the graph using the causal constraints. Go on until all ports with indifferent causality have their
causalities assigned.

Often, the bond graph is completely causal after step 2, without any causal conflict (all causal conditions are
satisfied). If this is not the case, then the moment in the procedure where a conflict occurs or where the graph
becomes completely causal, can give insight in the correctness and competence of the model. Before discussing
these issues, first an example will be treated.

Causality algorithm

To exemplify the causality algorithm, the same example as in 2.5 is used. In Figure 2.27, the completely causal
bond graph of the hoisting device is shown. Numbers at the causal strokes indicate the order in which the bonds
were made causal.

At step 1a, we assign causality 1 and 2. It does not matter with which source we start. No causality can be
propagated. Step 1b is not applicable, since there are no ports of that category. At step 2, we started with the
inductor. Propagation is from stroke 3 until stroke 6. The next storage element (preferred causality) is inertia J.
Propagation of this causality (number 7), completes the causality of the graph, implying that we do not need
step 3. However, the mass of the load does not get his preference. What the consequences are, is subject of the
next section.

Intro Bond Graphs Jan F. Broenink, © 1999

Figure 27: The causal bond graph of the hoisting device

6.3 Model insight via causal analysis
We discuss here those situations whereby conflicts occur in the causal analysis procedure or when step
3 of the algorithm appears to be necessary. The place in procedure where a conflict appears or the
bond graph becomes completely causally augmented, can give insight in the correctness of the model.
Often, the bond graph is completely causal after step 2, without any causal conflict (all causal
conditions are satisfied). Each storage element represents a state variable, and the set of equations is an
explicit set of ordinary differential equations (not necessarily linear or time invariant).
When the bond graph is completely causal after step 1a, the model does not have any dynamics. The
behaviour of all variables now is determined by the fixed causalities of the sources. Arises a causal
conflict at step 1a or at step 1b, then the problem is ill posed. The model must be changed, by adding
some elements. An example of a causal conflict at step 1a is two effort sources connected to one 0-
junction. Both sources ‘want’ to determine the one effort variable.
At a conflict at step 1b, a possible adjustment is changing the equations of the fixed–causality element
such that these equations become invertable, and thus the fixedness of the constraint disappears. An
example is a diode or a valve having zero current resp. flow while blocking. Allowing a small
resistance during blocking, the equations become invertable.
When a conflict arises at step 2, a storage element receives a non-–preferred causality. This means that
this storage element does not represent a state variable. The initial value of this storage element
cannot be chosen freely. Such a storage element often is called a dependent storage element. This
indicates that a storage element was not taken into account during modelling, which should be there
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Fig. 2.27: The causal bond graph of the hoisting device.

2.6.3 Model Insight via Causal Analysis

We discuss here those situations whereby conflicts occur in the causal analysis procedure or when step 3 of the
algorithm appears to be necessary. The place in procedure where a conflict appears or the bond graph becomes
completely causally augmented, can give insight in the correctness of the model.

Often, the bond graph is completely causal after step 2, without any causal conflict (all causal conditions are
satisfied). Each storage element represents a state variable, and the set of equations is an explicit set of ordinary
differential equations (not necessarily linear or time invariant).

When the bond graph is completely causal after step 1a, themodel does not have any dynamics. The behaviour
of all variables now is determined by the fixed causalities of the sources. Arises a causal conflict at step 1a or
at step 1b, then the problem is ill posed. The model must be changed, by adding some elements. An example of
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a causal conflict at step 1a is two effort sources connected to one 0-junction. Both sources ’want’ to determine
the one effort variable.

At a conflict at step 1b, a possible adjustment is changing the equations of the fixed-causality element such
that these equations become invertible, and thus the fixedness of the constraint disappears. An example is a
diode or a valve having zero current resp. flow while blocking. Allowing a small resistance during blocking, the
equations become invertible.

When a conflict arises at step 2, a storage element receives a non-preferred causality. This means that this
storage element does not represent a state variable. The initial value of this storage element cannot be chosen
freely. Such a storage element often is called a dependent storage element. This indicates that a storage element
was not taken into account during modelling, which should be there from physical systems viewpoint. It can be
deliberately omitted, or it might be forgotten. At the hoisting device example, the load of the hoist (I-element) is
such a dependent storage element. Elasticity in the cable was not modelled. If it had been modelled, a C-storage
element connected to a 0-junction between the cable drum and load would appear, and would take away the
causal conflict.

When step 3 of the causality algorithm is necessary, a so-called algebraic loop is present in the graph. This
loop causes the resulting set differential equations to be implicit. Often this is an indication that a storage element
was not modelled, which should be there from a physical systems viewpoint.

In general, different ways to handle the causal conflicts arising at step 2 or step 3 are possible:

1. Add elements.
For example, you can withdraw the decision to neglect certain elements. The added elements can be
parasitic, for example, to add elasticity (C-element) in a mechanical connection, which was modelled as
rigid. Additionally adding a damping element (R) reduces the simulation time considerably, which is being
advised.

2. Change the bond graph such that the conflict disappears.
For a step-2 conflict, the dependent storage element is taken together with an independent storage element,
having integral causality. For a step-3 conflict, sometimes resistive elements can be taken together to
eliminate the conflict. This can be performed via transformations in the graph. The complexity of this
operation depends on the size and kind of submodels along the route between the storage elements or
resistors under concern.

3. The bond graph is not changed.
For simulation a special (implicit) integration routine is needed. The implicit equations are computed using
an iteration scheme, mostly as part of the numerical integration method.

Algebraic loops and loops between a dependent and an independent storage element are called zero-order
causal paths (ZCPs). Besides these two kinds, there are three other kinds, having an increasing complexity and
resulting in more complex equations. These occur for instance in rigid-body mechanical systems (van Dijk and
Breedveld, 1991).

By interpreting the result of causal analysis, several properties of the model can be recognised, which could
otherwise only be done after deriving equations.

2.6.4 Order of the Set State Equations

The causal analysis also gives information on the order of the set equations. The number of initial conditions
equals the number of storage elements with integral causality, which was also the preference during causality
assignment. This number is called the order of the system. In the example (2.28), the order of the system is 2.

The order of the set state equations is smaller than or equal to the order of the system, because storage
elements can depend on each other. These kind of dependent storage elements each have their own initial value,
but they together represent one state variable. Their input signals are equal, or have a factor in between (2.28).

A recipe exists to check whether this kind of dependent storage elements show up: Perform causal analysis
again, but chose differential causality as preference. For the example, this is done in Figure 2.29.

Those storage elements that get both at differential preference and at integral preference their preferred
causality are the real storage elements and contribute to the state of the system. The order of the set of state
equations, is by definition the amount of storage elements that get in both cases their preferred causality. At
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The order of the set state equations is smaller than or equal to the order of the system, because storage
elements can depend on each other. These kind of dependent storage elements each have their own
initial value, but they together represent one state variable. Their input signals are equal, or have a
factor in between (Figure 28).

Figure 28: System with order of state equations smaller than order of the system. a) IPM; b) causality
using integral preference; c) causality using differential preference.

A recipe exists to check whether this kind of dependent storage elements show up: Perform causal
analysis again, but chose differential causality as preference. For the example, this is done in Figure
29.

C1 C2R

C1:C C:C2

R:R

1 C1:C C:C2

R:R

1

a) b) c)
Fig. 2.28: System with order of state equations smaller than order of the system. a) IPM; b) causality using
integral preference; c) causality using differential preference.
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Figure 29: Differential preference causality for the hoisting device

Those storage elements that get both at differential preference and at integral preference their preferred
causality are the real storage elements and contribute to the state of the system. The order of the set of
state equations, is by definition the amount of storage elements that get in both cases their preferred
causality. At the hoisting device, this is 2 (namely L and J). The storage elements that get in both cases
not their preferred causality, are the dependent storage elements. Those storage elements that get 
at the integral preferred causality case their preferred causality are called semi-dependent storage
elements, to distinguish them from the dependent storage elements. This indicates that a storage
element was not taken into account during modelling, which should be there from physical systems
viewpoint.

6.5 Matrix form (linear systems)
If the system is linear, we can write the resulting set of state equations in the standard form, namely,

&x Ax Bu= +
where A is the system matrix, and B is the input matrix. The order of the system is the dimension of
the square matrix A and the order of the set of state equations is the rank of A.

When dependent states or algebraic loops are present, the matrix description is as follows:

Ex Ax Bu& = +
where E is a square matrix of size equal to the amount of storage elements plus the amount of
algebraic loops. For each differential storage element and for each algebraic loop, E contains one row
of zeros. The state vector x is extended with the algebraic loop variables, to enable implicit integration
methods to solve these kinds of systems. The hoisting device gives such a set of equations.

7 Generation of equations
A causal bond graph contains all information to derive the set of state equations. It is either a set of
ordinary first–order differential equations, ODEs, when the model is explicit (no causal conflicts), or
a set of differential and algebraic equations, DAEs, when the model is implicit (a causal conflict in
step 2 of the procedure or step 3 is necessary, cf. section 6.2).

The procedure to derive the equations is covered by bond–graph software like Enport (Rosenberg,
1974), MS1 (Lorenz, 1997), CAMP (Granda, 1985) and 20-  (Broenink, 1990, 1995, 1997, 1999b;
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Fig. 2.29: Differential causality as preference applied to the hoisting device.

the hoisting device, this is 2 (namely L and J). The storage elements that get in both cases not their preferred
causality, are the dependent storage elements. Those storage elements that get only at the integral preferred
causality case their preferred causality are called semi-dependent storage elements, to distinguish them from the
dependent storage elements. This indicates that a storage element was not taken into account during modelling,
which should be there from physical systems viewpoint.

2.6.5 Matrix Form of Linear Systems

If the system is linear, we can write the resulting set of state equations in the standard form, namely,

ẋ = Ax + Bu

where A is the system matrix, and A is the input matrix. The order of the system is the dimension of the
square matrix A and the order of the set of state equations is the rank of A.

When dependent states or algebraic loops are present, the matrix description is as follows:

Eẋ = Ax + Bu

whereE is a square matrix of size equal to the amount of storage elements plus the amount of algebraic loops.
For each differential storage element and for each algebraic loop, E contains one row of zeros. The state vector
x is extended with the algebraic loop variables, to enable implicit integration methods to solve these kinds of
systems. The hoisting device gives such a set of equations.



38 Jan F. Broenink

2.7 Generation of Equations

A causal bond graph contains all information to derive the set of state equations. It is either a set of ordinary
first-order differential equations, ODEs, when the model is explicit (no causal conflicts), or a set of differential
and algebraic equations, DAEs, when the model is implicit (a causal conflict in step 2 of the procedure or step
3 is necessary, cf. 2.6.2).

The procedure to derive the equations is covered by bond-graph software like Enport [242], MS1 [191],
CAMP [129] and 20-sim [46, 48, 49, 50]. Therefore, in practice, generation of equations need not be done by
hand. However, we do discuss the generation of equations on the one hand to be complete and on the other hand
to indicate what exactly has to be done.

We use the following procedure to generate equations:

1. We first write the set of mixed differential and algebraic equations. These are the constitutive relations of
all elements in computational form, or causal form. This comprises of 2n equations of a bond graph having
n bonds. n equations compute an effort and n equations compute a flow, or derivatives of them.

2. We then eliminate the algebraic equations. We can organise this elimination process by first eliminate
the identities coming from the sources and junctions. Thereafter, we substitute the multiplications with
a parameter, stemming from resistors and transducers (TF, GY). At last, we substitute the summation
equations of the junctions into the differential equations of the storage elements. Within this process, it
is efficient to first mark the state variables. In principle, the state variables are the contents of the storage
elements (p or q type variables). However, if we write the constitutive relations of storage elements as one
differential equation, we can also use the efforts at C-elements and flows at I-elements.

If we are going to generate the equations by hand, we can take the first elimination step into account while
formulating the equations by, at the sources, directly use the signal function at the bond. Furthermore, we can
write the variable determining the junction along all bonds connected to that junction. The variable determining
the junction is that variable, which gets assigned to bond variables of all the other bonds connected to that
junction via the identities of the junction equations. At a 0-junction, this is the effort of the only bond with its
causal stroke towards the 0-junction. At a 1-junction, this is the flow of the only bond with its causal stroke away
from the 1-junction.

In case of dependent storage elements, we have to take care that the accompanying state variable gets not
eliminated. These are the so-called semi state variables. When we mark the state variables, including the semi
state variables in this situation, on beforehand, we can prevent the wrong variable from being eliminated. In
case of algebraic loops, implicit equations will be encountered. We choose one of the variables in these loops as
algebraic loop breaker and that variable becomes a semi state variable. See also 2.6.5. The equation consisting
the semi state variable of a storage element gets eliminated at the second elimination step: it is a multiplication.
The semi state variable itself must not be eliminated.

Deriving the diferential equations of the hoisting device

The set ofmixed differential and algebraic equations of the hoisting device is shown below. The efforts and flows
are numbered in the same order as their causality was assigned. We have 22 equations, of which 11 compute a
flow and 11 compute an effort. Since we want to generate the set of equations as differential equations, we write
at the storage elements in integral form the equations as differential equations and not as integral equations.
This is called deferred integration, see Figure 2.30.

As state variables, we have f3 and f7, whereas f11 is the semi state variable belonging to the mass having
derivative causality (it is an I element). Note that the equation of the mass is written in causal form: e11 is the
output. After eliminating the identities at the junctions and sources, we have 12 equations. Note that the flows
of the two effort sources ( f1 and f2) are not used elsewhere, so we leave them out.

After substitution of the multiplication with resistors and transducers, our set of equations reduces to the
following 6 equations: 2 differential equations, 1 constraint equation, computing the semi state variable f11 and
4 junction equations. Now, only state variables, junction variables and input variables are used.

After substitution of the summations at the junctions into the differential equations and the constraint
equations, the result is shown in Figure 2.31

This system is a linear system, so we can write the equations in matrix form (according to the second form
of 2.6.5), shown in Figure 2.32.
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efforts and flows are numbered in the same order as their causality was assigned. We have 22
equations, of which 11 compute a flow and 11 compute an effort. Since we want to generate the set of
equations as differential equations, we write at the storage elements in integral form the equations as
differential equations and not as integral equations. This is called deferred integration.
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Fig. 2.30: Equations of the hoisting device.
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After substitution of the multiplication with resistors and transducers, our set of equations reduces to
the following 6 equations: 2 differential equations, 1 constraint equation, computing the semi state
variable f11 and 4 junction equations. Below, only state variables, junction variables and input variables
are used.
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This system is a linear system, so we can write the equations in matrix form (according to the second
form of section 6.5):
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Fig. 2.31: Differential and constraint equations of the hoisting device.
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After substitution of the multiplication with resistors and transducers, our set of equations reduces to
the following 6 equations: 2 differential equations, 1 constraint equation, computing the semi state
variable f11 and 4 junction equations. Below, only state variables, junction variables and input variables
are used.
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This system is a linear system, so we can write the equations in matrix form (according to the second
form of section 6.5):
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Fig. 2.32: DAE of hoisting device in matrix form

When the model first was made explicit by adding elements, according to alternative 1 of 2.6.3, the causal
bond graph and the equations are given below. We add the elasticity of the rope: A C-element connected
to a 0-junction is inserted on the bond between the TF of the cable drum and the 1-junction of the payload
(see Figure 2.33). The efforts and flows are numbered in the same order as their causality was assigned. We
have 26 equations, of which 13 compute a flow and 13 compute an effort.
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When the model first was made explicit by adding elements, according to alternative 1 of section 6.3,
the causal bond graph and the equations are given below. We add the elasticity of the rope: A C-
element connected to a 0-junction is inserted on the bond between the TF of the cable drum and the 1-
junction of the payload (see Figure 30). The efforts and flows are numbered in the same order as their
causality was assigned. We have 26 equations, of which 13 compute a flow and 13 compute an effort.

Figure 30 Causal bond graph of the Hoist with elasticity added

The mixed set of differential and algebraic equations is:
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As state variables, we have f3, f7, e11 and f13. Applying the procedure of deriving equations leads to the
following set of state equations written in matrix form:
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Fig. 2.33: Causal bond graph of hoisting device with elasticity added

As state variables, we have f3, f7, e11 and f13. So four independent state variables. Applying the procedure
of deriving equations leads to the set of state equations written in matrix form shown in Figure 2.34.Intro Bond Graphs Jan F. Broenink, © 1999
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8 Expansion to block diagrams
To show that a causal bond graph is a compact block diagram, we treat in this section the expansion of
a causal bond graph to a block diagram. Furthermore, a block diagram representation of a system
might be more familiar than a bond graph representation. Thus this work might help understanding
bond graphs.
The expansion of a causal bond graph into a block diagram consists of three steps:
1. Expand all bonds to bilateral signal flows (two signals with opposite directions). The causal

stroke determines in which direction the effort flows. The bond graph elements can be encircled to
connect the signals to.

2. Replace the bond–graph elements by their block–diagram representations (see section 4). Deduce
the signs of the summations of the junctions from the directions of the bond arrows (half arrows,
see section 4.5). Often, it is efficient to determine those signs after all bond–graph elements are
written in block diagram form.
The block diagram is ready in principle.

3. Redraw the block diagram in standard form: all integrators in an ongoing stream (form left to
right) and all other operations as feedback loops. Of course, this is not always possible. Blocks
might be taken together. Since block diagrams represent mathematical operations, for which
commutative and associative properties apply, these properties can be used to manipulate the
block diagram such that the result looks appealing enough.

As an example, we show the block diagram of the hoisting device, using the three steps to construct
the block diagram.

Fig. 2.34: ODE of hoisting device in matrix form

2.8 Expansion to Block Diagrams

To show that a causal bond graph is a compact block diagram, we treat in this section the expansion of a causal
bond graph to a block diagram. Furthermore, a block diagram representation of a system might be more familiar
than a bond graph representation. Thus this work might help understanding bond graphs.

The expansion of a causal bond graph into a block diagram consists of three steps:

1. Expand all bonds to bilateral signal flows (two signals with opposite directions). The causal stroke deter-
mines in which direction the effort flows. The bond graph elements can be encircled to connect the signals
to.

2. Replace the bond-graph elements by their block-diagram representations (see 2.4). Deduce the signs of the
summations of the junctions from the directions of the bond arrows (half arrows, see 2.4.5). Often, it is
efficient to determine those signs after all bond-graph elements are written in block diagram form.
The block diagram is ready in principle.

3. Redraw the block diagram in standard form: all integrators in an ongoing stream (form left to right) and all
other operations as feedback loops. Of course, this is not always possible. Blocks might be taken together.
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Since block diagrams represent mathematical operations, for which commutative and associative properties
apply, these properties can be used to manipulate the block diagram such that the result looks appealing
enough.

As an example, we show the block diagram of the hoisting device, using the three steps to construct the block
diagram. In Figure 2.35 the result after step 2 is shown, and in Figure 2.36 the block diagram in standard form
is presented. The block diagram of the model with elasticity is shown in Figure 2.37.University of Twente, Dept EE Intro Bond Graphs

27 / 31

Figure 32 Bond graph expanded to a block diagram in the layout of the bond graph (the bond graph is
shown in grey)

Figure 33 The block diagram redrawn in standard form

The block diagram from the causal bond graph of the Hoist with elasticity added (see Figure 30) is
shown in Figure 34.

Figure 34 The block diagram of the Hoist with elasticity (cf Figure 30)
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Fig. 2.35: Bond graph expanded to a block diagram in the layout of the bond graph (the bond graph is shown in
grey).
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Fig. 2.36: The block diagram redrawn in standard form.

2.9 Simulation

The resulting set of equations coming from a bond-graph model is called the simulation model. It consists
of first-order ordinary differential equations (ODEs), possibly extended with algebraic constraint equations
(DAEs). Hence, it can be simulated using standard numerical integration methods. However, because numerical
integration is an approximation of the actual integration process, it is useful to check the simulation model on
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Fig. 2.37: The block diagram of the Hoist with elasticity

aspects significant for simulation.As a result, an appropriate integrationmethod can be chosen: the computational
work is minimal and the results stay within a specified error margin.

Since at causal analysis, one can decide whether or not to change the bond-graph model to obtain an explicit
simulation model, it is useful to know about the consequences for simulation of relevant characteristics of
the simulation model. The following 4 aspects of simulation models are relevant for choosing an numerical
integration method:

1. Presence of implicit equations.
Implicit models (DAEs) can only be simulated with implicit integration methods. The iteration procedure
of the implicit integration method is also used to calculate the implicit model. Explicit models (ODEs) can
be simulated with both explicit as implicit integration methods. Sometimes, implicit integration methods
need more computation time than explicit integration methods. During causal analysis, one can see whether
a simulation model will be explicit or implicit, see 2.6.3.

2. Presence of discontinuities.
Integration methods with special provisions for events will perform best. If that is not available, variable
step methods can be used. Multistep methods become less accurate, since they need information from the
past, which is useless after a discontinuity. While constructing the model, presence of discontinuities can
be marked.

3. Numerical stiffness.
S(t), the stiffness ratio, is a measure for the distance between real parts of eigenvalues, λ, namely

S(t) =
max( |Reλ(t) |)
min( |Reλ(t) |)

Stiff models (large S) need stiff integration methods. The time step is now determined by the stability instead
of the accuracy (namely, eigenvalues are now used to determine the step size). When the high frequency
parts are faded out, they do not influence the step size anymore. Hence, the step size can grow to limits
determined by the lower frequencies.

4. Oscillatory parts.
When a model has no damping, it should not be simulated with a stiff method. Stiff methods perform badly
for eigenvalues on the imaginary axis (i.e. no damping) of the complex eigenvalue plane.

Eigenvalues can be localised in a causal bond graph, especially when all elements are linear. There is a bond
graph version of Mason’s Loop rule to determine the transfer function from a bond graph [53]. As a side effect,
the eigenvalues can be calculated. We will not discuss the procedure to obtain eigenvalues from a causal bond
graph by hand.
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2.10 Summary

In this chapter, we have introduced bond graphs to model physical systems in a domain independent way. Only
macroscopic systems are treated, thus quantum effects do not play a significant role. Domain independence
has its basics in the fact that physical concepts are analogous for the different physical domains. Six different
elementary concepts exist: storage of energy, dissipation, transduction to other domains, distribution, transport,
input or output of energy.

Another starting point is that it is possible to write models as directed graphs: parts are interconnected by
bonds, along which exchange of energy occurs. A bond represents the energy flow between the two connected
submodels. This energy flow can be described as the product of 2 variables (effort and flow), letting a bond
be conceived as a bilateral signal connection. During modelling, the first interpretation is used, while during
analysis and equations generation the second interpretation is used.

Furthermore, we presented a method to systematically build a bond graph starting from an ideal physical
model. Causal analysis gives, besides the computational direction of the signals at the bonds, also information
about the correctness of the model. We presented methods to derive the causality of a bond graph. In addition,
procedures to generate equations and block diagrams out of a causal bond graph are presented.

Due to the introductory nature of this text, some procedures presented, without a deepmotivation and possible
alternatives. It was also not the incentive to elaborate on physical systemsmodelling.We did not discuss multiple
connections (arrays of bonds written as one multibond) and multiport elements (to describe transducers), neither
different causal analysis algorithms. Those different causality algorithms give slightly different sets of DAEs
especially when applied to certain classes of models (for instance multibody systems with kinematic loops).

Finally, bond-graphmodelling is in fact a form of object-oriented physical-systems modelling, a termwhich is
often used. This can be seen as follows: bond-graph models are declarative, they can be hierarchically structured,
and fully support encapsulation (due to the non-causal way of specifying equations, and the notion of ports).
Moreover, due to allowing hierarchy, the notion of definition and use of models are distinguished (i.e. the class
concept and instantiation). Since bond graphs came into existence before the term object oriented was used
in the field of physical systems modelling, bond graphs can be seen as an object-oriented physical-systems
modelling paradigm avant-la-lettre.

A bond-graph library was written inModelica, a contemporary object-oriented modelling language [47]. The
basic bond-graph elements and block-diagram elements have been specified in Modelica, using the essential
object-orientation features inheritance and encapsulation. Equations have been specified in an a-causal format.
Thus, it can be said that theModelica modelling concepts are consistent with bond-graph concepts. Furthermore,
automatic Modelica code generation from bond graphs appeared to be rather straightforward [46].

2.11 Literature and Further Reading

For a more thorough analysis of bond graphs, see Paynter [228] and Breedveld [43, 44], while an extensive
discussion on textbook level is given by Karnopp, Margolis and Rosenberg [160]. Cellier [67] wrote a textbook
on continuous system modelling in which besides bond graphs also other modelling methods are used. Current
research on bond graphs is reported at the International Conference on Bond Graph modelling, every two years
(Granda and Cellier [129]). Journals regularly publishing bond graph papers are the Journal of the Franklin
Institute, which also had special issues on bond graphs and the Journal of Dynamic Systems, Measurement and
Control.

2.12 Self-Assessment

1. What is a bond? Why is starting with bonds as means of connecting subsystems beneficial and crucial?
2. What are conserved quantities? Give examples of each type of conserved quantity.
3. What is a causal constraint? Why is the order of using causal constraints in the causal analysis procedure as

is?
4. What insight gives conducting the causal analysis procedure?
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5. What properties of a causal bond-graph model (or any model written as differential equations) influence
the choice of the numerical integration algorithm needed for simulation of that model?
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Chapter 3
Modelica: Equation-Based, Object-Oriented Modelling of
Physical Systems

Peter Fritzson

Abstract The field of equation-based object-oriented modelling languages and tools continues its success
and expanding usage all over the world primarily in engineering and natural sciences but also in some cases
social science and economics. The main properties of such languages, of which Modelica is a prime example,
are: acausal modelling with equations, multi-domain modelling capability covering several application domains,
object-orientation supporting reuse of components and evolution ofmodels, and architectural features facilitating
modelling of system architectures including creation and connection of components. This enables ease of use,
visual design of models with combination of lego-like predefined model building blocks, ability to define model
libraries with reusable components enables. This chapter gives an introduction and overview of Modelica as the
prime example of an equation-based object-oriented language.

Learning Objectives

After reading this chapter, we expect you to be able to:

• CreateModelicamodels that represent the dynamic behaviour of physical components at a lumped parameter
abstraction level

• Employ Object-Oriented constructs (such as class specialisation, nesting and packaging) known from
software languages for the reuse and management of complexity

• Assemble complex physical models employing the component and connector abstractions
• Understand how models are translated into differential algebraic equations for execution

3.1 Introduction

Modelica is primarily a modelling language that allows specification of mathematical models of complex natural
or man-made systems, e.g., for the purpose of computer simulation of dynamic systems where behaviour evolves
as a function of time.Modelica is also an object-oriented equation-based programming language, oriented toward
computational applications with high complexity requiring high performance. The four most important features
of Modelica are:

• Modelica is primarily based on equations instead of assignment statements. This permits acausal modelling
that gives better reuse of classes since equations do not specify a certain data flow direction. Thus aModelica
class can adapt to more than one data flow context.

Peter Fritzson
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• Modelica has multi-domain modelling capability, meaning that model components corresponding to phys-
ical objects from several different domains such as, e.g., electrical, mechanical, thermodynamic, hydraulic,
biological, and control applications can be described and connected.

• Modelica is an object-oriented language with a general class concept that unifies classes, generics–known
as templates in C++ –and general subtyping into a single language construct. This facilitates reuse of
components and evolution of models.

• Modelica has a strong software component model, with constructs for creating and connecting components.
Thus the language is ideally suited as an architectural description language for complex physical systems,
and to some extent for software systems.

These are the main properties that make Modelica both powerful and easy to use, especially for modelling
and simulation. We will start with a gentle introduction to Modelica from the very beginning.

3.2 Getting Started with Modelica

Modelica programs are built from classes, also called models. From a class definition, it is possible to create
any number of objects that are known as instances of that class. Think of a class as a collection of blueprints
and instructions used by a factory to create objects. In this case the Modelica compiler and run-time system is
the factory.

A Modelica class contains elements which for example can be variable declarations and equation sections
containing equations. Variables contain data belonging to instances of the class; they make up the data storage
of the instance. The equations of a class specify the behaviour of instances of that class.

There is a long tradition that the first sample program in any computer language is a trivial program printing
the string "Hello World". Since Modelica is an equation-based language, printing a string does not make much
sense. Instead, our HelloWorld Modelica program solves a trivial differential equation:

ẋ = −a.x (3.1)

The variable x in this equation is a dynamic variable (here also a state variable) that can change value over
time. The time derivative ẋ is the time derivative of x, represented as der(x) in Modelica. Since all Modelica
programs, usually called models, consist of class declarations, our HelloWorld program is declared as a class:

class HelloWorld
Real x(start = 1);
parameter Real a = 1;
equation
der(x) = -a * x;

end HelloWorld;

Use your favorite text editor or Modelica programming environment to type in this Modelica code1, or open
the DrModelica electronic document (part of OpenModelica) containing most examples and exercises in this
book. Then invoke the simulation command in yourModelica environment. This will compile theModelica code
to some intermediate code, usually C code, which in turn will be compiled tomachine code and executed together
with a numerical ordinary differential equation (ODE) solver or differential algebraic equation (DAE) solver
to produce a solution for x as a function of time. The following command in the OpenModelica environment
produces a solution between time 0 seconds and time 2 seconds:

simulate(HelloWorld,stopTime=2)2

Since the solution for x is a function of time, it can be plotted by a plot command:

1 There is a downloadable open source Modelica environment OpenModelica from OSMC at www.openmodelica.org, Dymola is
a product from Dassault Systems www.dymola.com, see www.modelica.org for more products.
2 Before simulating an existing model, you need to open it or load it, e.g. loadModel(HelloWorld) in OpenModelica. The Open-
Modelica command for simulation is simulate. The corresponding using Dymola is simulateModel("HelloWorld", stopTime=2).

www.openmodelica.org
www.dymola.com
www.modelica.org
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plot(x)3

(or the longer form plot(x,xrange={0,2}) that specifies the x-axis), giving the curve in Figure 3.31:

Fig. 3.1: Plot of a simulation of the simple HelloWorld model.

Now we have a small Modelica model that does something, but what does it actually mean? The program
contains a declaration of a class called HelloWorld with two variables and a single equation. The first attribute
of the class is the variable x, which is initialised to a start value of 1 at the time when the simulation starts. All
variables in Modelica have a start attribute with a default value which is normally set to 0. Having a different
start value is accomplished by providing a so-called modifier within parentheses after the variable name, i.e., a
modification equation setting the start attribute to 1 and replacing the original default equation for the attribute.

The second attribute is the variable a, which is a constant that is initialised to 1 at the beginning of the
simulation. Such a constant is prefixed by the keyword parameter in order to indicate that it is constant during
simulation but is a model parameter that can be changed between simulations, e.g., through a command in
the simulation environment. For example, we could rerun the simulation for a different value of a, without
re-compilation if a is changed through the environment’s parameter update facility.

Also note that each variable has a type that precedes its name when the variable is declared. In this case both
the variable x and the “variable" a have the type Real.

The single equation in this HelloWorld example specifies that the time derivative of x is equal to the constant
−a times x. In Modelica the equal sign = always means equality, i.e., establishes an equation, and not an
assignment as in many other languages. Time derivative of a variable is indicated by the pseudo-function der( ).

Our second example is only slightly more complicated, containing five rather simple equations:

mv̇x = −
x
L

F (3.2)

mv̇y = −
y

L
F − mg (3.3)

ẋ = vx (3.4)

ẏ = vy (3.5)

x2 + y2 = L2 (3.6)

This example is actually a mathematical model of a physical system, a planar pendulum, as depicted in
Figure 3.2.

3 plot is the OpenModelica command for plotting simulation results. The corresponding Dymola command would be plot({"x"})
respectively.



48 Peter Fritzson

Fig. 3.2: A planar pendulum.

vx (3.7)

x2 + y2 = L2 (3.8)

vy (3.9)

The equations are Newton’s equations of motion for the pendulum mass under the influence of gravity,
together with a geometric constraint, the 5th equation x2 + y2 = L2, that specifies that its position (x,y) must
be on a circle with radius L. The variables vx and vy are its velocities in the x and y directions respectively. A
Modelica model of the pendulum appears below:

class Pendulum "Planar Pendulum"
constant Real PI=3 .141592653589793;
parameter Real m=1, g=9.81 , L=0.5;
Real F;
output Real x(start =0.5),y(start =0);
output Real vx,vy;

equation
m*der(vx)=-(x/L)*F;
m*der(vy)=-(y/L)*F-m*g;
der(x)=vx;
der(y)=vy;
x^2+y^2=L^2;

end Pendulum;

The interesting property of this model, however, is the fact that the 5th equation is of a different kind: a
so-called algebraic equation only involving algebraic formulas of variables but no derivatives. The first four
equations of this model are differential equations as in the HelloWorld example. Equation systems that contain
both differential and algebraic equations are called differential algebraic equation systems (DAEs).

We simulate the Pendulum model and plot the x-coordinate, shown in Figure 3.3:

simulate(Pendulum, stopTime=4)

plot(x);
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Fig. 3.3: Plot of a simulation of the Pendulum DAE model.

You can also write down DAE equation systems without physical significance, with equations containing
formulas selected more or less at random, as in the class DAEexample below:

class DAEexample
Real x(start =0.9);
Real y;

equation
der(y) + (1+0.5*sin(y)) * der(x) = sin(time);
x-y = exp(-0.9*x) * cos(y);

end DAEexample;

This class contains one differential and one algebraic equation. Try to simulate and plot it yourself, to see
if any reasonable curve appears. Finally, an important observation regarding Modelica models: The number of
variables must be equal to the number of equations!

This statement is true for the three models we have seen so far, and holds for all solvable Modelica models.
By variables we mean something that can vary, i.e., not named constants and parameters to be described in a
section further below.

3.2.1 Variables and Predefined Types

This example shows a slightly more complicated model, which describes a Van der Pol4 oscillator. Notice that
here the keyword model is used instead of class with almost the same meaning.

model VanDerPol "Van der Pol oscillator model"
Real x(start = 1) "Descriptive string for x"; // x starts at 1
Real y(start = 1) "Descriptive string for y"; // y starts at 1

parameter
Real lambda = 0.3;

equation
der(x) = y; // This is the first equation
der(y) = -x + lambda *(1 - x*x)*y; // The 2nd differential equation

end VanDerPol;

This example contains declarations of two dynamic variables (here also state variables) x and y, both of type
Real and having the start value 1 at the beginning of the simulation, which normally is at time 0. Then follows
a declaration of the parameter constant lambda, which is a so-called model parameter.

A parameter is a special kind of constant which is implemented as a static variable that is initialised once and
never changes its value during a specific execution. A parameter is a constant variable that makes it simple for
a user to modify the behaviour of a model, e.g., changing the parameter lambda which strongly influences the
behaviour of the Van der Pol oscillator. By contrast, a fixed Modelica constant declared with the prefix constant
never changes and can be substituted by its value wherever it occurs.

4 Balthazar van der Pol was a Dutch electrical engineer who initiated modern experimental dynamics in the laboratory during the
1920’s and 1930’s. Van der Pol investigated electrical circuits employing vacuum tubes and found that they have stable oscillations,
now called limit cycles. The van der Pol oscillator is a model developed by him to describe the behaviour of nonlinear vacuum tube
circuits
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Finally, we present declarations of three dummy variables just to show variables of data types different from
Real: the boolean variable bb, which has a default start value of false if nothing else is specified, the string
variable dummy which is always equal to "dummy string", and the integer variable fooint always equal to 0.

Boolean bb;
String dummy = "dummy string";
Integer fooint = 0;

Modelica has built-in ”primitive” predefined data types to support floating-point, integer, boolean, and string
values. These predefined primitive types contain data that Modelica understands directly, as opposed to class
types defined by programmers. There is also the Complex type for complex numbers computations, which is
predefined in a library. The type of each variable must be declared explicitly. The predefined basic data types of
Modelica are:

Boolean either true or false
Integer 32-bit two’s complement, usually corresponding to the C int data type
Real 64-bit floating-point usually corresponding to the C double data type
String string of text characters
enumeration(...) enumeration type of enumeration literals
Clock clock type for clocked synchronous models
Complex for complex number computations, a basic type predefined in a library

Finally, there is an equation section starting with the keyword equation, containing two mutually dependent
equations that define the dynamics of the model. To illustrate the behaviour of the model, we give a command
to simulate the Van der Pol oscillator during 25 seconds starting at time 0:

simulate(VanDerPol, stopTime=25)

A phase plane plot of the state variables for the Van der Pol oscillator model (Figure 3.4):

plotParametric(x,y, stopTime=25)

Fig. 3.4: Parametric plot of a simulation of the Van der Pol oscillator model.

The names of variables, functions, classes, etc. are known as identifiers. There are two forms in Modelica.
The most common form starts with a letter, followed by letters or digits, e.g. x2. The second form starts with a
single-quote, followed by any characters, and terminated by a single-quote, e.g. ’2nd * 3’.

3.2.2 Comments

Arbitrary descriptive text, e.g., in English, inserted throughout a computer program, are comments to that code.
Modelica has three styles of comments, all illustrated in the previous VanDerPol example.
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Comments make it possible to write descriptive text together with the code, which makes a model easier to
use for the user, or easier to understand for programmers whomay read your code in the future. That programmer
may very well be yourself, months or years later. You save yourself future effort by commenting your own code.
Also, it is often the case that you find errors in your code when you write comments since when explaining your
code you are forced to think about it once more.

The first kind of comment is a string within string quotes, e.g., "a comment" , optionally appearing after
variable declarations, or at the beginning of class declarations. Those are "definition comments" that are processed
to be used by the Modelica programming environment, e.g., to appear in menus or as help texts for the user.
From a syntactic point of view they are not really comments since they are part of the language syntax. In the
previous example such definition comments appear for the VanDerPol class and for the x and y variables.

The other two types of comments are ignored by the Modelica compiler, and are just present for the benefit of
Modelica programmers. Text following // up to the end of the line is skipped by the compiler, as is text between
/* and the next */. Hence the last type of comment can be used for large sections of text that occupies several
lines.

Finally, we should mention a construct called annotation, a kind of structured "comment" that can store
information together with the code, described in the section about annotations at the end of this chapter.

3.2.3 Constants

Constant literals in Modelica can be integer values such as 4, 75, 3078; floating-point values like 3.14159,
0.5,2.735E-10, 8.6835e+5; string values such as "hello world", "red"; and enumeration values such as Col-
ors.red,Sizes.xlarge.

Named constants are preferred by programmers for two reasons. One reason is that the name of the constant is
a kind of documentation that can be used to describe what the particular value is used for. The other, perhaps even
more important reason, is that a named constant is defined at a single place in the program. When the constant
needs to be changed or corrected, it can be changed in only one place, simplifying program maintenance.

Named constants in Modelica are created by using one of the prefixes constant or parameter in declarations,
and providing a declaration equation as part of the declaration. For example:

constant Real PI = 3.141592653589793;
constant String redcolor = "red";
constant Integer one = 1;
parameter Real mass = 22.5;

Parameter constants (often called parameters) can usually be accessed and changed from Modelica tool
graphical user interfaces. Most Modelica tools support re-simulating a model without re-compilation after
changing a parameter, which usually makes the time waiting for results much shorter.

Parameters can be declared without a declaration equation (but a default start value is recommended) since
their value can be defined, e.g., interactively or by reading from a file, before simulation starts. This is not
possible for constants with prefix constant. For example:

parameter Real mass , gravity , length;

A parameter with a default start value as shown below means that the parameter has a value, but that this
value is expected to be replaced by a more realistic value, e.g., by the user, at a real simulation:

parameter Real mass(start =0), gravity(start =0), length(start =0);

Constants and parameters are very similar, but also have some differences. Parameters are typically much
more common in application models.When in doubt whether to use constant or parameter, use parameter, except
when declaring a constant in a package/library where constant is allowed but not parameter.
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3.2.4 Variability

We have seen that some variables can change value at any point in time whereas named constants are more
or less constant. In fact, there is a general concept of four levels of variability of variables and expressions in
Modelica:

• Expressions or variables with continuous-time variability can change at any point in time.
• Discrete-time variability means that value changes can occur only at so-called events. There are two kinds:
unclocked discrete-time variability and clocked discrete-time variability. In the latter case the value can
only change at clock tick events.

• Parameter variability means that the value can be changed at initialisation before simulation, but is fixed
during simulation.

• Constant variabilitymeans the value is always fixed. However, a named constant definition equation can be
replaced by a so-called redeclaration or modification.

3.2.5 Default Start Values

If a numeric variable lacks a specified definition value or start value in its declaration, it is usually initialised to
zero at the start of the simulation. Boolean variables have start value false, and string variables the start value
empty string "" if nothing else is specified.

Exceptions to this rule are function results and local variables in functions, where the default initial value at
function call is undefined.

3.3 Object-Oriented Mathematical Modelling

Traditional object-oriented programming languages like Simula, C++, Java, and Smalltalk, as well as procedural
languages such as Fortran or C, support programming with operations on stored data. The stored data of the
program include variable values and object data. The number of objects often changes dynamically. The
Smalltalk view of object-orientation emphasises sending messages between (dynamically) created objects.

The Modelica view on object-orientation is different since the Modelica language emphasises structured
mathematical modelling. Object-orientation is viewed as a structuring concept that is used to handle the
complexity of large system descriptions. AModelica model is primarily a declarative mathematical description,
which simplifies further analysis. Dynamic system properties are expressed in a declarative way through
equations.

The concept of declarative programming is inspired by mathematics, where it is common to state or declare
what holds, rather than giving a detailed stepwise algorithm on how to achieve the desired goal as is required
when using procedural languages. This relieves the programmer from the burden of keeping track of such
details. Furthermore, the code becomes more concise and easier to change without introducing errors.

Thus, the declarative Modelica view of object-orientation, from the point of view of object-oriented mathe-
matical modelling, can be summarised as follows:

• Object-orientation is primarily used as a structuring concept, emphasising the declarative structure and
reuse of mathematical models. Our three ways of structuring are hierarchies, component-connections, and
inheritance.

• Dynamic model properties are expressed in a declarative way through equations5.
• An object is a collection of instance variables and equations that share a set of data.

However:

• Object-orientation in mathematical modelling is not viewed as dynamic message passing.

5 Algorithms are also allowed, but in a way that makes it possible to regard an algorithm section as a system of equations.
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The declarative object-oriented way of describing systems and their behaviour offered by Modelica is at a
higher level of abstraction than the usual object-oriented programming since some implementation details
can be omitted. For example, we do not need to write code to explicitly transport data between objects
through assignment statements or message passing code. Such code is generated automatically by the
Modelica compiler based on the given equations.
Just as in ordinary object-oriented languages, classes are blueprints for creating objects. Both variables and
equations can be inherited between classes. Function definitions can also be inherited. However, specifying
behaviour is primarily done through equations instead of via methods. There are also facilities for stating
algorithmic code including functions in Modelica, but this is an exception rather than the rule.

3.3.1 Classes and Instances

Modelica, like any object-oriented computer language, provides the notions of classes and objects, also called
instances, as a tool for solving modelling and programming problems. Every object in Modelica has a class that
defines its data and behaviour. A class has three kinds of members:

• Data variables associated with a class and its instances. Variables represent results of computations caused
by solving the equations of a class together with equations from other classes. During numeric solution of
time-dependent problems, the variables stores results of the solution process at the current time instant.

• Equations specify the behaviour of a class. The way in which the equations interact with equations from
other classes determines the solution process, i.e., program execution.

• Classes can be members of other classes. Here is the declaration of a simple class that might represent a
point in a three-dimensional space:

class Point "Point in a three -dimensional space"
public

Real x;
Real y, z;

end Point;

The Point class has three variables representing the x, y, and z coordinates of a point and has no equations. A
class declaration like this one is like a blueprint that defines how instances created from that class look like, as
well as instructions in the form of equations that define the behaviour of those objects. Members of a class may
be accessed using dot (.) notation. For example, regarding an instance myPoint of the Point class, we can access
the x variable by writingmyPoint.x.

Members of a class can have two levels of visibility. The public declaration of x, y, and z, which is default if
nothing else is specified, means that any code with access to a Point instance can refer to those values. The other
possible level of visibility, specified by the keyword protected, means that only code inside the class as well as
code in classes that inherit this class, are allowed access.

Note that an occurrence of one of the keywords public or protected means that all member declarations
following that keyword assume the corresponding visibility until another occurrence of one of those keywords,
or the end of the class containing the member declarations has been reached.

3.3.1.1 Creating Instances

In Modelica, objects are created implicitly just by declaring instances of classes. This is in contrast to object-
oriented languages like Java or C++, where object creation is specified using the new keyword when allocating
on the heap. For example, to create three instances of our Point class we just declare three variables of type Point
in a class, here Triangle:

class Triangle
Point point1;
Point point2;
Point point3;
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end Triangle;

There is one remaining problem, however. In what context should Triangle be instantiated, and when should
it just be interpreted as a library class not to be instantiated until actually used?

This problem is solved by regarding the class at the top of the instantiation hierarchy in the Modelica program
to be executed as a kind of "main" class that is always implicitly instantiated, implying that its variables are
instantiated, and that the variables of those variables are instantiated, etc. Therefore, to instantiate Triangle, either
make the class Triangle the "top" class or declare an instance of Triangle in the "main" class. In the following
example, both the classTriangle and the class Foo1 are instantiated.

class Foo1
...

end Foo1;

class Foo2
...

end Foo2; ...

class Triangle
Point point1;
Point point2;
Point point3;

end Triangle;

class Main
Triangle pts;
Foo1 f1;

end Main;

The variables of Modelica classes are instantiated per object. This means that a variable in one object is
distinct from the variable with the same name in every other object instantiated from that class. Many object-
oriented languages allow class variables. Such variables are specific to a class as opposed to instances of the
class, and are shared among all objects of that class. The notion of class variables is not yet available inModelica.

3.3.1.2 Initialization

Another problem is initialisation of variables. Asmentioned previously in the section about variability, if nothing
else is specified, the default start value of all numerical variables is zero, apart from function results and local
variables where the initial value at call time is unspecified. Other start values can be specified by setting the
start attribute of instance variables. Note that the start value only gives a suggestion for initial value the solver
may choose a different value unless the fixed attribute is true for that variable. Below a start value is specified
in the example class Triangle:

class Triangle
Point point1(start=Point (1,2,3));
Point point2;
Point point3;

end Triangle;

Alternatively, the start value of point1 can be specified when instantiating Triangle as below:

class Main
Triangle pts(point1.start=Point (1,2,3));
Foo1 f1;

end Main;

A more general way of initialising a set of variables according to some constraints is to specify an equation
system to be solved in order to obtain the initial values of these variables. This method is supported in Modelica
through the initial equation construct.
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An example of a continuous-time controller initialised in steady-state, i.e., when derivatives should be zero,
is given below:

model Controller
parameter

Real a=1, b=2;
Real y;

equation
der(y) = a*y + b*u;

initial
equation

der(y)=0;
end Controller;

This has the following solution at initialization:

der(y) = 0;
y = -(b/a)*u;

3.3.1.3 Specialised Classes

The class concept is fundamental to Modelica, and is used for a number of different purposes. Almost anything
in Modelica is a class. However, in order to make Modelica code easier to read and maintain, special keywords
have been introduced for specific uses of the class concept. The keywords model, connector, record, block, type,
package, and function can be used to denote a class under appropriate conditions, called restrictions. Some of
the specialised classes also have additional capabilities, called enhancements. For example, a function class has
the enhancement that it can be called, whereas a record is a class used to declare a record data structure and has
the restrictions that it may not contain equations and may only contain public declarations.

record Person
Real age;
String name;

end Person;

Amodel is almost the same as a class, i.e., those keywords are completely interchangeable. A block is a class
with fixed causality, which means that for each connector variable of the class it is specified whether it has input
or output causality. Thus, each connector variable in a block class interface must be declared with a causality
prefix keyword of either input or output.

A connector class is used to declare the structure of "ports" or interface points of a component, may not
contain equations, and has only public sections, but has the additional property to allow connect(...) to instances
of connector classes. A type is a class that can be an alias or an extension to a predefined type, enumeration, or
array of a type. For example:

type vector3D = Real [3];

The idea of specialised classes has some advantages since they re-use most properties of the general class
concept. The notion of specialised classes also gives the user a chance to express more precisely what a class is
intended for, and requires the Modelica compiler to check that these usage constraints are actually fulfilled.

Fortunately, the notion of specialised class is quite uniform since all basic properties of a class, such as
the syntax and semantics of definition, instantiation, inheritance, and generic properties, are identical for all
kinds of specialised classes. Furthermore, the construction of Modelica translators is simplified since only the
syntax and semantics of the general class concept has to be implemented along with some additional checks on
restrictions and enhancements of the classes.

The package and function specialised classes in Modelica have much in common with the class concept
but also have many additional properties, so called enhancements. Especially functions have quite a lot of
enhancements, e.g., they can be called with an argument list, instantiated at run-time, etc. An operator class is
similar to a package which is like a container for other definitions, but may only contain declarations of functions
and is intended for user-defined overloaded operators.
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3.3.1.4 Reuse of Classes by Modifications

The class concept is the key to reuse of modelling knowledge in Modelica. Provisions for expressing adaptations
or modifications of classes through so-called modifiers in Modelica make reuse easier. For example, assume
that we would like to connect two filter models with different time constants in series.

Instead of creating two separate filter classes, it is better to define a common filter class and create two
appropriately modified instances of this class, which are connected. An example of connecting two modified
low-pass filters is shown after the example low-pass filter class below:

model LowPassFilter
parameter

Real T=1 "Time constant of filter";
Real u, y(start =1);

equation
T*der(y) + y = u;

end LowPassFilter;

The model class can be used to create two instances of the filter with different time constants and "connecting"
them together by the equation F2.u = F1.y as follows:

model FiltersInSeries
LowPassFilter F1(T=2), F2(T=3);

equation
F1.u = sin(time);
F2.u = F1.y;

end FiltersInSeries;

Here we have used modifiers, i.e., attribute equations such as T=2 and T=3, to modify the time constant of
the low-pass filter when creating the instances F1 and F2. The independent time variable is a built-in predefined
variable denoted time. If the FiltersInSeriesmodel is used to declare variables at a higher hierarchical level, e.g.,
F12, the time constants can still be adapted by using hierarchical modification, as for F1 and F2 below:

model ModifiedFiltersInSeries
FiltersInSeries F12(F1(T=6), F2.T =11);

end ModifiedFiltersInSeries;

3.3.1.5 Built-in Classes

The built-in predefined type classes of Modelica correspond to the types Real, Integer, Boolean, String, enu-
meration(...), and Clock, and have most of the properties of a class, e.g., can be inherited, modified, etc. Only
the value attribute can be changed at run-time, and is accessed through the variable name itself, and not through
dot notation, i.e., use x and not x.value to access the value. Other attributes are accessed through dot notation.

For example, a Real variable has a set of default attributes such as unit of measure, initial value, minimum
and maximum value. These default attributes can be changed when declaring a new class, for example:

class Voltage = Real(unit= "V", min=-220.0 , max =220.0);

3.3.2 Inheritance

One of the major benefits of object-orientation is the ability to extend the behaviour and properties of an existing
class. The original class, known as the superclass or base class, is extended to create a more specialised version
of that class, known as the subclass or derived class. In this process, the behaviour and properties of the original
class in the form of variable declarations, equations, and other contents are reused, or inherited, by the subclass.

Let us regard an example of extending a simple Modelica class, e.g., the class Point introduced previously.
First we introduce two classes named ColorData and Color, where Color inherits the data variables to represent



3 Modelica: Equation-Based, Object-Oriented Modelling of Physical Systems 57

the color from class ColorData and adds an equation as a constraint. The new class ColoredPoint inherits from
multiple classes, i.e., uses multiple inheritance, to get the position variables from class Point, and the color
variables together with the equation from class Color.

record ColorData
Real red;
Real blue;
Real green;

end ColorData;

class Color
extends ColorData;

equation
red + blue + green = 1;

end Color;

class Point
public

Real x;
Real y, z;

end Point;

class ColoredPoint
extends Point;
extends Color;

end ColoredPoint;

3.3.3 Generic Classes

In many situations it is advantageous to be able to express generic patterns for models or programs. Instead of
writing many similar pieces of code with essentially the same structure, a substantial amount of coding and
software maintenance can be avoided by directly expressing the general structure of the problem and providing
the special cases as parameter values.

Such generic constructs are available in several programming languages, e.g., templates in C++, generics
in Ada, and type parameters in functional languages such as Haskell or Standard ML. In Modelica the class
construct is sufficiently general to handle generic modelling and programming in addition to the usual class
functionality.

There are essentially two cases of generic class parameterisation in Modelica: class parameters can either
be instance parameters, i.e., have instance declarations (components) as values, or be type parameters, i.e.,
have types as values. Note that by class parameters in this context we do not usually mean model parameters
prefixed by the keyword parameter, even though such "variables" are also a kind of class parameter. Instead
we mean formal parameters to the class. Such formal parameters are prefixed by the keyword replaceable. The
special case of replaceable local functions is roughly equivalent to virtual methods in some object-oriented
programming languages.

3.3.3.1 Class Parameters Being Instances

First we present the case when class parameters are variables, i.e., declarations of instances, often called
components. The class C in the example below has three class parameters marked by the keyword replaceable.
These class parameters, which are components (variables) of classC, are declared as having the (default) types
GreenClass, YellowClass, and GreenClass respectively. There is also a red object declaration which is not
replaceable and therefore not a class parameter (Figure 3.5).
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Fig. 3.5: Three class parameters pobj1, pobj2, and pobj3 that are instances (variables) of class C. These are
essentially slots that can contain objects of different colors.

Here is the class C with its three class parameters pobj1, pobj2, and pobj3 and a variable obj4 that is not a
class parameter:

class C
replaceable GreenClass pobj1(p1=5);
replaceable YellowClass pobj2;
replaceable GreenClass pobj3;
RedClass obj4;

equation
...

end C;

Now a class C2 is defined by providing two declarations of pobj1 and pobj2 as actual arguments to class C,
being red and green respectively, instead of the defaults green and yellow. The keyword redeclare must precede
an actual argument to a class formal parameter to allow changing its type. The requirement to use a keyword for
a redeclaration in Modelica has been introduced in order to avoid accidentally changing the type of an object
through a standard modifier.

In general, the type of a class component cannot be changed if it is not declared as replaceable and a
redeclaration is provided. A variable in a redeclaration can replace the original variable if it has a type that is a
subtype of the original type or its type constraint. It is also possible to declare type constraints (not shown here)
on the substituted classes.

class C2 = C(redeclare RedClass pobj1 , redeclare GreenClass pobj2);

Such a class C2 obtained through redeclaration of pobj1 and pobj2 is of course equivalent to directly defining
C2 without reusing class C, as below.

class C2
RedClass pobj1(p1=5);
GreenClass pobj2;
GreenClass pobj3;
RedClass obj4;

equation
...

end C2;

3.3.3.2 Class Parameters being Types

A class parameter can also be a type, which is useful for changing the type of many objects. For example, by
providing a type parameter ColoredClass in class C below, it is easy to change the color of all objects of type
ColoredClass.

class C
replaceable class ColoredClass = GreenClass;
ColoredClass obj1(p1=5);
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replaceable YellowClass obj2;
ColoredClass obj3;
RedClass obj4;

equation
...

end C;

Figure 3.6 depicts how the type value of the ColoredClass class parameter is propagated to the member
object declarations obj1 and obj3.

Fig. 3.6: The class parameter ColoredClass is a type parameter that is propagated to the two member instance
declarations of obj1 and obj3.

We create a class C2 by giving the type parameter ColoredClass of class C the value BlueClass.

class C2 = C(redeclare class ColoredClass = BlueClass);

This is equivalent to the following definition of C2:

class C2
BlueClass obj1(p1=5);
YellowClass obj2;
BlueClass obj3;
RedClass obj4;

equation
...

end C2;

3.4 Equations

As we already stated, Modelica is primarily an equation-based language in contrast to ordinary programming
languages, where assignment statements proliferate. Equations are more flexible than assignments since they
do not prescribe a certain data flow direction or execution order. This is the key to the physical modelling
capabilities and increased reuse potential of Modelica classes.

Thinking in equations is a bit unusual for most programmers. In Modelica the following holds:

1. Assignment statements in conventional languages are usually represented as equations in Modelica.
2. Attribute assignments are represented as equations.
3. Connections between objects generate equations.

Equations are more powerful than assignment statements. For example, consider a resistor equation where
the resistance R multiplied by the current i is equal to the voltage v:
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R × i = v (3.10)

This equation can be used in three ways corresponding to three possible assignment statements: computing
the current from the voltage and the resistance, computing the voltage from the resistance and the current, or
computing the resistance from the voltage and the current. This is expressed in the following three assignment
statements:

i := v/R;
v := R * i;
R := v/i;

Equations in Modelica can be informally classified into four different groups depending on the syntactic
context in which they occur:

1. Normal equations occurring in equation sections, including the connect-equation, which is a special form
of equation.

2. Declaration equations, which are part of variable or constant declarations.
3. Modification equations, which are commonly used to modify attributes.
4. Initial equations, specified in initial equation sections or as start attribute equations. These equations are

used to solve the initialization problem at startup time.

As we already have seen in several examples, normal equations appear in equation sections started by the
keyword equation and terminated by some other allowed keyword:

equation
... <equations > ...
<some other allowed keyword >

The above resistor equation is an example of a normal equation that can be placed in an equation section.
Declaration equations are usually given as part of declarations of fixed or parameter constants, for example:

constant Integer one = 1;
parameter Real mass = 22.5;

An equation always holds, which means that the mass in the above example never changes value during
simulation. It is also possible to specify a declaration equation for a normal variable, e.g.:

Real speed = 72.4;

However, this does not make much sense since it will constrain the variable to have the same value throughout
the computation, effectively behaving as a constant. Therefore a declaration equation is quite different from a
variable initialiser in other languages since it always holds and can be solved together with other equations in
the total system of equations.

Concerning attribute assignments, these are typically specified using modification equations. For example,
if we need to specify an initial value for a variable, meaning its value at the start of the computation, then we
give an attribute equation for the start attribute of the variable, e.g.:

Real speed(start = 72.4);

3.4.1 Repetitive Equation Structures

Before reading this section you might want to take a look at the section further down about arrays, and the
section further down about statements and algorithmic for-loops.

Sometimes there is a need to conveniently express sets of equations that have a regular, i.e., repetitive
structure. Often this can be expressed as array equations, including references to array elements denoted using
square bracket notation. However, for the more general case of repetitive equation structures Modelica provides
a loop construct. Note that this is not a loop in the algorithmic sense of the word it is rather a shorthand notation
for expressing a set of equations.

For example, consider an equation for a polynomial expression:
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y = a[1] + a[2] × x + a[3] × x2 + ... + a[n + 1] × xn (3.11)

The polynomial equation Eq. 3.11 above can be expressed as a set of equations with regular structure in
Modelica, with y equal to the scalar product of the vectors a and xpowers, both of length n + 1:

xpowers [2] = xpowers [1]*x;
xpowers [3] = xpowers [2]*x;
...
xpowers[n+1] = xpowers[n]*x;
y = a * xpowers;

The regular set of equations involving xpowers can be expressed more conveniently using the for-loop
notation:

for i in 1:n loop
xpowers[i+1] = xpowers[i]*x;

end for;

In this particular case a vector equation provides an even more compact notation:

powers [2:n+1] = xpowers [1:n]*x;

Here the vectors x and xpowers have length n + 1. The colon notation 2:n+1 means extracting a vector of
length n, starting from element 2 up to and including element n + 1.

3.4.2 Partial Differential Equations

Partial differential equations (abbreviated PDEs) contain derivatives with respect to other variables than time,
for example of spatial Cartesian coordinates such as x and y. Models of phenomena such as heat flow or fluid
flow typically involve PDEs. At the time of this writing PDE functionality is not yet part of the official Modelica
language.

3.5 Acausal Physical modelling

Acausal modelling is a declarative modelling style, meaningmodelling based on equations instead of assignment
statements. Equations do not specify which variables are inputs and which are outputs, whereas in assignment
statements variables on the left-hand side are always outputs (results) and variables on the right-hand side are
always inputs. Thus, the causality of equation-based models is unspecified and becomes fixed only when the
corresponding equation systems are solved. This is called acausal modelling. The term physical modelling
reflects the fact that acausal modelling is very well suited for representing the physical structure of modelled
systems.

The main advantage with acausal modelling is that the solution direction of equations will adapt to the data
flow context in which the solution is computed. The data flow context is defined by stating which variables are
needed as outputs, and which are external inputs to the simulated system.

The acausality of Modelica library classes makes these more reusable than traditional classes containing
assignment statements where the input-output causality is fixed.

To illustrate the idea of acausal physical modelling we give an example of a simple electrical circuit
(Figure 3.7). The connection diagram6 of the electrical circuit shows how the components are connected. It may
be drawn with component placements to roughly correspond to the physical layout of the electrical circuit on a
printed circuit board. The physical connections in the real circuit correspond to the logical connections in the
diagram. Therefore the term physical modelling is quite appropriate.

6 A connection diagram emphasises the connections between components of a model, whereas a composition diagram specifies
which components a model is composed of, their subcomponents, etc. A class diagram usually depicts inheritance and composition
relations.
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The Modelica SimpleCircuit model below directly corresponds to the circuit depicted in the connection
diagram of Figure 3.7. Each graphic object in the diagram corresponds to a declared instance in the simple
circuit model. The model is acausal since no signal flow, i.e., cause-and-effect flow, is specified. Connections
between objects are specified using the connect-equation construct, which is a special syntactic form of equation
that we will examine later. The classes Resistor, Capacitor, Inductor, VsourceAC, and Ground will be presented
in more detail later in this chapter.

Fig. 3.7: Connection diagram of the acausal SimpleCircuit model.

model SimpleCircuit
Resistor R1(R=10);
Capacitor C(C=0.01);
Resistor R2(R=100);
Inductor L(L=0.1);
VsourceAC AC;
Ground G;

equation
connect(AC.p , R1.p);
connect(R1.n , C.p);
connect(C.n , AC.n);
connect(R1.p , R2.p);
connect(R2.n , L.p);
connect(L.n , C.n);
connect(AC.n , G.p);

end SimpleCircuit;

As a comparison, we show the same circuit modelled using causal block-oriented modelling depicted
as a diagram in Figure 3.8. Here the physical topology is lost–the structure of the diagram has no simple
correspondence to the structure of the physical circuit board.
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Fig. 3.8: The simple circuit model using causal block-oriented modelling with explicit signal flow.

This model is causal since the signal flow has been deduced and is clearly shown in the diagram. Even for this
simple example the analysis to convert the intuitive physical model to a causal block-orientedmodel is nontrivial.
Another disadvantage is that the resistor representations are context dependent. For example, the resistors R1
and R2 have different definitions, which makes reuse of model library components hard. Furthermore, such
system models are usually hard to maintain since even small changes in the physical structure may result in
large changes to the corresponding block-oriented system model.

3.6 The Modelica Software Component Model

For a long time, software developers have looked with envy on hardware system builders, regarding the apparent
ease with which reusable hardware components are used to construct complicated systems. With software there
seems too often to be a need or tendency to develop from scratch instead of reusing components. Early attempts
at software components include procedure libraries, which unfortunately have too limited applicability and low
flexibility. The advent of object-oriented programming has stimulated the development of software component
frameworks such as CORBA, the Microsoft COM/DCOM component object model, and JavaBeans. These
component models have considerable success in certain application areas, but there is still a long way to go to
reach the level of reuse and component standardisation found in hardware industry.

The reader might wonder what all this has to do with Modelica. In fact, Modelica offers quite a powerful
software component model that is on par with hardware component systems in flexibility and potential for reuse.
The key to this increased flexibility is the fact that Modelica classes are based on equations. What is a software
component model? It should include the following three items:

1. Components
2. A connection mechanism
3. A component framework

Components are connected via the connection mechanism, which can be visualised in connection diagrams.
The component framework realizes components and connections, and ensures that communication works and
constraints are maintained over the connections. For systems composed of acausal components the direction of
data flow, i.e., the causality is automatically deduced by the compiler at composition time.
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3.6.1 Components

Components are simply instances of Modelica classes. Those classes should have well-defined interfaces,
sometimes called ports, in Modelica called connectors, for communication and coupling between a component
and the outside world.

A component is modelled independently of the environment where it is used, which is essential for its
reusability. This means that in the definition of the component including its equations, only local variables and
connector variables can be used. No means of communication between a component and the rest of the system,
apart from going via a connector, should be allowed. However, in Modelica access of component data via dot
notation is also possible. A component may internally consist of other connected components, i.e., hierarchical
modelling.

3.6.2 Connection Diagrams

Complex systems usually consist of large numbers of connected components, of which many components can
be hierarchically decomposed into other components through several levels. To grasp this complexity, a pictorial
representation of components and connections is quite important. Such graphic representation is available
as connection diagrams, of which a schematic example is shown in Figure 3.9. We have earlier presented a
connection diagram of a simple circuit in Figure 3.7.

Fig. 3.9: Schematic picture of a connection diagram for components.

Each rectangle in the diagram example represents a physical component, e.g., a resistor, a capacitor, a
transistor, a mechanical gear, a valve, etc. The connections represented by lines in the diagram correspond to
real, physical connections. For example, connections can be realised by electrical wires, by the mechanical
connections, by pipes for fluids, by heat exchange between components, etc. The connectors, i.e., interface
points, are shown as small square dots on the rectangle in the diagram. Variables at such interface points define
the interaction between the component represented by the rectangle and other components.

Fig. 3.10: A connection diagram for a simple car model.

