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Fractional calculus has performed an important role in the fields of mathematics, physics,
electronics, mechanics, and engineering in recent years. The modeling methods involving fractional
operators have been continuously generalized and enhanced, especially during the last few decades.
Many operations in physics and engineering can be defined accurately by using systems of differential
equations containing different types of fractional derivatives.

This book is a result of the contributions of scientists involved in the special collection of articles
organized by the journal Fractal and Fractional (MDPI), most of which have been published at the end
of 2017 and the beginning 2018. In accordance with the initial idea of a Special Issue, the best published
have now been consolidated into this book.

The articles included span a broad area of applications of fractional calculus and demonstrate the
feasibility of the non-integer differentiation and integration approach in modeling directly related to
pertinent problems in science and engineering. It is worth mentioning some principle results from
the collected articles, now presented as book chapters, which make this book a contemporary and
interesting read for a wide audience:

The fractional velocity concept developed by Prodanov [1] is demonstrated as tool to characterize
Hölder and in particular, singular functions. Fractional velocities are defined as limits of the difference
quotients of a fractional power and they generalize the local notion of a derivative. On the other
hand, their properties contrast some of the usual properties of derivatives. One of the most peculiar
properties of these operators is that the set of their nontrivial values is disconnected. This can be used,
for example, to model instantaneous interactions, such as Langevin dynamics. In this context, the local
fractional derivatives and the equivalent fractional velocities have several distinct properties compared
to integer-order derivatives.

The classical pantograph equation and its generalizations, including fractional order and higher
order cases, is developed by Bhalekar and Patade [2]. The special functions are obtained from the series
solution of these equations. Different properties of these special functions are established, andtheir
relations with other functions are developed.

The new direction in fractional calculus involving nonsingular memory kernels, developed in the
last three years following the seminar articles of Caputo and Fabrizio in 2015 [3], is hot research topic.
Two studies in the collection clearly demonstrate two principle directions: operators with nonsingular
exponential kernels, i.e., the so-called Caputo-Fabrizio derivatives [4,5] (Hristov, 2016, Chapter 10),
and operators with nonsingular memory kernels based on the Mittag-Leffler function [6,7] (Atangana,
Baleanu, 2016; Baleanu, Fennandez, 2018).

Yavuz and Ozdemir [8] demonstrate a novel approximate-analytical solution method, called the
Laplace homotopy analysis method (LHAM), using the Caputo-Fabrizio (CF) fractional derivative
operator based on the exponential kernel. The recommended method is obtained by combining Laplace
transform (LT) and the homotopy analysis method (HAM). This study considers the application of
LHAM to obtain solutions of the fractional Black-Scholes equations (FBSEs) with the Caputo-Fabrizio
(CF) fractional derivative and appropriate initial conditions. The authors demonstrate the efficiencies
and accuracies of the suggested method by applying it to the FBS option pricing models with their
initial conditions satisfied by the classical European vanilla option. Using real market values from
finance literature, it is demonstrated how the option is priced for fractional cases of European call option
pricing models. Moreover, the proposed fractional model allows modeling of the price of different
financial derivatives such as swaps, warrant, etc., in complete agreement with the corresponding
exact solutions.



viii

In light of new fractional operators, Gomez-Aguilar and Atangana [9] present alternative
representations of the Freedman model considering Liouville-Caputo and Atangana-Baleanu-Caputo
fractional derivatives. The solutions of these alternative models are obtained using an iterative scheme
based on the Laplace transform and the Sumudu transform. Moreover, special solutions via the
Adams-Moulton rule are obtained for both fractional derivatives.

In light of certain applied problems, the thermal control of complex thermal interfaces and heat
conduction are principle issues to which classical fractional calculus is widely applicable. The control of
thermal interfaces has gained importance in recent years because of the high cost of heating and cooling
materials in many applications. The main focus in the work of Moreau et al. [10] is to compare the
second and third generations of the CRONE controller (French acronym of Commande Robusted’Ordre
Non Entier) in the control of a non-integer plant by means a fractional order controller. The idea is
that, as a consequence of the fractional approach, all of the systems of integer order are replaced by
the implementation of a CRONE controller. The results reveal that the second generation CRONE
controller is robust when the variations in the plant are modeled with gain changes, whereas the phase
remains the same for all of the plants (even if not constant). However, the third generation CRONE
controller demonstrates a good, feasible robustness when the parameters of the plant are changed as
well as when both gain and phase variations are encountered.

Thermistors are part of a larger group of passive components. They are temperature-dependent
resistors and come in two varieties, negative temperature coefficients (NTCs) and positive temperature
coefficients (PTCs), although NTCs are most commonly u sed. NTC thermistors are nonlinear, and their
resistance decreases as the temperature increases. The self-heating may affect the resistance of an NTC
thermistor, and the work of Vivek et al. [11] focuses on the existence and uniqueness and Ulam-Hyers
stability types of solutions for Hilfer-type thermistor problems.

A heat conduction inverse problem of the fractional (Caputo fractional derivative) heat conduction
problem is developed by Brociek et al. [12] for porous aluminum. In this case, the Caputo
fractional derivative is employed. The direct problem is solved using a finite difference method and
approximations of Caputo derivatives, while the inverse problem, the heat transfer coefficient, thermal
conductivity coefficient, initial condition, and order of derivative are sought and the minimization
of the functional describing the error of approximate solution is carried out by the Real Ant Colony
Optimization algorithm.

Process monitoring represents an important and fundamental tool aimed at process safety and
economics while meeting environmental regulations. Lenzi et al. [13] present an interesting approach
to the quality control of different olive and soybean oil mixtures characterized by image analysis with
the aid of an RGB color system by the algebraic fractional model. The model based on the fractional
calculus-based approach could better describe the experimental dataset, presenting better results of
parameter estimation quantities, such as objective function values and parameter variance. This model
could successfully describe an independent validation sample, while the integer order model failed to
predict the value of the validation sample.

The classical Stokes’ first problem for a class of viscoelastic fluids with the generalized fractional
Maxwell constitutive model was developed by Bazhlekova and Bazhlekov [14]. The constitutive
equation is obtained from the classical Maxwell stress-strain relation by substituting the first-order
derivatives of stress and strain by derivatives of non-integer orders in the interval (0, 1). Explicit integral
representation of the solution is derived and some of its characteristics are discussed: non-negativity
and monotonicity, asymptotic behavior, analyticity, finite/infinite propagation speed, and absence of
wave front.

Summing up, this special collection presents a detailed picture of the current activity in the field
of fractional calculus with various ideas, effective solutions, new derivatives, and solutions to applied
problems. As editor, I believe that this will be continued as series of Special Issues and books released
to further explore this subject.
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Abstract: Singular functions and, in general, Hölder functions represent conceptual models of
nonlinear physical phenomena. The purpose of this survey is to demonstrate the applicability of
fractional velocities as tools to characterize Hölder and singular functions, in particular. Fractional
velocities are defined as limits of the difference quotients of a fractional power and they generalize the
local notion of a derivative. On the other hand, their properties contrast some of the usual properties
of derivatives. One of the most peculiar properties of these operators is that the set of their non
trivial values is disconnected. This can be used for example to model instantaneous interactions,
for example Langevin dynamics. Examples are given by the De Rham and Neidinger’s singular
functions, represented by limits of iterative function systems. Finally, the conditions for equivalence
with the Kolwankar-Gangal local fractional derivative are investigated.

Keywords: fractional calculus; non-differentiable functions; Hölder classes; pseudo-differential operators

MSC: Primary 26A27; Secondary 26A15, 26A33, 26A16, 47A52, 4102

1. Introduction

Non-linear and fractal physical phenomena are abundant in nature [1,2]. Examples of non-linear
phenomena can be given by the continuous time random walks resulting in fractional diffusion
equations [3], fractional conservation of mass [4] or non-linear viscoelasticity [5,6]. Such models exhibit
global dependence through the action of the nonlinear convolution operator (i.e., differ-integral).
Since this setting opposes the principle of locality there can be problems with the interpretation of
the obtained results. In most circumstances such models can be treated as asymptotic as it has been
demonstrated for the time-fractional continuous time random walk [7]. The asymptotic character of
these models leads to the realization that they describe mesoscopic behavior of the concerned systems.
The action of fractional differ-integrals on analytic functions results in Hölder functions representable
by fractional power series (see for example [8]).

Fractals are becoming essential components in the modeling and simulation of natural phenomena
encompassing many temporal or spatial scales [9]. The irregularity and self-similarity under scale
changes are the main attributes of the morphologic complexity of cells and tissues [10]. Fractal
shapes are frequently built by iteration of function systems via recursion [11,12]. In a large number
of cases, these systems leads to nowhere differentiable fractals of infinite length, which may be
unrealistic. On the other hand fractal shapes observable in natural systems typically span only several
recursion levels. This fact draws attention to one particular class of functions, called singular, which are
differentiable but for which at most points the derivative vanishes. There are fewer tools for the study
of singular functions since one of the difficulties is that for them the Fundamental Theorem of calculus
fails and hence they cannot be represented by a non-trivial differential equation.

Singular signals can be considered as toy-models for strongly-non linear phenomena, such as
turbulence or asset price dynamics. In the beginning of 1970s, Mandelbrot proposed a model of

Fractal Fract. 2018, 2, 4 1 www.mdpi.com/journal/fractalfract
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random energy dissipation in intermittent turbulence [13], which served as one of the early examples
of multifractal formalism. This model, known as canonical Mandelbrot cascades, is related to the
Richardson’s model of turbulence as noted in [14,15]. Mandelbrot’s cascade model and its variations
try to mimic the way in which energy is dissipated, i.e., the splitting of eddies and the transfer of
energy from large to small scales. There is an interesting link between multifractals and Brownian
motion [16]. One of the examples in the present paper can be related to the Mandelbrot model and the
associated binomial measure.

Mathematical descriptions of strongly non-linear phenomena necessitate relaxation of the
assumption of differentiability [17]. While this can be achieved also by fractional differ-integrals,
or by multi-scale approaches [18], the present work focuses on local descriptions in terms of limits of
difference quotients [19] and non-linear scale-space transformations [20]. The reason for this choice
is that locality provides a direct way of physical interpretation of the obtained results. In the old
literature, difference quotients of functions of fractional order have been considered at first by du
Bois-Reymond [21] and Faber [22] in their studies of the point-wise differentiability of functions. While
these initial developments followed from purely mathematical interest, later works were inspired
from physical research questions. Cherbit [19] and later on Ben Adda and Cresson [23] introduced the
notion of fractional velocity as the limit of the fractional difference quotient. Their main application
was the study of fractal phenomena and physical processes for which the instantaneous velocity was
not well defined [19].

This work will further demonstrate applications to singular functions. Examples are given by the
De Rham and Neidinger’s functions, represented by iterative function systems (IFS). The relationship
with the Mandelbrot cascade and the associated Bernoulli-Mandelbrot binomial measure is also put
into evidence. In addition, the form of the Langevin equation is examined for the requirements of
path continuity. Finally, the relationship between fractional velocities and the localized versions of
fractional derivatives in the sense of Kolwankar-Gangal will be demonstrated.

2. Fractional Variations and Fractional Velocities

The general definitions and notations are given in Appendix A. This section introduces the concept
of fractional variation and fractional velocities.

Definition 1. Define forward (backward) Fractional Variation operators of order 0 ≤ β ≤ 1 as

υ
β
ε± [ f ] (x) :=

Δ±
ε [ f ] (x)

εβ
(1)

for a positive ε.

Definition 2 (Fractional order velocity). Define the fractional velocity of fractional order β as the limit

υ
β
± f (x) := lim

ε→0

Δ±
ε [ f ](x)

εβ
= lim

ε→0
υ

β
ε± [ f ] (x) . (2)

A function for which at least one of υ
β
± f (x) exists finitely will be called β-differentiable at the point x.

The terms β-velocity and fractional velocity will be used interchangeably throughout the paper.
In the above definition we do not require upfront equality of left and right β-velocities. This amounts
to not demanding continuity of the β-velocities in advance. Instead, continuity is a property, which is
fulfilled under certain conditions. It was further established that for fractional orders fractional velocity
is continuous only if it is zero [24].

Further, the following technical conditions are important for applications.

Condition 1 (Hölder growth condition). For given x and 0 < β ≤ 1

2
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osc±ε f (x) ≤ Cεβ (C1)

for some C ≥ 0 and ε > 0.

Condition 2 (Hölder oscillation condition). For given x, 0 < β ≤ 1 and ε > 0

osc±υ
β
ε± [ f ] (x) = 0 . (C2)

The conditions for the existence of the fractional velocity were demonstrated in [24]. The main
result is repeated here for convenience.

Theorem 1 (Conditions for existence of β-velocity). For each β > 0 if υ
β
+ f (x) exists (finitely), then

f is right-Hölder continuous of order β at x and C1 holds, and the analogous result holds for υ
β
− f (x) and

left-Hölder continuity.
Conversely, if C2 holds then υ

β
± f (x) exists finitely. Moreover, C2 implies C1.

The proof is given in [24]. The essential algebraic properties of the fractional velocity are given in
Appendix B. Fractional velocities provide a local way of approximating the growth of Hölder functions
in the following way.

Proposition 1 (Fractional Taylor-Lagrange property). The existence of υ
β
± f (x) �= 0 for β ≤ 1 implies that

f (x ± ε) = f (x)± υ
β
± f (x) εβ + O

(
εβ
)

. (3)

While if
f (x ± ε) = f (x)± Kεβ + γε εβ

uniformly in the interval x ∈ [x, x + ε] for some Cauchy sequence γε = O (1) and K �= 0 is constant in ε then
υ

β
± f (x) = K.

The proof is given in [24].

Remark 1. The fractional Taylor-Lagrange property was assumed and applied to establish a fractional
conservation of mass formula in ([4], Section 4) assuming the existence of a fractional Taylor expansion
according to Odibat and Shawagfeh [25]. These authors derived fractional Taylor series development using
repeated application of Caputo’s fractional derivative [25].

The Hölder growth property can be generalized further into the concept of F-analytic functions
(see Appendix A for definition). An F-analytic function can be characterized up to the leading fractional
order in terms of its α-differentiability.

Proposition 2. Suppose that f ∈ F E in the interval I = [x, x + ε]. Then υα
± f (x) exists finitely for α ∈ [0, minE].

Proof. The proof follows directly from Proposition 1 observing that

∑
αj∈E\{α1}

aj(x − bj) = O
(
|x − bj|α1

)
so that using the notation in Definition A4

υ
α1
+ f (x) = a1, υα1

− f (x) = 0

3
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Remark 2. From the proof of the proposition one can also see the fundamental asymmetry between the forward
and backward fractional velocities. A way to combine this is to define a complex mapping

υ
β
C f (x) := υ

β
+ f (x) + υ

β
− f (x)± i

(
υ

β
+ f (x)− υ

β
− f (x)

)
which is related to the approach taken by Nottale [17] by using complexified velocity operators. However,
such unified treatment will not be pursued in this work.

3. Characterization of Singular Functions

3.1. Scale Embedding of Fractional Velocities

As demonstrated previously, the fractional velocity has only “few” non-zero values [24,26].
Therefore, it is useful to discriminate the set of arguments where the fractional velocity does not vanish.

Definition 3. The set of points where the fractional velocity exists finitely and υ
β
± f (x) �= 0 will be denoted as

the set of change χ
β
±( f ) :=

{
x : υ

β
± f (x) �= 0

}
.

Since the set of change χα
+( f ) is totally disconnected [24] some of the useful properties of ordinary

derivatives, notably the continuity and the semi-group composition property, are lost. Therefore, if we
wish to retain the continuity of description we need to pursue a different approach, which should be
equivalent in limit. Moreover, we can treat the fractional order of differentiability (which coincides
with the point-wise Hölder exponent, that is Condition C1) as a parameter to be determined from the
functional expression.

One can define two types of scale-dependent operators for a wide variety if physical signals.
An extreme case of such signals are the singular functions

Since for a singular signal the derivative either vanishes or it diverges then the rate of change for
such signals cannot be characterized in terms of derivatives. One could apply to such signals either the
fractal variation operators of certain order or the difference quotients as Nottale does and avoid taking
the limit. Alternately, as will be demonstrated further, the scale embedding approach can be used to
reach the same goal.

Singular functions can arise as point-wise limits of continuously differentiable ones. Since the
fractional velocity of a continuously-differentiable function vanishes we are lead to postpone taking
the limit and only apply L’Hôpital’s rule, which under the hypotheses detailed further will reach the
same limit as ε → 0. Therefore, we are set to introduce another pair of operators which in limit are
equivalent to the fractional velocities notably these are the left (resp. right) scale velocity operators:

Sβ
ε± [ f ] (x) :=

εβ

{β}1

∂

∂ε
f (x ± ε) (4)

where {β}1 ≡ 1 − β mod 1. The ε parameter, which is not necessarily small, represents the scale
of observation.

The equivalence in limit is guaranteed by the following result:

Proposition 3. Let f ′(x) be continuous and non-vanishing in I = (x, x ± μ). That is f ∈ AC[I]. Then

lim
ε→0

υ
1−β
ε± [ f ] (x) = lim

ε→0
Sβ

ε± [ f ] (x)

if one of the limits exits.

The proof is given in [20] and will not be repeated. In this formulation the value of 1 − β can be
considered as the magnitude of deviation from linearity (or differentiability) of the signal at that point.

4
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Theorem 2 (Scale velocity fixed point). Suppose that f ∈ BVC[x, x + ε] and f ′ does not vanish a.e.
in [x, x + ε]. Suppose that φ ∈ C 1 is a contraction map. Let fn(x) := φ ◦ . . . φ︸ ︷︷ ︸

n

◦ f (x) be the n-fold composition

and F(x) := lim
n→∞

fn(x) exists finitely. Then the following commuting diagram holds:

fn(x) S1−β
ε± [ fn] (x)

F(x) υ
β
±F (x)

S1−β
ε±

limn→∞ limn→∞εn

υ
β
±

The limit in n is taken point-wise.

Proof. The proof follows by induction. Only the forward case will be proven. The backward case
follows by reflection of the function argument. Consider an arbitrary n and an interval I = [x, x + ε].
By differentiability of the map φ

υ
β
+ fn (x) =

(
∂φ

∂ f

)n
υ

β
+ f (x)

Then by hypothesis f ′(x) exists finitely a.e. in I so that

υ
β
+ f (x) =

1
β

lim
ε→0

ε1−β f ′(x + ε)

so that

υ
β
+ fn (x) =

1
β

(
∂φ

∂ f

)n
lim
ε→0

ε1−β f ′(x + ε)

On the other hand

S1−β
ε+ [ fn] (x) =

1
β

(
∂φ

∂ f

)n
ε1−β f ′(x + ε)

Therefore, if the RHS limits exist they are the same. Therefore, the equality is asserted for all n.
Suppose that υ

β
+F (x) exists finitely.

Since φ is a contraction and F(x) is its fixed point then by Banach fixed point theorem there is
a Lipschitz constant q < 1 such that

|F(x + ε)− fn(x + ε)|︸ ︷︷ ︸
A

≤ qn

1 − q
|φ ◦ f (x + ε)− f (x + ε)|

|F(x)− fn(x)|︸ ︷︷ ︸
B

≤ qn

1 − q
|φ ◦ f (x)− f (x)|

Then by the triangle inequality

|Δ+
ε [F] (x)− Δ+

ε [ fn] (x) | ≤ A + B ≤ qn

1 − q
(|φ ◦ f (x + ε)− f (x + ε)|+ |φ ◦ f (x)− f (x)|) ≤ qnL

for some L. Then
|υβ

ε+ [F] (x)− υ
β
ε+ [ fn] (x) | ≤ qnL

εβ

We evaluate ε = qn/λ for some λ ≥ 1 so that

|υβ
ε+ [F] (x)− υ

β
ε+ [ fn] (x) | ≤ qn(1−β)Lλβ =: μn

5
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Therefore, in limit RHS lim
n→∞

μn = 0. Therefore,

lim
n→∞

υ
β
ε+ [ fn] (x) = υ

β
+F (x) | εn → 0

Therefore, by continuity of μn in the λ variable the claim follows.

So stated, the theorem holds also for sets of maps φk acting in sequence as they can be identified
with an action of a single map.

Corollary 1. Let Φ = {φk}, where the domains of φk are disjoint and the hypotheses of Theorem 2 hold.
Then Theorem 2 holds for Φ.

Corollary 2. Under the hypotheses of Theorem 2 for f ∈ H α and ∂φ
∂ f > 1 there is a Cauchy null sequence

{ε}∞
k , such that

lim
n→∞

S1−α
εn± fn(x) = υα

± f (x)

This sequence will be named scale–regularizing sequence.

Proof. In the proof of the theorem it was established that

S1−α
ε+ [ fn] (x) =

1
β

(
∂φ

∂ f

)n
ε1−α f ′(x + ε)

Then we can identify

εn = ±ε

/∣∣∣∣∂φ

∂ f

∣∣∣∣n/(1−α)

for some ε < 1 so that
S1−α

ε+ [ fn] (x) = S1−α
εn [ f ](x)

Then since ∂φ
∂ f > 1 we have εn+1 < εn < 1. Therefore, {εk}k is a Cauchy sequence. Further,

the RHS limit evaluates to (omitting n for simplicity)

lim
ε→0

S1−α
ε± [ f ] (x) =

1
α

lim
ε→0

ε1−α f ′(x ± ε) = υα
± f (x)

The backward case can be proven by identical reasoning.

Therefore, we can identify the Lipschitz constant q by the properties of the contraction maps as
will be demonstrated in the following examples.

3.2. Applications

3.2.1. De Rham Function

De Rham’s function arises in several applications. Lomnicki and Ulan [27] have given a probabilistic
construction. In a an imaginary experiment of flipping a possibly “unfair” coin with probability a of
heads (and 1 − a of tails). Then Ra(x) = P {t ≤ x} after infinitely many trials where t is the record of
the trials.

Mandelbrot [13] introduces a multiplicative cascade, describing energy dissipation in turbulance,
which is related to the increments of the De Rham’s function.

The function can be defined in different ways [22,28,29]. One way to define the De Rham’s function
is as the unique solutions of the functional equations

6
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Ra(x) :=

{
aRa(2x), 0 ≤ x < 1

2

(1 − a)Ra(2x − 1) + a, 1
2 ≤ x ≤ 1

and boundary values Ra(0) = 0, Ra(1) = 1. The function is strictly increasing and singular. Its scaling
properties and additional functional equations are described in [30].

In another re-parametrization the defining functional equations become

Ra(x) = aRa(2x)

Ra(x + 1/2) = (1 − a)Ra(2x) + a

In addition, there is a symmetry with respect to inversion about 1.

Ra(x) = 1 − R1−a(1 − x)

De Rham’s function is also known under several different names—“Lebesgue’s singular function”
or “Salem’s singular function”.

De Rham’s function can be re-parametrized on the basis of the point-wise Hölder exponent [20].
Then it is the fixed point of the following IFS:

rn(x, α) :=

⎧⎪⎨⎪⎩
xα, n = 0
1

2α rn−1(2 x, α), 0 ≤ x < 1
2

(1 − 1
2α )rn−1(2 x − 1, α) + 1

2α , 1
2 ≤ x ≤ 1

provided that a = 1/2α, a ≥ 1/2. For the case a ≤ 1/2 the parametrization corresponding to the
original IFS is α = − log2 (1 − a). The IFS converges point-wise to Rα(x) = lim

n→∞
rn(x, α).

Formal calculation shows that

υ
β
+rn(x, α) :=

{
2β−αυ

β
+rn−1(2 x, α), 0 ≤ x < 1

2
(2α − 1)2β−αυ

β
+rn−1(2 x − 1, α), 1

2 ≤ x ≤ 1

Therefore, for β < α the fractional velocity vanishes, while for β > α it diverges. We further
demonstrate its existence for β = α. For this case formally

υα
+rn(x, α) :=

{
υα
+rn−1(2 x, α), 0 ≤ x < 1

2
(2α − 1)υα

+rn−1(2 x − 1, α), 1
2 ≤ x ≤ 1

and υa
+r0(x, α) = 1(x = 0).

The same result can be reached using scaling arguments. We can discern two cases.
Case 1, x ≤ 1/2 : Then application of the scale operator leads to :

S1−α
ε+ [rn] (x, α) =

21−αε1−α

α

∂

∂ε
rn−1(2x + 2ε, α)

Therefore, the pre-factor will remain scale invariant for ε = 1/2 and consecutively εn = 1
2n so that

we identify a scale-regularizing Cauchy sequence so that f (x) = xa is verified and υα
+Ra(0) = 1.

Case 2, x > 1/2: In a similar way :

S1−α
ε+ [rn] (x, α) =

21−αε1−α

α
(2α − 1)

∂

∂ε
rn−1(2x + 2ε − 1, α)

Applying the same sequence results in a factor 2a − 1 ≤ 1. Therefore, the resulting transformation
is a contraction.

7
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Finally, we observe that if x = 0.d1 . . . dn is in binary representation then the number of occurrences
of Case 2 corresponds to the number of occurrences of the digit 1 in the binary notation (see below).

The calculation can be summarized in the following proposition:

Proposition 4. Let Q2 denote the set of dyadic rationals. Let sn =
n
∑

k=1
dk denote the sum of the digits for the

number x = 0.d1 . . . dn, d ∈ {0, 1} in binary representation, then

υα
+Ra (x) =

{ (
2β − 1

)sn , x ∈ Q2

0, x /∈ Q2

for α = −log2a, a > 1
2 . For α < −log2a υα

+Ra (x) = 0.

3.2.2. Bernoulli-Mandelbrot Binomial Measure

The binomial Mandlebrot measure ma is constructed as follows. Let Tn be the complete partition of
dyadic intervals of the n-th generation on T0 := [0, 1). In addition, let’s assume the generative scheme

Tn �→ (T L
n+1, T R

n+1)

where the interval Tn =
[

xn, xn +
1

2n

)
is split into a left and right children such that

T L
n+1

⋃
T R

n+1 = Tn, T L
n+1

⋂
T R

n+1 = ∅.

Let

T L
n+1 =

[
xL

n , xL
n+1 +

1
2n+1

)
, T R

n+1 =

[
xR

n , xR
n+1 +

1
2n+1

)
.

Then define the measure ma recursively as follows:

ma(T L
n+1) = a ma(Tn),

ma(T R
n+1) = (1 − a) ma(Tn),

ma(T0) = 1.

The construction is presented in the diagram below:

1

a

a2

...

an an−1(1 − a)

...

a(1 − a)

...
...

1 − a

a(1 − a)

...
...

(1 − a)2

...
...

a(1 − a)n−1 (1 − a)n ma(Tn)

...

ma(T2)

ma(T1)

ma(T0)

Therefore,

xL
n+1 +

1
2n+1 = xR

n+1

so that all xn ∈ Q2.

8
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To elucidate the link to the Mandlebrot measure we turn to the arithmetic representation of the
De Rham function. That is, consider x = 0.d1 . . . dn, d ∈ {0, 1} under the convention that for a dyadic
rational the representation terminates. Then according to Lomnicki and Ulam [27]

Ra(x) =
n

∑
k=1

dkak−sn+1(1 − a)sn−1 , sn =
n

∑
k=1

dk

Consider the increment of Ra(x) for ε = 1/2n+1. If x = 0.d1 . . . dn then x + 1/2n+1 = 0.d1 . . . dn1
so that

D(x) := Ra

(
x + 1/2n+1

)
− Ra (x) = an+1−sn(1 − a)sn = an+1 (1/a − 1)sn .

From this it is apparent that

D(x) = aD(2x), x < 1/2 D(x) = (1 − a)D(2x − 1), x ≥ 1/2

Therefore, we can identify D(x) = ma(T ) for x ∈ T .
On the other hand, for a = 1/2α

υα
ε+ [Ra] (x) =

D(x)
1/2(n+1)α

= 2(n+1)αma(Tn+1)

for x ∈ Tn+1.

Remark 3. It should be noted that based on the symmetry equation

υα
+Ra (x) = υα

−Ra (1 − x)

so that υα
+Ra (x) �= υα

−Ra (x) for α �= 1 so that the measure ma does not have a density in agreement with
Marstrand’s theorem.

3.2.3. Neidinger Function

Neidinger introduces a novel strictly singular function [31], which he called fair-bold gambling
function. The function is based on De Rham’s construction. The Neidinger’s function is defined as the
limit of the system

Nn(x, a) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
x, n = 0

a ← 1 − a

aNn−1(2x, 1 − a), 0 ≤ x < 1
2

(1 − a) Nn−1(2x − 1, 1 − a) + a, 1
2 ≤ x ≤ 1

In other words the parameter a alternates for every recursion step but is not passed on the next
function call (see Figure 1).

We can exercise a similar calculation again starting from r0(x, a) = xa. Then

υ
β
+rn(x, a) :=

⎧⎪⎨⎪⎩
a ← 1 − a, n even
a2βυ

β
+rn−1(2 x, a), 0 ≤ x < 1

2
(1 − a)2βυ

β
+rn−1(2 x − 1, a), 1

2 ≤ x ≤ 1

Therefore, either a = 1/2β or 1 − a = 1/2β so that υa
+r0(x, a) = 1(x = 0). The velocity can be

computed algorithmically to arbitrary precision (Figure 2).

9
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Figure 1. Recursive construction of the Neidinger’s function; iteration levels 2, 4, 8.

Figure 2. Approximation of the fractional velocity of Neidinger’s function. Recursive construction
of the fractional velocity for β = 1/3 (top) and β = 1/2 (bottom), iteration level 9. The Neidinger’s
function IFS are given for comparison for the same iteration level.

10
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3.2.4. Langevin Evolution

Consider a non-linear problem, where the continuous phase-space trajectory of a system is
represented by a F-analytic function x(t) and t is a real-valued parameter, for example time or
curve length. That is, suppose that a generalized Langevin equation holds uniformly in [t, t + ε]

for measurable functions a,B :

Δ+
ε [x] (t) = a(x, t)ε + B(x, t)εβ + O (ε) , β ≤ 1

The form of the equation depends critically on the assumption of continuity of the reconstructed
trajectory. This in turn demands for the fluctuations of the fractional term to be discontinuous.
The proof technique is introduced in [24], while the argument is similar to the one presented in [32].

By hypothesis ∃K, such that |ΔεX| ≤ Kεβ and x(t) is H β . Therefore, without loss of generality
we can set a = 0 and apply the argument from [24]. Fix the interval [t, t + ε] and choose a partition of
points {tk = t + k/Nε} for an integral N.

xtk = xtk−1 + B(xtk−1 , tk−1) (ε/N)β + O
(

εβ
)

where we have set xtk ≡ x(tk). Therefore,

Δεx =
1

Nβ

N−1

∑
k=0

B(xtk , tk)ε
β + O

(
εβ
)

Therefore, if we suppose that B is continuous in x or t after taking limit on both sides we arrive at

lim sup
ε→0

Δεx
εβ

= B(xt, t) =
1

Nβ

N−1

∑
k=0

lim sup
ε→0

B(xtk , tk) = N1−βB(xt, t)

so that (1 − N1−β)B(x, t) = 0. Therefore, either β = 1 or B(x, t) = 0. So that B(x, t) must oscillate and
is not continuous if β < 1.

3.2.5. Brownian Motion

The presentation of this example follows [33]. However, in contrast to Zili υα
+ = υα

− is not
assumed point-wise. Consider the Brownian motion Wt. Using the stationarity and self-similarity of
the increments Δ+

ε Wt =
√

ε N(0, 1) where N(0, 1) is a Gaussian random variable. Therefore,

υα
±Wt = 0, α < 1/2

while υα
±Wt does not exist for α > 1/2 with probability P = 1. The estimate holds a.s. since

P(Δ+
ε Wt = 0) = 0. Interestingly, for α = 1/2 the velocity can be regularized to a finite value if we take

the expectation. That is
υα
+ EWt = 0

since Δ+
ε EWt = 0. Also υα

+ E|Wt| = 1.

4. Characterization of Kolwankar-Gangal Local Fractional Derivatives

The overlap of the definitions of the Cherebit’s fractional velocity and the Kolwankar-Gangal
fractional derivative is not complete [34]. Notably, Kolwankar-Gangal fractional derivatives are
sensitive to the critical local Hölder exponents, while the fractional velocities are sensitive to the critical
point-wise Hölder exponents and there is no complete equivalence between those quantities [35].
In this section we will characterize the local fractional derivatives in the sense of Kolwankar and
Gangal using the notion of fractional velocity.

11
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4.1. Fractional Integrals and Derivatives

The left Riemann-Liouville differ-integral of order β ≥ 0 is defined as

a+I
β
x f (x) =

1
Γ(β)

∫ x

a
f (t) (x − t)β−1 dt

while the right integral is defined as

−aI
β
x f (x) =

1
Γ(β)

∫ a

x
f (t) (t − x)β−1 dt

where Γ(x) is the Euler’s Gamma function (Samko et al. [36], p. 33). The left (resp. right) Riemann-
Liouville (R-L) fractional derivatives are defined as the expressions (Samko et al. [36], p. 35):

Dβ
a+ f (x) :=

d
dx a+I

1−β
x f (x) =

1
Γ(1 − β)

d
dx

∫ x

a

f (t)

(x − t)β
dt

Dβ
−a f (x) := − d

dx −aI
1−β
x f (x) = − 1

Γ(1 − β)

d
dx

∫ a

x

f (t)

(t − x)β
dt

The left (resp. right) R-L derivative of a function f exists for functions representable by fractional
integrals of order α of some Lebesgue-integrable function. This is the spirit of the definition of
Samko et al. ([36], Definition 2.3, p. 43) for the appropriate functional spaces:

Iα
a,+(L1) :=

{
f : a+Iα

x f (x) ∈ AC([a, b]), f ∈ L1([a, b]), x ∈ [a, b]
}

,

Iα
a,−(L1) :=

{
f : −aIα

x f (x) ∈ AC([a, b]), f ∈ L1([a, b]), x ∈ [a, b]
}

Here AC denotes absolute continuity on an interval in the conventional sense. Samko et al.
comment that the existence of a summable derivative f ′(x) of a function f (x) does not yet guarantee
the restoration of f (x) by the primitive in the sense of integration and go on to give references to
singular functions for which the derivative vanishes almost everywhere and yet the function is not
constant, such as for example, the De Rhams’s function [37].

To ensure restoration of the primitive by fractional integration, based on Th. 2.3 Samko et al.
introduce another space of summable fractional derivatives, for which the Fundamental Theorem of
Fractional Calculus holds.