A simple car example of a connection diagram for an application in the mechanical domain is shown in
Figure 3.10.
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The simple car model below includes variables for subcomponents such as wheels, chassis, and control unit.
A "comment" string after the class name briefly describes the class. The wheels are connected to both the chassis
and the controller. Connect-equations are present, but are not shown in this partial example.

class Car "A car class to combine car components"
Wheel w1,w2,w3,w4 "Wheel one to four";
Chassis chassis "Chassis";
CarController controller "Car controller";
...

end Car;

3.6.3 Connectors and Connector Classes

Modelica connectors are instances of connector classes, which define the variables that are part of the commu-
nication interface that is specified by a connector. Thus, connectors specify external interfaces for interaction.

For example, Pin is a connector class that can be used to specify the external interfaces for electrical
components (Figure 3.11) that have pins. The types Voltage and Current used within Pin are the same as Real,
but with different associated units. From the Modelica language point of view, the types Voltage and Current
are similar to Real, and are regarded as having equivalent types. Checking unit compatibility within equations
is optional.

type Voltage = Real(unit="V");
type Current = Real(unit="A");

Fig. 3.11: A component with one electrical Pin connector.

The Pin connector class below contains two variables. The flow prefix on the second variable indicates that
this variable represents a flow quantity, which has special significance for connections as explained in the next
section.

connector Pin
Voltage v;
flow Current i;

end Pin;

3.6.3.1 Connections

Connections between components can be established between connectors of equivalent type. Modelica supports
equation-based acausal connections, which means that connections are realised as equations. For acausal
connections, the direction of data flow in the connection need not be known. Additionally, causal connections
can be established by connecting a connector with an output attribute to a connector declared as input.

Two types of coupling can be established by connections depending on whether the variables in the connected
connectors are potential (default), or declared using the flow prefix:

1. Equality coupling, for potential variables, according to Kirchhoff’s first law.
2. Sum-to-zero coupling, for flow variables, according to Kirchhoff’s current law.
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For example, the keyword flow for the variable i of type Current in the Pin connector class indicates that all
currents in connected pins are summed to zero, according to Kirchhoff’s current law.

Fig. 3.12: Connecting two components that have electrical pins.

Connection equations are used to connect instances of connection classes. A connection equation con-
nect(R1.p,R2.p), with R1.p and R2.p of connector class Pin, connects the two pins (Figure 3.12) so that they
form one node. This produces two equations, namely:

R1.p.v = R2.p.v;
R1.p.i + R2.p.i = 0;

The first equation says that the voltages of the connected wire ends are the same. The second equation
corresponds to Kirchhoff’s second law, saying that the currents sum to zero at a node (assuming positive value
while flowing into the component). The sum-to-zero equations are generated when the prefix flow is used.
Similar laws apply to flows in piping networks and to forces and torques in mechanical systems.

We should also mention the concept of implicit connections, e.g. useful to model force fields, which is
represented by the Modelica inner/outer construct.

3.6.3.2 Implicit Connections with inner/outer

So far we have focused on explicit connections between connectors where each connection is explicitly rep-
resented by a connect-equation and a corresponding line in a connection diagram. However, when modelling
certain kinds of large models with many interacting components this approach becomes rather clumsy because
of the large number of potential connections–a connection might be needed between each pair of components.
This is especially true for system models involving force fields, which lead to a maximum of n × n connections
between the n components influenced by the force field or 1 × n connections between a central object and n
components if inter-component interaction is neglected.

For the case of 1× n connections, instead of using a large number of explicit connections, Modelica provides
a convenient mechanism for implicit connections between an object and n of its components through the inner
and outer declaration prefixes.

A rather common kind of implicit interaction is where a shared attribute of a single environment object is
accessed by a number of components within that environment. For example, we might have an environment
incl uding house components, each accessing a shared environment temperature, or a circuit board environment
with electronic components accessing the board temperature.

A Modelica environment-component example model along these lines is shown below, where a shared
environment temperature variable T0 is declared as a definition declaration marked by the keyword inner.
This declaration is implicitly accessed by the reference declarations of T0 marked by the prefix outer in the
components comp1 and comp2.

model Environment
inner

Real T0; // Definition of actual environment temperature T0
Component comp1 , comp2; // Lookup match comp1.T0 = comp2.T0 = T0

parameter
Real k=1;

equation
T0 = sin(k*time);

end Environment;
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model Component
outer

Real T0; // Reference to temperature T0 defined in the environments
Real T;

equation
T = T0;

end Component;

3.6.3.3 Expandable Connectors for Information Buses

It is common in engineering to have so-called information buses with the purpose to transport information
between various system components, e.g. sensors, actuators, control units. Some buses are even standardised
(e.g., IEEE), but usually rather generic to allow many kinds of different components.

This is the key idea behind the expandable connector construct in Modelica. An expandable connector acts
like an information bus since it is intended for connection to many kinds of components. To make this possible it
automatically expands the expandable connector type to accommodate all the components connected to it with
their different interfaces. If an element with a certain name and type is not present, it is added.

All fields in an expandable connector are seen as connector instances even if they are not declared as such,
i.e., it is possible to connect to e.g. a Real variable.

Moreover, when two expandable connectors are connected, each is augmented with the variables that are only
declared in the other expandable connector. This is repeated until all connected expandable connector instances
have matching variables, i.e., each of the connector instances is expanded to be the union of all connector
variables. If a variable appears as an input in one expandable connector, it should appear as a non-input in at
least one other expandable connector instance in the connected set. The following is a small example:

expandable connector EngineBus
end EngineBus;

block Sensor
RealOutput speed;

end Sensor;

block Actuator
RealInput speed;

end Actuator;

model Engine
EngineBus bus;
Sensor sensor;
Actuator actuator;

equation
connect(bus.speed , sensor.speed); // provides the non -input
connect(bus.speed , actuator.speed);

end Engine;

3.6.3.4 Stream Connectors

In thermodynamics with fluid applications where there can be bi-directional flows of matter with associated
quantities, it turns out that the two basic variable types in a connector–potential variables and flow variables–are
not sufficient to describemodels that result in a numerically sound solution approach. Such applications typically
have bi-directional flow of matter with convective transport of specific quantities, such as specific enthalpy and
chemical composition
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If we would use conventional connectors with flow and potential variables, the corresponding models would
include nonlinear systems of equations with Boolean unknowns for the flow directions and singularities around
zero flow. Such equation systems cannot be solved reliably in general. The model formulations can be simplified
when formulating two different balance equations for the two possible flow directions. This is however not
possible only using flow and potential variables.

This fundamental problem is addressed in Modelica by introducing a third type of connector variable, called
stream variable, declared with the prefix stream. A stream variable describes a quantity that is carried by a flow
variable, i.e., a purely convective transport phenomenon.

If at least one variable in a connector has the stream prefix, the connector is called a stream connectorand
the corresponding variable is called a stream variable. For example:

connector FluidPort ...
flow Real m_flow "Flow of matter; m_flow >0 if flow into component";
stream Real h_outflow "Specific variable in component if m_flow < 0"

end FluidPort

model FluidSystem ...
FluidComponent m1 , m2 , ... , mN;
FluidPort c1 , c2 , ... , cM;

equation connect(m1.c , m2.c); ...
connect(m1.c , cM); ...

end FluidSystem;

3.6.4 Partial Classes

A common property of many electrical components is that they have two pins. This means that it is useful to
define a “blueprint" model class, e.g., called TwoPin, that captures this common property. This is a partial class
since it does not contain enough equations to completely specify its physical behaviour, and is therefore prefixed
by the keyword partial. Partial classes are usually known as abstract classes in other object-oriented languages.
Since a partial class is incomplete it cannot be used as a class to instantiate a data object.

partial class TwoPin8 "Superclass of elements with two electrical pins"
Pin p, n;
Voltage v;
Current i;

equation
v = p.v - n.v;
0 = p.i + n.i;
i = p.i;

end TwoPin;

This TwoPin class is referred to by the name Modelica.Electrical.Analog.Interfaces.OnePort in the Modelica
standard library since this is the name used by electrical modelling experts. Here we use the more intuitive
name TwoPin since the class is used for components with two physical ports and not one. The OnePort naming
is more understandable if it is viewed as denoting composite ports containing two subports.

The TwoPin class has two pins, p and n, a quantity v that defines the voltage drop across the component, and
a quantity i that defines the current into pin p, through the component, and out from pin n (Figure 3.13). It is
useful to label the pins differently, e.g., p and n, and using graphics, e.g. filled and unfilled squares respectively,
to obtain a well-defined sign for v and i although there is no physical difference between these pins in reality.
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Fig. 3.13: Generic TwoPin class that describes the general structure of simple electrical components with two
pins.

The equations define generic relations between quantities of simple electrical components. In order to be
useful, a constitutive equationmust be added that describes the specific physical characteristics of the component.

3.6.5 Reuse of Partial Classes

Given the generic partial class TwoPin, it is now straightforward to create the more specialised Resistor class
by adding a constitutive equation:

R * i = v;

This equation describes the specific physical characteristics of the relation between voltage and current for a
resistor (Figure 3.14).

Fig. 3.14: A resistor component.

class Resistor "Ideal electrical resistor"
extends TwoPin;
parameter Real R(unit="Ohm") "Resistance";

equation
R*i = v;

end class

A class for electrical capacitors can also reuse TwoPin in a similar way, adding the constitutive equation for
a capacitor (Figure 3.15).

Fig. 3.15: A capacitor component.

class Capacitor "Ideal electrical capacitor"
extends TwoPin;
parameter Real C(Unit="F") "Capacitance";

equation
C*der(v) = i;

end Capacitor;
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During system simulation the variables i and v specified in the above components evolve as functions of time.
The solver of differential equations computes the values of v(t) and i(t) (where t is time) such that C.v̇(t) = i(t)
for all values of t, fulfilling the constitutive equation for the capacitor.

3.7 Component Library Design and Use

In a similar way as we previously created the resistor and capacitor components, additional electrical component
classes can be created, forming a simple electrical component library that can be used for application models
such as the SimpleCircuit model. Component libraries of reusable components are actually the key to effective
modelling of complex systems.

Below, we show an example of designing a small library of electrical components needed for the simple
circuit example, as well as the equations that can be extracted from these components.

Resistor

Fig. 3.16: Resistor component.

Four equations can be extracted from the resistor model depicted in Figure 3.14 and Figure 3.16. The first three
originate from the inherited TwoPin class, whereas the last is the constitutive equation of the resistor.

0 = p.i + n.i
v = p.v - n.v
i = p.i
v = R*i

Capacitor

Fig. 3.17: Capacitor component.

The following four equations originate from the capacitor model depicted in Figure 3.15 and Figure 3.17, where
the last equation is the constitutive equation for the capacitor.

0 = p.i + n.i;
v = p.v - n.v;
i = p.i;
i = C * der(v);
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Inductor

Fig. 3.18: Inductor component

The inductor class depicted in Figure 3.18 and shown below gives a model for ideal electrical inductors.

class Inductor "Ideal electrical inductor"
extensd TwoPin;
parameter Real L(unit="H") "Inductance";

equation
v = L*der(i);

end Inductor;

These equations can be extracted from the inductor class, where the first three come from TwoPin as usual
and the last is the constitutive equation for the inductor.

0 = p.i + n.i;
v = p.v - n.v;
i = p.i;
v = L * der(i);

Voltage Source

Fig. 3.19: Voltage source component VsourceAC, where v(t) = V A × sin(2 × PI × f × time).

A classVsourceAC for the sin-wave voltage source to be used in our circuit example is depicted in Figure 3.19
and can be defined as below. This model as well as other Modelica models specify behaviour that evolves as a
function of time. Note that the built-in predefined variable time is used. In order to keep the example simple the
constant PI is explicitly declared even though it is usually imported from the Modelica standard library.

class VsourceAC "Sin -wave voltage source"
extends TwoPin;
parameter Voltage VA = 220 "Amplitude";
parameter Real f(unit="Hz") = 50 "Frequency";
constant Real PI = 3.141592653589793;

equation
v = VA*sin(2*PI*f*time);

end VsourceAC;

In this TwoPin-based model, four equations can be extracted from the model, of which the first three are
inherited from TwoPin:
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0 = p.i + n.i;
v = p.v - n.v;
i = p.i;
v = VA*sin(2*PI*f*time);

Ground

Fig. 3.20: Ground component.

Finally, we define a class for ground points that can be instantiated as a reference value for the voltage levels in
electrical circuits. This class has only one pin (Figure 3.20).

class Ground "Ground"
Pin p;

equation
p.v = 0;

end Ground;

A single equation can be extracted from the Ground class.

p.v = 0

3.7.1 The Simple Circuit Model

Having collected a small library of simple electrical components, we can now put together the simple electrical
circuit shown previously and in Figure 3.21.

Fig. 3.21: The SimpleCircuit model.
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The two resistor instances R1 and R2 are declared with modification equations for their respective resistance
parameter values. Similarly, an instance C of the capacitor and an instance L of the inductor are declared with
modifiers for capacitance and inductance respectively. The voltage source AC and the ground instance G have
no modifiers. Connect-equations are provided to connect the components in the circuit.

class SimpleCircuit
Resistor R1(R=10);
Capacitor C(C=0.01);
Resistor R2(R=100);
Inductor L(L=0.1);
VsourceAC AC;
Ground G;

equation
connect(AC.p , R1.p); // Wire1 , Capacitor circuit
connect(R1.n , C.p); // Wire 2
connect(C.n , AC.n); // Wire 3
connect(R1.p , R2.p); // Wire4 , Inductor circuit
connect(R2.n , L.p); // Wire 5
connect(L.n , C.n); // Wire 6
connect(AC.n , G.p); // Wire7 , Ground

end SimpleCircuit;

3.7.2 Arrays

An array is a collection of variables all of the same type. Elements of an array are accessed through simple
Integer indexes ranging from a lower bound of 1 to an upper bound being the size of the respective dimension,
or by Boolean indexes from false to true, or by enumeration indexes. An array variable can be declared by
appending dimensions within square brackets after a class name, as in Java, or after a variable name, as in the
C language. For example:

Real [3] positionvector = {1,2,3};
Real [3,3] identitymatrix = {{1,0,0}, {0,1,0}, {0 ,0 ,1}};
Real[3,3,3] arr3d;

This declares a three-dimensional position vector, a transformation matrix, and a three-dimensional array.
Using the alternative syntax of attaching dimensions after the variable name, the same declarations can be
expressed as:

Real positionvector [3] = {1,2,3};
Real identitymatrix [3,3] = {{1,0,0}, {0,1,0}, {0,0,1}};
Real arr3d [3,3,3];

In the first two array declarations, declaration equations have been given, where the array constructor { } is
used to construct array values for defining positionvector and identitymatrix. Indexing of an array A is written
A[i,j,...], where 1 is the lower bound and size(A,k) is the upper bound of the index for the kth dimension.
Submatrices can be formed by utilising the : notation for index ranges, for example, A[i1:i2, j1:j2], where a range
i1:i2 means all indexed elements starting with i1 up to and including i2.

Array expressions can be formed using the arithmetic operators +, -, *, and /, since these can operate on either
scalars, vectors, matrices, or (when applicable) multidimensional arrays with elements of type Real or Integer.
The multiplication operator * denotes scalar product when used between vectors, matrix multiplication when
used between matrices or between a matrix and a vector, and element-wise multiplication when used between
an array and a scalar. As an example, multiplying positionvector by the scalar 2 is expressed by:

positionvector * 2

which gives the result:
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{2, 4, 6}

In contrast to Java, arrays of dimensionality greater than 1 in Modelica are always rectangular as in Matlab
or Fortran.

A number of built-in array functions are available, of which a few are shown in the table below.

transpose(A) Permutes the first two dimensions of array A.
zeros(n1,n2,n3,...) Returns an n1 × n2 × n3 × ... zero-filled integer array.
ones(n1,n2,n3,...) Returns an n1 × n2 × n3 × ... one-filled integer array.
fill(s,n1,n2,n3, ...) Returns the n1 × n2 × n3 × ... array with all elements filled with the value of the

scalar expression s.
min(A) Returns the smallest element of array expression A.
max(A) Returns the largest element of array expression A.
sum(A) Returns the sum of all the elements of array expression A.

A scalar Modelica function of a scalar argument is automatically generalised to be applicable also to arrays
element-wise. For example, if A is a vector of real numbers, then cos(A) is a vector where each element is the
result of applying the function cos to the corresponding element in A. For example:

cos({ 1, 2, 3 }) = {cos(1), cos(2), cos(3)}

General array concatenation can be done through the array concatenation operator cat(k,A,B,C,...) that
concatenates the arrays A,B,C,... along the kth dimension. For example, cat(1, {2,3}, {5,8,4}) gives the result
{2,3,5,8,4}.

m × n

The common special cases of concatenation along the first and second dimensions are supported through
the special syntax forms [A;B;C;...] and [A,B,C,...] respectively. Both of these forms can be mixed. In order to
achieve compatibility with Matlab array syntax, being a de facto standard, scalar and vector arguments to these
special operators are promoted to become matrices before performing the concatenation. This gives the effect
that a matrix can be constructed from scalar expressions by separating rows by semicolons and columns by
commas. The example below creates an matrix:

[expr11, expr12, ... expr1n;

expr21, expr22, ... expr2n;

. . .

exprm1, exprm2, ... exprmn]

It is instructive to follow the process of creating a matrix from scalar expressions using these operators. For
example:

[1,2;

3,4]

First, each scalar argument is promoted to become a matrix, giving:

[ {{1}}, {{2}};

{{3}}, {{4}} ]

Since [... , ...] for concatenation along the second dimension has higher priority than [... ; ...], which concate-
nates along the first dimension, the first concatenation step gives:

[ {{1, 2}};

{{3, 4}} ]
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2 × 2

Finally, the row matrices are concatenated giving the desired matrix:

{{1, 2},

{3, 4}}

1 × 1

The special case of just one scalar argument can be used to create a matrix. For example:

[1]

gives the matrix:

{{1}}

3.8 Algorithmic Constructs

Even though equations are eminently suitable for modelling physical systems and for a number of other tasks,
there are situations where non-declarative algorithmic constructs are needed. This is typically the case for
algorithms, i.e., procedural descriptions of how to carry out specific computations, usually consisting of a
number of statements that should be executed in the specified order.

3.8.1 Algorithm Sections and Assignment Statements

In Modelica, algorithmic statements can occur only within algorithm sections, starting with the keyword
algorithm. Algorithm sections may also be called algorithm equations, since an algorithm section can be viewed
as a group of equations involving one or more variables, and can appear among equation sections. Algorithm
sections are terminated by the appearance of one of the keywords equation, public, protected,algorithm, end, or
annotation.

algorithm
...
<statements >
...
<some other keyword >

An algorithm section embedded among equation sections can appear as below, where the example algorithm
section contains three assignment statements.

equation
x = y*2;
z = w;

algorithm
x1 := z+x;
x2 := y-5;
x1 := x2+y;

equation
u = x1+x2;
...

Note that the code in the algorithm section, sometimes denoted algorithm equation, uses the values of
certain variables from outside the algorithm. These variables are so called input variables to the algorithm–in
this example x, y, and z. Analogously, variables assigned values by the algorithm define the outputs of the
algorithm–in this example x1 and x2. This makes the semantics of an algorithm section quite similar to a
function with the algorithm section as its body, and with input and output formal parameters corresponding to
inputs and outputs as described above.



76 Peter Fritzson

3.8.2 Statements

In addition to assignment statements, whichwere used in the previous example, a fewother kinds of “algorithmic"
statements are available in Modelica: if-then-else statements, for-loops, while-loops, return statements, etc. The
summation belowuses both awhile-loop and an if-statement, where size(a,1) returns the size of the first dimension
of array a. The elseif- and else-parts of if-statements are optional.

sum := 0;
n := size(a,1);
while n>0 loop

if a[n]>0 then
sum := sum + a[n];

elseif a[n] > -1 then
sum := sum - a[n] -1;

else
sum := sum - a[n];

end if;
n := n-1;

end while;

Both for-loops and while-loops can be immediately terminated by executing a break-statement inside the
loop. Such a statement just consists of the keyword break followed by a semicolon.

Consider once more the computation of the polynomial previously presented in the section on repetitive
equation structures:

y := a[1] + a[2] ∗ x + a[3] ∗ x^1 + ... + a[n + 1] ∗ x^n;

When using equations to model the computation of the polynomial it was necessary to introduce an auxiliary
vector xpowers for storing the different powers of x. Alternatively, the same computation can be expressed as
an algorithm including a for-loop as below. This can be done without the need for an extra vector–it is enough
to use a scalar variable xpower for the most recently computed power of x.

algorithm
y := 0;
xpower := 1;
for i in 1:n+1 loop

y := y + a[i]* xpower;
xpower := xpower*x;

end for;

3.8.3 Functions

Functions are a natural part of any mathematical model. A number of mathematical functions like abs, sqrt,
mod,sin, cos, exp, etc. are both predefined in the Modelica language and available in the Modelica standard
math libraryModelica.Math. The arithmetic operators +, -, ∗, / can be regarded as functions that are used through
a convenient operator syntax. Thus it is natural to have user-defined mathematical functions in the Modelica
language. The body of a Modelica function is an algorithm section that contains procedural algorithmic code
to be executed when the function is called. Formal parameters are specified using the input keyword, whereas
results are denoted using the output keyword. This makes the syntax of function definitions quite close to
Modelica block class definitions.

Modelica functions are mathematical functions, i.e., without global side-effects and with no memory (except
impure Modelica functions marked with the keyword impure). A Modelica function always returns the same
results given the same arguments. Below we show the algorithmic code for polynomial evaluation in a function
named polynomialEvaluator.
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function polynomialEvaluator
input Real a[:]; // Array , size defined at function call time
input Real x := 1.0; // Default value 1.0 for x
output Real y;

protected
Real xpower;

algorithm
y := 0;
xpower := 1;
for i in 1:size(a,1) loop

y := y + a[i]* xpower;
xpower := xpower*x;

end for;
end polynomialEvaluator;

Functions are usually called with positional association of actual arguments to formal parameters. For
example, in the call below the actual argument {1,2,3,4} becomes the value of the coefficient vector a, and 21
becomes the value of the formal parameter x. Modelica function formal parameters are read-only, i.e., they may
not be assigned values within the code of the function. When a function is called using positional argument
association, the number of actual arguments and formal parameters must be the same. The types of the actual
argument expressions must be compatible with the declared types of the corresponding formal parameters. This
allows passing array arguments of arbitrary length to functions with array formal parameters with unspecified
length, as in the case of the input formal parameter a in the polynomialEvaluator function.

p = polynomialEvaluator ({1, 2, 3, 4}, 21);

The same call to the function polynomialEvaluator can instead be made using named association of actual
arguments to formal parameters, as in the next example. This has the advantage that the code becomes more
self-documenting as well as more flexible with respect to code updates.

For example, if all calls to the function polynomialEvaluator are made using named parameter association,
the order between the formal parameters a and x can be changed, and new formal parameters with default values
can be introduced in the function definitions without causing any compilation errors at the call sites. Formal
parameters with default values need not be specified as actual arguments unless those parameters should be
assigned values different from the defaults.

p = polynomialEvaluator(a={1, 2, 3, 4} , x=21);

Functions can have multiple results. For example, the function f below has three result parameters declared
as three formal output parameters r1, r2, and r3.

function f
input Real x;
input Real y;
output Real r1;
output Real r2;
output Real r3;
...

end f;

Within algorithmic code multiresult functions may be called only in special assignment statements, as the
one below, where the variables on the left-hand side are assigned the corresponding function results.

(a, b, c) := f(1.0 , 2.0);

In equations a similar syntax is used:

(a, b, c) = f(1.0, 2.0);

A function is returned from by reaching the end of the function or by executing a return-statement inside the
function body.
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3.8.4 Operator Overloading and Complex Numbers

Function and operator overloading allow several definitions of the same function or operator, but with a different
set of input formal parameter types for each definition. This allows, e.g., to define operators such as addition,
multiplication, etc., of complex numbers, using the ordinary + and ∗ operators butwith newdefinitions, or provide
several definitions of a solve function for linear matrix equation solution for different matrix representations
such as standard dense matrices, sparse matrices, symmetric matrices, etc.

In fact, overloading already exists predefined to a limited extent for certain operators in theModelica language.
For example, the plus (+) operator for addition has several different definitions depending on the data type:

1. 1+2 — means integer addition of two Integer constants giving an integer result, here 3.
2. 1.0+2.0 — means floating point number addition of two Real constants giving a floating-point number

result, here 3.0.
3. "ab"+"2" — means string concatenation of two string constants giving a string result, here "ab2".
4. {1,2} +{3,4} — means integer vector addition of two integer constant vectors giving a vector result, here
{4,6}.

Overloaded operators for user-defined data types can be defined using operator record and operator function
declarations. Here we show part of a complex numbers data type example:

operator record Complex "Record defining a Complex number"

Real re "Real part of complex number";
Real im "Imaginary part of complex number";

encapsulated operator 'constructor '
import Complex;
function fromReal

input Real re;
output Complex result = Complex(re=re , im=0.0);

annotation(Inline=true);
end fromReal;

end 'constructor ';

encapsulated operator function '+'
import Complex;
input Complex c1;
input Complex c2;
output Complex result "Same as: c1 + c2";

annotation(Inline=true);
algorithm

result := Complex(c1.re + c2.re , c1.im + c2.im);
end '+';

end Complex;

In the above example, we start as usual with the real and imaginary part declarations of the re and im fields
of the Complex operator record definition. Then comes a constructor definition fromReal with only one input
argument instead of the two inputs of the default Complex constructor implicitly defined by the Complex record
definition, followed by overloaded operator definition for ’+’.

How can these definitions be used? Take a look at the following small example:

Real a;
Complex b;
Complex c = a + b; // Addition of Real number a and Complex number b

The interesting part is in the third line, which contains an addition a+b of a Real number a and a Complex
number b. There is no built-in addition operator for complex numbers, but we have the above overloaded operator
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definition of ’+’ for two complex numbers. An addition of two complex numbers would match this definition
right away in the lookup process.

However, in this case we have an addition of a real number and a complex number. Fortunately, the lookup
process for overloaded binary operators can also handle this case if there is a constructor function in theComplex
record definition that can convert a real number to a complex number. Here we have such a constructor called
fromReal.

Note that the Complex is already predefined in a Modelica record type called Complex. This is distributed
as part of the Modelica standard library (MSL) but defined at the top-level outside of MSL. It is referred to
as Complex or .Complex. and is automatically preloaded by most tools, enabling direct usage without the need
for any import statements (except in encapsulated classes). There is a library ComplexMath with operations on
complex numbers.

The following are some examples of using the predefined type Complex:

Real a = 2;
Complex j = Modelica.ComplexMath.j;
Complex b = 2 + 3*j;
Complex c = (2*b + a)/b;
Complex d = Modelica.ComplexMath.sin(c);
Complex v[3] = {b/2, c, 2*d};

3.8.5 External Functions

It is possible to call functions defined outside of the Modelica language, implemented in C or Fortran. If no
external language is specified the implementation language is assumed to be C. The body of an external function
is marked with the keyword external in the Modelica external function declaration.

function log input
Real x;
output Real y;
external

end log;

The external function interface supports a number of advanced features such as in–out parameters, local
work arrays, external function argument order, explicit specification of row-major versus column-major array
memory layout, etc. For example, the formal parameter Ares corresponds to an in–out parameter in the external
function leastSquares below, which has the value A as input default and a different value as the result. It is
possible to control the ordering and usage of parameters to the function external to Modelica. This is used below
to explicitly pass sizes of array dimensions to the Fortran routine called dgels. Some old-style Fortran routines
like dgels need work arrays, which is conveniently handled by local variable declarations after the keyword
protected.

function leastSquares "Solves a linear least squares problem" input
Real A[:,:];

input Real B[:,:];
output Real Ares[size(A,1),size(A,2)] := A;
// Factorization is returned in Ares for later use
output Real x[size(A,2),size(B,2)];

protected
Integer lwork = min(size(A,1),size(A,2)) +

max(max(size(A,1),size(A,2)),size(B,2))*32;
Real work[lwork ];
Integer info;
String transposed="NNNN"; // Workaround for passing CHARACTER data to

// Fortran routine
external "FORTRAN 77"
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dgels(transposed , 100, size(A,1), size(A,2), size(B,2), Ares ,
size(A,1), B, size(B,1), work , lwork , info);

end leastSquares;

3.8.6 Algorithms Viewed as Functions

The function concept is a basic building block when defining the semantics or meaning of programming
language constructs. Some programming languages are completely defined in terms of mathematical functions.
This makes it useful to try to understand and define the semantics of algorithm sections in Modelica in terms of
functions. For example, consider the algorithm section below, which occurs in an equation context:

algorithm
y := x;
z := 2*y;
y := z+y;
...

This algorithm can be transformed into an equation and a function as below, without changing its meaning.
The equation equates the output variables of the previous algorithm section with the results of the function f.
The function f has the inputs to the algorithm section as its input formal parameters and the outputs as its result
parameters. The algorithmic code of the algorithm section has become the body of the function f.

(y,z) = f(x);
...
function f

input Real x;
output Real y,z;

algorithm
y := x;
z := 2*y;
y := z+y;

end f;

3.9 Discrete Event and Hybrid modelling

Macroscopic physical systems in general evolve continuously as a function of time, obeying the laws of physics.
This includes the movements of parts in mechanical systems, current and voltage levels in electrical systems,
chemical reactions, etc. Such systems are said to have continuous dynamics.

On the other hand, it is sometimes beneficial to make the approximation that certain system components
display discrete behaviour, i.e., changes of values of system variables may occur instantaneously and discontin-
uously at specific points in time.

In the real physical system the change can be very fast, but not instantaneous. Examples are collisions in
mechanical systems, e.g., a bouncing ball that almost instantaneously changes direction, switches in electrical
circuits with quickly changing voltage levels, valves and pumps in chemical plants, etc. We talk about system
components with discrete-time dynamics. The reason to make the discrete approximation is to simplify the
mathematical model of the system, making the model more tractable and usually speeding up the simulation of
the model several orders of magnitude.

For this reason, it is possible to have variables in Modelica models of discrete-time variability, i.e., the
variables change value only at specific points in time, so-called events. There are two kinds of discrete-time
variables: unclocked discrete-time variables which keep their values constant between events and clocked
discrete-time variables which are undefined between associated clock-tick events, see Figure 3.22. Examples
of discrete-time variables are Real variables declared with the prefix discrete, clock variables and clocked
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variables, or Integer, Boolean, and enumeration variables which are discrete-time by default and cannot be
continuous-time.

Fig. 3.22: Discrete-time variables z1 and z2 change value only at event instants, whereas continuous-time
variables like ymay change value both between and at events. An unclocked discrete-time variable z1 is defined
also between events, whereas a clocked discrete-time variable z2 is defined only at associated clock-tick events.

Since the discrete-time approximation can only be applied to certain subsystems, we often arrive at system
models consisting of interacting continuous and discrete components. Such a system is called a hybrid system
and the associated modelling techniques hybrid modelling. The introduction of hybrid mathematical models
creates new difficulties for their solution, but the disadvantages are far outweighed by the advantages.

Modelica provides four kinds of constructs for expressing hybridmodels: conditional expressions or equations
to describe discontinuous and conditional models, when-equations to express equations that are valid only at
discontinuities (e.g., when certain conditions become true), clocked synchronous constructs, and clocked state
machines. For example, if-then-else conditional expressions allow modelling of phenomena with different
expressions in different operating regions, as for the equation describing a limiter below.

y = if v > limit then limit else v;

A more complete example of a conditional model is the model of an ideal diode. The characteristic of a real
physical diode is depicted in Figure 3.23, and the ideal diode characteristic in parameterized form is shown in
Figure 3.24.

Fig. 3.23: Real diode characteristic.
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Fig. 3.24: Ideal diode characteristic.

Since the voltage level of the ideal diode would go to infinity in an ordinary voltage-current diagram, a
parameterised description is more appropriate, where both the voltage v and the current i, same as i1, are
functions of the parameter s. When the diode is off no current flows and the voltage is negative, whereas when
it is on there is no voltage drop over the diode and the current flows.

model Diode "Ideal diode"
extends TwoPin;
Real s;
Boolean off;

equation
off = s < 0;
if off

then v=s;
else v=0; // conditional equations

end if;
i = if off then 0 else s;

end Diode;

When-equations have been introduced in Modelica to express instantaneous equations, i.e., equations that are
valid only at certain points in time that, for example, occur at discontinuities when specific conditions become
true, so-called events. The syntax of when-equations for the case of a vector of conditions is shown below.
The equations in the when-equation are activated when at least one of the conditions becomes true, and remain
activated only for a time instant of zero duration. A single condition is also possible.

when {condition1 , condition2 , ...} then
<equations >

end when;

A bouncing ball is a good example of a hybrid system for which the when-equation is appropriate when
modelled. The motion of the ball is characterised by the variable height above the ground and the vertical
velocity. The ball moves continuously between bounces, whereas discrete changes occur at bounce times, as
depicted in Figure 3.25. When the ball bounces against the ground its velocity is reversed. An ideal ball would
have an elasticity coefficient of1 and would not lose any energy at a bounce. A more realistic ball, as the one
modelled below, has an elasticity coefficient of 0.9, making it keep 90 percent of its speed after the bounce.
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Fig. 3.25: Trajectory of bouncing ball.

The bouncing ball model contains the two basic equations of motion relating height and velocity as well
as the acceleration caused by the gravitational force. At the bounce instant the velocity is suddenly reversed
and slightly decreased, i.e., velocity (after bounce) = -c*velocity (before bounce), which is accomplished by the
special reinit syntactic form of instantaneous equation for reinitialisation: reinit(velocity,-c*pre(velocity)), which
in this case reinitialises the velocity variable.

model BouncingBall "Simple model of a bouncing ball"
constant Real g = 9.81 "Gravity constant";
parameter Real c = 0.9 "Coefficient of restitution";
parameter Real radius =0.1 "Radius of the ball";
Real height(start = 1) "Height of the ball center";
Real velocity(start = 0) "Velocity of the ball";

equation
der(height) = velocity;
der(velocity) = -g;
when height <= radius then

reinit(velocity ,-c*pre(velocity));
end when;

end BouncingBall;

Note that the equations within a when-equation are active only during the instant in timewhen the condition(s)
of the when-equation become true, whereas the conditional equations within an if-equation are active as long
as the condition of the if-equation is true.

If we simulate this model long enough, the ball will fall through the ground. This strange behaviour of the
simulation, called shattering, or the Zeno effect is due to the limited precision of floating point numbers together
with the event detection mechanism of the simulator, and occurs for some (unphysical) models where events
may occur infinitely close to each other. The real problem in this case is that the model of the impact is not
realistic the law new_velocity = -c * velocity does not hold for very small velocities. A simple fix is to state a
condition when the ball falls through the ground and then switch to an equation stating that the ball is lying on
the ground. A better but more complicated solution is to switch to a more realistic material model.

Synchronous Clocks and State Machines

Starting fromModelica version 3.3 twomain groups of discrete-time and hybrid modelling features are available
in the language: built-in synchronous clocks with constructs for clock-based modelling and synchronous clock-
based state-machines.

As depicted in Figure 3.22, clocks and clocked discrete-time variable values are only defined at clock tick
events for an associated clock and are undefined between clock ticks.

Synchronous clock-based modelling gives additional advantages for real-time and embedded system mod-
elling in terms of higher performance and avoidance and/or detection of certain kinds of errors.
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To give a very simple example, in the model below the clock variable clk is defined with an interval of 0.2
seconds. This clock is used for sampling the built-in time variable, with result put in x and defined only at clock
ticks. Finally, the variable y is defined also between clock ticks by the use of the hold operator.

model BasicClockedSynchronous
Clock clk "A clock variable";
discrete Real x "Clocked discrete -time variable";
Real y "Unclocked discrete -time variable";

equation
clk = Clock (0.2); // Clock with an interval of 0.2 seconds
x = sample(time ,clk); // Sample the continuous time at clock ticks
y = hold(x)+1; // Hold value is defined also between clock ticks

end BasicClockedSynchronous;

Fig. 3.26: Simulation of model BasicClockedSynchronous showing clocked discrete-time variable x and un-
clocked discrete-time variable y.

3.10 Modularity Facilites

3.10.1 Packages

Name conflicts are a major problem when developing reusable code, for example, libraries of reusable Modelica
classes and functions for various application domains. No matter how carefully names are chosen for classes
and variables it is likely that someone else is using some name for a different purpose. This problem gets worse
if we are using short descriptive names since such names are easy to use and therefore quite popular, making
them quite likely to be used in another person’s code.

A common solution to avoid name collisions is to attach a short prefix to a set of related names, which are
grouped into a package. For example, all names in the X-Windows toolkit have the prefix Xt, andmost definitions
in the Qt GUI library are prefixed with Q. This works reasonably well for a small number of packages, but the
likelihood of name collisions increases as the number of packages grows.

Many programming languages, e.g., Java and Ada as well as Modelica provide a safer and more systematic
way of avoiding name collisions through the concept of package. A package is simply a container or name space
for names of classes, functions, constants, and other allowed definitions. The package name is prefixed to all
definitions in the package using standard dot notation. Definitions can be imported into the name space of a
package.
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Modelica has defined the package concept as a restriction and enhancement of the class concept. Thus,
inheritance could be used for importing definitions into the name space of another package. However, this gives
conceptual modelling problems since inheritance for import is not really a package specialisation. Instead, an
import language construct is provided for Modelica packages. The type name Voltage together with all other
definitions in Modelica.SIunits is imported in the example below, which makes it possible to use it without
prefix for declaration of the variable v. By contrast, the declaration of the variable i uses the fully qualified
nameModelica.SIunits.Ampere of the type Ampere, even though the short version also would have been possible.
The fully qualified long name for Ampere can be used since it is found using the standard nested lookup of the
Modelica standard library placed in a conceptual top-level package.

package MyPack
import MyTypes. *;
import Modelica.SIunits. *;

class Foo;
Voltage v;
Modelica.SIunits.Ampere i;

end Foo;
end MyPack;

Importing definitions from one package into another class as in the above example has the drawback that the
introduction of new definitions into a package may cause name clashes with definitions in packages using that
package. For example, if a type definition named Voltage is introduced into the packageMyTypes, a compilation
error would arise in the package MyPack since it is also defined in the package Modelica.SIunits.

An alternative solution to the short-name problem that does not have the drawback of possible compilation
errors when new definitions are added to libraries, is introducing short convenient name aliases for prefixes
instead of long package prefixes. This is possible using the renaming form of import statement as in the package
MyPack below, where the package name SI is introduced instead of the much longer Modelica.SIunits.

Another disadvantage with the above package is that the Ampere type is referred to using standard nested
lookup and not via an explicit import statement. Thus, in the worst case we may have to do the following in
order to find all such dependencies and the declarations they refer to:

1. Visually scan the whole source code of the current package, which might be large.
2. Search through all packages containing the current package, i.e., higher up in the package hierarchy, since

standard nested lookup allows used types and other definitions to be declared anywhere above the current
position in the hierarchy.

Instead, a well-designed package should state all its dependencies explicitly through import statements
which are easy to find. We can create such a package, e.g., the package MyPack below, by adding the prefix
encapsulated in front of the package keyword. This prevents nested lookup outside the package boundary
(unfortunately with one exception, names starting with a dot ., ensuring that all dependencies on other packages
outside the current package have to be explicitly stated as import statements. This kind of encapsulated package
represents an independent unit of code and corresponds more closely to the package concept found in many
other programming languages, e.g., Java or Ada.

encapsulated package MyPack
import SI = Modelica.SIunits;
import Modelica;

class Foo;
SI.Voltage v;
Modelica.SIunits.Ampere i;

end Foo;
...

end MyPack;
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3.10.2 Annotations

A Modelica annotation is extra information associated with a Modelica model. This additional information is
used byModelica environments, e.g., for supporting documentation or graphicalmodel editing.Most annotations
do not influence the execution of a simulation, i.e., the same results should be obtained even if the annotations
are removed–but there are exceptions to this rule. The syntax of an annotation is as follows:

annotation (annotation_elements)

where annotation_elements is a comma-separated list of annotation elements that can be any kind of expres-
sion compatible with the Modelica syntax. The following is a resistor class with its associated annotation for
the icon representation of the resistor used in the graphical model editor:
model Resistor

...
annotation(Icon(coordinateSystem(preserveAspectRatio = true ,
extent = {{ -100 , -100} ,{100 ,100}} , grid = {2,2}),
graphics = {

Rectangle(extent = {{-70,30},{70,-30}}, lineColor = {0,0,255},
fillColor = {255 ,255 ,255} ,

fillPattern = FillPattern.Solid),
Line(points = {{-90,0},{-70,0}}, color = {0 ,0 ,255}),
Line(points = {{70 ,0} ,{90 ,0}} , color ={0 ,0 ,255}),
Text(extent = {{-144,-40},{142,-72}}, lineColor = {0,0,0},
textString = "R=\%R"),

...
));

end Resistor;

Another example is the predefined annotation choices used to generate menus for the graphical user interface:
annotation(choices(choice =1 "P", choice =2 "PI", choice =3 "PID"));

The annotation Documentation is used for model documentation, as in this example for the Capacitormodel:
annotation(

Documentation(info = "<HTML >
<p>
The linear capacitor connects the branch voltage <i>v</i> with

the
branch current <i>i</i> by <i>i = C * dv/dt </i>.
The Capacitance <i>C</i> is allowed to be positive , zero , or

negative.
</p>

</HTML >
)

The external function annotation arrayLayout can be used to explicitly give the layout of arrays, e.g., if
it deviates from the defaults rowMajor and columnMajor order for the external languages C and Fortran 77
respectively.

This is one of the rare cases of an annotation influencing the simulation results, since the wrong array layout
annotation obviously will have consequences for matrix computations. An example:

annotation(arrayLayout = "columnMajor");

3.10.3 Naming Conventions

You may have noticed a certain style of naming classes and variables in the examples in this chapter. In
fact, certain naming conventions, described below, are being adhered to. These naming conventions have been
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adopted in the Modelica standard library, making the code more readable and somewhat reducing the risk for
name conflicts. The naming conventions are largely followed in the examples in this book and are recommended
for Modelica code in general:

• Type and class names (but usually not functions) always start with an uppercase letter, e.g., Voltage.
• Variable names start with a lowercase letter, e.g., body, with the exception of some one-letter names such
as T for temperature.

• Names consisting of several words have each word capitalised, with the initial word subject to the above
rules, e.g., ElectricCurrent and bodyPart.

• The underscore character is only used at the end of a name, or at the end of a word within a name, often to
characterise lower or upper indices, e.g., body_low_up.

• Preferred names for connector instances in (partial) models are p and n for positive and negative connectors
in electrical components, and name variants containing a and b, e.g., flange_a and flange_b, for other kinds
of otherwise-identical connectors often occurring in two-sided components.

For more details on naming conventions see the documentation inside the package.

3.11 Modelica Standard Library

Much of the power of modelling with Modelica comes from the ease of reusing model classes. Related classes
in particular areas are grouped into packages to make them easier to find.

A special package, called Modelica, is a standardised predefined package that together with the Modelica
Language is developed andmaintained by theModelica Association. This package is also known as theModelica
Standard Library, abbreviated MSL. It provides constants, types, connector classes, partial models, and model
classes of components from various application areas, which are grouped into sub-packages of the Modelica
package, known as the Modelica standard libraries.

The following is a subset of the growing set of Modelica standard libraries currently available:

• Modelica.Constants – Common constants from mathematics, physics, etc.
• Modelica.Icons – Graphical layout of icon definitions used in several packages.
• Modelica.Math – Definitions of common mathematical functions.
• Modelica.SIUnits – Type definitions with SI standard names and units.
• Modelica.Electrical – Common electrical component models.
• Modelica.Blocks – Input/output blocks for use in block diagrams.
• Modelica.Mechanics.Translational – 1D mechanical translational components.
• Modelica.Mechanics.Rotational – 1D mechanical rotational components.
• Modelica.Mechanics.MultiBody – MBS library–3D mechanical multibody models.
• Modelica.Thermal – Thermal phenomena, heat flow, etc. components.
• ...

Additional libraries are available in application areas such as thermodynamics, hydraulics, power systems,
data communication, etc.

The Modelica Standard Library can be used freely under an open source license for both noncommercial
and commercial purposes. The full documentation as well as the source code of these libraries appear at the
Modelica web site.

So far the models presented have been constructed of components from single-application domains. However,
one of the main advantages with Modelica is the ease of constructing multidomain models simply by connecting
components from different application domain libraries. The DC (direct current) motor depicted in Figure 3.27
is one of the simplest examples illustrating this capability.
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Fig. 3.27: A multidomain DCMotorCircuit model with mechanical, electrical, and signal block components.

This particular model contains components from the three domains, mechanical, electrical, and signal blocks,
corresponding to the libraries Modelica.Mechanics, Modelica.Electrical, and Modelica.Blocks.

Model classes from libraries are particularly easy to use and combine when using a graphical model
editor, as depicted in Figure 3.28, where the DC-motor model is being constructed. The left window shows
theModelica.Mechanics.Rotational library, fromwhich icons can be dragged and dropped into the central window
when performing graphic design of the model.

Fig. 3.28: Graphical editing of an electrical DC-motor model, with part of the model component hierarchy at
the right and icons of the Modelica standard library in the left window.

3.12 Implementation and Execution of Modelica

In order to gain a better understanding of how Modelica works it is useful to take a look at the typical process
of translation and execution of a Modelica model, which is sketched in Figure 3.29. Note that this is the
typical process used by most Modelica tools. There are alternative ways of executing Modelica, some of which
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are currently at the research stage, that often keep more of the object-oriented structure at the later stages of
translation and execution.

First the Modelica source code is parsed and converted into an internal representation, usually an abstract
syntax tree. This representation is analysed, type checking is done, classes are inherited and expanded, modifi-
cations and instantiations are performed, connect-equations are converted to standard equations, etc. The result
of this analysis and translation process is a flat set of equations, constants, variables, and function definitions.
No trace of the object-oriented structure remains apart from the dot notation within names.

After flattening, all of the equations are topologically sorted according to the data-flow dependencies between
the equations. In the case of general differential algebraic equations (DAEs), this is not just sorting, but also
manipulation of the equations to convert the coefficient matrix into block lower triangular form, a so-called
BLT transformation. Then an optimiser module containing algebraic simplification algorithms, symbolic index
reduction methods, etc., eliminates most equations, keeping only a minimal set that eventually will be solved
numerically, see also the chapter in this book about numerical approximation methods.

Then independent equations in explicit form are converted to assignment statements. This is possible since
the equations have been sorted and an execution order has been established for evaluation of the equations in
conjunction with the iteration steps of the numeric solver. If a strongly connected set of equations appears,
this set is transformed by a symbolic solver, which performs a number of algebraic transformations to simplify
the dependencies between the variables. It can sometimes solve a system of differential equations if it has
a symbolic solution. Finally, C code is generated, and linked with a numeric equation solver that solves the
remaining, drastically reduced, equation system.

The approximations to initial values are taken from the model definition or are interactively specified by
the user. If necessary, the user also specifies the parameter values. A numeric solver for differential-algebraic
equations (or in simple cases for ordinary differential equations) computes the values of the variables during the
specified simulation interval [t0, t1]. The result of the dynamic system simulation is a set of functions of time,
such as R2.v(t) in the simple circuit model. Those functions can be displayed as graphs and/or saved in a file.

Fig. 3.29: The typical stages of translating and executing a Modelica model.

Inmost cases (but not always) the performance of generated simulation code (including the solver) is similar to
handwritten C code. Often Modelica is more efficient than straightforwardly written C code, because additional
opportunities for symbolic optimization are used by the system, compared to what a human programmer can
manually handle.
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3.12.1 Hand Translation of the Simple Circuit Model

Let us return once more to the simple circuit model, previously depicted in Figure 3.7, but for the reader’s
convenience also shown below in Figure 3.30. It is instructive to translate this model by hand, in order to
understand the process.

Fig. 3.30: The SimpleCircuit model once more, with explicitly labeled connection nodes N1, N2, N3, N4, and
wires 1 to 7.

Classes, instances and equations are translated into a flat set of equations, constants, and variables (see the
equations in Table 3.1), according to the following rules:

1. For each class instance, add one copy of all equations of this instance to the total differential algebraic
equation (DAE) system or ordinary differential equation system (ODE)–both alternatives can be possible,
since a DAE in a number of cases can be transformed into an ODE.

2. For each connection between instances within the model, add connection equations to the DAE system so
that potential variables are set equal and flow variables are summed to zero.

The equation v=p.v-n.v is defined by the class TwoPin. The Resistor class inherits the TwoPin class, including
this equation. The SimpleCircuit class contains a variableR1 of typeResistor. Therefore, we include this equation
instantiated for R1 as R1.v=R1.p.v-R1.n.v into the system of equations.

The wire labeled 1 is represented in the model as connect(AC.p, R1.p). The variables AC.p and R1.p have
type Pin. The variable v is a potential variable representing voltage potential. Therefore, the equality equation
R1.p.v=AC.p.v is generated. Equality equations are always generated when potential variables are connected.

Notice that another wire (labeled 4) is attached to the same pin, R1.p. This is represented by an addi-
tional connect-equation: connect(R1.p.R2.p). The variable i is declared as a flow variable. Thus, the equation
AC.p.i+R1.p.i+R2.p.i=0 is generated. Zero-sum equations are always generated when connecting flow variables,
corresponding to Kirchhoff’s second law.

The complete set of equations (see Table 3.1) generated from theSimpleCircuit class consists of 32 differential-
algebraic equations. These include 32 variables, as well as time and several parameters and constants.
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AC 0 = AC.p.i+AC.n.i
AC.v = Ac.p.v-AC.n.v
AC.i = AC.p.i
AC.v = AC.VA∗ sin(2∗ AC.PI∗ AC.f∗
time);

L 0 = L.p.i+L.n.i
L.v = L.p.v-L.n.v
L.i = L.p.i
L.v = L.L∗ der(L.i)

R1 0 = R1.p.i+R1.n.i
R1.v = R1.p.v-R1.n.v
R1.i = R1.p.i
R1.v = R1.R∗ R1.i

G G.p.v = 0

R2 0 = R2.p.i+R2.n.i
R2.v = R2.p.v-R2.n.v
R2.i = R2.p.i
R2.v = R2.R∗ R2.i

wires R1.p.v = AC.p.v // wire 1
C.p.v = R1.n.v // wire 2
AC.n.v = C.n.v // wire 3
R2.p.v = R1.p.v // wire 4
L.p.v = R2.n.v // wire 5
L.n.v = C.n.v // wire 6
G.p.v = AC.n.v // wire 7

C 0 = C.p.i+C.n.i
C.v = C.p.v-C.n.v
C.i = C.p.i
C.i = C.C∗ der(C.v)

flow
at

node

0 = AC.p.i+R1.p.i+R2.p.i // N1
0 = C.n.i+G.p.i+AC.n.i+L.n.i // N2
0 = R1.n.i + C.p.i // N3
0 = R2.n.i + L.p.i // N4

Table 3.1: The equations extracted from the simple circuit model–an implicit DAE system.

Table 3.2 gives the 32 variables in the system of equations, of which 30 are algebraic variables since their
derivatives do not appear. Two variables, C.v and L.i, are dynamic variables since their derivatives occur in the
equations. In this simple example the dynamic variables are state variables, since the DAE reduces to an ODE.

R1.p.i R1.n.i R1.p.v R1.n.v R1.v
R1.i R2.p.i R2.n.i R2.p.v R2.n.v
R2.v R2.i C.p.i C.n.i C.p.v
C.n.v C.v C.i L.p.i L.n.i
L.p.v L.n.v L.v L.i AC.p.i
AC.n.i AC.p.v AC.n.v AC.v AC.i
G.p.i G.p.v

Table 3.2: The variables extracted from the simple circuit model.

3.12.2 Transformation to State Space Form

The implicit differential algebraic system of equations (DAE system) in Table 3.1 should be further transformed
and simplified before applying a numerical solver. The next step is to identify the kind of variables in the DAE
system. We have the following four groups:

1. All constant variables which are model parameters, thus easily modified between simulation runs and
declared with the prefixed keyword parameter, are collected into a parameter vector p. All other constants
can be replaced by their values, thus disappearing as named constants.

2. Variables declared with the input attribute, i.e., prefixed by the input keyword, that appears in instances at
the highest hierarchical level, are collected into an input vector u.

3. Variables whose derivatives appear in the model (dynamic variables), i.e., the der( ) operator is applied to
those variables, are collected into a state vector x.

4. All other variables are collected into a vector y of algebraic variables, i.e., their derivatives do not appear in
the model.

For our simple circuit model these four groups of variables are the following:

p = { R1.R, R2.R, C.C, L.L, AC.VA, AC.f }

u = { AC.v }
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x = { C.v, L.i }

y = { R1.p.i, R1.n.i, R1.p.v, R1.n.v, R1.v, R1.i, R2.p.i, R2.n.i, R2.p.v, R2.n.v, R2.v, R2.i, C.p.i, C.n.i, C.p.v, C.n.v,
C.i, L.n.i, L.p.v, L.n.v, L.v, AC.p.i, AC.n.i, AC.p.v, AC.n.v, AC.i, AC.v, G.p.i, G.p.v }

We would like to express the problem as the smallest possible ordinary differential equation (ODE) system
(in the general case a DAE system) and compute the values of all other variables from the solution of this
minimal problem. The system of equations should preferably be in an explicit state space form as below.

ẋ = f (x, t) (3.12)

That is, the derivative ẋ with respect to time of the state vector x is equal to a function of the state vector x
and time. Using an iterative numerical solution method for this ordinary differential equation system, at each
iteration step, the derivative of the state vector is computed from the state vector at the current point in time.

For the simple circuit model we have the following:

ẋ = {C.v, L.i}, u = {AC.v} (with constants: R1.R, R2.R, C.C, L.L, AC.VA, AC.f, AC.PI) (3.13)

ẋ = {der(C.v),der(L.i)} (3.14)

3.12.3 Solution Method

We will use an iterative numerical solution method. First, assume that an estimated value of the state vector
x = {C.v, L.i} is available at t = 0 when the simulation starts. Use a numerical approximation for the derivative
ẋ (i.e. der(x)) at time t, e.g.:

der(x) = (xt+h − xt )/h (3.15)

giving an approximation of x at time t + h:

xt+h = xt + der(x) × h (3.16)

In this way, the value of the state vector x is computed one step ahead in time for each iteration, provided
der(x) can be computed at the current point in simulated time. However, the derivative der(x) of the state vector
can be computed from ẋ = f (x, t) , i.e., by selecting the equations involving der(x), and algebraically extracting
the variables in the vector x in terms of other variables, as below:

der(C.v) = C.i/C.C (3.17)

der(L.i) = L.v/L.L (3.18)

Other equations in the DAE system are needed to calculate the unknowns C.i and L.v in the above equa-
tions. Starting with C.i, using a number of different equations together with simple substitutions and algebraic
manipulations, we derive equations (3.19) through (3.21) below.

C.i = R1.v/R1.R
using: C.i = C.p.i = −R1.n.i = R1.p.i = R1.i = R1.v/R1.R (3.19)

R1.v = R1.p.v − R1.n.v = R1.p.v − C.v
using: R1.n.v = C.p.v = C.v + C.n.v = C.v + AC.n.v = C.v + G.p.v = C.v + 0 = C.v (3.20)
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R1.p.v = AC.p.v = AC.V A ∗ sin(2 ∗ AC. f ∗ AC.PI ∗ t)
using: AC.p.v = AC.v + AC.n.v = AC.v + G.p.v = AC.V A × sin(2 × AC. f × AC.PI × t) + 0 (3.21)

In a similar fashion, we derive equations (3.22) and (3.23) below:

L.v = L.p.v − L.n.v = R1.p.v − R2.v
using: L.p.v = R2.n.v = R1.p.v − R2.v and L.n.v = C.n.v = AC.n.v = G.p.v = 0 (3.22)

R2.v = R2.R × L.p.i
using: R2.v = R2.R × R2.i = R2.R × R2.p.i = R2.R × (−R2.n.i) = R2.R × L.p.i = R2.R × L.i (3.23)

Collecting the five equations together:

C.i = R1.v/R1.R
R1.v = R1.p.v − C.v

R1.p.v = AC.V A × sin(2 × AC. f × AC.PI × t)
L.v = R1.p.v − R2.v
R2.v = R2.R × L.i

(3.24)

By sorting the equations Eqs. 3.24 in data-dependency order, and converting the equations to assignment
statements–this is possible since all variable values can now be computed in order–we arrive at the following set
of assignment statements to be computed at each iteration, given values of C.v, L.i, and t at the same iteration:

R2.v := R2.R * L.i;
R1.p.v := AC.VA * sin(2 * AC.f * AC.PI * time);
L.v := R1.p.v - R2.v;
R1.v := R1.p.v - C.v;
C.i := R1.v/R1.R;

der(L.i) := L.v/L.L;
der(C.v) := C.i/C.C;

These assignment statements can be subsequently converted to code in some programming language, e.g.,
C, and executed together with an appropriate ODE solver, usually using better approximations to derivatives
and more sophisticated forward-stepping schemes than the simple method described above, which, by the way,
is called the Euler integration method. The algebraic transformations and sorting procedure that we somewhat
painfully performed by hand on the simple circuit example can be performed completely automatically, and is
known as BLT partitioning, i.e., conversion of the equation system coefficient matrix into block lower triangular
form (Table 3.3).

R2.v R1.p.v L.v R1.v C.i L.i C.v
R2.v = R2.R∗ L.i 1 0 0 0 0 0 0
R1.p.v = AC.VA∗ sin(2∗ AC.f∗ AC.PI∗ time) 0 1 0 0 0 0 0
L.v = R1.p.v - R2.v 1 1 1 0 0 0 0
R1.v = R1.p.v - C.v 0 1 0 1 0 0 0
C.i = R1.v/R1.R 0 0 0 0 1 0 0
der(L.i) = L.v/L.L 0 0 1 0 0 1 0
der(C.v) = C.i/C.C 0 0 0 0 1 0 1

Table 3.3: TBlock lower triangular form of the SimpleCircuit example.
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The remaining 26 algebraic variables in the equation system of the simple circuit model that are not part of
the minimal 7-variable kernel ODE system solved above can be computed at leisure for those iterations where
their values are desired–this is not necessary for solving the kernel ODE system.

It should be emphasised that the simple circuit example is trivial. Realistic simulation models often contain
tens of thousands of equations, nonlinear equations, hybrid models, etc. The symbolic transformations and
reductions of equation systems performed by a real Modelica compiler are much more complicated than what
has been shown in this example, e.g., including index reduction of equations and tearing of subsystems of
equations.

simulate(SimpleCircuit,stopTime=5)]

plot(C.v, xrange={0,5})

Fig. 3.31: Simulation of the SimpleCircuit model with a plot of the voltage C.v over the capacitor.

3.13 Tool Interoperability through Functional Mockup Interface

Even though Modelica is a universal modelling language that covers most application domains, there exist
many established existing modelling and simulation tools in various application domains. There is a strong
industrial need for interoperability and model interchange between tools. The Functional Mockup Interface
standard (FMI, www.fmi-standard.org) has been developed to fulfil this need. It allows exporting models
compiled into C-code combined with XML-based descriptors, which can be imported and simulated in other
tools, both Modelica and non-Modelica tools. The standard also supports co-simulation between tools, and is
already supported by a number of tool vendors.

3.14 Summary

This chapter has given a quick overview of the most important concepts and language constructs in Modelica.
We have also defined important concepts such as object oriented mathematical modelling and acausal physical
modelling, and briefly presented the concepts and Modelica language constructs for defining components,
connections, and connectors. The chapter concludes with an in-depth example of the translation and execution
of a simple model.

www.fmi-standard.org
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3.15 Literature and Further Reading

This chapter has given a short introduction to Modelica and equation-based modelling. A much more complete
presentation of Modelica together with applications and the technology behind Modelica simulation tools can
be found in [13].

The recent history of mathematical modelling languages is described in some detail in[14], whereas bits and
pieces of the ancient human history of the invention and use of equations can be found in [122], and the picture
on Newton’s second law in latin in [144]. Early work on combined continuous/discrete simulation is described
in [233] followed by [65]. A very comprehensive overview of numeric and symbolic methods for simulation
is available in [68]. This author’s first simulation work involving solution of the Schrödinger equation for a
particular case is described in [113].

Current versions of several Modelica tools are described at www.modelica.org, including OpenModelica,
Wolfram SystemModeler (before 2012 called MathModelica), and Dymola meaning the Dynamic modelling
Laboratory. Several of the predecessors of the Modelica language are described in the following publications
including Dymola meaning the Dynamic modelling Language [88, 89], Omola [203, 9], ObjectMath [119, 299,
120], NMF [248], Smile [93], etc.

Speed-Up, the earliest equation-based simulation tool, is presented in [251], whereas Simula-67–the first
object-oriented programming language–is described in [35]. The early CSSL language specification is described
in [258]whereas theACSL system is described in [209]. TheHibliz system for an hierarchical graphical approach
to modelling is presented in [89]. Software component systems are presented in [12, 260].

The Simulink system for block oriented modelling is described in [201], whereas the MATLAB language
and tool are described in [202].

The DrModelica electronic notebook with the examples and exercises from this book has been inspired
by DrScheme [102] and DrJava [8], as well as by Mathematica [306], a related electronic book for teaching
mathematics [80], and the MathModelica (in 2012 renamed to Wolfram SystemModeler) environment [117,
229, 110]. The first version of DrModelica is described in [185, 186].

The OpenModelica version of notebook called OMNotebook is described in [103, 11]. Applications and
extensions of this notebook concept are presented in [250, 210, 271].

General Modelica articles and books: [204, 117, 90], a series of 17 articles (in German) of which [225](Otter
1999) is the first, [270, 114, 91, 107, 111, 112].

The proceedings from the following conferences, aswell as several conferences not listed here,which contain a
number ofModelica related papers: the InternationalModelica Conference: [105, 226, 106, 255, 172, 18, 64, 75]
and the Equation-Based Object-Oriented Languages and Tools (EOOLT) workshop series: [116, 115, 118, 66,
217]. the Scandinavian Simulation Conference, e.g.: [104] and some later conferences in that series, two special
conferences with focus on biomedical [109] and safety issues [108], respectively.

3.16 Self-assessment

1. Create a class Add that calculates the sum of two parameters, which are Integer numbers with given values.
2. Create an instance of class Dog that overrides the default name with "Timmy"

class Dog
constant Real legs = 4;
parameter String name = "Scott";

end Dog;

3. What do the terms partial, class, and extends stand for?
4. Consider the Bicycle class below.

record Bicycle
Boolean hasWheels = true;
Integer nrOfWheels = 2;

end

www.modelica.org


96 Peter Fritzson

Define a record ChildrensBike that inherits from the class Bicycle and is meant for kids. Give the
variables values.

5. Write a class, Birthyear, which calculates the year of birth from this year together with a person’s age.
Point out the declaration equations and the normal equations. Write an instance of the class Birthyear
above. The class, let’s call it MartinsBirthyear, shall calculate Martin’s year of birth, call the variable
martinsBirthyear, who is a 29-year-old. Point out the modification equation. Check your answer, e.g. by
writing as below:7

val(martinsBirthday.birthYear ,0)

6. Consider the class Ptest below:

class Ptest
parameter Real x;
parameter Real y;
Real z;
Real w;

equation
x + y = z;

end Ptest;

What is wrong with this class? Is there something missing?
7. Create the class Average that calculates the average between two integers, using an algorithm section.

Make an instance of the class and send in some values. Simulate and then test the result of the instance class
by writing:

instanceVariable.classVariable.

8. Write a class AverageExtended that calculates the average of 4 variables (a, b, c, and d). Make an instance
of the class and send in some values. Simulate and then test the result of the instance class as suggested in
the question above.

9. Using an if-equation, write a class Lights that sets the variable switch (integer) to one if the lights are on
and zero if the lights are off.

10. Using a when-equation, write a class LightSwitch that is initially switched off and switched on at time
5. Tip: sample(start, interval) returns true and triggers time events at time instants and rem(x, y)
returns the integer remainder of x/y, such that div(x,y) * y + rem(x, y) = x.
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Chapter 4
Causal-Block Diagrams: A Family of Languages for Causal
Modelling of Cyber-Physical Systems

Cláudio Gomes, Joachim Denil, and Hans Vangheluwe

Abstract The description of a complex system in terms of constituent components and their interaction is
one of the most natural and intuitive ways of decomposition. Causal Block Diagram (CBD) models combine
subsystem blocks in a network of relationships between input signals and output signals. Popular modelling
and simulation tools such as Matlab/Simulink® implement different variants from the family of Causal Block
Diagram formalisms. This chapter gives an overview of modelling and simulation of systems with software
and physical components using Causal Block Diagrams. It describes the syntax and - both declarative and
operational - semantics of CBDs incrementally. Starting from simple algebraic models (no notion of time), we
introduce, first a discrete notion of time (leading to discrete-time CBDs) and subsequently, a continuous notion
of time (leading to continuous-time CBDs). Each new variant builds on the previous ones. Because of the heavy
dependency of CBDs on numerical techniques, we give an intuitive introduction to this important field, pointing
out main solutions as well as pitfalls.

Learning Objectives

After reading this chapter, we expect you to be able to:

• Judge when to employ each of the variants of the CBD formalism (algebraic, discrete time, or continuous
time);

• Understand the corresponding syntax and semantics of each of the formalisms
• Identify the main issues such as numerical accuracy encountered when simulating physical systems and
mitigate them

4.1 Introduction

The design process of complex systems, aided by the technology advances in the last century, is rapidly shifting
from small scale development of isolated systems, to large scale development of integrated systems [15].

The graphical representation of such systems using blocks and arrows is one of the first methods used to
represent systems. One of the benefits of this notation is that complex systems can be hierarchically decomposed
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into sub-systems, thus providing a way to deal with complexity. Causal Block Diagrams (CBD) is a formalisation
of this intuitive graphical notation.

Originally, CBDs were used to represent and simulate analog circuits [15, 280, 28, 128], with the most
commonly used blocks illustrated in Table 4.1. Nowadays, this formalism is widely used in the modelling and
simulation of systems that comprise a physical and a controller component, as depicted in Figure 4.1.

In this kind of system, the controller, often implemented in software, monitors the activity of physical
processes by means of sensors, takes appropriate decisions, and influences the physical processes through
actuators. This architecture can be generalised to networked software and many other processes, not necessarily
physical. Examples include cruise controllers, thermostats, robotic arms, and insulin pumps.

For the purposes of introducing the CBD formalism, we hold on to the traditional view of a physical process
being controlled by a software component, also known as a feedback control system [16].

Table 4.1: Block representation for analog circuits. Reproduced from [45].

Controller PlantActuators

Sensors

PhysicalCyber

Fig. 4.1: Generic embedded system structure.
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In the next section, a simple running example will be introduced, as well as some necessary background
concepts. In the remaining sections, CBDs are introduced gradually in three different flavors: algebraic, discrete
time, and continuous timeCBDs. These are distinguished by the class of blocks at the disposal of themodeler. The
gradual presentation allows for a deeper understanding of all the concepts related to modelling and simulation
of CBDs. The last few sections of the chapter deal with advanced concepts, related to the simulation of CBDs.

4.2 Background

A dynamical system is characterised by a state and a notion of evolution rules. The state is a set of point values
in a state space. The evolution rules describe how the state evolves over an independent variable, usually time.

The domain of the time variable dictates the kind of dynamical system: if time ranges over a continuous set,
usually R, then the dynamical system is continuous time; if time ranges over a countable set, usually N, then the
dynamical system is discrete time.

Cruise Control System

Cruise Controller Car (Plant)Thro�le

Tachometer

Desired
Speed

PhysicalCyber

Fig. 4.2: Cruise control system.

Consider the cruise control system depicted in Figure 4.2. The car is a dynamical system whose state (e.g.,
the velocity) evolves continuously in time. The state of software controller, on the other hand, evolves discretely
through time, as any software variable does, by consequence of assignment instructions.

The system in Figure 4.2 is an example of a feedback control system: the physical system – the car – is
actuated by control inputs generated by control software – the cruise controller. The sensors are the tachometers
that translate wheel revolutions per minute into instantaneous velocity. The actuators are the motor throttle
and brakes. The cruise controller software decides, based on current speed of the car, which amount of thrust
(throttle or brakes) should be applied to restore the car to a desired speed despite drag, weight, and other factors.

Obviously, it is not desirable to wait for a car prototype to be built, in order to test the control software. This
motivates the use of two dynamical systems: (a) A continuous dynamical system which acts as a mock-up of a
real car, and (b) A discrete time dynamical system which acts as a mock-up of the software unit.

With these models, early evaluation of many different control strategies can be performed, at a much lower
cost. Furthermore, the chosen controller model can then be used to automatically generate the software code.

4.2.1 Models of Physical Systems

Physical systems are inherently continuous: their state evolves continuously through time. Ordinary Differential
Equations (ODE) describe how physical quantities change continuously in time, and are thus ideal models to
describe the behaviour of physical systems. Initial value problems are ODEs that have a constraint on the initial
state. Together with the ODEs, extra equations can be added to represent the outputs of the system. Formally,
we consider models of the form:
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x ′(t) = F (x, u, t),
y(t) = G(x, u, t),
x(0) = x0,

(4.1)

where x(t), x ′(t), y(t), u(t) are vectors, x(t) = [x1(t), . . . , xn (t)]T represents the state vector, u(t) represents
the input, and x0 is the initial state. The state here denotes the minimal information required to determine,
together with the input u(t) and function F (x, u, t), the complete future states of the system. Function G is the
output function.

Dynamic behavior model

A possible model of the dynamic behavior of the car, to be used in the design of the cruise controller in the
Cruise Controller example is:

v′ =
1
m

(T − kv)

y = v

(4.2)

where v is the velocity, v′, T is the thrust force and k depends on the air density and car shape. This model
assumes that the car moves in a straight line and neglects any effects that gravity might induce. Reasonable
assumptions for early experimentation.

4.2.2 Discrete Time Models

While the solution of ODEs is continuous, the state of the software unit, in the cruise control system presented in
Example 4.2, can only evolve discretely, by the nature of the digital computer on which it runs. For mathematical
treatment (e.g., proving that the cruise controller is correct), differential equations may be used for an early
specification of the control software. However, when it comes to simulating those models in a digital computer,
the only available option is to use discrete time models.

First order difference equations, and a constraint on their initial state, allow the specification of such models.
They take the form

x[s+1] = F (x[s], u[s+1]),

y[s] = G(x[s], u[s]),

x[0] = x0,

(4.3)

where s denotes the step, x[s] is the state vector at step s, u[s+1] is the input vector, y[s] the output vector, and
x0 the initial value of the state vector. The new vector x[s+1] is computed from the old one x[s] and input u[s+1],
according to the specification function F. The output function G allows values to be read from the dynamical
system. The repeated application of functions F and G yields the discrete evolution of the state and output
vectors. Difference equations are sometimes written as

x[s] = F (x[s−1], u[s])

y[s] = G(x[s], u[s])

x (0) = x0.

4.2.2.1 Discrete Control Systems

Software Controller

The cruise control software can be described by the following difference equation:
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e[s+1] = e[s] + h
(
v[s+1]
d

− v[s+1]
)

T [s] = Kp

(
v[s]
d
− v[s]

)
+ Kie[s]

(4.4)

where vd is the velocity that the car should be kept at (input); v is the actual velocity (input) of the car;(
v[s+1]
d

− v[s+1]
)
is the instantaneous error; e[s] denotes the accumulated error (state); T [s] is the thrust force to

be transmitted to the car (output). Finally, Kp and Ki are constant parameters of the controller.

The controller in Example 4.2.2.1 gets the car velocity input v[s] from the readings of the tachometer (recall
Figure 4.2). If the differential equation Eq. 4.2 is used to model the car, then v(t) is a continuous quantity and
so we can relate it to the input of the controller by v[s] = v(s × ∆t), where ∆t denotes the constant interval of
time between two successive tachometer readings. From now on, assume that Eq. 4.2 is coupled to Eq. 4.4 in
this manner.

Intuitively, the thrust force T [s] is proportional to the instantaneous error v[s]
d
− v[s] and to the accumulation

of errors e[s] from previous steps.
The following two paragraphs give an intuitive rationale for each component of Eq. 4.4.

Kp

(
v[s]
d
− v[s]

)
component.

When the instantaneous error is large, the current velocity is far away from the desired one, so the thrust force
should be large in order to ensure that the car quickly accelerates/brakes toward the desired speed. When the
instantaneous error is small, the car is almost at the desired speed, so the thrust force should be smaller to avoid
causing discomfort to the driver. For now, neglect the Kie[s] component in the thrust force calculation. After
a while, if the thrust force given by T [s] = Kp

(
v[s]
d
− v[s]

)
becomes symmetric (same magnitude, opposite

direction) with the drag force in Eq. 4.2, the car acceleration will be null and its speed will be kept constant.
However, that speed will not be exactly equal to the desired speed, because −kv , 0 =⇒

(
v[s]
d
− v[s]

)
, 0.

This is where the Kie[s] component, neglected until now, has its use.

Kie[s] component.

This component accumulates the instantaneous error over time, and contributes to the thrust force accordingly.
Suppose that the thrust force is counteracted by the drag force and the car is kept at a constant speed, below the
desired velocity, just like in the previous paragraph. Then, the accumulated error will keep growing, ensuring
that the second component continues to increase the thrust force until it overcomes the drag force. Notice that
this might cause the car to overshoot the desired speed, which can be dangerous. The accumulated error will start
decreasing once that happens, decreasing the thrust force. The choice of parameters Kp and Ki is an important
part of tuning the controller.

4.2.2.2 Discretisation of Differential Equations

The example introduced in this section represents a typical feedback control system, the majority of which are
developed using CBDs. In the following sections it will become clear how this is achieved.

4.3 Algebraic Causal Block Diagrams

Algebraic CBDs are CBDs where the only atomic blocks permitted are algebraic ones: summation, negation,
inversion, product, raise to power and roots. These can be used to represent systems where there is no notion of
time and no evolving state. In other words, the time is a constant: now.
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While it may seem restricted, these kind of systems arise in the study of the steady state behaviour of dynamic
systems, and are used to represent algebraic functions.

Steady State

Consider the car dynamics in Eq. 4.2. The steady state behaviour of the car happens when it is not accelerating.
That is, for known constants T , k:

0 =
1
m

(T − kv)

The equation gives insight about the torque required to keep the car at the same speed: T = kv. The larger the
drag force, the larger the torque, and the more energy is required.

4.3.1 Syntax

The main constituents of a CBD are blocks and connections between blocks. Blocks can be atomic or composite.
Composite blocks stand for an external CBD, specified elsewhere. These blocks will be drawn with a dashed
contour. In algebraic CBDs, atomic blocks can be summation, negation, inversion, product, raise to power, and
roots. These will be denoted with the appropriate mathematical symbol.

Since a block can have more than one input and more than one output, the notion of ports is essential to
distinguish between inputs and between outputs. Atomic blocks have up to two input ports - depending on the
operation - and one output port. Composite blocks can have any number of input and output ports.

Figure 4.3a shows an example of an Algebraic CBD, that calculates the drag force d affecting a car, as
it moves with a velocity v, given as input. The composite block c refers to a CBD that calculates the drag
coefficient, detailed in Figure 4.3b.

(a) Drag force block. (b) Drag coefficient block.

Fig. 4.3: Example Algebraic CBDs.

The ports associated with a block will not be drawn explicitly but they are part of the CBD and have identifiers
(ids). The directed connections will make clear which input ports and output ports are associated with a block.
When there is a need, the input port id is shown at the border of the associated block. In the specification of a
composite block, the input and output ports are represented as triangles. Whether the port is input or output is
clear from the context.

Blocks are also referred to by ids. The id of a port is comprised of the name of the port, and the id of the
parent block. The id of a block is formed by its name, along with the id of its parent CBD. Note the recursive
definition. While the id is almost never visible in the graphic representation, it is always defined.

Some of the uses of ids are: the unambiguous description of connections between ports and the unambiguous
identification of individual blocks after the flattening process (Section 4.3.2).

More often, the names of the blocks will be depicted in the graphical representations, to enhance their
readability. Names are not ids, they are a part of the id. For instance, the product blocks in Figure 4.3a have two
ports with distinct ids, even though these are not depicted in the graphical representation. In the same picture,
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the name v of the input and the name d of the output port are shown. Similarly, the name c of the composite
block is shown. Notice that in Figure 4.3b the same name c also denotes the output port. There is no ambiguity
as the composite block and the output port have distinct ids, even though they have the same name.

Whenever a composite block is used, all its internal blocks adopt different ids, based on the id of the CBD
where the composite block is used. For instance, the fact that the composite block c is used in the CBD of
Figure 4.3a means that, when processing that CBD, the ids of the inner blocks/ports of c (detailed in Figure 4.3b)
include the id of c. This has two important consequences:

1. the id of any element depends ultimately on where it is being used, or where any of its parents are being
used;

2. if the composite blocks are replaced by their specification in a flattening process, there will be no two ids
alike, thus ensuring the well formedness of the CBD.

4.3.2 Semantics

Themeaning of an algebraicCBD is an association of a value to each of the ports in theCBD. It can be conveyed in
two general ways: bywriting themathematical equations that correspond to the CBD (translational semantics), or
by giving an algorithmwhich computes the value associated with each input/output port (operational semantics).

To simplify both these approaches, it is assumed that all composite blocks are replaced by their specification
in a flattening process. This process is done recursively until all composite blocks have been replaced by their
specification [232]. The following aspects are important to ensure the well-formedness of the flattened CBD:

1. After replacing a composite block, their input/output ports (e.g., the triangular ones in Figure 4.3b) will be
connected from both sides. These are redundant ports and hence substituted by a single connection.

2. The id of the replaced composite block is still part of the ids of its inner blocks/ports. This ensures uniqueness
among ids after the flattening process is complete.

Figure 4.4 shows the result of replacing the composite block c with its specification (in Figure 4.3b). The ids,
shown explicitly in the picture, contain the ids of the composite block replaced. During the process, the port c
of the composite block became redundant and thus was removed.

The meaning of a flattened CBD is the same as the original CBD. Every block/port has a unique id and every
connection is between ports. The semantics of CBDs can be thus explained assuming they have been flattened.

4.3.2.1 Translational Semantics

Given a flattened algebraic CBD, the equations that it represents can be written down using the rules shown in
Table 4.2.

The system of equations that results from applying the following rules to each port, block and connection, of
an algebraic CBD, can then be solved for the unknowns to get the values associated with each port in the CBD.
The flattened algebraic CBD depicted in Figure 4.4 is translated into the following set of algebraic equations:
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Fig. 4.4: Flattened version of algebraic CBD depicted in Figure 4.3a.

Table 4.2: Translational semantics of a flattened algebraic CBD.

1. Assign a unique mathematical variable to the id of each port in the CBD.
2. Let (p, q) denote a connection from port id p to port id q, and let var(p) and var(q) denote the mathematical variables

corresponding to p and q, according to the assignment made in Rule 1. Then, the equation associated with the connection
(p, q) is var(p) = var(q).

3. For each atomic block, let the sequence p1, p2, . . . denote the list of ids of its inputs ports, and let q denote id of the
output port:

a. If the block is a constant with value c, then it has no input ports and the resulting equation is var(q) = c;
b. If it is a summation, then the resulting equation is var(q) = var(p1) + var(p2);
c. If it is a product, then the resulting equation is var(q) = var(p1) × var(p2);
d. If it is a negation, then the resulting equation is var(q) = −var(p1);
e. If it is an inversion, the resulting equation is var(q) = 1

var(p1 ) ;
f. If it is a raise-to-power, the resulting equation is var(q) = var(p1)var(p2 ) ;
g. If it is a root, the resulting equation is var(q) = var(p1)

1
var(p2 ) ;

var(v) = var(b1.i1)
var(v) = var(b1.i2)

var(b1.o1) = var(b2.i1)
var(b2.o1) = var(d)

var(c.b3.o1) = var(b2.i2)
var(c.Cd .o1) = var(c.b1.i1)
var(c.b1.o1) = var(c.b2.i1)
var(c.p.o1) = var(c.b1.i2)
var(c.A.o1) = var(c.b2.i2)
var(c.b2.o1) = var(c.b3.i1)
var(c.b3.o1) = var(c.b4.i1)
var(c.b4.o1) = var(c.b3.i2)
var(c.Cd .o1) = Cd

var(b1.o1) = var(b1.i1) × var(b1.i2)
var(b2.o1) = var(b2.i1) × var(b2.i2)
var(c.p.o1) = p

var(c.b1.o1) = var(c.b1.i1) × var(c.b1.i2)
var(c.A.o1) = A

var(c.b2.o1) = var(c.b2.i1) × var(c.b2.i2)
var(c.b3.o1) = var(c.b3.i1) + var(c.b3.i2)
var(c.b4.o1) = −var(c.b4.i1)

(4.5)
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The system in Eq. 4.5 can be simplified to a quadratic drag force var(b2.o1) = var(v)2 × 1
2 × Cd × p × A,

where p is the air density, CD the drag coefficient, and A the cross sectional area of the car. Obviously, the value
of the input port v has to be known in order to solve for the value of the output port b2.o1.

Any system of algebraic equations that uses operations supported by the atomic blocks of algebraic CBDs
can be represented as an algebraic CBD. The CBD in Figure 4.3b can be drawn directly from the equation

c = CD × p × A − c (4.6)

where c is the output, and CD , A, p constants.

4.3.2.2 Operational Semantics

Instead of deferring the responsibility of computing the values associated with each port, to an equation solver,
it is possible to do so directly. Two such algorithms are presented.

Algorithm 1 presents the dataflow version of the operational semantics. A list of atomic blocks to be computed
is revisited iteratively until no blocks remain. A block can be computed only after all the blocks it depends on
have been computed. The algorithm terminates after O((#atomic blocks in D)2) iterations.

The inefficiency of this algorithm lies in not taking advantage of the dependencies between blocks to come
up with an optimal execution order for blocks. An improved algorithm will be presented later, after formalizing
the dependency information between blocks.

Algorithm 1 Data-flow algorithm to evaluate an Algebraic CBD D.
function EvalAlgebraicCBD(D, v1, . . . , vn )

Let val(p) be the computed value associated with port identified by p.
Let i1, . . . , in be the ids of the input ports associated with the CBD D.
Let o1, . . . , om be the ids of the output ports associated with the CBD D.
Then, val(i1) := v1, . . . , val(in ) := vn are the values associated with each input ports of D.
Let B denote the set of atomic blocks of D not yet computed.
Initially, B := all atomic blocks in D.
while B , { } do

for bi ∈ B do
Let p denote the single output port of bi .
Let P = {p1, p2, . . . } denote the inputs ports of bi .
Let Q = {q1, q2, . . . } denote the output ports connected to each input port p j ∈ P, respectively.
Let B = block(q1)∪block(q2)∪ . . . be the set of blocks that bi depends on, where block(q j ) is the block associated

with port q j or the empty set, if no such block exists.
if B ∩ B = { } then

Remark: val(q1), val(q2), . . . have been computed before.
val(p) :=ComputeBlock(bi , val(q1), val(q2), . . .)
Let P = {ρ1, ρ2, . . . } be the set of ports to which port p connects to.
val(ρ j ) := val(p), for ρ1 ∈ P
B := B\ {bi }

end if
end for

end while
P = { }
return val(o1), . . . , val(om )

end function
function ComputeBlock(b, val(q1), val(q2), . . .)

if b is a summation block then
return val(q1) + val(q2)

end if
if b is a Constant Block with value v then

return v
end if
. . .

end function
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The advantage of Algorithm 1 is its simplicity. It represents the execution model of the dataflow paradigm
and, provided that no algebraic loops exist, it always finds the values associated with every port of a flattened
CBD.

An algebraic loop arises when a block depends indirectly on itself. It is thus natural to think of the CBD in
terms of a dependency graph and identify the cycles thereof. In the CBD of Figure 4.4, blocks c.b4 and c.b3
are part of one algebraic loop. Algebraic loops also happen in algebraic systems of equations. For example, in
Eq. 4.6, the c variable depends on itself.

Both these loops where introduced artificially for the purposes of illustration. They can easily be removed
by reformulating the mathematical expression that the CBD represents. However, in general, not all algebraic
loops can be removed by this method and a way to detect them is required.

Given a flattened CBD, its corresponding dependency graph can be created applying the rules in Table 4.3.
For example, Figure 4.5 shows the dependency graph of the flattened CBD shown in Figure 4.4.

Table 4.3: Rules for constructing the dependency graph.

1. For each block identified by b, create a unique node v. Let node(b) denote the corresponding node.
2. For each connection (p, q) from port id p to port id q, let bp and bq denote the block ids associated with ports p and

q, respectively. If p or q have no associated blocks, then ignore this connection and proceed to the next one. Create a
directed edge (node(bq ), node(bp )) in the dependency graph, to mark that fact that bq depends on bp .

Node
Strong component

Fig. 4.5: Dependency graph and strong components.

The dependency graph makes the detection of algebraic loops a simple matter of detecting the strong
components in the graph. Formally, a strong component S = {n1, n2, . . .} of a graph G is a set of nodes where,
between every ni , n j ∈ S, there are two different paths: p1 : ni

∗
⇒ n j and p2 : n j

∗
⇒ ni . This implies that every

node in a strong component is either the only node in that strong component, or depends on itself, through some
other node, also in the same strong component. Figure 4.5 illustrates the strong components of the dependency
graph. As expected, the blocks c.b4 and c.b3 are part of the same strong component.

Tarjan’s algorithm [262] accepts a graph and outputs a sorted list of strong components. The sort order of
the strong components is a topological order according to the dependencies between strong components. For
the example in Figure 4.5, one possible topological order is:
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{c.CD } , {c.p} , {c.A} , {c.b1} , {c.b2} , {c.b3, c.b4} , {b1} , {b2}

If no algebraic loops exist in the flattened graph, then the sorted list of strong components returned by the
algorithm is just the topological sort of the nodes in dependency graph. In this list, a singleton strong component
always appears after the nodes it depends on.

In the case where algebraic loops exist, all nodes belonging to the same algebraic loop will be in the same
strong component. Regarding the sort order, non-singleton strong components appear after all components on
which it depends on. A strong component depends on other if any one of its comprising nodes depends on at
least one of the other’s nodes.

These two facts about the sorted strong component list, given by Tarjan’s algorithm [262], provide a basis
for an improved algebraic CBD operational semantics, that not only can compute the values associated with all
output ports much faster than Algorithm 1, but also detects algebraic loops. Algorithm 2 summarizes the steps
for computing the values of all ports of a flattened CBD, under the improved algorithm.

Algorithm 2 Evaluation an Algebraic CBD D with support for algebraic loops.
function EvalAlgebraicCBD(D, v1, . . . , vn )

Let val(p) be the computed value associated with port identified by p.
Let i1, . . . , in be the ids of the input ports associated with the CBD D.
Let o1, . . . , om be the ids of the output ports associated with the CBD D.
Then, val(i1) := v1, . . . , val(in ) := vn are the values associated with each input ports of D.
Let G denote the dependency graph induced by D.
Let SC = (S1, S2, . . .) denote the sorted list of strong components obtained with Tarjan’s algorithm.
for Si ∈ SC do

if Si = {n } then
Let b denote the id of the unique block such that node(b) = n.
Let p denote the id of the output port associated with b.
Let {q1, q2, . . . } denote the ids of the input ports of b.
Remark: val(q1), val(q2), . . . have been computed.
val(p) :=ComputeBlock(b, val(q1), val(q2), . . .)
Let P = {ρ1, ρ2, . . . } be the ports that port p connects to.
val(ρ j ) := val(p), for p j ∈ P

else if Si = {n1, n2, . . . } then
Let b1, b2, . . . be the unique blocks such that node(b1) = n1, node(b2) = n2, . . .
Let p1, p2, . . . denote the ids of the outputs ports of b1, b2, . . . respectively.
Let Q1,Q2, . . . denote the sets of ids of the inputs ports of b1, b2, . . . respectively, where Qi =

{
q (i)
1 , q (i)

2 , . . .
}
.

For each Qi there might be input ports whose value is unknown, because these are connected to unknown output
ports. Let Q̄i =

{
q̄ (i)
1 , q̄ (i)

2 , . . .
}
⊆ Qi denote the set of input ports whose value is known.

(val(p1), val(p2), . . .) :=SolveLoop(b, val(q̄ (1)
1 ), val(q̄ (1)

2 ), . . . , val(q̄ (2)
1 ), . . .)

for pi ∈ p1, p2, . . . do
Let Pi =

{
ρ (i)
1 , ρ (i)

2 , . . .
}
be the ports that port pi connects to.

val(ρ (i)
j ) := val(pi ), for ρ (i)

j ∈ Pi

end for
end if

end for
return val(o1), . . . , val(om )

end function

The SolveLoop function computes the values of all unknown ports (whose value is unknown) associated
with the blocks in the loop. A input port is unknown when an unknown output port is connected to it. An output
port is unknown when the block it is associated with belongs to the strong component. Equivalently, an input
port is known when a known output port is connected to it. A known output port is associated with a block that
does not belong to the strong component.

Essentially, solving an algebraic loop amounts to computing the solution of a matrix equation of the form
X = F (X ,U):
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

val(p1)
val(p2)
. . .

︸      ︷︷      ︸
X

=



F1(val(p1), val(p2), . . . , val(q̄(1)
1 ), val(q̄(1)

2 ), . . . , val(q̄(2)
1 ), . . .)

F2(val(p1), val(p2), . . . , val(q̄(1)
1 ), val(q̄(1)

2 ), . . . , val(q̄(2)
1 ), . . .)

. . .

︸                                                                                  ︷︷                                                                                  ︸
F (X ,U )

(4.7)

Where X =
[
val(p1), val(p2), . . .

]T denotes the unknown values of the output ports of the strong component,
and U =

[
val(q̄(1)

1 ), val(q̄(1)
2 ), . . . , val(q̄(2)

1 ), . . .
]T

denote the known values of the input ports.
In Eq. 4.7, the unknown input ports are not considered because these depend directly, by algebraic equality,

on the output ports connected to them. So finding the values of the unknown output ports is enough to be able
to find the values of all unknown ports of the strong component.

The definition of F depends on the atomic blocks that belong to the strong component. If F is linear, then
the above equation can be written in the form AX = BU and solved with any technique suitable to solve linear
systems of equations (see [60, Chapter 6&7]). Matrices A and B depend on the blocks in the strong component,
and the product BU is known.

If F is non-linear, successive substitution techniques ((see [60, Chapter 10])) can be used in an attempt to
find X .

Caution has to be taken when non-linear loops are solved, as they might not have a solution, or a unique
solution. The iterative methods require initial guess values to be provided for X , and depending on those initial
guesses, different solutions might be attained. Both the initial guesses, and the solutions attained have to be
physically meaningful, as the equations often represent the characteristics of physical systems (e.g., drag forces,
concentrations, etc. . . ).

For the algebraic loop containing bocks c.b4 and c.b3 in Figure 4.5, the resulting linear system of equations
and its analytical solution is:




val(c.b3.o1) = val(c.b3.i1) + val(c.b3.i2)
val(c.b3.i2) = val(c.b4.o1)
val(c.b4.o1) = −val(c.b4.i1)
val(c.b4.i1) = val(c.b3.o1)

↔




val(c.b3.o1) − val(c.b4.o1) = val(c.b3.i1)
val(c.b3.o1) + val(c.b4.o1) = 0

↔

[
1 −1
1 1

]

︸   ︷︷   ︸
A

[
val(c.b3.o1)
val(c.b4.o1)

]

︸             ︷︷             ︸
X

=

[
1
0

]

︸︷︷︸
B

[
val(c.b3.i1)

]︸            ︷︷            ︸
U

↔

[
val(c.b3.o1)
val(c.b4.o1)

]
=

[ 1
2val(c.b3.i1)
− 1

2val(c.b3.i1)

]

In this section, the syntax and semantics of Algebraic CBDs were described. These are used in systems where
there is no notion of evolving state and time. Any algebraic system of equations can be written as an algebraic
CBD.

We described two equivalent approaches to obtain the meaning of an algebraic CBD, summarised in Fig-
ure 4.6. The solutions are only approximately equal because, in the presence of algebraic loops, these may have
to be solved iteratively to get an approximate solution.

Flat Algebraic CBD Algebraic Equation

Solution BSolution A
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Sem
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tics
 

(vi
a T
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le 

2)

Op. Semantics 
(via Algorithm 2) 

Algebraic 
Manipulation 

Algebraic CBD

Flat. Process

Fig. 4.6: Algebraic CBDs semantic equivalence (approximate).
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In the next section, we expand the available atomic blocks to introduce the notion of evolving state via discrete
jumps in time.

4.4 Discrete-time CBDs

In this section, the Discrete time (DT) CBDs are presented. Syntactically, the only difference to the Algebraic
CBDs, is that the DT CBDs allow the modeler to use not only algebraic blocks, but also a step delay block.
Because the Delay block has a state, which gets updated whenever the block is computed, the other blocks in a
DT CBD no longer have static outputs (as in the algebraic CBDs case), but instead change whenever they are
computed. DT CBDs share many similarities with discrete time dynamical systems, presented in Section 4.2.2.

4.4.1 Syntax

The step delay block has two inputs i1, ic and one output o1. It is represented with aD symbol, as highlighted in
the DT CBD of Figure 4.7. The input port ic is called the initial condition and is distinguished by its subscript.

Fig. 4.7: Discrete-time CBD of the cruise controller with an highlighted Delay block D. Equivalent to Eq. 4.4.

4.4.2 Semantics

The fact that the output of the delay block changes whenever it is computed means that the output of any other
block that depends on the delay will also be dynamic. To formalize the multiple different values that any single
port can assume, the notion of step is necessary. A step is a natural index that allows the distinction between
the different outputs of each block. It is no different than the index used in difference equations, presented in
Section 4.2.2.

4.4.2.1 Translational

The output of the delay block is defined in terms of the input provided at the previous step. This is the essence
of difference equations, where the current values are calculated from the previous ones. It is then natural that
the meaning of a DT CBD is a set of difference equations.
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Similarly to the algebraic CBD case, the flattening process ensures that only atomic blocks remain in the DT
CBD. Given a flattened DT CBD, the difference equations that it represents can be written following the rules
specified in Table 4.4.

Table 4.4: Translational semantics of a flattened DT CBD.

1. Assign a unique mathematical variable to the identifier of each port in the CBD.
2. Let (p, q) denote a connection from port identified by p to port identified by q, and let var(p) and var(q) denote

the mathematical variables corresponding to p and q, following the assignment made in Rule 1. Then, the equation
associated with the connection (p, q) is
var(p)[s+1] = var(q)[s+1].

3. Let p1, p2, . . . denote the list of ids of inputs ports of an atomic block, and let q denote id of its single output port:

a. If the block is a delay block, then the resulting equations are
var(q)[s+1] = var(p1)[s] and
var(q)[0] = var(pc )[0];

b. If the block is a constant block with value c, then the resulting equation is
var(q)[s+1] = c;

c. If the block is a summation block, then the resulting equation is
var(q)[s+1] = var(p1)[s+1] + var(p2)[s+1];

d. If the block is a product block, then the resulting equation is
var(q)[s+1] = var(p1)[s+1] × var(p2)[s+1];

e. If the block is a negation block, then the resulting equation is
var(q)[s+1] = −var(p1)[s+1];

f. If the block is an inversion block, then the resulting equation is
var(q)[s+1] = 1

var(p1 )[s+1] ;
g. If the block is a raise-to-power block, then the resulting equation is

var(q)[s+1] =
(
var(p1)[s+1]

)var(p2 )[s+1]
;

h. If the block is a root block, then the resulting equation is

var(q)[s+1] =
(
var(p1)[s+1]

) 1
var(p2 )[s+1] ;

The result is a set of difference equations, along with initial conditions (see Rule 3(a) of Table 4.4), that can
be solved, either to obtain a closed-form solution, or simulated, by an independent solver. As an example, the
DT CBD represented in Figure 4.7 corresponds to, after simplification and renaming of variables, the software
controller of Eq. 4.4.

Conversely, any difference equation written in the form of Eq. 4.3 can be represented as a DT CBD. This is
illustrated in Figure 4.8.

...

......

...

Fig. 4.8: Difference equation (written in the form of Eq. 4.3) can be represented in a DT CBD. The i-th
component of the vector x is represented as xi .
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4.4.2.2 Operational

When compared to the algebraic CBDs operational semantics, in Algorithm 2, any algorithm that simulates DT
CBDs has to compute not single values for variables, but discrete signals. A discrete signal is an ordered list of
values, indexed by the step.

The operational meaning of the DT CBDs is thus the computation of the discrete time signal associated
with each port. That can be done by fixing the step at 0, then computing all values in the CBD, as if it were
an algebraic CBD. Then, step is incremented to 1, and the evaluation of all values is repeated, and so on. The
fact that, within the same step, the DT CBD is evaluated as if it were an algebraic CBD, allows us to reuse the
EvalAlgebraicCBD function, defined in Algorithm 2, with some minor changes:

Algorithm 3 summarizes the operational semantics. The definition of the ComputeBlock function is in-
cluded, to specify the computation of the delay block. The computations of the remaining atomic blocks are
trivial.

Algorithm 3 Operational Semantics of an DT CBD D.
function EvalDiscreteTimeCBD(D, v1, . . . , vn , N )

Let val(p) be the computed value associated with port identified by p.
Let i1, . . . , in be the ids of the input ports associated with the CBD D.
Let o1, . . . , om be the ids of the output ports associated with the CBD D.
Then, val(i1) := v1, . . . , val(in ) = vn are the values associated with each input ports of D.
s := 0
while n ≤ N do

EvalAlgebraicCBD(D, v (s)
1 , . . . , v (s)

n , s)
s := s + 1

end while
return val(o1), . . . , val(om )

end function
function ComputeBlock(b, val(q1), . . . , s)

if b is a delay block then
if s = 0 then

return val(qc )(0) , where qc is the id of the initial condition port.
else

return val(qc )(s−1) .
end if

end if
if b is a summation block then

return val(q1)(s) + val(q2)(s)

end if
. . .

end function

If there are algebraic loops in the DT CBD, they are handled in the same as way in the algebraic CBDs. A
note has to be made, however, about the dependencies of the delay block. At the first step (s = 0), the output
of the delay block is equal to the input associated with its initial condition port (val(qc )(0) in Algorithm 3). At
any other step s > 0, the output is computed from the previous step s − 1. This means that, except for s = 0,
the delay block has no algebraic dependencies. And at s = 0 it depends on whatever block is connected to its
initial condition port. As a result, Rule 2 of Table 4.3 has to be adapted specifically for the Delay block and the
current step being computed.

Following the same structure as Section 4.3, this section presented the syntax and semantics, both translational
and operational, of DT CBDs. As with algebraic CBDs, the two semantics commute.

1. A parameter s is added to the ComputeBlock function, denoting the current step.
2. All values are indexed by the current step. For example, the instruction val(p) :=ComputeBlock(b, val( q1),

becomes
val(p)(s) :=ComputeBlock(b, val(q1)(s) , val(q2)(s) , . . . , s);

val(q2), . . .)
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4.5 Continuous-time CBDs

The meaning of algebraic CBDs is a set of algebraic equations, and the meaning of Discrete time CBDs is a set
of difference equations.

As shown in Section 4.2.1, differential equations are ideal to represent physical systems, whose state evolves
continuously in time. By the end of this section, it will be clear that Continuous Time (CT) CBDs too, are suited
to model these systems.

4.5.1 Syntax

Syntactically, CT CBDs include the standard algebraic blocks, a derivative, and an integral block. The Delay
block is not included.

The derivative and integral blocks have two inputs i1, ic , and one output o1. The input subscripted by c
denotes the initial condition. Both blocks will be denoted by the appropriate mathematical symbol: d

dt and
∫
.

Continuous-time CBD

Drag-

+

(a) CT CBD of the car in the cruise control system of
Figure 4.2. (b) CT CBD of the drag.

Fig. 4.9: Example CT CBDs.

Figure 4.9a shows a CT CBD example, with the Drag block specified in Figure 4.9b.

4.5.2 Semantics

4.5.2.1 Translational Semantics to Differential Equations

The meaning of a flattened CT CBD is a system of Ordinary Differential Equations (ODEs). Table 4.5 shows
the rules that build such system. The meaning of Figure 4.9a is represented, after simplification and renaming
the variables, in Eq. 4.2.

Furthermore, any ODE written in the form of Eq. 4.1 can be translated to a CT CBDs as illustrated in
Figure 4.10.

4.5.2.2 Basics of ODE Discretization

In many ODEs arising in science and engineering, and this includes, by the translational semantics, CT CBDs, a
closed-form solution cannot be found. One of the possible ways to get insight into the solution is via simulation.
Since most simulations are performed in a digital computer, solutions to ODE’s obtained via simulation can
only be approximate.
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Table 4.5: Translational semantics of a flattened CT CBD.

1. Assign a unique mathematical variable to the identifier of each port in the CBD.
2. Let (p, q) denote a connection from port identified by p to port identified by q, and let var(p) and var(q) denote

the mathematical variables corresponding to p and q, following the assignment made in Rule 1. Then, the equation
associated with the connection (p, q) is var(p)(t ) = var(q)(t ).

3. Let p1, p2, . . . denote the list of ids of inputs ports of an atomic block, and let q denote id of its single output port:

a. If the block is an Integral block, then the resulting equation is var(q)(t ) =
∫ t

0 var(p1)(τ)dτ + var(pc )(0);
b. If the block is a Derivative block, then the resulting equations are var(q)(t ) = var(p1)′(t ) and var(q)(0) =

var(pc )(0);
c. If the block is a summation block, then the resulting equation is var(q)(t ) = var(p1)(t ) + var(p2)(t );
d. . . .

...

......

...

Fig. 4.10: First order ODE, written in the form of Eq. 4.1, can represented as a CT CBD. The i-th component
of the vector x is represented as xi .

In the following paragraphs, we show how to translate ODEs into difference equations, whose solution,
obtained via simulation, approximate the solution of the ODEs. See [?, 60] for a more detailed exposition on
numerical approximation methods. The method explained is then used in Section 4.5.2.3 as the basis to describe
how a CT CBD is translated into discrete time CBDs, which approximate the solution to the original.

Consider a first order ODE without input:

x ′(t) = F (x, t)
x(0) = x0

(4.8)

where
• x(t) = [x1(t), . . . , xn (t)]T is the state vector, and
• F (x, t) = [F1(x, t), . . . , Fn (x, t)]T is the state derivative function, and x0 the initial value of x.

Let xi (t) denote the i-th state trajectory and x ′i (t) = Fi (x, t) the i-th state derivative. Assuming that xi (t) and
any of its derivatives are smooth, it can be approximated around any point t∗ by the Taylor series [302]:

xi
(
t∗ + ∆t

)
= xi

(
t∗
)
+ x ′i

(
x
(
t∗
)
, t∗

)
∆t + x (2)

i

(
t∗
) ∆t2

2!
+ . . . (4.9)

Using Taylor’s theorem, it is possible to write the Taylor series expansion in the finite form of a polynomial
and a residual in Lagrange form [60]:

xi (t∗ + ∆t) = xi (t∗) + x ′i (x(t∗), t∗)∆t + . . . + x (n)
i (t∗)

∆tn

n!
+ x (n+1)

i (ξ (t∗))
∆tn+1

(n + 1)!
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where ξ (t∗) is an unknown number between t∗ and t∗ + ∆t. The residual term x (n+1)
i (ξ (t∗)) ∆t

n+1

(n+1)! denotes the
truncation error. It cannot be computed directly but, since any of the derivatives of xi are smooth in all points
between t∗ and t∗ + ∆t, there exists a maximum constant K < ∞, such that, for any t∗ and any n,

x (n+1)
i (ξ (t∗))

(n + 1)!
≤ K

An upper bound can then be written for the remainder term in the Big O notation:

lim
∆t→0

x (n+1)
i (ξ (t∗))

(n + 1)!
∆tn+1 ≤ K∆tn+1 = O(∆tn+1)

Notice that the Big O notation O(∆tn+1) highlights the dominant term as ∆t → 0.
Taylor theorem allows us to write the Taylor series taking into account the ODE of Eq. 4.8 and replacing the

residual term by its order:

xi
(
t∗ + ∆t

)
= xi

(
t∗
)
+ F i

(
x
(
t∗
)
, t∗

)
∆t + O(∆t2) (4.10)

For small ∆t < 1 we can neglect the O
(
∆t2

)
term and approximate xi (t∗ + ∆t) by:

xi
(
t∗ + ∆t

)
≈ xi

(
t∗
)
+ F i

(
x
(
t∗
)
, t∗

)
∆t (4.11)

Going back to the vector case, this suggests that we can approximate the solution vector x (t) by the following
algorithm:

x(∆t) :≈ x(0) + F (x(0), 0)∆t

x(∆t + ∆t) :≈ x(∆t) + F (x(∆t),∆t)∆t

x(2∆t + ∆t) :≈ x(2∆t) + F (x(2∆t), 2∆t)∆t

. . .

(4.12)

Let x[s] = x(s∆t), we get the Forward Euler method to numerically approximate Eq. 4.8:

x[s+1] = x[s] + F (x[s], s∆t)∆t (4.13)

The Taylor series, introduced in Eq. 4.9 also works backward from any point, including the point xi (t∗ + ∆t):

x(
(
t∗ + ∆t

)
− ∆t) = x(t∗ + ∆t) − x ′(x(t∗ + ∆t), t∗)∆t + O(∆t2) (4.14)

Replacing the derivative by F, from Eq. 4.8, neglecting the residual term, and simplifying gives the Newton’s
Difference Quotient:

x(t∗ + ∆t) − x(t∗)
∆t

≈ F (x(t∗ + ∆t)) (4.15)

Rewritten as a difference equation gives:

x[s+1] = x[s] + F (x[s+1])∆t (4.16)

Contrary to the Forward Euler, it is not possible to get an iterative algorithm immediately out of this method:
the vector term x[s+1] depends on itself. This is an algebraic loop (recall Section 4.3.2.2). It requires that the
matrix equation be solved for x[s+1]. The presence of these loops distinguishes implicit (with loops) from explicit
(without loops) methods. The important point is that, as shown in Section 4.3.2.2, these loops can be solved at
each simulation step.

4.5.2.3 Translational Semantincs to Discrete-time CBDs

As explained in the previous section, differential equations can be discretised to difference equations by means
of numerical approximation techniques, which can then be easily simulated.
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Since any CT CBD can be translated into an ODE (by Table 4.5), and since the meaning of a discrete
time CBD is a system of difference equations, it is natural to wonder whether a discrete time CBD can be
transformed directly into a discrete time CBD, which realizes the approximation. The only blocks that need to
be approximated are the derivative and the integral. All the other blocks are algebraic. The integral block is left
as an exercise.

The derivative block outputs the derivative of its input u, at time t:

y(t) = u′(t)

except at time t = 0, where the output y(0) is given by the input initial condition uc , i.e., y(0) = uc (0).
Applying the Newton’s Difference Quotient, from Eq. 4.15, yields:

u(t + ∆t) − u(t)
∆t

≈ y(t + ∆t)

Solving for the output y(t + ∆t) and writing as a difference equation gives:

y[s] :≈
u[s] − u[s−1]

∆t
(4.17)

Since the input is not differentiable at time t = 0, the initial condition of the derivative block is provided with
an initial value y(0) = uc (0).

It is easy to build a discrete time CBD equivalent to Eq. 4.17 using a delay and algebraic blocks. The delay
block will ensure the delayed signal of the input (u[s−1]) can be obtained. However, at the initial step, s = 0,
the delay block has to have an initial condition defined because the value u[−1], in Eq. 4.17, is unknown. Let
u−1 denote this unknown value. u−1 cannot be equal to y[0]. That does not satisfy the initial condition of the
derivative, expressed as:

y[0] ≈
u[0] − u−1
∆t

= u[0]c

To find out the initial condition of the delay, one can rearrange the above equation to get u−1 = u[0] − ∆t · u[0]c ,
which defines the initial condition of the delay. Figure 4.11 shows the transformation rule.

In this section, CT CBDs where introduced, and its meaning given as a translation to discrete time CBDs.
Until now, we have introduced the minimal set of concepts that allow one to use and understand the semantics

of CBDs. We skipped over a few details which, to become a proficient user of CT CBDs, have to be covered
in the next section. For example, we took for granted that the solution computed by the Forward Euler method
is accurate. Furthermore, we have not introduced the operational semantics of continuous time CBDs. Such
algorithm can be easily devised for the approximations of the integral and derivative blocks already given –
Forward Euler and Newton’s Difference Quotient – with special attention to the fact that the approximation of
the derivative may introduce algebraic loops in the CBD. However, if those approximation methods are used,
the algorithm will be hardly useful: the translation to discrete time CBDs is equivalent and already deals with
the algebraic loops problem for free.

4.6 Advanced Concepts and Extensions

This section allows you to devise smarter approximationmethods, thatminimising the error in the approximation.
We focus on numerical integration methods, that is, approximations of the integrator block, because these are
the most commonly used when modelling physical systems (see Figure 4.10). Finally, we introduce an extension
that is widely used in CBDs: logic blocks. These allow higher level reasoning to be used in CBDs, conveying
more expressive power to the modeller, but introducing other interesting challenges when it comes to simulation.
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CT CBD

DT CBD

Fig. 4.11: Sample CT CBD with a Derivative block (on the left) and the corresponding discrete time CBD (on
the right).

4.6.1 Approximation Error

Consider the Forward Euler method in Eq. 4.13. To derive it, the term O(∆t2) of the Taylor series was neglected
(recall Eqs. 4.9, 4.10, and 4.11).

Let x(t) denote the solution to Eq. 4.8 approximated with Forward Euler, and let x̂ denote the real solution.
The first term (x(0) = x̂(0)) is known from the initial condition of Eq. 4.8. The second term (x(∆t) =
x(0) + F (x(0))∆t) deviates from the true solution x̂(∆t) by an order O(∆t2), which is the residual term ignored
in the Taylor series (recall Eq. 4.10 and Eq. 4.11). Formally, that is,

‖ x̂(∆t) − x(∆t)‖ = 


x̂(0) + F ( x̂(0))∆t + O(∆t2) − x(0) − F (x(0))


 = O(∆t2)

The third term x(2∆t) deviates further from the true solution not only because of the residual – of order O(∆t2)–
but also because F (x(∆t),∆t) is evaluatedwith the approximated term x(∆t) (most likely F (x(∆t)) , F ( x̂(∆t))).
The iteration continues and it is easy to see that the error accumulates over the iterations.

In order to analyse the accumulation of errors, it is best to distinguish two kinds of errors: the local truncation
error, due to the ignored residual term, and the derivative error, due to evaluating the derivative F at approximated
points x. Both these errors contribute to the accumulation of error over time, that is, the global error.

The local truncation error denotes the deviation made by a single step of the numerical method, starting from
accurate information, i.e., with no previously accumulated error.

Let
x̂((s + 1) · ∆t) = x̂(s · ∆t) + F ( x̂(s · ∆t)) ∆t + O

(
∆t2

)
(4.18)

denote the real solution expanded with the infinite Taylor series, and let

x((s + 1) · ∆t) ≈ x̂(s · ∆t) + F ( x̂(s · ∆t)) ∆t

denote the solution computed across one step of the Forward Euler method, starting from accurate information.
The local truncation error is thus given as
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‖ x̂((s + 1) · ∆t) − x((s + 1) · ∆t)‖ = O(∆t2) (4.19)

Studying the global error is more difficult as it depends on the derivative error, which, for a generic analysis,
can be any function F. If any error in the parameter of F gets amplified, then the global error will grow faster. If
it gets contracted, then the global error will grow in a slower fashion. To formalize, suppose that we know that
F satisfies:

‖F ( x̂(t)) − F (x(t))‖ ≤ K f ‖ x̂(t) − x(t)‖ , for all t ∈ R, (4.20)

where 0 ≤ K f < ∞ is a constant. Then, the error at the second step of the Forward Euler can be derived as
follows:

‖ x̂(2∆t) − x(2∆t)‖

=



x̂(∆t) + F ( x̂(∆t))∆t + O(∆t2) − (x(∆t) + F (x(∆t))∆t)



=




x̂(∆t) − x(∆t) + (F ( x̂(∆t)) − F (x(∆t))) ∆t + O(∆t2)



≤ ‖ x̂(∆t) − x(∆t)‖ + ‖F ( x̂(∆t)) − F (x(∆t))‖ ∆t + O(∆t2)

≤ ‖ x̂(∆t) − x(∆t)‖ + K f ‖ x̂(∆t) − x(∆t)‖ ∆t + O(∆t2)

=
(
2 + K f ∆t

)
O(∆t2) = O(2∆t2)

(4.21)

Notice that, as ∆t → 0, the big O definition implies that(
2 + K f ∆t

)
O(∆t2) = O(2∆t2 + K f ∆t3) = O(2∆t2).

Similarly, for the third step: ‖ x̂(3∆t) − x(3∆t)‖ = O(3∆t2). And after s steps, we have ‖ x̂(s∆t) − x(s∆t)‖ =
O(s∆t2).

To run the simulation up to time t f the Forward Euler method performs t f /∆t steps, which gives




x̂(t f ) − x(t f )


 = O(
t f
∆t
∆t2) = O(∆t)

Which says that the global error will be approximately linear in the size of ∆t, as ∆t → 0. For a more accurate
expression of the global error of the Forward Euler method, see [60, 61].

An important conclusion is that, provided that function F obeys the condition in Eq. 4.20, the global error
can be minimised by simply taking smaller ∆t at each step of the simulation using the Forward Euler method.
This is called convergence, a property that any useful numerical method should satisfy.

Since there is a limit to how small ∆t can be made in a digital computer, a numerical method which has an
higher order of accuracy than O(∆t), for example, O(∆t2), will allow for larger steps to be taken. In the next
section, we introduce other numerical methods.

4.6.2 Other Numerical Methods

4.6.2.1 Backward Euler Method

The Taylor series (Eq. 4.10) also works backward from any point, including the point (t∗ + ∆t), as was done in
Eq. 4.14. Neglecting the residual term, we get:

xi ((t∗ + ∆t) − ∆t) ≈ xi (t∗ + ∆t) − x ′i (x(t∗ + ∆t))∆t

After some simplifications we get a method that resembles the Forward Euler method:

x(t∗ + ∆t) ≈ xi (t∗) + F (x(t∗ + ∆t))∆t (4.22)

This leads to the Backward Euler method:

x[s+1] = x[s] + F (x[s+1])∆t (4.23)
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When compared to explicit methods, the backward Euler requires the solution to an algebraic loop, so it will
incur some extra computation at each simulation step. Furthermore, the global and local errors of the backward
Euler are of the same order as the Forward Euler method. Their difference lies in the fact that the derivative
used to make the estimation of x[s+1] is the closest to it. In the Forward Euler, the derivative is an out-dated one.
This has benefits when dealing with stiff systems. See [61, 60, 69] for more details.

4.6.2.2 Second Order Taylor Method

Until now we have always neglected the term O(∆t2) of the Taylor series. Let us see what happens when we
neglect higher order terms. For example, the Taylor series, after neglecting the term O(∆t3), becomes:

x(t∗ + ∆t) ≈ x(t∗) + F (x(t∗), t∗)∆t +
dF (x (t∗) , t∗)

dt
∆t2

2!

The derivative dF (x (t∗),t∗)
dt can be expanded with the chain rule 1:

dF (x(t∗), t∗)
dt

=
∂F (x(t∗), t∗)

∂x
F (x(t∗), t∗) +

∂F (x(t∗), t∗)
∂t

The second order Taylor series method then becomes:

x[s+1] = x[s] + F (x[s], s · ∆t)∆t

+

(
∂F (x[s], s · ∆t)

∂x
F (x[s], s · ∆t) +

∂F (x[s], s · ∆t)
∂t

)
∆t2

2!
(4.24)

The local truncation error of this method is the neglected term O(∆t3), better than the Euler methods.
The disadvantage of this method is that it requires the calculation (symbolically or numerically) of the partial
derivatives of F – a costly operation. The global error is in the order of O(∆t2).

Higher order Taylor methods require even more derivative calculations, making them impractical. There are
methods that offer that same global error order with far less computation at each step. We show one next.

4.6.2.3 Midpoint Method

The backward Euler method makes use of the most up-to-date derivative to estimate the solution at t∗ +∆t with
the disadvantage that it requires more computation to solve the implicit equation. To avoid this, but still trying
to be better than Forward Euler, we can try to estimate the derivative at halfway between t∗ and t∗ + ∆t and use
that derivative to compute x(t∗ + ∆t):

x(t∗ + ∆t) = x(t∗) + F (x(t∗ +
∆t
2

))∆t.

However, we do not know the value of x(t∗ + ∆t2 ). We can use Taylor series again to get

x(t∗ +
∆t
2

) = x(t∗) + F (x(t∗))
∆t
2

Thus we arrive at the midpoint method:

x[s+1] = x[s] + F
[
x[s] + F

(
x[s], s · ∆t

) ∆t
2
,
(
s +

1
2

)
· ∆t

]
∆t (4.25)

The midpoint method, Eq. 4.25, can be generalised to

1 Notice that, to be general, we represent the derivative F (x (t∗), t∗) as a function that depends directly on the time. If this is not
the case, then ∂F (x (t∗ ),t∗ )

∂t = 0.
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x[s+1]
C

= x[s] + βC1 · ∆t · F[s] + βC2 · ∆t · F
(
x[s] + βp · F[s] · ∆t,

(
s + αp

)
· ∆t

)
where F[s] = F

(
x[s], s · ∆t

)
, βp = αp =

1
2 , βC1 = 0, and βC2 = 1.

Expanding F
(
x[s] + βp · F[s] · ∆t,

(
s + αp

)
· ∆t

)
with the multi-variate version of the Taylor series, we get:

F
(
x[s] + βp · F[s] · ∆t,

(
s + αp

)
· ∆t

)
≈ F[s] + βp ·

∂F[s]

∂x
· F[s] · ∆t + αp ·

∂F[s]

∂t
· ∆t

Where the quadratic term was neglected. Plugging it into the previous equation gives:

x[s+1]
C

= x[s] + βC1 · F[s] · ∆t +

βC2 ·

[
F[s] + βp ·

∂F[s]

∂x
· F[s] · ∆t + αp ·

∂F[s]

∂t
· ∆t

]
· ∆t

= x[s] + (βC1 + βC2) F[s] · ∆t +

βC2

[
βp ·

∂F[s]

∂x
· F[s] + αp ·

∂F[s]

∂t

]
· ∆t2

To find the local truncation error, let us find the Taylor series expansion of the true solution and then compare
it to the previous equation. The true solution can be expanded as:

x̂[s+1] = x̂[s] + F[s] · ∆t +
1
2
∂F[s]

∂x
∆t2 + O(∆t3)

Applying the chain rule to the derivative yields:

x̂[s+1] = x̂[s] + F[s] · ∆t +
1
2
·

[
∂F[s]

∂x
F[s] +

∂F[s]

∂t

]
· ∆t2 + O(∆t3)

Comparing x̂[s+1] with x[s+1]
C

, and assuming that these start from a true solution x̂[s] gives:

x[s+1]
C

= x̂[s+1] ↔

x̂[s] + (βC1 + βC2) F[s] · ∆t + βC2

[
βp ·

∂F[s]

∂x
· F[s] + αp ·

∂F[s]

∂t

]
· ∆t2

= x̂[s] + F[s] · ∆t +
1
2
·

[
∂F[s]

∂x
F[s] +

∂F[s]

∂t

]
· ∆t2 + O(∆t3)

When solved for the parameters, the above equation gives:




βC1 + βC2 = 1
2βC2 βp = 1
2βC2αp = 1

As long as the parameters βp , αp , βC1, βC2 obey the above system of equations, the generic method will
have a local truncation error of order O(∆t3)), without having to compute any derivative of F. This also shows
that the midpoint method is but an element of a family of methods, all with different sets of parameters, called
the two stage Runge Kutta methods [69].

By the same argument as the Forward Euler (in Section 4.6.1), we conclude that the global error of the two
stage Runge Kutta method is of order O(∆t2).



120 Cláudio Gomes, Joachim Denil, and Hans Vangheluwe

4.6.3 Adaptive-Step Size

The numerical integration schemes introduced until now use a step size∆t assumed to be constant throughout the
simulation process. These numerical algorithms are computationally expensive in systems where the dynamic
behaviour changes slowly except in some limited intervals of time.

Recall that the order of growth of the global error ultimately depends on the Lipschitz constant K f , in
Eq. 4.20. This constant represents the worst case deviation of function F as a response to deviations in its
parameters2, for all possible values of x̂(t).

A larger K f indicates that the global error may grow faster, which means that the step size ∆t should be
smaller. To clarify: if a system has a large K f , it means that there is at least one pair of values x(t) and x̂(t) for
which ‖F ( x̂(t)) − F (x(t))‖ is large. This does not imply the deviations of F are large for all possible pairs of
values x(t) and x̂(t). Furthermore, it does not imply that, if the system were to be simulated in a bounded region
(e.g, for 0 < t < t f ), the Lipschitz constant in that region would be smaller. A smaller Lipschitz constant means
that the ∆t can be larger.

For a given derivative F, it is hard to find the proper K f in order to pick the right ∆t.
An algorithm that can change the ∆t throughout the simulation, not only leverages the features of each region

in the state space to improve the run-time performance of the simulation but also frees the user from the burden
of picking an appropriate ∆t. All of this without sacrificing accuracy.

The change of the ∆t has to be triggered by some estimate of the error being committed at each simulation
step. Assuming the estimate is available, ∆t is increased if the error becomes too small and decreased if the
error is too large.

The challenge is to come up with a good estimate of the error being committed. Suppose we are given two
methods, with local truncation errors O(c∆tv ) and O(c′∆tv

′

), respectively, with c, c′, v, v′ positive constants.
Formally, let x(t) be the solution computed by the first method, x̃(t) by the second, and x̂(t) be the real solution.
Then, after one inaccurate step, solutions x(t + ∆t) and x̃(t + ∆t) can be written as:

x(t + ∆t) = x̂(t + ∆t) + O(c∆tv )

x̃(t + ∆t) = x̂(t + ∆t) + O(c′∆tv
′

)
(4.26)

Comparing x(t + ∆t) with x̃(t + ∆t) yields

‖x(t + ∆t) − x̃(t + ∆t)‖ = 


O(c∆tv ) − O(c′∆tv
′

)



The big O notation tells that there exist constants K1 and K2 such that, in the limit ∆t → 0,




O(c∆tv ) − O(c′∆tv
′

)


 =



K1c∆tv − K2c′∆tv

′



Assuming that c′ > c and that v′ < v (the other cases are similar) we have, as ∆t → 0,

‖x(t + ∆t) − x̃(t + ∆t)‖ = O(c′∆tv
′

) = ‖ x̃(t + ∆t) − x̂(t + ∆t)‖ ,

thus proving that comparing the solutions of the two methods gives an estimate of the error in the same order
as the local truncation error of the least accurate method.

From the previous sections, there are two approaches to affect the accuracy of a method: (a) use a smaller
step-size and (b) use an higher order approximation method (e.g., the midpoint).

The approach (a) is straightforward: simply take any existing numerical method, compute the solution twice
(once with two half steps, and once with a single step), and compare the two estimates.

For an example of approach (b), use the midpoint method to compute the solution x(t), and, at each step,
compare it with the result x̃(t) of the Forward Euler method. It is easy to see that there is some redundant
computation in this approach. Fortunately, higher order Runge-Kutta methods can be combined, reusing most
of the redundant computation. These are called the Runge-Kutta Fehlberg methods.

2 F (x (t )) = F ( x̂ (t ) + e(t )), with e being the approximation error.
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4.6.4 Logic Blocks

Decision blocks are widely used in CBDs to increase the expressiveness of the language. The most common
decision block is the switch block. The switch block, shown in Figure 4.12, outputs the value u(t) or v(t)
depending on the value of c(t). If c(t) ≥ 0, u(t) is the output, otherwise v(t). The translational semantics are:

y(t) =



u(t), if c(t) ≥ 0
v(t), otherwise

Fig. 4.12: Switch block

As will be presented shortly, the operational semantics of this block introduce interesting challenges.

4.6.4.1 Discontinuity Handling – Zero-Crossing Location

Recall that the simulation of continuous time CBDs can only be performed approximately in a digital computer.
See Section 4.5.2. This means that the simulation of a continuous CBDs is actually a discrete set of points

x(0), x(1∆t1), x(2∆t2), . . .

computed with an adaptive step size method (see Section 4.6.3).
Suppose the time is t and the simulator is going to compute the solution to the output of the switch block

y(t + ∆t). Furthermore, assume that y(t) = u(t), that is, c(t) ≥ 0. If c(t + ∆t) ≤ 0, then two issues can be
identified:

1. y(t + ∆t) = v(t + ∆t) may be very different than y(t), because v(t + ∆t) , u(t + ∆t).
2. t + ∆t may not represent the exact time at which the signal c(t) crossed the zero. That is c(t + ∆t) = 0 − δ,

for some ε > 0.

The second issue implies that, by the intermediate value theorem, there exists at least one point t∗ ∈ [t, t + ∆t],
at which c(t + ∆t) = 0. Ideally, ∆t should be picked in a way such that t + ∆t ≈ t∗, thus minimizing δ, for two
reasons:

1. Accuracy is improved since all the blocks that depend on the solution x(t + ∆t) will produce outputs that
are close to the switching point t∗;

2. Integrator blocks, which apply the numerical methods presented in Section 4.6.2 may need to be aware of
the discontinuity in their inputs, caused by the discontinuity of y around the point t∗ (issue 1 above).

To see why this can be a problem, consider the abstract CBD shown in Figure 4.13. It can be written as a
differential equation x ′(t) = F (x(t)) (recall Figure 4.10). At the time of the discontinuity t∗, in the limit ε → 0,
x(t∗ − ε ) = x(t∗ + ε ), but F (x(t∗ − ε )) , F (x(t∗ + ε )) because of the switch block. This causes a fundamental
assumption about the behavior of F—the condition in Eq. 4.20—to be violated. Formally,



F (x(t∗ + ε )) − F (x(t∗ − ε ))

 ≤ K f


x(t∗ + ε ) − x(t∗ − ε )

 ≤ 0

is a contradiction.
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Without the Lipschitz condition assumption, it is hard to guarantee an order for the growth of the global
error. There are multiple ways to address this problem, once the exact time of the discontinuity is located (see
[211, 310]). We focus here in the location of the time of the discontinuity (also called root-finding, or zero
crossing location in the literature).

...

...

Fig. 4.13: Abstract CBD which may violate the condition in Eq. 4.20.

Fig. 4.14: The bisection method

Different algorithms have been proposed over the years (see [60, 69]). The essence is always the same: locate
t∗ in an interval [t, t + ∆t] such that the condition of the switch satisfies c(t + ∆t) = 0.

A robust yet simple algorithm is the bisection method. As the name hints, the method works by iteratively
bisecting the interval. At each iteration it selects the subinterval where the zero-crossing is present to search
for the zero location. The algorithm is illustrated in Figure 4.14. The initial steps detects a zero-crossing in the
interval between t1 and t2. The iterative procedure evaluates first point a, then point b, then point c and finally
point d that is within the tolerance bounds.

Other algorithms are described in the literature [60].

4.7 Global Error Euler Method

The global error measures the accumulated deviation of the numerical method from the true solution, across
any number of steps. We need to assume that F (x, t) is Lipschitz continuous.

At the initial step, the global error is the same as the local truncation error: e(1) = x (1) − x̃ (1) = x (0) +

F (x (0) , k∆t)∆t + O
(
∆t2

)
−

(
x (k ) + F (x (k ) , k∆t)∆t

)
= O

(
∆t2

)
.
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At the second step:

e(2) = x (2) − x̃ (2) =

x (1) + F (x (1) ,∆t)∆t + O
(
∆t2

)
−

(
x̃ (1) + F ( x̃ (1) ,∆t)∆t

)
=

e(1) + F (x (1) ,∆t)∆t − F ( x̃ (1) ,∆t)∆t + O
(
∆t2

)
=

[
F (x (1) ,∆t) − F ( x̃ (1) ,∆t)

]
∆t + e(1) + O

(
∆t2

)
We know that, for some constant K , x̃ (1) = x (1) − e(1) , we can write:

[
F (x (1) ,∆t) − F (x (1) − e(1) ,∆t)

]
∆t + e(1) + O

(
∆t2

)

The Lipschitz continuity condition tells us that:

���F (x (1) ,∆t) − F (x (1) − e(1) ,∆t)��� ≤ Ke(1) ,

Hence, we can give an upper bound on the above error:

e(2) =
[
F (x (1) , k∆t) − F ( x̃ (1) , k∆t)

]
∆t + e(1) + O

(
∆t2

)
≤

Ke(1)
∆t + e(1) + O

(
∆t2

)
≤ Ke(1)

∆t + e(1) + O
(
∆t2

)
=

(K∆t + 1) e(1) + O
(
∆t2

)
.

In general,
e(k+1) =

x (k+1) − x̃ (k+1) =

x (k ) + F (x (k ) , k∆t)∆t + O
(
∆t2

)
−

(
x̃ (k ) + F ( x̃ (k ) , k∆t)∆t

)
=

e(k ) +
[
F (x (k ) , k∆t) − F ( x̃ (k ) , k∆t)

]
∆t + O

(
∆t2

)
≤

K∆te(k ) + e(k ) + O
(
∆t2

)
≤ O

(
∆t2

)
+ (K + 1) e(k ) .

Expanding recursively, and assuming that ∆t < 1 we get:

e(1) =O
(
∆t2

)
e(2) ≤ O

(
∆t2

)
+ (K + 1) O

(
∆t2

)
= (K + 2) O

(
∆t2

)
e(3) ≤ O

(
∆t2

)
+ (K + 2) O

(
∆t2

)
= (K + 3) O

(
∆t2

)
· · ·

e(k ) ≤ O
(
∆t2

)
+ (K + k − 1) O

(
∆t2

)
= (K + k) O

(
∆t2

)
.

To simulate the system from 0 to t f , we require
t f
∆t steps. Thus, the error will be:

e(
t f
∆t ) ≤

(
K +

t f
∆t

)
O

(
∆t2

)
=

KO
(
∆t2

)
+

t f
∆t
O

(
∆t2

)
≤

(
K + t f

)
O (∆t) = O (∆t)

This leads us to conclude that the order of global error of the forward Euler is O (∆t).
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4.8 Summary

Causal Block Diagrams represent a formalisation of the intuitive graphical notation of blocks and arrows. This
chapter introduced the different variants of this formalism, in a gradual manner.

The most typical uses for these formalisms are: (i) Algebraic CBDs to study the steady state behaviour of
systems; (ii) Discrete time CBDs to represent computation and software components; and (iii) Continuous time
CBDs to model physical systems. To connect these three variants, a running example of a cruise control system
was used.