Definition 4. Define the functional spaces of summable fractional derivatives Samko et al. ([36], Definition 2.4,
p. 44) as Eα

a,±([a, b]) :=
{

f : I1−α
a,± (L1)

}
.

In this sense
a+Iα

x (Dα
a+ f ) (x) = f (x)

for f ∈ Eα
a,+([a, b]) (Samko et al. [36], Theorem 4, p. 44). While

Dα
a+ ( a+Iα

x f ) (x) = f (x)

for f ∈ Iα
a,+(L1).

So defined spaces do not coincide. The distinction can be seen from the following example:

Example 1. Define

h(x) :=

{
0, x ≤ 0

xα−1, x > 0

12
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for 0 < α < 1. Then 0+I1−α
x h(x) = Γ(α) for x > 0 so that Dα

0+ h(x) = 0 everywhere in R .
On the other hand,

0+Iα
xh(x) =

Γ(α)
Γ(2α)

x2α−1

for x > 0 and
Γ(α)

Γ(2α)
Dα

0+x2α−1 = xα−1 .

Therefore, the fundamental theorem fails. It is easy to demonstrate that h(x) is not AC on any interval
involving 0.

Therefore, the there is an inclusion Eα
a,+ ⊂ Iα

a,+.

4.2. The Local(ized) Fractional Derivative

The definition of local fractional derivative (LFD) introduced by Kolwankar and Gangal [38] is
based on the localization of Riemann-Liouville fractional derivatives towards a particular point of
interest in a way similar to Caputo.

Definition 5. Define left LFD as

Dβ
KG+ f (x) := lim

x→a
Dβ

a+ [ f − f (a)] (x)

and right LFD as
Dβ

KG− f (x) := lim
x→a

Dβ
−a [ f (a)− f ] (x) .

Remark 4. The seminal publication defined only the left derivative. Note that the LFD is more restrictive than
the R-L derivative because the latter may not have a limit as x → a.

Ben Adda and Cresson [23] and later Chen et al. [26] claimed that the Kolwankar—Gangal
definition of local fractional derivative is equivalent to Cherbit’s definition for certain classes of functions.
On the other hand, some inaccuracies can be identified in these articles [26,34]. Since the results of
Chen et al. [26] and Ben Adda-Cresson [34] are proven under different hypotheses and notations I feel
that separate proofs of the equivalence results using the theory established so-far are in order.

Proposition 5 (LFD equivalence). Let f (x) be β-differentiable about x. Then Dβ
KG,± f (x) exists and

Dβ
KG,± f (x) = Γ(1 + β) υ

β
± f (x) .

Proof. We will assume that f (x) is non-decreasing in the interval [a, a + x]. Since x will vary, for
simplicity let’s assume that υ

β
+ f (a) ∈ χβ. Then by Proposition 1 we have

f (z) = f (a) + υ
β
+ f (a) (z − a)β + O

(
(z − a)β

)
, a ≤ z ≤ x .

Standard treatments of the fractional derivatives [8] and the changes of variables u = (t− a)/(x − a)
give the alternative Euler integral formulation

Dβ
+a f (x) =

∂

∂h

⎛⎝ h1−β

Γ(1 − β)

1∫
0

f (hu + a)− f (a)
(1 − u)β

du

⎞⎠ (5)

for h = x − a. Therefore, we can evaluate the fractional Riemann-Liouville integral as follows:

13
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h1−β

Γ(1 − β)

1∫
0

f (hu + a)− f (a)
(1 − u)β

du =
h1−β

Γ(1 − β)

1∫
0

K (hu)β + O
(
(hu)β

)
(1 − u)β

du =: I

setting conveniently K = υ
β
+ f (a). The last expression I can be evaluated in parts as

I =
h1−β

Γ(1 − β)

1∫
0

Khβuβ

(1 − u)β
du

︸ ︷︷ ︸
A

+
h1−β

Γ(1 − β)

1∫
0

O
(
(hu)β

)
(1 − u)β

du

︸ ︷︷ ︸
C

.

The first expression is recognized as the Beta integral [8]:

A =
h1−β

Γ(1 − β)
B (1 − β, 1 + β) hβK = Γ(1 + β)Kh

In order to evaluate the second expression we observe that by Proposition 1∣∣∣O ((hu)β
)∣∣∣ ≤ γ(hu)β

for a positive γ = O1. Assuming without loss of generality that f (x) is non decreasing in the interval
we have C ≤ Γ(1 + β) γh and

Dβ
a+ f (x) ≤ (K + γ) Γ(1 + β)

and the limit gives lim
x→a+

K + γ = K by the squeeze lemma and Proposition 1. Therefore, Dβ
KG+ f (a) =

Γ(1 + β)υ
β
+ f (a). On the other hand, for H r,α and α > β by the same reasoning

A =
h1−β

Γ(1 − β)
B (1 − β, 1 + α) hαK = Γ(1 + β)Kh1−β+α .

Then differentiation by h gives

A′
h =

Γ(1 + α)

Γ(1 + α − β)
Khα−β .

Therefore,

Dβ
KG+ f (x) ≤ Γ(1 + α)

Γ(1 + α − β)
(K + γ) hα−β

by monotonicity in h. Therefore, Dβ
KG± f (a) = υ

β
± f (a) = 0. Finally, for α = 1 the expression A should

be evaluated as the limit α → 1 due to divergence of the Γ function. The proof for the left LFD follows
identical reasoning, observing the backward fractional Taylor expansion property.

Proposition 6. Suppose that Dβ
KG± f (x) exists finitely and the related R-L derivative is summable in the sense

of Definition 4. Then f is β-differentiable about x and Dβ
KG,± f (x) = Γ(1 + β) υ

β
± f (x).

Proof. Suppose that f ∈ Eα
a,+([a, a + δ]) and let Dα

KG+ f (x) = L. The existence of this limit implies
the inequality

|Dα
a+ [ f − f (a)] (x)− L| < μ

for |x − a| ≤ δ and a Cauchy sequence μ.

14
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Without loss of generality suppose that Dα
a+ [ f − f (a)] (x) is non-decreasing and L �= 0.

We proceed by integrating the inequality:

a+Iα
x (Dα

a+ [ f − f (a)] (x)− L) < a+Iα
xμ

Then by the Fundamental Theorem

f (x)− f (a)− L
Γ(α)

(x − a)α <
μ(x − a)α

Γ(α)

and
f (x)− f (a)− L/Γ(α)

(x − a)α
<

μ

Γ(α)
= O (1)

which is Cauchy. Therefore, by Proposition 1 f is α-differentiable at x and Dα
KG,+ f (x) = Γ(1 +

α) υα
+ f (x). The last assertion comes from Proposition 5. The right case can be proven in a similar

manner.

The weaker condition of only point-wise Hölder continuity requires the additional hypothesis of
summability as identified in [34]. The following results can be stated.

Lemma 1. Suppose that Dβ
KG± f (a) exists finitely in the weak sense, i.e., implying only that f ∈ Iα

a,+(L1).
Then Condition C1 holds for f a.e. in the interval [a, x + ε].

Proof. The left R-L derivative can be evaluated as follows. Consider the fractional integral in the
Liouville form

I1 =

ε+x−a∫
0

f (x + ε − h)− f (a)
hβ

dh −
x−a∫
0

f (x − h)− f (a)
hβ

dh

=

ε+x−a∫
x−a

f (x + ε − h)− f (a)
hβ

dh

︸ ︷︷ ︸
I2

+

x−a∫
0

f (x + ε − h)− f (x − h)
hβ

dh

︸ ︷︷ ︸
I3

Without loss of generality assume that f is non-decreasing in the interval [a, x + ε − a] and set
My,x = sup[x,y] f − f (x) and my,x = inf[x,y] f − f (x). Then

I2 ≤
ε+x−a∫
x−a

Mx+ε,a

hβ
dh =

Mx+ε,a

1 − β

[
(x − ε + a)1−β − (x − a)

1−β
]
≤ ε

Mx+ε,a

(x − a)β
+ O

(
ε2
)

for x �= a. In a similar manner
I2 ≥ mx+ε,a

ε

(x − a)β
+ O

(
ε2
)

.

Then dividing by ε gives

mx+ε,a

(x − a)β
+ O (ε) ≤ I2

ε
≤ Mx+ε,a

(x − a)β
+ O (ε)

Therefore, the quotient limit is bounded from both sides as

mx,a

(x − a)β
≤ lim

ε→0

I2

ε︸ ︷︷ ︸
I′2

≤ Mx,a

(x − a)β
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by the continuity of f . In a similar way we establish

I3 ≤
x−a∫
0

Mx+ε,x

hβ
dh =

Mx+ε,x

1 − β
(x − a)1−β

and
mx+ε,x

1 − β
(x − a)1−β ≤ I3

Therefore,
mx+ε,x

(1 − β) ε
(x − a)1−β ≤ I3

ε
≤ Mx+ε,x

(1 − β) ε
(x − a)1−β

By the absolute continuity of the integral the quotient limit I3
ε exists as ε → 0 for almost all x.

This also implies the existence of the other two limits. Therefore, the following bond holds

m�
x+ε,x

(x − a)1−β

(1 − β)
≤ lim

ε→0

I3

ε︸ ︷︷ ︸
I′3

≤ M�
x+ε,x

(x − a)1−β

(1 − β)

where M�
x+ε,x = sup[x,x+ε] f ′ and m�

x+ε,x = inf[x,x+ε] f ′ wherever these exist. Therefore, as x approaches
a lim

x→a
I′3 = 0.

Finally, we establish the bounds of the limit

lim
x→a

mx,a

(x − a)β
≤ lim

x→a
I′2 ≤ lim

x→a

Mx,a

(x − a)β
.

Therefore, Condition C1 is necessary for the existing of the limit and hence for lim
x→a

I′ .

Based on this result, we can state a generic continuity result for LFD of fractional order.

Theorem 3 (Continuity of LFD). For 0 < β < 1 if Dβ
KG± f (x) is continuous about x then Dβ

KG± f (x) = 0.

Proof. We will prove the case for Dβ
KG+ f (x). Suppose that LFD is continuous in the interval [a, x] and

Dβ
KG+ f (a) = K �= 0. Then the conditions of Lemma 1 apply, that is f ∈ H β a.e. in [a, x]. Therefore,

without loss of generality we can assume that f ∈ H β at a. Further, we express the R-L derivative in
Euler form setting z = x − a :

Dβ
z f =

∂

∂z
z1−β

Γ(1 − β)

1∫
0

f (z (1 − t) + a)− f (a)
tβ

dt

By the monotonicity of the power function (e.g., Hölder growth property):

k1Γ(1 + β) ≤ Dβ
z f ≤ K1Γ(1 + β)

where k1 = inf[a,a+z] f − f (a) and K1 = sup[a,a+z] f − f (a). On the other hand, we can split the
integrand in two expressions for an arbitrary intermediate value z0 = λz ≤ z. This gives
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Dβ
z f =

∂

∂z
z1−β

Γ(1 − β)

1∫
0

f (z (1 − t) + a)− f (λz (1 − t) + a)
tβ

dt +

∂

∂z
z1−β

Γ(1 − β)

1∫
0

f (λz (1 − t) + a)− f (a)
tβ

dt .

Therefore, by the Hölder growth property and monotonicity in z

Dβ
z f ≤ ∂

∂z
z (1 − λ)β Γ(1 + β)K1−λ +

∂

∂z
zλβΓ(1 + β)Kλ .

where Kλ = sup[a,a+λz] f − f (a) and K1−λ = sup[a+λz,a+z] f − f (a + λz). Therefore,

k1Γ(1 + β) ≤ Dβ
z f ≤

(
(1 − λ)β K1−λ + λβKλ

)
Γ(1 + β) .

However, by the assumption of continuity k1 = Kλ = K1−λ = K as z → 0 and the non-strict
inequalities become equalities so that(

(1 − λ)β + λβ − 1
)

K = 0 .

However, if β < 1 we have contradiction since then λ = 1 or λ = 0 must hold and λ ceases
to be arbitrary. Therefore, since λ is arbitrary K = 0 must hold. The right case can be proven in a
similar manner.

Corollary 3 (Discontinuous LFD). Let χβ := {x : Dβ
KG± f (x) �= 0}. Then for 0 < β < 1 χβ is

totally disconnected.

Remark 5. This result is related to Corollary 3 in [26] however here it is established in a more general way.

4.3. Equivalent Forms of LFD

LFD can be calculated in the following way. Starting from Formula (5) for convenience we define
the integral average

Ma(h) :=
1∫

0

f (hu + a)− f (a)
(1 − u)β

du (6)

Then

Γ(1 − β)Dβ
KG+ f (a) = lim

h→0
h1−β ∂

∂h
Ma(h)︸ ︷︷ ︸

Nh

+ (1 − β) lim
h→0

Ma(h)
hβ

Then we apply L’Hôpital’s rule on the second term :

Γ(1 − β)Dβ
KG+ f (a) = lim

h→0
Nh +

1 − β

β
lim
h→0

h1−β ∂

∂h
Ma(h)︸ ︷︷ ︸

Nh

=
1
β

lim
h→0

Nh

Finally,

Dβ
KG+ f (a) =

1
β Γ(1 − β)

lim
h→0

h1−β ∂

∂h

1∫
0

f (hu + a)− f (a)
(1 − u)β

du (7)

From this equation there are two conclusions that can be drawn
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First, for f ∈ L1(a, x) by application of the definition of fractional velocity and L’Hôpital’s rule:

Dβ
KG+ f (a) =

υ
β
+Ma (0)

Γ(1 − β)
(8)

if the last limit exists. Therefore, LFD can be characterized in terms of fractional velocity. This can be
formalized in the following proposition:

Proposition 7. Suppose that f ∈ Iα
a,±(L1) for x ∈ [a, a + δ) (resp. x ∈ (a − δ, a] ) for some small δ > 0.

If υ
β
±Ma (0) exists finitely then

Dβ
KG± f (a) =

υ
β
±Ma (0)

Γ(1 − β)

where Ma(h) is given by Formula (6).

From this we see that f may not be β-differentiable at x. From this perspective LFD is a derived
concept - it is the β− velocity of the integral average.

Second, for BV functions the order of integration and parametric derivation can be exchanged
so that

Dβ
KG+ f (a) =

1
β Γ(1 − β)

lim
h→0

h1−β

1∫
0

u f ′(hu + a)
(1 − u)β

du (9)

where we demand the existence of f ′(x) a.e in (a, x), which follows from the Lebesgue differentiation
theorem. This statement can be formalized as

Proposition 8. Suppose that f ∈ BV(a, δ] for some small δ > 0. Then

Dβ
KG+ f (a) =

1
β Γ(1 − β)

lim
h→0

h1−β

1∫
0

u f ′(hu + a)
(1 − u)β

du

In the last two formulas we can also set Γ(−β) = β Γ(1 − β) by the reflection formula.
Therefore, in the conventional form for a BV function

Dβ
KG+ f (a) =

1
β Γ(1 − β)

lim
x→a+

(x − a)1−β ∂

∂x

1∫
0

f ((x − a)u + a)− f (a)
(1 − u)β

du (10)

5. Discussion

Kolwankar-Gangal local fractional derivative was introduced as tools for the study of the scaling
of physical systems and systems exhibiting fractal behavior [39]. The conditions for applicability
of the K-G fractional derivative were not specified in the seminal paper, which leaves space for
different interpretations and sometimes confusions. For example, recently Tarasov claimed that local
fractional derivatives of fractional order vanish everywhere [40]. In contrast, the results presented here
demonstrate that local fractional derivatives vanish only if they are continuous. Moreover, they are
non-zero on arbitrary dense sets of measure zero for β-differentiable functions as shown.

Another confusion is the initial claim presented in [23] that K-G fractional derivative is equivalent
to what is called here β-fractional velocity. This needed to be clarified in [26] and restricted to the more
limited functional space of summable fractional Riemann-Liouville derivatives [34].

Presented results call for a careful inspection of the claims branded under the name of “local
fractional calculus” using K-G fractional derivative. Specifically, in the implied conditions on image
function’s regularity and arguments of continuity of resulting local fractional derivative must be
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examined in all cases. For example, in another stream of literature fractional difference quotients
are defined on fractal sets, such as the Cantor’s set [41]. This is not to be confused with the original
approach of Cherebit, Kolwankar and Gangal where the topology is of the real line and the set χα is
totally disconnected.

6. Conclusions

As demonstrated here, fractional velocities can be used to characterize the set of change of
F-analytic functions. Local fractional derivatives and the equivalent fractional velocities have several
distinct properties compared to integer-order derivatives. This may induce some wrong expectations
to uninitiated reader. Some authors can even argue that these concepts are not suitable tools to deal
with non-differentiable functions. However, this view pertains only to expectations transfered from
the behavior of ordinary derivatives. On the contrary, one-sided local fractional derivatives can be
used as a tool to study local non-linear behavior of functions as demonstrated by the presented
examples. In applied problems, local fractional derivatives can be also used to derive fractional Taylor
expansions [24,42,43].
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Appendix A. General Definitions and Notations

The term function denotes a mapping f : R �→ R (or in some cases C �→ C). The notation f (x)
is used to refer to the value of the mapping at the point x. The term operator denotes the mapping
from functional expressions to functional expressions. Square brackets are used for the arguments
of operators, while round brackets are used for the arguments of functions. Dom[ f ] denotes the
domain of definition of the function f (x). The term Cauchy sequence will be always interpreted as a
null sequence.

BVC[I] will mean that the function f is continuous of bounded variation (BV) in the interval I.
AC[I] will mean that the function f is absolutely continuous in the interval I.

Definition A1. A function f (x) is called singular (SC) on the interval x ∈ [a, b], if it is (i) non-constant;
(ii) continuous; (iii) f ′(x) = 0 Lebesgue almost everywhere (i.e., the set of non-differentiability of f is of measure 0)
and (iv) f (a) �= f (b).

There are inclusions SC ⊂ BVC and AC ⊂ BVC.

Definition A2 (Asymptotic O notation). The notation O (xα) is interpreted as the convention that

lim
x→0

O (xα)

xα
= 0

for α > 0. The notation Ox will be interpreted to indicate a Cauchy-null sequence with no particular power
dependence of x.

Definition A3. We say that f is of (point-wise) Hölder class H β if for a given x there exist two positive
constants C, δ ∈ R that for an arbitrary y ∈ Dom[ f ] and given |x − y| ≤ δ fulfill the inequality | f (x)−
f (y)| ≤ C|x − y|β, where | · | denotes the norm of the argument.

Further generalization of this concept will be given by introducing the concept of F-analytic functions.
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Definition A4. Consider a countable ordered set E± = {α1 < α2 < . . .} of positive real constants α.
Then F-analytic F E is a function which is defined by the convergent (fractional) power series

F(x) := c0 + ∑
αi∈E±

ci (±x + bi)
αi

for some sets of constants {bi} and {ci}. The set E± will be denoted further as the Hölder spectrum of f (i.e., E±
f ).

Remark A1. A similar definition is used in Oldham and Spanier [8], however, there the fractional exponents
were considered to be only rational-valued for simplicity of the presented arguments. The minus sign in the
formula corresponds to reflection about a particular point of interest. Without loss of generality only the plus
sign convention is assumed.

Definition A5. Define the parametrized difference operators acting on a function f (x) as

Δ+
ε [ f ] (x) := f (x + ε)− f (x) ,

Δ−
ε [ f ] (x) := f (x)− f (x − ε)

where ε > 0. The first one we refer to as forward difference operator, the second one we refer to as backward
difference operator.

The concept of point-wise oscillation is used to characterize the set of continuity of a function.

Definition A6. Define forward oscillation and its limit as the operators

osc+ε [ f ] (x) := sup
[x,x+ε]

[ f ]− inf
[x,x+ε]

[ f ]

osc+[ f ](x) := lim
ε→0

(
sup

[x,x+ε]

− inf
[x,x+ε]

)
f = lim

ε→0
osc+ε [ f ] (x)

and backward oscillation and its limit as the operators

osc−ε [ f ] (x) := sup
[x−ε,x]

[ f ]− inf
[x−ε,x]

[ f ]

osc−[ f ](x) := lim
ε→0

(
sup

[x−ε,x]
− inf

[x−ε,x]

)
f = lim

ε→0
osc−ε [ f ] (x)

according to previously introduced notation [44].

This definitions are used to identify two conditions, which help characterize fractional derivatives
and velocities.

Appendix B. Essential Properties of Fractional Velocity

In this section we assume that the functions are BVC in the neighborhood of the point of interest.
Under this assumption we have

• Product rule

υ
β
+[ f g] (x) = υ

β
+ f (x) g(x) + υ

β
+g (x) f (x) + [ f , g]+β (x)

υ
β
−[ f g] (x) = υ

β
− f (x) g(x) + υ

β
−g (x) f (x)− [ f , g]−β (x)
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• Quotient rule

υ
β
+[ f /g] (x) =

υ
β
+ f (x) g(x)− υ

β
+g (x) f (x)− [ f , g]+β

g2(x)

υ
β
−[ f /g] (x) =

υ
β
− f (x) g(x)− υ

β
−g (x) f (x) + [ f , g]−β

g2(x)

where
[ f , g]±β (x) := lim

ε→0
υ

β/2
ε± [ f g] (x)

wherever the limit exists finitely.
For compositions of functions

• f ∈ H β and g ∈ C 1

υ
β
+ f ◦ g (x) = υ

β
+ f (g)

(
g′(x)

)β

υ
β
− f ◦ g (x) = υ

β
− f (g)

(
g′(x)

)β

• f ∈ C 1 and g ∈ H β

υ
β
+ f ◦ g (x) = f ′(g) υ

β
+g (x)

υ
β
− f ◦ g (x) = f ′(g) υ

β
−g (x)

Reflection formula
For f (x) + f (a − x) = b

υ
β
+ f (x) = υ

β
− f (a − x)

Basic evaluation formula for absolutely continuous function [44]:

υ
β
± f (x) =

1
β

lim
ε→0

ε1−β f ′(x ± ε)
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1. Introduction

Ordinary differential equations (ODE) are widely used by researchers to model various natural
systems. However, it is observed that such equations cannot model the actual behavior of the system.
Since the ordinary derivative is a local operator, it cannot model the memory and hereditary properties
in real-life phenomena. Such phenomena can be modeled in a more accurate way by introducing some
nonlocal component, e.g., delay in it.

The characteristic equation of delay differential equations (DDE) is a transcendental equation in
contrast with the polynomial in the case of ODE. Hence, the DDEs are difficult to analyze as compared
with ODEs.

Various special functions viz. exponential, sine, cosine, hypergeometric, Mittag-Leffler and
gamma are obtained from ODEs [1]. If the equations have variable coefficients, then we may get the
Legendre polynomial, the Laguerre polynomial, Bessel functions, and so on [2]. However, there are
vary few papers that are devoted to the special functions arising in DDEs [3]. This motivates us to
work on the special functions emerging from the solution of DDE with proportional delay. We analyze
different properties of such special functions and present the relationship with other functions.

2. Preliminaries

Definition 1 ([4]). Gaussian binomial coefficients are defined by:

(
n
r

)
q
=

⎧⎨⎩
(1−qn)(1−qn−1)···(1−qn−r+1)

(1−q)(1−q2)···(1−qr)
if r ≤ n

0 if r > n,
(1)

where with | q |< 1.

Definition 2 ([5]). The Riemann–Liouville integral of order μ, μ > 0 is given by:

Iμ f (t) =
1

Γ(μ)

∫ t

0
(t − τ)μ−1 f (τ)dτ, t > 0. (2)
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Definition 3 ([5]). The Caputo fractional derivative of f is defined as:

Dμ f (t) =
dm

dtm f (t), μ = m

= Im−μ dm

dtm f (t), m − 1 < μ < m, m ∈ N. (3)

Definition 4 ([6]). Two special functions are said to be contiguous if their parameters differ by integers.
The relations made by contiguous functions are said to be contiguous function relations.

Theorem 1 ([7]). (Existence and uniqueness theorem)
Let X be a Banach space and J = [0, T]. If f : J × X × X → X is continuous and there exists a positive
constant L > 0, such that || f (t, u, x)− f (t, v, y) ||≤ L (|| u − v || + || x − y ||), t ∈ J, u, v, x, y ∈ X and
if 4Tα L

Γ(α+1) < 1, then the fractional differential equation with proportional delay:

Dαu(t) = f (u, u(t), u(qt)) , u(0) = u0, t ∈ [0, T]

where 0 < α ≤ 1, 0 < q < 1 has a unique solution.

3. Pantograph Equation

The pantograph is a current collection device, which is used in electric trains. The mathematical
model of the pantograph is discussed by various researchers [8–11].

The differential equation:

y′(t) = ay(t) + by(qt), y(0) = 1, (4)

with proportional delay modeling these phenomena is discussed by Ockendon and Tayler in [12].
Equation (4) is called the pantograph equation. Kato and McLeod [13] showed that the problem (4)
is well-posed if q < 1. Further, the authors discussed the asymptotic properties of this equation.
The coefficients in the power series solution are obtained by using a recurrence relation.

In [14], Fox et al. showed that the solution of (4) is given by a power series:

y(t) = 1 +
∞

∑
n=1

tn

n!

n−1

∏
j=0

(
a + bqj

)
. (5)

Iserles [15] considered a generalized pantograph equation y′(t) = Ay(t) + By(qt) +

Cy′(qt), y(0) = y0, where q ∈ (0, 1). The condition for the well-posedness of the problem is given
in terms of A, B and C. The solution of the problem is expressed in the form of the Dirichlet series.
Further, the advanced pantograph equation y(n)(t) = ∑l

j=0 ∑m−1
k=0 aj,ky(k)(αjt), t ≥ 0, where aj,k ∈ C

and αj > 1 for all j = 0, 1, . . . , l, is also analyzed by Derfel and Iserles [16]. In [17], Patade and
Bhalekar discussed the pantograph equation with incommensurate delay. Various properties of the
series solution obtained are discussed.

In this paper, we write the solution (5) in the form of a special function and study its properties.
We discuss the generalization of (4) to fractional order and the higher order case, as well.

4. Special Function Generated from the Pantograph Equation

We write solution (5) in the form of following special function:

R(a, b, q, t) = 1 +
∞

∑
n=1

tn

n!

n−1

∏
j=0

(
a + bqj

)
. (6)

The notation R is used in memory of Ramanujan [18].
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Theorem 2 ([14]). If q ∈ (0, 1), then the power series:

R(a, b, q, t) = 1 +
∞

∑
n=1

tn

n!

n−1

∏
j=0

(
a + bqj

)
has an infinite radius of convergence.

Corollary 1. The power series (6) is absolutely convergent for all t, and hence, it is uniformly convergent on
any compact interval on R.

Theorem 3. For m ∈ N∪ {0}, we have:

d
dt
R(a, b, q, qmt) = aqmR(a, b, q, qmt) + bqmR(a, b, q, qm+1t).

Proof. Consider:

d
dt
R(a, b, q, qmt) =

d
dt

(
1 +

∞

∑
n=1

(qmt)n

n!

n−1

∏
j=0

(
a + bqj

))

= qm
∞

∑
n=1

(qmt)n−1

(n − 1)!

n−1

∏
j=0

(
a + bqj

)
= qm(a + b) + qm

∞

∑
n=2

(qmt)n−1

(n − 1)!

n−1

∏
j=0

(
a + bqj

)
= qm(a + b) + qm

∞

∑
n=1

(qmt)n

n!

n

∏
j=0

(
a + bqj

)
= qm(a + b) + qm

∞

∑
n=1

(qmt)n(a + bqn)

n!

n−1

∏
j=0

(
a + bqj

)

= aqm

(
1 +

∞

∑
n=1

(qmt)n

n!

n−1

∏
j=0

(
a + bqj

))

+bqm

(
1 +

∞

∑
n=1

(qm+1t)n

n!

n−1

∏
j=0

(
a + bqj

))
d
dt
R(a, b, q, qmt) = aqmR(a, b, q, qmt) + bqmR(a, b, q, qm+1t)

Hence the proof.

Theorem 4. For m ∈ N, we have:

dm

dtm R(a, b, q, t) =
m

∑
r=0

q

(
r
2

)(
m
r

)
q
am−rbrR(a, b, q, qrt).

Proof. We prove the result by using the induction hypothesis on m.
From Theorem 3, the result is true for m = 1.
Suppose,

dm−1

dtm−1 R(a, b, q, t) =
m−1

∑
r=0

q

(
r
2

)(
m − 1

r

)
q
am−(r+1)brR(a, b, q, qrt).
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Consider,

dm

dtm R(a, b, q, t) =
d
dt

(
dm−1

dtm−1 R(a, b, q, t)
)

=
d
dt

⎛⎜⎝m−1

∑
r=0

q

(
r
2

)(
m − 1

r

)
q
am−(r+1)brR(a, b, q, qrt)

⎞⎟⎠

=
m−1

∑
r=0

q

(
r
2

)(
m − 1

r

)
q
am−(r+1)br d

dt
R(a, b, q, qrt).

Using Theorem 3, we have:

dm

dtm R(a, b, q, t) =
m−1

∑
r=0

q

(
r
2

)(
m − 1

r

)
q
am−(r+1)br

(
aqrR(a, b, q, qrt) + bqrR(a, b, q, qr+1t)

)

=
m−1

∑
r=0

q

(
r
2

)
qr
(

m − 1
r

)
q
am−rbrR(a, b, q, qrt)

+
m−1

∑
k=0

q

(
k
2

)
qk
(

m − 1
k

)
q
am−(k+1)bk+1R(a, b, q, qk+1t)

=
m−1

∑
r=0

q

(
r
2

)
qr
(

m − 1
r

)
q
am−rbrR(a, b, q, qrt)

+
m

∑
k=1

q

(
k
2

)(
m − 1
k − 1

)
q
am−kbkR(a, b, q, qkt)

=
m

∑
r=0

q

(
r
2

)
qr
(

m − 1
r

)
q
am−rbrR(a, b, q, qrt)

−q

(
m
2

)
qm
(

m − 1
m

)
q
bmR(a, b, q, qmt)

+
m

∑
k=0

q

(
k
2

)(
m − 1
k − 1

)
q
am−kbkR(a, b, q, qkt)

−
(

m − 1
−1

)
q
amR(a, b, q, t)

=
m

∑
r=0

q

(
r
2

)
qr
(

m − 1
r

)
q
am−rbrR(a, b, q, qrt)

+
m

∑
k=0

q

(
k
2

)(
m − 1
k − 1

)
q
am−kbkqrR(a, b, q, qkt)

=
m

∑
r=0

q

(
r
2

) (
qr
(

m − 1
r

)
q
+

(
m − 1
r − 1

)
q

)
am−rbrR(a, b, q, qrt).
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dm

dtm R(a, b, q, t) =
m

∑
r=0

q

(
r
2

)(
m
r

)
q
am−rbrR(a, b, q, qrt),

This completes the proof.

Theorem 5. For q ∈ (0, 1), we have:

R(a, b, q, t) = 1 +
∞

∑
n=1

n

∑
r=0

q

(
r
2

)(
n
r

)
q
an−rbr tn

n!
.

Proof. We have:
R(a, b, q, t) = 1 +

∞

∑
n=1

tn

n!

n−1

∏
j=0

(
a + bqj

)
.

Using the q- binomial theorem:

n−1

∏
j=0

(
a + bqj

)
=

n

∑
r=0

q

(
r
2

)(
n
r

)
q
an−rbr, (7)

defined in [19], we obtain:

R(a, b, q, t) = 1 +
∞

∑
n=1

tn

n!

n

∑
r=0

q

(
r
2

)(
n
r

)
q
an−rbr

R(a, b, q, t) = 1 +
∞

∑
n=1

n

∑
r=0

q

(
r
2

)(
n
r

)
q
an−rbr tn

n!
.

Hence the proof.

Theorem 6. If q ∈ (0, 1), then we can express the integral of e−tR in the following series containing
q−binomial coefficients:

∫ ∞

t
e−tR(a, b, q, t)dt = Γ(1, t)

⎛⎜⎝1 +
∞

∑
n=1

n

∑
k=0

n

∑
r=0

q

(
r
2

)(
n
r

)
q
an−rbr tk

k!

⎞⎟⎠ .

Proof. Consider:

∫ ∞

t
e−tR(a, b, q, t)dt =

∫ ∞

t
e−t +

∞

∑
n=1

n−1

∏
j=0

(
a + bqj)

n!

∫ ∞

t
e−ttndt

= e−t +
∞

∑
n=1

n

∑
k=0

n−1

∏
j=0

(
a + bqj)

n!
Γ(n + 1, t)

= e−t +
∞

∑
n=1

n−1

∏
j=0

(
a + bqj)

n!
n!e−t

n

∑
k=0

tk

k!

= e−t

⎛⎜⎝1 +
∞

∑
n=1

n

∑
r=0

q

(
r
2

)(
n
r

)
q
an−rbr

n

∑
k=0

tk

k!

⎞⎟⎠
∫ ∞

t
e−tR(a, b, q, t)dt = Γ(1, t)

⎛⎜⎝1 +
∞

∑
n=1

n

∑
k=0

n

∑
r=0

q

(
r
2

)(
n
r

)
q
an−rbr tk

k!

⎞⎟⎠ .
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Theorem 7. If q ∈ (0, 1), then we have the following relation:

∫ t

0
e−tR(a, b, q, t)dt = 1 +

∞

∑
n=1

n

∑
r=0

q

(
r
2

)(
n
r

)
q
an−rbr

−Γ(1, t)

⎛⎜⎝1 +
∞

∑
n=1

n

∑
k=0

n

∑
r=0

q

(
r
2

)(
n
r

)
q
an−rbr tk

k!

⎞⎟⎠ .

Proof. Consider:

∫ t

0
e−tR(a, b, q, t)dt =

∫ t

0
e−tdt +

∞

∑
n=1

n−1

∏
j=0

(
a + bqj)

n!

∫ t

0
e−ttndt

= 1 − e−t +
∞

∑
n=1

n−1

∏
j=0

(
a + bqj)

n!
γ(n + 1, t)

= 1 − e−t +
∞

∑
n=1

n−1

∏
j=0

(
a + bqj)

n!
n!

(
1 − e−t

n

∑
k=0

tk

k!

)

= 1 +
∞

∑
n=1

n

∑
r=0

q

(
r
2

)(
n
r

)
q
an−rbr

−e−t

⎛⎜⎝1 +
∞

∑
n=1

n

∑
k=0

n

∑
r=0

q

(
r
2

)(
n
r

)
q
an−rbr tk

k!