Algebraic CBDs represent algebraic systems where there is no notion of passing time. Discrete time CBDs
mixes in the passage of time, although at discrete points. These are analogous to difference equations. Finally,
continuous time CBDs, were time is a continuum, correspond to differential equations. x

The advantage of CBDs over plain difference/differential equations is the natural support for hierarchical
descriptions of complex systems, providing a way to manage complexity.

The disadvantage is in the ability to reuse models of physical components, represented as CBDs. Physical
objects do not have a notion of inputs and outputs. They are best modeled with equations where any variable
can be an input/output, depending on whether it is known (see Acausal modelling chapter). This way, the
same component can be reused in many different settings, with its input/outputs defined upon instantiation. In
CBDs, the modeler is forced to think of the possible instantiations of the model, and define the inputs/outputs
accordingly.

CBDs are widely used in the development of embedded systems. Understanding their semantics and the
numerical techniques employed are a stepping stone into understanding other modelling languages.

4.9 Literature and Further Reading

Among the references already cited, we highlight: [69] provides an extensive overview of the simulation
of continuous systems. [279] gives a good introduction to continuous system modelling and simulation, for
someone with a background in Computer Science. [60] provides a mathematically oriented description of
multiple numerical techniques. Last but not least, [211] and [310] provide an overview of the the challenges
involved in hybrid system simulation, of which CBDs with logic blocks are part of.

4.10 Self Assessment

1. What does it mean for the control software to be correct?
2. What is the role of the component Kp

(
v[s]
d
− v[s]

)
in Eq. 4.4? And what is the role of Kie[s] in the same

equation? (hint: write Eq. 4.4 without the Kie[s] component, and solve it together with Eq. 4.2 for a constant
velocity of the car).

3. What the meaning of an algebraic equation, like the one shown in Example 4.3.
4. What is the general procedure to draw a CBD from a given algebraic equation?
5. What is the worst case CBD for Algorithm 1.
6. How can the integral block be approximated with the Forward Euler method, in Eq. 4.13?
7. Construct a CT CBD for the initial value problem x ′′(t) = −x; x(0) = 1; x ′(0) = 1 using only integrator

blocks. Is it possible to use only derivative blocks?
8. Transform the CT CBDs to DT CBDs using the approximation method taught here, and check whether

there are algebraic loops.
9. Apply the backward Euler method to approximate the integral block, as in Question 6 above.
10. In case of approach (b), which of the two approximated solutions should be displayed to the user?
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Chapter 5
DEVS: Discrete-Event Modelling and Simulation for
Performance Analysis of Resource-Constrained Systems

Yentl Van Tendeloo and Hans Vangheluwe

Abstract DEVS is a popular formalism for modelling complex dynamic systems using a discrete-event ab-
straction. At this abstraction level, a timed sequence of pertinent “events” input to a system (or internal, in the
case of timeouts) cause instantaneous changes to the state of the system. Between events, the state does not
change, resulting in a piecewise constant state trajectory. Main advantages of DEVS are its rigorous formal
definition, and its support for modular composition. This chapter introduces the Classic DEVS formalism in a
bottom-up fashion, using a simple traffic light example. The syntax and operational semantics of Atomic (i.e.,
non-hierarchical) models are introduced first. The semantics of Coupled (hierarchical) models is then given by
translation into Atomic DEVS models. As this formal “flattening” is not efficient, a modular abstract simulator
which operates directly on the coupled model is also presented. This is the common basis for subsequent efficient
implementations.We continue to actual applications of DEVSmodelling and simulation, as seen in performance
analysis for queueing systems. Finally, we present some of the shortcomings in the Classic DEVS formalism,
and show solutions to them in the form of variants of the original formalism.

Learning Objectives

After reading this chapter, we expect you to be able to:

• Understand the difference between DEVS and other (similar) formalisms
• xplain the semantics of a given DEVS model
• Understand the relation and difference between a DEVS model and its simulator
• Apply DEVS to simple queueing problems
• Understand the major limitations of DEVS and existing extensions

5.1 Introduction

DEVS [309] is a popular formalism for modelling complex dynamic systems using a discrete-event abstraction.
At this abstraction level, a timed sequence of pertinent “events” input to a system cause instantaneous changes
to the state of the system. These events can be generated externally (i.e., by another model) or internally (i.e.,
by the model itself due to timeouts). The next state of the system is defined based on the previous state of
the system and the event. Between events, the state does not change, resulting in a piecewise constant state
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trajectory. Simulation kernels must only consider states at which events occur, skipping over all intermediate
points in time. This is in contrast with discrete time models, where time is incremented with a fixed increment,
and only at these times is the state updated. Discrete event models have the advantage that their time granularity
can become (theoretically) unbounded, whereas time granularity is fixed in discrete time models. Nonetheless,
the added complexity makes it unsuited for systems that naturally have a fixed time step.

Main advantages of DEVS compared to other discrete event formalisms are its rigorous formal definition, and
its support for modular composition. Comparable discrete event formalisms are DES and Statecharts, though
significant differences exist.

Compared to DES, DEVS offers modularity which makes it possible to nest models inside of components,
thus generating a hierarchy of models. This hierarchy necessitates couplings and (optionally) ports, which are
used for all communication between two components. In contrast, DESmodels can directly access other models
and send them events in the form of method invocation. Additionally, DEVS offers a cleaner split between the
simulation model and the simulation kernel.

Compared to Statecharts, DEVS offers a more rigorous formal definition and a different kind of modularity.
Statecharts leaves a lot of room for interpretation, resulting in a wide variety of interpretations [140, 138]. In
contrast, DEVS is completely formally defined, and there is a reference algorithm (i.e., an abstract simulator).
While both DEVS and Statecharts are modular formalisms, Statecharts creates hierarchies through composite
states, whereas DEVS uses composite models for this purpose. Both have their distinct advantages, making both
variants useful in practice.

This chapter provides an introductory text to DEVS (often referred to as Classic DEVS nowadays) through
the use of a simple example model in the domain of traffic lights. We start from a simple autonomous traffic
light, which is incrementally extended up to a traffic light with policeman interaction. Each increment serves
to introduce a new component of the DEVS formalism and the corresponding (informal) semantics. We start
with atomic (i.e., non-hierarchical) models in Section 5.2, and introduce coupled (i.e., hierarchical) models
in Section 5.3. An abstract simulator, defining the reference algorithm, is covered in Section 5.4. Section 5.5
moves away from the traffic light example and presents a model of a simple queueing system. Even thoughDEVS
certainly has its applications, several variants have spawned to tackle some of its shortcomings. These variants,
together with a rationale and the differences, are discussed in Section 5.6. Finally, Section 5.7 summarises the
chapter.

5.2 Atomic DEVS models

We commence our explanation of DEVS with the atomic models. As their name suggests, atomic models are
the indivisible building blocks of a model.

Throughout this section, we build up the complete formal specification of an atomic model, introducing new
concepts as they become required. In each intermediate step, we show and explain the concepts we introduce,
how they are present in the running example, and how this influences the semantics. The domain we will use as
a running example throughout this chapter is a simple traffic light.

5.2.1 Autonomous Model

The simplest form of a traffic light is an autonomous traffic light. Looking at it from the outside, we expect to
see a trace similar to that of Figure 5.1. Visually, Figure 5.2 presents an intuitive representation of a model that
could generate this kind of trace.

Trying to formally describe Figure 5.2, we distinguish these elements:

1. State Set (S) The most obvious aspect of the traffic light is the state it is in, which is indicated by the three
different colours it can have. These states are sequential: the traffic light can only be in one of these states
at the same time1. The set of states is not limited to enumeration style as presented here, but can contain an
arbitrary number of attributes.

1 In contrast to, say, Statecharts.
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Fig. 5.1: Trace of the autonomous traffic light.
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Fig. 5.2: Model generating trace in Fig-
ure 5.1.

S : ×ni=1Si

2. Time Advance (ta) For each of the states just defined, we notice the timeout in them. Clearly, some states
take longer to process than others. For example, whereas we will stay in green and red a relatively long time,
the time in the yellow state is only brief. This function needs to be defined for each and every element of
the state set, and needs to deterministically return a duration. The duration can be any positive real number,
including zero and infinity. A negative time is disallowed, as this would require simulation to go back in
time. DEVS allows a time advance of exactly zero, even though this is impossible in real life. Two use cases
for this exist: the delay might be very small and irrelevant to the problem we are modelling, or the state
is an artificial state, without any real-world equivalent (e.g., as part of a design pattern). Note that DEVS
does not consider time bases, despite the use of seconds in our visualisation. Simulation time is just a real
number, and the interpretation given to it is up to the user. Whether these units indicate seconds, years, or
even π seconds, is completely up to the users, as long as it is fixed throughout the simulation.

ta : S → R+0,+∞

3. Internal Transition (δint ) With the states and timeouts defined, the final part is the definition of which is
the next state from a given state. This is the job of the internal transition function, which gives the next state
for each and every state. As it is a function, every state has at most one next state, preventing any possible
ambiguity. Note that the function does not necessarily have to be total, nor injective: some states might not
have a next state (i.e., if the time advance was specified as +∞), and some states have the same state as next
state. Up to now, only the internal transition function is described as changing the state. Therefore, it is not
allowed for other functions (e.g., time advance) to modify the state: their state access is read-only.

δint : S → S
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4. Initial Total State (qinit ) We also need to define the initial state of the system. While this is not present
in the original specification of the DEVS formalism, we include it here as it is a vital element of the
model [285]. But note that, instead of being an “initial state (sinit )”, it is a total state. This means that we
not only select the initial state of the system, but also define how long we are already in this state. Elapsed
time is therefore added to the definition of the initial total state, to allow more flexibility when modelling a
system. To the simulator, it will seem as if the model has already been in the initial state for some time.

qinit : (s, e) |s ∈ S, 0 ≤ e ≤ ta(s)

We describe the model in Figure 5.2 as a 4-tuple of these three elements.

〈S, qinit , δint , ta〉

S = {green,yellow, red}
qinit = (green, 0.0)
δint = {green→ yellow,

yellow→ red,
red→ green}

ta = {green→ delaygreen ,
yellow→ delayyellow ,
red→ delayred }

For this simple formalism, we define the semantics as in Algorithm 4. Themodel is initialized with simulation
time set to 0, and the state set to the initial state (e.g., green). Simulation updates the time with the return value
of the time advance function, and executes the internal transition function on the current state to get the new
state.

Algorithm 4 DEVS simulation pseudo-code for autonomous models.
t ime ← 0
current_state ← init ial_state
last_t ime ← −init ial_elapsed
while not termination_condition() do

t ime ← last_t ime + ta(current_state)
current_state ← δint (current_state)
last_t ime ← t ime

end while

5.2.2 Autonomous Model with Output

Recall that DEVS is a modular formalism, with only the atomic model having access to its internal state. This
naturally raises a problem for our traffic light: others have no way of knowing its current state (i.e., its colour).

We therefore want the traffic light to output its colour, in this case in the form of a string (and not as the
element of an enumeration). For now, the output is tightly linked to the set of state, but this does not need to
be the case: the possible values to output can be completely distinct from the set of states. Our desired trace
is shown in Figure 5.3. We see that we now output events indicating the start of the specified period. Recall,
also, that DEVS is a discrete event formalism: the output is only a single event indicating the time and is not a
continuous signal. The receiver of the event thus would have to store the event to know the current state of the
traffic light at any given point in time. Visually, the model is updated to Figure 5.4, using the exclamation mark
on a transition to indicate output generation.

Analysing the updated model, we see that two more concepts are required to allow for output.
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1. Output Set (Y )
Similarly to defining the set of allowable states, we should also define the set of allowable outputs. This
set serves as an interface to other components, defining the events they expect to receive. Events can have
complex attributes as well, though we again limit ourself to simple events for now. If ports are used, each
port has its own output set.

Y : ×li=1Yi

2. Output Function (λ)
With the set of allowable events defined, we still need a function to actually generate the events. Similar to
the other functions, the output function is defined on the state, and deterministically returns an event (or
no event). As seen in the Figure of the model, the event is generated before the new state is reached. This
means that instead of the new state, the output function still uses the old state (i.e., the one that is being
left). For this reason, the output function needs to be invoked right before the internal transition function.
In the case of our traffic light, the output function needs to return the name of the next state, instead of the
current state. For example, if the output function receives the green state as input, it needs to generate a
show_yellow event.
Similar to the time advance function, this function does not output a new state, and therefore state access
is read-only. This might require some workarounds: outputting an event often has some repercussions on
the model state, such as removing the event from a queue or increasing a counter. Since the state cannot be
written to, these changes need to be remembered and executed as soon as the internal transition is executed.
Note that it is possible for the output function not to return any output, in which case it returns φ.

λ : S → Y ∪ {φ}

The model can be described as a 6-tuple.

〈Y , S, qinit , δint , λ, ta〉
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Y = {show_green, show_yellow, show_red}
S = {green,yellow, red}

qinit = (green, 0.0)
δint = {green→ yellow,

yellow→ red,
red→ green}

λ = {green→ show_yellow,
yellow→ show_red,
red→ show_green}

ta = {green→ delaygreen ,
yellow→ delayyellow ,
red→ delayred }

The pseudo-code is slightly altered to include output generation, as shown in Algorithm 5. Recall that
output is generated before the internal transition is executed, so the method invocation happens right before the
transition.

Algorithm 5 DEVS simulation pseudo-code for autonomous models with output.
t ime ← 0
current_state ← init ial_state
last_t ime ← −init ial_elapsed
while not termination_condition() do

t ime ← last_t ime + ta(current_state)
out put (λ (current_state))
current_state ← δint (current_state)
last_t ime ← t ime

end while

5.2.3 Interruptable Model

Our current traffic light specification is still completely autonomous. While this is fine in most circumstances,
police might want to temporarily shut down the traffic lights, when they are managing traffic manually. To allow
for this, our traffic light must process externally generated incoming events; such as events from a policeman to
shutdown or startup again. Figure 5.5 shows the trace we wish to obtain. A model generating this trace is shown
in Figure 5.6, using a question mark to indicate event reception.

We once more require two additional elements in the DEVS specification.

1. Input Set (X)
Similar to the output set, we need to define the events we expect to receive. This is again a definition of the
interface, such that others know which events are understood by this model.

X = ×mi=1Xi

2. External Transition (δext )
Similar to the internal transition function, the external transition function is allowed to define the new state
as well. First and foremost, the external transition function is still dependent on the current state, just like
the internal transition function. The external transition function has access to two more values; elapsed time
and the input event. The elapsed time indicates how long it has been for this atomic model since the last
transition (either internal or external). Whereas this number was implicitly known in the internal transition
function (i.e., the value of the time advance function), here it needs to be passed explicitly. Elapsed time
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Fig. 5.5: Trace of the autonomous traffic light.
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is a number in the range [0, ta(s)], with s being the current state of the model. Note that it is inclusive of
both 0 and ta(s): it is possible to receive an event exactly after a transition happened, or exactly before an
internal transition happens. The combination of the current state and the elapsed time is often called the
total state (Q) of the model. We have previously seen the total state, in the context of the initial total state.
The received event is the final parameter to this function. A new state is deterministically defined through
the combination of these three parameters. Since the external transition function takes multiple parameters,
multiple external transitions might be defined for a single state.

δext : Q × X → S

Q = {(s, e) |s ∈ S, 0 ≤ e ≤ ta(s)}

While we now have all elements of the DEVS specification for atomic models, we are not done yet. When we
include the additional state manual, we also need to send out an output message indicating that the traffic light
is off. But recall that an output function was only invoked before an internal transition function, so not before
an external transition function. To have an output nonetheless, we need to make sure that an internal transition
happens before we actually reach the manual state. This can be done through the introduction of an artificial
intermediate state, which times out immediately, and sends out the turn_off event. Instead of going to manual
upon reception of the toManual event, we go to the artificial state going_manual. The time advance of this state
is set to 0, since it is only an artificial state without any meaning in the domain under study. Its output function
will be triggered immediately due to the time advance of zero, and the turn_off output is generated while
transferring to manual. Similarly, when we receive the toAuto event, we need to go to an artificial going_auto
state to generate the show_red event. A visualization of the corrected trace and corresponding model is shown
in Figure 5.7 and Figure 5.8 respectively.

Finally, we give the full specification of the traffic light as an atomic DEVS model, defined by a 8-tuple.

〈X ,Y , S, qinit , δint , δext , λ, ta〉
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X = {toAuto, toManual}
Y = {show_green, show_yellow, show_red, turn_off}
S = {green,yellow, red, going_manual, going_auto,manual}

qinit = (green, 0.0)
δint = {green→ yellow,

yellow→ red,
red→ green,
going_manual→ manual,
going_auto→ red}

δext = {(green, _, toManual) → going_manual
(yellow, _, toManual) → going_manual
(red, _, toManual) → going_manual
(manual, _, toAuto) → going_auto}

λ = {green→ show_yellow,
yellow→ show_red,
red→ show_green,
going_manual→ turn_off,
going_auto→ show_red}

ta = {green→ delaygreen ,
yellow→ delayyellow ,
red→ delayred ,
manual→ +∞,
going_manual→ 0,
going_auto→ 0}

Algorithm 6 presents the complete semantics of an atomic model in pseudo-code. Similar to before, we
still have the same simulation loop, but now we can be interrupted externally. At each time step, we need to
determine whether an external interrupt is scheduled before the internal interrupt. If that is not the case, we
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simply continue like before, by executing the internal transition. If there is an external event that must go first,
we execute the external transition.

Algorithm 6 DEVS simulation pseudo-code for interruptable models.
t ime ← 0
current_state ← init ial_state
last_t ime ← −init ial_elapsed
while not termination_condition() do

next_t ime ← last_t ime + ta(current_state)
if t ime_next_event ≤ next_t ime then

elapsed ← t ime_next_event − last_t ime
current_state ← δext ((current_state, elapsed), next_event )
t ime ← t ime_next_event

else
t ime ← next_t ime
out put (λ (current_state))
current_state ← δint (current_state)

end if
last_t ime ← t ime

end while

Reflective Question Why is the output function not called as well before the external transition is invoked?

5.3 Coupled DEVS Models

While our traffic light example is able to receive and output events, there are no other atomic models to
communicate with. To combine different atomicmodels together and have them communicate, we now introduce
coupled models. This will be done in the context of our previous traffic light, which is connected to a policeman.
The details of the traffic light are exactly like before; the details of the policeman are irrelevant here, as long as
it outputs toAuto and toManual events.

5.3.1 Basic Coupling

The first problem we encounter with coupling the traffic light and policeman together is the structure: how do
we define a set of models and their interrelations? This is the core definition of a coupled model: it is merely a
structural model that couples models together. Contrary to the atomic models, there is no behaviour whatsoever
associated to a coupled model. Behaviour is the responsibility of atomic models, and structure that of coupled
models.

To define the basic structure, we need three elements.

1. Model instances (D)
The set of model instances defines which models are included within this coupled model.

2. Model specifications (MS = {Mi |i ∈ D})
Apart from defining the different instances of submodels, we must include the atomic model specification
of these models. For each element defined in D, we include the 8-tuple specifying the atomic model. By
definition, a submodel of the coupled DEVS model always needs to be an atomic model. Later on, we will
see how this can be extended to support arbitrarily hierarchies.

MS = {Mi |i ∈ D} = {〈Xi ,Yi , Si , qinit ,i , δint ,i , δext ,i , λi , tai〉|i ∈ D}

3. Model influencees (IS = {Ii |i ∈ D ∪ {self }})
Apart from defining the model instances and their specifications, we need to define the connections between
them. Connections are defined through the use of influencee sets: for each atomic model instance, we define
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the set of models influenced by that model. There are some limitations on couplings, to make sure that
inconsistent models cannot be created. The following two constraints are imposed:

• A model should not influence itself. This constraint makes sense, as otherwise it would be possible for a
model to influence itself directly. While there is no significant problem with this in itself, it would cause
the model to trigger both its internal and external transition simultaneously. As it is undefined which
one should go first, this situation is not allowed. In other words, a model should not be an element in
its own set of influencees.

∀i ∈ D : i < Ii

• Only links within the coupled model are allowed. This is another way of saying that connections should
respect modularity. Models should not directly influence models outside of the current coupled model,
nor models deeper inside of other submodels at this level. In other words, the influenced model should
be a subset of the set of models in this coupled model.

∀i ∈ D : Ii ⊆ D

Note that there is no explicit constraint on algebraic loops (i.e., a loop of models that have a time advance
equal to zero, preventing the progression of simulated time). If this situation is not resolved, it is possible
for simulation to get stuck at that specific point in time. The situation is only problematic if the circular
dependency never gets resolved, causing a livelock of the simulation.

A coupled model can thus be defined as a 3-tuple.

〈D,MS , IS 〉

5.3.2 Input and Output

Our coupled model now couples two atomic models together. And while it is now possible for the policeman
to pass the event to the traffic light, we again lost the ability to send out the state of the traffic light. The events
cannot reach outside of the current coupled model. Therefore, we need to augment the coupled model with input
and output events, which serve as the interface to the coupled model. This adds the components Xself and Yself
to the tuple, respectively the set of input and output events, resulting in a 5-tuple.

〈Xself ,Yself , D, MS, IS〉

The constraints on the couplings need to be relaxed to accommodate for the new capabilities of the coupled
model: a model can be influenced by the input events of the coupled model, and likewise the models can also
influence the output events of the coupled model. The previously defined constraints are relaxed to allow for
self , the coupled model itself.

∀i ∈ D ∪ {self } : i < Ii
∀i ∈ D ∪ {self } : Ii ⊆ D ∪ {self }

5.3.3 Tie-breaking

Recall that DEVS is considered a formal and precise formalism. But while all components are precisely defined,
their interplay is not completely defined yet: what happens when the traffic light changes its state at exactly the
same time as the policeman performs its transition? Would the traffic light switch on to the next state first and
then process the policeman’s interrupt, or would it directly respond to the interrupt, ignoring the internal event?
While it is a minimal difference in this case, the state reached after the timeout might respond significantly
different to the incoming event.

DEVS solves this problem by defining a tie-breaking function (select). This function takes all conflicting
models and returns the one that gets priority over the others. After the execution of that internal transition,
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and possibly the external transitions that it caused elsewhere, it might be that the set of imminent models has
changed. If multiple models are still imminent, we repeat the above procedure (potentially invoking the select
function again with the new set of imminent models).

select : 2D → D

This new addition changes the coupled model to a 6-tuple.

〈Xself ,Yself , D, MS, IS, select〉

5.3.4 Translation Functions

Finally, in this case we had full control over both atomic models that are combined. We might not always be
that lucky, as it is possible to reuse atomic models defined elsewhere. Depending on the application domain of
the reused models, they might work with different events. For example, if our policeman and traffic light were
both predefined, with the policeman using go_to_work and take_break and the traffic light listening to toAuto
and toManual, it would be impossible to directly couple them together. While it is possible to define wrapper
blocks (i.e., artificial atomic models that take an event as input and, with time advance equal to zero, output the
translated version), DEVS provides a more elegant solution to this problem.

Connections are augmented with a translation function (Zi, j ), specifying how the event that enters the
connection is translated before it is handed over to the endpoint of the connection. The function thus maps
output events to input events, potentially modifying their content.

Zself , j : Xself → X j ∀ j ∈ D
Zi,self : Yi → Yself ∀i ∈ D
Zi, j : Zi → X j ∀i, j ∈ D

These translation functions are defined for each connection, including those between the coupled model’s input
and output events.

ZS = {Zi, j |i ∈ D ∪ {self }, j ∈ Ii }

The translation function is implicitly assumed to be the identity function if it is not defined. In case an event
needs to traverse multiple connections, all translation functions are chained in order of traversal.

With the addition of this final element, we define a coupled model as a 7-tuple.

〈Xself ,Yself , D, MS, IS, ZS, select〉

5.3.5 Closure Under Coupling

Similar to atomic models, we need to formally define the semantics of coupled models. But instead of explaining
the semantics from scratch, by defining some pseudo-code, wemap coupledmodels to equivalent atomicmodels.
Semantics of a coupledmodel is thus defined in terms of an atomicmodel. In addition, this flattening removes the
constraint of coupled models that their submodels should be atomic models: if a coupled model is a submodel,
it can be flattened to an atomic model.

In essence, for any coupled model specified as

< Xself ,Yself , D, MS, IS, ZS, select >

we define an equivalent atomic model specified as

< X ,Y , S, qinit , δint , δext , λ, ta >

Therefore, we have to define all the elements of the atomic model in terms of elements of the coupled model.
The input and output variables X and Y are easy, since they stay the same.
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X = Xself

Y = Yself

From an external point of view, the interface of the atomic and coupled model is identical: it has the same input
and output events and expects the same kind of data on all of them.

The state S encompasses the parallel composition of the states of all the submodels, including their elapsed
times (i.e., the total state Q, as defined previously):

S = ×i∈DQi

with the total states Qi previously defined as:

Qi = {(si , ei ) |si ∈ Si , 0 ≤ ei ≤ tai (si )},∀i ∈ D

The elapsed time is stored for each model separately, since the elapsed time of the new atomic model updates
more frequently than each submodel’s elapsed time.

The initial total state is again composed of two components: the initial state (sinit ) and the initial elapsed
time (einit ). First, we consider the elapsed time (einit ), which is intuitively equal to the time since the last
transition of the flattened model, meaning that it is the minimum of all initial elapsed times, found in all atomic
submodels. Then, the initial state (sinit ) is to be specified, which is the composition of all initial total states of
all atomic submodels. Note, however, that for each initial total state of the submodels, the minimum elapsed
time (einit ) is to be decremented. Indeed, qinit specifies that we entered state sinit in the past, more specifically
einit time units ago.

qinit = (sinit , einit )
sinit = (..., (sinit ,i , einit ,i − einit ), ...)

einit = mini∈D {einit ,i }

The time advance function ta then returns the minimum of all remaining times.

ta(s) = min{σi = tai (si ) − ei |i ∈ D}

The imminent component is chosen from the set of all models with the specified minimum remaining time
(I M M). This set contains all models whose remaining time (σi) is identical to the time advance of the flattened
model (ta). The select function is then used to reduce this set to a single element i∗.

I M M (s) = {i ∈ D |σi = ta(s)}
i∗ = select (I M M (s))

The output function λ executes the output function of i∗ and applies the translation function, but only if the
model influences the flattened model directly (i.e., if the output of i∗ is routed to the coupled model’s output).
If there is no connection to the coupled model’s output (i.e., i∗ is only coupled to other atomic models), no
output function is invoked here. We will see later on that these events are still generated, but they are consumed
internally elsewhere.

λ(s) =
{

Zi∗,self (λi∗ (si∗ )) if self ∈ Ii∗
φ otherwise

The internal transition function is defined for each part of the state separately:

δint (s) = (. . . , (s′j , e
′
j ), . . . )

With three kinds of models: (1) the model i∗ itself, which just performs its internal transition function; (2) the
models influenced by i∗, which perform their external transition based on the output generated by i∗; (3) models
unrelated to i∗. In all cases, the elapsed time is updated.
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(s′j , e
′
j ) =




(δint , j (s j ), 0) for j = i∗,
(δext , j ((s j , e j + ta(s)), Zi∗, j (λi∗ (si∗ ))), 0) for j ∈ Ii∗ ,
(s j , e j + ta(s)) otherwise

Note that the internal transition function includes external transition functions of submodels for those models
influenced by i∗. As i∗ outputs events that are consumed internally, this all happens internally.

The external transition function is similar to the internal transition function. Now two types are distinguished:
(1) models directly connected to the input of the model, which perform their external transition; (2) models not
directly connected to the input of the model, which only update their elapsed time.

δext ((s, e), x) = (. . . , (s′i , e
′
i ), . . . )

(s′i , e
′
i ) =

{
(δext ,i ((si , ei + e), Zself ,i (x)), 0) for i ∈ Iself
(si , ei + e) otherwise

Reflective Question Is it possible to replace the translation function Z by an atomic DEVS model that takes
input and puts the translated value on its output, while preserving semantics?

5.4 The DEVS Abstract Simulator

Up to now, the semantics of atomic models was defined through natural language and high-level pseudo-code.
Coupled models were given semantics through a mapping to these atomic models. Both of these have their own
problems. For atomic models, the pseudo-code is not sufficiently specific to create a compliant DEVS simulator:
a lot of details of the algorithm are left unspecified (e.g., where does the external event come from). For coupled
models, the flattening procedure is elegant and formal, though it is highly inefficient to perform this flattening
at run-time.

To counter these problems, we will define a more elaborate, and formal, simulation algorithm for both atomic
and coupled models. Atomic models get a more specific definition with a clear interface, and coupled models
get their own simulation algorithm without flattening. Coupled models are thus given “operational semantics”
instead of “translational semantics”.

This simulation algorithm, an abstract simulator forms the basis for more efficient simulation algorithms,
and serves as a reference algorithm. Its goal is to formally define the semantics of both models in a concise
way, without caring about performance or implementation issues. Adaptations are allowed, but the final result
should be identical: simulation results are to be completely independent from the implementation. A direct
implementation of the abstract simulator is inefficient, and actual implementations therefore vary significantly.

We now elaborate on the abstract simulator algorithm. For each atomic and coupled model, an instance is
created of the respective algorithm.

Table 5.1 shows the different variables used, their type, and a brief explanation.

Table 5.1: Variables used in the abstract simulator.

name type explanation
tl time simulation time of last transition
tn time simulation time of next transition
t time current simulation time
e time elapsed time since last transition
s state current state of the atomic model
x event incoming event
y event outgoing event
f rom model source of the incoming message
parent model coupled model containing this model
sel f model current model

We furthermore distinguish five types of synchronization messages, as exchanged between the different
abstract simulators. An overview of messages is shown in Table 5.2.
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Table 5.2: Types of synchronization messages.

type explanation
i initialization of the simulation
∗ transition in the model
x input event for the model
y output event from the model
done computation finished for a model

First is the abstract simulation algorithm for atomic models, presented in Algorithm 7. This algorithm
consists of a big conditional, depending on the message that is received. Atomic models only perform an
operation upon reception of a message: there is no autonomous behaviour. This algorithm is invoked every
time a synchronisation message is received. Messages consist of three components: the type of the message, the
source of the message, and the simulation time. The conditional consists of three options: On the reception of
an i message, we perform initialization of the simulation time.

Another option is the reception of a ∗message, triggering a transition. The message consists of both a sender
and the time at which the transition should happen. By definition, a transition can only happen at time tn , so we
assert this. After this check, we have to perform the following steps: (1) generate the output, (2) send it out to
the sender of the ∗ message (our parent), (3) perform the internal transition, (4) update our time with the time
advance, and (5) indicate to our parent that we finished processing the message, also passing along our time of
next transition.

Finally, it is possible to receive an x message, indicating external input. This can happen anytime between
our last transition (tl ), and our scheduled transition (tn), so we again assert the simulation time. Note that these
times are inclusive: due to the select function it is possible that another model comes right after or before
our own scheduled transition. We perform the following steps: (1) compute the elapsed time (e) based on the
provided simulation time (t), (2) perform the external transition, (3) update the simulation time of the next
transition, and (4) indicate to our parent that we finished processing the message, also passing along our time
of next transition.

Algorithm 7 DEVS atomic model abstract simulator.
if receive (i, f rom, t ) message then

tl ← t − e
tn ← tl + ta(s)
send (done, sel f , tn ) to parent

else if receive (∗, f rom, t ) message then
if t = tn then

y ← λ (s)
if y , φ then

send (y , sel f , t ) to parent
end if
s ← δint (s)
tl ← t
tn ← tl + ta(S)
send (done, sel f , tn ) to parent

end if
else if receive (x, f rom, t ) message then

if tl ≤ t ≤ tn then
e ← t − tl
s ← δext ((s, e), x)
tl ← t
tn ← tl + ta(s)
send (done, sel f , tn ) to parent

else
error: bad synchronization

end if
end if
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Recall that the abstract simulation algorithm did not have any autonomous behaviour. This indicates that
there is another entity governing the progression of the simulation This simulation entity is the root coordinator,
and it encodes the main simulation loop. Its algorithm is shown in Algorithm 8. As long as simulation needs to
continue, it sends out a message to the topmost model in the hierarchy to perform transitions. When a reply is
received, simulation time is progressed to the time indicated by the topmost model.

Algorithm 8 DEVS root coordinator.
send (i,main, 0.0) to topmost coupled model top
wait for (done, top, tN )
t ← tN
while not terminat ionCondit ion() do

send (∗,main, t ) to topmost coupled model top
wait for (done, top, tN )
t ← tN

end while

Finally, while not completely necessary due to the existence of the flattening algorithm, we also define a
shortcut for the simulation of coupled models. The abstract simulation algorithm for coupled models is shown
in Algorithm 9. Coupled models can receive all five different types of synchronisation messages.

First, the i message again indicates initialization. It merely forwards the message to all of its children and
marks each child as active. Every coupled model has a tl and tn variable as well, which is defined as the
maximum, respectively minimum, of its children. This is logical, as any transition of its children will also
require an operation on the coupled model containing it. When a message is sent to a submodel, the submodel
is marked as active. The use for this is shown in the processing of the done message.

Second, the ∗message again indicates a transition. Contrary to the atomic models, a coupled model is unable
to perform a transition itself. Instead, it forwards the message to the imminent submodel, found by executing
the select function for all models that have that exact same tn . Only a single model will be selected, and a ∗
message is sent to that model. Just like before, the model is marked as active to make sure that we wait for its
computation to finish.

Third, a y message indicates an output message. The output message is output by the output function of a
subcomponent, and needs to be routed through the coupled model. This part of the function is responsible for
routing the message to the influencees of the model that sent out the message. Note that it is also possible that
one of the influencees is sel f , indicating that the message needs to be routed externally (i.e., to the output of
the coupled model). In any case, the message needs to be translated using the translation function. The actual
translation function that is invoked depends on the source and destination of the message.

Fourth, a x message can be received, indicating input. This is mostly identical to the output messages, only
now can we also handle messages that were received from our own parent.

Finally, a done message can be received, indicating that a submodel has finished its computation. The
submodel, which was marked as an active child, will now be unmarked. When done messages are received from
all submodels (i.e., all children are inactive), we determine our own tl and tn variables and send out the minimal
tn of all submodels. This time is then sent to the parent.

The abstract simulator for coupled models can work with any kind of submodel, not necessarily atomic
models. In deep hierarchies, the done message always propagates the minimal tn upwards in the hierarchy. In
the end, the root coordinator will always receive the minimal tn , which is the time of the earliest next internal
transition.

Reflective Question Is it possible for an atomic DEVS model to do an internal and external transition at the
same point in simulated time? Explain your answer.

5.5 Application to Queueing Systems

The usefulness of DEVS of course goes further than traffic lights. To present a more realistic model and highlight
the potential for performance analysis, we present a simple queueing system next. While a lot has been done
in queueing theory, we present simulation as an alternative to the mathematical solutions. Even though the
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Algorithm 9 DEVS coupled model abstract simulator.
if receive (i, f rom, t ) message then

for all d in D do
send (i, sel f , t ) to d
act ive_children ← act ive_children ∪ {d }

end for
else if receive (∗, f rom, t ) message then

if t = tn then
i∗ = select ( {Mi .tn = t |i ∈ D })
send (∗, sel f , t ) to i∗
act ive_children ← act ive_children ∪ {i∗ }

end if
else if receive (y , f rom, t ) message then

for all i ∈ I f rom \ {sel f } do
send (Z f rom,i (y), f rom, to) to i
act ive_children ← act ive_children ∪ {i }

end for
if sel f ∈ I f rom then

send (Z f rom,sel f (y), sel f , t ) to parent
end if

else if receive (x, f rom, t ) message then
if tl ≤ t ≤ tn then

for all i ∈ I f rom do
send (Zsel f ,i (x), sel f , t ) to i
act ive_children ← act ive_children ∪ {i }

end for
end if

else if receive (done, f rom, t ) message then
act ive_children ← act ive_children \ { f rom }
if act ive_children = φ then

tl ← max {tl ,d |d ∈ D }
tn ← min {tn,d |d ∈ D }
send (done, sel f , tn ) to parent

end if
end if

mathematical solutions have their advantages, simulation offers more flexibility and does not get that complex.
It is, however, necessarily limited to “sampling”: simulations will only take samples and will therefore generally
not find rare and exceptional cases. Not taking them into account is fine in many situations, as it is now in our
example model.

In this section, we present a simple queueing problem. Variations on this model — in either its behaviour,
structure, or parameters — are easy to do.

5.5.1 Problem Description

In this example, we model the behaviour of a simple queue that gets served by multiple processors. Imple-
mentations of this queueing systems are widespread, such as for example at airport security. Our model is
parametrisable in several ways: we can define the random distribution used for event generation times and event
size, the number of processors, performance of each individual processor, and the scheduling policy of the
queue when selecting a processor. Clearly, it is easier to implement this, and all its variants, in DEVS than it is
to model it mathematically. For our performance analysis, we show the influence of the number of processors
(e.g., metal detectors) on the average and maximal queueing time of jobs (e.g., travellers).

A model of this system can be shown in Figure 5.9. Events (people) are generated by a generator using some
distribution function. They enter the queue, which decides the processor that they will be sent to. If multiple
processors are available, it picks the processor that has been idle for the longest; if no processors are available,
the event is queued until a processor becomes available. The queue works First-In-First-Out (FIFO) in case
multiple events are queueing. For a processor to signal that it is available, it needs to signal the queue. The
queue keeps track of available processors. When an event arrives at a processor, it is processed for some time,
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depending on the size of the event and the performance characteristics of the processor. After processing, the
processor signals the queue and sends out the event that was being processed.

Proc 1

Proc ...

Proc n

λ

finish

event

event

event

Fig. 5.9: Queue system with a single generator, single queue, and n processors.

5.5.2 Description in DEVS

While examples could be given purely in their formal description, they would not be executable and would
introduce a significant amount of accidental complexity.We use the tool PythonPDEVS2 [282, 283] to implement
the DEVS model and perform simulations. In PythonPDEVS, DEVS models are implemented by defining
methods that implement the different aspects of the tuple. All code within these methods is just normal Python
code, though a minimal number of API calls is required in the case of a coupled DEVSmodel. Since most DEVS
tools work similarly, these examples could easily be transposed to other DEVS simulation tools. An overview
of popular DEVS simulation tools is shown in [284].

To specify this model, we first define the event exchanged between different models: the Job. A job is coded
as a class Job. It has the attributes size (i.e., indicative of processing time) and creation time (i.e., for statistic
gathering). The Job class definition is shown in Listing 1.

class Job:
def __init__(self , size , creation_time):

# Jobs have a size and creation_time parameter
self.size = size
self.creation_time = creation_time

Listing 1: PythonPDEVS code for the Job event.

We now focus on each atomic model separately, starting at the event generator.
The generator is defined as an atomic model using the class Generator, shown in Listing 2. Classes that

represent an atomic model inherit from the AtomicDEVS class. They should implement methods that implement
each of the DEVS components. Default implementations are provided for a passivated model, such that unused
functions do not need to be defined. In the constructor, input and output ports are defined, as well as model
parameters and the initial state. We see that the definition of the generator is very simple: we compute the time
remaining until the next event (remaining), and decrement the number of events to send. The generator also
keeps track of the current simulation time, in order to set the creation time of events. The time advance function
returns the time remaining until the next internal transition. Finally, the output function returns a new customer

2 Download: http://msdl.cs.mcgill.ca/projects/DEVS/PythonPDEVS

http://msdl.cs.mcgill.ca/projects/DEVS/PythonPDEVS
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event with a randomly defined size. The job has an attribute containing the time at which it was generated.
Recall, however, that the output function was invoked before the internal transition, so the current time has not
yet been updated by the internal transition. Therefore, the output function also has to do this addition, without
storing the result in the state (as it cannot write to the state).

from pypdevs.DEVS import AtomicDEVS
from job import Job
import random

# Define the state of the generator as a structured object
class GeneratorState:

def __init__(self , gen_num):
# Current simulation time (statistics)
self.current_time = 0.0
# Remaining time until generation of new event
self.remaining = 0.0
# Counter on how many events to generate still
self.to_generate = gen_num

class Generator(AtomicDEVS):
def __init__(self , gen_param , size_param , gen_num):

AtomicDEVS.__init__(self , "Generator")
# Output port for the event
self.out_event = self.addOutPort("out_event")
# Define the state
self.state = GeneratorState(gen_num)

# Parameters defining the generator 's behaviour
self.gen_param = gen_param
self.size_param = size_param

def intTransition(self):
# Update simulation time
self.state.current_time += self.timeAdvance ()
# Update number of generated events
self.state.to_generate -= 1
if self.state.to_generate == 0:

# Already generated enough events , so stop
self.state.remaining = float('inf')

else:
# Still have to generate events , so sample for new duration
self.state.remaining = random.expovariate(self.gen_param)

return self.state

def timeAdvance(self):
# Return remaining time; infinity when generated enough
return self.state.remaining

def outputFnc(self):
# Determine size of the event to generate
size = max(1, int(random.gauss(self.size_param , 5)))
# Calculate current time (note the addition !)
creation = self.state.current_time + self.state.remaining
# Output the new event on the output port
return {self.out_event: Job(size , creation)}

Listing 2: PythonPDEVS code for the Generator atomic model.
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Next up is the queue, which is the most interesting component of the simulation, as it is the part we wish to
analyze. The Queue implementation is similar in structure to the Generator. Of course, the DEVS parts get a
different specification, as shown in Listing 3. The queue takes a structural parameter, specifying the number of
processors. This is needed since the queue has an output port for each processor. When an internal transition
happens, the queue knows that it has just output an event to the first idle processor. It thus marks the first
idle processor as busy, and removes the event it was currently processing. If there are events remaining in
the queue, and a processor is available to process it, we process the first element from the queue and set the
remaining_time counter. In the external transition, we check the port we received the event on. Either it is a
signal of the processor to indicate that it has finished, or else it is a new event to queue. In the former case, we
mark the processor that sent the event as idle, and potentially process a queued message. For this to work, the
processor should include its ID in the event, as otherwise the queue has no idea who sent this message. In the
latter case, we either process the event immediately if there are idle processors, or we store it in the queue. The
time advance merely has to return the remaining_time counter that is managed in both transition functions.
Finally in the output function, the model outputs the first queued event to the first available processor. Note that
we can only read the events and processors, and cannot modify these lists: state modification is reserved for the
transition functions. An important consideration in this model is the remaining_time counter, which indicates
how much time remains before the event is processed. We cannot simply put the processing time of events in
the time advance, as interrupts could happen during this time. When an interrupt happens (e.g., another event
arrives), the time advance is invoked again, and would return the total processing time, instead of the remaining
time to process the event. To solve this problem, we maintain a counter that explicitly gets decremented when
an external interrupt happens.

from pypdevs.DEVS import AtomicDEVS

# Define the state of the queue as a structured object
class QueueState:

def __init__(self , outputs):
# Keep a list of all idle processors
self.idle_procs = range(outputs)
# Keep a list that is the actual queue data structure
self.queue = []
# Keep the process that is currently being processed
self.processing = None
# Time remaining for this event
self.remaining_time = float("inf")

class Queue(AtomicDEVS):
def __init__(self , outputs):

AtomicDEVS.__init__(self , "Queue")
# Fix the time needed to process a single event
self.processing_time = 1.0
self.state = QueueState(outputs)

# Create 'outputs ' output ports
# 'outputs ' is a structural parameter!
self.out_proc = []
for i in range(outputs):

self.out_proc.append(self.addOutPort("proc_%i" % i))

# Add the other ports: incoming events and finished event
self.in_event = self.addInPort("in_event")
self.in_finish = self.addInPort("in_finish")

def intTransition(self):
# Is only called when we are outputting an event
# Pop the first idle processor and clear processing event
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self.state.idle_procs.pop (0)
if self.state.queue and self.state.idle_procs:

# There are still queued elements , so continue
self.state.processing = self.state.queue.pop (0)
self.state.remaining_time = self.processing_time

else:
# No events left to process , so become idle
self.state.processing = None
self.state.remaining_time = float("inf")

return self.state

def extTransition(self , inputs):
# Update the remaining time of this job
self.state.remaining_time -= self.elapsed
# Several possibilities
if self.in_finish in inputs:

# Processing a "finished" event , so mark proc as idle
self.state.idle_procs.append(inputs[self.in_finish ])
if not self.state.processing and self.state.queue:

# Process first task in queue
self.state.processing = self.state.queue.pop (0)
self.state.remaining_time = self.processing_time

elif self.in_event in inputs:
# Processing an incoming event
if self.state.idle_procs and not self.state.processing:

# Process when idle processors
self.state.processing = inputs[self.in_event]
self.state.remaining_time = self.processing_time

else:
# No idle processors , so queue it
self.state.queue.append(inputs[self.in_event ])

return self.state

def timeAdvance(self):
# Just return the remaining time for this event (or infinity else

)
return self.state.remaining_time

def outputFnc(self):
# Output the event to the processor
port = self.out_proc[self.state.idle_procs [0]]
return {port: self.state.processing}

Listing 3: PythonPDEVS code for the Queue atomic model.

The next atomic model is the Processor class, shown in Listing 4. It merely receives an incoming event and
starts processing it. Processing time, computed upon receiving an event in the external transition, is dependent
on the size of the task, but takes into account the processing speed and a minimum amount of processing that
needs to be done. After the task is processed, we trigger our output function and internal transition function. We
need to send out two events: one containing the job that was processed, and one to signal the queue that we have
become available. For this, two different ports are used. Note that the definition of the processor would not be
this simple in case there was no queue before it. We can now make the assumption that when we get an event,
we are already idle and therefore don’t need to queue new incoming events first.

from pypdevs.DEVS import AtomicDEVS

# Define the state of the processor as a structured object
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class ProcessorState(object):
def __init__(self):

# State only contains the current event
self.evt = None

class Processor(AtomicDEVS):
def __init__(self , nr, proc_param):

AtomicDEVS.__init__(self , "Processor_%i" % nr)

self.state = ProcessorState ()
self.in_proc = self.addInPort("in_proc")
self.out_proc = self.addOutPort("out_proc")
self.out_finished = self.addOutPort("out_finished")

# Define the parameters of the model
self.speed = proc_param
self.nr = nr

def intTransition(self):
# Just clear processing event
self.state.evt = None
return self.state

def extTransition(self , inputs):
# Received a new event , so start processing it
self.state.evt = inputs[self.in_proc]
# Calculate how long it will be processed
time = 20.0 + max(1.0, self.state.evt.size / self.speed)
self.state.evt.processing_time = time
return self.state

def timeAdvance(self):
if self.state.evt:

# Currently processing , so wait for that
return self.state.evt.processing_time

else:
# Idle , so don't do anything
return float('inf')

def outputFnc(self):
# Output the processed event and signal as finished
return {self.out_proc: self.state.evt ,

self.out_finished: self.nr}

Listing 4: PythonPDEVS code for the Processor atomic model.

The processor finally sends the task to the Collector class, shown in Listing 5. The collector is an artificial
component that is not present in the system being modelled; it is only used for statistics gathering. For each job,
it stores the time in the queue.

from pypdevs.DEVS import AtomicDEVS

# Define the state of the collector as a structured object
class CollectorState(object):

def __init__(self):
# Contains received events and simulation time
self.events = []
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self.current_time = 0.0

class Collector(AtomicDEVS):
def __init__(self):

AtomicDEVS.__init__(self , "Collector")
self.state = CollectorState ()
# Has only one input port
self.in_event = self.addInPort("in_event")

def extTransition(self , inputs):
# Update simulation time
self.state.current_time += self.elapsed
# Calculate time in queue
evt = inputs[self.in_event]
time = self.state.current_time - evt.creation_time - evt.

processing_time
inputs[self.in_event ]. queueing_time = max(0.0, time)
# Add incoming event to received events
self.state.events.append(inputs[self.in_event ])
return self.state

# Don't define anything else , as we only store events.
# Collector has no behaviour of its own.

Listing 5: PythonPDEVS code for the Collector atomic model.

With all atomic models defined, we only have to couple them together in a coupled model, as shown in
Listing 6. In this system, we instantiate a generator, queue, and collector, as well as a variable number of
processors. The number of processors is variable, but is still static during simulation. The couplings also depend
on the number of processors, as each processor is connected to the queue and the collector.

from pypdevs.DEVS import CoupledDEVS

# Import all models to couple
from generator import Generator
from queue import Queue
from processor import Processor
from collector import Collector

class QueueSystem(CoupledDEVS):
def __init__(self , mu, size , num , procs):

CoupledDEVS.__init__(self , "QueueSystem")

# Define all atomic submodels of which there are only one
generator = self.addSubModel(Generator(mu , size , num))
queue = self.addSubModel(Queue(len(procs)))
collector = self.addSubModel(Collector ())

self.connectPorts(generator.out_event , queue.in_event)

# Instantiate desired number of processors and connect
processors = []
for i, param in enumerate(procs):

processors.append(self.addSubModel(
Processor(i, param)))

self.connectPorts(queue.out_proc[i],
processors[i]. in_proc)
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self.connectPorts(processors[i]. out_finished ,
queue.in_finish)

self.connectPorts(processors[i].out_proc ,
collector.in_event)

# Make it accessible outside of our own scope
self.collector = collector

Listing 6: PythonPDEVS code for the System coupled model.

Now that ourDEVSmodel is completely specified, we can start running simulations on it. Simulation requires
an experiment file though, which initializes the model with parameters and defines the simulation configuration.
An example experiment, again in Python, is shown in Listing 7. The experiment writes out the raw queueing
times to a Comma Separated Value (CSV) file. An experiment file often contains some configuration of the
simulation tool, which differs for each tool. For PythonPDEVS, the documentation3 provides an overview of
supported options.

from pypdevs.simulator import Simulator
import random

# Import the model we experiment with
from system import QueueSystem

# Configuration:
# 1) number of customers to simulate
num = 500
# 2) average time between two customers
time = 30.0
# 3) average size of customer
size = 20.0
# 4) efficiency of processors (products/second)
speed = 0.5
# 5) maximum number of processors used
max_processors = 10
# End of configuration

# Store all results for output to file
values = []
# Loop over different configurations
for i in range(1, max_processors):

# Make sure each of them simulates exactly the same workload
random.seed (1)
# Set up the system
procs = [speed] * i
m = QueueSystem(mu =1.0/ time , size=size , num=num , procs=procs)

# PythonPDEVS specific setup and configuration
sim = Simulator(m)
sim.setClassicDEVS ()
sim.simulate ()

# Gather information for output
evt_list = m.collector.state.events
values.append ([e.queueing_time for e in evt_list ])

3 http://msdl.cs.mcgill.ca/projects/DEVS/PythonPDEVS/documentation/html/index.html

http://msdl.cs.mcgill.ca/projects/DEVS/PythonPDEVS/documentation/html/index.html


150 Yentl Van Tendeloo and Hans Vangheluwe

# Write data to file
with open('output.csv', 'w') as f:

for i in range(num):
f.write("%s" % i)
for j in range(len(values)):

f.write(", %5f" % (values[j][i]))
f.write("\n")

Listing 7: PythonPDEVS code for the experiment on the system.

5.5.3 Performance Analysis

After the definition of our DEVS model and experiment, we of course still need to run the simulation. Simply
by executing the experiment file, the CSV file is generated, and can be analyzed in a spreadsheet tool or plotting
library. Depending on the data stored during simulation, analysis can show the average queueing times, maximal
queueing times, number of events, processor utilization, and so on.

Corresponding to our initial goal, we perform the simulation in order to find out the influence of opening
multiple processors on the average and maximum queueing time. Figure 5.10 shows the evolution of the waiting
time for subsequent clients. Figure 5.11 shows the same results, drawn using boxplots. These results indicate
that while two processors are able to handle the load, maximum waiting time is rather high: a median of 200
seconds and a maximum of around 470 seconds. When a single additional processor is added, average waiting
time decreases significantly, and the maximum waiting time also becomes tolerable: the mean job is served
immediately, with 75% of jobs being handled within 25 seconds. Further adding processors still has a positive
effect on queueing times, but the effect might not warrant the increased cost in opening processors: apart from
some exceptions, all customers are processed immediately starting from four processors. Ideally, a cost function
would be defined to quantize the value (or dissatisfaction) of waiting jobs, and compare this to the cost of adding
additional processors. We can then optimize that cost function to find out the ideal balance between paying
more for additional processors and losing money due to long job processing times. Of course, this ideal balance
depends on several factors, including our model configuration and the cost function used.

Reflective Question What would you have to change in order to use a different queueing discipline or arrival
process? How does this compare to the changes needed when using a mathematical model of this same process?

5.6 DEVS Variants

Despite the success of the original DEVS specification, as introduced throughout this chapter, shortcoming
were identified when used in some domains. For these reasons, a lot of variants have recently spawned. In
this section, we touch upon the three most popular ones, with some remarks on other variants. Note that we
make the distinction between variants that further augment the DEVS formalism (i.e., make more constructs
available), and those that restrict it (i.e., prevent several cases). Both have their reasons, mostly related to
the implementation: augmenting the DEVS formalism makes it easier for modellers to create models in some
domains, whereas limiting the DEVS formalism makes some operations, such as analysis, possible or easier to
implement.

5.6.1 Parallel DEVS

One of the main problems identified in DEVS is related to performance: when multiple models are imminent,
they are processed sequentially. While DEVS does allow for some parallelism, (e.g., between simultaneous
external transitions), multiple internal transitions is a common occurrence.
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Parallel DEVS [72] was introduced as a variant of the DEVS formalism, in which parallel execution of
internal transition functions is allowed. This changes the semantics of models though, so it requires changes to
the abstract simulator [73]. The proposed changes are therefore not just syntactic sugar: they explicitly modify
the semantics of models.

Allowing for parallelism is, however, not a trivial task: several modifications are required, which we briefly
mention here. The first logical change is the removal of the select function: instead of selecting a model to go
first, all imminent models are allowed to transition simultaneously. Whether or not this happens in parallel or
not, as it might not necessarily be faster [148], is up to the implementation. This creates some repercussions
throughout the remainder of the formalism, as the select function was introduced for good reasons.

Since models can now perform their internal transition simultaneously, output functions also happen simul-
taneously. While this is in itself not a problem, routing might cause the need for events to be merged together,
for example when two events get routed to the same model. The abstract simulator was not designed for this,
as an external transition was immediately invoked upon the reception of an external event. So in Parallel DEVS,
events are always encapsulated in bags, which can easily be merged. Bags, or multisets, are a kind of set which
can contain items multiple times. This way, multiple bags can be trivially joined, without losing information.
Note that order is undefined, as otherwise it would depend on the synchronisation between different output
functions: which one is executed before the other. Due to this change in interface, the external transition needs
to be altered to operate on a bag of input events, and the output function has to generate a bag of output events.

Problems don’t stop there, as internal and external transition might happen simultaneously. Recall that in
DEVS, self-loops were not allowed for this exact purpose. In Parallel DEVS, however, two models can perform
their internal transition simultaneously, with one outputting an event for the other one. In that case, the model
needs to process both its internal transition, and its external transition caused by the other model’s transition.
Since there is no priority defined between them (that was part of the purpose of the select function), they should
execute simultaneously. To allow for this, a new kind of transition is defined: the confluent transition function.
This transition is only performed when both the internal and external transition happen simultaneously. Parallel
DEVS leaves open what the semantics of this is, though a sane default is for the internal transition to go first,
followed by the external transition.

Thanks to the potential performance gains,many tools favorParallel DEVS overDEVS in their implementation.
Some stick to the elegance of the original DEVS formalism, despite the performance hit.
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5.6.2 Dynamic Structure DEVS

Another shortcoming of the DEVS formalism, also present in Parallel DEVS, is the lack of dynamic structure.
Some systems inherently require a dynamic structure to create, modify, or delete models during the simulation.
While possible in DEVS formalism by defining the superset of all possible configurations and activating only
one of them, this has high accidental complexity, and performance suffers. Furthermore, systems might grow
extremely big, making it practically impossible to create all possible configurations statically.

To counter these issues, Dynamic Structure DEVS [23] was devised as an extension of DEVS. In Dynamic
Structure DEVS, the model configuration is seen as a part of the state, making it modifiable during simulation.
Since the coupled model has no state of its own, a network executive is added, which manages the structural state
of a specific scope. In a separate phase, models can send events to the network executive to request a structural
change.

This proposed extension is, however, only a mathematical model as to how it can be made possible. Similar
to previous formalisms, an abstract simulator [25] is provided that is structured that way. Real implementations,
however, are free to implement this however they want. The network executive might therefore not even exist in
the implementation, with all structure changing messages being intercepted in the implementation.

Even though dynamic structure now becomes possible in DEVS models, this formalism is not well suited to
handle a huge amount of changes. The work to be done for a change, both for the user and the implementation,
is just too time-consuming to execute frequently. But even while highly dynamic models are not ideally suited,
infrequent structural changes become very possible.

5.6.3 Cell-DEVS

Another variant of DEVS presented here is the Cell-DEVS formalism. Despite the elegance of the DEVS
formalism, it is still difficult to use it in a variety of situations, specifically in the context of cellular models.
Cellular Automata [305] are a popular choice in the domain of cellular models, but contrary to the discrete-event
nature of DEVS,Cellular Automata is discrete-time based.While discrete-time is a goodmatch with most models
in the problem domain of cellular automata, some models would profit from a discrete-event basis. While not
frequently a problem, cellular models become restricted to the granularity of the time step, resulting in low
performance when the time step is not a good match with the model’s transition times.

Cell-DEVS was introduced as a combination of DEVS and Cellular Automata, combining the best of both
worlds. Model specification is similar to Cellular Automata models, but the underlying formalism used for
simulation is actuallyDEVS. Due to this change,models gainmore control over the simulation time. Furthermore,
cellular models can now be coupled to other, not necessarily cellular, DEVS models.

5.6.4 Other Variants

Apart from the formalisms introduced here, manymore variants exist that tackle very specific problems inDEVS.
We do not have the space here to discuss all of them, though we wish to provide some pointers to some other
useful extensions. Examples are other solutions to the dynamic structure problem (DynDEVS [275]), restrictions
to make DEVS models analysable (FD-DEVS [152]), and extensions to allow for non-determinism (Fuzzy
DEVS [177]). Many of the previously proposed formalisms also have augmented themselves with the changes
made to Parallel DEVS, resulting in a parallel version of Dynamic Structure DEVS [24] and Cell-DEVS [273].

Reflective Question What does it mean for there to be extensions to DEVS, while we previously stated that
DEVS can be seen as a simulation assembly language?
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5.7 Summary

In this chapter, we briefly presented the core ideas behind DEVS, a popular formalism for the modelling of
complex dynamic systems using a discrete-event abstraction. DEVS is primarily used for the simulation of
queueing networks, of which an example was given, and performance models. It is most applicable for the
modelling of discrete event systems with component-based modularity. It can, however, be used much more
generally as a simulation assembly language, or as a theoretical foundation for these formalisms.

Future learning directions on DEVS can be found in the Further Reading section, which provides a list of
relevant extensions on DEVS, as well as mentions of some of the problems currently being faced in DEVS.

5.8 Literature and Further Reading

Zeigler’s book [309] is the default reference for the DEVS formalism and contains further information on other
related formalisms. It mostly focusses on the theoretical aspects of modelling and simulation, though some
examples are given. A more practical introduction to the formalism of DEVS and examples and how to actually
use the formalism and the tool CD++ are given by Wainer [301]. Finally, another text Nutaro [218] develops the
design and development of efficient simulators.

The contributions that lead to the the most common variant of DEVS that is in use today have been presented
in some landmark papers. Most DEVS research is currently being made on Parallel DEVS [72]. A complete
formalisation of simulation formalisms starting from DEVS in [24]. Another paper by Chen [70] presentes
the symbolic flattening (closure under coupling) that is actually implemented in Parallel Devs. The idea of
DEVS as a simulation assembly language. Details are given on why such a language is necessary, and what the
implications are is found in [287]. Currently a lot of DEVS tools exist, but there is almost no interoperability in
any way between them. Even today, DEVS standardisation is ongoing work [252].

5.9 Self-Assessment

1. Give the formal notation of an atomic DEVS model. Then, give the formal notation of a coupled DEVS
model.

2. Give an equivalent atomic DEVS model for a coupled DEVS model.
3. Why does a time advance of 0 need to be possible?
4. Why is the select function necessary?
5. What are the advantages and disadvantages of using simulation in DEVS over mathematical models for

performance analysis.
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Chapter 6
Statecharts: A Formalism to Model, Simulate and Synthesize
Reactive and Autonomous Timed Systems

Simon Van Mierlo and Hans Vangheluwe

Abstract Statecharts, introduced by David Harel in 1987, is a formalism used to specify the behaviour of timed,
autonomous, and reactive systems using a discrete-event abstraction. It extends Timed Finite State Automata
with depth, orthogonality, broadcast communication, and history. Its visual representation is based on higraphs,
which combine graphs and Euler diagrams. Many tools offer visual editing, simulation, and code synthesis
support for the Statechart formalism. Examples include STATEMATE, Rhapsody, Yakindu, and Stateflow, each
implementing different variants of Harel’s original semantics. This tutorial introduces modelling, simulation,
and testing with Statecharts. As a running example, the behaviour of a digital watch, a simple yet sufficiently
complex timed, autonomous, and reactive system is modelled. We start from the basic concepts of states and
transitions and explain the more advanced concepts of Statecharts by extending the example incrementally. We
discuss several semantic variants, such as STATEMATE and Rhapsody. We use Yakindu to model the example
system.

Learning Objectives

After reading this chapter, we expect you to be able to:

• Specify the behaviour of a autonomous and reactive system using Statecharts
• Understand the semantics of a Statecharts model
• Deploy a Statecharts model onto a software platform (using appropriate tooling)

6.1 Introduction

The systems that we analyse, design, and build today are characterised by an ever-increasing complexity. This
complexity stems from a variety of sources, such as the complex interplay of physical components (sensors
and actuators) with (real-time) software, the large amounts of data these systems have to process, and the
interaction with a (non-deterministic) environment. Almost always, however, complex systems exhibit some
for of reactivity to the environment: the system reacts to stimuli coming from the environment (in the form
of input events) by changing its internal state and can influence the environment through output events. Such
reactive systems are fundamentally different from traditional software systems, which are transformational (i.e.,
they receive a number of input parameters, perform computations, and return the result as output). Reactive
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systems run continuously, often have multiple concurrently executing components, are reactive with respect
to the environment, and can act proactively by making autonomous decisions. An example is a modern car,
whose systems are increasingly controlled by software. Multiple concurrently running software components are
interpreting signals coming from the environment (the driver’s controls as well as sensors interpreting current
driving conditions) and making (autonomous) decisions that generate signals to the car’s actuators.

Such timed, reactive, autonomous behaviour needs to be specified in an appropriate language, in order to
validate the behaviour with respect to its specification (using verification and validation techniques, such as
formal verification, model checking, as well as testing techniques), and to ultimately deploy the software onto
the system’s hardware components. Traditional programming languages were designed with transformational
systems inmind, and are notwell-suited for describing timed, autonomous, reactive, and concurrent behaviour. In
fact, describing complex systems using threads and semaphores quickly results in unreadable, incomprehensible,
and unverifiable program code [181]. This is partly due to the cognitive gap between the abstractions offered
by the languages and the complexity of the specification, as well as the sometimes ill-defined semantics of
programming languages, which hampers understandability. As an alternative, this book chapter describes the
Statechart formalism, introduced by David Harel in 1987 [134]. The syntax and semantics of Statecharts are
well-defined and can natively describe a system’s timed, autonomous, reactive, and concurrent behaviour. Its
basic building blocks are states and transitions between those states. States can be combined hierarchically
into composite states, or orthogonally into concurrent regions. Many (visual) modelling tools exist that support
the complete life-cycle of modelling a system’s behaviour using Statecharts: from design to verification and
validation, and ultimately deployment (code generation).

Throughout the sections of this chapter, we introduce the constructs of the Statechart formalism by incremen-
tally building the model of the behaviour of an example system. We explain the syntax as well as the semantics
of each construct. The examples are modelled in the Yakindu tool (https://www.itemis.com/en/yakindu/
state-machine/), but the techniques can be transferred to any Statecharts modelling and simulation tool with
comparable functionality.

Section 6.2 provides background for the rest of the chapter: it explains how we can view a system’s behaviour
using a discrete-event abstraction, it explains the behaviour of the example digital watch system we are going
to model, and it introduces a process model that can be used to build a system (from requirements, through
design, down to deployment) using Statecharts. Section 6.3 explains each Statechart construct, starting from
the basic state and transition, and progressively introducing more advanced constructs. Section 6.4 explains
the semantics of Statecharts (as implemented by STATEMATE) in detail. Section 6.5 explains how Statechart
models can be tested, to check whether they satisfy the requirements of the system. Section 6.6 explains how
code can be generated from a Statechart model and deployed onto a target platform. Section 6.7 goes into a
number of advanced topics. Section 6.8 summarises this chapter.

6.2 Background

This chapter provides background for the rest of the chapter. In Section 8.4, we explain the running example
that we will model using Statecharts in the next section. In Section 6.2.2, we look at a system’s behaviour using
a discrete-event abstraction. Finally, in Section 6.2.3, we present a process model that can be used to model a
system using Statecharts, verify that it satisfies the requirements (through simulation and testing), and finally
deploy it.

6.2.1 Running Example

The example system we use in this chapter to demonstrate the capabilities of the Statechart formalism is a
digital watch. A visual representation of the watch is shown in Figure 6.1. A watch is primarily used for keeping
time, but has other functions, such as chronometer, an alarm, and a light. A user can interact with the watch by
pressing buttons that result in switching between the different modes, editing the current time, turning on the
light, . . . It is inherently timed and autonomous, as it changes its internal state without any input from the user.

https://www.itemis.com/en/yakindu/state-machine/
https://www.itemis.com/en/yakindu/state-machine/
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Fig. 6.1: The running digital watch application.