⎞⎟⎠ (From (7))

∫ t

0
e−tR(a, b, q, t)dt = 1 +

∞

∑
n=1

n

∑
r=0

q

(
r
2

)(
n
r

)
q
an−rbr

−Γ(1, t)

⎛⎜⎝1 +
∞

∑
n=1

n

∑
k=0

n

∑
r=0

q

(
r
2

)(
n
r

)
q
an−rbr tk

k!

⎞⎟⎠ .

Theorem 8. The function R shows the following relationship with the lower incomplete gamma function γ:

∫ t

0
e−tR(a, b, q, λt)dt = γ(1, t) + λ

∞

∑
n=1

n+1

∑
m=0

n−1

∏
j=0

(
a + bqj

) λn

n!
γ(n + m + 1, t)

m!
(1 − λ)m.

Proof. We have:

∫ t

0
e−tR(a, b, q, λt)dt = 1 − e−t +

∞

∑
n=1

n−1

∏
j=0

(
a + bqj)

n!

∫ t

0
e−t(λt)ndt

= γ(1, t) +
∞

∑
n=1

n−1

∏
j=0

(
a + bqj)

n!
γ(n + 1, λt).

By using the property [20]: γ(n, λt) = λn ∑n
m=0

γ(n+m,t)
m! (1 − λ)m, we get

∫ t

0
e−tR(a, b, q, λt)dt = γ(1, t) + λ

∞

∑
n=1

n+1

∑
m=0

n−1

∏
j=0

(
a + bqj

) λn

n!
γ(n + m + 1, t)

m!
(1 − λ)m.
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Theorem 9. The following integral gives the relation between the function R and the upper incomplete gamma
function Γ:

∫ ∞

t
e−tR(a, b, q, λt)dt = Γ(1, t) + λ

∞

∑
n=1

n+1

∑
m=0

n−1

∏
j=0

(
a + bqj

) λn

n!
Γ(n + m + 1, t)

m!
(1 − λ)m.

Proof.

∫ ∞

t
e−tR(a, b, q, λt)dt = e−t +

∞

∑
n=1

n−1

∏
j=0

(
a + bqj)

n!

∫ ∞

t
e−t(λt)ndt

= Γ(1, t) +
∞

∑
n=1

n−1

∏
j=0

(
a + bqj)

n!
Γ(n + 1, λt).

By using the property [20]: Γ(n, λt) = λn ∑n
m=0

Γ(n+m,t)
m! (1 − λ)m, we obtain

∫ ∞

t
e−tR(a, b, q, λt)dt = Γ(1, t) + λ

∞

∑
n=1

n+1

∑
m=0

n−1

∏
j=0

(
a + bqj

) λn

n!
Γ(n + m + 1, t)

m!
(1 − λ)m.

5. Properties, Relations and Identities of R(a, b, q, t)

We state the following properties of R(a, b, q, t) without proof.

5.1. Properties of R(a, b, q, t)

For l, m ∈ N:

1. R (0,±bm, q, t) = R (0, 1, q,±bmt).

(a) R
(

0,±alb−m, q, t
)
= R

(
0, 1, q,±alb−mt

)
.

(b) R (0,±b−m, q, t) = R (0, 1, q,±b−mt).

2. R (am, am, q, t) = R (1, 1, q, amt).

(a) R (±a−m,±am, q, t) = R
(
1, a2m, q,±a−mt

)
.

(b) R (±am,±a−m, q, t) = R
(
1, a−2m, q,±amt

)
.

(c) R (−am, a−m, q, t) = R
(
1,−a−2m, q,−amt

)
.

(d) R (am,−a−m, q, t) = R
(
1,−a−2m, q, amt

)
.

(e) R (−a−m, am, q, t) = R
(
1,−a2m, q,−a−mt

)
.

(f) R (a−m,−am, q, t) = R
(
1,−a2m, q, a−mt

)
.

3. R
(

al , bm, q, t
)
= R

(
1, a−lbm, q, alt

)
.

(a) R
(

alb−m, bm, q, t
)
= R

(
1, a−lb2m, q, alb−mt

)
.

(b) R
(

a−lbm, bm, q, t
)
= R

(
1, al , q, a−lbmt

)
.

(c) R
(

alb−m, am, q, t
)
= R

(
1, am−lbm, q, alb−mt

)
.

(d) R
(

a−lbm, am, q, t
)
= R

(
1, al+mb−m, q, a−lbmt

)
.
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5.2. Relation to Other Functions

1. R(a, b, q, t) = 1 + ∑∞
n=1

B(t,n,1)
(n−1)! ∏n−1

j=0

(
a + bqj).

2. R(a, b, q, t) = 1 + ∑∞
n=1

B(t,n,1)
B(n,1)n! ∏n−1

j=0

(
a + bqj).

3. R(a, b, q, t) = 1 + ∑∞
n=1

It(n,1)
n! ∏n−1

j=0

(
a + bqj),

where B(t, n, 1) and It(n, 1) are the incomplete beta function and regularized incomplete beta
function [4].

5.3. Contiguous Relations of R(a, b, q, t)

1. R(a ± 1, b, q, t) = R(1, (a ± 1)−1b, q, (a ± 1)t).

2. R(a, b ± 1, q, t) = R(1, a−1(b ± 1), q, at).

3. R(a ± 1, , b ± 1, q, t) = R(1, (a ± 1)−1(b ± 1), q, (a ± 1)t).

6. Generalizations

6.1. Generalizations to Include the Fractional Order Derivative

Consider the fractional delay differential equation with proportional delay:

Dαy(t) = ay(t) + by(qt), y(0) = 1, (8)

where 0 < α ≤ 1, q ∈ (0, 1), a ∈ R and b ∈ R.

The solution of (8) is:

y(t) = 1 +
∞

∑
n=1

tαn

Γ(αn + 1)

n−1

∏
j=0

(
a + bqαj

)
. (9)

We denote the series in (9) by:

Rα(a, b, q, t) = 1 +
∞

∑
n=1

tαn

Γ(αn + 1)

n−1

∏
j=0

(
a + bqαj

)
.

Theorem 10. If q ∈ (0, 1), then the power series:

Rα(a, b, q, t) = 1 +
∞

∑
n=1

tαn

Γ(αn + 1)

n−1

∏
j=0

(
a + bqαj

)
,

is convergent for all finite values of t.

Theorem 11. For q ∈ (0, 1), a ≥ 0 and b ≥ 0, the function Rα(a, b, q, t) satisfies the following inequality:

Eα(atα) ≤ Rα(a, b, q, t) ≤ Eα((a + b)tα), 0 ≤ t < ∞.

Proof. Since q ∈ (0, 1), a ≥ 0 and b ≥ 0, we have:

n−1

∏
j=0

(
a + bqα j

)
≤ (a + b)n

⇒ tαn

Γ(αn + 1)

n−1

∏
j=0

(
a + bqαj

)
≤ tαn(a + b)n

Γ(αn + 1)
.
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Taking summation over n, we get:

Rα(a, b, q, t) ≤ Eα((a + b)tα), 0 ≤ t < ∞. (10)

Similarly, we have:

an ≤
n−1

∏
j=0

(
a + bqα j

)
⇒ Eα(atα) ≤ Rα(a, b, q, t), 0 ≤ t < ∞. (11)

From (10) and (11), we get:

Eα(atα) ≤ Rα(a, b, q, t) ≤ Eα((a + b)tα), 0 ≤ t < ∞.

The result is illustrated in Figure 1a,b.
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40
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80

y

E0.6(2t 0.6)
R0.6(2,4,0.3,t)
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(a)
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E0.8((3+5)t 0.8)

(b)

Figure 1. Bounds on Rα: (a) α = 0.6, a = 2, b = 4 and q = 0.3; (b) α = 0.8, a = 3, b = 5 and q = 0.4.

Theorem 12. For k ∈ N∪ {0}, we have:

dk

dtk Rα(a, b, q, t) =
∞

∑
n=1

tαn−k

Γ(αn − k + 1)

n−1

∏
j=0

(
a + bqαj

)
.

Theorem 13. (Addition theorem)

Rα(a, b, q, t + x) =
∞

∑
k=0

tk

k!
R(k)

α (a, b, q, x),
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where R(k)
α (a, b, q, x) = dk

dtk Rα(a, b, q, t)

Proof. We have:

Rα(a, b, q, t + x) = 1 +
∞

∑
n=1

(t + x)αn

Γ(αn + 1)

n−1

∏
j=0

(
a + bqαj

)

= 1 +
∞

∑
n=1

1
Γ(αn + 1)

(
xαn +

∞

∑
k=1

Γ(αn + 1)tkxαn−k

k!Γ(αn − k + 1)

)
n−1

∏
j=0

(
a + bqαj

)
= 1 +

∞

∑
n=1

xαn

Γ(αn + 1)

n−1

∏
j=0

(
a + bqαj

)
+

∞

∑
n=1

∞

∑
k=1

tk

k!
xαn−k

Γ(αn − k + 1)

n−1

∏
j=0

(
a + bqαj

)
= Rα(a, b, q, x) +

∞

∑
k=1

∞

∑
n=1

tk

k!
xαn−k

Γ(αn − k + 1)

n−1

∏
j=0

(
a + bqαj

)
= Rα(a, b, q, x) +

∞

∑
k=1

tk

k!

∞

∑
n=1

xαn−k

Γ(αn − k + 1)

n−1

∏
j=0

(
a + bqαj

)
= Rα(a, b, q, x) +

∞

∑
k=1

tk

k!
R(k)

α (a, b, q, x)

Rα(a, b, q, t + x) =
∞

∑
k=0

tk

k!
R(k)

α (a, b, q, x).

Properties and Relations of Rα(a, b, q, t)

We get the following analogous properties and relations as in Section 5, e.g.,

1. Rα (0,±bαm, q, t) = Rα (0, 1, q,±bαmt).

2. Rα (aαm, aαm, q, t) = Rα (1, 1, q, aαmt).

3. Rα

(
aαl , bαm, q, t

)
= Rα

(
1, a−αmbαm, q, aαl t

)
and so on.

6.2. Generalizations to the Higher Order Case

Consider the system of delay differential equation with proportional delay:

Y′(t) = AY(t) + BY(qt), Y(0) = Y0, (12)

where q ∈ (0, 1), A =
(
aij
)

n×n, B =
(
bij
)

n×n and Y =

⎡⎢⎢⎢⎢⎣
y1

y2
...

yn

⎤⎥⎥⎥⎥⎦ .

The solution of (12) is:

R(A, B, q, tI) =

(
I +

∞

∑
n=1

tn

n!

n

∏
j=1

(
A + Bqn−j

))
Y0.
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Theorem 14. If (A + Bqn) is invertible for each n, then the power series:

R(A, B, q, tI) =

(
I +

∞

∑
n=1

tn

n!

n

∏
j=1

(
A + Bqn−j

))
Y0,

where A ∈ Mn×n and B ∈ Mn×n is convergent for t ∈ R.

6.3. Properties and Relations of R(A, B, q, tI)

We get the following analogous properties and relations as in Section 5 under the condition that
A, B, A ± I and B ± I are invertible.

6.3.1. Properties of R(A, B, q, tI)

1. R (0,±Bm, q, tI) = R (0, I, q,±Bmt).

2. R (Am, Am, q, tI) = R (I, I, q, Amt), etc.

6.3.2. Contiguous Relations of R(A, B, q, tI)

1. R (A ± I, B, q, tI) = R
(

I, (A ± I)−1B, q, (A ± I)t
)
.

2. R (A, B ± I, q, tI) = R
(

I, A−1(B ± I), q, At
)
.

3. R (A ± I, , B ± I, q, tI) = R
(

I, (A ± I)−1(B ± I), q, (A ± I)t
)
.

7. Conclusions

In this article, we discussed the pantograph equation and its generalizations. The series solutions
of these equations are treated as special functions. These special functions are different from
hyper-geometric and other special functions because they are obtained as a solution of the delay
differential equation. It is observed that the m-th derivative of R can be represented as a linear
combination of R(a, b, q, qrt) for 0 ≤ r ≤ m with Gaussian binomial coefficients. The function Rα

is shown to be bounded by the Mittag-Leffler functions. We have studied different properties and
discussed some relations of these special functions. We hope that our work will encourage researchers
to dig for more properties of the special functions obtained from delay differential equations.
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Abstract: Recently, fractional differential equations (FDEs) have attracted much more attention in
modeling real-life problems. Since most FDEs do not have exact solutions, numerical solution methods
are used commonly. Therefore, in this study, we have demonstrated a novel approximate-analytical
solution method, which is called the Laplace homotopy analysis method (LHAM) using the
Caputo–Fabrizio (CF) fractional derivative operator. The recommended method is obtained by
combining Laplace transform (LT) and the homotopy analysis method (HAM). We have used the
fractional operator suggested by Caputo and Fabrizio in 2015 based on the exponential kernel. We
have considered the LHAM with this derivative in order to obtain the solutions of the fractional
Black–Scholes equations (FBSEs) with the initial conditions. In addition to this, the convergence and
stability analysis of the model have been constructed. According to the results of this study, it can be
concluded that the LHAM in the sense of the CF fractional derivative is an effective and accurate
method, which is computable in the series easily in a short time.

Keywords: fractional option pricing problem; Caputo–Fabrizio fractional derivative; homotopy
analysis method; Laplace transform

1. Introduction and Some Preliminaries

Modeling with fractional calculus has become increasingly important in recent years. During the
last few decades especially, new fractional operators, methods and algorithms have been developed
relating to mathematical modeling and simulation. Many studies have been undertaken in the
last quarter of a century on new fractional derivative operators. Fractional calculus (FC) and
numerical-approximate solution methods are extensively used in the solution of real-life problems,
such as mathematical, engineering, financial, biological and physical problems.

For example, these techniques have been used to evaluate the performance of an electrical
resistance inductance and capacitance (RLC) circuit using a new fractional operator with a local
and nonlocal kernel [1], to price fractional European vanilla-type options [2,3], to analyze a new
model of H1N1 spread [4], to model the population growth [5], to apply the homotopy analysis
method [6], the Adomian decomposition method [7,8], the homotopy perturbation method [9,10],
He’s variational iteration method in conformable derivative sense [11], the generalized differential
transform method [12], the finite difference method [13] and the multivariate Padé approximation
method [14]. Moreover, these proposed fractional techniques have been used to obtain the solution of
the optimal control problem [15], the constrained optimization problem [16], the portfolio optimization
problem [17], the diffusion-wave problem [18], etc.

In 2015, Caputo and Fabrizio developed a new fractional derivative operator built upon the
exponential function to overcome the singular kernel problem [19]. Their fractional derivative has

Fractal Fract. 2018, 2, 3 36 www.mdpi.com/journal/fractalfract
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a smooth kernel, which takes on two different representations for the temporal and spatial variable.
Atangana and Alkahtani [20] applied the CF derivative operator to the groundwater flowing within
a confined aquifer. Singh et al. [21] analyzed the ENSO model in the global climate with the CF
operator, and their simulations found out that when α tends to one, the CF derivative shows more
interesting behavior. Ali et al. [22] obtained the solution of the fractional model of Walters’-B fluid by
using CF fractional derivative. In another study, Morales-Delgado et al. [23] compared the solutions
obtained by using the CF derivative and the Liouville–Caputo derivative. Sheikh et al. [24] used the
analysis of the Atangana–Baleanu (AB) and CF for generalized Casson fluid model. Atangana and
Alkahtani [20] modeled the groundwater flowing within a confined aquifer by using the CF derivative.
Koca and Atangana [25] solved the Cattaneo–Hristov model with CF and AB operators. Also in [26–30],
the authors studied some interesting problems based on the CF fractional derivative.

Many powerful approximate-analytical methods have been presented in the finance literature,
especially in modeling the European and American option prices. For example, [9,31,32] are relatively
new approaches providing an analytical and numerical approximation to the Black–Scholes option
pricing equation. The financial system can be viewed as money, capital and derivative markets (options,
futures, forwards, swaps, etc.). Options are widely used in global financial markets. An option is a
right, but not an obligation. The most important benefit of the option is the ability to invest in large
amounts with a very small capital.

In 1973, Fisher Black and Myron Scholes [33] investigated in their study a model that can easily
compute the prices of the options. This model also can evaluate the Greeks of the options and ratio
of hedge. The Black–Scholes model that prices stock options has been applied to many different
possessions and payments. This form of the pricing model is one of the most meaningful mathematical
equations for a financial instrument. The Black–Scholes model with respect to an option can be
considered as [34,35]:

∂V
∂t

+
1
2

σ2S2 ∂2V
∂S2 + r (t) S

∂V
∂S

− r (t)V = 0, (S, t) ∈ R+ × (0, T) , (1)

where V = V (S, t) shows the vanilla-type option price at asset price S and time t. T represents the
maturity time; r (t) is the risk-free interest rate; and σ (S, t) is the volatility function of the underlying
asset. In Equation (1), we observe that V (0, t) = 0, V (S, t) ∼ S as S → ∞, and we can write payoff
functions as: Vc (S, T) = max (S − E, 0) and Vp (S, T) = max (E − S, 0) , where Vc (S, T) and Vp (S, T)
show the value of the vanilla call and put options, respectively, and E is the exercise (strike) price.
The closed form solution of Equation (1) can be obtained by using the heat equation. In order to obtain
the FBSE, we make the following conversions:

S = Eex, t = T − 2τ

σ2 , V = Eω (x, τ) .

This yields the equation:

∂αω (x, τ)

∂τα
=

∂2ω (x, τ)

∂x2 + (k − 1)
∂ω (x, τ)

∂x
− kω (x, τ) , τ > 0, x ∈ R, 0 < α ≤ 1, (2)

with initial condition:
ω (x, 0) = max (ex − 1, 0) . (3)

Equation (2) is called the Black–Scholes option pricing equation of fractional order. In Equation (2),
we define k = 2r/σ2, where k represents the balance between the interest rates’ and stock
returns’ variability.
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In addition to this, Cen and Le (2011) obtained the generalized fractional Black–Scholes equation [36]
(GFBSE) by considering r = 0.06 and σ = 0.4 (2 + sin x) in Equation (2):

∂αω

∂τα
+ 0.08 (2 + sin x)2 ∂2ω

∂x2 + 0.06x
∂ω

∂x
− 0.06ω = 0, τ > 0, x ∈ R, 0 < α ≤ 1, (4)

with the initial condition:
ω (x, 0) = max

(
x − 25e−0.06, 0

)
. (5)

When the market mechanism is given a full scope, it is concluded that the estimating effect of
the fractional Black–Scholes model would be more effective than the traditional Black–Scholes model.
For example, according to a special study [37] on China Merchants Bank, it was found that Fractional
Black–Scholes (FBS) price is bigger than the Black–Scholes (BS) price. Additionally, FBS is better than
BS, while the volatility is relatively larger (σ > 0.17). We have aimed in this study to display the
solution of fractional Black–Scholes Equations (2)–(5) using the proposed fractional derivative operator.
Furthermore, we have aimed to determine the stability analysis of the method and the effectiveness of
the CF operator using the results obtained.

Definition 1. The usual Caputo time-fractional derivative of order α is given by [19]:

Dα
t f (t) =

1
Γ (1 − α)

∫ t

a

f ′ (λ)
(t − λ)α dλ, 0 ≤ α ≤ 1, a ∈ [−∞, t) , f ∈ H1 (a, b) , b > a. (6)

By changing the kernel (t − λ)−α with the function exp
(

αt
α−1
)

and 1
Γ(1−α)

with M(α)
Γ(1−α)

, we obtain
the following new fractional time derivative named the Caputo–Fabrizio time fractional derivative.

Definition 2. The definition of the CF sense derivative is given by [19]:

CF
0 Dα

t f (t) =
M (α)

1 − α

∫ t

a
exp

[
−α (t − λ)

1 − α

]
dλ, (7)

where M (α) is a normalization function such that M (0) = M (1) = 1. This definition can also be considered
for functions that do not belong to H1 (a, b), and the kernel has non-singularity for t = τ. Equation (7) can be
formulated also for f ∈ L1 (−∞, b) and for any 0 ≤ α ≤ 1 as:

CF
0 Dα

t f (t) =
αM (α)

1 − α

∫ t

−∞
( f (t)− f (λ)) exp

[
−α (t − λ)

1 − α

]
dλ. (8)

Definition 3. The Laplace transform of CF fractional derivative CF
0 Dα

t f (t) can be defined as follows [19]:

L
{CF

0 Dα+n
t f (t)

}
(s) = 1

1−α L
{

f (α+n) (t)
}

L
{

exp
[
− αt

1−α

]}
= sn+1L{ f (t)}−sn f (0)−sn−1 f ′(0)−···− f (n)(0)

s+α(1−s) .
(9)

From Definition 3, we get the following special cases:

L
{CF

0 Dα
t f (t)

}
(s) = sL{ f (t)}− f (0)

s+α(1−s) , n = 0,

L
{

CF
0 Dα+1

t f (t)
}
(s) = s2L{ f (t)}−s f (0)− f ′(0)

s+α(1−s) , n = 1.
(10)

2. Description of the Method Using the Caputo–Fabrizio Fractional Operator

In this section of the study, we have demonstrated the solution method described by using the CF
operator. Consider the following fractional PDE [5]:
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CF
0 Dα

t ω (x, t) + η (x)
∂ω (x, t)

∂x
+ γ (x)

∂2ω (x, t)
∂x2 + ϕ (x)ω (x, t) = ν (x, t) , (11)

where (x, t) ∈ [0, 1]× [0, T], with the initial conditions:

∂kω

∂tk (x, 0) = fk (x) , k = 0, 1, ..., m − 1, (12)

and the boundary conditions:

ω (0, t) = g0 (t) , ω (1, t) = g1 (t) , t ≥ 0, (13)

where fk, k = 0, 1, ..., m − 1, ν, g0, g1, η, γ and ϕ are known functions and T > 0 is a real number and
m − 1 < α + n ≤ m. We define the method of solution for solving Problems (2)–(5). The LT of the CF
derivative is satisfied as:

L
{

CF
0 Dα+n

t ω (x, t)
}
=

sn+1L {ω (x, t)} − snω (x, 0)− sn−1ω′ (x, 0)− · · · − ω(n) (x, 0)
s + α (1 − s)

. (14)

In Equation (14), s ≥ 0, and let us define the L {ω (x, t)} (s) = Ω (x, s) for Equation (11), then we
can write:

Ω (x, s) =
(

α(s−1)−s
sn+1

) [
η (x) ∂

∂x + γ (x) ∂2

∂x2 + ϕ (x)
]

Ω (x, s)

+ 1
sn+1

[
snω0 (x) + sn−1ω1 (x) + · · ·+ ωn (x)

]
+ s+α(1−s)

sn+1 ν̃ (x, s) .
(15)

Now, we can construct the homotopy for Equation (15) as follows:

Ω (x, s) = z
(

α(s−1)−s
sn+1

) [
η (x) ∂

∂x + γ (x) ∂2

∂x2 + ϕ (x)
]

Ω (x, s)

+ 1
sn+1

[
snω0 (x) + sn−1ω1 (x) + · · ·+ ωn (x)

]
+ s+α(1−s)

sn+1 ν̃ (x, s) ,
(16)

where Ω (x, s) = L {ω (x, t)} and ν̃ (x, s) = L {ν (x, t)} . Furthermore, the Laplace transforms of the
initial conditions are obtained as:

Ω (0, s) = L {g0 (t)} , Ω (1, s) = L {g1 (t)} , s ≥ 0. (17)

Then, the solution of Equation (16) can be represented as:

Ω (x, s) =
∞

∑
m=0

zmΩm (x, s) , m = 0, 1, 2, . . . . (18)

Substituting Equation (18) into Equation (16), we have:

∑∞
m=0 zmΩm (x, s) = z

(
α(s−1)−s

sn+1

) [
η (x) ∂

∂x + γ (x) ∂2

∂x2 + ϕ (x)
]

∑∞
m=0 zmΩm (x, s)

+ 1
sn+1

[
snω0 (x) + sn−1ω1 (x) + · · ·+ ωn (x)

]
+ s+α(1−s)

sn+1 ν̃ (x, s) .
(19)

By comparing the coefficients of powers of z, we obtain the homotopies as follows:

z0 : Ω0 (x, s) = 1
sn+1

(
snω0 (x) + sn−1ω1 (x) + · · ·+ ωn (x)

)
+
(

s+α(1−s)
sn+1

)
ν̃ (x, s) ,

z1 : Ω1 (x, s) = −
(

s+α(1−s)
sn+1

) [
η (x) ∂

∂x + γ (x) ∂2

∂x2 + ϕ (x)
]

Ω0 (x, s) ,

z2 : Ω2 (x, s) = −
(

s+α(1−s)
sn+1

) [
η (x) ∂

∂x + γ (x) ∂2

∂x2 + ϕ (x)
]

Ω1 (x, s) ,
...

zn+1 : Ωn+1 (x, s) = −
(

s+α(1−s)
sn+1

) [
η (x) ∂

∂x + γ (x) ∂2

∂x2 + ϕ (x)
]

Ωn (x, s) .

(20)
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When the z → 1, we see that Equation (20) gives the approximate solution for the problems (15)
and (16), and the solution is given by:

Tn (x, s) =
n

∑
j=0

Ωj (x, s) . (21)

If we take the inverse LT of Equation (21), we have the approximate solution of Equation (11),

ωapprox (x, t) ∼= ωn (x, t) = L−1 {Tn (x, s)} . (22)

Furthermore, we will show the error rates of the solution with LHAM described above,
by applying this method to the homogeneous fractional option pricing problem. If we define
ωn (x, τ) = L−1 {Tn (x, s)} , which is the first n-th sum of the series in the approximate solution of (22),
the rate of absolute error RAE is computed as:

RAE (%) =

∣∣∣∣ωn (x, t)− ωexact (x, t)
ωexact (x, t)

∣∣∣∣× 100. (23)

3. Solution of the European Option Pricing Problem

In this part of the study, we have solved the fractional Black–Scholes equation and generalized
fractional Black–Scholes equation (FBSE), which are two of the most important option pricing
models. We have regarded this as the method LHAM, which is described with the Caputo–Fabrizio
fractional derivative.

3.1. Fractional European Option Pricing Problem in the Sense of the Caputo–Fabrizio Derivative

Now, we consider the classical FBSE (2) with the initial condition (3). Firstly, we solve this equation
by using the LHAM in the sense of the CF fractional derivative operator. Because the equation is
homogeneous, we obtain the LT of the right side of the equation as zero, i.e., ν̃ (x, s) = L {ν (x, τ)} = 0.
Now, we create the homotopies as follows:

z0 : Ω0 (x, s) = 1
s u (x, 0) +

(
s+α(1−s)

s

)
(0) = max(ex−1,0)

s ,

z1 : Ω1 (x, s) =
(

s+α(1−s)
s

) [
∂2Ω0(x,s)

∂x2 + (k − 1) ∂Ω0(x,s)
∂x − kΩ0 (x, s)

]
= k

s

(
s+α(1−s)

s

)
(ex − max (ex − 1, 0)) ,

z2 : Ω2 (x, s) =
(

s+α(1−s)
s

) [
∂2Ω1(x,s)

∂x2 + (k − 1) ∂Ω1(x,s)
∂x − kΩ1 (x, s)

]
= − k2

s

(
s+α(1−s)

s

)2
(ex − max (ex − 1, 0)) ,

...

zn : Ωn (x, s) =
(

s+α(1−s)
s

) [
∂2Ωn−1(x,s)

∂x2 + (k − 1) ∂Ωn−1(x,s)
∂x − kΩn−1 (x, s)

]
= (−1)n+1 kn

s

(
s+α(1−s)

s

)n
(ex − max (ex − 1, 0)) .

(24)

By summing the iteration term up to n-th order, we obtain:

Tn (x, s) =
n

∑
j=0

Ωj (x, s) =
max (ex − 1, 0)

s
+

ex − max (ex − 1, 0)
s

n

∑
m=1

(k (s + α (1 − s)))m . (25)

Getting the inverse LT of Equation (25), we have the approximate solution of Equation (2) with
the initial condition Equation (3) when n → ∞ as follows:
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ω (x, τ) ≈ ωn (x, τ) = L−1 {Tn (x, s)} = max (ex − 1, 0) + (ex − max (ex − 1, 0))

[
e

kατ
kα−k−1 + kα − k − 1

kα − k − 1

]
. (26)

Considering the special case of fractional parameter α = 1, we have the exact solution of the
problems (2) and (3) as ωα=1 (x, τ) = lim

n→∞,α→1
Tn (x, τ) = ex

(
1 − e−kτ

)
+ e−kτ max (ex − 1, 0) .

In Figure 1, the numerical computation of Equation (26) for special case x = 0.8 and, in Figure 2,
the simulation sketch for α = 0.35 in the sense of the Caputo–Fabrizio fractional derivative are presented.

Figure 1. The solution function of Equation (2) in the sense of Caputo–Fabrizio (CF) with respect to
(α, τ) = [0, 1]× [0, 1] .

Figure 2. Numerical simulation of Equation (26) in the sense of CF for α = 0.35.

Figure 3 shows the European vanilla call option prices, which are given in Equation (1) with
exercise price E = 70, for fractional values α = 0.25, α = 0.50, α = 0.75 and α = 1.00. According
to Figure 3, we can say that the option has the lowest price in exercise time of the option (τ = T),
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when α = 1. As α decreases, the payoff of the option increases. When α = 0.25, we observe that the
option is overpriced [38].

Figure 3. Option prices V (S, t) with respect to underlying asset S for different α values.

3.2. Fractional Generalized European Option Pricing Problem in the Sense of the Caputo–Fabrizio Derivative

Secondly, we solve the generalized version of the European vanilla option problems (4) and (5) by
using the LHAM constructed in the Caputo–Fabrizio derivative sense. The Laplace transformation
of the homogenous term is zero, i.e., ν̃ (x, s) = L {ν (x, τ)} = 0. Now, we obtain the homotopies
according to the CF derivative as follows:

z0 : Ω0 (x, s) = 1
s u (x, 0) +

(
s+α(1−s)

s

)
(0) =

max(x−25e−0.06,0)
s ,

z1 : Ω1 (x, s) = −
(

s+α(1−s)
s

) [
0.08 (2 + sin x)2 ∂2Ω0(x,s)

∂x2 + 0.06x ∂Ω0(x,s)
∂x − 0.06Ω0 (x, s)

]
= 0.06

s

(
s+α(1−s)

s

) (
max

(
x − 25e−0.06, 0

)
− x
)

,

z2 : Ω2 (x, s) = −
(

s+α(1−s)
s

) [
0.08 (2 + sin x)2 ∂2Ω1(x,s)

∂x2 + 0.06x ∂Ω1(x,s)
∂x − 0.06Ω1 (x, s)

]
= (0.06)2

s

(
s+α(1−s)

s

)2 (
max

(
x − 25e−0.06, 0

)
− x
)

,
...
zn : Ωn (x, s) = −

(
s+α(1−s)

s

) [
0.08 (2 + sin x)2 ∂2Ωn−1(x,s)

∂x2 + 0.06x ∂Ωn−1(x,s)
∂x − 0.06Ωn−1 (x, s)

]
= (0.06)n

s

(
s+α(1−s)

s

)n (
max

(
x − 25e−0.06, 0

)
− x
)

,

(27)

By building the n-th order approximate solution, we have:

Tn (x, s) = ∑n
j=0 Ωj (x, s)

=
max(x−25e−0.06,0)

s +
(max(x−25e−0.06,0)−x)

s ∑n
m=1

(
0.06

(
s+α(1−s)

s

))m (28)

Applying the inverse LT to Equation (28), when n → ∞, we get the approximate solution of (4)
and (5) as follows:

ω (x, τ) ≈ ωn (x, τ) = L−1 {Tn (x, s)}

= max
(
x − 25e−0.06, 0

)
+ 16.6667

(
max

(
x − 25e−0.06, 0

)
− x
) (e

ατ
α+15.667 −0.06α−0.94

)
α+15.667 .

(29)

For the special case of fractional parameter α = 1, we obtain the exact solution of the mentioned
problem as ω (x, τ) = max

(
x − 25e−0.06, 0

)
e0.06τ + x

(
1 − e0.06τ

)
, which is the same solution found

in [8].
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The numerical evaluation of Equation (29) is shown in Figure 4 regarding x = 1 in the
Caputo–Fabrizio fractional derivative sense. In addition, the numerical simulation of the solution
function (29) for different distance values is represented in Figure 5.

Figure 4. The solution function of (4) in the CF derivative sense with respect to (α, τ) = [0, 1]× [0, 1] .

Figure 5. Numerical simulation of (29) in the CF derivative sense for α = 0.85.

4. Determining Stabilization and Convergence of Suggested Method

In this part of the study, we have explained the obtained values compatibility test by regarding them
as the convergence and the stability of the suggested method. Because the series (25) and (28) converges,
these series have to be the solution of initial value problems (2)–(5), respectively. In addition, the solution
results represent that the suggested solution technique is convergent and stable. The mentioned method
we used in this study provides a good convergence area of the solution. The numerical results found with
LHAM are good settlements with the exact solutions. For the purpose of understanding the convergence
and stability of the method defined by using the CF operator fractional derivative in Section 2, the amount
of the absolute error RAE for some values of x and τ has been presented. In Figure 6, we have also
investigated the error rates based on the numerical and exact solution results. According to the results of
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this stability analysis, it can be concluded that the Caputo–Fabrizio LHAM is an effective and accurate
method, for which the series is easily computable in a short time.

Figure 6. Absolute error rates RAE for some values of x and τ for (2)–(3) (left) and (4)–(5) (right).

5. Conclusions

In this paper, we have employed approximate-analytical solutions by using a new numerical
method, which is described with the Caputo–Fabrizio fractional derivative operator for linear PDEs of
time-fractional order. This new fractional operator has a smooth kernel that takes on two different
impressions for the spatial and temporal variable. Furthermore, the CF operator has been extremely
popular in the last few years. We have demonstrated the efficiencies and accuracies of the suggested
method by applying it to the FBS option pricing models with their initial conditions satisfied by
the classical European vanilla option. By using the real market values from the finance literature,
we can obtain how the option is priced for fractional cases of European call option pricing models.
If we consider the European vanilla call option prices, which are given in Equation (1) with exercise
price E = 70, for special fractional values α = 0.25, α = 0.50, α = 0.75 and α = 1.00 in Figure 3,
we have concluded that the option has the lowest price in exercise time (τ = T) of the option, when
α = 1. Moreover, as α decreases, the payoff of the option increases. When α = 0.25, we observe that
the option is overpriced [38]. The fractional model suggested in this study can model the price of
different financial derivatives like swaps, warrant, etc. The successful applications of the proposed
model prove that this model is in complete agreement with the corresponding exact solutions. Besides,
in view of their usability, our method is applicable to many initial-boundary problems and fractional
linear-nonlinear PDEs. Furthermore, the method is much easier than other homotopy methods, so
the LT allows one in many positions to eliminate the inadequacy essentially caused by insufficient
conditions, which take part in other approximate-analytical methods like homotopy perturbation
method [39].
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Abbreviations

The following abbreviations are used in this manuscript:

FDE Fractional differential equation
LHAM Laplace homotopy analysis method
CF Caputo–Fabrizio
AB Atangana–Baleanu
LT Laplace transform
FC Fractional calculus
ENSO El Niño–Southern Oscillation
FBSE Fractional Black–Scholes equation
GFBSE Generalized fractional Black–Scholes equation
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Abstract: This paper considers the Freedman model using the Liouville–Caputo fractional-order
derivative and the fractional-order derivative with Mittag–Leffler kernel in the Liouville–Caputo
sense. Alternative solutions via Laplace transform, Sumudu–Picard and Adams–Moulton rules
were obtained. We prove the uniqueness and existence of the solutions for the alternative model.
Numerical simulations for the prediction and interaction between a unilingual and a bilingual
population were obtained for different values of the fractional order.
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1. Introduction

Interactions between groups that speak different languages are occurring continuously in several
countries in the world due to globalization and cultural openness. Multilingualism is the use of more
than one language, either by an individual speaker or by a community of speakers. A mathematical
model portraying the interaction dynamics of a population considering bilingual components and
a monolingual component was proposed in [1,2]. Baggs in [2] studied the condition under which the
bilingual component could persist and conditions under which it could become extinct. The weakness
of these models is that they do not take into account the degree of interest in time and also the
memory of the interaction, meaning the recall of the original meeting or interaction or contact
up to a particular period of time in the present. Fractional calculus is one of the most powerful
mathematical tools used in recent decades to model real-world problems in many fields, such as science,
technology and engineering. The Liouville–Caputo fractional derivative involves the power-law
function. The Liouville–Caputo fractional-order derivative allows usual initial conditions when playing
with the integral transform, for instance the Laplace transform [3–5]. Recently, Abdon Atangana and
Dumitru Baleanu proposed two fractional-order operators involving the generalized Mittag–Leffler
function. The generalized Mittag–Leffler function was introduced in the literature to improve the
limitations posed by the power-law [6–12]. The two-parametric, three-parametric, four-parametric
and multiple Mittag–Leffler functions were presented by Wiman, Prabhakar, Shukla and Srivastava
in [13–18]. The kernel used in Atangana–Baleanu fractional differentiation appears naturally in several
physical problems as generalized exponential decay and as a power-law asymptotic for a very large
time [19–24]. The choice of this derivative is motivated by the fact that the interaction is not local,
but global, and also, the trend observed in the field does not follow the power-law. The generalized
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Mittag–Leffler function completely induced the effect of memory, which is very important in the
nonlinear Baggs–Freedman model.

Atangana and Koca in [25] studied the nonlinear Baggs and Freedman model. Starting from the
integer-order Freedman model presented by [25], we have:

Dtx1 = (A1 − M1 − F1)x1(t)− L1x2
1(t)− α · x1(t)x2(t)

1+x1(t)
+ G1 A2x2(t),

Dtx2 = (A2 − M2 − F2)x2(t)− L2x2
2(t) + α · x1(t)x2(t)

1+x1(t)
− G1 A2x2(t),

(1)

where 0 < Ai, Mi, |Fi| ≤ 1 are the birth, death and emigration parameters for i ∈ [1, 2]. 0 < G1 ≤ 1
is the infant language acquisition parameter, that proportion of births in the x2 population raised
unilingually. 0 < α ≤ 1 is the non-infant language acquisition rate, the proportion of x1 learning the x2

language per unit time after infancy. The term α · x1(t)x2(t)
1+x1(t)

describes that part of population x1 lost to
x2 due to virtual predation on the part of x2 [26].

The aim of this work is to obtain alternative representations of the Freedman model considering
Liouville–Caputo and Atangana–Baleanu–Caputo fractional derivatives. The paper is organized as
follows: Section 2 introduces the fractional operators. Alternative representations of the Freedman
model are shown in Section 3. Finally, in Section 4, we conclude the manuscript.

2. Fractional Operators

The Liouville–Caputo fractional-order derivative of order γ is defined by [27]:

C
a Dγ

t { f (t)} =
1

Γ(1 − γ)

∫ t

a
ḟ (θ)(t − θ)−γdθ, 0 < γ ≤ 1. (2)

The Laplace transform to Liouville–Caputo fractional-order derivative gives [27]:

L [Ca Dγ
t f (t)] = SγF(S)−

m−1

∑
k=0

Sγ−k−1 f (k)(0). (3)

The Atangana–Baleanu–Caputo fractional-order derivative is defined as follows [19–22,24]:

ABC
a Dγ

t { f (t)} =
B(γ)
1 − γ

∫ t

a
ḟ (θ)Eγ

[
− γ

1 − γ
(t − θ)γ

]
dθ, 0 < γ ≤ 1, (4)

where B(β) = B(0) = B(1) = 1 is a normalization function and Eγ is the Mittag–Leffler function [6–12].
The Mittag–Leffler kernel is a combination of both the exponential-law and power-law. For this
fractional derivative, we have at the same time the power-law and the stretched exponential as the
waiting time distribution.

The Laplace transform of Equation (4) is defined as follows:

L [ABC
a Dγ

t f (t)](s) = B(γ)
1−γ L

[ ∫ t
a ḟ (θ)Eγ

[
− γ

(t−θ)γ

1−γ

]
dθ
]

= B(γ)
1−γ

sγL [ f (t)](s)−sγ−1 f (0)
sγ+ γ

1−γ
.

(5)

The Sumudu transform is derived from the classical Fourier integral [28]. The Sumudu transform
of Equation (4) is defined as:

ST
{

ABC
a Dγ

t f (t)
}
=

B(γ)
1 − γ

(
γΓ(γ + 1)Eγ

(
− 1

1 − γ
uγ
))

× [ST( f (t))− f (0)]. (6)
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The Atangana–Baleanu fractional integral of order γ of a function f (t) is defined as:

AB
a Iγ

t f (t) =
1 − γ

B(γ)
f (t) +

γ

B(γ)Γ(γ)

∫ t

0
f (s)(t − s)γ−1ds. (7)

3. Freedman Model

In this section, we obtain alternative representations of the Freedman model considering
the Liouville–Caputo fractional derivative, and the special solution is obtained using a Laplace
transform method.

3.1. Freedman Model with the Power-Law Kernel

Considering Equation (2), the modified Freedman model with the power-law kernel is given as:

C
0 D

γ
t x1(t) = (A1 − M1 − F1)x1(t)− L1x2

1(t)− α · x1(t)x2(t)
1+x1(t)

+ G1 A2x2(t),
C
0 D

γ
t x2(t) = (A2 − M2 − F2)x2(t)− L2x2

2(t) + α · x1(t)x2(t)
1+x1(t)

− G1 A2x2(t),
(8)

where 0 < γ ≤ 1 is the fractional order, x1(t) represents the interaction of the majority unilingual
population and x2(t) is a bilingual population.

Applying the Laplace transform operator (3) and the inverse Laplace transform on both sides of
Equation (8), we obtain:

x1(t) = x1(0) +L −1
{

1
sγ L

[
(A1 − M1 − F1)x1(t)− L1x2

1(t)− α
x1(t)x2(t)
1+x1(t)

+ G1 A2x2(t)
]
(s)
}
(t),

x2(t) = x2(0) +L −1
{

1
sγ L

[
(A2 − M2 − F2)x2(t)− L2x2

2(t) + α
x1(t)x2(t)
1+x1(t)

− G1 A2x2(t)
]
(s)
}
(t).

(9)

The following iterative formula is then proposed:

x1(n)(t) = L −1
{

1
sγ L

[
(A1 − M1 − F1)x1(n−1)(t)− L1x2

1(n−1)(t)

−α
x1(n−1)(t)x2(n−1)(t)

1+x1(n−1)(t)
+ G1 A2x2(n−1)(t)

]
(s)
}
(t),

x2(n)(t) = L −1
{

1
sγ L

[
(A2 − M2 − F2)x2(n−1)(t)− L2x2

1(n−1)(t)

+α
x1(n−1)(t)x2(n−1)(t)

1+x1(n−1)(t)
− G1 A2x2(n−1)(t)

]
(s)
}
(t),

(10)

where,
x1(0)(t) = x1(0); x2(0)(t) = x2(0), (11)

where the approximate solution is assumed to be obtained as a limit when “n” tend to infinity:

x1(t) = lim
n→∞

x1(n)(t); x2(t) = lim
n→∞

x2(n)(t). (12)

3.2. Stability Analysis of the Iteration Method

Theorem 1. We demonstrate that the recursive method given by Equation (10) is stable.

Proof. It is possible to find two positive constants Y and Z such that, for all:

0 ≤ t ≤ T ≤ ∞, ||x1(t)|| < Y and ||x1(t)|| < Z. (13)

Now, we consider a subset of C2((a, b)(0, T)) defined by:

H =
{

ϕ : (a, b)(0, T) → H,
1

Γ(γ)

∫
(t − ϕ)γ−1v(ϕ)u(ϕ)dϕ < ∞

}
, (14)
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we now consider the operator φ defined as:

φ(x1, x2) =

⎧⎨⎩ (A1 − M1 − F1)x1(t)− L1x2
1(t)− α · x1(t)x2(t)

1+x1(t)
+ G1 A2x2(t),

(A2 − M2 − F2)x2(t)− L2x2
2(t) + α · x1(t)x2(t)

1+x1(t)
− G1 A2x2(t).

Then:

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

< φ(x1, x2)− φ(X1, X2), φ(x1 − X1, x2 − X2) >,
< (A1 − M1 − F1)(x1(t)− X1(t))− L1(x1(t)− X1(t))2

−α · (x1(t)−X1(t))(x2(t)−X2(t))
1+(x1(t)−X1(t))

+ G1 A2(x2(t)− X2(t)) >,

< (A2 − M2 − F2)(x2(t)− X2(t))− L2(x1(t)− X2(t))2

+α · (x1(t)−X1(t))(x2(t)−X2(t))
1+(x1(t)−X1(t))

− G1 A2(x2(t)− X2(t)) >,

where,
x1(t) �= X1(t), and x2(t) �= X2(t). (15)

Applying the absolute value on both sides, we have:

< φ(x1, x2)− φ(X1, X2), φ(x1 − X1, x2 − X2) >,

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

{
(A1 − M1 − F1)− L1||x1(t)− X1(t)||

−α · ||x2(t)−X2(t)||
1+||x1(t)−X1(t)||2 + G1 A2

||x2(t)−X2(t)||
||x1(t)−X1(t)||

}
||x1(t)− X1(t)||2,{

(A2 − M2 − F2)− L2||x2(t)− X2(t)||
+α · ||x1(t)−X1(t)||

1+||x1(t)−X1(t)||2 − G1 A2

}
||x2(t)− X2(t)||2.

(16)

Then,
< φ(x1, x2)− φ(X1, X2), φ(x1 − X1, x2 − X2) >,

<

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

{
(A1 − M1 − F1) + L1||x1(t)− X1(t)||

+α · ||x2(t)−X2(t)||
1+||x1(t)−X1(t)||2 + G1 A2

||x2(t)−X2(t)||
||x1(t)−X1(t)||

}
||x1(t)− X1(t)||2,{

(A2 − M2 − F2) + L2||x2(t)− X2(t)||
+α · ||x1(t)−X1(t)||

1+||x1(t)−X1(t)||2 + G1 A2

}
||x2(t)− X2(t)||2,

(17)

where,
< φ(x1, x2)− φ(X1, X2), φ(x1 − X1, x2 − X2) >,

<

{
M||x1(t)− X1(t)||2,
N||x2(t)− X2(t)||2,

(18)

with:

M = (A1 − M1 − F1) + L1||x1(t)− X1(t)||+ α · ||x2(t)− X2(t)||
1 + ||x1(t)− X1(t)||2

+ G1 A2
||x2(t)− X2(t)||
||x1(t)− X1(t)||

,

and:

N = (A2 − M2 − F2) + L2||x2(t)− X2(t)||+ α · ||x1(t)− X1(t)||
1 + ||x1(t)− X1(t)||2

+ G1 A2. (19)

Furthermore, if we consider a given non-null vector (x1, x2), then using the some routine as the
above case, we obtain:

< φ(x1, x2)− φ(X1, X2), φ(x1 − X1, x2 − X2) >,

<

{
M||x1(t)− X1(t)||||x1(t)||,
N||x2(t)− X2(t)||||x2(t)||,

(20)
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From the results obtained in Equations (18) and (20), we conclude that the iterative method used
is stable. This complete the proof.

Now, we consider the Adams method [29,30] to solve the system given by Equation (8). The basic
idea of the n-step Adams–Bashforth method is to use a polynomial interpolation for f (t, y(t)) passing
through n points: (ti, fi), (ti−1, fi−1), ..., (ti−n+1, fi−n+1). Correspondingly, the n-step Adams–Moulton
method uses a polynomial interpolation for f (t, y(t)) passing through n + 1 points: (ti+1, fi+1),
(ti, fi), ..., (ti−n, fi−n).

The fractional Adams method is derived as follows [30]:

f P
k+1 =

n−1
∑

j=0

tj
k+1
j!

f (j)
0 +

1
Γ(γ)

k
∑

j=0
bj,k+1g(tj, f j),

fk+1 =
n−1
∑

j=0

tj
k+1
j!

f (j)
0 +

1
Γ(γ)

(
k
∑

j=0
aj,k+1g(tj, f j) + ak+1,k+1g(tk+1, f P

k+1)

)
,

(21)

where,

aj,k+1 =
hγ

γ(γ + 1)
·

⎧⎪⎨⎪⎩
(kγ+1 − (k − γ)(k + 1)γ) j = 0,
((k − j + 2)γ+1 + (k − j)γ+1 − 2(k − j + 1)γ+1) 1 ≤ j ≤ k,
1 j = k + 1,

bj,k+1 =
hγ

γ
((k + 1 − j)γ − (k − j)γ), j = 0, 1, 2, ..., k.

(22)

Following this procedure, we can propose a numerical solution for System (8) using the Adams
method (21) as follows:

x1(t) =
n−1
∑

k=0
x1(0)(k)

tk

k!
+

1
Γ(γ)

t∫
0
(t − u)γ−1

[
(A1 − M1 − F1)x1(u)− L1x2

1(u)− α · x1(u)x2(u)
1+x1(u)

+ G1 A2x2(u)
]
du,

x2(t) =
n−1
∑

k=0
x2(0)(k)

tk

k!
+

1
Γ(γ)

t∫
0
(t − u)γ−1

[
(A2 − M2 − F2)x2(u)− L2x2

2(u) + α · x1(u)x2(u)
1+x1(u)

− G1 A2x2(u)
]
du.

(23)

3.3. Freedman Model with the Mittag–Leffler Kernel

Considering Equation (4), the modified Freedman model is given as:

ABC
0 Dγ

t x1(t) = (A1 − M1 − F1)x1(t)− L1x2
1(t)− α · x1(t)x2(t)

1+x1(t)
+ G1 A2x2(t),

ABC
0 Dγ

t x2(t) = (A2 − M2 − F2)x2(t)− L2x2
2(t) + α · x1(t)x2(t)

1+x1(t)
− G1 A2x2(t),

(24)

where 0 < γ ≤ 1 is the fractional order, x1(t) represents the interaction of the majority unilingual
population and x2(t) is a bilingual population.

Now, we obtain an alternative solution using an iterative scheme. The technique involves coupling
the Sumudu transform and its inverse. The Sumudu transform is an integral transform similar to
the Laplace transform, introduced by Watugala to solve differential equations [28–32]. Applying the
Sumudu transform (6) and the inverse Sumudu transform on both sides of the system (24) yields:

x1(t) = x1(0) + ST−1
{

1−γ

B(γ)γΓ(γ+1)Eγ

(
− 1

1−γ uγ

) · ST
[
(A1 − M1 − F1)x1(t)− L1x2

1(t)− α
x1(t)x2(t)
1+x1(t)

+ G1 A2x2(t)
]}

,

x2(t) = x2(0) + ST−1
{

1−γ

B(γ)γΓ(γ+1)Eγ

(
− 1

1−γ uγ

) · ST
[
(A2 − M2 − F2)x2(t)− L2x2

2(t) + α
x1(t)x2(t)
1+x1(t)

− G1 A2x2(t)
]}

.
(25)
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The following recursive formula for Equation (25) is obtained:

x1(n+1)(t) = x1(n)(0) + ST−1
{

1−γ

B(γ)γΓ(γ+1)Eγ

(
− 1

1−γ uγ

)
·ST
[
(A1 − M1 − F1)x1(n)(t)− L1x2

1(n)(t)

−α
x1(n)(t)x2(n)(t)

1+x1(n)(t)
+ G1 A2x2(n)(t)

]}
,

x2(n+1)(t) = x1(n)(0) + ST−1
{

1−γ

B(γ)γΓ(γ+1)Eγ

(
− 1

1−γ uγ

)
·ST
[
(A2 − M2 − F2)x2(n)(t)− L2x2

2(n)(t)

+α
x1(n)(t)x2(n)(t)

1+x1(n)(t)
− G1 A2x2(n)(t)

]}
,

(26)

and the solution of Equation (26) is provided by:

x1(t) = lim
n→∞

x1(n)(t); x2(t) = lim
n→∞

x2(n)(t). (27)

3.4. Stability Analysis of the Iteration Method

Now, we provide in detail the stability analysis of this method and show the uniqueness of the special
solutions using the fixed point theory and properties of the inner product and the Hilbert space, respectively.

Let (X, | · |) be a Banach space and Ha self-map of X. Let zn+1 = g(H, zn) be a particular recursive
procedure. The following conditions must be satisfied for zn+1 = Hzn.

1. The fixed point set of H has at least one element.
2. zn converges to a point P ∈ F(H).
3. limn→∞ xn(t) = P.

Property 1. Let (X, | · |) be a Banach space and Ha self-map of X satisfying:

||Hx − Hz|| ≤ η||X − Hx||+ η||x − z||, (28)

for all x, z ∈ X, where 0 ≤ η, 0 ≤ η < 1. Suppose that H is Picard H-stable.

Considering the following recursive formula, we have:

x1(n+1)(t) = x1(n)(0) + S−1
{

1−γ

B(γ)γΓ(γ+1)Eγ

(
− 1

1−γ uγ

)
·S
[
(A1 − M1 − F1)x1(n)(t)− L1x2

1(n)(t)

−α
x1(n)(t)x2(n)(t)

1+x1(n)(t)
+ G1 A2x2(n)(t)

]}
,

x2(n+1)(t) = x2(n)(0) + S−1
{

1−γ

B(γ)γΓ(γ+1)Eγ

(
− 1

1−γ uγ

)
·S
[
(A2 − M2 − F2)x2(n)(t)− L2x2

2(n)(t)

+α
x1(n)(t)x2(n)(t)

1+x1(n)(t)
− G1 A2x2(n)(t)

]}
,

(29)

where:
1 − γ

B(γ)γΓ(γ + 1)Eγ

(
− 1

1−γ uγ
) , (30)

correspond to the fractional Lagrange multiplier.
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Theorem 2. Let K be a self-map defined as:

K[x1(n+1)(t)] = x1(n+1)(t) = x1(n)(t) + S−1
{

1−γ

B(γ)γΓ(γ+1)Eγ

(
− 1

1−γ uγ

)
·S
[
(A1 − M1 − F1)x1(n)(t)− L1x2

1(n)(t)− α
x1(n)(t)x2(n)(t)

1+x1(n)(t)
+ G1 A2x2(n)(t)

]}
,

K[x2(n+1)(t)] = x2(n+1)(t) = x2(n)(t) + S−1
{

1−γ

B(γ)γΓ(γ+1)Eγ

(
− 1

1−γ uγ

)
·S
[
(A2 − M2 − F2)x2(n)(t)− L2x2

2(n)(t) + α
x1(n)(t)x2(n)(t)

1+x1(n)(t)
− G1 A2x2(n)(t)

]}
,

(31)

is K-stable in L1(a, b) if:

1 + (A1 − M1 − F1) f (γ)− L1||x1(n)(t) + x1(m)(t)||d(γ)− α
εβ+ε+θ

ηρ ω(γ) + G1 A2k(γ) < 1,

1 + (A2 − M2 − F2)i(γ)− L2||x2(n)(t) + x2(m)(t)||r(γ) + α
εβ+ε+θ

ηρ s(γ)− G1 A2o(γ) < 1,
(32)

where f (γ), d(γ), ω(γ), k(γ), i(γ), r(γ), s(γ) and o(γ) are functions from:

S−1

{
1 − γ

B(γ)γΓ(γ + 1)Eγ

(
− 1

1−γ uγ
)S

}
. (33)

Proof. The proof consists of showing that K has a fixed point. To achieve this, we consider:

K[x1(n+1)(t)]− K[x1(m+1)(t)] = x1(n)(0)− x1(m)(0) + S−1

{
1−γ

B(γ)γΓ(γ+1)Eγ

(
− 1

1−γ uγ

)
·S
[
((A1 − M1 − F1)x1(n)(t)− (A1 − M1 − F1)x1(m)(t))− (L1x2

1(n)(t) + L1x2
1(m)(t))

−
(

α
(x1(n)(t)−x1(m)(t))·(x2(n)(t)−x2(m)(t))

1+(x1(n)(t)−x1(m)(t)

)
+ G1 A2(x2(n)(t)− x2(m)(t))

]}
,

and:

K[x2(n+1)(t)]− K[x2(m+1)(t)] = x2(n)(0)− x2(m)(0) + S−1

{
1−γ

B(γ)γΓ(γ+1)Eγ

(
− 1

1−γ uγ

)
·S
[
((A2 − M2 − F2)x2(n)(t)− (A2 − M2 − F2)x2(m)(t))− (L2x2

2(n)(t) + L2x2
2(m)(t))

+

(
α
(x1(n)(t)−x1(m)(t))·(x2(n)(t)−x2(m)(t))

1+(x1(n)(t)−x1(m)(t)

)
− G1 A2(x2(n)(t)− x2(m)(t))

]}
.

(34)

Using the properties of the norm and considering the triangular inequality, we get:

||K[x1(n)(t)]− K[x1(m)(t)]|| ≤ ||x1(n)(t)− x1(m)(t)||+ S−1

{
1−γ

B(γ)γΓ(γ+1)Eγ

(
− 1

1−γ uγ

)
·S
[
((A1 − M1 − F1)x1(n)(t)− (A1 − M1 − F1)x1(m)(t))− (L1x2

1(n)(t) + L1x2
1(m)(t))

+

(
α
(x1(n)(t)−x1(m)(t))·(x2(n)(t)−x2(m)(t))

1+(x1(n)(t)−x1(m)(t)

)
− G1 A2(x2(n)(t)− x2(m)(t))

]}
.

(35)

we consider that the solutions play the some role, i.e., ||x2(n)(t)− x2(m)(t)|| ∼= ||x1(n)(t)− x1(m)(t)||.
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Using the linearity of the inverse Sumudu transform, we get:

||K[x1(n)(t)]− K[x1(m)(t)]|| ≤ ||x1(n)(t)− x1(m)(t)||

+S−1

{
1−γ

B(γ)γΓ(γ+1)Eγ

(
− 1

1−γ uγ

)S
(
||(A1 − M1 − F1)[x1(n)(t)− x1(m)(t)]||

)}

+S−1

{
1−γ

B(γ)γΓ(γ+1)Eγ

(
− 1

1−γ uγ

)S
(
|| − L1[x2

1(n)(t)− x2
1(m)(t)]||

)}

+S−1

{
1−γ

B(γ)γΓ(γ+1)Eγ

(
− 1

1−γ uγ

)
·S
(∣∣∣∣∣
∣∣∣∣∣− α

(x1(m)(t)(x1(n)(t))((x1(n)(t)−x1(m)(t))
1+(x1(n)(t)(1+x1(m)(t))

+
x1(n)(t)(x1(n)(t)−x1(m)(t))+x2(n)(t)(x2(n)(t)−x1(m)(t))

1+(x1(n)(t)(1+x1(m)(t))

∣∣∣∣∣
∣∣∣∣∣
)}

+S−1

{
1−γ

B(γ)γΓ(γ+1)Eγ

(
− 1

1−γ uγ

)S||G1 A2[x1(n)(t)− x1(m)(t))]||
}

.

(36)

Since x1(n)(t) and x1(m)(t) are bounded, we can find the following positive constants, ε, β, θ, η

and ρ such that for all t:

||x1(n)(t)|| ≤ ε, ||x1(m)(t)|| ≤ β, ||1 + x1(n)(t)|| ≤ ρ,
||x2(n)(t)|| ≤ θ, ||1 + x1(m)(t)|| ≤ η, (n, m) ∈ N × N.

(37)

Considering Equations (36) and (37), we obtain:

||K[x1(n)(t)]− K[x1(m)(t)]|| ≤ ||x1(n)(t)− x1(m)(t)||

·
(

1 + (A1 − M1 − F1) f (γ)− L1||x1(n)(t) + x1(m)(t)||d(γ)− α
εβ+ε+θ

ηρ ω(γ) + G1 A2k(γ)

)
,

(38)

and:

||K[x2(n)(t)]− K[x2(m)(t)]|| ≤ ||x2(n)(t)− x2(m)(t)||

·
(

1 + (A2 − M2 − F2)i(γ)− L2||x2(n)(t) + x2(m)(t)||r(γ) + α
εβ+ε+θ

ηρ s(γ)− G1 A2o(γ)

)
,

(39)

where f (γ), d(γ), ω(γ), k(γ), i(γ), r(γ), s(γ) and o(γ) are functions from (33).
We next show that K satisfies Property 1. Consider Equations (38) and (39), yielding:

η(0, 0), η =

{
1 + (A1 − M1 − F1) f (γ)− L1||x1(n)(t) + x1(m)(t)||d(γ)− α

εβ+ε+θ
ηρ ω(γ) + G1 A2k(γ),

1 + (A2 − M2 − F2)i(γ)− L2||x2(n)(t) + x2(m)(t)||r(γ) + α
εβ+ε+θ

ηρ s(γ)− G1 A2o(γ),

We conclude that K is Picard K-stable.

3.5. Uniqueness of the Special Solution

Theorem 3. We consider the Hilbert space H = L2((a, b) × (0, k)) that can be defined as the set of
those functions:

v : (a, b)× [0, T] → R,
∫ ∫

uvdudv < ∞. (40)
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We now consider the following operator:

η(0, 0), η =

⎧⎨⎩ (A1 − M1 − F1)x1(t)− L1x2
1(t)− α

x1(t)x2(t)
1+x1(t)

+ G1 A2x2(t),

(A2 − M2 − F2)x2(t)− L2x2
2(t) + α

x1(t)x2(t)
1+x1(t)

− G1 A2x2(t),

Proof. We prove that the inner product of:

(T(x11(t)− x12(t), x21(t)− x22(t), (ω1, ω2)), (41)

where (x11(t) − x12(t)), x21(t) − x22(t) are special solutions of the system. We can assume that
(x11(t)− x12(t)) ∼= x21(t)− x22(t).

Using the relationship between the norm and the inner function, we get:

(
(A1 − M1 − F1)(x11(t)− x12(t))− L1(x11(t)− x12(t))2 − α

(x11(t)−x12(t))(x21(t)−x22(t))
1+(x11(t)−x12(t))

+ G1 A2(x21(t)− x22(t)), ω1

)
≤ (A1 − M1 − F1)||x11 − x12||||ω1||+ L1||x11 − x12||2||ω1||+ α

||x11(t)−x12(t)||2
||1+(x11(t)−x12(t))|| ||ω1||+ G1 A2||x11 − x12||||ω1||

(42)

and:(
(A2 − M2 − F2)(x21(t)− x22(t))− L2(x21(t)− x22(t))2 + α

(x11(t)−x12(t))(x21(t)−x22(t))
1+(x11(t)−x12(t))

+ G1 A2(x22(t)− x21(t)), ω2

)
≤ (A2 + M2 − F2)||x21 − x22||||ω2||+ L2||x22 − x21||2||ω2||+ α

||x22(t)−x21(t)||2
||1+(x22(t)−x21(t))|| ||ω2||+ G1 A2||x22 − x21||||ω2||;

(43)

for large number m and n, both solutions converge to the exact solution; if η = ||X1 − X11||, ||X1 − X12||
and ν = ||x2 − x21||, ||x2 − x22||, we have:

η <
λn

2

(
(A1 − M1 − F1) + L1||x11(t)− x12(t)||+ α

||x11(t)−x12(t)||
1+x11(t)−x12(t)

+ G1 A2

)∣∣∣∣∣
∣∣∣∣∣ω1

∣∣∣∣∣
∣∣∣∣∣
, (44)

and:
ν <

λm

2

(
(A2 + M2 − F2) + L2||x22(t)− x21(t)||+ α

||x22(t)−x21(t)||
1−(x22(t)−x21(t))

+ G1 A2

)∣∣∣∣∣
∣∣∣∣∣ω2

∣∣∣∣∣
∣∣∣∣∣
, (45)

where λn and λm are two very small positive parameters.
Using the topology concept, we conclude that λn < 0 and λm < 0, where:(

(A1 − M1 − F1) + L1||x11(t)− x12(t)||+ α
||x11(t)−x12(t)||
1+x11(t)−x12(t)

+ G1 A2

)
�= 0,(

(A2 + M2 − F2) + L2||x22(t)− x21(t)||+ α
||x22(t)−x21(t)||

1−(x22(t)−x21(t))
+ G1 A2

)
�= 0.

(46)

This completes the proof.

Involving the Atangana–Baleanu fractional integral, we can propose a numerical solution using
the Adams–Moulton rule:

AB
0 Iγ

t [ f (tn+1)] =
1 − γ

B(γ)

[ f (tn+1)− f (tn)

2

]
+

γ

Γ(γ)

∞

∑
k=0

[ f (tk+1)− f (tk)

2

]
bγ

k , (47)
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where:
bγ

k = (k + 1)1−γ − (k)1−γ. (48)

Considering the above numerical scheme, we have:

x1(n+1)(t)− x1(n)(t) = xn
0(1)(t) +

{
1−γ
B(γ)

[
(A1 − M1 − F1)

x1(n+1)(t)−x1(n)(t)
2

−L1

( x2
1(n+1)(t)−x2

1(n)(t)
2

)
− α

(x1(n+1)(t)−x1(n)(t))(x2(n+1)(t)−x2(n)(t))
2

1+(x1(n+1)(t)−x1(n)(t))
+ G1 A2

( x2(n+1)−x2(n)(t)
2

)]

+ γ
B(γ) ∑∞

k=0 bγ
k ·
[
(A1 − M1 − F1)

x1(k+1)(t)−x1(k)(t)
2 − L1

( x2
1(k+1)(t)−x2

1(k)(t)
2

)
−α

(x1(k+1)(t)−x1(k)(t))(x2(k+1)(t)−x2(k)(t))
2

1+(x1(k+1)(t)−x1(k)(t))
− G1 A2

( x2(k+1)−x2(k)(t)
2

)]
,

(49)

and:

x2(n+1)(t)− x2(n)(t) = xn
0(2)(t) +

{
1−γ
B(γ)

[
(A2 − M2 − F2)

x2(n+1)(t)−x2(n)(t)
2 −

−L2

( x2
2(n+1)(t)−x2

2(n)(t)
2

)
+ α

(x1(n+1)(t)−x1(n)(t))(x2(n+1)(t)−x2(n)(t))
2

1+(x1(n+1)(t)−x1(n)(t))
+ G1 A2

( x2(n+1)−x2(n)(t)
2

)]

+ γ
B(γ) ∑∞

k=0 bγ
k ·
[
(A2 − M2 − F2)

x2(k+1)(t)−x2(k)(t)
2 − L2

( x2
2(k+1)(t)−x2

2(k)(t)
2

)
−α

(x1(k+1)(t)−x1(k)(t))(x2(k+1)(t)−x2(k)(t))
2

1+(x1(k+1)(t)−x1(k)(t))
− G1 A2

( x2(n+1)−x2(n)(t)
2

)]
.

(50)

The proof of existence is described in detail by Alkahtani in [20].

4. Numerical Results

Example 1. We present numerical simulations of the special solution of our model using the Adams–Moulton
rule given by Equation (23) and Equations (49) and (50) for different arbitrary values of fractional order γ.
We consider A1 = 0.017; A2 = 0.30; M1 = 0.06; M2 = 0.007; L1 = 0.01; L2 = 0.004; F1 = 0.3; F2 = 0.7;
G1 = 0.01; α = 0.05; and initial conditions x(0) = 10; y(0) = 10, arbitrarily chosen. The simulation time
is 10 s, and the step size used in evaluating the approximate solution was h = 0.001. The numerical results
given in Figures 1a–d, 2a–d, 3a–d, and 4a–d show numerical simulations of the special solution of our model as
a function of time for different values of γ.