Some notion of orthogonality is also present, as the system has to ensure time is updated while the chronometer
is running, for example.

A full specification of the requirements is given below:

• The time value should be updated every second, even when it is not displayed (as for example, when the
chrono is running). However, time is not updated when it is being edited.

• Pressing the top right button turns on the Indiglo light. The light stays on for as long as the button remains
pressed. From the moment the button is released, the light stays on for 2 more seconds, after which it is
turned off.

• Pressing the top left button alternates between the time display, chrono display, and alarm display modes.
The system starts in the time display mode. In this mode, the time (HH:MM:SS) and date (MM/DD/YY)
are displayed.

• When in chrono display mode, the elapsed time is displayed MM:SS:FF (with FF hundredths of a second).
Initially, the chrono starts at 00:00:00. The bottom right button is used to start the chrono. The running chrono
updates in 1/100 second increments. Subsequently pressing the bottom right button will pause/resume the
chrono. Pressing the bottom left button resets the chrono to 00:00:00. The chrono will keep running (when
in running mode) or keep its value (when in paused mode), even when the watch is in a different display
mode (for example, when the time is displayed).

• When in alarm display mode, the time at which the alarm is set is displayed. The default alarm time is
12:00:00.

• When in time or alarm display mode, the watch will go into editing mode when the bottom right button is
held pressed for at least 1.5 seconds.

• When in time or alarm display mode, the alarm can be toggled between on or off by pressing the bottom
left button.

• The alarm is activated when the alarm time is equal to the time in display mode. When it is activated, the
screen will blink for 4 seconds, then the alarm turns off. Blinking means switching to/from highlighted
background (Indiglo) twice per second. The alarm can be turned off before the elapsed 4 seconds by a user
interrupt (i.e., if any button is pressed). After the alarm is turned off, activity continues exactly where it was
left off. Note that after the alarm finishes (flashing ends), the alarm is unset (so it will not go off the next
day at the same time).

• When in (either time or alarm) editing mode, briefly pressing the bottom left button will increase the
current selection. Note that it is only possible to increase the current selection, there is no way to decrease
or reset the current selection. If the bottom left button is held down, the current selection is incremented
automatically every 0.3 seconds. Editing mode should be exited if no editing event occurs for 5 seconds.
Holding the bottom right button down for 2 seconds will also exit the editing mode. Pressing the bottom
right button for less than 2 seconds will move to the next selection (for example, from editing hours to
editing minutes).

These requirements now need to be translated to a design of the system. Many options exist: since we are talking
about control software, a possible choice would be a high-level programming language. But as we have argued
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earlier in this chapter, a more appropriate choice (to describe this timed, reactive, autonomous behaviour) is the
Statechart language.

6.2.2 Discrete-Event Abstraction

Certain system behaviour, in particular the behaviour of control software, can be described using a discrete-event
abstraction. In Figure 6.2 a view of the behaviour of an example system is shown – in this case, the system is
a “tank wars” game, in which a tank drives around a virtual map by reacting to a player’s input through the
keyboard. The tank can shoot at the player’s command, and it can run out of fuel, at which point it goes into a
mode where it can only drive towards a fuelling station (and is no longer able to shoot).

As is clear from this intuitive description, the system reacts to input from the environment, and produces
output to the environment. Such input/output signals can be described by events. At the top of Figure 6.2, an
input event segment is shown. A segment is a finite interval of time, in which a number of events occur. Within
such a finite interval, only a finite number of such events can occur (which differentiates discrete-event systems
from continuous systems, whose input and output behaviour we can infinitely zoom into, as they are continuous
functions). The system reacts to the input event segment by producing an output event segment, shown at the
bottom of Figure 6.2. The environment (entities interacting with the system) can view the system as a black-box
which has an interface (defined by the input events it accepts, as well as the output events it produces). In
this case, the player interacts with the system by sending input events corresponding to key strokes: the player
controls the tank by pressing the up, down, and enter key. As a result, the system produces output, which
describes the reaction of the system to the input it receives. In this case, four output events can be produced:
move_up, move_down, and shoot, which signify that the tank starts moving up, starts moving down, or shoots,
respectively, and low_fuel, which signifies that the tank is low on fuel.

The system has an internal state, which changes over time as a result of input being received, as well as
autonomously by the system. A possible system state trajectory for the example system is shown in the middle
of Figure 6.2. Three states are defined: shooting, moving, and low_fuel. The first two input events do not cause
the state of the system to change, but it does cause two corresponding output events to be raised by the system.
The third input event changes the system state from moving to shooting. And, at some point after that, the
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Fig. 6.4: The workflow for modelling, simulating, testing, and ultimately generating code from Statechart
models.

system autonomously changes its state to low_fuel. From the input, output, and state trace, we can deduce that
the system is timed (its behaviour includes timeouts), reactive (to input from the environment), and autonomous
(as it can change the system state without any input from the environment).

To describe all possible state trajectories of the system, a state diagram can be used – see Figure 6.3 for a
possible model describing the system’s behaviour. It shows the different states or modes the system can be in: at
the highest level, three states (moving, shooting, and low_fuel) are defined (represented by rounded rectangles).
The moving state has three substates, corresponding to the direction the tank is traveling in. The state of the
system can change when a transition (represented by an arrow) triggers. A transition triggers due to an (optional)
event or timeout, and an optional condition on the total state of the system (including the values of the system’s
variables). When a transition is triggered, an action is executed, which can change the values of the system’s
variables, or raise an event.

This concludes a high-level description of discrete-event abstractions to describe a system’s behaviour,
including a possible diagrammatic notation. In the rest of this chapter, the Statechart formalism is explained
as an example of such a diagrammatic language to describe the timed, reactive, and autonomous behaviour of
systems.
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6.2.3 Process

As a running example that demonstrates the use of Statecharts, we will develop a Statechart model describing
the timed, autonomous, and reactive behaviour of a digital watch. Whenever a system is developed, however,
it is important to consider which steps are taken and which artefacts are created in the system development
process, and to describe this process in a model. This process, or workflow, will guide us throughout the chapter
to design, simulate, test, and ultimately deploy our example system. Figure 6.4 shows a model of this process,
in a Formalism Transformation Graph and Process modelling (FTG+PM) language [195].

On the right side, a process model (PM) describes the different phases in developing the system. The process
consists of several activities, either manual or automatic. Manual activities require user input: for example,
creating a model starts with a user opening a model editor and ends when the user saves the model and closes
the model editor. Automatic activities are programs that are transformational, in the sense that they can be seen
as black boxes that take input and produce output. All activities produce artefacts, and can receive artefacts as
input. Fork and join nodes can split the workflow into parallel branches, where multiple activities are active at
the same time. Decision nodes can decide, depending on a boolean value, how the process proceeds.

On the left side, a formalism transformation graph (FTG) is a map of all the languages used during system
development. Each artefact produced in the process model conforms to a language in the formalism transfor-
mation graph. Moreover, it defines the transformations between the languages, which can either be manual or
automatic. Again, there is a correspondence between activities in the process model and transformations in the
formalism transformation graph: the transformations act as an “interface” defining the input and output artefacts,
to which the activities in the workflow need to conform.

In our workflow, we will start by defining the requirements of the example system and developing an initial
model of the system. This model is subsequently (and in parallel) simulated and tested. A simulation produces
an output trace from a given input trace (according to the discrete-event abstraction discussed earlier). This
output trace is manually checked and a decision is made whether or not the requirements are satisfied. In the
other parallel branch of the workflow, a test case is defined by a generator (which produces input events) and an
acceptor, which checks whether the generated output trace is correct. A test runs fully automatically, and again
a decision is made whether the requirements are satisfied by the design of the system. If that is not the case, the
model of the system is revised until all requirements are satisfied. Once all requirements are satisfied, the system
can be deployed by generating appropriate application code. In our case, the system is deployed by generating
Python code and coupling it to a visualization of the (simulated) digital watch as shown in Figure 6.1.

6.3 Modelling with Statecharts

The previous section introduces the requirements of our example digital watch example, explains how we can
view its behaviour with a discrete-event abstraction, and describes a process for developing the system using
the Statechart formalism. In this section, we explain the elements of the Statechart formalism that can be
used to model the timed, reactive, and autonomous behaviour of systems. We start with the basic concepts of
states and transitions, and gradually introduce the more advanced concepts of depth, orthogonality, broadcast
communication, and history. Each new concept’s syntax and semantics are explained, and is illustrated by
progressively developing the running example’s model.

6.3.1 States and Transitions

The basic building blocks of any Statechart model are states and transitions between those states. They are
essential concepts that need to be explained before moving onto more advanced Statechart elements. These basic
building blocks have a theoretical underpinning in Finite State Automata [150]. To illustrate the use of states
and transitions, two parts of the digital watch behaviour are shown in Figure 6.5 and Figure 6.6, implementing
the part of the system that updates the clock value every second, and the part of the system that is responsible
for turning on and off the Indiglo light.
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Fig. 6.5: Updating the clock value every
second.

Fig. 6.6: Indiglo behaviour.

States model the mode a system is in. In the absence of concurrent regions, exactly one state is active at any
point in time of the system’s execution. A state has a name, uniquely identifying it. Exactly one state in the
model is the initial state – on system start-up, the state of the system is initialised to that initial state. The visual
representation of a state is a rounded rectangle, or roundtangle. To visualize the initial state, a small black circle
is drawn, with an arrow pointing to the initial state.

In Figure 6.6, three states are modelled, implementing the behaviour of the Indiglo light: off (the default
state), pushed, and released. These names are strategically chosen to reflect the state of the actual (“physical”)
watch (the display). However, there is no direct link between the name of the state and the state of the display: the
names are merely used to quickly convey their meaning to a person looking at the model; the actual behaviour
(turning on and off the light) has to be implemented in the link between the Statechart model (or more precisely,
its generated code) and the platform code (i.e., the physical digital watch and its embedded software platform,
or in our case, a simulated platform in Python). The state off represents the light being off; the state pressed
represents the state where the user is pressing the top right button (turning on the light); the state released
represents the state where the user has released the top right button.

Besides the state – or mode – the system is in, a system keeps track of a number of state variables
{v1, v2, . . . , vn }. The data type and possible assignments for these variables depend on the data model supported
by the specific variant of the Statechart formalism. In case ofYakindu, the implementation-language-independent
types integer, real, boolean, string, and void are defined1. These variables with names {v1, v2, . . . , vn } and types
{t1, t2, . . . , tn } have values {val1, val2, . . . , valn } where vali ∈ dom(ti ) ∀i ∈ [1, . . . , n]

While states describe the current configuration the system is in, transitions model the dynamics of the system
and describe how this configuration evolves over time. A transition connects exactly two states: the source state
and the target state. When the system is running, a transition can trigger when a number of conditions are
satisfied. When the transition triggers, the current state of the system is changed from the source state to the
target state. At the same time, the transition’s action is executed. In general, the signature of a transition is
written as follows: < trigger − event > [< trigger − condition >] / < action >. The triggering condition of
a transition consists of the following elements:

• A triggering event (optional), identified by a name and a list of parameters. In general, an event has the
following signature: < event − name > (< event − params >). The event can be an input event (coming
from the environment) or it can be internal to the Statechart model. The triggering event can also be a

1 https://www.itemis.com/en/yakindu/state-machine/documentation/user-guide/sclang_statechart_language_
reference#sclang_types

https://www.itemis.com/en/yakindu/state-machine/documentation/user-guide/sclang_statechart_language_reference#sclang_types
https://www.itemis.com/en/yakindu/state-machine/documentation/user-guide/sclang_statechart_language_reference#sclang_types
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timeout, which is identified by the reserved event name after and a parameter denoting the amount of time
(using a certain time granularity) that will pass until the timeout triggers.

• A triggering condition (optional), which models a boolean condition on the state of the system. The
condition can check the values of system variables and check whether a specific state (in another orthogonal
component, see Section 6.3.3) is active.

A transition that has no trigger is said to be spontaneous. The transition leaving the marker for the initial
state is always spontaneous. The transition’s action can:

• Raise events, either local to the Statechart model, or to the environment. In general, an event has the
following signature: < event − name > (< event − params >).

• Perform computations and assignments on the system’s variables.

In Figure 6.6, transitions are modelled that describe the dynamic behaviour of the Indiglo light: it turns on
when the topRightPressed event arrives from the environment. It stays on as long as the button is not released;
if it is, the light stays on for 2 seconds and then turns off again. The interface of this model consists of the set
of accepted input events X = {topRightPressed, topRightReleased}, the set of possible output events Y = ∅,
and a set of callback functions {setIndiglo, unsetIndiglo}. When this model is deployed (by generating code)
and placed in an environment, the environment can send input events belonging to the input event set to the
running system. It can listen to output events raised by the system and take appropriate actions. Moreover, on
system start-up, it has to provide implementations for the call-back functions: these implementations are not
known by the Statechart model, as they will change the (“physical”) state of the system. In this sense, the same
model can be placed in different environments to implement the same behaviour on different “physical” systems;
for example, an updated version of the system’s hardware might not necessarily entail a change in the behaviour
of the system. In this case, we can update the hardware and its associated environment, but leave the Statechart
model the same and generate code that is placed in the new environment.

6.3.2 Composite States

A composite state is a collection of substates, which themselves can be basic states or composite states. This
allows for nesting states to arbitrary depths. The main purpose of composite states is to group behaviours that
logically belong together. Transitions entering a composite state will enter its default state (transitively, to the
lowest level). This means that all composite states need to have exactly one default state, as was the case for the
Statechart model as well. It is also possible to enter a child state of the composite state directly by targeting it, of
course. Transitions going out of a composite state can be thought of as being defined on all of the inner states as
well – through a flattening procedure, it is possible to obtain an equivalent Statechart model that only contains
basic states and transitions.

For example, in Figure 6.7, the behaviour of the alarm is modelled. A composite state blinking is defined: it
is entered when the checkTime procedure returns true (signifying that the time of the alarm has been reached).
Upon entering the blinking state, the default on state is entered as well (and, if an action is defined on the
transition to the default state, it is executed as well). Two outgoing transitions are defined: when the user presses
any button, or after 4 seconds, the alarm is turned off. Regardless of the internal active state of blinking, when
the outer transition is triggered, that active state is exited before the blinking state is exited and the off state is
entered.

One important issue with composite states is that unwanted non-determinism can occur if a substate has an
outgoing transition that is triggered on the same event as its composite state’s transition. In the flattened version
of the Statechart model, this non-determinism will be obvious, since a state will have two outgoing transitions
that are triggered on the same event. We can obtain the flattened version of a Statechart model by removing
hierarchy: we only retain “leaf” (basic states), by adding the transitions that leave (or enter) their ancestor states
on the leaf state. By doing this recursively (starting at the lowest level), we remove hierarchy by progressively
adding these “higher-level” transitions to the basic states.

For example, in Figure 6.7, if there was a transition on the topRightPressed event from the state on to the
state off, the model is non-deterministic in case the on state is active when a topRightPressed event is raised
by the environment. To resolve such non-determinism (as Statecharts is a deterministic formalism), either the
outer-most transition can be chosen – as is the case in STATEMATE [141] – or the inner-most transition can
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Fig. 6.7: The component that controls the alarm behaviour.

be chosen – as in Rhapsody [139]. These different options are presented in Figure 6.8, which also shows the
flattened version of the models. In this tutorial, we assume STATEMATE semantics.

6.3.3 Orthogonal Regions

States can be combined hierarchically in composite states (as explained in the previous subsection), or orthog-
onally in concurrent regions. While before, exactly one state of the Statechart model was active at the same
time, when entering a state which has concurrent regions, all regions execute simultaneously. Each region has
a default state, that is entered when the region is entered. Orthogonal regions can react to events concurrently,
and communicate with each other. This is done by raising events in one concurrent region that are “sensed”
by the other concurrent regions (broadcast communication). A second way in which orthogonal regions can
communicate is by querying the state of another orthogonal region: the triggering condition of a particular
condition could include a constraint on which state is active in a different orthogonal region.

Figures 6.5, 6.6, and 6.7 all are orthogonal to each other. Indeed: the time needs to be updated, even if the
Indiglo light is turned on, or the alarm goes off. Otherwise, the watch would be useless as a timekeeping device.
A fourth orthogonal component is shown in Figure 6.9. It controls the display of the digital watch, by switching
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Fig. 6.8: Non-determinism in composite state; (a) an example model containing non-determinism, (b) flattened
version: non-determinism in state A, (c) Statemate semantics: outermost transition is prioritized, (d) Rhapsody
semantics: innermost transition is prioritized.

(in the displaying composite state) between the displaying_time, displaying_chrono, and displaying_alarm
states when the user presses the top left button. The user can edit both the current time, as well as the time
at which the alarm is set. For this, there is a transition from the displaying_time and displaying_alarm state
to the editing_time state, where the user can increase the hours/minutes/seconds by pressing the bottom left
button, and change the current selection by pressing the bottom right button. The display orthogonal component
communicates with the time orthogonal component by raising the time_edit and edit_done events. This will
ensure that the time is not updated while the user is editing it.

6.3.4 History

A last element of the Statechart formalism is the history state. A history state can be placed in a composite state
as a direct child. It remembers the current state the composite state is in when the composite state is exited.
Two types of history states exist: shallow history states remember the current state at its own level, while deep
history states remember the current state at its own level and all lower levels in the hierarchy. When a transition
has the history state as its target, the state that was remembered is restored (instead of entering the default state
of the composite state).

In Figure 6.9, a shallow history state remembers the active direct child of the displaying composite state
when it is exited (i.e., when a transition to the editing_time state is taken). Upon returning from the editing_time
state, the history state will restore the last active state, to ensure that we end up back in the displaying_time
or the displaying_alarm state, depending on what we were editing. If no history state were present, we would
always end up back in the displaying_time (default) state.
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Fig. 6.9: The component that controls the display behaviour.
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6.3.5 Syntactic Sugar

The previous subsections discussed the essential elements of the Statechart formalism. There are, however,
additional syntactic constructs that make the modeller’s life easier, but can be modelled using the “standard”
Statechart constructs as well.

One of those “syntactic sugar” additions is the entry/exit action for states, which is a more efficient way of
specifying actions that always need to be executed when a state is entered or exited, instead of repeating the
action on each incoming/outgoing transition. An entry action is executed when a state is entered, while an exit
action is executed when a state is exited. This has an important effect on the semantics of executing a transition
combined with composite states. A transition is defined between states A and B. When executing this transition,
the state A is exited, and the state B is entered. However, this is only the case if A and B are direct descendants
of the same composite state. More states are exited if A is part of a state hierarchy, and more states are entered
in case B is part of a (different) state hierarchy. To execute a transition, the “least common ancestor” (LCA) state
is computed from the source state A and target state B. The LCA is a state up the hierarchy of both A and B
that has both A and B as a substate (and is the bottom-most state to have that property). To execute a transition,
starting from A, the states in the hierarchy up to but not including the LCA are exited (and their exit actions
are executed in the same order). Then, the transition’s action is executed. Then, the states down the hierarchy
towards B are entered, including B but excluding the LCA (and their enter actions are executed in the same
order).

Entry and exit actions have been shown throughout the components of the digital watch model in this chapter.
For example, for the alarm orthogonal component of Figure 6.7, whenever the blinking state is exited (which
signifies that the alarm “triggered” and the blinking phase is over), the alarm is disabled by a call to setAlarm,
and the Indiglo light is turned off by a call to unsetIndiglo. Were we not to model this action as an exit action,
we would have to repeat it on the two transitions that leave the blinking state. Within the blinking composite
state, the on state has an entry action that turns on the Indiglo light. Were we not to model this action as an entry
action, we would have to repeat it on the incoming transition that marks this state as the initial state, and the
incoming transition from the off state.

6.3.6 Full Statechart Model

The full Statechart model (where the previously discussed orthogonal regions have been placed in subdiagrams)
of the digital watch is shown in Figure 6.10. One extra component not discussed in the previous subsections
is the chrono component, which is responsible for increasing the chronometer when it is activated. Note that
the chronometer can only be activated when the chronometer is shown (in the display component); the active
function takes a state reference as a parameter and returns true when the state is active at that moment.

6.4 Detailed Semantics

The detailed semantics of Statecharts are more intricate than first meets the eye. In this section, we explain
the semantics of Statecharts according to its implementation in STATEMATE [141]. As was already touched
upon, some semantic variations are possible if multiple options can be chosen (for example, taking the inner or
outer transition if there is a conflict in a composite state). In Section 6.7, we will explain that more options are
possible.

The execution of a Statechart is divided into (micro)steps. An event queue holds the events that are currently
raised (either by the environment, or locally by the Statechart). It also keeps track of timeouts that will expire
in the future (corresponding to an after condition on a transition). In each microstep, the execution algorithm
decides which transition(s) (in different orthogonal regions) are enabled. They are executed (in arbitrary order)
by changing the state of the system from the source state of each transition to its target state. In detail, the
execution algorithm works as follows:

1. A set of candidate transitions is generated that are enabled by events that were raised locally in a previous
step, by timeouts, or by events coming from the environment. The candidate transitions are filtered by
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Fig. 6.10: The full Statechart model of the behaviour of the digital watch.

evaluating their condition (which is a boolean function on the total state of the system). The state of the
system stays constant until all the transitions execute (at the same time); a function which checks whether
a particular state is active does not depend on which transition fires first (as the check is done before any
transition fires).

2. The set of candidates is checked for non-determinism (a conflict), of which there are two types:

• Two candidate transitions can be in conflict if they have the same source state. In the case of STATE-
MATE, the execution algorithm cannot give priority to one or the other; as such, a warning is issued to
the user and one of the candidates is chosen arbitrarily. More elaborate schemes could assign priority
to these transitions based on other criteria; these will be discussed in Section 6.7.1.

• Two candidate transitions can be in conflict if they are enabled in the same hierarchical state (on any
level of the hierarchy). In case of STATEMATE, the top-most transition in the hierarchy is chosen.

3. Once the set of transitions to be executed is known, they are executed by following these steps for each of
them (in arbitrary order, since we assume the orthogonal components are independent):

a. The Least Common Ancestor (LCA) of the transition is calculated. This is the state that is lowest in the
hierarchy of states that has both the source and the target state as descendant.

b. The exit set of the transition is calculated. This set contains all the states that need to be exited when
the transition is executed. This includes the source state of the transition, as well as all the states in the
hierarchy up to (but excluding) the LCA.

c. For each composite state in the exit set that has a history state as a direct child, the current configuration
of the composite state is remembered.

d. For each state in the exit set (in order, from lowest to highest in the hierarchy), its exit action is executed
and the state is removed from the current configuration of the system.

e. The action of the transition is executed. Actions that aremodelled using code (such as value assignments)
are immediately executed. Events that are raised are placed in the queue, either to be sent to the
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environment as output at the end of the step, or to be sensed by the Statechart in the next iteration of
the execution algorithm.

f. The effective target set of each transition is executed. This is a recursive procedure down to the “leaf”
(basic) states. In case the target is a composite state, the target set is extended with the effective target
set of its default state. In case the target is a state containing multiple orthogonal regions, the target set
is extended with the effective target set of all its orthogonal regions. In case the target is a history state,
the target set is extended with the effective target set of the remembered state(s).

g. All the targets in the effective target set are entered, as long as they are not an ancestor of the source
of the transition. The targets are entered from highest in the hierarchy to lowest. Their enter action is
executed and they are added to the current configuration of the system. For all the outgoing transitions
of the entered states that have a timeout, an event is scheduled in the future.

4. All events that were raised during the step are processed: they are either sent to the environment as output
events, or (in case they are local) used in the next microstep.

This process is continued indefinitely – or until an end condition on the execution is satisfied. For example, a
particular state could syntactically be designated as the “final” state, or a condition could be defined on the full
state of the system. In any case, the execution algorithm is responsible for respecting the timings specified in
after-events, by pacing the execution in such a way to approach real-time execution (with or without guarantees,
depending on the operating system).

6.5 Testing Statecharts

To test a Statechart model, we need to define a trace of input events and an expected trace of output events,
as was shown in Figure 6.4. Tests need to be fully automated. Therefore, we need a different tactic from
simulating the model and manually providing the input events, while checking the model’s reaction. We want
to autonomously generate a number of events (timed) in a “generator” and check whether the system raises the
correct events in an “acceptor”. Basically, an environment interacting with the system is simulated in the form
of this generator-acceptor pair.

To simulate such an environment, either we regard the system as black box and use a mechanism to generate
events correctly outside of the model. Alternatively, we can view the system as a white box and model the
generator/acceptor pair using Statecharts as well. This has the advantage of instrumenting the model in the same
language as it was developed in. Moreover, the Statechart language is appropriate to express the behaviour of
the generator and acceptor, as they are timed, autonomous, reactive systems. This is illustrated in Figure 6.11,
where we develop a test case for (a part of) the digital watch model. The generator and acceptor are modelled
as orthogonal regions alongside the actual system.

The test case tests the expected behaviour of the digital watch in case the user wants to edit the time. To
do this, an input event corresponding to the user pressing the bottom right button is raised after 1 second.
The acceptor checks whether this results in the system switching to the waiting_to_edit state. Next, after an
additional 1.6 seconds, the bottom right button is released, which should result in the system state changing to
editing_time. Then, 0.4 seconds later, the bottom left button is pressed; this results in the increasing state to
be activated until the bottom left button is released (after 3 seconds). Then, 5 seconds later, the system should
automatically switch to the displaying_time state again. If the test ends up in the passed state, the testPassed
callback is called, signifying that the test has passed. Otherwise, the testFailed callback is called.

Due to our white-box approach, we were able to both check the output events produced by the system, as
well as its internal state. To be able to check the events raised by the model, we had to change these events
to be locally raised, instead of raised to the environment. If we were testing using a black-box approach, the
generator and acceptor could be modelled as separate Statechart models, and a communication channel between
the generator, the system, and the acceptor could be set up. However, this has the disadvantage of a delay being
introduced by the communication channels, which might be difficult to account for in the generator and acceptor.
It does allow for testing a system for which we do not have access to the model, but it is outside of the scope of
this chapter.



6 Statecharts: A Formalism to Model, Simulate and Synthesize Reactive and Autonomous Timed Systems 169

Fig. 6.11: The extra components of the digital watch test.

6.6 Deploying Statecharts

Once we have specified the timed, reactive, autonomous behaviour of a system, it needs to be deployed onto
a target platform. The most common method of doing so is by generating code in a high-level language such
as C++, Python, or Java. The generated code is then coupled (through its interface of input/output events and
callback operations) to a (hand-coded) platform that implements the non-modal (i.e., non-timed, -reactive, or
-autonomous) behaviour. Most often, this platform consists of a number of library functions that perform some
action, such as displaying information on a screen, sending a signal to an actuator, or querying the value of
a sensor. An execution kernel for the platform also has to exist, which is responsible for implementing the
behaviour specified by the Statechart – more information on these platforms can be found in Section 6.7.2.

For code generation, we rely on Yakindu. Yakindu is a Statecharts modelling and simulation tool, with the
following features:

• A graphical modelling tool for describing systems with the Statechart formalism.
• A neutral action language to use in transition constraints and actions.
• A simulator, to simulate Statechart models to check its behaviour. The simulator allows users to raise events
while the simulation is running.

• A code generator interface for generating code to any programming language – pre-defined code generators
are provided for Java, C, and C++. The code generator’s configurable options include the folder to generate
files in, the “execution scheme” (cycle-based or event-driven), whether listeners for external events need to
be generated, etc. Yakindu allows for writing custom own code generators, increasing the flexibility of the
tool.

Figure 6.3.6 shows the digital watch model, as it was modelled in Yakindu. Central to the figure is the canvas,
on which the Statechart model is drawn. The tool is “syntax-directed”, which means only syntactically correct
models can be constructed. The valid syntactic elements are shown on the right side in a palette. These elements
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correspond to the ones discussed in the previous sections, along with a few extra syntactic sugar elements,
which will not be discussed here. On the left of the figure, an interface for the Statechart model is defined. This
interface makes explicit the possible input, output, and locally raised events, as well as any data variables and
callbacks. In the previous sections, we have left this definition of the interface implicit, but Yakindu requires to
make it explicit for various reasons:

• Transition triggers can be validated, since they can only use an after-event or an event declared in the
interface (which is either internal or external).

• Actions can be validated to only access variables that were declared, perform operations on them that are
valid for their data type, and only call functions that were declared in the interface.

• When generating code, interface methods for output event listeners can be generated, corresponding to
the possible output events of the system. Similarly, interface methods for raising input events (from the
environment) can be generated.

By checking the syntactic validity of the model, as well as the validity of condition triggers and action code,
Yakindu prevents many possible errors that a modeller can make. We can, from this model, also generate a
running application. In our case, we will generate the behaviour and visualize it in a Python GUI, which shows
the current state of the system (depending on the display mode either the current time, the chrono, or the alarm,
as well as the Indiglo light), and allows to interact with the system by pressing the four buttons of the watch. To
do this, we define a visualization library that can display the state of our system. It has the following interface:

• refreshTimeDisplay(): displays the current value of the clock.
• refreshChronoDisplay(): displays the current value of the chronometer.
• increaseTimeByOne(): increases the value of the clock by one second.
• setIndiglo(): turns the Indiglo light on.
• unsetIndiglo(): turns the Indiglo light off.
• resetChrono(): resets the chronometer.
• increaseChronoByOne(): increases the chronometer by 1

10 seconds.
• startSelection(): starts the selection for editing the time (or alarm).
• stopSelection(): stops the selection for editing the time (or alarm).
• selectNext(): selects the next element (hours/minutes/seconds) to edit.
• increaseSelection(): increases the current selected element (hours/minutes/seconds).
• setAlarm(): toggles the alarm.
• checkTime(): boolean: returns true when the alarm time is reached.
• refreshAlarmDisplay(): shows the set alarm time.
• addListener(Button, Listener): adds a listener for the buttons in the GUI for turning on/off the traffic light,
or for the police interrupt.

This library can be instantiated to show (and change) the current state of the digital watch, as is shown in
Figure 6.1,where the current time is shown (corresponding to the default display). To connect thisGUI to the code
generated by Yakindu from the Statechart model, we define appropriate listeners for the buttons in the interface:
pressing/releasing the bottom left/top left/bottom right/top right button will send an appropriately named event
from the set {bottomLeftPressed, bottomLeftReleased, topLeftPressed, topLeftReleased, bottomRightPressed,
bottomRightReleased, topRightPressed, topRightReleased}.

The callback functions that are called during the execution of the Statechart are implemented by calling the
function with the same name in the interface. This coupling is trivial, but more complex couplings are possible,
as long as the callback functions themselves do not introduce waiting behaviour, spawn threads, or take too long
to execute.

This development method allows for cleanly separating behaviour (encoded in the model, and generated to
executable code by an appropriate code generator) and the presentation (encoded in a visualisation library).
More complex control systems benefit from this by separating the control logic from the actuators and sensors,
through appropriate interfaces that offer the necessary functionality.
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6.7 Advanced Topics

This section explores a number of advanced topics related to Statecharts. We first explore possible semantic
variation for Statecharts; we can consider Statecharts not as a single formalism, but a family of formalisms,
whose semantics differ slightly. Then,we explain that Statecharts can be executed (deployed) onmultiple possible
platforms, which has an effect on how the kernel handles the event queue and how time is advanced. Last, we
explore ongoing work to introduce dynamic structure to allow for multiple concurrent objects (“agents”).

6.7.1 Semantic Variations

In Section 6.4, we’ve explained the execution semantics of Statecharts with small steps: an (unordered) execution
of an enabled transition in each orthogonal region. While this is a correct specification, we can ask ourselves
several questions:

• When are events that are raised by a transition visible and usable to calculate a new set of enabled transitions?
• How is conflict resolution performed if there are multiple transitions enabled within the same orthogonal
region?

• When do we process an external event? Immediately after a small step, or do we wait until the system is in
a quiescent (i.e., no transitions are enabled) state?

• When are assignments to variables visible? Immediately after a transition is executed, after a small step, or
even later?

In their paper, Esmaeilsabzali et al. explore these semantic options for big-step modelling languages (a set of
languages that Statecharts belongs to) [94]. These semantic options lead to a family of (related) languages: there
is no longer the Statechart language, but one can configure the language in such a way to suit the application at
hand.

At the essence lies the observation that there are three layers of steps: small steps, combo steps, and big steps.
A big step is a sequence of combo steps, and a combo step is a sequence of small steps. The special property
of a big step is that after it ends, environmental input (events sent to the Statechart) and output (events sent to
the environment) are processed. One could state that small steps and combo steps are internal steps, while big
steps lead to externally visible changes. A small step behaves the same as defined before, however, the choice
can be made to not allow concurrency in a small step: only one transition is executed in that case. Moreover,
when concurrency is allowed, a choice can be made whether transitions can preempt each other. A combo step
groups a sequence of small steps. In the following paragraphs, we explore a number of semantic choices that
can be made; these choices configure the Statechart language, resulting in a language “variant”.

Big Step Maximality

This semantic choice decides when a big step ends, which always has to be in a “consistent state” (so after at
least one small step). One option (syntactic) is to designate certain states as “stable” control states; in that case,
a big step ends after a series of small steps that end in such a state. A second option is take one, which executes
exactly one small step. And last, there is the take many option, which executes small steps until there are no
more enabled transitions.

In the first and last options, a downside is that big-steps might not terminate (either because a designated
control state was not entered or because transitions remain enabled). A downside of the second option is the fact
that big steps have no clear syntactical scope (while in the other cases the scope of a big step can be deduced
from the model).

Combo Step Maximality

This semantic choice is identical to the big stepmaximality, but then applied to combo steps. Themain difference
between combo steps and big steps is that after a combo step, no environmental input can be processed.



172 Simon Van Mierlo and Hans Vangheluwe

Small Step Concurrency

While the big step maximality and combo step maximality govern how many small steps can be executed,
this semantic option allows for one small step to consist of a single transition execution or many (concurrent,
enabled) transition executions. The advantage of the single approach is its simplicity, but it requires that the
transitions are ordered non-deterministically. The many approach, on the other hand, has the potential for race
conditions.

Small Step Preemption

If one transition is an interrupt for another transition (this is the case when both transitions are enabled in
orthogonal regions, and one of them has a target state which is not orthogonal to the source states of both
transitions, which effectively exits both orthogonal regions), and many concurrency is enabled, this semantic
option allows to control what happens. Either both transitions are executed (non-preemptive, the result being
the execution of both the transition’s actions, and the target state outside of the orthogonal regions to be active),
or only the interrupting transition (preemptive) is.

Event Lifeline

The event lifeline specifies how long an event “lives” (and can trigger a transition). Both input events and
internally generated events have a lifeline (which can be different). There are five options:

1. With present in whole, the event is assumed to be present throughout the full duration of a big step. This
leads to counterintuitive behaviour (since this might lead to non-causal behaviour, where an event generated
by a transition “later” in the big step might cause a transition “before”).

2. With present in remainder, the event is available in the remainder of the big step. This is an intuitive option,
but can lead to unwanted non-determinism: depending on the order in which transitions are executed, a
transition can generate an event and immediately enable a transition which would be disabled in a different
ordering.

3. With present in next combo step, a generated event can only be sensed in the next combo step. This ensures
that the ordering of transitions within a combo step cannot affect a transition being enabled or not. However,
the ordering is only partial (since combo steps are potentially ordered non-deterministically).

4. With present in next small step, a generated event can only be sensed in the next small step. The ordering of
transitions within a small step, nor the ordering of combo steps can affect whether a transition is executed
in a particular run.

This semantic option has a potentially major impact on the execution of a Statechart model. It also shows the
potential benefits of splitting up the executions in big steps, combo steps, and small steps.

Transition Priority

The last semantic option resolves the issue when two or more sets of transitions exist that can be executed in a
small step. In that case, a choice has to be made which set is to be executed. A common example is when two
transitions in the same state hierarchy are enabled. The hierarchical choice lets the priority be determined by
the source and destination states of the transitions; for example, in STATEMATE [141], the outermost transition
is chosen, while in Rhapsody [139], the innermost transition is chosen. More elaborate schemes are possibly
within this choice, however. The explicit priority option lets the modeller assign priorities explicitly in the
model. Last, the negation of triggers requires the modeller to go through all transitions and strengthen the event
triggers in such a way that conflicts are avoided. The last two options are tedious to use, but allow for precise
control over the priorities.
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Fig. 6.12: The three runtime platforms.

6.7.2 Execution Platforms

We have discussed deployment of Statechart models in Section 6.6. In particular, we discussed how to provide
an implementation for the computation functions that are called in the actions of the Statechart model, and how
a “glue” layer has to be constructed that correctly sends input events to the Statechart and interprets output
events coming from the Statechart. We did not yet consider who the control in the deployed application has; we
always consider it is the Statechart. But often, Statechart models are embedded in applications that also require
to have control, such as UI systems and game engines. This section explores how the Statechart kernel can work
on these platforms by relinquishing certain key control functions.

The semantics of Statecharts (configured according to the semantic options presented in the previous section)
are executed on a runtime platform, which provides essential functions used by the runtime kernel, such as the
scheduling of (timed) events. The kernel attempts to run the Statechart model in real-time, meaning that the delay
on timed transitions is interpreted as an amount of seconds. The raising of events and untimed transitions are
executed as fast as possible. It is useful to discuss these platforms, as the Statechart simulators/executors depend
on them; moreover, we need different types of platforms for different application scenarios. We distinguish three
platforms, each applicable in a different situation. Figure 6.12 presents an overview of the three platforms, and
how they handle events.

The most basic platform, available in most programming languages, is based on threads. In its simplest form,
the platform runs one thread, which manipulates a global event queue, made thread-safe by locks. Input from the
environment is handled by obtaining this lock, which the kernel releases after every (big) step of the execution
algorithm. This allows external input to be interleaved with internally raised events. Running an application on
this platform, however, can interfere with other scheduling mechanisms (e.g., a UI module), or with code that is
not thread-safe.

To overcome this interference problem, the event loop platform reuses the event queuemanaged by an existing
UI platform, such as Tkinter. The UI platform provides functions for managing time-outs (for timed events),
as well as pushing and popping items from the queue. This results in a seamless integration of both Statechart
events and external UI events, such as user clicks: the UI platform is now responsible for the correct interleaving.
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The interleaving is implemented in the “main loop” of the UI platform, instead of (for the threads platform) an
infinite while-loop.

The game loop platform facilitates integration with game engines (such as the open-source Unity2 engine),
where game objects are updated only at predefined points in time, decided upon by the game engine. In the
“update” function, the kernel is responsible for checking the current time (as some time has passed since the last
call to the “update” function), and processing all generated events. This means that events generated in between
two of these points are not processed immediately, but queued until the next processing time.

6.7.3 Dynamic Structure

The exclusive use of Statecharts does not scale to the complex (and often dynamic-structure) behaviour of
complex software systems, such as (WIMP) graphical user interfaces, games, multi-agent systems, . . . Their
complexity goes further than the timed, reactive, autonomous behaviour Statecharts is good at representing. In
many applications, there is a need for a set of collaborating, concurrent objects, that can appear and disappear at
runtime. Object-oriented modelling methodologies address software complexity and allow for the construction
of a set of interacting objects, but are not specifically designed for modelling timed, interactive discrete-event
systems [137].

A number of approaches, such as OO Statecharts [137] were proposed. More recently, SCCD [281] was
presented, combining the structural object-oriented expressiveness of Class Diagrams with the behavioural
discrete-event characteristics of Statecharts.

Figure 6.13 presents an overview of the SCCD language, applied to a “bouncing ball” application: the
application allows for a user to create a number of balls on the screen. Their autonomous behaviour is simply to
move in a certain direction and bounce off the sides of the screen. The user can select and delete balls. As we
can see, a number of objects are present: an instance of the Window class, and two instances of the Ball class
are shown. There are a number of links between objects; these links can be used to send or receive events. The
object diagram (consisting of objects and links) conforms to the class diagram part of the SCCD model. On the
other hand, each object has a runtime state, corresponding to one of the states in its Statechart model. A central
entity, the object manager, allows for instances to request a new object or link to be created or deleted.

Objects can communicate using events: SCCD specifies a number of event scopes. A narrow cast allows for
an object to send an event over a connection to another specific (set of) object(s). A broad cast will send the
event to all other objects in the application. An output event works similarly to an output events in Statecharts:
it is sent to the environment of the application. A special cd scope is defined for sending event to the object
manager.

In essence, the objects of a Statechart run concurrently and communicate in a more “loose” way than the
orthogonal regions of a Statechart. The Statechart model in each object has to finish a big step before events
can be sent to other objects or input from other events can be processed. The communication between objects
is asynchronous: they are not able to call each other’s methods, or change their variable values directly. In this
sense, SCCD can be seen as a semantic basis for multi-agent systems, where agents have a well-defined interface
through which they can communicate.

6.8 Summary

This chapter demonstrates how to use the Statechart formalism to model the timed, reactive, autonomous
behaviour of a system. The chapter is built around a development process that starts from requirements gathering,
to build an initial design of the system. The concepts of the Statechart formalism (states, transitions, hierarchy,
orthogonality, broadcast communication, and history) are explained by a running example of a digital watch.
This design is refined by simulating the model and testing it, by providing an input event segment to the
simulation/test and checking the output produced by the model (either manual in a simulation, or automated
using an oracle in a test). Ultimately, code is generated from the design model and deployed on a platform.

2 https://unity3d.com/

https://unity3d.com/


6 Statecharts: A Formalism to Model, Simulate and Synthesize Reactive and Autonomous Timed Systems 175

Fig. 6.13: SCCD: An overview.

Coupling between the platform functions and the Statechart output events/callback functions is required to
finally arrive at a running system. Last, a number of advanced topics were discussed.

6.9 Literature and Further Reading

A thorough discussion of the origins of the Statecharts visual notation can be found in [136]. The origins of
the Statecharts formalism are described in [134]; this work was later complemented with a discussion of its
semantics in STATEMATE [141] and Rhapsody [139]. More recently, Esmaeilsabzali et al. have deconstructed
the semantics of “big-step modelling languages”, a family of languages to which the Statecharts language
belongs, and have presented a family of their execution semantics [94]. A standard for the precise execution
semantics of UML state machines is being worked on by the OMG [221].

Coordinating concurrently executing Statechart objects has its roots in a 1997 paper by Harel and Gery [137].
SCCD [281] attempt to constrain the possible object operations (creation and deletion of objects, as well as
communication between objects) by modelling the allowed object configurations in a class diagram, to which
each object diagram (a snapshot in the execution of the model) has to conform.
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6.10 Self Assessment

1. Explain the difference between deep history and shallow history.
2. Explain the different ways in which Statechart variants (in particular, Statemate vs. UML 2.0/Rhapsody)

resolve non-determinism when outgoing transitions of hierarchically nested states are triggered by the same
event.

3. Can a Statechart model ever “block”? Explain why/why not.
4. Draw the flattened version (no hierarchy or orthogonality) of a Statechart model containing hierarchical

states and orthogonal components.
5. How are transitions outgoing/incoming from/to a hierarchical state containing orthogonal components

executed? Explain the different ways in which orthogonal regions can “interact”. Explain the difference
between concurrently running objects in SCCD and orthogonal regions within these objects.
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Chapter 7
Petri Nets: A Formal Language to Specify and Verify Concurrent
Non-Deterministic Event Systems

Didier Buchs, Stefan Klikovits, and Alban Linard

Abstract The study of concurrent and parallel systems has been a challenging research domain within cyber-
physical systems community. This chapter provides a pragmatic introduction to the creation and analysis of
such system models using the popular Petri nets formalism. Petri nets is a formalism that convinces through its
simplicity and applicability. We offer an overview of the most important Petri nets concepts, analysis techniques
andmodel checking approaches. Finally, we show the use of so-called High-level Petri nets for the representation
of complex data structures and functionality and present a novel research approach that allows the use of Petri
nets inside Functional Mock-up Units and cyber-physical system models.

Learning Objectives

After reading this chapter, we expect you to be able to:

• Use common Petri-net patterns to model concurrent processes
• Understand the semantics of Petri-nets in terms of state transitions systems
• Use model checking to systematically check for invariance and reachability properties of Petri-net models

7.1 Introduction

Since the early days of computing the modelling and verification of programs has been an important subject.
Nowadays this subject is even more vital as computers are ubiquitous in our current way of life. Computers
thrive in all kinds of environments, and some of their applications are life critical. Indeed, more and more
lives depend on the reliability of airborne systems, rail signalling applications and medical device software for
examples.

Given the importance of the matter, much effort has been invested to ensure the quality of the software.
On the organisational side, project management techniques have been devised for the software development
process, e.g. the RUP (Rational Unified Process) [174], the Waterfall Model [244], the Spiral Model [40],
B-method [189], etc. Most recently, so-called “agile” methodologies, such as SCRUM [261], are taking over the
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industry [249]. However, software development frameworks can improve software quality only up to a certain
point. In fact, they cannot offer complete guarantees for critical systems by themselves as their effectiveness is
only based only on empirical evidence [249].

These approaches have the fact in common that all of them require the description of what the system does
without prescribing how to do it. That description is called the specification. Depending on the development
process used, the specification can be informal (e.g. SCRUM), semi-formal (e.g. RUP) or formal (e.g. B-method).
Getting the specification right is paramount for the software quality. On the one hand, the specification is used
to check if the development team understood the requirements (to answer the question “Are we building the
right thing?”). This process is called validation. On the other hand, it is used to check if the finished software
does what it was meant to do (“Are we building the thing right?”). We call this step verification.

A very simple way to do verification is testing. In software testing, we use the specification to derive
behaviours that we expect from the software. For each expected behaviour we write a test. A test is a procedure
that exercises the software (or a part of it), and tells if the observed behaviour is as expected or not (according
to the specification). Hence, a test can prove that there are errors in the software. However, proving the absence
of errors is much more complicated. It implies to write a test for each possible behaviour of the software.
The number of behaviours of even simple software is extremely large, meaning that testing is infeasible for
proving the absence of errors. Nevertheless, there are some kinds of software that cannot afford to diverge from
specification as human life or health depends on it. This need gave birth to a set of verification techniques that
can guarantee the absence of errors in a given system: formal verification.

Formal verification techniques, a.k.a. formal methods, can guarantee the absence of errors in a system up
to its modelling. There are several formal methods ranging from theorem proving to model checking. These
techniques aim to build a formal mathematical proof of the program’s correctness. This requires of course that
the specification is also formally described. It further requires that the program itself has a formally specified
semantics. In these sections we focus on the modelling phase and the model checking variant of formal methods.

Formally modelling complex systems requires languages that are adapted to the kind of system we are
interested in and also must be defined with certain structuring mechanisms. In this chapter, we will mainly
describe languages that provide features related to dynamic systems and data types. For structuring mechanisms
we propose to consult publications on extensions of algebraic nets such as CO-OPN [32] and LLAMAS [197].
Wewill not describe them further as they are not absolutely necessary for the understanding of the basic concepts
behind formal methods.

7.2 Modelling Concurrency

The modelling of concurrency requires specially adapted formal techniques. Among the numerous existing
ones, we observe that all of them use constructs to either explicitly or implicitly describe events, states and
synchronisation mechanisms. Moreover, the technique’s semantics must exhibit the various behaviours of the
modelled system because parallelism and concurrency inherently introduce activity non-determinism into a
system. One of the most well-known formalisms is Petri nets, which we will introduce throughout this chapter.
However, it is important to understand that most of the explained principles can be translated to other kinds of
models such as process algebra [207], state charts [135] and similar.

In order to explain the essence of modelling with Petri nets, we use an example of a car engine throughout
this paper. The system describes a very simple combustion engine consisting of foot pedal, engine, carburettor
and fuel tank. The system is built from several elementary components, that are similar to automata used in
some modelling tools [277]. We will see how all components are combined in a single Petri net that describes
the entire system.

Although we could use a model of communicating automata for such problems, the use of a Petri net
makes communication between components explicit, whereas it is often implicit and hence unclear when using
automata. For instance, the choice of synchronous versus asynchronous communication is a meta-property in
automata, rather than an explicit choice.

So, in summary, we will have the possibility to model systems with Petri nets in a condensed way. These
systems will be composed of some non-deterministic entities communicating synchronously or asynchronously.
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7.2.1 Petri Nets

Petri nets [237] are a graphical, formal modelling language dedicated to the representation of concurrent
processes, including communication and synchronisation between them. Petri nets consist of four basic concepts:
places, transitions, arcs and tokens. Places (represented by circles) model processes and resource containers
(such as a fuel tank) of the system, while transitions (represented by rectangles) are used to model system
evolution (e.g. the starting of an engine). Places and transitions are connected by arcs. Arcs describe how many
tokens (represented as large dots) are taken from a place before and how many tokens are put into a place after
a transition is executed. We usually refer to these arcs as the pre- and postconditions of a transition. Tokens are
used to model resources (e.g. the petrol in our example) or control (whether an engine is on or off). Note, that
in classic Petri nets only one kind of token is used, meaning that the process control and the resources are both
represented equally, which might be confusing for beginners. This feature however offers great flexibility and
renders Petri nets a very powerful formalism.

Figure 7.1 shows an example of a Petri net, that represents in a simple way the behaviour of a throttle foot
pedal, engine and fuel tank within a car. It represents processes and resources as places: e.g. up, off, fuel or
filled. The Petri net also contains transitions such as press, stop or empty. It can be easily observed that the
amount of fuel is modelled by the number of tokens within the place fuel, but also that control of the engine
is being handled by an individual token which is either in place on or off. An execution of a transition (e.g.
start) will consume tokens from the precondition states (off) and produce tokens in postcondition states (i.e.
on in our example).

The groupings (i.e. the big frames) shown for foot pedal, fuel tank, engine and carburettor have no semantic
influence on the system, but merely help system description.

foot pedal engine

fuel tank

carburetor

fuel

filled maximum

up

down

press

release

off

on

start

stop
fill

empty

Fig. 7.1: A Petri net that represents a simplified functionality of a car’s acceleration

Each places contains a (positive) number of tokens (0 by default), that describes how many processes or
resources are in this state. We refer to the number of tokens in a place as its marking. The combination of
markings of all Petri net places is also referred to as the Petri net’s marking and describes the entire system’s
state.

Due to their well-studied semantics, they can be simulated, or used for static or dynamic analysis. Their
simplicity makes it very easy to transfer them to other forms. For instance, Figure 7.2 shows the marking of the
Petri net shown in Figure 7.1 encoded in the Lua programming language1. This Petri net can thus be embedded

1 https://lua.org

https://lua.org
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and used within a software application. We will use the Lua language throughout this article to show how to
implement and use Petri nets in practice. The marking of the Petri net is a structure that affects to each place its
number of tokens. The initial marking is the one described initially in the Petri net.

function Marking.new (t)
return {

up = t.up or 0,
down = t.down or 0,
fuel = t.fuel or 0,
off = t.off or 0,
on = t.on or 0,
filled = t.filled or 0,
maximum = t.maximum or 0,

}
end

initial = Marking.new {
up = 1,
fuel = 7,
off = 1,
maximum = 2,

}

Fig. 7.2: Declaration of a Petri net marking as Lua code. The new function (left) of the Marking module is used
to create a mapping that represents the Petri net marking. The code on the right shows the usage of this function
for the creation of a new marking. Note, that it is only necessary to specify the places that contain tokens, as the
other tokens are initialised with 0 by default.

A Petri net state (represented by its marking) is changed by “firing” transitions. In order to more efficiently
describe system evolution we will from use markings, and operations thereon to express the behaviour of a
Petri net. For convenience, we therefore define the following operators on markings: comparison, addition
and subtraction. The comparison operator compares the number of tokens in each place of the two operands
for equality or whether one of the operands is smaller/greater. Addition and subtraction operators perform
place-wise addition or subtraction of the number of tokens of the operands. These operators allow the concise
description of the transition firing semantics. Figure 7.3 provides the operator implementations in Lua.

As stated, the evolution of a Petri net is effected by firing transitions. Such transition firings are dominated by
a simple rule: a transition can be fired if it is enabled. A transition is called enabled, iff there are enough tokens
in all its input places (i.e. the places connected to the transition). When a transition is fired, it removes tokens
from its precondition places, and adds new tokens into its postcondition places. It is important to understand that
tokens do not “move” from one place to another, but are consumed and new (different) tokens are produced. The
number of tokens consumed and produced are defined using annotations on arcs. By convention arcs annotations
stating a weight of 1 token are omitted for legibility reasons.

For an illustration of a transition firing we can look at the empty transition from the car engine example
above. The transition consumes one token from place filled, and another token from place on. Therefore it
can be fired if the places filled and on contain at least one token each. Once fired, the transition produces one
token in place maximum, and another one in place on. Figure 7.4 shows the Lua code that describes the firing
of the transitions press and empty. It first checks if the input places contain enough tokens. If this condition is
met, it performs firing by subtracting the precondition arcs and adding the postcondition arcs to the marking of
the Petri net. If the transition is not fireable, the function returns nil, the Lua equivalent for NULL or null value.

7.2.2 Common Petri net patterns

Petri nets are better at expressing communication and synchronisation than the traditional automata formalism,
as they make these concepts explicit. However, similar to automata, Petri nets have the aforementioned drawback
to not distinguish processes and resources. It is up to the modeller to clarify the role of each place, for instance
with naming or colour conventions. In order to introduce some common modelling practices we present a few
standard patterns which are found in the Petri nets in Figure 7.5:

• Figure 7.5a represents the creation of two processes (q, r) from a process (p), or the release of a resource
(r) from a process (p, q).
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function Marking.__add (l, r)
return {

up = l.up + r.up,
down = l.down + r.down ,
fuel = l.fuel + r.fuel ,
off = l.off + r.off ,
on = l.on + r.on,
filled = l.filled + r.filled ,
maximum = l.maximum + r.maximum ,

}
end

Listing 8: Addition operator

function Marking.__eq (l, r)
return l.up == r.up

and l.down == r.down ,
and l.fuel == r.fuel ,
and l.off == r.off ,
and l.on == r.on,
and l.filled == r.filled ,
and l.maximum == r.maximum ,

end

Listing 9: Equality operator

function Marking.__sub (l, r)
return {

up = l.up - r.up,
down = l.down - r.down ,
fuel = l.fuel - r.fuel ,
off = l.off - r.off ,
on = l.on - r.on,
filled = l.filled - r.filled ,
maximum = l.maximum - r.maximum ,

}
end

Listing 10: Subtraction operator

function Marking.__le (l, r)
return l.up <= r.up

and l.down <= r.down ,
and l.fuel <= r.fuel ,
and l.off <= r.off ,
and l.on <= r.on,
and l.filled <= r.filled ,
and l.maximum <= r.maximum ,

end

Listing 11: Less-than-or-equals op.

Fig. 7.3: Addition, subtraction, equality and less-than-or-equals operators used to work on Petri net markings.
The evolution of a Petri net can be expressed using these operators.

function press (marking)
if marking >= { up = 1 } then

return marking
- { marking.up = 1 }
+ { marking.down = 1 }

else
return nil

end
end

Listing 12: Code of the press transition

function empty (marking)
if marking >= { filled = 1,

on = 1 }
then

return marking
- { marking.filled = 1,

marking.on = 1 }
+ { marking.maximum = 1,

marking.on = 1 }
else

return nil
end

end

Listing 13: Code of the empty transition

Fig. 7.4: Lua code as examples showing the implementation of transitions

• Figure 7.5b represents the synchronisation of two processes (q, r), or the acquire of a resource (r) from a
process (q, p).

• Figure 7.5c represents a choice for process p, that can go either in q branch or in q branch.
• Figure 7.5d represents the collection of processes or resources (q, r) into one (p). When q and r are in mutual
exclusion, it can also represent the end of a condition for process p.
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p

q r

(a) Control flow split or
resource creation

p

q r

(b) Synchronization or
resource acquisition

p

q r

(c) Control flow choice

p

q r

(d) Control flow
synchronisation point

Fig. 7.5: These four common Petri net patterns can be used to express various concepts related to control flow
split, merge, choice or synchronisation, but also for the consumption, production, acquisition and release of
resources.

7.2.3 Formal syntax and semantics

Since we introduced Petri nets as a formal method, we feel obliged to also provide the syntax and semantics in
a more formal setting. We encourage the reader to bear with us through this section, as understanding of these
concepts will be necessary for the more complex aspects of Petri nets. In return, we promise to keep ourselves
short and only introduce the essential parts. It is also worth mentioning that these formal definitions can be used
directly for the creation of tools that manage, simulate and analyse models.

Formally, a Petri net is a labelled bipartite directed graph, i.e., a graph whose vertices can be divided into
two disjoint finite sets P and T (with P ∩ T = ∅), such that every edge is directed and connects a vertex of P to
a vertex of T (preconditions), or a vertex of T to a vertex of P (postconditions). This graph has natural number
labels on vertices of P (place markings), no labels on vertices of T (transitions), and positive number labels on
edges (number of consumed or produced tokens).

A Petri net is thus described as a tuple 〈P,T , pre , post ,m0〉. The set of all possible markings is denoted
M = P → N. It contains all possible functions that associate tokens to places of the Petri nets. The initial
marking m0 is an element of M that maps all places to their initial number of tokens. The pre : T → M and
post : T → M functions represent arc valuations, and are called the pre− and postconditions of the transitions.
For every transition, they return a marking that corresponds to the valuations of input (resp. output) arcs of the
transition. Note, that their signature is implicitly in curried form, as they can be rewritten as pre : T → (P → N)
and post : T → (P → N).

The arithmetic and comparison operators (+,−,=,6) that we introduced in the previous section are formally
defined on markings as follows. We require that ∀ml ,mr ∈ M

ml + mr = ∀p ∈ P, (ml + mr )(p) 7→ ml (p) + mr (p)
ml − mr = ∀p ∈ P, (ml − mr )(p) 7→ ml (p) − mr (p)
ml = mr ≡ ∀p ∈ P,ml (p) = mr (p)
ml 6 mr ≡ ∀p ∈ P,ml (p) 6 mr (p)
where a 7→ x signifies that x is the image value of a.

In this chapter we will describe the evolution and behaviour of Petri net using Structured Operational
Semantics (SOS) rules such as the example in Equation (7.1). We remind the reader that an SOS rule is
composed of a conjunction of premises (above the line) and a conclusion (below the line). The rule states
that it can be applied i.e. the conclusion transformation be executed, when the premises are satisfied. Both the
premise(s) and the conclusion are expressions (usually called “term predicates”).

rule :
tpred1 ∧ tpred2... ∧ tpredn

tpred
(7.1)

Each Petri net transition describes possible evolutions of the system. Formally it is a relation between Petri
net states, i.e. markings. Thus, the behaviour is described as a transformation of the Petri net marking. The
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conclusion of SOS rules that describe transition firings are written as m
t
−→ m′, where m and m′ are Petri net

markings and t is a transition. m
t
−→ m′ states that the system’s current marking m leads to m′ by firing t.

Using a model checking mentality we can also say that the SOS rule states that, given two markings m and
m′, firing t is correct if all the premises are correct. The semantics of firing one transition is given by the general
rule in Equation (7.2).

transitiont :
pre (t) 6 m

m
t
−→ m − pre (t) + post (t)

(7.2)

Example Let us consider the release transition in Figure 7.1. Its semantics is represented by the following
rule:

release :
(down 7→ 1) 6 m

m
release
−−−−−−→ m − (down 7→ 1) + (up 7→ 1)

Remember that for a marking m to be greater or equal than another one, all individual place markings have to
be greater or equal. For this specific premise to be valid, it means that all places in m need to have a greater or
equal marking than (down 7→ 1) (i.e. all places need to have at least 0 tokens, except for down which needs at
least 1 token). If and only if this is the case, then firing the transition will lead to a new marking by removing
one token from down and adding one token to up. �

Sequences of transitions also have simple semantics: beginning from a starting state, the transitions within
the sequence are applied one by one. Formally, sequences of transitions (noted T∗) are inductively defined as
lists. Note, that every transition t ∈ T can also be seen as a sequence of transitions of length 1. Hence T ⊆ T∗.
Further, we use a concatenation operator (.) such that ∀t ∈ T ,∀s ∈ T∗, t.s ∈ T∗, i.e. every concatenation of
transitions is a transition, followed by a sequence of a transitions. Note that a the sequence s can be a single
transition. This semantics is given by Equation (7.2) and Equation (7.3).

sequence :
m

t
−→ m′,m′

s
−→ m′′

m
t .s
−−→ m′′

(7.3)

Figure 7.6 shows the Lua code that performs the computation of a sequence of transition. Each transition
is itself a function, such as those we have already defined for press and empty.

function sequence (marking , transitions)
for _, transition in ipairs (transitions) do

marking = transition (marking)
if not marking then

return nil
end

end
return marking

end

Fig. 7.6: The Lua code that handles the execution of a sequence of transitions on an initial marking. Note that
transitions is a list of transition functions as defined above. The ipairs function is an ordered iterator over
the elements of transitions.
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7.2.4 Deduction Based on Rules

As we have seen above, we can compose new relations from existing rules, as shown for the sequences in
Equation (7.3). We refer to this feature as transitive closure. However, in order to compute new relations based
on existing SOS rules, we need to know exactly how to compute a rule’s term predicates, as another rule’s
premises can be used as a conclusion of another rule.

This process, called deduction, is based on three principles: rulematching, variable instantiation and predicate
reduction.These principles require the definition of additional operations on functional terms (the expressions
including only application of function) and term predicates (the predicates applied on functional terms).

These principles are related to the use of variables. The operations that manage the values which can be taken
by these variables can take must be thoroughly defined.

An assignment (or substitution) is defined as a function σ ∈ Σ, where Σ is the set of partial functions
from variables to terms, or ⊥ if no term is associated to the variable. For instance, a substitution σ can be the
replacement of the variable a with the term down 7→ 1, or by ⊥ if the variable a is undefined. Substitution is
extended to apply on terms instead of variables only: for all terms t, σ(t) returns the term t where all variables
that are defined in σ have been replaced by their associated term in σ. For instance if we take the term pre (x)
and apply the substitution σ(x) = release onto this term we see that σ(pre (x)) = pre (release).

Matching refers to the fact that we would like to identify two terms t1, t2 modulo a substitution σ. This means
that matching checks if there exists a substitution σ such that σ(t1) = σ(t2). For instance, the substitution
σ = {x 7→ release, y 7→ release} can be used to match pre (x) = pre (y).

We would like to introduce a simple example defining the comparison predicate over natural numbers.
According to the rules given in Equation (7.4): a, b ∈ N are variables over natural numbers.

R1 :
a 6 b

a 6 b + 1
R2 :

a 6 b
a + 1 6 b + 1

R3 :
0 6 0

(7.4)

We assume that the reader is familiar with the operations based on addition of natural numbers. Their very
definitions can be given as an exercise to the reader. Deductions are computed using a special Infer function.
Infer (R) is defined as the deduction process for a set of rules R. In our specific case Infer will be defined as
Infer ({R1, R2, R3}) and we will use Infer to compute the possible deduction on the predicate 6.

In such deductions rules are applied on top of each other, the correspondence being the possible matching
of one premises with the conclusion of another rule placed above. Correct deductions have to be finite and also
must rely on a base case, i.e. a rule without premises (in our case R3).

Example The following examples show possible deductions, based on the rules R1, R2 and R3. By applying
a rule whose conclusion that matches the provided term, we can find a premise, which we then use to match
against another rule. This means we generally work bottom-up and try to find matching rules which will lead us
closer to R3.

On the left, we try to deduce that 1 6 2. We observe that 1 6 2 can be the conclusion of the rule R1, leading
us to infer that the premise of this rule must be 1 6 1. Using rule R2 and the 1 6 1 as conclusion, we see that
the premise for this rule is 0 6 0. Now we can apply R3, which does not have any premise and we successfully
deduced that 1 6 2.

On the other hand we can look at the example to the right. Our goal here is to deduce that 4 6 2 is true. A
first application of rule R2 will get us to 3 6 1 and another application of R2 to the premise 2 6 0. At this
point, none of the rules can be applied any more This means that, according to the rules we defined, we cannot
reach a base case and that 4 6 2 must be incorrect.

Note, that in both cases we could have applied different rules than the ones that we actually used. On the left
hand we could have swapped the rules and first applied R2 before using R1. On the right side we could have
also used R1 instead of R2. In either case we would have reached the same conclusions. In general, inferences
can be performed in any order by using any rule that is applicable. The trick is to use rules that quickly lead to
an end (either a clash or a base-case).
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R1
R2

R3
0 6 0

1 6 1
1 6 2

R2
R2

R?
???

2 6 0
3 6 1

4 6 2

According to the principles we gave, we can say that Infer (R) is the least set that includes the results of all
substitutions possible on all conclusions of all rules that do not have premises:

σ(post (r)) ∈ Infer (R) if pre (r) = ∅,∀r ∈ R,∀σ ∈ Σ

and all rules’ substituted conclusions where a substitution exists so that a rule premise is in the set:

σ(φ(post (r))) ∈ Infer (R) if φ(pre (r)) = φ(d),∀r ∈ R,σ ∈ Σ∃φ ∈ Σ,∀d ∈ Infer (R)

where pre(r) are is the premise and post(r) the conclusion of the rule
This last rule is called modus ponens, Example 7.2.3 shows such a deduction for a sequence of transitions.

Infer (R) is then obtained by fixpoint application of the modus ponens rule. For rules with positive numerator
(no negation, only conjunction) this set always exists according to fixpoint theorem of Knaster-Tarski [264].
Nevertheless, the set can be infinite.