The figures show the interaction dynamics between a bilingual component and a monolingual
component of a population in a particular environment. These numerical results show the influence of
fractional order γ in the prediction between the unilingual and bilingual population.
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Figure 1. Numerical simulation for the nonlinear Freedman model via Liouville–Caputo fractional
operator. In (a,c), the prediction between the two populations for γ = 1 (classical case) and γ = 0.9.
In (b,d), the interaction between the unilingual and bilingual population for γ = 1 (classical case) and
γ = 0.9.
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Figure 2. Numerical simulation for the nonlinear Freedman model via Liouville–Caputo fractional
operator. In (a,c), the prediction between the two populations for γ = 0.8 and γ = 0.7. In (b,d), the
interaction between the unilingual and bilingual population for γ = 0.8 (classical case) and γ = 0.7.
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Figure 3. Numerical simulation for the nonlinear Freedman model via Atangana–Baleanu–Caputo
fractional operator. In (a,c), the prediction between the two populations for γ = 1 (classical case) and
γ = 0.9. In (b,d), the interaction between the unilingual and bilingual population for γ = 1 (classical
case) and γ = 0.9.
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Figure 4. Numerical simulation for the nonlinear Freedman model via Atangana–Baleanu–Caputo
fractional operator. In (a,c), the prediction between the two populations for γ = 0.8 and γ = 0.7.
In (b,d), the interaction between the unilingual and bilingual population for γ = 0.8 (classical case)
and γ = 0.7.
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5. Conclusions

A Freedman model was considered using the fractional derivatives of the Liouville–Caputo
and Atangana–Baleanu–Caputo types. The solutions of the alternative models were obtained using
an iterative scheme based on the Laplace transform and the Sumudu transform. Furthermore, we
employed the fixed point theorem to study the stability analysis of the iterative methods, and using
properties of the inner product and the Hilbert space, the uniqueness of the special solution was
presented in detail. Additionally, special solutions via the Adams–Moulton rule were obtained for both
fractional derivatives. The results obtained using the Liouville–Caputo and Atangana–Baleanu-Caputo
derivatives are exactly the same as the ordinary case. However, as γ takes values smaller than one,
the results obtained become a little different, having a remarkable difference when γ < 0.9. This is due
to the kernel involved in the definitions of the fractional derivative. The computer used for obtaining
the results in this paper is an Intel Core i7, 2.6-GHz processor, 16.0 GB RAM (MATLAB R.2013a).
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Abstract: The control of thermal interfaces has gained importance in recent years because of the high
cost of heating and cooling materials in many applications. Thus, the main focus in this work is to
compare the second and third generations of the CRONE controller (French acronym of Commande
Robuste d’Ordre Non Entier), which means a non-integer order robust controller, and to synthesize
a robust controller that can fit several types of systems. For this study, the plant consists of a
rectangular homogeneous bar of length L, where the heating element in applied on one boundary,
and a temperature sensor is placed at distance x from that boundary (x is considered very small
with respect to L). The type of material used is the third parameter, which may help in analyzing
the robustness of the synthesized controller. The originality of this work resides in controlling a
non-integer plant using a fractional order controller, as, so far, almost all of the systems where the
CRONE controller has been implemented were of integer order. Three case studies were defined in
order to show how and where each CRONE generation controller can be applied. These case studies
were chosen in such a way as to influence the asymptotic behavior of the open-loop transfer function
in the Black–Nichols diagram in order to point out the importance of respecting the conditions of
the applications of the CRONE generations. Results show that the second generation performs well
when the parametric uncertainties do not affect the phase of the plant, whereas the third generation is
the most robust, even when both the phase and the gain variations are encountered. However, it also
has some limitations, especially when the temperature to be controlled is far from the interface when
the density of flux is applied.

Keywords: CRONE controller; homogeneous plan diffusive interface; semi-infinite medium;
robust control

1. Introduction

The thermal application is a common application for control. It is used in several engineering
domains as the heating/cooling of houses [1,2], the control of the temperature inside the car [3,4]
or in the industrial machinery [5], and much more. In more details, the work in this field started in
the 1940s with the works of Jones [6] and a group of American electrical engineers [7]. Then, in the
1950s, the researchers were more involved in the control of thermal neutron reactors [8,9] and electric
cables dissipation [10,11]. These studies had increased since the end of the previous decade, when the
scientists stopped focusing on the study of the material properties, and started searching for more
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ecological systems to control the temperature within the building in order to reduce the oil and fuel
usage [12,13].

However, the work on diffusive interfaces was launched in the late 1970s and 1980s with the
works of Kumar, who modeled the thermal boundaries near an oil plant [14]. As for the others, they
worked on the modeling of diffusive interfaces at furnaces [15], boilers [16] and some geometric
shapes representing the separation medium [17,18]. In the last decade of the twentieth century, this
domain was investigated by lots of researchers who demonstrated that the relation between the
input flux and the output temperature is of a fractional order. From among them, we can recognize
the remarkable works of Trigeassou and his team [19–21], Battablia [22,23], the CRONE team of
Bordeaux university [24–26], the relevant modeling approach based on the space-fractional continuum
models [27–29], and much more.

As for the control, it was applied a long time ago, even before Christ, when Ktesibios (270 B.C.)
implemented the water clocks working on feedback control [30]. The contemporary control theory
was effectively launched in the middle of the twentieth century with the remarkable work of Bode,
Nichols, and Nyquist [31]. In its first years, the integer and linear order systems were treated on both
time and frequency domains.

As for fractional theory, it is relatively an old idea that dates back to the end of the seventieth
century, when some letters were exchanged between two well-known mathematicians at that epoch,
L’Hopital and Leibnitz in which they asked each other about the meaning of a derivative of order
0.5 [32]. Many mathematicians defined this type of derivative/integration as Liouville, Caputo, and
Riemann [33]. Nevertheless, these calculations remained theoretical until the last quarter of the
twentieth century, when Oustaloup was the first to design a fractional control of order 3/2 to control a
laser beam [34]. He was one of the first researchers to introduce the fractional calculus in engineering
domain applications [35–38]. Due to the obtained results, many other contributions appeared from
Ortigueira [39,40], Machado [41,42], and Vinagre [43,44].

Hence, this paper will present the control of a diffusive interface medium, consisting of a
homogeneous rectangular finite rod, by the CRONE controller. The novelty of this work is that
it presents a fractional order plant that will be controlled by a fractional order controller, who will
be, for the first time, real (when applying the second generation CRONE), and in a second time, this
controller will be complex (by applying the third generation CRONE). Added to that, the robustness
of these controllers will be studied when varying the bar metal, the position of the point where the
temperature is to be measured, the length of the bar, and so on. Thus, three case studies will be shown
in order to show the behavior of the open-loop system, and to indicate the conditions of application for
each CRONE generation. Since the objective of this paper is to point out the importance of applying
the CRONE controller to a fractional order plant, we were not interested in comparing the performance
of this controller to other ones.

For the remaining part of this paper, we will consider that the length of the bar is much more
important than the position of the temperature sensor. As for the user specifications, two main
constraints will be considered hereafter:

• A crossover frequency ωcg = 1 rad/s;
• A phase margin Mφ = 3 dB;

To do so, this paper will be divided as follows: in Section 2, the homogeneous finite and
rectangular bar will be presented, along with its mathematical modeling and its boundary conditions.
In Section 3, the different applied controllers will be introduced; an overview of the three CRONE
generations will also be proposed, along with the conditions of application of each generation.
In Section 4, the second CRONE generation will be presented along with two case studies: the first
one shows an ideal domain of application where the phase is constant and the gain varies whenever
plant parameters change. The second case presents both phase and gain variations, and the use of
the already synthesized controller appears to be no more robust. Hence, for this second case study,
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the third generation controller will be introduced in Section 5, and a performance analysis will be
presented. At the end, Section 6 will provide a conclusion and some future works to enrich this work.

2. Plant Modeling

The homogeneous diffusive interface medium will be presented in this part. The test bench is
constituted of a rectangular homogeneous rod with a square section S. It may consist of aluminum,
copper, or iron, and it is of a finite distance L, as shown in Figure 1. The characteristics of the medium,
its differential equations, and the boundary conditions, along with the features of the material used
will be proposed hereafter.

Figure 1. Representation of diffusive interface medium along with the sensors and the heating element.

2.1. Partial Differential Equations (PDE)

The input of this medium will be the density of flux ϕ(t) (which is equal to the flux φ(t) divided
by the section S of the source), whereas the output is the temperature at a location x. The partial
differential equations of this medium are shown in system (1), where the first equation shows the
temperature value for any value of x. As for the second equation, it represents the temperature
variation at the boundary where the heating element is applied.{

∂T(x,t)
∂t = αd

∂2T(x,t)
∂x2 , x > 0 , t > 0

−λ
∂T(x,t)

∂x = φ(t) , x = 0 , t > 0
, (1)

where αd represents the thermal diffusivity of the material, and T(x,t) represents the temperature at the
position x for time t.

In the second boundary equation, the flux is not applied, and the temperature along the bar at the
initial time (t = 0 s) is expressed by the following system:{

−λ
∂T(x,t)

∂x = 0 , x = L , t > 0
T(x, t) = 0 , 0 ≤ x < L , t = 0

. (2)

2.2. Plant Transfer Function

Based on the partial differential equations that represent the relation between the applied density
of flux ϕ(t) and the temperature variation T(x,t,L) within the diffusive interface medium of length L,
one can deduce the transfer function H(x,s,L) that models this system (interested authors can refer to
the following references for a detailed calculation of this transfer function [45,46]). Note here that the
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temperature varies with respect to the material used, the placement x of the temperature sensor, and
the length L of the rod. This transfer function H(x,s,L) is given by:

H(x, s, L) =
T(x, s, L)

ϕ(s)
= H0

1
s0.5

1

tanh
(√

s
ωL

) cosh
(√

s
ωLx

)
cosh

(√
s

ωL

) ,

H0 =
1

S ηd
, ηd =

√
λ ρ Cp, ωL =

αd
L2 , ωLx =

αd

(L − x)2 ,

(3)

where T(x, s, L) and ϕ(s) represent the Laplace transform of T(x,t,L) and ϕ(t) respectively, ηd is the
thermal effusivity, λ represents the thermal conductivity, ρ is the medium density, and Cp is the
medium heat.

From Equation (3), one can notice the fractional order operator (
√

s) residing in the hyperbolical
trigonometric functions, as well as the pure semi-integrator. This can confirm, once again, the novelty
of this work by applying a fractional order control (the CRONE controller) to, most importantly,
a non-integer order plant.

However, the expression of the transfer function H(x,s,L) can be reduced: in fact, as the position
of the temperature sensor is neglected with respect to the length of the bar (x << L), one can deduce
that ωLx ≈ ωL. Thus, Equation (3) can be written as follows, where this latter defines the validation
model of the system:

H(x, s, L) =
T(x, s, L)

ϕ(s)
= H0

1
s0.5

1

tanh
(√

s
ωL

) e−
√ s

ωx , (4)

where ωx = αd/x2.

2.3. Material Characteristics

As previously proposed, three materials will be used: copper (Cop), iron (Iro), and aluminum
(Alu). The last one will be considered for the nominal case. Table 1 shows the characteristics of the
three materials, along with the values of the two transitional frequencies ωL and ωx for three values of
the length, L, and the temperature sensor position, x.

Table 1. Physical characteristics of the used materials. Alu: aluminum; Cop: copper; Iro: iron.

Material
αd ηd H0 �L (rad/s) �x (rad/s)

m2/s W·K−1·m−2·s0.5 K·s0.5·W−1 L = 0.25 m L = 0.5 m L = 1 m x = 0 cm x = 0.5 cm x = 1 cm

Cop. 117 × 10−6 3.72 × 104 0.269 19 × 10−4 4.68 × 10−4 1.17 × 10−4 Infinite 4.68 1.17
Alu. 97 × 10−6 2.41 × 104 0.416 16 × 10−4 3.88 × 10−4 0.97 × 10−4 Infinite 3.88 0.97
Iro. 23 × 10−6 1.67 × 104 0.596 3.68 × 10−4 0.92 × 10−4 0.23 × 10−4 Infinite 0.92 0.23

When synthesizing the controllers, two case studies will be proposed based on the values of L
and x for the three material types. In the next sections, these case studies will be defined in more detail,
and the plant uncertainties will be modeled.

3. CRONE Controllers Presentation

The controllers that would be used in this application are the second and third generation CRONE
controllers. In the following, we will present each controller, and the method to synthesize it. The
two next sections will show the applications of the second and the third generations using two
different case studies. This will help the user understand the conditions in which to apply each of the
CRONE generations.
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The CRONE controller is the first fractional order controller developed. It was launched in 1975,
and it was introduced using three generations. We will focus in this paper on the second and third
generations, knowing that the first two generations were treated in previous works [47,48]. However,
a brief overview over the three generations will be presented below.

The first generation Crone controller proposes to use a controller without phase variation around
crossover frequency ωcg. Thus, the phase margin variation only results from the plant variation. This
strategy has to be used when frequency ωcg is within a frequency range where the plant phase is
constant. In this range, the plant variations are only gain-like. This first generation uses the a priori
calculation where the controller transfer function is calculated directly based on the user specifications.

The second generation CRONE control is applied when the plant variations are gain-like around
the gain crossover frequency ωcg, and the plant phase variation is canceled by those of the controller.
Thus, there is no phase margin variation when the frequency of ωcg varies. Such a controller produces a
constant open-loop phase whose Nichols locus is a vertical straight line named the frequency template.
This controller is synthesized a posteriori, where its transfer function is deduced from the open-loop
transfer function.

The third generation Crone controller is used when the plant frequency uncertainty domains are
of various types (not only gain-like, but present both gain and phase variation). The vertical template
is then replaced by a generalized template or by a multi-template (or curvilinear template) defined
by a set of generalized templates. Here also, the transfer function is defined a posteriori based on the
open-loop behavior [49].

4. Second CRONE Generation

4.1. Introduction

As the transfer function of this generation is synthesized a posteriori, the transfer function of the
open-loop system is defined as follows (for frequencies in the range of [ωA, ωB]):

β(s) =
(

ωcg

s

)n
, (5)

where ωcg is the frequency for which the uncertainties do not lead to any phase variation, n ∈ R and
n ∈ [1,2].

The complementary sensitivity function T(s) and the sensitivity function S(s) are defined
as follows:

T(s) =
β(s)

1 + β(s)
=

1

1 +
(

s
ωcg

)n and S(s) =
1

1 + β(s)
=

(
s

ωcg

)n

1 +
(

s
ωcg

)n . (6)

Around the crossover frequency ωcg, the Black–Nichols plot of the open-loop transfer function
β(s) is a vertical asymptote with a constant phase equal to n, as shown in Figure 2. This asymptote
allows having [48]:

• a robust phase margin Mφ equal to (2−n)×π/2;
• a robust resonance factor QT, defined as follows:

QT =

sup
ω

|T(jω)|

|T(j0)| =
1

sin(nπ/2)
; (7)

• a robust gain module Mm, defined as follows:

Mm = inf
ω
|β(jω) + 1| =

(
sup

ω
|S(jω)|

)−1
= sin(nπ/2); (8)
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Figure 2. Asymptotic behavior of the closed loop transfer function in the Black–Nichols diagram.

As for the control signal and the transient error, Equation (5) can be truncated in frequency, and a
low pass filter as well as an integrator must be added. Hence, the new form of the open-loop transfer
will appear as follows:

β(s) = β0

(
1 + s/ωl

s/ωl

)nl
(

1 + s/ωh
1 + s/ωl

)n

(1 + s/ωh )
−nh , (9)

where ωl and ωh represent the low and high transitional frequencies, n is the fractional order (varying
between 1 and 2) around the frequency ωcg, nl and nh are the system behavior at low and high
frequencies, and β0 is a constant value that assures a crossover frequency ωcg. It is expressed in
Equation (10):

β0 =
(
ωcg/ωl

)nl
(

1 +
(
ωcg/ωl

)2
)(n−nl)/2(

1 +
(
ωcg/ωh

)2
)(nh−n)/2

. (10)

Figure 3 shows the asymptotic behavior in a Bode diagram for this open-loop transfer function
β(s). The fractional order behavior is defined over the interval [ωA, ωB], and it belongs to the nominal
crossover frequency ωcgnom. In order to respect the robustness of the stability degree, it is necessary to
define the margins for ωcg, such as:

∀ωcg ∈
[
ωcgmin ; ωcgmax

]
, ωA ≤ ωcg ≤ ωB ⇒

{
ωA ≤ ωcgmin

ωB ≥ ωcgmax
. (11)

As shown in Figure 3, two new cutoff frequencies are introduced (ωl and ωh), which help getting
the fractional order behavior between ωA and ωB. Previous studies have shown that it is sufficient for
ωl to be one decade less ωB, whereas for ωl, it must be one decade above ωh [49].{

ωl = ωA/10
ωh = 10 ωB

. (12)

Thus, one can define ωcgnom as being the geometric median of ωl and ωh. Added to that, a new
parameter r, being the ratio of ωB and ωA, is introduced:{ √

ωl ωh = ωcgnom

r = ωB
ωA

. (13)
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As a consequence, ωl and ωh could be written with respect to ωcgnom and r as follows:{ √
ωl ωh = ωcgnom

ωh
ωl

= 100 r
⇒

{
ωl = ωcgnom/

(
10

√
r
)

ωh = ωcgnom 10
√

r
. (14)

Once the open-loop transfer function is calculated, one can conclude the CRONE controller
transfer function as being the ratio of the open-loop transfer function β(jω) over the nominal plant’s
transfer function P0(jω):

CF(jω) = β(jω)/P0(jω). (15)

A last step is always needed in order to pass from the fractional form CF(jω) to the rational form
CR(jω). Several methods could be applied in this case; however, one simple method is based on the
representation of the function using a recursive distribution of poles and zeros. Each pole and zero
form a cell. The higher the number of cells, the most accurate the results are, but the more complex
the transfer function would be. However, four to eight cells would be enough, as the fractional
frequency range is below three decades [50]. Another option exists in using the CRONE toolbox, which
can give the rational representation of the fractional form since it knows the frequency response of
CF(jω) [51,52].

ωcgnom

nl

nh

n

Fractional asymptotic behavior

ωl

ωA

ωB

ωh

ω

ω

Figure 3. Asymptotic behavior of the open-loop transfer function β(s) in the Bode diagram.

4.2. First Case Study

4.2.1. Plant Parameters

As the objectives of the second generation of the CRONE controller is to have a constant phase
with a variable gain when varying the parameters of the plant, the choice of the values of L and x is
crucial in order to apply this generation. Hence, these values are listed below:

- Aluminum, L = 1 m and x = 0.5 cm → ωL = 0.97 10−4 rad/s and ωx = 3.88 rad/s;
- Copper, L = 1.1 m and x = 0.55 cm → ωL = 0.97 10−4 rad/s and ωx = 3.87 rad/s;
- Iron, L = 0.49 m and x = 0.243 cm → ωL = 0.96 10−4 rad/s and ωx = 3.89 rad/s.
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Figure 4 shows the Bode diagrams for the three plants. The phase constancy for the three outputs
is well noted; however, the changes in the gain are also observed. Hereafter, the aluminum will be
considered the nominal case, whereas the copper and iron will be considered the extreme cases.

ω

Figure 4. Bode plots of H(x,jω,L) for aluminum (in blue), copper (in green), and iron (in red) for the
first case study.

4.2.2. Synthesis Model

The plant transfer function H(x,s,L), which was already presented in Equations (3) and (4), could
be written in another way in order to facilitate the computation of the controller transfer function.
Thus, it could be expressed as follows based on the approximation for the tanh function. The new
model P2(s) in Equation (16) will be considered as the synthesis model that will be easier to use in
order to calculate the controller transfer function. Interested readers can refer to a previous work of
the authors for more details about the calculations [53].

P2(s) = H∗
0
(1 + s/ωL)

0.5

s/ωL
e−

√ s
ωx , (16)

where
H∗

0 =
H0

ω0.5
L

. (17)

Figure 5 represents the Bode plots of P2(jω) (in blue) and of H(x,jω,L) (in green) obtained with
aluminum for L = 1 m and x = 0.5 cm. It is well noted the coherence of both plots (for the gain and the
phase) in the frequency range around ωcg.
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ω

Figure 5. Bode plots of P2(jω) (in blue) and of H(x,jω,L) (in green) obtained with aluminum for L = 1 m
and x = 0.5 cm.

4.2.3. Controller Transfer Function

As already discussed, the synthesis of the CRONE controller transfer function is done a posteriori.
Thus, we have first to compute the open-loop transfer function (Equation (9)), then by replacing the
plant’s transfer function by its value, we will obtain the controller transfer function, which could be
expressed as follows:

CF(s) = β0

(
1 + s/ωl

s/ωl

)nl
(

1 + s/ωh
1 + s/ωl

)n 1(
1 + s/ωh

)nh

s/ωL

H∗
0 (1 + s/ωL)

0.5 e
√ s

ωx . (18)

Taking into consideration the specifications of the user guide, the different variables can be
defined. Thus,

- nl = 2, in order to assure a null training error;
- nh = 1.5, in order to limit the input sensitivity;
- QT = 3 dB or Mφ = 45◦ → n = (180◦−Mφ)/90◦ = 1.5;
- ωcgnom = 1 rad/s ;

So, taking into account the previous values, Equation (18) can be written as follows:

CF(s) = C0

(ωl
s

) (
1 + s/ωl

)2−n(
1 + s/ωh

)1.5−n
(1 + s/ωL)

0.5
e
√ s

ωx , (19)

where:
C0 =

β0 ωl
H∗

0 ωL
. (20)

In order to get rid of the exponent, a Taylor development was needed for ez when z tends
towards zero.
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lim
z→0

ez = 1 + z +
z2

2!
+

z3

3!
+ . . . +

zk

k!
+ . . . =

∞

∑
k=0

zk

k !
, (21)

When truncated at order 2 and considering that z = (s/ωx)0.5, one can obtain:

e
√ s

ωx ≈ 1 +
(

s
ωx

)0.5
+

s
2 ωx

. (22)

So, the fractional approximated form C̃F(s) is defined by:

C̃F(s)= C0

(ωl
s

) (
1 + s/ωl

)2−n(
1 + s/ωh

)1.5−n
(1 + s/ωL)

0.5

(
1 +

(
s

ωx

)0.5
+

s
2 ωx

)

=
C∗

0
s

(
1 +

(
s

ωx

)0.5
+

s
2 ωx

) (23)

where C∗
0 = C0 ωl = 2.405 W · s−1 · deg−1, and ωx = 3.88 rad/s.

Referring to Equation (23), the controller is constituted of a simple integrator, which allows
removing the noise caused by the exponent around the crossover frequency ωcg. For the low
frequencies, the controller has an integrator behavior, whereas for high frequencies, it has a
proportional behavior.

In order to apply this controller, the rational form is needed. For this example, we will be using
the cascade representation, as shown in Equation (24). The use of the CRONE toolbox helps defining
the values of the poles and the zeros. The new approximated transfer function will be as follows:

CR(s) =
C∗

0
s

3
∏
j=1

(
1 + s

ωzj

)
2

∏
j=1

(
1 + s

ωpj

) , (24)

where: ⎧⎪⎨⎪⎩
ωz1 = 0.8 rad/s ωp1 = 1.25 rad/s
ωz2 = 6.5 rad/s ωp2 = 29 rad/s
ωz3 = 55 rad/s

. (25)

4.2.4. Performance Analysis

Concerning the behavior of the second generation CRONE controller applied to a plant where
the uncertainties are modeled only by gain variation and an invariable but non-constant phase for the
three plants, the following plots will resume the outcome.

Figure 6 represents the Bode diagrams for the different controllers transfer functions: the fractional
form C̃F(s) (in blue), and the rational form CR(s) (in green).

Figure 7 shows the open-loop Black–Nichols plots (a), the closed-loop step responses (b), and their
control inputs for a step input of 1 ◦C (c) for aluminum (in blue), copper (in green), and iron (in red)
for the CR(s) controller.
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Figure 6. Bode diagrams for the fractional controller C̃F(s) (in blue) and the rational form CR(s)
(in green).

(a) (b) 

(c) 

Figure 7. Open-loop Black–Nichols plots (a), closed-loop step responses (b), control inputs for a step
input of 1 ◦C (c) for aluminum (in blue), copper (in green), and iron (in red).
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As a conclusion, the exact coherence between the fractional and the rational transfer functions is
well noted (Figure 6). Concerning the robustness of the controller, one can see clearly that the three
open-loop transfer functions in the Nichols diagram are tangent to the same contour (3 dB). As for
the closed-loop step responses, all three outputs have the same first overshoot value and the same
damping ratio. Thus, we can confirm that the second generation CRONE controller is robust whenever
the conditions of application of this generation are met.

4.3. Second Case Study

In this second case study, we will choose L and x arbitrarily in such a way that the plant will
present both phase and gain variations when changing the parameters of the plant, and we will
apply the previously synthesized controller (Equations (24) and (25) to study the performance of the
new system.

4.3.1. Plant Parameters

The values of L and x chosen for this case study are as follows:

- Aluminum, L = 1 m and x = 0.5 cm → ωL = 0.97 10−4 rad/s and ωx = 3.88 rad/s;
- Copper, L = 1.1 m and x = 1 cm → ωL = 0.97 10−4 rad/s and ωx = 1.17 rad/s;
- Iron, L = 0.49 m and x = 0.1 cm → ωL = 0.96 10−4 rad/s and ωx = 23 rad/s.

Figure 8 shows the Bode diagrams for the three plants. Both the phase and the gain vary when
changing the parameters of the plant. As for the first case study, aluminum will be considered as the
nominal case, whereas copper and iron will be considered the extreme cases.

ω

Figure 8. Bode plots of H(x,jω,L) for aluminum (in blue), copper (in green), and iron (in red) for the
second case study.
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4.3.2. Synthesis Model

Based on the exact plant transfer function shown in Equation (4), the synthesis model of the plant
for this second case study can be approximated by the following transfer function:

P2(s) = H∗
0
(1 + s/ωL)

0.5

s/ωL
e−

√ s
ωx , (26)

where the values of H∗
0 , ωL and ωx remain unchanged as they were presented for the first case study

(refer to Sections 4.2.2 and 4.2.3).

4.3.3. Controller Transfer Function

As already presented, the controller synthesized for the first case study will be used for this
second case, as the nominal plant transfer function (e.g., the aluminum) remains the same. Thus,
the controller exact transfer function is the one presented in Equation (23), whereas its rationalized
form is shown in Equation (24).

4.3.4. Performance Analysis

Concerning the behavior of the second generation CRONE controller applied to a plant where the
uncertainties are modeled by gain and phase variation, the plots of Figure 9 will resume the outcome.

Figure 9 shows the open-loop Black–Nichols plots (a) and the closed-loop step responses (b) for
aluminum (in blue), copper (in green) and iron (in red) for the CR(s) controller.

(a) (b) 

Figure 9. Open-loop Black–Nichols plots (a) and closed-loop step responses (b) for aluminum (in blue),
copper (in green) and iron (in red).

Concerning the robustness of this controller, one can see clearly that the three open-loop transfer
functions in the Nichols diagram are no more tangent to the same contour at 3 dB. As for the closed-loop
step responses, the first overshoot value and the damping ratio of the three systems are not constant
(we can notice that the first overshoot varies between 19% and 42%). Thus, we can confirm that the
second generation CRONE controller is no more robust whenever the conditions of the applied plant
are not verified.

However, we will use this second case study to calculate the third generation CRONE controller
and analyze its behavior.
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5. Third CRONE Generation

5.1. Introduction

The open-loop transfer function, when using the third generation CRONE controller, is defined as
being the real part of the fractional complex integrator. It is expressed as follows:

β(s) = Re/i

(ωcg

s

)n
, (27)

where n = a + ib ∈ Ci and s = +jω ∈ Cj. The real order a determines the phase placement in the Nichols
chart, whereas the imaginary part b shows its angle with respect to the vertical axis, as shown in
Figure 10.

Figure 10. Open-loop behavior in the Black–Nichols diagram.

As we will have an infinite number of asymptotes, the main objective of this CRONE controller
will be to optimize the parameters of the open-loop transfer function in a way that includes complex
and fractional order integration on a certain frequency range, thus:

β0(s) = βl(s)βm(s)βh(s), (28)

where βm(s) is the set of models defined within a frequency range, which allows us to write:

βm(s) =
N+

∏
k=−N−

C
sign(bk )

k

(
αk

1 + s/ωk+1
1 + s/ωk

)ak(
Re/i

{(
αk

1 + s/ωk+1
1 + s/ωk

)ibk
})−qksign(bk)

(29)

where:

αk =

(
ωk+1

ωk

)1/2
for k �= 0 and α0 =

(
1 + (ωr/ω0)

2

1 + (ωr/ω1)
2

)1/2

(30)

and:

βl(s) = Cl

(
1 + s/ωN−

s/ωN−

)nl

and βh(s) = Ch

(
s

ωN+
+ 1
)−nh

, (31)

knowing that: {
N+, N− and qk ∈ N+

ωr, ωk, ωk+1, αk, Ck, Cl , Ch, ak and bk ∈ R.
(32)

As the calculation of all of these parameters is very difficult because of the enormous number of
parameters, the CRONE toolbox has been deployed.
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5.2. CRONE Toolbox

The main purpose of this toolbox is to calculate the CRONE controller transfer function based
on the plant transfer function, as well as the parametric uncertainties of the system. The toolbox can
specify which generation is the most suitable to answer the user guide specifications, and it can deliver
the controller transfer function in a rational form.

As we are limited in space, interested authors can refer to the following references for more
information concerning the toolbox and its characteristics [49,54–56].

5.3. Case Study

As already proposed, the second case study, which was proposed for the second CRONE
generation, will be treated for this generation. Thus, we will be dealing with a system where both
phase and gain are varying over the frequency range.

5.3.1. Plant Parameters

The plant parameters are the ones used for the second case study (refer to Section 4.3. Figure 8
showed the Bode diagram plots for the three plants. Here also, aluminum will be considered the
nominal case.

5.3.2. Synthesis Model

In order to synthesize the controller transfer function, the CRONE toolbox was used for the
third generation as the computation of the variable is difficult especially that the order is complex
and fractional.

Hence, when using the toolbox along with the same user specifications set in the previous
controller, the values of the variables of the open-loop transfer function are obtained as follow:⎧⎪⎪⎪⎨⎪⎪⎪⎩

ω0 = 0.03896 rad/s q0 = 6
a0 = 1.4927 C0 = 13.217
b0 = −0.6496 K = 34.11
b′0 = −0.2379 ω1 = 74.092 rad/s

. (33)

5.3.3. Performance Analysis

Concerning the performance analysis for the third generation CRONE controller, Figure 11
represents the Bode diagrams for the rational controller CR(s) (a), the Nichols plot of the open loop (b),
the Bode gain diagrams for the sensitivity functions S(s) (c) and T(s) (d) (as presented in system (6)),
for aluminum (in blue), copper (in green) and iron (in red).

Figure 12 represents the closed step response for the temperature at location x and for time t (a),
and the corresponding control signals u(t) (b) for a step input of 1 ◦C. This will be applied for aluminum
(in blue), copper (in green), and iron (in red).

As for the results, Figure 11b shows that the three Nichols plots are tangent to the same contour
(3 dB) for a given gain, which may reflect the robustness of the controller. Almost the same results
appear when plotting the sensitivity functions where the resonance factor is constant for the three
plants (Figure 11c,d). Concerning the time domain responses, it is clear that the three plants have the
same first overshoot and the same damping factor, which can prove, once again, the robustness of the
third generation CRONE controller.
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(a) (b) 

(c) (d) 

Figure 11. Frequency responses for: Bode diagrams of the controller CR(s) (a), the Nichols plot of the
open-loop function (b), the sensitivity function S(s), and (c) complementary sensitivity function T(s)
(d) for aluminum (in blue), copper (in green), and iron (in red).

(a) (b) 

Figure 12. Time domain responses for: closed-loop step input regarding the temperature T(t,x) (a) and
the input control signal (b) for a step input of 1 ◦C for aluminum (in blue), copper (in green), and iron
(in red).
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6. Conclusions and Future Works

As a conclusion, the results show that the second generation CRONE controller is robust when
the variations in the plant are modeled with gain changes, whereas the phase remains the same for all
of the plants (even if not constant). Nevertheless, the third generation CRONE controller showed a
good robustness when changing the parameters of the plant and when encountering both gain and
phase variations.

As for the future works, lots of ideas come to mind in order to enrich this study. Below are some
of the proposed tasks:

- Implement this system on a real test bench;
- Study the accuracy of this system when varying the position of the temperature sensors; this

deviation is due involuntarily when implementing the test bench;
- Apply other regulators to control this fractional order plant as the sliding mode control (with its

multiple types), Hinf robust control, and much more;

- Introduce some estimators to evaluate the temperature value at some location where the
temperature sensor can’t be placed.
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interface medium; Fady Christophy and Xavier Moreau designed the CRONE controllers and performed the
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1. Introduction

Fractional differential equations (FDEs) occur in many engineering systems and scientific
disciplines such as the mathematical modelling of systems and processes in the fields of physics,
chemistry, aerodynamics, electrodynamics of complex medium, etc. FDEs also provide as an efficient
tool for explanations of hereditary properties of different resources and processes. As a result,
the meaning of the FDEs has been of great importance and attention, and one can refer to Kilbas
[1], Podlubny [2] and the papers [3–9]. Recently, the Hilfer fractional derivative [10] for FDEs has
become a very active area of research. R. Hilfer initiated the Hilfer fractional derivative. This is
used to interpolate both the Riemann–Liouville and the Caputo fractional derivative for the theory
and applications of the Hilfer fractional derivative (see, e.g., [6,10–16] and references cited therein).
Analogously, we prefer the Hilfer derivative operator that interpolates both the Riemann–Liouville
and the Caputo derivative.

English scientist Michael Faraday first discovered the concept of thermistors in 1833 while
reporting on the semiconductor behavior of silver sulfide. From his research work, he noticed that the
silver sulfides resistance decreased as the temperature increased. This later leads to the commercial
production of thermistors in the 1930s when Samuel Ruben invented the first commercial thermistor.
Ever since, technology has improved; this made it possible to improve manufacturing processes along
with the availability of advanced quality material.

A thermistor is a thermally sensitive resistor that displays a precise and predictable change in
resistance proportional to small changes in body temperature. How much its resistance will change is
dependent upon its unique composition. Thermistors are part of a larger group of passive components.
Unlike their active component counterparts, passive devices are incapable of providing power gain,
or amplification to a circuit. Thermistors can be found everywhere in airplanes, air conditioners,
in cars, computers, medical equipment, hair dryers, portable heaters, incubators, electrical outlets,
refrigerators, digital thermostats, ovens, stove tops and in all kinds of appliances. Ice sensors and
aircraft wings, if ice builds up on the wings, the thermistor senses this temperature drop and a heater
will be activated to remove the ice. Flight tests need to be completed on a particular date, hence there
may not be enough time to create a flight test technique on that date. However, it is possible to

Fractal Fract. 2017, 1, 5 80 www.mdpi.com/journal/fractalfract



Fractal Fract. 2017, 1, 5

take a number of recommendations on the needs of any future flight plan to examine the nature of
thermistor thermometer at high subsonic and supersonic speeds. In general, the unusual behaviour of
the thermistor thermometer is caused by the possibility of vortices and an aerodynamic disturbance
generating non-uniform flow, happening in the chamber with sensing element. The thermistors are
small, which makes them very delicate to such effects [17,18].

A thermistor is a temperature dependent resistor and comes in two varieties, negative temperature
coefficient (NTC) and positive temperature coefficient (PTC), although NTCs are most commonly
used. With NTC, the resistance variation is inverse to the temperature change i.e.,: as temperature
goes up, resistance goes down. NTC Thermistors are nonlinear, and their resistance decreases as
temperature increases. A phenomenon called self-heating may affect the resistance of an NTC
thermistor. When current flows through the NTC thermistor, it absorbs the heat causing its own
temperature to rise. In [19], Khan et al. investigated the coupled p-Laplacian fractional differential
equations with nonlinear boundary conditions. Wenjing Song and Wenjie Gao studied the existence
of solutions for a nonlocal initial value problem to a p-Laplacian thermistor problems on time scales
in [20]. Later, Moulay Rchid Sidi Ammi and Delfim F. M. Torres developed and applied a numerical
method for the time-fractional nonlocal thermistor problem in [21]. They investigated the existence and
uniqueness of a positive solution to generalized nonlocal thermistor problems with fractional-order
derivatives in [22]. Recently, Moulay Rchid Sidi Ammi and Delfim F. M. Torres [23] discussed the
existence and uniqueness results for a fractional Riemann–Liouville nonlocal thermistor problem
on arbitrary time scales. Interested readers can refer to recent papers [22–26] treating a nonlocal
thermistor problem.

Motivated by the aforementioned papers, we study the existence, uniqueness and Ulam–Hyers
stability types of solutions for Hilfer type thermistor problem of the form⎧⎪⎨⎪⎩

Dα,β
0+ u(t) = λ f (u(t))(∫ T

0 f (u(x))dx
)2 , t ∈ J := [0, T],

I1−γ
0+ u(0) = u0, γ = α + β − αβ,

(1)

where Dα,β
0+ is the Hilfer fractional derivative of order α and type β, 0 < α < 1, 0 ≤ β ≤ 1 and let

J = [0, T], X be a Banach space, f : J × X → X is a given continuous function. The operator I1−γ
0+

denotes the left-sided Riemann–Liouville fractional integral of order 1 − γ. Choosing λ such that

0 < λ <

(
LTα+1−γ

(C1T)2Γ(α+1) +
2C2

2 LTα+3−γ

(C1T)2Γ(α+1)

)−1
is discussed in Section 4.

It is seen that (1) is equivalent to the following nonlinear integral equation

u(t) =
u0

Γ(γ)
tγ−1 +

λ

Γ(α)

∫ t

0
(t − s)α−1 f (u(s))(∫ T

0 f (u(x))dx
)2 ds. (2)

The stability of the functional equations were first introduced in a discourse conveyed in 1940 at
the University of Wisconsin. The issue made by Ulam is as per the following: Under what conditions
does there exist an additive mapping near an approximately additive mapping? [5,27–29]. The first
reply to the topic of Ulam was given by Hyers in 1941 on account of Banach spaces. Ever since, this type
of stability was known as the Ulam–Hyers stability. Rassias [29] gave a generalization of the Hyers
theorem for linear mappings. Many mathematicians later extended the issue of Ulam in different ways.
Recently, Ulam’s problem was generalized for the stability of differential equations. A comprehensive
interest was given to the study of the Ulam and Ulam–Hyers–Rassias stability of all kinds of
functional equations [5,8,9,30]. An exhaustive interest was given to the investigation of the Ulam and
Ulam–Hyers–Rassias stability of all kinds of functional Equation (1).
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The paper is organized as follows. In Section 2, we introduce some definitions, notations,
and lemmas that are used throughout the paper. In Section 3, we will prove existence and uniqueness
results concerning problem (1). Section 4 is devoted to the Ulam–Hyers stabilities of problem (1).

2. Basic Concepts and Results

In this section, we introduce notations, definitions, and preliminary facts that are used
throughout this paper. For more details on Hilfer fractional derivative, interested readers can
refer to [6,10,12,13,15,31].

Definition 1. Let C[J, X] denote the Banach space of all continuous functions from [0, T] into X with the norm

‖u‖C := sup {|u(t)| : t ∈ J} .

We denote L1 {R+}, the space of Lebesgue integrable functions on J.
By Cγ[J, X] and C1

γ[J, X], we denote the weighted spaces of continuous functions defined by

Cγ[J, X] := { f (t) : J → X|tγ f (t) ∈ C[J, X]} ,

with the norm
‖ f ‖Cγ

= ‖tγ f (t)‖C ,

and

‖ f ‖Cn
γ
=

n−1

∑
k=0

∥∥∥ f k
∥∥∥

C
+
∥∥∥ f (n)

∥∥∥
Cγ

, n ∈ N.

Moreover, C0
γ[J, X] := Cγ[J, X].

Now, we give some results and properties of fractional calculus.

Definition 2 ([1,16]). The left-sided mixed Riemann–Liouville integral of order α > 0 of a function
h ∈ L1 {R+} is defined by

(Iα
0+h)(t) =

1
Γ(α)

∫ t

0
(t − s)α−1h(s)ds, for a.e. t ∈ J,

where Γ(·) is the (Euler’s) Gamma function defined by

Γ(ξ) =
∫ ∞

0
tξ−1e−tdt; ξ > 0.

Notice that for all α, α1, α2 > 0 and each h ∈ C[J, X], we have Iα
0+h ∈ C[J, X], and

(Iα1
0+ Iα2

0+h)(t) = (Iα1+α2
0+ h)(t); for a.e. t ∈ J.

Definition 3 ([1,16]). The Riemann–Liouville fractional derivative of order α ∈ (0, 1] of a function
h ∈ L1 {R+} is defined by

(Dα
0+h)(t) =

(
d
dt

I1−α
0+ h

)
(t)

=
1

Γ(1 − α)

d
dt

∫ t

0
(t − s)−αh(s)ds; for a.e. t ∈ J.
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Let α ∈ (0, 1], γ ∈ [0, 1) and h ∈ C1−γ[J, X]. Then, the following expression leads to the left inverse
operator as follows:

(Dα
0+ Iα

0+h)(t) = h(t); for all t ∈ (0, T].

Moreover, if I1−α
0+ h ∈ C1

1−γ[J, X], then the following composition

(Iα
0+Dα

0+h)(t) = h(t)−
(I1−α

0+ h)(0+)
Γ(α)

tα−1; for all t ∈ (0, T].

Definition 4 ([1,16]). The Caputo fractional derivative of order α ∈ (0, 1] of a function h ∈ L1 {R+} is
defined by

(cDα
0+h)(t) = (I1−α

0+
d
dt

h)(t)

=
1

Γ(1 − α)

∫ t

0
(t − s)−α d

ds
h(s)ds; for a.e. t ∈ J.

In [10], Hilfer studied applications of a generalized fractional operator having the
Riemann–Liouville and the Caputo derivatives as specific cases (see also [6,32]).

Definition 5 (Hilfer derivative). Let 0 < α < 1, 0 ≤ β ≤ 1, h ∈ L1 {R+}, I(1−α)(1−β)
0+ ∈ C1

γ[J, X].
The Hilfer fractional derivative of order α and type β of h is defined as

(Dα,β
0+ h)(t) =

(
Iβ(1−α)
0+

d
dt

I(1−α)(1−β)
0+ h

)
(t); for a.e. t ∈ J. (3)

Properties. Let 0 < α < 1, 0 ≤ β ≤ 1, γ = α + β − αβ, and h ∈ L1 {R+}.

1. The operator (Dα,β
0+ h)(t) can be written as

(Dα,β
0+ h)(t) =

(
Iβ(1−α)
0+

d
dt

I1−γ
0+ h

)
(t) =

(
Iβ(1−α)
0+ Dγ

0+h
)
(t); for a.e. t ∈ J.

Moreover, the parameter γ satisfies

0 < γ ≤ 1, γ ≥ α, γ > β, 1 − γ < 1 − β(1 − α).

2. The generalization (3) for β = 0 coincides with the Riemann–Liouville derivative and for β = 1
with the Caputo derivative

Dα,0
0+ = Dα

0+ , and Dα,1
0+ =c Dα

0+ .

3. If Dβ(1−α)
0+ h exists and in L1 {R+}, then

(Dα,β
0+ Iα

0+h)(t) =
(

Iβ(1−α)
0+ Dβ(1−α)

0+ h
)
(t); for a.e. t ∈ J.

Furthermore, if h ∈ Cγ[J, X] and I1−β(1−α)
0+ h ∈ C1

γ[J, X], then

(Dα,β
0+ Iα

0+h)(t) = h(t); for a.e. t ∈ J.
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4. If Dγ
0+h exists and in L1 {R+}, then

(
Iα
0+Dα,β

0+ h
)
(t) =

(
Iγ
0+Dγ

0+h
)
(t) = h(t)−

I1−γ
0+ h(0+)

Γ(γ)
tγ−1; for a.e. t ∈ J.

In order to solve our problem, the following spaces are presented

Cα,β
1−γ[J, X] =

{
f ∈ C1−γ[J, X], Dα,β

0+ f ∈ C1−γ[J, X]
}

,

and
Cγ

1−γ[J, X] =
{

f ∈ C1−γ[J, X], Dγ
0+ f ∈ C1−γ[J, X]

}
.

It is obvious that
Cγ

1−γ[J, X] ⊂ Cα,β
1−γ[J, X].

Corollary 1 ([31]). Let h ∈ C1−γ[J, X]. Then, the linear problem

Dα,β
0+ x(t) = h(t), t ∈ J = [0, T],

I1−γ
0+ x(0) = x0, γ = α + β − αβ,

has a unique solution x ∈ L1 {R+} given by

x(t) =
x0

Γ(γ)
tγ−1 +

1
Γ(α)

∫ t

0
(t − s)α−1h(s)ds.

From the above corollary, we conclude the following lemma.

Lemma 1. Let f : J × X → X be a function such that f ∈ C1−γ[J, X]. Then, problem (1) is equivalent to the
problem of the solutions of the integral Equation (2).

Theorem 1 (Schauder fixed point theorem [31,33]). Let B be closed, convex and nonempty subset of a
Banach space E. Let P : B → B be a continuous mapping such that P(B) is a relatively compact subset of E.
Then, P has at least one fixed point in B.

Now, we study the Ulam stability, and we adopt the definitions in [4,30,34] of the
Ulam–Hyers stability, generalized Ulam–Hyers stability, Ulam–Hyers–Rassias stability and generalized
Ulam–Hyers–Rassias stability.

Consider the following Hilfer type termistor problem

Dα,β
0+ u(t) =

λ f (u(t))(∫ T
0 f (u(x))dx

)2 , t ∈ J := [0, T], (4)
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and the following fractional inequalities:∣∣∣∣∣∣∣Dα,β
0+ z(t)− λ f (z(t))(∫ T

0 f (z(x))dx
)2

∣∣∣∣∣∣∣ ≤ ε, t ∈ J, (5)

∣∣∣∣∣∣∣Dα,β
0+ z(t)− λ f (z(t))(∫ T

0 f (z(x))dx
)2

∣∣∣∣∣∣∣ ≤ εϕ(t), t ∈ J, (6)

∣∣∣∣∣∣∣Dα,β
0+ z(t)− λ f (z(t))(∫ T

0 f (z(x))dx
)2

∣∣∣∣∣∣∣ ≤ ϕ(t), t ∈ J. (7)

Definition 6. Equation (4) is Ulam–Hyers stable if there exists a real number Cf > 0 such that, for each
ε > 0 and for each solution z ∈ Cγ

1−γ[J, X] of Inequality (5), there exists a solution u ∈ Cγ
1−γ[J, X] of

Equation (4) with

|z(t)− u(t)| ≤ Cf ε, t ∈ J.

Definition 7. Equation (4) is generalized Ulam–Hyers stable if there exists ψ f ∈ C([0, ∞), [0, ∞)), ψ f (0) = 0
such that, for each solution z ∈ Cγ

1−γ[J, X] of Inequality (5), there exists a solution u ∈ Cγ
1−γ[J, X] of

Equation (4) with
|z(t)− u(t)| ≤ ψ f ε, t ∈ J.

Definition 8. Equation (4) is Ulam–Hyers–Rassias stable with respect to ϕ ∈ C1−γ[J, X] if there exists a real
number Cf > 0 such that, for each ε > 0 and for each solution z ∈ Cγ

1−γ[J, X] of Inequality (6), there exists a
solution u ∈ Cγ

1−γ[J, X] of Equation (4) with

|z(t)− u(t)| ≤ Cf εϕ(t), t ∈ J.

Definition 9. Equation (4) is generalized Ulam–Hyers–Rassias stable with respect to ϕ ∈ C1−γ[J, X] if there
exists a real number Cf ,ϕ > 0 such that, for each solution z ∈ Cγ

1−γ[J, X] of Inequality (7), there exists a
solution u ∈ Cγ

1−γ[J, X] of Equation (4) with

|z(t)− u(t)| ≤ Cf ,ϕ ϕ(t), t ∈ J.

Remark 1. A function z ∈ Cγ
1−γ[J, X] is a solution of Inequality (5) if and only if there exist a function

g ∈ Cγ
1−γ[J, X] (which depends on solution z) such that

1. |g(t)| ≤ ε, ∀ t ∈ J.

2. Dα,β
0+ z(t) = λ f (z(t))(∫ T

0 f (z(x))dx
)2 + g(t), t ∈ J.

Remark 2. It is clear that:

1. Definition 6⇒ Definition 7.
2. Definition 8⇒ Definition 9.
3. Definition 8 for ϕ(t) = 1 ⇒ Definition 6.
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Lemma 2 ([3]). Let v : [0, T] → [0, ∞) be a real function and w(·) is a nonnegative, locally integrable function
on [0, T] and there are constants a > 0 and 0 < α < 1 such that

v(t) ≤ w(t) + a
∫ t

0

v(s)
(t − s)α

ds.

Then, there exists a constant K = K(α) such that

v(t) ≤ w(t) + Ka
∫ t

0

w(s)
(t − s)α

ds,

for every t ∈ [0, T].

3. Existence Results

The following existence result for Hilfer type thermistor problem (1) is based on Schauder’s fixed
point theorem. Let us consider the following assumptions:

Assumption 1. Function f : J × X → X of problem (1) is Lipschitz continuous with Lipschitz constant L
such that c1 ≤ f (u) ≤ c2, with c1 and c2 two positive constants.

Assumption 2. There exists an increasing function ϕ ∈ C1−γ[J, X] and there exists λϕ > 0 such that, for any
t ∈ J,

Iα
0+ ϕ(t) ≤ λϕ ϕ(t).

Our main result may be presented as the following theorem.

Theorem 2 (existence). Under the above Assumption 1, problem (1) has at least one solution u ∈ X for all
λ > 0.

Proof. Consider the operator P : C1−γ[J, X] → C1−γ[J, X] is defined by

(Pu)(t) =
u0

Γ(γ)
tγ−1 +

λ

Γ(α)

∫ t

0
(t − s)α−1 f (u(s))(∫ T

0 f (u(x))dx
)2 ds. (8)

Clearly, the fixed points of P are solutions to (1). The proof will be given in several steps.

Step 1: The operator P is continuous. Let un be a sequence such that un → u in C1−γ[J, X]. Then, for
each t ∈ J, ∣∣t1−γ ((Pun)(t)− (Pu)(t))

∣∣
≤ λt1−γ

Γ(α)

∫ t
0 (t − s)α−1

∣∣∣∣∣ f (un(s))(∫ T
0 f (un(x))dx

)2 − f (u(s))(∫ T
0 f (u(x))dx

)2

∣∣∣∣∣ ds

≤ λt1−γ

Γ(α)

∫ t
0 (t − s)α−1

∣∣∣∣∣ 1(∫ T
0 f (un(x))dx

)2 ( f (un(s))− f (u(s)))

+ f (u(s))

(
1(∫ T

0 f (un(x))dx
)2 − 1(∫ T

0 f (u(x))dx
)2

)∣∣∣∣∣
≤ λt1−γ

Γ(α)

∫ t
0 (t − s)α−1 1(∫ T

0 f (un(x))dx
)2 | f (un(s))− f (u(s))| ds

+ λt1−γ

Γ(α)

∫ t
0 (t − s)α−1 | f (u(s))|

∣∣∣∣∣ 1(∫ T
0 f (un(x))dx

)2 − 1(∫ T
0 f (u(x))dx

)2

∣∣∣∣∣ ds ≤ I1 + I2,

(9)
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where

I1 =
λt1−γ

Γ(α)

∫ t

0
(t − s)α−1 1(∫ T

0 f (un(x))dx
)2 | f (un(s))− f (u(s))| ds,

I2 =
λt1−γ

Γ(α)

∫ t

0
(t − s)α−1 | f (u(s))|

∣∣∣∣∣∣∣
1(∫ T

0 f (un(x))dx
)2 − 1(∫ T

0 f (u(x))dx
)2

∣∣∣∣∣∣∣ ds.

We estimate I1 and I2 terms separately. By Assumption 1, we have

I1 ≤ λt1−γ

Γ(α)

∫ t

0
(t − s)α−1 1(∫ T

0 f (un(x))dx
)2 | f (un(s))− f (u(s))| ds

≤ λt1−γ

(c1T)2Γ(α)

∫ t

0
(t − s)α−1 | f (un(s))− f (u(s))| ds

≤ Lλt1−γ

(c1T)2Γ(α)
‖un − u‖C1−γ

∫ t

0
(t − s)α−1ds

≤ LλTα+1−γ

(c1T)2Γ(α + 1)
‖un − u‖C1−γ

.

Then,

I1 ≤ LλTα+1−γ

(c1T)2Γ(α + 1)
‖un − u‖C1−γ

, (10)

I2 =
λt1−γ

Γ(α)

∫ t

0
(t − s)α−1 | f (u(s))|

∣∣∣∣∣∣∣
1(∫ T

0 f (un(x))dx
)2 − 1(∫ T

0 f (u(x))dx
)2

∣∣∣∣∣∣∣ ds

≤ λt1−γ

Γ(α)

∫ t

0
(t − s)α−1 | f (u(s))|

∣∣∣∣(∫ T
0 f (un(x))dx

)2
−
(∫ T

0 f (u(x))dx
)2
∣∣∣∣(∫ T

0 f (un(x))dx
)2 (∫ T

0 f (u(x))dx
)2 ds

≤ λt1−γc2

(c1T)4Γ(α)

∫ t

0
(t − s)α−1

∣∣∣∣∣
(∫ T

0
f (un(x))dx

)2

−
(∫ T

0
f (u(x))dx

)2
∣∣∣∣∣ ds

≤ λt1−γc2

(c1T)4Γ(α)

∫ t

0
(t − s)α−1

∣∣∣∣(∫ T

0
( f (un(x))− f (u(x)))dx

)(∫ T

0
( f (un(x)) + f (u(x)))dx

)∣∣∣∣ ds

≤ 2λc2
2Tt1−γ

(c1T)4Γ(α)

∫ t

0
(t − s)α−1

(∫ T

0
| f (un(x))− f (u(x))| dx

)
ds

≤ 2λc2
2TLt1−γ

(c1T)4Γ(α)

∫ t

0
(t − s)α−1

(∫ T

0
|un(x)− u(x)| dx

)
ds

≤ 2λc2
2LT2t1−γ

(c1T)4Γ(α)
‖un − u‖C1−γ

∫ t

0
(t − s)α−1ds

≤ 2λc2
2LTα+3−γ

(c1T)4Γ(α + 1)
‖un − u‖C1−γ

.

It follows that

I2 ≤ 2λc2
2LTα+3−γ

(c1T)4Γ(α + 1)
‖un − u‖C1−γ

. (11)
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To substitute (10) and (11) into (9), we have∣∣∣t1−γ ((Pun)(t)− (Pu)(t))
∣∣∣ ≤ I1 + I2

≤
(

LλTα+1−γ

(c1T)2Γ(α + 1)
+

2λc2
2LTα+3−γ

(c1T)4Γ(α + 1)

)
‖un − u‖C1−γ

.

Then,

‖Pun − Pu‖C1−γ
≤
(

LλTα+1−γ

(c1T)2Γ(α + 1)
+

2λc2
2LTα+3−γ

(c1T)4Γ(α + 1)

)
‖un − u‖C1−γ

.

Here, independently of λ, the right-hand side of the above inequality converges to zero as un → u.
Therefore, Pun → Pu. This proves the continuity of P.

Step 2: The operator P maps bounded sets into bounded sets in C1−γ[J, X].

Indeed, it is enough to show that, for r > 0, there exists a positive constant l such that
u ∈ Br

{
u ∈ C1−γ[J, X] : ‖u‖ ≤ r

}
, we have ‖(Pu)‖C1−γ

≤ l. Set M = supBr

f
(c1T)2 :

∣∣∣t1−γ(Pu)(t)
∣∣∣ ≤ |u0|

Γ(γ)
+

λt1−γ

Γ(α)

∫ t

0
(t − s)α−1 | f (u(s))|(∫ T

0 f (u(x))dx
)2 ds

≤ |u0|
Γ(γ)

+
λMt1−γ

Γ(α)

∫ t

0
(t − s)α−1ds

≤ |u0|
Γ(γ)

+
λMT1−γ+α

Γ(α)
.

Thus,

‖Pu‖C1−γ
≤ |u0|

Γ(γ)
+

λMT1−γ+α

Γ(α)
:≤ l.

Step 3: P maps bounded sets into equicontinuous set of C1−γ[J, X].

Let t1, t2 ∈ J, t1 < t2, Br be a bounded set of C1−γ[J, X] and u ∈ Br. Then,∣∣∣t1−γ
2 (Pu)(t2)− t1−γ

1 (Pu)(t1)
∣∣∣

≤ λ

Γ(α)

∣∣∣∣∣∣∣t1−γ
2

∫ t2

0
(t2 − s)α−1 f (u(s))(∫ T

0 f (u(x))dx
)2 ds − t1−γ

1

∫ t1

0
(t1 − s)α−1 f (u(s))(∫ T

0 f (u(x))dx
)2 ds

∣∣∣∣∣∣∣
≤ λt1−γ

2
Γ(α)

∫ t2

t1

(t2 − s)α−1 | f (u(s))|(∫ T
0 f (u(x))dx

)2 ds

+
λ

Γ(α)

∫ t2

0

∣∣∣t1−γ
2 (t2 − s)α−1 − t1−γ

1 (t1 − s)α−1
∣∣∣ | f (u(s))|(∫ T

0 f (u(x))dx
)2 ds

≤ λc2t1−γ
2

(c1T)2Γ(α)

∫ t2

t1

(t2 − s)α−1ds +
λc2

(c1T)2Γ(α)

∫ t2

0

∣∣∣t1−γ
2 (t2 − s)α−1 − t1−γ

1 (t1 − s)α−1
∣∣∣ ds

≤ λc2t1−γ
2

(c1T)2Γ(α + 1)
(t2 − t1)

1−α +
λc2

(c1T)2Γ(α)

∫ t2

0

∣∣∣t1−γ
2 (t2 − s)α−1 − t1−γ

1 (t1 − s)α−1
∣∣∣ ds.
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Beacause the right-hand side of the above inequality does not depend on u and tends to zero
when t2 → t1, we conclude that P(Br) is relatively compact. Hence, B is compact by the Arzela–Ascoli
theorem. Consequently, since P is continuous, it follows by Theorem 1 that problem (1) has a solution.
The proof is completed.

4. The Ulam–Hyers–Rassias Stability

In this section, we investigate generalized Ulam–Hyers–Rassias stability for problem (1).
The stability results are based on the Banach contraction principle.

Lemma 3 (Uniqueness). Assume that the Assumption 1 is hold. If(
LλTα+1−γ

(c1T)2Γ(α + 1)
+

2λc2
2LTα+3−γ

(c1T)2Γ(α + 1)

)
< 1, (12)

then problem (1) has a unique solution.

Proof. Consider the operator P : C1−γ[J, X] → C1−γ[J, X]:

(Pu)(t) =
u0

Γ(γ)
tγ−1 +

λ

Γ(α)

∫ t

0
(t − s)α−1 f (u(s))(∫ T

0 f (u(x))dx
)2 ds. (13)

It is clear that the fixed points of P are solutions of problem (1).
Letting u, v ∈ C1−γ[J, X] and t ∈ J, then we have

∣∣∣t1−γ ((Pv)(t)− (Pu)(t))
∣∣∣ ≤ λt1−γ

Γ(α)

∫ t

0
(t − s)α−1

∣∣∣∣∣∣∣
f (v(s))(∫ T

0 f (v(x))dx
)2 − f (u(s))(∫ T

0 f (u(x))dx
)2

∣∣∣∣∣∣∣ ds

≤
(

LλTα+1−γ

(c1T)2Γ(α + 1)
+

2λc2
2LTα+3−γ

(c1T)2Γ(α + 1)

)
‖v − u‖C1−γ

.

Then,

‖Pv − Pu‖C1−γ
≤
(

LλTα+1−γ

(c1T)2Γ(α + 1)
+

2λc2
2LTα+3−γ

(c1T)2Γ(α + 1)

)
‖v − u‖C1−γ

.

Choosing λ such that 0 < λ <

(
LTα+1−γ

(C1T)2Γ(α+1) +
2C2

2 LTα+3−γ

(C1T)2Γ(α+1)

)−1
, the map

P : C1−γ[J, X] → C1−γ[J, X] is a contraction. From (12), it follows that P has a unique fixed
point, which is a solution of problem (1).

Theorem 3. In Assumption 1 and (12), problem (1) is Ulam–Hyers stable.

Proof. Let ε > 0 and let z ∈ Cγ
1−γ[J, X] be a function that satisfies Inequality (5) and let u ∈ Cγ

1−γ[J, X]

be the unique solution of the following Hilfer type thermistor problem

Dα,β
0+ u(t) =

λ f (u(t))(∫ T
0 f (u(x))dx

)2 , t ∈ J := [0, T],

I1−γ
0+ u(t) = I1−γ

0+ z(t) = u0,
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where α ∈ (0, 1), β ∈ [0, 1]. From Lemma 1, we have

u(t) =
u0

Γ(γ)
tγ−1 +

λ

Γ(α)

∫ t

0
(t − s)α−1 f (u(s))(∫ T

0 f (u(x))dx
)2 ds.

By integration of (5), we obtain∣∣∣∣∣∣∣z(t)−
u0

Γ(γ)
tγ−1 − λ

Γ(α)

∫ t

0
(t − s)α−1 f (z(s))(∫ T

0 f (z(x))dx
)2 ds

∣∣∣∣∣∣∣ ≤
εTα

Γ(α + 1)
, (14)

for all t ∈ J. From the above, it follows:

|z(t)− u(t)|

≤

∣∣∣∣∣∣∣z(t)−
u0

Γ(γ)
tγ−1 − λ

Γ(α)

∫ t

0
(t − s)α−1 f (z(s))(∫ T

0 f (z(x))dx
)2 ds

∣∣∣∣∣∣∣
+

λ

Γ(α)

∫ t

0
(t − s)α−1

∣∣∣∣∣∣∣
f (z(s))(∫ T

0 f (z(x))dx
)2 − f (u(s))(∫ T

0 f (u(x))dx
)2

∣∣∣∣∣∣∣ ds (15)

≤ εTα

Γ(α + 1)
+

λ

Γ(α)

∫ t

0
(t − s)α−1 1(∫ T

0 f (z(x))dx
)2 | f (z(s))− f (u(s))| ds

+
λ

Γ(α)

∫ t

0
(t − s)α−1 | f (u(s))|

∣∣∣∣∣∣∣
1(∫ T

0 f (z(x))dx
)2 − 1(∫ T

0 f (u(x))dx
)2

∣∣∣∣∣∣∣ ds.

For computational convenience, we set

K1 =
λ

Γ(α)

∫ t

0
(t − s)α−1 1(∫ T

0 f (z(x))dx
)2 | f (z(s))− f (u(s))| ds,

K2 =
λ

Γ(α)

∫ t

0
(t − s)α−1 | f (u(s))|

∣∣∣∣∣∣∣
1(∫ T

0 f (z(x))dx
)2 − 1(∫ T

0 f (u(x))dx
)2

∣∣∣∣∣∣∣ ds.

We estimate K1, K2 terms separately. By Assumption 1, we have

K1 ≤ λ

Γ(α)

∫ t

0
(t − s)α−1 1(∫ T

0 f (z(x))dx
)2 | f (z(s))− f (u(s))| ds

≤ λ

(c1T)2Γ(α)

∫ t

0
(t − s)α−1 | f (z(s))− f (u(s))| ds (16)

≤ λL
(c1T)2Γ(α)

∫ t

0
(t − s)α−1 |z(s)− u(s)| ds,
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K2 ≤ λ
Γ(α)

∫ t
0 (t − s)α−1 | f (u(s))|

∣∣∣∣(∫ T
0 f (z(x))dx

)2
−
(∫ T

0 f (u(x))dx
)2
∣∣∣∣(∫ T

0 f (z(x))dx
)2(∫ T

0 f (u(x))dx
)2 ds

≤ 2λc2
2TL

(c1T)4Γ(α)

∫ t
0 (t − s)α−1

(∫ T
0 |z(x)− u(x)| dx

)
ds

≤ 2λc2
2TL

(c1T)4Γ(α) ‖z − u‖C1−γ

∫ t
0 (t − s)α−1ds

≤ 2λc2
2TL

(c1T)4Γ(α)

∫ t
0 (t − s)α−1 |z(s)− u(s)| ds.

(17)

To substitute (16) and (17) into (15), we get

|z(t)− u(t)| ≤ εTα

Γ(α + 1)
+

λL
(c1T)2Γ(α)

∫ t

0
(t − s)α−1 |z(s)− u(s)| ds

+
2λc2

2T2L
(c1T)4Γ(α)

∫ t

0
(t − s)α−1 |z(s)− u(s)| ds

≤ εTα

Γ(α + 1)
+

(
λL

(c1T)2 +
2λc2

2T2L
(c1T)4

)
1

Γ(α)

∫ t

0
(t − s)α−1 |z(s)− u(s)| ds,

and, to apply Lemma 2, we have

|z(t)− u(t)| ≤ Tα

Γ(α + 1)

[
1 +

νTα

Γ(α + 1)

(
λL

(c1T)2 +
2λc2

2T2L
(c1T)4

)]
ε := Cf ε,

where ν = ν(α) is a constant, which completes the proof of the theorem. Moreover, if we set ψ(ε) = Cf ε;
ψ(0) = 0, then problem (1) is generalized Ulam–Hyers stable.

Theorem 4. In Assumptions 1, 2 and (12), problem (1) is Ulam–Hyers–Rassias stable.

Proof. Let z ∈ Cγ
1−γ[J, X] be solution of Inequality (6) and let z ∈ Cγ

1−γ[J, X] be the unique solution of
the following Hilfer type thermistor problem

Dα,β
0+ u(t) =

λ f (u(t))(∫ T
0 f (u(x))dx

)2 , t ∈ J := [0, T],

I1−γ
0+ u(t) = I1−γ

0+ z(t) = u0,

where α ∈ (0, 1), β ∈ [0, 1]. From Lemma 1, we have

u(t) =
u0

Γ(γ)
tγ−1 +

λ

Γ(α)

∫ t

0
(t − s)α−1 f (u(s))(∫ T

0 f (u(x))dx
)2 ds.

By integration of (6) and Assumption 2, we obtain∣∣∣∣∣∣∣z(t)−
u0

Γ(γ)
tγ−1 − λ

Γ(α)

∫ t

0
(t − s)α−1 f (z(s))(∫ T

0 f (z(x))dx
)2 ds

∣∣∣∣∣∣∣ ≤ ελϕ ϕ(t), (18)

for all t ∈ J. From the above, it follows:

91



Fractal Fract. 2017, 1, 5

|z(t)− u(t)| ≤
∣∣∣∣∣z(t)− u0

Γ(γ) tγ−1 − λ
Γ(α)

∫ t
0 (t − s)α−1 f (z(s))(∫ T

0 f (z(x))dx
)2 ds

∣∣∣∣∣
+ λ

Γ(α)

∫ t
0 (t − s)α−1

∣∣∣∣∣ f (z(s))(∫ T
0 f (z(x))dx

)2 − f (u(s))(∫ T
0 f (u(x))dx

)2

∣∣∣∣∣ ds

≤ ελϕ ϕ(t) + λ
Γ(α)

∫ t
0 (t − s)α−1 1(∫ T

0 f (z(x))dx
)2 | f (z(s))− f (u(s))| ds

+ λ
Γ(α)

∫ t
0 (t − s)α−1 | f (u(s))|

∣∣∣∣∣ 1(∫ T
0 f (z(x))dx

)2 − 1(∫ T
0 f (u(x))dx

)2

∣∣∣∣∣ ds.

(19)

To substitute (16) and (17) into (19), we get

|z(t)− u(t)| ≤ ελϕ ϕ(t) +
λL

(c1T)2Γ(α)

∫ t

0
(t − s)α−1 |z(s)− u(s)| ds

+
2λc2

2T2L
(c1T)4Γ(α)

∫ t

0
(t − s)α−1 |z(s)− u(s)| ds

≤ ελϕ ϕ(t) +

(
λL

(c1T)2 +
2λc2

2T2L
(c1T)4

)
1

Γ(α)

∫ t

0
(t − s)α−1 |z(s)− u(s)| ds,

and, to apply Lemma 2, we have

|z(t)− u(t)| ≤
[(

1 + ν1λϕ

(
λL

(c1T)2 +
2λc2

2T2L
(c1T)4

))
λϕ

]
εϕ(t) = Cf εϕ(t),

where ν1 = ν1(α) is a constant. It completes the proof of Theorem 4.
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Abstract: The authors present a model of heat conduction using the Caputo fractional derivative with
respect to time. The presented model was used to reconstruct the thermal conductivity coefficient,
heat transfer coefficient, initial condition and order of fractional derivative in the fractional heat
conduction inverse problem. Additional information for the inverse problem was the temperature
measurements obtained from porous aluminum. In this paper, the authors used a finite difference
method to solve direct problems and the Real Ant Colony Optimization algorithm to find a minimum
of certain functional (solve the inverse problem). Finally, the authors present the temperature values
computed from the model and compare them with the measured data from real objects.
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conductivity; heat transfer coefficient

1. Introduction

Fractional calculus is a part of mathematical analysis and has a lot of applications in technical
science. One of the most popular books about fractional calculus is Reference [1]. References [2–4]
provide information about fractional calculus, fractional differential equations, approximations
of fractional derivatives and numerical methods. There are also a lot of articles about fractional
calculus—for example, [5–7].