Example Let us consider the sequence press.release in Figure 7.1. The semantics of this sequence are
represented by the following simple deduction using the SOS rules of press and release. What we see is that
the conclusion of the rule (the firing of press.release and creation of a new marking) has two premises: 1. the
conclusion of the press rule, and 2. the conclusion of the release rule. Each of these is part of an SOS rule
with it’s own premises, which has to be satisfied for this rule to be applicable.

(up 7→ 1) 6 m

m
press
−−−−→ m′ = m + (up 7→ 1) − (down 7→ 1)

(down 7→ 1) 6 m′

m′
release
−−−−−−→ m′′ = m′ + (down 7→ 1) − (up 7→ 1)

m
press.release
−−−−−−−−−−−→ m′′

7.2.5 Reachability Graph

We saw that applying a transition to a Petri net marking generates a new marking. In order to study system
evolutions in a more efficient manner, we can try to represent transitions and the thereby created markings as
an automaton. The automaton’s states are the markings and the automaton’s transitions correspond to the Petri
net’s transitions. We refer to such an automaton as the reachability graph of a Petri net. This is due to the
fact that it shows, starting from an initial state, the possible states of the system that can be reached.. To fully
understand the definition of the automaton, it is noteworthy that the automaton’s input alphabet is the Petri net’s
set of transitions.

Note, that depending on the initial marking, a Petri net has different reachability graphs, as different transitions
might be enabled. To visualise this, we present the reachability graphs of the Petri net of Figure 7.1 in Figure 7.15
(at the end of this chapter). The two graphs correspond to the possible system evolutions with 0, 1, 2 and 3 initial
tokens in fuel in Figures 7.15a – 7.15d, respectively. We can clearly see the repeated groups of markings that
correspond to matching behaviour.

These groups of reachability graph nodes differ by the number of tokens available in the fuel place. To aid
the legibility, we use different shades of gray to distinguish markings with different token numbers in place
fuel, where the lightest is 0 and the darkest is 3. The last group at the bottom of the figures (almost white)
shows the behaviour when fuel is empty. We can easily observe that the states of 0 tokens in Figure 7.15a is
repeated in Figure 7.15b, but this time with 1 token (signalled by the darker shade of grey). In the same way,
we can find the group of Figure 7.15b in Figure 7.15c, where however, every state is one shade darker, as there
is one more token in state fuel. The reachability graph of the marking shown in Figure 7.1 with seven tokens
in fuel has 84 states. We can observe from the graphs in Figure 7.15 that a Petri net with 0 tokens has 4 states
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and 12 states with 1 token. The number of states increases by 12 for each additional token added initially to the
fuel place.

The advantage of Petri nets is that, due to their better representation of concurrent processes and resources,
they can be orders of magnitude smaller than their equivalent automata. For instance, [300] managed to simulate
the state of several multi-threaded programs to perform intrusion detection. Simulation was performed on-
the-fly during the program execution by wrapping system calls, and thus required an efficient representation
and computation time. This goal was achieved using Petri nets, and it would not have been possible using the
equivalent automata on the available resources.

Formally, the reachability graph of a Petri net is defined by a function s : M → T → M ∪ {⊥} that returns
the successor for any marking and transition, or ⊥ if none exists. This function is derived from the following
basic rules:

∀m ∈ M , t ∈ T ,



s(m)(t) = ⊥ ⇔ @m′ ∈ M ,m
t
−→ m′ ∈ Infer ({transitionti |ti ∈ T })

s(m)(t) = m′ ⇔ m
t
−→ m′ ∈ Infer ({transitionti |ti ∈ T })

(7.5)

The relation can be restricted to the subset of states that are reachable from the initial state m0 of the Petri
net. This subset is easily defined using the sequences of transitions of Equation (7.3).

We define that the state space (SS) is the set of reachable markings starting from an initial marking m0 for a
given set of transitions T

SS(T ,m0) = {m ∈ M | ∃s ∈ T∗,m0
s
−→ m ∈ Infer ({transitionti |ti ∈ T } ∪ {sequence})} (7.6)

By convention, for a given Petri net it is natural to implicitly define SS(m0) = SS(T ,m0).
The (naive) reachability graph generation algorithm is given in Figure 7.7. This function iterates over the

reachable markings, initially only initial, and tries to apply all transitions. The function returns the set of
reachable markings, each one annotated with the transitions that can be fired, and the corresponding successor
marking. The explored set contains the already explored markings, whereas the encountered set contains
markings that have not been explored, or that have been encountered again since their exploration. The code
shows a simple implementation that iterates over all previously seen markings to ensure uniqueness. More
efficient implementations may use a hash table.

7.2.6 Monotony

Petri nets exhibit an interesting property: monotony. Monotony means that if a transition can be fired for one
marking, then it is also fireable for any marking greater than the evaluated one. Extended to the reachability
graph, monotony means that all sequences of transitions that exist in the reachability graph of a Petri net also
exist in reachability graphs of the same Petri net with greater initial markings. Trivially expressed we could say
that adding tokens to a Petri net can only add new behaviours, but never inhibit existing ones.

Formally, monotony is defined by Equation (7.7), which can be derived from the rules in Equation (7.2)
and Equation (7.3). This rule defines monotony on both, a transition and a sequence of transitions.

monotony :
m

t
−→ m′

m + δ
t
−→ m′ + δ

(7.7)

In our example monotony means that any sequence of actions in our engine can also be performed if we add
tokens to any state of the Petri net (such as adding more fuel). We can observe the inclusion of reachability
graphs in Figure 7.15 for initial markings fuel = {0, 1, 2, 3}. The sequence stop.release.start.press is
observed several times, but with different initial markings, leading to a varying number of tokens in the fuel
place for each one.
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local markings = {}

function unique (marking)
for _, m in ipairs (markings) do

if marking == m then
return m

end
end
markings [# markings +1] = marking
return marking

end

function reachable ()
local explored = {}
local encountered = {

[unique (initial)] = true
}
while next (encountered) do

local marking = next (encountered)
encountered [marking] = nil
if not explored [marking] then

explored [marking] = true
for _, transition in ipairs (transitions) do

local successor = transition (marking)
if successor then

successor = unique (successor)
marking [transition] = successor
encountered [successor ] = true

end
end

end
end
return explored

end

Fig. 7.7: Source code function that enumerates reachable markings (right). The code iterates over the already
encountered markings and tries to find all possible successors by attempting to fire all individual transitions on
that marking and adding the successful attempts into the list of encountered markings.
The unique function ensures that each marking corresponds to only one entry in the Lua memory. It is required
by the explored [marking] and encountered [successor] lookups.

To summarise, we can see that the reachability graph of a Petri net is always included in the reachability
graph of the same Petri net with a greater initial making. While the markings of the sequences’ states may differ
for each one, the transition sequences are preserved.

In fact, since monotony is a property of all Petri nets, we can observe the following lemma. It states that the
state space (and thus the reachability graph) inferred from just the transitions is equal to the state space inferred
by the transitions and the monotony rule that we can define as:

SSM (T ,m0) = {m ∈ M | ∃s ∈ T∗,m0
s
−→ m ∈ Infer ({transitionti |ti ∈ T } ∪ {sequence,monotony})} (7.8)

So that the following statement holds:

SS(T ,m0) = SSM (T ,m0) (7.9)

We also know that behaviours are preserved when extending markings:

m ≤ m′ ⇒ SS(T ,m) ≤ SS(T ,m′) (7.10)

Where ≤ on markings compare markings one by one.

7.3 Properties of Petri Nets

In the previous section we introduced Petri nets and the rules for the exploration of the reachable state space
of an initial marking. In this section we investigate the properties of Petri nets using representatives of state
properties and transition properties.
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7.3.1 Marking Properties

The state properties or in Petri net-lingomarking properties of a Petri net can be used to analyse one configuration
of a Petri net. One of the most common representatives for these kinds of properties is the bound. A place’s
bound refers to the minimum (lower bound) and the maximum (upper bound) number of tokens that can be
reached by any marking. The minimum and maximum number of tokens of all places are commonly referred to
as the bound of a Petri net. This means that the Petri net bound is composed of

• the greatest marking that is contained by any reachable marking (lower bound),
• and the smallest marking that contains any reachable marking (upper bound).

Formally, we can define the lower and upper bound as follows:

lower = max ({m ∈ M | ∀m′ ∈ SS(T ,m0),m′ > m}) (7.11)
upper = min ({m ∈ M | ∀m′ ∈ SS(T ,m0),m′ 6 m}) (7.12)

Figure 7.8 shows the code that computes the bound of a Petri net, using its reachable markings. The code
works by iterating over all markings and computing the minimum and maximum number of tokens for each
place. There exist algorithms to compute the bound without the use of the set of reachable markings. These
algorithms use structural properties of the Petri net instead, such as the one shown in [188].

The importance of bounds is paramount as they are often used to detect dead parts in the model, i.e. places
that can never contain any tokens. Bounds computation can further detect places that can have an infinite number
of tokens. However, as an infinite number of tokens would (theoretically) require an infinite reachability graph,
such a bound cannot be detected using algorithms such as the one presented below. In order to detect an infinite
bound, we have to use a coverability graph, an adaptation of the reachability graph for which a detection of
repetitive sequences is added. This is explained for example in [238].

In the Petri nets community the term k-boundedness is often used, where k ∈ N is a natural number. This
notion of bound refers to the upper bound at the place level and helps describing a Petri net. We say that a place
p is k-bounded iff it contains at most k tokens in any reachable marking i.e. ∀m ∈ SS(T ,m0),m(p) 6 k. We
can further refer to Petri net as being k-bounded iff all its places are k-bounded, i.e. ∀p ∈ P, p is k-bounded.

function bounds (marking)
local markings = reachable (marking)
local bound = {

up = { minimum = math.huge , maximum = 0 },
down = { minimum = math.huge , maximum = 0 },
fuel = { minimum = math.huge , maximum = 0 },
off = { minimum = math.huge , maximum = 0 },
on = { minimum = math.huge , maximum = 0 },
filled = { minimum = math.huge , maximum = 0 },
maximum = { minimum = math.huge , maximum = 0 },

}
for marking in pairs (markings) do

bound.up.minimum = math.min (bound.up.minimum , marking.up)
bound.up.maximum = math.max (bound.up.maximum , marking.up)
...

end
return bound

end

Fig. 7.8: Source code stub of the function that calculates the Petri net’s bounds
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7.3.2 Sequence Properties

Whilemarking properties provide useful information about the state of a system, they do not give any information
about how the system evolves. In contrast, sequence properties express the possibility to fire transitions in the
reachability graph. One such property describes the liveness of a transitions. This property assigns a liveness
level (li ∈ {l0, l1, l2, l3, l4}) to each transition of the Petri net, so that it provides information about whether a
transition is fireable, can/will be fireable or will never be fireable. The individual levels are defined as follows:
l0: the transition is dead, i.e. can never fire;
l1: the transition can fire at least once in at least one path of the reachability graph;
l2: the transition is quasi-live, i.e. can fire infinitely often in at least one path of the reachability graph;
l3: the transition is live, i.e. can fire infinitely often in all paths of the reachability graph;
l4: the transition can always fire.

Note that the liveness constraints are ordered and that if a transition is lk -live, it is also lk−1 live, except for l0
(dead). The liveness level of transitions is a useful information to debug models, as this level should in theory
match the intended behaviour of the process using by the transition. In practice, l0-live transitions should almost
never occur in models: finding a l0-live transition is usually a clear indication of a bug within the model as it
should not appear at all if the model was correct. Transitions that are l1-live can be fired at least once, and have no
really interesting meaning. They can appear in any behaviour, such as the representation of scripts or programs
that terminate. l2-live transitions trigger infinitely often, and are thus found in the behaviour of programs that
do not terminate, for instance web servers. They are distinguished from l3-live transitions, because the latter
can fire infinitely often in all execution paths. Thus, l2-live transitions are used usually in looping processes that
can terminate, whereas l3-live transitions are used usually in looping processes that cannot terminate. l4-live
transitions are in practice very rare, as they represent an action that can always happen. They can be found in
user interfaces, where one process records the inputs and has thus transitions that can always be fired.

In order to find the liveness level of transitions, we can employ the algorithm provided in Figure 7.9. The
computation works on the set of reachable markings and further uses the information about a reachability graph’s
strongly connected components (calculated using Tarjan’s strongly connected components algorithm [263]). The
algorithm works in several stages, treating each transition individually as follows:
1. the transition is initially set as both, dead (l0) and always fireable (l4); these flags are unset as soon as the

transition can respectively be fired or cannot be fired in the reachability graph;
2. by iterating over the reachable markings, the transition is set as l1 live if and only if there is a marking in

which it can be fired;
3. l2 flag is set using the strongly connected components of the reachability graph: a transition is l2 live if a

component contains a marking in which the transition can be fired; and that stays within the component;
4. l3 flag is set similarly using the strongly connected components: a transition is set as l3 live if and only

if it is l2 live, and can be fired within a component that has no outgoing transitions (that is called a final
component).

7.3.3 Invariants

The actual aim of modelling is often to reason over certain problems. Invariants pose a convenient way of
reasoning over Petri nets independent from their actual marking.

Invariant reasoning is part of the structural analysis of Petri nets. Generally, invariants are distinguished
between place (P-)invariants and transition (T-)invariants.While the former is useful for deadlock detection [214],
T-invariants serve the modelling of logic programs [215] and Horn clauses [187] as pointed out in [199].

The goal of invariant creation is the establishing of proofs based thereon. In general, proofs based on invariants
have an algorithmic part that consists of computing invariants and a more analytic part, which is written by a
human and describes the reasoning necessary for building the proofs. There is a large number proofs we can
perform with invariants, ranging from state based proofs such as mutual exclusion to liveness properties. Such
invariant-based proofs are interesting alternatives to the ones based on temporal logic properties. Although they
tend to be less powerful, they can nevertheless provide parametric proofs more easily. This comes however at
the cost of human contribution while temporal logic proofs are automateable.
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function liveness (marking)
local markings = reachable (from)
local components = tarjan (markings)
for _, transition in ipairs (transitions) do

transition.liveness = {
l0 = true ,
l1 = false ,
l2 = false ,
l3 = false ,
l4 = true ,

}
for marking in pairs (markings) do

if marking [transition] then
transition.liveness.l0 = false
transition.liveness.l1 = true

else
transition.liveness.l4 = false

end
end
for _, component in ipairs (components) do

for marking in pairs (component) do
if marking [transition]
and marking [transition ]. tarjan.component == component then

transition.liveness.l2 = true
end

end
transition.liveness.l3 = component.is_final and transition.liveness.l2

end
end
return transitions

end

Fig. 7.9: Liveness level detection algorithm.

7.3.4 Formal Definition of Invariants

Each state m ∈ SS(T ,m0) can be associated with an observation value. The observation is a summary of the
state that contains only information relevant to the properties that are verified. Given a set of observations O,
which observations are obtained through functions ω : M → O that return an observation for any possible
marking in M , ω is an invariant if and only if it returns the same observation for all the reachable states of the
system. For instance, in Figure 7.1, the foot pedal is either up or down. In the marking, this means that there is
one token in one of the places and none in the other at all times. Therefore ω : m 7→

(
m(up) + m(down)

)
is a

function that always returns the value 1 for all reachable states and is thus an invariant. More formally, ω is an
invariant iff ∃o ∈ O,∀m ∈ SS(R,m0),ω(m) = o.

The definition above for invariants is very general. It can be used if the users define the invariants themselves,
but cannot help in deducing invariants from the structure of the Petri net. It is interesting to consider instead
only functions that are linear combinations of elementary observation of places.

Usually, elementary observations are functions that for any place and marking return the marking of the
given place. The elementary observations is thus defined as the function oe : P → (M → N) such that
∀m ∈ M ,∀p ∈ P, oe (p)(m) = m(p) These elementary observations can be instantiated using any place of
the Petri net, for instance oe (up) is an observation. The set of all elementary observations is included into the
observations. For convenience, we consider that writing the name of a place is equivalent to the elementary
observation for this place. Hence we will use up to also refer to the function that returns the marking of this
place: m 7→ m(up).

Observations can be composed as linear combinations of observations. For any observations o1, . . . on ∈
O, and constants c1, . . . cn ∈ N, an observation can be built to compute c1 ∗ o1 + . . . cn ∗ on , for instance
1 ∗ oe (up) + 1 ∗ oe (down) (the places with coefficient 0 are not shown). The set of observations is thus defined
by the linear combinations of elementary observations:
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O = {Σp∈P (cp ∗ oe (p)) | ∀p ∈ P, cp ∈ N}

Following this definition, if ω1 and ω2 are invariants, then ω1 + ω2 is also invariant. The addition of two
invariants ω1 + ω2 : M → O is defined as: ∀m ∈ M , (ω1 + ω2)(m) = ω1(m) + ω2(m). Also, if ω is an
invariant then ∀k ∈ N, k ∗ ω is an invariant. The multiplication of an invariant with a constant is defined as:
∀m ∈ M , (k ∗ω)(m) = k ∗ω(m). To compute invariants it is necessary to find the appropriate linear combination
of elementary observations. The well-known Farkas algorithm can be employed for the finding of invariants, as
explained in the next section.

7.3.5 Computing P-invariants

Discovering the P-invariants can be done using the Farkas algorithm [97]. The Farkas algorithm is an iteration
process operating on a structure which corresponds to a Petri net’s incidence matrix. For spatial reasons we do
not provide the implementation of the algorithm but describe the (basic) functionality in textual form.

Its principle is to represent and manipulate a matrix where columns represent the transitions of the Petri net,
and lines represent place markings or linear combinations of place markings. The algorithm works iteratively,
performing the following actions:

1. add new lines to the matrix by building linear combinations of already existing lines, the aim of this process
being to nullify columns (i.e. create columns that only contain zeros);

2. remove the lines that were used based on the summation;
3. remove the columns that are nullified;
4. remove all lines that are already expressed through other lines.

The process terminates when all columns are nullified. The solutions are linear combination of place markings
that have a constant observation, and are thus invariants.

Example Below is an example of how to compute invariants following the given algorithm, on a very simple
Petri net shown in Figure 7.10.

a b

c d

t1 t2

t3

Fig. 7.10: Example of Petri net used to compute invariants

The successive Fi structures show the advance in Farkas algorithm. Each Fi is the result of one step, computed
from the Fi−1 structure. The first one (F0) is the incidence matrix of the Petri net, that represents for each place
and transition the difference between the weight on post arcs that rely the place and the transition, and the weight
on pre arcs that rely them also.

F0 =



t1 t2 t3

a −1 1 0
b 1 −1 0
c 1 −1 1
d −1 1 −1


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The first iteration is to eliminate t1. To do it, we have to find linear combinations of rows such that the column
for t1 is always zero. Obviously, both a + b, c + d, a + c and b + d are correct linear combinations. There is
no need to represent greater coefficients, such as 2 ∗ a + 2 ∗ b, thus only the minimal combinations are kept.
Because all rows a, b, c, d have been used to compute the new rows, the rows a, b, c, d are removed from the
matrix in F ′1 . All columns that contain only zeros are also removed in F ′′1 , as they are useless for the remaining
of the iterations.

F1 =



t1 t2 t3

a −1 1 0
b 1 −1 0
c 1 −1 1
d −1 1 −1

a+b 0 0 0
c+d 0 0 0
a+c 0 0 1
b+d 0 0 −1



F ′1 =



t1 t2 t3

a+b 0 0 0
c+d 0 0 0
a+c 0 0 1
b+d 0 0 −1



F ′′1 =



t3

a+b 0
c+d 0
a+c 1
b+d −1



As there is only one transition t3 remaining, the second iteration is to remove it. Only one linear combination
can do it: a + b+ c + d, obtained by two ways: by adding the lines a + b and c + d, and by adding the lines a + c
and b + d. But the Farkas algorithm requires to use only the rows that are not zero, thus a + b and c + d are not
taken into account. As previously, the rows that have been used to compute the new ones are removed (a + c
and b + d) in F2", and the nullified column is also removed in F ′′2 .

F2 =



t3

a+b 0
c+d 0
a+c 1
b+d −1

a+b+c+d 0



F ′2 =


t3

a+b 0
c+d 0

a+b+c+d 0


F ′′2 =

[
a+b

c+d

]

After this iteration, there are no more columns to remove. The remaining rows represent invariants of the
Petri net: a + b and c + d, that are named for later use:

i1 = a + b

i2 = c + d

As previously discussed, invariants are formulas that do not change applied on reachable markings. This
means that for any sequence s and markings m,m′, such that m

s
−→ m′, the invariant i applies at both ends of the

sequence, and even at each state within the sequence: i ∗ m = i ∗ m′. In our example i is either i1 or i2, stating
that the observation of a + b and c + d remains constant, independently of which transitions are fired.

7.3.6 Using Invariants for Proving Properties

Proving properties on models can be done by exploration of the reachability graph. Nevertheless, in most
practical applications this method is difficult to use due to the state space explosion problem. The previous
section defines invariants on Petri nets, that can be computed without the need to create the full reachability
graph. In fact, invariants can be computed without even having to specify an initial marking. This section
outlines the power of invariants by showing how to use them to prove properties on models. The usual way of
performing these proofs is to establish invariants, and follow a case by case analysis of the possible state of
the Petri net. This is done using in the reasoning the fact that invariants are respected in the whole reachability
graph and also for the initial marking.
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Proofs can usually be expressed as case analysis of the reachability graph of the Petri net. The proof process
is then based on the following steps:

1. compute the set of invariants
2. apply invariants to the initial marking to obtain the corresponding observations
3. define an arithmetic reasoning based on the observations, invariants and case analysis, where the cases are

in general markings of the state space that respect the invariants.

Using the invariants from Example 7.3.1, we can prove the principle of mutual exclusion of a and b in the
Petri net above. The reasoning steps for this proof are as follows:

1. Application of the Farkas algorithm onto the incidence matrix provides us with the Petri net’s invariants:
i1 = a + b and i2 = c + d.

2. Next, we calculate the invariant values using the initial marking m0 = {a = 1, b = 0, c = 0, d = 1}. This
leads to the inference that the value of i1(m0) = m0(a) + m0(b) = 1.

3. Since i1 is an invariant, this observation needs to hold on any marking in the reachability graph, i.e. ∀m ∈
M ,m(a) + m(b) = m0(a) + m0(b) = 1

4. Equipped with the knowledge that a place-marking cannot be negative (∀p ∈ P,∀m ∈ M ,m(p) > 0) we
can deduce that m(a) ∈ {0, 1} and m(b) ∈ {0, 1}

5. Lastly, we can easily observe that the mutual exclusion has to hold since if m(a) = 1 and m(a) +m(b) = 1,
then m(b) has to have the value 0. Similarly, m(a) = 0 ∧ m(a) + m(b) = 1⇒ m(b) = 0

While this trivial proof can easily be computed by hand, the same principle can be used to create more
complex, semi-manual, structural proofs. In practice such proofs are supported by powerful proof checkers such
as Coq [30] to verify that hand written proofs are correct. The detailed description of this technique surpasses
the scope of this book, but we encourage the reader to consult publications dedicated to this topic.

7.4 Techniques for Model Checking

Invariants can often be computed using less time and memory than a Petri net’s the entire reachability graph.
In some cases, however, such as during the computation of causality properties (for instance "if an event A
occurs, then an event B must occur later"), the need to perform the generation of the state space is still required.
Although the computation is straightforward (see the algorithm in Figure 7.7), this technique does not scale
well since many models have an exponentially growing number of states with respect to to their size. It is not
uncommon for a model’s reachability graph to have more nodes than the number of atoms in the universe (1082).

The size of the reachability graph of a Petri net usually depends on two factors: the number of places and
transitions within the Petri net and the number of tokens in each place. For instance, the reachability graph of
our example in Figure 7.1 increases with the number of tokens in the fuel place. It could also increase if we
add more places, for instance to represent several positions of the foot pedal (up, middle, down for instance).

In order to still be able to calculate the state space, research led to the development of various approaches to
overcome the increasing size of the state space. Below, we will briefly outline a few examples.

• Symmetry reductions [74] allow us to perform model checking on a smaller system, by analysing one
representative component instead of several identical components. For instance, instead of analysing the
behaviour of several databases, identified by their names, symmetry reductions focus on analysing the
behaviour of one anonymised database.

• Partial order reductions [125, 163, 278] are based on the commutativity of concurrent actions. When
performingmodel checking of asynchronous systems, action interleaving requires an arbitrary order between
the events. To treat all possible cases, all permutations of the order must be considered, resulting in an
exponential explosion of the number of traces and states. Partial order reductions allow to check only a
subset of the behaviours, by removing executions that differ only by the order of independent transitions.
This technique can only be applied when the property we want to check does not depend on the removed
executions.

• Büchi Automata [296]: Some temporal logic formulæ (namely linear temporal logic ones) are checked
against the set of infinite executions of the model. A way to perform this verification is to transform the
formulæ into automata that accept the valid executions. Such automata are called Büchi automata. For
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verification, the model and the formula are both encoded as Büchi automata which accept the languages
that represent the executions of the model and the valid executions with respect to the property to verify.
Model checking then consists of checking that the language of the executions is included in the language of
the property.

• Bounded Model Checking (BMC) [33]: This approach is a kind of “degraded mode” of standard model
checking, as the formula is checked only for executions of a maximum length k (where k is the sequence
length from the initial marking). If no problem is detected, then k is increased until the formula does not
hold any longer, or k reaches an upper bound (called the completeness threshold of the design). Note that
there is no guarantee for executions longer than this upper bound. Since these kinds of problems can be
reduced to propositional satisfiability problems, they can use very efficient SAT or SMT solvers.

• Distributed Model Checking [121, 22, 21]: One of the main problems when performing model checking is
memory exhaustion. The idea of distributed model checking is to distribute the states over several computers
in order to increase the overall available memory. This technique has a drawback: the transmission of data
between computers poses as a bottleneck. Various algorithms have been designed to perform a “good”
distribution of states so that most transitions are local to the same computer. They have reached their limits
however due to the rise of modern, highly efficient CPUs. Distributed model checking is in practice most
efficient when the time required to compute successor states is much longer than the time required to
transmit states.

• Parallel Model Checking [257, 20]: With multi-core architectures, the trend is nowadays to perform parallel
model checking instead of distributed model checking. In this approach, all the states are represented and
computed on the same computer, but several execution processes are used to speed up the computation.
This approach still grows more difficult with increasing parallelism, because of possible memory contention
within storage for computed states. The same approach is used to perform parallel model checking on GPUs.

• Symbolic Model Checking (SMC) [58, 59, 77]: Instead of explicitly representing states and transition
relations, this approach only represents and manipulates sets of states or sets of transitions using Decision
Diagrams [55]. This representation allows at the same time to share some common parts of the states and
reduce computations when applying the transition relation, in the best cases logarithmic with respect to the
size of the model.

Some techniques have been developed that combine several approaches [92]. For instance, symmetry and
partial order reductions are also often coupled with static reductions techniques that reduce the size of the
specification with respect to the property to check, or with state compression as in [96], where some states are
represented by the difference with their predecessor. Similarly, parallel model checking is easily used in combi-
nation with the other approaches discussed above. One exception is symbolic model checking because Decision
Diagrams require a unicity table and computation caches, that need to be locked and are thus bottlenecks.

7.5 Data manipulation in Petri nets

The previous sections present the use of simple Petri nets models. While this type of Petri nets are sufficient to
represent simple systems, they lack several features that are useful when dealing with complex cyber-physical
systems, such as modularity, time constraints, and data manipulation. Such simple models encode data as a
number of tokens. For instance, the fuel level is represented by a certain amount of tokens within the fuel place.

The basic Petri nets we introduced so far are commonly referred to as Place/Transition (P/T) nets. As we
have seen, they are well-suited for the modelling of process control, synchronisation and resource flow within
a system. However, in more complex situations the information used might not be easily representable as
simple, black tokens. We can easily imagine cyber-physical systems where the transmission of more complex
information is required. A P/T net modelling a very simple drone controller may have transitions up, down, turn
left, turn right, move forward and move backward, which all modify the state. However, if we now add
possibilities to perform multiple actions at the same time, we would have to add more transitions such as move
up & forwards. The number of transitions within this relatively simple system would grow exponentially.

It would be more efficient to represent such information directly in the tokens. In order to do so, we need a
token for vertical movement that could express to either move up, move down or stay, another one for changing
directions (left, right, stay) and a third one for the forward/backward movement. We can then send these three
tokens into a transition that would perform the action depending on the token values.
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This simple scenario shows the necessity for High-level Petri nets (HLPN). HLPN were developed with the
goal to attach a values to tokens, such as described before. Transitions and arcs are extended with guards, which
evaluate the token values and assert a certain configuration.

7.5.1 Drone Controller

Our new High-level Petri net drone controller is presented in Figure 7.11 On the first view we can see three
distinct groupings for vertical movement, horizontal movement and orientation. Each one of these three
groups contains one place with an initial token with value stay. The behaviour of the groups follows the same
scheme. From the initial place we can use transitions to create tokens with different values. The transitions’
preconditions are guarded. This means that if the token’s value is stay, we can only fire transitions whose guards
require a stay-token (there are two in each group). Once we fire the transition, the stay-token is consumed
and a new one is produced. For example from the place altitude we can either fire a transition move up,
which produces an up-token, or move down, that creates a down-token. This behaviour matches the pushing of
a joystick on the drone’s physical remote to either direction. There are two more transitions within this group
that are guarded by up and down, respectively. Firing these transitions will consume the token respective token
and produce a stay token. In other words, we can use them to “reset” the token (i.e. to stop movement into that
direction). On an actual drone remote, this behaviour matches the releasing of the drone’s altitude joystick to
neutral position. The groups that express the horizontal movement and orientation behave correspondingly.

Next to these three groups we can see the central move transition. This transition is responsible for the
actual displacement of the drone Move consumes the tokens from vertical, horizontal and orientation.
Interestingly, the arcs for these tokens are not guarded by concrete token values, but by variables (a, d and
m). These variables are assigned when move fired and take the tokens’ values. The transition further uses a
token from place drone and a token from place battery. Note, that both drone and battery have different
token types (i.e. can hold different valuations): While battery contains multiple, classical black tokens, the
drone-place only holds one data-record token whose value stores information about the drone’s current position
(as 〈x, y, z〉-coordinates) and angle (stored as anti-clockwise deviation angle from north2).

Firing move will consume the three movement indicator tokens, one battery-token and the drone-token
(assigned to variable s). It then produces equivalent tokens to the consumed ones in each one of the movement
places, plus a new token in the drone-place, whose value is updated to match the new state of the drone3.
Producing equivalent movement tokens to the one that has been consumed, has the effect that the behaviour of
the drone will remain continuous until it is actively altered. In the example, move’s consumption of an up token
will produce another up in the altitude-place. Hence, when firing move again, the drone will continue rising,
unless the token has been modified (using the transitions within the altitude group)

Note, that since there is no way to produce tokens in the battery-place, this is the resource that limits the
number of times we can trigger the central transition and hence move the drone.

Our drone controller further has a safety-mechanism integrated. This mechanism is shown as a guard on the
central transition and expresses that we cannot fire this transition if the drone’s position z-position is lower than
50 (centimetres) and the altitude token is specifies a downward movement (i.e. has value down).

7.5.2 Formalising High-level Petri nets

As we saw in the example, HLPN use various additional concepts such as variables and expressions. In this
section we will focus on the adaptation of our existing Petri net formalism to integrate these concepts.

Variables and expressions To formally express the concepts that were used in the example above, we need
to define matching and filtering of tokens. For this reason we introduce the notions of variables and expressions:
We define a set of variables V (e.g. s,a,d,m), and a set of expressions over data and variables (noted E).

2 I.e. the value 90 describes West, 180 South, and 270 and −90 stand for East
3 In the figure the update is simply expressed as s + f (a, d,m), where we assume the existence of a function f which can provide
the 〈x, y , z〉-coordinate and orientation angle change produced depending on the group tokens.
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Since variables are expressions or parts thereof, V is a subset of E: V ⊆ E. We further define a function
variables : E → P (V ), which returns the set of variables that are used by an expression.

If an expression does not contain any variables, we call it a ground expression. The set of ground expressions
E∅ is defined as E∅ = {e | e ∈ E ∧ variables (e) = ∅}. In order to express concrete values (such as stay or
up) this set has to be non-empty.

Binding Equipped with these tools we can now express the binding of variables (such as binding of the
altitude token to the variable a). A binding σ ∈ Σ is a partial function from variables to ground expressions:
σ : V → E∅∪{⊥}.We remind ourselves that a substitution, as introduced in Section 7.2.4, is denoted notedσ(e).
This means that it is the application of a bindingσ on an expression e ∈ E and replaces variables with their value
in the binding. Note, that a substitution does not have to replace all variables within an expression. Variables
that do not appear in the binding remain in the expression. Formally:
∀e ∈ E,∃e′ ∈ E∅, e′ = σ(e) ∧ variables (e′) = variables (e) \ {v | v ∈ V ∧ σ(v) , ⊥}.
Transition guards In high-level Petri nets transition guards are used to prevent transitions to fire with

unwanted token values and thereby stop unwanted behaviour. In the drone controller we use the guard ¬(a =
down∧s.position .x < 50) to prevent the drone frommoving downwhen its altitude is below a certain threshold.
Formally, transition guards are functions that evaluate to Boolean values (B = {>,⊥}). Transitions can only be
fired iff the guard evaluates to >.

Integration of the conceptsUsing the above definitions, wemodify the definition of a Petri net to incorporate
the new concepts. Specifically we change the following:

1. Add ground expressions to tokens within markings as a means to hold data
2. Add (variable) expressions to arcs in order to filter tokens or bind variables
3. Add Boolean guards over expressions to allow filtering of tokens and disabling transitions for certain

token-values.

Formally, HLPN are described as tuples based on the structure of P/T nets (as defined before), but with added
and modified fields: 〈V , E, variables , P,T , pre , post , guard ,m0〉, where:

• V , E, variables are the sets of variables and expressions, and the variables function as introduced above;
• M = P → M (E) is the set of all possible multisets over expressions. It replaces the former marking
definition (P → N);

• guard : T × Σ → B defines the allowed bindings for each transition;
• m0 : P →M(E∅) associates to each place a multiset of ground expressions as the initial marking.

This definition differs resembles the P/T definition from before, except for the introduction of variables and
expressions and the new definition of marking, where a marking consists of a multiset of expressions rather than
a natural number.

In fact, we can look at a classical P/T net is a special kind of high-level Petri net where the set of variables
is empty (V = ∅) and only one expression (E = {•}) exists. Note that since transition guards are usually
defined as Boolean expressions over expression comparisons, a P/T net’s guard function always returns true:
∀t ∈ T ,∀σ ∈ Σ, guard (t,σ) = >.

The semantics of a transition t is given in Equation (7.13). It differs from the previous transition semantics
given in Equation (7.2) by adding the substitution of a binding within the pre and post functions.

transitiont :
∃σ,σ(pre (t)) 6 m, guard (t,σ) = >

m
t
−→ m − σ(pre (t)) + σ(post (t))

(7.13)

The use of expressions in HLPN requires the extension of the substitution to include all expressions in the
function image. Formally, ∀m ∈ M ,∀p ∈ P,σ(m)(p) = σ(m(p)). This substitution also has to be extended
to multisets, since HLPN markings are defined as such. Applying a substitution on a multiset is performed by
applying the substitution to each element: ∀es ∈ M(E),σ(es ) = [σ(e) | e ∈ es], where [ ] denotes a multiset
by intention.
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Fig. 7.11: Petri net representing the control of a drone, using data as tokens and arc valuations. The control
is composed of three modules, that represent the state of the controller joysticks: one to move upwards or
downwards, one to rotate left or right, one to move forwards or backwards. The drone moves when the move
transition is fired. It captures the state of the controller to move the drone. Places are labelled with multisets of
tokens, shown as [token1, . . . tokenn]. Each token is a structured data, that can be a simple token (•), an atom
(stay) or a record or subdata with named fields, such as (position = (x = 0, y = 0, z = 0), angle = 0). The
position is a position relative to the initial position of the drone, and the angle is an angle on the horizontal
plane and signifies the deviation from north. Arcs are labelled by multisets of tokens, that can use variables,
for instance x. Transitions have implicitly a guard that always returns >, except the move transition that has an
explicit guard ¬(a = down ∧ s.position .x < 50).

7.5.3 Other High-level nets

In the last couple of decades, researchers hae come up with numerous extensions and modifications of the P/T
net formalism to ease the modelling of complex systems. This section introduces four representatives of such
complex variants of Petri nets.
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Coloured Petri nets (CPN) [158] CPN are an extension of Petri nets where each token can be of a certain
colour. Each colour is a set of values, comparable to a type definition. The set of colours has to be clearly
specified for a CPN. Arcs are modified to allow the specification of the colour to use in pre- and postconditions.

The drone example in Figure 7.11 is a CPN with the following colours:

• CVertical = {up, down , stay }
• CHorizontal = {forward , backward , stay }
• CDirection = {left , right , stay }
• CFuel = {•}

Unfortunately, not all data types can be easily represented as colours, for instance, the drone state is a dictionary
or tuple. The corresponding colour contains all the possible combinations of positions and angles. Since this
set is infinite (x, y, z and angle are rational), this solution is not usable in practice, and the domains have to be
made discrete and bounded.

Symmetric nets [71] Symmetric nets, formerly known as “well-formed Petri nets”, are a special kind of
Colored Petri nets that use only simple data types: tuples of constants in finite and ordered domains. The data
structure is thus very limited, and cannot easily represent data of varying size, as well as data in a priori unbound
domains. Operations on data are also very restricted: it is only possible to obtain the successor or predecessor
of a value, and test equality between two values. There are no operations allowed on the tuples themselves.

Despite all these limitations, symmetric nets are successfully used in practical problems because they offer
a formalism that is convenient for efficient structural analysis and model checking. The limited expressiveness
of these types increases the number of properties that can be verified, in particular for the structural analysis of
models, such as computation of bounds or invariants.

Algebraic Petri nets (APN) [297] Algebraic Petri nets are a special form of Colored Petri nets, that allow
the use of abstract algebraic data types [87] as colours. Such algebraic data types consist of a signature and
axiomatisation and hence allow the user to represent custom data types. The advantage of APNs is that every
data type used has a precise axiomatisation and consequently proofs can be done by theorem proving without
the usual limitation of finiteness of model checking. Using APNs, parametric and under-specified systems can
be modelled and also be verified in a more systematic way.

Timed Petri nets [231] The concepts of time and of Petri nets are quite opposite: while time determines the
occurrences of events in a system, Petri nets consider only their causal relationships. Several variants of Petri
nets have been defined with the notion of time. The three most common are: Time Petri nets, Timed Petri nets,
and Petri nets with Time Windows. In Time Petri nets, transitions are labelled with time intervals, that define
the time at which the transition can be fired, after it has been enabled (has all its preconditions met). In Timed
Petri nets, time is also put within tokens, that have thus an age, and transitions are labelled with time intervals
that define the age at which tokens can be consumed. In Petri nets with TimeWindows, transition are given time
intervals, this means that transition can fire (not mandatory) only in this time interval.

In this chapter we do not consider time with Petri nets for simplicity, and only focus on the causal relations
associated to Petri nets.

7.6 Combining Model Semantics and Simulation

The recent rise of computers in everyday life is especially of importance when their purpose is to react to and
act upon environment changes. We refer to such systems as cyber-physical systems (CPS). Such systems consist
of a software part (e.g. a controller program) and a hardware side that usually consists of sensors and actuators.

While smaller systems, such as heating/light systems that measure presence have been installed and used for
a long time, the trend towards Internet-of-Things applications, “smart systems” (such as new-generation cars
and trains), and general large-scale systems that include hundreds, sometimes even thousands of components
drives the need for means to verify and validate such systems.

The problem of these highly heterogeneous systems lies in finding the right means to model each part of
the system. While former approaches to find the one modelling language or tool failed, nowadays the trend is
reversed. Modern research is looking to model every part of the system with its most appropriate modelling
formalism. Subsequently the individual components are combined and simulated together. This approach, called
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co-simulation [126] has shown promising research results, but comes with one important question: How should
we combine models that were developed using different syntaxes and semantics?

One of the approaches that aims to answer this question are Functional Mock-up Units (FMUs) [36]. The
FMU formalism provides a homogeneous interface, the Functional Mock-up Interface (FMI). Each component
is wrapped inside its own FMU and is henceforth executed using the FMI. The individual FMUs’ inputs and
outputs are connected to one another in order to allow information to be transmitted within a system. The
semantics of such a composition are dominated by a so-called master algorithm that is responsible for passing
control to individual components, relaying signals and choosing appropriate time step sizes which suit all units
in the system.

In this section we introduce Petri Net Functional Mock-up Units (PNFMUs) [180]. This new type of FMU
wraps a Petri net within the FMU in order to provide access to the efficient evaluation and calculations we
introduced in the previous sections. Using Petri nets it is possible to detect deadlocks and possible system
evolutions.

The FMI standard strictly defines the qualities of a valid FMU. In order to comply with this standard however,
it is necessary that PNFMUs overcome three major challenges:

1. Time evolution Similarly to a Mealy or Moore machine, the Petri net formalism doesn’t explicitly define a
time concept. Often, the firing of a transition is accepted as a time unit. To overcome this limitation, the periodic
or aperiodic wrappers presented in [272] can be used for this purpose. In addition, these wrappers has also been
discussed in [83] when considering the semantic adaptation, giving the possibility to automatically generate
FMUs from a domain specific language that solve this problem.

2. Inputs/Outputs adaptation Obviously, the inputs and outputs type and nature of a given formalism can
differ from the simple value affectation of a variable defined by the FMI standard. Therefore, an adaptation must
be performed as well for inputs and outputs of a FMU. The authors of [83] provided solutions with their domain
specific language to overcome this limitation too.

3. Non determinism In the standard, FMI API functions are mathematically modelled as total functions
[272]. This means that calling an FMU’s API with the same parameters should always yield the same result. An
initial, yet naive, approach to represent a Petri net state would be to consider it as a single marking. However, in
situations where a Petri net has more than one fireable transitions at a given state, the evolution function of the
FMI API (doStep) cannot yield a deterministic result. This particularity is clearly shown by the Petri net and its
reachability graph in Figure 7.12. In this example, either t1 or t2 can be fired from its initial marking, leading to
different system evolutions. This issue must be addressed to be able to represent a Petri net within an FMU.

Since the two first subjects of interest have been extensively discussed in the referenced publications, the
non determinism of the formalism is considered here. Now that the problems related to the consideration of
formalisms as FMUs has been addressed, let’s discuss now of the PNFMU formalisation.

p1 p2

p5

t1

p3 p4

t2

t3

〈1, 0, 1, 0, 0〉

〈0, 1, 1, 0, 0〉

t1

〈1, 0, 0, 1, 0〉

t2

〈0, 1, 0, 1, 0〉t2 t1

〈0, 0, 0, 0, 1〉
t3

Fig. 7.12: A simple Petri net and its reachability graph. The markings are encoded as 〈p1, p2, . . . , pn〉, where pi
are the number of tokens within the places, which the ordered by their index. 〈1, 0, 1, 0, 0〉 encodes the initial
marking on the left, stating that there is one token in the first and third place each (i.e. p1 and p3).

7.6.1 PNFMU Formalisation

The need for Petri nets within an FMI system is closely tied to the need to analyse system evolutions and
reachability of possible states. In order to do so, we need to define the formal basis of an PNFMU, which we
base on the FMU formalisations presented in [272] and [51].
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A standard FMU is defined as the structure F = 〈S,U,Y , D, s0, set , get , doStep〉. Given a Petri net PN =
〈P,T , pre , post ,m0〉, we define that a PNFMU is a tuple PNFMU = 〈S,U,Y , D, s0, setN, getN, doStepN〉.

A PNFMU’s internal states S are all possible markings of the Petri net, not just the reachable ones (i.e.
reach (s0) ⊆ S). U and Y are the Petri net’s places which are writeable and readable, respectively. D remains
the dependency of outputs on inputs and is used to avoid circular dependencies when composing FMUs. s0 is
set to the initial marking m0.

The biggest difference between FMU and PNFMU is that the former only operates on one state. On the
contrary, PNFMU are designed to explore and operate on a Petri net’s reachability graph. This change is
reflected in the three functions set , get and doStep, which are adapted to perform operate on sets of states as
follows:

set : P (S) ×U × P (N) → P (S) operates on a set of states (markings), modifies the marking of a certain
place in each marking and returns a set of new states. Intuitively, the function iterates over the values to
set and modifies returns a new state for each state that is modified. In total the function returns n × m
markings, where n is the count of states and m the number of values entered into this function. Us-
ing the reachability graph from above, the call set({〈0, 1, 1, 0, 0〉, 〈1, 0, 0, 1, 0〉}, p5, {2, 4}) returns the set
{〈0, 1, 1, 0, 2〉, 〈1, 0, 0, 1, 2〉}, {〈0, 1, 1, 0, 4〉, 〈1, 0, 0, 1, 4〉}. Note, that none of the four returned markings is
reachable from s0 by transitions.

get : P (S) × Y → P (N) recuperates the set of place-markings of a set of states.
For example, get({〈0, 1, 1, 0, 0〉, 〈1, 0, 0, 1, 0〉}, p3) returns {1, 0}, while get({〈0, 1, 1, 0, 0〉, 〈1, 0, 0, 1, 0〉}, p5) =
{0}.

doStep : P (S) × N→ P (S) × N executes system evolutions. Given a set of states and a time step h ∈ N,
doStep returns the length of the longest sequence h′ (with 0 ≤ h′ ≤ h) that can be executed and the states
that are reached. Note, that doStep only operates states that are reachable from s0, any states s < S are not
considered. Furthermore, contrary to standard FMUs, PNFMU’s doStep is defined over natural numbers
and fails if h < N. doStep is defined as follows:

doStep (s, 0) = (s, 0) (7.14)

doStep (s, 1) =



(succ, 1) s.t. succ =
{
s′ |∃t ∈ T ,∃si ∈

(
s ∩ SS(T , s0)

)
, si

t
−→ s′

}
∧ succ , ∅

(s, 0) otherwise.
(7.15)

For h ≥ 2: (7.16)

doStep (s, h) =



(s, 0) st. (s, 0) = doStep(s, 1)
(s′′, h′′ + 1) st. (s′, 1) = doStep(s, 1) ∧ (s′′, h′′) = doStep(s′, h − 1)

(7.17)

The doStep function for the example Petri net net above is given by the equations above. To show its
execution, here is the first four steps of doStep for pn′:

• doStep({〈1, 0, 1, 0, 0〉}, 1) = ({〈0, 1, 1, 0, 0〉 〈1, 0, 0, 1, 0〉}, 1);
• doStep({〈1, 0, 1, 0, 0〉}, 2) = ({〈0, 1, 0, 1, 0〉}, 2);
• doStep({〈1, 0, 1, 0, 0〉}, 4) = ({〈0, 0, 0, 0, 1〉}, 3).

Table 7.1 compares the definitions of the individual components of both, the FMU and PNFMU.

7.6.2 PNFMU Example

Figure 7.13 shows some possible evolutions of a PNFMU that wraps the Petri net of the above example. Out of
the infinite sequences of actions possible, we choose five traces that are being presented as an evolution tree.

• First, the main branch (center) shows the doStep evolution of the system. Note that after the third doStep
the returned state remains unchanged and the returned h′ is 0. This indicates a deadlock, as no further
evolution is possible.
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Component FMU PNFMU

S a set of internal states of F the set of all possible markings; S

U a set of input variables over values V a set of input places;U ⊆ P, V = N

Y a set of output variables over values V a set of output places; Y ⊆ P, V = N

D ⊆ U ×Y a set of input-output dependencies specifying which outputs depend on which inputs

s0 ∈ S the initial state of F the initial marking of PN ; s0 = m0

set
sets the value of an input variable, returns the
new state; set : S ×U × V→ S

sets the value of an input place in the given states, returns
the new states; set : P (S) ×U × P (N) → P (S)

get
returns the value of an output variable;
get : S ×Y → V

returns the an output place’s values in all given markings;
get : P (S) ×Y → P (N)

doStep
attempts simulation step, returns actual step size and new
state; doStep : S × R≥0 → S × R≥0

attempts simulation step, returns actual step size and new
states; doStep : P (S) × N→ P (S) × N

Table 7.1: Comparison of the structures of FMU and PNFMU.

• We observe another trace using only doStep actions. The doStep(s, 4) attempts to find the states reachable
with a sequence lenght of 3. However, the reachability graph dictates that only two steps are possible. Hence
the action returns the end of the longest sequence that has been reached (in this case 1) and

• On the left branch, we see the creation of two markings of which one is not in the reachability graph of m0.
The subsequent doStep therefore ignores this state when performing the calculation.

• The right branch describes the evolution after a set action on the initial state. This set creates one single,
non-reachable marking. Therefore, the doStep action on this state returns the empty set of states.

• Executing another set creates a reachable marking. This means that the doStep is possible and succeeds.

We can easily see that, using PNFMUs, it is possible to study the possible evolutions of a system and analyse
whether the execution of certain sequences leads to a reachable marking (i.e. a “good state”). We can also find
deadlocks situations, i.e. states where a doStep) returns 0.

{〈1, 0, 1, 0, 0〉} }

{〈0, 1, 1, 0, 0〉, 〈1, 0, 0, 1, 0〉}, 1 { 〈0, 0, 1, 0, 0〉 }

{〈0, 1, 1, 0, 0〉, 〈0, 0, 0, 1, 0〉 } {〈0, 1, 0, 1, 0〉}, 1 ∅, 0 {〈0, 1, 1, 0, 0〉}

{〈0, 1, 0, 1, 0〉}, 1 {〈0, 0, 0, 0, 1〉}, 1 {〈0, 0, 0, 0, 1〉}, 2 {〈0, 1, 0, 1, 0〉}, 1

{〈0, 0, 0, 0, 1〉}, 0

doStep (s,1)
set (s,p1 ,{0})

set
(s,p1,{0

})
doStep (s,1)

do
S
tep (s,3)

set (s,p2 ,{1})

doStep (s,1)

doStep (s,1) doStep (s,1) doStep (s,1)

doStep (s,2)

Fig. 7.13: A tree displaying possible system evolutions. Nodes are the (sets of) states and arcs are annotated
with the action performed (where s is the variable that stores the previous states). Markings that are not in the
reachability graph of s0 are gray .
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7.6.3 PNFMU Composition

The FMI standard defines FMU composition in a very simple manner. An FMU’s outputs are directly connected
to another FMU’s inputs. This is usually performed by the master algorithm using the set method. Generally,
the master algorithm performs such updates in two steps: 1. update all FMUs’ input values; 2. perform system
evolution by calling doStep on each FMU.

The composition of PNFMUs is slightly more complex, as it is necessary to handle sets of states. In general,
three main scenarios can be distinguished:

One-to-One/One-to-Many Connecting a PNFMU that is currently in one, single state to another PNFMU
is most trivial of the possibilities. Upon update, the marking(s) of the second PNFMU’s inputs are set to the
first PNFMU’s output places’ values. If the second PNFMU has multiple states, all states are updated.

As represented in Figure 7.14a the place p5 of PNFMU 1 is linked to the place p0 of PNFMU 2, drawn in
bold. The execution scenario is quite trivial. In fact, for every marking of PNFMU 2, the number of tokens of
place p0 is set to the number of tokens of the place p5 from the PNFMU 1.

Many-to-OneThe case represented Figure 7.14b is slightlymore complicated.PNFMU 1, which hasmultiple
markings, is connected to PNFMU 2 that has one single marking. In other words, there is two distinct numbers
of tokens in the place p5 in PNFMU 1, respectively 0 and 1. In consequence, the variables update step should
create one marking for each values of PNFMU 1’s output variable. In the current case, PNFMU 2 should have
two markings after the update, one for M (p1) = 0 and another for M (p1) = 1.

Many-to-Many After a step evolution, it is possible that both PNFMUs contain more than one marking. In
fact, theMany-to-Many relationship is a generalisation of theMany-to-One case. This case requires to write all
output values of one PNFMU to all inputs of the other. Effectively, the Cartesian product of possible states is
created, where all combinations of PNFMU 1’s values are applied to all input places of PNFMU 2.

〈1, 0, 1, 0, 0,1〉Before:

PNFMU 1

〈0, 1, 1, 0, 0, 1〉
〈1, 0, 0, 1, 0, 1〉

PNFMU 2

p5 p0

〈1, 0, 1, 0, 0,1〉After: 〈1, 1, 1, 0, 0, 1〉
〈1, 0, 0, 1, 0, 1〉

p5 p0

(a) One-to-One/One-to-Many relationship

〈0, 1, 1, 0, 0,1〉
〈1, 0, 0, 1, 0,0〉Before:

PNFMU 1

〈1, 0, 1, 0, 0, 1〉

PNFMU 2

p5 p0

〈0, 1, 1, 0, 0,1〉
〈1, 0, 0, 1, 0,0〉After: 〈1, 0, 1, 0, 0, 1〉

〈0, 0, 1, 0, 0, 1〉
p5 p0

(b) Many-to-One relationship

Fig. 7.14: FMU relationships before and after the update

7.6.4 Advanced Composition Mechanisms

Modularity is a mandatory principle to apply Petri nets to real world-sized systems. Modular extensions of
Petri nets allow to create complex models by combining smaller entities. They facilitate the modelling and
verification of large systems by applying a divide and conquer approach and promoting reuse. Modularity
includes a wide range of notions such as encapsulation, hierarchy and instantiation. Over the years, Petri nets
have been extended to include these mechanisms in many different ways. The heterogeneity of such extensions
and their definitions makes it difficult to reason about their common features at a general level. An approach has
been proposed to standardise the semantics of modular Petri nets formalisms, with the objective of gathering
even the most complex modular features from the literature. This is achieved with a new Petri nets formalism,
called the LLAMAS Language for Advanced Modular Algebraic Nets (LLAMAS)[197]. This framework can be
envisioned to extend current work on PNFMU and for the abstract description of the master algorithm.
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7.7 Tooling

The vast amount of research invested in the Petri nets domain not only led to many important, theoretical
findings but also saw the development of tools and software that can be used to model, analyse and simulate
Petri nets. In the following section we will describe some tools that can be used to develop models based on
Petri nets and to perform model checking thereon. Some of the tools described below are currently unavailable
or are not able to perform model checking for Petri nets directly. Nevertheless, we will introduce them since they
contribute interesting concepts and serve as potential candidates for extension to the formalism. Note, that since
the domain is subject of intensive research, new ideas are often presented in in academic tools which oftentimes
remain proof-of-concept implementations and not advanced into mature, reliable software.

7.7.1 Tools for Petri net Modelling and Verification

Since the Petri net formalism is based on a graphical syntax, matching model editors, composers and visualisers
are an important important part of the Petri nets tool chain. Over the years, a lot of tools have been implemented
to perform these tasks, but only a few have survived long enough to be well-recognised by the Petri nets
community, or to be used in industry.

CPN Tools [206] (http://cpntools.org) is a tool for editing, simulating, and analysing high-level Petri
nets. It supports basic Petri nets, timed Petri nets and Coloured Petri nets. It features a graphical editor, a
simulator and includes a state space analysis component.

CPN-AMI [132] (http://move.lip6.fr/software/CPNAMI) is a formal modelling platform based on Petri
nets, more specifically targeting Symmetric nets. It provides a graphical user interface to create and edit models,
run tools built upon the platform and obtain their results. The CPN-AMI platform uses tools developed by
several research teams to perform structural and behavioural analysis of models.

The platform features software to graphically create Petri nets modularly or using a scripting interface.
Other tools allow to compute structural properties, such as bounds, invariants, syphons, traps, and liveness. The
platform is also able to generate the state space of a Petri net, and perform CTL and LTL verification using
various model checkers.

ITS-Tools ITS-TOOLS [267] (http://ddd.lip6.fr/) is a successor of CPN-AMI. It allows its users to
create models using a textual language or a graphical editor for Petri nets. This tool is able to perform behavioural
analysis (safety, CTL and LTL model checking) on models expressed in Place/Transition, Symmetric and Time
Petri nets, as well as some other formalisms.

AlPiNa & StrataGEM: Algebraic Data Types and Term Rewriting tools In recent years, the University
of Geneva’s SMV group has produced two tools for model checking and model editing: the Algebraic Petri Nets
Analyzer (AlpiNa) [56, 57, 151] and StrataGEM 4 [190, 39]. AlpiNa is a model checker dedicated to Algebraic
Petri Nets. StrataGEM marries the concepts of Term Rewriting to the efficiency of Decision Diagrams, in order
to perform efficient model checking. While AlPiNA is adapted to high-level specifications using Petri nets,
StrataGEM focuses on the low-level ones.

These two tools heavily rely on algebraic data types and term rewriting techniques to represent systems and
their semantics. They are able to compute large state spaces, and to evaluate reachability properties, as proven
in the Model Checking Contest [171].

SNAKES [230] (https://snakes.ibisc.univ-evry.fr) is a Python library that provides a framework to
define and execute many sorts of Coloured Petri nets. A key feature of SNAKES is the ability to use arbitrary
Python objects as tokens and standard Python expressions in many points, for instance in transitions guards or
arcs.

Renew: Renew [62] (http://www.renew.de) is a tool that supports the development and execution of
object-oriented Petri nets, a specific kind of Coloured Petri nets. Its main feature is its integration with the Java
programming language: Petri nets can be labelled by Java code, and thus call Java methods in transition guards
or on arcs.

Petri net kernel (ePNK): [164] (http://www.imm.dtu.dk/~ekki/projects/ePNK/) is a platform for
developing Petri net tools based on the PNML [147] transfer format. Its main idea is to support the definition of

4 https://github.com/mundacho/stratagem

http://cpntools.org
http://move.lip6.fr/software/CPNAMI
http://ddd.lip6.fr/
https://snakes.ibisc.univ-evry.fr
http://www.renew.de
http://www.imm.dtu.dk/~ekki/projects/ePNK/
https://github.com/mundacho/stratagem
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Petri net types, which can be easily integrated into the tool, and to provide a simple, generic graphical editor,
which can be used for graphically editing nets of any plugged in type.

Tina [29] (http://www.laas.fr/tina) The TIme Petri Net Analyser is a toolbox for the editing and analysis
of Petri nets, and Time Petri nets. It features a graphical editor, and a set of tools to perform structural analysis
(e.g. invariants), behavioural analysis (e.g. reachability and coverability graphs) and LTL model checking.

TAPAAL [157] (http://www.tapaal.net/) is a tool for themodelling, simulation and verification of Timed
Petri nets. It offers a graphical editor for drawing Petri nets, a simulator for experimenting with the designed nets,
and is able to check the bound of the model, and to verify properties expressed in a subset of CTL. TAPAAL
can translate its models to the format of the UPPAAL tool. In the same domain, Open-Kronos [298] uses the
Büchi automata approach to verify real-time systems.

The Petri nets repository [146] (http://pnrepository.lip6.fr) is a recently created repository of Petri
net models. It includes models imported from several sources, such as the Model Checking Contest [170, 169],
the former PetriWeb repository [127], and the Very Large Petri nets benchmark suite (http://cadp.inria.
fr/resources/vlpn/). Its main feature is that this repository provides access to models and corresponding,
computed properties through both, a web interface and an API.

Many other tools exist to perform model checking on systems specified with formalisms that are not Petri
nets, such as for instance automata or communicating processes. Among them, the following tools are worth
mentioning:

SPIN [149] (http://spinroot.com) is a software model checker that verifies specifications written in
PROMELA (PROcess MEta LAnguage), adapted to the representation of asynchronous distributed systems.
The tool uses the Büchi automata approach to verify LTL properties on the models.

SPOT [192] (https://spot.lrde.epita.fr) is a Büchi automata library rather than a full model checker.
It is intended to be coupled with an engine able to compute the transition relation of the system, in order
to build a LTL model-checker. This design allows it to be used with any kind of formalism. This library
implements great number of useful algorithms related to LTL model checking: LTL parsers, LTL formulae
syntactical simplification, translation to several flavours of Büchi automata, automata simplification, and of
course emptiness check algorithms for them. It is considered one of the best candidates for operational model
checking [245].

UPPAAL [27] (http://www.uppaal.com) UPPAAL is an integrated tool environment for modelling, simu-
lation and, verification of real-time embedded systems. Typical application areas of UPPAAL includes real-time
controllers and communication protocols in particular, those where timing aspects are critical.

SCADE [265] (http://www.esterel-technologies.com) is an industrial-grade environment for the de-
velopment of critical embedded systems. It is coupled with a model checker and used in industry in the domain
of synchronous systems.

Note that this list is non-exhaustive and the provision of a complete list is out of the scope of this chapter.
Its purpose is to provide a short overview over some of the more popular tools to help the decision of an
appropriate one. The choice of a tool should however depend on various criteria, such as the Petri net class (P/T
net, Coloured Petri nets, Timed Petri net), the type of properties that should be tested by the tool, the required
efficiency of the tool and the execution environment. We encourage the reader to consult other resources5 to
find additional guidance towards a better informed decision process.

7.7.2 Evaluation of Model Checking Techniques

The Petri nets community is eagerly hosting and participating in various model checking contests in order to
evaluate the various model checking techniques and tools and to discover approaches that might be particularly
well-suited for certain model classes and types. Some of the more prominent ones are following, but note that
this list is non-exhaustive.

The Hardware Model Checking Contest [34] was first held in 2007, and is now associated with the CAV
(Computer Aided Verification) and FLOC (Federated Logic Conference) conferences. It focuses on circuit
verification by means of model checking based on SAT-solvers. This event ranks the three best tools according
to a selected benchmark.

5 such as https://en.wikipedia.org/wiki/Model_checking
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The Verified Software Competition [165] takes place within the Verified Software: Theories, Tools and
Experiments (VSTTE) conference. This competition is a forum where researchers can demonstrate the strengths
of their tools through the resolution of five problems. Themain objective of this event is to evaluate the efficiency
of theorem proving tools against SAT-solving. Started in 2010, it has now become a yearly event.

The Competition on Software Verification [4] is an event associated with the conference on Tools and
Algorithms for theConstruction andAnalysis of Software (TACAS).Aimed at the verification of safety properties
of C programs, it has been held yearly since 2012.

The SatisfiabilityModulo Theories Competition [54] takes place within the context of the CAV conference.
Held yearly since 2005, its objective is to evaluate the decision procedures for checking the satisfiability of
logical formulas.

The SAT Competitions [159] proposes to evaluate the performance of SAT solvers. Initiated in 2002, it is
held every two years since 2007, and identifies new challenging benchmarks at each edition.

The Model Checking Contest [169] at the Petri Nets conference puts emphasis on the specification of
parallel and distributed systems, and their qualitative analysis.

The main problem of these contests is the difficult choice of comparison metrics. It is seemingly easy to
compare tools for a set of models. Drawing conclusions from the achieved tool results in order to compare of
model checking techniques is a much more complex endeavour, as each tool merges several techniques to be
efficient. Moreover, the efficiency of model checking techniques highly depends on each individual model’s
characteristics. For instance, partial order reductions are showing good results for highly parallel systems
with few synchronisations, but are less efficient when the degree of synchronisation increases. However, since
verification techniques are often combined with other ones, it is difficult to clearly attribute good performance
to an individual technique.

7.8 Summary

In this chapter we have shown a way to develop cyber-physical systems that include concurrent dimension. Our
proposal is to consider to model first our system as many entities cooperating. Each entities can be modelled
using the most convenient formalism to the problem that is considered. We propose for concurrent systems the
use of Petri nets. We explain the interest and capabilities of Petri nets for modelling complex systems in an
abstract way, i.e. by masking details that are not useful. Such modelling techniques hide concerns related to
distribution, naming, communication mechanism and representation of data structures. We provide also their
semantics through deduction systems in order to explain precisely all notions we are using such as states,
marking and state space. It must be noted that the key aspect of the semantics of Petri net is the potential
non-deterministic behaviours that we can exhibit from a model. The impact of this dimension is the potentially
very large number of states of a system.We then develop some formal ideas to analyse Petri nets such as marking
exploration and the use of invariants. While there is a complexity barrier for marking exploration, the use of
invariants need human intervention.

In the rest of the chapter we have been interested into the idea of managing complexity by applying the
divide to conquer principle. It means to consider separately the modelling and verification into small units. We
also promote by this model decomposition the possible integration of heterogeneous modelling which is very
important for the intrinsically heterogeneous cyber-physical systems.

The need for simulation of heterogeneous systems is also covered by our approach. It is based on the
construction of functional units (FMU) and their cooperation into a larger system by specific master algorithms.
Petri nets being a formalism often used to represent concurrent executions, defining its state as a set of markings
was discussed and formally presented, avoiding the violation of the FMI API determinism. Furthermore, the
API standard was extended with functions to add more observability and functionalities on the considered
PNFMU. This study showed that deadlocks can be detected when simulating a PNFMU with the standard API,
yet without being able to know the actual markings in which the Petri net is in a deadlock. Then, the composition
of PNFMUs was introduced, yet partially leaving out of the study time evolution and outputs/inputs adaptation.
Moreover, since the state of a PNFMU is now defined as a set of markings, a multi states relationship of the
composition between FMUs was presented.
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Fig. 7.15: The reachability graphs of the Petri net in Figure 7.1 with different initial markings. Note how the
smaller graphs can be found as subgraphs inside the larger ones. This is due to the monotony of Petri nets as
discussed above. Moreover, the node colour is representative of the number of tokens in place fuel, ranging
from 0 (lightest) to 3 (darkest).