Various phenomena in nature can be modeled using fractional derivatives [8–16]—for example,
in [9,11], the authors surveyed fractional-order electric circuit models, Reference [12] shows
applications of fractional derivatives in control theory, and, in [13,14,16,17], we can find information
about application fractional derivatives in heat conduction problems. In [16], the authors present an
algorithm to solve the fractional heat conduction equation. In the presented model, the heat transfer
coefficient is reconstructed based on measurements of the temperature. The direct problem is solved
by using the implicit finite difference method. To minimize the functional defining the error of the
approximate solution, the Nelder–Mead algorithm is used. In [18], the authors consider the inverse
problem of recovering a time-dependent factor of an unknown source on some sub-boundary for
a diffusion equation with time fractional derivative. The authors present two regularizing schemes in
order to reconstruct an unknown boundary source. Another paper where authors solved the inverse
problem with fractional derivatives is Reference [19]. Zhuang et al. considered a time-fractional
heat conduction inverse problem with a Caputo derivative in a three-layer composite medium.
To solve the direct problem, they used a finite difference method, and, for the inverse problem,
the Levenberg–Marquardt method was applied. The results show that the time-fractional heat
conduction model provides an effective and accurate simulation of the experimental data. In addition,
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in [20], it is considered an inverse fractional heat conduction problem. The authors show that the
model with fractional derivatives better describes the process of heat conduction in ceramics media.

In this paper, the authors consider the heat conduction inverse problem. A mathematical model
describing the heat transfer phenomenon in porous aluminum is given by fractional differential equation
with initial-boundary conditions. In this case, we used the Caputo fractional derivative. The algorithm
consists of two parts: solution of direct problem and solution of inverse problem by finding the minimum
of the functional. Additional information for the inverse problem was the temperature measurements
obtained from porous aluminum. The direct problem was solved using a finite difference method and
approximations of Caputo derivatives [17,21]. In the inverse problem, the heat transfer coefficient, thermal
conductivity coefficient, initial condition and order of derivative were sought. In order to do that, we need
to minimize the functional describing the error of approximate solution. The functional was minimized by
a Real Ant Colony Optimization algorithm [22,23].

More about heat conduction inverse problems can be found in [24–28]. Zielonka et al. in [25]
solved the one-phase inverse problem of alloy solidifying within the casting mould. The authors also
include their paper shrinkage of the metal phenomenon.

The investigated inverse problem consists of reconstruction of the heat transfer coefficient on the
boundary of the casting mould on the basis of measurements of temperature read from the sensor
placed in the middle of the mould. In [28], Stefan problems relevant to burning oil-water systems are
considered. The author used the heat balance integral method.

2. Fractional Heat Conduction Equation

In this section, we would like to present the fractional differential equation

c�
∂αu(x, t)

∂tα
= λ

∂2u(x, t)
∂x2 , (1)

defined in region D = {(x, t) : x ∈ [0, L], t ∈ [0, T], L, T ∈ R+}, where c is specific heat, � is density of
material, λ is thermal conductivity coefficient, α is order of derivative and u is the function describing
the distribution of temperature. In literature, this equation is called the Time Fractional Diffusion
Equation (TFDE). For a more precise description of the model, we still need initial-boundary conditions.
In this case, we used a Neumann boundary condition for x = 0, and a Robin boundary condition for
x = L. Below, we present initial-boundary conditions:

u(x, 0) = f (x), x ∈ [0, L], (2)

− λ
∂u
∂x

(0, t) = q(t), t ∈ [0, T], (3)

− λ
∂u
∂x

(L, t) = h(t)(u(L, t)− u∞), t ∈ [0, T], (4)

where f is function describing initial condition, q is the heat flux, h is heat transfer coefficient and u∞

is ambient temperature. By solving models (1)–(4), we obtain the temperature values at the points
of the domain D. To model process of heat conduction in porous media, we used Caputo fractional
derivative of order α ∈ (0, 1), which, in our case, is defined by the formula [1]:

∂αu(x, t)
∂tα

=
1

Γ(1 − α)

∫ t

0

∂u(x, s)
∂s

(t − s)−αds. (5)

In the next part of the article, we use the considered model to solve the fractional heat conduction
inverse problem.
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3. Formulation of the Problem

In an inverse problem, some information in the considered model is unknown; in our case,
we do not know: thermal conductivity coefficient λ, heat transfer coefficient h, initial condition f and
order of derivative α. We have additional information, called input data, which is the temperature
measurements. We denote it by:

u(xp, tj) = Ûj, j = 1, 2, . . . , N1, (6)

where N1 is number of measurements from thermocouples.
If we solve the direct problems (1)–(4) for fixed values of the sought parameters, then we obtain

calculated values of the temperature at certain fixed points of the domain D—in our case, we denote it
by Uj(λ, h, f , α). Using the calculated values of the temperature Uj(λ, h, f , α), input data Ûj, we create
functionals defining the error of approximate solution:

F(λ, h, f , α) =
N1

∑
j=1

(
Uj(λ, h, f , α)− Ûj

)2. (7)

By minimizing the functional (7), we find the approximate values of the sought parameters.
The measured temperatures (input data) Ûj were obtained from a sample of porous aluminum.

This sample was formed by pressurizing the powders’ aluminum of medium size 0.8 mm in the plate
hydraulic press. Powders were pressed at 150 bar pressure. Sample was heated to 300 ◦C at speed of
1 K/s and then cooled to ambient temperature. During that time, sample temperature measurements
were done, which measurements were used as input data for algorithm.

4. Method of Solution

The solution of the inverse problem can be divided into two parts: first—solution of direct
problems (1)–(4), and second—finding minimum of the functional (7).

4.1. Solution of the Direct Problem

In solving the inverse problem, we have to solve the direct problem many times. To solve direct
problems (1)–(4), we used implicit finite difference scheme. In order to do that, we create grid

S =
{
(xi, tk), xi = i Δx, tk = k Δt, i = 0, 1, . . . , N, k = 0, 1, 2, . . . , M

}
,

with size (N + 1)× (M + 1) and steps Δx = L/N, Δt = T/M. Caputo fractional derivative (5) is
approximated by the formula [17]:

∂αu
∂tα

(xi, tk) ≈ Dα
t uk

i = σ(α, Δt)
k

∑
j=1

ω(α, j)
(
uk−j+1

i − uk−j
i
)
, (8)

where

σ(α, Δt) =
1

Γ(1 − α) (1 − α) (Δt)α
,

ω(α, j) = j1−α − (j − 1)1−α.

We also need to approximate boundary conditions of the second and third kinds. The following
approximations were used:

− λ0
uk

1 − uk
−1

2Δx
= qk =⇒ uk

−1 = uk
1 +

2Δxqk
λ0

, (9)
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− λN
uk

N+1 − uk
N−1

2Δx
= hk(Uk

N − u∞) =⇒ uk
N+1 = uk

N−1 −
2Δxhk

λN
(uk

N − u∞). (10)

Using all approximations (8)–(10) and the differential quotient for the derivative of second order
with respect to space

∂2u
∂x2 (xi, tk) ≈

uk
i−1 − 2uk

i + uk
i+1

(Δx)2 ,

we get the following differential equations

k ≥ 1, i = 0:

(
σ(α, Δt)+

2 a0

(Δx)2

)
uk

0 −
2 a0

(Δx)2 uk
1 = σ(α, Δt) uk−1

0 −σ(α, Δt)
k

∑
j=2

ω(α, j)
(
uk−j+1

0 −uk−j
0
)
+

2 qk
c � Δx

,

k ≥ 1, i = 1, 2, . . . , N − 1:

− ai
(Δx)2 uk

i−1 +
(

σ(α, Δt) +
2 ai

(Δx)2

)
uk

i −
ai

(Δx)2 uk
i+1

= σ(α, Δt) uk−1
i − σ(α, Δt)

k

∑
j=2

ω(α, j)
(
uk−j+1

i − uk−j
i
)
,

k ≥ 1, i = N:

− 2 aN

(Δx)2 uk
N−1 +

(
σ(α, Δt) +

2 aN

(Δx)2 +
2

c � Δx
hk

)
uk

N

= σ(α, Δt) uk−1
N − σ(α, Δt)

k

∑
j=2

ω(α, j)
(
uk−j+1

N − uk−j
N
)
+

2
c � Δx

hk u∞,

where uk
i ≈ u(xi, tk), hk = h(tk), qk = q(tk) and ai =

λ(xi)
c � is the thermal diffusivity coefficient. Solving

the system of equations gives us approximate values of function u in points of grid S. More about
stability of the presented method can be found in [17].

4.2. Minimum of the Functional

The second part of the presented algorithms is finding the minimum of the functional (7). In this
paper, we used the Real Ant Colony Optimization algorithm (Algorithm 1). The algorithm was inspired
by the behavior of swarm of ants in nature. Pheromone spots, which are L, are identified with solutions.
Firstly, they are distributed randomly in the considered area. Then, we rank them according to their
quality—better solution means stronger pheromone spot and greater probability to choose it by ant.
In this way, we create the solution archive. In every iteration, the one of M ants constructs one new
solution (new pheromone spot) using the probability density function (in this case, Gaussian function).
The ant chooses with the probability a pheromone spot (solution) and transforms it by sampling its
neighborhood using the Gaussian function. Then, the solutions archive is updated with new solutions
and sorted according to the quality; next, M worst solutions are rejected. The described algorithm was
adapted for parallel computing. For the description of the algorithm, we will introduce the symbols:

F(x) minimized function, x = (x1, . . . , xn) ∈ D
n dimension (number of variables)
nT number of threads
M = nT · p number of ants in population
I number of iterations
L number of pheromone spots
q, ξ parameters of the algorithm
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Algorithm 1: Parallel Real ACO algorithm

Initialization of the algorithm

1. Setting input parameters of the algorithm L, M, I, nT, q, ξ.
2. Randomly generate L pheromone spots (solutions) and assign them to set T0 (starting archive).
3. Calculate values of the minimized function F for each pheromone spot and sort the archive T0

from best to worst solution.

Iterative process

4. Assigning probabilities to pheromone spots (solutions) according to the following formula:

pl =
ωl

∑L
l=1 ωl

l = 1, 2, . . . , (11)

where weights ωl are associated with l-th solution and expressed by the formula

ωl =
1

qL
√

2π
· e

−(l−1)2

2q2 L2 .

5. Ant chooses a random l-th solution with probability pl .
6. Ant transforms the j-th coordinate (j = 1, 2, . . . , n) of l-th solution sl

j by sampling proximity
with the probability density function (Gaussian function)

g(x, μ, σ) =
1

σ
√

2π
· e

−(x−μ)2

2σ2 ,

where μ = sl
j, σ = ξ

L−1 ∑L
p=1 |s

p
j − sl

j|.
7. Repeat steps 5–6 for each ant. We obtain M new solutions (pheromone spots).
8. Divide new solutions on nT groups. Calculate values of minimized function F for each new

solution (parallel computing).
9. Add to the archive Ti new solutions, sort the archive by quality of solutions, remove M

worst solution.
10. Repeat steps 4–9 I times.

5. Results

In this section, we present the obtained results. We consider models (1)–(4) with the following data:

t ∈ [0, 71.82][s], x ∈ [0, 3.825][mm], c = 900
[

J
kg · K

]
, � = 2106

[
kg
m3

]
,

q(t) = 0
[

W
m2

]
, u∞ = 298 [K] , xp = 3.825 [mm].

In the presented model, we lack the following data:

• λ = a1

[
J

sα ·m·K
]
—modified thermal conductivity coefficient,

• f (x) = a2 [K]—initial condition,
• h(t) = a3t2 + a4t + a5

[
W

m2·K

]
—heat transfer coefficient,

• α = a6—order of derivative,

which is reconstructed based on measurements of temperature. We assume that

a1 ∈ [100, 300], a2 ∈ [350, 650], a3 ∈ [−10, 10], a4 ∈ [−5, 5], a5 ∈ [70, 200], a6 ∈ [0.01, 0.99].
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Solving the direct problem, we used two different grids 100 × 1995 (Δx = 0.03825, Δt = 0.036)
and 100 × 3990 (Δx = 0.03825, Δt = 0.018). In the case of the real ACO algorithm, we used the
following parameters:

L = 12, M = 16, I = 55, nT = 4, q = 0.9, ξ = 1.

The real ACO algorithm is probabilistic, so we decide to execute them ten times to check
the stability.

Table 1 presents values of reconstructed parameters a1, a2, . . . , a6 in the case of two different
grids. In both grids, parameters have similar values except parameter a1—the thermal conductivity
coefficient. For 100 × 1995 grid, a1 is equal to 300 and, for 100 × 3990 grid, the parameter has value
237.91. The initial condition is approximately equal to 569 K and the order of derivative is equal
to 0.20 (100 × 1995) or 0.21 (100 × 3990). As we can see in Table 1, if the 100 × 1995 grid is used,
then, for the most of sought after parameters, the standard deviation is less than for the 100 × 3990 grid.
This means that, for the first grid, the obtained results from the ACO algorithm were slightly less
dispersed than in the case of the second grid.

Table 1. Results of calculation for grids 100× 1995 and 100× 3990 (ai—reconstructed value of parameter,
σai —standard deviation (i = 1, 2, . . . , 6)).

100×1995 σai 100×3990 σai

a1 300.00 69.74 237.91 67.78
a2 569.73 2.02 566.74 3.80
a3 1.63 0.40 1.52 2.20
a4 4.72 0.67 5.00 4.27
a5 198.02 46.05 178.05 51.73
a6 0.20 0.05 0.21 0.09

value of the functional 246.98 352.88

In Figure 1, we can see plots of reconstructed function h for two grids. Both plots are similar.
The values of the function for the grid 100 × 1995 are slightly larger than for the second grid. Table 2
presents errors of reconstruction temperature in measurement points. In both cases, these errors are
similar and temperature is reconstructed very well. Average errors are a little bit smaller in the case of
100 × 3990 grid, but, in the case of maximal errors, it is otherwise.

� �

�
�

Figure 1. Plots of reconstructed function h for grid 100 × 1995 (blue line) and grid 100 × 3990 (red line).
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Table 2. Errors of temperature reconstruction in measurement point xp = 3.825 for grids 100 × 1995
and 100 × 3990 (Δavg—average absolute error, Δmax—maximal absolute error, δavg—average relative
error, δmax—maximal relative error).

100×1995 100×3990

Δavg[K] 4.92 4.77
Δmax[K] 11.04 12.38
δavg[%] 1.06 1.02
δmax[%] 3.08 3.46

At the end of this section, we would like to present plots of reconstructed temperature and
distribution of errors of this reconstruction (Figures 2 and 3). Temperature reconstruction and
distribution of errors are very similar.
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Figure 2. (a) Measurements of the temperature (black line) and reconstructed temperature (blue line);
and (b) distribution of errors for this reconstruction (100 × 1995) .
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Figure 3. (a) Measurements of the temperature (black line), reconstructed temperature (red line);
and (b) distribution of errors for this reconstruction (100 × 3990).

6. Conclusions

In summary, the paper presents a fractional heat conduction equation with Caputo derivative.
Based on this equation, the inverse problem is solved using temperature measurements from porous
aluminum. Next, computed values of temperature were compared with real data. First of all,
the results obtained were very good. Average relative error of reconstruction was equal to 1.06%
for 100 × 1995 grid, and 1.02% for 100 × 3990 grid. More density grid gives us smaller relative
errors, but a little bit higher maximal errors. Using less density, grid results obtained from the ACO
algorithm were less dispersed. The sought order of fractional derivative is approximately 0.20. In the
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future, we would like to take under consideration other models of heat conduction using different
fractional derivatives.
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Abstract: A fractional-calculus-based model is used to analyze the data obtained from the image
analysis of mixtures of olive and soybean oil, which were quantified with the RGB color system.
The model consists in a linear fractional differential equation, containing one fractional derivative of
order α and an additional term multiplied by a parameter k. Using a hybrid parameter estimation
scheme (genetic algorithm and a simplex-based algorithm), the model parameters were estimated
as k = 3.42 ± 0.12 and α = 1.196 ± 0.027, while a correlation coefficient value of 0.997 was obtained.
For the sake of comparison, parameter α was set equal to 1 and an integer order model was also
studied, resulting in a one-parameter model with k = 3.11 ± 0.28. Joint confidence regions are
calculated for the fractional order model, showing that the derivative order is statistically different
from 1. Finally, an independent validation sample of color component B equal to 96 obtained from
a sample with olive oil mass fraction equal to 0.25 is used for prediction purposes. The fractional
model predicted the color B value equal to 93.1 ± 6.6.

Keywords: liquid-liquid mixture; fractional calculus; parameter estimation; image analysis; RGB;
olive oil

1. Introduction

Process monitoring represents an important and fundamental tool aimed at process safety and
economics while meeting environmental regulations. However, for suitable process monitoring,
the analytical instrumentation remains a challenge due to higher costs, equipment sensitivity, and level
of detection, among others [1]. In order to overcome some of these difficulties, image analysis
represents an important field of process monitoring [2]. The main advantages and features are the
low cost, non-invasive characteristics, and high precision/accuracy [3]. The literature reports a broad
range of image analysis applications to food science [4], medical science [5], road-traffic monitoring [6],
road pavement monitoring [7], flare combustion [8], and composition monitoring [9]. Additionally,
applications in the quantification of edible oils mixtures, which have applications in many processes,
such as biodiesel synthesis [10], pavement rejuvenating agents [11,12], and polyurethane synthesis [13],
has also been reported. In this sense, Fernandes et al. [14] analyzed olive and soybean oil mixtures
using image analysis (RGB color system) with linear models for a range of olive oil mass fraction
of 0–0.7. When coupling the image analysis to Ultraviolet–visible spectroscopy (UV–VIS) spectra,
successful predictions in the range of olive oil mass fraction of 0–1 could be obtained. Therefore,
the use of nonlinear models would avoid the use of the UV–VIS spectra in order to accurately predict
the mixture content, as the values of one of the color components behaved as an exponential decay
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with an increase in the olive oil content. This would be an important feature as experimental steps
would vanish, therefore, leading to faster and cheaper results.

Towards this, a mathematical model that consists of a linear fractional differential equation is
proposed. It contains one fractional derivative of order α and one other linear term multiplied by a
parameter k. It was used to analyze the Fernandes et al. [14] experimental data. It is worth mentioning
that fractional calculus deals with differential operators of arbitrary order, being an important
tool to describe memory and hereditary effects of properties of many materials and processes [15].
Fractional calculus also presents a broad range of applications in process systems engineering, rheology,
viscoelasticity, acoustics, optics, chemical physics, robotics, electrical engineering, bioengineering,
anomalous diffusion [16–21]. The solution of the model here proposed is a nonlinear algebraic
equation based on the Mittag-Leffer function, which according to the value of parameter α can turn
into, for example, an exponential function. We also performed a comparison with an integer order
model in order to show that the fractional derivative order is more suitable to describe the experimental
data behavior.

2. Materials and Methods

The experimental data previously reported by Fernandes et al. in [14] concerning the off-line
monitoring of mixtures of olive and soybean oil was used in this manuscript. To summarize,
Fernandes et al. [14] used the RGB color system for off-line image analysis, where a given number of
samples was used for parameter estimation of linear models aimed at concentration prediction and an
independent sample was used for validation purposes, further details can be found in reference [14].
Below, the Table 1 presents the experimental data used in this work.

Table 1. Experimental data.

Sample Purpose Olive Oil Mass Fraction Color Component B

Parameter Estimation

0 175
0.1 144
0.2 116
0.3 83
0.4 54
0.5 29
0.6 12
0.7 0.8
0.8 0
0.9 0
1 0

Model Validation 0.25 96

The main idea of the model is to consider the color component B as a function of the mass fraction
(mf ) of the olive oil in the mixture, as if it would be “disappearing” with an increase of the olive oil
content. Secondly, it is assumed that the color component behavior follows the fractional differential
equation of order α, subjected to the initial conditions given by B(mf = 0) = B0 and d

d(m f ) B(m f = 0) = 0:

dαB(m f )
d(m f )α = −(k B(m f )), (1)

where the fractional derivative operator considered here is the Caputo [22] sense, defined as
dα f (x)

dxα = 1
Γ(n−α)

∫ x
0

f (n)(τ)
(x−τ)α−n+1 dτ, with f (n)(x) = dn f (x)

dxn and (n − 1) < α < n, where n is an arbitrary

integer number, and α is a real number.
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The solution of Equation (1) can be obtained by using the Laplace Transform Method and it can
be expressed in terms of the Mittag-Leffer function [23] as follows:

B(m f ) = B0 Eα,α
(
−k (m f )α) = B0

[
∞

∑
j=0

(
−k (m f )α)j

Γ(α (j + 1))

]
= B0

[
∞

∑
j=0

(−1)j (k)j (m f )α×j

Γ(α (j + 1))

]
, (2)

where Γ is the Gamma function (see Equation (17)). It is important to observe that for α = 1, Equation (2)
turns into an integer order model (for B(mf = 0) = B0), which basically concerns an exponential variation
of the color component, i.e.:

dB(m f )
d(m f )

= −(k B(m f )) → B(m f ) = B0 e−[k (m f )]. (3)

The parameter estimation procedure considers a hybrid task aimed at minimizing the least square
function, given by:

FOBJ =
NE
∑

i=1
(deltai(m f ))2 =

NE
∑

i=1

(
BEXP

i (m f )− BMOD
i (m f )

)2

FOBJ =
NE
∑

i=1

(
BEXP

i (m f )−
(

B0

[
∞
∑

j=0

(−1)j (k)j (m f )α×j

Γ(α (j+1))

]))2 (4)

where NE is the number of experimental data, EXP refers to experimental data and MOD refers to
model predictions and delta is the difference between experimental data and model predictions.

A genetic algorithm, based on Isfer et al. [24], was firstly used and the results of this initial
estimation step were used as the initial guess of a simplex-based method [25], in order to refine the
solution. The main role of the genetic algorithm is to avoid a local minimum of the objective function.
Regarding the integer order model, the parameter estimation task used the following expression as an
objective function:

FOBJ =
NE

∑
i=1

(
BEXP

i (m f )−
(

B0 e−(k (m f ))
))2

. (5)

The statistical analysis of the estimated parameters and the mathematical model itself followed
previously-reported procedures [26–28]. The parametric variance matrix, Vparam, is defined as for the

fractional order model, where parameters α and k need to be estimated. From this matrix one can
obtain the standard deviation of the model parameters:[

Vparam

]
(2×2)

=

[
σ2

k σ2
k−α

σ2
k−α σ2

α

]
(2×2)

. (6)

Regarding the integer order model, the parameter variance is given by:[
Vparam

]
(1×1)

=
[
σ2

k

]
(1×1)

, (7)

where only the parameter k needs to be estimated.
From the parametric variance matrix, one can obtain the parametric correlation matrix, given by:

[
rparam

]
(2×2)

==

⎡⎣ 1
σ2

k−α
σkσα

σ2
k−α

σkσα
1

⎤⎦
(2×2)

, (8)
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for the fractional order matrix, while for the integer order matrix, this matrix does not exist as the
model has only one parameter. It is important to emphasize that the experimental errors (variance) are
considered constant and equal for all experimental data and its value is adequately predicted by:

σ2
BEXP =

FOBJ

NE − NP
, (9)

where NE is the number of experiments and NP is the number of parameter to be estimated (“k” and
“α” (alpha) in the case of the fractional model and “k” in the case of the integer order model). Note that
a better value of the experimental error can be obtained by experimental runs carried out in triplicate
or quadruplicate.

Therefore, an experimental variance matrix, VBEXP , can be obtained, given by Equation (10),
where I is a square identity matrix of dimension NE × NE:

[
VBEXP

]
(NE×NE)

=

⎡⎢⎢⎢⎢⎣
σ2

BEXP 0 · · · 0
0 σ2

BEXP · · · 0
...

...
. . .

...
0 0 · · · σ2

BEXP

⎤⎥⎥⎥⎥⎦
(NE×NE)

= σ2
BEXP

[
I
]
(NE×NE). (10)

According to the literature [24–28], the elements of the matrix given by Equations (6) and (7) are
given by Equation (11):

[
Vparam

]
(2×2)

∼= σ2
yEXP

[
H(FOBJ)param

]−1

(2×2)
= σ2

BEXP

⎛⎜⎜⎝
[
G
]T

(2×NE)

[
G
]
(NE×2)

−2
NE
∑

i=1

[
H
(

BMOD
i

)
param

]
(2×2)

deltai(m f )

⎞⎟⎟⎠
−1

, (11)

where H(FOBJ)param is the Hessian matrix of the objective function (Equation (4) or Equation (5)) where

the derivatives were obtained with respect to the parameters and H
(

BMOD
i

)
param is the Hessian matrix

of the model (Equation (2) or Equation (3)) where the derivatives were also obtained with respect to
the parameters. As the model predictions are usually close to the experimental values, deltai(mf ) is
close to zero, the parametric variance matrix is commonly simplified [28] to the following equation:[

Vparam

]
(2×2)

∼= σ2
BEXP

[
H(FOBJ)param

]−1

(2×2)
= σ2

BEXP

([
G
]T

(2×NE)

[
G
]
(NE×2)

)−1
. (12)

The sensitivity matrix G, present in Equation (12), regarding the fractional order model can be
written as:

[
G
]
(NE×2)

=

⎡⎢⎢⎢⎢⎢⎢⎣

∂BMOD
1
∂k

∂BMOD
1
∂α

∂BMOD
2
∂k

∂BMOD
2
∂α

...
...

∂BMOD
NE
∂k

∂BMOD
NE
∂α

⎤⎥⎥⎥⎥⎥⎥⎦
(NE×2)

. (13)

Concerning the integer order model, it is given by:

[
G
]
(NE×1)

=

⎡⎢⎢⎢⎢⎢⎢⎣

∂BMOD
1
∂k

∂BMOD
2
∂k
...

∂BMOD
NE
∂k

⎤⎥⎥⎥⎥⎥⎥⎦
(NE×1)

. (14)
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Considering the fractional case, the model derivatives c with respect to the parameters are given
by the expressions:

∂BMOD
i (m f )

∂k
= B0

[
∞

∑
j=0

(−1)j j(k)j−1(m f )α×j

Γ(α(j + 1))

]
, (15)

∂BMOD
i (m f )

∂α
= B0

∞

∑
j=0

(
(−1)j(k)j(m f )α×j(j)(ln(m f )− Ψ(α(j + 1)))

Γ(α(j + 1))

)
, (16)

where the relations defined below are valid [29], where x and t are dummy variables:

Γ(x) =
∞∫
0

e−ttx−1dt,

dΓ(x)
dx =

∞∫
0

e−ttx−1 ln(t)dt,

Ψ(x) = 1
Γ(x)

dΓ(x)
dx .

(17)

On the other hand, considering the integer order model, the model derivative with respect to the
parameter is given by Equation (18):

∂BMOD
i (m f )

∂k
= −B0(m f )e−k(m f ). (18)

The parameters confidence intervals are calculated by:⎧⎪⎪⎪⎨⎪⎪⎪⎩
kestimated −

[
t1− β

2
NE−NP(σk)

]
< k < kestimated +

[
t1− β

2
NE−NP(σk)

]
αestimated −

[
t1− β

2
NE−NP(σα)

]
< α < αestimated +

[
t1− β

2
NE−NP(σα)

] , (19)

for the fractional order model and by:{
kestimated −

[
t1− β

2
NE−NP(σk)

]
< k < kestimated +

[
t1− β

2
NE−NP(σk)

]
, (20)

for the integer order model. The parameter standard deviation is obtained from the square root of the
elements of the diagonal of the matrix given by Equation (12). Additionally, for a given confidence level
(usually 95%, therefore, β equals 0.05) and the degree of freedom (NE–NP), the Student’s t distribution
value is used to obtain the formal confidence interval.

The parameter joint confidence region of the fractional order model is given by:

[
k − kestimated α − αestimated

]T

(1×2)

[
H(FOBJ)param

]
(2×2)

[
k − kestimated
α − αestimated

]
(2×1)

= σ2
BEXP NP F1−β

(2,NE−2) , (21)

where the value of the Fisher distribution value, F, is obtained for a given confidence level (usually
95%, therefore β equals 0.05) and the degrees of freedom NP and (NE−NP). In the previous equation,
the approximation given by Equation (12) is considered, consequently, Equation (22), is used in this
work for the fractional order model:

σ2
BEXP

[
H(FOBJ)param

]−1

(2x2)
= σ2

BEXP

([
G
]T

(2×NE)

[
G
]
(NE×2)

)−1
→
[

H(FOBJ)param

]
(2×2)

=

([
G
]T

(2×NE)

[
G
]
(NE×2)

)
. (22)
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It is important to emphasize that the region calculated by the equation

[
k − kestimated α − αestimated

]T

(1×2)

[([
G
]T

(2×NE)

[
G
]
(NE×2)

)]
(2×2)

[
k − kestimated
α − αestimated

]
(2×1)

= σ2
BEXP NP F1−β

(2,NE−2), (23)

usually has an ellipsoidal shape due to the presence of parameter correlation and corresponds to a
linearization of the objective function [24–28].

A more realistic parametric joint confidence region can be obtained by Equation (24), where the
nonlinear feature of the objective function is taken into account. It is important to stress that the
region calculated by Equation (24) is larger than the region obtained by Equation (23) and it does not
necessarily has an ellipsoidal shape [30]:

FOBJ(k, α) = FOBJ(kestimated, αestimated)

(
1 +

(
NP

NE − NP

)
F1−β
(NP,NE−NP)

)
, (24)

where FOBJ(kestimated, αestimated) is the final value of the objective function.
The correlation coefficient between model predictions and experimental data, r, is:

r =

NE
∑

i=1

(
BEXP

i (m f )− BEXP
i (m f )

)(
BMOD

i (m f )− BMOD
i (m f )

)
√(

NE
∑

i=1

(
BEXP

i (m f )− BEXP
i (m f )

)2
)(

NE
∑

i=1

(
BMOD

i (t)− BMOD
i (m f )

)2
) , B(m f ) =

NE

∑
i=1

Bi(m f )
NE

. (25)

Finally, regarding the fractional order model, the variance of model predictions of the experimental
data used in the parameter estimation task, named in this work as model confidence region, is given by
Equations (26) and (27). If the confidence interval of future experimental data prediction is necessary,
Equations (28) and (29) should be used instead as, in this case, both the experimental error and the
model error prediction should be considered. The following equations were also used for the integer
order model analysis:

BEXP
i − t1− β

2
NE−NP

√
VMOD

BEXP (i, i) < BEXP
i < BEXP

i + t1− β
2

NE−NP

√
VMOD

BEXP (i, i), (26)

[
VMOD

BEXP

]
(NE×NE)

=
[
G
]
(NE×2)

[
Vparam

]
(2×2)

[
G
]T

(2×NE)
, (27)

BEXP
i − t1− β

2
NE−NP

√
VPRED

BEXP (i, i) < BEXP
i < BEXP

i + t1− β
2

NE−NP

√
VPRED

BEXP (i, i), (28)[
VPRED

BEXP

]
(NE×NE)

=
[
G
]
(NE×2)

[
Vparam

]
(2×2)

[
G
]T

(2×NE)
+
[
VBEXP

]
(NE×NE)

. (29)

3. Results

For the genetic algorithm, the number of individuals (each individual consist on a pair of k, α for
the fractional order model, or a single value of k for the integer order model) was set equal to 200 and
the number of generations was set equal to 100. The probabilities of crossover and mutation were
set as 80% assuring a good macroscopic search and of 10% assuring a good microscopic (refinement),
respectively. In order to obtain each individual of a given generation, two individuals (“genitors”) of
the previous generation were randomly selected. After that, a random number in the interval (0–1)
was generated, and if its value was in the interval of (0–0.8), the crossover, which consisted in an
arithmetic mean of the values of the parameters of the genitors, occurred, leading to a new individual.
If a number between (0.8–1) was generated, the genitor with the lowest objective function was selected
as the new individual of the current generation. Afterwards, another random number in the interval
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(0–1) was generated. If its value was in the interval of (0–0.15), mutation occurred. The mutation
consisted in increasing the parameter value resulting from the crossover step by 10% of its value. If a
number between (0.15–1) was generated, no mutation occurred. For another individual, two new
different genitors were randomly selected. Finally, it is important to mention that 10 independent runs
were carried out using the genetic algorithm. The simplex-based model used 10−5 as the convergence
criteria for all parameters. Table 2 presents the parameter estimation results.

From the results reported in Table 2, one can verify that the fractional order model can successfully
describe the experimental dataset and it also shows to be a better model than the integer order
model. This can be observed by the lower values of the objective function, the parametric variance,
the narrower confidence interval and the closer to one value of the correlation coefficient presented by
the fractional order model. One can conclude that this better fit occurred because the integer order
model has a one parameter, while the fractional order model has two parameters. However, the value
of
√

σ2
yEXP is a more neutral comparison value, as it takes into account the number of parameters

of the model, this value was also smaller for the fractional order model. Finally, it is important to
stress that parameter α is not a simple fitting parameter. It also shapes the mathematical function
during the estimation task, according to the value of α the Mittag-Leffler function assumes a different
mathematical form. As mentioned, if α = 1, an exponential function shows up, while if α �= 1, another
function is represented by the Mittag-Leffler expression. It is important to observe from Table 2 that
the parametric correlation between k and α is approximately 0.3, which is an important result as
the final value of parameter k has little influence on the final value of parameter α. According to
Himmelblau [27], when the parametric correlation is close to 1 or −1, a wrong set of parameters
can be estimated as a wrong value of one parameter could be compensated by a wrong value of
another parameter resulting in an overall good fit. Consequently, the lower the parametric correlation,
the closer to the true value the parameters tend to be. Finally, it is important to mention that the
confidence interval of the fractional differential equation order, parameter α, [1.14; 1.26] does not
include the value 1, therefore, it is very important to stress that the fractional derivative is statistically
different from an integer order derivative.

Table 2. Parameter estimation results.