7.9 Literature and Further Reading

For a deeper understanding of concurrency modelling and Petri nets, we refer the interested reader to the
following works. An excellent book by Reisig [239] is explaining fundamental analysis techniques for Petri nets.
Through well-chosen examples, it also shows how to model several well-known systems that can be useful for
beginners and newcomers to the domain of discrete dynamic system modelling and analysis. M. Diaz [85] also



7 Petri Nets: A Formal Language to Specify and Verify Concurrent Non-Deterministic Event Systems 207

provides a look at basic techniques for modelling with Petri nets. Several extensions of place transition nets are
explained and their practical use for concrete applications detailed. This book will probably be of more interest
for the curious Petri-netter who wants to dive into various modelling options such as stochastic Petri nets, Timed
Petri nets and their corresponding formal techniques.

Finally, [26] is a reference for people who are interested in exciting and practicable directions related to
performance modelling and cost estimations of system through quantitative methods. The authors presented
useful methods based on Markov chains and develop these techniques for the purpose of stochastic Petri net
analysis.

7.10 Self Assessment

1. What is a Petri net marking? What is the initial marking?
2. What is the difference between a reachability and a coverability graph?
3. Can you list some interesting properties of Petri nets related to states? And related to transitions?
4. What does monotony express in the Petri net context?
5. What are Petri net invariants? What purpose do invariants serve? Can you name the two types of invariants

and state their difference?
6. Can you name different types of High-level Petri nets and state their purpose? In these Petri nets, can you

say which of the transitions are live or not?
7. For these two Petri nets, can you say which transitions are live and which ones are not?

2

p1

p2t1 t2

2
2

p1

p2t1 t2

8. In these Petri nets, what are the bounded places. What are the place bounds of this Petri net?

p1

p2

p3

t1 t2

t3

9. Can you identify which of these transitions are live, and which ones are not?

p1 p2 p3
t1

t2

t3

p1 p2 p3
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t3

10. For which initial marking of P1 this Petri net has no dead state or has dead state?
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Chapter 8
AADL: A Language to Specify the Architecture of
Cyber-Physical Systems

Dominique Blouin and Etienne Borde

Abstract This chapter is devoted to formalisms for describing system architectures, and in particular to the
Architecture Analysis and Design Language (AADL). AADL is an Architecture Description Language (ADL)
well suited for the modelling of embedded and cyber-physical systems. The architecture is central in Multi-
Paradigm modelling for Cyber-Physical Systems as it provides a description of the overall system and the
environment into which it will operate. From such description, other models of other languages and formalisms
such as those described in this book can be generated and augmented to study other aspects of the system, which
is essential for its validation and verification. After a brief introduction to ADLs and their role in MPM4CPS,
the AADL will be presented and its use illustrated with the modelling, analysis and code generation for a simple
Lego Mindstorm robot for carrying objects in a warehouse. A simple top-down architecture-centric design
process will be followed starting from the capture of stakeholder goals and system requirements followed by
system design, design analysis and verification and finally automated code generation.

8.1 Learning Objectives

After reading this chapter, the reader should have sufficient knowledge of the family of AADL languages and
modelling approaches for:

• Modelling a simple cyber-physical system at the different levels of abstraction of requirements, functional
architecture, physical architecture, software architecture and deployment.

• Modelling reusable component libraries and product families.
• Understand basic timing and scheduling concepts and AADL properties for performing scheduling and
latency analysis from the aforementioned models.

• Understand basic code generation concepts and AADL properties for performing automatic code generation
with the RAMSES tool [235] from the aforementioned models.

8.2 Introduction

This chapter introduces Architecture Description Languages (ADLs) and in particular the SAE Architecture
Analysis & Design Language (AADL). We start by a short introduction on the problems of building nowadays
complex cyber-physical systems and explain the overall approach to solve these problems as promoted by the
AADL community, which is based on architecture-centric virtual integration.

We then move on to the introduction of AADL by a short overview of the language followed by a detailed
introduction of the language constructs and semantics. We have chosen to introduce AADL by presenting a
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typical development process so that it better illustrates how the language can be used. Therefore this process is
first introduced followed by the Lego Mindstorm line follower robot example that is used to illustrate AADL
modeling.We then present the detail modeling of the example for each step of the development process. Note that
we have chosen to introduce the language constructs in an incremental way, by only introducing the constructs
that are necessary for the modeling corresponding to the current step of the development process. In this manner,
the reader can immediately see how the constructs are used in the context of the development process.

We illustrate the modeling process by presenting successive refinement steps of the models down to automatic
code generation. Traceability links established between each step are also illustrated as well as basic analysis
capabilities of AADL on the models of the deployed system. In the end, C code is automatically generated that
can be compiled and deployed on the Lego robot for building a real working system.

8.2.1 Increasing Systems Complexity and Unaffordable Development Costs

The complexity of CPSs is constantly increasing due to the increasing number of functions that these systems
are required to perform, which often must include more and more intelligence and must be more and more
interconnected. In addition, these systems must satisfy an increasing number of constraints due to their operating
environments, which are often hostile and limited in resources. Therefore, these systems are becoming more
and more difficult to develop at affordable costs. This is particularly true for the avionics domain, for which
a measure of complexity can be obtained from the number of Software Lines of Code (SLOC) embedded in
aircrafts. This increase in complexity is illustrated in figure 8.1 where a plot of the number of onboard SLOCs
as a function of years for the most common aircrafts built by Airbus and Boeing since the 70’s is shown. For
each constructor, the slope of the curve indicates that the number of SLOCs has roughly doubled every four
years resulting in a non-linear increase in systems complexity.

The development effort required to develop these systems has been shown to increase exponentially with
the number of SLOC. For example, while the F35 military aircraft has approximately 175 times the number of
SLOC of the F16, it is estimated that it required 300 times the development effort of the F16 [253]. The result
of this, as shown in figure 8.1, is that we are no longer able to develop more complex aircrafts with traditional
development methods, since their development costs is not affordable. This is illustrated on the figure by the
dark blue line whose slope is pegged after roughly year 2010.

Fig. 8.1: The evolution of the number of SLOCs with time in commercial aircrafts (reproduced from [133])
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In order to understand how this limit is reached, let us consider the traditional V-cycle model (figure 8.2),
which is the most commonly used engineering process for safety-critical embedded systems. The numbers in
blue on the figure indicate the percentage of errors introduced at the various phases of the cycle using the
traditional development methods. As can be seen, a large majority of these errors (70%) are introduced at the
early phases (requirements engineering and design) of the cycle, while the majority of these errors are only
discovered much later at system integration and operation time. As a result, the cost of fixing these errors is
dramatically high, since they often require the upfront design to be modified and parts of the system to be
re-implemented. As a matter of fact, studies have shown for large projects that on one hand, rework due to
introduced errors may account for 60% to 80% of the total software development costs [133]. On the other hand,
the cost of software development, which could be as high as 70% in 2010 keeps increasing and could reach up
to 88% of the total system-development cost by 2024 [133]. These figures show the potential for achieving high
cost reductions by the discovery of flaws as early as possible during development.

Fig. 8.2: V-cycle development process model annotated with figures for introduced errors and costs to removed
them (reproduced from [101])

8.2.2 Mismatched Assumptions in Collaborative Engineering

But how are these errors leading to these rework costs are introduced? In order to understand this, let us consider
a number of well-known errors that led to important damages and costs.

Ariane 5 Rocket
In June 1996, the Ariane 5 rocket exploded during its inaugural flight less than 40 seconds after departure.

This was due to an integer overflow in the software used to control the side velocity of the rocket. That error
propagated to an error in the navigation system, which triggered self-destruction of the rocket to prevent ground
damages. This software bug cost 370 million dollars and is known to be the most expensive bug in history [10].

The integer overflow occurred because the software of Ariane 4, which had much smaller velocities, was
reused for Ariane 5. It was forgotten that this software was working under the assumption of a maximum velocity
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that could be represented in software. Such assumption was no longer matched by Ariane 5, which had much
greater velocities.

iTunes
When dual core processors were first used in computers, the iTunes software was crashing randomly when

ripping music CDs [156]. The software was multi-threaded with one thread determining the sound level of
tracks while a second one was converting the audio data. A single core processor would always sequentially
execute the first task and then the second one. On a dual core, the two concurrently executing threads were
attempting to update the same music data without proper synchronization.

In this case, the software was implicitly assuming sequential execution of tasks, which assumption was no
longer matched by dual core processors.

Airbus 380 Cables
When the first Airbus 380 aircraft was assembled in Toulouse in France, the wires and their harnesses turned

out to be a few centimeters too short for the cabin, which led to several billions of extra costs [5].
The problem was traced to the fact that different design teams had used different versions of a Computer

Aided Design (CAD) tool to create the drawings. Version 5 of the tool was a rewrite of version 4 and the
calculations of bend radii for wires as they follow the air frame were inconsistent across the two versions. It
was eventually realized that the issue was pervasive throughout the design. Again, this issue can be traced to
different assumptions on the way calculations of wire bending are performed between different teams using
different tools.

These few examples show that an important source of errors is due to assumptions a system or component
makes for proper operation not being matched by the environment in which it is used. This points out the need
for improved system integration performed early for ensuring consistency of the overall system is preserved
during the constantly evolving collaborative designs.

8.2.3 System Architecture Virtual Integration: Integrate, Analyze then Build

A solution to thismismatch assumptions problem is promoted by SystemArchitecture-centric Virtual Integration
(SAVI), which makes use of models of the systems that can be virtually integrated and analyzed for early fault
discovery before the system is physically built [253]. Such process is illustrated in figure 8.3 where the left side
of the well-known V-cycle development process is augmented with parallel left side validation activities making
use of models for the domains covered by the system at the appropriate levels of abstraction at each phase.

8.2.4 Architecture-Centric Authoritative Source of Truth

The aforementioned virtual integration process is supported by an architecture model playing the role of
Authoritative Source of Truth (ASoT) [253]. Themodel provides a global view of the system and its environment
and is a central place into which other models detailing the different parts of the system can be integrated. It
forms a reference model capturing all properties relevant for determining if the system meets its requirements.

Such ASoT model is depicted in figure 8.4. Other models for the various analyses required by the virtual
integration process may be generated from the architecture model. Properties such as safety, security, real-time
performances, resources consumption, etc. estimated from the analysis activities supporting virtual integration
are then used to determine if the system meets its requirements.

This architecture-centric approach therefore makes architecture models first class citizens in the development
of CPSs in order to support virtual integration activities, thus reinforcing the importance of ADLs, which is
the topic of this chapter. Such architecture-centric virtual integration process can actually lead to substantial
system development costs reduction as shown by a study on the Return of Investment (ROI) for the SAVI
Initiative [133]. According to this study, the cost reduction for a 27-MSLOC system can be as high as $2 billion
out of an estimated $9 billion total cost, which represents a cost saving of about 26% due to early correction of
requirements and design faults.
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Fig. 8.3: Traditional V-cycle development processmodel augmentedwith architecture-centric virtual integration
validation activities (reproduced from [205])

Fig. 8.4: Architecture-centric single source of truth modelling approach (reproduced from [98])

8.2.5 Organisation of the Chapter

The previous sections of this chapter illustrated the central role of ADLs for architecture-centric system archi-
tecture virtual integration in order to address the challenges of developing complex CPSs. Therefore, the rest of
this chapter introduces ADLs in greater details, and in particular AADL, which is an ADL well suited for the
modelling of both the cyber and physical parts of CPSs, and the deployment of the cyber part over the physical
execution platform part.

AADL will be introduced in a tutorial-like fashion by presenting the modelling of a simple robot CPS whose
purpose is to carry objects in a warehouse. This example is introduced in section 8.4. Even if the AADL language
itself does not impose any development process in particular, in order to better illustrate the use of AADL, the
aforementioned top down design V-cycle process model augmented with SAVI will be followed (figure 8.3),
starting from requirements modelling down to automated code generation from the software architecture model.
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For each step of this process, the required AADL constructs will be first introduced and their usage will then be
illustrated by modelling the corresponding part of the robot example system.

8.3 AADL Overview

The development of AADL dates back to 1999 when Bruce Lewis working for the US army started a committee
to make AADL an SAE standard. Initially standing for Avionics Architecture Description Language, AADL
was first developed as an ADL for the avionics domain. It was strongly inspired from another language called
MetaH and developed by Honeywell during a DARPA research project. Much of the syntax and the strongly
typed property of MetaH (and therefore of AADL) were borrowed from the Ada programming language, which
is dedicated to safety-critical embedded systems. As it was soon realized that AADL could be used for any
embedded system, it was renamed to Architecture Analysis and Design Language thus preserving the acronym.

As an SAE standard AS-5506, AADL is being developed by the AS2C subcommittee, which includes
participants from both academia and industry such as the Software Engineering Institute (SEI) of the Carnegie
Mellon university, ISAE,Kansas StateUniversity, theU.SArmy,NASA, the European SpaceAgency, INRIA, the
Russian Academy of Science, Adventium Labs, Ellidiss Technologies, the Aerospace Corporation, Honeywell,
Rockwell-Collins, Airbus industries, Boeing, Dassault Aviation, Toyota and Telecom ParisTech, which is the
institution of the authors of this chapter. The committee has also active collaborations with other research
initiatives and standardization bodies such as the aforementioned SAVI initiative, the ARINC653 working
group and The Open Group Real-time. Despite that the development of AADL was started long time ago, its
development is still an ongoing work, for which there has already been 2major releases while a third one (AADL
3) is in preparation at the time of writing.

A comparison of the capabilities of AADL with other well-known ADLs such as SysML, MARTE and UML
is depicted in figure 8.5, according to the intended use and domain covered by the languages. Both SysML,
which covers the domain of the physical world and UML, which covers the domain of software were developed
mostly for modelling with limited analysis capabilities, due to the weak semantics inherited from their high
level of genericity. Conversely, AADL and MARTE were given a stronger semantics due to their more specific
covered domain of embedded systems, with AADL performing better on the analysis domain due to its longer
history and better maturity1.

A few approaches have made use of UML and SysML for embedded systems modelling such as respectively
Papyrus UML-RT [227] and TTool [274]. However, the only way to make these languages useful for embedded
systems is to specialize them using the UML profile extension mechanism. We note however that while the
advantage of using UML profiles is that existing tools can be reused with the extended language, it has the
drawback of less flexibility in tailoring the language for the domain, including the introduction of accidental
complexity due to unnecessary features inherited from the generic language also visible from the extended
language. Such is also the case of MARTE, which while showing characteristics similar to those of AADL in
terms of intended use and domain suffers from its implementation as a UML profile. The fact that AADL was
directly implemented as a DSML avoids this accidental complexity and provides constructs better fitted for the
intended domain and use.

While the intended domain of AADL was originally avionics (it was initially named Avionics Architecture
Description Language) and soon extended to embedded systems, its version 2 is an adequate language to
also model CPSs. Version 2 added abstract components that can be used to model at the system level of
abstraction, with similar level of abstraction than SysML. It also introduced annexes for behavior and fault
tolerance modelling. In addition, the hardware modelling capability initially developed for embedded systems
in combination with the system and abstract components can be reused for modelling the physical parts of CPSs
(plant model), with a more appropriate coverage of the domain than what could be done with the too generic
SysML block concept. Finally, the software modelling and deployment capabilities of AADL make it an ideal
language for addressing the challenges due to the rapidly growing cyber part of CPSs [101].

There are 3 main tools for editing and analysing AADL models. The Eclipse-based Open Source AADL
Tool Environment (OSATE) [224], which is developed by the SEI at Carnegie Mellon University, is a reference
implementation as it is developed by the leading language architecture team. There is also another Eclipse-based

1 Note that this comparison taken from [3] is only illustrative and not very precise as one could argue that the UML should somehow
overlap with MARTE and AADL regarding the covered domains since all three languages cover parts of the software domain.
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Fig. 8.5: Comparison of well-known ADLs in terms of intended use and domains (reproduced from [3])

tool named MASIW [200], which is developed by the Russian academy of science and finally, commercial tools
such as STOOD and AADL Inspector developed by Ellidiss Technologies are also available [7].

8.4 CPS Running Example

The running example that will be used throughout the rest of this chapter consists of a robot system whose
purpose is to carry objects in a warehouse from one point to another. The robot shall follow a path indicated
by a line drawn on the floor of the warehouse. Several robots may be used in the warehouse and their paths
may cross each other. Therefore, the robot should be able to stop momentarily when an obstacle is detected on
the line and resume its trajectory once the obstacle is gone. The robot system should be able to carry objects
in a minimal amount of time, and the cost of manufacturing such robot should be as low as possible so that
the product has advantages over its competitors on the market. For illustration purposes, we will also add a few
performance requirements to illustrate the need to perform performances analyses such as timing and latency.

Due to its low cost thus making it easily available, the Lego Mindstorm robot [182] in its NXT version will
be used in a configuration as shown on figure 8.6, where two wheel assemblies are provided ¶ with a light
sensor for line following · and a sonar for obstacle detection ¸.

The robot will be running a simple line follower application described in [220] for following the edge of a
thick black line as illustrated in Figure 8.7. Since the light sensor has a given field of view, the observed light
intensity is inversely proportional to the part of the field of view of the sensor occupied by the black line. This
light intensity will be used to compute the turn angle of the robot.

The turn angle will be computed using a PID (Proportional Integral Derivative) control algorithm. Such
algorithm has the advantage of providing a much smoother line following behaviour compared to the two
simpler algorithms depicted in Figure 8.8, since the computed turn angle variable has a much finer grained
set of states (theoretically continuous) compared to the left (bang bang) and middle approaches where the turn
angle variable has respectively 2 (left or right) and 3 (left, straight or right) states.



216 Dominique Blouin and Etienne Borde

Fig. 8.6: The Lego NXT Mindstorm robot configured to execute a simple line following application with
obstacle avoidance

Fig. 8.7: Robot and light sensor following the edge of a line (reproduced from [208])

Fig. 8.8: Three ways of controlling the robot with the adopted PIDmethod on the RHS of the figure (reproduced
from [208])
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8.5 The Development Process

While AADL does not impose any specific development process, it is typical for safety-critical systems to
follow a V-cycle development process model augmented with architecture-centric system architecture virtual
integration as discussed earlier and illustrated in Figure 8.8. The modelling of the line follower robot CPS will
follow such process. Introducing AADL by following a development process allows to better illustrate how
AADL can be used and what can be achieved with it.

The architecture-centric virtual integration process is partially supported by the ALISA (Architecture-Led
Incremental System Assurance) set of notations and workbench. ALISA is an add-on to the AADL language
supported by the OSATE tool that will be used for this tutorial. It originated from the Requirements Definition
and Analysis Language [37, 236], which was originally planned to become a requirements annex for AADL.

ALISA augments AADL with a set of languages for the modelling of stakeholders, stakeholder goals,
system and software requirements, verification plans and verification methods, and assurance cases for the
incremental development of high-assurance systems. Similar to SysML, requirements can be modelled and
allocated to architecture elements responsible for verifying them. Requirements can be decomposed and refined
incrementally as the architectural design is refined and decisions are made. Complete modelling of assurance
cases with arguments and claims linked to requirements is supported making ALISA ideal for the certification
of safety-critical systems. Although a thorough description of ALISA is beyond the scope of this chapter, its
basic requirements modelling capability will be demonstrated with the running example of this chapter. For
instance, a few performance requirements will be captured and linked to the scheduling and latency analyses
performed on the running example.

RDAL, and consequently ALISA, were strongly inspired by another work that is worth mentioning in this
chapter. It consists of a set of 11 best practices described in theRequirement EngineeringManagementHandbook
(REMH) [184]. The REMHwas commanded to Rockwell Collins by the Federal Aviation Administration (FAA)
to survey requirements engineering practices in industry [183]. Following this survey, the authors recommended
11 practices for the requirements management of safety-critical systems based on lessons learned from the
Requirements Engineering (RE) research and results from the industry survey. The proposed practices can be
adopted piecemeal, with minimal disruption of an organizations development process to address the slow or
non-existent industry adoption of RE.

For this chapter, the left part of the V-cycle processmodel decomposed into steps inspired by the best practices
of the REMH will be used to illustrate the use of AADL. Such decomposition is depicted in figure 8.9, where
the boxes of the central column depicts the steps of the process, with their input and output models shown as
boxes respectively located on the left and right sides of the figure. The language used for the models is specified
following the “:“ symbol. The dashed borders indicate steps that are not covered in this chapter.

The process starts by capturing an overview of the system to be developed creatingmodels of the stakeholders,
goals and operational contexts for the system. Such models are then used to derive use cases scenarios for the
system, which together with the contexts and goals allow creating a functional architecture for the system. Then,
a physical plant model for executing the system functions is specified. Next, the software model is derived from
the functional model and deployed on the physical plant. From the deployed system model, analyses such as
scheduling and latency can be performed. The models may then be modified to meet performance requirements
and optimize non functional properties. Then, an operating system platform is selected to execute the software.
The models are then refined for the given operating system using the RAMSES tool [235]. This refined AADL
model can then be analysed again providingmore accurate results due to specifics of the execution platform taken
into account. Depending on the analyses results, the input models at any step of the process may be modified in
an iterative manner until the design meets the requirements. Then, code can be automatically generated using
RAMSES.

8.6 Modelling the Line Follower Robot with AADL

This section presents the modelling of the running example introduced in section 8.4 by following the develop-
ment process introduced in section 8.5. Note that for didactic purposes, we will not present the complete set of
models but only the parts relevant for the language concepts being taught. For more information, the reader can
view the complete set of models made available from [63].
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Fig. 8.9: The process for designing the CPS system (left side of the V-cycle of Figure 8.3) and the employed
notations

8.6.1 System Overview

The first step of the process consists of specifying the overview of the system to be developed. It includes
specifying why the system is needed by stating its purpose and goals, as well as how he system will interact with
its environment. Specifying the system and its environment provides a sound understanding of the boundary of
the system. Such boundary is defined by the set of monitored and controlled variables representing the precise
interaction of the system with its environment. Identifying a correct system boundary is difficult since one needs
to ensure that all interactions of the system with its environment on which proper system operation depends
have been considered, for all the operation modes of the system.

Stakeholders and their Organizations For the running example, let us assume that company Tartempion
Warehouse Equipment is developing our robot system introduced in section 8.4. Many stakeholders, each of
which having their own concerns about the system are involved in the development of the system. Example
stakeholders are the customers who will use the system, the designers of the system, the marketing in charge of
selling the system, etc.

Stakeholders and their development organisation can be captured with the organisation notation of ALISA.
An organisation has a name and can declare stakeholders. A stakeholder also has a name (that must be unique
within the containing organisation) and optional description, role, email, phone and supervisor stakeholder. An
organisation is declared in a separate file with the extension org.
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Running Example Specification

The specification of Tartempion Warehouse Equipment Ltd, which develops the line follower objects carrier
robot is shown in Listing 14.

organization Tartempion_Warehouse_Equipments_Ltd

stakeholder Customer [
description "The customer of the line follower robot system"

]

stakeholder Marketing [
description "The people in charge of marketing the line follower

robot system"
]

Listing 14: Stakeholders and their organizations

Stakeholder Goals
As stated in section 8.4, the purpose of the robot is to carry objects in the warehouse by following a

predefined trajectory. In addition, it must also be able to stop momentarily upon obstacles detection since other
robots working in the same warehouse may be crossing the followed line. Furthermore, the time taken to carry
objects should be as low as possible as well as the cost of producing the robot.

Constructs

Goals and requirements modelling is supported by the ReqSpec notation of ALISA. A stakeholder goal must
have a name and can have several optional attributes such as a title, a description, a category, a rationale, etc.
Providing rationale is of particular importance especially for non-trivial goals as it allows to quickly understand
why the goal exists. Furthermore, providing rationale avoids questioning the goal over and over again when new
people are introduced to the project.

Another important characteristic for goals is traceability to the system that should achieve them. This can
be represented in ReqSpec through the for construct, which must refer to an AADL classifier representing the
system to be built. AADL classifiers will be introduced in section 8.6.1.

Running Example Specification

A specification for the goals of our running example is shown in Listing 15. Goal G_Behav_1 is first defined,
which consists of carrying objects from one point to another by following a trajectory marked on the floor.
G_Behav_1 has Customer as stakeholder and has a Behaviour category since it relates to the functions of the
system we want to build. Note the rationale on G_Behav_2 that allows understanding why it exists. As will be
seen in section 8.6.4, these goals will be transformed into requirements verifiable by the system.

stakeholder goals Line_Follower_Robot_Behavior for
Line_Follower_Functions :: Cary_Object [

goal G_Behav_1 : "Objects_Transportation" [
description

"The robot should be able to carry an object between two
specified points by following a predefined trajectory
in the warehouse."

stakeholder Tartempion_Warehouse_Equipments_Ltd.Customer
rationale "This fulfills the main need of customers."
category Quality.Behavior

]
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goal G_Behav_2 : "Obstacle_Avoidance" [
description "The robot should be able to avoid obstacles along

the path."
stakeholder Tartempion_Warehouse_Equipments_Ltd.Customer
rationale

"There may be several robots working on the warehouses
and therefore , it is important to avoid damaging the
robots and the carried object"

category Quality.Behavior
]

]

Listing 15: Behavioural stakeholders goals

Listing 16 shows some performance goals for the system. As opposed to behaviour goals, performance goals
can be set with a level of achievement that can be useful when performing design optimisation. Such goals can
also be transformed into verifiable requirements that will set bounds on the level of achievement of the goals.

stakeholder goals Line_Follower_Robot_Perf for Line_Follower_Robot_Cps ::
Line_Follower_Robot_Cps [

goal G_Perf_1 : "Minimal Cost" [
description "The cost of producing the robot should be minimal."
stakeholder Tartempion_Warehouse_Equipments_Ltd.Customer

Tartempion_Warehouse_Equipments_Ltd.Marketing
rationale "The robot should be cheap so that it is easy to market

."
category Quality.Cost

]

goal G_Perf_2 : "Minimal_Transportation_Time" [
description "The time taken to carry objects should be minimal."
stakeholder Tartempion_Warehouse_Equipments_Ltd.Customer

Tartempion_Warehouse_Equipments_Ltd.Customer
rationale "The robot ."
category Quality.Performance

]
]

Listing 16: Quality stakeholders goals

The for elements of these goals refer the AADL classifier of the system that is being developed to meet the
goal. This is introduced in the following section that presents the modelling of the system, its environment and
its contexts of use with AADL.

System, Environment and Contexts of Use
Modelling not only the system but also its environment and their interactions is of primary importance. From

these interactions, a set of monitored and controlled variables can be identified. The purpose of the behavioural
requirements then consists of specifying the precise relationship between the monitored and controlled variables
for all contexts of use of the system and all possible values of the monitored variables.

It is rarely the case that there is only one context of use of a system. For instance, for our running example,
the robot carrying an object following a line can be thought of as the normal context of use of the system. But
other contexts may exist such as when the robot is under maintenance. Ideally, all contexts of operation of the
system should be identified and modelled but for our robot example, we will only present the normal context.
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Constructs

The system and its environment can be modelled with AADL using component types and their features,
component implementations and their subcomponents, component packages and component properties. Together
these constructs form the core of the AADL language.

Component Types and Features (Component Interfaces)

In AADL, a component type declaration is used to provide an interface specifying how a component can interact
with other components, without the need to provide details of the component’s internal composition. This is
achieved by declaring features, which are connecting points for connecting the component to other ones. A
feature can be typed by a component type declaration. Such typing is used to restrict the connection to other
features. A feature must have a direction that can be in, out or in and out. Feature directions also restrict how
components can be connected to each other.

Features can be of several kinds, but for modelling at the system level, we only introduce abstract and feature
group kinds of features for now. Other kinds of features specific to hardware and software components will be
introduced later as they are needed.

An abstract feature is a placeholder to be refined to a concrete feature and is to be used for incomplete
component type declarations.

A feature group is a special kind of feature used to group component features or other feature groups. It is
therefore a modelling facility to ease the connection of components with many features, since the connection
of a feature group represents the connections of all contained features. Feature group features are declared in a
feature group type used for compatibility verification.

Component Implementations (Internal Component Composition)

The internal composition of a component in terms of its subcomponents and their inter connections is specified
in AADL with component implementation declarations. A component implementation must have an associated
component type specifying the component’s interaction features as explained above. The advantage of separating
component type and implementation declarations is that several implementations can reuse the same type, similar
to interfaces of the Java programming language.

Component types and implementations are grouped under the name of component classifiers. Such classi-
fiers are used for typing subcomponents in a component implementation. Connections can be declared inside
component implementations to connect subcomponents between each other (or to the containing component),
according to the features declared in the subcomponent’s type.

Component Categories

Components classifiers are divided into 13 categories providing semantics for the domain of embedded systems.
These categories are divided into 3 root categories; composite, software and execution platform (hardware).

The composite category is subdivided into two sub-categories:

• Abstract: Abstract components are used to represent incomplete components for modelling at a high level
of abstraction, similar to SysML blocks, when no specific information is yet known about the kind of
component that is modelled. An abstract component implementation can contain subcomponents of any
category and can be contained by components of any category. Abstract components can be refined into any
of the other AADL concrete component categories, which is useful as more information is known about the
system under design.

• System: A system represents an assembly of interacting components. A system can have several modes,
each representing a possibly different configuration of components and their connectivity contained in the
system.

Each component category has its own rule specifying which categories of subcomponents can be contained in
a component implementation. This will be detailed along with the software and execution platform component
categories later as we refine the design of the line follower robot example system.
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Component Extension and Refinement

Similar to object oriented programming languages, AADL component types and implementations (classifiers)
can be extended thus inheriting the features / subcomponents and connections of the extended component. New
features / subcomponents and connections can be added to the extending classifier to provide more details. In
addition, the type of the inherited features and subcomponents can be refined, according to a compatibility rule
chosen by the modeller among a set of predefined compatibility rules.

Packages (Organisation of Component Declarations)

Component declarations are contained in packages, which can have public and private sections. Package can
use declarations from other packages provided that they are imported into the using package.

Properties

Finally, AADL provides a rich sublanguage for modelling properties. A specificity of AADL is that property
types are defined at the model level and not in the AADL metamodel. This allows users to define their own
properties. The AADL standard however defines a set of predefined properties for most common analyses such
as timing, scheduling and resource consumption. This avoids everyone defining its own set of properties and
contributes to interoperability of the specifications.

A property must have a type (integer, real, range of integer or real values, enumeration, reference, etc.) and
optionally a unit type, which can also be defined by users. A property also has an applicability clause restricting
the component category or classifier to which property values can be set.

Properties can be set at various places in an AADL specification (e.g.: on a component classifier, a feature, a
subcomponent, a connection, etc.). Because component classifiers can be extended, a complex search algorithm
must be decided to determine property values. Such algorithm is illustrated in figure 8.10. For example, to
determine the value of a property of a subcomponent, the algorithm first search if a value is set on the
subcomponent itself (#1). If not, it then searches for a value on its implementation (#2). If no value is found,
the extended implementation if it exists is searched (#3). If no value is found, then the component type of the
subcomponent is searched for (#4), followed by its extended component if any (#5). If still no value has been
found, a value may be searched on the containing component itself (#6), provided that the property type is
declared as “inherit”, meaning its value can be inherited by the contained subcomponents. Finally, a property
type may be set with a default value, which will then be used if no value has been found by the previous searches.

Fig. 8.10: Property value determination (reproduced from [247])

Properties and units are declared in property sets, which similar to component packages can be imported to
be used by other declarations.

Running Example Specification

The previously introduced core AADL concepts will be understood better by using them to model our system
overview, which consists of the system, its environment and its contexts of operation. This will complete the
modelling of the system overview step as depicted in the process model of figure 8.9.
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We propose a modelling approach for which separate AADL packages stored in different files will be created
for the warehouse, the robot physical system, the system functions, the software application and finally the
integrated line follower robot CPS. In doing so, AADL component libraries are created independently and
become reusable over several projects.

Warehouse

The AADL package declaration for the warehouse is given in Listing 17. The package declares a public section
into which two abstract component types are created for the floor and the warehouse. These components of the
environment are modelled with the abstract component category, since at this modelling step, it is not meant to
know more about these components other than their interaction points. One could also think of using the system
category instead of abstract. However, the abstract category is preferred since the AADL system category has
the more precise semantics of embedded systems.

An abstract component implementation is declared for the warehouse (line 16), whose name is prefixed
(before the dot) by the associated component type (Warehouse). It declares a subcomponent for the floor typed
by the previously defined Floor component type. Note that no component implementation is provided for the
floor since its internal composition is of no interest for this modelling. Only the interaction points, which
are provided by component types as features are needed in order to model how the system interacts with its
environment.

package Warehouse
public

with Physics;

abstract Floor extends Physics :: Reflecting_Object
features

applied_force: in feature Physics :: Force;
reacted_force: out feature Physics :: Force;

end Floor;

abstract Warehouse
features

light_source: feature Physics :: Light;
end Warehouse;

abstract implementation Warehouse.basic
subcomponents

floor: abstract Floor;
end Warehouse.basic;

end Warehouse;

Listing 17: Warehouse AADL package

The component type for the warehouse declares a light_source abstract feature (line 13 of Listing 17)
representing the light emitted by the warehouse lightening system. The feature is typed by a Light abstract
component type representing the light physical electromagnetic radiation. This component type is declared in a
reusable Physics package shown in Listing 18. The Physics package is made available to the Warehouse package
by adding a with clause for the package (line 3 of Listing 17) and by prefixing the imported types by the name
of the package that declares them followed by the :: delimiter symbol (line 7 of Listing 17).

package Physics
public

abstract Reflecting_Object
features

light_in: in feature Light;
light_reflected: out feature Light;
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sound_in: in feature Sound;
sound_reflected: out feature Sound;

end Reflecting_Object;

abstract Light
end Light;

abstract Sound
end Sound;

abstract Force
end Force;

abstract Power
end Power;

abstract Power_Consuming_Object
features

power_in: requires bus access Power_Bus;
properties

Classifier_Substitution_Rule => Type_Extension;
end Power_Consuming_Object;

bus Power_Bus
end Power_Bus;

end Physics;

Listing 18: Physics AADL package

Both the line and the floor component types extend a Reflecting_Object component type provided by the
Physics package of Listing 18. Since the line follower robot is going to observe the reflected light to follow the
trace, the component type provides abstract features for modelling this interaction of the robot with both the
floor and the line components. Since a sonar device will also be used by the robot to detect obstacles, features
for the reflected sound are also added to the Reflecting_Object abstract component type. A Sound abstract
component type is declared to model the sound physical vibration and used to type these features. Similarly, the
floor component type declares features of the Force physics type in order to model its interaction with the robot
for propulsion.

Robot CPS

Now that classifiers have been declared for the environment of the system (warehouse and the floor), component
types are required for the line to follow and for the robot CPS itself. A new package is created for this as shown
in Listing 19. Note that here the system category is intentionally used for the CPS (line 8) and not the abstract
one, which was used for components of the environment previously modelled. This is because we want to use
the semantics of the AADL system category, since our robot is made of software and hardware components.

package Line_Follower_Robot_Cps
public

with Line_Follower_Software , Robots_Library , Warehouse , Physics ,
Physics_Properties;

abstract Line extends Physics :: Reflecting_Object
end Line;

system Line_Follower_Robot_Cps
features
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light_sensor_in: in feature Physics :: Light;
sonar_in: in feature Physics :: Sound;
sonar_out: out feature Physics :: Sound;
force_left_wheel: out feature Physics :: Force;
force_right_wheel: out feature Physics :: Force;
force_gripper: out feature Physics :: Force;

end Line_Follower_Robot_Cps;

Listing 19: Libe follower CPS AADL package

The Line_Follower_Robot_Cps system type declares features for its interaction with its environment such
as the light_sensor_in, the sonar_in and sonar_out, the force_left_wheel and the force_right_wheel and the
force_gripper, which represents the force on the object held by the gripper of the robot. Note that a single
bi-directional feature could have been used to represent the pair of sonar_in and sonar_out features. However
using separate features allows better distinguishing the monitored and controlled variables of the system.

System Context of Operation

After having provided component classifiers for the system and for its environment, those can be instantiated as
subcomponents of an enclosing component implementation for the Warehouse. This is for modelling the system
and its environment. This is shown in Listing 20 where a component type is created for the warehouse of the
robot extending the generic warehouse (line 1).

abstract Warehouse_Robots extends Warehouse :: Warehouse
properties

Physics_Properties :: Illuminance => 150.0 lx applies to
light_source;

end Warehouse_Robots;

abstract implementation Warehouse_Robots.normal extends Warehouse ::
Warehouse.basic
subcomponents

line: abstract Line;
line_follower_robot: system Line_Follower_Robot_Cps;
obstacle: abstract Physics :: Reflecting_Object;

connections
floor_robot_light_sensor_in: feature floor.light_reflected ->

line_follower_robot.light_sensor_in;
line_robot_light_sensor_in: feature line.light_reflected ->

line_follower_robot.light_sensor_in;
obstacle_robot_sonar_in: feature obstacle.sound_reflected ->

line_follower_robot.sonar_in;
robot_sonar_out_obstacle: feature line_follower_robot.sonar_out

-> obstacle.sound_in;
force_left_wheel_floor: feature line_follower_robot.

force_left_wheel -> floor.applied_force;
force_right_wheel_floor: feature line_follower_robot.

force_right_wheel -> floor.applied_force;
light_source_line: feature light_source -> line.light_in;
light_source_floor: feature light_source -> floor.light_in;
Warehouse_Robots_normal_new_connection: feature light_source ->

obstacle.light_in;
properties

Physics_Properties :: Curvature_Radius => 99.0 mm applies to line;
end Warehouse_Robots.normal;

Listing 20: Normal context of operation of the robot CPS
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A property value is set to characterise the illuminance of the light source in lx units (line 3). The property
is declared to apply to the light_source feature inherited from the extended Warehouse classifier. An abstract
component implementation (line 6) is created for modelling the normal context of use of the robot CPS, that is
when it is carrying an object. It extends the generic warehouse component containing the floor subcomponent
by adding other subcomponents for the line to follow, the robot CPS and an obstacle object.

One problem that is faced with the textual representation of Listing 20 is the difficulty of perceiving how
subcomponents interact with each other. One advantage of AADL is that it proposes two notations; a textual
and a graphical one. Therefore, users can choose the notation that is most appropriate depending on what is
being viewed. Only the textual notation has been used so far, which was appropriate to display component
types. However for component implementations containing connected subcomponents, the graphical notation is
more appropriate. Therefore, a diagram of the AADL graphical notation is shown in figure 8.11 for the normal
operation of the robot CPS. This diagram is obviously much easier to read than the code of Listing 20. However,
the diagram does not show all information. For instance, the illuminance property of the warehouse is not visible
on the diagram. The diagram is just a view while the textual always contain all information of the model.

Fig. 8.11: The normal context of operation of the robot CPS displayed using the AADL graphical notation

In order to better interpret the diagram, figure 8.12 summarises the AADL graphical notation for component
categories. Systems are represented as rounded box while abstract components as dashed rectangles. Abstract
features are represented by the symbol “>” with a dot inside and connections as lines with arrows indicating the
direction of the represented flow.

The diagram of figure 8.11 can be called a context diagram as it describes the context of operation of the
system and clearly distinguishes it from its environment. This distinction is achieved by the different graphical
representations of system and abstract components, which further justifies the choice of modelling the system
to be built with the system category as opposed to abstract for the other entities of the environment.

The diagram also shows how the robot system contained in the warehouse interacts with its environment,
represented by abstract features and connections for sensing the obstacle through the sonar, and the floor and
line to follow through the light sensor. The interactions of the wheels with the floor for propulsion are also
represented. From this context diagram, the system boundary is precisely identified for the given context as
being the set of monitored (in) and controlled (out) features of the robot system that are connected to entities of
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the environment. Also note that for this context of operation, the force_gripper feature is not connected as it is
assumed that the carried object is contained by the robot system and is therefore not part of the environment. For
a different context for which the robot is picking the object, that object would then be part of the environment
as it would not yet have been picked by the robot but would be interacting with the robot’s gripper actuator. In
this context, the force_gripper feature would then be connected to the object to be carried.

Fig. 8.12: The AADL graphical notation for component categories

When developing a system, it is often challenging to be aware of all the interactions the system may have
with its environment. One must not forget interactions that must be taken into account for safe operation of the
system in the given context and decide which ones can be neglected. A context diagram can help identifying
the neglected interactions by searching for features of the system and components of its environment of the
same type that are not connected, thus indicating a neglected interaction. For instance, such is the case of
the light_reflected and light_sensor_in features of the obstacle and the robot CPS, which remain unconnected.
Although the obstacle actually does reflect the light from the warehouse, its interaction with the light sensor of
the robot is neglected, as the light sensor will be close enough to the line and not be influenced by this light.
Such neglecting can also be modelled as a verifiable environmental assumption constraining the environment
of the system. Environmental assumptions modelling will be presented in section 8.6.3.

Note that only the line following normal context of operation is presented here. Another context could
be modeled for when the robot is under maintenance. This context would be modeled as another abstract
component implementation for the same warehouse component type, where only the interacting subcomponents
and connections for the context would be instantiated.

8.6.2 Operational Concepts

The next step in the modelling process of figure 8.9 consists of developing scenarios that describe how the
system will be used in the contexts provided by the system overview. Use cases are a good way to do this.
Several languages exist for use case modelling. The Use Case Maps sublanguage of the User Requirements
Notation [155] and its Eclipse-based tool jUCMNav [1] are well suited for this, since the modeled use cases
and scenarios can be simulated for their validation. This turned out to be extremely useful in the modelling of
the isolette thermostat example provided by the REMH [184] as several errors were discovered in the natural
language use cases. However, presenting use case modelling is beyond the scope of this chapter and the reader
can refer to [38, 37] for more information.

8.6.3 Environmental Assumptions

The introduction of this chapter on AADL pointed out how well known design faults leading to catastrophic
errors such as the Ariane 5 bug were due to mismatched assumptions between a system and its environment.
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Therefore, identifying the environmental assumptions on which a system depends for correct operation is
essential for reusing the system in different contexts and avoiding misuse of the system.

Assumptions can specify conditions that must be met by one or several entities of the environment of the
system for proper operation. They can also constrain the types, ranges, and units of the monitored and controlled
variables of the system.

Let us assume that the robot CPS is using a simple passive light sensor, which measures the light reflected by
the line and the floor in its field of view. An obvious environmental assumption is that a minimum quantity of
light is emitted by the light source of the warehouse. This is essential for proper operation of the line following
robot otherwise it cannot see the line to follow.

Another example assumption, would be to impose a limit on the curvature radius of the line to follow, since
there is a limit on the steering capability of the robot given its speed and the carried mass. A limit on the mass
of the carried object would also be a reasonable assumption.

Constructs
Environmental assumptions are modelled using the ReqSpec notation as system requirements, but however

assigned to elements of the environment and not to the system itself. Similar to goals, system requirements can
have a description, a rationale, a category, etc. Furthermore, a requirement can also be traced to a goal that it
transforms into a verifiable requirement using the keyword see.

Requirements must be verifiable by the entities they constrain. In order to achieve this, they can be set with
a predicate expression or a verification activity that can be registered in the workbench and referred by the
requirement. A predicate expression can for instance compare the value of properties on the architecture model
with bounds set for those values and captured in the requirements set.

Running Example Specification
Listing 21 shows the modelling of environmental assumptions for the robot carrier CPS with the ReqSpec

notation. A system requirements specification named Line_Follower_Robot_Env_Assumptions is created and
assigned via the for keyword to the Warehouse_Robot.normal system implementation representing the normal
context of operation of the robot (see figure 8.11). Both assumptions are captured as system requirements but
constraining the light_source and the line subcomponents of the warehouse as defined by the for keyword (lines
3 and 11). Such assumptions are set with the Kind.Assumption category to further distinguish them from the
system’s requirements.

system requirements Line_Follower_Robot_Env_Assumptions for
Line_Follower_Robot_Cps :: Warehouse_Robots.normal [

requirement EA_1: "Minimum Warehouse Luminosity" for light_source [
description "The power of the light source shall not be less than

the Minimum Illuminance value"
rationale "Otherwise the light sensor of the robot will not be

able to give proper readings given its sensitivity and its
calibration that was performed under these conditions of
minimum lightening. Study my_study has shown that the value of
100 lux is a lower bound for warehouses illuminance"

category Kind.Assumption
val Minimum_Illuminance = 100.0 lx
value predicate #Physics_Properties :: Illuminance >=

Minimum_Illuminance
]

requirement EA_2: "Minimum Curvature Radius" for line [
description "The curvature radius of the line to be followed by

the robot shall not be lower than the specified
Minimum_Curvature_Radius value"

rationale "Otherwise the robot given its speed , mass and response
time will not be able to follow the line."

category Kind.Assumption
val Minimum_Curvature_Radius = 100.0 mm
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value predicate #Physics_Properties :: Curvature_Radius >=
Minimum_Curvature_Radius

]
]

Listing 21: Environmental assumptions for the robot CPS

Value predicates are set to the assumptions for their automated verification. For example, the predicate of
EA_1 (line 8) compares the value of the Illuminance property of the light_source feature of the warehouse to a
minimum value of 100.0 lx declared in the requirement (line 7).

Note that if an entity constrained by the assumption were to be developed by another organisation, then the
organisation would provide an extension of the abstract component representing the entity and the assumption
would then be converted to an equivalent requirement for the entity.

8.6.4 Functional Architecture

The next step of the followed development process is to develop the functional architecture. This step assumes
that the operational concepts have been developed as mentioned in section 8.6.2 through use case modelling.
Developing the functional architecture then consists of providing a first set of system functions identified from
the use cases scenarios.

Following the architecture-led ALISA approach, high level requirements are first modeled for the system
functions. Then, their corresponding architecture model elements are specified. Finally, the requirements are
assigned to these architecture elements. This is an iterative process where design decisions are taken on the
decomposition of the architecture of the system into subcomponents and the initial high level requirements are
decomposed accordingly.

System Requirements

Constructs

Like for assumptions, requirements are modelled with the ReqSpec notation. Requirements modelling has
already been introduced during the modelling of environmental assumptions. Additional properties needed for
this modelling are presented below:

• decomposes: refers to one or more requirements that this requirement decomposes or is derived from. The
decomposing requirement is assigned to an architecture component contained in a component to which the
decomposed requirement is assigned to.

• see goal: refers to one or more stakeholder goals that the requirement represents, typically when the referred
goal is transformed into this verifiable requirement.

Running Example Specification

The high level stakeholder goals of Listing 15 transformed into verifiable requirements are shown as requirements
R_Behav_1 and R_Behav_2 of Listing 22. The see goal clause of line 6 refers to the stakeholder goals of
Listing 15.

system requirements Line_Follower_Robot_Behavior for
Line_Follower_Functions :: Cary_Object.basic [

requirement R_Behav_1 : "Carry_Object_Function" [
description

"The robot shall carry an object between two specified
points by following a predefined trajectory in the
warehouse."
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see goal Line_Follower_Robot_Behavior.G_Behav_1
category Quality.Behavior

]

requirement R_Behav_1_1 : "Pick_Up_Object_Function" for
pick_up_object [
description "At the beginning of the path , the robot shall

pick up an object on the floor."
category Quality.Behavior
decomposes R_Behav_1

]

requirement R_Behav_1_2 : "Follow_Line_Function" for follow_line
[
description "The robot shall follow a line on the floor of

the warehouse."
category Quality.Behavior
decomposes R_Behav_1

]

requirement R_Behav_1_3 : "Drop_Off_Object_Function" for
drop_off_object [
description "At the end of the path , the robot shall drop off

the carried object on the floor."
category Quality.Behavior
decomposes R_Behav_1

]

requirement R_Behav_2 : "Avoid_Obstacles_Function" for
detect_obstacle [
description

"The robot shall avoid colliding with obstacles along the
path."

see goal Line_Follower_Robot_Behavior.G_Behav_2
category Quality.Behavior

]
]

Listing 22: High level system requirements

Those two high level requirements are further decomposed into sub-requirements that each must be verified
for the high level requirement to be verified. For instance, R_Behav_1 is decomposed into R_Behav_1_1,
R_Behav_1_2 and R_Behav_1_3 (Listing 22), which state that carrying an object between two points is achieved
by picking up the object, moving it along a path and dropping it at destination. This is specified by the decomposes
keyword referring to the decomposed requirement.

Architecture
Following the architecture-lead modelling approach, the system functions must be represented in the system

architecture. This is performed again using the abstract component category, which was also used for modelling
the components of the environment. Since the abstract category has already been introduced for modelling the
system in its environment, we can proceed directly to the running example specification below.

Running Example Specification

System functions are shown in Listing 23.An abstract component type is first declared for theCarry_Object func-
tion, and a following implementation defines subcomponents for thepick_up_object, follow_line,drop_off_object
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and detect_obstacles sub-functions. Abstract component types are declared for each of these sub-functions with
their features representing function variables. An abstract component is declared for the type of a robot state
variable determining if an obstacle has been detected. The detect_obstacles function will output such variable
and pass it to the follow_line function that will stop the robot in case an obstacle is detected. This is declared by
the connection of line 15 in Listing 23.

package Line_Follower_Functions
public

with Physics;

abstract Cary_Object
end Cary_Object;

abstract implementation Cary_Object.basic
subcomponents

pick_up_object : abstract Pick_Up_Object.basic;
follow_line: abstract Follow_Line.basic;
drop_off_object: abstract Drop_Off_Object.basic;
detect_obstacle: abstract Detect_Obstacle;

connections
obstacle_detection_state: feature detect_obstacle.state ->

follow_line.state;
end Cary_Object.basic;

Listing 23: High level architecture system functions

Now that a component type has been provided for the global carry object system function, the stakeholder
goals of Listing 15 can be assigned to this component with the for clause of the goals package. Note that the
component type is used for the assignment instead of the component implementation because of the visibility
of requirements and goals in ALISA. Similar to property visibility (see section 8.6.1), a goal assigned to a
component type is automatically assigned to all implementations and subcomponents of the type and to the
extending classifiers and their subcomponents, and so on.

Similarly, the top level requirements created from the goals are assigned to theCarry_Object.basic component
implementation (Listing 22) and each decomposing requirement is assigned to the corresponding subcomponent
decomposing the main component.

Decomposing the Follow Line Function

As an example of further requirements and architecture decomposition, the abstract component of the follow_line
function of Listing 23 is detailed in Listing 24. The Follow_Line component type declares an input feature for
the light intensity and output features for the left and right wheel power. Such features are typed by the abstract
component types of the Physics package (Listing 18). A data access to a robot state internal variable is further
added. This variable will be set by the obstacle detection subprogram to stop the robot when an obstacle is
detected.

abstract Follow_Line
features

light_intensity: in feature Physics :: Light;
left_motor_power: out feature Physics :: Power;
right_motor_power: out feature Physics :: Power;
state: feature Robot_State;

end Follow_Line;

Listing 24: Follow Line architecture system functions

The line following sub function is further decomposed into two sub functions as illustrated by the the Fol-
low_Line.basic component implementation shown in Listing 25, and by its corresponding diagram of figure 8.13.
The implementation specifies subcomponents for two functions for computing the turn angle of the robot as a
function of the measured light intensity and to compute the wheels motor power from the desired angle.
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abstract implementation Follow_Line.basic
subcomponents

compute_turn_angle: abstract Compute_Turn_Angle.pid;
compute_wheels_motors_power: abstract Compute_Wheels_Motors_Power

.basic;
connections

light_intensity_compute_turn_angle: feature light_intensity ->
compute_turn_angle.light_intensity;

turn_angle_compute_wheels_power: feature compute_turn_angle.
turn_angle -> compute_wheels_motors_power.turn_angle;

compute_wheels_motors_power_left_motor_power: feature
compute_wheels_motors_power.left_motor_power ->
left_motor_power;

compute_wheels_motors_power_right_motor_power: feature
compute_wheels_motors_power.right_motor_power ->
right_motor_power;

state_compute_wheels_motors_power: feature state ->
compute_wheels_motors_power.state;

end Follow_Line.basic;

Listing 25: Line following architecture system function implementation

Fig. 8.13: The decomposition of the line following function into sub functions

Feature connections connect the subcomponent functions to the features of the enclosing component and the
features between each contained subcomponent. The graphical representation of figure 8.13 clearly illustrates
the dependency between the two sub functions, which is a practice recommended by the REMH.

On the requirements side, a new requirements set is created for the Follow_Line.basic component imple-
mentation as shown in Listing 26. It contains requirements decomposing R_Behav_1_2 into requirements
R_Behav_1_2_1, R_Behav_1_2_2 and R_Behav_1_2_3. These requirements require setting the values of the
turn angle internal variable and the left and right wheel power controlled variables. These requirements are allo-
cated via their for clauses to the compute_turn_angle and the compute_wheels_motors_power subcomponents
having the aforementioned variables as output features.

system requirements Follower_Line_Behavior for Line_Follower_Functions ::
Follow_Line.basic [

requirement R_Behav_1_2_1 : "Set_Turn_Angle_Function" for
compute_turn_angle [
description "The controller shall set the value of the turn angle

variable."
category Quality.Behavior
decomposes Line_Follower_Robot_Behavior.R_Behav_1_2

]
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requirement R_Behav_1_2_2 : "Set_Left_Wheel_Power_Function" for
compute_wheels_motors_power [
description "The left wheel controller shall set the value of the

left wheel power variable."
category Quality.Behavior
decomposes Line_Follower_Robot_Behavior.R_Behav_1_2

]

requirement R_Behav_1_2_3 : "Set_Right_Wheel_Power_Function" for
compute_wheels_motors_power [
description "The right wheel controller shall set value of the

right wheel power variable."
category Quality.Behavior
decomposes Line_Follower_Robot_Behavior.R_Behav_1_2

]
]

Listing 26: Sub-requirements for the sub-functions of the line following system function

8.6.5 Physical Plant Model

A functional architecture model has been provided with associated requirements created from the original
stakeholder goals of the system overview. Such model remains quite abstract and needs to be refined by
providing a software model and an execution platform model for execution of the software. These models will
allow more accurate analyses and verification since many analyses strongly depend on the plant (hardware)
model providing execution resources for the system functions. Therefore, the next step is to provide a detailed
model of the robot hardware plant that will be considered to execute the system functions in order to meet the
system requirements.

In the following, the modelling of a simple Lego NXT Mindstorm robot is first introduced. A Lego robot
is a highly configurable system and the first step is to model a specific configuration suitable for achieving the
system goals. The modelling of this configuration will allow briefly introducing how component families can
be modelled in AADL, for which more information can be found in [99].

Constructs
The composite component categories, which consists of the system and abstract sub-categories have been

introduced in section 8.6.1 and were used to model the system overview. Abstract components were also used
to model a first set of system functions. The execution platform (hardware) component sub-categories are now
presented in order to use them to model the plant. They are decomposed into six sub-categories:

• Processor: A processor is an abstraction of hardware and software responsible for scheduling and executing
threads, as well as virtual processors representing processor partitions such as ARINC653. Processors may
contain memories to model a processor’s internal structure such as caches. A processor can access memories
and devices via bus access features.

• Virtual Processor: A virtual processor represents a logical resource that is capable of scheduling and
executing threads and other virtual processors bound to it. Such component is useful to model partitioned
processors such as ARINC653 for integrated modular avionics. Virtual processors can be declared as
subcomponents of a processor or of another virtual processor. They are implicitly bound to the processor
or virtual processor that contains them. They can also be used to represent hierarchical schedulers.

• Memory: A memory is a component for storing code and data. Memories can represent randomly accessible
physical storage such as RAM, ROM, or more permanent storage such as disks or logical storage. Subpro-
grams, data and processes are bound to memory components for being accessed by processors executing
threads.

• Bus: A bus is a component that can exchange control and data between memories, processors and devices.
It is an abstraction of a communication channel and associated communication protocols. Communication
protocols can also be explicitly modelled with virtual buses.
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• Virtual Bus: A virtual bus is a logical bus abstraction such as a virtual channel or communication protocol.
• Device: A device is a dedicated hardware performing built-in function(s) and acting as an interface to the
physical world of CPSs. Devices can be used for both hardware and software parts of systems. Hardware
sensors and actuators are modelled as devices, which can physically be connected to processors via buses.
For software, devices can be logically connected to application software components thus representing the
software part of corresponding hardware devices, such as drivers residing in a memory and executed on an
external processor.

Running Example Specification
The NXT Lego robot includes plastic blocks that can be assembled to create the robot physical structure.

It also includes two motors and wheels assemblies, a light sensor, a sonar sensor and a so-called brick. The
brick itself contains several components such as a battery, an ARM7 processor containing a RAM memory, a
Bluetooth module, input and output circuits, etc. An informal diagram of the NXT brick obtained from the NXT
hardware developer kit [2] is shown in figure 8.14.

Fig. 8.14: An informal diagram of the NXT brick (reproduced from [2])

In order to model these elements in AADL, a Robots_Library package (Listing 27) is first created to contain
classifiers for being instantiated to specify the configuration of the Lego NXT robot. A system type (line 5)
and a system implementation (line 10) are declared for the robot. At this level of abstraction, only a single
subcomponent for the brick is contained in the robot’s system implementation (line 12). This is because it can
be can assumed that any robot will always contain a brick while the presence of other components will depend
on the specific hardware configuration selected for the robot according to its mission.

System classifiers are then declared for the brick subcomponent (lines 15 and 20). For the purpose of this
chapter, only a simplified version of the brick will be modeled, which is sufficient for the analyses that will be
presented in this chapter. Such version is limited to the modelling of the processor, the power supply, the input
and output circuit and buses to connect these subcomponents.

The basic implementation of the generic brick is illustrated in line 20 of Listing 27 and in the diagram of
figure 8.15. Power consumption is a concern for robots as it determines their autonomy. Therefore, the electrical
power supply is modelled and represented as a device component connected to a power bus also connected to
the processor. Note that for this hardware model, bus access and bus access connections are used instead of
abstract features such as those of the system overview. Having explicit components for buses allows representing
concurrency on communication resources. In addition, logical connections modelled in the software application
can be mapped to hardware bus components to estimate resources consumption.
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package Robots_Library
public

with OSEK , Physics , Physics_Properties , SEI;

system Robot
properties

Classifier_Substitution_Rule => Type_Extension;
end Robot;

system implementation Robot.basic
subcomponents

brick: system Brick.basic;
end Robot.basic;

system Brick
properties

Classifier_Substitution_Rule => Type_Extension;
end Brick;

system implementation Brick.basic
subcomponents

main_processor: processor Generic_Processor;
power_supply: device Generic_Battery;
power_bus: bus Physics :: Power_Bus;

connections
power_supply_power_bus: bus access power_supply.power ->

power_bus;
power_bus_main_processor: bus access power_bus ->

main_processor.power_in;
end Brick.basic;

processor Generic_Processor extends Physics :: Power_Consuming_Object
features

data_bus: requires bus access Data_Bus;
end Generic_Processor;

bus Data_Bus
properties

Transmission_Time => [Fixed => 10 ns .. 100 ns; PerByte => 10
ns .. 40 ns;];

end Data_Bus;

device Generic_Battery
features

power: requires bus access Physics :: Power_Bus;
end Generic_Battery;

Listing 27: AADL package for a robot components library

This component for the brick is generic in the sense that it has nothing specific to the NXT version. In
order to capture these specificities, an extension of the brick system implementation is provided as illustrated
by Listing 28 and the corresponding diagram of figure 8.16. The system type Nxt_Brick extends the previously
defined Brick system type and adds bus access features (lines 3 to 9) for the brick to be connected to the sensors
and actuators of the robot. The corresponding implementation Nxt_Brick.basic (line 12) extends the Brick.basic
implementation and adds subcomponents specific to the NXT brick for the input and output circuits and a data
bus to connect them to the processor. The input and output circuits take data from the processor as input and
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Fig. 8.15: A basic system implementation for a brick of a Lego Mindstorm robot

read / send data accordingly to the connected sensors and actuators. Device component types are provided for
the input and output circuits (lines 40 and 49), which inherit their power_in bus access feature from the extended
Power_Consuming_Object provided by the Physics package.

system Nxt_Brick extends Brick
features

in_1: requires bus access Sensor_Bus;
in_2: requires bus access Sensor_Bus;
in_3: requires bus access Sensor_Bus;
in_4: requires bus access Sensor_Bus;
out_1: requires bus access Actuator_Bus;
out_2: requires bus access Actuator_Bus;
out_3: requires bus access Actuator_Bus;

end Nxt_Brick;

system implementation Nxt_Brick.basic extends Brick.basic
subcomponents

main_processor: refined to processor Arm_Processor.nxt;
input_circuit: device Input_Circuit;
output_circuit: device Output_Circuit;
data_bus: bus Data_Bus;

connections
brick_input_circuit_1: bus access in_1 -> input_circuit.in_1;
brick_input_circuit_2: bus access in_2 -> input_circuit.in_2;
brick_input_circuit_3: bus access in_3 -> input_circuit.in_3;
brick_input_circuit_4: bus access in_4 -> input_circuit.in_4;
brick_output_circuit_1: bus access output_circuit.out_1 -> out_1;
brick_output_circuit_2: bus access output_circuit.out_2 -> out_2;
brick_output_circuit_3: bus access output_circuit.out_3 -> out_3;
power_bus_input_circuit: bus access power_bus -> input_circuit.

power_in;
power_bus_output_circuit: bus access power_bus -> output_circuit.

power_in;
main_processor_data_bus: bus access main_processor.data_bus ->

data_bus;
data_bus_input_circuit: bus access data_bus -> input_circuit.

control;
data_bus_output_circuit: bus access data_bus -> output_circuit.

control;
properties
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SEI:: PowerCapacity => 9.0 W applies to power_supply; -- 6 AA
batteries in series at 1 A

Physics_Properties ::Mass => 200.0 g;
Scheduling_Protocol => (RMS) applies to main_processor;
OSEK:: SystemCounter_MaxAllowedValue => 2000 applies to

main_processor;
OSEK:: SystemCounter_TicksPerBase => 1 applies to main_processor;
OSEK:: SystemCounter_MinCycle => 1 applies to main_processor;

end Nxt_Brick.basic;

device Input_Circuit extends Physics :: Power_Consuming_Object
features

in_1: requires bus access Sensor_Bus;
in_2: requires bus access Sensor_Bus;
in_3: requires bus access Sensor_Bus;
in_4: requires bus access Sensor_Bus;
control: requires bus access Data_Bus;

end Input_Circuit;

device Output_Circuit extends Physics :: Power_Consuming_Object
features

out_1: requires bus access Actuator_Bus;
out_2: requires bus access Actuator_Bus;
out_3: requires bus access Actuator_Bus;
control: requires bus access Data_Bus;

end Output_Circuit;

Listing 28: NXT brick extension

The generic main_processor subcomponent of the extended generic brick system implementation is refined
to an ARM_Processor.nxt type as shown in Listing 28 (line 14). The type of this refined subcomponent is an
extension of the generic processor component type as shown in Listing 29 below (line 1). It contains a property
association setting the MIPS capacity of the processor (line 3). The processor implementation provides a RAM
memory subcomponent (line 8) with a memory capacity property value of 64 KByte (line 10) as given by the
Lego hardware specification of the NXT brick.

processor Arm_Processor extends Generic_Processor
properties

SEI:: MIPSCapacity => 43.2 MIPS;
end Arm_Processor;

processor implementation Arm_Processor.nxt
subcomponents

ram: memory RAM_Memory;
properties

SEI:: RAMCapacity => 64.0 KByte applies to ram;
end Arm_Processor.nxt;

memory RAM_Memory
features

data_bus: requires bus access Data_Bus;
end RAM_Memory;

Listing 29: ARM processor for the NXT brick extension

Such combination of classifier extensions and subcomponent and feature refinements is extremely useful
in modelling component families as further explained in [99]. In this modelling, two different ways are used
to provide the NXT-specific information. One of them is to add property associations within the extending
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Fig. 8.16: The internal composition of a NXT Lego Mindstrom brick

component implementation of the brick with values pertaining to this specific model, as shown for the power
capacity value set for the power supply subcomponent (line 32 of Listing 28).

The second way is to refine the classifier of a subcomponent as is done for the ARM processor extending the
generic processor. Having this new classifier then allows providing more details such as the internal composition
of the processor, which includes a RAMmemory subcomponent. MIPS and RAM capacity property values can
be declared in theses processor extensions (lines 3 and 10 of Listing 29). Deciding on which mechanism should
be used depends on the modelling context. For example, the advantage of creating such extension classifiers for
the processor is that they allow encapsulating the NXT specific information and makes it easy to reuse in other
specifications.

Now that component classifiers are provided for the brick, other classifiers must be declared for the sensors
and actuators of the robot. Those are presented in Listing 30 where classifiers of the device category are declared
for the light sensor, the sonar, the wheel assemblies and the gripper, which is used to lift the carried object. Note
that such gripper does not actually exist for the Mindstorm kit but is added for illustration purposes only. The
component types for the sensors and actuators declare interaction features whose types for the corresponding
physical resources are provided by the Physics package of Listing 18. They also declare bus access features
typed with classifiers for the sensor and actuator buses. Those will represent the standard RJ12 connectors
provided with the NXT kit. Note that no component implementation is provided for sensors and actuators since
their internal composition is irrelevant for this modelling.

device Light_Sensor extends Physics :: Power_Consuming_Object
features

light_in: in feature Physics :: Light;
light_data: requires bus access Sensor_Bus;

properties
Physics_Properties ::Mass => 20.0 g;

end Light_Sensor;

device Sonar extends Physics :: Power_Consuming_Object
features

sound_in: in feature Physics :: Sound;
sound_out: out feature Physics :: Sound;
sound_data: requires bus access Sensor_Bus;

properties
Physics_Properties ::Mass => 20.0 g;
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end Sonar;

device Wheel_Assembly extends Physics :: Power_Consuming_Object
features

power_in: refined to requires bus access Actuator_Bus;
force: out feature Physics :: Force;

properties
Physics_Properties ::Mass => 100.0 g;

end Wheel_Assembly;

device Gripper extends Physics :: Power_Consuming_Object
features

power_in: refined to requires bus access Actuator_Bus;
force: out feature Physics :: Force;

properties
Physics_Properties ::Mass => 20.0 g;

end Gripper;

Listing 30: Classifiers for robot sensors and actuators

Now that classifiers have been declared for all the components of the NXT Mindstorm robot kit, they can be
instantiated and assembled into a robot plant system configured for object transportation in the warehouse. This
is illustrated by Listing 31 and its corresponding diagram of figure 8.17. New Line_Follower_Robot classifiers
are provided extending the partially-configured basic robot classifiers previously defined, which only contains a
brick subcomponent (Listing 27 line 10). The extending Line_Follower_Robot system type adds features specific
to the line following configuration for using the wheel assemblies, the gripper and the light and sonar sensors
(line 2).

system Line_Follower_Robot extends Robots_Library :: Robot
features

light_sensor_in: in feature Physics :: Light;
sonar_in: in feature Physics :: Sound;
sonar_out: out feature Physics :: Sound;
force_left_wheel: out feature Physics :: Force;
force_right_wheel: out feature Physics :: Force;
force_gripper: out feature Physics :: Force;

end Line_Follower_Robot;

system implementation Line_Follower_Robot.nxt extends Robots_Library ::
Robot.basic
subcomponents

left_wheel_assembly: device Robots_Library :: Wheel_Assembly;
left_wheel_cable: bus Robots_Library :: Actuator_Bus;
righ_wheel_assembly: device Robots_Library :: Wheel_Assembly;
rght_wheel_cable: bus Robots_Library :: Actuator_Bus;
light_sensor: device Robots_Library :: Light_Sensor;
light_sensor_cable: bus Robots_Library :: Sensor_Bus;
sonar: device Robots_Library :: Sonar;
sonar_cable: bus Robots_Library :: Sensor_Bus;
gripper: device Robots_Library :: Gripper;
gripper_cable: bus Robots_Library :: Actuator_Bus;
brick: refined to system Robots_Library :: NXT_Brick.basic;

connections
brick_left_wheel_cable: bus access brick.out_1 ->

left_wheel_cable;
left_wheel_cable_left_wheel_assembly: bus access left_wheel_cable

-> left_wheel_assembly.power_in;
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left_wheel_force_robot: feature left_wheel_assembly.force ->
force_left_wheel;

brick_right_wheel_cable: bus access brick.out_2 ->
rght_wheel_cable;

right_wheel_cable_right_wheel_assembly: bus access
rght_wheel_cable -> righ_wheel_assembly.power_in;

right_wheel_force_robot: feature righ_wheel_assembly.force ->
force_right_wheel;

brick_gripper_cable: bus access brick.out_3 -> gripper_cable;
gripper_cable_gripper: bus access gripper_cable -> gripper.

power_in;
gripper_force_robot: feature gripper.force -> force_gripper;
robot_light_sensor: feature light_sensor_in -> light_sensor.

light_in;
light_sensor_light_sensor_cable: bus access light_sensor.

light_data -> light_sensor_cable;
light_sensor_cable_brick: bus access light_sensor_cable -> brick.

in_1;
sonar_out_robot: feature sonar.sound_out -> sonar_out;
robot_sonar_in: feature sonar_in -> sonar.sound_in;
sonar_sonar_cable: bus access sonar.sound_data -> sonar_cable;
sonar_cable_brick: bus access sonar_cable -> brick.in_2;

end Line_Follower_Robot.nxt;

Listing 31: Classifiers for the line follower robot plant

The configured robot system implementation (line 11) instantiates sensor and actuator subcomponents
including buses for the RJ12 connectors. The generic brick subcomponent (line 23) of the extended generic
robot is refined to the NXT brick of Listing 28 (line 12) and figure 8.16.

Fig. 8.17: The plant model for the Lego NXT line follower robot
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This constitutes the physical plant model of our robot carrier system. Such hardware plant will be used to
deploy a software application (the cyber part of the robot CPS) to control the speed of the wheels according to
the data sensed by the light and sonar sensors.

8.6.6 Deployment

This section considers concrete implementations in software of the system functions introduced in section 8.6.4
and the deployment of the software onto the plant model introduced in section 8.6.5: the NXT Mindstorm Lego
robot configured for carrying objects in the warehouse. In order to deploy the system, the system functions first
need to be refined into a software application executable by the NXT brick of the plant model.

Software Application

Constructs

Software applications can be modelled in AADL using the six software component sub-categories introduced
below:

• Data: A data component represents hierarchical data structures such as instance variables of a class in
object-oriented programming languages or the fields of a record. Operations on a data type can also be
modelled by declaring a provides subprogram access feature on the data component type. The feature is
typed with classifiers of the accessed subprogram.

• Subprogram: A subprogram represents an atomic operation with parameters. It cannot have any state
persisting after the call (static data), but can have local variables represented by data subcomponents
declared in the subprogram implementation. Subprogram parameters and required access to data must be
explicitly declared in a subprogram type. Events raised within a subprogram can also be specified as event
or event data ports in a subprogram type.

• Subprogram group: A subprogram group represents subprogram libraries, whose content is declared through
a subprogram group type. Subprogram groups are made accessible to other components using subprogram
group access features that can be connected with subprogram group access connections. This allows for
reducing the number of connections by providing a single connection for the whole group.

• Thread: A thread represents a scheduleable unit that can be executed concurrently with other threads. It
represents sequential flows of control executing instructions. Threads can be dispatched periodically or
upon the arrival of data or events on ports, or upon arrival of subprogram calls from other threads.

• Thread group: A thread group represents logically grouped threads.A thread group type specifies the features
and required subcomponent accesses for thread subcomponents declared in a thread group implementation
also declaring the connections between threads.

• Process: A process represents a virtual memory address space. This address space contains the program
formed by the process’s subcomponents, which can be threads, thread groups, subprogram, subprogram
group or data subcomponents.

The AADL standard includes several annexes supporting software modelling:

• TheBehaviour Annex (BA) consists of a state-machine based sublanguage allowingmodelling the behaviour
of AADL components. From this neutral behavioural description, executable code can be generated. How-
ever presenting the BA is beyond the scope of this chapter.

• The data modelling annex, which consists of predefined properties and classifiers provides guidance to
represent data types and structures in AADL to be used for code generation.

• The ARINC653 annex, which consists of predefined properties and classifiers, provides a standard way of
representing ARINC653 compliant partitioned embedded system architectures in AADL. Again, this annex
is beyond the scope of this chapter.

• The code generation annex defines language-specific rules for generation of runtime systems from AADL
models.
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The refined software model presented in this section will provide subprogram classifiers extending the system
function abstract classifiers. Thread classifiers will be provided for specifying scheduling properties for these
software subprograms. Software-specific properties for supporting timing and scheduling analyses and code
generation will be set to these components.

The execution semantics of a thread is specified using predefined properties, which are found under the
standard Thread_Properties property set. Those properties are:

• Dispatch_Protocol, which can have the values of:

– Periodic: the thread is activated periodically
– Aperiodic: the thread is activated upon receiving messages
– Sporadic: the thread is activated upon receivingmessageswith aminimumdelay between two activations
– Timed: the thread is activated either upon receiving a message or a given deadline (the timer is reset

upon message reception)
– Hybrid: the thread is activated both upon receiving a message and a given deadline

• Scheduling_Protocol: specifies the scheduling policy
• Compute_Execution_Time: represents the execution time of a thread or a subprogram
• Stack_Size: Defines the size of the stack for the thread

Threads can communicate with each other using three predefined communication mechanisms represented
by their port and connection types:

• Data ports represent unenqueued state data
• Event data ports represent queued message data
• Event ports represent asynchronous events

Port connections can have different timing semantics:

• sampled: the receiving thread samples at dispatch or during execution
• immediate: the data is communicated upon execution completion of the sending thread
• delayed: the data is communicated upon deadline of the sending thread

The standard Programming_Prperties property set defines properties for code generation:

• Source_Language specifies the programming language. Predefined values are Ada95, Ada2005, C, Java,
Simulink_6_5 and SCADE

• Source_Text specifies a source code file name
• Source_Name specifies the name of a data structure or function in the code file specified by Source_Text.
• Compute_Entrypoint_Call_Sequence specifies the name of a call sequence in a thread that will execute
after the thread has been dispatched.

Running Example Specification

A package is created to contain declarations for the software classifiers as shown in Listing 32. Concrete
data types are declared for the software variables, which are derived from the system function variables by
extending them and adding a SW suffix to their names. To these classifiers, properties specifying their concrete
representation in code are set using the Data_Representation property of the data model annex (line 7). The
Robot_State_SW software variable is also refined by providing properties for an equivalent data structure
Robot_state declared in a C code file data_types.h and to be used for code generation (lines 24 and 25).

package Line_Follower_Software
public

with Line_Follower_Functions , Code_Generation_Properties , Base_Types ,
Data_Model;

data Light_Intensity_SW extends Physics :: Light
properties
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Data_Model :: Data_Representation => integer;
Data_Size => 4 bytes;

end Light_Intensity_SW;

data Turn_Angle_SW extends Line_Follower_Functions :: Turn_Angle
properties

Data_Model :: Data_Representation => integer;
end Turn_Angle_SW;

data Power_SW extends Line_Follower_Functions ::Power
properties

Data_Model :: Data_Representation => integer;
end Power_SW;

data Robot_State_SW extends Line_Follower_Functions :: Robot_State
properties

Data_Model :: Data_Representation => Enum;
Data_Model :: Enumerators => ( "FORWARD", "STOP" );
Source_Name => "Robot_state";
Source_Text => ("data_types.h");

end Robot_State_SW;

Listing 32: Data classifiers for the software application

Concrete software subprogram implementations for the compute turn angle and the compute wheels motor
power functions are declared as shown in Listing 33. Like for the data types, those subprograms extend the
system function abstract components and refine the abstract features to subprogram parameters typed with
appropriate SW data types previously introduced.

subprogram Compute_Turn_Angle_SW extends Line_Follower_Functions ::
Compute_Turn_Angle
features

light_intensity: refined to in parameter Light_Intensity_SW;
turn_angle: refined to out parameter Turn_Angle_SW;

properties
Classifier_Substitution_Rule => Type_Extension;
Source_Language => (C);

end Compute_Turn_Angle_SW;

subprogram implementation Compute_Turn_Angle_SW.pid extends
Line_Follower_Functions :: Compute_Turn_Angle.pid
properties

Source_Name => "computePID";
Source_Text => ("line_follower.h", "line_follower.c");

end Compute_Turn_Angle_SW.pid;

subprogram Compute_Wheels_Motors_Power_SW extends Line_Follower_Functions
:: Compute_Wheels_Motors_Power
features

turn_angle: refined to in parameter Turn_Angle_SW;
left_motor_power: refined to out parameter Power_SW;
right_motor_power: refined to out parameter Power_SW;
state: refined to requires data access Robot_State_SW;

properties
Classifier_Substitution_Rule => Type_Extension;
Source_Language => (C);

end Compute_Wheels_Motors_Power_SW;
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subprogram implementation Compute_Wheels_Motors_Power_SW.basic extends
Line_Follower_Functions :: Compute_Wheels_Motors_Power.basic
properties

Source_Name => "computeWheelsPower";
Source_Text => ("line_follower.h", "line_follower.c");

end Compute_Wheels_Motors_Power_SW.basic;

Listing 33: Subprogram classifiers for the compute turn angle and the compute wheels motor power software
functions

The implementation of the compute_turn_angle subprogram makes use of a PID control mechanism,
which computes a turn angle that is proportional to the observed light intensity as illustrated on the RHS
of figure 8.8. The C code for such subprogram can actually be derived from control simulations with tools
such as Matlab Simulink. This code can then be associated with an AADL subprogram classifier via the
Source_Language, Source_Text and Source_Name properties as shown in Listing 33 (lines 7, 12 and 13). Note
that the Source_Language property is set on the subprogram types (lines 7 and 24) while the other source code
properties are set on the subprogram implementations. This ease design space exploration by capturing the
variability of different subprogram code implementations of a given programming language.

In order to read the value from the light sensor and to actuate the wheel motors, subprograms provided by the
NXT OSEK ECRobot C library [219] are used. A new subprogram implementation is created to encapsulate
calls to the get_light_intensity, follow_line, set_left_motor_power and set_right_motor_power subprograms as
shown in Listing 34 and in figure 8.18. Implementation details are added consisting of data subcomponents
for setting the value of required input parameters for the ECRobot subprograms such as the port number and a
braking coefficient and initial values on data subcomponents (lines 8 to 19) for the corresponding data structures
in code.

subprogram Follow_Line_SW_NXT
features

state: requires data access Robot_State_SW;
end Follow_Line_SW_NXT;

subprogram implementation Follow_Line_SW_NXT.basic
subcomponents

left_wheel_port: data Base_Types :: Integer {
Data_Model :: Initial_Value => ( "NXT_PORT_B" );

};
left_wheel_brake: data Base_Types :: Integer {

Data_Model :: Initial_Value => ( "0" );
};
right_wheel_port: data Base_Types :: Integer {

Data_Model :: Initial_Value => ( "NXT_PORT_A" );
};
right_wheel_brake: data Base_Types :: Integer {

Data_Model :: Initial_Value => ( "0" );
};

calls
main_call: {

get_light_intensity: subprogram ECRobot_Get_Light_Intensity;
follow_line: subprogram Follow_Line_SW.basic;
set_left_motor_power: subprogram NXT_Motor_Set_Power;
set_right_motor_power: subprogram NXT_Motor_Set_Power;

};
connections

light_intensity_follow_line: parameter get_light_intensity.
light_intensity -> follow_line.light_intensity;
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left_motor_power: parameter follow_line.left_motor_power ->
set_left_motor_power.power;

right_motor_power: parameter follow_line.right_motor_power ->
set_right_motor_power.power;

state_follow_line: data access state -> follow_line.state;
left_wheel_port_set_left_motor_power: parameter left_wheel_port

-> set_left_motor_power.portNb;
left_wheel_brake_set_left_motor_power: parameter left_wheel_brake

-> set_left_motor_power.brake;
right_wheel_port_set_right_motor_power: parameter

right_wheel_port -> set_right_motor_power.portNb;
right_wheel_brake_set_right_motor_power: parameter

right_wheel_brake -> set_right_motor_power.brake;
properties

Compute_Execution_Time => 3 ms .. 5 ms;
end Follow_Line_SW_NXT.basic;

Listing 34: Subprogram classifiers for the follow line software function

Fig. 8.18: The NXT line following subprogram

Software subprograms extending the Pick_Up_Object and Drop_Off_Object system function components
must also be declared. Those are not presented here but can be found in the complete set of models from [63].

The next step is to specify how the subprograms of the software application will be executed. The
Pick_Up_Object_SW.basic subprogram should be executed once the robot has reached the start of the path. The
Follow_Line_SW_NXT.basic subprogram should be executed once the object has been picked up and period-
ically at a frequency high enough to follow the line, given a required tolerance, the minimum line curvature
radius and the robot speed. The Drop_Off_Object_SW.basic subprogram should be executed once the end of
the path is reached. The Detect_Obstacles_SW subprogram should be executed periodically while the line is
being followed at a frequency high enough to detect obstacle on time in order to avoid collisions. Finally, the
Logging_SW subprogram should be always executed periodically, with a period given by logging requirements.

The modelling of these threads is shown in Listing 35. The Pick_Up_Object_Thread thread is set with an
at_beginning_path input event port for its activation when the robot reaches the beginning of the path and an
object_picked output event port for notification when the object has been picked by the gripper. An aperiodic
dispatch protocol is set meaning that the thread will be dispatched upon events on its input event port.

thread Pick_Up_Object_Thread
features

at_beginning_path: in event port;
object_picked: out event port;

properties
Dispatch_Protocol => aperiodic;
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Deadline => 5 ms;
Priority => 2;
Stack_Size => 512 Bytes;

end Pick_Up_Object_Thread;

thread Follow_Line_Thread
features

state: requires data access Robot_State_SW;
object_picked: in event port;
object_dropped: in event port;
at_beginning_path: out event port;
at_end_path: out event port;
right_wheel: out data port Power_SW;
left_wheel: out data port Power_SW;

flows
light_to_left: flow path light_intensity -> left_wheel;
light_to_right: flow path light_intensity -> right_wheel;

properties
Dispatch_Protocol => periodic;
Period => 15 ms;
Deadline => 15 ms;
Priority => 3;
Stack_Size => 512 Bytes;

end Follow_Line_Thread;

thread implementation Follow_Line_Thread.basic
calls

main_call: {
follow_line: subprogram Follow_Line_SW_NXT.basic;

};
connections

state_follow_line: data access state -> follow_line.state;
properties

Compute_Entrypoint_Call_Sequence => reference (main_call);
Latency => 3 ms .. 5 ms applies to light_to_left , light_to_right;

end Follow_Line_Thread.basic;

thread Detect_Obstacles_Thread
features

state: requires data access Robot_State_SW;
properties

Dispatch_Protocol => periodic;
Period => 10 ms;
Deadline => 5 ms;
Priority => 2;
Stack_Size => 512 Bytes;

end Detect_Obstacles_Thread;

thread Log_Thread
properties

Dispatch_Protocol => periodic;
Period => 20 ms;
Deadline => 5 ms;
Priority => 5;
Stack_Size => 512 Bytes;
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end Log_Thread;

Listing 35: Thread classifiers for the tasks of the software application

The Follow_Line_Thread thread is set with an object_picked input event port for its activation when the
object has been picked by the gripper and an object_arrived output event port for its deactivation and a periodic
dispatch protocol. The determination of the period of this thread will be detailed in the analysis section 8.6.7.
A thread implementation is provided specifying a call to the follow line subprogram (line 21) and a data access
connection for the robot state variable, which will be valued by the obstacle detection subprogram. Finally, the
Compute_Entrypoint_Call_Sequence property (line 35) specifies which call sequence (there could be many)
should be executed upon dispatch of the thread.

A Drop_Off_Object_Thread thread classifier (not shown in the listing due to space constraints) is provided
for executing the Drop_Off_Object_SW subprogram with features and properties similar to the ones of the
Pick_Up_Object_Thread thread. Another thread classifier is provided for the obstacle detection subprogram
with a data access feature for the robot state and a periodic dispatch protocol. Finally, the logging function is
encapsulated within a periodic thread. More details on other properties of these threads can be found in the
analysis section 8.6.7.

Now that these thread classifiers have been declared, they can be instantiated as subcomponents of a process
implementation, which represents a memory address space for the global software application. This is shown
in Listing 36 and figure 8.19, where a data subcomponent is declared for the robot state data with a FORWARD
initial value. Proper port connections are declared between the subcomponents.

process Carry_Object_Process
features

light_intensity: in data port Light_Intensity_SW;
left_wheel_power: out data port Power_SW;
right_wheel_power: out data port Power_SW;

flows
light_to_left: flow path light_intensity -> left_wheel_power;
light_to_right: flow path light_intensity -> right_wheel_power;

end Carry_Object_Process;

process implementation Carry_Object_Process.basic
subcomponents

state: data Robot_State_SW {
Data_Model :: Initial_Value => ( "FORWARD" );

};
pick_up_object: thread Pick_Up_Object_Thread;
follow_line: thread Follow_Line_Thread.basic;
drop_off_object: thread Drop_Off_Object_Thread;
detect_obstacle: thread Detect_Obstacles_Thread;
logging: thread Log_Thread;

connections
pick_up_object_folow_line: port pick_up_object.object_picked ->

follow_line.object_picked;
follow_line_drop_object: port follow_line.at_end_path ->

drop_off_object.object_arrived;
drop_object_follow_line: port drop_off_object.object_dropped ->

follow_line.object_dropped;
obstacle_detection_state: data access detect_obstacle.state ->

state;
state_follow_line: data access state -> follow_line.state;
follow_line_begin_path_pick_up_object: port follow_line.

at_beginning_path -> pick_up_object.at_beginning_path;
light_intensity_follow_line: port light_intensity -> follow_line.

light_intensity;
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follow_line_right_wheel: port follow_line.right_wheel ->
right_wheel_power;

follow_line_left_wheel: port follow_line.left_wheel ->
left_wheel_power;

properties
Timing => Immediate applies to follow_line_right_wheel ,

follow_line_left_wheel;
end Carry_Object_Process.basic;

Listing 36: Process classifiers for the software application

Fig. 8.19: The carry object software process implementation

This constitutes a complete software application that can be deployed on the brick of the NXT robot plant
model. However, as will be presented in the analysis section, we are interested in determining the latency of
steering the robot upon a change in the value of the observed path light intensity. For this purpose, we extend
the software model by modeling the drivers of the input and output circuits of the brick driving the light sensor
and the two motor assemblies.

In order to achieve this, we first create a system component for the software application as illustrated in
figure 8.20. To this system we add a subcomponent of the software application process previously defined and
device subcomponents with data ports typed with the software power and light intensity variable types. Such
data ports are connected to the software process containing the threads. As explained in section 8.6.5, devices
can be used for both hardware and software parts of systems. For software, they represent the software part of
corresponding hardware devices, such as drivers residing in a memory and executed on an external processor.
Such is the case for the input and output circuit devices of the robot brick (figure 8.16), which include built-in
drivers to control sensors and actuators.

Binding of the Software Application on the Execution Platform
The last step in modeling the robot CPS is to deploy the software application on the plat model. This is

presented in the following.

Concepts

In order to specify the binding of the software application on the plant model, first a system implementation
must be provided for the Line_Follower_Robot_CPS, for the system type of the system overview of Listing 19.
This implementation should have as subcomponent the software application previously defined and the robot
plant model.
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Fig. 8.20: A system component for the software application including devices for modeling drivers of sensors
and actuators

The binding of the thread and data subcomponents of the process on the execution platform components can
then be specified. Properties from the standard Deployment_Properties property set are used for that:

• Actual_Processor_Binding specifies the processor that will execute threads or the hardware device that will
execute software devices (driver)

• Actual_Memory_Binding specifies the memory that will store processes and data.
• Actual_Connection_Binding specifies the bus that will transmit the data of port connections.

Running Example Specification

The system implementation for the line follower CPS component type is shown in Listing 37 and figure 8.21. A
system subcomponent for the NXT software application and a system subcomponent for the configured NXT
line following robot plant model are instantiated. The features of the robot plant model are connected to the
features of the CPS system type of the system overview (Listing 19).

system implementation Line_Follower_Robot_Cps.nxt
subcomponents

app: system Line_Follower_Software :: Carry_Object_App.basic;
robot: system Line_Follower_Robot.nxt;

connections
force_left_wheel_conn: feature robot.force_left_wheel ->

force_left_wheel;
force_right_wheel_conn: feature robot.force_right_wheel ->

force_right_wheel;
light_sensor_conn: feature light_sensor_in -> robot.

light_sensor_in;
force_gripper_conn: feature robot.force_gripper -> force_gripper;
sonar_in_conn: feature sonar_in -> robot.sonar_in;
sonar_out_conn: feature robot.sonar_out -> sonar_out;

properties
Actual_Processor_Binding => (reference (robot.brick.

main_processor)) applies to app.carry_object_process;
Actual_Memory_Binding => (reference (robot.brick.main_processor.

ram)) applies to app.carry_object_process;
Actual_Processor_Binding => (reference (robot.brick.input_circuit

)) applies to app.light_sensor_driver;
Actual_Connection_Binding => (reference (robot.brick.data_bus))

applies to app.light_sensor_process_conn;
Actual_Processor_Binding => (reference (robot.brick.

output_circuit)) applies to app.left_wheel_driver;



250 Dominique Blouin and Etienne Borde

Actual_Connection_Binding => (reference (robot.brick.data_bus))
applies to app.process_left_wheel_conn;

Actual_Processor_Binding => (reference (robot.brick.
output_circuit)) applies to app.right_wheel_driver;

Actual_Connection_Binding => (reference (robot.brick.data_bus))
applies to app.process_right_wheel_conn;

end Line_Follower_Robot_Cps.nxt;

Listing 37: System implementation for the Robot CPS

Fig. 8.21: The deployed line follower robot CPS

The binding properties Actual_Processor_Binding and Actual_Memory_Binding are set to respectively the
ARM7 processor and its contained memory as shown in Listing 37 under the properties section (lines 13 and
14). This is also illustrated in figure 8.21 with the dashed arrows pointing from the process subcomponent to the
NXT brick ARM processor and its included RAM memory. Since there is only one processor and one memory,
it was chosen to apply the binding properties to the enclosing process, which means that all contained threads
and data subcomponents are bound to the same processor and memory. If several processors were available, a
binding property could have been be set for each individual thread for specifying their execution by different
processors.

The device drivers for the light sensor and the wheel motors are also bound to the input and output circuits on
the NXT brick. The port connections between the devices and the process are bound to the data bus connecting
the input and output circuits to the ARM processor.

8.6.7 Analyses

The modelling of the object carrier robot CPS has been completed. The next step is to verify some of its
properties to ensure that the system will operate properly and will meet its requirements. Furthermore, it would
be interesting to estimate its performances. A first question to ask is if the ARM 7 processor can schedule all
the threads given their timing properties. This strongly depends on the computation time of the subprograms
themselves. Several methods exist to answer this question. For the case of the NXT brick, assume that the times
are given by executing the programs alone on the brick and by logging the times to the display of the robot so
that they can be memorized.
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Scheduling
Scheduling analysis can be performed from the software application of section 8.6.6 and using tools such

as Cheddar or its commercial implementation in AADL Inspector. This analysis will rely on the following
properties attached to software components:

In Listing 35, property values are given to AADL threads in order to define their dispatch protocol, period,
priority, and their sequence of subprogram calls. From the call sequence of a thread, we can compute an upper
bound on the thread execution time by summing the upper bound of the called subprograms execution time.
The latter is given for subprogram Follow_Line_SW_NXT in listing 34 using the Compute_Execution_Time
property. Last but not least, the scheduling protocol is attached to the AADL processor component on which
threads are going to run. This is done in Listing 28 using the Scheduling_Protocol property (line 34). Here,
the scheduling protocol is a well known protocol named Rate Monotonic Scheduling (RMS). RMS is a fixed
priority scheduling technique (tasks are executed according to a predefined priority) and tasks priorities are
ordered as follows: the most frequent tasks are given a higher priority.

Semantics

The AADL modeling elements listed above define a periodic task set model (where an AADL thread is a
periodic task) which can be summarized on figure 8.22.

Fig. 8.22: Periodic task set

On this figure, a task τi is characterized by its period Ti , its deadline Di , its capacity Ci . The capacity of a
task corresponds to the upper bound on its execution time, and we explained above how this can be extracted
from the execution time of AADL subprograms called in sequence by an AADL thread. In practice, we measure
the execution time of subrpograms running on the NXT brick to estimate tasks capacity.

From this task model, the CPU utilization of Ui of a task τi can be computed as follows: Ui =
Ci

Ti
and the

CPU utilization of the task is simply the sum of every task utilization.
Given a periodic task set model, schedulability analysis can be performed to ensure all the tasks of the object

carrier robot can finish their execution within their deadlines. A first option to perform this analysis is to compare
the worst-case processor utilization with a safe upper bound: it has been proven by Liu and Layland in 1973
that a necessary condition for the schedulability of a task set scheduled with RMS, on a mono-core processor,
is that the CPU utilisation of the task set remains under 69.3147%. Another option, for task sets scheduled with
a fixed priority scheduling, is to compute tasks Worst Case Response Time (WCRT) and check that they remain
inferior to the tasks deadline. The WCRT of a task τi , on a mono-core processor, can be computed using the
following recursive formula:

WCRTi =
∑

τ j ∈HPi

d
WCRTi

Tj
e · Cj
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where HPi is the set of tasks having a higher priority than τi .

Analysis results

Figures 8.23 and 8.24 show the different results provided by AADL Inspector after performing the scheduling
analysis of an AADL model.

Fig. 8.23: Tasks execution gantt chart

Fig. 8.24: Response time analysis result

This analysis can help us configure the task set either by modifying the period of AADL threads, reducing
the number of tasks executed on the platform, or changing the execution platform itself. In the case of the object
carrier robot, given the number of tasks, their execution time, and the physics of the system, the scheduling
analysis helped to define tasks period.

Latency
Another question to ask about our object carrying robot is whether it will be able to follow the line given

a minimum speed requirement. For this, the latency of the system in steering the robot must be known. In
particular, we are interested in the latency of the data flows involved in the control loop, i.e. the amount of time
separating the production of a data from the light sensor, to the production of commands on the engine. AADL
is well suited for such analysis using its flow constructs.

Constructs

AADL flows are used to annotate AADL elements in order to specify paths of information flow across com-
ponents. As such, flows do not represent any concrete system architecture elements but facilitate analyses and
allow characterizing information flows with additional properties. By defining connections among directed
ports, possible data flows are already defined by the structure of an AADL model. However, they are possible
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data flows and potentially some of them are not present in the software application. Besides, only a subset of
data flows require latency analysis.

In AADL, a flow consists of:

• Flow source: describes the origin of an information flow
• Flow path: describes a path of information flow between components
• Flow sink: describes the end of an information flow
• End to end flow: describes a complete flow including a source, a path and a sink

Component types can only contain flow specifications (sources, sinks and paths) annotating the declared
features.

Component implementations can only contain flow implementations (sources, sinks and paths) annotating
features, connections and subcomponent flows. They can also contain end to end flows beginning by a flow
source and ending by a flow sink.

Latency upper bounds can either be attached to end-to-end flows or set in ReqSpec requirements assigned to
end-to-end flows. Latency contributions are attached to model elements implementing these flows. In practice,
the latency of an end-to-end flow is the sum of latencies contributed by components and connections traversed
by the flow.

Figure 8.25 represents the architecture of the robot carrier application along with devices representing the
light sensor and the right and left motors. They are represented with an AADL device, representing the logical
execution of the device driver. In addition, the end-to-end flow from the light sensor output (flow source) to the
left motor input (flow sink) passing by the software application (flow path in carry_object_process) is coloured
in yellow.

Fig. 8.25: Light sensor to left motor end-to-end flow

There exists three types of contributions to a flow latency in AADL:

1. Latency property value can be attached to a flow path in order to decompose the end-to-end latency into
latencies attached to subcomponents.

2. Physical communications (i.e. connections bound to a bus component) contribute to the latency of flows
passing by these links.

3. Logical communications (i.e. communications among software components) also contribute to the latency
of flows passing by these links.

We explain further how to use these modeling capabilities in the remainder of the following paragraph,
illustrating these types.

Running Example Specification

Contribution type 1: Latency property value attached to a flow path. In the early phase of the development
process, or in order to decompose the end-to-end latency requirement into latency requirements attached to
subcomponents, AADL users can attach flow latency values to flow path as illustrated in Listing 35 (property
Latency defined in Follow_Line_Thread.basic). Note that without this property, the deadline of the thread would
be used as an upper bound (and 0 as a lower bound).

Contribution type 2: Physical communications contribution. When a flow passes by a logical connection
(i.e. connection between software components) bound to a bus component, the communication itself takes time.
AADL offers the possibility to model this contribution as a linear function of the number of transmitted bytes.
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Property Transmission_Time is meant for this usage, which is illustrated in Listing 38. In this listing we can see
that the Transmission_Time property consists of two fields: Fixed and PerByte which respectively represent a
communication offset and a communication time per byte. Each of these fields is a time range, representing the
lower and upper bound of the communication offset and time per byte. Note that when this property is used, it
is necessary to define the size of the transmitted data. This is feasible with the Data_Size property, as illustrated
in Listing 32 for the Light_Intensity_SW data type.

bus Data_Bus
properties

Transmission_Time => [Fixed => 10 ns .. 100 ns; PerByte => 10 ns
.. 40 ns;];

end Data_Bus;

Listing 38: Data bus component transmission time

Note that the example we took is rather simple: AADL architectures may be much more complex, for instance
by binding logical connections to virtual busses (representing communication routes) themselves bound to busses
and devices representing a network.

Contribution type 3: Local communications contribution. This type of contribution is probably the less
intuitive and though themain contribution to flow latency from a software architecture viewpoint. To explain how
local communications contribute to flow latency, it is necessary to understand further the model of computation
and communications entailed by AADL software components, in particular communications among threads
and/or devices.

We decompose this explanation in two parts, answering the following questions:

1. When are data consumed/produced by threads?
2. What are the additional constraints on threads communications?

By default, the answers to these questions are:

1. Threads consume data on their input ports when they are dispatched, and produce their output at completion
time (this can be refined using the Input_Time and Output_Time AADL properties). One data is consumed
when a thread is dispatched (this can be refined using the Dequeue_Protocol AADL property), and one
data is produced per activation of a thread (this can be refined using the Output_Rate AADL property). In
the remainder of this paragraph, we keep this default configuration as this is the one we used in the AADL
model of the object carrier robot, except for the Dequeue_Protocol: we used the AllItem property value
meaning that the queued is emptied by the activation of a receiving thread.

2. Communications are not really constrained, meaning that threads consume the latest (set of) data arrived
at dispatch time. This can be refined using the Timing AADL property (default value being Sampled). We
explain how this property value impacts the flow latency analysis in the case of the object carrier robot.

Listing 36 represents the configuration of connections between process carry_object_process and device
light_sensor_driver on the one hand, and between process carry_object_process and left_wheel_driver and
right_wheel_driver.

For the latter, the value Immediate is assigned for the Timing property, which means the recipient can only
start its execution when new outputs are produced by the process. As a consequence, the activation of the device
always receive the latest data produced by the process.

Overall, the end-to-end latency time can be computed in OSATE: with the configuration described in this
book, the result obtained is in a range of 3 to 30 milliseconds.

Other Analyses The two analyses presented in the previous sections are very common and essential for
embedded systems design. However several other analyses can be conducted from an AADL model such as
memory usage, power consumption [17], mass, costs, etc. On the behavior side, verification and validation
can also be performed via tools such as the BLESS proof checker [179] and model checking [42, 223]. More
information on analysis tools for AADL can be found at [6].
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8.6.8 Code Generation

The ultimate activity to be performed from an AADL specification is automatic code generation. Once the
analyses have shown a correct design, a large part of the code can be generated automatically, thus reducing
the risk of errors introduced by humans. There are currently two main code generators for AADL: the Ocarina
tool [222] and RAMSES (Refinement of AADL Models for the Synthesis of Embedded Systems) [235]. In
this chapter, RAMSES is presented due to its refinement-based approach providing more accurate analyses and
supporting automated design optimizations.

Concepts The process flow of the RAMSES approach is presented in figure 8.26. RAMSES takes as input an
AADL model and transforms it into another AADL model into which details specific to an operating system
specification selected by the user has been added. The POSIX, ARINC 653 and NXT OSEK are currently
supported. This step is called model refinement since the generated AADL model includes details specific to
the operating system and therefore is of a lower level of abstraction than the original model. The advantage of
this approach as opposed to code generated directly from the initial model is a reduced semantic gap between
the refined model and the code. In addition, the refined model can be further analyzed giving more accurate
analysis results due to this reduced semantic gap.

RAMSES
model

transformation
Refined AADL 

model

ANALYSEAnalysis 

RAMSES
code

generator Automatically 
generated code

Initial AADL 
model

Reduced abstraction levels

Fig. 8.26: The RAMSES process flow

The result of such analyses can be used to select of appropriate model transformations for applying design
patterns to the initial AADLmodel for optimizing non-functional properties. Themodel can be refined iteratively
until the desired quality attributes are achieved. Then, a code generator for the selected operating system
generates platform-specific code including the required configuration files for the operating system such as
thread scheduling and memory partitions.

There are many ways code can be generated from an AADL model. A first approach consists of generating
skeletons from AADL components by assembling the source code set by the programming properties to
subprograms and / or threads as presented in section 8.6.6. An alternative is to translate into code the behavior
specification of components as specified using the AADL behavior annex. This later approach is not presented
in this chapter, since the behavior annex has not been introduced. In any case, RAMSES supports these two
approaches.

Running Example Specification

Refinement

RAMSES applies several refinement rules to produce the refined model for code generation. The set of applied
rules varies depending on the selected operating system platform.We illustrate here one of the simplest RAMSES
refinement rule for transforming event data port communications between threads into communication via shared
data access. This is illustrated by the diagram of figure 8.27 where the port connection between two periodic
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threads is transformed into a shared data (queue) and two shared data access connections between the threads
and the shared data. For this, the event data ports of the threads have also been converted into data access
features. In addition, a call to a subprogram to manage the access of the queued data has been added to each
thread.

Fig. 8.27: The RAMSES local communication refinement rule (reproduced from [234])

Code Generation step

During the modelling of the software application of the line follower robot, various properties have been set
to subprograms and data components for their mapping to existing C code artifacts. We briefly describe the
essence of these properties using our software application example.

As shown in Listing 32, we created new data types for our software variables that map to the system
variable abstract types that they extend. To these types we added the Data_Representation property from the
data modelling annex to specify that our variables will be represented as integers in code. For the robot state
internal variable, we have set the Data_Representation as an enumeration with values FORWARD and STOP.
The Source_Name property specifies the name of a corresponding data structure in C code located in a C file
specified by the Source_Text property. An initial value of FORWARD is set on the data subcomponent of the
Carry_Object_Process process of Listing 36.

For subprograms such as Compute_Turn_Angle_SW (Listing 33), the Source _Language property has been
set to “C” and similar to the Robot_State data component type, properties Source_Name and Source_Text are
used to identify corresponding subprograms in C code.

From the AADL threads of our software application and their properties such as their priorities, as well as
other properties set on the NXT ARM processor of the NXT brick (Listing 28) onto which the NXT OSEK
firmware has been installed, the code generator also generates the configuration file for the NXTOSEK operating
system specifying which threads should be scheduled and how they should be scheduled.
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8.7 Summary

This chapter introduced the AADL language with a focus on its use for the development of CPSs. The modelling
and analysis of a simple object carryer robot was used to introduce AADL by following a typical V-cycle
development process (figure 8.3) augmented with some of the requirements engineering management practices
promoted by the REMH (figure 8.9) and supported by the ALISA set of notations and workbench. The required
AADL notions have been introduced gradually as they were required by the modelling steps of the followed
development process.

This allowed presenting how AADL can be used to design a CPS with a top down approach starting from
modelling the overview of the system to be built, followed by the capture of stakeholder and goals, verifiable
requirements, system functions, physical plant model, software application model and deployment model. From
such complete model including the software (cyber) part deployed on the hardware part, scheduling and latency
analysis have been illustrated followed by model refinement, refined analyses and finally automatic C code
generation with the RAMSES approach and tool.

We hope that introducing AADL this way allowed a better understanding of how AADL can be used and
what it can achieve in termes of analyses, design space exploration and system synthesis via automatic code
generation.

8.8 Literature and Further Reading

The AADL language and its annexes are quite rich and it was not possible to present the concepts thoroughly in
this chapter due to space constraints. However, many documents are readily available for more in depth learning.

• The official AADL website [6];
• “Model-Based Engineering with AADL: An Introduction to the SAE Architecture Analysis & Design
Language” [100] is the reference book about the core AADL language written by Peter Feiler and Dave
Gluch. Peter Feiler is the main architect of the AADL;

• An introduction to the modelling of system families / product lines with AADL is given at [99];
• More information on ALISA can be found at [205, 82];
• More information on RAMSES can be found at [235].

8.9 Self Assessment

1. Write a non-functional requirement in ReqSpec for the latency in steering the robot that will constrain the
results of analysis in section 8.6.7.

2. Add a predicate to verify that the latency is below the limit of 20 ms.
3. Complete the Lego Mindstorm robot product line family by adding AADL system classifiers to the robots

library package of Listing 27 for the EV3 version of the Lego Mindstorm brick and robot.2.
4. Model software requirem ents in ReqSpec derived from the example functional requirements for the system

functions of section 8.6.4.
5. Perform a latency analysis for the obstacle detection function similar to the one presented in section 8.6.7

for steering the robot. First add the missing device driver to the software application system for the sonar
sensor and add the required flow annotations and properties. Perform the analysis with OSATE.

2 The EV3 Hardware Developer Kit document can be found at https://www.mikrocontroller.net/attachment/338591/
hardware_developer_kit.pdf

https://www.mikrocontroller.net/attachment/338591/hardware_developer_kit.pdf
https://www.mikrocontroller.net/attachment/338591/hardware_developer_kit.pdf
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Chapter 9
FTG+PM: Describing Engineering Processes in Multi-Paradigm
Modelling

Moharram Challenger, Ken Vanherpen, Joachim Denil, and Hans Vangheluwe

Abstract Model-based System Engineering (MBSE) is a methodology that uses models throughout the engi-
neering to replace the paper-based approach of communication among stakeholders. Multi-ParadigmModelling
(MPM) is at the core of this engineering approach as for each phase in the engineering process the most appro-
priate models at the most appropriate levels of abstraction is used. A design process includes a set of activities
in which the design decisions or evaluations of the (sub-) system properties are done. Furthermore, the design
artifacts are transformed by the design activities. We can define transformations as the manipulation of a model
with a specific purpose. MPM approaches do not have a standard way of representing processes. A process
model for MPM should focus on the languages, model instances and transformations between these models at
different levels of abstraction. In this chapter, we propose the Formalism Transformation Graph and Process
Model (FTG+PM) as a standard representation of MPM processes. The described process can be simulated for
analysis and orchestration, as a set of (automatic) transformations.

Learning Objectives

After reading this chapter, we expect you to be able to:

• Understand why modelling the design process is of importance.
• Represent the MPM processes using the Formalism Transformation Graph and Process Model (FTG+PM).
• Reason on the orchestration of a modelled design process to support the designers.

9.1 Introduction

To tackle the increasing complexity of today’s systems, engineers already practice a Model-Based Systems
Engineering (MBSE) methodology [95]. In MBSE, models are used to support requirements engineering,
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design, verification, and validation activities of a system beginning in the conceptual design phase and contin-
uing throughout development and later life cycle phases [153]. While these models often operate at different
abstraction levels, model transformations are applied to manipulate models between different appropriate rep-
resentations. They are typically used for code synthesis, integration, analysis, simulation, and optimization
purposes. Multi-Paradigm Modelling (MPM) as a method consolidates these modelling methods and tech-
niques, encouraging engineers to model each aspect of the system explicitly at the most appropriate level(s) of
abstraction using the most appropriate formalism(s) [212].

While engineering a system, a design process is followed, in which a set of design activities are executed
in a well-defined order. In each design activity a set of design artifacts are consumed and/or produced. These
design artifacts explicitly model the informed design decisions taken by the engineers or the evaluations done
by the engineer. As such, they can also be regarded as model transformations where information in a set of input
models is consumed to produce a set of output models.

Although this series of design activities should result in an operational system that meets the predefined set
of requirements, MPM approaches do not have a standard way of representing the process. This is in spite of
the many advantages that the explicit modelling of the development process can offer, such as optimization,
consistency analysis, time and risk analysis, etc. Generally, having well defined processes reduces the risk of
failing a design project, as we can explicitly reason on problems that have to be overcome in the design of a
system [143].

In this chapter, we propose the Formalism Transformation Graph and ProcessModel (FTG+PM) as a standard
representation of MPM processes. As its name implies, it consists of two (related) parts: (a) the FTG where the
focus is on the languages and transformations used throughout the process and (b) the flow of design activities
and design artifacts. As tool-support is crucial in the MBSE (and MPM) life-cycle, we demonstrate how the
orchestration of a modelled design process can support designers by scheduling transformations.

9.2 Model-based Systems Engineering

Document-centric approaches used to be at the core of communicating design choices between different engi-
neers. However, as systems steadily enlarge in size, number of components, and features offered to the user, this
is no longer appropriate. The added systems’ complexity leads to an increase in the development time, number
of errors, and development cost. As such, model-based systems engineering (MBSE) approaches have gained
momentum to mend these shortcomings [95]. In MBSE, models are used as an integral part of the technical
baseline of the system under design. This includes models in different development phases of a capability,
system, and/or product [76].

MBSE is an engineering methodology in which the domain models and modeling techniques are used as
the primary means of information exchange between engineers, rather than on document-based information
exchange. The MBSE approach was outlined and popularized by INCOSE when it kicked off its MBSE
initiative in January 2007 [154]. It focuses on distributed but integrated model management and the main goal is
to increase the productivity and reducing the risk, by minimizing unnecessary manual transcription of concepts
when coordinating the work of large teams. MBSE methodology provides several advantages:

• System Engineers focus on the technicalities of the problem rather than document structure
• Diagrammatic descriptions are often less ambiguous than textural descriptions
• Greater consistency across related documents
• Dependencies are explicitly captured across stovepipes resulting in less duplication and inconsistency

The MBSE methodology supports system requirement engineering, analysis, design, implementation, verifi-
cation, and validation activities of a system beginning in the conceptual design phase and continuing throughout
development and later life cycle phases [154]. There are a multitude of modelling techniques and approaches
that fall within MBSE. Some of them include:

• Structured Analysis and Design
• Data Flow Diagramming
• State Transition Diagramming
• Behavioural Modelling
• Entity Relationship Modelling
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• Process Modelling

Recently, the focus of MBSE is also the model execution in computer simulation experiment, to overcome
the gap between the system model and the respective simulation software. As a result, the term Modeling and
Simulation-based Systems Engineering (M&SBSE) has also been used along with MBSE [123].

The models used in an MBSE approach pave the way to tackle system complexity by providing proper
levels of abstraction where engineers make design choices or analyze the systems’ capabilities or performance.
Models operate at a similar or different levels of abstraction called horizontal and vertical abstractions, respec-
tively [124][254]. The level of abstraction can be regarded as which properties of the system under design are
taken into account in the models. Certain design approaches, such as the Model Driven Architecture (MDA)
approach, explicitly introduce such levels of abstractions: Platform-specific Modeling (PSM) level or Platform
Independent Modeling (PIM) level [166]. In this sense, the horizontal abstraction can be either among PIM
models or PSM models. While the vertical abstraction can be considered among PIM and PSM models.

Model transformations can be applied to manipulate models from one abstraction to another. They are
typically used for code synthesis, integration, analysis, simulation, and optimization purposes. By using model
transformations, models in one formalism are automatically transformed to another formalism. This allows the
possibility to benefit from the power of the target formalism, e.g. to simulate the system under design. Two types
of transformations exist, Model-to-Model (M2M) and Model-to-Text (M2T) transformations.

Multi-paradigm Modelling (MPM) consolidates the modeling methods and techniques, such as MBSE,
enabling engineers to model each aspect of the system explicitly at the most appropriate level(s) of abstraction
using the most appropriate formalism(s), while modeling the development process(es) explicitly [213].

Cyber-physical Systems (CPS) are one of the inter-disciplinary systems which require different formalisms,
levels of abstraction, tools, and viewpoints in their design and development. Therefore, they need for MPM
and MBSE techniques to deal with the complexity and available risks. Also, the evolution in the requirements
of different views during the CPS design and development needs for a MPM process management. The next
sections deals with the life-cycle and design process in MPM for complex systems such as CPSs and IoT systems
[307].

9.3 Development Lifecycle Models

As designing complex systems involves engineers from various disciplines, engineers follow a set of guidelines
to ensure that the product implements the given system requirements. The order in which the guidelines are
followed is called the design process. Inspired by the software engineering community, that has defined Software
Development Life Cycle (SDLC) models over the past decades [246]. We can distinguish four models that are
commonly used when designing complex systems: the waterfall model, the V model, the spiral model, and the
agile model. They are conceptually shown in Figure 9.1.

9.3.1 Waterfall Model

The waterfall model is typed by a sequence of design steps/activities in which a step/activity can only be started
if one deliverable from the previous step/activity is arrived, as such it is a gated process. The gate is a decision
point to define if a next phase of the project can start. The process starts by defining a set of requirements, which
are then refined to a set of technical requirements called specifications. Given these specification, engineers
reason about a high-level architecture in which the structure of the system is defined. In the detailed design
and implementation phase, the behaviour of the architectural elements is defined after which the system under
design is tested. Finally, the designed system is deployed in its intended environment. There is often feed-back
between steps/activities.

Note that the waterfall suits projects that are not subject to changes in one of the previous phases during the
process e.g. the requirement should not change during architecture design. Otherwise, the design process must
start over which may be costly in large engineering projects.
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Fig. 9.1: Conceptual overview of commonly used MBSE design processes

9.3.2 V Model

Similar to the waterfall model, the V model is typed by a sequential design process. However, the V model
distinguishes between design and verification & validation steps, respectively on the left-hand side and right-
hand side of the V model, while keeping them tightly coupled as illustrated by the horizontal dashed lines, see
Figure 9.1. While going from high-level requirements to a low-level implementation, the specifications of the
design are verified by executing acceptance tests, ranging from low-level unit tests to high-level system tests.
Ultimately, at the top of the V model, it is validated whether the system satisfies the requirements. Model-based
techniques allow engineers to front-load a large set of the V&V activities.

Although the verification steps are executed while designing the system so that late detection of imple-
mentation errors can be avoided, a changing product requirement still requires one to redesign (parts of) the
system which, again, may be costly. Nevertheless, in the context of designing (large) complex systems using a
MBSE approach, the V model is widely accepted as the industry standard for designing and testing complex
systems [95].



9 FTG+PM: Describing Engineering Processes in Multi-Paradigm Modelling 263

9.3.3 Spiral Model

Using an iterative design process, spiral model avoid these (costly) redesign by repeatedly going through four
design phases: Requirements and specification election, risk analysis, design, and testing and deployment. In the
first iteration, preliminary requirements and specifications are elected so that the first prototype of the system
can be designed, tested and deployed.

In subsequent iterations, requirements and specifications are added and/or become more detailed so that the
initial prototype further evolves towards the final product. During each iteration, the process is monitored such
that possible project risks (e.g. technical feasibility and project cost) can be better assessed. Although this design
model better mitigates changing requirements and design errors, one should note that an increasing number of
iterations can lead to an increasing (cumulative) project cost.

9.3.4 Agile Model

Agile design process models are typed by so called sprints (i.e. design iterations) in which a small part of
the overall system is designed, tested, and deployed. At the end of each sprint, a finalized, working, system is
delivered to the stakeholders. This differs from a spiral design approach in which a prototype might be delivered.
Moreover, the design iterations of the agile design approach are typically shorter than the ones of the spiral
design approach. Agile design processes are therefore suitable when requirements are subject to change during
the design and implementation phases, and when multidisciplinary teams need to cooperate. On the downside,
the lack of a thorough system analysis may result in a more complex and more expensive design process.

9.4 Modelling the Design Process

A process for a complex system (such as CPS) should cover different aspects of the system and should make
the different levels of abstraction clear. These levels of abstraction could be at the domain-specific design of
the computational or physical components, the verification of the system at a specific abstraction level, and/or
during deployment where different approximations can be used to obtain a better understanding of the parameters
involved. At the defined level of abstraction, it has to be clear which languages and transformations are involved
and how they are used together in the design and development process. Though, from a tool building perspective,
this definition could be too restrictive, as some activities can require manual intervention before the activity are
completed. Since tool-support is crucial in the MDE (and MPM) life-cycle, it is important that the described
process can be executed automatically. One approach to do this is by means of a set of transformations scheduled
after each other.

The process model has to act as a guide for the design, verification and deployment of the system. This means
that the design of a large set of applications has to be described using the modelling language. The language
should focus on the constructs of MPM, mainly formalisms and transformations and how these interact with
each other. There should also be an explicit representation of control- and data-flow since the output of a single
phase in the process does not necessarily means that the produced models are the input of the next phase. This
also includes the use of control structures that allow parallel design, iterations, etc.

9.4.1 Rationale

Over the years, the process engineering community has proposed various process modelling means for software
development. Process modelling has a large research community, resulted inmanymodelling languages. Rolland
[241] gives a definition of process modelling: Process models are processes of the same nature that are classified
together into a model. Thus, a process model is a description of a process at the type level. Since the process
model is at the type level, a process is an instantiation of it. The same process model is used repeatedly for the
development of many applications and thus, has many instantiations. [241]
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Generally, a process model is used for three different goals:

• Descriptive: The models are used by an external observer to look at what happens during a process. It can
be used to improve the process.

• Prescriptive: The models define a set of rules to prescribe a desired process. If this process is followed, it
would lead to a desired outcome.

• Explanatory: The goal of an explanatory model is to explain the rationale behind the process.

9.4.2 What to model?

The process models can describe different aspects of the system development. These aspects can be divided
in four groups (see Figure 9.2), namely: Functional view, Dynamic view, Informational view and Organization
view [78].

• Functional view: This view of a process model discusses the dependencies in the functions (i.e. the trans-
formations) of the system under development. A well-known example of a modeling language employing
this perspective is data flow diagrams.

• Dynamic/Behavior view: This view focuses on the activities, actions, and tasks of the system and their
sequences. This aspect deals with the control-flow and the timing of the activities in the system.

• Informational view: This view deals with the informational entities (i.e. the data for process, activities,
artifacts, and products) which are produced or manipulated by the process. This view includes both the
structure of the informational entities and the relationships among them.

• Organisational view: This view presents the stakeholders of the system as well as who performs the process
elements in what part of the organization.

Fig. 9.2: Describing Processes

9.4.3 Reasoning about maturity

When processes are repeated multiple times, it is important to extend, evolve and mature the process models
as well. Adding more information to process models can ultimately lead to better (e.g. faster, more robust, etc.)
processes. The term maturity relates to the degree of formality and optimization of processes, from ad-hoc
practices, to formally defined steps, to managed result metrics, to active optimization of the processes.

The Capability Maturity Model (CMM1) is a methodology used to develop and refine a development process.
The model’s aim is to improve existing development processes. CMM was developed and is promoted by the
Software Engineering Institute (SEI), a research and development center sponsored by the U.S. Department of
Defense (DoD). CMM was originally developed as a tool for objectively assessing the ability of government
contractors’ processes to implement a contracted software project [303].

1 CMM is a registered service mark of Carnegie Mellon University (CMU).
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The CMM is similar to ISO 9001, one of the ISO 9000 series of standards specified by the International
Organization for Standardization (ISO). The ISO 9000 standards specify an effective quality system for man-
ufacturing and service industries; ISO 9001 deals specifically with software development and maintenance.
The main difference between the two systems lies in their respective purposes: ISO 9001 specifies a minimal
acceptable quality level for software processes, while the CMM establishes a framework for continuous process
improvement and is more explicit than the ISO standard in defining the means to be employed to that end [198].

CMM describes a five-level evolutionary path, see Figure 9.3, of increasingly organized and systematically
more mature processes. These maturity levels of processes are:

• At the ad-hoc/initial level, the processes are disorganized, even chaotic. Success is likely to depend on
individual efforts, and is not considered to be repeatable, because processes would not be sufficiently
defined and documented to allow them to be replicated.

• At the repeatable level, basic project management techniques are established, and successes could be
repeated, because the requisite processes would have been made established, defined, and documented.

• At the defined level, an organization has developed its own standard process model through greater attention
to documentation, standardization, and integration.

• At the managed/capable level, an organization monitors and controls its own processes through data
collection and analysis.

• At the optimized/efficient level, processes are constantly being improved through monitoring feedback from
current processes and introducing innovative processes to better serve the organization’s particular needs.

Fig. 9.3: Capability Maturity Model (adopted from: http://performancexpress.org/)

9.5 Activities 2.0 for modelling processes

When engineering complex system using a MBSE approach, design artifacts will be created at different levels
of abstraction within the same or between different engineering domains. A model of the design process should
make the relation between different design artifacts, and their respective abstraction level, clear. This process
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model has to act as a guide for the design, verification & validation, and implementation of the system. There
should also be an explicit representation of control- and data-flow since the output of a single phase in the
process does not necessarily means that the produced models are the input of the next phase. This also includes
the use of control structures that allow parallel design, iterations, etc.

In [194, 196, 216] a Process Model (PM) language is proposed to describe the control and data flow between
design activities. To this end, a subset of the Unified Modelling Language (UML) 2.0 activity diagrams are
used. It enables to define the process as a descriptive and prescriptive model.

An example of a PM, describing the (partial) process of generating code from a control model, is shown in
Figure 9.4.

Legend
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Fig. 9.4: Example of a Process Model (PM) for generating code from a control model

The labelled square edged rectangles represent the data objects (design artifacts) that flow throughout the
design process. In a MBSE approach, these objects corresponds to models that are consumed or produced by
design activities, represented by the labelled rectangles with rounded corners. For example, to verify the closed
loop behaviour of a control model, a model of the physical system (i.e., a plant model) is required such that
a Model-in-the-Loop (MiL) simulation can be executed. Note there the process is typed by a control flow and
a data flow represented by solid and dashed edges, respectively. Furthermore, a distinction is made between
manual and (semi-)automated activities. Finally, the join and fork Activity Diagram flow constructs, represented
in Figure 9.4 as horizontal bars, allow one to represent concurrent design activities.
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9.6 The tool perspective: Formalism Transformation Graph

In each phase of the Process Model, it has to be clear what formalisms and transformations are involved.
Corresponding to mega-model principles [19, 31, 142], the Formalism Transformation Graph (FTG) [194, 196,
216] is a language that allows one to declare those formalisms and transformations. It models the relations
between the different languages using transformations.

As can be seen in Figure 9.5, domain-specific formalisms are represented as labelled rectangles in an FTG
model.

FTG
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Transformation
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ControlModelPlantDSL

GenerateCode

SiL&PiL
Simulation

C-Code

ControlDSLModelControl

Specifications

SystemRequirements

DefineSpecifications

Trace

ModelPlant

Define
ControlArchitecture

Define
PlantArchitecture

Define
EnvironmentArchitecture

PlantArchitecture EnvironmentArchitecture ControlArchitecture

Define
EmbeddedArchitecture

EmbeddedArchitecture

ModelSim
Evnvironment

ModelSim
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Fig. 9.5: Example of a Formalism Transformation Graph (FTG) for generating code from a control model

Transformations between those formalisms are depicted as labelled circles. Similar to the ProcessModel, these
transformations can be either manual or (semi-) automated. The arrows from formalisms into transformations
describe the inputs to the transformations and the arrows from the transformations into formalisms describe
the outputs of the transformation. The FTG model is thus a graph describing the modelling languages and
the transformations statically available to the engineers of a given domain. In the example of generating code
from a control model, one can observe that a MiL Simulation is a (semi-)automated transformation from
models expressed in a control, plant, and architectural formalism to a trace model represented in its appropriate
formalism.

9.7 FTG+PM: Formalism Transformation Graph and Process Model

In the previous sections we have introduced models that enable engineers to describe their design activities, the
formalisms that are used, and the transformations that exist between formalisms. One may have noticed that
there exists a relation between the Formalism Transformation Graph and the ProcessModel. Indeed, data objects
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(i.e., models) and design activities in the PM are instances of the formalisms and transformations defined in the
FTG, respectively. These typing relations are made clear by the colon defined in the rectangles of the PM.

As such, we define the unified metamodel of the Formalism Transformation Graph and Process Model as
depicted in Figure 9.6.

Node

name: String
Activity

name: String
Object Control

Initial Final Fork Join Decision

ActivityFinal FlowFinal

* *
* *

ControlFlow DataFlow

auto: Boolean
definition: Path

Transformation

definition: Path
Language

outputs inputs

*

1
*

*

ActivityTypedBy1 *

1

*

ObjectTypedBy

FTG PM

Fig. 9.6: Formalism Transformation Graph and Process Model (FTG+PM) metamodel

On the left-hand side the FTG metamodel can be observed in which the concepts Language and Transfor-
mation are depicted. Both concepts have a definition attribute that refers to the definition of the language or
transformation. Additionally, an auto attribute defines whether the transformation is automatic or not. On the
right-hand side the metamodel of the PM language can be seen with its Activity,Object, andControl nodes. Note
the typing relation between an Activity and an Object in the PM, and an FTG Transformation and Language,
respectively.

9.7.1 Reasoning about appropriateness of formalisms and heterogeneous modelling

The formalism transformation graph can be used for much more than typing alone. The mega-model describes
the relations between different formalisms. As such, we can attach properties to formalisms and transformations.
We can query the extended FTG to look for appropriate formalisms that satisfy a set of these properties.

The same applies for giving semantics to languages. The relations between the different formalisms can be
used to define a path towards a certain analysis goal. For example, if we are interested in getting behavioral
traces, we might use a simulator that creates behavioural traces from the model. However, you could also
leverage the properties (and capabilities) of other formalisms and define another path in the FTG to create
the state trajectories. For example, if a certain formalism can apply symbolic transformations to create a more
run-time performant model, you can leverage these transformation and define a path in the FTG that goes over
this formalism. As such the different translational semantics of the formalisms can be reused. This also has
drawbacks as it is necessary to keep enough traceability information available to allow the engineer to e.g. debug
the models. Figure 9.7 shows the FTG from [292]. Here two different properties are attached to the relations:
(a) translational semantics (full line) versus simulation (dashed line) and (b) no approximation (blue) versus
allowing approximation e.g. sampling (green). The vertical dashed line in the middle shows the split between
the continuous-time domain (left) and the discrete-time domain (right).

The FTG also allows us to reason on combining different formalisms together. Multi-paradigm modelling
advocates to use the most appropriate levels of abstraction using the most appropriate formalisms. When
applying this principle to the design of complex cyber-physical systems, we have to combine both discrete
and continuous-time formalisms. The cyber-part is much more naturally described in the discrete-time domain,
while models-of-the-physics are much more naturally described in the continuous-time domain. However, to
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Fig. 9.7: Formalism Transformation Graph from [292]

evaluate the full system behaviour, we have to combine these models. Therefore, we need to reason on what it
means to combine formalisms together, and how we can achieve this.

There are three techniques available to simulate the behaviour of hybrid systems.

• Hybrid modelling: A new modelling language is created based on the formalisms and the connections
between the formalisms. The modelling language is operationalized with a simulator.

• Co-simulation: Co-simulation reasons on the combination of models by combining the state trajectories.
For this, the simulator of the different formalisms is used and orchestrated explicitly.

• Mapping to a common formalism: Finally, the different formalisms and their connection are mapped to
a common formalism. For example, In Figure 9.7 you can see that DEVS can be used as a common
formalisms to map both discrete-time and continuous-time models to. However, it also shows that there
are other possibilities, for example, Bond graphs and Causal-block diagrams can be combined using DAE
causal equations.

9.7.2 Orchestrating Processes

Orchestration of a process means that the engineers are supported in their design process. This support can
take various forms, from showing the engineers a dashboard with various metrics about the process and the
steps to follow (e.g. in [193]) to automatically setting up modelling environments, opening the correct models
and automatically saving and transforming models when possible. We assume the latter and reason about the
orchestration of a process model, more specifically an FTG+PM, in a multi-paradigm modelling environment.

The orchestration of the FTG+PM language requires that the action nodes, denoting a transformation, are
properly executed. The order of execution of these nodes is based on the mapping of the activity diagram
to coloured Petri nets. The mapping of the activity diagram to the Petri net is described in [168]. When an
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action node is encountered the action has to be executed. Depending on the state of the auto attribute in the
transformation, the framework has to:

• false: open a modelling environment containing the input model(s) in the specified language(s) and the
modelling environment of the output language

• true: automatically execute the transformation with the desired input models

For this end, the tool should be able to capture commands from the engineers, e.g. to indicatewhen the designer
is done with her/his task and the process can continue. Furthermore, the FTG part is very important as it gives
the information to the MPM environment to open a certain which modelling environment should be opened
to aid the designer. Automating the model transformations that are already defined, results in the consecutive
execution of different transformations. A multi-paradigm modelling environment, such as AToMPM [259], has
dedicated languages to execute model transformations. We can use these languages to enact the FTG+PM by
transforming the process model to such a language. Other modelling environments have similar tools available
that can be used to setup such an orchestration, e.g. [240, 145, 131].

9.8 Summary

This section discusses the use of Model-based System Engineering (MBSE) in the development life-cycle of
Cyber-Physical Systems (CPS). It focuses specifically on the design processes and transformation of paradigm
in the Multi-Paradigm Modelling (MPM) of CPSs.

Generally, MPM approaches do not have a standard way of representing processes. A process model for
MPM should focus on the languages, model instances and transformations between these models at different
levels of abstraction. These levels of abstraction could be at the domain-specific design of the computational
or physical components, the verification of the system at a high abstraction level, but also during deployment
where different approximations can be used to obtain a better understanding of the parameters involved.

In this regard, a standard representation for MPM processes of CPS is introduced called Formalism Trans-
formation Graph and Process Model (FTG+PM). The automation and tooling is crucial in MPM lifecycle and
it is key that the described process can be simulated for analysis and orchestrated to support the designers. To
support the designers, the reasoning on the orchestration of a modelled design process is elaborated.

9.9 Literature and Further Reading

The interested readers can study the following papers and books for more details. To elaborate on the develop-
ment/design processes, you can read [246] for software development life cycle models, [95] for the V model
which is widely used for MBSE, and the book in [276] for agile development process.

To investigate more on FTG+PM, you can study [194] and [196] for the use of FTG in MDE, as well as the
paper in [216] for a case study which uses FTM-PM in automotive. The background studies for FTG+PM can
be also found in multiple references [81][41][292][295][291][293][290][178][288][289].

Finally, to read more on the reasoning and orchestration using FTG+PM, you can study tthe work of István
et. al [79].

9.10 Self-Assessment

1. Create an FTG-PM for a design process or development process of a system of your choice.
2. For the development of the system indicated in exercise (1), discuss which design process is the most

appropriate?
3. Formulate the difference between waterfall and agile development processes?
4. Considering your design process in exercise (1), where is it (regarding its maturity) according to the levels

of CMM?
5. How you can combine partial differential equations with a a casual bond graphs models?
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