Result Fractional Order Model Equation Integer Order Model Equation

NE (Number of Experiments) 11 - 11 -
NP (Number of Parameters) 2 (k, α) - 1 (k) -

FOBJ 312.4 (4) 1987.2 (5)√
σ2

BEXP =
√

FOBJ
NE−NP 5.89 (9) 14.09 (9)

k 3.42 - 3.11
k (standard deviation) 0.12 (6) 0.28 (7)
k (confidence interval) [3.14; 3.69] (19) [2.48; 3.75] (20)

α 1.196 - - -
α (standard deviation) 0.027 (6) - -
α (confidence interval) [1.14; 1.26] (19) - -[

Vparam

]
(parametric covariance matrix)

[
1.459 × 10−2 9.778 × 10−4

9.778 × 10−4 7.325 × 10−4

]
(6)

[
8.170 × 10−4] (7)[

rparam

]
(parametric correlation matrix)

[
1 0.299

0.299 1

]
(8) - -

r 0.997 (25) 0.987 (25)
r2 0.993 - 0.972 -

Figure 1 compares the model behavior of both modeling approaches. The better fit provided by
the fractional order model (Figure 1a) can be seen, as the model is closer to the experimental data
when compared to the integer order model (Figure 1b). This happened as a result of the parameter
estimation results listed in Table 2. Additionally, one can observe that the model confidence regions
and model prediction regions are narrower in the fractional order model. As this model provided
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a better fit, the confidence in the model predictions tend to be closer to the true value. Finally, it is
important to observe that the integer order model is an exponential function, while the fractional order
model is a different function, as the value of α is different from 1. In the figures, the vertical bar errors
were calculated by Equation (9) for each model, and as the value of the objective function is smaller for
the fractional order model, the experimental error prediction is also smaller. The model confidence
region was obtained by Equation (26) and the region of future experiment prediction was calculated
by Equation (28). This last region is expected to be broader as it includes not only the model variance,
but also the experimental variance.

(a) (b)

Figure 1. (a) Fractional order model behavior; and (b) integer order model behavior.

Figure 2 compares the model predictions and the experimental data of the fractional order
model (Figure 2a) and the integer order model (Figure 2b). The vertical bar errors were calculated
by Equation (9) and the horizontal bar errors were obtained by Equation (30). It can be seen that the
model predictions of the fractional order model are closer to the experimental values:

BEXP
i −

√
VMOD

yEXP (i, i) < BEXP
i < BEXP

i +
√

VMOD
yEXP (i, i). (30)

 
(a) (b)

Figure 2. (a) Fractional order model behavior; and (b) integer order model behavior.

Figure 3 presents the histogram of residuals (difference between experimental data and model
prediction) for the fractional order model (Figure 3a) and the integer order model (Figure 3b). It can
be observed that, due to the better fit of the fractional order model, its residual histogram presents a
narrower distribution and according to the mean and standard deviation, and one can conclude that
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the average residual is equal to zero (the standard deviation is much higher than the mean). This is an
important feature, because an eventual difference may occur due to experimental error and not due to
a biased model.

 
(a) (b) 

Figure 3. (a) Fractional order model behavior; and (b) integer order model behavior.

Figure 4 presents the normal probability plot of the residuals for the fractional order model
(Figure 4a) and the integer order model (Figure 4b). One can observe that the residuals, besides
having a mean value statistically equal to zero, can also be regarded as following a normal distribution,
evidencing that the model predictions are not biased, i.e., the model does not need another term or
parameter in its structure.

(a) (b) 

Figure 4. (a) Fractional order model behavior; and (b) integer order model behavior.

Figure 5 presents the joint confidence region calculated using the linear (Equation (23)) and
nonlinear (Equation (24)) features of the objective function. The meaning of this region is that any
set of parameters inside the region provides a statistically equal value of the objective function that
another set of parameters would provide. Therefore, as mentioned before, it is important to stress that
the values of parameter α (alpha) do not include the value 1, consequently, the value of the derivative
is statistically different from an integer value. As expected, the region obtained by Equation (23) has
an ellipsoidal shape and it is smaller than the region obtained by Equation (24), which considers the
nonlinearities of the objective function.
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Figure 5. Joint confidence region.

Finally, Table 3 presents the model validation results. The model prediction for an olive oil mass
fraction of 0.25 has a Color Component B of 93.1, which is close to the experimental value of 96.
However, when considering the uncertainty of the model prediction, calculated using Equation (29),
it can be regarded as statistically equal to the experimental value. The integer order model prediction
is considerably different form the experimental value and the uncertainty of this prediction is even
worse, which is one more indication that the fractional order model provides a better description of
the experimental data and can be used for composition monitoring.

Table 3. Model Validation.

Experimental
Fractional Order Model

Prediction
Integer Order Model

Prediction

Olive oil mass fraction Color Component B Color Component B Color Component B
0.25 96 93.1 ± 6.6 80.2 ± 15.2

4. Conclusions

Two different models were used to quantify different olive and soybean oil mixtures characterized
by image analysis with the aid of the RGB color system. The model based on the fractional
calculus-based approach could better describe the experimental dataset, presenting better results of
parameter estimation quantities, such as objective function values and parameter variance. This model
could successfully describe an independent validation sample, while the integer order model failed to
predict the value of the validation sample. Consequently, the approach proposed here can be used as
an alternative tool for possible on-line monitoring applications where a change color occurs, and it can
be processed and quantified by image analysis techniques.
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Abstract: Stokes’ first problem for a class of viscoelastic fluids with the generalized fractional
Maxwell constitutive model is considered. The constitutive equation is obtained from the classical
Maxwell stress–strain relation by substituting the first-order derivatives of stress and strain by
derivatives of non-integer orders in the interval (0, 1]. Explicit integral representation of the solution
is derived and some of its characteristics are discussed: non-negativity and monotonicity, asymptotic
behavior, analyticity, finite/infinite propagation speed, and absence of wave front. To illustrate
analytical findings, numerical results for different values of the parameters are presented.

Keywords: Riemann-Liouville fractional derivative; viscoelastic fluid; fractional Maxwell model;
Stokes’ first problem; Mittag-Leffler function; Bernstein function

1. Introduction

Viscoelastic fluid flows with the classical Maxwell constitutive model [1] have been the object of
intense study for many years, for a short survey see for example [2,3]. In the case of a unidirectional
flow, the Maxwell constitutive relation has the dimensionless form

σ + a
∂σ

∂t
= b

∂ε

∂t
, (1)

where σ and ε are shear stress and strain, respectively, a is the relaxation time, and b the
dynamic viscosity.

Fractional calculus, in view of its ability to model hereditary phenomena with long memory,
has proved to be a valuable tool to handle viscoelastic aspects [4]. For instance, rheological constitutive
equations with fractional derivatives play an important role in the description of properties of polymer
solutions and melts [5]. A four-parameter generalization of the classical Maxwell model (1) has been
proposed in [6], see also [7,8] and [9] (Chapter 7). It is obtained from (1) by substituting the first order
time-derivatives of stress and strain with Riemann-Liouville fractional derivatives in time, which leads
to the following generalized fractional Maxwell constitutive equation

σ + aDα
t σ = bDβ

t ε, (2)

where 0 < α, β ≤ 1 and a, b > 0. Since for α > β, the corresponding relaxation function is increasing,
which is not physically acceptable, the constitutive model (2) is considered only for fractional order
parameters satisfying the constraints (see [6–9])

0 < α ≤ β ≤ 1, a, b > 0. (3)

Fractal Fract. 2017, 1, 7 115 www.mdpi.com/journal/fractalfract
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The fractional Maxwell constitutive Equation (2) with thermodynamic constraints (3) has been shown
to be an excellent model for capturing the linear viscoelastic behavior of soft materials exhibiting one
or more broad regions of power-law-like relaxation [8,10,11].

Stokes’ first problem is one of the basic problems for simple flows. It is concerned with the shear
flow of a fluid occupying a semi-infinite region bounded by a plate which undergoes a step increase
of velocity from rest. One of the first studies on Stokes’ first problem for viscoelastic fluids is [12].
Since then many works have been devoted to this problem for different types of fluids with linear
constitutive equations. Stokes’ first problem for viscoelastic fluids with general stress–strain relation is
studied in [13], [14] (Section 5.4) and [4] (Chapter 4). For some recent results concerning unidirectional
flows of viscoelastic fluids with fractional derivative models we refer to [15] (Chapter 7). Let us note
that the fractional order governing equations are usually derived from classical models by substituting
the integer order derivatives by fractional derivatives. The problem of correct fractionalization of the
governing equations is discussed in [16].

The classical Maxwell constitutive Equation (1) and its fractional order generalization (2) are
among the simplest viscoelastic models for fluid-like behavior and the corresponding Stokes’ first
problem is a good model of essential processes involved in wave propagation. For studies on Stokes’
first problem for classical Maxwell fluids we refer to [2,3] and the references cited therein. Stokes’
first problem for generalized fractional Maxwell fluids is studied in [17,18], where explicit solutions
in the form of series expansions are obtained (in [18] only the particular case β = 1 is considered).
Explicit solutions of other types of problems for unidirectional flows of fractional Maxwell fluids with
constitutive Equation (2) can be found in [19–21].

Despite the abundance of works devoted to exact solutions of unidirectional flows of linear
viscoelastic fluids, to the best of our knowledge, there is very little analytical work enlightening the
basic properties of solution to Stokes’ first problem for fractional Maxwell fluids, such as propagation
speed, non-negativity, monotonicity, regularity, and asymptotic behavior. In addition, it was pointed
out in [22,23] that in a number of recent works the obtained exact solutions to Stokes’ first problem
for non-Newtonian fluids contain mistakes. In the present work we provide a new explicit solution
to Stokes’ first problem for generalized Maxwell fluids with a constitutive model (2) and compare it
numerically to the one given in [17]. Moreover, based on the theory of Bernstein functions, we study
analytically the properties of the solution and support the analytical findings by numerical results.

This paper is organized as follows. In Section 2, the material functions of the fractional Maxwell
model are studied. In Section 3, the solution to Stokes’ first problem is studied analytically based on its
representation in Laplace domain. Section 4 is devoted to derivation of explicit integral representation
of solution and numerical computation. Some facts concerning Bernstein functions and related classes
of functions are summarized in an Appendix.

2. Fractional Maxwell Model-Material Functions

Consider a unidirectional viscoelastic flow and suppose it is quiescent for all times prior to
some starting time that we assume as t = 0. Since we work only with causal functions ( f (t) = 0 for
t < 0), if there is no danger of confusion for the sake of brevity, we still denote by f (t) the function
H(t) f (t), where H(t) is the Heaviside unit step function. We are concerned with the fractional
Maxwell model, given by the linear constitutive Equation (2) with parameters satisfying (3). The
material functions—relaxation function G(t) and the creep compliance J(t)—in a one-dimensional
linear viscoelastic model are defined by the identities [4,24]

σ(x, t) =
∫ t

0
G(t − τ)ε̇(x, τ)dτ; ε(x, t) =

∫ t

0
J(t − τ)σ̇(x, τ)dτ, t > 0, (4)

where the over-dot denotes the first derivative in time.
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Applying (A4), we derive from the constitutive Equation (2) expressions for material functions in
the Laplace domain:

Ĝ(s) =
bsβ−1

1 + asα
, Ĵ(s) =

1
bsβ+1 +

a
bsβ−α+1 . (5)

Taking the inverse Laplace transform of the above representations of Ĝ(s) and Ĵ(s), we get,
by using the properties (A5) and (A8), the following representations of the material functions
(see also [6–9])

G(t) =
b
a

tα−βEα,α−β+1

(
−1

a
tα

)
, J(t) =

tβ

bΓ(1 + β)
+

atβ−α

bΓ(1 + β − α)
, t > 0, (6)

in terms of the Mittag-Leffler function (A6) and power-law type functions, respectively.
The second law of thermodynamics, stating that the total entropy can only increase over time

for an isolated system, implies the following restrictions on the material functions: G(t) should be
non-increasing and J(t) non-decreasing for t > 0. This behavior is related to the physical phenomena
of stress relaxation and strain creep [4]. It has been proven that the fractional Maxwell model (2) is
consistent with the second law of thermodynamics if and only if 0 < α ≤ β ≤ 1 [6–9]. For completeness,
here we formulate and prove a slightly stronger statement. In fact, it appears that the monotonicity
of the material functions of the fractional Maxwell model imply that the relaxation function G(t) is
completely monotone and the creep compliance J(t) is a complete Bernstein function. The definitions
and properties of completely monotone functions and related classes of functions are summarized in
the Appendix.

Proposition 1. Assume 0 < α, β ≤ 1, a, b > 0, t > 0. The following assertions are equivalent:
(a) 0 < α ≤ β ≤ 1;
(b) G(t) is monotonically non-increasing for t > 0;
(c) J(t) is monotonically non-decreasing for t > 0;
(d) G(t) is a completely monotone function;
(e) J(t) is a complete Bernstein function.

Proof. Using the representations (6) for the material functions, we prove that condition (a) is equivalent
to any of the conditions (b)–(e). First we show that if 1 ≥ α > β > 0 then (b) and (c) are not satisfied.
The definition of Mittag-Leffler function (A6) implies G(t) ∼ tα−β for t → 0. Therefore, if α > β, G(t) is
increasing near 0, i.e., (b) is violated. Further, dJ/dt ∼ tβ−α−1/Γ(β − α) for t → 0. Since Γ(β − α) < 0
for 1 ≥ α > β > 0, in this case J(t) is decreasing near 0, and thus (c) is violated. Therefore, any of
conditions (b) and (c) implies (a). It remains to prove that (a) implies (d) and (e), i.e., G(t) ∈ CMF
and J(t) ∈ CBF . Indeed, if 0 < α ≤ β ≤ 1 then tα−β ∈ CMF and Eα,α−β+1

(
− 1

a tα
)
∈ CMF as

a composition of the completely monotone Mittag-Leffler function of negative argument and the
Bernstein function tα. Therefore, G(t) ∈ CMF is a product of two completely monotone functions.
The fact that J(t) is a complete Bernstein function follows from the property of the power function
tγ ∈ CBF for γ ∈ [0, 1].

Representations (6) together with the asymptotic expansion (A7) gives G(+∞) = 0 and
J(+∞) = +∞. Therefore, the fractional Maxwell constitutive equation indeed models fluid-like
behavior (for a discussion on the general conditions see e.g., [24], Section 2). More precisely, (6)
and (A7) imply for t → +∞ that G(t) ∼ t−α if β < 1 and G(t) ∼ t−α−1 if β = 1. This means that
only for β = 1 the relaxation function G(t) is integrable at infinity and the integral over (0, ∞) is
finite, which is a stronger condition required for fluid behavior. In this case (β = 1) we obtain from (6)
and (A9) the area under the relaxation curve∫ ∞

0
G(t)dt = b, β = 1.
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The asymptotic expansions of the material functions for t → 0+ are G(t) ∼ tα−β, J(t) ∼ tβ−α.
Therefore, if α < β then G(0+) = +∞ and J(0+) = 0, while if α = β different behavior is observed:
G(0+) < ∞ and J(0+) > 0. More precisely, G(0+) = b/a = 1/J(0+) for α = β. This means that in the
limiting case α = β the material possesses instantaneous elasticity and, therefore, finite wave speed of
a disturbance is expected [4] (Chapter 4). This property will be discussed further in the next section.

3. Stokes’ First Problem

Consider incompressible viscoelastic fluid which fills a half-space x > 0 and is quiescent for
all times prior to t = 0. Rheological properties of the fluid are described by the fractional Maxwell
constitutive Equation (2) with parameters satisfying the thermodynamic constraints (3). Taking into
account that Dβ

t ε = CDβ
t ε = J1−β

t ε̇ for ε(x, 0) = 0, see (A3), constitutive Equation (2) can be rewritten in
the form:

(1 + aDα
t ) σ(x, t) = bJ1−β

t ε̇(x, t), 0 < α ≤ β ≤ 1, a, b > 0. (7)

The fluid is set into motion by a sudden movement of the bounding plane x = 0 tangentially to
itself with constant speed 1. Denote by u(x, t) the induced velocity field. Assuming non-slip boundary
conditions, the equation for the rate of strain ε̇ = ∂u/∂x, Cauchy’s first law ∂u/∂t = ∂σ/∂x and the
constitutive Equation (7), imply the following IBVP for the velocity field

(1 + aDα
t ) ut(x, t) = bJ1−β

t uxx(x, t), x, t > 0, (8)

u(0, t) = H(t), u → 0 as x → ∞, t > 0, (9)

u(x, 0) = ut(x, 0) = 0, x > 0, (10)

where H(t) is the Heaviside unit step function. Problem (8)–(10) is the Stokes first problem for
a fractional Maxwell fluid, c.f. [17].

Let us note that by applying the Caputo fractional derivative operator CD1−β
t to both sides of

Equation (8) and taking into account the zero initial conditions (10), and operator identities (A3),
Equation (8) can be rewritten as the following two-term time-fractional diffusion-wave equation

aCD2+α−β
t u(x, t) +C D2−β

t u(x, t) = buxx(x, t), x, t > 0,

with Caputo fractional derivatives of orders 2 + α − β, 2 − β ∈ [1, 2]. In a number of
works various problems for the two-term time-fractional diffusion-wave equation are studied,
e.g., [25], [26] (Chapter 6) and [27–32]. In this work, we study the Stokes’ first problem following the
technique developed in [33] for the multi-term time-fractional diffusion-wave equation.

Problem (8)–(10) is conveniently treated using Laplace transform with respect to the temporal
variable. Denote by û(x, s) the Laplace transform of u(x, t) with respect to t. By applying Laplace
transform to Equation (8) and taking into account the boundary conditions (9), initial conditions (10)
and identities (A4), the following ODE for û(x, s) is obtained

g(s)û(x, s) = ûxx(x, s), û(0, s) = 1/s, û(x, s) → 0 as x → ∞, (11)

where

g(s) =
s

Ĝ(s)
=

as2+α−β

b
+

s2−β

b
. (12)

Solving problem (11), with s considered as a parameter, it follows, c.f. [17] (Equation (22))

û(x, s) =
1
s

exp
(
−x
√

g(s)
)

, (13)

where g(s) is defined in (12).
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Before taking inverse Laplace transform to obtain explicit representation of the solution, we first
deduce information about its behavior directly from its Laplace transform (13).

First we prove that
√

g(s) is a complete Bernstein function. Here this is deduced from the complete
monotonicity of the relaxation function G(t) proved in Proposition 1. Therefore, the proposed method
of proof can be used also for more general models, provided the corresponding relaxation function is
completely monotone.

Proposition 2. Assume 0 < α ≤ β ≤ 1, a, b > 0. Then
√

g(s) ∈ CBF .

Proof. For the proof we use properties (D), (E) and (G) in the Appendix. Since G(t) ∈ CMF then
Ĝ(s) ∈ SF by definition. Therefore, property (D) implies 1/Ĝ(s) ∈ CBF . Since also s ∈ CBF (by (G)),
g(s) = s/Ĝ(s) is a product of two complete Bernstein functions, and (E) implies

√
g(s) ∈ CBF .

Theorem 1. The solution of Stokes’ first problem u(x, t) is monotonically non-increasing function in x and
monotonically non-decreasing function in t, such that 0 ≤ u(x, t) ≤ 1 and u(x, 0+) = 0, u(x,+∞) = 1.
More precisely, for any x > 0,

u(x, t) ∼ 1 − xtβ/2−1
√

bΓ(β/2)
, t → +∞. (14)

Proof. From Proposition 2 and properties (A), (B) and (C) in the Appendix we deduce (in the same
way as in [33] (Theorem 2.2)):

exp
(
−x
√

g(s)
)
∈ CMF ,

1
s

exp
(
−x
√

g(s)
)
∈ CMF ,

√
g(s)
s

exp
(
−x
√

g(s)
)
∈ CMF . (15)

Therefore, (13) and Bernstein’s theorem imply

u(x, t) ≥ 0,
∂

∂t
u(x, t) ≥ 0, − ∂

∂x
u(x, t) ≥ 0, x, t > 0, (16)

and, in this way, the non-negativity and monotonicity properties of the solution are proven. Taking
into account that g(s) → 0 as s → 0 and g(s) → ∞ as s → ∞, it follows from (13) and the final and
initial value theorem of Laplace transform

lim
t→0+

u(x, t) = lim
s→∞

sû(x, s) = 0, lim
t→+∞

u(x, t) = lim
s→0

sû(x, s) = 1, (17)

and, therefore, 0 ≤ u(x, t) ≤ 1. Since exp
(
−x
√

g(s)
)
∼ 1 − x

√
g(s) and g(s) ∼ s−β/b for s → 0,

then (13) implies

û(x, s) ∼ 1
s
− x

s−β/2
√

b
, s → 0,

which, by applying (A5) and Tauberian theorem, gives the asymptotic expansion (14) of u(x, t).

Next, propagation speed of a disturbance is discussed. From general theory, see e.g., [4] (Chapter 4)
and [14] (Chapter 5), the velocity of propagation of the head of the disturbance is c = κ−1, where

κ = lim
s→∞

√
g(s)
s

= lim
s→∞

1√
sĜ(s)

= lim
t→0+

1√
G(t)

.

From here, we easily obtain the propagation speed for the considered fractional Maxwell model

c =

{
∞, 0 < α < β ≤ 1;
√

b/a, 0 < α = β ≤ 1.

119



Fractal Fract. 2017, 1, 7

Therefore, if 0 < α < β ≤ 1, the disturbance propagates with infinite speed. On the other hand,
if the orders of the two derivatives in the model are equal 0 < α = β ≤ 1 (and thus the model
possesses instantaneous elasticity as discussed earlier), the propagation speed c is finite. This means
that u(x, t) ≡ 0 for x > ct. Let us consider the case of finite propagation speed in more detail. It is
known that in the limiting case of classical Maxwell model (α = β = 1) the velocity field u(x, t) has
a jump discontinuity at the planar surface x = ct, see e.g., [2]. What happens when the orders α and β

are equal, but non-integer? According to [14] the amplitude of such a jump is exp(−ωx), where ω =

lims→∞

(√
g(s)− κs

)
. In our specific case (12) with α = β gives g(s) = as2

b + s2−β

b = κ2s2
(

1 + 1
asβ

)
and using the expansion

√
1 + x ∼ 1 + x/2 for x → 0, we find

ω = lim
s→∞

κs

(√
1 +

1
asβ

− 1

)
= lim

s→∞

κ

2a
s1−β. (18)

Therefore, ω < ∞ only in the case β = 1, which means that only in the case of classical Maxwell
fluid the wave u(x, t) exhibits a wave front, i.e., a discontinuity at x = ct. For equal non-integer
values of the parameters α and β, 0 < α = β < 1, (18) implies ω = ∞, and thus there is no wave
front at x = ct. Therefore, in this case, an interesting phenomenon is observed: coexistence of finite
propagation speed and absence of wave front. This is a memory effect, which is not present for linear
integer order models.

At the end of this section we consider in more detail the case 0 < α < β ≤ 1, for which we
obtained c = ∞. We will prove next that in this case the solution u(x, t) is an analytic function in t.

Theorem 2. Let 0 < α < β ≤ 1 and θ0 = (β−α)π
2(2+α−β)

− ε , where ε > 0 is arbitrarily small. Then, for any x > 0,
the solution u(x, t) of Stokes’ first problem (8)-(9)-(10) admits analytic extension to the sector | arg t| < θ0,
which is bounded on each sub-sector | arg t| ≤ θ < θ0.

Proof. It is sufficient to prove that û(x, s) admits analytic extension to the sector | arg s| < π/2 + θ0

and sû(x, s) is bounded on each sub-sector

| arg s| ≤ π/2 + θ, θ < θ0, (19)

see e.g., [14] (Theorem 0.1). Indeed, since
√

g(s) ∈ CBF , by property (H) in the Appendix, it can be
analytically extended to C\(−∞, 0] and, hence, the same will hold for û(x, s). Moreover, from (12) we
deduce for any s satisfying (19)∣∣∣∣arg

√
g(s)

∣∣∣∣ ≤ 2 + α − β

2
| arg s| ≤ π/2 − ε0,

where ε0 = 2+α−β
2 ε ∈ (0, π/2). Inserting this inequality in (13), we obtain for any x > 0 and any s

satisfying (19) the estimate |sû(x, s)| ≤ exp
(
−x|g(s)|1/2 sin ε0

)
≤ 1.

The analyticity of the solution established in the above theorem implies that for any x > 0 the set
of zeros of u(x, t) on t > 0 can be only discrete. This, together with the monotonicity of u(x, .) proved
in Theorem 1, implies that u(x, t) > 0 for all x, t > 0. This observation confirms again that in the case
0 < α < β ≤ 1 a disturbance spreads infinitely fast.
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4. Explicit Representation of Solution and Numerical Results

To find explicit representation of the solution we apply the Bromwich integral inversion formula
to (13) and obtain the following integral in the complex plane

u(x, t) =
1

2πi

∫
D∪D0

1
s

exp
(

st − x
√

g(s)
)

ds, (20)

where the Bromwich path has been transformed to the contour D ∪ D0, where

D = {s = ir, r ∈ (−∞,−ε) ∪ (ε, ∞)}, D0 = {s = εeiθ , θ ∈ [−π/2, π/2]}.

In the same way as in [33] (Theorem 2.5) we deduce from (20) the following real integral
representation of the solution.

Theorem 3. The solution of Stokes’ first problem (8)–(10) admits the integral representation:

u(x, t) =
1
2
+

1
π

∫ ∞

0
exp(−xK+(r)) sin(rt − xK−(r))

dr
r

, x, t > 0, (21)

where

K±(r) =
1√
2

((
A2(r) + B2(r)

)1/2
± A(r)

)1/2

with

A(r) = − a
b

r2+α−β cos
(β − α)π

2
− 1

b
r2−β cos

βπ

2
, B(r) =

a
b

r2+α−β sin
(β − α)π

2
+

1
b

r2−β sin
βπ

2
.

Let us check that the integral in (21) is convergent. Indeed, since K−(r) ∼ r1−β/2 as r → 0 then
sin(rt − xK−(r))/r ∼ r−β/2 as r → 0. Therefore, the function under the integral sign in (21) has
an integrable singularity at r → 0. At r → ∞ integrability is ensured by the term exp(−xK+(r)), since
K+(r) > 0 and K+(r) ∼ r1−(β−α)/2 → +∞ as r → +∞.

Next, the explicit integral representation (21) is used for numerical computation and visualization
of the solution to the Stokes’ first problem for different values of the parameters. For the numerical
computation of the improper integral in (21) the MATLAB subroutine “integral” is used. The aim
of our numerical computations is two-fold: to support the presented analytical findings and to
compare our results to those in [17] (see their Figures 1 and 2), where plots of the solution are given,
obtained from a different representation: a series expansion in terms of Fox H-functions. In order to
compare our numerical solutions to the ones given in [17], we perform computations for the same
parameters. In contrast to [17], where only plots of solution as a function of x are given, we plot it also
as a function of t.

In Figure 1 the solution u(x, t) is plotted for β = 0.8 and four different values of α: 0.2, 0.4, 0.6,
and 0.8; a = 10α, b = 10β−1. The case of instantaneous elasticity α = β = 0.8 is added to those
plotted in Figure 1 of [17], in order to show the different behavior. In this case, the disturbance at
x = 0 propagates with finite speed c =

√
b/a = 10−1/2 and u(x, t) ≡ 0 for x > ct. There is no

wave front at x = ct. In the other three cases with α < β the propagation speed is infinite and u(x, t)
should be positive for all x, t > 0. However, far from the wall, it becomes negligible. As expected,
the solution u(x, t) exhibits monotonic behavior: it is non-increasing with respect to x, see Figure 1a,
and non-decreasing with respect to t, see Figure 1b. The plots presented in Figure 1a for α = 0.2, 0.4, 0.6
are identical with those given in Figure 1 of [17].

In Figure 2, the solution is plotted for α = 0.5 and three different values of β: 0.5, 0.7, 0.9, a = 10α,
b = 10β−1. The case of instantaneous elasticity now is α = β = 0.5 with finite propagation speed c
having the same value as above. Again, as expected, there is no wave front at x = ct. Monotonicity of
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u(x, t) is clearly seen. The plots presented in Figure 2a for fixed time t = 4 are identical with those
given in [17], Figure 2.

(a) (b)

Figure 1. Velocity field u(x, t) for β = 0.8 and different values of α: 0.2, 0.4, 0.6, and 0.8; a = 10α,
b = 10β−1; (a) u(x, t) as a function of x for t = 4; (b) u(x, t) as a function of t for x = 1.

(a) (b)

Figure 2. Velocity field u(x, t) for α = 0.5 and three different values of β: 0.5, 0.7, 0.9; a = 10α, b = 10β−1;
(a) u(x, t) as a function of x for t = 4; (b) u(x, t) as a function of t for x = 1.

We refer also to [33] (Figures 1–3) for more illustrations of the three different types of behavior,
related to Maxwell fluids, namely: finite wave speed and presence of wave front (α = β = 1), finite
wave speed and absence of wave front (0 < α = β < 1), and infinite propagation speed (0 < α < β ≤ 1).
Let us note that the paper [18] also presents plots of the solution of Stokes’ first problem for fractional
Maxwell fluids with β = 1. However, the plots in Figures 5a, 7a and 9a of [18] do not seem to
be monotonically decreasing with respect to the spatial variable, which is a contradiction with the
expected monotonic behavior of the solution.

5. Conclusions

The solution of Stokes’ first problem for a viscoelastic fluid with the generalized Maxwell model
with fractional derivatives of stress and strain is studied based on its Laplace transform with respect to
the temporal variable. The thermodynamic constraints on the fractional parameters imply physically
reasonable monotonic behavior of solution with finite propagation speed (without wave front) when
the two fractional orders coincide and infinite propagation speed otherwise. An explicit integral
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representation of the solution is derived and used for its numerical computation. The obtained
numerical results are in agreement with those reported in [17].

The explicit integral representation of the solution can be further used to derive explicit or
asymptotic expressions for other characteristics of the flow, such as shear stress at the plate, thickness
of the boundary layer, etc.

The presented technique can be applied in the study of different generalizations of the considered
model, e.g., the viscoelastic model based on Bessel functions in [34] and the fractional order weighted
distributed parameter Maxwell model in [35].
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Appendix A

The Riemann-Liouville and the Caputo fractional derivatives, Dα
t and CDα

t , are defined by
the identities

Dα
t =

dm

dtm Jm−α
t , CD

α
t = Jm−α

t
dm

dtm , 0 ≤ m − 1 < α ≤ m, m ∈ N, (A1)

where Jβ
t denotes the Riemann-Liouville fractional integral:

Jβ
t f (t) =

1
Γ(β)

∫ t

0
(t − τ)β−1 f (τ)dτ =

{
tβ−1

Γ(β)

}
∗ f , β > 0; J0

t = I; (A2)

with ∗ being the Laplace convolution

( f ∗ g)(t) =
∫ t

0
f (t − τ)g(τ) dτ.

Some basic properties of the fractional order operators are listed next:

Jα
t Jβ

t = Jα+β
t , CD

α
t Jα

t = Dα
t Jα

t = I ∀α, β > 0;
CD

α
t f = Dα

t f , Jα
t

CD
α
t f = Jα

t Dα
t f = f if f (k)(0) = 0, k = 0, 1, ..., m − 1, m − 1 < α ≤ m.

(A3)

Denote the Laplace transform of a function by

L{ f (t)}(s) = f̂ (s) =
∫ ∞

0
e−st f (t)dt.

The Laplace transform of fractional order operators obeys the following identities, where α > 0:

L{Jα
t f }(s) = s−αL{ f }(s);

L{Dα
t f }(s) = L{CD

α
t f }(s) = sαL{ f }(s), if f (k)(0) = 0, k = 0, 1, ..., m − 1, m − 1 < α ≤ m,

(A4)

which can be derived from the definitions (A1), (A2), the Laplace transform pair

L
{

tβ−1

Γ(β)

}
= s−β, β > 0, (A5)

the convolution property L{( f ∗ g)(t)}(s) = f̂ (s)ĝ(s), and the identity for the integer order derivative
L{ f (m)}(s) = smL{ f }(s) if f (k)(0) = 0 for k = 0, 1, ..., m − 1.
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The two-parameter Mittag-Leffler function is defined by the series

Eα,β(z) =
∞

∑
k=0

zk

Γ(αk + β)
, α, β, z ∈ C, �α > 0. (A6)

It admits the asymptotic expansion

Eα,β(−t) =
t−1

Γ(β − α)
− t−2

Γ(β − 2α)
+ O(t−3), α ∈ (0, 2), β ∈ R, t → +∞, (A7)

and satisfies the Laplace transform identity

L
{

tβ−1Eα,β(−λtα)
}
(s) =

sα−β

sα + λ
. (A8)

The following relation is often useful:

d
dt

Eα,1

(
−1

a
tα

)
= −1

a
tα−1Eα,α

(
−1

a
tα

)
. (A9)

For details on Mittag-Leffler functions we refer to [36,37].
A function ϕ : (0, ∞) → R is said to be completely monotone function (ϕ ∈ CMF ) if it is of class

C∞ and
(−1)n ϕ(n)(x) ≥ 0, λ > 0, n = 0, 1, 2, ... (A10)

The characterization of the class CMF is given by the Bernstein’s theorem: a function is
completely monotone if and only if it can be represented as the Laplace transform of a non-negative
measure (non-negative function or generalized function).

The class of Stieltjes functions (SF ) consists of all functions defined on (0, ∞) which can be
written as Laplace transform of a completely monotone function. Therefore, SF ⊂ CMF .

A non-negative function ϕ on (0, ∞) is said to be a Bernstein function (ϕ ∈ BF ) if ϕ′(x) ∈ CMF ;
ϕ(x) is said to be a complete Bernstein functions (CBF ) if and only if ϕ(x)/x ∈ SF . We have the
inclusion CBF ⊂ BF .

A selection of properties of the classes of functions defined above is given next.

(A) The class CMF is closed under point-wise multiplication.
(B) If ϕ ∈ BF then ϕ(x)/x ∈ CMF .
(C) If ϕ ∈ CMF and ψ ∈ BF then the composite function ϕ(ψ) ∈ CMF .
(D) ϕ ∈ CBF if and only if 1/ϕ ∈ SF .
(E) If ϕ, ψ ∈ CBF then

√
ϕ.ψ ∈ CBF .

(F) The Mittag-Leffler function Eα,β(−x) ∈ CMF for 0 < α ≤ 1, α ≤ β.
(G) If α ∈ [0, 1] then xα ∈ CBF and xα−1 ∈ SF ;
(H) If ϕ ∈ SF or CBF then it can be analytically extended to C\(−∞, 0] and | arg ϕ(z)| ≤ | arg z| for

z ∈ C\(−∞, 0].

For proofs and more details on these special classes of functions we refer to [38].
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